Sample records for biopharmaceutical product development

  1. Biopharmaceuticals from microorganisms: from production to purification.

    PubMed

    Jozala, Angela Faustino; Geraldes, Danilo Costa; Tundisi, Louise Lacalendola; Feitosa, Valker de Araújo; Breyer, Carlos Alexandre; Cardoso, Samuel Leite; Mazzola, Priscila Gava; Oliveira-Nascimento, Laura de; Rangel-Yagui, Carlota de Oliveira; Magalhães, Pérola de Oliveira; Oliveira, Marcos Antonio de; Pessoa, Adalberto

    2016-12-01

    The use of biopharmaceuticals dates from the 19th century and within 5-10 years, up to 50% of all drugs in development will be biopharmaceuticals. In the 1980s, the biopharmaceutical industry experienced a significant growth in the production and approval of recombinant proteins such as interferons (IFN α, β, and γ) and growth hormones. The production of biopharmaceuticals, known as bioprocess, involves a wide range of techniques. In this review, we discuss the technology involved in the bioprocess and describe the available strategies and main advances in microbial fermentation and purification process to obtain biopharmaceuticals. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  2. The Market of Biopharmaceutical Medicines: A Snapshot of a Diverse Industrial Landscape.

    PubMed

    Moorkens, Evelien; Meuwissen, Nicolas; Huys, Isabelle; Declerck, Paul; Vulto, Arnold G; Simoens, Steven

    2017-01-01

    Background: Biopharmaceutical medicines represent a growing share of the global pharmaceutical market, and with many of these biopharmaceutical products facing loss of exclusivity rights, also biosimilars may now enter the biopharmaceutical market. Objectives: This study aims to identify and document which investment and development strategies are adopted by industrial players in the global biopharmaceutical market. Methods: A descriptive analysis was undertaken of the investment and development strategies of the top 25 pharmaceutical companies according to 2015 worldwide prescription drug sales. Strategies were documented by collecting data on manufacturing plans, development programs, acquisition and collaboration agreements, the portfolio and pipeline of biosimilar, originator and next-generation biopharmaceutical products. Data were extracted from publicly available sources. Results: Various investment and development strategies can be identified in the global biopharmaceutical market: (a) development of originator biopharmaceuticals, (b) investment in biotechnology, (c) development of next-generation biopharmaceuticals, (d) development of biosimilars, (e) investment in emerging countries, and (f) collaboration between companies. In the top 25 pharmaceutical companies almost every company invests in originator biopharmaceuticals and in biotechnology in general, but only half of them develops next-generation biopharmaceuticals. Furthermore, only half of them invest in development of biosimilars. The companies' biosimilar pipeline is mainly focused on development of biosimilar monoclonal antibodies and to some extent on biosimilar insulins. A common strategy is collaboration between companies and investment in emerging countries. Conclusions: A snapshot of investment and development strategies used by industrial players in the global biopharmaceutical market shows that all top 25 pharmaceutical companies are engaged in the biopharmaceutical market and that this industrial landscape is diverse. Companies do not focus on a single strategy, but are involved in multiple investment and development strategies. A common strategy to market biopharmaceuticals is collaboration between companies. These collaborations can as well be used to gain access in regions the company has less experience with. With patents expiring for some of the highest selling monoclonal antibodies, this snapshot highlights the interest of companies to invest in the development of these molecules and/or enter into collaborations to create access to these molecules.

  3. The Market of Biopharmaceutical Medicines: A Snapshot of a Diverse Industrial Landscape

    PubMed Central

    Moorkens, Evelien; Meuwissen, Nicolas; Huys, Isabelle; Declerck, Paul; Vulto, Arnold G.; Simoens, Steven

    2017-01-01

    Background: Biopharmaceutical medicines represent a growing share of the global pharmaceutical market, and with many of these biopharmaceutical products facing loss of exclusivity rights, also biosimilars may now enter the biopharmaceutical market. Objectives: This study aims to identify and document which investment and development strategies are adopted by industrial players in the global biopharmaceutical market. Methods: A descriptive analysis was undertaken of the investment and development strategies of the top 25 pharmaceutical companies according to 2015 worldwide prescription drug sales. Strategies were documented by collecting data on manufacturing plans, development programs, acquisition and collaboration agreements, the portfolio and pipeline of biosimilar, originator and next-generation biopharmaceutical products. Data were extracted from publicly available sources. Results: Various investment and development strategies can be identified in the global biopharmaceutical market: (a) development of originator biopharmaceuticals, (b) investment in biotechnology, (c) development of next-generation biopharmaceuticals, (d) development of biosimilars, (e) investment in emerging countries, and (f) collaboration between companies. In the top 25 pharmaceutical companies almost every company invests in originator biopharmaceuticals and in biotechnology in general, but only half of them develops next-generation biopharmaceuticals. Furthermore, only half of them invest in development of biosimilars. The companies' biosimilar pipeline is mainly focused on development of biosimilar monoclonal antibodies and to some extent on biosimilar insulins. A common strategy is collaboration between companies and investment in emerging countries. Conclusions: A snapshot of investment and development strategies used by industrial players in the global biopharmaceutical market shows that all top 25 pharmaceutical companies are engaged in the biopharmaceutical market and that this industrial landscape is diverse. Companies do not focus on a single strategy, but are involved in multiple investment and development strategies. A common strategy to market biopharmaceuticals is collaboration between companies. These collaborations can as well be used to gain access in regions the company has less experience with. With patents expiring for some of the highest selling monoclonal antibodies, this snapshot highlights the interest of companies to invest in the development of these molecules and/or enter into collaborations to create access to these molecules. PMID:28642701

  4. Medical molecular farming: production of antibodies, biopharmaceuticals and edible vaccines in plants

    PubMed Central

    Daniell, Henry; Streatfield, Stephen J.; Wycoff, Keith

    2017-01-01

    The use of plants for medicinal purposes dates back thousands of years but genetic engineering of plants to produce desired biopharmaceuticals is much more recent. As the demand for biopharmaceuticals is expected to increase, it would be wise to ensure that they will be available in significantly larger amounts, on a cost-effective basis. Currently, the cost of biopharmaceuticals limits their availability. Plant-derived biopharmaceuticals are cheap to produce and store, easy to scale up for mass production, and safer than those derived from animals. Here, we discuss recent developments in this field and possible environmental concerns. PMID:11335175

  5. Role of Knowledge Management in Development and Lifecycle Management of Biopharmaceuticals.

    PubMed

    Rathore, Anurag S; Garcia-Aponte, Oscar Fabián; Golabgir, Aydin; Vallejo-Diaz, Bibiana Margarita; Herwig, Christoph

    2017-02-01

    Knowledge Management (KM) is a key enabler for achieving quality in a lifecycle approach for production of biopharmaceuticals. Due to the important role that it plays towards successful implementation of Quality by Design (QbD), an analysis of KM solutions is needed. This work provides a comprehensive review of the interface between KM and QbD-driven biopharmaceutical production systems as perceived by academic as well as industrial viewpoints. A comprehensive set of 356 publications addressing the applications of KM tools to QbD-related tasks were screened and a query to gather industrial inputs from 17 major biopharmaceutical organizations was performed. Three KM tool classes were identified as having high relevance for biopharmaceutical production systems and have been further explored: knowledge indicators, ontologies, and process modeling. A proposed categorization of 16 distinct KM tool classes allowed for the identification of holistic technologies supporting QbD. In addition, the classification allowed for addressing the disparity between industrial and academic expectations regarding the application of KM methodologies. This is a first of a kind attempt and thus we think that this paper would be of considerable interest to those in academia and industry that are engaged in accelerating development and commercialization of biopharmaceuticals.

  6. Biopharmaceutical considerations and characterizations in development of colon targeted dosage forms for inflammatory bowel disease.

    PubMed

    Malayandi, Rajkumar; Kondamudi, Phani Krishna; Ruby, P K; Aggarwal, Deepika

    2014-04-01

    Colon targeted dosage forms have been extensively studied for the localized treatment of inflammatory bowel disease. These dosage forms not only improve the therapeutic efficacy but also reduce the incidence of adverse drug reactions and hence improve the patient compliance. However, complex and highly variable gastro intestinal physiology limits the clinical success of these dosage forms. Biopharmaceutical characteristics of these dosage forms play a key role in rapid formulation development and ensure the clinical success. The complexity in product development and clinical success of colon targeted dosage forms are based on the biopharmaceutical characteristics such as physicochemical properties of drug substances, pharmaceutical characteristics of dosage form, physiological conditions and pharmacokinetic properties of drug substances as well as drug products. Various in vitro and in vivo techniques have been employed in past to characterize the biopharmaceutical properties of colon targeted dosage forms. This review focuses on the factors influencing the biopharmaceutical performances of the dosage forms, in vitro characterization techniques and in vivo studies.

  7. Guidance to Achieve Accurate Aggregate Quantitation in Biopharmaceuticals by SV-AUC.

    PubMed

    Arthur, Kelly K; Kendrick, Brent S; Gabrielson, John P

    2015-01-01

    The levels and types of aggregates present in protein biopharmaceuticals must be assessed during all stages of product development, manufacturing, and storage of the finished product. Routine monitoring of aggregate levels in biopharmaceuticals is typically achieved by size exclusion chromatography (SEC) due to its high precision, speed, robustness, and simplicity to operate. However, SEC is error prone and requires careful method development to ensure accuracy of reported aggregate levels. Sedimentation velocity analytical ultracentrifugation (SV-AUC) is an orthogonal technique that can be used to measure protein aggregation without many of the potential inaccuracies of SEC. In this chapter, we discuss applications of SV-AUC during biopharmaceutical development and how characteristics of the technique make it better suited for some applications than others. We then discuss the elements of a comprehensive analytical control strategy for SV-AUC. Successful implementation of these analytical control elements ensures that SV-AUC provides continued value over the long time frames necessary to bring biopharmaceuticals to market. © 2015 Elsevier Inc. All rights reserved.

  8. Recombinant drug development, regulation, and commercialization: an Indian industry perspective.

    PubMed

    Sahoo, Niharika; Manchikanti, Padmavati

    2011-04-01

    The Indian biopharmaceutical sector comprises nearly 40 companies that manufacture and/or market 14 recombinant drugs that account for nearly 50 products. Among these, 22 companies have manufacturing facilities in India. The aim of the present study was to analyze the patenting trends, commercialization, and regulatory system for biopharmaceuticals in India. Representatives from 19 such biopharmaceutical companies were interviewed on aspects related to regulatory compliance, manufacturing, commercialization, and innovation in order to understand the challenges faced by them in the current regulatory and patent system. The study revealed that 94% of the companies have filed patents and 52% are developing new biologic entities in areas such as diabetes mellitus, cancer, and congestive heart diseases. Forty-two percent of the companies consider delays in regulatory approval to be a major constraint for biopharmaceutical industry development. Almost all are of the opinion that uniform guidelines across countries would help to prevent delays in the commercialization of products. A high proportion of representatives of the biopharmaceutical industry in India identified that elaboration of regulatory guidelines, defined submission requirements, and drug approval timelines are vital to the growth of the biopharmaceutical industry. © 2011 Adis Data Information BV. All rights reserved.

  9. Cell Engineering and Molecular Pharming for Biopharmaceuticals

    PubMed Central

    Abdullah, M.A; Rahmah, Anisa ur; Sinskey, A.J; Rha, C.K

    2008-01-01

    Biopharmaceuticals are often produced by recombinant E. coli or mammalian cell lines. This is usually achieved by the introduction of a gene or cDNA coding for the protein of interest into a well-characterized strain of producer cells. Naturally, each recombinant production system has its own unique advantages and disadvantages. This paper examines the current practices, developments, and future trends in the production of biopharmaceuticals. Platform technologies for rapid screening and analyses of biosystems are reviewed. Strategies to improve productivity via metabolic and integrated engineering are also highlighted. PMID:19662143

  10. Biopharmaceutical Evaluation and CMC Aspects of Oral Modified Release Formulations.

    PubMed

    Chang, Rong-Kun; Mathias, Neil; Hussain, Munir A

    2017-09-01

    This article discusses the range of outcomes from biopharmaceutical studies of specific modified release (MR) product examples in preclinical models and humans. It touches upon five major biopharmaceutical areas for MR drug products: (1) evidence for regional permeability throughout the GI tract, (2) susceptibility to food-effect, (3) susceptibility to pH-effect, (4) impact of chronopharmacology in designing MR products, and (5) implications to narrow therapeutic index products. Robust bioperformance requires that product quality is met through a thorough understanding of the appropriate critical quality attributes that ensure reliable and robust manufacture of a MR dosage form. The quality-by-design (QbD) aspects of MR dosage form design and development are discussed with the emphasis on the regulatory view of the data required to support dosage form development.

  11. Edible plants for oral delivery of biopharmaceuticals.

    PubMed

    Merlin, Matilde; Pezzotti, Mario; Avesani, Linda

    2017-01-01

    Molecular farming is the use of plants for the production of high value recombinant proteins. Over the last 25 years, molecular farming has achieved the inexpensive, scalable and safe production of pharmaceutical proteins using a range of strategies. One of the most promising approaches is the use of edible plant organs expressing biopharmaceuticals for direct oral delivery. This approach has proven to be efficacious in several clinical vaccination and tolerance induction trials as well as multiple preclinical studies for disease prevention. The production of oral biopharmaceuticals in edible plant tissues could revolutionize the pharmaceutical industry by reducing the cost of production systems based on fermentation, and also eliminating expensive downstream purification, cold storage and transportation costs. This review considers the unique features that make plants ideal as platforms for the oral delivery of protein-based therapeutics and describes recent developments in the production of plant derived biopharmaceuticals for oral administration. © 2016 The British Pharmacological Society.

  12. Examining the sources of variability in cell culture media used for biopharmaceutical production.

    PubMed

    McGillicuddy, Nicola; Floris, Patrick; Albrecht, Simone; Bones, Jonathan

    2018-01-01

    Raw materials, in particular cell culture media, represent a significant source of variability to biopharmaceutical manufacturing processes that can detrimentally affect cellular growth, viability and specific productivity or alter the quality profile of the expressed therapeutic protein. The continual expansion of the biopharmaceutical industry is creating an increasing demand on the production and supply chain consistency for cell culture media, especially as companies embrace intensive continuous processing. Here, we provide a historical perspective regarding the transition from serum containing to serum-free media, the development of chemically-defined cell culture media for biopharmaceutical production using industrial scale bioprocesses and review production mechanisms for liquid and powder culture media. An overview and critique of analytical approaches used for the characterisation of cell culture media and the identification of root causes of variability are also provided, including in-depth liquid phase separations, mass spectrometry and spectroscopic methods.

  13. Biopharmaceutical Innovation System in China: System Evolution and Policy Transitions (Pre-1990s-2010s)

    PubMed Central

    Hu, Hao; Chung, Chao-Chen

    2015-01-01

    Background: This article sets up the initial discussion of the evolution of biopharmaceutical innovation in China through the perspective of sectoral innovation system (SIS). Methods: Two data sources including archival documentary data and field interviews were used in this study. Archival documentary data was collected from China Food and Drug Administration (CFDA) and Chinese National Knowledge Infrastructure (CNKI). In addition, industrial practitioners and leading researchers in academia were interviewed. Results: Biopharmaceutical in China was established through international knowledge transfer. The firms played more active role in commercializing biopharmaceutical in China though universities and research institutes were starting to interact with local firms and make contribution to biopharmaceutical industrialization. The transition of the Chinese government’s policies continuously shapes the evolution of biopharmaceutical sector. Policies have been dramatic changes before and after 1980s to encourage developing biopharmaceutical as a competitive industry for China. Conclusion: A SIS for biopharmaceutical has been shaped in China. However, currently biopharmaceutical is still a small sector in China, and for the further growth of the industry more synthetic policies should be implemented. Not only the policy supports towards the research and innovation of biopharmaceuticals in the early stage of development should be attended, but also commercialization of biopharmaceutical products in the later stage of sales. PMID:26673466

  14. Biopharmaceutical Innovation System in China: System Evolution and Policy Transitions (Pre-1990s-2010s).

    PubMed

    Hu, Hao; Chung, Chao-Chen

    2015-09-03

    This article sets up the initial discussion of the evolution of biopharmaceutical innovation in China through the perspective of sectoral innovation system (SIS). Two data sources including archival documentary data and field interviews were used in this study. Archival documentary data was collected from China Food and Drug Administration (CFDA) and Chinese National Knowledge Infrastructure (CNKI). In addition, industrial practitioners and leading researchers in academia were interviewed. Biopharmaceutical in China was established through international knowledge transfer. The firms played more active role in commercializing biopharmaceutical in China though universities and research institutes were starting to interact with local firms and make contribution to biopharmaceutical industrialization. The transition of the Chinese government's policies continuously shapes the evolution of biopharmaceutical sector. Policies have been dramatic changes before and after 1980s to encourage developing biopharmaceutical as a competitive industry for China. A SIS for biopharmaceutical has been shaped in China. However, currently biopharmaceutical is still a small sector in China, and for the further growth of the industry more synthetic policies should be implemented. Not only the policy supports towards the research and innovation of biopharmaceuticals in the early stage of development should be attended, but also commercialization of biopharmaceutical products in the later stage of sales. © 2015 by Kerman University of Medical Sciences.

  15. An Intercompany Perspective on Biopharmaceutical Drug Product Robustness Studies.

    PubMed

    Morar-Mitrica, Sorina; Adams, Monica L; Crotts, George; Wurth, Christine; Ihnat, Peter M; Tabish, Tanvir; Antochshuk, Valentyn; DiLuzio, Willow; Dix, Daniel B; Fernandez, Jason E; Gupta, Kapil; Fleming, Michael S; He, Bing; Kranz, James K; Liu, Dingjiang; Narasimhan, Chakravarthy; Routhier, Eric; Taylor, Katherine D; Truong, Nobel; Stokes, Elaine S E

    2018-02-01

    The Biophorum Development Group (BPDG) is an industry-wide consortium enabling networking and sharing of best practices for the development of biopharmaceuticals. To gain a better understanding of current industry approaches for establishing biopharmaceutical drug product (DP) robustness, the BPDG-Formulation Point Share group conducted an intercompany collaboration exercise, which included a bench-marking survey and extensive group discussions around the scope, design, and execution of robustness studies. The results of this industry collaboration revealed several key common themes: (1) overall DP robustness is defined by both the formulation and the manufacturing process robustness; (2) robustness integrates the principles of quality by design (QbD); (3) DP robustness is an important factor in setting critical quality attribute control strategies and commercial specifications; (4) most companies employ robustness studies, along with prior knowledge, risk assessments, and statistics, to develop the DP design space; (5) studies are tailored to commercial development needs and the practices of each company. Three case studies further illustrate how a robustness study design for a biopharmaceutical DP balances experimental complexity, statistical power, scientific understanding, and risk assessment to provide the desired product and process knowledge. The BPDG-Formulation Point Share discusses identified industry challenges with regard to biopharmaceutical DP robustness and presents some recommendations for best practices. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  16. Meeting report: applied biopharmaceutics and quality by design for dissolution/release specification setting: product quality for patient benefit.

    PubMed

    Selen, Arzu; Cruañes, Maria T; Müllertz, Anette; Dickinson, Paul A; Cook, Jack A; Polli, James E; Kesisoglou, Filippos; Crison, John; Johnson, Kevin C; Muirhead, Gordon T; Schofield, Timothy; Tsong, Yi

    2010-09-01

    A biopharmaceutics and Quality by Design (QbD) conference was held on June 10-12, 2009 in Rockville, Maryland, USA to provide a forum and identify approaches for enhancing product quality for patient benefit. Presentations concerned the current biopharmaceutical toolbox (i.e., in vitro, in silico, pre-clinical, in vivo, and statistical approaches), as well as case studies, and reflections on new paradigms. Plenary and breakout session discussions evaluated the current state and envisioned a future state that more effectively integrates QbD and biopharmaceutics. Breakout groups discussed the following four topics: Integrating Biopharmaceutical Assessment into the QbD Paradigm, Predictive Statistical Tools, Predictive Mechanistic Tools, and Predictive Analytical Tools. Nine priority areas, further described in this report, were identified for advancing integration of biopharmaceutics and support a more fundamentally based, integrated approach to setting product dissolution/release acceptance criteria. Collaboration among a broad range of disciplines and fostering a knowledge sharing environment that places the patient's needs as the focus of drug development, consistent with science- and risk-based spirit of QbD, were identified as key components of the path forward.

  17. Advanced mass spectrometry-based methods for the analysis of conformational integrity of biopharmaceutical products

    PubMed Central

    Bobst, Cedric E.; Kaltashov, Igor A.

    2012-01-01

    Mass spectrometry has already become an indispensable tool in the analytical armamentarium of the biopharmaceutical industry, although its current uses are limited to characterization of covalent structure of recombinant protein drugs. However, the scope of applications of mass spectrometry-based methods is beginning to expand to include characterization of the higher order structure and dynamics of biopharmaceutical products, a development which is catalyzed by the recent progress in mass spectrometry-based methods to study higher order protein structure. The two particularly promising methods that are likely to have the most significant and lasting impact in many areas of biopharmaceutical analysis, direct ESI MS and hydrogen/deuterium exchange, are focus of this article. PMID:21542797

  18. License Compliance Issues For Biopharmaceuticals: Special Challenges For Negotiations Between Companies And Non-Profit Research Institutions.

    PubMed

    Ponzio, Todd A; Feindt, Hans; Ferguson, Steven

    2011-09-01

    Biopharmaceuticals are therapeutic products based on biotechnology. They are manufactured by or from living organisms and are the most complex of all commercial medicines to develop, manufacture and qualify for regulatory approval. In recent years biopharmaceuticals have rapidly increased in number and importance with over 400() already marketed in the U.S. and European markets alone. Many companies throughout the world are now ramping up investments in biopharmaceutical R&D and expanding their portfolios through licensing of early-stage biotechnologies from universities and other non-profit research institutions, and there is an increasing number of license agreements for biopharmaceutical product development relative to traditional small molecule drug compounds. This trend will only continue as large numbers of biosimilars and biogenerics enter the market.A primary goal of technology transfer offices associated with publicly-funded, non-profit research institutions is to establish patent protection for inventions deemed to have commercial potential and license them for product development. Such licenses help stimulate economic development and job creation, bring a stream of royalty revenue to the institution and, hopefully, advance the public good or public health by bringing new and useful products to market. In the course of applying for such licenses, a commercial development plan is usually put forth by the license applicant. This plan indicates the path the applicant expects to follow to bring the licensed invention to market. In the case of small molecule drug compounds, there exists a widely-recognized series of clinical development steps, dictated by regulatory requirements, that must be met to bring a new drug to market, such as completion of preclinical toxicology, Phase 1, 2 and 3 testing and product approvals. These steps often become the milestone/benchmark schedule incorporated into license agreements which technology transfer offices use to monitor the licensee's diligence and progress; most exclusive licenses include a commercial development plan, with penalties, financial or even revocation of the license, if the plan is not followed, e.g., the license falls too far behind.This study examines whether developmental milestone schedules based on a small molecule drug development model are useful and realistic in setting expectations for biopharmaceutical product development. We reviewed the monitoring records of all exclusive Public Health Service (PHS) commercial development license agreements for small molecule drugs or therapeutics based on biotechnology (biopharmaceuticals) executed by the National Institutes of Health (NIH) Office of Technology Transfer (OTT) between 2003 and 2009. We found that most biopharmaceutical development license agreements required amending because developmental milestones in the negotiated schedule could not be met by the licensee. This was in stark contrast with license agreements for small molecule chemical compounds which rarely needed changes to their developmental milestone schedules. As commercial development licenses for biopharmaceuticals make up the vast majority of NIH's exclusive license agreements, there is clearly a need to: 1) more closely examine how these benchmark schedules are formed, 2) try to understand the particular risk factors contributing to benchmark schedule non-compliance, and 3) devise alternatives to the current license benchmark schedule structural model. Schedules that properly weigh the most relevant risk factors such as technology classification (e.g., vaccine vs recombinant antibody vs gene therapy), likelihood of unforeseen regulatory issues, and company size/structure may help assure compliance with original license benchmark schedules. This understanding, coupled with a modified approach to the license negotiation process that makes use of a clear and comprehensive term sheet to minimize ambiguities should result in a more realistic benchmark schedule.

  19. License Compliance Issues For Biopharmaceuticals: Special Challenges For Negotiations Between Companies And Non-Profit Research Institutions

    PubMed Central

    Ponzio, Todd A.; Feindt, Hans; Ferguson, Steven

    2011-01-01

    Summary Biopharmaceuticals are therapeutic products based on biotechnology. They are manufactured by or from living organisms and are the most complex of all commercial medicines to develop, manufacture and qualify for regulatory approval. In recent years biopharmaceuticals have rapidly increased in number and importance with over 4001 already marketed in the U.S. and European markets alone. Many companies throughout the world are now ramping up investments in biopharmaceutical R&D and expanding their portfolios through licensing of early-stage biotechnologies from universities and other non-profit research institutions, and there is an increasing number of license agreements for biopharmaceutical product development relative to traditional small molecule drug compounds. This trend will only continue as large numbers of biosimilars and biogenerics enter the market. A primary goal of technology transfer offices associated with publicly-funded, non-profit research institutions is to establish patent protection for inventions deemed to have commercial potential and license them for product development. Such licenses help stimulate economic development and job creation, bring a stream of royalty revenue to the institution and, hopefully, advance the public good or public health by bringing new and useful products to market. In the course of applying for such licenses, a commercial development plan is usually put forth by the license applicant. This plan indicates the path the applicant expects to follow to bring the licensed invention to market. In the case of small molecule drug compounds, there exists a widely-recognized series of clinical development steps, dictated by regulatory requirements, that must be met to bring a new drug to market, such as completion of preclinical toxicology, Phase 1, 2 and 3 testing and product approvals. These steps often become the milestone/benchmark schedule incorporated into license agreements which technology transfer offices use to monitor the licensee’s diligence and progress; most exclusive licenses include a commercial development plan, with penalties, financial or even revocation of the license, if the plan is not followed, e.g., the license falls too far behind. This study examines whether developmental milestone schedules based on a small molecule drug development model are useful and realistic in setting expectations for biopharmaceutical product development. We reviewed the monitoring records of all exclusive Public Health Service (PHS) commercial development license agreements for small molecule drugs or therapeutics based on biotechnology (biopharmaceuticals) executed by the National Institutes of Health (NIH) Office of Technology Transfer (OTT) between 2003 and 2009. We found that most biopharmaceutical development license agreements required amending because developmental milestones in the negotiated schedule could not be met by the licensee. This was in stark contrast with license agreements for small molecule chemical compounds which rarely needed changes to their developmental milestone schedules. As commercial development licenses for biopharmaceuticals make up the vast majority of NIH’s exclusive license agreements, there is clearly a need to: 1) more closely examine how these benchmark schedules are formed, 2) try to understand the particular risk factors contributing to benchmark schedule non-compliance, and 3) devise alternatives to the current license benchmark schedule structural model. Schedules that properly weigh the most relevant risk factors such as technology classification (e.g., vaccine vs recombinant antibody vs gene therapy), likelihood of unforeseen regulatory issues, and company size/structure may help assure compliance with original license benchmark schedules. This understanding, coupled with a modified approach to the license negotiation process that makes use of a clear and comprehensive term sheet to minimize ambiguities should result in a more realistic benchmark schedule. PMID:22162900

  20. Analytical tools for characterizing biopharmaceuticals and the implications for biosimilars

    PubMed Central

    Berkowitz, Steven A.; Engen, John R.; Mazzeo, Jeffrey R.; Jones, Graham B.

    2013-01-01

    Biologics such as monoclonal antibodies are much more complex than small-molecule drugs, which raises challenging questions for the development and regulatory evaluation of follow-on versions of such biopharmaceutical products (also known as biosimilars) and their clinical use once patent protection for the pioneering biologic has expired. With the recent introduction of regulatory pathways for follow-on versions of complex biologics, the role of analytical technologies in comparing biosimilars with the corresponding reference product is attracting substantial interest in establishing the development requirements for biosimilars. Here, we discuss the current state of the art in analytical technologies to assess three characteristics of protein biopharmaceuticals that regulatory authorities have identified as being important in development strategies for biosimilars: post-translational modifications, three-dimensional structures and protein aggregation. PMID:22743980

  1. Biopharmaceutical production: Applications of surface plasmon resonance biosensors.

    PubMed

    Thillaivinayagalingam, Pranavan; Gommeaux, Julien; McLoughlin, Michael; Collins, David; Newcombe, Anthony R

    2010-01-15

    Surface plasmon resonance (SPR) permits the quantitative analysis of therapeutic antibody concentrations and impurities including bacteria, Protein A, Protein G and small molecule ligands leached from chromatography media. The use of surface plasmon resonance has gained popularity within the biopharmaceutical industry due to the automated, label free, real time interaction that may be exploited when using this method. The application areas to assess protein interactions and develop analytical methods for biopharmaceutical downstream process development, quality control, and in-process monitoring are reviewed. 2009 Elsevier B.V. All rights reserved.

  2. A new roadmap for biopharmaceutical drug product development: Integrating development, validation, and quality by design.

    PubMed

    Martin-Moe, Sheryl; Lim, Fredric J; Wong, Rita L; Sreedhara, Alavattam; Sundaram, Jagannathan; Sane, Samir U

    2011-08-01

    Quality by design (QbD) is a science- and risk-based approach to drug product development. Although pharmaceutical companies have historically used many of the same principles during development, this knowledge was not always formally captured or proactively submitted to regulators. In recent years, the US Food and Drug Administration has also recognized the need for more controls in the drug manufacturing processes, especially for biological therapeutics, and it has recently launched an initiative for Pharmaceutical Quality for the 21st Century to modernize pharmaceutical manufacturing and improve product quality. In the biopharmaceutical world, the QbD efforts have been mainly focused on active pharmaceutical ingredient processes with little emphasis on drug product development. We present a systematic approach to biopharmaceutical drug product development using a monoclonal antibody as an example. The approach presented herein leverages scientific understanding of products and processes, risk assessments, and rational experimental design to deliver processes that are consistent with QbD philosophy without excessive incremental effort. Data generated using these approaches will not only strengthen data packages to support specifications and manufacturing ranges but hopefully simplify implementation of postapproval changes. We anticipate that this approach will positively impact cost for companies, regulatory agencies, and patients, alike. Copyright © 2011 Wiley-Liss, Inc.

  3. Next Generation Biopharmaceuticals: Product Development.

    PubMed

    Mathaes, Roman; Mahler, Hanns-Christian

    2018-04-11

    Therapeutic proteins show a rapid market growth. The relatively young biotech industry already represents 20 % of the total global pharma market. The biotech industry environment has traditionally been fast-pasted and intellectually stimulated. Nowadays the top ten best selling drugs are dominated by monoclonal antibodies (mABs).Despite mABs being the biggest medical breakthrough in the last 25 years, technical innovation does not stand still.The goal remains to preserve the benefits of a conventional mAB (serum half-life and specificity) whilst further improving efficacy and safety and to open new and better avenues for treating patients, e.g., improving the potency of molecules, target binding, tissue penetration, tailored pharmacokinetics, and reduced adverse effects or immunogenicity.The next generation of biopharmaceuticals can pose specific chemistry, manufacturing, and control (CMC) challenges. In contrast to conventional proteins, next-generation biopharmaceuticals often require lyophilization of the final drug product to ensure storage stability over shelf-life time. In addition, next-generation biopharmaceuticals require analytical methods that cover different ways of possible degradation patterns and pathways, and product development is a long way from being straight forward. The element of "prior knowledge" does not exist equally for most novel formats compared to antibodies, and thus the assessment of critical quality attributes (CQAs) and the definition of CQA assessment criteria and specifications is difficult, especially in early-stage development.

  4. The biopharmaceutics risk assessment roadmap for optimizing clinical drug product performance.

    PubMed

    Selen, Arzu; Dickinson, Paul A; Müllertz, Anette; Crison, John R; Mistry, Hitesh B; Cruañes, Maria T; Martinez, Marilyn N; Lennernäs, Hans; Wigal, Tim L; Swinney, David C; Polli, James E; Serajuddin, Abu T M; Cook, Jack A; Dressman, Jennifer B

    2014-11-01

    The biopharmaceutics risk assessment roadmap (BioRAM) optimizes drug product development and performance by using therapy-driven target drug delivery profiles as a framework to achieve the desired therapeutic outcome. Hence, clinical relevance is directly built into early formulation development. Biopharmaceutics tools are used to identify and address potential challenges to optimize the drug product for patient benefit. For illustration, BioRAM is applied to four relatively common therapy-driven drug delivery scenarios: rapid therapeutic onset, multiphasic delivery, delayed therapeutic onset, and maintenance of target exposure. BioRAM considers the therapeutic target with the drug substance characteristics and enables collection of critical knowledge for development of a dosage form that can perform consistently for meeting the patient's needs. Accordingly, the key factors are identified and in vitro, in vivo, and in silico modeling and simulation techniques are used to elucidate the optimal drug delivery rate and pattern. BioRAM enables (1) feasibility assessment for the dosage form, (2) development and conduct of appropriate "learning and confirming" studies, (3) transparency in decision-making, (4) assurance of drug product quality during lifecycle management, and (5) development of robust linkages between the desired clinical outcome and the necessary product quality attributes for inclusion in the quality target product profile. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  5. Hybrid and Disposable Facilities for Manufacturing of Biopharmaceuticals: Pros and Cons

    NASA Astrophysics Data System (ADS)

    Ravisé, Aline; Cameau, Emmanuelle; de Abreu, Georges; Pralong, Alain

    Modern biotechnology has grown over the last 35 years to a maturing industry producing and delivering high-value biopharmaceuticals that yield important medical and economical benefits. The constantly increasing need for biopharmaceuticals and significant costs related to time-consuming R&D work makes this industry risky and highly competitive. This trend is confirmed by the important number of biopharmaceuticals that are actually under development at all stages by all major pharmaceutical industry companies. A consequence of this evolution is an increasing need for development and manufacturing capacity. The build up of traditional - stainless steel - technology is complicated, time consuming and very expensive. The decision for such a major investment needs to be taken early in the development cycle of a promising drug to cope with future demands for clinical trials and product launch. Possibilities for the reduction of R&D and manufacturing costs are therefore of significant interest in order to be competitive.

  6. Plant-made vaccine antigens and biopharmaceuticals

    PubMed Central

    Daniell, Henry; Singh, Nameirakpam D.; Mason, Hugh; Streatfield, Stephen J.

    2009-01-01

    Plant cells are ideal bioreactors for the production and oral delivery of vaccines and biopharmaceuticals, eliminating the need for expensive fermentation, purification, cold storage, transportation and sterile delivery. Plant-made vaccines have been developed for two decades but none has advanced beyond Phase I. However, two plant-made biopharmaceuticals are now advancing through Phase II and Phase III human clinical trials. In this review, we evaluate the advantages and disadvantages of different plant expression systems (stable nuclear and chloroplast or transient viral) and their current limitations or challenges. We provide suggestions for advancing this valuable concept for clinical applications and conclude that greater research emphasis is needed on large scale production, purification, functional characterization, oral delivery and preclinical evaluation. PMID:19836291

  7. Biopharmaceutical industry perspectives on the business prospects for personalized medicine.

    PubMed

    Milne, Christopher-Paul; Zuckerman, Rachael

    2011-09-01

    Personalized medicine is entering its second decade, yet the role it will play in addressing the biopharmaceutical industry's productivity gap and the rising cost of healthcare is still a matter of speculation. So what does the biopharmaceutical industry itself say about the business prospects for personalized medicine? The authors conducted interviews with 20 science and business experts from 13 companies to find out. In this article, particular attention is paid to drug-diagnostic codevelopment, so-called companion diagnostics. The results of the interviews are discussed in light of perspectives from various stakeholders available from the literature in the public domain. In brief, biopharmaceutical acknowledges the many difficulties that plague this path to product development with particular concern for knowledge gaps in the scientific base, the timing of studies during development, as well as the regulatory, reimbursement and commercial hurdles that can thwart approval, launch and market uptake. Nonetheless, personalized medicine in general and companion diagnostics in particular are believed to be an increasingly sustainable business proposition with expectations for rapid market growth in the near term.

  8. Inhibition of apoptosis using exosomes in Chinese hamster ovary cell culture.

    PubMed

    Han, Seora; Rhee, Won Jong

    2018-05-01

    Animal cell culture technology for therapeutic protein production has shown significant improvement over the last few decades. Chinese hamster ovary (CHO) cells have been widely adapted for the production of biopharmaceutical drugs. In the biopharmaceutical industry, it is crucial to develop cell culture media and culturing conditions to achieve the highest productivity and quality. However, CHO cells are significantly affected by apoptosis in the bioreactors, resulting in a substantial decrease in product quantity and quality. Thus, to overcome the obstacle of apoptosis in CHO cell culture, it is critical to develop a novel method that does not have minimal concern of safety or cost. Herein, we showed for the first time that exosomes, which are nano-sized extracellular vesicles, derived from CHO cells inhibited apoptosis in CHO cell culture when supplemented to the culture medium. Flow cytometric and microscopic analyses revealed that substantial amounts of exosomes were delivered to CHO cells. Higher cell viability after staurosporine treatment was observed by exosome supplementation (67.3%) as compared to control (41.1%). Furthermore, exosomes prevented the mitochondrial membrane potential loss and caspase-3 activation, meaning that the exosomes enhanced cellular activities under pro-apoptotic condition. As the exosomes supplements are derived from CHO cells themselves, it is not only beneficial for the biopharmaceutical productivity of CHO cell culture to inhibit apoptosis, but also from a regulatory standpoint to diminish any safety concerns. Thus, we conclude that the method developed in this research may contribute to the biopharmaceutical industry where minimizing apoptosis in CHO cell culture is beneficial. © 2018 Wiley Periodicals, Inc.

  9. Current trends in endotoxin detection and analysis of endotoxin-protein interactions.

    PubMed

    Dullah, Elvina Clarie; Ongkudon, Clarence M

    2017-03-01

    Endotoxin is a type of pyrogen that can be found in Gram-negative bacteria. Endotoxin can form a stable interaction with other biomolecules thus making its removal difficult especially during the production of biopharmaceutical drugs. The prevention of endotoxins from contaminating biopharmaceutical products is paramount as endotoxin contamination, even in small quantities, can result in fever, inflammation, sepsis, tissue damage and even lead to death. Highly sensitive and accurate detection of endotoxins are keys in the development of biopharmaceutical products derived from Gram-negative bacteria. It will facilitate the study of the intermolecular interaction of an endotoxin with other biomolecules, hence the selection of appropriate endotoxin removal strategies. Currently, most researchers rely on the conventional LAL-based endotoxin detection method. However, new methods have been and are being developed to overcome the problems associated with the LAL-based method. This review paper highlights the current research trends in endotoxin detection from conventional methods to newly developed biosensors. Additionally, it also provides an overview of the use of electron microscopy, dynamic light scattering (DLS), fluorescence resonance energy transfer (FRET) and docking programs in the endotoxin-protein analysis.

  10. Dry powder inhalers: An overview of the in vitro dissolution methodologies and their correlation with the biopharmaceutical aspects of the drug products.

    PubMed

    Velaga, Sitaram P; Djuris, Jelena; Cvijic, Sandra; Rozou, Stavroula; Russo, Paola; Colombo, Gaia; Rossi, Alessandra

    2018-02-15

    In vitro dissolution testing is routinely used in the development of pharmaceutical products. Whilst the dissolution testing methods are well established and standardized for oral dosage forms, i.e. tablets and capsules, there are no pharmacopoeia methods or regulatory requirements for testing the dissolution of orally inhaled powders. Despite this, a wide variety of dissolution testing methods for orally inhaled powders has been developed and their bio-relevance has been evaluated. This review provides an overview of the in vitro dissolution methodologies for dry inhalation products, with particular emphasis on dry powder inhalers, where the dissolution behavior of the respirable particles can have a role on duration and absorption of the drug. Dissolution mechanisms of respirable particles as well as kinetic models have been presented. A more recent biorelevant dissolution set-ups and media for studying inhalation biopharmaceutics were also reviewed. In addition, factors affecting interplay between dissolution and absorption of deposited particles in the context of biopharmaceutical considerations of inhalation products were examined. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Delivery Systems for Biopharmaceuticals. Part I: Nanoparticles and Microparticles.

    PubMed

    Silva, Ana C; Lopes, Carla M; Lobo, José M S; Amaral, Maria H

    2015-01-01

    Pharmaceutical biotechnology has been showing therapeutic success never achieved with conventional drug molecules. Therefore, biopharmaceutical products are currently well-established in clinic and the development of new ones is expected. These products comprise mainly therapeutic proteins, although nucleic acids and cells are also included. However, according to their sensitive molecular structures, the efficient delivery of biopharmaceuticals is challenging. Several delivery systems (e.g. microparticles and nanoparticles) composed of different materials (e.g. polymers and lipids) have been explored and demonstrated excellent outcomes, such as: high cellular transfection efficiency for nucleic acids, cell targeting, increased proteins and peptides bioavailability, improved immune response in vaccination, and viability maintenance of microencapsulated cells. Nonetheless, important issues need to be addressed before they reach clinics. For example, more in vivo studies in animals, accessing the toxicity potential and predicting in vivo failure of these delivery systems are required. This is the Part I of two review articles, which presents the state of the art of delivery systems for biopharmaceuticals. Part I deals with microparticles and polymeric and lipid nanoparticles.

  12. Engineered Chloroplast Genome just got Smarter

    PubMed Central

    Jin, Shuangxia; Daniell, Henry

    2015-01-01

    Chloroplasts are known to sustain life on earth by providing food, fuel and oxygen through the process of photosynthesis. However, the chloroplast genome has also been smartly engineered to confer valuable agronomic traits and/or serve as bioreactors for production of industrial enzymes, biopharmaceuticals, bio-products or vaccines. The recent breakthrough in hyper-expression of biopharmaceuticals in edible leaves has facilitated the advancement to clinical studies by major pharmaceutical companies. This review critically evaluates progress in developing new tools to enhance or simplify expression of targeted genes in chloroplasts. These tools hold the promise to further the development of novel fuels and products, enhance the photosynthetic process, and increase our understanding of retrograde signaling and cellular processes. PMID:26440432

  13. Separation science is the key to successful biopharmaceuticals.

    PubMed

    Guiochon, Georges; Beaver, Lois Ann

    2011-12-09

    The impact of economic change, advances in science, therapy and production processes resulted in considerable growth in the area of biopharmaceuticals. Progress in selection of microorganisms and improvements in cell culture and bioreactors is evidenced by increased yields of the desired products in the complex fermentation mixture. At this stage the downstream process of extraction and purification of the desired biopharmaceutical requires considerable attention in the design and operation of the units used for preparative chromatography. Understanding of the process, optimization of column design and experimental conditions have become critical to the biopharmaceutical industry in order to minimize production costs while satisfying new regulatory requirements. Optimization of the purification of biopharmaceuticals by preparative liquid chromatography including an examination of column preparation and bed properties is the focus of this manuscript. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Biosimilars: a regulatory perspective from America

    PubMed Central

    2011-01-01

    Biosimilars are protein products that are sufficiently similar to a biopharmaceutical already approved by a regulatory agency. Several biotechnology companies and generic drug manufacturers in Asia and Europe are developing biosimilars of tumor necrosis factor inhibitors and rituximab. A biosimilar etanercept is already being marketed in Colombia and China. In the US, several natural source products and recombinant proteins have been approved as generic drugs under Section 505(b)(2) of the Food, Drug, and Cosmetic Act. However, because the complexity of large biopharmaceuticals makes it difficult to demonstrate that a biosimilar is structurally identical to an already approved biopharmaceutical, this Act does not apply to biosimilars of large biopharmaceuticals. Section 7002 of the Patient Protection and Affordable Care Act of 2010, which is referred to as the Biologics Price Competition and Innovation Act of 2009, amends Section 351 of the Public Health Service Act to create an abbreviated pathway that permits a biosimilar to be evaluated by comparing it with only a single reference biological product. This paper reviews the processes for approval of biosimilars in the US and the European Union and highlights recent changes in federal regulations governing the approval of biosimilars in the US. PMID:21586106

  15. Biosimilars: a regulatory perspective from America.

    PubMed

    Kay, Jonathan

    2011-05-12

    Biosimilars are protein products that are sufficiently similar to a biopharmaceutical already approved by a regulatory agency. Several biotechnology companies and generic drug manufacturers in Asia and Europe are developing biosimilars of tumor necrosis factor inhibitors and rituximab. A biosimilar etanercept is already being marketed in Colombia and China. In the US, several natural source products and recombinant proteins have been approved as generic drugs under Section 505(b)(2) of the Food, Drug, and Cosmetic Act. However, because the complexity of large biopharmaceuticals makes it difficult to demonstrate that a biosimilar is structurally identical to an already approved biopharmaceutical, this Act does not apply to biosimilars of large biopharmaceuticals. Section 7002 of the Patient Protection and Affordable Care Act of 2010, which is referred to as the Biologics Price Competition and Innovation Act of 2009, amends Section 351 of the Public Health Service Act to create an abbreviated pathway that permits a biosimilar to be evaluated by comparing it with only a single reference biological product. This paper reviews the processes for approval of biosimilars in the US and the European Union and highlights recent changes in federal regulations governing the approval of biosimilars in the US.

  16. Recombinant protein production and streptomycetes.

    PubMed

    Anné, Jozef; Maldonado, Bárbara; Van Impe, Jan; Van Mellaert, Lieve; Bernaerts, Kristel

    2012-04-30

    The biopharmaceutical market has come a long way since 1982, when the first biopharmaceutical product, recombinant human insulin, was launched. Just over 200 biopharma products have already gained approval. The global market for biopharmaceuticals which is currently valued at over US$99 billion has been growing at an impressive compound annual growth rate over the previous years. To produce these biopharmaceuticals and other industrially important heterologous proteins, different prokaryotic and eukaryotic expression systems are used. All expression systems have some advantages as well as some disadvantages that should be considered in selecting which one to use. Choosing the best one requires evaluating the options--from yield to glycosylation, to proper folding, to economics of scale-up. No host cell from which all the proteins can be universally expressed in large quantities has been found so far. Therefore, it is important to provide a variety of host-vector expression systems in order to increase the opportunities to screen for the most suitable expression conditions or host cell. In this overview, we focus on Streptomyces lividans, a Gram-positive bacterium with a proven excellence in secretion capacity, as host for heterologous protein production. We will discuss its advantages and disadvantages, and how with systems biology approaches strains can be developed to better producing cell factories. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Formulation design for poorly water-soluble drugs based on biopharmaceutics classification system: basic approaches and practical applications.

    PubMed

    Kawabata, Yohei; Wada, Koichi; Nakatani, Manabu; Yamada, Shizuo; Onoue, Satomi

    2011-11-25

    The poor oral bioavailability arising from poor aqueous solubility should make drug research and development more difficult. Various approaches have been developed with a focus on enhancement of the solubility, dissolution rate, and oral bioavailability of poorly water-soluble drugs. To complete development works within a limited amount of time, the establishment of a suitable formulation strategy should be a key consideration for the pharmaceutical development of poorly water-soluble drugs. In this article, viable formulation options are reviewed on the basis of the biopharmaceutics classification system of drug substances. The article describes the basic approaches for poorly water-soluble drugs, such as crystal modification, micronization, amorphization, self-emulsification, cyclodextrin complexation, and pH modification. Literature-based examples of the formulation options for poorly water-soluble compounds and their practical application to marketed products are also provided. Classification of drug candidates based on their biopharmaceutical properties can provide an indication of the difficulty of drug development works. A better understanding of the physicochemical and biopharmaceutical properties of drug substances and the limitations of each delivery option should lead to efficient formulation development for poorly water-soluble drugs. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Proposal on How To Conduct a Biopharmaceutical Process Failure Mode and Effect Analysis (FMEA) as a Risk Assessment Tool.

    PubMed

    Zimmermann, Hartmut F; Hentschel, Norbert

    2011-01-01

    With the publication of the quality guideline ICH Q9 "Quality Risk Management" by the International Conference on Harmonization, risk management has already become a standard requirement during the life cycle of a pharmaceutical product. Failure mode and effect analysis (FMEA) is a powerful risk analysis tool that has been used for decades in mechanical and electrical industries. However, the adaptation of the FMEA methodology to biopharmaceutical processes brings about some difficulties. The proposal presented here is intended to serve as a brief but nevertheless comprehensive and detailed guideline on how to conduct a biopharmaceutical process FMEA. It includes a detailed 1-to-10-scale FMEA rating table for occurrence, severity, and detectability of failures that has been especially designed for typical biopharmaceutical processes. The application for such a biopharmaceutical process FMEA is widespread. It can be useful whenever a biopharmaceutical manufacturing process is developed or scaled-up, or when it is transferred to a different manufacturing site. It may also be conducted during substantial optimization of an existing process or the development of a second-generation process. According to their resulting risk ratings, process parameters can be ranked for importance and important variables for process development, characterization, or validation can be identified. Health authorities around the world ask pharmaceutical companies to manage risk during development and manufacturing of pharmaceuticals. The so-called failure mode and effect analysis (FMEA) is an established risk analysis tool that has been used for decades in mechanical and electrical industries. However, the adaptation of the FMEA methodology to pharmaceutical processes that use modern biotechnology (biopharmaceutical processes) brings about some difficulties, because those biopharmaceutical processes differ from processes in mechanical and electrical industries. The proposal presented here explains how a biopharmaceutical process FMEA can be conducted. It includes a detailed 1-to-10-scale FMEA rating table for occurrence, severity, and detectability of failures that has been especially designed for typical biopharmaceutical processes. With the help of this guideline, different details of the manufacturing process can be ranked according to their potential risks, and this can help pharmaceutical companies to identify aspects with high potential risks and to react accordingly to improve the safety of medicines.

  19. Development and regulation of biosimilars: current status and future challenges.

    PubMed

    Tsiftsoglou, Asterios S; Ruiz, Sol; Schneider, Christian K

    2013-06-01

    Biologic medicinal products developed via rDNA technology as recombinant protein-based medicines that have been in clinical use since the early 1980s as original biopharmaceuticals have greatly contributed to the therapy of severe metabolic and degenerative diseases. The recent expiration of the data protection or patents for most of them created opportunities for the development of copy versions of original biopharmaceuticals with similar biologic activity (termed biosimilars). Production of these new products is expected to meet worldwide demand, promote market competition, maintain the incentives for innovation, and sustain the healthcare systems. The licencing of these products, however, relies on the experience gained with the original biopharmaceuticals. Critical issues related to this class of medicinal products include their terminology (to avoid confusion with generics and non-innovator copy versions that have not been tested according to the biosimilar guidelines), manufacturing, and regulation. The European Union (EU) has been the first to establish a regulatory framework for marketing authorization application (MAA) and has named these products biosimilars, a term also recently adopted by the US FDA. Unlike the conventional, more common small molecular weight human medicines and chemical generics, protein-based medicines exhibit higher molecular weight, complexity in structure and function that can be affected by changes in the manufacturing process. Therefore, biosimilars represent a relatively heterogeneous class of medicinal products that make their regulation quite challenging. According to the current understanding in the EU, a biosimilar is a copy version of an already authorized biopharmaceutical (or reference product) with similar biologic activity, physicochemical characteristics, efficacy, and safety, based on a full comparability exercise at quality, preclinical and clinical level to ensure similar efficacy and safety. Guidance has been provided through several Committee for Medicinal Products for Human Use (CHMP) guidelines as well as individual scientific advice requested from the European Medicines Agency (EMA) by various companies for the development and regulation of biosimilars. This review is mainly focused on the current status of regulation of biosimilars in the EU as well as on future challenges lying ahead for the improvement of the requirements needed for the marketing authorization of biosimilars. Emphasis is given on the quality requirements concerning these medicinal products (biologics).

  20. An approach to quality and security of supply for single-use bioreactors.

    PubMed

    Barbaroux, Magali; Gerighausen, Susanne; Hackel, Heiko

    2014-01-01

    Single-use systems (also referred to as disposables) have become a huge part of the bioprocessing industry, which raised concern in the industry regarding quality and security of supply. Processes must be in place to assure the supply and control of outsourced activities and quality of purchased materials along the product life cycle. Quality and security of supply for single-use bioreactors (SUBs) are based on a multidisciplinary approach. Developing a state-of-the-art SUB-system based on quality by design (QbD) principles requires broad expertise and know-how including the cell culture application, polymer chemistry, regulatory requirements, and a deep understanding of the biopharmaceutical industry. Using standardized products reduces the complexity and strengthens the robustness of the supply chain. Well-established supplier relations including risk mitigation strategies are the basis for achieving long-term security of supply. Well-developed quality systems including change control approaches aligned with the requirements of the biopharmaceutical industry are a key factor in supporting long-term product availability. This chapter outlines the approach to security of supply for key materials used in single-use production processes for biopharmaceuticals from a supplier perspective.

  1. Microtools for single-cell analysis in biopharmaceutical development and manufacturing.

    PubMed

    Love, Kerry Routenberg; Bagh, Sangram; Choi, Jonghoon; Love, J Christopher

    2013-05-01

    Biologic drugs are promoting growth in the biopharmaceutical industry. Despite the clinical benefits of these drugs, the time and costs required to bring new biologics to market still are substantial. Three key challenges, among others, persist in the development of biologic drugs: namely, establishing product similarity, product toxicity, and global accessibility. New classes of microtools that facilitate the isolation and interrogation of single cells have the potential to impact each of these challenges. This opinion considers recent examples of microtools with demonstrated or potential utility to address problems in these areas. Integrating these advanced technologies into the development of new biologics could greatly reduce time and costs required to bring alternative products to market, and thus expand their global availability. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Delivery systems for biopharmaceuticals. Part II: Liposomes, Micelles, Microemulsions and Dendrimers.

    PubMed

    Silva, Ana C; Lopes, Carla M; Lobo, José M S; Amaral, Maria H

    2015-01-01

    Biopharmaceuticals are a generation of drugs that include peptides, proteins, nucleic acids and cell products. According to their particular molecular characteristics (e.g. high molecular size, susceptibility to enzymatic activity), these products present some limitations for administration and usually parenteral routes are the only option. To avoid these limitations, different colloidal carriers (e.g. liposomes, micelles, microemulsions and dendrimers) have been proposed to improve biopharmaceuticals delivery. Liposomes are promising drug delivery systems, despite some limitations have been reported (e.g. in vivo failure, poor long-term stability and low transfection efficiency), and only a limited number of formulations have reached the market. Micelles and microemulsions require more studies to exclude some of the observed drawbacks and guarantee their potential for use in clinic. According to their peculiar structures, dendrimers have been showing good results for nucleic acids delivery and a great development of these systems during next years is expected. This is the Part II of two review articles, which provides the state of the art of biopharmaceuticals delivery systems. Part II deals with liposomes, micelles, microemulsions and dendrimers.

  3. Oral biopharmaceutics tools - time for a new initiative - an introduction to the IMI project OrBiTo.

    PubMed

    Lennernäs, H; Aarons, L; Augustijns, P; Beato, S; Bolger, M; Box, K; Brewster, M; Butler, J; Dressman, J; Holm, R; Julia Frank, K; Kendall, R; Langguth, P; Sydor, J; Lindahl, A; McAllister, M; Muenster, U; Müllertz, A; Ojala, K; Pepin, X; Reppas, C; Rostami-Hodjegan, A; Verwei, M; Weitschies, W; Wilson, C; Karlsson, C; Abrahamsson, B

    2014-06-16

    OrBiTo is a new European project within the IMI programme in the area of oral biopharmaceutics tools that includes world leading scientists from nine European universities, one regulatory agency, one non-profit research organization, four SMEs together with scientists from twelve pharmaceutical companies. The OrBiTo project will address key gaps in our knowledge of gastrointestinal (GI) drug absorption and deliver a framework for rational application of predictive biopharmaceutics tools for oral drug delivery. This will be achieved through novel prospective investigations to define new methodologies as well as refinement of existing tools. Extensive validation of novel and existing biopharmaceutics tools will be performed using active pharmaceutical ingredient (API), formulations and supporting datasets from industry partners. A combination of high quality in vitro or in silico characterizations of API and formulations will be integrated into physiologically based in silico biopharmaceutics models capturing the full complexity of GI drug absorption. This approach gives an unparalleled opportunity to initiate a transformational change in industrial research and development to achieve model-based pharmaceutical product development in accordance with the Quality by Design concept. Benefits include an accelerated and more efficient drug candidate selection, formulation development process, particularly for challenging projects such as low solubility molecules (BCS II and IV), enhanced and modified-release formulations, as well as allowing optimization of clinical product performance for patient benefit. In addition, the tools emerging from OrBiTo are expected to significantly reduce demand for animal experiments in the future as well as reducing the number of human bioequivalence studies required to bridge formulations after manufacturing or composition changes. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. A new large-scale manufacturing platform for complex biopharmaceuticals.

    PubMed

    Vogel, Jens H; Nguyen, Huong; Giovannini, Roberto; Ignowski, Jolene; Garger, Steve; Salgotra, Anil; Tom, Jennifer

    2012-12-01

    Complex biopharmaceuticals, such as recombinant blood coagulation factors, are addressing critical medical needs and represent a growing multibillion-dollar market. For commercial manufacturing of such, sometimes inherently unstable, molecules it is important to minimize product residence time in non-ideal milieu in order to obtain acceptable yields and consistently high product quality. Continuous perfusion cell culture allows minimization of residence time in the bioreactor, but also brings unique challenges in product recovery, which requires innovative solutions. In order to maximize yield, process efficiency, facility and equipment utilization, we have developed, scaled-up and successfully implemented a new integrated manufacturing platform in commercial scale. This platform consists of a (semi-)continuous cell separation process based on a disposable flow path and integrated with the upstream perfusion operation, followed by membrane chromatography on large-scale adsorber capsules in rapid cycling mode. Implementation of the platform at commercial scale for a new product candidate led to a yield improvement of 40% compared to the conventional process technology, while product quality has been shown to be more consistently high. Over 1,000,000 L of cell culture harvest have been processed with 100% success rate to date, demonstrating the robustness of the new platform process in GMP manufacturing. While membrane chromatography is well established for polishing in flow-through mode, this is its first commercial-scale application for bind/elute chromatography in the biopharmaceutical industry and demonstrates its potential in particular for manufacturing of potent, low-dose biopharmaceuticals. Copyright © 2012 Wiley Periodicals, Inc.

  5. Health economics of market access for biopharmaceuticals and biosimilars.

    PubMed

    Simoens, Steven

    2009-09-01

    This article discusses health economic challenges of research and development, registration, pricing and reimbursement of biopharmaceuticals and biosimilars. A literature search was carried out of PubMed, Centre for Reviews and Dissemination databases, Cochrane Database of Systematic Reviews and EconLit up to March 2009. The development process of biopharmaceuticals is risky, lengthy, complex and expensive. Registration is complicated by the inherent variation between biopharmaceuticals. Also, as biopharmaceuticals are likely to be efficacious in a subgroup of the patient population, there is a need to select the most responsive target population and to identify biomarkers. To inform pricing and reimbursement decisions, the development process needs to collect comparative data to calculate the incremental cost effectiveness and budget impact of biopharmaceuticals. There is a role for innovative mechanisms such as risk-sharing arrangements to reimburse biopharmaceuticals. Given that biosimilars are similar, but not identical to the reference biopharmaceutical, the development process needs to generate clinical trial data in order to gain marketing authorisation. From a health economic perspective, the question arises whether inherent differences between biopharmaceuticals and biosimilars produce differences in safety, effectiveness and costs: to date, this question is unresolved. The early inclusion of health economics in the process of developing biopharmaceuticals and biosimilars is imperative with a view to demonstrating their relative (cost) effectiveness and informing registration, pricing and reimbursement decisions.

  6. The successes and challenges of open-source biopharmaceutical innovation.

    PubMed

    Allarakhia, Minna

    2014-05-01

    Increasingly, open-source-based alliances seek to provide broad access to data, research-based tools, preclinical samples and downstream compounds. The challenge is how to create value from open-source biopharmaceutical innovation. This value creation may occur via transparency and usage of data across the biopharmaceutical value chain as stakeholders move dynamically between open source and open innovation. In this article, several examples are used to trace the evolution of biopharmaceutical open-source initiatives. The article specifically discusses the technological challenges associated with the integration and standardization of big data; the human capacity development challenges associated with skill development around big data usage; and the data-material access challenge associated with data and material access and usage rights, particularly as the boundary between open source and open innovation becomes more fluid. It is the author's opinion that the assessment of when and how value creation will occur, through open-source biopharmaceutical innovation, is paramount. The key is to determine the metrics of value creation and the necessary technological, educational and legal frameworks to support the downstream outcomes of now big data-based open-source initiatives. The continued focus on the early-stage value creation is not advisable. Instead, it would be more advisable to adopt an approach where stakeholders transform open-source initiatives into open-source discovery, crowdsourcing and open product development partnerships on the same platform.

  7. Biotechnological production of pharmaceuticals and biopharmaceuticals in plant cell and organ cultures.

    PubMed

    Hidalgo, Diego; Sanchez, Raul; Lalaleo, Liliana; Bonfill, Mercedes; Corchete, Purificacion; Palazon, Javier

    2018-03-09

    Plant biofactories are biotechnological platforms based on plant cell and organ cultures used for the production of pharmaceuticals and biopharmaceuticals, although to date only a few of these systems have successfully been implemented at an industrial level. Metabolic engineering is possibly the most straightforward strategy to boost pharmaceutical production in plant biofactories, but social opposition to the use of GMOs means empirical approaches are still being used. Plant secondary metabolism involves thousands of different enzymes, some of which catalyze specific reactions, giving one product from a particular substrate, whereas others can yield multiple products from the same substrate. This trait opens plant cell biofactories to new applications, in which the natural metabolic machinery of plants can be harnessed for the bioconversion of phytochemicals or even the production of new bioactive compounds. Synthetic biological pipelines involving the bioconversion of natural substrates into products with a high market value may be established by the heterologous expression of target metabolic genes in model plants. To summarize the state of the art of plant biofactories and their applications for the pipeline production of cosme-, pharma- and biopharmaceuticals. In order to demonstrate the great potential of plant biofactories for multiple applications in the biotechnological production of pharmaceuticals and biopharmaceuticals, this review broadly covers the following: plant biofactories based on cell and hairy root cultures; secondary metabolite production; biotransformation reactions; metabolic engineering tools applied in plant biofactories; and biopharmaceutical production. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  8. Applications of recombinant Pichia pastoris in the healthcare industry.

    PubMed

    Weinacker, Daniel; Rabert, Claudia; Zepeda, Andrea B; Figueroa, Carolina A; Pessoa, Adalberto; Farías, Jorge G

    2013-12-01

    Since the 1970s, the establishment and development of the biotech industry has improved exponentially, allowing the commercial production of biopharmaceutical proteins. Nowadays, new recombinant protein production is considered a multibillion-dollar market, in which about 25% of commercial pharmaceuticals are biopharmaceuticals. But to achieve a competitive production process is not an easy task. Any production process has to be highly productive, efficient and economic. Despite that the perfect host is still not discovered, several research groups have chosen Pichia pastoris as expression system for the production of their protein because of its many features. The attempt of this review is to embrace several research lines that have adopted Pichia pastoris as their expression system to produce a protein on an industrial scale in the health care industry.

  9. Applications of recombinant Pichia pastoris in the healthcare industry

    PubMed Central

    Weinacker, Daniel; Rabert, Claudia; Zepeda, Andrea B.; Figueroa, Carolina A.; Pessoa, Adalberto; Farías, Jorge G.

    2013-01-01

    Since the 1970s, the establishment and development of the biotech industry has improved exponentially, allowing the commercial production of biopharmaceutical proteins. Nowadays, new recombinant protein production is considered a multibillion-dollar market, in which about 25% of commercial pharmaceuticals are biopharmaceuticals. But to achieve a competitive production process is not an easy task. Any production process has to be highly productive, efficient and economic. Despite that the perfect host is still not discovered, several research groups have chosen Pichia pastoris as expression system for the production of their protein because of its many features. The attempt of this review is to embrace several research lines that have adopted Pichia pastoris as their expression system to produce a protein on an industrial scale in the health care industry. PMID:24688491

  10. Patent production is a prerequisite for successful exit of a biopharmaceutical company.

    PubMed

    Saotome, Chikako; Nakaya, Yurie; Abe, Seiji

    2016-03-01

    Patents are especially important for the business of drug discovery; however, their importance for biopharmaceutical companies has not been revealed quantitatively yet. To examine the correlation between patents and long-term business outcome of biopharmaceutical companies we analyze annual number of patent families and business conditions of 123 public-listed biopharmaceutical companies established from 1990 to 1995 in the USA. Our results show the number of patent families per year correlates well with the business condition: average of the bankruptcy group is significantly smaller than those of the continuing and the merger and acquisitions (M&A) groups. In the M&A by big pharma group, the acquisition cost correlates with the number of annual patent families. However, patentability and strategy of foreign patent application are not different among the groups. Therefore, the productivity of invention is the key factor for success of biopharmaceutical companies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. The roles of a process development group in biopharmaceutical process startup.

    PubMed

    Goochee, Charles F

    2002-01-01

    The transfer of processes for biotherapeutic products into finalmanufacturing facilities was frequently problematic during the 1980's and early 1990's, resulting in costly delays to licensure(Pisano 1997). While plant startups for this class of products can become chaotic affairs, this is not an inherent or intrinsic feature. Major classes of process startup problems have been identified andmechanisms have been developed to reduce their likelihood of occurrence. These classes of process startup problems and resolution mechanisms are the major topic of this article. With proper planning and sufficient staffing, the probably of a smooth process startup for a biopharmaceutical product can be very high - i.e., successful process performance will often beachieved within the first two full-scale process lots in the plant. The primary focus of this article is the role of the Process Development Group in helping to assure this high probability of success.

  12. Regulating biopharmaceuticals under CDER versus CBER: an insider's perspective.

    PubMed

    Schwieterman, William D

    2006-10-01

    The FDA has recently transferred jurisdiction for the regulation of certain biopharmaceuticals from the Center for Biologics, Evaluation and Research to the Center for Drugs, Evaluation and Research, where they will be reviewed in the same FDA divisions as are traditional pharmaceutical agents. With this transfer, sponsors of investigational biopharmaceuticals should expect changes in the regulatory requirements the FDA imposes on the clinical development plans, including an increase in the size and number of pivotal studies; more consistent requirements for conducting preclinical tests in two animal species; increased emphasis on organ structure and function as components of primary endpoints; more emphasis on characterizing dose-ranging and pharmacology; more intense scrutinizing of product advertising; and decreased direct communication with the review team.

  13. G.L. Amidon, H. Lennernas, V.P. Shah, and J.R. Crison. A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability, Pharm Res 12, 413-420, 1995--backstory of BCS.

    PubMed

    Shah, Vinod P; Amidon, Gordon L

    2014-09-01

    The Biopharmaceutics Classification System (BCS) has become widely accepted today in the academic, industrial, and regulatory world. While the initial application of the BCS was to regulatory science bioequivalence (BE) issues and related implications, it has come to be utilized widely by the pharmaceutical industry in drug discovery and development as well. This brief manuscript will relate the story of the BCS development. While much of the ground work for the BCS goes back to the pharmacokinetic and drug absorption research by Gordon Amidon (GLA) in the 1970s and 1980s, the realization of the need for a classification or categorization of drug and drug products for setting dissolution standards became apparent to GLA during his 1990-1991 sabbatical year at the FDA. Initiated at the invitation of the then CEDR director, Dr. Carl Peck, to become a visiting scientist at the FDA, the goal was to promote regulatory research at the FDA, in my case, in biopharmaceutics, and to develop a science-based system to simplify regulatory requirements.

  14. Hybrid and disposable facilities for manufacturing of biopharmaceuticals: pros and cons.

    PubMed

    Ravisé, Aline; Cameau, Emmanuelle; De Abreu, Georges; Pralong, Alain

    2009-01-01

    Modern biotechnology has grown over the last 35 years to a maturing industry producing and delivering high-value biopharmaceuticals that yield important medical and economical benefits. The constantly increasing need for biopharmaceuticals and significant costs related to time-consuming R&D work makes this industry risky and highly competitive. This trend is confirmed by the important number of biopharmaceuticals that are actually under development at all stages by all major pharmaceutical industry companies. A consequence of this evolution is an increasing need for development and manufacturing capacity. The build up of traditional - stainless steel - technology is complicated, time consuming and very expensive. The decision for such a major investment needs to be taken early in the development cycle of a promising drug to cope with future demands for clinical trials and product launch. Possibilities for the reduction of R&D and manufacturing costs are therefore of significant interest in order to be competitive.In this chapter, four case studies are presented which outline ways to reduce significantly R&D and manufacturing costs by using disposable technology in the frame of a the transfer of an antibody manufacturing process, the preparation of media and buffers in commercial manufacturing and a direct comparison of a traditional and a fully disposable pilot plant.

  15. Development of a 3-step straight-through purification strategy combining membrane adsorbers and resins.

    PubMed

    Hughson, Michael D; Cruz, Thayana A; Carvalho, Rimenys J; Castilho, Leda R

    2017-07-01

    The pressures to efficiently produce complex biopharmaceuticals at reduced costs are driving the development of novel techniques, such as in downstream processing with straight-through processing (STP). This method involves directly and sequentially purifying a particular target with minimal holding steps. This work developed and compared six different 3-step STP strategies, combining membrane adsorbers, monoliths, and resins, to purify a large, complex, and labile glycoprotein from Chinese hamster ovary cell culture supernatant. The best performing pathway was cation exchange chromatography to hydrophobic interaction chromatography to affinity chromatography with an overall product recovery of up to 88% across the process and significant clearance of DNA and protein impurities. This work establishes a platform and considerations for the development of STP of biopharmaceutical products and highlights its suitability for integration with single-use technologies and continuous production methods. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:931-940, 2017. © 2017 American Institute of Chemical Engineers.

  16. The formulation and immunogenicity of therapeutic proteins: Product quality as a key factor.

    PubMed

    Richard, Joel; Prang, Nadia

    2010-08-01

    The formation of anti-drug antibodies represents a risk that should be assessed carefully during biopharmaceutical drug product (DP) development, as such antibodies compromise safety and efficacy and may alter the pharmacokinetic properties of a compound. This feature review discusses immunogenicity issues in biopharmaceutical DP development, with a focus on product quality. Excipient-induced and aggregate-induced immunogenicity are reviewed based on the concepts of 'aggregation-competent' species and 'provocative' aggregates. In addition, the influence of formulation parameters, such as particulates and contaminants appearing in the DP during processing and storage, on aggregate-induced immunogenicity are presented, including the role of fill-and-finish equipments and the effect of interactions with container materials. Furthermore, methods to detect and quantify aggregation and precursor conformational changes in a protein formulation are reviewed, and immunological mechanisms that may lead to aggregate-induced immunogenicity are proposed and discussed.

  17. Follow-on biologics: competition in the biopharmaceutical marketplace.

    PubMed

    Devine, Joshua W; Cline, Richard R; Farley, Joel F

    2006-01-01

    To describe the implications of a follow-on biologic approval process with focus on current stakeholders, implications of the status quo, and recommendations for future policy. A search using Medline, International Pharmaceutical Abstracts, Med Ad News, F-D-C Reports/Pink Sheets, and Google index directories was conducted with terms such as biologic, biopharmaceutical, generic, and follow-on. Articles pertaining to the follow-on biologic debate. By the authors. Over the past decade, the biopharmaceutical market has experienced substantial growth in the number of product approvals and sales. In contrast with prescription medications, biologic agents currently lack an abbreviated regulatory approval process. Evidence from the Drug Price Competition and Patent Term Restoration Act of 1984 suggests that reducing barriers to generic competition in the pharmaceutical market successfully increases generic market penetration and reduces overall prices to consumers. Although scientific and regulatory dissimilarities between biopharmaceuticals and other medications exist, a follow-on biologic approval process has the potential to play an important role in containing growth in pharmaceutical spending. In addition to biopharmaceutical and generic biopharmaceutical manufacturers, stakeholders with a vested interest in this debate include individual consumers who continue to bear the burden of spending increases in the pharmaceutical market. The debate over a follow-on process likely will be difficult as parties seek a balance between incentives for biopharmaceutical innovation, consumer safety, and affordability of existing biologic products.

  18. Biopharmaceutical innovation and industrial developments in South Korea, Singapore and Taiwan.

    PubMed

    Hsieh, Chee-Ruey; Löfgren, Hans

    2009-05-01

    South Korea, Singapore and Taiwan are well known as export-oriented developmental states which for decades employed industrial policy to target particular industries for government support. In the past fifteen years, these three countries all identified the biopharmaceutical industry as a strategic sector. This article explores, through economic analysis, the rationale for this decision and the strategies chosen for linking into the global bio-economy with the objective of catching up in biopharmaceuticals. The paper identifies three comparative advantages enjoyed by these countries in the biopharma sector: (1) public investments in basic research; (2) private investments in phase 1 clinical trials; and (3) a potentially significant contract research industry managing latter-stage clinical trials. Governments employ a range of industrial policies, consistent with these comparative advantages, to promote the biopharmaceutical industry, including public investment in biomedical hubs, research funding and research and development (R&D) tax credits. We argue that the most important feature of the biopharmaceutical industry in these countries is the dominant role of the public sector. That these countries have made progress in innovative capabilities is illustrated by input measures such as R&D expenditure as share of gross domestic product, number of patents granted and clinical trials, and volume of foreign direct investment. In contrast, output indicators such as approval of new chemical entities suggest that the process of catching up has only just commenced. Pharmaceutical innovation is at the stage of mainly generating inputs to integrated processes controlled by the globally incumbent firms.

  19. Biosimilar therapeutics-what do we need to consider?

    PubMed

    Schellekens, Huub

    2009-01-01

    Patents for the first generation of approved biopharmaceuticals have either expired or are about to expire. Thus the market is opening for generic versions, referred to as 'biosimilars' (European Union) or 'follow-on protein products' (United States). Healthcare professionals need to understand the critical issues surrounding the use of biosimilars to make informed treatment decisions.The complex high-molecular-weight three-dimensional structures of biopharmaceuticals, their heterogeneity and dependence on production in living cells makes them different from classical chemical drugs. Current analytical methods cannot characterize these complex molecules sufficiently to confirm structural equivalence with reference molecules. Verification of the similarity of biosimilars to innovator biopharmaceuticals remains a key challenge. Furthermore, a critical safety issue, the immunogenicity of biopharmaceuticals, has been highlighted in recent years, confirming a need for comprehensive immunogenicity testing prior to approval and extended post-marketing surveillance.Biosimilars present a new set of challenges for regulatory authorities when compared with conventional generics. While the demonstration of a pharmacokinetic similarity is sufficient for conventional, small-molecule generic agents, a number of issues will make the approval of biosimilars more complicated. Documents recently published by the European Medicines Agency (EMEA) outlining requirements for the market approval of biosimilars provide much-needed guidance. The EMEA has approved a number of biosimilar products in a scientifically rigorous and balanced process. Outstanding issues include the interchangeability of biosimilars and innovator products, the possible need for unique naming to differentiate the various biopharmaceutical products, and more comprehensive labelling for biosimilars to include relevant clinical data.

  20. Carrot cells: a pioneering platform for biopharmaceuticals production.

    PubMed

    Rosales-Mendoza, Sergio; Tello-Olea, Marlene Anahí

    2015-03-01

    Carrot (Daucus carota L.) is of importance in the molecular farming field as it constitutes the first plant species approved to produce biopharmaceuticals for human use. In this review, features that make carrot an advantageous species in the molecular farming field are analyzed and a description of the developments achieved with this crop thus far is presented. A guide for genetic transformation procedures is also included. The state of the art comprises ten vaccine prototypes against Measles virus, Hepatitis B virus, Human immunodeficiency virus, Yersinia pestis, Chlamydia trachomatis, Mycobacterium tuberculosis, enterotoxigenic Escherichia coli, Corynebacterium diphtheria/Clostridium tetani/Bordetella pertussis, and Helicobacter pylori; as well as the case of the glucocerebrosidase, an enzyme used for replacement therapy, and other therapeutics. Perspectives for these developments are envisioned and innovations are proposed such as the use of transplastomic technologies-, hairy roots-, and viral expression-based systems to improve yields and develop new products derived from this advantageous plant species.

  1. On-line coupling of size exclusion chromatography with mixed-mode liquid chromatography for comprehensive profiling of biopharmaceutical drug product.

    PubMed

    He, Yan; Friese, Olga V; Schlittler, Michele R; Wang, Qian; Yang, Xun; Bass, Laura A; Jones, Michael T

    2012-11-02

    A methodology based on on-line coupling of size exclusion chromatography (SEC) with mixed-mode liquid chromatography (LC) has been developed. The method allows for simultaneous measurement of a wide range of components in biopharmaceutical drug products. These components include the active pharmaceutical ingredient (protein) and various kinds of excipients such as cations, anions, nonionic hydrophobic surfactant and hydrophilic sugars. Dual short SEC columns are used to separate small molecule excipients from large protein molecules. The separated protein is quantified using a UV detector at 280 nm. The isolated excipients are switched, online, to the Trinity P1 mixed-mode column for separation, and detected by an evaporative light scattering detector (ELSD). Using a stationary phase with 1.7 μm particles in SEC allows for the use of volatile buffers for both SEC and mix-mode separation. This facilitates the detection of different excipients by ELSD and provides potential for online characterization of the protein with mass spectrometry (MS). The method has been applied to quantitate protein and excipients in different biopharmaceutical drug products including monoclonal antibodies (mAb), antibody drug conjugates (ADC) and vaccines. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Chemometrics-based process analytical technology (PAT) tools: applications and adaptation in pharmaceutical and biopharmaceutical industries.

    PubMed

    Challa, Shruthi; Potumarthi, Ravichandra

    2013-01-01

    Process analytical technology (PAT) is used to monitor and control critical process parameters in raw materials and in-process products to maintain the critical quality attributes and build quality into the product. Process analytical technology can be successfully implemented in pharmaceutical and biopharmaceutical industries not only to impart quality into the products but also to prevent out-of-specifications and improve the productivity. PAT implementation eliminates the drawbacks of traditional methods which involves excessive sampling and facilitates rapid testing through direct sampling without any destruction of sample. However, to successfully adapt PAT tools into pharmaceutical and biopharmaceutical environment, thorough understanding of the process is needed along with mathematical and statistical tools to analyze large multidimensional spectral data generated by PAT tools. Chemometrics is a chemical discipline which incorporates both statistical and mathematical methods to obtain and analyze relevant information from PAT spectral tools. Applications of commonly used PAT tools in combination with appropriate chemometric method along with their advantages and working principle are discussed. Finally, systematic application of PAT tools in biopharmaceutical environment to control critical process parameters for achieving product quality is diagrammatically represented.

  3. A practical discussion of risk management for manufacturing of pharmaceutical products.

    PubMed

    Mollah, A Hamid; Baseman, Harold S; Long, Mike; Rathore, Anurag S

    2014-01-01

    Quality risk management (QRM) is now a regulatory expectation, and it makes good business sense. The goal of the risk assessment is to increase process understanding and deliver safe and effective product to the patients. Risk analysis and management is an acceptable and effective way to minimize patient risk and determine the appropriate level of controls in manufacturing. While understanding the elements of QRM is important, knowing how to apply them in the manufacturing environment is essential for effective process performance and control. This article will preview application of QRM in pharmaceutical and biopharmaceutical manufacturing to illustrate how QRM can help the reader achieve that objective. There are several areas of risk that a drug company may encounter in pharmaceutical manufacturing, specifically addressing oral solid and liquid formulations. QRM tools can be used effectively to identify the risks and develop strategy to minimize or control them. Risks are associated throughout the biopharmaceutical manufacturing process-from raw material supply through manufacturing and filling operations to final distribution via a controlled cold chain process. Assessing relevant attributes and risks for biotechnology-derived products is more complicated and challenging for complex pharmaceuticals. This paper discusses key risk factors in biopharmaceutical manufacturing. Successful development and commercialization of pharmaceutical products is all about managing risks. If a company was to take zero risk, most likely the path to commercialization would not be commercially viable. On the other hand, if the risk taken was too much, the product is likely to have a suboptimal safety and efficacy profile and thus is unlikely to be a successful product. This article addresses the topic of quality risk management with the key objective of minimizing patient risk while creating an optimal process and product. Various tools are presented to aid implementation of these concepts. © PDA, Inc. 2014.

  4. Basics of Sterile Compounding: Biopharmaceutics of Injectable Dosage Forms.

    PubMed

    Akers, Michael J

    2017-01-01

    Biopharmaceutics studies the relationship between the drug product and what happens after the product is administered. Since the majority of injectables are administered by the intravenous route, thus avoiding the need for drug absorption, not many articles are published compared to other routes of drug administration. However, other routes of administration for drug injection are becoming more frequent because of greater commercial availability of sustained- and controlled-release drug delivery systems. This article reviews basic principles of drug absorption, distribution, metabolism, and elimination of injectable drugs and certain physicochemical and physiological factors affecting injectable drug biopharmaceutics. Copyright© by International Journal of Pharmaceutical Compounding, Inc.

  5. Soybeans as bioreactors for biopharmaceuticals and industrial proteins.

    PubMed

    Vianna, G R; Cunha, N B; Murad, A M; Rech, E L

    2011-01-01

    Plants present various advantages for the production of biomolecules, including low risk of contamination with prions, viruses and other pathogens, scalability, low production costs, and available agronomical systems. Plants are also versatile vehicles for the production of recombinant molecules because they allow protein expression in various organs, such as tubers and seeds, which naturally accumulate large amounts of protein. Among crop plants, soybean is an excellent protein producer. Soybean plants are also a good source of abundant and cheap biomass and can be cultivated under controlled greenhouse conditions. Under containment, the plant cycle can be manipulated and the final seed yield can be maximized for large-scale protein production within a small and controlled area. Exploitation of specific regulatory sequences capable of directing and accumulating recombinant proteins in protein storage vacuoles in soybean seeds, associated with recently developed biological research tools and purification systems, has great potential to accelerate preliminary characterization of plant-derived biopharmaceuticals and industrial macromolecules. This is an important step in the development of genetically engineered products that are inexpensive and safe for medicinal, food and other uses.

  6. Biopharmaceuticals from plants: a multitude of options for posttranslational modifications.

    PubMed

    Warzecha, Heribert

    2008-01-01

    In 1982 the first recombinant therapeutic, human insulin, was introduced into the market and started a new branch of pharmaceutical development, manufacture, and therapy options. To date, more than 130 recombinant protein therapeutics have been approved by the US Food and Drug Administration (FDA) and many more are being developed world wide. With the increasing number of protein therapeutics the number of potential production organisms is also expanding, and posttranslational modification of proteins has become a topic of special focus. One major difference between small-molecule drugs and protein therapeutics is that the latter are reliant on a host organism for their production and this can have a large influence on the final structure and can ultimately affect the pharmacokinetics, immunogenicity, and the function of the protein depending on the production process. Plants can be efficiently used as production systems for recombinant proteins thereby offering a variety of options for transgene targeting and modification. This review is intended to give an overview about the potential of plants to serve as a production system for therapeutic and prophylactic biopharmaceuticals with respect to posttranslational modifications.

  7. 77 FR 72904 - In the Matter of HealthSport, Inc., Home Director, Inc., Home Theater Products International, Inc...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-06

    ... Jewelry Concepts, Inc.), and Huifeng Bio-Pharmaceutical Technology, Inc.; Order of Suspension of Trading... information concerning the securities of Huifeng Bio-Pharmaceutical Technology, Inc. because it has not filed...

  8. [Biopharmaceutical importance of pharmaceutical aids in drug prescribing with special reference to rectal administration].

    PubMed

    Regdon, G; Regdon, G

    1991-03-24

    Based on literary sources, the medical and pharmaceutical significance of vehicles and additives, which play an ever-increasing role in the production of all drug forms, is discussed. Then the groups of additives used in the production of suppositories are described partly on the basis of our own experiences, and their biopharmaceutical significance is evaluated.

  9. Yeast synthetic biology for the production of recombinant therapeutic proteins.

    PubMed

    Kim, Hyunah; Yoo, Su Jin; Kang, Hyun Ah

    2015-02-01

    The production of recombinant therapeutic proteins is one of the fast-growing areas of molecular medicine and currently plays an important role in treatment of several diseases. Yeasts are unicellular eukaryotic microbial host cells that offer unique advantages in producing biopharmaceutical proteins. Yeasts are capable of robust growth on simple media, readily accommodate genetic modifications, and incorporate typical eukaryotic post-translational modifications. Saccharomyces cerevisiae is a traditional baker's yeast that has been used as a major host for the production of biopharmaceuticals; however, several nonconventional yeast species including Hansenula polymorpha, Pichia pastoris, and Yarrowia lipolytica have gained increasing attention as alternative hosts for the industrial production of recombinant proteins. In this review, we address the established and emerging genetic tools and host strains suitable for recombinant protein production in various yeast expression systems, particularly focusing on current efforts toward synthetic biology approaches in developing yeast cell factories for the production of therapeutic recombinant proteins. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permission@oup.com.

  10. In vitro models for the prediction of in vivo performance of oral dosage forms.

    PubMed

    Kostewicz, Edmund S; Abrahamsson, Bertil; Brewster, Marcus; Brouwers, Joachim; Butler, James; Carlert, Sara; Dickinson, Paul A; Dressman, Jennifer; Holm, René; Klein, Sandra; Mann, James; McAllister, Mark; Minekus, Mans; Muenster, Uwe; Müllertz, Anette; Verwei, Miriam; Vertzoni, Maria; Weitschies, Werner; Augustijns, Patrick

    2014-06-16

    Accurate prediction of the in vivo biopharmaceutical performance of oral drug formulations is critical to efficient drug development. Traditionally, in vitro evaluation of oral drug formulations has focused on disintegration and dissolution testing for quality control (QC) purposes. The connection with in vivo biopharmaceutical performance has often been ignored. More recently, the switch to assessing drug products in a more biorelevant and mechanistic manner has advanced the understanding of drug formulation behavior. Notwithstanding this evolution, predicting the in vivo biopharmaceutical performance of formulations that rely on complex intraluminal processes (e.g. solubilization, supersaturation, precipitation…) remains extremely challenging. Concomitantly, the increasing demand for complex formulations to overcome low drug solubility or to control drug release rates urges the development of new in vitro tools. Development and optimizing innovative, predictive Oral Biopharmaceutical Tools is the main target of the OrBiTo project within the Innovative Medicines Initiative (IMI) framework. A combination of physico-chemical measurements, in vitro tests, in vivo methods, and physiology-based pharmacokinetic modeling is expected to create a unique knowledge platform, enabling the bottlenecks in drug development to be removed and the whole process of drug development to become more efficient. As part of the basis for the OrBiTo project, this review summarizes the current status of predictive in vitro assessment tools for formulation behavior. Both pharmacopoeia-listed apparatus and more advanced tools are discussed. Special attention is paid to major issues limiting the predictive power of traditional tools, including the simulation of dynamic changes in gastrointestinal conditions, the adequate reproduction of gastrointestinal motility, the simulation of supersaturation and precipitation, and the implementation of the solubility-permeability interplay. It is anticipated that the innovative in vitro biopharmaceutical tools arising from the OrBiTo project will lead to improved predictions for in vivo behavior of drug formulations in the GI tract. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Use of physiologically relevant biopharmaceutics tools within the pharmaceutical industry and in regulatory sciences: Where are we now and what are the gaps?

    PubMed

    Flanagan, Talia; Van Peer, Achiel; Lindahl, Anders

    2016-08-25

    Regulatory interactions are an important part of the drug development and licensing process. A survey on the use of biopharmaceutical tools for regulatory purposes has been carried out within the industry community of the EU project OrBiTo within Innovative Medicines Initiative (IMI). The aim was to capture current practice and experience in using in vitro and in silico biopharmaceutics tools at various stages of development, what barriers exist or are perceived, and to understand the current gaps in regulatory biopharmaceutics. The survey indicated that biorelevant dissolution testing and physiologically based modelling and simulation are widely applied throughout development to address a number of biopharmaceutics issues. However, data from these in vitro and in silico predictive biopharmaceutics tools are submitted to regulatory authorities far less often than they are used for internal risk assessment and decision making. This may prevent regulators from becoming familiar with these tools and how they are applied in industry, and limits the opportunities for biopharmaceutics scientists working in industry to understand the acceptability of these tools in the regulatory environment. It is anticipated that the advanced biopharmaceutics tools and understanding delivered in the next years by OrBiTo and other initiatives in the area of predictive tools will also be of value in the regulatory setting, and provide a basis for more informed and confident biopharmaceutics risk assessment and regulatory decision making. To enable the regulatory potential of predictive biopharmaceutics tools to be realized, further scientific dialogue is needed between industry, regulators and scientists in academia, and more examples need to be published to demonstrate the applicability of these tools. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. The use of biopharmaceutic classification of drugs in drug discovery and development: current status and future extension.

    PubMed

    Lennernäs, Hans; Abrahamsson, Bertil

    2005-03-01

    Bioavailability (BA) and bioequivalence (BE) play a central role in pharmaceutical product development and BE studies are presently being conducted for New Drug Applications (NDAs) of new compounds, in supplementary NDAs for new medical indications and product line extensions, in Abbreviated New Drug Applications (ANDAs) of generic products and in applications for scale-up and post-approval changes. The Biopharmaceutics Classification System (BCS) has been developed to provide a scientific approach for classifying drug compounds based on solubility as related to dose and intestinal permeability in combination with the dissolution properties of the oral immediaterelease (IR) dosage form. The aim of the BCS is to provide a regulatory tool for replacing certain BE studies by accurate in-vitro dissolution tests. The aim of this review is to present the status of the BCS and discuss its future application in pharmaceutical product development. The future application of the BCS is most likely increasingly important when the present framework gains increased recognition, which will probably be the case if the BCS borders for certain class II and III drugs are extended. The future revision of the BCS guidelines by the regulatory agencies in communication with academic and industrial scientists is exciting and will hopefully result in an increased applicability in drug development. Finally, we emphasize the great use of the BCS as a simple tool in early drug development to determine the rate-limiting step in the oral absorption process, which has facilitated the information between different experts involved in the overall drug development process. This increased awareness of a proper biopharmaceutical characterization of new drugs may in the future result in drug molecules with a sufficiently high permeability, solubility and dissolution rate, and that will automatically increase the importance of the BCS as a regulatory tool over time.

  13. Regulatory guidelines for biosimilars in Malaysia.

    PubMed

    Abas, Arpah

    2011-09-01

    The biosimilars sector continues to attract huge interest and controversy. Biosimilars are new biopharmaceuticals that are "similar" but not identical to the innovator product. Characteristics of biopharmaceuticals are closely related to the manufacturing process, which implies that the products cannot be exactly duplicated. Minuscule differences in the product's structure and manufacturing process can result in different clinical outcome. This raises concerns over the safety, efficacy and even pharmacovigilance of biosimilars. Thus, biosimilars are unique - they are not a true chemical generic and are regulated via a distinct regulatory framework. This report discusses the features of Malaysian regulatory oversight of biosimilars and experience acquired in the evaluation of some products from various countries. Ensuring regulatory position adequately reflects scientific advancement, expertise/resources is key. The regulatory situation is an evolving process. Various guidance documents are being prepared with the aim of developing a uniform global framework towards assuring the dual goal of lower costs and patient safety while expediting the availability of important biosimilar products. Copyright © 2011. Published by Elsevier Ltd.

  14. Industrial Production of Therapeutic Proteins: Cell Lines, Cell Culture, and Purification

    NASA Astrophysics Data System (ADS)

    Zhu, Marie M.; Mollet, Michael; Hubert, Rene S.

    The biotechnology and pharmaceutical industries have seen a recent surge in the development of biological drug products manufactured from engineered mammalian cell lines. Since the hugely successful launch of human tissue plasminogen activator in 1987 and erythropoietin in 1988, the biopharmaceutical market has grown immensely. Global sales in 2003 exceeded US 30 billion.1 Currently, a total of 108 biotherapeutics are approved and available to patients (Table 32.1). In addition, 324 medically related, biotechnology-derived medicines for nearly 150 diseases are in clinical trials or under review by the U.S. Food and Drug Administration.2 These biopharmaceutical candidates promise to bring more and better treatments to patients. Compared to small molecule drugs, biotherapeutics show exquisite specificity with fewer off-target interactions and improved safety profiles.

  15. Biosimilar therapeutics—what do we need to consider?

    PubMed Central

    Schellekens, Huub

    2009-01-01

    Patents for the first generation of approved biopharmaceuticals have either expired or are about to expire. Thus the market is opening for generic versions, referred to as ‘biosimilars’ (European Union) or ‘follow-on protein products’ (United States). Healthcare professionals need to understand the critical issues surrounding the use of biosimilars to make informed treatment decisions. The complex high-molecular-weight three-dimensional structures of biopharmaceuticals, their heterogeneity and dependence on production in living cells makes them different from classical chemical drugs. Current analytical methods cannot characterize these complex molecules sufficiently to confirm structural equivalence with reference molecules. Verification of the similarity of biosimilars to innovator biopharmaceuticals remains a key challenge. Furthermore, a critical safety issue, the immunogenicity of biopharmaceuticals, has been highlighted in recent years, confirming a need for comprehensive immunogenicity testing prior to approval and extended post-marketing surveillance. Biosimilars present a new set of challenges for regulatory authorities when compared with conventional generics. While the demonstration of a pharmacokinetic similarity is sufficient for conventional, small-molecule generic agents, a number of issues will make the approval of biosimilars more complicated. Documents recently published by the European Medicines Agency (EMEA) outlining requirements for the market approval of biosimilars provide much-needed guidance. The EMEA has approved a number of biosimilar products in a scientifically rigorous and balanced process. Outstanding issues include the interchangeability of biosimilars and innovator products, the possible need for unique naming to differentiate the various biopharmaceutical products, and more comprehensive labelling for biosimilars to include relevant clinical data. PMID:19461855

  16. Veterinary clinical pathologists in the biopharmaceutical industry.

    PubMed

    Schultze, A Eric; Bounous, Denise I; Bolliger, Anne Provencher

    2008-06-01

    There is an international shortage of veterinary clinical pathologists in the workplace. Current trainees in veterinary clinical pathology may choose to pursue careers in academe, diagnostic laboratories, government health services, biopharmaceutical companies, or private practice. Academic training programs attempt to provide trainees with an exposure to several career choices. However, due to the proprietary nature of much of the work in the biopharmaceutical industry, trainees may not be fully informed regarding the nature of work for veterinary clinical pathologists and the myriad opportunities that await employment in the biopharmaceutical industry. The goals of this report are to provide trainees in veterinary clinical pathology and other laboratory personnel with an overview of the work-life of veterinary clinical pathologists employed in the biopharmaceutical industry, and to raise the profile of this career choice for those seeking to enter the workforce. Biographical sketches, job descriptions, and motivation for 3 successful veterinary clinical pathologists employed in the biopharmaceutical industry are provided. Current and past statistics for veterinary clinical pathologists employed in the biopharmaceutical industry are reviewed. An overview of the drug development process and involvement of veterinary clinical pathologists in the areas of discovery, lead optimization, and candidate evaluation are discussed. Additional duties for veterinary clinical pathologists employed in the biopharmaceutical industry include development of biomarkers and new technologies, service as scientific resources, diagnostic support services, and laboratory management responsibilities. There are numerous opportunities available for trainees in veterinary clinical pathology to pursue employment in the biopharmaceutical industry and enjoy challenging and rewarding careers.

  17. Bioequivalence of Oral Products and the Biopharmaceutics Classification System: Science, Regulation, and Public Policy

    PubMed Central

    Amidon, KS; Langguth, P; Lennernäs, H; Yu, L; Amidon, GL

    2011-01-01

    The demonstration of bioequivalence (BE) is an essential requirement for ensuring that patients receive a product that performs as indicated by the label. The BE standard for a particular product is set by its innovator, and this standard must subsequently be matched by generic drug products. The Biopharmaceutics Classification System (BCS) sets a scientific basis for an improved BE standard for immediate-release solid oral dosage forms. In this paper, we discuss BE and the BCS, as well as the issues that are currently relevant to BE as a pharmaceutical product standard. PMID:21775984

  18. Early Implementation of QbD in Biopharmaceutical Development: A Practical Example

    PubMed Central

    Zurdo, Jesús; Arnell, Andreas; Obrezanova, Olga; Smith, Noel; Gómez de la Cuesta, Ramón; Gallagher, Thomas R. A.; Michael, Rebecca; Stallwood, Yvette; Ekblad, Caroline; Abrahmsén, Lars; Höidén-Guthenberg, Ingmarie

    2015-01-01

    In drug development, the “onus” of the low R&D efficiency has been put traditionally onto the drug discovery process (i.e., finding the right target or “binding” functionality). Here, we show that manufacturing is not only a central component of product success, but also that, by integrating manufacturing and discovery activities in a “holistic” interpretation of QbD methodologies, we could expect to increase the efficiency of the drug discovery process as a whole. In this new context, early risk assessment, using developability methodologies and computational methods in particular, can assist in reducing risks during development in a cost-effective way. We define specific areas of risk and how they can impact product quality in a broad sense, including essential aspects such as product efficacy and patient safety. Emerging industry practices around developability are introduced, including some specific examples of applications to biotherapeutics. Furthermore, we suggest some potential workflows to illustrate how developability strategies can be introduced in practical terms during early drug development in order to mitigate risks, reduce drug attrition and ultimately increase the robustness of the biopharmaceutical supply chain. Finally, we also discuss how the implementation of such methodologies could accelerate the access of new therapeutic treatments to patients in the clinic. PMID:26075248

  19. Emergence of biopharmaceutical innovators in China, India, Brazil, and South Africa as global competitors and collaborators.

    PubMed

    Rezaie, Rahim; McGahan, Anita M; Frew, Sarah E; Daar, Abdallah S; Singer, Peter A

    2012-06-06

    Biopharmaceutical innovation has had a profound health and economic impact globally. Developed countries have traditionally been the source of most innovations as well as the destination for the resulting economic and health benefits. As a result, most prior research on this sector has focused on developed countries. This paper seeks to fill the gap in research on emerging markets by analyzing factors that influence innovative activity in the indigenous biopharmaceutical sectors of China, India, Brazil, and South Africa. Using qualitative research methodologies, this paper a) shows how biopharmaceutical innovation is taking place within the entrepreneurial sectors of these emerging markets, b) identifies common challenges that indigenous entrepreneurs face, c) highlights the key role played by the state, and d) reveals that the transition to innovation by companies in the emerging markets is characterized by increased global integration. It suggests that biopharmaceutical innovators in emerging markets are capitalizing on opportunities to participate in the drug development value chain and thus developing capabilities and relationships for competing globally both with and against established companies headquartered in developed countries.

  20. Emergence of biopharmaceutical innovators in China, India, Brazil, and South Africa as global competitors and collaborators

    PubMed Central

    2012-01-01

    Biopharmaceutical innovation has had a profound health and economic impact globally. Developed countries have traditionally been the source of most innovations as well as the destination for the resulting economic and health benefits. As a result, most prior research on this sector has focused on developed countries. This paper seeks to fill the gap in research on emerging markets by analyzing factors that influence innovative activity in the indigenous biopharmaceutical sectors of China, India, Brazil, and South Africa. Using qualitative research methodologies, this paper a) shows how biopharmaceutical innovation is taking place within the entrepreneurial sectors of these emerging markets, b) identifies common challenges that indigenous entrepreneurs face, c) highlights the key role played by the state, and d) reveals that the transition to innovation by companies in the emerging markets is characterized by increased global integration. It suggests that biopharmaceutical innovators in emerging markets are capitalizing on opportunities to participate in the drug development value chain and thus developing capabilities and relationships for competing globally both with and against established companies headquartered in developed countries. PMID:22672351

  1. Microencapsulation for the Therapeutic Delivery of Drugs, Live Mammalian and Bacterial Cells, and Other Biopharmaceutics: Current Status and Future Directions

    PubMed Central

    Saha, Shyamali; Malhotra, Meenakshi; Kahouli, Imen; Prakash, Satya

    2013-01-01

    Microencapsulation is a technology that has shown significant promise in biotherapeutics, and other applications. It has been proven useful in the immobilization of drugs, live mammalian and bacterial cells and other cells, and other biopharmaceutics molecules, as it can provide material structuration, protection of the enclosed product, and controlled release of the encapsulated contents, all of which can ensure efficient and safe therapeutic effects. This paper is a comprehensive review of microencapsulation and its latest developments in the field. It provides a comprehensive overview of the technology and primary goals of microencapsulation and discusses various processes and techniques involved in microencapsulation including physical, chemical, physicochemical, and other methods involved. It also summarizes the state-of-the-art successes of microencapsulation, specifically with regard to the encapsulation of microorganisms, mammalian cells, drugs, and other biopharmaceutics in various diseases. The limitations and future directions of microencapsulation technologies are also discussed. PMID:26555963

  2. Physiologically Based Absorption Modeling to Impact Biopharmaceutics and Formulation Strategies in Drug Development-Industry Case Studies.

    PubMed

    Kesisoglou, Filippos; Chung, John; van Asperen, Judith; Heimbach, Tycho

    2016-09-01

    In recent years, there has been a significant increase in use of physiologically based pharmacokinetic models in drug development and regulatory applications. Although most of the published examples have focused on aspects such as first-in-human (FIH) dose predictions or drug-drug interactions, several publications have highlighted the application of these models in the biopharmaceutics field and their use to inform formulation development. In this report, we present 5 case studies of use of such models in this biopharmaceutics/formulation space across different pharmaceutical companies. The case studies cover different aspects of biopharmaceutics or formulation questions including (1) prediction of absorption prior to FIH studies; (2) optimization of formulation and dissolution method post-FIH data; (3) early exploration of a modified-release formulation; (4) addressing bridging questions for late-stage formulation changes; and (5) prediction of pharmacokinetics in the fed state for a Biopharmaceutics Classification System class I drug with fasted state data. The discussion of the case studies focuses on how such models can facilitate decisions and biopharmaceutic understanding of drug candidates and the opportunities for increased use and acceptance of such models in drug development and regulatory interactions. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  3. [The role of biotechnology in pharmaceutical drug design].

    PubMed

    Gaisser, Sibylle; Nusser, Michael

    2010-01-01

    Biotechnological methods have become an important tool in pharmaceutical drug research and development. Today approximately 15 % of drug revenues are derived from biopharmaceuticals. The most relevant indications are oncology, metabolic disorders and disorders of the musculoskeletal system. For the future it can be expected that the relevance of biopharmaceuticals will further increase. Currently, the share of substances in preclinical testing that rely on biotechnology is more than 25 % of all substances in preclinical testing. Products for the treatment of cancer, metabolic disorders and infectious diseases are most important. New therapeutic approaches such as RNA interference only play a minor role in current commercial drug research and development with 1.5 % of all biological preclinical substances. Investments in sustainable high technology such as biotechnology are of vital importance for a highly developed country like Germany because of its lack of raw materials. Biotechnology helps the pharmaceutical industry to develop new products, new processes, methods and services and to improve existing ones. Thus, international competitiveness can be strengthened, new jobs can be created and existing jobs preserved.

  4. Advances in industrial biopharmaceutical batch process monitoring: Machine-learning methods for small data problems.

    PubMed

    Tulsyan, Aditya; Garvin, Christopher; Ündey, Cenk

    2018-04-06

    Biopharmaceutical manufacturing comprises of multiple distinct processing steps that require effective and efficient monitoring of many variables simultaneously in real-time. The state-of-the-art real-time multivariate statistical batch process monitoring (BPM) platforms have been in use in recent years to ensure comprehensive monitoring is in place as a complementary tool for continued process verification to detect weak signals. This article addresses a longstanding, industry-wide problem in BPM, referred to as the "Low-N" problem, wherein a product has a limited production history. The current best industrial practice to address the Low-N problem is to switch from a multivariate to a univariate BPM, until sufficient product history is available to build and deploy a multivariate BPM platform. Every batch run without a robust multivariate BPM platform poses risk of not detecting potential weak signals developing in the process that might have an impact on process and product performance. In this article, we propose an approach to solve the Low-N problem by generating an arbitrarily large number of in silico batches through a combination of hardware exploitation and machine-learning methods. To the best of authors' knowledge, this is the first article to provide a solution to the Low-N problem in biopharmaceutical manufacturing using machine-learning methods. Several industrial case studies from bulk drug substance manufacturing are presented to demonstrate the efficacy of the proposed approach for BPM under various Low-N scenarios. © 2018 Wiley Periodicals, Inc.

  5. Innovator Organizations in New Drug Development: Assessing the Sustainability of the Biopharmaceutical Industry.

    PubMed

    Kinch, Michael S; Moore, Ryan

    2016-06-23

    The way new medicines are discovered and brought to market has fundamentally changed over the last 30 years. Our previous analysis showed that biotechnology companies had contributed significantly to the US Food and Drug Administration approval of new molecular entities up to the mid-1980s, when the trends started to decline. Although intriguing, the focus on biotechnology necessarily precluded the wider question of how the biopharmaceutical industry has been delivering on its goals to develop new drugs. Here, we present a comprehensive analysis of all biopharmaceutical innovators and uncover unexpected findings. The present biopharmaceutical industry grew steadily from 1800 to 1950 and then stagnated for two decades, before a burst of growth attributable to the biotechnology revolution took place; but consolidation has reduced the number of active and independent innovators to a level not experienced since 1945. The trajectories and trends we observe raise fundamental questions about biopharmaceutical innovators and the sustainability of the drug-development enterprise. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Vaccination via Chloroplast Genetics: Affordable Protein Drugs for the Prevention and Treatment of Inherited or Infectious Human Diseases

    PubMed Central

    Daniell, Henry; Chan, Hui-Ting; Pasoreck, Elise K.

    2017-01-01

    Plastid-made biopharmaceuticals treat major metabolic or genetic disorders, including Alzheimer’s, diabetes, hypertension, hemophilia, and retinopathy. Booster vaccines made in chloroplasts prevent global infectious diseases, such as tuberculosis, malaria, cholera, and polio, and biological threats, such as anthrax and plague. Recent advances in this field include commercial-scale production of human therapeutic proteins in FDA-approved cGMP facilities, development of tags to deliver protein drugs to targeted human cells or tissues, methods to deliver precise doses, and long-term stability of protein drugs at ambient temperature, maintaining their efficacy. Codon optimization utilizing valuable information from sequenced chloroplast genomes enhanced expression of eukaryotic human or viral genes in chloroplasts and offered unique insights into translation in chloroplasts. Support from major biopharmaceutical companies, development of hydroponic production systems, and evaluation by regulatory agencies, including the CDC, FDA, and USDA, augur well for advancing this novel concept to the clinic and revolutionizing affordable healthcare. PMID:27893966

  7. Initial cytotoxicity assays of media for sulfate-reducing bacteria: An endodontic biopharmaceutical product under development.

    PubMed

    Heggendorn, Fabiano Luiz; Silva, Gabriela Cristina de Carvalho; Cardoso, Elisama Azevedo; Castro, Helena Carla; Gonçalves, Lúcio Souza; Dias, Eliane Pedra; Lione, Viviane de Oliveira Freitas; Lutterbach, Márcia Teresa Soares

    2016-01-01

    This study assessed the cell viability of the inoculation vehicle of BACCOR (a combination of sulfate-reducing bacteria plus a culture media for bacteria), a biopharmaceutical product under development for dental use as aid in fractured endodontic file removal from the root canal. Different culture media for bacteria were evaluated: modified Postgate E (MCP-E mod), Modified Postgate E without Agar-agar (MCP-E w/Ag), Postgate C with Agar-agar (MCP-C Ag) and Postgate C without Agar-agar (MCP-C w/Ag). Cytotoxicity was quantified by the MTT test, exposing L929 and Vero cell lines to the vehicles over 24 h. The exposure of L929 cell line to MCP-E w/Ag resulted in biocompatibility (52% cell viability), while the exposure of the Vero kidney line revealed only MCP-E mod as cytotoxic. When diluted, all the vehicles showed biocompatibility with both cell lines. MCP-E w/Ag was the vehicle chosen for BACCOR, because of its biocompatibility with the cells used.

  8. Recommendations on risk-based strategies for detection and characterization of antibodies against biotechnology products.

    PubMed

    Koren, Eugen; Smith, Holly W; Shores, Elizabeth; Shankar, Gopi; Finco-Kent, Deborah; Rup, Bonita; Barrett, Yu-Chen; Devanarayan, Viswanath; Gorovits, Boris; Gupta, Shalini; Parish, Thomas; Quarmby, Valerie; Moxness, Michael; Swanson, Steven J; Taniguchi, Gary; Zuckerman, Linda A; Stebbins, Christopher C; Mire-Sluis, Anthony

    2008-04-20

    The appropriate evaluation of the immunogenicity of biopharmaceuticals is of major importance for their successful development and licensure. Antibodies elicited by these products in many cases cause no detectable clinical effects in humans. However, antibodies to some therapeutic proteins have been shown to cause a variety of clinical consequences ranging from relatively mild to serious adverse events. In addition, antibodies can affect drug efficacy. In non-clinical studies, anti-drug antibodies (ADA) can complicate interpretation of the toxicity, pharmacokinetic (PK) and pharmacodynamic (PD) data. Therefore, it is important to develop testing strategies that provide valid assessments of antibody responses in both non-clinical and clinical studies. This document provides recommendations for antibody testing strategies stemming from the experience of contributing authors. The recommendations are intended to foster a more unified approach to antibody testing across the biopharmaceutical industry. The strategies proposed are also expected to contribute to better understanding of antibody responses and to further advance immunogenicity evaluation.

  9. Nanocarrier possibilities for functional targeting of bioactive peptides and proteins: state-of-the-art.

    PubMed

    Moutinho, Carla G; Matos, Carla M; Teixeira, José A; Balcão, Victor M

    2012-02-01

    This review attempts to provide an updated compilation of studies reported in the literature pertaining to production of nanocarriers encasing peptides and/or proteins, in a way that helps the reader direct a bibliographic search and develop an integrated perspective of the subject. Highlights are given to bioactive proteins and peptides, with a special focus on those from dairy sources (including physicochemical characteristics and properties, and biopharmaceutical application possibilities of e.g. lactoferrin and glycomacropeptide), as well as to nanocarrier functional targeting. Features associated with micro- and (multiple) nanoemulsions, micellar systems, liposomes and solid lipid nanoparticles, together with biopharmaceutical considerations, are presented in the text in a systematic fashion.

  10. Throughput Optimization of Continuous Biopharmaceutical Manufacturing Facilities.

    PubMed

    Garcia, Fernando A; Vandiver, Michael W

    2017-01-01

    In order to operate profitably under different product demand scenarios, biopharmaceutical companies must design their facilities with mass output flexibility in mind. Traditional biologics manufacturing technologies pose operational challenges in this regard due to their high costs and slow equipment turnaround times, restricting the types of products and mass quantities that can be processed. Modern plant design, however, has facilitated the development of lean and efficient bioprocessing facilities through footprint reduction and adoption of disposable and continuous manufacturing technologies. These development efforts have proven to be crucial in seeking to drastically reduce the high costs typically associated with the manufacturing of recombinant proteins. In this work, mathematical modeling is used to optimize annual production schedules for a single-product commercial facility operating with a continuous upstream and discrete batch downstream platform. Utilizing cell culture duration and volumetric productivity as process variables in the model, and annual plant throughput as the optimization objective, 3-D surface plots are created to understand the effect of process and facility design on expected mass output. The model shows that once a plant has been fully debottlenecked it is capable of processing well over a metric ton of product per year. Moreover, the analysis helped to uncover a major limiting constraint on plant performance, the stability of the neutralized viral inactivated pool, which may indicate that this should be a focus of attention during future process development efforts. LAY ABSTRACT: Biopharmaceutical process modeling can be used to design and optimize manufacturing facilities and help companies achieve a predetermined set of goals. One way to perform optimization is by making the most efficient use of process equipment in order to minimize the expenditure of capital, labor and plant resources. To that end, this paper introduces a novel mathematical algorithm used to determine the most optimal equipment scheduling configuration that maximizes the mass output for a facility producing a single product. The paper also illustrates how different scheduling arrangements can have a profound impact on the availability of plant resources, and identifies limiting constraints on the plant design. In addition, simulation data is presented using visualization techniques that aid in the interpretation of the scientific concepts discussed. © PDA, Inc. 2017.

  11. Capacity planning for batch and perfusion bioprocesses across multiple biopharmaceutical facilities.

    PubMed

    Siganporia, Cyrus C; Ghosh, Soumitra; Daszkowski, Thomas; Papageorgiou, Lazaros G; Farid, Suzanne S

    2014-01-01

    Production planning for biopharmaceutical portfolios becomes more complex when products switch between fed-batch and continuous perfusion culture processes. This article describes the development of a discrete-time mixed integer linear programming (MILP) model to optimize capacity plans for multiple biopharmaceutical products, with either batch or perfusion bioprocesses, across multiple facilities to meet quarterly demands. The model comprised specific features to account for products with fed-batch or perfusion culture processes such as sequence-dependent changeover times, continuous culture constraints, and decoupled upstream and downstream operations that permit independent scheduling of each. Strategic inventory levels were accounted for by applying cost penalties when they were not met. A rolling time horizon methodology was utilized in conjunction with the MILP model and was shown to obtain solutions with greater optimality in less computational time than the full-scale model. The model was applied to an industrial case study to illustrate how the framework aids decisions regarding outsourcing capacity to third party manufacturers or building new facilities. The impact of variations on key parameters such as demand or titres on the optimal production plans and costs was captured. The analysis identified the critical ratio of in-house to contract manufacturing organization (CMO) manufacturing costs that led the optimization results to favor building a future facility over using a CMO. The tool predicted that if titres were higher than expected then the optimal solution would allocate more production to in-house facilities, where manufacturing costs were lower. Utilization graphs indicated when capacity expansion should be considered. © 2014 The Authors Biotechnology Progress published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers.

  12. Capacity Planning for Batch and Perfusion Bioprocesses Across Multiple Biopharmaceutical Facilities

    PubMed Central

    Siganporia, Cyrus C; Ghosh, Soumitra; Daszkowski, Thomas; Papageorgiou, Lazaros G; Farid, Suzanne S

    2014-01-01

    Production planning for biopharmaceutical portfolios becomes more complex when products switch between fed-batch and continuous perfusion culture processes. This article describes the development of a discrete-time mixed integer linear programming (MILP) model to optimize capacity plans for multiple biopharmaceutical products, with either batch or perfusion bioprocesses, across multiple facilities to meet quarterly demands. The model comprised specific features to account for products with fed-batch or perfusion culture processes such as sequence-dependent changeover times, continuous culture constraints, and decoupled upstream and downstream operations that permit independent scheduling of each. Strategic inventory levels were accounted for by applying cost penalties when they were not met. A rolling time horizon methodology was utilized in conjunction with the MILP model and was shown to obtain solutions with greater optimality in less computational time than the full-scale model. The model was applied to an industrial case study to illustrate how the framework aids decisions regarding outsourcing capacity to third party manufacturers or building new facilities. The impact of variations on key parameters such as demand or titres on the optimal production plans and costs was captured. The analysis identified the critical ratio of in-house to contract manufacturing organization (CMO) manufacturing costs that led the optimization results to favor building a future facility over using a CMO. The tool predicted that if titres were higher than expected then the optimal solution would allocate more production to in-house facilities, where manufacturing costs were lower. Utilization graphs indicated when capacity expansion should be considered. © 2013 The Authors Biotechnology Progress published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers Biotechnol. Prog., 30:594–606, 2014 PMID:24376262

  13. Biosimilars: it's not as simple as cost alone.

    PubMed

    Roger, S D; Goldsmith, D

    2008-10-01

    Biosimilars or follow-on biologics (FoB) are biopharmaceuticals that, unlike small molecule generic products, are copies of larger, much more complex proteins. As such, data generated from one biopharmaceutical cannot be extrapolated to another. Unlike small molecule generics, FoB require a full developmental programme, albeit smaller than for an originator product. This has been recognized by European regulatory authorities and it is becoming clear that accelerated processes for FoB marketing approval are not feasible. To determine the balance between costs surrounding FoB (including relatively extensive developmental programmes and subsequent price to the market) and the necessity to ensure efficacy and safety. It is important that FoB are sufficiently tested to ensure patient safety is not compromised. Conducting such a development programme followed by sound pharmacovigilance is very challenging and costly. Cost-savings associated with FoB may be limited.

  14. Considerations for a Pediatric Biopharmaceutics Classification System (BCS): application to five drugs.

    PubMed

    Gandhi, Shivani V; Rodriguez, William; Khan, Mansoor; Polli, James E

    2014-06-01

    It has been advocated that biopharmaceutic risk assessment should be conducted early in pediatric product development and synchronized with the adult product development program. However, we are unaware of efforts to classify drugs into a Biopharmaceutics Classification System (BCS) framework for pediatric patients. The objective was to classify five drugs into a potential BCS. These five drugs were selected since both oral and intravenous pharmacokinetic data were available for each drug, and covered the four BCS classes in adults. Literature searches for each drug were conducted using Medline and applied to classify drugs with respect to solubility and permeability in pediatric subpopulations. Four pediatric subpopulations were considered: neonates, infants, children, and adolescents. Regarding solubility, dose numbers were calculated using a volume for each subpopulation based on body surface area (BSA) relative to 250 ml for a 1.73 m(2) adult. Dose numbers spanned a range of values, depending upon the pediatric dose formula and subpopulation. Regarding permeability, pharmacokinetic literature data required assumptions and decisions about data collection. Using a devised pediatric BCS framework, there was agreement in adult and pediatric BCS class for two drugs, azithromycin (class 3) and ciprofloxacin (class 4). There was discordance for the three drugs that have high adult permeability since all pediatric permeabilities were low: dolasetron (class 3 in pediatric), ketoprofen (class 4 in pediatric), and voriconazole (class 4 in pediatric). A main contribution of this work is the identification of critical factors required for a pediatric BCS.

  15. Application of in vitro biopharmaceutical methods in development of immediate release oral dosage forms intended for paediatric patients.

    PubMed

    Batchelor, Hannah K; Kendall, Richard; Desset-Brethes, Sabine; Alex, Rainer; Ernest, Terry B

    2013-11-01

    Biopharmaceutics is routinely used in the design and development of medicines to generate science based evidence to predict in vivo performance; the application of this knowledge specifically to paediatric medicines development is yet to be explored. The aim of this review is to present the current status of available biopharmaceutical tools and tests including solubility, permeability and dissolution that may be appropriate for use in the development of immediate release oral paediatric medicines. The existing tools used in adults are discussed together with any limitations for their use within paediatric populations. The results of this review highlight several knowledge gaps in current methodologies in paediatric biopharmaceutics. The authors provide recommendations based on existing knowledge to adapt tests to better represent paediatric patient populations and also provide suggestions for future research that may lead to better tools to evaluate paediatric medicines. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Strategic funding priorities in the pharmaceutical sciences allied to Quality by Design (QbD) and Process Analytical Technology (PAT).

    PubMed

    Aksu, Buket; De Beer, Thomas; Folestad, Staffan; Ketolainen, Jarkko; Lindén, Hans; Lopes, Joao Almeida; de Matas, Marcel; Oostra, Wim; Rantanen, Jukka; Weimer, Marco

    2012-09-29

    Substantial changes in Pharmaceutical R&D strategy are required to address existing issues of low productivity, imminent patent expirations and pressures on pricing. Moves towards personalized healthcare and increasing diversity in the nature of portfolios including the rise of biopharmaceuticals however have the potential to provide considerable challenges to the establishment of cost effective and robust supply chains. To guarantee product quality and surety of supply for essential medicines it is necessary that manufacturing science keeps pace with advances in pharmaceutical R&D. In this position paper, the EUFEPS QbD and PAT Sciences network make recommendations that European industry, academia and health agencies focus attention on delivering step changes in science and technology in a number of key themes. These subject areas, all underpinned by the sciences allied to QbD and PAT, include product design and development for personalized healthcare, continuous-processing in pharmaceutical product manufacture, quantitative quality risk assessment for pharmaceutical development including life cycle management and the downstream processing of biopharmaceutical products. Plans are being established to gain commitment for inclusion of these themes into future funding priorities for the Innovative Medicines Initiative (IMI). Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Microgravity: New opportunities to facilitate biotechnology development

    NASA Astrophysics Data System (ADS)

    Johnson, Terry; Todd, Paul; Stodieck, Louis S.

    1996-03-01

    New opportunities exist to use the microgravity environment to facilitate biotechnology development. BioServe Space Technologies Center for the Commercial Development of Space offers access to microgravity environments for companies who wish to perform research or develop products in three specific life-science fields: Biomedical and Pharmaceutical Research, Biotechnology and Bioprocessing Research, and Agricultural and Environmental Research. Examples of each include physiological testing of new pharmaceutical countermeasures against symptoms that are exaggerated in space flight, crystallization and testing of novel, precompetitive biopharmaceutical substances in a convection-free environment, and closed life-support system product development.

  18. The advent of biosimilars: challenges and risks.

    PubMed

    Müller, Rüdiger; Renner, Christoph; Gabay, Cem; Cassata, Giuseppe; Lohri, Andreas; Hasler, Paul

    2014-01-01

    Biosimilars represent a new class of medicinal products that will have significant impact on clinical use. They are identical on an amino acid sequence level to existing reference biopharmaceutical products (originals). However, they may exhibit differences on a protein level. This paper provides a brief overview of biosimilar development and describes the risk and challenges that should be considered during the admission of biosimilars into the clinic.

  19. Pharmaceutical applications of cyclodextrins: basic science and product development.

    PubMed

    Loftsson, Thorsteinn; Brewster, Marcus E

    2010-11-01

    Drug pipelines are becoming increasingly difficult to formulate. This is punctuated by both retrospective and prospective analyses that show that while 40% of currently marketed drugs are poorly soluble based on the definition of the biopharmaceutical classification system (BCS), about 90% of drugs in development can be characterized as poorly soluble. Although a number of techniques have been suggested for increasing oral bioavailability and for enabling parenteral formulations, cyclodextrins have emerged as a productive approach. This short review is intended to provide both some basic science information as well as data on the ability to develop drugs in cyclodextrin-containing formulations. There are currently a number of marketed products that make use of these functional solubilizing excipients and new product introduction continues to demonstrate their high added value. The ability to predict whether cyclodextrins will be of benefit in creating a dosage form for a particular drug candidate requires a good working knowledge of the properties of cyclodextrins, their mechanism of solubilization and factors that contribute to, or detract from, the biopharmaceutical characteristics of the formed complexes. We provide basic science information as well as data on the development of drugs in cyclodextrin-containing formulations. Cyclodextrins have emerged as an important tool in the formulator's armamentarium to improve apparent solubility and dissolution rate for poorly water-soluble drug candidates. The continued interest and productivity of these materials bode well for future application and their currency as excipients in research, development and drug product marketing. © 2010 The Authors. Journal compilation © 2010 Royal Pharmaceutical Society of Great Britain.

  20. The sweet tooth of biopharmaceuticals: importance of recombinant protein glycosylation analysis.

    PubMed

    Lingg, Nico; Zhang, Peiqing; Song, Zhiwei; Bardor, Muriel

    2012-12-01

    Biopharmaceuticals currently represent the fastest growing sector of the pharmaceutical industry, mainly driven by a rapid expansion in the manufacture of recombinant protein-based drugs. Glycosylation is the most prominent post-translational modification occurring on these protein drugs. It constitutes one of the critical quality attributes that requires thorough analysis for optimal efficacy and safety. This review examines the functional importance of glycosylation of recombinant protein drugs, illustrated using three examples of protein biopharmaceuticals: IgG antibodies, erythropoietin and glucocerebrosidase. Current analytical methods are reviewed as solutions for qualitative and quantitative measurements of glycosylation to monitor quality target product profiles of recombinant glycoprotein drugs. Finally, we propose a framework for designing the quality target product profile of recombinant glycoproteins and planning workflow for glycosylation analysis with the selection of available analytical methods and tools. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Biomedical applications of yeast- a patent view, part one: yeasts as workhorses for the production of therapeutics and vaccines.

    PubMed

    Roohvand, Farzin; Shokri, Mehdi; Abdollahpour-Alitappeh, Meghdad; Ehsani, Parastoo

    2017-08-01

    Yeasts, as Eukaryotes, offer unique features for ease of growth and genetic manipulation possibilities, making it an exceptional microbial host. Areas covered: This review provides general and patent-oriented insights into production of biopharmaceuticals by yeasts. Patents, wherever possible, were correlated to the original or review articles. The review describes applications of major GRAS (generally regarded as safe) yeasts for the production of therapeutic proteins and subunit vaccines; additionally, immunomodulatory properties of yeast cell wall components were reviewed for use of whole yeast cells as a new vaccine platform. The second part of the review will discuss yeast- humanization strategies and innovative applications. Expert opinion: Biomedical applications of yeasts were initiated by utilization of Saccharomyces cerevisiae, for production of leavened (fermented) products, and advanced to serve to produce biopharmaceuticals. Higher biomass production and expression/secretion yields, more similarity of glycosylation patterns to mammals and possibility of host-improvement strategies through application of synthetic biology might enhance selection of Pichia pastoris (instead of S. cerevisiae) as a host for production of biopharmaceutical in future. Immunomodulatory properties of yeast cell wall β-glucans and possibility of intracellular expression of heterologous pathogen/tumor antigens in yeast cells have expanded their application as a new platform, 'Whole Yeast Vaccines'.

  2. Basics of Sterile Compounding: Particulate Matter.

    PubMed

    Akers, Michael J

    2017-01-01

    This article focuses on the requirements for particulate matter in sterile products. Topics include particles and quality, particulate matter standards (large- and small-volume injectables), development of the small-volume injectable test, electronic (light obscuration) and microscope testing, and special requirements for particulate matter in biopharmaceutical preparations. Copyright© by International Journal of Pharmaceutical Compounding, Inc.

  3. Workflow for Criticality Assessment Applied in Biopharmaceutical Process Validation Stage 1.

    PubMed

    Zahel, Thomas; Marschall, Lukas; Abad, Sandra; Vasilieva, Elena; Maurer, Daniel; Mueller, Eric M; Murphy, Patrick; Natschläger, Thomas; Brocard, Cécile; Reinisch, Daniela; Sagmeister, Patrick; Herwig, Christoph

    2017-10-12

    Identification of critical process parameters that impact product quality is a central task during regulatory requested process validation. Commonly, this is done via design of experiments and identification of parameters significantly impacting product quality (rejection of the null hypothesis that the effect equals 0). However, parameters which show a large uncertainty and might result in an undesirable product quality limit critical to the product, may be missed. This might occur during the evaluation of experiments since residual/un-modelled variance in the experiments is larger than expected a priori. Estimation of such a risk is the task of the presented novel retrospective power analysis permutation test. This is evaluated using a data set for two unit operations established during characterization of a biopharmaceutical process in industry. The results show that, for one unit operation, the observed variance in the experiments is much larger than expected a priori, resulting in low power levels for all non-significant parameters. Moreover, we present a workflow of how to mitigate the risk associated with overlooked parameter effects. This enables a statistically sound identification of critical process parameters. The developed workflow will substantially support industry in delivering constant product quality, reduce process variance and increase patient safety.

  4. Novel approaches to vaginal delivery and safety of microbicides: biopharmaceuticals, nanoparticles, and vaccines.

    PubMed

    Whaley, Kevin J; Hanes, Justin; Shattock, Robin; Cone, Richard A; Friend, David R

    2010-12-01

    The HIV-1 epidemic remains unchecked despite existing technology; vaccines and microbicides in development may help reverse the epidemic. Reverse transcriptase inhibitors (RTIs) formulated in gels tenofovir (TFV) and IVRs (dapivirine) are under clinical development. While TFV or similar products may prove successful for HIV-1, alternatives to RTIs may provide additional benefits, e.g., broader STI prevention. Biopharmaceutical agents under development as microbicides include cyanovirin, RANTES analogues, commensals, and Mabs. Cost of manufacturing biopharmaceuticals has been reduced and they can be formulated into tablets, films, and IVRs for vaginal delivery. Nanotechnology offers a novel approach to formulate microbicides potentially leading to uniform epithelial delivery. Delivery through vaginal mucus may be possible by controlling nanoparticle size and surface characteristics. Combining prevention modalities may be the most effective means of preventing STI transmission, importantly, codelivery of microbicides and vaccines has demonstrated. Finally, the safety of microbicide preparations and excipients commonly used can be assessed using a mouse/HSV-2 susceptibility model. Screening of new microbicide candidates and formulation excipients may avoid past issues of enhancing HIV-1 transmission. This article forms part of a special supplement covering several presentations on novel microbicide formulations from the symposium on "Recent Trends in Microbicide Formulations" held on 25 and 26 January 2010, Arlington, VA. Copyright © 2010 Elsevier B.V. All rights reserved.

  5. Torching the Haystack: modelling fast-fail strategies in drug development.

    PubMed

    Lendrem, Dennis W; Lendrem, B Clare

    2013-04-01

    By quickly clearing the development pipeline of failing or marginal products, fast-fail strategies release resources to focus on more promising molecules. The Quick-Kill model of drug development demonstrates that fast-fail strategies will: (1) reduce the expected time to market; (2) reduce expected R&D costs; and (3) increase R&D productivity. This paper outlines the model and demonstrates the impact of fast-fail strategies. The model is illustrated with costs and risks data from pharmaceutical and biopharmaceutical companies. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Patient-Focused Drug Development: A New Direction for Collaboration.

    PubMed

    Perfetto, Eleanor M; Burke, Laurie; Oehrlein, Elisabeth M; Epstein, Robert S

    2015-01-01

    Patient-Focused Drug Development (PFDD) is a new initiative from the Food and Drug Administration (FDA) intended to bring patient perspectives into an earlier stage of product development. The goal is that patients will be able to provide context for benefit-risk assessments and input to review divisions, and also aid in the development of new assessment tools, study endpoints, and risk communications. This paper provides a summary on what is known to date about FDA's PFDD initiative and describes implications for patients, researchers, payers, and the biopharmaceutical industry. It also provides a roadmap for stakeholders to consider in defining their role in and in shaping PFDD's direction, and for expanding PFDD principles to conditions beyond the current 20 under FDA consideration. A search was conducted of the peer-reviewed and gray literature using PubMed and Google. This included laws, FDA guidance documents, the peer-reviewed literature, and FDA presentations for content relevant to the search term "patient-focused drug development." Currently, FDA activities within PFDD are limited to gaining patient insights through 20 disease-specific meetings. However, many stakeholders see the initiative much more generally as representing a broad shift toward patient centeredness in biopharmaceutical product development. Depending upon the trajectory taken and whether or not all PFDD aims are eventually addressed, the initiative has the potential to change product development in fundamental ways. Further research should explore how patient input on disease manifestation and treatment options is best ascertained from patients and documented before initiating and during drug development.

  7. Advanced technologies for improved expression of recombinant proteins in bacteria: perspectives and applications.

    PubMed

    Gupta, Sanjeev K; Shukla, Pratyoosh

    2016-12-01

    Prokaryotic expression systems are superior in producing valuable recombinant proteins, enzymes and therapeutic products. Conventional microbial technology is evolving gradually and amalgamated with advanced technologies in order to give rise to improved processes for the production of metabolites, recombinant biopharmaceuticals and industrial enzymes. Recently, several novel approaches have been employed in a bacterial expression platform to improve recombinant protein expression. These approaches involve metabolic engineering, use of strong promoters, novel vector elements such as inducers and enhancers, protein tags, secretion signals, high-throughput devices for cloning and process screening as well as fermentation technologies. Advancement of the novel technologies in E. coli systems led to the production of "difficult to express" complex products including small peptides, antibody fragments, few proteins and full-length aglycosylated monoclonal antibodies in considerable large quantity. Wacker's secretion technologies, Pfenex system, inducers, cell-free systems, strain engineering for post-translational modification, such as disulfide bridging and bacterial N-glycosylation, are still under evaluation for the production of complex proteins and peptides in E. coli in an efficient manner. This appraisal provides an impression of expression technologies developed in recent times for enhanced production of heterologous proteins in E. coli which are of foremost importance for diverse applications in microbiology and biopharmaceutical production.

  8. Opportunities and challenges of real-time release testing in biopharmaceutical manufacturing.

    PubMed

    Jiang, Mo; Severson, Kristen A; Love, John Christopher; Madden, Helena; Swann, Patrick; Zang, Li; Braatz, Richard D

    2017-11-01

    Real-time release testing (RTRT) is defined as "the ability to evaluate and ensure the quality of in-process and/or final drug product based on process data, which typically includes a valid combination of measured material attributes and process controls" (ICH Q8[R2]). This article discusses sensors (process analytical technology, PAT) and control strategies that enable RTRT for the spectrum of critical quality attributes (CQAs) in biopharmaceutical manufacturing. Case studies from the small-molecule and biologic pharmaceutical industry are described to demonstrate how RTRT can be facilitated by integrated manufacturing and multivariable control strategies to ensure the quality of products. RTRT can enable increased assurance of product safety, efficacy, and quality-with improved productivity including faster release and potentially decreased costs-all of which improve the value to patients. To implement a complete RTRT solution, biologic drug manufacturers need to consider the special attributes of their industry, particularly sterility and the measurement of viral and microbial contamination. Continued advances in on-line and in-line sensor technologies are key for the biopharmaceutical manufacturing industry to achieve the potential of RTRT. Related article: http://onlinelibrary.wiley.com/doi/10.1002/bit.26378/full. © 2017 Wiley Periodicals, Inc.

  9. Biochemical Characterization of Human Anti-Hepatitis B Monoclonal Antibody Produced in the Microalgae Phaeodactylum tricornutum.

    PubMed

    Vanier, Gaëtan; Hempel, Franziska; Chan, Philippe; Rodamer, Michael; Vaudry, David; Maier, Uwe G; Lerouge, Patrice; Bardor, Muriel

    2015-01-01

    Monoclonal antibodies (mAbs) represent actually the major class of biopharmaceuticals. They are produced recombinantly using living cells as biofactories. Among the different expression systems currently available, microalgae represent an emerging alternative which displays several biotechnological advantages. Indeed, microalgae are classified as generally recognized as safe organisms and can be grown easily in bioreactors with high growth rates similarly to CHO cells. Moreover, microalgae exhibit a phototrophic lifestyle involving low production costs as protein expression is fueled by photosynthesis. However, questions remain to be solved before any industrial production of algae-made biopharmaceuticals. Among them, protein heterogeneity as well as protein post-translational modifications need to be evaluated. Especially, N-glycosylation acquired by the secreted recombinant proteins is of major concern since most of the biopharmaceuticals including mAbs are N-glycosylated and it is well recognized that glycosylation represent one of their critical quality attribute. In this paper, we assess the quality of the first recombinant algae-made mAbs produced in the diatom, Phaeodactylum tricornutum. We are focusing on the characterization of their C- and N-terminal extremities, their signal peptide cleavage and their post-translational modifications including N-glycosylation macro- and microheterogeneity. This study brings understanding on diatom cellular biology, especially secretion and intracellular trafficking of proteins. Overall, it reinforces the positioning of P. tricornutum as an emerging host for the production of biopharmaceuticals and prove that P. tricornutum is suitable for producing recombinant proteins bearing high mannose-type N-glycans.

  10. Approval of the first biosimilar antibodies in Europe: a major landmark for the biopharmaceutical industry.

    PubMed

    Beck, Alain; Reichert, Janice M

    2013-01-01

    In a defining moment for the European Medicines Agency (EMA) and the biopharmaceutical industry, on June 27, 2013 EMA's Committee for Medicinal Products for Human Use adopted a positive opinion for two biosimilar infliximab products (Celltrion's Remsima® and Hospira's Inflectra®), and recommended that they be approved for marketing in the European Union (EU). The European Commission's decision on an application is typically issued 67 d after an opinion is provided; thus, decisions are expected in early September 2013. If approved, the products will comprise the first biosimilar antibody made available to patients in a highly regulated market, although launch may be delayed due to an extension of the reference product's (Remicade®) patent in the EU.

  11. Quality beyond compliance.

    PubMed

    Centanni, N; Monroe, M; White, L; Larson, R

    1999-01-01

    The service sector within the biopharmaceutical industry has experienced phenomenal growth over the past decade. In the highly regulated Good Laboratory Practices environment, the need for timely, high-quality service, accurate results, and on-time deliverables becomes paramount for the success and profitability of biopharmaceutical companies. The quality assurance process is a vital component of this drug product-development cycle and ensures compliance to the highest domestic and international regulatory standards. Quality-assurance professionals historically have held the role of independent auditors of the processes, who certify that results meet current standards of practice. Covance, a contract research organization that includes Good Laboratory Practices laboratories, reorganized and expanded the functional responsibilities of its quality assurance team in 1997. Auditors and quality assurance professionals have assumed roles beyond traditional compliance auditing and are forging new leadership and mentoring roles as process-improvement specialists. The results have been tangible, measurable benefits for clients and the Covance organization. This article provides an overview of this cultural change and the processes put in place to improve efficiency, productivity, and customer and employee satisfaction.

  12. Identification of Low-Level Product-Related Variants in Filgrastim Products Presently Available in Highly Regulated Markets.

    PubMed

    Hausberger, Anna; Lamanna, William C; Hartinger, Martin; Seidl, Andreas; Toll, Hansjoerg; Holzmann, Johann

    2016-06-01

    Filgrastim is a recombinant, non-glycosylated form of human granulocyte colony-stimulating factor, used to stimulate leukocyte proliferation in patients suffering from neutropenia. Since the expiration of patents associated with Amgen's filgrastim biopharmaceutical, Neupogen(®), in 2006, a number of filgrastim products have been marketed; however, a detailed characterization and comparison of variants associated with these products have not been publically reported. The objective of this study was to identify and quantify product-related variants in filgrastim reference products and biosimilars thereof that are presently available in highly regulated markets. In this study, we used intact and top-down mass spectrometry to identify and quantify product-related variants in filgrastim products. Mass spectrometry has become the method of choice for physicochemical characterization of biopharmaceuticals, allowing accurate and sensitive characterization of product-related variants. In addition to modifications ubiquitously present in biopharmaceuticals, such as methionine oxidation and asparagine/glutamine deamidation, we identified six different low-level, product-related variants present in some, but not all, of the tested products. Two variants, an acetylated filgrastim variant and a filgrastim variant containing an additional C-terminal tryptophan extension, are newly identified variants. This study demonstrates that filgrastim products already in widespread clinical use in highly regulated markets differ in low-level, product-related variants present at levels mostly below 1 % relative abundance. This study provides a comprehensive catalog of minor differences between filgrastim products and suggests that the filgrastim product-related variants described here are not clinically relevant when present at low abundance.

  13. The art of CHO cell engineering: A comprehensive retrospect and future perspectives.

    PubMed

    Fischer, Simon; Handrick, René; Otte, Kerstin

    2015-12-01

    Chinese hamster ovary (CHO) cells represent the most frequently applied host cell system for industrial manufacturing of recombinant protein therapeutics. CHO cells are capable of producing high quality biologics exhibiting human-like post-translational modifications in gram quantities. However, production processes for biopharmaceuticals using mammalian cells still suffer from cellular limitations such as limited growth, low productivity and stress resistance as well as higher expenses compared to bacterial or yeast based expression systems. Besides bioprocess, media and vector optimizations, advances in host cell engineering technologies comprising introduction, knock-out or post-transcriptional silencing of engineering genes have paved the way for remarkable achievements in CHO cell line development. Furthermore, thorough analysis of cellular pathways and mechanisms important for bioprocessing steadily unravels novel target molecules which might be addressed by functional genomic tools in order to establish superior production cell factories. This review provides a comprehensive summary of the most fundamental achievements in CHO cell engineering over the past three decades. Finally, the authors discuss the potential of novel and innovative methodologies that might contribute to further enhancement of existing CHO based production platforms for biopharmaceutical manufacturing in the future. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Clinical concerns of immunogenicity produced at cellular levels by biopharmaceuticals following their parenteral administration into human body.

    PubMed

    Tamilvanan, Shunmugaperumal; Raja, Natarajan Livingston; Sa, Biswanath; Basu, Sanat Kumar

    2010-08-01

    Similar to the low molecular weight traditional drugs, biopharmaceuticals are capable of producing not only therapeutic effects but also side effects provided if the dose of these compounds exceeds certain concentration and/or if the exposure duration of these compounds at subtoxic doses is being lengthened. In addition, a major drawback of biopharmaceuticals is the risk of antibody formation. Following the administration of biopharmaceuticals into human body, the formation of antidrug-antibody (ADA) or neutralizing antibody and other general immune system effects (including allergy, anaphylaxis, or serum sickness) are of clinical concern regarding therapeutic efficacy and patient safety. For example, drug-induced neutralizing antibodies to erythropoietin (EPO) result in pure red cell aplasia, whereas drug-induced acquired anti-factor VIII antibodies worsen the pathology associated with hemophilia. Since most of the already developed or under development biopharmaceuticals are to some extent immunogenic, the regulatory agencies insist to conduct potential ADA formation during the drug development process itself. This review encompasses a short overview on the clinical concerns of immunogenicity produced at cellular levels by growth hormone, interferon-alpha, EPO, factor VIII, and factor IX following their parenteral administration into human body. Clinical concerns related to immunogenicity produced by the biosimilar versions of these drugs are also presented wherever possible.

  15. Dynamic Single-Use Bioreactors Used in Modern Liter- and m(3)- Scale Biotechnological Processes: Engineering Characteristics and Scaling Up.

    PubMed

    Löffelholz, Christian; Kaiser, Stephan C; Kraume, Matthias; Eibl, Regine; Eibl, Dieter

    2014-01-01

    During the past 10 years, single-use bioreactors have been well accepted in modern biopharmaceutical production processes targeting high-value products. Up to now, such processes have mainly been small- or medium-scale mammalian cell culture-based seed inoculum, vaccine or antibody productions. However, recently first attempts have been made to modify existing single-use bioreactors for the cultivation of plant cells and tissue cultures, and microorganisms. This has even led to the development of new single-use bioreactor types. Moreover, due to safety issues it has become clear that single-use bioreactors are the "must have" for expanding human stem cells delivering cell therapeutics, the biopharmaceuticals of the next generation. So it comes as no surprise that numerous different dynamic single-use bioreactor types, which are suitable for a wide range of applications, already dominate the market today. Bioreactor working principles, main applications, and bioengineering data are presented in this review, based on a current overview of greater than milliliter-scale, commercially available, dynamic single-use bioreactors. The focus is on stirred versions, which are omnipresent in R&D and manufacturing, and in particular Sartorius Stedim's BIOSTAT family. Finally, we examine development trends for single-use bioreactors, after discussing proven approaches for fast scaling-up processes.

  16. Membrane-Based Technologies in the Pharmaceutical Industry and Continuous Production of Polymer-Coated Crystals/Particles.

    PubMed

    Chen, Dengyue; Sirkar, Kamalesh K; Jin, Chi; Singh, Dhananjay; Pfeffer, Robert

    2017-01-01

    Membrane technologies are of increasing importance in a variety of separation and purification applications involving liquid phases and gaseous mixtures. Although the most widely used applications at this time are in water treatment including desalination, there are many applications in chemical, food, healthcare, paper and petrochemical industries. This brief review is concerned with existing and emerging applications of various membrane technologies in the pharmaceutical and biopharmaceutical industry. The goal of this review article is to identify important membrane processes and techniques which are being used or proposed to be used in the pharmaceutical and biopharmaceutical operations. How novel membrane processes can be useful for delivery of crystalline/particulate drugs is also of interest. Membrane separation technologies are extensively used in downstream processes for bio-pharmaceutical separation and purification operations via microfiltration, ultrafiltration and diafiltration. Also the new technique of membrane chromatography allows efficient purification of monoclonal antibodies. Membrane filtration techniques of reverse osmosis and nanofiltration are being combined with bioreactors and advanced oxidation processes to treat wastewaters from pharmaceutical plants. Nanofiltration with organic solvent-stable membranes can implement solvent exchange and catalyst recovery during organic solvent-based drug synthesis of pharmaceutical compounds/intermediates. Membranes in the form of hollow fibers can be conveniently used to implement crystallization of pharmaceutical compounds. The novel crystallization methods of solid hollow fiber cooling crystallizer (SHFCC) and porous hollow fiber anti-solvent crystallization (PHFAC) are being developed to provide efficient methods for continuous production of polymer-coated drug crystals in the area of drug delivery. This brief review provides a general introduction to various applications of membrane technologies in the pharmaceutical/biopharmaceutical industry with special emphasis on novel membrane techniques for pharmaceutical applications. The method of coating a drug particle with a polymer using the SHFCC method is stable and ready for scale-up for operation over an extended period. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  17. The roles of patents and research and development incentives in biopharmaceutical innovation.

    PubMed

    Grabowski, Henry G; DiMasi, Joseph A; Long, Genia

    2015-02-01

    Patents and other forms of intellectual property protection play essential roles in encouraging innovation in biopharmaceuticals. As part of the "21st Century Cures" initiative, Congress is reviewing the policy mechanisms designed to accelerate the discovery, development, and delivery of new treatments. Debate continues about how best to balance patent and intellectual property incentives to encourage innovation, on the one hand, and generic utilization and price competition, on the other hand. We review the current framework for accomplishing these dual objectives and the important role of patents and regulatory exclusivity (together, the patent-based system), given the lengthy, costly, and risky biopharmaceutical research and development process. We summarize existing targeted incentives, such as for orphan drugs and neglected diseases, and we consider the pros and cons of proposed voluntary or mandatory alternatives to the patent-based system, such as prizes and government research and development contracting. We conclude that patents and regulatory exclusivity provisions are likely to remain the core approach to providing incentives for biopharmaceutical research and development. However, prizes and other voluntary supplements could play a useful role in addressing unmet needs and gaps in specific circumstances. Project HOPE—The People-to-People Health Foundation, Inc.

  18. Applicability of predictive toxicology methods for monoclonal antibody therapeutics: status Quo and scope.

    PubMed

    Kizhedath, Arathi; Wilkinson, Simon; Glassey, Jarka

    2017-04-01

    Biopharmaceuticals, monoclonal antibody (mAb)-based therapeutics in particular, have positively impacted millions of lives. MAbs and related therapeutics are highly desirable from a biopharmaceutical perspective as they are highly target specific and well tolerated within the human system. Nevertheless, several mAbs have been discontinued or withdrawn based either on their inability to demonstrate efficacy and/or due to adverse effects. Approved monoclonal antibodies and derived therapeutics have been associated with adverse effects such as immunogenicity, cytokine release syndrome, progressive multifocal leukoencephalopathy, intravascular haemolysis, cardiac arrhythmias, abnormal liver function, gastrointestinal perforation, bronchospasm, intraocular inflammation, urticaria, nephritis, neuropathy, birth defects, fever and cough to name a few. The advances made in this field are also impeded by a lack of progress in bioprocess development strategies as well as increasing costs owing to attrition, wherein the lack of efficacy and safety accounts for nearly 60 % of all factors contributing to attrition. This reiterates the need for smarter preclinical development using quality by design-based approaches encompassing carefully designed predictive models during early stages of drug development. Different in vitro and in silico methods are extensively used for predicting biological activity as well as toxicity during small molecule drug development; however, their full potential has not been utilized for biological drug development. The scope of in vitro and in silico tools in early developmental stages of monoclonal antibody-based therapeutics production and how it contributes to lower attrition rates leading to faster development of potential drug candidates has been evaluated. The applicability of computational toxicology approaches in this context as well as the pitfalls and promises of extending such techniques to biopharmaceutical development has been highlighted.

  19. Automated Antibody De Novo Sequencing and Its Utility in Biopharmaceutical Discovery

    NASA Astrophysics Data System (ADS)

    Sen, K. Ilker; Tang, Wilfred H.; Nayak, Shruti; Kil, Yong J.; Bern, Marshall; Ozoglu, Berk; Ueberheide, Beatrix; Davis, Darryl; Becker, Christopher

    2017-05-01

    Applications of antibody de novo sequencing in the biopharmaceutical industry range from the discovery of new antibody drug candidates to identifying reagents for research and determining the primary structure of innovator products for biosimilar development. When murine, phage display, or patient-derived monoclonal antibodies against a target of interest are available, but the cDNA or the original cell line is not, de novo protein sequencing is required to humanize and recombinantly express these antibodies, followed by in vitro and in vivo testing for functional validation. Availability of fully automated software tools for monoclonal antibody de novo sequencing enables efficient and routine analysis. Here, we present a novel method to automatically de novo sequence antibodies using mass spectrometry and the Supernovo software. The robustness of the algorithm is demonstrated through a series of stress tests.

  20. Repurposing pharma assets: an accelerated mechanism for strengthening the schistosomiasis drug development pipeline.

    PubMed

    Ramamoorthi, Roopa; Graef, Katy M; Dent, Jennifer

    2015-01-01

    Schistosomiasis, one of 17 diseases deemed to be neglected by the World Health Organization, has received little attention from the biopharmaceutical industry. Due to this, only a handful of drugs have been developed to treat schistosomiasis, with only one, praziquantel, used in most endemic regions. Growing concern over resistance coupled with praziquantel's incomplete efficacy across all stages of the Schistosoma platyhelminth life cycle highlights the urgent need for new drugs. The WIPO Re:Search consortium is a platform whereupon biopharmaceutical company compounds are being repurposed to efficiently and cost-effectively develop new drugs for neglected diseases such as schistosomiasis. This article summarizes recent clinical-stage efforts to identify new antischistosomals and highlights biopharmaceutical company compounds with potential for repurposing to treat schistosomiasis.

  1. Yeast biotechnology: teaching the old dog new tricks.

    PubMed

    Mattanovich, Diethard; Sauer, Michael; Gasser, Brigitte

    2014-03-06

    Yeasts are regarded as the first microorganisms used by humans to process food and alcoholic beverages. The technology developed out of these ancient processes has been the basis for modern industrial biotechnology. Yeast biotechnology has gained great interest again in the last decades. Joining the potentials of genomics, metabolic engineering, systems and synthetic biology enables the production of numerous valuable products of primary and secondary metabolism, technical enzymes and biopharmaceutical proteins. An overview of emerging and established substrates and products of yeast biotechnology is provided and discussed in the light of the recent literature.

  2. Japan-Specific Key Regulatory Aspects for Development of New Biopharmaceutical Drug Products.

    PubMed

    Desai, Kashappa Goud; Obayashi, Hirokazu; Colandene, James D; Nesta, Douglas P

    2018-03-28

    Japan represents the third largest pharmaceutical market in the world. Developing a new biopharmaceutical drug product for the Japanese market is a top business priority for global pharmaceutical companies while aligning with ethical drivers to treat more patients in need. Understanding Japan-specific key regulatory requirements is essential to achieve successful approvals. Understanding the full context of Japan-specific regulatory requirements/expectations is challenging to global pharmaceutical companies due to differences in language and culture. This article summarizes key Japan-specific regulatory aspects/requirements/expectations applicable to new drug development, approval, and postapproval phases. Formulation excipients should meet Japan compendial requirements with respect to the type of excipient, excipient grade, and excipient concentration. Preclinical safety assessments needed to support clinical phases I, II, and III development are summarized. Japanese regulatory authorities have taken appropriate steps to consider foreign clinical data, thereby enabling accelerated drug development and approval in Japan. Other important topics summarized in this article include: Japan new drug application-specific bracketing strategies for critical and noncritical aspects of the manufacturing process, regulatory requirements related to stability studies, release specifications and testing methods, standard processes involved in pre and postapproval inspections, management of postapproval changes, and Japan regulatory authority's consultation services available to global pharmaceutical companies. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  3. Innovation and industry-academia interactions: where conflicts arise and measures to avoid them.

    PubMed

    Vagelos, P Roy

    2007-03-01

    Every phase of the development of biopharmaceuticals and medical devices has the potential for conflict of interest, but adherence to established rules and practices throughout product development can eliminate the possibility of conflicts. Adherence to good practices should continue through the postmarketing period, with swift reporting and vigorous investigation of any safety concerns. Although some academic medical centers are restricting interactions between their faculty and industry to prevent possible conflicts in physician education about new products, industry and academia should look for new ways to come together in mutually agreed forums that focus on educating clinicians about new products in an efficient, transparent way.

  4. The long road of biopharmaceutical drug development: from inception to marketing.

    PubMed

    Mundae, M K; Ostör, A J K

    2010-01-01

    The development of therapeutics is costly, time-consuming and has high attrition rates. Biopharmaceutical medications differ from traditional agents in their discovery, design, structure and formulation. Prior to marketing a drug must show efficacy and acceptable toxicity in both preclinical and clinical trials. Regulatory bodies have a pivotal role in the licensing, naming and marketing of an agent.

  5. Models for evaluation of relative immunogenic potential of protein particles in biopharmaceutical protein formulations.

    PubMed

    Johnson, Richard; Jiskoot, Wim

    2012-10-01

    An immune response to a therapeutic protein that compromises the biopharmaceutical activity or cross-reacts with an endogenous protein is a serious clinical event. The role of protein aggregates and particles in biopharmaceutical formulations in mediating this immune response has gained considerable attention over the recent past. Model systems that could consistently and reliably predict the relative immunogenicity of biopharmaceutical protein formulations would be extremely valuable. Several approaches have been developed in an attempt to provide this insight, including in silico algorithms, in vitro tests utilizing human leukocytes and in vivo animal models. This commentary provides an update of these various approaches as well as the author's perspectives on the pros and cons of these different methods. Copyright © 2012 Wiley Periodicals, Inc.

  6. Scientific and Regulatory Considerations in Solid Oral Modified Release Drug Product Development.

    PubMed

    Li, Min; Sander, Sanna; Duan, John; Rosencrance, Susan; Miksinski, Sarah Pope; Yu, Lawrence; Seo, Paul; Rege, Bhagwant

    2016-11-01

    This review presents scientific and regulatory considerations for the development of solid oral modified release (MR) drug products. It includes a rationale for patient-focused development based on Quality-by-Design (QbD) principles. Product and process understanding of MR products includes identification and risk-based evaluation of critical material attributes (CMAs), critical process parameters (CPPs), and their impact on critical quality attributes (CQAs) that affect the clinical performance. The use of various biopharmaceutics tools that link the CQAs to a predictable and reproducible clinical performance for patient benefit is emphasized. Product and process understanding lead to a more comprehensive control strategy that can maintain product quality through the shelf life and the lifecycle of the drug product. The overall goal is to develop MR products that consistently meet the clinical objectives while mitigating the risks to patients by reducing the probability and increasing the detectability of CQA failures.

  7. Mini review: Recombinant production of tailored bio-pharmaceuticals in different Bacillus strains and future perspectives.

    PubMed

    Lakowitz, Antonia; Godard, Thibault; Biedendieck, Rebekka; Krull, Rainer

    2018-05-01

    Bio-pharmaceuticals like antibodies, hormones and growth factors represent about one-fifth of commercial pharmaceuticals. Host candidates of growing interest for recombinant production of these proteins are strains of the genus Bacillus, long being established for biotechnological production of homologous and heterologous proteins. Bacillus strains benefit from development of efficient expression systems in the last decades and emerge as major industrial workhorses for recombinant proteins due to easy cultivation, non-pathogenicity and their ability to secrete recombinant proteins directly into extracellular medium allowing cost-effective downstream processing. Their broad product portfolio of pharmaceutically relevant recombinant proteins described in research include antibody fragments, growth factors, interferons and interleukins, insulin, penicillin G acylase, streptavidin and different kinases produced in various cultivation systems like microtiter plates, shake flasks and bioreactor systems in batch, fed-batch and continuous mode. To further improve production and secretion performance of Bacillus, bottlenecks and limiting factors concerning proteases, chaperones, secretion machinery or feedback mechanisms can be identified on different cell levels from genomics and transcriptomics via proteomics to metabolomics and fluxomics. For systematical identification of recurring patterns characteristic of given regulatory systems and key genetic targets, systems biology and omics-technology provide suitable and promising approaches, pushing Bacillus further towards industrial application for recombinant pharmaceutical protein production. Copyright © 2017. Published by Elsevier B.V.

  8. A Systematic Approach to Time-series Metabolite Profiling and RNA-seq Analysis of Chinese Hamster Ovary Cell Culture.

    PubMed

    Hsu, Han-Hsiu; Araki, Michihiro; Mochizuki, Masao; Hori, Yoshimi; Murata, Masahiro; Kahar, Prihardi; Yoshida, Takanobu; Hasunuma, Tomohisa; Kondo, Akihiko

    2017-03-02

    Chinese hamster ovary (CHO) cells are the primary host used for biopharmaceutical protein production. The engineering of CHO cells to produce higher amounts of biopharmaceuticals has been highly dependent on empirical approaches, but recent high-throughput "omics" methods are changing the situation in a rational manner. Omics data analyses using gene expression or metabolite profiling make it possible to identify key genes and metabolites in antibody production. Systematic omics approaches using different types of time-series data are expected to further enhance understanding of cellular behaviours and molecular networks for rational design of CHO cells. This study developed a systematic method for obtaining and analysing time-dependent intracellular and extracellular metabolite profiles, RNA-seq data (enzymatic mRNA levels) and cell counts from CHO cell cultures to capture an overall view of the CHO central metabolic pathway (CMP). We then calculated correlation coefficients among all the profiles and visualised the whole CMP by heatmap analysis and metabolic pathway mapping, to classify genes and metabolites together. This approach provides an efficient platform to identify key genes and metabolites in CHO cell culture.

  9. Human Embryonic Kidney 293 Cells: A Vehicle for Biopharmaceutical Manufacturing, Structural Biology, and Electrophysiology.

    PubMed

    Hu, Jianwen; Han, Jizhong; Li, Haoran; Zhang, Xian; Liu, Lan Lan; Chen, Fei; Zeng, Bin

    2018-01-01

    Mammalian cells, e.g., CHO, BHK, HEK293, HT-1080, and NS0 cells, represent important manufacturing platforms in bioengineering. They are widely used for the production of recombinant therapeutic proteins, vaccines, anticancer agents, and other clinically relevant drugs. HEK293 (human embryonic kidney 293) cells and their derived cell lines provide an attractive heterologous system for the development of recombinant proteins or adenovirus productions, not least due to their human-like posttranslational modification of protein molecules to provide the desired biological activity. Secondly, they also exhibit high transfection efficiency yielding high-quality recombinant proteins. They are easy to maintain and express with high fidelity membrane proteins, such as ion channels and transporters, and thus are attractive for structural biology and electrophysiology studies. In this article, we review the literature on HEK293 cells regarding their origins but also stress their advancements into the different cell lines engineered and discuss some significant aspects which make them versatile systems for biopharmaceutical manufacturing, drug screening, structural biology research, and electrophysiology applications. © 2018 S. Karger AG, Basel.

  10. Human granulocyte colony stimulating factor (hG-CSF): cloning, overexpression, purification and characterization.

    PubMed

    Vanz, Ana Ls; Renard, Gaby; Palma, Mario S; Chies, Jocelei M; Dalmora, Sérgio L; Basso, Luiz A; Santos, Diógenes S

    2008-04-04

    Biopharmaceutical drugs are mainly recombinant proteins produced by biotechnological tools. The patents of many biopharmaceuticals have expired, and biosimilars are thus currently being developed. Human granulocyte colony stimulating factor (hG-CSF) is a hematopoietic cytokine that acts on cells of the neutrophil lineage causing proliferation and differentiation of committed precursor cells and activation of mature neutrophils. Recombinant hG-CSF has been produced in genetically engineered Escherichia coli (Filgrastim) and successfully used to treat cancer patients suffering from chemotherapy-induced neutropenia. Filgrastim is a 175 amino acid protein, containing an extra N-terminal methionine, which is needed for expression in E. coli. Here we describe a simple and low-cost process that is amenable to scaling-up for the production and purification of homogeneous and active recombinant hG-CSF expressed in E. coli cells. Here we describe cloning of the human granulocyte colony-stimulating factor coding DNA sequence, protein expression in E. coli BL21(DE3) host cells in the absence of isopropyl-beta-D-thiogalactopyranoside (IPTG) induction, efficient isolation and solubilization of inclusion bodies by a multi-step washing procedure, and a purification protocol using a single cationic exchange column. Characterization of homogeneous rhG-CSF by size exclusion and reverse phase chromatography showed similar yields to the standard. The immunoassay and N-terminal sequencing confirmed the identity of rhG-CSF. The biological activity assay, in vivo, showed an equivalent biological effect (109.4%) to the standard reference rhG-CSF. The homogeneous rhG-CSF protein yield was 3.2 mg of bioactive protein per liter of cell culture. The recombinant protein expression in the absence of IPTG induction is advantageous since cost is reduced, and the protein purification protocol using a single chromatographic step should reduce cost even further for large scale production. The physicochemical, immunological and biological analyses showed that this protocol can be useful to develop therapeutic bioproducts. In summary, the combination of different experimental strategies presented here allowed an efficient and cost-effective protocol for rhG-CSF production. These data may be of interest to biopharmaceutical companies interested in developing biosimilars and healthcare community.

  11. Human granulocyte colony stimulating factor (hG-CSF): cloning, overexpression, purification and characterization

    PubMed Central

    Vanz, Ana LS; Renard, Gaby; Palma, Mario S; Chies, Jocelei M; Dalmora, Sérgio L; Basso, Luiz A; Santos, Diógenes S

    2008-01-01

    Background Biopharmaceutical drugs are mainly recombinant proteins produced by biotechnological tools. The patents of many biopharmaceuticals have expired, and biosimilars are thus currently being developed. Human granulocyte colony stimulating factor (hG-CSF) is a hematopoietic cytokine that acts on cells of the neutrophil lineage causing proliferation and differentiation of committed precursor cells and activation of mature neutrophils. Recombinant hG-CSF has been produced in genetically engineered Escherichia coli (Filgrastim) and successfully used to treat cancer patients suffering from chemotherapy-induced neutropenia. Filgrastim is a 175 amino acid protein, containing an extra N-terminal methionine, which is needed for expression in E. coli. Here we describe a simple and low-cost process that is amenable to scaling-up for the production and purification of homogeneous and active recombinant hG-CSF expressed in E. coli cells. Results Here we describe cloning of the human granulocyte colony-stimulating factor coding DNA sequence, protein expression in E. coli BL21(DE3) host cells in the absence of isopropyl-β-D-thiogalactopyranoside (IPTG) induction, efficient isolation and solubilization of inclusion bodies by a multi-step washing procedure, and a purification protocol using a single cationic exchange column. Characterization of homogeneous rhG-CSF by size exclusion and reverse phase chromatography showed similar yields to the standard. The immunoassay and N-terminal sequencing confirmed the identity of rhG-CSF. The biological activity assay, in vivo, showed an equivalent biological effect (109.4%) to the standard reference rhG-CSF. The homogeneous rhG-CSF protein yield was 3.2 mg of bioactive protein per liter of cell culture. Conclusion The recombinant protein expression in the absence of IPTG induction is advantageous since cost is reduced, and the protein purification protocol using a single chromatographic step should reduce cost even further for large scale production. The physicochemical, immunological and biological analyses showed that this protocol can be useful to develop therapeutic bioproducts. In summary, the combination of different experimental strategies presented here allowed an efficient and cost-effective protocol for rhG-CSF production. These data may be of interest to biopharmaceutical companies interested in developing biosimilars and healthcare community. PMID:18394164

  12. The NISTmAb Reference Material 8671 lifecycle management and quality plan.

    PubMed

    Schiel, John E; Turner, Abigail

    2018-03-01

    Comprehensive analysis of monoclonal antibody therapeutics involves an ever expanding cadre of technologies. Lifecycle-appropriate application of current and emerging techniques requires rigorous testing followed by discussion between industry and regulators in a pre-competitive space, an effort that may be facilitated by a widely available test metric. Biopharmaceutical quality materials, however, are often difficult to access and/or are protected by intellectual property rights. The NISTmAb, humanized IgG1κ Reference Material 8671 (RM 8671), has been established with the intent of filling that void. The NISTmAb embodies the quality and characteristics of a typical biopharmaceutical product, is widely available to the biopharmaceutical community, and is an open innovation tool for development and dissemination of results. The NISTmAb lifecyle management plan described herein provides a hierarchical strategy for maintenance of quality over time through rigorous method qualification detailed in additional submissions in the current publication series. The NISTmAb RM 8671 is a representative monoclonal antibody material and provides a means to continually evaluate current best practices, promote innovative approaches, and inform regulatory paradigms as technology advances. Graphical abstract The NISTmAb Reference Material (RM) 8671 is intended to be an industry standard monoclonal antibody for pre-competitive harmonization of best practices and designing next generation characterization technologies for identity, quality, and stability testing.

  13. Quality assurance after process changes of the production of a therapeutic antibody.

    PubMed

    Brass, J M; Krummen, K; Moll-Kaufmann, C

    1996-12-01

    Process development for the production of a therapeutic humanised antibody is a very complex operation. It involves recombinant genetics, verification of a strong expression system, gene amplification, characterisation of a stable host cell expression system, optimisation and design of the mammalian cell culture fermentation system and development of an efficient recovery process resulting in high yields and product quality. Rapid progress in the field and the wish of some pharmaceutical companies for outsourcing their production are the driving forces for process changes relatively late in the development phase. This literature survey is aimed at identifying the limits of acceptable process changes in up scaling of the fermentation and down stream processing of biopharmaceuticals and defining the demand in production validation to prove product equivalency and identity of the isolated, purified therapeutic antibody.

  14. Novel chemometric strategy based on the application of artificial neural networks to crossed mixture design for the improvement of recombinant protein production in continuous culture.

    PubMed

    Didier, Caroline; Forno, Guillermina; Etcheverrigaray, Marina; Kratje, Ricardo; Goicoechea, Héctor

    2009-09-21

    The optimal blends of six compounds that should be present in culture media used in recombinant protein production were determined by means of artificial neural networks (ANN) coupled with crossed mixture experimental design. This combination constitutes a novel approach to develop a medium for cultivating genetically engineered mammalian cells. The compounds were collected in two mixtures of three elements each, and the experimental space was determined by a crossed mixture design. Empirical data from 51 experimental units were used in a multiresponse analysis to train artificial neural networks which satisfy different requirements, in order to define two new culture media (Medium 1 and Medium 2) to be used in a continuous biopharmaceutical production process. These media were tested in a bioreactor to produce a recombinant protein in CHO cells. Remarkably, for both predicted media all responses satisfied the predefined goals pursued during the analysis, except in the case of the specific growth rate (mu) observed for Medium 1. ANN analysis proved to be a suitable methodology to be used when dealing with complex experimental designs, as frequently occurs in the optimization of production processes in the biotechnology area. The present work is a new example of the use of ANN for the resolution of a complex, real life system, successfully employed in the context of a biopharmaceutical production process.

  15. Innovations in vaccine development: can regulatory authorities keep up?

    PubMed

    Cox, Manon M J; Onraedt, Annelies

    2012-10-01

    Vaccine Production Summit San Francisco, CA, USA, 4-6 June 2012 IBC's 3rd Vaccine Production Summit featured 28 presentations discussing regulatory challenges in vaccine development, including the use of adjuvants, vaccine manufacturing and technology transfer, process development for vaccines and the role of quality by design, how to address vaccine stability, and how vaccine development timelines can be improved. The conference was run in parallel with the single-use applications for Biopharmaceutical Manufacturing conference. Approximately 250 attendees from large pharmaceutical companies, large and small biotech companies, vendors and a more limited number from academia were allowed to access sessions of either conference, including one shared session. This article summarizes the recurring themes across various presentations.

  16. Yeast biotechnology: teaching the old dog new tricks

    PubMed Central

    2014-01-01

    Yeasts are regarded as the first microorganisms used by humans to process food and alcoholic beverages. The technology developed out of these ancient processes has been the basis for modern industrial biotechnology. Yeast biotechnology has gained great interest again in the last decades. Joining the potentials of genomics, metabolic engineering, systems and synthetic biology enables the production of numerous valuable products of primary and secondary metabolism, technical enzymes and biopharmaceutical proteins. An overview of emerging and established substrates and products of yeast biotechnology is provided and discussed in the light of the recent literature. PMID:24602262

  17. Principles for interactions with biopharmaceutical companies: the development of guidelines for patient advocacy organizations in the field of rare diseases.

    PubMed

    Stein, Susan; Bogard, Elizabeth; Boice, Nicole; Fernandez, Vivian; Field, Tessa; Gilstrap, Alan; Kahn, Susan R; Larkindale, Jane; Mathieson, Toni

    2018-01-22

    Rare diseases are a global public health concern, affecting an estimated 350 million individuals. Only 5% of approximately 7000 known rare diseases have a treatment, and only about half have a patient advocacy organization. Biopharmaceutical companies face complex challenges in developing treatments for rare diseases. Patient advocacy organizations may play a major role by positively influencing research and development, clinical trials, and regulations. Thus, collaboration among patient advocacy organizations and industry is essential to bring new therapeutics to patients. We identified an unmet need for guidelines on day-to-day decision-making by rare disease patient advocacy organizations when working with biopharmaceutical partners. We convened an Independent Expert Panel experienced in collaborations between patient advocacy organizations and biopharmaceutical companies (April 2017) to develop consensus guidelines for these relationships. The guidelines were based on an original version by the International Fibrodysplasia Ossificans Progressiva Association (IFOPA). The Expert Panel reviewed and broadened these to be applicable to all patient advocacy organizations. Comments on the draft Guidelines were provided first by Panel participants and subsequently by six independent experts from patient advocacy organizations and industry. The Panel comprised four experts from the rare disease community who lead patient advocacy organizations; three leaders who perform advocacy functions within biopharmaceutical companies; and two facilitators, both having leadership experience in rare diseases and industry. The finalized Guidelines consist of four main sections: Identification and Engagement With Companies, Patient Engagement and Patient Privacy, Financial Contributions, and Clinical Trial Communication and Support. The Guidelines address the daily considerations, choices, and consequences of patient advocacy organizations as they engage with biopharmaceutical companies, and offer recommendations for volunteer/paid leaders of the organizations on how to interact in a thoughtful, responsible, ethical way that engenders trust. These Guidelines recommend best practices and standards for interactions between patient advocacy organizations and industry that will ultimately have a positive effect on the development of novel treatments. Patient advocacy organizations will be provided free access to these Guidelines to help bring clarification to day-to-day decision-making around their interactions, and for use as a living document with the potential for regular revisions and updates.

  18. Class and Home Problems. Lifelong Learning: A "Life Cycle" Approach to Education and Training for the Biopharmaceutical Industry

    ERIC Educational Resources Information Center

    Gilleskie, Gary L.; Reeves, Baley; van Zanten, John H.; Balchunas, John; Carbonell, Ruben G.

    2016-01-01

    The Biomanufacturing Training and Education Center (BTEC) at North Carolina State University is an instructional center that offers education and training programs in the area of biopharmaceutical process development and manufacturing. Our programs are designed to provide educational opportunities throughout the "life cycle" of a…

  19. Recombinant organisms for production of industrial products

    PubMed Central

    Adrio, Jose-Luis

    2010-01-01

    A revolution in industrial microbiology was sparked by the discoveries of ther double-stranded structure of DNA and the development of recombinant DNA technology. Traditional industrial microbiology was merged with molecular biology to yield improved recombinant processes for the industrial production of primary and secondary metabolites, protein biopharmaceuticals and industrial enzymes. Novel genetic techniques such as metabolic engineering, combinatorial biosynthesis and molecular breeding techniques and their modifications are contributing greatly to the development of improved industrial processes. In addition, functional genomics, proteomics and metabolomics are being exploited for the discovery of novel valuable small molecules for medicine as well as enzymes for catalysis. The sequencing of industrial microbal genomes is being carried out which bodes well for future process improvement and discovery of new industrial products. PMID:21326937

  20. Clinical Trial Data as Public Goods: Fair Trade and the Virtual Knowledge Bank as a Solution to the Free Rider Problem - A Framework for the Promotion of Innovation by Facilitation of Clinical Trial Data Sharing among Biopharmaceutical Companies in the Era of Omics and Big Data.

    PubMed

    Evangelatos, Nikolaos; Reumann, Matthias; Lehrach, Hans; Brand, Angela

    2016-01-01

    Knowledge in the era of Omics and Big Data has been increasingly conceptualized as a public good. Sharing of de-identified patient data has been advocated as a means to increase confidence and public trust in the results of clinical trials. On the other hand, research has shown that the current research and development model of the biopharmaceutical industry has reached its innovation capacity. In response to that, the biopharmaceutical industry has adopted open innovation practices, with sharing of clinical trial data being among the most interesting ones. However, due to the free rider problem, clinical trial data sharing among biopharmaceutical companies could undermine their innovativeness. Based on the theory of public goods, we have developed a commons arrangement and devised a model, which enables secure and fair clinical trial data sharing over a Virtual Knowledge Bank based on a web platform. Our model uses data as a virtual currency and treats knowledge as a club good. Fair sharing of clinical trial data over the Virtual Knowledge Bank has positive effects on the innovation capacity of the biopharmaceutical industry without compromising the intellectual rights, proprietary interests and competitiveness of the latter. The Virtual Knowledge Bank is a sustainable and self-expanding model for secure and fair clinical trial data sharing that allows for sharing of clinical trial data, while at the same time it increases the innovation capacity of the biopharmaceutical industry. © 2016 S. Karger AG, Basel.

  1. Biosimilars--global issues, national solutions.

    PubMed

    Knezevic, Ivana; Griffiths, Elwyn

    2011-09-01

    Biotechnology derived medicinal products are presently the best characterized biologicals with considerable production and clinical experience, and have revolutionized the treatment of some of the most difficult-to-treat diseases, prolonging and improving the quality of life and patient care. They are also currently one of the fastest growing segments of the pharmaceutical industry market. The critical challenge that the biopharmaceutical industry is facing is the expiry of patents for the first generation of biopharmaceuticals, mainly recombinant DNA derived products, such as interferons, growth hormone and erythropoetin. The question that immediately arose was how should such copies of the originator products be licensed, bearing in mind that they are highly complex biological molecules produced by equally complex biological production processes with their inherent problem of biological variability. Copying biologicals is much more complex than copying small molecules and the critical issue was how to handle the licensing of products if relying in part on data from an innovator product. Since 2004 there has been considerable international consultation on how to deal with biosimilars and biological copy products. This has led to a better understanding of the challenges in the regulatory evaluation of the quality, safety and efficacy of "biosimilars", to the exchange of information between regulators, as well as to the identification of key issues. The aim of this article is to provide a brief overview of the scientific and regulatory challenges faced in developing and evaluating similar biotherapeutic products for global use. It is intended as an introduction to the series of articles in this special issue of Biologicals devoted to similar biotherapeutic products. Copyright © 2011. Published by Elsevier Ltd.

  2. Accumulation of organic compounds leached from plastic materials used in biopharmaceutical process containers.

    PubMed

    Jenke, Dennis R; Zietlow, David; Garber, Mary Jo; Sadain, Salma; Reiber, Duane; Terbush, William

    2007-01-01

    Plastic materials are widely used in medical items, such as solution containers, transfusion sets, transfer tubing, and devices. An emerging trend in the biotechnology industry is the utilization of plastic containers to prepare, transport, and store an assortment of solutions including buffers, media, and in-process and finished product. The direct contact of such containers with the product at one or more points in its lifetime raises the possibility that container leachables may accumulate in the finished product. The interaction between several commercially available container materials and numerous model test solutions (representative of buffers and media used in biopharmaceutical applications) was investigated. This paper summarizes the identification of leachables associated with the container materials and documents the levels to which targeted leachables accumulate in the test solutions under defined storage conditions.

  3. Biopharmaceutical insights of particulate emulsified systems - a prospective overview.

    PubMed

    Katamreddy, Jyothshna Devi; Yalavarthi, Prasanna Raju; D, Subba Rao; Battu, Sowjanya; Peesa, Jaya Preethi

    2018-05-10

    During the twenty-first century, drug discovery is expanding rapidly and a large number of chemical moieties are recognized. Many of them are poorly soluble and hence related biopharmaceutical constraints are to be addressed systematically. Among novel approaches to resolving biopharmaceutical issues, micro- and nano-emulsified systems serve as the best strategy for delivering both hydrophobic and hydrophilic drugs owing to their greater solubilization and transportation capabilities. Of late, the unique physical and biopharmaceutical properties of these liquid isotropic homogenous systems have gained substantive research importance. In addition nano/micro lipid systems share structural and functional similarity with that of the physiological lipids which offer better tolerance ability in the body. In this context, this article provides information on the historical emergence of particulate emulsified systems, importance and rationale of selection of carriers. It also encompasses the physicochemical principles that are responsible for the elevation of therapeutic outcomes of delivery systems. Detailed and schematic absorption of these drug delivery systems is explained here. Gastro-intestinal biochemistry necessary in the understanding of digestion process, lipolytic products formed, micellar structures, enzymes, transporters, mechanism of cell uptake involved after subsequent oral absorption are also emphasized. In addition, this article also explains disposition and pharmacokinetic properties of emulsified systems with real-time therapeutic research outcomes. The influence of biochemical compositions and biopharmaceutical principles on absorption and disposition patterns of ME/NEs was described in the article for the interest of readers and young researchers.

  4. Reconceptualizing cancer immunotherapy based on plant production systems

    PubMed Central

    Hefferon, Kathleen

    2017-01-01

    Plants can be used as inexpensive and facile production platforms for vaccines and other biopharmaceuticals. More recently, plant-based biologics have expanded to include cancer immunotherapy agents. The following review describes the current state of the art for plant-derived strategies to prevent or reduce cancers. The review discusses avenues taken to prevent infection by oncogenic viruses, solid tumors and lymphomas. Strategies including cancer vaccines, monoclonal antibodies and virus nanoparticles are described, and examples are provided. The review ends with a discussion of the implications of plant-based cancer immunotherapy for developing countries. PMID:28884013

  5. Transgenic mammalian species, generated by somatic cell cloning, in biomedicine, biopharmaceutical industry and human nutrition/dietetics--recent achievements.

    PubMed

    Samiec, M; Skrzyszowska, M

    2011-01-01

    Somatic cell cloning technology in mammals promotes the multiplication of productively-valuable genetically engineered individuals, and consequently allows also for standardization of transgenic farm animal-derived products, which, in the context of market requirements, will have growing significance. Gene farming is one of the most promising areas in modern biotechnology. The use of live bioreactors for the expression of human genes in the lactating mammary gland of transgenic animals seems to be the most cost-effective method for the production/processing of valuable recombinant therapeutic proteins. Among the transgenic farm livestock species used so far, cattle, goats, sheep, pigs and rabbits are useful candidates for the expression of tens to hundreds of grams of genetically-engineered proteins or xenogeneic biopreparations in the milk. At the beginning of the new millennium, a revolution in the treatment of disease is taking shape due to the emergence of new therapies based on recombinant human proteins. The ever-growing demand for such pharmaceutical or nutriceutical proteins is an important driving force for the development of safe and large-scale production platforms. The aim of this paper is to present an overall survey of the state of the art in investigations which provide the current knowledge for deciphering the possibilities of practical application of the transgenic mammalian species generated by somatic cell cloning in biomedicine, the biopharmaceutical industry, human nutrition/dietetics and agriculture.

  6. Analysis of illegal peptide biopharmaceuticals frequently encountered by controlling agencies.

    PubMed

    Vanhee, Celine; Janvier, Steven; Desmedt, Bart; Moens, Goedele; Deconinck, Eric; De Beer, Jacques O; Courselle, Patricia

    2015-09-01

    Recent advances in genomics, recombinant expression technologies and peptide synthesis have led to an increased development of protein and peptide therapeutics. Unfortunately this goes hand in hand with a growing market of counterfeit and illegal biopharmaceuticals, including substances that are still under pre-clinical and clinical development. These counterfeit and illegal protein and peptide substances could imply severe health threats as has been demonstrated by numerous case reports. The Belgian Federal Agency for Medicines and Health Products (FAMHP) and customs are striving, together with their global counterparts, to curtail the trafficking and distributions of these substances. At their request, suspected protein and peptide preparations are analysed in our Official Medicines Control Laboratory (OMCL). It stands to reason that a general screening method would be beneficiary in the battle against counterfeit and illegal peptide drugs. In this paper we present such general screening method employing liquid chromatography-tandem mass spectrometry (LC-MS/MS) for the identification of counterfeit and illegal injectable peptide preparations, extended with a subsequent quantification method using ultra-high performance liquid chromatography with diode array detection (UHPLC-DAD). The screening method, taking only 30 min, is able to selectively detect 25 different peptides and incorporates the proposed minimum of five identification points (IP) as has been recommended for sports drug testing applications. The group of peptides represent substances which have already been detected in illegal and counterfeit products seized by different European countries as well as some biopharmaceutical peptides which have not been confiscated yet by the controlling agencies, but are already being used according to the many internet users forums. Additionally, we also show that when applying the same LC gradient, it is also possible to quantify these peptides without the need for derivatization or the use of expensive labelled peptides. This quantification method was successfully validated for a representative subset of 10 different peptides by using the "total error" approach in accordance with the validation requirements of ISO-17025. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Artificial neural network associated to UV/Vis spectroscopy for monitoring bioreactions in biopharmaceutical processes.

    PubMed

    Takahashi, Maria Beatriz; Leme, Jaci; Caricati, Celso Pereira; Tonso, Aldo; Fernández Núñez, Eutimio Gustavo; Rocha, José Celso

    2015-06-01

    Currently, mammalian cells are the most utilized hosts for biopharmaceutical production. The culture media for these cell lines include commonly in their composition a pH indicator. Spectroscopic techniques are used for biopharmaceutical process monitoring, among them, UV-Vis spectroscopy has found scarce applications. This work aimed to define artificial neural networks architecture and fit its parameters to predict some nutrients and metabolites, as well as viable cell concentration based on UV-Vis spectral data of mammalian cell bioprocess using phenol red in culture medium. The BHK-21 cell line was used as a mammalian cell model. Off-line spectra of supernatant samples taken from batches performed at different dissolved oxygen concentrations in two bioreactor configurations and with two pH control strategies were used to define two artificial neural networks. According to absolute errors, glutamine (0.13 ± 0.14 mM), glutamate (0.02 ± 0.02 mM), glucose (1.11 ± 1.70 mM), lactate (0.84 ± 0.68 mM) and viable cell concentrations (1.89 10(5) ± 1.90 10(5) cell/mL) were suitably predicted. The prediction error averages for monitored variables were lower than those previously reported using different spectroscopic techniques in combination with partial least squares or artificial neural network. The present work allows for UV-VIS sensor development, and decreases cost related to nutrients and metabolite quantifications.

  8. Classification of natural products as sources of drugs according to the biopharmaceutics drug disposition classification system (BDDCS).

    PubMed

    Li, Ji; Larregieu, Caroline A; Benet, Leslie Z

    2016-12-01

    Natural products (NPs) are compounds that are derived from natural sources such as plants, animals, and micro-organisms. Therapeutics has benefited from numerous drug classes derived from natural product sources. The Biopharmaceutics Drug Disposition Classification System (BDDCS) was proposed to serve as a basis for predicting the importance of transporters and enzymes in determining drug bioavailability and disposition. It categorizes drugs into one of four biopharmaceutical classes according to their water solubility and extent of metabolism. The present paper reviews 109 drugs from natural product sources: 29% belong to class 1 (high solubility, extensive metabolism), 22% to class 2 (low solubility, extensive metabolism), 40% to class 3 (high solubility, poor metabolism), and 9% to class 4 (low solubility, poor metabolism). Herein we evaluated the characteristics of NPs in terms of BDDCS class for all 109 drugs as wells as for subsets of NPs drugs derived from plant sources as antibiotics. In the 109 NPs drugs, we compiled 32 drugs from plants, 50% (16) of total in class 1, 22% (7) in class 2 and 28% (9) in class 3, none found in class 4; Meantime, the antibiotics were found 5 (16%) in class 2, 22 (71%) in class 3, and 4 (13%) in class 4; no drug was found in class 1. Based on this classification, we anticipate BDDCS to serve as a useful adjunct in evaluating the potential characteristics of new natural products. Copyright © 2016 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  9. Nonclinical safety testing of biopharmaceuticals--Addressing current challenges of these novel and emerging therapies.

    PubMed

    Brennan, Frank R; Baumann, Andreas; Blaich, Guenter; de Haan, Lolke; Fagg, Rajni; Kiessling, Andrea; Kronenberg, Sven; Locher, Mathias; Milton, Mark; Tibbitts, Jay; Ulrich, Peter; Weir, Lucinda

    2015-10-01

    Non-clinical safety testing of biopharmaceuticals can present significant challenges to human risk assessment with these often innovative and complex drugs. Hot Topics in this field were discussed recently at the 4th Annual European Biosafe General Membership meeting. In this feature article, the presentations and subsequent discussions from the main sessions are summarized. The topics covered include: (i) wanted versus unwanted immune activation, (ii) bi-specific protein scaffolds, (iii) use of Pharmacokinetic (PK)/Pharmacodynamic (PD) data to impact/optimize toxicology study design, (iv) cytokine release and challenges to human translation (v) safety testing of cell and gene therapies including chimeric antigen receptor T (CAR-T) cells and retroviral vectors and (vi) biopharmaceutical development strategies encompassing a range of diverse topics including optimizing entry of monoclonal antibodies (mAbs) into the brain, safety testing of therapeutic vaccines, non-clinical testing of biosimilars, infection in toxicology studies with immunomodulators and challenges to human risk assessment, maternal and infant anti-drug antibody (ADA) development and impact in non-human primate (NHP) developmental toxicity studies, and a summary of an NC3Rs workshop on the future vision for non-clinical safety assessment of biopharmaceuticals. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Recombinant organisms for production of industrial products.

    PubMed

    Adrio, Jose-Luis; Demain, Arnold L

    2010-01-01

    A revolution in industrial microbiology was sparked by the discoveries of ther double-stranded structure of DNA and the development of recombinant DNA technology. Traditional industrial microbiology was merged with molecular biology to yield improved recombinant processes for the industrial production of primary and secondary metabolites, protein biopharmaceuticals and industrial enzymes. Novel genetic techniques such as metabolic engineering, combinatorial biosynthesis and molecular breeding techniques and their modifications are contributing greatly to the development of improved industrial processes. In addition, functional genomics, proteomics and metabolomics are being exploited for the discovery of novel valuable small molecules for medicine as well as enzymes for catalysis. The sequencing of industrial microbal genomes is being carried out which bodes well for future process improvement and discovery of new industrial products. © 2010 Landes Bioscience

  11. Translational research and the evolving landscape for biomedical innovation.

    PubMed

    Kaitin, Kenneth I

    2012-10-01

    This article addresses current challenges facing pharmaceutical and biopharmaceutical developers, including the expiration of patents on many high-revenue-generating products, increasing competition in the marketplace, low public support, high regulatory hurdles, and the increasing time, cost, and risk of new product development. To meet these challenges, drug developers are looking to new models of innovation to improve efficiency, lower risk, and increase output. These new models include codevelopment agreements with small companies, multicompany consortia, and strategic partnerships with academic research centers. In the United States and the European Union, the government is supporting these efforts by creating incentives for academic centers to foster translational research and become more "commercially minded". The goal for all stakeholders is to reduce the barriers to product development and bring new medicines to market in a timely and cost-efficient manner.

  12. A new CZE method for profiling human serum albumin and its related forms to assess the quality of biopharmaceuticals.

    PubMed

    Alahmad, Youssef; Tran, Nguyet Thuy; Le Potier, Isabelle; Forest, Eric; Jorieux, Sylvie; Taverna, Myriam

    2011-01-01

    We present a new CZE method, which uses a polyethylene oxide-coated capillary to separate native HSA from more than five of its structural variants. These variants include oxidized, truncated, and cysteinylated forms of HSA which can all be found in biopharmaceutical products. Both CE and MS confirmed the high degree of heterogeneity of HSA preparations. Recovery studies demonstrated that adsorption of HSA on the capillary was significantly reduced under the conditions we developed, which led to a satisfactory repeatability (RSD for migration times and relative peak areas were less than 0.2 and 7.0%, respectively). Assignment of the main peaks was attempted using in vitro degraded/stressed HSA. We used our method to test batch-to-batch comparability and detected slight quantitative differences in the proportion of native HSA in batches produced from different fractionation methods. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Ion-exchange chromatography for the characterization of biopharmaceuticals.

    PubMed

    Fekete, Szabolcs; Beck, Alain; Veuthey, Jean-Luc; Guillarme, Davy

    2015-09-10

    Ion-exchange chromatography (IEX) is a historical technique widely used for the detailed characterization of therapeutic proteins and can be considered as a reference and powerful technique for the qualitative and quantitative evaluation of charge heterogeneity. The goal of this review is to provide an overview of theoretical and practical aspects of modern IEX applied for the characterization of therapeutic proteins including monoclonal antibodies (Mabs) and antibody drug conjugates (ADCs). The section on method development describes how to select a suitable stationary phase chemistry and dimensions, the mobile phase conditions (pH, nature and concentration of salt), as well as the temperature and flow rate, considering proteins isoelectric point (pI). In addition, both salt-gradient and pH-gradient approaches were critically reviewed and benefits as well as limitations of these two strategies were provided. Finally, several applications, mostly from pharmaceutical industries, illustrate the potential of IEX for the characterization of charge variants of various types of biopharmaceutical products. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Extractables analysis of single-use flexible plastic biocontainers.

    PubMed

    Marghitoiu, Liliana; Liu, Jian; Lee, Hans; Perez, Lourdes; Fujimori, Kiyoshi; Ronk, Michael; Hammond, Matthew R; Nunn, Heather; Lower, Asher; Rogers, Gary; Nashed-Samuel, Yasser

    2015-01-01

    Studies of the extractable profiles of bioprocessing components have become an integral part of drug development efforts to minimize possible compromise in process performance, decrease in drug product quality, and potential safety risk to patients due to the possibility of small molecules leaching out from the components. In this study, an effective extraction solvent system was developed to evaluate the organic extractable profiles of single-use bioprocess equipment, which has been gaining increasing popularity in the biopharmaceutical industry because of the many advantages over the traditional stainless steel-based bioreactors and other fluid mixing and storage vessels. The chosen extraction conditions were intended to represent aggressive conditions relative to the application of single-use bags in biopharmaceutical manufacture, in which aqueous based systems are largely utilized. Those extraction conditions, along with a non-targeted analytical strategy, allowed for the generation and identification of an array of extractable compounds; a total of 53 organic compounds were identified from four types of commercially available single-use bags, the majority of which are degradation products of polymer additives. The success of this overall extractables analysis strategy was reflected partially by the effectiveness in the extraction and identification of a compound that was later found to be highly detrimental to mammalian cell growth. The usage of single-use bioreactors has been increasing in biopharmaceutical industry because of the appealing advantages that it promises regarding to the cleaning, sterilization, operational flexibility, and so on, during manufacturing of biologics. However, compared to its conventional counterparts based mainly on stainless steel, single-use bioreactors are more susceptible to potential problems associated with compound leaching into the bioprocessing fluid. As a result, extractable profiling of the single-use system has become essential in the qualification of such systems for its use in drug manufacturing. The aim of this study is to evaluate the effectiveness of an extraction solvent system developed to study the extraction profile of single-use bioreactors in which aqueous-based systems are largely used. The results showed that with a non-targeted analytical approach, the extraction solvent allowed the generation and identification of an array of extractable compounds from four commercially available single-use bioreactors. Most of extractables are degradation products of polymer additives, among which was a compound that was later found to be highly detrimental to mammalian cell growth. © PDA, Inc. 2015.

  15. Introduction to the application of QbD principles for the development of monoclonal antibodies.

    PubMed

    Finkler, Christof; Krummen, Lynne

    2016-09-01

    Quality by Design (QbD) is a global regulatory initiative with the goal of enhancing pharmaceutical development through the proactive design of pharmaceutical manufacturing process and controls to consistently deliver the intended performance of the product. The principles of pharmaceutical development relevant to QbD are described in the ICH guidance documents (ICHQ8-11). An integrated set of risk assessments and their related elements developed at Roche/Genentech were designed to provide an overview of product and process knowledge for the production of a recombinant monoclonal antibody. This chapter introduces a publication series on the application of Quality by Design for biopharmaceuticals, with a focus on the development of recombinant monoclonal antibodies. The development of and overview on the QbD concept applied by Roche and Genentech is described and essential QbD elements are presented. Copyright © 2016 International Alliance for Biological Standardization. Published by Elsevier Ltd. All rights reserved.

  16. Plastid transformation in lettuce (Lactuca sativa L.) by biolistic DNA delivery.

    PubMed

    Ruhlman, Tracey A

    2014-01-01

    The interest in producing pharmaceutical proteins in a nontoxic plant host has led to the development of an approach to express such proteins in transplastomic lettuce (Lactuca sativa L.). A number of therapeutic proteins and vaccine antigen candidates have been stably integrated into the lettuce plastid genome using biolistic DNA delivery. High levels of accumulation and retention of biological activity suggest that lettuce may provide an ideal platform for the production of biopharmaceuticals.

  17. PEGylation of Biopharmaceuticals: A Review of Chemistry and Nonclinical Safety Information of Approved Drugs.

    PubMed

    Turecek, Peter L; Bossard, Mary J; Schoetens, Freddy; Ivens, Inge A

    2016-02-01

    Modification of biopharmaceutical molecules by covalent conjugation of polyethylene glycol (PEG) molecules is known to enhance pharmacologic and pharmaceutical properties of proteins and other large molecules and has been used successfully in 12 approved drugs. Both linear and branched-chain PEG reagents with molecular sizes of up to 40 kDa have been used with a variety of different PEG derivatives with different linker chemistries. This review describes the properties of PEG itself, the history and evolution of PEGylation chemistry, and provides examples of PEGylated drugs with an established medical history. A trend toward the use of complex PEG architectures and larger PEG polymers, but with very pure and well-characterized PEG reagents is described. Nonclinical toxicology findings related to PEG in approved PEGylated biopharmaceuticals are summarized. The effect attributed to the PEG part of the molecules as observed in 5 of the 12 marketed products was cellular vacuolation seen microscopically mainly in phagocytic cells which is likely related to their biological function to absorb and remove particles and macromolecules from blood and tissues. Experience with marketed PEGylated products indicates that adverse effects in toxicology studies are usually related to the active part of the drug but not to the PEG moiety. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  18. Applications of Raman Spectroscopy in Biopharmaceutical Manufacturing: A Short Review.

    PubMed

    Buckley, Kevin; Ryder, Alan G

    2017-06-01

    The production of active pharmaceutical ingredients (APIs) is currently undergoing its biggest transformation in a century. The changes are based on the rapid and dramatic introduction of protein- and macromolecule-based drugs (collectively known as biopharmaceuticals) and can be traced back to the huge investment in biomedical science (in particular in genomics and proteomics) that has been ongoing since the 1970s. Biopharmaceuticals (or biologics) are manufactured using biological-expression systems (such as mammalian, bacterial, insect cells, etc.) and have spawned a large (>€35 billion sales annually in Europe) and growing biopharmaceutical industry (BioPharma). The structural and chemical complexity of biologics, combined with the intricacy of cell-based manufacturing, imposes a huge analytical burden to correctly characterize and quantify both processes (upstream) and products (downstream). In small molecule manufacturing, advances in analytical and computational methods have been extensively exploited to generate process analytical technologies (PAT) that are now used for routine process control, leading to more efficient processes and safer medicines. In the analytical domain, biologic manufacturing is considerably behind and there is both a huge scope and need to produce relevant PAT tools with which to better control processes, and better characterize product macromolecules. Raman spectroscopy, a vibrational spectroscopy with a number of useful properties (nondestructive, non-contact, robustness) has significant potential advantages in BioPharma. Key among them are intrinsically high molecular specificity, the ability to measure in water, the requirement for minimal (or no) sample pre-treatment, the flexibility of sampling configurations, and suitability for automation. Here, we review and discuss a representative selection of the more important Raman applications in BioPharma (with particular emphasis on mammalian cell culture). The review shows that the properties of Raman have been successfully exploited to deliver unique and useful analytical solutions, particularly for online process monitoring. However, it also shows that its inherent susceptibility to fluorescence interference and the weakness of the Raman effect mean that it can never be a panacea. In particular, Raman-based methods are intrinsically limited by the chemical complexity and wide analyte-concentration-profiles of cell culture media/bioprocessing broths which limit their use for quantitative analysis. Nevertheless, with appropriate foreknowledge of these limitations and good experimental design, robust analytical methods can be produced. In addition, new technological developments such as time-resolved detectors, advanced lasers, and plasmonics offer potential of new Raman-based methods to resolve existing limitations and/or provide new analytical insights.

  19. The promising future of microalgae: current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products.

    PubMed

    Khan, Muhammad Imran; Shin, Jin Hyuk; Kim, Jong Deog

    2018-03-05

    Microalgae have recently attracted considerable interest worldwide, due to their extensive application potential in the renewable energy, biopharmaceutical, and nutraceutical industries. Microalgae are renewable, sustainable, and economical sources of biofuels, bioactive medicinal products, and food ingredients. Several microalgae species have been investigated for their potential as value-added products with remarkable pharmacological and biological qualities. As biofuels, they are a perfect substitute to liquid fossil fuels with respect to cost, renewability, and environmental concerns. Microalgae have a significant ability to convert atmospheric CO 2 to useful products such as carbohydrates, lipids, and other bioactive metabolites. Although microalgae are feasible sources for bioenergy and biopharmaceuticals in general, some limitations and challenges remain, which must be overcome to upgrade the technology from pilot-phase to industrial level. The most challenging and crucial issues are enhancing microalgae growth rate and product synthesis, dewatering algae culture for biomass production, pretreating biomass, and optimizing the fermentation process in case of algal bioethanol production. The present review describes the advantages of microalgae for the production of biofuels and various bioactive compounds and discusses culturing parameters.

  20. [Construction of biopharmaceutics classification system of Chinese materia medica].

    PubMed

    Liu, Yang; Wei, Li; Dong, Ling; Zhu, Mei-Ling; Tang, Ming-Min; Zhang, Lei

    2014-12-01

    Based on the characteristics of multicomponent of traditional Chinese medicine and drawing lessons from the concepts, methods and techniques of biopharmaceutics classification system (BCS) in chemical field, this study comes up with the science framework of biopharmaceutics classification system of Chinese materia medica (CMMBCS). Using the different comparison method of multicomponent level and the CMMBCS method of overall traditional Chinese medicine, the study constructs the method process while setting forth academic thoughts and analyzing theory. The basic role of this system is clear to reveal the interaction and the related absorption mechanism of multicomponent in traditional Chinese medicine. It also provides new ideas and methods for improving the quality of Chinese materia medica and the development of new drug research.

  1. Optimizing Clinical Drug Product Performance: Applying Biopharmaceutics Risk Assessment Roadmap (BioRAM) and the BioRAM Scoring Grid.

    PubMed

    Dickinson, Paul A; Kesisoglou, Filippos; Flanagan, Talia; Martinez, Marilyn N; Mistry, Hitesh B; Crison, John R; Polli, James E; Cruañes, Maria T; Serajuddin, Abu T M; Müllertz, Anette; Cook, Jack A; Selen, Arzu

    2016-11-01

    The aim of Biopharmaceutics Risk Assessment Roadmap (BioRAM) and the BioRAM Scoring Grid is to facilitate optimization of clinical performance of drug products. BioRAM strategy relies on therapy-driven drug delivery and follows an integrated systems approach for formulating and addressing critical questions and decision-making (J Pharm Sci. 2014,103(11): 3777-97). In BioRAM, risk is defined as not achieving the intended in vivo drug product performance, and success is assessed by time to decision-making and action. Emphasis on time to decision-making and time to action highlights the value of well-formulated critical questions and well-designed and conducted integrated studies. This commentary describes and illustrates application of the BioRAM Scoring Grid, a companion to the BioRAM strategy, which guides implementation of such an integrated strategy encompassing 12 critical areas and 6 assessment stages. Application of the BioRAM Scoring Grid is illustrated using published literature. Organizational considerations for implementing BioRAM strategy, including the interactions, function, and skillsets of the BioRAM group members, are also reviewed. As a creative and innovative systems approach, we believe that BioRAM is going to have a broad-reaching impact, influencing drug development and leading to unique collaborations influencing how we learn, and leverage and share knowledge. Published by Elsevier Inc.

  2. Decision-support tool for assessing biomanufacturing strategies under uncertainty: stainless steel versus disposable equipment for clinical trial material preparation.

    PubMed

    Farid, Suzanne S; Washbrook, John; Titchener-Hooker, Nigel J

    2005-01-01

    This paper presents the application of a decision-support tool, SIMBIOPHARMA, for assessing different manufacturing strategies under uncertainty for the production of biopharmaceuticals. SIMBIOPHARMA captures both the technical and business aspects of biopharmaceutical manufacture within a single tool that permits manufacturing alternatives to be evaluated in terms of cost, time, yield, project throughput, resource utilization, and risk. Its use for risk analysis is demonstrated through a hypothetical case study that uses the Monte Carlo simulation technique to imitate the randomness inherent in manufacturing subject to technical and market uncertainties. The case study addresses whether start-up companies should invest in a stainless steel pilot plant or use disposable equipment for the production of early phase clinical trial material. The effects of fluctuating product demands and titers on the performance of a biopharmaceutical company manufacturing clinical trial material are analyzed. The analysis highlights the impact of different manufacturing options on the range in possible outcomes for the project throughput and cost of goods and the likelihood that these metrics exceed a critical threshold. The simulation studies highlight the benefits of incorporating uncertainties when evaluating manufacturing strategies. Methods of presenting and analyzing information generated by the simulations are suggested. These are used to help determine the ranking of alternatives under different scenarios. The example illustrates the benefits to companies of using such a tool to improve management of their R&D portfolios so as to control the cost of goods.

  3. The yeast stands alone: the future of protein biologic production.

    PubMed

    Love, Kerry R; Dalvie, Neil C; Love, J Christopher

    2017-12-22

    Yeasts are promising alternative hosts for the manufacturing of recombinant protein therapeutics because they simply and efficiently meet needs for both platform and small-market drugs. Fast accumulation of biomass and low-cost media reduce the cost-of-goods when using yeast, which in turn can enable agile, small-volume manufacturing facilities. Small, tractable yeast genomes are amenable to rapid process development, facilitating strain and product quality by design. Specifically, Pichia pastoris is becoming a widely accepted yeast for biopharmaceutical manufacturing in much of the world owing to a clean secreted product and the rapidly expanding understanding of its cell biology as a host organism. We advocate for a near term partnership spanning industry and academia to promote open source, timely development of yeast hosts. Copyright © 2017. Published by Elsevier Ltd.

  4. Development of a stable low-dose aglycosylated antibody formulation to minimize protein loss during intravenous administration.

    PubMed

    Morar-Mitrica, Sorina; Puri, Manasi; Beumer Sassi, Alexandra; Fuller, Joshua; Hu, Ping; Crotts, George; Nesta, Douglas

    2015-01-01

    The physical and chemical integrity of a biopharmaceutical must be maintained not only during long-term storage but also during administration. Specifically for the intravenous (i.v.) delivery of a protein drug, loss of stability can occur when the protein formulation is compounded with i.v. bag diluents, thus modifying the original composition of the drug product. Here we present the challenges associated with the delivery of a low-dose, highly potent monoclonal antibody (mAb) via the i.v. route. Through parallel in-use stability studies and conventional formulation development, a drug product was developed in which adsorptive losses and critical oxidative degradation pathways were effectively controlled. This development approach enabled the i.v. administration of clinical doses in the range of 0.1 to 0.5 mg total protein, while ensuring liquid drug product storage stability under refrigerated conditions.

  5. Development of a stable low-dose aglycosylated antibody formulation to minimize protein loss during intravenous administration

    PubMed Central

    Morar-Mitrica, Sorina; Puri, Manasi; Beumer Sassi, Alexandra; Fuller, Joshua; Hu, Ping; Crotts, George; Nesta, Douglas

    2015-01-01

    The physical and chemical integrity of a biopharmaceutical must be maintained not only during long-term storage but also during administration. Specifically for the intravenous (i.v.) delivery of a protein drug, loss of stability can occur when the protein formulation is compounded with i.v. bag diluents, thus modifying the original composition of the drug product. Here we present the challenges associated with the delivery of a low-dose, highly potent monoclonal antibody (mAb) via the i.v. route. Through parallel in-use stability studies and conventional formulation development, a drug product was developed in which adsorptive losses and critical oxidative degradation pathways were effectively controlled. This development approach enabled the i.v. administration of clinical doses in the range of 0.1 to 0.5 mg total protein, while ensuring liquid drug product storage stability under refrigerated conditions. PMID:26073995

  6. Examining the freezing process of an intermediate bulk containing an industrially relevant protein

    PubMed Central

    Reinsch, Holger; Spadiut, Oliver; Heidingsfelder, Johannes; Herwig, Christoph

    2015-01-01

    Numerous biopharmaceuticals are produced in recombinant microorganisms in the controlled environment of a bioreactor, a process known as Upstream Process. To minimize product loss due to physico-chemical and enzymatic degradation, the Upstream Process should be directly followed by product purification, known as Downstream Process. However, the Downstream Process can be technologically complex and time-consuming which is why Upstream and Downstream Process usually have to be decoupled temporally and spatially. Consequently, the product obtained after the Upstream Process, known as intermediate bulk, has to be stored. In those circumstances, a freezing procedure is often performed to prevent product loss. However, the freezing process itself is inseparably linked to physico-chemical changes of the intermediate bulk which may in turn damage the product. The present study analysed the behaviour of a Tris-buffered intermediate bulk containing a biopharmaceutically relevant protein during a bottle freezing process. Major damaging mechanisms, like the spatiotemporal redistribution of ion concentrations and pH, and their influence on product stability were investigated. Summarizing, we show the complex events which happen in an intermediate bulk during freezing and explain the different causes for product loss. PMID:25765305

  7. Antioxidant-Based Eutectics of Irbesartan: Viable Multicomponent Forms for the Management of Hypertension.

    PubMed

    Haneef, Jamshed; Chadha, Renu

    2018-04-01

    The present research work highlights the development of multicomponent solid form of the antihypertensive drug irbesartan (IRB) to improve its biopharmaceutical attributes. Mechanochemical synthesis of a new solid form of IRB with coformers having antioxidant properties (syringic acid, nicotinic acid, and ascorbic acid) resulted into three eutectic mixtures (EMs). Formation of eutectic was ascertained by differential scanning calorimetry whereas exact stoichiometry (50/50% w/w) was established by phase diagram and Tamman's triangle. The strong homomeric interaction between individual components and steric hindrances is responsible for the eutectic formation. EMs exhibited superior apparent solubility (five- to nine fold) and significant enhancement in intrinsic dissolution rate (two- to three fold) as compared to the plain drug. In vivo pharmacokinetic and in vivo pharmacodynamic studies revealed a significant improvement in the biopharmaceutical performance of EMs. Marked protection against oxidative stress was observed in EMs over plain drug by controlling the level/activity of plasma H 2 O 2 and antioxidant enzymes (superoxide dismutase and catalase) in the kidney matrix of dexamethasone (Dexa)-induced hypertensive rats. Thus, these solid forms of IRB can serve as viable multicomponent forms to be translated into product development for better therapeutic efficacy in the management of hypertension.

  8. Industrialization of mAb production technology The bioprocessing industry at a crossroads

    PubMed Central

    2009-01-01

    Manufacturing processes for therapeutic monoclonal antibodies (mAbs) have evolved tremendously since the first licensed mAb product in 1986. The rapid growth in product demand for mAbs triggered parallel efforts to increase production capacity through construction of large bulk manufacturing plants as well as improvements in cell culture processes to raise product titers. This combination has led to an excess of manufacturing capacity, and together with improvements in conventional purification technologies, promises nearly unlimited production capacity in the foreseeable future. The increase in titers has also led to a marked reduction in production costs, which could then become a relatively small fraction of sales price for future products which are sold at prices at or near current levels. The reduction of capacity and cost pressures for current state-of-the-art bulk production processes may shift the focus of process development efforts and have important implications for both plant design and product development strategies for both biopharmaceutical and contract manufacturing companies. PMID:20065641

  9. Rational design and optimization of downstream processes of virus particles for biopharmaceutical applications: current advances.

    PubMed

    Vicente, Tiago; Mota, José P B; Peixoto, Cristina; Alves, Paula M; Carrondo, Manuel J T

    2011-01-01

    The advent of advanced therapies in the pharmaceutical industry has moved the spotlight into virus-like particles and viral vectors produced in cell culture holding great promise in a myriad of clinical targets, including cancer prophylaxis and treatment. Even though a couple of cases have reached the clinic, these products have yet to overcome a number of biological and technological challenges before broad utilization. Concerning the manufacturing processes, there is significant research focusing on the optimization of current cell culture systems and, more recently, on developing scalable downstream processes to generate material for pre-clinical and clinical trials. We review the current options for downstream processing of these complex biopharmaceuticals and underline current advances on knowledge-based toolboxes proposed for rational optimization of their processing. Rational tools developed to increase the yet scarce knowledge on the purification processes of complex biologicals are discussed as alternative to empirical, "black-boxed" based strategies classically used for process development. Innovative methodologies based on surface plasmon resonance, dynamic light scattering, scale-down high-throughput screening and mathematical modeling for supporting ion-exchange chromatography show great potential for a more efficient and cost-effective process design, optimization and equipment prototyping. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Sophisticated Cloning, Fermentation, and Purification Technologies for an Enhanced Therapeutic Protein Production: A Review

    PubMed Central

    Gupta, Sanjeev K.; Shukla, Pratyoosh

    2017-01-01

    The protein productions strategies are crucial towards the development of application based research and elucidating the novel purification strategies for industrial production. Currently, there are few innovative avenues are studies for cloning, upstream, and purification through efficient bioprocess development. Such strategies are beneficial for industries as well as proven to be vital for effectual therapeutic protein development. Though, these techniques are well documented, but, there is scope of addition to current knowledge with novel and new approaches and it will pave new avenues in production of recombinant microbial and non-microbial proteins including secondary metabolites. In this review, we have focussed on the recent development in clone selection, various modern fermentation and purification technologies and future directions in these emerging areas. Moreover, we have also highlighted notable perspectives and challenges involved in the bioengineering of such proteins, including quality by design, gene editing and pioneering ideas. The biopharmaceutical industries continue to shift towards more flexible, automated platforms and economical product development, which in turn can help in developing the cost effective processes and affordable drug development for a large community. PMID:28725194

  11. Novel cationic supersaturable nanomicellar systems of raloxifene hydrochloride with enhanced biopharmaceutical attributes.

    PubMed

    Jain, Atul; Kaur, Rajpreet; Beg, Sarwar; Kushwah, Varun; Jain, Sanyog; Singh, Bhupinder

    2018-06-01

    The work describes systematic development of nanomicellar cationic supersaturable self-nanoemulsifying drug delivery systems (CS-SNEDDS) for augmenting oral biopharmaceutical performance of raloxifene hydrochloride. Plain SNEDDS formulation containing Capryol 90, Cremophor RH 40, and Transcutol HP was optimized using D-optimal mixture design. SNEDDS were characterized for emulsification time, globule size, in vitro drug release, and ex vivo permeation. The CS-SNEDDS formulation was prepared from the optimized SNEDDS by adding oleylamine as the cationic charge inducer and HPMC as the polymeric precipitation inhibitor. Evaluation of CS-SNEDDS was carried out through in vitro cell line studies on Caco-2 and MCF-7 cells, in situ perfusion, and in vivo pharmacokinetic studies, which indicated significant improvement in biopharmaceutical attributes of the drug from CS-SNEDDS over plain drug.

  12. Provisional in-silico biopharmaceutics classification (BCS) to guide oral drug product development

    PubMed Central

    Wolk, Omri; Agbaria, Riad; Dahan, Arik

    2014-01-01

    The main objective of this work was to investigate in-silico predictions of physicochemical properties, in order to guide oral drug development by provisional biopharmaceutics classification system (BCS). Four in-silico methods were used to estimate LogP: group contribution (CLogP) using two different software programs, atom contribution (ALogP), and element contribution (KLogP). The correlations (r2) of CLogP, ALogP and KLogP versus measured LogP data were 0.97, 0.82, and 0.71, respectively. The classification of drugs with reported intestinal permeability in humans was correct for 64.3%–72.4% of the 29 drugs on the dataset, and for 81.82%–90.91% of the 22 drugs that are passively absorbed using the different in-silico algorithms. Similar permeability classification was obtained with the various in-silico methods. The in-silico calculations, along with experimental melting points, were then incorporated into a thermodynamic equation for solubility estimations that largely matched the reference solubility values. It was revealed that the effect of melting point on the solubility is minor compared to the partition coefficient, and an average melting point (162.7°C) could replace the experimental values, with similar results. The in-silico methods classified 20.76% (±3.07%) as Class 1, 41.51% (±3.32%) as Class 2, 30.49% (±4.47%) as Class 3, and 6.27% (±4.39%) as Class 4. In conclusion, in-silico methods can be used for BCS classification of drugs in early development, from merely their molecular formula and without foreknowledge of their chemical structure, which will allow for the improved selection, engineering, and developability of candidates. These in-silico methods could enhance success rates, reduce costs, and accelerate oral drug products development. PMID:25284986

  13. Computational knowledge integration in biopharmaceutical research.

    PubMed

    Ficenec, David; Osborne, Mark; Pradines, Joel; Richards, Dan; Felciano, Ramon; Cho, Raymond J; Chen, Richard O; Liefeld, Ted; Owen, James; Ruttenberg, Alan; Reich, Christian; Horvath, Joseph; Clark, Tim

    2003-09-01

    An initiative to increase biopharmaceutical research productivity by capturing, sharing and computationally integrating proprietary scientific discoveries with public knowledge is described. This initiative involves both organisational process change and multiple interoperating software systems. The software components rely on mutually supporting integration techniques. These include a richly structured ontology, statistical analysis of experimental data against stored conclusions, natural language processing of public literature, secure document repositories with lightweight metadata, web services integration, enterprise web portals and relational databases. This approach has already begun to increase scientific productivity in our enterprise by creating an organisational memory (OM) of internal research findings, accessible on the web. Through bringing together these components it has also been possible to construct a very large and expanding repository of biological pathway information linked to this repository of findings which is extremely useful in analysis of DNA microarray data. This repository, in turn, enables our research paradigm to be shifted towards more comprehensive systems-based understandings of drug action.

  14. A Perspective on the Development of Plant-Made Vaccines in the Fight against Ebola Virus

    PubMed Central

    Rosales-Mendoza, Sergio; Nieto-Gómez, Ricardo; Angulo, Carlos

    2017-01-01

    The Ebola virus (EBOV) epidemic indicated a great need for prophylactic and therapeutic strategies. The use of plants for the production of biopharmaceuticals is a concept being adopted by the pharmaceutical industry, with an enzyme for human use currently commercialized since 2012 and some plant-based vaccines close to being commercialized. Although plant-based antibodies against EBOV are under clinical evaluation, the development of plant-based vaccines against EBOV essentially remains an unexplored area. The current technologies for the production of plant-based vaccines include stable nuclear expression, transient expression mediated by viral vectors, and chloroplast expression. Specific perspectives on how these technologies can be applied for developing anti-EBOV vaccines are provided, including possibilities for the design of immunogens as well as the potential of the distinct expression modalities to produce the most relevant EBOV antigens in plants considering yields, posttranslational modifications, production time, and downstream processing. PMID:28344580

  15. Human cell lines for biopharmaceutical manufacturing: history, status, and future perspectives

    PubMed Central

    Dumont, Jennifer; Euwart, Don; Mei, Baisong; Estes, Scott; Kshirsagar, Rashmi

    2016-01-01

    Abstract Biotherapeutic proteins represent a mainstay of treatment for a multitude of conditions, for example, autoimmune disorders, hematologic disorders, hormonal dysregulation, cancers, infectious diseases and genetic disorders. The technologies behind their production have changed substantially since biotherapeutic proteins were first approved in the 1980s. Although most biotherapeutic proteins developed to date have been produced using the mammalian Chinese hamster ovary and murine myeloma (NS0, Sp2/0) cell lines, there has been a recent shift toward the use of human cell lines. One of the most important advantages of using human cell lines for protein production is the greater likelihood that the resulting recombinant protein will bear post-translational modifications (PTMs) that are consistent with those seen on endogenous human proteins. Although other mammalian cell lines can produce PTMs similar to human cells, they also produce non-human PTMs, such as galactose-α1,3-galactose and N-glycolylneuraminic acid, which are potentially immunogenic. In addition, human cell lines are grown easily in a serum-free suspension culture, reproduce rapidly and have efficient protein production. A possible disadvantage of using human cell lines is the potential for human-specific viral contamination, although this risk can be mitigated with multiple viral inactivation or clearance steps. In addition, while human cell lines are currently widely used for biopharmaceutical research, vaccine production and production of some licensed protein therapeutics, there is a relative paucity of clinical experience with human cell lines because they have only recently begun to be used for the manufacture of proteins (compared with other types of cell lines). With additional research investment, human cell lines may be further optimized for routine commercial production of a broader range of biotherapeutic proteins. PMID:26383226

  16. Impact of Magnetic Stirring on Stainless Steel Integrity: Effect on Biopharmaceutical Processing.

    PubMed

    Thompson, Christopher; Wilson, Kelly; Kim, Yoen Joo; Xie, Min; Wang, William K; Wendeler, Michaela

    2017-11-01

    Stainless steel containers are widely used in the pharmaceutical and biopharmaceutical industry for the storage of buffers, process intermediates, and purified drug substance. They are generally held to be corrosion resistant, biocompatible, and nonreactive, although it is well established that trace amounts of metal ions can leach from stainless steel equipment into biopharmaceutical products. We report here that the use of stainless steel containers in conjunction with magnetic stirring bars leads to significantly aggravated metal contamination, consisting of both metal particles and significantly elevated metal ions in solution, the degree of which is several orders of magnitude higher than described for static conditions. Metal particles are analyzed by scanning electron microscopy with electron-dispersive X-ray spectroscopy, and metal content in solution is quantitated at different time points by inductively coupled plasma-mass spectrometry. The concentration of iron, chromium, nickel, and manganese increases with increasing stirring time and speed. We describe the impact of buffer components on the extent of metal particles and ions in solution and illustrate the effect on model proteins. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  17. Milestones in chloroplast genetic engineering: an environmentally friendly era in biotechnology.

    PubMed

    Daniell, Henry; Khan, Muhammad S; Allison, Lori

    2002-02-01

    Chloroplast genomes defied the laws of Mendelian inheritance at the dawn of plant genetics, and continue to defy the mainstream approach to biotechnology, leading the field in an environmentally friendly direction. Recent success in engineering the chloroplast genome for resistance to herbicides, insects, disease and drought, and for production of biopharmaceuticals, has opened the door to a new era in biotechnology. The successful engineering of tomato chromoplasts for high-level transgene expression in fruits, coupled to hyper-expression of vaccine antigens, and the use of plant-derived antibiotic-free selectable markers, augur well for oral delivery of edible vaccines and biopharmaceuticals that are currently beyond the reach of those who need them most.

  18. Industrial systems biology and its impact on synthetic biology of yeast cell factories.

    PubMed

    Fletcher, Eugene; Krivoruchko, Anastasia; Nielsen, Jens

    2016-06-01

    Engineering industrial cell factories to effectively yield a desired product while dealing with industrially relevant stresses is usually the most challenging step in the development of industrial production of chemicals using microbial fermentation processes. Using synthetic biology tools, microbial cell factories such as Saccharomyces cerevisiae can be engineered to express synthetic pathways for the production of fuels, biopharmaceuticals, fragrances, and food flavors. However, directing fluxes through these synthetic pathways towards the desired product can be demanding due to complex regulation or poor gene expression. Systems biology, which applies computational tools and mathematical modeling to understand complex biological networks, can be used to guide synthetic biology design. Here, we present our perspective on how systems biology can impact synthetic biology towards the goal of developing improved yeast cell factories. Biotechnol. Bioeng. 2016;113: 1164-1170. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  19. Establishment of a fully automated microtiter plate-based system for suspension cell culture and its application for enhanced process optimization.

    PubMed

    Markert, Sven; Joeris, Klaus

    2017-01-01

    We developed an automated microtiter plate (MTP)-based system for suspension cell culture to meet the increased demands for miniaturized high throughput applications in biopharmaceutical process development. The generic system is based on off-the-shelf commercial laboratory automation equipment and is able to utilize MTPs of different configurations (6-24 wells per plate) in orbital shaken mode. The shaking conditions were optimized by Computational Fluid Dynamics simulations. The fully automated system handles plate transport, seeding and feeding of cells, daily sampling, and preparation of analytical assays. The integration of all required analytical instrumentation into the system enables a hands-off operation which prevents bottlenecks in sample processing. The modular set-up makes the system flexible and adaptable for a continuous extension of analytical parameters and add-on components. The system proved suitable as screening tool for process development by verifying the comparability of results for the MTP-based system and bioreactors regarding profiles of viable cell density, lactate, and product concentration of CHO cell lines. These studies confirmed that 6 well MTPs as well as 24 deepwell MTPs were predictive for a scale up to a 1000 L stirred tank reactor (scale factor 1:200,000). Applying the established cell culture system for automated media blend screening in late stage development, a 22% increase in product yield was achieved in comparison to the reference process. The predicted product increase was subsequently confirmed in 2 L bioreactors. Thus, we demonstrated the feasibility of the automated MTP-based cell culture system for enhanced screening and optimization applications in process development and identified further application areas such as process robustness. The system offers a great potential to accelerate time-to-market for new biopharmaceuticals. Biotechnol. Bioeng. 2017;114: 113-121. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  20. Free fatty acid particles in protein formulations, part 2: contribution of polysorbate raw material.

    PubMed

    Siska, Christine C; Pierini, Christopher J; Lau, Hollis R; Latypov, Ramil F; Fesinmeyer, R Matthew; Litowski, Jennifer R

    2015-02-01

    Polysorbate 20 (PS20) is a nonionic surfactant frequently used to stabilize protein biopharmaceuticals. During the development of mAb formulations containing PS20, small clouds of particles were observed in solutions stored in vials. The degree of particle formation was dependent on PS20 concentration. The particles were characterized by reversed-phase HPLC after dissolution and labeling with the fluorescent dye 1-pyrenyldiazomethane. The analysis showed that the particles consisted of free fatty acids (FFAs), with the distribution of types consistent with those found in the PS20 raw material. Protein solutions formulated with polysorbate 80, a chemically similar nonionic surfactant, showed a substantial delay in particle formation over time compared with PS20. Multiple lots of polysorbates were evaluated for FFA levels, each exhibiting differences based on polysorbate type and lot. Polysorbates purchased in more recent years show a greater distribution and quantity of FFA and also a greater propensity to form particles. This work shows that the quality control of polysorbate raw materials could play an important role in biopharmaceutical product quality. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  1. Trends in capacity utilization for therapeutic monoclonal antibody production.

    PubMed

    Langer, Eric S

    2009-01-01

    The administration of high doses of therapeutic antibodies requires large-scale, efficient, cost effective manufacturing processes. An understanding of how the industry is using its available production capacity is important for production planning, and facility expansion analysis. Inaccurate production planning for therapeutic antibodies can have serious financial ramifications. In the recent 5(th) Annual Report and Survey of Biopharmaceutical Manufacturing Capacity and Production, 434 qualified respondents from 39 countries were asked to indicate, among other manufacturing issues, their current trends and future predictions with respect to the production capacity utilization of monoclonal antibodies in mammalian cell culture systems. While overall production of monoclonals has expanded dramatically since 2003, the average capacity utilization for mammalian cell culture systems, has decreased each year since 2003. Biomanufacturers aggressively attempt to avoid unanticipated high production demands that can create a capacity crunch. We summarize trends associated with capacity utilization and capacity constraints which indicate that biopharmaceutical manufacturers are doing a better job planning for capacity. The results have been a smoothing of capacity use shifts and an improved ability to forecast capacity and outsourcing needs. Despite these data, today, the instability and financial constraints caused by the current global economic crisis are likely to create unforeseen shifts in our capacity utilization and capacity expansion trends. These shifts will need to be measured in subsequent studies.

  2. Locust bean gum: Exploring its potential for biopharmaceutical applications

    PubMed Central

    Dionísio, Marita; Grenha, Ana

    2012-01-01

    Polysaccharides have been finding, in the last decades, very interesting and useful applications in the biomedical and, specifically, in the biopharmaceutical field. Locust bean gum is a polysaccharide belonging to the group of galactomannans, being extracted from the seeds of the carob tree (Ceratonia siliqua). This polymer displays a number of appealing characteristics for biopharmaceutical applications, among which its high gelling capacity should be highlighted. In this review, we describe critical aspects of locust bean gum, contributing for its role in biopharmaceutical applications. Physicochemical properties, as well as strong and effective synergies with other biomaterials are described. The potential for in vivo biodegradation is explored and the specific biopharmaceutical applications are discussed. PMID:22923958

  3. Extraction and downstream processing of plant-derived recombinant proteins.

    PubMed

    Buyel, J F; Twyman, R M; Fischer, R

    2015-11-01

    Plants offer the tantalizing prospect of low-cost automated manufacturing processes for biopharmaceutical proteins, but several challenges must be addressed before such goals are realized and the most significant hurdles are found during downstream processing (DSP). In contrast to the standardized microbial and mammalian cell platforms embraced by the biopharmaceutical industry, there are many different plant-based expression systems vying for attention, and those with the greatest potential to provide inexpensive biopharmaceuticals are also the ones with the most significant drawbacks in terms of DSP. This is because the most scalable plant systems are based on the expression of intracellular proteins in whole plants. The plant tissue must therefore be disrupted to extract the product, challenging the initial DSP steps with an unusually high load of both particulate and soluble contaminants. DSP platform technologies can accelerate and simplify process development, including centrifugation, filtration, flocculation, and integrated methods that combine solid-liquid separation, purification and concentration, such as aqueous two-phase separation systems. Protein tags can also facilitate these DSP steps, but they are difficult to transfer to a commercial environment and more generic, flexible and scalable strategies to separate target and host cell proteins are preferable, such as membrane technologies and heat/pH precipitation. In this context, clarified plant extracts behave similarly to the feed stream from microbes or mammalian cells and the corresponding purification methods can be applied, as long as they are adapted for plant-specific soluble contaminants such as the superabundant protein RuBisCO. Plant-derived pharmaceutical proteins cannot yet compete directly with established platforms but they are beginning to penetrate niche markets that allow the beneficial properties of plants to be exploited, such as the ability to produce 'biobetters' with tailored glycans, the ability to scale up production rapidly for emergency responses and the ability to produce commodity recombinant proteins on an agricultural scale. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. The biotechnology innovation machine: a source of intelligent biopharmaceuticals for the pharma industry--mapping biotechnology's success.

    PubMed

    Evens, R P; Kaitin, K I

    2014-05-01

    The marriage of biotechnology and the pharmaceutical industry (pharma) is predicated on an evolution in technology and product innovation. It has come as a result of advances in both the science and the business practices of the biotechnology sector in the past 30 years. Biotechnology products can be thought of as "intelligent pharmaceuticals," in that they often provide novel mechanisms of action, new approaches to disease control, higher clinical success rates, improved patient care, extended patent protection, and a significant likelihood of reimbursement. Although the first biotechnology product, insulin, was approved just 32 years ago in 1982, today there are more than 200 biotechnology products commercially available. Research has expanded to include more than 900 biotechnology products in clinical trials. Pharma is substantially engaged in both the clinical development of these products and their commercialization.

  5. Continuous counter-current chromatography for capture and polishing steps in biopharmaceutical production.

    PubMed

    Steinebach, Fabian; Müller-Späth, Thomas; Morbidelli, Massimo

    2016-09-01

    The economic advantages of continuous processing of biopharmaceuticals, which include smaller equipment and faster, efficient processes, have increased interest in this technology over the past decade. Continuous processes can also improve quality assurance and enable greater controllability, consistent with the quality initiatives of the FDA. Here, we discuss different continuous multi-column chromatography processes. Differences in the capture and polishing steps result in two different types of continuous processes that employ counter-current column movement. Continuous-capture processes are associated with increased productivity per cycle and decreased buffer consumption, whereas the typical purity-yield trade-off of classical batch chromatography can be surmounted by continuous processes for polishing applications. In the context of continuous manufacturing, different but complementary chromatographic columns or devices are typically combined to improve overall process performance and avoid unnecessary product storage. In the following, these various processes, their performances compared with batch processing and resulting product quality are discussed based on a review of the literature. Based on various examples of applications, primarily monoclonal antibody production processes, conclusions are drawn about the future of these continuous-manufacturing technologies. Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. The Biopharmaceutics Classification System: subclasses for in vivo predictive dissolution (IPD) methodology and IVIVC.

    PubMed

    Tsume, Yasuhiro; Mudie, Deanna M; Langguth, Peter; Amidon, Greg E; Amidon, Gordon L

    2014-06-16

    The Biopharmaceutics Classification System (BCS) has found widespread utility in drug discovery, product development and drug product regulatory sciences. The classification scheme captures the two most significant factors influencing oral drug absorption; solubility and intestinal permeability and it has proven to be a very useful and a widely accepted starting point for drug product development and drug product regulation. The mechanistic base of the BCS approach has, no doubt, contributed to its wide spread acceptance and utility. Nevertheless, underneath the simplicity of BCS are many detailed complexities, both in vitro and in vivo which must be evaluated and investigated for any given drug and drug product. In this manuscript we propose a simple extension of the BCS classes to include sub-specification of acid (a), base (b) and neutral (c) for classes II and IV. Sub-classification for Classes I and III (high solubility drugs as currently defined) is generally not needed except perhaps in border line solubility cases. It is well known that the , pKa physical property of a drug (API) has a significant impact on the aqueous solubility dissolution of drug from the drug product both in vitro and in vivo for BCS Class II and IV acids and bases, and is the basis, we propose for a sub-classification extension of the original BCS classification. This BCS sub-classification is particularly important for in vivo predictive dissolution methodology development due to the complex and variable in vivo environment in the gastrointestinal tract, with its changing pH, buffer capacity, luminal volume, surfactant luminal conditions, permeability profile along the gastrointestinal tract and variable transit and fasted and fed states. We believe this sub-classification is a step toward developing a more science-based mechanistic in vivo predictive dissolution (IPD) methodology. Such a dissolution methodology can be used by development scientists to assess the likelihood of a formulation and dosage form functioning as desired in humans, can be optimized along with parallel human pharmacokinetic studies to set a dissolution methodology for Quality by Design (QbD) and in vitro-in vivo correlations (IVIVC) and ultimately can be used as a basis for a dissolution standard that will ensure continued in vivo product performance. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. The Biopharmaceutics Classification System: Subclasses for in vivo predictive dissolution (IPD) methodology and IVIVC

    PubMed Central

    Tsume, Yasuhiro; Mudie, Deanna M.; Langguth, Peter; Amidon, Greg E.; Amidon, Gordon L.

    2014-01-01

    The Biopharmaceutics Classification System (BCS) has found widespread utility in drug discovery, product development and drug product regulatory sciences. The classification scheme captures the two most significant factors influencing oral drug absorption; solubility and intestinal permeability and it has proven to be a very useful and a widely accepted starting point for drug product development and drug product regulation. The mechanistic base of the BCS approach has, no doubt, contributed to its wide spread acceptance and utility. Nevertheless, underneath the simplicity of BCS are many detailed complexities, both in vitro and in vivo which must be evaluated and investigated for any given drug and drug product. In this manuscript we propose a simple extension of the BCS classes to include subspecification of acid (a), base (b) and neutral (c) for classes II and IV. Sub-classification for Classes I and III (high solubility drugs as currently defined) is generally not needed except perhaps in border line solubility cases. It is well known that the , pKa physical property of a drug (API) has a significant impact on the aqueous solubility dissolution of drug from the drug product both in vitro and in vivo for BCS Class II and IV acids and bases, and is the basis, we propose for a sub-classification extension of the original BCS classification. This BCS sub-classification is particularly important for in vivo predictive dissolution methodology development due to the complex and variable in vivo environment in the gastrointestinal tract, with its changing pH, buffer capacity, luminal volume, surfactant luminal conditions, permeability profile along the gastrointestinal tract and variable transit and fasted and fed states. We believe this sub-classification is a step toward developing a more science-based mechanistic in vivo predictive dissolution (IPD) methodology. Such a dissolution methodology can be used by development scientists to assess the likelihood of a formulation and dosage form functioning as desired in humans, can be optimized along with parallel human pharmacokinetic studies to set a dissolution methodology for Quality by Design (QbD) and in vitro–in vivo correlations (IVIVC) and ultimately can be used as a basis for a dissolution standard that will ensure continued in vivo product performance. PMID:24486482

  8. Ocular delivery of macromolecules

    PubMed Central

    Kim, Yoo-Chun; Chiang, Bryce; Wu, Xianggen; Prausnitz, Mark R.

    2014-01-01

    Biopharmaceuticals are making increasing impact on medicine, including treatment of indications in the eye. Macromolecular drugs are typically given by physician-administered invasive delivery methods, because non--invasive ocular delivery methods, such as eye drops, and systemic delivery, have low bioavailability and/or poor ocular targeting. There is a need to improve delivery of biopharmaceuticals to enable less-invasive delivery routes, less-frequent dosing through controlled-release drug delivery and improved drug targeting within the eye to increase efficacy and reduce side effects. This review discusses the barriers to drug delivery via various ophthalmic routes of administration in the context of macromolecule delivery and discusses efforts to develop controlled-release systems for delivery of biopharmaceuticals to the eye. The growing number of macromolecular therapies in the eye needs improved drug delivery methods that increase drug efficacy, safety and patient compliance. PMID:24998941

  9. 2015/2016 Quality Risk Management Benchmarking Survey.

    PubMed

    Waldron, Kelly; Ramnarine, Emma; Hartman, Jeffrey

    2017-01-01

    This paper investigates the concept of quality risk management (QRM) maturity as it applies to the pharmaceutical and biopharmaceutical industries, using the results and analysis from a QRM benchmarking survey conducted in 2015 and 2016. QRM maturity can be defined as the effectiveness and efficiency of a quality risk management program, moving beyond "check-the-box" compliance with guidelines such as ICH Q9 Quality Risk Management , to explore the value QRM brings to business and quality operations. While significant progress has been made towards full adoption of QRM principles and practices across industry, the full benefits of QRM have not yet been fully realized. The results of the QRM Benchmarking Survey indicate that the pharmaceutical and biopharmaceutical industries are approximately halfway along the journey towards full QRM maturity. LAY ABSTRACT: The management of risks associated with medicinal product quality and patient safety are an important focus for the pharmaceutical and biopharmaceutical industries. These risks are identified, analyzed, and controlled through a defined process called quality risk management (QRM), which seeks to protect the patient from potential quality-related risks. This paper summarizes the outcomes of a comprehensive survey of industry practitioners performed in 2015 and 2016 that aimed to benchmark the level of maturity with regard to the application of QRM. The survey results and subsequent analysis revealed that the pharmaceutical and biopharmaceutical industries have made significant progress in the management of quality risks over the last ten years, and they are roughly halfway towards reaching full maturity of QRM. © PDA, Inc. 2017.

  10. Microbial metabolites in nutrition, healthcare and agriculture.

    PubMed

    Singh, Rajendra; Kumar, Manoj; Mittal, Anshumali; Mehta, Praveen Kumar

    2017-05-01

    Microorganisms are a promising source of an enormous number of natural products, which have made significant contribution to almost each sphere of human, plant and veterinary life. Natural compounds obtained from microorganisms have proved their value in nutrition, agriculture and healthcare. Primary metabolites, such as amino acids, enzymes, vitamins, organic acids and alcohol are used as nutritional supplements as well as in the production of industrial commodities through biotransformation. Whereas, secondary metabolites are organic compounds that are largely obtained by extraction from plants or tissues. They are primarily used in the biopharmaceutical industry due to their capability to reduce infectious diseases in human beings and animals and thus increase the life expectancy. Additionally, microorganisms and their products inevitably play a significant role in sustainable agriculture development.

  11. The application of STEP-technology® for particle and protein dispersion detection studies in biopharmaceutical research.

    PubMed

    Gross-Rother, J; Herrmann, N; Blech, M; Pinnapireddy, S R; Garidel, P; Bakowsky, U

    2018-05-30

    Particle detection and analysis techniques are essential in biopharmaceutical industries to evaluate the quality of various parenteral formulations regarding product safety, product quality and to meet the regulations set by the authority agencies. Several particle analysis systems are available on the market, but for the operator, it is quite challenging to identify the suitable method to analyze the sample. At the same time these techniques are the basis to gain a better understanding in biophysical processes, e.g. protein interaction and aggregation processes. The STEP-Technology® (Space and Time resolved Extinction Profiles), as used in the analytical photocentrifuge LUMiSizer®, has been shown to be an effective and promising technique to investigate particle suspensions and emulsions in various fields. In this study, we evaluated the potentials and limitations of this technique for biopharmaceutical model samples. For a first experimental approach, we measured silica and polystyrene (PS) particle standard suspensions with given particle density and refractive index (RI). The concluding evaluation was performed using a variety of relevant data sets to demonstrate the significant influences of the particle density for the final particle size distribution (PSD). The most challenging property required for successful detection, turbidity, was stated and limits have been set based on the depicted absorbance value at 320 nm (A320 values). Furthermore, we produced chemically cross-linked protein particle suspensions to model physically "stable" protein aggregates. These results of LUMiSizer® analysis have been compared to the orthogonal methods of nanoparticle tracking analysis (NTA), dynamic light scattering (DLS) and micro-flow imaging (MFI). Sedimentation velocity distributions showed similar tendencies, but the PSDs and absolute size values could not be obtained. In conclusion, we could demonstrate some applications as well as limitations of this technique for biopharmaceutical samples. In comparison to orthogonal methods this technique is a great complementary approach if particle data e.g. density or refractive index can be determined. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. High-throughput screening and stability optimization of anti-streptavidin IgG1 and IgG2 formulations.

    PubMed

    Alekseychyk, Larysa; Su, Cheng; Becker, Gerald W; Treuheit, Michael J; Razinkov, Vladimir I

    2014-10-01

    Selection of a suitable formulation that provides adequate product stability is an important aspect of the development of biopharmaceutical products. Stability of proteins includes not only resistance to chemical modifications but also conformational and colloidal stabilities. While chemical degradation of antibodies is relatively easy to detect and control, propensity for conformational changes and/or aggregation during manufacturing or long-term storage is difficult to predict. In many cases, the formulation factors that increase one type of stability may significantly decrease another type under the same or different conditions. Often compromise is necessary to minimize the adverse effects of an antibody formulation by careful optimization of multiple factors responsible for overall stability. In this study, high-throughput stress and characterization techniques were applied to 96 formulations of anti-streptavidin antibodies (an IgG1 and an IgG2) to choose optimal formulations. Stress and analytical methods applied in this study were 96-well plate based using an automated liquid handling system to prepare the different formulations and sample plates. Aggregation and clipping propensity were evaluated by temperature and mechanical stresses. Multivariate regression analysis of high-throughput data was performed to find statistically significant formulation factors that alter measured parameters such as monomer percentage or unfolding temperature. The results of the regression models were used to maximize the stabilities of antibodies under different formulations and to find the optimal formulation space for each molecule. Comparison of the IgG1 and IgG2 data indicated an overall greater stability of the IgG1 molecule under the conditions studied. The described method can easily be applied to both initial preformulation screening and late-stage formulation development of biopharmaceutical products. © 2014 Society for Laboratory Automation and Screening.

  13. Optimization of a micro-scale, high throughput process development tool and the demonstration of comparable process performance and product quality with biopharmaceutical manufacturing processes.

    PubMed

    Evans, Steven T; Stewart, Kevin D; Afdahl, Chris; Patel, Rohan; Newell, Kelcy J

    2017-07-14

    In this paper, we discuss the optimization and implementation of a high throughput process development (HTPD) tool that utilizes commercially available micro-liter sized column technology for the purification of multiple clinically significant monoclonal antibodies. Chromatographic profiles generated using this optimized tool are shown to overlay with comparable profiles from the conventional bench-scale and clinical manufacturing scale. Further, all product quality attributes measured are comparable across scales for the mAb purifications. In addition to supporting chromatography process development efforts (e.g., optimization screening), comparable product quality results at all scales makes this tool is an appropriate scale model to enable purification and product quality comparisons of HTPD bioreactors conditions. The ability to perform up to 8 chromatography purifications in parallel with reduced material requirements per run creates opportunities for gathering more process knowledge in less time. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  14. Fragments of the V1/V2 domain of HIV-1 glycoprotein 120 engineered for improved binding to the broadly neutralizing PG9 antibody.

    PubMed

    Morales, Javier F; Yu, Bin; Perez, Gerardo; Mesa, Kathryn A; Alexander, David L; Berman, Phillip W

    2016-09-01

    The V1/V2 domain of the HIV-1 envelope protein gp120 possesses two important epitopes: a glycan-dependent epitope recognized by the prototypic broadly neutralizing monoclonal antibody (bN-mAb), PG9, as well as an epitope recognized by non-neutralizing antibodies that has been associated with protection from HIV infection in the RV144 HIV vaccine trial. Because both of these epitopes are poorly immunogenic in the context of full length envelope proteins, immunization with properly folded and glycosylated fragments (scaffolds) represents a potential way to enhance the immune response to these specific epitopes. Previous studies showed that V1/V2 domain scaffolds could be produced from a few selected isolates, but not from many of the isolates that would be advantageous in a multivalent vaccine. In this paper, we used a protein engineering approach to improve the conformational stability and antibody binding activity of V1/V2 domain scaffolds from multiple diverse isolates, including several that were initially unable to bind the prototypic PG9 bN-mAb. Significantly, this effort required replicating both the correct glycan structure as well as the β-sheet structure required for PG9 binding. Although scaffolds incorporating the glycans required for PG9 binding (e.g., mannose-5) can be produced using glycosylation inhibitors (e.g., swainsonine), or mutant cell lines (e.g. GnTI(-) 293 HEK), these are not practical for biopharmaceutical production of proteins intended for clinical trials. In this report, we describe engineered glycopeptide scaffolds from three different clades of HIV-1 that bind PG9 with high affinity when expressed in a wildtype cell line suitable for biopharmaceutical production. The mutations that improved PG9 binding to scaffolds produced in normal cells included amino acid positions outside of the antibody contact region designed to stabilize the β-sheet and turn structures. The scaffolds produced address three major problems in HIV vaccine development: (1) improving antibody responses to poorly immunogenic epitopes in the V1/V2 domain; (2) eliminating antibody responses to highly immunogenic (decoy) epitopes outside the V1/V2 domain; and (3) enabling the production of V1/V2 scaffolds in a cell line suitable for biopharmaceutical production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Biosimilars: Key regulatory considerations and similarity assessment tools

    PubMed Central

    Wang, Xiao‐Zhuo Michelle; Conlon, Hugh D.; Anderson, Scott; Ryan, Anne M.; Bose, Arindam

    2017-01-01

    Abstract A biosimilar drug is defined in the US Food and Drug Administration (FDA) guidance document as a biopharmaceutical that is highly similar to an already licensed biologic product (referred to as the reference product) notwithstanding minor differences in clinically inactive components and for which there are no clinically meaningful differences in purity, potency, and safety between the two products. The development of biosimilars is a challenging, multistep process. Typically, the assessment of similarity involves comprehensive structural and functional characterization throughout the development of the biosimilar in an iterative manner and, if required by the local regulatory authority, an in vivo nonclinical evaluation, all conducted with direct comparison to the reference product. In addition, comparative clinical pharmacology studies are conducted with the reference product. The approval of biosimilars is highly regulated although varied across the globe in terms of nomenclature and the precise criteria for demonstrating similarity. Despite varied regulatory requirements, differences between the proposed biosimilar and the reference product must be supported by strong scientific evidence that these differences are not clinically meaningful. This review discusses the challenges faced by pharmaceutical companies in the development of biosimilars. PMID:28842986

  16. An overview on the strategies to exploit rice endosperm as production platform for biopharmaceuticals.

    PubMed

    Takaiwa, Fumio; Wakasa, Yuhya; Hayashi, Shimpei; Kawakatsu, Taiji

    2017-10-01

    Cereal seed has been utilized as production platform for high-value biopharmaceutical proteins. Especially, protein bodies (PBs) in seeds are not only natural specialized storage organs of seed storage proteins (SSPs), but also suitable intracellular deposition compartment for recombinant proteins. When various recombinant proteins were produced as secretory proteins by attaching N terminal ER signal peptide and C terminal KDEL endoplasmic reticulum (ER) retention signal or as fusion proteins with SSPs, high amounts of recombinant proteins can be predominantly accumulated in the PBs. Recombinant proteins bioencapsulated in PBs exhibit high resistance to digestive enzymes in gastrointestinal tract than other intracellular compartments and are highly stable at ambient temperature, thus allowing oral administration of PBs containing recombinant proteins as oral drugs or functional nutrients in cost-effective minimum processed formulation. In this review, we would like to address key factors determining accumulation levels of recombinant proteins in PBs. Understanding of bottle neck parts and improvement of specific deposition to PBs result in much higher levels of production of high quality recombinant proteins. Copyright © 2017. Published by Elsevier B.V.

  17. Hybrid modeling for quality by design and PAT-benefits and challenges of applications in biopharmaceutical industry.

    PubMed

    von Stosch, Moritz; Davy, Steven; Francois, Kjell; Galvanauskas, Vytautas; Hamelink, Jan-Martijn; Luebbert, Andreas; Mayer, Martin; Oliveira, Rui; O'Kennedy, Ronan; Rice, Paul; Glassey, Jarka

    2014-06-01

    This report highlights the drivers, challenges, and enablers of the hybrid modeling applications in biopharmaceutical industry. It is a summary of an expert panel discussion of European academics and industrialists with relevant scientific and engineering backgrounds. Hybrid modeling is viewed in its broader sense, namely as the integration of different knowledge sources in form of parametric and nonparametric models into a hybrid semi-parametric model, for instance the integration of fundamental and data-driven models. A brief description of the current state-of-the-art and industrial uptake of the methodology is provided. The report concludes with a number of recommendations to facilitate further developments and a wider industrial application of this modeling approach. These recommendations are limited to further exploiting the benefits of this methodology within process analytical technology (PAT) applications in biopharmaceutical industry. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Preparative Purification of Recombinant Proteins: Current Status and Future Trends

    PubMed Central

    Saraswat, Mayank; Ravidá, Alessandra; Holthofer, Harry

    2013-01-01

    Advances in fermentation technologies have resulted in the production of increased yields of proteins of economic, biopharmaceutical, and medicinal importance. Consequently, there is an absolute requirement for the development of rapid, cost-effective methodologies which facilitate the purification of such products in the absence of contaminants, such as superfluous proteins and endotoxins. Here, we provide a comprehensive overview of a selection of key purification methodologies currently being applied in both academic and industrial settings and discuss how innovative and effective protocols such as aqueous two-phase partitioning, membrane chromatography, and high-performance tangential flow filtration may be applied independently of or in conjunction with more traditional protocols for downstream processing applications. PMID:24455685

  19. [Research progress on current pharmacokinetic evaluation of Chinese herbal medicines].

    PubMed

    Li, Guofu; Zhao, Haoru; Yang, Jin

    2011-03-01

    In order to prove safety and efficacy, herbal medicines must undergo the rigorous scientific researches such as pharmacokinetic and bioavailability, before they are put on the market in the foreign countries. Botanical Drug Products promulgated by the US FDA could guide industry sponsors to develop herbal drugs, which was also an important reference for investigating Chinese herbal medicines. This paper reviews and discusses novel approaches for how to assess systemic exposure and pharmacokinetic of Chinese herbal medicines, which were in line with FDA guidance. This mainly focus on identifying pharmacokinetic markers of botanical products, integral pharmacokinetic study of multiple components, Biopharmaceutics drug disposition classification system, and population pharmacokinetic-pharmacodynamic study in herb-drug interaction.

  20. Extraction and purification methods in downstream processing of plant-based recombinant proteins.

    PubMed

    Łojewska, Ewelina; Kowalczyk, Tomasz; Olejniczak, Szymon; Sakowicz, Tomasz

    2016-04-01

    During the last two decades, the production of recombinant proteins in plant systems has been receiving increased attention. Currently, proteins are considered as the most important biopharmaceuticals. However, high costs and problems with scaling up the purification and isolation processes make the production of plant-based recombinant proteins a challenging task. This paper presents a summary of the information regarding the downstream processing in plant systems and provides a comprehensible overview of its key steps, such as extraction and purification. To highlight the recent progress, mainly new developments in the downstream technology have been chosen. Furthermore, besides most popular techniques, alternative methods have been described. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Diatom-Specific Oligosaccharide and Polysaccharide Structures Help to Unravel Biosynthetic Capabilities in Diatoms.

    PubMed

    Gügi, Bruno; Le Costaouec, Tinaïg; Burel, Carole; Lerouge, Patrice; Helbert, William; Bardor, Muriel

    2015-09-18

    Diatoms are marine organisms that represent one of the most important sources of biomass in the ocean, accounting for about 40% of marine primary production, and in the biosphere, contributing up to 20% of global CO₂ fixation. There has been a recent surge in developing the use of diatoms as a source of bioactive compounds in the food and cosmetic industries. In addition, the potential of diatoms such as Phaeodactylum tricornutum as cell factories for the production of biopharmaceuticals is currently under evaluation. These biotechnological applications require a comprehensive understanding of the sugar biosynthesis pathways that operate in diatoms. Here, we review diatom glycan and polysaccharide structures, thus revealing their sugar biosynthesis capabilities.

  2. Biopharmaceutical characterization of praziquantel cocrystals and cyclodextrin complexes prepared by grinding.

    PubMed

    Cugovčan, Martina; Jablan, Jasna; Lovrić, Jasmina; Cinčić, Dominik; Galić, Nives; Jug, Mario

    2017-04-15

    Mechanochemical activation using several different co-grinding additives was applied as a green chemistry approach to improve physiochemical and biopharmaceutical properties of praziquantel (PZQ). Liquid assisted grinding with an equimolar amount of citric acid (CA), malic acid (MA), salicylic acid (SA) and tartaric acid (TA) gained in cocrystal formation, which all showed pH-dependent solubility and dissolution rate. However, the most soluble cocrystal of PZQ with MA was chemically unstable, as seen during the stability testing. Equimolar cyclodextrin complexes prepared by neat grinding with amorphous hydroxypropyl-β-cyclodextrin (HPβCD) and randomly methylated β-cyclodextrin (MEβCD) showed the highest improvement in drug solubility and the dissolution rate, but only PZQ/HPβCD product presented an acceptable chemical and photostability profile. A combined approach, by co-grinding the drug with both MA and HPβCD in equimolar ratio, also gave highly soluble amorphous product which again was chemical instable and therefore not suitable for the pharmaceutical use. Studies on Caco-2 monolayer confirmed the biocompatibility of PZQ/HPβCD complex and showed that complexation did not adversely affect the intrinsically high PZQ permeability (P app (PZQ)=(3.72±0.33)×10 -5 cms -1 and P app (PZQ/HPβCD)=(3.65±0.21)×10 -5 cms -1 ; p>0.05). All this confirmed that the co-grinding with the proper additive is as a promising strategy to improve biopharmaceutical properties of the drug. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Managing Innovation to Maximize Value Along the Discovery-Translation-Application Continuum.

    PubMed

    Waldman, S A; Terzic, A

    2017-01-01

    Success in pharmaceutical development led to a record 51 drugs approved in the past year, surpassing every previous year since 1950. Technology innovation enabled identification and exploitation of increasingly precise disease targets ensuring next generation diagnostic and therapeutic products for patient management. The expanding biopharmaceutical portfolio stands, however, in contradistinction to the unsustainable costs that reflect remarkable challenges of clinical development programs. This annual Therapeutic Innovations issue juxtaposes advances in translating molecular breakthroughs into transformative therapies with essential considerations for lowering attrition and improving the cost-effectiveness of the drug-development paradigm. Realizing the discovery-translation-application continuum mandates a congruent approval, adoption, and access triad. © 2016 ASCPT.

  4. Managing Innovation to Maximize Value Along the Discovery-Translation-Application Continuum

    PubMed Central

    Waldman, SA; Terzic, A

    2017-01-01

    Success in pharmaceutical development led to a record 51 drug approved in the past year, surpassing every previous year since 1950. Technology innovation enabled identification and exploitation of increasingly precise disease targets ensuring a next generation diagnostic and therapeutic products for patient management. The expanding biopharmaceutical portfolio stands however in contradistinction to the unsustainable costs that reflect remarkable challenges of clinical development programs. This annual Therapeutic Innovations issue juxtaposes advances in translating molecular breakthroughs into transformative therapies with essential considerations for lowering attrition and improving the cost-effectiveness of the drug development paradigm. Realizing the discovery-translation-application continuum mandates a congruent approval, adoption and access triad. PMID:27869291

  5. Remote controlled capsules in human drug absorption (HDA) studies.

    PubMed

    Wilding, Ian R; Prior, David V

    2003-01-01

    The biopharmaceutical complexity of today's new drug candidates provides significant challenges for pharmaceutical scientists in terms of both candidate selection and optimizing subsequent development strategy. In addition, life cycle management of marketed drugs has become an important income stream for pharmaceutical companies, but the selection of least risk/highest benefit strategies is far from simple. The proactive adoption of human drug absorption (HDA) studies using remote controlled capsules offers the pharmaceutical scientist significant guidance for planning a route through the maze of product development. This review examines the position of HDA studies in drug development, using a variety of case histories and an insightful update on remote controlled capsules to achieve site-specific delivery.

  6. Human cells: new platform for recombinant therapeutic protein production.

    PubMed

    Swiech, Kamilla; Picanço-Castro, Virgínia; Covas, Dimas Tadeu

    2012-07-01

    The demand for recombinant therapeutic proteins is significantly increasing. There is a constant need to improve the existing expression systems, and also developing novel approaches to face the therapeutic proteins demands. Human cell lines have emerged as a new and powerful alternative for the production of human therapeutic proteins because this expression system is expected to produce recombinant proteins with post translation modifications more similar to their natural counterpart and reduce the potential immunogenic reactions against nonhuman epitopes. Currently, little information about the cultivation of human cells for the production of biopharmaceuticals is available. These cells have shown efficient production in laboratory scale and represent an important tool for the pharmaceutical industry. This review presents the cell lines available for large-scale recombinant proteins production and evaluates critically the advantages of this expression system in comparison with other expression systems for recombinant therapeutic protein production. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Interactions between Therapeutic Proteins and Acrylic Acid Leachable.

    PubMed

    Liu, Dengfeng; Nashed-Samuel, Yasser; Bondarenko, Pavel V; Brems, David N; Ren, Da

    2012-01-01

    Leachables are chemical compounds that migrate from manufacturing equipment, primary containers and closure systems, and packaging components into biopharmaceutical and pharmaceutical products. Acrylic acid (at concentration around 5 μg/mL) was detected as leachable in syringes from one of the potential vendors (X syringes). In order to evaluate the potential impact of acrylic acid on therapeutic proteins, an IgG 2 molecule was filled into a sterilized X syringe and then incubated at 45 °C for 45 days in a pH 5 acetate buffer. We discovered that acrylic acid can interact with proteins at three different sites: (1) the lysine side chain, (2) the N-terminus, and (3) the histidine side chain, by the Michael reaction. In this report, the direct interactions between acrylic acid leachable and a biopharmaceutical product were demonstrated and the reaction mechanism was proposed. Even thought a small amount (from 0.02% to 0.3%) of protein was found to be modified by acrylic acid, the modified protein can potentially be harmful due to the toxicity of acrylic acid. After being modified by acrylic acid, the properties of the therapeutic protein may change due to charge and hydrophobicity variations. Acrylic acid was detected to migrate from syringes (Vendor X) into a therapeutic protein solution (at a concentration around 5 μg/mL). In this study, we discovered that acrylic acid can modify proteins at three different sites: (1) the lysine side chain, 2) the N-terminus, and 3) the histidine side chain, by the Michael reaction. In this report, the direct interactions between acrylic acid leachable and a biopharmaceutical product were demonstrated and the reaction mechanism was proposed.

  8. In Vivo Predictive Dissolution (IPD) and Biopharmaceutical Modeling and Simulation: Future Use of Modern Approaches and Methodologies in a Regulatory Context.

    PubMed

    Lennernäs, H; Lindahl, A; Van Peer, A; Ollier, C; Flanagan, T; Lionberger, R; Nordmark, A; Yamashita, S; Yu, L; Amidon, G L; Fischer, V; Sjögren, E; Zane, P; McAllister, M; Abrahamsson, B

    2017-04-03

    The overall objective of OrBiTo, a project within Innovative Medicines Initiative (IMI), is to streamline and optimize the development of orally administered drug products through the creation and efficient application of biopharmaceutics tools. This toolkit will include both experimental and computational models developed on improved understanding of the highly dynamic gastrointestinal (GI) physiology relevant to the GI absorption of drug products in both fasted and fed states. A part of the annual OrBiTo meeting in 2015 was dedicated to the presentation of the most recent progress in the development of the regulatory use of PBPK in silico modeling, in vivo predictive dissolution (IPD) tests, and their application to biowaivers. There are still several areas for improvement of in vitro dissolution testing by means of generating results relevant for the intraluminal conditions in the GI tract. The major opportunity is probably in combining IPD testing and physiologically based in silico models where the in vitro data provide input to the absorption predictions. The OrBiTo project and other current research projects include definition of test media representative for the more distal parts of the GI tract, models capturing supersaturation and precipitation phenomena, and influence of motility waves on shear and other forces of hydrodynamic origin, addressing the interindividual variability in composition and characteristics of GI fluids, food effects, definition of biorelevant buffer systems, and intestinal water volumes. In conclusion, there is currently a mismatch between the extensive industrial usage of modern in vivo predictive tools and very limited inclusion of such data in regulatory files. However, there is a great interest among all stakeholders to introduce recent progresses in prediction of in vivo GI drug absorption into regulatory context.

  9. Physiologically Based Absorption Modeling to Design Extended-Release Clinical Products for an Ester Prodrug.

    PubMed

    Ding, Xuan; Day, Jeffrey S; Sperry, David C

    2016-11-01

    Absorption modeling has demonstrated its great value in modern drug product development due to its utility in understanding and predicting in vivo performance. In this case, we integrated physiologically based modeling in the development processes to effectively design extended-release (ER) clinical products for an ester prodrug LY545694. By simulating the trial results of immediate-release products, we delineated complex pharmacokinetics due to prodrug conversion and established an absorption model to describe the clinical observations. This model suggested the prodrug has optimal biopharmaceutical properties to warrant developing an ER product. Subsequently, we incorporated release profiles of prototype ER tablets into the absorption model to simulate the in vivo performance of these products observed in an exploratory trial. The models suggested that the absorption of these ER tablets was lower than the IR products because the extended release from the formulations prevented the drug from taking advantage of the optimal absorption window. Using these models, we formed a strategy to optimize the ER product to minimize the impact of the absorption window limitation. Accurate prediction of the performance of these optimized products by modeling was confirmed in a third clinical trial.

  10. Application of biocontrol agents in forest nurseries

    USDA-ARS?s Scientific Manuscript database

    Bare-root conifer seedling culture consists of growing seedlings (sown or transplanted) in soil, and is the predominant method for supplying America’s need for healthy regeneration stock to produce and sustain forests, wildlife food sources, fiber, wood products, paper, bio-pharmaceuticals and now p...

  11. Biopharmaceutical potentials of Prosopis spp. (Mimosaceae, Leguminosa).

    PubMed

    Henciya, Santhaseelan; Seturaman, Prabha; James, Arthur Rathinam; Tsai, Yi-Hong; Nikam, Rahul; Wu, Yang-Chang; Dahms, Hans-Uwe; Chang, Fang Rong

    2017-01-01

    Prosopis is a commercially important plant genus, which has been used since ancient times, particularly for medicinal purposes. Traditionally, Paste, gum, and smoke from leaves and pods are applied for anticancer, antidiabetic, anti-inflammatory, and antimicrobial purposes. Components of Prosopis such as flavonoids, tannins, alkaloids, quinones, or phenolic compounds demonstrate potentials in various biofunctions, such as analgesic, anthelmintic, antibiotic, antiemetic, microbial antioxidant, antimalarial, antiprotozoal, antipustule, and antiulcer activities; enhancement of H + , K + , ATPases; oral disinfection; and probiotic and nutritional effects; as well as in other biopharmaceutical applications, such as binding abilities for tablet production. The compound juliflorine provides a cure in Alzheimer disease by inhibiting acetylcholine esterase at cholinergic brain synapses. Some indirect medicinal applications of Prosopis spp. are indicated, including antimosquito larvicidal activity, chemical synthesis by associated fungal or bacterial symbionts, cyanobacterial degradation products, "mesquite" honey and pollens with high antioxidant activity, etc. This review will reveal the origins, distribution, folk uses, chemical components, biological functions, and applications of different representatives of Prosopis. Copyright © 2016. Published by Elsevier B.V.

  12. Second International Conference on Accelerating Biopharmaceutical Development

    PubMed Central

    2009-01-01

    The Second International Conference on Accelerating Biopharmaceutical Development was held in Coronado, California. The meeting was organized by the Society for Biological Engineering (SBE) and the American Institute of Chemical Engineers (AIChE); SBE is a technological community of the AIChE. Bob Adamson (Wyeth) and Chuck Goochee (Centocor) were co-chairs of the event, which had the theme “Delivering cost-effective, robust processes and methods quickly and efficiently.” The first day focused on emerging disruptive technologies and cutting-edge analytical techniques. Day two featured presentations on accelerated cell culture process development, critical quality attributes, specifications and comparability, and high throughput protein formulation development. The final day was dedicated to discussion of technology options and new analysis methods provided by emerging disruptive technologies; functional interaction, integration and synergy in platform development; and rapid and economic purification process development. PMID:20065637

  13. High-throughput miniaturized bioreactors for cell culture process development: reproducibility, scalability, and control.

    PubMed

    Rameez, Shahid; Mostafa, Sigma S; Miller, Christopher; Shukla, Abhinav A

    2014-01-01

    Decreasing the timeframe for cell culture process development has been a key goal toward accelerating biopharmaceutical development. Advanced Microscale Bioreactors (ambr™) is an automated micro-bioreactor system with miniature single-use bioreactors with a 10-15 mL working volume controlled by an automated workstation. This system was compared to conventional bioreactor systems in terms of its performance for the production of a monoclonal antibody in a recombinant Chinese Hamster Ovary cell line. The miniaturized bioreactor system was found to produce cell culture profiles that matched across scales to 3 L, 15 L, and 200 L stirred tank bioreactors. The processes used in this article involve complex feed formulations, perturbations, and strict process control within the design space, which are in-line with processes used for commercial scale manufacturing of biopharmaceuticals. Changes to important process parameters in ambr™ resulted in predictable cell growth, viability and titer changes, which were in good agreement to data from the conventional larger scale bioreactors. ambr™ was found to successfully reproduce variations in temperature, dissolved oxygen (DO), and pH conditions similar to the larger bioreactor systems. Additionally, the miniature bioreactors were found to react well to perturbations in pH and DO through adjustments to the Proportional and Integral control loop. The data presented here demonstrates the utility of the ambr™ system as a high throughput system for cell culture process development. © 2014 American Institute of Chemical Engineers.

  14. With the help of a foreign ally: biopharmaceutical innovation in India after TRIPS.

    PubMed

    Angeli, Federica

    2014-05-01

    This article investigates the implications of the Agreement on Trade-Related Aspects of Intellectual Property Rights (TRIPS), which reached full-fledged implementation in 2005, for the patenting activity of Indian biopharmaceutical companies. The Indian biopharmaceutical industry is well-known for its generic producers, whose business models capitalize on the opportunity to reverse-engineer patented compounds and produce them at low costs through process innovation. By strengthening intellectual property rights, TRIPS determined a major regulative change, which presents the characteristics of an institutional shock. The examination of the patenting and alliance activity of 123 Indian biopharmaceutical firms between 1999 and 2009 reveals two important insights. First, the innovation outcome of Indian biopharmaceuticals has sharply increased during the transition to TRIPS-compliant regulation, suggesting that Indian companies have been capable and willing to transit from an imitation-based to an innovation-based business model. Second, those biopharmaceutical firms holding cross-border alliances to foreign partners have proved significantly more successful at enhancing their innovative capability. This research delivers a multifold contribution to the policy debate surrounding the enforcement of TRIPS in emerging economies. First, it suggests that such regulatory change may have encouraged biopharmaceutical innovation in India, despite the sceptical voices who did not foresee any benefits because of inherent inertia of the industry. Second, by arguing and testing the advantages of foreign partnerships, this research highlights that the much feared return of pharmaceutical foreign companies to India could instead favour adaptation to institutional change. Implications for Indian public health are particularly critical. The impact of TRIPS on drug pricing and on the capability--and willingness--of Indian biopharmaceuticals to invest in local health conditions are two crucial points of discussion.

  15. The therapeutic monoclonal antibody market

    PubMed Central

    Ecker, Dawn M; Jones, Susan Dana; Levine, Howard L

    2015-01-01

    Since the commercialization of the first therapeutic monoclonal antibody product in 1986, this class of biopharmaceutical products has grown significantly so that, as of November 10, 2014, forty-seven monoclonal antibody products have been approved in the US or Europe for the treatment of a variety of diseases, and many of these products have also been approved for other global markets. At the current approval rate of ∼ four new products per year, ∼70 monoclonal antibody products will be on the market by 2020, and combined world-wide sales will be nearly $125 billion. PMID:25529996

  16. Study on Biopharmaceutics Classification and Oral Bioavailability of a Novel Multikinase Inhibitor NCE for Cancer Therapy

    PubMed Central

    Yang, Yang; Fan, Chun-Mei; He, Xuan; Ren, Ke; Zhang, Jin-Kun; He, Ying-Ju; Yu, Luo-Ting; Zhao, Ying-Lan; Gong, Chang-Yang; Zheng, Yu; Song, Xiang-Rong; Zeng, Jun

    2014-01-01

    Specific biopharmaceutics classification investigation and study on phamacokinetic profile of a novel drug candidate (2-methylcarbamoyl-4-{4-[3- (trifluoromethyl) benzamido] phenoxy} pyridinium 4-methylbenzenesulfonate monohydrate, NCE) were carried out. Equilibrium solubility and intrinsic dissolution rate (IDR) of NCE were estimated in different phosphate buffers. Effective intestinal permeability (Peff) of NCE was determined using single-pass intestinal perfusion technique in rat duodenum, jejunum and ileum at three concentrations. Theophylline (high permeability) and ranitidine (low permeability) were also applied to access the permeability of NCE as reference compounds. The bioavailability after intragastrical and intravenous administration was measured in beagle dogs. The solubility of NCE in tested phosphate buffers was quite low with the maximum solubility of 81.73 μg/mL at pH 1.0. The intrinsic dissolution ratio of NCE was 1 × 10−4 mg·min−1·cm−2. The Peff value of NCE in all intestinal segments was more proximate to the high-permeability reference theophylline. Therefore, NCE was classified as class II drug according to Biopharmaceutics Classification System due to its low solubility and high intestinal permeability. In addition, concentration-dependent permeability was not observed in all the segments, indicating that there might be passive transportation for NCE. The absolute oral bioavailability of NCE in beagle dogs was 26.75%. Therefore, dissolution promotion will be crucial for oral formulation development and intravenous administration route will also be suggested for further NCE formulation development. All the data would provide a reference for biopharmaceutics classification research of other novel drug candidates. PMID:24776763

  17. Study on biopharmaceutics classification and oral bioavailability of a novel multikinase inhibitor NCE for cancer therapy.

    PubMed

    Yang, Yang; Fan, Chun-Mei; He, Xuan; Ren, Ke; Zhang, Jin-Kun; He, Ying-Ju; Yu, Luo-Ting; Zhao, Ying-Lan; Gong, Chang-Yang; Zheng, Yu; Song, Xiang-Rong; Zeng, Jun

    2014-04-25

    Specific biopharmaceutics classification investigation and study on phamacokinetic profile of a novel drug candidate (2-methylcarbamoyl-4-{4-[3- (trifluoromethyl) benzamido] phenoxy} pyridinium 4-methylbenzenesulfonate monohydrate, NCE) were carried out. Equilibrium solubility and intrinsic dissolution rate (IDR) of NCE were estimated in different phosphate buffers. Effective intestinal permeability (P(eff)) of NCE was determined using single-pass intestinal perfusion technique in rat duodenum, jejunum and ileum at three concentrations. Theophylline (high permeability) and ranitidine (low permeability) were also applied to access the permeability of NCE as reference compounds. The bioavailability after intragastrical and intravenous administration was measured in beagle dogs. The solubility of NCE in tested phosphate buffers was quite low with the maximum solubility of 81.73 μg/mL at pH 1.0. The intrinsic dissolution ratio of NCE was 1 × 10⁻⁴ mg·min⁻¹·cm⁻². The P(eff) value of NCE in all intestinal segments was more proximate to the high-permeability reference theophylline. Therefore, NCE was classified as class II drug according to Biopharmaceutics Classification System due to its low solubility and high intestinal permeability. In addition, concentration-dependent permeability was not observed in all the segments, indicating that there might be passive transportation for NCE. The absolute oral bioavailability of NCE in beagle dogs was 26.75%. Therefore, dissolution promotion will be crucial for oral formulation development and intravenous administration route will also be suggested for further NCE formulation development. All the data would provide a reference for biopharmaceutics classification research of other novel drug candidates.

  18. Small scale affinity purification and high sensitivity reversed phase nanoLC-MS N-glycan characterization of mAbs and fusion proteins.

    PubMed

    Higel, Fabian; Seidl, Andreas; Demelbauer, Uwe; Sörgel, Fritz; Frieß, Wolfgang

    2014-01-01

    N-glycosylation is a complex post-translational modification with potential effects on the efficacy and safety of therapeutic proteins and known influence on the effector function of biopharmaceutical monoclonal antibodies (mAbs). Comprehensive characterization of N-glycosylation is therefore important in biopharmaceutical development. In early development, e.g. during pool or clone selection, however, only minute protein amounts of multiple samples are available for analytics. High sensitivity and high throughput methods are thus needed. An approach based on 96-well plate sample preparation and nanoLC-MS of 2- anthranilic acid or 2-aminobenzoic acid (AA) labeled N-glycans for the characterization of biopharmaceuticals in early development is reported here. With this approach, 192 samples can be processed simultaneously from complex matrices (e.g., cell culture supernatant) to purified 2-AA glycans, which are then analyzed by reversed phase nanoLC-MS. Attomolar sensitivity has been achieved by use of nanoelectrospray ionization, resulting in detailed glycan maps of mAbs and fusion proteins that are exemplarily shown in this work. Reproducibility, robustness and linearity of the approach are demonstrated, making use in a routine manner during pool or clone selection possible. Other potential fields of application, such as glycan biomarker discovery from serum samples, are also presented.

  19. Small scale affinity purification and high sensitivity reversed phase nanoLC-MS N-glycan characterization of mAbs and fusion proteins

    PubMed Central

    Higel, Fabian; Seidl, Andreas; Demelbauer, Uwe; Sörgel, Fritz; Frieß, Wolfgang

    2014-01-01

    N-glycosylation is a complex post-translational modification with potential effects on the efficacy and safety of therapeutic proteins and known influence on the effector function of biopharmaceutical monoclonal antibodies (mAbs). Comprehensive characterization of N-glycosylation is therefore important in biopharmaceutical development. In early development, e.g. during pool or clone selection, however, only minute protein amounts of multiple samples are available for analytics. High sensitivity and high throughput methods are thus needed. An approach based on 96-well plate sample preparation and nanoLC-MS of 2- anthranilic acid or 2-aminobenzoic acid (AA) labeled N-glycans for the characterization of biopharmaceuticals in early development is reported here. With this approach, 192 samples can be processed simultaneously from complex matrices (e.g., cell culture supernatant) to purified 2-AA glycans, which are then analyzed by reversed phase nanoLC-MS. Attomolar sensitivity has been achieved by use of nanoelectrospray ionization, resulting in detailed glycan maps of mAbs and fusion proteins that are exemplarily shown in this work. Reproducibility, robustness and linearity of the approach are demonstrated, making use in a routine manner during pool or clone selection possible. Other potential fields of application, such as glycan biomarker discovery from serum samples, are also presented. PMID:24848368

  20. Diatom-Specific Oligosaccharide and Polysaccharide Structures Help to Unravel Biosynthetic Capabilities in Diatoms

    PubMed Central

    Gügi, Bruno; Le Costaouec, Tinaïg; Burel, Carole; Lerouge, Patrice; Helbert, William; Bardor, Muriel

    2015-01-01

    Diatoms are marine organisms that represent one of the most important sources of biomass in the ocean, accounting for about 40% of marine primary production, and in the biosphere, contributing up to 20% of global CO2 fixation. There has been a recent surge in developing the use of diatoms as a source of bioactive compounds in the food and cosmetic industries. In addition, the potential of diatoms such as Phaeodactylum tricornutum as cell factories for the production of biopharmaceuticals is currently under evaluation. These biotechnological applications require a comprehensive understanding of the sugar biosynthesis pathways that operate in diatoms. Here, we review diatom glycan and polysaccharide structures, thus revealing their sugar biosynthesis capabilities. PMID:26393622

  1. Second International Conference on Accelerating Biopharmaceutical Development: March 9-12, 2009, Coronado, CA USA.

    PubMed

    Reichert, Janice M; Jacob, Nitya; Amanullah, Ashraf

    2009-01-01

    The Second International Conference on Accelerating Biopharmaceutical Development was held in Coronado, California. The meeting was organized by the Society for Biological Engineering (SBE) and the American Institute of Chemical Engineers (AIChE); SBE is a technological community of the AIChE. Bob Adamson (Wyeth) and Chuck Goochee (Centocor) were co-chairs of the event, which had the theme "Delivering cost-effective, robust processes and methods quickly and efficiently." The first day focused on emerging disruptive technologies and cutting-edge analytical techniques. Day two featured presentations on accelerated cell culture process development, critical quality attributes, specifications and comparability, and high throughput protein formulation development. The final day was dedicated to discussion of technology options and new analysis methods provided by emerging disruptive technologies; functional interaction, integration and synergy in platform development; and rapid and economic purification process development.

  2. Second International Conference on Accelerating Biopharmaceutical Development: March 9-12, 2009, Coronado, CA, USA.

    PubMed

    Reichert, Janice M; Jacob, Nitya M; Amanullah, Ashraf

    2009-01-01

    The Second International Conference on Accelerating Biopharmaceutical Development was held in Coronado, California. The meeting was organized by the Society for Biological Engineering (SBE) and the American Institute of Chemical Engineers (AIChE); SBE is a technological community of the AIChE. Bob Adamson (Wyeth) and Chuck Goochee (Centocor) were co-chairs of the event, which had the theme "Delivering cost-effective, robust processes and methods quickly and efficiently." The first day focused on emerging disruptive technologies and cutting-edge analytical techniques. Day two featured presentations on accelerated cell culture process development, critical quality attributes, specifications and comparability, and high throughput protein formulation development. The final day was dedicated to discussion of technology options and new analysis methods provided by emerging disruptive technologies; functional interaction, integration and synergy in platform development; and rapid and economic purification process development.

  3. The NIAID Radiation Countermeasures Program Business Model

    PubMed Central

    Hafer, Nathaniel; Maidment, Bert W.

    2010-01-01

    The National Institute of Allergy and Infectious Diseases (NIAID) Radiation/Nuclear Medical Countermeasures Development Program has developed an integrated approach to providing the resources and expertise required for the research, discovery, and development of radiation/nuclear medical countermeasures (MCMs). These resources and services lower the opportunity costs and reduce the barriers to entry for companies interested in working in this area and accelerate translational progress by providing goal-oriented stewardship of promising projects. In many ways, the radiation countermeasures program functions as a “virtual pharmaceutical firm,” coordinating the early and mid-stage development of a wide array of radiation/nuclear MCMs. This commentary describes the radiation countermeasures program and discusses a novel business model that has facilitated product development partnerships between the federal government and academic investigators and biopharmaceutical companies. PMID:21142762

  4. The NIAID Radiation Countermeasures Program business model.

    PubMed

    Hafer, Nathaniel; Maidment, Bert W; Hatchett, Richard J

    2010-12-01

    The National Institute of Allergy and Infectious Diseases (NIAID) Radiation/Nuclear Medical Countermeasures Development Program has developed an integrated approach to providing the resources and expertise required for the research, discovery, and development of radiation/nuclear medical countermeasures (MCMs). These resources and services lower the opportunity costs and reduce the barriers to entry for companies interested in working in this area and accelerate translational progress by providing goal-oriented stewardship of promising projects. In many ways, the radiation countermeasures program functions as a "virtual pharmaceutical firm," coordinating the early and mid-stage development of a wide array of radiation/nuclear MCMs. This commentary describes the radiation countermeasures program and discusses a novel business model that has facilitated product development partnerships between the federal government and academic investigators and biopharmaceutical companies.

  5. Clinical trials for vaccine development in registry of Korea Food and Drug Administration.

    PubMed

    Kang, Seog-Youn

    2013-01-01

    Based on the action plan "Ensuring a stable supply of National Immunization Program vaccines and sovereignty of biopharmaceutical products," Korea Food and Drug Administration (KFDA) has made efforts to develop vaccines in the context of self reliance and to protect public health. Along with the recognized infrastructures for clinical trials, clinical trials for vaccines have also gradually been conducted at multinational sites as well as at local sites. KFDA will support to expand six to eleven kinds of vaccines by 2017. In accordance with integrated regulatory system, KFDA has promoted clinical trials, established national lot release procedure, and strengthened good manufacturing practices inspection and post marketing surveillance. Against this backdrop, KFDA will support the vaccine development and promote excellent public health protection.

  6. Particle shedding from peristaltic pump tubing in biopharmaceutical drug product manufacturing.

    PubMed

    Saller, Verena; Matilainen, Julia; Grauschopf, Ulla; Bechtold-Peters, Karoline; Mahler, Hanns-Christian; Friess, Wolfgang

    2015-04-01

    In a typical manufacturing setup for biopharmaceutical drug products, the fill and dosing pump is placed after the final sterile filtration unit in order to ensure adequate dispensing accuracy and avoid backpressure peaks. Given the sensitivity of protein molecules, peristaltic pumps are often preferred over piston pumps. However, particles may be shed from the silicone tubing employed. In this study, particle shedding and a potential turbidity increase during peristaltic pumping of water and buffer were investigated using three types of commercially available silicone tubing. In the recirculates, mainly particles of around 200 nm next to a very small fraction of particles in the lower micrometer range were found. Using 3D laser scanning microscopy, surface roughness of the inner tubing surface was found to be a determining factor for particle shedding from silicone tubing. As the propensity toward particle shedding varied between tubing types and also cannot be concluded from manufacturer's specifications, individual testing with the presented methods is recommended during tubing qualification. Choosing low abrasive tubing can help to further minimize the very low particle counts to be expected in pharmaceutical drug products. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  7. DNA methylation in CHO cells.

    PubMed

    Wippermann, Anna; Noll, Thomas

    2017-09-20

    Chinese hamster ovary (CHO) cells account for the production of the majority of biopharmaceutical molecules - however, the molecular basis for their versatile properties is not entirely understood yet and the underlying cellular processes need to be characterized in detail. One such process that is supposed to contribute significantly to CHO cell phenotype is methylation of DNA at cytosine residues. DNA methylation was shown to be involved in several central biological processes in humans and to contribute to diseases like cancer. Early studies of DNA methylation in CHO mostly focused on methylation of single recombinant genes and promoters and proved a correlation between DNA methylation status and recombinant gene expression or production stability. More recent publications utilized the CHO genomic and transcriptomic data available since 2011 and provided first insights into the CHO DNA methylation landscape and DNA methylation changes in response to effector molecules or culture conditions. Generally, further genome-wide studies of DNA methylation in CHO will be required to shed light on the relevance of this process regarding biopharmaceuticals production and might, e.g., address a potential link between CHO cell metabolism and DNA methylation or provide novel targets for rational cell line engineering. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Injection Molding and its application to drug delivery.

    PubMed

    Zema, Lucia; Loreti, Giulia; Melocchi, Alice; Maroni, Alessandra; Gazzaniga, Andrea

    2012-05-10

    Injection Molding (IM) consists in the injection, under high pressure conditions, of heat-induced softened materials into a mold cavity where they are shaped. The advantages the technique may offer in the development of drug products concern both production costs (no need for water or other solvents, continuous manufacturing, scalability, patentability) and technological/biopharmaceutical characteristics of the molded items (versatility of the design and composition, possibility of obtaining solid molecular dispersions/solutions of the active ingredient). In this article, process steps and formulation aspects relevant to IM are discussed, with emphasis on the issues and advantages connected with the transfer of this technique from the plastics industry to the production of conventional and controlled-release dosage forms. Moreover, its pharmaceutical applications thus far proposed in the primary literature, intended as either alternative manufacturing strategies for existing products or innovative systems with improved design and performance characteristics, are critically reviewed. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Advanced model-based control strategies for the intensification of upstream and downstream processing in mAb production.

    PubMed

    Papathanasiou, Maria M; Quiroga-Campano, Ana L; Steinebach, Fabian; Elviro, Montaña; Mantalaris, Athanasios; Pistikopoulos, Efstratios N

    2017-07-01

    Current industrial trends encourage the development of sustainable, environmentally friendly processes with minimal energy and material consumption. In particular, the increasing market demand in biopharmaceutical industry and the tight regulations in product quality necessitate efficient operating procedures that guarantee products of high purity. In this direction, process intensification via continuous operation paves the way for the development of novel, eco-friendly processes, characterized by higher productivity and lower production costs. This work focuses on the development of advanced control strategies for (i) a cell culture system in a bioreactor and (ii) a semicontinuous purification process. More specifically, we consider a fed-batch culture of GS-NS0 cells and the semicontinuous Multicolumn Countercurrent Solvent Gradient Purification (MCSGP) for the purification process. The controllers are designed following the PAROC framework/software platform and their capabilities are assessed in silico, against the process models. It is demonstrated that the proposed controllers efficiently manage to increase the system productivity, returning strategies that can lead to continuous, stable process operation. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:966-988, 2017. © 2017 American Institute of Chemical Engineers.

  10. The academic-industrial complex: navigating the translational and cultural divide.

    PubMed

    Freedman, Stephen; Mullane, Kevin

    2017-07-01

    In general, the fruits of academic discoveries can only be realized through joint efforts with industry. However, the poor reproducibility of much academic research has damaged credibility and jeopardized translational efforts that could benefit patients. Meanwhile, journals are rife with articles bemoaning the limited productivity and increasing costs of the biopharmaceutical industry and its resultant predilection for mergers and reorganizations while decreasing internal research efforts. The ensuing disarray and uncertainty has created tremendous opportunities for academia and industry to form even closer ties, and to embrace new operational and financial models to their joint benefit. This review article offers a personal perspective on the opportunities, models and approaches that harness the increased interface and growing interdependency between biomedical research institutes, the biopharmaceutical industry and the technological world. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Interview. The story of Advanced BioHealing: commercializing bioengineered tissue products. Mr Tozer speaks to Emily Culme-Seymour, Assistant Commissioning Editor.

    PubMed

    Tozer, Dean

    2011-03-01

    Dean Tozer is Senior Vice President at Advanced BioHealing, Inc. (ABH), overseeing marketing, corporate development, government affairs, product development, various regulatory functions and international expansion. After completing his Bachelor of Commerce from Saint Mary's University in Halifax, Canada, Mr Tozer spent 10 years in the global pharmaceutical industry, primarily with G.D. Searle (a division of Monsanto) where he had a wide variety of roles in Global Marketing, Sales, Business Redesign, and Accounting and Finance. Mr Tozer then worked as a consultant to the biopharmaceutical industry, assisting start-up organizations in developing commercial strategies for both pharmaceutical products and biomedical devices, prior to joining ABH in March 2006 as Vice President of Marketing & Corporate Development. In addition to his leadership role at ABH, Mr Tozer currently serves as an officer and board member for the Alliance for Regenerative Medicine, a Washington DC-based organization formed to advance regenerative medicine by representing and supporting the community of companies, academic research institutions, patient advocacy groups, foundations, and other organizations before the Congress, federal agencies and the general public.

  12. A reaction limited in vivo dissolution model for the study of drug absorption: Towards a new paradigm for the biopharmaceutic classification of drugs.

    PubMed

    Macheras, Panos; Iliadis, Athanassios; Melagraki, Georgia

    2018-05-30

    The aim of this work is to develop a gastrointestinal (GI) drug absorption model based on a reaction limited model of dissolution and consider its impact on the biopharmaceutic classification of drugs. Estimates for the fraction of dose absorbed as a function of dose, solubility, reaction/dissolution rate constant and the stoichiometry of drug-GI fluids reaction/dissolution were derived by numerical solution of the model equations. The undissolved drug dose and the reaction/dissolution rate constant drive the dissolution rate and determine the extent of absorption when high-constant drug permeability throughout the gastrointestinal tract is assumed. Dose is an important element of drug-GI fluids reaction/dissolution while solubility exclusively acts as an upper limit for drug concentrations in the lumen. The 3D plots of fraction of dose absorbed as a function of dose and reaction/dissolution rate constant for highly soluble and low soluble drugs for different "stoichiometries" (0.7, 1.0, 2.0) of the drug-reaction/dissolution with the GI fluids revealed that high extent of absorption was found assuming high drug- reaction/dissolution rate constant and high drug solubility. The model equations were used to simulate in vivo supersaturation and precipitation phenomena. The model developed provides the theoretical basis for the interpretation of the extent of drug's absorption on the basis of the parameters associated with the drug-GI fluids reaction/dissolution. A new paradigm emerges for the biopharmaceutic classification of drugs, namely, a model independent biopharmaceutic classification scheme of four drug categories based on either the fulfillment or not of the current dissolution criteria and the high or low % drug metabolism. Copyright © 2018. Published by Elsevier B.V.

  13. An update on the application of physical technologies to enhance intradermal and transdermal drug delivery.

    PubMed

    Herwadkar, Anushree; Banga, Ajay K

    2012-03-01

    A large number of biopharmaceuticals and other macromolecules are being developed for therapeutic applications. Conventional oral delivery is not always possible due to first-pass metabolism and degradation in the GI tract. Parenteral delivery is invasive and has poor patient compliance. Transdermal delivery provides one attractive route of administration. Transdermal administration can achieve the continuous and non-invasive delivery of drugs. However, passive transdermal delivery is restricted to small lipophilic molecules. Active physical-enhancement technologies are being investigated to increase the scope of transdermal delivery to hydrophilic molecules and macromolecules. Recent developments in transdermal technologies, such as microporation, iontophoresis and sonophoresis can enable therapeutic delivery of many drug molecules, biopharmaceuticals, cosmeceuticals and vaccines. This review provides an update of recent developments in transdermal delivery focusing on physical-enhancement technologies.

  14. Perfusion seed cultures improve biopharmaceutical fed-batch production capacity and product quality.

    PubMed

    Yang, William C; Lu, Jiuyi; Kwiatkowski, Chris; Yuan, Hang; Kshirsagar, Rashmi; Ryll, Thomas; Huang, Yao-Ming

    2014-01-01

    Volumetric productivity and product quality are two key performance indicators for any biopharmaceutical cell culture process. In this work, we showed proof-of-concept for improving both through the use of alternating tangential flow perfusion seed cultures coupled with high-seed fed-batch production cultures. First, we optimized the perfusion N-1 stage, the seed train bioreactor stage immediately prior to the production bioreactor stage, to minimize the consumption of perfusion media for one CHO cell line and then successfully applied the optimized perfusion process to a different CHO cell line. Exponential growth was observed throughout the N-1 duration, reaching >40 × 10(6) vc/mL at the end of the perfusion N-1 stage. The cultures were subsequently split into high-seed (10 × 10(6) vc/mL) fed-batch production cultures. This strategy significantly shortened the culture duration. The high-seed fed-batch production processes for cell lines A and B reached 5 g/L titer in 12 days, while their respective low-seed processes reached the same titer in 17 days. The shortened production culture duration potentially generates a 30% increase in manufacturing capacity while yielding comparable product quality. When perfusion N-1 and high-seed fed-batch production were applied to cell line C, higher levels of the active protein were obtained, compared to the low-seed process. This, combined with correspondingly lower levels of the inactive species, can enhance the overall process yield for the active species. Using three different CHO cell lines, we showed that perfusion seed cultures can optimize capacity utilization and improve process efficiency by increasing volumetric productivity while maintaining or improving product quality. © 2014 American Institute of Chemical Engineers.

  15. Clinical trials for vaccine development in registry of Korea Food and Drug Administration

    PubMed Central

    2013-01-01

    Based on the action plan "Ensuring a stable supply of National Immunization Program vaccines and sovereignty of biopharmaceutical products," Korea Food and Drug Administration (KFDA) has made efforts to develop vaccines in the context of self reliance and to protect public health. Along with the recognized infrastructures for clinical trials, clinical trials for vaccines have also gradually been conducted at multinational sites as well as at local sites. KFDA will support to expand six to eleven kinds of vaccines by 2017. In accordance with integrated regulatory system, KFDA has promoted clinical trials, established national lot release procedure, and strengthened good manufacturing practices inspection and post marketing surveillance. Against this backdrop, KFDA will support the vaccine development and promote excellent public health protection. PMID:23596594

  16. Optimizing novel implant formulations for the prolonged release of biopharmaceuticals using in vitro and in vivo imaging techniques.

    PubMed

    Beyer, Susanne; Xie, Li; Schmidt, Mike; de Bruin, Natasja; Ashtikar, Mukul; Rüschenbaum, Sabrina; Lange, Christian M; Vogel, Vitali; Mäntele, Werner; Parnham, Michael J; Wacker, Matthias G

    2016-08-10

    As a rapidly growing class of therapeutics, biopharmaceuticals have conquered the global market. Despite the great potential from a therapeutic perspective, such formulations often require frequent injections due to their short half-life. Aiming to establish a parenteral dosage form with prolonged release properties, a biodegradable implant was developed, based on a combination of nanoencapsulation of protein-heparin complexes, creation of a slow release matrix by freeze-drying, and compression using hyaluronan and methylcellulose. In order to investigate this novel delivery system, formulations containing IFN-β-1a and trypsinogen as model proteins were developed. No degradation of the proteins was observed at any stage of the formulation processing. The potential of the delivery system was evaluated in vivo and in vitro after fluorescence-labeling of the biopharmaceuticals. An optimized agarose gel was utilized as in vitro release medium to simulate the subcutaneous environment in a biorelevant manner. In addition, the formulations were administered to female SJL mice and release was innovatively tracked by fluorescence imaging, setting up an in vitro-in vivo correlation. A prolonged time of residence of approximately 12days was observed for the selected formulation design. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Downstream processing of biopharmaceutical proteins produced in plants: the pros and cons of flocculants.

    PubMed

    Buyel, Johannes Felix; Fischer, Rainer

    2014-01-01

    All biological platforms for the manufacture of biopharmaceutical proteins produce an initially turbid extract that must be clarified to avoid fouling sensitive media such as chromatography resins. Clarification is more challenging if the feed stream contains large amounts of dispersed particles, because these rapidly clog the filter media typically used to remove suspended solids. Charged polymers (flocculants) can increase the apparent size of the dispersed particles by aggregation, facilitating the separation of solids and liquids, and thus reducing process costs. However, many different factors can affect the behavior of flocculants, including the pH and conductivity of the medium, the size and charge distribution of the particulates, and the charge density and molecular mass of the polymer. Importantly, these properties can also affect the recovery of the target protein and the overall safety profile of the process. We therefore used a design of experiments approach to establish reliable predictive models that characterize the impact of flocculants during the downstream processing of biopharmaceutical proteins. We highlight strategies for the selection of flocculants during process optimization. These strategies will contribute to the quality by design aspects of process development and facilitate the development of safe and efficient downstream processes for plant-derived pharmaceutical proteins.

  18. 76 FR 21754 - National Institute of Allergy and Infectious Diseases; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-18

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Institute of... Biopharmaceutical Products for Infectious Diseases. Date: May 11, 2011. Time: 12 p.m. to 6 p.m. Agenda: To review... Review Program, DEA/NIAID/NIH/DHHS, Room 2217, 6700-B Rockledge Drive, MSC-7616, Bethesda, MD 20892-7616...

  19. A user-friendly model for spray drying to aid pharmaceutical product development.

    PubMed

    Grasmeijer, Niels; de Waard, Hans; Hinrichs, Wouter L J; Frijlink, Henderik W

    2013-01-01

    The aim of this study was to develop a user-friendly model for spray drying that can aid in the development of a pharmaceutical product, by shifting from a trial-and-error towards a quality-by-design approach. To achieve this, a spray dryer model was developed in commercial and open source spreadsheet software. The output of the model was first fitted to the experimental output of a Büchi B-290 spray dryer and subsequently validated. The predicted outlet temperatures of the spray dryer model matched the experimental values very well over the entire range of spray dryer settings that were tested. Finally, the model was applied to produce glassy sugars by spray drying, an often used excipient in formulations of biopharmaceuticals. For the production of glassy sugars, the model was extended to predict the relative humidity at the outlet, which is not measured in the spray dryer by default. This extended model was then successfully used to predict whether specific settings were suitable for producing glassy trehalose and inulin by spray drying. In conclusion, a spray dryer model was developed that is able to predict the output parameters of the spray drying process. The model can aid the development of spray dried pharmaceutical products by shifting from a trial-and-error towards a quality-by-design approach.

  20. The emergence of biosimilar insulin preparations--a cause for concern?

    PubMed

    Owens, David R; Landgraf, Wolfgang; Schmidt, Andrea; Bretzel, Reinhard G; Kuhlmann, Martin K

    2012-11-01

    Several biopharmaceuticals, including insulin and insulin analogs, are, or shortly will be, off-patent, thereby providing an opportunity for companies to attempt to manufacture "copies" commonly referred to as biosimilars and also known as follow-on biologics. Reassurance that such copy biologics are equally safe and effective as the conventional products is essential. It is important for the clinician to consider what information is therefore necessary for such assurances. Biopharmaceuticals, produced from living organisms and manufactured by complex processes, differ in many respects from chemically derived drugs. The biological source materials and manufacturing processes for non-innovator biologics may differ considerably from those used for producing the innovator substance. Differences between innovator and non-innovator products can be identified analytically (e.g., batch-to-batch consistency, product stability along side clinical safety). This provides a strong argument for caution before automatic substitution of conventional products (e.g., insulin by biosimilars). Several non-innovator insulins, including insulin analogs (while still patent-protected), are already available in many countries. Many of these lack rigorous regulations for biosimilar approval and pharmacovigilance. Recently an application for a biosimilar recombinant human insulin was withdrawn by the European Medicines Agency because of safety and efficacy concerns. Therefore, every biosimilar insulin and insulin analog should be assessed by well-defined globally harmonized preclinical and clinical studies followed by post-marketing pharmacovigilance programs, in the interest of people with diabetes worldwide.

  1. The Emergence of Biosimilar Insulin Preparations—A Cause for Concern?

    PubMed Central

    Landgraf, Wolfgang; Schmidt, Andrea; Bretzel, Reinhard G.; Kuhlmann, Martin K.

    2012-01-01

    Abstract Several biopharmaceuticals, including insulin and insulin analogs, are, or shortly will be, off-patent, thereby providing an opportunity for companies to attempt to manufacture “copies” commonly referred to as biosimilars and also known as follow-on biologics. Reassurance that such copy biologics are equally safe and effective as the conventional products is essential. It is important for the clinician to consider what information is therefore necessary for such assurances. Biopharmaceuticals, produced from living organisms and manufactured by complex processes, differ in many respects from chemically derived drugs. The biological source materials and manufacturing processes for non-innovator biologics may differ considerably from those used for producing the innovator substance. Differences between innovator and non-innovator products can be identified analytically (e.g., batch-to-batch consistency, product stability along side clinical safety). This provides a strong argument for caution before automatic substitution of conventional products (e.g., insulin by biosimilars). Several non-innovator insulins, including insulin analogs (while still patent-protected), are already available in many countries. Many of these lack rigorous regulations for biosimilar approval and pharmacovigilance. Recently an application for a biosimilar recombinant human insulin was withdrawn by the European Medicines Agency because of safety and efficacy concerns. Therefore, every biosimilar insulin and insulin analog should be assessed by well-defined globally harmonized preclinical and clinical studies followed by post-marketing pharmacovigilance programs, in the interest of people with diabetes worldwide. PMID:23046400

  2. The biopharmaceutics of successful controlled release drug product: Segmental-dependent permeability of glipizide vs. metoprolol throughout the intestinal tract.

    PubMed

    Zur, Moran; Cohen, Noa; Agbaria, Riad; Dahan, Arik

    2015-07-15

    The purpose of this work was to study the challenges and prospects of regional-dependent absorption in a controlled-release scenario, through the oral biopharmaceutics of the sulfonylurea antidiabetic drug glipizide. The BCS solubility class of glipizide was determined, and its physicochemical properties and intestinal permeability were thoroughly investigated, both in-vitro (PAMPA and Caco-2) and in-vivo in rats. Metoprolol was used as the low/high permeability class boundary marker. Glipizide was found to be a low-solubility compound. All intestinal permeability experimental methods revealed similar trend; a mirror image small intestinal permeability with opposite regional/pH-dependency was obtained, a downward trend for glipizide, and an upward trend for metoprolol. Yet the lowest permeability of glipizide (terminal Ileum) was comparable to the lowest permeability of metoprolol (proximal jejunum). At the colon, similar permeability was evident for glipizide and metoprolol, that was higher than metoprolol's jejunal permeability. We present an analysis that identifies metoprolol's jejunal permeability as the low/high permeability class benchmark anywhere throughout the intestinal tract; we show that the permeability of both glipizide and metoprolol matches/exceeds this threshold throughout the entire intestinal tract, accounting for their success as controlled-release dosage form. This represents a key biopharmaceutical characteristic for a successful controlled-release dosage form. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Human granulocyte colony-stimulating factor (hG-CSF) expression in plastids of Lactuca sativa.

    PubMed

    Sharifi Tabar, Mehdi; Habashi, Ali Akbar; Rajabi Memari, Hamid

    2013-01-01

    Human granulocyte colony-stimulating factor (hG-CSF) can serve as valuable biopharmaceutical for research and treatment of the human blood cancer. Transplastomic plants have been emerged as a new and high potential candidate for production of recombinant biopharmaceutical proteins in comparison with transgenic plants due to extremely high level expression, biosafety and many other advantages. hG-CSF gene was cloned into pCL vector between prrn16S promoter and TpsbA terminator. The recombinant vector was coated on nanogold particles and transformed to lettuce chloroplasts through biolistic method. Callogenesis and regeneration of cotyledonary explants were obtained by Murashige and Skoog media containing 6-benzylaminopurine and 1-naphthaleneacetic acid hormones. The presence of hG-CSF gene in plastome was studied with four specific PCR primers and expression by Western immunoblotting. hG-CSF gene cloning was confirmed by digestion and sequencing. Transplastomic lettuce lines were regenerated and subjected to molecular analysis. The presence of hG-CSF in plastome was confirmed by PCR using specific primers designed from the plastid genome. Western immunoblotting of extracted protein from transplastomic plants showed a 20-kDa band, which verified the expression of recombinant protein in lettuce chloroplasts. This study is the first report that successfully express hG-CSF gene in lettuce chloroplast. The lettuce plastome can provide a cheap and safe expression platform for producing valuable biopharmaceuticals for research and treatment.

  4. AMCP Partnership Forum: Advancing Value-Based Contracting.

    PubMed

    2017-11-01

    During the past decade, payment models for the delivery of health care have undergone a dramatic shift from focusing on volume to focusing on value. This shift began with the Affordable Care Act and was reinforced by the Medicare Access and CHIP Reauthorization Act of 2015 (MACRA), which increased the emphasis on payment for delivery of quality care. Today, value-based care is a primary strategy for improving patient care while managing costs. This shift in payment models is expanding beyond the delivery of health care services to encompass models of compensation between payers and biopharmaceutical manufacturers. Value-based contracts (VBCs) have emerged as a mechanism that payers may use to better align their contracting structures with broader changes in the health care system. While pharmaceuticals represent a small share of total health care spending, it is one of the fastest-growing segments of the health care marketplace, and the increasing costs of pharmaceuticals necessitate more flexibility to contract in new ways based on the value of these products. Although not all products or services are appropriate for these types of contracts, VBCs could be a part of the solution to address increasing drug prices and overall drug spending. VBCs encompass a variety of different contracting strategies for biopharmaceutical products that do not base payment rates on volume. These contracts instead may include payment on the achievement of specific goals in a predetermined patient population and offer innovative solutions for quantifying and rewarding positive outcomes or otherwise reducing payer risk associated with pharmaceutical costs. To engage national stakeholders in a discussion of current practices, barriers, and potential benefits of VBCs, the Academy of Managed Care Pharmacy (AMCP) convened a Partnership Forum on Advancing Value-Based Contracting in Arlington, Virginia, on June 20-21, 2017. The goals of the VBC forum were as follows: (a) agree to a definition of a VBC for facilitating discussion with key policy makers and regulators; (b) determine strategies for advancing the development and utilization of performance benchmarks; (c) identify best practices in evaluating, implementing, and monitoring VBCs; and (d) develop action plans to mitigate legal and regulatory barriers to VBCs. More than 30 national and regional health care leaders representing health plans, integrated delivery systems, pharmacy benefit managers, employers, data and analytics companies, and biopharmaceutical companies participated. Speakers, panelists, and stakeholders attended the forum and explored the current environment for VBCs, identified challenges to the expansion of VBCs, offered potential solutions to those challenges, and developed an action plan for addressing selected challenges. The forum recommendations will be used by AMCP to establish a coalition of organizations to seek broader acceptance of VBCs in the marketplace and by policymakers. The recommendations will also help AMCP provide tools and resources to stakeholders in managing VBCs. This Partnership Forum was supported by Amgen, Bristol-Myers Squibb, Eli Lilly, Merck, the National Pharmaceutical Council, Novo Nordisk, Premier, the Pharmaceutical Research and Manufacturers of America, RxAnte, Takeda, and Xcenda.

  5. Optimization of capillary zone electrophoresis for charge heterogeneity testing of biopharmaceuticals using enhanced method development principles.

    PubMed

    Moritz, Bernd; Locatelli, Valentina; Niess, Michele; Bathke, Andrea; Kiessig, Steffen; Entler, Barbara; Finkler, Christof; Wegele, Harald; Stracke, Jan

    2017-12-01

    CZE is a well-established technique for charge heterogeneity testing of biopharmaceuticals. It is based on the differences between the ratios of net charge and hydrodynamic radius. In an extensive intercompany study, it was recently shown that CZE is very robust and can be easily implemented in labs that did not perform it before. However, individual characteristics of some examined proteins resulted in suboptimal resolution. Therefore, enhanced method development principles were applied here to investigate possibilities for further method optimization. For this purpose, a high number of different method parameters was evaluated with the aim to improve CZE separation. For the relevant parameters, design of experiments (DoE) models were generated and optimized in several ways for different sets of responses like resolution, peak width and number of peaks. In spite of product specific DoE optimization it was found that the resulting combination of optimized parameters did result in significant improvement of separation for 13 out of 16 different antibodies and other molecule formats. These results clearly demonstrate generic applicability of the optimized CZE method. Adaptation to individual molecular properties may sometimes still be required in order to achieve optimal separation but the set screws discussed in this study [mainly pH, identity of the polymer additive (HPC versus HPMC) and the concentrations of additives like acetonitrile, butanolamine and TETA] are expected to significantly reduce the effort for specific optimization. 2017 The Authors. Electrophoresis published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Protein A affinity chromatography of Chinese hamster ovary (CHO) cell culture broths containing biopharmaceutical monoclonal antibody (mAb): Experiments and mechanistic transport, binding and equilibrium modeling.

    PubMed

    Grom, Matic; Kozorog, Mirijam; Caserman, Simon; Pohar, Andrej; Likozar, Blaž

    2018-04-15

    Protein A-based affinity chromatography is a highly-efficient separation method to capture, purify and isolate biosimilar monoclonal antibodies (mAb) - an important medical product of biopharmaceutical industrial manufacturing. It is considered the most expensive step in purification downstream operations; therefore, its performance optimization offers a great cost saving in the overall production expenditure. The biochemical mixture-separating specific interaction experiments with Chinese hamster ovary (CHO) cell culture harvest, containing glycosylated extracellular immunoglobulins (Ig), were made using five different state-of-the-art commercial resins. Packing breakthrough curves were recorded at an array of prolonged residence times. A mathematical simulation model was developed, applied and validated in combination with non-linear regression algorithms on bed effluent concentrations to determine the previously-unknown binding properties of stationary phase materials. Apart from the columns' differential partitioning, the whole external system was also integrated. It was confirmed that internal pore diffusion is the global rate-limiting resistance of the compound retention process. Immobilizing substrate characteristics, obtained in this engineering study, are indispensable for the scale-up of the periodic counter-current control with mechanistic load, elution and wash reduction. Furthermore, unit's volumetric flow screening measurements revealed dynamic effect correlation to eluate quality parameters, like the presence of aggregates, the host cell-related impurities at supernatant's extended feeding, and titre. Numerical sensitivity outputs demonstrated the impacts of fluidics (e.g. axial dispersion coefficient), thermodynamics (Langmuir adsorption) and mass transfer fluxes. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Interplay of biopharmaceutics, biopharmaceutics drug disposition and salivary excretion classification systems

    PubMed Central

    Idkaidek, Nasir M.

    2013-01-01

    The aim of this commentary is to investigate the interplay of Biopharmaceutics Classification System (BCS), Biopharmaceutics Drug Disposition Classification System (BDDCS) and Salivary Excretion Classification System (SECS). BCS first classified drugs based on permeability and solubility for the purpose of predicting oral drug absorption. Then BDDCS linked permeability with hepatic metabolism and classified drugs based on metabolism and solubility for the purpose of predicting oral drug disposition. On the other hand, SECS classified drugs based on permeability and protein binding for the purpose of predicting the salivary excretion of drugs. The role of metabolism, rather than permeability, on salivary excretion is investigated and the results are not in agreement with BDDCS. Conclusion The proposed Salivary Excretion Classification System (SECS) can be used as a guide for drug salivary excretion based on permeability (not metabolism) and protein binding. PMID:24493977

  8. Building the design, translation and development principles of polymeric nanomedicines using the case of clinically advanced poly(lactide(glycolide))-poly(ethylene glycol) nanotechnology as a model: An industrial viewpoint.

    PubMed

    Lakkireddy, Harivardhan Reddy; Bazile, Didier

    2016-12-15

    The design of the first polymeric nanoparticles could be traced back to the 1970s, and has thereafter received considerable attention, as evidenced by the significant increase of the number of articles and patents in this area. This review article is an attempt to take advantage of the existing literature on the clinically tested and commercialized biodegradable PLA(G)A-PEG nanotechnology as a model to propose quality building and outline translation and development principles for polymeric nano-medicines. We built such an approach from various building blocks including material design, nano-assembly - i.e. physicochemistry of drug/nano-object association in the pharmaceutical process, and release in relevant biological environment - characterization and identification of the quality attributes related to the biopharmaceutical properties. More specifically, as envisaged in a translational approach, the reported data on PLA(G)A-PEG nanotechnology have been structured into packages to evidence the links between the structure, physicochemical properties, and the in vitro and in vivo performances of the nanoparticles. The integration of these bodies of knowledge to build the CMC (Chemistry Manufacturing and Controls) quality management strategy and finally support the translation to proof of concept in human, and anticipation of the industrialization takes into account the specific requirements and biopharmaceutical features attached to the administration route. From this approach, some gaps are identified for the industrial development of such nanotechnology-based products, and the expected improvements are discussed. The viewpoint provided in this article is expected to shed light on design, translation and pharmaceutical development to realize their full potential for future clinical applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Model-Based Analysis of Biopharmaceutic Experiments To Improve Mechanistic Oral Absorption Modeling: An Integrated in Vitro in Vivo Extrapolation Perspective Using Ketoconazole as a Model Drug.

    PubMed

    Pathak, Shriram M; Ruff, Aaron; Kostewicz, Edmund S; Patel, Nikunjkumar; Turner, David B; Jamei, Masoud

    2017-12-04

    Mechanistic modeling of in vitro data generated from metabolic enzyme systems (viz., liver microsomes, hepatocytes, rCYP enzymes, etc.) facilitates in vitro-in vivo extrapolation (IVIV_E) of metabolic clearance which plays a key role in the successful prediction of clearance in vivo within physiologically-based pharmacokinetic (PBPK) modeling. A similar concept can be applied to solubility and dissolution experiments whereby mechanistic modeling can be used to estimate intrinsic parameters required for mechanistic oral absorption simulation in vivo. However, this approach has not widely been applied within an integrated workflow. We present a stepwise modeling approach where relevant biopharmaceutics parameters for ketoconazole (KTZ) are determined and/or confirmed from the modeling of in vitro experiments before being directly used within a PBPK model. Modeling was applied to various in vitro experiments, namely: (a) aqueous solubility profiles to determine intrinsic solubility, salt limiting solubility factors and to verify pK a ; (b) biorelevant solubility measurements to estimate bile-micelle partition coefficients; (c) fasted state simulated gastric fluid (FaSSGF) dissolution for formulation disintegration profiling; and (d) transfer experiments to estimate supersaturation and precipitation parameters. These parameters were then used within a PBPK model to predict the dissolved and total (i.e., including the precipitated fraction) concentrations of KTZ in the duodenum of a virtual population and compared against observed clinical data. The developed model well characterized the intraluminal dissolution, supersaturation, and precipitation behavior of KTZ. The mean simulated AUC 0-t of the total and dissolved concentrations of KTZ were comparable to (within 2-fold of) the corresponding observed profile. Moreover, the developed PBPK model of KTZ successfully described the impact of supersaturation and precipitation on the systemic plasma concentration profiles of KTZ for 200, 300, and 400 mg doses. These results demonstrate that IVIV_E applied to biopharmaceutical experiments can be used to understand and build confidence in the quality of the input parameters and mechanistic models used for mechanistic oral absorption simulations in vivo, thereby improving the prediction performance of PBPK models. Moreover, this approach can inform the selection and design of in vitro experiments, potentially eliminating redundant experiments and thus helping to reduce the cost and time of drug product development.

  10. Pediatric Biopharmaceutical Classification System: Using Age-Appropriate Initial Gastric Volume.

    PubMed

    Shawahna, Ramzi

    2016-05-01

    Development of optimized pediatric formulations for oral administration can be challenging, time consuming, and financially intensive process. Since its inception, the biopharmaceutical classification system (BCS) has facilitated the development of oral drug formulations destined for adults. At least theoretically, the BCS principles are applied also to pediatrics. A comprehensive age-appropriate BCS has not been fully developed. The objective of this work was to provisionally classify oral drugs listed on the latest World Health Organization's Essential Medicines List for Children into an age-appropriate BCS. A total of 38 orally administered drugs were included in this classification. Dose numbers were calculated using age-appropriate initial gastric volume for neonates, 6-month-old infants, and children aging 1 year through adulthood. Using age-appropriate initial gastric volume and British National Formulary age-specific dosing recommendations in the calculation of dose numbers, the solubility classes shifted from low to high in pediatric subpopulations of 12 years and older for amoxicillin, 5 years, 12 years and older for cephalexin, 9 years and older for chloramphenicol, 3-4 years, 9-11 and 15 years and older for diazepam, 18 years and older (adult) for doxycycline and erythromycin, 8 years and older for phenobarbital, 10 years and older for prednisolone, and 15 years and older for trimethoprim. Pediatric biopharmaceutics are not fully understood where several knowledge gaps have been recently emphasized. The current biowaiver criteria are not suitable for safe application in all pediatric populations.

  11. A system identification approach for developing model predictive controllers of antibody quality attributes in cell culture processes

    PubMed Central

    Schmitt, John; Beller, Justin; Russell, Brian; Quach, Anthony; Hermann, Elizabeth; Lyon, David; Breit, Jeffrey

    2017-01-01

    As the biopharmaceutical industry evolves to include more diverse protein formats and processes, more robust control of Critical Quality Attributes (CQAs) is needed to maintain processing flexibility without compromising quality. Active control of CQAs has been demonstrated using model predictive control techniques, which allow development of processes which are robust against disturbances associated with raw material variability and other potentially flexible operating conditions. Wide adoption of model predictive control in biopharmaceutical cell culture processes has been hampered, however, in part due to the large amount of data and expertise required to make a predictive model of controlled CQAs, a requirement for model predictive control. Here we developed a highly automated, perfusion apparatus to systematically and efficiently generate predictive models using application of system identification approaches. We successfully created a predictive model of %galactosylation using data obtained by manipulating galactose concentration in the perfusion apparatus in serialized step change experiments. We then demonstrated the use of the model in a model predictive controller in a simulated control scenario to successfully achieve a %galactosylation set point in a simulated fed‐batch culture. The automated model identification approach demonstrated here can potentially be generalized to many CQAs, and could be a more efficient, faster, and highly automated alternative to batch experiments for developing predictive models in cell culture processes, and allow the wider adoption of model predictive control in biopharmaceutical processes. © 2017 The Authors Biotechnology Progress published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers Biotechnol. Prog., 33:1647–1661, 2017 PMID:28786215

  12. Uninformed and disinformed society and the GMO market.

    PubMed

    Twardowski, Tomasz; Małyska, Aleksandra

    2015-01-01

    The EU has a complicated regulatory framework, and this is slowing down the approval process of new genetically modified (GM) crops. Currently, labeling of GM organisms (GMOs) is mandatory in all Member States. However, the USA, in which GMO labeling is not mandatory, continues to lead the production of biotech crops, biopharmaceuticals, biomaterials, and bioenergy. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Flexible Biomanufacturing Processes that Address the Needs of the Future.

    PubMed

    Diel, Bernhard; Manzke, Christian; Peuker, Thorsten

    2014-01-01

    : As the age of the blockbuster drug recedes, the business model for the biopharmaceutical industry is evolving at an ever-increasing pace. The personalization of medicine, the emergence of biosimilars and biobetters, and the need to provide vaccines globally are just some of the factors forcing biomanufacturers to rethink how future manufacturing capability is implemented. One thing is clear: the traditional manufacturing strategy of constructing large-scale, purpose-built, capital-intensive facilities will no longer meet the industry's emerging production and economic requirements. Therefore, the authors of this chapter describe the new approach for designing and implementing flexible production processes for monoclonal antibodies and focus on the points to consider as well as the lessons learned from past experience in engineering such systems. A conceptual integrated design is presented that can be used as a blueprint for next-generation biomanufacturing facilities. In addition, this chapter discusses the benefits of the new approach with respect to flexibility, cost, and schedule. The concept presented here can be applied to other biopharmaceutical manufacturing processes and facilities, including-but not limited to-vaccine manufacturing, multiproduct and/or multiprocess capability, clinical manufacturing, and so on.

  14. Polysorbates 20 and 80 used in the formulation of protein biotherapeutics: structure and degradation pathways.

    PubMed

    Kerwin, Bruce A

    2008-08-01

    Polysorbates 20 and 80 (Tween 20 and Tween 80) are used in the formulation of biotherapeutic products for both preventing surface adsorption and as stabilizers against protein aggregation. The polysorbates are amphipathic, nonionic surfactants composed of fatty acid esters of polyoxyethylene sorbitan being polyoxyethylene sorbitan monolaurate for polysorbate 20 and polyoxyethylene sorbitan monooleate for polysorbate 80. The polysorbates used in the formulation of biopharmaceuticals are mixtures of different fatty acid esters with the monolaurate fraction of polysorbate 20 making up only 40-60% of the mixture and the monooleate fraction of polysorbate 80 making up >58% of the mixture. The polysorbates undergo autooxidation, cleavage at the ethylene oxide subunits and hydrolysis of the fatty acid ester bond. Autooxidation results in hydroperoxide formation, side-chain cleavage and eventually formation of short chain acids such as formic acid all of which could influence the stability of a biopharmaceutical product. Oxidation of the fatty acid moiety while well described in the literature has not been specifically investigated for polysorbate. This review focuses on the chemical structure of the polysorbates, factors influencing micelle formation and factors and excipients influencing stability and degradation of the polyoxyethylene and fatty acid ester linkages.

  15. Physcomitrella patens, a versatile synthetic biology chassis.

    PubMed

    Reski, Ralf; Bae, Hansol; Simonsen, Henrik Toft

    2018-05-24

    During three decades the moss Physcomitrella patens has been developed to a superb green cell factory with the first commercial products on the market. In the past three decades the moss P. patens has been developed from an obscure bryophyte to a model organism in basic biology, biotechnology, and synthetic biology. Some of the key features of this system include a wide range of Omics technologies, precise genome-engineering via homologous recombination with yeast-like efficiency, a certified good-manufacturing-practice production in bioreactors, successful upscaling to 500 L wave reactors, excellent homogeneity of protein products, superb product stability from batch-to-batch, and a reliable procedure for cryopreservation of cell lines in a master cell bank. About a dozen human proteins are being produced in P. patens as potential biopharmaceuticals, some of them are not only similar to their animal-produced counterparts, but are real biobetters with superior performance. A moss-made pharmaceutical successfully passed phase 1 clinical trials, a fragrant moss, and a cosmetic moss-product is already on the market, highlighting the economic potential of this synthetic biology chassis. Here, we focus on the features of mosses as versatile cell factories for synthetic biology and their impact on metabolic engineering.

  16. Hybrid modeling as a QbD/PAT tool in process development: an industrial E. coli case study.

    PubMed

    von Stosch, Moritz; Hamelink, Jan-Martijn; Oliveira, Rui

    2016-05-01

    Process understanding is emphasized in the process analytical technology initiative and the quality by design paradigm to be essential for manufacturing of biopharmaceutical products with consistent high quality. A typical approach to developing a process understanding is applying a combination of design of experiments with statistical data analysis. Hybrid semi-parametric modeling is investigated as an alternative method to pure statistical data analysis. The hybrid model framework provides flexibility to select model complexity based on available data and knowledge. Here, a parametric dynamic bioreactor model is integrated with a nonparametric artificial neural network that describes biomass and product formation rates as function of varied fed-batch fermentation conditions for high cell density heterologous protein production with E. coli. Our model can accurately describe biomass growth and product formation across variations in induction temperature, pH and feed rates. The model indicates that while product expression rate is a function of early induction phase conditions, it is negatively impacted as productivity increases. This could correspond with physiological changes due to cytoplasmic product accumulation. Due to the dynamic nature of the model, rational process timing decisions can be made and the impact of temporal variations in process parameters on product formation and process performance can be assessed, which is central for process understanding.

  17. Operation resistance: A snapshot of falsified antibiotics and biopharmaceutical injectables in Europe.

    PubMed

    Venhuis, Bastiaan J; Keizers, Peter H J; Klausmann, Rüdiger; Hegger, Ingrid

    2016-01-01

    Operation Pangea is an annual international week of action combating pharmaceutical crime. In this study, called Operation Resistance, we asked the national agencies in Europe to search for falsified antibiotics and biopharmaceutical injectables (peptides and proteins) amongst the medicines seized in Pangea 7 (2014). Reports were received from Belgium, Cyprus, Czech Republic, Denmark, France, the Netherlands, Portugal, Sweden, Spain, the United Kingdom, Norway, and Switzerland. The countries reported seizing about 21,000 dose units (e.g. tablets, capsules) of falsified antibiotics in total. Most of the antibiotics were unlicensed medicines with common antibiotic drugs. In this study week, very few falsified biopharmaceutical injectables were reported. Laboratories reported human growth hormone, sermorelin, melanotan II, and no active ingredients. The average shipment size seemed too large for personal use indicating that a substantial part was intended for resale. This study provides a snapshot of the falsified antibiotics and biopharmaceuticals that enter European countries. How much is actually reaching users during Pangea week - in on other weeks - remains unknown. The shipment sizes indicate falsified antibiotics and biopharmaceuticals are imported for both personal use and resale. The use of antibiotics from unreliable sources is a health risk, contributes to antimicrobial resistance, and may obscure a source of infection from health agencies. The falsified biopharmaceuticals are a health risk because they lack all labelling and may contain unlicensed drugs for injection. It seems important to raise awareness among health-care professionals that falsified medicines in Europe are not restricted to erectile dysfunction drugs. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  18. Acceptability and characteristics of 124 human bioequivalence studies with active substances classified according to the Biopharmaceutic Classification System

    PubMed Central

    Ramirez, Elena; Laosa, Olga; Guerra, Pedro; Duque, Blanca; Mosquera, Beatriz; Borobia, Alberto M; Lei, Suhua H; Carcas, Antonio J; Frias, Jesus

    2010-01-01

    AIM The aim of this study was to evaluate the acceptability of 124 bioequivalence (BE) studies with 80 active substances categorized according to the Biopharmaceutics Classification System (BCS) in order to establish if there were different probabilities of proving BE between the different BCS classes. METHODS We evaluated the differences between pharmaceutical products with active substances from different BCS classes in terms of acceptability, number of subjects in the study (n), the point estimates, and intra- and inter-subject coefficients of variation data from BE studies with generic products. RESULTS Out of 124 BE studies 89 (71.77%) were performed with pharmaceutical products containing active substances classified by the BCS. In all BCS classes there were non-bioequivalent pharmaceutical products: 4 out of 26 (15.38%) in class 1, 14 out of 28 (50%) in class 2, 3 out of 22 (13.63%) in class 3 and 1 out of 13 (7.69%) in class 4. When we removed those pharmaceutical products in which intra-subject variability was higher than predicted (2 in class 1 active substances, 9 in class 2 and 2 in class 3) there were still non-BE pharmaceutical products in classes 1, 2 and 3. CONCLUSIONS Comparisons between pharmaceutical products with active substances from the four BCS classes have not allowed us to define differential characteristics of each class in terms of n, inter and intra-subject variability for Cmax or AUC. Despite the usually employed test dissolution methodology proposed as quality control, pharmaceutical products with active substances from the four classes of BCS showed non-BE studies. PMID:21039763

  19. Biopharmaceutics and Therapeutic Potential of Engineered Nanomaterials

    PubMed Central

    Liang, Xing-Jie; Chen, Chunying; Zhao, Yuliang; Jia, Lee; Wang, Paul C.

    2009-01-01

    Engineered nanomaterials are at the leading edge of the rapidly developing nanosciences and are founding an important class of new materials with specific physicochemical properties different from bulk materials with the same compositions. The potential for nanomaterials is rapidly expanding with novel applications constantly being explored in different areas. The unique size-dependent properties of nanomaterials make them very attractive for pharmaceutical applications. Investigations of physical, chemical and biological properties of engineered nanomaterials have yielded valuable information. Cytotoxic effects of certain engineered nanomaterials towards malignant cells form the basis for one aspect of nanomedicine. It is inferred that size, three dimensional shape, hydrophobicity and electronic configurations make them an appealing subject in medicinal chemistry. Their unique structure coupled with immense scope for derivatization forms a base for exciting developments in therapeutics. This review article addresses the fate of absorption, distribution, metabolism and excretion (ADME) of engineered nanoparticles in vitro and in vivo. It updates the distinctive methodology used for studying the biopharmaceutics of nanoparticles. This review addresses the future potential and safety concerns and genotoxicity of nanoparticle formulations in general. It particularly emphasizes the effects of nanoparticles on metabolic enzymes as well as the parenteral or inhalation administration routes of nanoparticle formulations. This paper illustrates the potential of nanomedicine by discussing biopharmaceutics of fullerene derivatives and their suitability for diagnostic and therapeutic purposes. Future direction is discussed as well. PMID:18855608

  20. A comprehensive screening platform for aerosolizable protein formulations for intranasal and pulmonary drug delivery.

    PubMed

    Röhm, Martina; Carle, Stefan; Maigler, Frank; Flamm, Johannes; Kramer, Viktoria; Mavoungou, Chrystelle; Schmid, Otmar; Schindowski, Katharina

    2017-10-30

    Aerosolized administration of biopharmaceuticals to the airways is a promising route for nasal and pulmonary drug delivery, but - in contrast to small molecules - little is known about the effects of aerosolization on safety and efficacy of biopharmaceuticals. Proteins are sensitive against aerosolization-associated shear stress. Tailored formulations can shield proteins and enhance permeation, but formulation development requires extensive screening approaches. Thus, the aim of this study was to develop a cell-based in vitro technology platform that includes screening of protein quality after aerosolization and transepithelial permeation. For efficient screening, a previously published aerosolization-surrogate assay was used in a design of experiments approach to screen suitable formulations for an IgG and its antigen-binding fragment (Fab) as exemplary biopharmaceuticals. Efficient, dose-controlled aerosol-cell delivery was performed with the ALICE-CLOUD system containing RPMI 2650 epithelial cells at the air-liquid interface. We could demonstrate that our technology platform allows for rapid and efficient screening of formulations consisting of different excipients (here: arginine, cyclodextrin, polysorbate, sorbitol, and trehalose) to minimize aerosolization-induced protein aggregation and maximize permeation through an in vitro epithelial cell barrier. Formulations reduced aggregation of native Fab and IgG relative to vehicle up to 50% and enhanced transepithelial permeation rate up to 2.8-fold. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  1. Cell-free protein synthesis: the state of the art.

    PubMed

    Whittaker, James W

    2013-02-01

    Cell-free protein synthesis harnesses the synthetic power of biology, programming the ribosomal translational machinery of the cell to create macromolecular products. Like PCR, which uses cellular replication machinery to create a DNA amplifier, cell-free protein synthesis is emerging as a transformative technology with broad applications in protein engineering, biopharmaceutical development, and post-genomic research. By breaking free from the constraints of cell-based systems, it takes the next step towards synthetic biology. Recent advances in reconstituted cell-free protein synthesis (Protein synthesis Using Recombinant Elements expression systems) are creating new opportunities to tailor the reactions for specialized applications including in vitro protein evolution, printing protein microarrays, isotopic labeling, and incorporating nonnatural amino acids.

  2. LIFT Tenant Is Off and Running

    NASA Technical Reports Server (NTRS)

    Steele, Gynelle C.

    2001-01-01

    Lewis Incubator for Technology (LIFT) tenant, Analiza Inc., graduated from the incubator July 2000. Analiza develops technology and products for the early diagnosis of diseases, quality control of bio-pharmaceutical therapeutics, and other applications involving protein analyses. Technology links with NASA from existing and planned work are in areas of microfluidics and laser light scattering. Since their entry in LIFT in May, 1997, Analiza has: Received a $750,000 grant from the National Institutes of Health. Collaborated with a Nobel Prize winner on drug design. Collaborated with Bristol-Myers Squibb on the characterization of biological therapeutics. Added a Ph.D. senior scientist and several technicians. Received significant interest from major pharmaceutical companies about collaborating and acquiring Analiza technology.

  3. Progress in biosimilar monoclonal antibody development: the infliximab biosimilar CT-P13 in the treatment of rheumatic diseases.

    PubMed

    Braun, Jürgen; Kudrin, Alex

    2015-01-01

    Biosimilars are biologic medical products whose active drug substance is made by a living organism or derived from it. The term is used to describe a subsequent version of an innovator biopharmaceutical product aiming at approval following patent expiry on the reference product. Biosimilars of monoclonal need to demonstrate similar but not identical quality of nonclinical and clinical attributes. Not all data of the originator product need to be recapitulated, as large numbers of patient-years of exposure data are already available. Thus, biosimilar development is largely based on the safety profiles of the originator product. The evaluation of biosimilarity includes immunogenicity attributed risks. CT-P13 (Remsima™/Inflectra™, Celltrion/Hospira), a biosimilar of the innovator drug infliximab (INF), was the first approved complex biosimilar monoclonal antibody in the EU, within the framework of WHO, EMA and US FDA biosimilar guidelines. CT-P13 has shown analytical and nonclinical features highly similar to INF including pharmacokinetics, efficacy, safety and immunogenicity profiles in ankylosing spondylitis and rheumatoid arthritis. The objective of this article is to highlight the recent biosimilar development and to review the results from the studies PLANETRA and PLANETAS, which have supported the approval of CT-P13 for several indications.

  4. Synthetic Biology: Applications in the Food Sector.

    PubMed

    Tyagi, Ashish; Kumar, Ashwani; Aparna, S V; Mallappa, Rashmi H; Grover, Sunita; Batish, Virender Kumar

    2016-08-17

    Synthetic biology also termed as "genomic alchemy" represents a powerful area of science that is based on the convergence of biological sciences with systems engineering. It has been fittingly described as "moving from reading the genetic code to writing it" as it focuses on building, modeling, designing and fabricating novel biological systems using customized gene components that result in artificially created genetic circuitry. The scientifically compelling idea of the technological manipulation of life has been advocated since long time. Realization of this idea has gained momentum with development of high speed automation and the falling cost of gene sequencing and synthesis following the completion of the human genome project. Synthetic biology will certainly be instrumental in shaping the development of varying areas ranging from biomedicine, biopharmaceuticals, chemical production, food and dairy quality monitoring, packaging, and storage of food and dairy products, bioremediation and bioenergy production, etc. However, potential dangers of using synthetic life forms have to be acknowledged and adoption of policies by the scientific community to ensure safe practice while making important advancements in the ever expanding field of synthetic biology is to be fully supported and implemented.

  5. Biopharmaceutical profile of pranoprofen-loaded PLGA nanoparticles containing hydrogels for ocular administration.

    PubMed

    Abrego, Guadalupe; Alvarado, Helen; Souto, Eliana B; Guevara, Bessy; Bellowa, Lyda Halbaut; Parra, Alexander; Calpena, Ana; Garcia, María Luisa

    2015-09-01

    Two optimized pranoprofen-loaded poly-l-lactic-co glycolic acid (PLGA) nanoparticles (PF-F1NPs; PF-F2NPs) have been developed and further dispersed into hydrogels for the production of semi-solid formulations intended for ocular administration. The optimized PF-NP suspensions were dispersed in freshly prepared carbomer hydrogels (HG_PF-F1NPs and HG_PF-F2NPs) or in hydrogels containing 1% azone (HG_PF-F1NPs-Azone and HG_PF-F2NPs-Azone) in order to improve the ocular biopharmaceutical profile of the selected non-steroidal anti-inflammatory drug (NSAID), by prolonging the contact of the pranoprofen with the eye, increasing the drug retention in the organ and enhancing its anti-inflammatory and analgesic efficiency. Carbomer 934 has been selected as gel-forming polymer. The hydrogel formulations with or without azone showed a non-Newtonian behavior and adequate physicochemical properties for ocular instillation. The release study of pranoprofen from the semi-solid formulations exhibited a sustained release behavior. The results obtained from ex vivo corneal permeation and in vivo anti-inflammatory efficacy studies suggest that the ocular application of the hydrogels containing azone was more effective over the azone-free formulations in the treatment of edema on the ocular surface. No signs of ocular irritancy have been detected for the produced hydrogels. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Polymeric Amorphous Solid Dispersions: A Review of Amorphization, Crystallization, Stabilization, Solid-State Characterization, and Aqueous Solubilization of Biopharmaceutical Classification System Class II Drugs.

    PubMed

    Baghel, Shrawan; Cathcart, Helen; O'Reilly, Niall J

    2016-09-01

    Poor water solubility of many drugs has emerged as one of the major challenges in the pharmaceutical world. Polymer-based amorphous solid dispersions have been considered as the major advancement in overcoming limited aqueous solubility and oral absorption issues. The principle drawback of this approach is that they can lack necessary stability and revert to the crystalline form on storage. Significant upfront development is, therefore, required to generate stable amorphous formulations. A thorough understanding of the processes occurring at a molecular level is imperative for the rational design of amorphous solid dispersion products. This review attempts to address the critical molecular and thermodynamic aspects governing the physicochemical properties of such systems. A brief introduction to Biopharmaceutical Classification System, solid dispersions, glass transition, and solubility advantage of amorphous drugs is provided. The objective of this review is to weigh the current understanding of solid dispersion chemistry and to critically review the theoretical, technical, and molecular aspects of solid dispersions (amorphization and crystallization) and potential advantage of polymers (stabilization and solubilization) as inert, hydrophilic, pharmaceutical carrier matrices. In addition, different preformulation tools for the rational selection of polymers, state-of-the-art techniques for preparation and characterization of polymeric amorphous solid dispersions, and drug supersaturation in gastric media are also discussed. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  7. Biophysical characterization and structure of the Fab fragment from the NIST reference antibody, RM 8671.

    PubMed

    Karageorgos, Ioannis; Gallagher, Elyssia S; Galvin, Connor; Gallagher, D Travis; Hudgens, Jeffrey W

    2017-11-01

    Monoclonal antibody pharmaceuticals are the fastest-growing class of therapeutics, with a wide range of clinical applications. To assure their safety, these protein drugs must demonstrate highly consistent purity and stability. Key to these objectives is higher order structure measurements validated by calibration to reference materials. We describe preparation, characterization, and crystal structure of the Fab fragment prepared from the NIST Reference Antibody RM 8671 (NISTmAb). NISTmAb is a humanized IgG1κ antibody, produced in murine cell culture and purified by standard biopharmaceutical production methods, developed at the National Institute of Standards and Technology (NIST) to serve as a reference material. The Fab fragment was derived from NISTmAb through papain cleavage followed by protein A based purification. The purified Fab fragment was characterized by SDS-PAGE, capillary gel electrophoresis, multi-angle light scattering, size exclusion chromatography, mass spectrometry, and x-ray crystallography. The crystal structure at 0.2 nm resolution includes four independent Fab molecules with complete light chains and heavy chains through Cys 223, enabling assessment of conformational variability and providing a well-characterized reference structure for research and engineering applications. This nonproprietary, publically available reference material of known higher-order structure can support metrology in biopharmaceutical applications, and it is a suitable platform for validation of molecular modeling studies. Published by Elsevier Ltd.

  8. Critical ligand binding reagent preparation/selection: when specificity depends on reagents.

    PubMed

    Rup, Bonita; O'Hara, Denise

    2007-05-11

    Throughout the life cycle of biopharmaceutical products, bioanalytical support is provided using ligand binding assays to measure the drug product for pharmacokinetic, pharmacodynamic, and immunogenicity studies. The specificity and selectivity of these ligand binding assays are highly dependent on the ligand binding reagents. Thus the selection, characterization, and management processes for ligand binding reagents are crucial to successful assay development and application. This report describes process considerations for selection and characterization of ligand binding reagents that are integral parts of the different phases of assay development. Changes in expression, purification, modification, and storage of the ligand binding reagents may have a profound effect on the ligand binding assay performance. Thus long-term management of the critical ligand binding assay reagents is addressed including suggested characterization criteria that allow ligand binding reagents to be used in as consistent a manner as possible. Examples of challenges related to the selection, modification, and characterization of ligand binding reagents are included.

  9. Materials dispersion and biodynamics project research

    NASA Technical Reports Server (NTRS)

    Lewis, Marian L.

    1992-01-01

    The Materials Dispersion and Biodynamics Project (MDBP) focuses on dispersion and mixing of various biological materials and the dynamics of cell-to-cell communication and intracellular molecular trafficking in microgravity. Research activities encompass biomedical applications, basic cell biology, biotechnology (products from cells), protein crystal development, ecological life support systems (involving algae and bacteria), drug delivery (microencapsulation), biofilm deposition by living organisms, and hardware development to support living cells on Space Station Freedom (SSF). Project goals are to expand the existing microgravity science database through experiments on sounding rockets, the Shuttle, and COMET program orbiters and to evolve,through current database acquisition and feasibility testing, to more mature and larger-scale commercial operations on SSF. Maximized utilization of SSF for these science applications will mean that service companies will have a role in providing equipment for use by a number of different customers. An example of a potential forerunner of such a service for SSF is the Materials Dispersion Apparatus (MDA) 'mini lab' of Instrumentation Technology Associates, Inc. (ITA) in use on the Shuttle for the Commercial MDAITA Experiments (CMIX) Project. The MDA wells provide the capability for a number of investigators to perform mixing and bioprocessing experiments in space. In the area of human adaptation to microgravity, a significant database has been obtained over the past three decades. Some low-g effects are similar to Earth-based disorders (anemia, osteoporosis, neuromuscular diseases, and immune system disorders). As new information targets potential profit-making processes, services and products from microgravity, commercial space ventures are expected to expand accordingly. Cooperative CCDS research in the above mentioned areas is essential for maturing SSF biotechnology and to ensure U.S. leadership in space technology. Currently, the MDBP conducts collaborative research with investigators at the Rockefeller University, National Cancer Institute, and the Universities of California, Arizona, and Alabama in Birmingham. The growing database from these collaborations provides fundamental information applicable to development of cell products, manipulation of immune cell response, bone cell growth and mineralization, and other processes altered by low-gravity. Contacts with biotechnology and biopharmaceutical companies are being increased to reach uninformed potential SSF users, provide access through the CMDS to interested users for feasibility studies, and to continue active involvement of current participants. We encourage and actively seek participation of private sector companies, and university and government researchers interested in biopharmaceuticals, hardware development and fundamental research in microgravity.

  10. A User-Friendly Model for Spray Drying to Aid Pharmaceutical Product Development

    PubMed Central

    Grasmeijer, Niels; de Waard, Hans; Hinrichs, Wouter L. J.; Frijlink, Henderik W.

    2013-01-01

    The aim of this study was to develop a user-friendly model for spray drying that can aid in the development of a pharmaceutical product, by shifting from a trial-and-error towards a quality-by-design approach. To achieve this, a spray dryer model was developed in commercial and open source spreadsheet software. The output of the model was first fitted to the experimental output of a Büchi B-290 spray dryer and subsequently validated. The predicted outlet temperatures of the spray dryer model matched the experimental values very well over the entire range of spray dryer settings that were tested. Finally, the model was applied to produce glassy sugars by spray drying, an often used excipient in formulations of biopharmaceuticals. For the production of glassy sugars, the model was extended to predict the relative humidity at the outlet, which is not measured in the spray dryer by default. This extended model was then successfully used to predict whether specific settings were suitable for producing glassy trehalose and inulin by spray drying. In conclusion, a spray dryer model was developed that is able to predict the output parameters of the spray drying process. The model can aid the development of spray dried pharmaceutical products by shifting from a trial-and-error towards a quality-by-design approach. PMID:24040240

  11. Biopharmaceutic Risk Assessment of Brand and Generic Lamotrigine Tablets.

    PubMed

    Vaithianathan, Soundarya; Raman, Siddarth; Jiang, Wenlei; Ting, Tricia Y; Kane, Maureen A; Polli, James E

    2015-07-06

    The therapeutic equivalence of generic and brand name antiepileptic drugs has been questioned by neurologists and the epilepsy community. A potential contributor to such concerns is pharmaceutical quality. The objective was to assess the biopharmaceutic risk of brand name Lamictal 100 mg tablets and generic lamotrigine 100 mg tablets from several manufacturers. Lamotrigine was characterized in terms of the Biopharmaceutics Classification System (BCS), including aqueous solubility and Caco-2 permeability. A panel of pharmaceutical quality tests was also performed on three batches of Lamictal, three batches of Teva generic, and one batch of each of four other generics: appearance, identity, assay, impurity, uniformity of dosage units, disintegration, dissolution, friability, and loss on drying. These market surveillance results indicate that all brand name and generic lamotrigine 100 mg tablets passed all tests and showed acceptable pharmaceutical quality and low biopharmaceutic risk. Lamotrigine was classified as a BCS class IIb drug, exhibiting pH-dependent aqueous solubility and dissolution. At pH 1.2 and 4.5, lamotrigine exhibited high solubility, whereas lamotrigine exhibited low solubility at pH 6.8, including non-sink dissolution. Lamotrigine showed high Caco-2 permeability. The apparent permeability (Papp) of lamotrigine was (73.7 ± 8.7) × 10(-6) cm/s in the apical-to-basolateral (AP-BL) direction and (41.4 ± 1.6) × 10(-6) cm/s in the BL-AP direction, which were higher than metoprolol's AP-BL Papp of (21.2 ± 0.9) × 10(-6) cm/s and BL-AP Papp of (34.6 ± 4.6) × 10(-6) cm/s. Overall, lamotrigine's favorable biopharmaceutics from a drug substance perspective and favorable quality characteristics from a tablet formulation perspective suggest that multisource lamotrigine tablets exhibit a low biopharmaceutic risk.

  12. Summary of the NICHD-BPCA Pediatric Formulation Initiatives Workshop-Pediatric Biopharmaceutics Classification System (PBCS) Working Group

    PubMed Central

    Abdel-Rahman, Susan; Amidon, Gordon L.; Kaul, Ajay; Lukacova, Viera; Vinks, Alexander A.; Knipp, Gregory

    2012-01-01

    The Biopharmaceutics Classification System (BCS) allows compounds to be classified based on their in vitro solubility and intestinal permeability. The BCS has found widespread use in the pharmaceutical community as an enabling guide for the rational selection of compounds, formulation for clinical advancement and generic biowaivers. The Pediatric Biopharmaceutics Classification System (PBCS) working group was convened to consider the possibility of developing an analogous pediatric based classification system. Since there are distinct developmental differences that can alter intestinal contents, volumes, permeability and potentially biorelevant solubilities at the different ages, the PBCS working group focused on identifying age specific issues that would need to be considered in establishing a flexible, yet rigorous PBCS. Objective To summarize the findings of the PBCS working group and provide insights into considerations required for the development of a pediatric based biopharmaceutics classification system. Methods Through several meetings conducted both at The Eunice Kennedy Shriver National Institute of Child Health, Human Development (NICHD)-US Pediatric Formulation Initiative (PFI) workshop (November 2011) and via teleconferences, the PBCS working group considered several high level questions that were raised to frame the classification system. In addition, the PBCS working group identified a number of knowledge gaps that would need to be addressed in order to develop a rigorous PBCS. Results It was determined that for a PBCS to be truly meaningful, it would need to be broken down into several different age groups that would account for developmental changes in intestinal permeability, luminal contents, and gastrointestinal transit. Several critical knowledge gaps where identified including: 1) a lack of fully understanding the ontogeny of drug metabolizing enzymes and transporters along the gastrointestinal (GI) tract, in the liver and in the kidney; 2) an incomplete understanding of age-based changes in the GI, liver and kidney physiology; 3) a clear need to better understand age-based intestinal permeability and fraction absorbed required to develop the PBCS; 4) a clear need for the development and organization of pediatric tissue biobanks to serve as a source for ontogenic research; and 5) a lack of literature published in age-based pediatric pharmacokinetics in order to build Physiologically- and Population-Based Pharmacokinetic (PBPK) databases. Conclusions To begin the process of establishing a PBPK model, ten pediatric therapeutic agents were selected (based on their adult BCS classifications). Those agents should be targeted for additional research in the future. The PBCS working group also identified several areas where a greater emphasis on research is needed to enable the development of a PBCS. PMID:23149009

  13. Monoclonal Antibodies Production Platforms: An Opportunity Study of a Non-Protein-A Chromatographic Platform Based on Process Economics.

    PubMed

    Grilo, António L; Mateus, Marília; Aires-Barros, Maria R; Azevedo, Ana M

    2017-12-01

    Monoclonal antibodies currently dominate the biopharmaceutical market with growing sales having reached 80 billion USD in 2016. As most top-selling mAbs are approaching the end of their patent life, biopharmaceutical companies compete fiercely in the biosimilars market. These two factors present a strong motivation for alternative process strategies and process optimization. In this work a novel purification strategy for monoclonal antibodies comprising phenylboronic acid multimodal chromatography for capture followed by polishing by ion-exchange monolithic chromatography and packed bed hydrophobic interaction chromatography is presented and compared to the traditional protein-A-based process. Although the capital investment is similar for both processes, the operation cost is 20% lower for the novel strategy. This study shows that the new process is worthwhile investing in and could present a viable alternative to the platform process used by most industrial players. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Risk Assessment Integrated QbD Approach for Development of Optimized Bicontinuous Mucoadhesive Limicubes for Oral Delivery of Rosuvastatin.

    PubMed

    Javed, Md Noushad; Kohli, Kanchan; Amin, Saima

    2018-04-01

    Statins are widely prescribed for hyperlipidemia, cancer, and Alzheimer's disease but are facing some inherent challenges such as low solubility and drug loading, higher hepatic metabolism, as well as instability at gastric pH. So, relatively higher circulating dose, required for exerting the therapeutic benefits, leads to dose-mediated severe toxicity. Furthermore, due to low biocompatibility, high toxicity, and other regulatory caveats such as product conformity, reproducibility, and stability of conventional formulations as well as preferentially higher bioabsorption of lipids in their favorable cuboidal geometry, enhancement in in vivo biopharmaceutical performance of Rosuvastatin could be well manifested in Quality by Design (QbD) integrated cuboidal-shaped mucoadhesive microcrystalline delivery systems (Limicubes). Here, quality-target-product-profile (QTPPs), critical quality attributes (CQAs), Ishikawa fishbone diagram, and integration of risk management through risk assessment matrix for failure mode and effects analysis (FMEA) followed by processing of Plackett-Burman design matrix using different statistical test for the first time established an approach to substantiate the claims that controlling levels of only these three screened out independent process variables, i.e., Monoolein (B = 800-1100 μL), Poloxamer (C = 150-200 mg), and stirring speed (F = 700-1000 rpm) were statistically significant to modulate and improve the biopharmaceutical performance affecting key attributes, viz., average particle size (Y 1  = 1.40-2.70 μ), entrapment efficiency (Y 2  = 62.60-88.80%), and drug loading (Y 3  = 0.817-1.15%), in QbD-enabled process. The optimal performance of developed Limicubes exhibited an average particle size of 1.8 ± 0.2 μ, entrapment efficiency 80.32 ± 2.88%, and drug loading 0.93 ± 0.08% at the level of 1100 μL (+ 1), 200 mg (+ 1), and 700 rpm (- 1) for Monoolein, Poloxamer, and stirring speed, respectively.

  15. Just how good an investment is the biopharmaceutical sector?

    PubMed

    Thakor, Richard T; Anaya, Nicholas; Zhang, Yuwei; Vilanilam, Christian; Siah, Kien Wei; Wong, Chi Heem; Lo, Andrew W

    2017-12-01

    Uncertainty surrounding the risk and reward of investments in biopharmaceutical companies poses a challenge to those interested in funding such enterprises. Using data on publicly traded stocks, we track the performance of 1,066 biopharmaceutical companies from 1930 to 2015-the most comprehensive financial analysis of this sector to date. Our systematic exploration of methods for distinguishing biotech and pharmaceutical companies yields a dynamic, more accurate classification method. We find that the performance of the biotech sector is highly sensitive to the presence of a few outlier companies, and confirm that nearly all biotech companies are loss-making enterprises, exhibiting high stock volatility. In contrast, since 2000, pharmaceutical companies have become increasingly profitable, with risk-adjusted returns consistently outperforming the market. The performance of all biopharmaceutical companies is subject not only to factors arising from their drug pipelines (idiosyncratic risk), but also from general economic conditions (systematic risk). The risk associated with returns has profound implications both for patterns of investment and for funding innovation in biomedical R&D.

  16. Microscale to Manufacturing Scale-up of Cell-Free Cytokine Production—A New Approach for Shortening Protein Production Development Timelines

    PubMed Central

    Zawada, James F; Yin, Gang; Steiner, Alexander R; Yang, Junhao; Naresh, Alpana; Roy, Sushmita M; Gold, Daniel S; Heinsohn, Henry G; Murray, Christopher J

    2011-01-01

    Engineering robust protein production and purification of correctly folded biotherapeutic proteins in cell-based systems is often challenging due to the requirements for maintaining complex cellular networks for cell viability and the need to develop associated downstream processes that reproducibly yield biopharmaceutical products with high product quality. Here, we present an alternative Escherichia coli-based open cell-free synthesis (OCFS) system that is optimized for predictable high-yield protein synthesis and folding at any scale with straightforward downstream purification processes. We describe how the linear scalability of OCFS allows rapid process optimization of parameters affecting extract activation, gene sequence optimization, and redox folding conditions for disulfide bond formation at microliter scales. Efficient and predictable high-level protein production can then be achieved using batch processes in standard bioreactors. We show how a fully bioactive protein produced by OCFS from optimized frozen extract can be purified directly using a streamlined purification process that yields a biologically active cytokine, human granulocyte-macrophage colony-stimulating factor, produced at titers of 700 mg/L in 10 h. These results represent a milestone for in vitro protein synthesis, with potential for the cGMP production of disulfide-bonded biotherapeutic proteins. Biotechnol. Bioeng. 2011; 108:1570–1578. © 2011 Wiley Periodicals, Inc. PMID:21337337

  17. A system identification approach for developing model predictive controllers of antibody quality attributes in cell culture processes.

    PubMed

    Downey, Brandon; Schmitt, John; Beller, Justin; Russell, Brian; Quach, Anthony; Hermann, Elizabeth; Lyon, David; Breit, Jeffrey

    2017-11-01

    As the biopharmaceutical industry evolves to include more diverse protein formats and processes, more robust control of Critical Quality Attributes (CQAs) is needed to maintain processing flexibility without compromising quality. Active control of CQAs has been demonstrated using model predictive control techniques, which allow development of processes which are robust against disturbances associated with raw material variability and other potentially flexible operating conditions. Wide adoption of model predictive control in biopharmaceutical cell culture processes has been hampered, however, in part due to the large amount of data and expertise required to make a predictive model of controlled CQAs, a requirement for model predictive control. Here we developed a highly automated, perfusion apparatus to systematically and efficiently generate predictive models using application of system identification approaches. We successfully created a predictive model of %galactosylation using data obtained by manipulating galactose concentration in the perfusion apparatus in serialized step change experiments. We then demonstrated the use of the model in a model predictive controller in a simulated control scenario to successfully achieve a %galactosylation set point in a simulated fed-batch culture. The automated model identification approach demonstrated here can potentially be generalized to many CQAs, and could be a more efficient, faster, and highly automated alternative to batch experiments for developing predictive models in cell culture processes, and allow the wider adoption of model predictive control in biopharmaceutical processes. © 2017 The Authors Biotechnology Progress published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers Biotechnol. Prog., 33:1647-1661, 2017. © 2017 The Authors Biotechnology Progress published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers.

  18. Establishing the pharmaceutical quality of Chinese herbal medicine: a provisional BCS classification.

    PubMed

    Fong, Sophia Y K; Liu, Mary; Wei, Hai; Löbenberg, Raimar; Kanfer, Isadore; Lee, Vincent H L; Amidon, Gordon L; Zuo, Zhong

    2013-05-06

    The Biopharmaceutical Classification System (BCS), which is a scientific approach to categorize active drug ingredient based on its solubility and intestinal permeability into one of the four classes, has been used to set the pharmaceutical quality standards for drug products in western society. However, it has received little attention in the area of Chinese herbal medicine (CHM). This is likely, in part, due to the presence of multiple active components as well as lack of standardization of CHM. In this report, we apply BCS classification to CHMs provisionally as a basis for establishing improved in vitro quality standards. Based on a top-200 drugs selling list in China, a total of 31 CHM products comprising 50 official active marker compounds (AMCs) were provisionally classified according to BCS. Information on AMC content and doses of these CHM products were retrieved from the Chinese Pharmacopoeia. BCS parameters including solubility and permeability of the AMCs were predicted in silico (ACD/Laboratories). A BCS classification of CHMs according to biopharmaceutical properties of their AMCs is demonstrated to be feasible in the current study and can be used to provide a minimum set of quality standards. Our provisional results showed that 44% of the included AMCs were classified as Class III (high solubility, low permeability), followed by Class II (26%), Class I (18%), and Class IV (12%). A similar trend was observed when CHMs were classified in accordance with the BCS class of AMCs. Most (45%) of the included CHMs were classified as Class III, followed by Class II (16%), Class I (10%), and Class IV (6%); whereas 23% of the CHMs were of mixed class due to the presence of multiple individual AMCs with different BCS classifications. Moreover, about 60% of the AMCs were classified as high-solubility compounds (Class I and Class III), suggesting an important role for an in vitro dissolution test in setting quality control standards ensuring consistent biopharmaceutical quality for the commercially available CHM products. That is, provisionally, more than half of the AMCs of the top-selling CHMs included in this study would be candidates for a bioequivalence (BE) biowaiver, based on WHO recommendations and EMEA guidelines. Thus a dissolution requirement on these AMCs would represent a significant advance in the pharmaceutical quality of CHM today.

  19. From the bench to clinical practice: understanding the challenges and uncertainties in immunogenicity testing for biopharmaceuticals

    PubMed Central

    Gunn, G. R.; Sealey, D. C. F.; Jamali, F.; Meibohm, B.; Ghosh, S.

    2016-01-01

    Summary Unlike conventional chemical drugs where immunogenicity typically does not occur, the development of anti‐drug antibodies following treatment with biologics has led to concerns about their impact on clinical safety and efficacy. Hence the elucidation of the immunogenicity of biologics is required for drug approval by health regulatory authorities worldwide. Published ADA ‘incidence’ rates can vary greatly between same‐class products and different patient populations. Such differences are due to disparate bioanalytical methods and interpretation approaches, as well as a plethora of product‐specific and patient‐specific factors that are not fully understood. Therefore, the incidence of ADA and their association with clinical consequences cannot be generalized across products. In this context, the intent of this review article is to discuss the complex nature of ADA and key nuances of the methodologies used for immunogenicity assessments, and to dispel some fallacies and myths. PMID:26597698

  20. CHO microRNA engineering is growing up: Recent successes and future challenges☆

    PubMed Central

    Jadhav, Vaibhav; Hackl, Matthias; Druz, Aliaksandr; Shridhar, Smriti; Chung, Cheng-Yu; Heffner, Kelley M.; Kreil, David P.; Betenbaugh, Mike; Shiloach, Joseph; Barron, Niall; Grillari, Johannes; Borth, Nicole

    2013-01-01

    microRNAs with their ability to regulate complex pathways that control cellular behavior and phenotype have been proposed as potential targets for cell engineering in the context of optimization of biopharmaceutical production cell lines, specifically of Chinese Hamster Ovary cells. However, until recently, research was limited by a lack of genomic sequence information on this industrially important cell line. With the publication of the genomic sequence and other relevant data sets for CHO cells since 2011, the doors have been opened for an improved understanding of CHO cell physiology and for the development of the necessary tools for novel engineering strategies. In the present review we discuss both knowledge on the regulatory mechanisms of microRNAs obtained from other biological models and proof of concepts already performed on CHO cells, thus providing an outlook of potential applications of microRNA engineering in production cell lines. PMID:23916872

  1. Comparative Application of PLS and PCR Methods to Simultaneous Quantitative Estimation and Simultaneous Dissolution Test of Zidovudine - Lamivudine Tablets.

    PubMed

    Üstündağ, Özgür; Dinç, Erdal; Özdemir, Nurten; Tilkan, M Günseli

    2015-01-01

    In the development strategies of new drug products and generic drug products, the simultaneous in-vitro dissolution behavior of oral dosage formulations is the most important indication for the quantitative estimation of efficiency and biopharmaceutical characteristics of drug substances. This is to force the related field's scientists to improve very powerful analytical methods to get more reliable, precise and accurate results in the quantitative analysis and dissolution testing of drug formulations. In this context, two new chemometric tools, partial least squares (PLS) and principal component regression (PCR) were improved for the simultaneous quantitative estimation and dissolution testing of zidovudine (ZID) and lamivudine (LAM) in a tablet dosage form. The results obtained in this study strongly encourage us to use them for the quality control, the routine analysis and the dissolution test of the marketing tablets containing ZID and LAM drugs.

  2. Development and validation of a bioassay to evaluate binding of adalimumab to cell membrane-anchored TNFα using flow cytometry detection.

    PubMed

    Camacho-Sandoval, Rosa; Sosa-Grande, Eréndira N; González-González, Edith; Tenorio-Calvo, Alejandra; López-Morales, Carlos A; Velasco-Velázquez, Marco; Pavón-Romero, Lenin; Pérez-Tapia, Sonia Mayra; Medina-Rivero, Emilio

    2018-06-05

    Physicochemical and structural properties of proteins used as active pharmaceutical ingredients of biopharmaceuticals are determinant to carry out their biological activity. In this regard, the assays intended to evaluate functionality of biopharmaceuticals provide confirmatory evidence that they contain the appropriate physicochemical properties and structural conformation. The validation of the methodologies used for the assessment of critical quality attributes of biopharmaceuticals is a key requirement for manufacturing under GMP environments. Herein we present the development and validation of a flow cytometry-based methodology for the evaluation of adalimumab's affinity towards membrane-bound TNFα (mTNFα) on recombinant CHO cells. This in vitro methodology measures the interaction between an in-solution antibody and its target molecule onto the cell surface through a fluorescent signal. The characteristics evaluated during the validation exercise showed that this methodology is suitable for its intended purpose. The assay demonstrated to be accurate (r 2  = 0.92, slope = 1.20), precise (%CV ≤ 18.31) and specific (curve fitting, r 2  = 0.986-0.997) to evaluate binding of adalimumab to mTNFα. The results obtained here provide evidence that detection by flow cytometry is a viable alternative for bioassays used in the pharmaceutical industry. In addition, this methodology could be standardized for the evaluation of other biomolecules acting through the same mechanism of action. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  3. Mechanistic Physiologically Based Pharmacokinetic Modeling of the Dissolution and Food Effect of a Biopharmaceutics Classification System IV Compound-The Venetoclax Story.

    PubMed

    Emami Riedmaier, Arian; Lindley, David J; Hall, Jeffrey A; Castleberry, Steven; Slade, Russell T; Stuart, Patricia; Carr, Robert A; Borchardt, Thomas B; Bow, Daniel A J; Nijsen, Marjoleen

    2018-01-01

    Venetoclax, a selective B-cell lymphoma-2 inhibitor, is a biopharmaceutics classification system class IV compound. The aim of this study was to develop a physiologically based pharmacokinetic (PBPK) model to mechanistically describe absorption and disposition of an amorphous solid dispersion formulation of venetoclax in humans. A mechanistic PBPK model was developed incorporating measured amorphous solubility, dissolution, metabolism, and plasma protein binding. A middle-out approach was used to define permeability. Model predictions of oral venetoclax pharmacokinetics were verified against clinical studies of fed and fasted healthy volunteers, and clinical drug interaction studies with strong CYP3A inhibitor (ketoconazole) and inducer (rifampicin). Model verification demonstrated accurate prediction of the observed food effect following a low-fat diet. Ratios of predicted versus observed C max and area under the curve of venetoclax were within 0.8- to 1.25-fold of observed ratios for strong CYP3A inhibitor and inducer interactions, indicating that the venetoclax elimination pathway was correctly specified. The verified venetoclax PBPK model is one of the first examples mechanistically capturing absorption, food effect, and exposure of an amorphous solid dispersion formulated compound. This model allows evaluation of untested drug-drug interactions, especially those primarily occurring in the intestine, and paves the way for future modeling of biopharmaceutics classification system IV compounds. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  4. Effects of radio frequency identification-related radiation on in vitro biologics.

    PubMed

    Uysal, Ismail; Hohberger, Clive; Rasmussen, R Scott; Ulrich, David A; Emond, Jean-Pierre; Gutierrez, Alfonso

    2012-01-01

    The recent developments on the use of e-pedigree to identify the chain of custody of drugs suggests the use of advanced track and trace technologies such as two-dimensional barcodes and radio frequency identification (RFID) tags. RFID technology is used mainly for valuable commodities such as pharmaceutical products while incorporating additional functionalities like monitoring environmental variables to ensure product safety and quality. In its guidance for the use of RFID technologies for drugs (Compliance Policy Guide Section 400.210), the Food and Drug Administration outlined multiple parameters that would apply to any study or application using RFID. However, drugs approved under a Biologics License Application or protein drugs covered by a New Drug Application were excluded mainly due to concerns about the effects of radio frequency radiation (thermal and/or non-thermal) on biologics. Even though the thermal effects of radio frequency on biologics are relatively well understood, there are few studies in the literature about the non-thermal effects of radio frequency with regards to the protein structure integrity. In this paper, we analyze the non-thermal effects of radio frequency radiation by exposing a wide variety of biologics including biopharmaceuticals with vaccines, hormones, and immunoglobulins, as well as cellular blood products such as red blood cells and whole blood-derived platelets as well as fresh frozen plasma. In order to represent the majority of the frequency spectrum used in RFID applications, five different frequencies (13.56 MHz, 433 MHz, 868 MHz, 915 MHz, and 2.4 GHz) are used to account for the most commonly used international frequency bands for RFID. With the help of specialized radio frequency signal-generating hardware, magnetic and electromagnetic fields are created around the exposed products with power levels greater than Federal Communications Commission-regulated limits. The in vitro test results on more than 100 biopharmaceutical products from eight major pharmaceutical companies as well, as different blood products, show no non-thermal effect by radio frequency radiation. Forthcoming requirements, such as the California Board of Pharmacy Track and Trace initiative regarding the use of e-pedigree to identify the chain of custody of drugs, suggest the use of advanced track and trace technologies such as two-dimensional barcodes and radio frequency identification (RFID) tags. When used for pharmaceuticals, RFID technology can support additional functionalities like monitoring temperature to ensure product safety. In its guidance for the use of RFID technologies for drugs, the Food and Drug Administration outlined multiple parameters that would apply to pilot studies using RFID while excluding drugs approved under a Biologics License Application or protein drugs covered by a New Drug Application due to concerns about the effects of radio frequency radiation on biologics. Even though the effects of radio frequency on biologics due to temperature changes are relatively well understood, there are few studies in the literature about other effects of radio frequency that can occur without a noticeable change in temperature. In this paper, we expose a wide variety of biologics including biopharmaceuticals to radio frequency radiation at different frequencies, as well as cellular blood products and plasma to high frequency radiation. The in vitro test results show no detectable effect due to radio frequency radiation.

  5. Quality cell therapy manufacturing by design.

    PubMed

    Lipsitz, Yonatan Y; Timmins, Nicholas E; Zandstra, Peter W

    2016-04-01

    Transplantation of live cells as therapeutic agents is poised to offer new treatment options for a wide range of acute and chronic diseases. However, the biological complexity of cells has hampered the translation of laboratory-scale experiments into industrial processes for reliable, cost-effective manufacturing of cell-based therapies. We argue here that a solution to this challenge is to design cell manufacturing processes according to quality-by-design (QbD) principles. QbD integrates scientific knowledge and risk analysis into manufacturing process development and is already being adopted by the biopharmaceutical industry. Many opportunities to incorporate QbD into cell therapy manufacturing exist, although further technology development is required for full implementation. Linking measurable molecular and cellular characteristics of a cell population to final product quality through QbD is a crucial step in realizing the potential for cell therapies to transform healthcare.

  6. Biopharmaceuticals: The Economic Equation

    PubMed Central

    Blackstone, Erwin A.; Fuhr, Joseph P.

    2007-01-01

    As more biopharmaceuticals reach the market, more attention will be given to issues such as cost-effectiveness evaluations, biosimilars, and price controls. The value biologic therapies bring to the healthcare system may take years to appreciate in full –perhaps only when policy decisions allow for their economic effects to be understood. PMID:22478688

  7. Development Considerations for Nanocrystal Drug Products.

    PubMed

    Chen, Mei-Ling; John, Mathew; Lee, Sau L; Tyner, Katherine M

    2017-05-01

    Nanocrystal technology has emerged as a valuable tool for facilitating the delivery of poorly water-soluble active pharmaceutical ingredients (APIs) and enhancing API bioavailability. To date, the US Food and Drug Administration (FDA) has received over 80 applications for drug products containing nanocrystals. These products can be delivered by different routes of administration and are used in a variety of therapeutic areas. To aid in identifying key developmental considerations for these products, a retrospective analysis was performed on the submissions received by the FDA to date. Over 60% of the submissions were for the oral route of administration. Based on the Biopharmaceutics Classification System (BCS), most nanocrystal drugs submitted to the FDA are class II compounds that possess low aqueous solubility and high intestinal permeability. Impact of food on drug bioavailability was reduced for most nanocrystal formulations as compared with their micronized counterparts. For all routes of administration, dose proportionality was observed for some, but not all, nanocrystal products. Particular emphasis in the development of nanocrystal products was placed on the in-process tests and controls at critical manufacturing steps (such as milling process), mitigation and control of process-related impurities, and the stability of APIs or polymorphic form (s) during manufacturing and upon storage. This emphasis resulted in identifying challenges to the development of these products including accurate determination of particle size (distribution) of drug substance and/or nanocrystal colloidal dispersion, identification of polymorphic form (s), and establishment of drug substance/product specifications.

  8. Renaissance of protein crystallization and precipitation in biopharmaceuticals purification.

    PubMed

    Dos Santos, Raquel; Carvalho, Ana Luísa; Roque, A Cecília A

    The current chromatographic approaches used in protein purification are not keeping pace with the increasing biopharmaceutical market demand. With the upstream improvements, the bottleneck shifted towards the downstream process. New approaches rely in Anything But Chromatography methodologies and revisiting former techniques with a bioprocess perspective. Protein crystallization and precipitation methods are already implemented in the downstream process of diverse therapeutic biological macromolecules, overcoming the current chromatographic bottlenecks. Promising work is being developed in order to implement crystallization and precipitation in the purification pipeline of high value therapeutic molecules. This review focuses in the role of these two methodologies in current industrial purification processes, and highlights their potential implementation in the purification pipeline of high value therapeutic molecules, overcoming chromatographic holdups. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Risk-based Strategy to Determine Testing Requirement for the Removal of Residual Process Reagents as Process-related Impurities in Bioprocesses.

    PubMed

    Qiu, Jinshu; Li, Kim; Miller, Karen; Raghani, Anil

    2015-01-01

    The purpose of this article is to recommend a risk-based strategy for determining clearance testing requirements of the process reagents used in manufacturing biopharmaceutical products. The strategy takes account of four risk factors. Firstly, the process reagents are classified into two categories according to their safety profile and history of use: generally recognized as safe (GRAS) and potential safety concern (PSC) reagents. The clearance testing of GRAS reagents can be eliminated because of their safe use historically and process capability to remove these reagents. An estimated safety margin (Se) value, a ratio of the exposure limit to the estimated maximum reagent amount, is then used to evaluate the necessity for testing the PSC reagents at an early development stage. The Se value is calculated from two risk factors, the starting PSC reagent amount per maximum product dose (Me), and the exposure limit (Le). A worst-case scenario is assumed to estimate the Me value, that is common. The PSC reagent of interest is co-purified with the product and no clearance occurs throughout the entire purification process. No clearance testing is required for this PSC reagent if its Se value is ≥1; otherwise clearance testing is needed. Finally, the point of the process reagent introduction to the process is also considered in determining the necessity of the clearance testing for process reagents. How to use the measured safety margin as a criterion for determining PSC reagent testing at process characterization, process validation, and commercial production stages are also described. A large number of process reagents are used in the biopharmaceutical manufacturing to control the process performance. Clearance testing for all of the process reagents will be an enormous analytical task. In this article, a risk-based strategy is described to eliminate unnecessary clearance testing for majority of the process reagents using four risk factors. The risk factors included in the strategy are (i) safety profile of the reagents, (ii) the starting amount of the process reagents used in the manufacturing process, (iii) the maximum dose of the product, and (iv) the point of introduction of the process reagents in the process. The implementation of the risk-based strategy can eliminate clearance testing for approximately 90% of the process reagents used in the manufacturing processes. This science-based strategy allows us to ensure patient safety and meet regulatory agency expectations throughout the product development life cycle. © PDA, Inc. 2015.

  10. Advances in engineered microorganisms for improving metabolic conversion via microgravity effects.

    PubMed

    Huangfu, Jie; Zhang, Genlin; Li, Jun; Li, Chun

    2015-01-01

    As an extreme and unique environment, microgravity has significant effects on microbial cellular processes, such as cell growth, gene expression, natural pathways and biotechnological products. Application of microgravity effects to identify the regulatory elements in reengineering microbial hosts will draw much more attention in further research. In this commentary, we discuss the microgravity effects in engineered microorganisms for improving metabolic conversion, including cell growth kinetics, antimicrobial susceptibility, resistance to stresses, secondary metabolites production, recombinant protein production and enzyme activity, as well as gene expression changes. Application of microgravity effects in engineered microorganisms could provide valuable platform for innovative approaches in bioprocessing technology to largely improve the metabolic conversion efficacy of biopharmaceutical products.

  11. The use of biosimilar medicines in oncology - position statement of the Brazilian Society of Clinical Oncology (SBOC).

    PubMed

    Fernandes, G S; Sternberg, C; Lopes, G; Chammas, R; Gifoni, M A C; Gil, R A; Araujo, D V

    2018-01-11

    A biosimilar is a biologic product that is similar to a reference biopharmaceutical product, the manufacturing process of which hinders the ability to identically replicate the structure of the original product, and therefore, it cannot be described as an absolute equivalent of the original medication. The currently available technology does not allow for an accurate copy of complex molecules, but it does allow the replication of similar molecules with the same activity. As biosimilars are about to be introduced in oncology practice, these must be evaluated through evidence-based medicine. This manuscript is a position paper, where the Brazilian Society of Clinical Oncology (SBOC) aims to describe pertinent issues regarding the approval and use of biosimilars in oncology. As a working group on behalf of SBOC, we discuss aspects related to definition, labeling/nomenclature, extrapolation, interchangeability, switching, automatic substitution, clinical standards on safety and efficacy, and the potential impact on financial burden in healthcare. We take a stand in favor of the introduction of biosimilars, as they offer a viable, safe, and cost-effective alternative to the biopharmaceutical products currently used in cancer. We hope this document can provide valuable information to support therapeutic decisions that maximize the clinical benefit for the thousands of cancer patients in Brazil and can contribute to expedite the introduction of this new drug class in clinical practice. We expect the conveyed information to serve as a basis for further discussion in Latin America, this being the first position paper issued by a Latin American Oncology Society.

  12. Validation Study of Rapid Assays of Bioburden, Endotoxins and Other Contamination.

    PubMed

    Shintani, Hideharu

    2016-01-01

    Microbial testing performed in support of pharmaceutical and biopharmaceutical production falls into three main categories: detection (qualitative), enumeration (quantitative), and characterization/identification. Traditional microbiological methods are listed in the compendia and discussed by using the conventional growth-based techniques, which are labor intensive and time consuming. In general, such tests require several days of incubation for microbial contamination (bioburden) to be detected, and therefore management seldom is able to take proactive corrective measures. In addition, microbial growth is limited by the growth medium used and incubation conditions, thus impacting testing sensitivity, accuracy, and reproducibility.  For more than 20 years various technology platforms for rapid microbiological methods (RMM) have been developed, and many have been readily adopted by the food industry and clinical microbiology laboratories. Their use would certainly offer drug companies faster test turnaround times to accommodate the aggressive deadlines for manufacturing processes and product release. Some rapid methods also offer the possibility for real-time microbial analyses, enabling management to respond to microbial contamination events in a more timely fashion, and can provide cost savings and higher efficiencies in quality control testing laboratories. Despite the many proven business and quality benefits and the fact that the FDA's initiative to promote the use of process analytical technology (PAT) includes rapid microbial methods, pharmaceutical and biopharmaceutical industries have been somewhat slow to embrace alternative microbial methodologies for several reasons. The major reason is that the bioburden counts detected by the incubation method and rapid assay are greatly divergent.  The use of rapid methods is a dynamic field in applied microbiology and one that has gained increased attention nationally and internationally over time. This topic has been extensively addressed at conferences and in published documents around the world. More recently, the use of alternative methods for control of the microbiological quality of pharmaceutical products and materials used in pharmaceutical production has been addressed by the compendia in an attempt to facilitate implementation of these technologies by pharmaceutical companies. The author presents some of the rapid method technologies under evaluation or in use by pharmaceutical microbiologists and the current status of the implementation of alternative microbial methods.

  13. High-Throughput Analysis and Automation for Glycomics Studies.

    PubMed

    Shubhakar, Archana; Reiding, Karli R; Gardner, Richard A; Spencer, Daniel I R; Fernandes, Daryl L; Wuhrer, Manfred

    This review covers advances in analytical technologies for high-throughput (HTP) glycomics. Our focus is on structural studies of glycoprotein glycosylation to support biopharmaceutical realization and the discovery of glycan biomarkers for human disease. For biopharmaceuticals, there is increasing use of glycomics in Quality by Design studies to help optimize glycan profiles of drugs with a view to improving their clinical performance. Glycomics is also used in comparability studies to ensure consistency of glycosylation both throughout product development and between biosimilars and innovator drugs. In clinical studies there is as well an expanding interest in the use of glycomics-for example in Genome Wide Association Studies-to follow changes in glycosylation patterns of biological tissues and fluids with the progress of certain diseases. These include cancers, neurodegenerative disorders and inflammatory conditions. Despite rising activity in this field, there are significant challenges in performing large scale glycomics studies. The requirement is accurate identification and quantitation of individual glycan structures. However, glycoconjugate samples are often very complex and heterogeneous and contain many diverse branched glycan structures. In this article we cover HTP sample preparation and derivatization methods, sample purification, robotization, optimized glycan profiling by UHPLC, MS and multiplexed CE, as well as hyphenated techniques and automated data analysis tools. Throughout, we summarize the advantages and challenges with each of these technologies. The issues considered include reliability of the methods for glycan identification and quantitation, sample throughput, labor intensity, and affordability for large sample numbers.

  14. Re-inventing clinical trials through TransCelerate.

    PubMed

    Gill, Dalvir

    2014-11-01

    TransCelerate BioPharma was formed in 2012 as a non-profit organization with a mission to collaborate across the biopharmaceutical research and development community to identify, prioritize, design and facilitate the implementation of solutions to drive efficient, effective and high-quality delivery of new medicines.

  15. PEG-modified biopharmaceuticals.

    PubMed

    Bailon, Pascal; Won, Chee-Youb

    2009-01-01

    PEGylation is a process in which one or more units of chemically activated polyethylene glycol reacts with a biomolecule, usually a protein, peptide, small molecule or oligonucleotide, creating a putative new molecular entity possessing physicochemical and physiological characteristics that are distinct from its predecessor molecules. In recent years, PEGylation has been used not only as a drug delivery technology but used also as a drug modification technology to transform existing biopharmaceuticals clinically more efficacious than before their PEGylation. PEGylation bestows several useful properties upon the native molecule, resulting in improved pharmacokinetic and pharmacodynamic properties, which in turn enable the native molecule to achieve maximum clinical potency. In addition, PEGylation results in sustained clinical response with minimal dose and less frequency of dosing, leading to improved quality of life via increased patient compliance and reduced cost. During the course of development of various pegylated protein therapeutics, several new insights have been gained. This review article focuses on the approaches, strategies and the utilization of modern PEGylation concepts in the design and development of well-characterized pegylated protein therapeutics.

  16. Protein stability in pulmonary drug delivery via nebulization.

    PubMed

    Hertel, Sebastian P; Winter, Gerhard; Friess, Wolfgang

    2015-10-01

    Protein inhalation is a delivery route which offers high potential for direct local lung application of proteins. Liquid formulations are usually available in early stages of biopharmaceutical development and nebulizers are the device of choice for atomization avoiding additional process steps like drying and enabling fast progression to clinical trials. While some proteins were proven to remain stable throughout aerosolization e.g. DNase, many biopharmaceuticals are more susceptible towards the stresses encountered during nebulization. The main reason for protein instability is unfolding and aggregation at the air-liquid interface, a problem which is of particular challenge in the case of ultrasound and jet nebulizers due to recirculation of much of the generated droplets. Surfactants are an important formulation component to protect the sensitive biomolecules. A second important challenge is warming of ultrasound and vibrating mesh devices, which can be overcome by overfilling, precooled solutions or cooling of the reservoir. Ultimately, formulation development has to go hand in hand with device evaluation. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Review on the worldwide regulatory framework for biosimilars focusing on the Mexican case as an emerging market in Latin America.

    PubMed

    Ibarra-Cabrera, Ricardo; Mena-Pérez, Sandra Carolina; Bondani-Guasti, Augusto; García-Arrazola, Roeb

    2013-12-01

    The global biopharmaceutical market is worth over $100 billion USD. Nearly 90% of these products will lose their patent in the next ten years, leading to the commercialization of their subsequent versions, known as 'biosimilars'. Biosimilars are much more complex molecules than chemically synthesized generics in terms of size, structure, stability, microheterogeneity, manufacture, etc. Therefore, a specific regulatory framework is needed in order to demonstrate their comparability with innovative products, as well as their quality, safety and efficacy. The EU published the first regulatory pathway in 2005 and has approved 14 biosimilars. Mexico has recently developed a clear regulatory pathway for these products. Their legal basis was established in Article 222 Bis of General Law of Health in 2009, clear specifications in the Regulation for Health Goods in 2011, and further requirements in the Mexican Official Norm NOM-EM-001-SSA1-2012. The aim of this review is to summarize the regulatory pathways for biosimilars in the world with a special focus on Mexican experience, so as contribute to the development of regulations in other countries. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Progress and challenges in viral vector manufacturing

    PubMed Central

    van der Loo, Johannes C.M.; Wright, J. Fraser

    2016-01-01

    Promising results in several clinical studies have emphasized the potential of gene therapy to address important medical needs and initiated a surge of investments in drug development and commercialization. This enthusiasm is driven by positive data in clinical trials including gene replacement for Hemophilia B, X-linked Severe Combined Immunodeficiency, Leber's Congenital Amaurosis Type 2 and in cancer immunotherapy trials for hematological malignancies using chimeric antigen receptor T cells. These results build on the recent licensure of the European gene therapy product Glybera for the treatment of lipoprotein lipase deficiency. The progress from clinical development towards product licensure of several programs presents challenges to gene therapy product manufacturing. These include challenges in viral vector-manufacturing capacity, where an estimated 1–2 orders of magnitude increase will likely be needed to support eventual commercial supply requirements for many of the promising disease indications. In addition, the expanding potential commercial product pipeline and the continuously advancing development of recombinant viral vectors for gene therapy require that products are well characterized and consistently manufactured to rigorous tolerances of purity, potency and safety. Finally, there is an increase in regulatory scrutiny that affects manufacturers of investigational drugs for early-phase clinical trials engaged in industry partnerships. Along with the recent increase in biopharmaceutical funding in gene therapy, industry partners are requiring their academic counterparts to meet higher levels of GMP compliance at earlier stages of clinical development. This chapter provides a brief overview of current progress in the field and discusses challenges in vector manufacturing. PMID:26519140

  19. Trends in biopharmaceutical IPOS: 1996-2005.

    PubMed

    Williams, David R; Young, Carlton C

    2006-01-01

    This study examines the stock market reaction and other financial aspects of all biopharmaceutical firms that had an initial public offering (IPO) between 1996 and 2005. Overall, increases in stock price at the close of the first day averaged 20.9 percent while the stock price of those firms that went public and survived until the end of 2005 stock price increased by only 7.7 percent on average. Sixty-nine percent of the firms that went public during this period were still trading at the end of 2005, with the majority of those de-listed being acquired or merged. Three-fourths of all biopharmaceutical IPOs had venture capital investors. Venture capitalists owned 47.4 percent of all common stock outstanding prior to the IPO on average.

  20. Aspects of research and development contract terms in the bio/pharmaceutical sector.

    PubMed

    Banerjee, Tannista

    2012-01-01

    The cost of new drug development is increasing every year. Pharmaceutical companies use R&D joint ventures, mergers, and outsource different stages of pharmaceutical R&D activities for a faster and cost minimizing method of innovation. Pharmaceutical companies outsource R&D activities to independent small biotech or pharmaceutical companies that specialize in different stages of pharmaceutical R&D. This chapter examines the determinants of the payment structure of research contracts between large bio/pharmaceutical companies and specialized research firms. Determinants of R&D contracts are analyzed using detailed R&D contract data between bio/pharmaceutical companies and independent research firms for 10 years. A multinomial logit model is used in order to understand the determinants of three different types of contracts; royalty contracts, fixed payment contracts, and the mixed contracts. Under uncertainty, the likelihood of a royalty contract rises for the early stages of the research and with the patent stock of the research firm. It is more likely to observe both royalty and fixed payment if the pharmaceutical client has past contracts with the same research firm. The results also suggest that if Food and Drug Administration (FDA) is more stringent in any disease area in reviewing the new drug application, then the likelihood of signing pure royalty contract decreases. Understanding the nature of R&D contracts and the effects of FDA's behavior on the pharmaceutical R&D contract is important because these contracts not only affect the cost of new drug invention but also the quality and the rate of invention. VALUE: Results are useful for both the pharmaceutical companies and the economic/business researchers.

  1. Teaching and implementing autonomous robotic lab walkthroughs in a biotech laboratory through model-based visual tracking

    NASA Astrophysics Data System (ADS)

    Wojtczyk, Martin; Panin, Giorgio; Röder, Thorsten; Lenz, Claus; Nair, Suraj; Heidemann, Rüdiger; Goudar, Chetan; Knoll, Alois

    2010-01-01

    After utilizing robots for more than 30 years for classic industrial automation applications, service robots form a constantly increasing market, although the big breakthrough is still awaited. Our approach to service robots was driven by the idea of supporting lab personnel in a biotechnology laboratory. After initial development in Germany, a mobile robot platform extended with an industrial manipulator and the necessary sensors for indoor localization and object manipulation, has been shipped to Bayer HealthCare in Berkeley, CA, USA, a global player in the sector of biopharmaceutical products, located in the San Francisco bay area. The determined goal of the mobile manipulator is to support the off-shift staff to carry out completely autonomous or guided, remote controlled lab walkthroughs, which we implement utilizing a recent development of our computer vision group: OpenTL - an integrated framework for model-based visual tracking.

  2. Camelid VHH affinity ligands enable separation of closely related biopharmaceuticals

    PubMed Central

    Pabst, Timothy M.; Wendeler, Michaela; Wang, Xiangyang; Bezemer, Sandra; Hermans, Pim

    2016-01-01

    Abstract Interest in new and diverse classes of molecules such as recombinant toxins, enzymes, and blood factors continues to grow for use a biotherapeutics. Compared to monoclonal antibodies, these novel drugs typically lack a commercially available affinity chromatography option, which leads to greater process complexity, longer development timelines, and poor platformability. To date, for both monoclonal antibodies and novel molecules, affinity chromatography has been mostly reserved for separation of process‐related impurities such as host cell proteins and DNA. Reports of affinity purification of closely related product variants and modified forms are much rarer. In this work we describe custom affinity chromatography development using camelid VHH antibody fragments as "tunable" immunoaffinity ligands for separation of product‐related impurities. One example demonstrates high selectivity for a recombinant immunotoxin where no binding was observed for an undesired deamidated species. Also discussed is affinity purification of a coagulation factor through specific recognition of the gamma‐carboxylglutamic acid domain. PMID:27677057

  3. Integrated Process Modeling-A Process Validation Life Cycle Companion.

    PubMed

    Zahel, Thomas; Hauer, Stefan; Mueller, Eric M; Murphy, Patrick; Abad, Sandra; Vasilieva, Elena; Maurer, Daniel; Brocard, Cécile; Reinisch, Daniela; Sagmeister, Patrick; Herwig, Christoph

    2017-10-17

    During the regulatory requested process validation of pharmaceutical manufacturing processes, companies aim to identify, control, and continuously monitor process variation and its impact on critical quality attributes (CQAs) of the final product. It is difficult to directly connect the impact of single process parameters (PPs) to final product CQAs, especially in biopharmaceutical process development and production, where multiple unit operations are stacked together and interact with each other. Therefore, we want to present the application of Monte Carlo (MC) simulation using an integrated process model (IPM) that enables estimation of process capability even in early stages of process validation. Once the IPM is established, its capability in risk and criticality assessment is furthermore demonstrated. IPMs can be used to enable holistic production control strategies that take interactions of process parameters of multiple unit operations into account. Moreover, IPMs can be trained with development data, refined with qualification runs, and maintained with routine manufacturing data which underlines the lifecycle concept. These applications will be shown by means of a process characterization study recently conducted at a world-leading contract manufacturing organization (CMO). The new IPM methodology therefore allows anticipation of out of specification (OOS) events, identify critical process parameters, and take risk-based decisions on counteractions that increase process robustness and decrease the likelihood of OOS events.

  4. The baculovirus expression vector system: A commercial manufacturing platform for viral vaccines and gene therapy vectors.

    PubMed

    Felberbaum, Rachael S

    2015-05-01

    The baculovirus expression vector system (BEVS) platform has become an established manufacturing platform for the production of viral vaccines and gene therapy vectors. Nine BEVS-derived products have been approved - four for human use (Cervarix(®), Provenge(®), Glybera(®) and Flublok(®)) and five for veterinary use (Porcilis(®) Pesti, BAYOVAC CSF E2(®), Circumvent(®) PCV, Ingelvac CircoFLEX(®) and Porcilis(®) PCV). The BEVS platform offers many advantages, including manufacturing speed, flexible product design, inherent safety and scalability. This combination of features and product approvals has previously attracted interest from academic researchers, and more recently from industry leaders, to utilize BEVS to develop next generation vaccines, vectors for gene therapy, and other biopharmaceutical complex proteins. In this review, we explore the BEVS platform, detailing how it works, platform features and limitations and important considerations for manufacturing and regulatory approval. To underscore the growth in opportunities for BEVS-derived products, we discuss the latest product developments in the gene therapy and influenza vaccine fields that follow in the wake of the recent product approvals of Glybera(®) and Flublok(®), respectively. We anticipate that the utility of the platform will expand even further as new BEVS-derived products attain licensure. Finally, we touch on some of the areas where new BEVS-derived products are likely to emerge. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Development of a rapid high-efficiency scalable process for acetylated Sus scrofa cationic trypsin production from Escherichia coli inclusion bodies.

    PubMed

    Zhao, Mingzhi; Wu, Feilin; Xu, Ping

    2015-12-01

    Trypsin is one of the most important enzymatic tools in proteomics and biopharmaceutical studies. Here, we describe the complete recombinant expression and purification from a trypsinogen expression vector construct. The Sus scrofa cationic trypsin gene with a propeptide sequence was optimized according to Escherichia coli codon-usage bias and chemically synthesized. The gene was inserted into pET-11c plasmid to yield an expression vector. Using high-density E. coli fed-batch fermentation, trypsinogen was expressed in inclusion bodies at 1.47 g/L. The inclusion body was refolded with a high yield of 36%. The purified trypsinogen was then activated to produce trypsin. To address stability problems, the trypsin thus produced was acetylated. The final product was generated upon gel filtration. The final yield of acetylated trypsin was 182 mg/L from a 5-L fermenter. Our acetylated trypsin product demonstrated higher BAEE activity (30,100 BAEE unit/mg) than a commercial product (9500 BAEE unit/mg, Promega). It also demonstrated resistance to autolysis. This is the first report of production of acetylated recombinant trypsin that is stable and suitable for scale-up. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Supramolecular PEGylation of biopharmaceuticals

    PubMed Central

    Webber, Matthew J.; Vinciguerra, Brittany; Cortinas, Abel B.; Thapa, Lavanya S.; Jhunjhunwala, Siddharth; Isaacs, Lyle; Langer, Robert; Anderson, Daniel G.

    2016-01-01

    The covalent modification of therapeutic biomolecules has been broadly explored, leading to a number of clinically approved modified protein drugs. These modifications are typically intended to address challenges arising in biopharmaceutical practice by promoting improved stability and shelf life of therapeutic proteins in formulation, or modifying pharmacokinetics in the body. Toward these objectives, covalent modification with poly(ethylene glycol) (PEG) has been a common direction. Here, a platform approach to biopharmaceutical modification is described that relies on noncovalent, supramolecular host–guest interactions to endow proteins with prosthetic functionality. Specifically, a series of cucurbit[7]uril (CB[7])–PEG conjugates are shown to substantially increase the stability of three distinct protein drugs in formulation. Leveraging the known and high-affinity interaction between CB[7] and an N-terminal aromatic residue on one specific protein drug, insulin, further results in altering of its pharmacological properties in vivo by extending activity in a manner dependent on molecular weight of the attached PEG chain. Supramolecular modification of therapeutic proteins affords a noncovalent route to modify its properties, improving protein stability and activity as a formulation excipient. Furthermore, this offers a modular approach to append functionality to biopharmaceuticals by noncovalent modification with other molecules or polymers, for applications in formulation or therapy. PMID:27911829

  7. Purification of inclusion bodies using PEG precipitation under denaturing conditions to produce recombinant therapeutic proteins from Escherichia coli.

    PubMed

    Chen, Huanhuan; Li, Ninghuan; Xie, Yueqing; Jiang, Hua; Yang, Xiaoyi; Cagliero, Cedric; Shi, Siwei; Zhu, Chencen; Luo, Han; Chen, Junsheng; Zhang, Lei; Zhao, Menglin; Feng, Lei; Lu, Huili; Zhu, Jianwei

    2017-07-01

    It has been documented that the purification of inclusion bodies from Escherichia coli by size exclusion chromatography (SEC) may benefit subsequent refolding and recovery of recombinant proteins. However, loading volume and the high cost of the column limits its application in large-scale manufacturing of biopharmaceutical proteins. We report a novel process using polyethylene glycol (PEG) precipitation under denaturing conditions to replace SEC for rapid purification of inclusion bodies containing recombinant therapeutic proteins. Using recombinant human interleukin 15 (rhIL-15) as an example, inclusion bodies of rhIL-15 were solubilized in 7 M guanidine hydrochloride, and rhIL-15 was precipitated by the addition of PEG 6000. A final concentration of 5% (w/v) PEG 6000 was found to be optimal to precipitate target proteins and enhance recovery and purity. Compared to the previously reported S-200 size exclusion purification method, PEG precipitation was easier to scale up and achieved the same protein yields and quality of the product. PEG precipitation also reduced manufacturing time by about 50 and 95% of material costs. After refolding and further purification, the rhIL-15 product was highly pure and demonstrated a comparable bioactivity with a rhIL-15 reference standard. Our studies demonstrated that PEG precipitation of inclusion bodies under denaturing conditions holds significant potential as a manufacturing process for biopharmaceuticals from E. coli protein expression systems.

  8. Depth Filters Containing Diatomite Achieve More Efficient Particle Retention than Filters Solely Containing Cellulose Fibers

    PubMed Central

    Buyel, Johannes F.; Gruchow, Hannah M.; Fischer, Rainer

    2015-01-01

    The clarification of biological feed stocks during the production of biopharmaceutical proteins is challenging when large quantities of particles must be removed, e.g., when processing crude plant extracts. Single-use depth filters are often preferred for clarification because they are simple to integrate and have a good safety profile. However, the combination of filter layers must be optimized in terms of nominal retention ratings to account for the unique particle size distribution in each feed stock. We have recently shown that predictive models can facilitate filter screening and the selection of appropriate filter layers. Here we expand our previous study by testing several filters with different retention ratings. The filters typically contain diatomite to facilitate the removal of fine particles. However, diatomite can interfere with the recovery of large biopharmaceutical molecules such as virus-like particles and aggregated proteins. Therefore, we also tested filtration devices composed solely of cellulose fibers and cohesive resin. The capacities of both filter types varied from 10 to 50 L m−2 when challenged with tobacco leaf extracts, but the filtrate turbidity was ~500-fold lower (~3.5 NTU) when diatomite filters were used. We also tested pre–coat filtration with dispersed diatomite, which achieved capacities of up to 120 L m−2 with turbidities of ~100 NTU using bulk plant extracts, and in contrast to the other depth filters did not require an upstream bag filter. Single pre-coat filtration devices can thus replace combinations of bag and depth filters to simplify the processing of plant extracts, potentially saving on time, labor and consumables. The protein concentrations of TSP, DsRed and antibody 2G12 were not affected by pre-coat filtration, indicating its general applicability during the manufacture of plant-derived biopharmaceutical proteins. PMID:26734037

  9. Depth Filters Containing Diatomite Achieve More Efficient Particle Retention than Filters Solely Containing Cellulose Fibers.

    PubMed

    Buyel, Johannes F; Gruchow, Hannah M; Fischer, Rainer

    2015-01-01

    The clarification of biological feed stocks during the production of biopharmaceutical proteins is challenging when large quantities of particles must be removed, e.g., when processing crude plant extracts. Single-use depth filters are often preferred for clarification because they are simple to integrate and have a good safety profile. However, the combination of filter layers must be optimized in terms of nominal retention ratings to account for the unique particle size distribution in each feed stock. We have recently shown that predictive models can facilitate filter screening and the selection of appropriate filter layers. Here we expand our previous study by testing several filters with different retention ratings. The filters typically contain diatomite to facilitate the removal of fine particles. However, diatomite can interfere with the recovery of large biopharmaceutical molecules such as virus-like particles and aggregated proteins. Therefore, we also tested filtration devices composed solely of cellulose fibers and cohesive resin. The capacities of both filter types varied from 10 to 50 L m(-2) when challenged with tobacco leaf extracts, but the filtrate turbidity was ~500-fold lower (~3.5 NTU) when diatomite filters were used. We also tested pre-coat filtration with dispersed diatomite, which achieved capacities of up to 120 L m(-2) with turbidities of ~100 NTU using bulk plant extracts, and in contrast to the other depth filters did not require an upstream bag filter. Single pre-coat filtration devices can thus replace combinations of bag and depth filters to simplify the processing of plant extracts, potentially saving on time, labor and consumables. The protein concentrations of TSP, DsRed and antibody 2G12 were not affected by pre-coat filtration, indicating its general applicability during the manufacture of plant-derived biopharmaceutical proteins.

  10. Microbials for the production of monoclonal antibodies and antibody fragments.

    PubMed

    Spadiut, Oliver; Capone, Simona; Krainer, Florian; Glieder, Anton; Herwig, Christoph

    2014-01-01

    Monoclonal antibodies (mAbs) and antibody fragments represent the most important biopharmaceutical products today. Because full length antibodies are glycosylated, mammalian cells, which allow human-like N-glycosylation, are currently used for their production. However, mammalian cells have several drawbacks when it comes to bioprocessing and scale-up, resulting in long processing times and elevated costs. By contrast, antibody fragments, that are not glycosylated but still exhibit antigen binding properties, can be produced in microbial organisms, which are easy to manipulate and cultivate. In this review, we summarize recent advances in the expression systems, strain engineering, and production processes for the three main microbials used in antibody and antibody fragment production, namely Saccharomyces cerevisiae, Pichia pastoris, and Escherichia coli. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. A rapid and simple procedure to detect the presence of MVM in conditioned cell fluids or culture media.

    PubMed

    Chang, A; Havas, S; Borellini, F; Ostrove, J M; Bird, R E

    1997-12-01

    During the manufacture of biopharmaceuticals, numerous adventitious agents have been detected in Master Cell Banks, end-of-production cells as well as bulk harvest fluid. Recently, a number of large-scale production bioreactors have become infected with Minute Virus of Mice (MVM) during cGMP (current good manufacturing practices) operations, and this has resulted in both the loss of product and the need for major cleaning validation procedures to be put in place. We have developed a simple DNA extraction/PCR assay to detect the presence of MVM in cell culture supernatant (conditioned cell fluids). This highly specific assay can detect 10 or fewer genome equivalents (copies) of MVM following PCR and gel electrophoresis visualization. For routine high-throughput detection, 300-100 copies could be consistently detected. The extraction procedure was shown to reliably detect MVM at a concentration of 1 TCID50/ml. The combination of the extraction/PCR procedure establishes a powerful, sensitive, specific assay that can detect the presence of MVM sequences with a 1-day turnaround time.

  12. Effects of Peptone Supplementation in Different Culture Media on Growth, Metabolic Pathway and Productivity of CHO DG44 Cells; a New Insight into Amino Acid Profiles.

    PubMed

    Davami, Fatemeh; Eghbalpour, Farnaz; Nematollahi, Leila; Barkhordari, Farzaneh; Mahboudi, Fereidoun

    2015-01-01

    The optimization of bioprocess conditions towards improved growth profile and productivity yield is considered of great importance in biopharmaceutical manufacturing. Peptones as efficient sources of nutrients have been studied for their effect on media development; however, their role on metabolic pathway is not well understood. In the present study, the effect of different concentration of peptones on a recombinant Chinese hamster ovary (CHO) cell line grown in three serum-free suspension cultures was determined. Six peptones of different origins and available amino acid profiles were investigated regarding their impact on cell growth, productivity, and metabolic pathways changes. In optimized feeding strategies, increases of 136% and 159% in volumetric productivity (for a low-nutrient culture media) and 55% (for a high-nutrient culture media) were achieved. Furthermore, particular sources of peptones with specific amino acid profile developed preferential results for each different culture medium. Two peptones, SoyA2SC and SoyE-110, were the only hydrolysates that showed production improvement in all three media. Casein Peptone plus Tryptone N1 and SoyA3SC showed different improved results based on their implemented concentration for each individual basal medium. The amino acid profile of peptones may provide clues to identify the most effective feeding strategies for recombinant CHO cells.

  13. Effects of Peptone Supplementation in Different Culture Media on Growth, Metabolic Pathway and Productivity of CHO DG44 Cells; a New Insight into Amino Acid Profiles

    PubMed Central

    Davami, Fatemeh; Eghbalpour, Farnaz; Nematollahi, Leila; Barkhordari, Farzaneh; Mahboudi, Fereidoun

    2015-01-01

    Background: The optimization of bioprocess conditions towards improved growth profile and productivity yield is considered of great importance in biopharmaceutical manufacturing. Peptones as efficient sources of nutrients have been studied for their effect on media development; however, their role on metabolic pathway is not well understood. Methods: In the present study, the effect of different concentration of peptones on a recombinant Chinese hamster ovary (CHO) cell line grown in three serum-free suspension cultures was determined. Six peptones of different origins and available amino acid profiles were investigated regarding their impact on cell growth, productivity, and metabolic pathways changes. Results: In optimized feeding strategies, increases of 136% and 159% in volumetric productivity (for a low-nutrient culture media) and 55% (for a high-nutrient culture media) were achieved. Furthermore, particular sources of peptones with specific amino acid profile developed preferential results for each different culture medium. Two peptones, SoyA2SC and SoyE-110, were the only hydrolysates that showed production improvement in all three media. Casein Peptone plus Tryptone N1 and SoyA3SC showed different improved results based on their implemented concentration for each individual basal medium. Conclusion: The amino acid profile of peptones may provide clues to identify the most effective feeding strategies for recombinant CHO cells. PMID:26232332

  14. Essential Aspects in Assessing the Safety Impact of Interactions between a Drug Product and Its Associated Manufacturing System.

    PubMed

    Jenke, Dennis

    2012-01-01

    An emerging trend in the biotechnology industry is the utilization of plastic components in manufacturing systems for the production of an active pharmaceutical ingredient (API) or a finished drug product (FDP). If the API, the FDP, or any solution used to generate them (for example, process streams such as media, buffers, and the like) come in contact with a plastic at any time during the manufacturing process, there is the potential that substances leached from the plastic may accumulate in the API or FDP, affecting safety and/or efficacy. In this article the author develops a terminology that addresses process streams associated with the manufacturing process. Additionally, the article outlines the safety assessment process for manufacturing systems, specifically addressing the topics of risk management and the role of compendial testing. Finally, the proper use of vendor-supplied extractables information is considered. Manufacturing suites used to produce biopharmaceuticals can include components that are made out of plastics. Thus it is possible that substances could leach out of the plastics and into manufacturing solutions, and it is further possible that such leachables could accumulate in the pharmaceutical product. In this article, the author develops a terminology that addresses process streams associated with the manufacturing process. Additionally, the author proposes a process by which the impact on product safety of such leached substances can be assessed.

  15. Defining process design space for a hydrophobic interaction chromatography (HIC) purification step: application of quality by design (QbD) principles.

    PubMed

    Jiang, Canping; Flansburg, Lisa; Ghose, Sanchayita; Jorjorian, Paul; Shukla, Abhinav A

    2010-12-15

    The concept of design space has been taking root under the quality by design paradigm as a foundation of in-process control strategies for biopharmaceutical manufacturing processes. This paper outlines the development of a design space for a hydrophobic interaction chromatography (HIC) process step. The design space included the impact of raw material lot-to-lot variability and variations in the feed stream from cell culture. A failure modes and effects analysis was employed as the basis for the process characterization exercise. During mapping of the process design space, the multi-dimensional combination of operational variables were studied to quantify the impact on process performance in terms of yield and product quality. Variability in resin hydrophobicity was found to have a significant influence on step yield and high-molecular weight aggregate clearance through the HIC step. A robust operating window was identified for this process step that enabled a higher step yield while ensuring acceptable product quality. © 2010 Wiley Periodicals, Inc.

  16. Prediction of bioavailability of selected bisphosphonates using in silico methods towards categorization into a biopharmaceutical classification system.

    PubMed

    Biernacka, Joanna; Betlejewska-Kielak, Katarzyna; Kłosińska-Szmurło, Ewa; Pluciński, Franciszek A; Mazurek, Aleksander P

    2013-01-01

    The physicochemical properties relevant to biological activity of selected bisphosphonates such as clodronate disodium salt, etidronate disodium salt, pamidronate disodium salt, alendronate sodium salt, ibandronate sodium salt, risedronate sodium salt and zoledronate disodium salt were determined using in silico methods. The main aim of our research was to investigate and propose molecular determinants thataffect bioavailability of above mentioned compounds. These determinants are: stabilization energy (deltaE), free energy of solvation (deltaG(solv)), electrostatic potential, dipole moment, as well as partition and distribution coefficients estimated by the log P and log D values. Presented values indicate that selected bisphosphonates a recharacterized by high solubility and low permeability. The calculated parameters describing both solubility and permeability through biological membranes seem to be a good bioavailability indicators of bisphosphonates examined and can be a useful tool to include into Biopharmaceutical Classification System (BCS) development.

  17. Improving the biopharmaceutical attributes of mangiferin using vitamin E-TPGS co-loaded self-assembled phosholipidic nano-mixed micellar systems.

    PubMed

    Khurana, Rajneet Kaur; Gaspar, Balan Louis; Welsby, Gail; Katare, O P; Singh, Kamalinder K; Singh, Bhupinder

    2018-06-01

    The current research work encompasses the development, characterization, and evaluation of self-assembled phospholipidic nano-mixed miceller system (SPNMS) of a poorly soluble BCS Class IV xanthone bioactive, mangiferin (Mgf) functionalized with co-delivery of vitamin E TPGS. Systematic optimization using I-optimal design yielded self-assembled phospholipidic nano-micelles with a particle size of < 60 nm and > 80% of drug release in 15 min. The cytotoxicity and cellular uptake studies performed using MCF-7 and MDA-MB-231 cell lines demonstrated greater kill and faster cellular uptake. The ex vivo intestinal permeability revealed higher lymphatic uptake, while in situ perfusion and in vivo pharmacokinetic studies indicated nearly 6.6- and 3.0-folds augmentation in permeability and bioavailability of Mgf. In a nutshell, vitamin E functionalized SPNMS of Mgf improved the biopharmaceutical performance of Mgf in rats for enhanced anticancer potency.

  18. Design-for-Six-Sigma To Develop a Bioprocess Knowledge Management Framework.

    PubMed

    Junker, Beth; Maheshwari, Gargi; Ranheim, Todd; Altaras, Nedim; Stankevicz, Michael; Harmon, Lori; Rios, Sandra; D'anjou, Marc

    2011-01-01

    Owing to the high costs associated with biopharmaceutical development, considerable pressure has developed for the biopharmaceutical industry to increase productivity by becoming more lean and flexible. The ability to reuse knowledge was identified as one key advantage to streamline productivity, efficiently use resources, and ultimately perform better than the competition. A knowledge management (KM) strategy was assembled for bioprocess-related information using the technique of Design-for-Six-Sigma (DFSS). This strategy supported quality-by-design and process validation efforts for pipeline as well as licensed products. The DFSS technique was selected because it was both streamlined and efficient. These characteristics permitted development of a KM strategy with minimized team leader and team member resources. DFSS also placed a high emphasis on the voice of the customer, information considered crucial to the selection of solutions most appropriate for the current knowledge-based challenges of the organization. The KM strategy developed was comprised of nine workstreams, constructed from related solution buckets which in turn were assembled from the individual solution tasks that were identified. Each workstream's detailed design was evaluated against published and established best practices, as well as the KM strategy project charter and design inputs. Gaps and risks were identified and mitigated as necessary to improve the robustness of the proposed strategy. Aggregated resources (specifically expense/capital funds and staff) and timing were estimated to obtain vital management sponsorship for implementation. Where possible, existing governance and divisional/corporate information technology efforts were leveraged to minimize the additional bioprocess resources required for implementation. Finally, leading and lagging indicator metrics were selected to track the success of pilots and eventual implementation. A knowledge management framework was assembled for bioprocess-related information using a streamlined and efficient technique that minimized team leader and member resources. The technique also highly emphasized input from the staff, who generated and used the knowledge, information considered crucial to selection of solutions most appropriate for the current knowledge-based challenges in the organization. The framework developed was comprised of nine workstreams, constructed from related solution buckets which were assembled from individual solution tasks that were identified. Each workstream's detailed design was evaluated against published and established best practices, as well as the project charter and design inputs. Gaps and risks were identified and mitigated to improve robustness of the proposed framework. Aggregated resources (specifically expense/capital funds and staff) and timing were estimated to obtain vital management sponsorship for implementation. Where possible, existing governance and information technology efforts were leveraged to minimize additional bioprocess resources required for implementation. Finally, metrics were selected to track the success of pilots and eventual implementation.

  19. Production and purification of the multifunctional enzyme horseradish peroxidase

    PubMed Central

    Spadiut, Oliver; Herwig, Christoph

    2014-01-01

    The oxidoreductase horseradish peroxidase (HRP) is used in numerous industrial and medical applications. In this review, we briefly describe this well-studied enzyme and focus on its promising use in targeted cancer treatment. In combination with a plant hormone, HRP can be used in specific enzyme–prodrug therapies. Despite this outstanding application, HRP has not found its way as a biopharmaceutical into targeted cancer therapy yet. The reasons therefore lie in the present low-yield production and cumbersome purification of this enzyme from its natural source. However, surface glycosylation renders the recombinant production of HRP difficult. Here, we compare different production hosts for HRP and summarize currently used production and purification strategies for this enzyme. We further present our own strategy of glycoengineering this powerful enzyme to allow recombinant high-yield production in Pichia pastoris and subsequent simple downstream processing. PMID:24683473

  20. A Model of Risk Analysis in Analytical Methodology for Biopharmaceutical Quality Control.

    PubMed

    Andrade, Cleyton Lage; Herrera, Miguel Angel De La O; Lemes, Elezer Monte Blanco

    2018-01-01

    One key quality control parameter for biopharmaceutical products is the analysis of residual cellular DNA. To determine small amounts of DNA (around 100 pg) that may be in a biologically derived drug substance, an analytical method should be sensitive, robust, reliable, and accurate. In principle, three techniques have the ability to measure residual cellular DNA: radioactive dot-blot, a type of hybridization; threshold analysis; and quantitative polymerase chain reaction. Quality risk management is a systematic process for evaluating, controlling, and reporting of risks that may affects method capabilities and supports a scientific and practical approach to decision making. This paper evaluates, by quality risk management, an alternative approach to assessing the performance risks associated with quality control methods used with biopharmaceuticals, using the tool hazard analysis and critical control points. This tool provides the possibility to find the steps in an analytical procedure with higher impact on method performance. By applying these principles to DNA analysis methods, we conclude that the radioactive dot-blot assay has the largest number of critical control points, followed by quantitative polymerase chain reaction, and threshold analysis. From the analysis of hazards (i.e., points of method failure) and the associated method procedure critical control points, we conclude that the analytical methodology with the lowest risk for performance failure for residual cellular DNA testing is quantitative polymerase chain reaction. LAY ABSTRACT: In order to mitigate the risk of adverse events by residual cellular DNA that is not completely cleared from downstream production processes, regulatory agencies have required the industry to guarantee a very low level of DNA in biologically derived pharmaceutical products. The technique historically used was radioactive blot hybridization. However, the technique is a challenging method to implement in a quality control laboratory: It is laborious, time consuming, semi-quantitative, and requires a radioisotope. Along with dot-blot hybridization, two alternatives techniques were evaluated: threshold analysis and quantitative polymerase chain reaction. Quality risk management tools were applied to compare the techniques, taking into account the uncertainties, the possibility of circumstances or future events, and their effects upon method performance. By illustrating the application of these tools with DNA methods, we provide an example of how they can be used to support a scientific and practical approach to decision making and can assess and manage method performance risk using such tools. This paper discusses, considering the principles of quality risk management, an additional approach to the development and selection of analytical quality control methods using the risk analysis tool hazard analysis and critical control points. This tool provides the possibility to find the method procedural steps with higher impact on method reliability (called critical control points). Our model concluded that the radioactive dot-blot assay has the larger number of critical control points, followed by quantitative polymerase chain reaction and threshold analysis. Quantitative polymerase chain reaction is shown to be the better alternative analytical methodology in residual cellular DNA analysis. © PDA, Inc. 2018.

  1. Foundation-industry relationships--a new business model joint-venture philanthropy in therapy development.

    PubMed

    Bartek, Ronald J

    2014-01-01

    The business model for medical therapy development has changed drastically. Large companies that once conducted their own Research and Development (R&D) and funded all the preclinical studies, all phases of clinical development and marketing of the products are increasingly turning to others for more and more of the earlier work in hopes of being able to in-license a de-risked program well downstream, take it through the final phases of clinical development and into the marketplace. This new paradigm has required patient-advocacy foundations, especially in the rare-disease space, to become far more effective in building relationships with all the players along the therapy-development pathway -- academic scientists, government agencies, other foundations with overlapping interests, biotechs, small biopharmaceutical entities and even the larger industry companies. From the perspective of the patient-advocacy community, these increasingly essential public-private partnerships have taken on the nature of what could be called joint-venture philanthropy and involve a broad spectrum of collaborations and financial relationships between foundations and industry partners that are not without concerns about potential conflicts of interest.

  2. Exploiting mAb structure characteristics for a directed QbD implementation in early process development.

    PubMed

    Karlberg, Micael; von Stosch, Moritz; Glassey, Jarka

    2018-03-07

    In today's biopharmaceutical industries, the lead time to develop and produce a new monoclonal antibody takes years before it can be launched commercially. The reasons lie in the complexity of the monoclonal antibodies and the need for high product quality to ensure clinical safety which has a significant impact on the process development time. Frameworks such as quality by design are becoming widely used by the pharmaceutical industries as they introduce a systematic approach for building quality into the product. However, full implementation of quality by design has still not been achieved due to attrition mainly from limited risk assessment of product properties as well as the large number of process factors affecting product quality that needs to be investigated during the process development. This has introduced a need for better methods and tools that can be used for early risk assessment and predictions of critical product properties and process factors to enhance process development and reduce costs. In this review, we investigate how the quantitative structure-activity relationships framework can be applied to an existing process development framework such as quality by design in order to increase product understanding based on the protein structure of monoclonal antibodies. Compared to quality by design, where the effect of process parameters on the drug product are explored, quantitative structure-activity relationships gives a reversed perspective which investigates how the protein structure can affect the performance in different unit operations. This provides valuable information that can be used during the early process development of new drug products where limited process understanding is available. Thus, quantitative structure-activity relationships methodology is explored and explained in detail and we investigate the means of directly linking the structural properties of monoclonal antibodies to process data. The resulting information as a decision tool can help to enhance the risk assessment to better aid process development and thereby overcome some of the limitations and challenges present in QbD implementation today.

  3. Solid dispersions enhance solubility, dissolution, and permeability of thalidomide.

    PubMed

    Barea, Silvana A; Mattos, Cristiane B; Cruz, Ariadne C C; Chaves, Vitor C; Pereira, Rafael N; Simões, Claudia M O; Kratz, Jadel M; Koester, Letícia S

    2017-03-01

    Thalidomide (THD) is a BCS class II drug with renewed and growing therapeutic applicability. Along with the low aqueous solubility, additional poor biopharmaceutical properties of the drug, i.e. chemical instability, high crystallinity, and polymorphism, lead to a slow and variable oral absorption. In this view, we developed solid dispersions (SDs) containing THD dispersed in different self-emulsifying carriers aiming at an enhanced absorption profile for the drug. THD was dispersed in lauroyl macrogol-32 glycerides (Gelucire ® 44/14) and α-tocopherol polyethylene glycol succinate (Kolliphor ® TPGS), in the presence or absence of the precipitation inhibitor polyvinylpyrrolidone K30 (PVP K30), by means of the solvent method. Physicochemical analysis revealed the formation of semicrystalline SDs. X-ray diffraction and infrared spectroscopy analyses suggest that the remaining crystalline fraction of the drug in the SDs did not undergo polymorphic transition. The impact of the solubility-enhancing formulations on the THD biopharmaceutical properties was evaluated by several in vitro techniques. The developed SDs were able to increase the apparent solubility of the drug (up to 2-3x the equilibrium solubility) for a least 4 h. Dissolution experiments (paddle method, 75 rpm) in different pHs showed that around 80% of drug dissolved after 120 min (versus 40% of pure crystalline drug). Additionally, we demonstrated the enhanced solubility obtained via SDs could be translated into increased flux in a parallel artificial membrane permeability assay (PAMPA). In summary, the results demonstrate that SDs could be considered an interesting and unexplored strategy to improve the biopharmaceutical properties of THD, since SDs of this important drug have yet to be reported.

  4. Economic comparison between conventional and disposables-based technology for the production of biopharmaceuticals.

    PubMed

    Novais, J L; Titchener-Hooker, N J; Hoare, M

    2001-10-20

    Time to market, cost effectiveness, and flexibility are key issues in today's biopharmaceutical market. Bioprocessing plants based on fully disposable, presterilized, and prevalidated components appear as an attractive alternative to conventional stainless steel plants, potentially allowing for shorter implementation times, smaller initial investments, and increased flexibility. To evaluate the economic case of such an alternative it was necessary to develop an appropriate costing model which allows an economic comparison between conventional and disposables-based engineering to be made. The production of an antibody fragment from an E. coli fermentation was used to provide a case study for both routes. The conventional bioprocessing option was costed through available models, which were then modified to account for the intrinsic differences observed in a disposables-based option. The outcome of the analysis indicates that the capital investment required for a disposables-based option is substantially reduced at less than 60% of that for a conventional option. The disposables-based running costs were evaluated as being 70% higher than those of the conventional equivalent. Despite this higher value, the net present value (NPV) of the disposables-based plant is positive and within 25% of that for the conventional plant. Sensitivity analysis performed on key variables indicated the robustness of the economic analysis presented. In particular a 9-month reduction in time to market arising from the adoption of a disposables-based approach, results in a NPV which is identical to that of the conventional option. Finally, the effect of any possible loss in yield resulting from the use of disposables was also examined. This had only a limited impact on the NPV: for example, a 50% lower yield in the disposable chromatography step results in a 10% reduction of the disposable NPV. The results provide the necessary framework for the economic comparison of disposables and conventional bioprocessing technologies. Copyright 2001 John Wiley & Sons, Inc.

  5. Impact of Postapproval Evidence Generation on the Biopharmaceutical Industry.

    PubMed

    Milne, Christopher-Paul; Cohen, Joshua P; Felix, Abigail; Chakravarthy, Ranjana

    2015-08-01

    Meeting marketplace demands for proving the value of new products requires more data than the industry has routinely produced. These data include evidence from comparative effectiveness research (CER), including randomized, controlled trials; pragmatic clinical trials; observational studies; and meta-analyses. We designed and conducted a survey to examine the industry's perceptions on new data requirements regarding CER evidence, the acceptability of postapproval study types, payer-specific issues related to CER, communication of data being generated postapproval, and methods used for facilitating postapproval evidence generation. CER is being used by payers for most types of postapproval decisions. Randomized, controlled trials were indicated as the most acceptable form of evidence. At the same time, there was support for the utility of other types of studies, such as pragmatic clinical trials and observational studies. Respondents indicated the use of multiple formats for communicating postapproval data with many different stakeholders including regulators, payers, providers, and patients. Risk-sharing agreements with payers were unanimously supported by respondents with regard to certain products with unclear clinical and economic outcomes at launch. In these instances, conditional reimbursement through coverage with evidence development was considered a constructive option. The Food and Drug Administration's initiative called Regulatory Science was considered by the respondents as having the most impact on streamlining the generation of postapproval research-related evidence. The biopharmaceutical industry is faced with a broad and complex set of challenges related to evidence generation for postapproval decisions by a variety of health care system stakeholders. Uncertainty remains as to how the industry and payers use postapproval studies to guide decision making with regard to pricing and reimbursement status. Correspondingly, there is uncertainty regarding whether the industry's investment in CER will have a positive return on investment in terms of reimbursement and market access. Copyright © 2015 Elsevier HS Journals, Inc. All rights reserved.

  6. Regulatory Perspectives on Strength-Dependent Dissolution Profiles and Biowaiver Approaches for Immediate Release (IR) Oral Tablets in New Drug Applications.

    PubMed

    Suarez-Sharp, Sandra; Delvadia, Poonam R; Dorantes, Angelica; Duan, John; Externbrink, Anna; Gao, Zongming; Ghosh, Tapash; Miksinski, Sarah Pope; Seo, Paul

    2016-05-01

    Dissolution profile comparisons are used by the pharmaceutical industry to assess the similarity in the dissolution characteristics of two formulations to decide whether the implemented changes, usually minor/moderate in nature, will have an impact on the in vitro/in vivo performance of the drug product. When similarity testing is applied to support the approval of lower strengths of the same formulation, the traditional approach for dissolution profile comparison is not always applicable for drug products exhibiting strength-dependent dissolution and may lead to incorrect conclusions about product performance. The objective of this article is to describe reasonable biopharmaceutic approaches for developing a biowaiver strategy for low solubility, proportionally similar/non-proportionally similar in composition immediate release drug products that exhibit strength-dependent dissolution profiles. The paths highlighted in the article include (1) approaches to address biowaiver requests, such as the use of multi-unit dissolution testing to account for sink condition differences between the higher and lower strengths; (2) the use of a single- vs. strength-dependent dissolution method; and (3) the use of single- vs. strength-dependent dissolution acceptance criteria. These approaches are cost- and time-effective and can avoid unnecessary bioequivalence studies.

  7. Biosimilars and non-innovator biotherapeutics in India: an overview of the current situation.

    PubMed

    Malhotra, Hemant

    2011-09-01

    Globally, a large number of blockbuster biotherapeutic molecules are going off patent in the next few years. For emerging economies, like India, it is imperative to be able to provide safe and cost effective drugs for its huge, non-insured and poor population. India has a robust pharmaceutical industry including the biopharmaceutical sector which is actively engaged in the production and marketing of 'non-innovator' or 'copy' biotherapeutic products These products are approved through an abbreviated route which relies on limited safety and efficacy data enabling the local companies to keep the production costs low and pass on the price benefit to the patient and make the product affordable to the masses. Some of the available products may not be truly 'similar' and may be of suspect quality. The WHO [1] and the European Medicines Agency (EMA) [2] have published guidelines for the development and marketing of biosimilar products. These products, as stated in both guidelines undergo extensive head-to-head comparability testing with the reference biotherapeutic product (RBP) to show their similarity to the RBP in terms of quality, efficacy and safety. Regulators and administrators of different countries need to strike a balance in cost-to-benefit versus risks that are perceived for these products, keeping in mind global regulatory issues. Copyright © 2011. Published by Elsevier Ltd.

  8. Impact of physiological, physicochemical and biopharmaceutical factors in absorption and metabolism mechanisms on the drug oral bioavailability of rats and humans.

    PubMed

    Hurst, Susan; Loi, Cho-Ming; Brodfuehrer, Joanne; El-Kattan, Ayman

    2007-08-01

    The onset, intensity and duration of therapeutic response to a compound depend on the intrinsic pharmacological activity of the drug and pharmacokinetic factors related to its absorption, distribution, metabolism and elimination that are inherent to the biological system. The process of drug transfer from the site of administration to the systemic circulation and the interspecies factors that impact this process are the scope of this review. In general, the factors that influence oral drug bioavailability via absorption and metabolism can be divided into physicochemical/biopharmaceutical and physiological factors. Physicochemical and biopharmaceutical factors that influence permeability and solubility tend to be species independent. Although there are significant differences in the anatomy and physiology of the gastrointestinal tract, these are not associated with significant differences in the rate and extent of drug absorption between rats and humans. However, species differences in drug metabolism in rats and humans did result in significant species differences in bioavailability. Overall, this review provides a better understanding of the interplay between drug physicochemical/biopharmaceutical factors and species differences/similarities in the absorption and metabolism mechanisms that affect oral bioavailability in rats and humans. This will enable a more rational approach to perform projection of oral bioavailability in human using available rat in vivo data.

  9. BDP Is Unified at the ATRF | Poster

    Cancer.gov

    By Ken Michaels, Staff Writer The Biopharmaceutical Development Program (BDP) at the Frederick National Laboratory is, for the first time ever, in a single building at the Advanced Technology Research Facility (ATRF). At Fort Detrick, BDP operations were spread out in about a dozen buildings, resulting in redundancies in maintaining various utilities (air handlers, clean

  10. Drug development and nonclinical to clinical translational databases: past and current efforts.

    PubMed

    Monticello, Thomas M

    2015-01-01

    The International Consortium for Innovation and Quality (IQ) in Pharmaceutical Development is a science-focused organization of pharmaceutical and biotechnology companies. The mission of the Preclinical Safety Leadership Group (DruSafe) of the IQ is to advance science-based standards for nonclinical development of pharmaceutical products and to promote high-quality and effective nonclinical safety testing that can enable human risk assessment. DruSafe is creating an industry-wide database to determine the accuracy with which the interpretation of nonclinical safety assessments in animal models correctly predicts human risk in the early clinical development of biopharmaceuticals. This initiative aligns with the 2011 Food and Drug Administration strategic plan to advance regulatory science and modernize toxicology to enhance product safety. Although similar in concept to the initial industry-wide concordance data set conducted by International Life Sciences Institute's Health and Environmental Sciences Institute (HESI/ILSI), the DruSafe database will proactively track concordance, include exposure data and large and small molecules, and will continue to expand with longer duration nonclinical and clinical study comparisons. The output from this work will help identify actual human and animal adverse event data to define both the reliability and the potential limitations of nonclinical data and testing paradigms in predicting human safety in phase 1 clinical trials. © 2014 by The Author(s).

  11. The emerging CHO systems biology era: harnessing the 'omics revolution for biotechnology.

    PubMed

    Kildegaard, Helene Faustrup; Baycin-Hizal, Deniz; Lewis, Nathan E; Betenbaugh, Michael J

    2013-12-01

    Chinese hamster ovary (CHO) cells are the primary factories for biopharmaceuticals because of their capacity to correctly fold and post-translationally modify recombinant proteins compatible with humans. New opportunities are arising to enhance these cell factories, especially since the CHO-K1 cell line was recently sequenced. Now, the CHO systems biology era is underway. Critical 'omics data sets, including proteomics, transcriptomics, metabolomics, fluxomics, and glycomics, are emerging, allowing the elucidation of the molecular basis of CHO cell physiology. The incorporation of these data sets into mathematical models that describe CHO phenotypes will provide crucial biotechnology insights. As 'omics technologies and computational systems biology mature, genome-scale approaches will lead to major innovations in cell line development and metabolic engineering, thereby improving protein production and bioprocessing. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Delivering advanced therapies: the big pharma approach.

    PubMed

    Tarnowski, J; Krishna, D; Jespers, L; Ketkar, A; Haddock, R; Imrie, J; Kili, S

    2017-09-01

    After two decades of focused development and some recent clinical successes, cell and gene therapy (CGT) is emerging as a promising approach to personalized medicines. Genetically engineered cells as a medical modality are poised to stand alongside or in combination with small molecule and biopharmaceutical approaches to bring new therapies to patients globally. Big pharma can have a vital role in industrializing CGT by focusing on diseases with high unmet medical need and compelling genetic evidence. Pharma should invest in manufacturing and supply chain solutions that deliver reproducible, high-quality therapies at a commercially viable cost. Owing to the fast pace of innovation in this field proactive engagement with regulators is critical. It is also vital to understand the needs of patients all along the patient care pathway and to establish product pricing that is accepted by prescribers, payers and patients.

  13. Biopharmaceutical formulations for pre-filled delivery devices.

    PubMed

    Jezek, Jan; Darton, Nicholas J; Derham, Barry K; Royle, Nikki; Simpson, Iain

    2013-06-01

    Pre-filled syringes are becoming an increasingly popular format for delivering biotherapeutics conveniently and cost effectively. The device design and stable liquid formulations required to enable this pre-filled syringe format are technically challenging. In choosing the materials and process conditions to fabricate the syringe unit, their compatibility with the biotherapeutic needs to be carefully assessed. The biothereaputic stability demanded for the production of syringe-compatible low-viscosity liquid solutions requires critical excipient choices to be made. The purpose of this review is to discuss key issues related to the stability aspects of biotherapeutics in pre-filled devices. This includes effects on both physical and chemical stability due to a number of stress conditions the product is subjected to, as well as interactions with the packaging system. Particular attention is paid to the control of stability by formulation. We anticipate that there will be a significant move towards polymer primary packaging for most drugs in the longer term. The timescales for this will depend on a number of factors and hence will be hard to predict. Formulation will play a critical role in developing successful products in the pre-filled syringe format, particularly with the trend towards concentrated biotherapeutics. Development of novel, smart formulation technologies will, therefore, be increasingly important.

  14. The design and scale-up of spray dried particle delivery systems.

    PubMed

    Al-Khattawi, Ali; Bayly, Andrew; Phillips, Andrew; Wilson, David

    2018-01-01

    The rising demand for pharmaceutical particles with tailored physicochemical properties has opened new markets for spray drying especially for solubility enhancement, improving inhalation medicines and stabilization of biopharmaceuticals. Despite this, the spray drying literature is scattered and often does not address the principles underpinning robust development of pharmaceuticals. It is therefore necessary to present clearer picture of the field and highlight the factors influencing particle design and scale-up. Areas covered: The review presents a systematic analysis of the trends in development of particle delivery systems using spray drying. This is followed by exploring the mechanisms governing particle formation in the process stages. Particle design factors including those of equipment configurations and feed/process attributes were highlighted. Finally, the review summarises the current industrial approaches for upscaling pharmaceutical spray drying. Expert opinion: Spray drying provides the ability to design particles of the desired functionality. This greatly benefits the pharmaceutical sector especially as product specifications are becoming more encompassing and exacting. One of the biggest barriers to product translation remains one of scale-up/scale-down. A shift from trial and error approaches to model-based particle design helps to enhance control over product properties. To this end, process innovations and advanced manufacturing technologies are particularly welcomed.

  15. [Study on biopharmaceutics classification system for Chinese materia medica of extract of Huanglian].

    PubMed

    Liu, Yang; Yin, Xiu-Wen; Wang, Zi-Yu; Li, Xue-Lian; Pan, Meng; Li, Yan-Ping; Dong, Ling

    2017-11-01

    One of the advantages of biopharmaceutics classification system of Chinese materia medica (CMMBCS) is expanding the classification research level from single ingredient to multi-components of Chinese herb, and from multi-components research to holistic research of the Chinese materia medica. In present paper, the alkaloids of extract of huanglian were chosen as the main research object to explore their change rules in solubility and intestinal permeability of single-component and multi-components, and to determine the biopharmaceutical classification of extract of Huanglian from holistic level. The typical shake-flask method and HPLC were used to detect the solubility of single ingredient of alkaloids from extract of huanglian. The quantitative research of alkaloids in intestinal absorption was measured in single-pass intestinal perfusion experiment while permeability coefficient of extract of huanglian was calculated by self-defined weight coefficient method. Copyright© by the Chinese Pharmaceutical Association.

  16. Safe handling of cytotoxic compounds in a biopharmaceutical environment.

    PubMed

    Hensgen, Miriam I; Stump, Bernhard

    2013-01-01

    Handling cytotoxic drugs such as antibody-drug conjugates (ADCs) in a biopharmaceutical environment represents a challenge based on the potency of the compounds. These derivatives are dangerous to humans if they accidentally get in contact with the skin, are inhaled, or are ingested, either as pure compounds in their solid state or as a solution dissolved in a co-solvent. Any contamination of people involved in the manufacturing process has to be avoided. On the other hand, biopharmaceuticals need to be protected simultaneously against any contamination from the manufacturing personnel. Therefore, a tailor-made work environment is mandatory in order to manufacture ADCs. This asks for appropriate technical equipment to keep potential hazardous substances contained. In addition, clearly defined working procedures based on risk assessments as well as proper training for all personnel involved in the manufacturing process are needed to safely handle these highly potent pharmaceuticals.

  17. Biowaiver Monographs for Immediate-Release Solid Oral Dosage Forms: Folic Acid.

    PubMed

    Hofsäss, Martin A; Souza, Jacqueline de; Silva-Barcellos, Neila M; Bellavinha, Karime R; Abrahamsson, Bertil; Cristofoletti, Rodrigo; Groot, D W; Parr, Alan; Langguth, Peter; Polli, James E; Shah, Vinod P; Tajiri, Tomokazu; Mehta, Mehul U; Dressman, Jennifer B

    2017-12-01

    This work presents a review of literature and experimental data relevant to the possibility of waiving pharmacokinetic bioequivalence studies in human volunteers for approval of immediate-release solid oral pharmaceutical forms containing folic acid as the single active pharmaceutical ingredient. For dosage forms containing 5 mg folic acid, the highest dose strength on the World Health Organization Essential Medicines List, the dose/solubility ratio calculated from solubility studies was higher than 250 mL, corresponding to a classification as "not highly soluble." Small, physiological doses of folic acid (≤320 μg) seem to be absorbed completely via active transport, but permeability data for higher doses of 1-5 mg are inconclusive. Following a conservative approach, folic acid is classified as a Biopharmaceutics Classification System class IV compound until more reliable data become available. Commensurate with its solubility characteristics, the results of dissolution studies indicated that none of the folic acid products evaluated showed rapid dissolution in media at pH 1.2 or 4.5. Therefore, according to the current criteria of the Biopharmaceutics Classification System, the biowaiver approval procedure cannot be recommended for immediate-release solid oral dosage forms containing folic acid. Copyright © 2017 American Pharmacists Association®. All rights reserved.

  18. Characterization of the initial level and migration of silicone oil lubricant in empty prefilled syringes for biologics using infrared spectroscopy.

    PubMed

    Bee, Jared S; Frey, Vadim V; Javed, Urooj; Chung, Jonathan; Corcoran, Marta L; Roussel, Paul S; Krause, Stephan O; Cash, Patricia W; Bishop, Steven M; Dimitrova, Mariana N

    2014-01-01

    Glass prefillable syringes are lubricated with silicone oil to ensure functionality and a consistent injection for the end user. If excessive silicone is applied, droplets could potentially result in aggregation of sensitive biopharmaceuticals or clouding of the solution. Therefore, monitoring and optimization of the applied silicone layer is critical for prefilled syringe development. The hydrophobic properties of silicone oil, the potential for assay interference, and the very small quantities applied to prefilled syringes present a challenge for the development of a suitable assay. In this work we present a rapid and simple Fourier transform infrared (FTIR) spectroscopy method for quantitation of total silicone levels applied to prefilled syringes. Level-dependent silicone oil migration occurred over time for empty prefilled syringes stored tip-up. However, migration from all prefilled syringes with between 0.25 and 0.8 mg of initial silicone oil resulted in a stable limiting minimum level of between 0.15 and 0.26 mg of silicone in the syringe reached after 1 to 4 years of empty tip-up storage. The results of the FTIR assay correlated well with non-destructive reflectometry characterization of the syringes. This assay can provide valuable data for selection of a robust initial silicone oil target and quality control of prefilled syringes intended for biopharmaceuticals. Glass prefillable syringes are lubricated with silicone oil to ensure functionality and a consistent injection for the end user. If excessive silicone is applied, droplets could potentially result in aggregation of sensitive biopharmaceuticals or clouding of the solution. Therefore, monitoring and optimization of the applied silicone layer is critical for prefilled syringe development. The hydrophobic properties of silicone oil, the potential for assay interference, and the very small quantities applied to prefilled syringes present a challenge for the development of a suitable assay. In this work we present a rapid and simple Fourier transform infrared (FTIR) spectroscopy method for quantitation of total silicone levels applied to prefilled syringes. Level-dependent silicone oil migration occurred over time for empty prefilled syringes stored tip-up. However, migration from all prefilled syringes with between 0.25 and 0.8 mg of initial silicone oil resulted in a stable limiting minimum level of between 0.15 and 0.26 mg of silicone in the syringe reached after 1 to 4 years of empty tip-up storage. The results of the FTIR assay correlated well with non-destructive reflectometry characterization of the syringes. This assay can provide valuable data for selection of a robust initial silicone oil target and quality control of prefilled syringes intended for biopharmaceuticals. © PDA, Inc. 2014.

  19. Advancing biopharmaceutical process development by system-level data analysis and integration of omics data.

    PubMed

    Schaub, Jochen; Clemens, Christoph; Kaufmann, Hitto; Schulz, Torsten W

    2012-01-01

    Development of efficient bioprocesses is essential for cost-effective manufacturing of recombinant therapeutic proteins. To achieve further process improvement and process rationalization comprehensive data analysis of both process data and phenotypic cell-level data is essential. Here, we present a framework for advanced bioprocess data analysis consisting of multivariate data analysis (MVDA), metabolic flux analysis (MFA), and pathway analysis for mapping of large-scale gene expression data sets. This data analysis platform was applied in a process development project with an IgG-producing Chinese hamster ovary (CHO) cell line in which the maximal product titer could be increased from about 5 to 8 g/L.Principal component analysis (PCA), k-means clustering, and partial least-squares (PLS) models were applied to analyze the macroscopic bioprocess data. MFA and gene expression analysis revealed intracellular information on the characteristics of high-performance cell cultivations. By MVDA, for example, correlations between several essential amino acids and the product concentration were observed. Also, a grouping into rather cell specific productivity-driven and process control-driven processes could be unraveled. By MFA, phenotypic characteristics in glycolysis, glutaminolysis, pentose phosphate pathway, citrate cycle, coupling of amino acid metabolism to citrate cycle, and in the energy yield could be identified. By gene expression analysis 247 deregulated metabolic genes were identified which are involved, inter alia, in amino acid metabolism, transport, and protein synthesis.

  20. First Steps to Develop and Validate a CFPD Model in Order to Support the Design of Nose-to-Brain Delivered Biopharmaceuticals.

    PubMed

    Engelhardt, Lucas; Röhm, Martina; Mavoungou, Chrystelle; Schindowski, Katharina; Schafmeister, Annette; Simon, Ulrich

    2016-06-01

    Aerosol particle deposition in the human nasal cavity is of high interest in particular for intranasal central nervous system (CNS) drug delivery via the olfactory cleft. The objective of this study was the development and comparison of a numerical and experimental model to investigate various parameters for olfactory particle deposition within the complex anatomical nasal geometry. Based on a standardized nasal cavity, a computational fluid and particle dynamics (CFPD) model was developed that enables the variation and optimization of different parameters, which were validated by in vitro experiments using a constructed rapid-prototyped human nose model. For various flow rates (5 to 40 l/min) and particle sizes (1 to 10 μm), the airflow velocities, the calculated particle airflow patterns and the particle deposition correlated very well with the experiment. Particle deposition was investigated numerically by varying particle sizes at constant flow rate and vice versa assuming the particle size distribution of the used nebulizer. The developed CFPD model could be directly translated to the in vitro results. Hence, it can be applied for parameter screening and will contribute to the improvement of aerosol particle deposition at the olfactory cleft for CNS drug delivery in particular for biopharmaceuticals.

  1. High productivity chromatography refolding process for Hepatitis B Virus X (HBx) protein guided by statistical design of experiment studies.

    PubMed

    Basu, Anindya; Leong, Susanna Su Jan

    2012-02-03

    The Hepatitis B Virus X (HBx) protein is a potential therapeutic target for the treatment of hepatocellular carcinoma. However, consistent expression of the protein as insoluble inclusion bodies in bacteria host systems has largely hindered HBx manufacturing via economical biosynthesis routes, thereby impeding the development of anti-HBx therapeutic strategies. To eliminate this roadblock, this work reports the development of the first 'chromatography refolding'-based bioprocess for HBx using immobilised metal affinity chromatography (IMAC). This process enabled production of HBx at quantities and purity that facilitate their direct use in structural and molecular characterization studies. In line with the principles of quality by design (QbD), we used a statistical design of experiments (DoE) methodology to design the optimum process which delivered bioactive HBx at a productivity of 0.21 mg/ml/h at a refolding yield of 54% (at 10 mg/ml refolding concentration), which was 4.4-fold higher than that achieved in dilution refolding. The systematic DoE methodology adopted for this study enabled us to obtain important insights into the effect of different bioprocess parameters like the effect of buffer exchange gradients on HBx productivity and quality. Such a bioprocess design approach can play a pivotal role in developing intensified processes for other novel proteins, and hence helping to resolve validation and speed-to-market challenges faced by the biopharmaceutical industry today. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Mycoplasma testing of cell substrates and biologics: Review of alternative non-microbiological techniques.

    PubMed

    Volokhov, Dmitriy V; Graham, Laurie J; Brorson, Kurt A; Chizhikov, Vladimir E

    2011-01-01

    Mycoplasmas, particularly species of the genera Mycoplasma and Acholeplasma, are known to be occasional microbial contaminants of cell cultures that produce biologics. This presents a serious concern regarding the risk of mycoplasma contamination for research laboratories and commercial facilities developing and manufacturing cell-derived biological and biopharmaceutical products for therapeutic use. Potential undetected contamination of these products or process intermediates with mycoplasmas represents a potential safety risk for patients and a business risk for producers of biopharmaceuticals. To minimize these risks, monitoring for adventitious agents, such as viruses and mycoplasmas, is performed during the manufacture of biologics produced in cell culture substrates. The "gold standard" microbiological assay, currently recommended by the USP, EP, JP and the US FDA, for the mycoplasma testing of biologics, involves the culture of viable mycoplasmas in broth, agar plates and indicator cells. Although the procedure enables highly efficient mycoplasma detection in cell substrates and cell-derived products, the overall testing strategy is time consuming (a minimum of 28 days) and requires skilled interpretation of the results. The long time period required for these conventional assays does not permit their use for products with short shelf-lives or for timely 'go/no-go' decisions during routine in-process testing. PCR methodology has existed for decades, however PCR based and other alternative methods for mycoplasma detection have only recently been considered for application to biologics manufacture. The application of alternative nucleic acid-based, enzyme-based and/or recombinant cell-culture methods, particularly in combination with efficient sample preparation procedures, could provide advantages over conventional microbiological methods in terms of analytical throughput, simplicity, and turnaround time. However, a challenge to the application of alternative methods for detection of mycoplasmas remains whether these alternative methods can provide a limit of detection comparable or superior to those of the culture methods. An additional challenge is that nucleic acid amplification technique (NAT) methods do not allow for accurate discrimination between viable and non-viable mycoplasma contaminants, which might lead to false-positive results (e.g. from inactivated raw materials, etc.). Our review provides an overview of these alternative methods and discusses the pros and cons of their application for the testing of mycoplasmas in biologics and cell substrates. Published by Elsevier Ltd.

  3. Immunogenicity of therapeutic proteins. Part 2: impact of container closures.

    PubMed

    Sharma, Basant

    2007-01-01

    Immunogenicity as a potential consequence of therapeutic protein administration is increasingly being scrutinized in the biopharmaceuticals industry, particularly with the imminent introduction of biosimilar products. Immunogenicity is an important safety aspect requiring rigorous investigation to fully appreciate its impact. Factors involved in product handling, such as storage temperature, light exposure, and shaking, have been implicated in immunogenicity, while container closure systems are no less important. Intended to provide a stable environment for the dosage form, container closures may also interact with a product, affecting performance and potentially enhancing immunogenicity. Glass surfaces, air-liquid interfaces, and lubricants can mediate protein denaturation, while phthalates in plastics and latex rubber are sources of extractables and leachates that may contaminate a product, causing allergic reactions and increasing immunogenicity. The manufacture of therapeutic proteins therefore requires rigorous safety evaluations not just in the context of the product, but also product containment.

  4. Quick generation of Raman spectroscopy based in-process glucose control to influence biopharmaceutical protein product quality during mammalian cell culture.

    PubMed

    Berry, Brandon N; Dobrowsky, Terrence M; Timson, Rebecca C; Kshirsagar, Rashmi; Ryll, Thomas; Wiltberger, Kelly

    2016-01-01

    Mitigating risks to biotherapeutic protein production processes and products has driven the development of targeted process analytical technology (PAT); however implementing PAT during development without significantly increasing program timelines can be difficult. The development of a monoclonal antibody expressed in a Chinese hamster ovary (CHO) cell line via fed-batch processing presented an opportunity to demonstrate capabilities of altering percent glycated protein product. Glycation is caused by pseudo-first order, non-enzymatic reaction of a reducing sugar with an amino group. Glucose is the highest concentration reducing sugar in the chemically defined media (CDM), thus a strategy controlling glucose in the production bioreactor was developed utilizing Raman spectroscopy for feedback control. Raman regions for glucose were determined by spiking studies in water and CDM. Calibration spectra were collected during 8 bench scale batches designed to capture a wide glucose concentration space. Finally, a PLS model capable of translating Raman spectra to glucose concentration was built using the calibration spectra and spiking study regions. Bolus feeding in mammalian cell culture results in wide glucose concentration ranges. Here we describe the development of process automation enabling glucose setpoint control. Glucose-free nutrient feed was fed daily, however glucose stock solution was fed as needed according to online Raman measurements. Two feedback control conditions were executed where glucose was controlled at constant low concentration or decreased stepwise throughout. Glycation was reduced from ∼9% to 4% using a low target concentration but was not reduced in the stepwise condition as compared to the historical bolus glucose feeding regimen. © 2015 American Institute of Chemical Engineers.

  5. Plant expression systems, a budding way to confront chikungunya and Zika in developing countries?

    PubMed Central

    Cardona-Ospina, Jaime A.; Sepúlveda-Arias, Juan C.; Mancilla, L.; Gutierrez-López, Luis G.

    2016-01-01

    Plant expression systems could be used as biofactories of heterologous proteins that have the potential to be used with biopharmaceutical aims and vaccine design. This technology is scalable, safe and cost-effective and it has been previously proposed as an option for vaccine and protein pharmaceutical development in developing countries. Here we present a proposal of how plant expression systems could be used to address Zika and chikungunya outbreaks through development of vaccines and rapid diagnostic kits. PMID:27781090

  6. Viral Oncolytic Therapeutics for Neoplastic Meningitis

    DTIC Science & Technology

    2014-09-01

    our animal vendor, Charles River Laboratories (CRL), to adopt their intrathecal catheterization service for this purpose. Cannulated animals from CRL...pilot “idea” study. Thus, both experimental approaches, catheterization did not allow us to obtain statistically significant therapeutic efficacy...fluid, which will help developing new approaches for delivery of therapies, in particular biopharmaceuticals, to the central nervous system and

  7. Viral Oncolytic Therapeutics for Neoplastic Meningitis

    DTIC Science & Technology

    2012-07-01

    the central nervous system (CNS). While several novel molecular approaches are being developed, many of them require delivery of macromolecu- lar or...nonhuman primates. Keywords PET Imaging . Pharmacokinetics . Biopharmaceuticals . Macromolecules . Brain . Central nervous system . Drug delivery...Iodine-124 Introduction The leptomeningeal route to the central nervous system (CNS) starts from drug administration (injection or in- fusion) into the

  8. Integrated Teaching of Structure-Based Drug Design and Biopharmaceutics: A Computer-Based Approach

    ERIC Educational Resources Information Center

    Sutch, Brian T.; Romero, Rebecca M.; Neamati, Nouri; Haworth, Ian S.

    2012-01-01

    Rational drug design requires expertise in structural biology, medicinal chemistry, physiology, and related fields. In teaching structure-based drug design, it is important to develop an understanding of the need for early recognition of molecules with "drug-like" properties as a key component. That is, it is not merely sufficient to teach…

  9. Production of biologically active recombinant human factor H in Physcomitrella.

    PubMed

    Büttner-Mainik, Annette; Parsons, Juliana; Jérôme, Hanna; Hartmann, Andrea; Lamer, Stephanie; Schaaf, Andreas; Schlosser, Andreas; Zipfel, Peter F; Reski, Ralf; Decker, Eva L

    2011-04-01

    The human complement regulatory serum protein factor H (FH) is a promising future biopharmaceutical. Defects in the gene encoding FH are associated with human diseases like severe kidney and retinal disorders in the form of atypical haemolytic uremic syndrome (aHUS), membranoproliferative glomerulonephritis II (MPGN II) or age-related macular degeneration (AMD). There is a current need to apply intact full-length FH for the therapy of patients with congenital or acquired defects of this protein. Application of purified or recombinant FH (rFH) to these patients is an important and promising approach for the treatment of these diseases. However, neither protein purified from plasma of healthy individuals nor recombinant protein is currently available on the market. Here, we report the first stable expression of the full-length human FH cDNA and the subsequent production of this glycoprotein in a plant system. The moss Physcomitrella patens perfectly suits the requirements for the production of complex biopharmaceuticals as this eukaryotic system not only offers an outstanding genetical accessibility, but moreover, proteins can be produced safely in scalable photobioreactors without the need for animal-derived medium compounds. Transgenic moss lines were created, which express the human FH cDNA and target the recombinant protein to the culture supernatant via a moss-derived secretion signal. Correct processing of the signal peptide and integrity of the moss-produced rFH were verified via peptide mapping by mass spectrometry. Ultimately, we show that the rFH displays complement regulatory activity comparable to FH purified from plasma. © 2010 The Authors. Plant Biotechnology Journal © 2010 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.

  10. Orthogonal Assessment of Biotherapeutic Glycosylation: A Case Study Correlating N-Glycan Core Afucosylation of Herceptin with Mechanism of Action.

    PubMed

    Upton, Rosie; Bell, Leonard; Guy, Colin; Caldwell, Paul; Estdale, Sian; Barran, Perdita E; Firth, David

    2016-10-18

    In the development of therapeutic antibodies and biosimilars, an appropriate biopharmaceutical CMC control strategy that connects critical quality attributes with mechanism of action should enable product assessment at an early stage of development in order to mitigate risk. Here we demonstrate a new analytical workflow using trastuzumab which comprises "middle-up" analysis using a combination of IdeS and the endoglycosidases EndoS and EndoS2 to comprehensively map the glycan content. Enzymatic cleavage between the two N-acetyl glucosamine residues of the chitobiose core of N-glycans significantly simplifies the oligosaccharide component enabling facile distinction of GlcNAc from GlcNAc with core fucose. This approach facilitates quantitative determination of total Fc-glycan core-afucosylation, which was in turn correlated with receptor binding affinity by surface plasmon resonance and in vitro ADCC potency with a cell based bioassay. The strategy also quantifies Fc-glycan occupancy and the relative contribution from high mannose glycans.

  11. Advances in recombinant protein expression for use in pharmaceutical research.

    PubMed

    Assenberg, Rene; Wan, Paul T; Geisse, Sabine; Mayr, Lorenz M

    2013-06-01

    Protein production for structural and biophysical studies, functional assays, biomarkers, mechanistic studies in vitro and in vivo, but also for therapeutic applications in pharma, biotech and academia has evolved into a mature discipline in recent years. Due to the increased emphasis on biopharmaceuticals, the growing demand for proteins used for structural and biophysical studies, the impact of genomics technologies on the analysis of large sets of structurally diverse proteins, and the increasing complexity of disease targets, the interest in innovative approaches for the expression, purification and characterisation of recombinant proteins has steadily increased over the years. In this review, we summarise recent developments in the field of recombinant protein expression for research use in pharma, biotech and academia. We focus mostly on the latest developments for protein expression in the most widely used expression systems: Escherichia coli (E. coli), insect cell expression using the Baculovirus Expression Vector System (BEVS) and, finally, transient and stable expression of recombinant proteins in mammalian cells. Copyright © 2013. Published by Elsevier Ltd.

  12. Physiologically Based Pharmacokinetic and Absorption Modeling for Osmotic Pump Products.

    PubMed

    Ni, Zhanglin; Talattof, Arjang; Fan, Jianghong; Tsakalozou, Eleftheria; Sharan, Satish; Sun, Dajun; Wen, Hong; Zhao, Liang; Zhang, Xinyuan

    2017-07-01

    Physiologically based pharmacokinetic (PBPK) and absorption modeling approaches were employed for oral extended-release (ER) drug products based on an osmotic drug delivery system (osmotic pumps). The purpose was to systemically evaluate the in vivo relevance of in vitro dissolution for this type of formulation. As expected, in vitro dissolution appeared to be generally predictive of in vivo PK profiles, because of the unique feature of this delivery system that the in vitro and in vivo release of osmotic pump drug products is less susceptible to surrounding environment in the gastrointestinal (GI) tract such as pH, hydrodynamic, and food effects. The present study considered BCS (Biopharmaceutics Classification System) class 1, 2, and 3 drug products with half-lives ranging from 2 to greater than 24 h. In some cases, the colonic absorption models needed to be adjusted to account for absorption in the colon. C max (maximum plasma concentration) and AUCt (area under the concentration curve) of the studied drug products were sensitive to changes in colon permeability and segmental GI transit times in a drug product-dependent manner. While improvement of the methodology is still warranted for more precise prediction (e.g., colonic absorption and dynamic movement in the GI tract), the results from the present study further emphasized the advantage of using PBPK modeling in addressing product-specific questions arising from regulatory review and drug development.

  13. Strategies for bringing drug delivery tools into discovery.

    PubMed

    Kwong, Elizabeth; Higgins, John; Templeton, Allen C

    2011-06-30

    The past decade has yielded a significant body of literature discussing approaches for development and discovery collaboration in the pharmaceutical industry. As a result, collaborations between discovery groups and development scientists have increased considerably. The productivity of pharma companies to deliver new drugs to the market, however, has not increased and development costs continue to rise. Inability to predict clinical and toxicological response underlies the high attrition rate of leads at every step of drug development. A partial solution to this high attrition rate could be provided by better preclinical pharmacokinetics measurements that inform PD response based on key pathways that drive disease progression and therapeutic response. A critical link between these key pharmacology, pharmacokinetics and toxicology studies is the formulation. The challenges in pre-clinical formulation development include limited availability of compounds, rapid turn-around requirements and the frequent un-optimized physical properties of the lead compounds. Despite these challenges, this paper illustrates some successes resulting from close collaboration between formulation scientists and discovery teams. This close collaboration has resulted in development of formulations that meet biopharmaceutical needs from early stage preclinical in vivo model development through toxicity testing and development risk assessment of pre-clinical drug candidates. Published by Elsevier B.V.

  14. High level expression of bioactive recombinant human growth hormone in the milk of a cloned transgenic cow.

    PubMed

    Salamone, Daniel; Barañao, Lino; Santos, Claudio; Bussmann, Leonardo; Artuso, Jorge; Werning, Carlos; Prync, Aida; Carbonetto, Cesar; Dabsys, Susana; Munar, Carlos; Salaberry, Roberto; Berra, Guillermo; Berra, Ignacio; Fernández, Nahuel; Papouchado, Mariana; Foti, Marcelo; Judewicz, Norberto; Mujica, Ignacio; Muñoz, Luciana; Alvarez, Silvina Fenández; González, Eliseo; Zimmermann, Juan; Criscuolo, Marcelo; Melo, Carlos

    2006-07-13

    Transgenic farm animals have been proposed as an alternative to current bioreactors for large scale production of biopharmaceuticals. However, the efficiency of both methods in the production of the same protein has not yet been established. Here we report the production of recombinant human growth hormone (hGH) in the milk of a cloned transgenic cow at levels of up to 5 g l(-1). The hormone is identical to that currently produced by expression in E. coli. In addition, the hematological and somatometric parameters of the cloned transgenic cow are within the normal range for the breed and it is fertile and capable of producing normal offspring. These results demonstrate that transgenic cattle can be used as a cost-effective alternative for the production of this hormone.

  15. A statistical approach to determining criticality of residual host cell DNA.

    PubMed

    Yang, Harry; Wei, Ziping; Schenerman, Mark

    2015-01-01

    We propose a method for determining the criticality of residual host cell DNA, which is characterized through two attributes, namely the size and amount of residual DNA in biopharmaceutical product. By applying a mechanistic modeling approach to the problem, we establish the linkage between residual DNA and product safety measured in terms of immunogenicity, oncogenicity, and infectivity. Such a link makes it possible to establish acceptable ranges of residual DNA size and amount. Application of the method is illustrated through two real-life examples related to a vaccine manufactured in Madin Darby Canine Kidney cell line and a monoclonal antibody using Chinese hamster ovary (CHO) cell line as host cells.

  16. Teaching biomedical technology innovation as a discipline.

    PubMed

    Yock, Paul G; Brinton, Todd J; Zenios, Stefanos A

    2011-07-20

    Recently, universities in the United States and abroad have developed dedicated educational programs in life science technology innovation. Here, we discuss the two major streams of educational theory and practice that have informed these programs: design thinking and entrepreneurship education. We make the case that the process of innovation for new medical technologies (medtech) is different from that for biopharmaceuticals and outline the challenges and opportunities associated with developing a discipline of medtech innovation.

  17. Oral delivery of human biopharmaceuticals, autoantigens and vaccine antigens bioencapsulated in plant cells

    PubMed Central

    Kwon, Kwang-Chul; Verma, Dheeraj; Singh, Nameirakpam D.; Herzog, Roland; Daniell, Henry

    2012-01-01

    Among 12 billion injections administered annually, unsafe delivery leads to >20 million infections and >100 million reactions. In an emerging new concept, freeze-dried plant cells (lettuce) expressing vaccine antigens/biopharmaceuticals are protected in the stomach from acids/enzymes but are released to the immune or blood circulatory system when plant cell walls are digested by microbes that colonize the gut. Vaccine antigens bioencapsulated in plant cells upon oral delivery after priming, conferred both mucosal and systemic immunity and protection against bacterial, viral or protozoan pathogens or toxin challenge. Oral delivery of autoantigens was effective against complications of type 1diabetes and hemophilia, by developing tolerance. Oral delivery of proinsulin or exendin-4 expressed in plant cells regulated blood glucose levels similar to injections. Therefore, this new platform offers a low cost alternative to deliver different therapeutic proteins to combat infectious or inherited diseases by eliminating inactivated pathogens, expensive purification, cold storage/transportation and sterile injections. PMID:23099275

  18. Supramolecular Cocrystals of Gliclazide: Synthesis, Characterization and Evaluation.

    PubMed

    Chadha, Renu; Rani, Dimpy; Goyal, Parnika

    2017-03-01

    To prepare the supramolecular cocrystals of gliclazide (GL, a BCS class II drug molecule) via mechanochemical route, with the goal of improving physicochemical and biopharmaceutical properties. Two cocrystals of GL with GRAS status coformers, sebacic acid (GL-SB; 1:1) and α-hydroxyacetic acid (GL-HA; 1:1) were screened out using liquid assisted grinding. The prepared cocrystals were characterized using thermal and analytical techniques followed by evaluation of antidiabetic activity and pharmacokinetic parameters. The generation of new, single and pure crystal forms was characterized by DSC and PXRD. The crystal structure determination from PXRD revealed the existence of both cocrystals in triclinic (P-1) crystal system. The hydrogen bonded network, determined by material studio was well supported by shifts in FTIR and SSNMR. Both the new solid forms displayed improved solubility, IDR, antidiabetic activity and pharmacokinetic parameters as compared to GL. The improvement in these physicochemical and biopharmaceutical properties corroborated the fact that the supramolecular cocrystallization may be useful in the development of pharmaceutical crystalline materials with interesting network and properties.

  19. Implementing the Biopharmaceutics Classification System in Drug Development: Reconciling Similarities, Differences, and Shared Challenges in the EMA and US-FDA-Recommended Approaches.

    PubMed

    Cardot, J-M; Garcia Arieta, A; Paixao, P; Tasevska, I; Davit, B

    2016-07-01

    The US-FDA recently posted a draft guideline for industry recommending procedures necessary to obtain a biowaiver for immediate-release oral dosage forms based on the Biopharmaceutics Classification System (BCS). This review compares the present FDA BCS biowaiver approach, with the existing European Medicines Agency (EMA) approach, with an emphasis on similarities, difficulties, and shared challenges. Some specifics of the current EMA BCS guideline are compared with those in the recently published draft US-FDA BCS guideline. In particular, similarities and differences in the EMA versus US-FDA approaches to establishing drug solubility, permeability, dissolution, and formulation suitability for BCS biowaiver are critically reviewed. Several case studies are presented to illustrate the (i) challenges of applying for BCS biowaivers for global registration in the face of differences in the EMA and US-FDA BCS biowaiver criteria, as well as (ii) challenges inherent in applying for BCS class I or III designation and common to both jurisdictions.

  20. On the way to commercializing plant cell culture platform for biopharmaceuticals: present status and prospect.

    PubMed

    Xu, Jianfeng; Zhang, Ningning

    2014-12-01

    Plant cell culture is emerging as an alternative bioproduction system for recombinant pharmaceuticals. Growing plant cells in vitro under controlled environmental conditions allows for precise control over cell growth and protein production, batch-to-batch product consistency and a production process aligned with current good manufacturing practices. With the recent US FDA approval and commercialization of the world's first plant cell-based recombinant pharmaceutical for human use, β-glucocerebrosidase for treatment of Gaucher's disease, a new era has come in which plant cell culture shows high potential to displace some established platform technologies in niche markets. This review updates the progress in plant cell culture processing technology, highlights recent commercial successes and discusses the challenges that must be overcome to make this platform commercially viable.

  1. Accuracy Considerations in Sterile Compounding.

    PubMed

    Akers, Michael J

    2017-01-01

    Published information about the accuracy of filling and closing operations of sterile products is limited and guidelines on the topic are very general. This article highlights the basic principles in sterile-product filling of syringes and vials. Also covered in this article are descriptions of some of the available devices for filling containers, a brief discussion of the advances in vial and syringe filling, a discussion on the advantages and disadvantages of sterile product filling methods, and a discussion on possible problems encountered during filling operations. Because of the extremely high costs of some new drugs, especially biopharmaceuticals, compounding pharmacies may prefer to fill small batches to reduce the risk of unacceptable monetary losses in the event of a manufacturing deviation that results in batch rejection. Copyright© by International Journal of Pharmaceutical Compounding, Inc.

  2. Integrated continuous processing of proteins expressed as inclusion bodies: GCSF as a case study.

    PubMed

    Kateja, Nikhil; Agarwal, Harshit; Hebbi, Vishwanath; Rathore, Anurag S

    2017-07-01

    Affordability of biopharmaceuticals continues to be a challenge, particularly in developing economies. This has fuelled advancements in manufacturing that can offer higher productivity and better economics without sacrificing product quality in the form of an integrated continuous manufacturing platform. While platform processes for monoclonal antibodies have existed for more than a decade, development of an integrated continuous manufacturing process for bacterial proteins has received relatively scant attention. In this study, we propose an end-to-end integrated continuous downstream process (from inclusion bodies to unformulated drug substance) for a therapeutic protein expressed in Escherichia coli as inclusion body. The final process consisted of a continuous refolding in a coiled flow inverter reactor directly coupled to a three-column periodic counter-current chromatography for capture of the product followed by a three-column con-current chromatography for polishing. The continuous bioprocessing train was run uninterrupted for 26 h to demonstrate its capability and the resulting output was analyzed for the various critical quality attributes, namely product purity (>99%), high molecular weight impurities (<0.5%), host cell proteins (<100 ppm), and host cell DNA (<10 ppb). All attributes were found to be consistent over the period of operation. The developed assembly offers smaller facility footprint, higher productivity, fewer hold steps, and significantly higher equipment and resin utilization. The complexities of process integration in the context of continuous processing have been highlighted. We hope that the study presented here will promote development of highly efficient, universal, end-to-end, fully continuous platforms for manufacturing of biotherapeutics. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:998-1009, 2017. © 2016 American Institute of Chemical Engineers.

  3. The rise of biosimilars: potential benefits and drawbacks in rheumatoid arthritis.

    PubMed

    Yoo, Dae Hyun

    2014-08-01

    Although biologic agents are effective in the treatment of rheumatoid arthritis, the high price of drugs and restricted health care budgets have restricted easy access to biologics. Eventually, the use of biologic disease-modifying antirheumatic drugs might be inversely associated with disease activity in countries with low gross domestic product. The EMA approved an infliximab biosimilar for the first time in September 2013. The first approval of a biosimilar monoclonal antibody by a major regulatory authority provided a global standard for subsequent biosimilars and for biopharmaceutical companies developing biosimilars. Biosimilars with a highly similar quality and efficacy profile at an acceptable lower cost would significantly increase affordability of biologic disease-modifying antirheumatic drugs in the treatment of rheumatoid arthritis. Here, we will review the current status of first biosimilar antibody agent and the potential discussion points raised against biosimilars. In addition, the importance of awareness on biosimilars for stakeholders is discussed.

  4. The positive impacts of Real-World Data on the challenges facing the evolution of biopharma.

    PubMed

    Wise, John; Möller, Angeli; Christie, David; Kalra, Dipak; Brodsky, Elia; Georgieva, Evelina; Jones, Greg; Smith, Ian; Greiffenberg, Lars; McCarthy, Marie; Arend, Michael; Luttringer, Olivier; Kloss, Sebastian; Arlington, Steve

    2018-04-01

    Demand for healthcare services is unprecedented. Society is struggling to afford the cost. Pricing of biopharmaceutical products is under scrutiny, especially by payers and Health Technology Assessment agencies. As we discuss here, rapidly advancing technologies, such as Real-World Data (RWD), are being utilized to increase understanding of disease. RWD, when captured and analyzed, produces the Real-World Evidence (RWE) that underpins the economic case for innovative medicines. Furthermore, RWD can inform the understanding of disease, help identify new therapeutic intervention points, and improve the efficiency of research and development (R&D), especially clinical trials. Pursuing precompetitive collaborations to define shared requirements for the use of RWD would equip service-providers with the specifications needed to implement cloud-based solutions for RWD acquisition, management and analysis. Only this approach would deliver cost-effective solutions to an industry-wide problem. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Toward an integrated software platform for systems pharmacology

    PubMed Central

    Ghosh, Samik; Matsuoka, Yukiko; Asai, Yoshiyuki; Hsin, Kun-Yi; Kitano, Hiroaki

    2013-01-01

    Understanding complex biological systems requires the extensive support of computational tools. This is particularly true for systems pharmacology, which aims to understand the action of drugs and their interactions in a systems context. Computational models play an important role as they can be viewed as an explicit representation of biological hypotheses to be tested. A series of software and data resources are used for model development, verification and exploration of the possible behaviors of biological systems using the model that may not be possible or not cost effective by experiments. Software platforms play a dominant role in creativity and productivity support and have transformed many industries, techniques that can be applied to biology as well. Establishing an integrated software platform will be the next important step in the field. © 2013 The Authors. Biopharmaceutics & Drug Disposition published by John Wiley & Sons, Ltd. PMID:24150748

  6. BDP Is Unified at the ATRF | Poster

    Cancer.gov

    By Ken Michaels, Staff Writer The Biopharmaceutical Development Program (BDP) at the Frederick National Laboratory is, for the first time ever, in a single building at the Advanced Technology Research Facility (ATRF). At Fort Detrick, BDP operations were spread out in about a dozen buildings, resulting in redundancies in maintaining various utilities (air handlers, clean steam, WFI, etc.) for multiple buildings rather than one.

  7. FDA Approves Immunotherapy for a Cancer that Affects Infants and Children | Poster

    Cancer.gov

    By Frank Blanchard, Staff Writer The U.S. Food and Drug Administration (FDA) recently approved dinutuximab (ch14.18) as an immunotherapy for neuroblastoma, a rare type of childhood cancer that offers poor prognosis for about half of the children who are affected. The National Cancer Institute’s (NCI) Biopharmaceutical Development Program (BDP) at the Frederick National

  8. Automated Gravimetric Calibration to Optimize the Accuracy and Precision of TECAN Freedom EVO Liquid Handler

    PubMed Central

    Bessemans, Laurent; Jully, Vanessa; de Raikem, Caroline; Albanese, Mathieu; Moniotte, Nicolas; Silversmet, Pascal; Lemoine, Dominique

    2016-01-01

    High-throughput screening technologies are increasingly integrated into the formulation development process of biopharmaceuticals. The performance of liquid handling systems is dependent on the ability to deliver accurate and precise volumes of specific reagents to ensure process quality. We have developed an automated gravimetric calibration procedure to adjust the accuracy and evaluate the precision of the TECAN Freedom EVO liquid handling system. Volumes from 3 to 900 µL using calibrated syringes and fixed tips were evaluated with various solutions, including aluminum hydroxide and phosphate adjuvants, β-casein, sucrose, sodium chloride, and phosphate-buffered saline. The methodology to set up liquid class pipetting parameters for each solution was to split the process in three steps: (1) screening of predefined liquid class, including different pipetting parameters; (2) adjustment of accuracy parameters based on a calibration curve; and (3) confirmation of the adjustment. The run of appropriate pipetting scripts, data acquisition, and reports until the creation of a new liquid class in EVOware was fully automated. The calibration and confirmation of the robotic system was simple, efficient, and precise and could accelerate data acquisition for a wide range of biopharmaceutical applications. PMID:26905719

  9. Mechanism for multiplicity of steady states with distinct cell concentration in continuous culture of mammalian cells.

    PubMed

    Yongky, Andrew; Lee, Jongchan; Le, Tung; Mulukutla, Bhanu Chandra; Daoutidis, Prodromos; Hu, Wei-Shou

    2015-07-01

    Continuous culture for the production of biopharmaceutical proteins offers the possibility of steady state operations and thus more consistent product quality and increased productivity. Under some conditions, multiplicity of steady states has been observed in continuous cultures of mammalian cells, wherein with the same dilution rate and feed nutrient composition, steady states with very different cell and product concentrations may be reached. At those different steady states, cells may exhibit a high glycolysis flux with high lactate production and low cell concentration, or a low glycolysis flux with low lactate and high cell concentration. These different steady states, with different cell concentration, also have different productivity. Developing a mechanistic understanding of the occurrence of steady state multiplicity and devising a strategy to steer the culture toward the desired steady state is critical. We establish a multi-scale kinetic model that integrates a mechanistic intracellular metabolic model and cell growth model in a continuous bioreactor. We show that steady state multiplicity exists in a range of dilution rate in continuous culture as a result of the bistable behavior in glycolysis. The insights from the model were used to devise strategies to guide the culture to the desired steady state in the multiple steady state region. The model provides a guideline principle in the design of continuous culture processes of mammalian cells. © 2015 Wiley Periodicals, Inc.

  10. Characterization of Protein-Excipient Microheterogeneity in Biopharmaceutical Solid-State Formulations by Confocal Fluorescence Microscopy.

    PubMed

    Koshari, Stijn H S; Ross, Jean L; Nayak, Purnendu K; Zarraga, Isidro E; Rajagopal, Karthikan; Wagner, Norman J; Lenhoff, Abraham M

    2017-02-06

    Protein-stabilizer microheterogeneity is believed to influence long-term protein stability in solid-state biopharmaceutical formulations and its characterization is therefore essential for the rational design of stable formulations. However, the spatial distribution of the protein and the stabilizer in a solid-state formulation is, in general, difficult to characterize because of the lack of a functional, simple, and reliable characterization technique. We demonstrate the use of confocal fluorescence microscopy with fluorescently labeled monoclonal antibodies (mAbs) and antibody fragments (Fabs) to directly visualize three-dimensional particle morphologies and protein distributions in dried biopharmaceutical formulations, without restrictions on processing conditions or the need for extensive data analysis. While industrially relevant lyophilization procedures of a model IgG1 mAb generally lead to uniform protein-excipient distribution, the method shows that specific spray-drying conditions lead to distinct protein-excipient segregation. Therefore, this method can enable more definitive optimization of formulation conditions than has previously been possible.

  11. Multidimensional Methods for the Formulation of Biopharmaceuticals and Vaccines

    PubMed Central

    Maddux, Nathaniel R.; Joshi, Sangeeta B.; Volkin, David B.; Ralston, John P.; Middaugh, C. Russell

    2013-01-01

    Determining and preserving the higher order structural integrity and conformational stability of proteins, plasmid DNA and macromolecular complexes such as viruses, virus-like particles and adjuvanted antigens is often a significant barrier to the successful stabilization and formulation of biopharmaceutical drugs and vaccines. These properties typically must be investigated with multiple lower resolution experimental methods, since each technique monitors only a narrow aspect of the overall conformational state of a macromolecular system. This review describes the use of empirical phase diagrams (EPDs) to combine large amounts of data from multiple high-throughput instruments and construct a map of a target macromolecule's physical state as a function of temperature, solvent conditions, and other stress variables. We present a tutorial on the mathematical methodology, an overview of some of the experimental methods typically used, and examples of some of the previous major formulation applications. We also explore novel applications of EPDs including potential new mathematical approaches as well as possible new biopharmaceutical applications such as analytical comparability, chemical stability, and protein dynamics. PMID:21647886

  12. A synthetic multifunctional mammalian pH sensor and CO2 transgene-control device.

    PubMed

    Ausländer, David; Ausländer, Simon; Charpin-El Hamri, Ghislaine; Sedlmayer, Ferdinand; Müller, Marius; Frey, Olivier; Hierlemann, Andreas; Stelling, Jörg; Fussenegger, Martin

    2014-08-07

    All metabolic activities operate within a narrow pH range that is controlled by the CO2-bicarbonate buffering system. We hypothesized that pH could serve as surrogate signal to monitor and respond to the physiological state. By functionally rewiring the human proton-activated cell-surface receptor TDAG8 to chimeric promoters, we created a synthetic signaling cascade that precisely monitors extracellular pH within the physiological range. The synthetic pH sensor could be adjusted by organic acids as well as gaseous CO2 that shifts the CO2-bicarbonate balance toward hydrogen ions. This enabled the design of gas-programmable logic gates, provided remote control of cellular behavior inside microfluidic devices, and allowed for CO2-triggered production of biopharmaceuticals in standard bioreactors. When implanting cells containing the synthetic pH sensor linked to production of insulin into type 1 diabetic mice developing diabetic ketoacidosis, the prosthetic network automatically scored acidic pH and coordinated an insulin expression response that corrected ketoacidosis. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Assessing the Financial Benefits of Faster Development Times: The Case of Single-source Versus Multi-vendor Outsourced Biopharmaceutical Manufacturing.

    PubMed

    DiMasi, Joseph A; Smith, Zachary; Getz, Kenneth A

    2018-05-10

    The extent to which new drug developers can benefit financially from shorter development times has implications for development efficiency and innovation incentives. We provided a real-world example of such gains by using recent estimates of drug development costs and returns. Time and fee data were obtained on 5 single-source manufacturing projects. Time and fees were modeled for these projects as if the drug substance and drug product processes had been contracted separately from 2 vendors. The multi-vendor model was taken as the base case, and financial impacts from single-source contracting were determined relative to the base case. The mean and median after-tax financial benefits of shorter development times from single-source contracting were $44.7 million and $34.9 million, respectively (2016 dollars). The after-tax increases in sponsor fees from single-source contracting were small in comparison (mean and median of $0.65 million and $0.25 million). For the data we examined, single-source contracting yielded substantial financial benefits over multi-source contracting, even after accounting for somewhat higher sponsor fees. Copyright © 2018 Elsevier HS Journals, Inc. All rights reserved.

  14. The 10th Annual Bioassays and Bioanalytical Method Development Conference.

    PubMed

    Ma, Mark; Tudan, Christopher; Koltchev, Dolly

    2015-01-01

    The 10th Annual Bioassays and Bioanalytical Method Development Conference was hosted in Boston, MA, USA on 20-22 October 2014. This meeting brought together scientists from the biopharmaceutical and life sciences industries, the regulatory agency and academia to share and discuss current trends in cell-based assays and bioanalysis, challenges and ideas for the future of the bioassays and bioanalytical method development. The experiences associated with new and innovative technologies were evaluated as well as their impact on the current bioassays methodologies and bioanalysis workflow, including quality, feasibility, outsourcing strategies and challenges, productivity and compliance. Several presentations were also provided by members of the US FDA, sharing both scientific and regulatory paradigms including a most recent update on the position of the FDA with specific aspects of the draft Bioanalytical Method Validation guidance following its review of the industry's responses. The meeting was jointly coincided with the 15th Annual Immunogenicity for Biotherapeutics meeting, allowing for attendees to also familiarize themselves with new and emerging approaches to overcome the effect of immunogenicity, in addition to investigative strategies.

  15. Tryptophan oxidation catabolite, N-formylkynurenine, in photo degraded cell culture medium results in reduced cell culture performance.

    PubMed

    McElearney, Kyle; Ali, Amr; Gilbert, Alan; Kshirsagar, Rashmi; Zang, Li

    2016-01-01

    Chemically defined media have been widely used in the biopharmaceutical industry to enhance cell culture productivities and ensure process robustness. These media, which are quite complex, often contain a mixture of many components such as vitamins, amino acids, metals and other chemicals. Some of these components are known to be sensitive to various stress factors including photodegradation. Previous work has shown that small changes in impurity concentrations induced by these potential stresses can have a large impact on the cell culture process including growth and product quality attributes. Furthermore, it has been shown to be difficult to detect these modifications analytically due to the complexity of the cell culture media and the trace level of the degradant products. Here, we describe work performed to identify the specific chemical(s) in photodegraded medium that affect cell culture performance. First, we developed a model system capable of detecting changes in cell culture performance. Second, we used these data and applied an LC-MS analytical technique to characterize the cell culture media and identify degradant products which affect cell culture performance. Riboflavin limitation and N-formylkynurenine (NFK), a tryptophan oxidation catabolite, were identified as chemicals which results in a reduction in cell culture performance. © 2015 American Institute of Chemical Engineers.

  16. Calculating radiation exposures during use of (14)C-labeled nutrients, food components, and biopharmaceuticals to quantify metabolic behavior in humans.

    PubMed

    Kim, Seung-Hyun; Kelly, Peter B; Clifford, Andrew J

    2010-04-28

    (14)C has long been used as a tracer for quantifying the in vivo human metabolism of food components, biopharmaceuticals, and nutrients. Minute amounts (< or =1 x 10 (-18) mol) of (14)C can be measured with high-throughput (14)C-accelerator mass spectrometry (HT (14)C-AMS) in isolated chemical extracts of biological, biomedical, and environmental samples. Availability of in vivo human data sets using a (14)C tracer would enable current concepts of the metabolic behavior of food components, biopharmaceuticals, or nutrients to be organized into models suitable for quantitative hypothesis testing and determination of metabolic parameters. In vivo models are important for specification of intake levels for food components, biopharmaceuticals, and nutrients. Accurate estimation of the radiation exposure from ingested (14)C is an essential component of the experimental design. Therefore, this paper illustrates the calculation involved in determining the radiation exposure from a minute dose of orally administered (14)C-beta-carotene, (14)C-alpha-tocopherol, (14)C-lutein, and (14)C-folic acid from four prior experiments. The administered doses ranged from 36 to 100 nCi, and radiation exposure ranged from 0.12 to 5.2 microSv to whole body and from 0.2 to 3.4 microSv to liver with consideration of tissue weighting factor and fractional nutrient. In comparison, radiation exposure experienced during a 4 h airline flight across the United States at 37000 ft was 20 microSv.

  17. The Patient's Voice in Pharmacovigilance: Pragmatic Approaches to Building a Patient-Centric Drug Safety Organization.

    PubMed

    Smith, Meredith Y; Benattia, Isma

    2016-09-01

    Patient-centeredness has become an acknowledged hallmark of not only high-quality health care but also high-quality drug development. Biopharmaceutical companies are actively seeking to be more patient-centric in drug research and development by involving patients in identifying target disease conditions, participating in the design of, and recruitment for, clinical trials, and disseminating study results. Drug safety departments within the biopharmaceutical industry are at a similar inflection point. Rising rates of per capita prescription drug use underscore the importance of having robust pharmacovigilance systems in place to detect and assess adverse drug reactions (ADRs). At the same time, the practice of pharmacovigilance is being transformed by a host of recent regulatory guidances and related initiatives which emphasize the importance of the patient's perspective in drug safety. Collectively, these initiatives impact the full range of activities that fall within the remit of pharmacovigilance, including ADR reporting, signal detection and evaluation, risk management, medication error assessment, benefit-risk assessment and risk communication. Examples include the fact that manufacturing authorization holders are now expected to monitor all digital sources under their control for potential reports of ADRs, and the emergence of new methods for collecting, analysing and reporting patient-generated ADR reports for signal detection and evaluation purposes. A drug safety department's ability to transition successfully into a more patient-centric organization will depend on three defining attributes: (1) a patient-centered culture; (2) deployment of a framework to guide patient engagement activities; and (3) demonstrated proficiency in patient-centered competencies, including patient engagement, risk communication and patient preference assessment. Whether, and to what extent, drug safety departments embrace the new patient-centric imperative, and the methods and processes they implement to achieve this end effectively and efficiently, promise to become distinguishing factors in the highly competitive biopharmaceutical industry landscape.

  18. Optimizing solubility and permeability of a biopharmaceutics classification system (BCS) class 4 antibiotic drug using lipophilic fragments disturbing the crystal lattice.

    PubMed

    Tehler, Ulrika; Fagerberg, Jonas H; Svensson, Richard; Larhed, Mats; Artursson, Per; Bergström, Christel A S

    2013-03-28

    Esterification was used to simultaneously increase solubility and permeability of ciprofloxacin, a biopharmaceutics classification system (BCS) class 4 drug (low solubility/low permeability) with solid-state limited solubility. Molecular flexibility was increased to disturb the crystal lattice, lower the melting point, and thereby improve the solubility, whereas lipophilicity was increased to enhance the intestinal permeability. These structural changes resulted in BCS class 1 analogues (high solubility/high permeability) emphasizing that simple medicinal chemistry may improve both these properties.

  19. Advances in native high-performance liquid chromatography and intact mass spectrometry for the characterization of biopharmaceutical products.

    PubMed

    Tassi, Marco; De Vos, Jelle; Chatterjee, Sneha; Sobott, Frank; Bones, Jonathan; Eeltink, Sebastiaan

    2018-01-01

    The characterization of biotherapeutics represents a major analytical challenge. This review discusses the current state-of-the-art in analytical technologies to profile biopharma products under native conditions, i.e., the protein three dimensional conformation is maintained during liquid chromatographic analysis. Native liquid-chromatographic modes that are discussed include aqueous size-exclusion chromatography, hydrophobic interaction chromatography, and ion-exchange chromatography. Infusion conditions and the possibilities and limitations to hyphenate native liquid chromatography to mass spectrometry are discussed. Furthermore, the applicability of native liquid-chromatography methods and intact mass spectrometry analysis for the characterization of monoclonal antibodies and antibody-drug conjugates is discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. On the way to commercializing plant cell culture platform for biopharmaceuticals: present status and prospect

    PubMed Central

    Xu, Jianfeng; Zhang, Ningning

    2014-01-01

    Plant cell culture is emerging as an alternative bioproduction system for recombinant pharmaceuticals. Growing plant cells in vitro under controlled environmental conditions allows for precise control over cell growth and protein production, batch-to-batch product consistency and a production process aligned with current good manufacturing practices. With the recent US FDA approval and commercialization of the world’s first plant cell-based recombinant pharmaceutical for human use, β-glucocerebrosidase for treatment of Gaucher’s disease, a new era has come in which plant cell culture shows high potential to displace some established platform technologies in niche markets. This review updates the progress in plant cell culture processing technology, highlights recent commercial successes and discusses the challenges that must be overcome to make this platform commercially viable. PMID:25621170

  1. Plastid biotechnology for crop production: present status and future perspectives

    PubMed Central

    Daniell, Henry

    2012-01-01

    The world population is expected to reach an estimated 9.2 billion by 2050. Therefore, food production globally has to increase by 70% in order to feed the world, while total arable land, which has reached its maximal utilization, may even decrease. Moreover, climate change adds yet another challenge to global food security. In order to feed the world in 2050, biotechnological advances in modern agriculture are essential. Plant genetic engineering, which has created a new wave of global crop production after the first green revolution, will continue to play an important role in modern agriculture to meet these challenges. Plastid genetic engineering, with several unique advantages including transgene containment, has made significant progress in the last two decades in various biotechnology applications including development of crops with high levels of resistance to insects, bacterial, fungal and viral diseases, different types of herbicides, drought, salt and cold tolerance, cytoplasmic male sterility, metabolic engineering, phytoremediation of toxic metals and production of many vaccine antigens, biopharmaceuticals and biofuels. However, useful traits should be engineered via chloroplast genomes of several major crops. This review provides insight into the current state of the art of plastid engineering in relation to agricultural production, especially for engineering agronomic traits. Understanding the bottleneck of this technology and challenges for improvement of major crops in a changing climate are discussed. PMID:21437683

  2. Evaluation of changes in promoters, use of UCOES and chain order to improve the antibody production in CHO cells.

    PubMed

    Rocha-Pizaña, Maria Del Refugio; Ascencio-Favela, Guadalupe; Soto-García, Brenda Maribell; Martinez-Fierro, Margarita de la Luz; Alvarez, Mario Moisés

    2017-04-01

    Therapy with biopharmaceuticals, mainly recombinant antibodies, offers patients higher life expectancy and better life quality than pharmacologic therapy. Countries with the highest scientific development are investing in this kind of therapy, and this is why the optimization of the production of these recombinant proteins would lead to their higher production and lower costs of the final product. Modifications in the use of promoters, the use of recombination regions, and the change in the order of the chains, are some of the genetic engineering changes that can increase the production of recombinant antibodies. In this work, three different promoters were tested: Prom A, hCMV, and EF1-a, for two different antibodies, one anti-TNFa and one anti-CD20 + . Changes were made in the order of the chains H-L or L-H and one or two UCOE (ubiquitous chromatin opening element) sequences were also used to identify the combinations that provide the best transient and stable expression for the antibodies in the CHO-s cells. In our results, we observed that the use of the two UCOE regions, with L-H order is almost three times better for the expression of the two different antibodies, while the strength of the promoter is conditioned by the sequence of each expressed protein. Copyright © 2017. Published by Elsevier Inc.

  3. Process development of a New Haemophilus influenzae type b conjugate vaccine and the use of mathematical modeling to identify process optimization possibilities.

    PubMed

    Hamidi, Ahd; Kreeftenberg, Hans; V D Pol, Leo; Ghimire, Saroj; V D Wielen, Luuk A M; Ottens, Marcel

    2016-05-01

    Vaccination is one of the most successful public health interventions being a cost-effective tool in preventing deaths among young children. The earliest vaccines were developed following empirical methods, creating vaccines by trial and error. New process development tools, for example mathematical modeling, as well as new regulatory initiatives requiring better understanding of both the product and the process are being applied to well-characterized biopharmaceuticals (for example recombinant proteins). The vaccine industry is still running behind in comparison to these industries. A production process for a new Haemophilus influenzae type b (Hib) conjugate vaccine, including related quality control (QC) tests, was developed and transferred to a number of emerging vaccine manufacturers. This contributed to a sustainable global supply of affordable Hib conjugate vaccines, as illustrated by the market launch of the first Hib vaccine based on this technology in 2007 and concomitant price reduction of Hib vaccines. This paper describes the development approach followed for this Hib conjugate vaccine as well as the mathematical modeling tool applied recently in order to indicate options for further improvements of the initial Hib process. The strategy followed during the process development of this Hib conjugate vaccine was a targeted and integrated approach based on prior knowledge and experience with similar products using multi-disciplinary expertise. Mathematical modeling was used to develop a predictive model for the initial Hib process (the 'baseline' model) as well as an 'optimized' model, by proposing a number of process changes which could lead to further reduction in price. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:568-580, 2016. © 2016 American Institute of Chemical Engineers.

  4. Characterization of TAP Ambr 250 disposable bioreactors, as a reliable scale-down model for biologics process development.

    PubMed

    Xu, Ping; Clark, Colleen; Ryder, Todd; Sparks, Colleen; Zhou, Jiping; Wang, Michelle; Russell, Reb; Scott, Charo

    2017-03-01

    Demands for development of biological therapies is rapidly increasing, as is the drive to reduce time to patient. In order to speed up development, the disposable Automated Microscale Bioreactor (Ambr 250) system is increasingly gaining interest due to its advantages, including highly automated control, high throughput capacity, and short turnaround time. Traditional early stage upstream process development conducted in 2 - 5 L bench-top bioreactors requires high foot-print, and running cost. The establishment of the Ambr 250 as a scale-down model leads to many benefits in process development. In this study, a comprehensive characterization of mass transfer coefficient (k L a) in the Ambr 250 was conducted to define optimal operational conditions. Scale-down approaches, including dimensionless volumetric flow rate (vvm), power per unit volume (P/V) and k L a have been evaluated using different cell lines. This study demonstrates that the Ambr 250 generated comparable profiles of cell growth and protein production, as seen at 5-L and 1000-L bioreactor scales, when using k L a as a scale-down parameter. In addition to mimicking processes at large scales, the suitability of the Ambr 250 as a tool for clone selection, which is traditionally conducted in bench-top bioreactors, was investigated. Data show that cell growth, productivity, metabolite profiles, and product qualities of material generated using the Ambr 250 were comparable to those from 5-L bioreactors. Therefore, Ambr 250 can be used for clone selection and process development as a replacement for traditional bench-top bioreactors minimizing resource utilization during the early stages of development in the biopharmaceutical industry. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:478-489, 2017. © 2017 American Institute of Chemical Engineers.

  5. Summary of the National Institute of Child Health and Human Development-best pharmaceuticals for Children Act Pediatric Formulation Initiatives Workshop-Pediatric Biopharmaceutics Classification System Working Group.

    PubMed

    Abdel-Rahman, Susan M; Amidon, Gordon L; Kaul, Ajay; Lukacova, Viera; Vinks, Alexander A; Knipp, Gregory T

    2012-11-01

    The Biopharmaceutics Classification System (BCS) allows compounds to be classified based on their in vitro solubility and intestinal permeability. The BCS has found widespread use in the pharmaceutical community to be an enabling guide for the rational selection of compounds, formulation for clinical advancement, and generic biowaivers. The Pediatric Biopharmaceutics Classification System (PBCS) Working Group was convened to consider the possibility of developing an analogous pediatric-based classification system. Because there are distinct developmental differences that can alter intestinal contents, volumes, permeability, and potentially biorelevant solubilities at different ages, the PBCS Working Group focused on identifying age-specific issues that need to be considered in establishing a flexible, yet rigorous PBCS. We summarized the findings of the PBCS Working Group and provided insights into considerations required for the development of a PBCS. Through several meetings conducted both at The Eunice Kennedy Shriver National Institute of Child Health, Human Development-US Pediatric Formulation Initiative Workshop (November 2011) and via teleconferences, the PBCS Working Group considered several high-level questions that were raised to frame the classification system. In addition, the PBCS Working Group identified a number of knowledge gaps that need to be addressed to develop a rigorous PBCS. It was determined that for a PBCS to be truly meaningful, it needs to be broken down into several different age groups that account for developmental changes in intestinal permeability, luminal contents, and gastrointestinal (GI) transit. Several critical knowledge gaps were identified, including (1) a lack of fully understanding the ontogeny of drug metabolizing enzymes and transporters along the GI tract, in the liver, and in the kidney; (2) an incomplete understanding of age-based changes in the GI, liver, and kidney physiology; (3) a clear need to better understand age-based intestinal permeability and fraction absorbed required to develop the PBCS; (4) a clear need for the development and organization of pediatric tissue biobanks to serve as a source for ontogenic research; and (5) a lack of literature published in age-based pediatric pharmacokinetics to build physiologically- and population-based pharmacokinetic (PBPK) databases. To begin the process of establishing a PBPK model, 10 pediatric therapeutic agents were selected (based on their adult BCS classifications). These agents should be targeted for additional research in the future. The PBCS Working Group also identified several areas where greater emphasis on research was needed to enable the development of a PBCS. Copyright © 2012 Elsevier HS Journals, Inc. All rights reserved.

  6. Development of a fed-batch process for a recombinant Pichia pastoris Δoch1 strain expressing a plant peroxidase.

    PubMed

    Gmeiner, Christoph; Saadati, Amirhossein; Maresch, Daniel; Krasteva, Stanimira; Frank, Manuela; Altmann, Friedrich; Herwig, Christoph; Spadiut, Oliver

    2015-01-08

    Pichia pastoris is a prominent host for recombinant protein production, amongst other things due to its capability of glycosylation. However, N-linked glycans on recombinant proteins get hypermannosylated, causing problems in subsequent unit operations and medical applications. Hypermannosylation is triggered by an α-1,6-mannosyltransferase called OCH1. In a recent study, we knocked out OCH1 in a recombinant P. pastoris CBS7435 Mut(S) strain (Δoch1) expressing the biopharmaceutically relevant enzyme horseradish peroxidase. We characterized the strain in the controlled environment of a bioreactor in dynamic batch cultivations and identified the strain to be physiologically impaired. We faced cell cluster formation, cell lysis and uncontrollable foam formation.In the present study, we investigated the effects of the 3 process parameters temperature, pH and dissolved oxygen concentration on 1) cell physiology, 2) cell morphology, 3) cell lysis, 4) productivity and 5) product purity of the recombinant Δoch1 strain in a multivariate manner. Cultivation at 30°C resulted in low specific methanol uptake during adaptation and the risk of methanol accumulation during cultivation. Cell cluster formation was a function of the C-source rather than process parameters and went along with cell lysis. In terms of productivity and product purity a temperature of 20°C was highly beneficial. In summary, we determined cultivation conditions for a recombinant P. pastoris Δoch1 strain allowing high productivity and product purity.

  7. Whole‐cell Escherichia coli lactate biosensor for monitoring mammalian cell cultures during biopharmaceutical production

    PubMed Central

    Goers, Lisa; Ainsworth, Catherine; Goey, Cher Hui; Kontoravdi, Cleo; Freemont, Paul S.

    2017-01-01

    ABSTRACT Many high‐value added recombinant proteins, such as therapeutic glycoproteins, are produced using mammalian cell cultures. In order to optimize the productivity of these cultures it is important to monitor cellular metabolism, for example the utilization of nutrients and the accumulation of metabolic waste products. One metabolic waste product of interest is lactic acid (lactate), overaccumulation of which can decrease cellular growth and protein production. Current methods for the detection of lactate are limited in terms of cost, sensitivity, and robustness. Therefore, we developed a whole‐cell Escherichia coli lactate biosensor based on the lldPRD operon and successfully used it to monitor lactate concentration in mammalian cell cultures. Using real samples and analytical validation we demonstrate that our biosensor can be used for absolute quantification of metabolites in complex samples with high accuracy, sensitivity, and robustness. Importantly, our whole‐cell biosensor was able to detect lactate at concentrations more than two orders of magnitude lower than the industry standard method, making it useful for monitoring lactate concentrations in early phase culture. Given the importance of lactate in a variety of both industrial and clinical contexts we anticipate that our whole‐cell biosensor can be used to address a range of interesting biological questions. It also serves as a blueprint for how to capitalize on the wealth of genetic operons for metabolite sensing available in nature for the development of other whole‐cell biosensors. Biotechnol. Bioeng. 2017;114: 1290–1300. © 2017 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc. PMID:28112405

  8. A Different Perspective: How Much Innovation Is Really Needed for Monoclonal Antibody Production Using Mammalian Cell Technology?

    PubMed

    Kelley, Brian; Kiss, Robert; Laird, Michael

    2018-05-03

    As biopharmaceutical companies have optimized cell line and production culture process development, titers of recombinant antibodies have risen steadily to 3-8 g/L for fed-batch mammalian cultures at production scales of 10 kL or larger. Most new antibody products are produced from Chinese Hamster Ovary (CHO) cell lines, and there are relatively few alternative production hosts under active evaluation. Many companies have adopted a strategy of using the same production cell line for early clinical phases as well as commercial production, which reduces the risk of product comparability issues during the development lifecycle. Product quality and consistency expectations rest on the platform knowledge of the CHO host cell line and processes used for the production of many licensed antibodies. The lack of impact of low-level product variants common to this platform on product safety and efficacy also builds on the established commercial history of recombinant antibodies, which dates back to 1997.Efforts to increase titers further will likely yield diminishing returns. Very few products would benefit significantly from a titer greater than 8 g/L; in many cases, a downstream processing bottleneck would preclude full recovery from production-scale bioreactors for high titer processes. The benefits of a process platform based on standard fed-batch production culture include predictable scale-up, process transfer, and production within a company's manufacturing network or at a contract manufacturing organization. Furthermore, the confidence in an established platform provides key support towards regulatory flexibility (e.g., design space) for license applications following a quality-by-design strategy.These factors suggest that novel technologies for antibody production may not provide a substantial return on investment. What, then, should be the focus of future process development efforts for companies that choose to launch antibody products using their current platform? This review proposes key focus areas in an effort to continually improve process consistency, assure acceptable product quality, and establish appropriate process parameter limits to enable flexible manufacturing options.

  9. Improvement of Intestinal Absorption of Forsythoside A and Chlorogenic Acid by Different Carboxymethyl Chitosan and Chito-oligosaccharide, Application to Flos Lonicerae - Fructus Forsythiae Herb Couple Preparations

    PubMed Central

    Zhou, Wei; Wang, Haidan; Zhu, Xuanxuan; Shan, Jinjun; Yin, Ailing; Cai, Baochang; Di, Liuqing

    2013-01-01

    The current study aims to investigate the effect of chitosan derivatives on the intestinal absorption and bioavailabilities of forsythoside A (FTA) and Chlorogenic acid (CHA), the major active components in Flos Lonicerae - Fructus Forsythiae herb couple. Biopharmaceutics and pharmacokinetics properties of the two compounds have been characterized in vitro, in situ as well as in rats. Based on the identified biopharmaceutics characteristics of the two compounds, the effect of chitosan derivatives as an absorption enhancer on the intestinal absorption and pharmacokinetics of FTA and CHA in pure compound form as well as extract form were investigated in vitro, in situ and in vivo. Both FTA and CHA demonstrated very limited intestinal permeabilities, leading to oral bioavailabilities being only 0.50% and 0.13% in rats, respectively. Results from both in vitro, in situ as well as in vivo studies consistently indicated that Chito-oligosaccharide (COS) at dosage of 25 mg/kg could enhance intestinal permeabilities significantly as well as the in vivo bioavailabilities of both FTA and CHA than CMCs in Flos Lonicerae - Fructus Forsythiae herb couple preparations, and was safe for gastrointestine from morphological observation. Besides, treatment with Flos Lonicerae - Fructus Forsythiae herb couple preparations with COS at the dosage of 25 mg/kg prevented MDCK damage after influenza virus propagation, which was significantly better than control. The current findings not only identified the usefulness of COS for the improved delivery of Flos Lonicerae - Fructus Forsythiae preparations but also demonstrated the importance of biopharmaceutical characterization in the dosage form development of traditional Chinese medicine. PMID:23675483

  10. Precision control of recombinant gene transcription for CHO cell synthetic biology.

    PubMed

    Brown, Adam J; James, David C

    2016-01-01

    The next generation of mammalian cell factories for biopharmaceutical production will be genetically engineered to possess both generic and product-specific manufacturing capabilities that may not exist naturally. Introduction of entirely new combinations of synthetic functions (e.g. novel metabolic or stress-response pathways), and retro-engineering of existing functional cell modules will drive disruptive change in cellular manufacturing performance. However, before we can apply the core concepts underpinning synthetic biology (design, build, test) to CHO cell engineering we must first develop practical and robust enabling technologies. Fundamentally, we will require the ability to precisely control the relative stoichiometry of numerous functional components we simultaneously introduce into the host cell factory. In this review we discuss how this can be achieved by design of engineered promoters that enable concerted control of recombinant gene transcription. We describe the specific mechanisms of transcriptional regulation that affect promoter function during bioproduction processes, and detail the highly-specific promoter design criteria that are required in the context of CHO cell engineering. The relative applicability of diverse promoter development strategies are discussed, including re-engineering of natural sequences, design of synthetic transcription factor-based systems, and construction of synthetic promoters. This review highlights the potential of promoter engineering to achieve precision transcriptional control for CHO cell synthetic biology. Copyright © 2015. Published by Elsevier Inc.

  11. Glycan characterization of the NIST RM monoclonal antibody using a total analytical solution: From sample preparation to data analysis.

    PubMed

    Hilliard, Mark; Alley, William R; McManus, Ciara A; Yu, Ying Qing; Hallinan, Sinead; Gebler, John; Rudd, Pauline M

    Glycosylation is an important attribute of biopharmaceutical products to monitor from development through production. However, glycosylation analysis has traditionally been a time-consuming process with long sample preparation protocols and manual interpretation of the data. To address the challenges associated with glycan analysis, we developed a streamlined analytical solution that covers the entire process from sample preparation to data analysis. In this communication, we describe the complete analytical solution that begins with a simplified and fast N-linked glycan sample preparation protocol that can be completed in less than 1 hr. The sample preparation includes labelling with RapiFluor-MS tag to improve both fluorescence (FLR) and mass spectral (MS) sensitivities. Following HILIC-UPLC/FLR/MS analyses, the data are processed and a library search based on glucose units has been included to expedite the task of structural assignment. We then applied this total analytical solution to characterize the glycosylation of the NIST Reference Material mAb 8761. For this glycoprotein, we confidently identified 35 N-linked glycans and all three major classes, high mannose, complex, and hybrid, were present. The majority of the glycans were neutral and fucosylated; glycans featuring N-glycolylneuraminic acid and those with two galactoses connected via an α1,3-linkage were also identified.

  12. A View on the Importance of "Multi-Attribute Method" for Measuring Purity of Biopharmaceuticals and Improving Overall Control Strategy.

    PubMed

    Rogers, Richard S; Abernathy, Michael; Richardson, Douglas D; Rouse, Jason C; Sperry, Justin B; Swann, Patrick; Wypych, Jette; Yu, Christopher; Zang, Li; Deshpande, Rohini

    2017-11-30

    Today, we are experiencing unprecedented growth and innovation within the pharmaceutical industry. Established protein therapeutic modalities, such as recombinant human proteins, monoclonal antibodies (mAbs), and fusion proteins, are being used to treat previously unmet medical needs. Novel therapies such as bispecific T cell engagers (BiTEs), chimeric antigen T cell receptors (CARTs), siRNA, and gene therapies are paving the path towards increasingly personalized medicine. This advancement of new indications and therapeutic modalities is paralleled by development of new analytical technologies and methods that provide enhanced information content in a more efficient manner. Recently, a liquid chromatography-mass spectrometry (LC-MS) multi-attribute method (MAM) has been developed and designed for improved simultaneous detection, identification, quantitation, and quality control (monitoring) of molecular attributes (Rogers et al. MAbs 7(5):881-90, 2015). Based on peptide mapping principles, this powerful tool represents a true advancement in testing methodology that can be utilized not only during product characterization, formulation development, stability testing, and development of the manufacturing process, but also as a platform quality control method in dispositioning clinical materials for both innovative biotherapeutics and biosimilars.

  13. Soft gelatin capsules (softgels).

    PubMed

    Gullapalli, Rampurna Prasad

    2010-10-01

    It is estimated that more than 40% of new chemical entities (NCEs) coming out of the current drug discovery process have poor biopharmaceutical properties, such as low aqueous solubility and/or permeability. These suboptimal properties pose significant challenges for the oral absorption of the compounds and for the development of orally bioavailable dosage forms. Development of soft gelatin capsule (softgel) dosage form is of growing interest for the oral delivery of poorly water soluble compounds (BCS class II or class IV). The softgel dosage form offers several advantages over other oral dosage forms, such as delivering a liquid matrix designed to solubilize and improve the oral bioavailability of a poorly soluble compound as a unit dose solid dosage form, delivering low and ultra-low doses of a compound, delivering a low melting compound, and minimizing potential generation of dust during manufacturing and thereby improving the safety of production personnel. However, due to the very dynamic nature of the softgel dosage form, its development and stability during its shelf-life are fraught with several challenges. The goal of the current review is to provide an in-depth discussion on the softgel dosage form to formulation scientists who are considering developing softgels for therapeutic compounds.

  14. [Effect of multicomponent environment on intestinal permeability of puerarin in biopharmaceutics classification system of Chinese materia medica].

    PubMed

    Liu, Yang; Wang, Gang; Dong, Ling; Tang, Ming-Min; Zhu, Mei-Ling; Dong, Hong-Huant; Hou, Cheng-Bo

    2014-12-01

    The evaluation of permeability in biopharmaceutics classification system of Chinese materia medica (CMMBCS) requires multicomponent as a whole in order to conduct research, even in the study of a specific component, should also be put in the multicomponent environment. Based on this principle, the high content components in Gegen Qinlian decoction were used as multicomponent environmental impact factors in the experiment, and the relevant parameters of intestinal permeability about puerarin were measured with using in situ single-pass intestinal perfusion model, to investigate and evaluate the intestinal permeability of puerarin with other high content components. The experimental results showed that different proportions of baicalin, glycyrrhizic acid and berberine had certain influence on intestinal permeability of puerarin, and glycyrrhizic acid could significantly inhibit the intestinal absorption of puerarin, moreover, high concentration of berberine could promote the absorption of puerarin. The research results indicated that the important research ideas of permeability evaluation in biopharmaceutics classification system of Chinese materia medica with fully considering the effects of other ingredients in multicomponent environment.

  15. Economic viability of Stratified Medicine concepts: An investor perspective on drivers and conditions that favour using Stratified Medicine approaches in a cost-contained healthcare environment.

    PubMed

    Fugel, Hans-Joerg; Nuijten, Mark; Postma, Maarten

    2016-12-25

    Stratified Medicine (SM) is becoming a natural result of advances in biomedical science and a promising path for the innovation-based biopharmaceutical industry to create new investment opportunities. While the use of biomarkers to improve R&D efficiency and productivity is very much acknowledged by industry, much work remains to be done to understand the drivers and conditions that favour using a stratified approach to create economically viable products and to justify the investment in SM interventions as a stratification option. In this paper we apply a decision analytical methodology to address the economic attractiveness of different SM development options in a cost-contained healthcare environment. For this purpose, a hypothetical business case in the oncology market has been developed considering four feasible development scenarios. The article outlines the effects of development time and time to peak sales as key economic value drivers influencing profitability of SM interventions under specific conditions. If regulatory and reimbursement challenges can be solved, decreasing development time and enhancing early market penetration would most directly improve the economic attractiveness of SM interventions. Appropriate tailoring of highly differentiated patient subgroups is the prerequisite to leverage potential efficiency gains in the R&D process. Also, offering a better targeted and hence ultimately more cost-effective therapy at reimbursable prices will facilitate time to market access and allow increasing market share gains within the targeted populations. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. [Factors affecting the adoption of ICT tools in experiments with bioinformatics in biopharmaceutical organizations: a case study in the Brazilian Cancer Institute].

    PubMed

    Pitassi, Claudio; Gonçalves, Antonio Augusto; Moreno Júnior, Valter de Assis

    2014-01-01

    The scope of this article is to identify and analyze the factors that influence the adoption of ICT tools in experiments with bioinformatics at the Brazilian Cancer Institute (INCA). It involves a descriptive and exploratory qualitative field study. Evidence was collected mainly based on in-depth interviews with the management team at the Research Center and the IT Division. The answers were analyzed using the categorical content method. The categories were selected from the scientific literature and consolidated in the Technology-Organization-Environment (TOE) framework created for this study. The model proposed made it possible to demonstrate how the factors selected impacted INCA´s adoption of bioinformatics systems and tools, contributing to the investigation of two critical areas for the development of the health industry in Brazil, namely technological innovation and bioinformatics. Based on the evidence collected, a research question was posed: to what extent can the alignment of the factors related to the adoption of ICT tools in experiments with bioinformatics increase the innovation capacity of a Brazilian biopharmaceutical organization?

  17. Commercialization of biopharmaceutical knowledge in Iran; challenges and solutions

    PubMed Central

    2014-01-01

    Background The objective of this study was to investigate the application of the university research findings or commercialization of the biopharmaceutical knowledge in Iran and determine the challenges and propose some solutions. Results A qualitative study including 19 in-depth interviews with experts was performed in 2011 and early 2012. National Innovation System (NIS) model was employed as the study design. Thematic method was applied for the analysis. The results demonstrate that policy making, regulations and management development are considered as fundamental reasons for current commercialization practice pattern. It is suggested to establish foundation for higher level documents that would involve relating bodies and provide them operational guidelines for the implementation of commercialization incentives. Conclusions Policy, regulations and management as the most influential issue should be considered for successful commercialization. The present study, for the first time, attempts to disclose the importance of evidence input for measures in order to facilitate the commercialization process by the authorities in Iran. Overall, the NIS model should be considered and utilized as one of the effective solutions for commercialization. PMID:24568555

  18. Computational fluid dynamics (CFD) insights into agitation stress methods in biopharmaceutical development.

    PubMed

    Bai, Ge; Bee, Jared S; Biddlecombe, James G; Chen, Quanmin; Leach, W Thomas

    2012-02-28

    Agitation of small amounts of liquid is performed routinely in biopharmaceutical process, formulation, and packaging development. Protein degradation commonly results from agitation, but the specific stress responsible or degradation mechanism is usually not well understood. Characterization of the agitation stress methods is critical to identifying protein degradation mechanisms or specific sensitivities. In this study, computational fluid dynamics (CFD) was used to model agitation of 1 mL of fluid by four types of common laboratory agitation instruments, including a rotator, orbital shaker, magnetic stirrer and vortex mixer. Fluid stresses in the bulk liquid and near interfaces were identified, quantified and compared. The vortex mixer provides the most intense stresses overall, while the stir bar system presented locally intense shear proximal to the hydrophobic stir bar surface. The rotator provides gentler fluid stresses, but the air-water interfacial area and surface stresses are relatively high given its low rotational frequency. The orbital shaker provides intermediate-level stresses but with the advantage of a large stable platform for consistent vial-to-vial homogeneity. Selection of experimental agitation methods with targeted types and intensities of stresses can facilitate better understanding of protein degradation mechanisms and predictability for "real world" applications. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. “Inclonals”

    PubMed Central

    Hakim, Rahely

    2009-01-01

    Full-length antibodies and antibodies that ferry a cargo to target cells are desired biopharmaceuticals. We describe the production of full-length IgGs and IgG-toxin fusion proteins in E. coli. In the presented examples of anti CD30 and anti EGF-receptor antibodies, the antibody heavy and light chains or toxin fusions thereof were expressed in separate bacterial cultures, where they accumulated as insoluble inclusion bodies. Following refolding and purification, high yields (up to 50 mg/L of shake flask culture) of highly purified (>90%) full-length antibodies and antibody-toxin fusions were obtained. The bacterially produced antibodies, named “Inclonals,” equaled the performance of the same IgGs that were produced using conventional mammalian cell culture in binding properties as well as in cell killing potency. The rapid and cost effective IgG production process and the high quality of the resultant product may make the bacterial production of full-length IgG and IgG-drug fusion proteins an attractive option for antibody production and a significant contribution to recombinant antibody technology. PMID:20065645

  20. Modern chromatographic and mass spectrometric techniques for protein biopharmaceutical characterization.

    PubMed

    Sandra, Koen; Vandenheede, Isabel; Sandra, Pat

    2014-03-28

    Protein biopharmaceuticals such as monoclonal antibodies and therapeutic proteins are currently in widespread use for the treatment of various life-threatening diseases including cancer, autoimmune disorders, diabetes and anemia. The complexity of protein therapeutics is far exceeding that of small molecule drugs; hence, unraveling this complexity represents an analytical challenge. The current review provides the reader with state-of-the-art chromatographic and mass spectrometric tools available to dissect primary and higher order structures, post-translational modifications, purity and impurity profiles and pharmacokinetic properties of protein therapeutics. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Biosimilars and market access: a question of comparability and costs?

    PubMed

    Simoens, Steven; Verbeken, Gilbert; Huys, Isabelle

    2012-12-01

    This article discusses specific issues related to the market access of biosimilars. Biopharmaceuticals are complex molecules produced by living cells. Copies of these medicines, called biosimilars, are not identical to their reference medicine and therefore specific regulatory requirements apply. When considering the use of biosimilars, the question of the degree of comparability between a biosimilar and the reference biopharmaceutical needs to be considered for registration, pricing and reimbursement purposes in addition to the cost issue. To date, many key concepts (like clinically meaningful differences) remain undefined and the question of the degree of comparability is not yet resolved.

  2. A scale‐down mimic for mapping the process performance of centrifugation, depth and sterile filtration

    PubMed Central

    Joseph, Adrian; Kenty, Brian; Mollet, Michael; Hwang, Kenneth; Rose, Steven; Goldrick, Stephen; Bender, Jean; Farid, Suzanne S.

    2016-01-01

    ABSTRACT In the production of biopharmaceuticals disk‐stack centrifugation is widely used as a harvest step for the removal of cells and cellular debris. Depth filters followed by sterile filters are often then employed to remove residual solids remaining in the centrate. Process development of centrifugation is usually conducted at pilot‐scale so as to mimic the commercial scale equipment but this method requires large quantities of cell culture and significant levels of effort for successful characterization. A scale‐down approach based upon the use of a shear device and a bench‐top centrifuge has been extended in this work towards a preparative methodology that successfully predicts the performance of the continuous centrifuge and polishing filters. The use of this methodology allows the effects of cell culture conditions and large‐scale centrifugal process parameters on subsequent filtration performance to be assessed at an early stage of process development where material availability is limited. Biotechnol. Bioeng. 2016;113: 1934–1941. © 2016 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc. PMID:26927621

  3. Tiered analytics for purity assessment of macrocyclic peptides in drug discovery: Analytical consideration and method development.

    PubMed

    Qian Cutrone, Jingfang Jenny; Huang, Xiaohua Stella; Kozlowski, Edward S; Bao, Ye; Wang, Yingzi; Poronsky, Christopher S; Drexler, Dieter M; Tymiak, Adrienne A

    2017-05-10

    Synthetic macrocyclic peptides with natural and unnatural amino acids have gained considerable attention from a number of pharmaceutical/biopharmaceutical companies in recent years as a promising approach to drug discovery, particularly for targets involving protein-protein or protein-peptide interactions. Analytical scientists charged with characterizing these leads face multiple challenges including dealing with a class of complex molecules with the potential for multiple isomers and variable charge states and no established standards for acceptable analytical characterization of materials used in drug discovery. In addition, due to the lack of intermediate purification during solid phase peptide synthesis, the final products usually contain a complex profile of impurities. In this paper, practical analytical strategies and methodologies were developed to address these challenges, including a tiered approach to assessing the purity of macrocyclic peptides at different stages of drug discovery. Our results also showed that successful progression and characterization of a new drug discovery modality benefited from active analytical engagement, focusing on fit-for-purpose analyses and leveraging a broad palette of analytical technologies and resources. Copyright © 2017. Published by Elsevier B.V.

  4. Evaluating bioequivalence of meloxicam tablets: is in-vitro dissolution test overdiscriminating?

    PubMed

    Jin, Chan; Zhao, Chenyao; Shen, Dachao; Dong, Wenxiang; Liu, Hongzhuo; He, Zhonggui

    2018-02-01

    The aim of the study was to assess the impact of the differences in dissolution profiles of meloxicam tablets on the in-vivo bioavailability parameters after oral administration. Compare in-vitro dissolution testing in the recommended media to evaluate in-vivo bioequivalence outcomes for the Biopharmaceutics Classification System Class II weak acidic drugs. Nine Beagle dogs received a single oral administration of each formulation (7.5 mg) in a three-way crossover design. The dissolution of meloxicam from both test products showed marked differences with that from the reference tablet in pH 1.0, 4.5 and 6.8 media at 50 or 75 rpm. Both formulations exhibiting slow or fast dissolution were then compared with the reference product for in-vivo bioequivalence study. Both products were bioequivalent with the reference tablet in either extent or rate of oral absorption. It indicated that the dissolution profiles which discriminated between the formulations in vitro did not accurately predict the in-vivo bioequivalence outcomes. Comparative dissolution profiles using similarity factor (f 2 ) in the recommended media should be relaxed to fulfil the requirements for the development, scale-up and postapproval changes to immediate release oral solid dosage forms of meloxicam. © 2017 Royal Pharmaceutical Society.

  5. Quantitative real-time PCR technique for the identification of E. coli residual DNA in streptokinase recombinant product.

    PubMed

    Fazelahi, Mansoureh; Kia, Vahid; Kaghazian, Hooman; Paryan, Mahdi

    2017-11-26

    Recombinant streptokinase is a biopharmaceutical which is usually produced in E. coli. Residual DNA as a contamination and risk factor may remain in the product. It is necessary to control the production procedure to exclude any possible contamination. The aim of the present study was to develop a highly specific and sensitive quantitative real-time PCR-based method to determine the amount of E. coli DNA in recombinant streptokinase. A specific primers and a probe was designed to detect all strains of E. coli. To determine the specificity, in addition to using NCBI BLASTn, 28 samples including human, bacterial, and viral genomes were used. The results confirmed that the assay detects no genomic DNA but E. coli's and the specificity was determined to be 100%. To determine the sensitivity and limit of detection of the assay, a 10-fold serial dilution (10 1 to 10 7 copies/µL) was tested in triplicate. The sensitivity of the test was determined to be 101 copies/µL or 35 fg/µL. Inter-assay and intra-assay were determined to be 0.86 and 1.69%, respectively. Based on the results, this assay can be used as an accurate method to evaluate the contamination of recombinant streptokinase in E. coli.

  6. Use of near-infrared spectroscopy (NIRs) in the biopharmaceutical industry for real-time determination of critical process parameters and integration of advanced feedback control strategies using MIDUS control.

    PubMed

    Vann, Lucas; Sheppard, John

    2017-12-01

    Control of biopharmaceutical processes is critical to achieve consistent product quality. The most challenging unit operation to control is cell growth in bioreactors due to the exquisitely sensitive and complex nature of the cells that are converting raw materials into new cells and products. Current monitoring capabilities are increasing, however, the main challenge is now becoming the ability to use the data generated in an effective manner. There are a number of contributors to this challenge including integration of different monitoring systems as well as the functionality to perform data analytics in real-time to generate process knowledge and understanding. In addition, there is a lack of ability to easily generate strategies and close the loop to feedback into the process for advanced process control (APC). The current research aims to demonstrate the use of advanced monitoring tools along with data analytics to generate process understanding in an Escherichia coli fermentation process. NIR spectroscopy was used to measure glucose and critical amino acids in real-time to help in determining the root cause of failures associated with different lots of yeast extract. First, scale-down of the process was required to execute a simple design of experiment, followed by scale-up to build NIR models as well as soft sensors for advanced process control. In addition, the research demonstrates the potential for a novel platform technology that enables manufacturers to consistently achieve "goldenbatch" performance through monitoring, integration, data analytics, understanding, strategy design and control (MIDUS control). MIDUS control was employed to increase batch-to-batch consistency in final product titers, decrease the coefficient of variability from 8.49 to 1.16%, predict possible exhaust filter failures and close the loop to prevent their occurrence and avoid lost batches.

  7. Advances in analytical methodologies to guide bioprocess engineering for bio-therapeutics.

    PubMed

    Saldova, Radka; Kilcoyne, Michelle; Stöckmann, Henning; Millán Martín, Silvia; Lewis, Amanda M; Tuite, Catherine M E; Gerlach, Jared Q; Le Berre, Marie; Borys, Michael C; Li, Zheng Jian; Abu-Absi, Nicholas R; Leister, Kirk; Joshi, Lokesh; Rudd, Pauline M

    2017-03-01

    This study was performed to monitor the glycoform distribution of a recombinant antibody fusion protein expressed in CHO cells over the course of fed-batch bioreactor runs using high-throughput methods to accurately determine the glycosylation status of the cell culture and its product. Three different bioreactors running similar conditions were analysed at the same five time-points using the advanced methods described here. N-glycans from cell and secreted glycoproteins from CHO cells were analysed by HILIC-UPLC and MS, and the total glycosylation (both N- and O-linked glycans) secreted from the CHO cells were analysed by lectin microarrays. Cell glycoproteins contained mostly high mannose type N-linked glycans with some complex glycans; sialic acid was α-(2,3)-linked, galactose β-(1,4)-linked, with core fucose. Glycans attached to secreted glycoproteins were mostly complex with sialic acid α-(2,3)-linked, galactose β-(1,4)-linked, with mostly core fucose. There were no significant differences noted among the bioreactors in either the cell pellets or supernatants using the HILIC-UPLC method and only minor differences at the early time-points of days 1 and 3 by the lectin microarray method. In comparing different time-points, significant decreases in sialylation and branching with time were observed for glycans attached to both cell and secreted glycoproteins. Additionally, there was a significant decrease over time in high mannose type N-glycans from the cell glycoproteins. A combination of the complementary methods HILIC-UPLC and lectin microarrays could provide a powerful and rapid HTP profiling tool capable of yielding qualitative and quantitative data for a defined biopharmaceutical process, which would allow valuable near 'real-time' monitoring of the biopharmaceutical product. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. A Protein Chimera Strategy Supports Production of a Model "Difficult-to-Express" Recombinant Target.

    PubMed

    Hussain, Hirra; Fisher, David I; Roth, Robert G; Abbott, W Mark; Carballo-Amador, Manuel Alejandro; Warwicker, Jim; Dickson, Alan J

    2018-06-22

    Due in part to the needs of the biopharmaceutical industry, there has been an increased drive to generate high quality recombinant proteins in large amounts. However, achieving high yields can be a challenge as the novelty and increased complexity of new targets often makes them 'difficult-to-express'. This study aimed to define the molecular features that restrict the production of a model 'difficult-to-express' recombinant protein, Tissue Inhibitor Metalloproteinase-3 (TIMP-3). Building from experimental data, computational approaches were used to rationalise the re-design of this recombinant target to generate a chimera with enhanced secretion. The results highlight the importance of early identification of unfavourable sequence attributes, enabling the generation of engineered protein forms that bypass 'secretory' bottlenecks and result in efficient recombinant protein production. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  9. Emerging biopharmaceuticals from marine actinobacteria.

    PubMed

    Hassan, Syed Shams Ul; Anjum, Komal; Abbas, Syed Qamar; Akhter, Najeeb; Shagufta, Bibi Ibtesam; Shah, Sayed Asmat Ali; Tasneem, Umber

    2017-01-01

    Actinobacteria are quotidian microorganisms in the marine world, playing a crucial ecological role in the recycling of refractory biomaterials and producing novel secondary metabolites with pharmaceutical applications. Actinobacteria have been isolated from the huge area of marine organisms including sponges, tunicates, corals, mollusks, crabs, mangroves and seaweeds. Natural products investigation of the marine actinobacteria revealed that they can synthesize numerous natural products including alkaloids, polyketides, peptides, isoprenoids, phenazines, sterols, and others. These natural products have a potential to provide future drugs against crucial diseases like cancer, HIV, microbial and protozoal infections and severe inflammations. Therefore, marine actinobacteria portray as a pivotal resource for marine drugs. It is an upcoming field of research to probe a novel and pharmaceutically important secondary metabolites from marine actinobacteria. In this review, we attempt to summarize the present knowledge on the diversity, chemistry and mechanism of action of marine actinobacteria-derived secondary metabolites from 2007 to 2016. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. The 32nd Annual J.P. Morgan Healthcare Conference (January 13-16, 2014 - San Francisco, California, USA): Auxilium Pharmaceuticals.

    PubMed

    Watt, J

    2014-03-01

    CEO and President Adrian Adams described Auxilium Pharmaceuticals as "the same as a Big Pharma company, only smaller." This 'specialty biopharmaceutical company' has transformed itself in the last 6 to 9 months to become the "leading men's healthcare franchise with a broad and diverse product portfolio." All of this has led to a very busy 2013, which began with the USD 600 million acquisition (Q2) and integration of Actient Pharmaceuticals, the licensing of avanafil (Stendra™) for erectile dysfunction and ended with the approval of collagenase Clostridium histolyticum (Xiaflex®) in Peyronie's disease. From a portfolio of 2 products at the beginning of 2013, Auxilium ended the year with 12. Copyright 2014 Prous Science, S.A.U. or its licensors. All rights reserved.

  11. Comparing multi-module connections in membrane chromatography scale-up.

    PubMed

    Yu, Zhou; Karkaria, Tishtar; Espina, Marianela; Hunjun, Manjeet; Surendran, Abera; Luu, Tina; Telychko, Julia; Yang, Yan-Ping

    2015-07-20

    Membrane chromatography is increasingly used for protein purification in the biopharmaceutical industry. Membrane adsorbers are often pre-assembled by manufacturers as ready-to-use modules. In large-scale protein manufacturing settings, the use of multiple membrane modules for a single batch is often required due to the large quantity of feed material. The question as to how multiple modules can be connected to achieve optimum separation and productivity has been previously approached using model proteins and mass transport theories. In this study, we compare the performance of multiple membrane modules in series and in parallel in the production of a protein antigen. Series connection was shown to provide superior separation compared to parallel connection in the context of competitive adsorption. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Employing epigenetics to augment the expression of therapeutic proteins in mammalian cells.

    PubMed

    Kwaks, Ted H J; Otte, Arie P

    2006-03-01

    Recombinant proteins form an increasingly large part of the portfolio of biopharmaceutical companies. Production of these often complex transgenic proteins is achieved predominantly in mammalian cell lines but the process is hampered by low yields and unstable expression. Some of these problems are caused by gene silencing at the level of chromatin - so-called epigenetic gene silencing. Here, we describe approaches, which have emerged during the past few years, designed to interfere with epigenetic gene silencing with the aim of enhancing and stabilizing transgene expression. These include targeting histones, the inclusion of specific DNA elements and targeting sites of high gene-expression. We conclude that employing epigenetic gene regulation tools, in combination with further process optimization, might represent the next step forward in the production of therapeutic proteins.

  13. HEK293 cell culture media study towards bioprocess optimization: Animal derived component free and animal derived component containing platforms.

    PubMed

    Liste-Calleja, Leticia; Lecina, Martí; Cairó, Jordi Joan

    2014-04-01

    The increasing demand for biopharmaceuticals produced in mammalian cells has lead industries to enhance bioprocess volumetric productivity through different strategies. Among those strategies, cell culture media development is of major interest. In the present work, several commercially available culture media for Human Embryonic Kidney cells (HEK293) were evaluated in terms of maximal specific growth rate and maximal viable cell concentration supported. The main objective was to provide different cell culture platforms which are suitable for a wide range of applications depending on the type and the final use of the product obtained. Performing simple media supplementations with and without animal derived components, an enhancement of cell concentration from 2 × 10(6) cell/mL to 17 × 10(6) cell/mL was achieved in batch mode operation. Additionally, the media were evaluated for adenovirus production as a specific application case of HEK293 cells. None of the supplements interfered significantly with the adenovirus infection although some differences were encountered in viral productivity. To the best of our knowledge, the high cell density achieved in the work presented has never been reported before in HEK293 batch cell cultures and thus, our results are greatly promising to further study cell culture strategies in bioreactor towards bioprocess optimization. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  14. Analysis and evaluation of single-use bag extractables for validation in biopharmaceutical applications.

    PubMed

    Pahl, Ina; Dorey, Samuel; Barbaroux, Magali; Lagrange, Bertille; Frankl, Heike

    2014-01-01

    This paper describes an approach of extractables determination and gives information on extractables profiles for gamma-sterilized single-use bags with polyethylene inner contact surfaces from five different suppliers. Four extraction solvents were chosen to capture a broad spectrum of extractables. An 80% ethanol extraction was used to extract compounds that represent the bag resin and the organic additives used to stabilize or process the polymer films which would not normally be water-soluble. Extractions with1 M HCl extract, 1 M NaOH extract, and 1% polysorbate 80 were used to bracket potential leachables in biopharmaceutical process fluids. The objective of this study was to obtain extractables data from different bags under identical test conditions. All the bags had a nominal capacity of 5 L, were gamma-irradiated prior to testing, and were tested without modification except that connectors, if any, were removed prior to filling. They were extracted at 40 °C for 30 days. Extractables from all bag extracts were identified and the concentration estimated using headspace gas chromatography-mass spectrometry and flame ionization detection for volatile compounds and for semi-volatile compounds, and liquid chromatography-mass spectrometry for targeted compounds. Metals and other elements were detected and quantified by inductively coupled plasma mass spectrometry analysis. The results showed a variety of extractables, some of which are not related to the inner polyethylene contact layer. Detected organic compounds included oligomers from polyolefins, additives and their degradation products, and oligomers from the fill tubing. The concentrations of extractables were in the range of parts-per-billion to parts-per-million per bag under the applied extraction conditions. Toxicological effects of the extractables are not addressed in this paper. Extractables and leachables characterization supports the validation and the use of single-use bags in the biopharmaceutical manufacturing process. This paper describes an approach for the identification and quantification of extractable substances for five commercially available single-use bags from different suppliers under identical analytical conditions. Four test formulations were used for the extraction, and extractables were analyzed with appropriately qualified analytical techniques, allowing for the detection of a broad range of released chemical compounds. Polymer additives such as antioxidants and processing aids and their degradation products were found to be the source of most of the extracted compounds. The concentration of extractables ranged from parts-per-billion to parts-per-million under the applied extraction conditions. © PDA, Inc. 2014.

  15. Plant-based solutions for veterinary immunotherapeutics and prophylactics.

    PubMed

    Kolotilin, Igor; Topp, Ed; Cox, Eric; Devriendt, Bert; Conrad, Udo; Joensuu, Jussi; Stöger, Eva; Warzecha, Heribert; McAllister, Tim; Potter, Andrew; McLean, Michael D; Hall, J Christopher; Menassa, Rima

    2014-12-31

    An alarming increase in emergence of antibiotic resistance among pathogens worldwide has become a serious threat to our ability to treat infectious diseases according to the World Health Organization. Extensive use of antibiotics by livestock producers promotes the spread of new resistant strains, some of zoonotic concern, which increases food-borne illness in humans and causes significant economic burden on healthcare systems. Furthermore, consumer preferences for meat/poultry/fish produced without the use of antibiotics shape today's market demand. So, it is viewed as inevitable by the One Health Initiative that humans need to reduce the use of antibiotics and turn to alternative, improved means to control disease: vaccination and prophylactics. Besides the intense research focused on novel therapeutic molecules, both these strategies rely heavily on the availability of cost-effective, efficient and scalable production platforms which will allow large-volume manufacturing for vaccines, antibodies and other biopharmaceuticals. Within this context, plant-based platforms for production of recombinant therapeutic proteins offer significant advantages over conventional expression systems, including lack of animal pathogens, low production costs, fast turnaround and response times and rapid, nearly-unlimited scalability. Also, because dried leaves and seeds can be stored at room temperature for lengthy periods without loss of recombinant proteins, plant expression systems have the potential to offer lucrative benefits from the development of edible vaccines and prophylactics, as these would not require "cold chain" storage and transportation, and could be administered in mass volumes with minimal processing. Several biotechnology companies currently have developed and adopted plant-based platforms for commercial production of recombinant protein therapeutics. In this manuscript, we outline the challenges in the process of livestock immunization as well as the current plant biotechnology developments aimed to address these challenges.

  16. Manufacturing Amorphous Solid Dispersions with a Tailored Amount of Crystallized API for Biopharmaceutical Testing.

    PubMed

    Theil, Frank; Milsmann, Johanna; Anantharaman, Sankaran; van Lishaut, Holger

    2018-05-07

    The preparation of an amorphous solid dispersion (ASD) by dissolving a poorly water-soluble active pharmaceutical ingredient (API) in a polymer matrix can improve the bioavailability by orders of magnitude. Crystallization of the API in the ASD, though, is an inherent threat for bioavailability. Commonly, the impact of crystalline API on the drug release of the dosage form is studied with samples containing spiked crystallinity. These spiked samples possess implicit differences compared to native crystalline samples, regarding size and spatial distribution of the crystals as well as their molecular environment. In this study, we demonstrate that it is possible to grow defined amounts of crystalline API in solid dosage forms, which enables us to study the biopharmaceutical impact of actual crystallization. For this purpose, we studied the crystal growth in fenofibrate tablets over time under an elevated moisture using transmission Raman spectroscopy (TRS). As a nondestructive method to assess API crystallinity in ASD formulations, TRS enables the monitoring of crystal growth in individual dosage forms. Once the kinetic trace of the crystal growth for a certain environmental condition is determined, this method can be used to produce samples with defined amounts of crystallized API. To investigate the biopharmaceutical impact of crystallized API, non-QC dissolution methods were used, designed to identify differences between the various amounts of crystalline materials present. The drug release in the samples manufactured in this fashion was compared to that of samples with spiked crystallinity. In this study, we present for the first time a method for targeted crystallization of amorphous tablets to simulate crystallized ASDs. This methodology is a valuable tool to generate model systems for biopharmaceutical studies on the impact of crystallinity on the bioavailability.

  17. Closed-loop optimization of chromatography column sizing strategies in biopharmaceutical manufacture.

    PubMed

    Allmendinger, Richard; Simaria, Ana S; Turner, Richard; Farid, Suzanne S

    2014-10-01

    This paper considers a real-world optimization problem involving the identification of cost-effective equipment sizing strategies for the sequence of chromatography steps employed to purify biopharmaceuticals. Tackling this problem requires solving a combinatorial optimization problem subject to multiple constraints, uncertain parameters, and time-consuming fitness evaluations. An industrially-relevant case study is used to illustrate that evolutionary algorithms can identify chromatography sizing strategies with significant improvements in performance criteria related to process cost, time and product waste over the base case. The results demonstrate also that evolutionary algorithms perform best when infeasible solutions are repaired intelligently, the population size is set appropriately, and elitism is combined with a low number of Monte Carlo trials (needed to account for uncertainty). Adopting this setup turns out to be more important for scenarios where less time is available for the purification process. Finally, a data-visualization tool is employed to illustrate how user preferences can be accounted for when it comes to selecting a sizing strategy to be implemented in a real industrial setting. This work demonstrates that closed-loop evolutionary optimization, when tuned properly and combined with a detailed manufacturing cost model, acts as a powerful decisional tool for the identification of cost-effective purification strategies. © 2013 The Authors. Journal of Chemical Technology & Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

  18. Closed-loop optimization of chromatography column sizing strategies in biopharmaceutical manufacture

    PubMed Central

    Allmendinger, Richard; Simaria, Ana S; Turner, Richard; Farid, Suzanne S

    2014-01-01

    BACKGROUND This paper considers a real-world optimization problem involving the identification of cost-effective equipment sizing strategies for the sequence of chromatography steps employed to purify biopharmaceuticals. Tackling this problem requires solving a combinatorial optimization problem subject to multiple constraints, uncertain parameters, and time-consuming fitness evaluations. RESULTS An industrially-relevant case study is used to illustrate that evolutionary algorithms can identify chromatography sizing strategies with significant improvements in performance criteria related to process cost, time and product waste over the base case. The results demonstrate also that evolutionary algorithms perform best when infeasible solutions are repaired intelligently, the population size is set appropriately, and elitism is combined with a low number of Monte Carlo trials (needed to account for uncertainty). Adopting this setup turns out to be more important for scenarios where less time is available for the purification process. Finally, a data-visualization tool is employed to illustrate how user preferences can be accounted for when it comes to selecting a sizing strategy to be implemented in a real industrial setting. CONCLUSION This work demonstrates that closed-loop evolutionary optimization, when tuned properly and combined with a detailed manufacturing cost model, acts as a powerful decisional tool for the identification of cost-effective purification strategies. © 2013 The Authors. Journal of Chemical Technology & Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. PMID:25506115

  19. Microtiter miniature shaken bioreactor system as a scale-down model for process development of production of therapeutic alpha-interferon2b by recombinant Escherichia coli.

    PubMed

    Tan, Joo Shun; Abbasiliasi, Sahar; Kadkhodaei, Saeid; Tam, Yew Joon; Tang, Teck-Kim; Lee, Yee-Ying; Ariff, Arbakariya B

    2018-01-04

    Demand for high-throughput bioprocessing has dramatically increased especially in the biopharmaceutical industry because the technologies are of vital importance to process optimization and media development. This can be efficiently boosted by using microtiter plate (MTP) cultivation setup embedded into an automated liquid-handling system. The objective of this study was to establish an automated microscale method for upstream and downstream bioprocessing of α-IFN2b production by recombinant Escherichia coli. The extraction performance of α-IFN2b by osmotic shock using two different systems, automated microscale platform and manual extraction in MTP was compared. The amount of α-IFN2b extracted using automated microscale platform (49.2 μg/L) was comparable to manual osmotic shock method (48.8 μg/L), but the standard deviation was 2 times lower as compared to manual osmotic shock method. Fermentation parameters in MTP involving inoculum size, agitation speed, working volume and induction profiling revealed that the fermentation conditions for the highest production of α-IFN2b (85.5 μg/L) was attained at inoculum size of 8%, working volume of 40% and agitation speed of 1000 rpm with induction at 4 h after the inoculation. Although the findings at MTP scale did not show perfect scalable results as compared to shake flask culture, but microscale technique development would serve as a convenient and low-cost solution in process optimization for recombinant protein.

  20. Strategic biopharmaceutical portfolio development: an analysis of constraint-induced implications.

    PubMed

    George, Edmund D; Farid, Suzanne S

    2008-01-01

    Optimizing the structure and development pathway of biopharmaceutical drug portfolios are core concerns to the developer that come with several attached complexities. These include strategic decisions for the choice of drugs, the scheduling of critical activities, and the possible involvement of third parties for development and manufacturing at various stages for each drug. Additional complexities that must be considered include the impact of making such decisions in an uncertain environment. Presented here is the development of a stochastic multi-objective optimization framework designed to address these issues. The framework harnesses the ability of Bayesian networks to characterize the probabilistic structure of superior decisions via machine learning and evolve them to multi-objective optimality. Case studies that entailed three- and five-drug portfolios alongside a range of cash flow constraints were constructed to derive insight from the framework where results demonstrate that a variety of options exist for formulating nondominated strategies in the objective space considered, giving the manufacturer a range of pursuable options. In all cases limitations on cash flow reduce the potential for generating profits for a given probability of success. For the sizes of portfolio considered, results suggest that naïvely applying strategies optimal for a particular size of portfolio to a portfolio of another size is inappropriate. For the five-drug portfolio the most preferred means for development across the set of optimized strategies is to fully integrate development and commercial activities in-house. For the three-drug portfolio, the preferred means of development involves a mixture of in-house, outsourced, and partnered activities. Also, the size of the portfolio appears to have a larger impact on strategy and the quality of objectives than the magnitude of cash flow constraint.

  1. A novel toolbox for E. coli lysis monitoring.

    PubMed

    Rajamanickam, Vignesh; Wurm, David; Slouka, Christoph; Herwig, Christoph; Spadiut, Oliver

    2017-01-01

    The bacterium Escherichia coli is a well-studied recombinant host organism with a plethora of applications in biotechnology. Highly valuable biopharmaceuticals, such as antibody fragments and growth factors, are currently being produced in E. coli. However, the high metabolic burden during recombinant protein production can lead to cell death, consequent lysis, and undesired product loss. Thus, fast and precise analyzers to monitor E. coli bioprocesses and to retrieve key process information, such as the optimal time point of harvest, are needed. However, such reliable monitoring tools are still scarce to date. In this study, we cultivated an E. coli strain producing a recombinant single-chain antibody fragment in the cytoplasm. In bioreactor cultivations, we purposely triggered cell lysis by pH ramps. We developed a novel toolbox using UV chromatograms as fingerprints and chemometric techniques to monitor these lysis events and used flow cytometry (FCM) as reference method to quantify viability offline. Summarizing, we were able to show that a novel toolbox comprising HPLC chromatogram fingerprinting and data science tools allowed the identification of E. coli lysis in a fast and reliable manner. We are convinced that this toolbox will not only facilitate E. coli bioprocess monitoring but will also allow enhanced process control in the future.

  2. Evaluation of Novel Large Cut-Off Ultrafiltration Membranes for Adenovirus Serotype 5 (Ad5) Concentration

    PubMed Central

    Peixoto, Cristina; Roederstein, Susanne; Schleuss, Tobias; Alves, Paula M.; Mota, José P. B.; Carrondo, Manuel J. T.

    2014-01-01

    The purification of virus particles and viral vectors for vaccine and gene therapy applications is gaining increasing importance in order to deliver a fast, efficient, and reliable production process. Ultrafiltration (UF) is a widely employed unit operation in bioprocessing and its use is present in several steps of the downstream purification train of biopharmaceuticals. However, to date few studies have thoroughly investigated the performance of several membrane materials and cut-offs for virus concentration/diafiltration. The present study aimed at developing a novel class of UF cassettes for virus concentration/diafiltration. A detailed study was conducted to evaluate the effects of (i) membrane materials, namely polyethersulfone (PES), regenerated cellulose (RC), and highly cross-linked RC (xRC), (ii) nominal cut-off, and (iii) UF device geometry at different production scales. The results indicate that the xRC cassettes with a cut-off of approximately 500 kDa are able to achieve a 10-fold concentration factor with 100% recovery of particles with a process time twice as fast as that of a commercially available hollow fiber. DNA and host cell protein clearances, as well as hydraulic permeability and fouling behavior, were also assessed. PMID:25546428

  3. Preparation of Chloramphenicol/Amino Acid Combinations Exhibiting Enhanced Dissolution Rates and Reduced Drug-Induced Oxidative Stress.

    PubMed

    Sterren, Vanesa B; Aiassa, Virginia; Garnero, Claudia; Linck, Yamila Garro; Chattah, Ana K; Monti, Gustavo A; Longhi, Marcela R; Zoppi, Ariana

    2017-11-01

    Chloramphenicol is an old antibiotic agent that is re-emerging as a valuable alternative for the treatment of multidrug-resistant pathogens. However, it exhibits suboptimal biopharmaceutical properties and toxicity profiles. In this work, chloramphenicol was combined with essential amino acids (arginine, cysteine, glycine, and leucine) with the aim of improving its dissolution rate and reduce its toxicity towards leukocytes. The chloramphenicol/amino acid solid samples were prepared by freeze-drying method and characterized in the solid state by using Fourier transform infrared spectroscopy, powder X-ray diffraction, differential scanning calorimetry, scanning electron microscopy, and solid-state nuclear magnetic resonance. The dissolution properties, antimicrobial activity, reactive oxygen species production, and stability of the different samples were studied. The dissolution rate of all combinations was significantly increased in comparison to that of the pure active pharmaceutical ingredient. Additionally, oxidative stress production in human leukocytes caused by chloramphenicol was decreased in the chloramphenicol/amino acid combinations, while the antimicrobial activity of the antibiotic was maintained. The CAP:Leu binary combination resulted in the most outstanding solid system makes it suitable candidate for the development of pharmaceutical formulations of this antimicrobial agent with an improved safety profile.

  4. Production of drug-loaded polymeric nanoparticles by electrospraying technology.

    PubMed

    Sosnik, Alejandro

    2014-09-01

    The pharmaceutical industry struggles with high attrition. The outbreak of pharmaceutical micro/nanotechnology has been fundamental to overcome several (bio)pharmaceutic drawbacks of drugs such as poor aqueous solubility, physicochemical instability, short half life, inappropriate biodistribution and toxicity. The spatiotemporal release of drugs directly in the site of action and the restriction of the systemic exposure by means of nanotechnology has notoriously improved drug safety ratios. At the same time, the development of production methods that are cost-effective, scalable and reproducible under industrial settings becomes crucial to ensure the clinical translation of any development. The electrospraying process, also known as electrohydrodynamic atomization (EHDA), is a single-stage technique of liquid atomization by means of electrical forces that enables the generation of micro/nanoparticles with especially narrow size distribution. EHDA is based on the ability of an electric field to deform the interface of a liquid drop and break it into smaller mono-disperse droplets. The main advantageous features over conventional methods are the possibility to produce particles without the use of surfactants, at ambient temperature and pressure and with maximum encapsulation efficiency due to the absence of an external medium that allows the migration and/or dissolution of water-soluble cargos. In addition, the mild conditions are optimal for the encapsulation of thermo-sensitive cargos. The present article overviews the applications of this technology for the production of nano-drug delivery systems and discusses its key role to support the transfer of a broad spectrum of nanomedicines to the market.

  5. Information technology in pharmacovigilance: Benefits, challenges, and future directions from industry perspectives.

    PubMed

    Lu, Zhengwu

    2009-01-01

    Risk assessment during clinical product development needs to be conducted in a thorough and rigorous manner. However, it is impossible to identify all safety concerns during controlled clinical trials. Once a product is marketed, there is generally a large increase in the number of patients exposed, including those with comorbid conditions and those being treated with concomitant medications. Therefore, postmarketing safety data collection and clinical risk assessment based on observational data are critical for evaluating and characterizing a product's risk profile and for making informed decisions on risk minimization. Information science promises to deliver effective e-clinical or e-health solutions to realize several core benefits: time savings, high quality, cost reductions, and increased efficiencies with safer and more efficacious medicines. The development and use of standard-based pharmacovigilance system with integration connection to electronic medical records, electronic health records, and clinical data management system holds promise as a tool for enabling early drug safety detections, data mining, results interpretation, assisting in safety decision making, and clinical collaborations among clinical partners or different functional groups. The availability of a publicly accessible global safety database updated on a frequent basis would further enhance detection and communication about safety issues. Due to recent high-profile drug safety problems, the pharmaceutical industry is faced with greater regulatory enforcement and increased accountability demands for the protection and welfare of patients. This changing climate requires biopharmaceutical companies to take a more proactive approach in dealing with drug safety and pharmacovigilance.

  6. PASylation: a biological alternative to PEGylation for extending the plasma half-life of pharmaceutically active proteins

    PubMed Central

    Schlapschy, Martin; Binder, Uli; Börger, Claudia; Theobald, Ina; Wachinger, Klaus; Kisling, Sigrid; Haller, Dirk; Skerra, Arne

    2013-01-01

    A major limitation of biopharmaceutical proteins is their fast clearance from circulation via kidney filtration, which strongly hampers efficacy both in animal studies and in human therapy. We have developed conformationally disordered polypeptide chains with expanded hydrodynamic volume comprising the small residues Pro, Ala and Ser (PAS). PAS sequences are hydrophilic, uncharged biological polymers with biophysical properties very similar to poly-ethylene glycol (PEG), whose chemical conjugation to drugs is an established method for plasma half-life extension. In contrast, PAS polypeptides offer fusion to a therapeutic protein on the genetic level, permitting Escherichia coli production of fully active proteins and obviating in vitro coupling or modification steps. Furthermore, they are biodegradable, thus avoiding organ accumulation, while showing stability in serum and lacking toxicity or immunogenicity in mice. We demonstrate that PASylation bestows typical biologics, such as interferon, growth hormone or Fab fragments, with considerably prolonged circulation and boosts bioactivity in vivo. PMID:23754528

  7. Use of Orbital Shaken Disposable Bioreactors for Mammalian Cell Cultures from the Milliliter-Scale to the 1,000-Liter Scale

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaowei; Stettler, Matthieu; de Sanctis, Dario; Perrone, Marco; Parolini, Nicola; Discacciati, Marco; de Jesus, Maria; Hacker, David; Quarteroni, Alfio; Wurm, Florian

    Driven by the commercial success of recombinant biopharmaceuticals, there is an increasing demand for novel mammalian cell culture bioreactor systems for the rapid production of biologicals that require mammalian protein processing. Recently, orbitally shaken bioreactors at scales from 50 mL to 1,000 L have been explored for the cultivation of mammalian cells and are considered to be attractive alternatives to conventional stirred-tank bioreactors because of increased flexibility and reduced costs. Adequate oxygen transfer capacity was maintained during the scale-up, and strategies to increase further oxygen transfer rates (OTR) were explored, while maintaining favorable mixing parameters and low-stress conditions for sensitive lipid membrane-enclosed cells. Investigations from process development to the engineering properties of shaken bioreactors are underway, but the feasibility of establishing a robust, standardized, and transferable technical platform for mammalian cell culture based on orbital shaking and disposable materials has been established with further optimizations and studies ongoing.

  8. New potential phytotherapeutics obtained from white mulberry (Morus alba L.) leaves.

    PubMed

    Gryn-Rynko, Anna; Bazylak, Grzegorz; Olszewska-Slonina, Dorota

    2016-12-01

    The present work demonstrates the profound and unique phyto-pharmacological and nutritional profile of white mulberry (Morus alba L.) leaves which containing considerable amounts of easy digestive proteins, carbohydrates, micro- and macronutrients, polyphenols, free amino acids, organic acids. The wide range of significant biopharmaceutical activities of the aqueous and polar organic solvents extracts from mulberry leaves - including antidiabetic, antibacterial, anticancer, cardiovascular, hypolipidemic, antioxidant, antiatherogenic, and anti-inflammatory - have been critically discussed. The main objective was to demonstrate the results of recently published study on the components of white mulberry leaves exhibiting their biological activity in the various pathological and health human ailments. In addition, we intend to drawn the attention of researchers and public health workers for the extended exploration of this deciduous plant leaves as the source of potential indigenous nutraceuticals and functional food products to enable development of alternative prevention and treatment protocols offered in therapy of the common non-communicable diseases and malignances. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  9. Use of orbital shaken disposable bioreactors for mammalian cell cultures from the milliliter-scale to the 1,000-liter scale.

    PubMed

    Zhang, Xiaowei; Stettler, Matthieu; De Sanctis, Dario; Perrone, Marco; Parolini, Nicola; Discacciati, Marco; De Jesus, Maria; Hacker, David; Quarteroni, Alfio; Wurm, Florian

    2009-01-01

    Driven by the commercial success of recombinant biopharmaceuticals, there is an increasing demand for novel mammalian cell culture bioreactor systems for the rapid production of biologicals that require mammalian protein processing. Recently, orbitally shaken bioreactors at scales from 50 mL to 1,000 L have been explored for the cultivation of mammalian cells and are considered to be attractive alternatives to conventional stirred-tank bioreactors because of increased flexibility and reduced costs. Adequate oxygen transfer capacity was maintained during the scale-up, and strategies to increase further oxygen transfer rates (OTR) were explored, while maintaining favorable mixing parameters and low-stress conditions for sensitive lipid membrane-enclosed cells. Investigations from process development to the engineering properties of shaken bioreactors are underway, but the feasibility of establishing a robust, standardized, and transferable technical platform for mammalian cell culture based on orbital shaking and disposable materials has been established with further optimizations and studies ongoing.

  10. The rabbit as an experimental model for biopharmaceutical studies following rectal administration of theophylline.

    PubMed

    Van Aerde, P; Moerman, E; Van Severen, R; Braeckman, P

    1984-03-01

    In order to find a suitable animal model for biopharmaceutical studies after rectal application of theophylline, the pharmacokinetics of theophylline following the administration in rabbits of three different rectal preparations were examined and compared with those of the oral and i. v. route. No significant formulation related impact from the studied rectal dosage forms on the bioavailability of the drug was found. However, the unexpected rapid achievement of peak serum concentration after insertion of the suppository lacked any correlation with human experiments. It was concluded that the evaluation of rectal theophylline medication for man cannot directly be based on the data obtained from rabbits.

  11. Multivariate statistical monitoring as applied to clean-in-place (CIP) and steam-in-place (SIP) operations in biopharmaceutical manufacturing.

    PubMed

    Roy, Kevin; Undey, Cenk; Mistretta, Thomas; Naugle, Gregory; Sodhi, Manbir

    2014-01-01

    Multivariate statistical process monitoring (MSPM) is becoming increasingly utilized to further enhance process monitoring in the biopharmaceutical industry. MSPM can play a critical role when there are many measurements and these measurements are highly correlated, as is typical for many biopharmaceutical operations. Specifically, for processes such as cleaning-in-place (CIP) and steaming-in-place (SIP, also known as sterilization-in-place), control systems typically oversee the execution of the cycles, and verification of the outcome is based on offline assays. These offline assays add to delays and corrective actions may require additional setup times. Moreover, this conventional approach does not take interactive effects of process variables into account and cycle optimization opportunities as well as salient trends in the process may be missed. Therefore, more proactive and holistic online continued verification approaches are desirable. This article demonstrates the application of real-time MSPM to processes such as CIP and SIP with industrial examples. The proposed approach has significant potential for facilitating enhanced continuous verification, improved process understanding, abnormal situation detection, and predictive monitoring, as applied to CIP and SIP operations. © 2014 American Institute of Chemical Engineers.

  12. pH-Dependent solubility and permeability criteria for provisional biopharmaceutics classification (BCS and BDDCS) in early drug discovery.

    PubMed

    Varma, Manthena V; Gardner, Iain; Steyn, Stefanus J; Nkansah, Paul; Rotter, Charles J; Whitney-Pickett, Carrie; Zhang, Hui; Di, Li; Cram, Michael; Fenner, Katherine S; El-Kattan, Ayman F

    2012-05-07

    The Biopharmaceutics Classification System (BCS) is a scientific framework that provides a basis for predicting the oral absorption of drugs. These concepts have been extended in the Biopharmaceutics Drug Disposition Classification System (BDDCS) to explain the potential mechanism of drug clearance and understand the effects of uptake and efflux transporters on absorption, distribution, metabolism, and elimination. The objective of present work is to establish criteria for provisional biopharmaceutics classification using pH-dependent passive permeability and aqueous solubility data generated from high throughput screening methodologies in drug discovery settings. The apparent permeability across monolayers of clonal cell line of Madin-Darby canine kidney cells, selected for low endogenous efflux transporter expression, was measured for a set of 105 drugs, with known BCS and BDDCS class. The permeability at apical pH 6.5 for acidic drugs and at pH 7.4 for nonacidic drugs showed a good correlation with the fraction absorbed in human (Fa). Receiver operating characteristic (ROC) curve analysis was utilized to define the permeability class boundary. At permeability ≥ 5 × 10(-6) cm/s, the accuracy of predicting Fa of ≥ 0.90 was 87%. Also, this cutoff showed more than 80% sensitivity and specificity in predicting the literature permeability classes (BCS), and the metabolism classes (BDDCS). The equilibrium solubility of a subset of 49 drugs was measured in pH 1.2 medium, pH 6.5 phosphate buffer, and in FaSSIF medium (pH 6.5). Although dose was not considered, good concordance of the measured solubility with BCS and BDDCS solubility class was achieved, when solubility at pH 1.2 was used for acidic compounds and FaSSIF solubility was used for basic, neutral, and zwitterionic compounds. Using a cutoff of 200 μg/mL, the data set suggested a 93% sensitivity and 86% specificity in predicting both the BCS and BDDCS solubility classes. In conclusion, this study identified pH-dependent permeability and solubility criteria that can be used to assign provisional biopharmaceutics class at early stage of the drug discovery process. Additionally, such a classification system will enable discovery scientists to assess the potential limiting factors to oral absorption, as well as help predict the drug disposition mechanisms and potential drug-drug interactions.

  13. Boosted structured additive regression for Escherichia coli fed-batch fermentation modeling.

    PubMed

    Melcher, Michael; Scharl, Theresa; Luchner, Markus; Striedner, Gerald; Leisch, Friedrich

    2017-02-01

    The quality of biopharmaceuticals and patients' safety are of highest priority and there are tremendous efforts to replace empirical production process designs by knowledge-based approaches. Main challenge in this context is that real-time access to process variables related to product quality and quantity is severely limited. To date comprehensive on- and offline monitoring platforms are used to generate process data sets that allow for development of mechanistic and/or data driven models for real-time prediction of these important quantities. Ultimate goal is to implement model based feed-back control loops that facilitate online control of product quality. In this contribution, we explore structured additive regression (STAR) models in combination with boosting as a variable selection tool for modeling the cell dry mass, product concentration, and optical density on the basis of online available process variables and two-dimensional fluorescence spectroscopic data. STAR models are powerful extensions of linear models allowing for inclusion of smooth effects or interactions between predictors. Boosting constructs the final model in a stepwise manner and provides a variable importance measure via predictor selection frequencies. Our results show that the cell dry mass can be modeled with a relative error of about ±3%, the optical density with ±6%, the soluble protein with ±16%, and the insoluble product with an accuracy of ±12%. Biotechnol. Bioeng. 2017;114: 321-334. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  14. Glycoengineering of CHO Cells to Improve Product Quality.

    PubMed

    Wang, Qiong; Yin, Bojiao; Chung, Cheng-Yu; Betenbaugh, Michael J

    2017-01-01

    Chinese hamster ovary (CHO) cells represent the predominant platform in biopharmaceutical industry for the production of recombinant biotherapeutic proteins, especially glycoproteins. These glycoproteins include oligosaccharide or glycan attachments that represent one of the principal components dictating product quality. Especially important are the N-glycan attachments present on many recombinant glycoproteins of commercial interest. Furthermore, altering the glycan composition can be used to modulate the production quality of a recombinant biotherapeutic from CHO and other mammalian hosts. This review first describes the glycosylation network in mammalian cells and compares the glycosylation patterns between CHO and human cells. Next genetic strategies used in CHO cells to modulate the sialylation patterns through overexpression of sialyltransfereases and other glycosyltransferases are summarized. In addition, other approaches to alter sialylation including manipulation of sialic acid biosynthetic pathways and inhibition of sialidases are described. Finally, this review also covers other strategies such as the glycosylation site insertion and manipulation of glycan heterogeneity to produce desired glycoforms for diverse biotechnology applications.

  15. Biowaiver monographs for immediate release solid oral dosage forms: ibuprofen.

    PubMed

    Potthast, H; Dressman, J B; Junginger, H E; Midha, K K; Oeser, H; Shah, V P; Vogelpoel, H; Barends, D M

    2005-10-01

    Literature data are reviewed on the properties of ibuprofen related to the biopharmaceutics classification system (BCS). Ibuprofen was assessed to be a BCS class II drug. Differences in composition and/or manufacturing procedures were reported to have an effect on the rate, but not the extent of absorption; such differences are likely to be detectable by comparative in vitro dissolution tests. Also in view of its therapeutic use, its wide therapeutic index and uncomplicated pharmacokinetic properties, a biowaiver for immediate release (IR) ibuprofen solid oral drug products is scientifically justified, provided that the test product contains only those excipients reported in this paper in their usual amounts, the dosage form is rapidly dissolving (85% in 30 min or less) in buffer pH 6.8 and the test product also exhibits similar dissolution profiles to the reference product in buffer pH 1.2, 4.5, and 6.8. Copyright (c) 2005 Wiley-Liss, Inc. and the American Pharmacists Association

  16. Towards the implementation of quality by design to the production of therapeutic monoclonal antibodies with desired glycosylation patterns.

    PubMed

    del Val, Ioscani Jimenez; Kontoravdi, Cleo; Nagy, Judit M

    2010-01-01

    Quality by design (QbD) is a scheme for the development, manufacture, and approval of pharmaceutical products. The end goal of QbD is to ensure product quality by building it into the manufacturing process. The main regulatory bodies are encouraging its implementation to the manufacture of all new pharmaceuticals including biological products. Monoclonal antibodies (mAbs) are currently the leading products of the biopharmaceutical industry. It has been widely reported that glycosylation directly influences the therapeutic mechanisms by which mAbs function in vivo. In addition, glycosylation has been identified as one of the main sources of monoclonal antibody heterogeneity, and thus, a critical parameter to follow during mAb manufacture. This article reviews the research on glycosylation of mAbs over the past 2 decades under the QbD scope. The categories presented under this scope are: (a) definition of the desired clinical effects of mAbs, (b) definition of the glycosylation-associated critical quality attributes (glycCQAs) of mAbs, (c) assessment of process parameters that pose a risk for mAb glycCQAs, and (d) methods for accurately quantifying glycCQAs of mAbs. The information available in all four areas leads us to conclude that implementation of QbD to the manufacture of mAbs with specific glycosylation patterns will be a reality in the near future. We also foresee that the implementation of QbD will lead to the development of more robust and efficient manufacturing processes and to a new generation of mAbs with increased clinical efficacy. Copyright © 2010 American Institute of Chemical Engineers (AIChE).

  17. Essays on measurement and evaluation of demand side management programs in the electricity industry, and impacts of firm strategy on stock price in the biotechnology industry

    NASA Astrophysics Data System (ADS)

    Bandres Motola, Miguel A.

    Essay one estimates changes in small business customer energy consumption (kWh) patterns resulting from a seasonally differentiated pricing structure. Econometric analysis leverages cross-sectional time series data across the entire population of affected customers, from 2007 through the present. Observations include: monthly energy usage (kWh), relevant customer segmentations, local daily temperature, energy price, and region-specific economic conditions, among other variables. The study identifies the determinants of responsiveness to seasonal price differentiation. In addition, estimated energy consumption changes occurring during the 2010 summer season are reported for the average customer and in aggregate grouped by relevant customer segments, climate zone, and total customer base. Essay two develops an econometric modeling methodology to evaluate load impacts for short duration demand response events. The study analyzes time series data from a season of direct load control program tests aimed at integrating demand response into the wholesale electricity market. I have combined "fuzzy logic" with binary variables to create "fuzzy indicator variables" that allow for measurement of short duration events while using industry standard model specifications. Typically, binary variables for every hour are applied in load impact analysis of programs dispatched in hourly intervals. As programs evolve towards integration with the wholesale market, event durations become irregular and often occur for periods of only a few minutes. This methodology is innovative in that it conserves the degrees of freedom in the model while allowing for analysis of high frequency data using fixed effects. Essay three examines the effects of strategies, intangibles, and FDA news on the stocks of young biopharmaceutical firms. An event study methodology is used to explore those effects. This study investigates 20,839 announcements from 1990 to 2005. Announcements on drug development, alliances, publications, presentations, and FDA approval have a positive effect on the short-term performance of young biopharmaceutical firms. Announcements on goals not met, FDA drug approval denied, and changes in structural organizations have a negative effect on the short-term performance of young biopharmaceutical firms.

  18. Characterization of glycoprotein biopharmaceutical products by Caliper LC90 CE-SDS gel technology.

    PubMed

    Chen, Grace; Ha, Sha; Rustandi, Richard R

    2013-01-01

    Over the last decade, science has greatly improved in the area of protein sizing and characterization. Efficient high-throughput methods are now available to substitute for the traditional labor-intensive SDS-PAGE methods, which alternatively take days to analyze a very limited number of samples. Currently, PerkinElmer(®) (Caliper) has designed an automated chip-based fluorescence detection method capable of analyzing proteins in minutes with sensitivity similar to standard SDS-PAGE. Here, we describe the use and implementation of this technology to characterize and screen a large number of formulations of target glycoproteins in the 14-200 kDa molecular weight range.

  19. Distinguishing between the Permeability Relationships with Absorption and Metabolism To Improve BCS and BDDCS Predictions in Early Drug Discovery

    PubMed Central

    2015-01-01

    The biopharmaceutics classification system (BCS) and biopharmaceutics drug distribution classification system (BDDCS) are complementary classification systems that can improve, simplify, and accelerate drug discovery, development, and regulatory processes. Drug permeability has been widely accepted as a screening tool for determining intestinal absorption via the BCS during the drug development and regulatory approval processes. Currently, predicting clinically significant drug interactions during drug development is a known challenge for industry and regulatory agencies. The BDDCS, a modification of BCS that utilizes drug metabolism instead of intestinal permeability, predicts drug disposition and potential drug–drug interactions in the intestine, the liver, and most recently the brain. Although correlations between BCS and BDDCS have been observed with drug permeability rates, discrepancies have been noted in drug classifications between the two systems utilizing different permeability models, which are accepted as surrogate models for demonstrating human intestinal permeability by the FDA. Here, we recommend the most applicable permeability models for improving the prediction of BCS and BDDCS classifications. We demonstrate that the passive transcellular permeability rate, characterized by means of permeability models that are deficient in transporter expression and paracellular junctions (e.g., PAMPA and Caco-2), will most accurately predict BDDCS metabolism. These systems will inaccurately predict BCS classifications for drugs that particularly are substrates of highly expressed intestinal transporters. Moreover, in this latter case, a system more representative of complete human intestinal permeability is needed to accurately predict BCS absorption. PMID:24628254

  20. Distinguishing between the permeability relationships with absorption and metabolism to improve BCS and BDDCS predictions in early drug discovery.

    PubMed

    Larregieu, Caroline A; Benet, Leslie Z

    2014-04-07

    The biopharmaceutics classification system (BCS) and biopharmaceutics drug distribution classification system (BDDCS) are complementary classification systems that can improve, simplify, and accelerate drug discovery, development, and regulatory processes. Drug permeability has been widely accepted as a screening tool for determining intestinal absorption via the BCS during the drug development and regulatory approval processes. Currently, predicting clinically significant drug interactions during drug development is a known challenge for industry and regulatory agencies. The BDDCS, a modification of BCS that utilizes drug metabolism instead of intestinal permeability, predicts drug disposition and potential drug-drug interactions in the intestine, the liver, and most recently the brain. Although correlations between BCS and BDDCS have been observed with drug permeability rates, discrepancies have been noted in drug classifications between the two systems utilizing different permeability models, which are accepted as surrogate models for demonstrating human intestinal permeability by the FDA. Here, we recommend the most applicable permeability models for improving the prediction of BCS and BDDCS classifications. We demonstrate that the passive transcellular permeability rate, characterized by means of permeability models that are deficient in transporter expression and paracellular junctions (e.g., PAMPA and Caco-2), will most accurately predict BDDCS metabolism. These systems will inaccurately predict BCS classifications for drugs that particularly are substrates of highly expressed intestinal transporters. Moreover, in this latter case, a system more representative of complete human intestinal permeability is needed to accurately predict BCS absorption.

  1. Techno-economic analysis of horseradish peroxidase production using a transient expression system in Nicotiana benthamiana.

    PubMed

    Walwyn, David Richard; Huddy, Suzanne M; Rybicki, Edward P

    2015-01-01

    Despite the advantages of plant-based transient expression systems relative to microbial or mammalian cell systems, the commercial production of recombinant proteins using plants has not yet been achieved to any significant extent. One of the challenges has been the lack of published data on the costs of manufacture for products other than biopharmaceuticals. In this study, we report on the techno-economic analysis of the production of a standard commercial enzyme, namely, horseradish peroxidase (HRP), using a transient expression system in Nicotiana benthamiana. Based on the proven plant yield of 240 mg HRP/kg biomass, a biomass productivity of 15-kg biomass/m(2)/year and a process yield of 54 % (mg HRP product/mg HRP in biomass), it is apparent that HRP can be manufactured economically via transient expression in plants in a large-scale facility (>5 kg HRP/year). At this level, the process is competitive versus the existing technology (extraction of the enzyme from horseradish), and the product is of comparable or improved activity, containing only the preferred isoenzyme C. Production scale, protein yield and biomass productivity are found to be the most important determinants of overall viability.

  2. Characterization of complex systems using the design of experiments approach: transient protein expression in tobacco as a case study.

    PubMed

    Buyel, Johannes Felix; Fischer, Rainer

    2014-01-31

    Plants provide multiple benefits for the production of biopharmaceuticals including low costs, scalability, and safety. Transient expression offers the additional advantage of short development and production times, but expression levels can vary significantly between batches thus giving rise to regulatory concerns in the context of good manufacturing practice. We used a design of experiments (DoE) approach to determine the impact of major factors such as regulatory elements in the expression construct, plant growth and development parameters, and the incubation conditions during expression, on the variability of expression between batches. We tested plants expressing a model anti-HIV monoclonal antibody (2G12) and a fluorescent marker protein (DsRed). We discuss the rationale for selecting certain properties of the model and identify its potential limitations. The general approach can easily be transferred to other problems because the principles of the model are broadly applicable: knowledge-based parameter selection, complexity reduction by splitting the initial problem into smaller modules, software-guided setup of optimal experiment combinations and step-wise design augmentation. Therefore, the methodology is not only useful for characterizing protein expression in plants but also for the investigation of other complex systems lacking a mechanistic description. The predictive equations describing the interconnectivity between parameters can be used to establish mechanistic models for other complex systems.

  3. Usnea barbata CO2-supercritical extract in alkyl polyglucoside-based emulsion system: contribution of Confocal Raman imaging to the formulation development of a natural product.

    PubMed

    Zugic, Ana; Lunter, Dominique Jasmin; Daniels, Rolf; Pantelic, Ivana; Tasic Kostov, Marija; Tadic, Vanja; Misic, Dusan; Arsic, Ivana; Savic, Snezana

    2016-08-01

    Topical treatment of skin infections is often limited by drawbacks related to both antimicrobial agents and their vehicles. In addition, considering the growing promotion of natural therapeutic products, our objective was to develop and evaluate naturally-based emulsion system, as prospective topical formulation for skin infections-treatment. Therefore, alkyl polyglucoside surfactants were used for stabilization of a vehicle serving as potential carrier for supercritical CO2-extract of Usnea barbata, lichen with well-documented antimicrobial activity, incorporated using two protocols and three concentrations. Comprehensive physicochemical characterization suggested possible involvement of extract's particles in stabilization of the investigated system. Raman spectral imaging served as the key method in disclosing extract's particles potential to participate in the microstructure of the tested emulsion system via three mechanisms: (1) particle-particle aggregation, (2) adsorption at the oil-water interface and (3) hydrophobic particle-surfactant interactions. Stated extract-vehicle interaction proved to be correlated to the preparation procedure and extract concentration on one hand and to affect the physicochemical and biopharmaceutical features of investigated system, on the other hand. Thereafter, formulation with the best preliminary stability and liberation profile was selected for further efficiency and in vivo skin irritation potential evaluation, implying pertinent in vitro antimicrobial activity against G+ bacteria and overall satisfying preliminary safety profile.

  4. Evolving trends in mAb production processes

    PubMed Central

    Wolfe, Leslie S.; Mostafa, Sigma S.; Norman, Carnley

    2017-01-01

    Abstract Monoclonal antibodies (mAbs) have established themselves as the leading biopharmaceutical therapeutic modality. The establishment of robust manufacturing platforms are key for antibody drug discovery efforts to seamlessly translate into clinical and commercial successes. Several drivers are influencing the design of mAb manufacturing processes. The advent of biosimilars is driving a desire to achieve lower cost of goods and globalize biologics manufacturing. High titers are now routinely achieved for mAbs in mammalian cell culture. These drivers have resulted in significant evolution in process platform approaches. Additionally, several new trends in bioprocessing have arisen in keeping with these needs. These include the consideration of alternative expression systems, continuous biomanufacturing and non‐chromatographic separation formats. This paper discusses these drivers in the context of the kinds of changes they are driving in mAb production processes. PMID:29313024

  5. Metabolic pathways recruited in the production of a recombinant enveloped virus: mining targets for process and cell engineering.

    PubMed

    Rodrigues, A F; Formas-Oliveira, A S; Bandeira, V S; Alves, P M; Hu, W S; Coroadinha, A S

    2013-11-01

    Biopharmaceuticals derived from enveloped virus comprise an expanding market of vaccines, oncolytic vectors and gene therapy products. Thus, increased attention is given to the development of robust high-titer cell hosts for their manufacture. However, the knowledge on the physiological constraints modulating virus production is still scarce and the use of integrated strategies to improve hosts productivity and upstream bioprocess an under-explored territory. In this work, we conducted a functional genomics study, including the transcriptional profiling and central carbon metabolism analysis, following the metabolic changes in the transition 'parental-to-producer' of two human cell lines producing recombinant retrovirus. Results were gathered into three comprehensive metabolic maps, providing a broad and integrated overview of gene expression changes for both cell lines. Eight pathways were identified to be recruited in the virus production state: amino acid catabolism, carbohydrate catabolism and integration of the energy metabolism, nucleotide metabolism, glutathione metabolism, pentose phosphate pathway, polyamines biosynthesis and lipid metabolism. Their ability to modulate viral titers was experimentally challenged, leading to improved specific productivities of recombinant retrovirus up to 6-fold. Within recruited pathways in the virus production state, we sought for metabolic engineering gene targets in the low producing phenotypes. A mining strategy was used alternative to the traditional approach 'high vs. low producer' clonal comparison. Instead, 'high vs. low producer' from different genetic backgrounds (i.e. cell origins) were compared. Several genes were identified as limiting in the low-production phenotype, including two enzymes from cholesterol biosynthesis, two enzymes from glutathione biosynthesis and the regulatory machinery of polyamines biosynthesis. This is thus a frontier work, bridging fundamentals to technological research and contributing to enlarge our understanding of enveloped virus production dynamics in mammalian cell hosts. © 2013 Published by Elsevier Inc.

  6. Hot-Melt Extrusion: from Theory to Application in Pharmaceutical Formulation.

    PubMed

    Patil, Hemlata; Tiwari, Roshan V; Repka, Michael A

    2016-02-01

    Hot-melt extrusion (HME) is a promising technology for the production of new chemical entities in the developmental pipeline and for improving products already on the market. In drug discovery and development, industry estimates that more than 50% of active pharmaceutical ingredients currently used belong to the biopharmaceutical classification system II (BCS class II), which are characterized as poorly water-soluble compounds and result in formulations with low bioavailability. Therefore, there is a critical need for the pharmaceutical industry to develop formulations that will enhance the solubility and ultimately the bioavailability of these compounds. HME technology also offers an opportunity to earn intellectual property, which is evident from an increasing number of patents and publications that have included it as a novel pharmaceutical formulation technology over the past decades. This review had a threefold objective. First, it sought to provide an overview of HME principles and present detailed engineered extrusion equipment designs. Second, it included a number of published reports on the application of HME techniques that covered the fields of solid dispersions, microencapsulation, taste masking, targeted drug delivery systems, sustained release, films, nanotechnology, floating drug delivery systems, implants, and continuous manufacturing using the wet granulation process. Lastly, this review discussed the importance of using the quality by design approach in drug development, evaluated the process analytical technology used in pharmaceutical HME monitoring and control, discussed techniques used in HME, and emphasized the potential for monitoring and controlling hot-melt technology.

  7. Using Registries to Identify Adverse Events in Rheumatic Diseases

    PubMed Central

    Lionetti, Geraldina; Kimura, Yukiko; Schanberg, Laura E.; Beukelman, Timothy; Wallace, Carol A.; Ilowite, Norman T.; Winsor, Jane; Fox, Kathleen; Natter, Marc; Sundy, John S.; Brodsky, Eric; Curtis, Jeffrey R.; Del Gaizo, Vincent; Iyasu, Solomon; Jahreis, Angelika; Meeker-O’Connell, Ann; Mittleman, Barbara B.; Murphy, Bernard M.; Peterson, Eric D.; Raymond, Sandra C.; Setoguchi, Soko; Siegel, Jeffrey N.; Sobel, Rachel E.; Solomon, Daniel; Southwood, Taunton R.; Vesely, Richard; White, Patience H.; Wulffraat, Nico M.; Sandborg, Christy I.

    2013-01-01

    The proven effectiveness of biologics and other immunomodulatory products in inflammatory rheumatic diseases has resulted in their widespread use as well as reports of potential short- and long-term complications such as infection and malignancy. These complications are especially worrisome in children who often have serial exposures to multiple immunomodulatory products. Post-marketing surveillance of immunomodulatory products in juvenile idiopathic arthritis (JIA) and pediatric systemic lupus erythematosus is currently based on product-specific registries and passive surveillance, which may not accurately reflect the safety risks for children owing to low numbers, poor long-term retention, and inadequate comparators. In collaboration with the US Food and Drug Administration (FDA), patient and family advocacy groups, biopharmaceutical industry representatives and other stakeholders, the Childhood Arthritis and Rheumatology Research Alliance (CARRA) and the Duke Clinical Research Institute (DCRI) have developed a novel pharmacosurveillance model (CARRA Consolidated Safety Registry [CoRe]) based on a multicenter longitudinal pediatric rheumatic diseases registry with over 8000 participants. The existing CARRA infrastructure provides access to much larger numbers of subjects than is feasible in single-product registries. Enrollment regardless of medication exposure allows more accurate detection and evaluation of safety signals. Flexibility built into the model allows the addition of specific data elements and safety outcomes, and designation of appropriate disease comparator groups relevant to each product, fulfilling post-marketing requirements and commitments. The proposed model can be applied to other pediatric and adult diseases, potentially transforming the paradigm of pharmacosurveillance in response to the growing public mandate for rigorous post-marketing safety monitoring. PMID:24144710

  8. Biowaiver monographs for immediate release solid oral dosage forms: metronidazole.

    PubMed

    Rediguieri, Camila F; Porta, Valentina; G Nunes, Diana S; Nunes, Taina M; Junginger, Hans E; Kopp, Sabine; Midha, Kamal K; Shah, Vinod P; Stavchansky, Salomon; Dressman, Jennifer B; Barends, Dirk M

    2011-05-01

    Literature data relevant to the decision to allow a waiver of in vivo bioequivalence (BE) testing for the approval of immediate release (IR) solid oral dosage forms containing metronidazole are reviewed. Metronidazole can be assigned to Biopharmaceutics Classification System Class I. Most BE studies that were identified reported the investigated formulations to be bioequivalent, indicating the risk of bioinequivalence to be low. Formulations showing differences in bioavailability showed dissimilarities in in vitro dissolution profiles. Furthermore, metronidazole has a wide therapeutic index. It is concluded that a biowaiver for solid IR formulations is justified, provided: (a) the test product and its comparator are both rapidly dissolving; (b) meet similarity of the dissolution profiles at pH 1.2, 4.5, and 6.8; (c) the test product contains only excipients present in IR drug products approved in International Conference on Harmonisation (ICH) or associated countries in the same dosage form; and (d) if the test product contains sorbitol, sodium laurilsulfate, or propylene glycol, the test product needs to be qualitatively and quantitatively identical to its comparator with respect to these excipients [corrected].. Copyright © 2011 Wiley-Liss, Inc.

  9. Peptone Supplementation of Culture Medium Has Variable Effects on the Productivity of CHO Cells

    PubMed Central

    Davami, Fatemeh; Baldi, Lucia; Rajendra, Yashas; M. Wurm, Florian

    2014-01-01

    The optimization of cell culture conditions for growth and productivity of recombinant Chinese hamster ovary (CHO) cells is a critical step in biopharmaceutical manufacturing. In the present study, the effects of the timing and amount of peptone feeding of a recombinant CHO cell line grown in a basal medium in serum-free suspension culture were determined for eight peptones of different origin (plant and casein). The amino acid content and the average molecular weight of the peptones chosen were available. In optimized feeding strategies with single peptones, increase 100 % volumetric productivity and 40 % in cell number were achieved. In feeding strategies with two peptones, several combinations stimulated protein productivity more than either peptone alone, depending on the peptone concentration and time of feeding. Some peptones, which did not stimulate productivity when added alone proved to be effective when used in combination. The combined peptones feeding strategies were more effective with peptones of different origin. Our data support the notion that the origin of peptones provides some guidance in identifying the most effective feeding strategies for recombinant CHO cells. PMID:25317401

  10. Stock market returns and clinical trial results of investigational compounds: an event study analysis of large biopharmaceutical companies.

    PubMed

    Hwang, Thomas J

    2013-01-01

    For biopharmaceutical companies, investments in research and development are risky, and the results from clinical trials are key inflection points in the process. Few studies have explored how and to what extent the public equity market values clinical trial results. Our study dataset matched announcements of clinical trial results for investigational compounds from January 2011 to May 2013 with daily stock market returns of large United States-listed pharmaceutical and biotechnology companies. Event study methodology was used to examine the relationship between clinical research events and changes in stock returns. We identified public announcements for clinical trials of 24 investigational compounds, including 16 (67%) positive and 8 (33%) negative events. The majority of announcements were for Phase 3 clinical trials (N = 13, 54%), and for oncologic (N = 7, 29%) and neurologic (N = 6, 24%) indications. The median cumulative abnormal returns on the day of the announcement were 0.8% (95% confidence interval [CI]: -2.3, 13.4%; P = 0.02) for positive events and -2.0% (95% CI: -9.1, 0.7%; P = 0.04) for negative events, with statistically significant differences from zero. In the day immediately following the announcement, firms with positive events were associated with stock price corrections, with median cumulative abnormal returns falling to 0.4% (95% CI: -3.8, 12.3%; P = 0.33). For firms with negative announcements, the median cumulative abnormal returns were -1.7% (95% CI: -9.5, 1.0%; P = 0.03), and remained significantly negative over the two day event window. The magnitude of abnormal returns did not differ statistically by indication, by trial phase, or between biotechnology and pharmaceutical firms. The release of clinical trial results is an economically significant event and has meaningful effects on market value for large biopharmaceutical companies. Stock return underperformance due to negative events is greater in magnitude and persists longer than abnormal returns due to positive events, suggesting asymmetric market reactions.

  11. Development of at-line assay to monitor charge variants of MAbs during production.

    PubMed

    St Amand, M M; Ogunnaike, B A; Robinson, A S

    2014-01-01

    One major challenge currently facing the biopharmaceutical industry is to understand how MAb microheterogeneity affects therapeutic efficacy, potency, immunogenicity, and clearance. MAb micro-heterogeneity can result from post-translational modifications such as sialylation, galactosylation, C-terminal lysine cleavage, glycine amidation, and tryptophan oxidation, each of which can generate MAb charge variants; such heterogeneity can affect pharmacokinetics (PK) considerably. Implementation of appropriate on-line quality control strategies may help to regulate bioprocesses, thus enabling more homogenous material with desired post-translational modifications and PK behavior. However, one major restriction to implementation of quality control strategies is the availability of techniques for obtaining on-line or at-line measurements of these attributes. In this work, we describe the development of an at-line assay to separate MAb charge variants in near real-time, which could ultimately be used to implement on-line quality control strategies for MAb production. The assay consists of a 2D-HPLC method with sequential in-line Protein A and WCX-10 HPLC column steps. To perform the 2D-HPLC assay at-line, the two columns steps were integrated into a single method using a novel system configuration that allowed parallel flow over column 1 or column 2 or sequential flow from column 1 to column 2. A bioreactor system was also developed such that media samples could be removed automatically from bioreactor vessels during production and delivered to the 2D-HPLC for analysis. With this at-line HPLC assay, we have demonstrated that MAb microheterogeneity occurs throughout the cell cycle whether the host cell line is grown under different or the same nominal culture conditions. © 2013 American Institute of Chemical Engineers.

  12. Fully Disposable Manufacturing Concepts for Clinical and Commercial Manufacturing and Ballroom Concepts.

    PubMed

    Boedeker, Berthold; Goldstein, Adam; Mahajan, Ekta

    2017-11-04

    The availability and use of pre-sterilized disposables has greatly changed the methods used in biopharmaceuticals development and production, particularly from mammalian cell culture. Nowadays, almost all process steps from cell expansion, fermentation, cell removal, and purification to formulation and storage of drug substances can be carried out in disposables, although there are still limitations with single-use technologies, particularly in the areas of pretesting and quality control of disposables, bag and connections standardization and qualification, extractables and leachables (E/L) validation, and dependency on individual vendors. The current status of single-use technologies is summarized for all process unit operations using a standard mAb process as an example. In addition, current pros and cons of using disposables are addressed in a comparative way, including quality control and E/L validation.The continuing progress in developing single-use technologies has an important impact on manufacturing facilities, resulting in much faster, less expensive and simpler plant design, start-up, and operation, because cell culture process steps are no longer performed in hard-piped unit operations. This leads to simpler operations in a lab-like environment. Overall it enriches the current landscape of available facilities from standard hard-piped to hard-piped/disposables hybrid to completely single-use-based production plants using the current segregation and containment concept. At the top, disposables in combination with completely and functionally closed systems facilitate a new, revolutionary design of ballroom facilities without or with much less segregation, which enables us to perform good manufacturing practice manufacturing of different products simultaneously in unclassified but controlled areas.Finally, single-use processing in lab-like shell facilities is a big enabler of transferring and establishing production in emergent countries, and this is described in more detail in 7. Graphical Abstract.

  13. FDA Approves Immunotherapy for a Cancer that Affects Infants and Children | Poster

    Cancer.gov

    By Frank Blanchard, Staff Writer The U.S. Food and Drug Administration (FDA) recently approved dinutuximab (ch14.18) as an immunotherapy for neuroblastoma, a rare type of childhood cancer that offers poor prognosis for about half of the children who are affected. The National Cancer Institute’s (NCI) Biopharmaceutical Development Program (BDP) at the Frederick National Laboratory for Cancer Research produced ch14.18 for the NCI-sponsored clinical trials that proved the drug’s effectiveness against the disease.

  14. Biosimilars: Company Strategies to Capture Value from the Biologics Market

    PubMed Central

    Calo-Fernández, Bruno; Martínez-Hurtado, Juan Leonardo

    2012-01-01

    Patents for several biologic blockbusters will expire in the next few years. The arrival of biosimilars, the biologic equivalent of chemical generics, will have an impact on the current biopharmaceuticals market. Five core capabilities have been identified as paramount for those companies aiming to enter the biosimilars market: research and development, manufacturing, supporting activities, marketing, and lobbying. Understanding the importance of each of these capabilities will be key to maximising the value generated from the biologics patent cliff. PMID:24281342

  15. Multicomponent systems with cyclodextrins and hydrophilic polymers for the delivery of Efavirenz.

    PubMed

    Vieira, Alexandre Couto Carneiro; Ferreira Fontes, Danilo Augusto; Chaves, Luise Lopes; Alves, Lariza Darlene Santos; de Freitas Neto, José Lourenço; de La Roca Soares, Monica Felts; Soares-Sobrinho, Jose L; Rolim, Larissa Araújo; Rolim-Neto, Pedro José

    2015-10-05

    Efavirenz (EFZ) is one of the most used drugs in the treatment of AIDS and is the first antiretroviral choice. However, since it has low solubility, it does not exhibit suitable bioavailability, which interferes with its therapeutic action and is classified as a class II drug according Biopharmaceutical Classification System (low solubility and high permeability). Among several drug delivery systems, the multicomponent systems with cyclodextrins and hydrophilic polymers are a promising alternative for increasing the aqueous solubility of the drug. The present study aimed to develop and characterize in a ternary system of EFZ, MβCD and PVP K30. The results showed that the solid ternary system provided a large increase in the dissolution rate which was greater than 80% and was characterized by DSC, TG, XRD, FT-IR and SEM. The use of the ternary system (EFZ, MβCD and PVP K30 1%) proved to be a viable, effective and safe delivery of the drug. The addition of the hydrophilic polymer appeared to be suitable for the development of a solid oral pharmaceutical product, with possible industrial scale-up and with low concentration of CDs (cyclodextrins). Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Planning and tracking chemotherapy production for cancer treatment: a performing and integrated solution.

    PubMed

    Kergosien, Y; Tournamille, J-F; Laurence, B; Billaut, J-C

    2011-09-01

    Chemotherapy drugs are intended for the treatment of cancer. The production of such drugs and their administration to the patient is a delicate and expensive operation. The study deals with the acquisition and processing of data regarding the production of intravenous chemotherapy, from the production request (the medical prescription), the production itself (pharmaceutical process), to the delivery in the health care unit, for the administration of the chemotherapy. The goal of this study is to develop a system that can schedule, control and track the chemotherapy preparations and satisfy a certification process of quality management ("ISO 9001 version 2000" standard). The solution proposed in this paper was developed within the framework of a common certification process at the Biopharmaceutical Unit of the Oncology Clinic (UBCO) of the Bretonneau hospital in Tours (France). The system consists of two software programs: a software to insure traceability and a decision making software to plan the production. To simplify the data entry process, some mobile entry points with bar code reader have been deployed. These tools enable an accurate tracking of the production, a security and control for the schedule production phases, and a full traceability of each operation leading to the administration of the chemotherapy drug. The first result is a software that creates the production schedule, allows a real time control of the production process and a full traceability of each step. Computational experiments are based on real data sets, with a comparison of a time period before and after the implementation of this solution. The results show the positive impacts of this software, like the reduction of delayed deliveries, real time generation of production indicators, optimization of the production and a saving of staff time. This intuitive system guarantees a traceability in connection with a high quality system certified ISO 9001-v2000 (with a rapid data entry), an assistant to schedule the production of preparations in a better way, a permanent follow-up and analysis of operations. This project proves the benefits of implementing computer solutions for the traceability and assistance in decision making in the hospital systems. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  17. Trends in Process Analytical Technology: Present State in Bioprocessing.

    PubMed

    Jenzsch, Marco; Bell, Christian; Buziol, Stefan; Kepert, Felix; Wegele, Harald; Hakemeyer, Christian

    2017-08-04

    Process analytical technology (PAT), the regulatory initiative for incorporating quality in pharmaceutical manufacturing, is an area of intense research and interest. If PAT is effectively applied to bioprocesses, this can increase process understanding and control, and mitigate the risk from substandard drug products to both manufacturer and patient. To optimize the benefits of PAT, the entire PAT framework must be considered and each elements of PAT must be carefully selected, including sensor and analytical technology, data analysis techniques, control strategies and algorithms, and process optimization routines. This chapter discusses the current state of PAT in the biopharmaceutical industry, including several case studies demonstrating the degree of maturity of various PAT tools. Graphical Abstract Hierarchy of QbD components.

  18. Sherlock Holmes and the proteome--a detective story.

    PubMed

    Righetti, Pier Giorgio; Boschetti, Egisto

    2007-02-01

    The performance of a hexapeptide ligand library in capturing the 'hidden proteome' is illustrated and evaluated. This library, insolubilized on an organic polymer and available under the trade name 'Equalizer Bead Technology', acts by capturing all components of a given proteome, by concentrating rare and very rare proteins, and simultaneously diluting the abundant ones. This results in a proteome of 'normalized' relative abundances, amenable to analysis by MS and any other analytical tool. Examples are given of analysis of human urine and serum, as well as cell and tissue lysates, such as Escherichia coli and Saccharomyces cerevisiae extracts. Another important application is impurity tracking and polishing of recombinant DNA products, especially biopharmaceuticals meant for human consumption.

  19. A Review of the Aging Process and Facilities Topic.

    PubMed

    Jornitz, Maik W

    2015-01-01

    Aging facilities have become a concern in the pharmaceutical and biopharmaceutical manufacturing industry, so much that task forces are formed by trade organizations to address the topic. Too often, examples of aging or obsolete equipment, unit operations, processes, or entire facilities have been encountered. Major contributors to this outcome are the failure to invest in new equipment, disregarding appropriate maintenance activities, and neglecting the implementation of modern technologies. In some cases, a production process is insufficiently modified to manufacture a new product in an existing process that was used to produce a phased-out product. In other instances, manufacturers expanded the facility or processes to fulfill increasing demand and the scaling occurred in a non-uniform manner, which led to non-optimal results. Regulatory hurdles of post-approval changes in the process may thwart companies' efforts to implement new technologies. As an example, some changes have required 4 years to gain global approval. This paper will address cases of aging processes and facilities aside from modernizing options. © PDA, Inc. 2015.

  20. New FDA draft guidance on immunogenicity.

    PubMed

    Parenky, Ashwin; Myler, Heather; Amaravadi, Lakshmi; Bechtold-Peters, Karoline; Rosenberg, Amy; Kirshner, Susan; Quarmby, Valerie

    2014-05-01

    A "Late Breaking" session was held on May 20 at the 2013 American Association of Pharmaceutical Scientists-National Biotech Conference (AAPS-NBC) to discuss the US Food and Drug Administration's (FDA) 2013 draft guidance on Immunogenicity Assessment for Therapeutic Protein Products. The session was initiated by a presentation from the FDA which highlighted several key aspects of the 2013 draft guidance pertaining to immunogenicity risk, the potential impact on patient safety and product efficacy, and risk mitigation. This was followed by an open discussion on the draft guidance which enabled delegates from biopharmaceutical companies to engage the FDA on topics that had emerged from their review of the draft guidance. The multidisciplinary audience fostered an environment that was conducive to scientific discussion on a broad range of topics such as clinical impact, immune mitigation strategies, immune prediction and the role of formulation, excipients, aggregates, and degradation products in immunogenicity. This meeting report highlights several key aspects of the 2013 draft guidance together with related dialog from the session.

  1. Concerns Around Budget Impact Thresholds: Not All Drugs Are the Same.

    PubMed

    Ciarametaro, Michael; Abedi, Susan; Sohn, Adam; Ge, Colin Fan; Odedara, Neel; Dubois, Robert

    2017-02-01

    The use of budget thresholds is a recent development in the United States (e.g., the Institute for Clinical and Economic Review drug assessments). Budget thresholds establish limits that require some type of budgetary action if exceeded. This research focused on the advisability of using product-level budget thresholds as fixed spending caps by examining whether they are likely to improve or worsen market efficiency over status quo. The aim of this study was to determine whether fixed product-level spending caps are advisable for biopharmaceuticals. We systematically examined 5-year, postlaunch revenue for drugs that launched in the United States between 2003 and 2014 using the IMS MIDAS database. For products launched between 2011 and 2014, we used historical revenue as the baseline and trended out 60 months postlaunch based on exponential smoothing. Forecasted fifth-year revenue was compared to analyst reports. Fifth-year revenue was compared against a hypothetical $904 million spending cap to determine the amount of annual spending that might require reallocation. Descriptive statistics of 5-year, postlaunch revenue and annual spending requiring reallocation were calculated. Adhering to a $904 million product-level spending cap requires that approximately one-third of new drug spending be reallocated to other goods and services that have the potential to be less cost-effective due to significant barriers. Fixed product-level spending caps have the potential to reduce market efficiency due to their independence from value and the presence of important operational challenges. Copyright © 2017 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.

  2. Efficient micropropagation and assessment of genetic fidelity of Boerhaavia diffusa L- High trade medicinal plant.

    PubMed

    Patil, Kapil S; Bhalsing, Sanjivani R

    2015-07-01

    Boerhaavia diffusa L is a medicinal herb with immense pharmaceutical significance. The plant is used by many herbalist, Ayurvedic and pharmaceutical industries for production biopharmaceuticals. It is among the 46 medicinal plant species in high trade sourced mainly from wastelands and generally found in temperate regions of the world. However, the commercial bulk of this plant shows genetic variations which are the main constraint to use this plant as medicinal ingredient and to obtain high value products of pharmaceutical interest from this plant. In this study, we have regenerated the plant of Boerhaavia diffusa L through nodal explants and evaluated genetic fidelity of the micropropagated plants of Boerhaavia diffusa L with the help of random amplified polymorphic DNA (RAPD) markers. The results obtained using RAPD showed monomorphic banding pattern revealing genetic stability among the mother plant and in vitro regenerated plants of Boerhaavia diffusa L.

  3. A predictive Bayesian approach to the design and analysis of bridging studies.

    PubMed

    Gould, A Lawrence; Jin, Tian; Zhang, Li Xin; Wang, William W B

    2012-09-01

    Pharmaceutical product development culminates in confirmatory trials whose evidence for the product's efficacy and safety supports regulatory approval for marketing. Regulatory agencies in countries whose patients were not included in the confirmatory trials often require confirmation of efficacy and safety in their patient populations, which may be accomplished by carrying out bridging studies to establish consistency for local patients of the effects demonstrated by the original trials. This article describes and illustrates an approach for designing and analyzing bridging studies that fully incorporates the information provided by the original trials. The approach determines probability contours or regions of joint predictive intervals for treatment effect and response variability, or endpoints of treatment effect confidence intervals, that are functions of the findings from the original trials, the sample sizes for the bridging studies, and possible deviations from complete consistency with the original trials. The bridging studies are judged consistent with the original trials if their findings fall within the probability contours or regions. Regulatory considerations determine the region definitions and appropriate probability levels. Producer and consumer risks provide a way to assess alternative region and probability choices. [Supplemental materials are available for this article. Go to the Publisher's online edition of the Journal of Biopharmaceutical Statistics for the following free supplemental resource: Appendix 2: R code for Calculations.].

  4. Using X-Ray Crystallography to Simplify and Accelerate Biologics Drug Development.

    PubMed

    Brader, Mark L; Baker, Edward N; Dunn, Michael F; Laue, Thomas M; Carpenter, John F

    2017-02-01

    Every major biopharmaceutical company incorporates a protein crystallography unit that is central to its structure-based drug discovery efforts. Yet these capabilities are rarely leveraged toward the formal higher order structural characterization that is so challenging but integral to large-scale biologics manufacturing. Although the biotech industry laments the shortcomings of its favored biophysical techniques, x-ray crystallography is not even considered for drug development. Why not? We suggest that this is due, at least in part, to outdated thinking (for a recent industry-wide survey, see Gabrielson JP, Weiss IV WF. Technical decision-making with higher order structure data: starting a new dialogue. J Pharm Sci. 2015;104(4):1240-1245). We examine some myths surrounding protein crystallography and highlight the inherent properties of protein crystals (molecular identity, biochemical purity, conformational uniformity, and macromolecular crowding) as having practicable commonalities with today's patient-focused liquid drug products. In the new millennium, protein crystallography has become essentially a routine analytical test. Its application may aid the identification of better candidate molecules that are more amenable to high-concentration processing, formulation, and analysis thereby helping to make biologics drug development quicker, simpler, and cheaper. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  5. [Impacts of multicomponent environment on solubility of puerarin in biopharmaceutics classification system of Chinese materia medica].

    PubMed

    Hou, Cheng-Bo; Wang, Guo-Peng; Zhang, Qiang; Yang, Wen-Ning; Lv, Bei-Ran; Wei, Li; Dong, Ling

    2014-12-01

    To illustrate the solubility involved in biopharmaceutics classification system of Chinese materia medica (CMMBCS) , the influences of artificial multicomponent environment on solubility were investigated in this study. Mathematical model was built to describe the variation trend of their influence on the solubility of puerarin. Carried out with progressive levels, single component environment: baicalin, berberine and glycyrrhizic acid; double-component environment: baicalin and glycyrrhizic acid, baicalin and berberine and glycyrrhizic acid and berberine; and treble-component environment: baicalin, berberin, glycyrrhizic acid were used to describe the variation tendency of their influences on the solubility of puerarin, respectively. And then, the mathematical regression equation model was established to characterize the solubility of puerarin under multicomponent environment.

  6. Recombinant deamidated mutants of Erwinia chrysanthemi L-asparaginase have similar or increased activity compared to wild-type enzyme.

    PubMed

    Gervais, David; Foote, Nicholas

    2014-10-01

    The enzyme Erwinia chrysanthemi L-asparaginase (ErA) is an important biopharmaceutical product used in the treatment of acute lymphoblastic leukaemia. Like all proteins, certain asparagine (Asn) residues of ErA are susceptible to deamidation to aspartic acid (Asp), which may be a concern with respect to enzyme activity and potentially to pharmaceutical efficacy. Recombinant ErA mutants containing Asn to Asp changes were expressed, purified and characterised. Two mutants with single deamidation sites (N41D and N281D) were found to have approximately the same specific activity (1,062 and 924 U/mg, respectively) as the wild-type (908 U/mg). However, a double mutant (N41D N281D) had an increased specific activity (1261 U/mg). The N41D mutation conferred a slight increase in the catalytic constant (k cat 657 s(-1)) when compared to the WT (k cat 565 s(-1)), which was further increased in the double mutant, with a k cat of 798 s(-1). Structural analyses showed that the slight changes caused by point mutation of Asn41 to Asp may have reduced the number of hydrogen bonds in this α-helical part of the protein structure, resulting in subtle changes in enzyme turnover, both structurally and catalytically. The increased α-helical content observed with the N41D mutation by circular dichroism spectroscopy correlates with the difference in k cat, but not K m. The N281D mutation resulted in a lower glutaminase activity compared with WT and the N41D mutant, however the N281D mutation also imparted less stability to the enzyme at elevated temperatures. Taken as a whole, these data suggest that ErA deamidation at the Asn41 and Asn281 sites does not affect enzyme activity and should not be a concern during processing, storage or clinical use. The production of recombinant deamidated variants has proven an effective and powerful means of studying the effect of these changes and may be a useful strategy for other biopharmaceutical products.

  7. Biowaiver monograph for immediate-release solid oral dosage forms: acetylsalicylic acid.

    PubMed

    Dressman, Jennifer B; Nair, Anita; Abrahamsson, Bertil; Barends, Dirk M; Groot, D W; Kopp, Sabine; Langguth, Peter; Polli, James E; Shah, Vinod P; Zimmer, Markus

    2012-08-01

    A biowaiver monograph for acetylsalicylic acid (ASA) is presented. Literature and experimental data indicate that ASA is a highly soluble and highly permeable drug, leading to assignment of this active pharmaceutical ingredient (API) to Class I of the Biopharmaceutics Classification System (BCS). Limited bioequivalence (BE) studies reported in the literature indicate that products that have been tested are bioequivalent. Most of the excipients used in products with a marketing authorization in Europe are not considered to have an impact on gastrointestinal motility or permeability. Furthermore, ASA has a wide therapeutic index. Thus, the risks to the patient that might occur if a nonbioequivalent product were to be incorrectly deemed bioequivalent according to the biowaiver procedure appear to be minimal. As a result, the BCS-based biowaiver procedure can be recommended for approval of new formulations of solid oral dosage forms containing ASA as the only API, including both multisource and reformulated products, under the following conditions: (1) excipients are chosen from those used in ASA products already registered in International Conference on Harmonization and associated countries and (2) the dissolution profiles of the test and the comparator products comply with the BE guidance. Copyright © 2012 Wiley Periodicals, Inc.

  8. International guidelines for bioequivalence of systemically available orally administered generic drug products: a survey of similarities and differences.

    PubMed

    Davit, Barbara; Braddy, April C; Conner, Dale P; Yu, Lawrence X

    2013-10-01

    The objective of this article is to discuss the similarities and differences among bioequivalence approaches used by international regulatory authorities when reviewing applications for marketing new generic drug products which are systemically active and intended for oral administration. We focused on the 13 jurisdictions and organizations participating in the International Generic Drug Regulators Pilot. These are Australia, Brazil, Canada, China, Chinese Taipei, the European Medicines Association, Japan, Mexico, Singapore, South Korea, Switzerland, the USA, and the World Health Organization. We began with a comparison of how the various jurisdictions and organizations define a generic product and its corresponding reference product. We then compared the following bioequivalence approaches: recommended bioequivalence study designs, method of pharmacokinetic calculations and bioequivalence acceptance limits, recommendations for modifying bioequivalence study designs and limits for highly variable drugs and narrow therapeutic index drugs, provisions for waiving bioequivalence study requirements (granting biowaivers), and implementation of the Biopharmaceutics Classification System. We observed that, overall, there are more similarities than differences in bioequivalence approaches among the regulatory authorities surveyed.

  9. Molecular isotopic engineering (MIE): industrial manufacture of naproxen of predetermined stable carbon-isotopic compositions for authenticity and security protection and intellectual property considerations

    NASA Astrophysics Data System (ADS)

    Jasper, J. P.; Farina, P.; Pearson, A.; Mezes, P. S.; Sabatelli, A. D.

    2016-05-01

    Molecular Isotopic Engineering (MIE) is the directed stable-isotopic synthesis of chemical products for reasons of product identification and of product security, and also for intellectual property considerations. We report here a generally excellent correspondence between the observed and predicted stable carbon-isotopic (δ13C) results for a successful directed synthesis of racemic mixture from its immediate precursors. The observed results are readily explained by the laws of mass balance and isotope mass balance. Oxygen- and hydrogen isotopic results which require an additional assessment of the effects of O and H exchange, presumably due to interaction with water in the reaction solution, are addressed elsewhere. A previous, cooperative study with the US FDA-DPA showed that individual manufacturers of naproxen could readily be differentiated by their stable-isotopic provenance (δ13C, δ18O, and δD ref. 1). We suggest that MIE can be readily employed in the bio/pharmaceutical industry without alteration of present manufacturing processes other than isotopically selecting and/or monitoring reactants and products.

  10. Biowaiver monographs for immediate release solid oral dosage forms: efavirenz.

    PubMed

    Cristofoletti, Rodrigo; Nair, Anita; Abrahamsson, Bertil; Groot, D W; Kopp, Sabine; Langguth, Peter; Polli, James E; Shah, Vinod P; Dressman, Jennifer B

    2013-02-01

    Literature data pertaining to the decision to allow a waiver of in vivo bioequivalence testing for the approval of immediate-release (IR) solid oral dosage forms containing efavirenz as the only active pharmaceutical ingredient (API) are reviewed. Because of lack of conclusive data about efavirenz's permeability and its failure to comply with the "high solubility" criteria according to the Biopharmaceutics Classification System (BCS), the API can be classified as BCS Class II/IV. In line with the solubility characteristics, the innovator product does not meet the dissolution criteria for a "rapidly dissolving product." Furthermore, product variations containing commonly used excipients or in the manufacturing process have been reported to impact the rate and extent of efavirenz absorption. Despite its wide therapeutic index, subtherapeutic levels of efavirenz can lead to treatment failure and also facilitate the emergence of efavirenz-resistant mutants. For all these reasons, a biowaiver for IR solid oral dosage forms containing efavirenz as the sole API is not scientifically justified for reformulated or multisource drug products. Copyright © 2012 Wiley Periodicals, Inc.

  11. Micropropagation of transgenic lettuce containing HBsAg as a method of mass-scale production of standardised plant material for biofarming purposes.

    PubMed

    Pniewski, Tomasz; Czyż, Marcin; Wyrwa, Katarzyna; Bociąg, Piotr; Krajewski, Paweł; Kapusta, Józef

    2017-01-01

    Micropropagation protocol of transgenic lettuce bearing S-, M- and L-HBsAg was developed for increased production of uniformised material for oral vaccine preparation. Effective manufacturing of plant-based biopharmaceuticals, including oral vaccines, depends on sufficient content of a protein of interest in the initial material and its efficient conversion into an administrable formulation. However, stable production of plants with a uniformised antigen content is equally important for reproducible processing. This can be provided by micropropagation techniques. Here, we present a protocol for micropropagation of transgenic lettuce lines bearing HBV surface antigens: S-, M- and L-HBsAg. These were multiplied through axillary buds to avoid the risk of somaclonal variation. Micropropagation effectiveness reached 3.5-5.7 per passage, which implies potential production of up to 6600 plant clones within a maximum 5 months. Multiplication and rooting rates were statistically homogenous for most transgenic and control plants. For most lines, more than 90 % of clones obtained via in vitro micropropagation had HBsAg content as high as reference plants directly developed from seeds. Clones were also several times more uniform in HBsAg expression. Variation coefficients of HBsAg content did not exceed 10 % for approximately 40-85 % of clones, or reached a maximum 20 % for 90 % of all clones. Tissue culture did not affect total and leaf biomass yields. Seed production for clones was decreased insignificantly and did not impact progeny condition. Micropropagation facilitates a substantial increase in the production of lettuce plants with high and considerably equalised HBsAg contents. This, together with the previously reported optimisation of plant tissue processing and its long-term stability, constitutes a successive step in manufacturing of a standardised anti-HBV oral vaccine of reliable efficacy.

  12. Biocorrosion of Endodontic Files through the Action of Two Species of Sulfate-reducing Bacteria: Desulfovibrio desulfuricans and Desulfovibrio fairfieldensis.

    PubMed

    Heggendorn, Fabiano Luiz; Gonçalves, Lucio Souza; Dias, Eliane Pedra; de Oliveira Freitas Lione, Viviane; Lutterbach, Márcia Teresa Soares

    2015-08-01

    This study assessed the biocorrosive capacity of two bacteria: Desulfovibrio desulfuricans and Desulfovibrio fairfieldensis on endodontic files, as a preliminary step in the development of a biopharmaceutical, to facilitate the removal of endodontic file fragments from root canals. In the first stage, the corrosive potential of the artificial saliva medium (ASM), modified Postgate E medium (MPEM), 2.5 % sodium hypochlorite (NaOCl) solution and white medium (WM), without the inoculation of bacteria was assessed by immersion assays. In the second stage, test samples were inoculated with the two species of sulphur-reducing bacteria (SRB) on ASM and modified artificial saliva medium (MASM). In the third stage, test samples were inoculated with the same species on MPEM, ASM and MASM. All test samples were viewed under an infinite focus Alicona microscope. No test sample became corroded when immersed only in media, without bacteria. With the exception of one test sample between those inoculated with bacteria in ASM and MASM, there was no evidence of corrosion. Fifty percent of the test samples demonstrated a greater intensity of biocorrosion when compared with the initial assays. Desulfovibrio desulfuricans and D. fairfieldensis are capable of promoting biocorrosion of the steel constituent of endodontic files. This study describes the initial development of a biopharmaceutical to facilitate the removal of endodontic file fragments from root canals, which can be successfully implicated in endodontic therapy in order to avoiding parendodontic surgery or even tooth loss in such events.

  13. Chapter 23: International Standard reagents for harmonization of HPV serology and DNA assays--an update.

    PubMed

    Pagliusi, Sonia R; Dillner, Joakim; Pawlita, Michael; Quint, Wim G V; Wheeler, Cosette M; Ferguson, M

    2006-08-31

    International reference materials such as International Standard reagents facilitate quality assurance of essential biopharmaceutical products and related in vitro diagnostic tests. Standardization of antibody and DNA measurements and harmonization of laboratory procedures are key to the success of cancer prevention strategies through screening methods as well as for development and implementation of vaccination against the human papillomavirus (HPV). The WHO supported the preparation and initial analysis of a panel of candidate serological and DNA reference reagents aimed at facilitating inter-laboratory comparisons and detection of HPV worldwide. Two international collaborative studies assessed the performance of various HPV antibody and HPV-DNA detection assays and examined the feasibility of generating HPV antibody and DNA standard reagents. These studies showed that improvement in performance and comparability of assays is urgently needed and that the use of the same International Standard reference reagent could significantly improve performance and comparability. It is hoped that the establishment of International Units and International Standards for HPV antibody and DNA analysis will be pursued with high priority.

  14. The third annual BRDS on research and development of nucleic acid-based nanomedicines

    PubMed Central

    Chaudhary, Amit Kumar

    2017-01-01

    The completion of human genome project, decrease in the sequencing cost, and correlation of genome sequencing data with specific diseases led to the exponential rise in the nucleic acid-based therapeutic approaches. In the third annual Biopharmaceutical Research and Development Symposium (BRDS) held at the Center for Drug Discovery and Lozier Center for Pharmacy Sciences and Education at the University of Nebraska Medical Center (UNMC), we highlighted the remarkable features of the nucleic acid-based nanomedicines, their significance, NIH funding opportunities on nanomedicines and gene therapy research, challenges and opportunities in the clinical translation of nucleic acids into therapeutics, and the role of intellectual property (IP) in drug discovery and development. PMID:27848223

  15. Biopharmaceutical industry-sponsored global clinical trials in emerging countries.

    PubMed

    Alvarenga, Lenio Souza; Martins, Elisabeth Nogueira

    2010-01-01

    To evaluate biopharmaceutical industry-sponsored clinical trials placed in countries previously described as emerging regions for clinical research, and potential differences for those placed in Brazil. Data regarding recruitment of subjects for clinical trials were retrieved from www.clinicaltrials.gov on February 2nd 2009. Proportions of sites in each country were compared among emerging countries. Multiple logistic regressions were performed to evaluate whether trial placement in Brazil could be predicted by trial location in other countries and/or by trial features. A total of 8,501 trials were then active and 1,170 (13.8%) included sites in emerging countries (i.e., Argentina, Brazil, China, Czech Republic, Hungary, India, Mexico, Poland, Russia, South Korea, and South Africa). South Korea and China presented a significantly higher proportion of sites when compared to other countries (p<0.05). Multiple logistic regressions detected no negative correlation between placement in other countries when compared to Brazil. Trials involving subjects with less than 15 years of age, those with targeted recruitment of at least 1,000 subjects, and seven sponsors were identified as significant predictors of trial placement in Brazil. No clear direct competition between Brazil and other emerging countries was detected. South Korea showed the higher proportion of sites and ranked third in total number of trials, appearing as a major player in attractiveness for biopharmaceutical industry-sponsored clinical trials.

  16. A Quadrupole Dalton-based multi-attribute method for product characterization, process development, and quality control of therapeutic proteins.

    PubMed

    Xu, Weichen; Jimenez, Rod Brian; Mowery, Rachel; Luo, Haibin; Cao, Mingyan; Agarwal, Nitin; Ramos, Irina; Wang, Xiangyang; Wang, Jihong

    2017-10-01

    During manufacturing and storage process, therapeutic proteins are subject to various post-translational modifications (PTMs), such as isomerization, deamidation, oxidation, disulfide bond modifications and glycosylation. Certain PTMs may affect bioactivity, stability or pharmacokinetics and pharmacodynamics profile and are therefore classified as potential critical quality attributes (pCQAs). Identifying, monitoring and controlling these PTMs are usually key elements of the Quality by Design (QbD) approach. Traditionally, multiple analytical methods are utilized for these purposes, which is time consuming and costly. In recent years, multi-attribute monitoring methods have been developed in the biopharmaceutical industry. However, these methods combine high-end mass spectrometry with complicated data analysis software, which could pose difficulty when implementing in a quality control (QC) environment. Here we report a multi-attribute method (MAM) using a Quadrupole Dalton (QDa) mass detector to selectively monitor and quantitate PTMs in a therapeutic monoclonal antibody. The result output from the QDa-based MAM is straightforward and automatic. Evaluation results indicate this method provides comparable results to the traditional assays. To ensure future application in the QC environment, this method was qualified according to the International Conference on Harmonization (ICH) guideline and applied in the characterization of drug substance and stability samples. The QDa-based MAM is shown to be an extremely useful tool for product and process characterization studies that facilitates facile understanding of process impact on multiple quality attributes, while being QC friendly and cost-effective.

  17. Applying Biopharmaceutical Classification System (BCS) Criteria to Predict Oral Absorption of Drugs in Dogs: Challenges and Pitfalls.

    PubMed

    Papich, Mark G; Martinez, Marilyn N

    2015-07-01

    The Biopharmaceutical Classification System (BCS) has been a prognostic tool for assessing the potential effects of formulation on the human drug oral bioavailability. When used in conjunction with in vitro dissolution tests, the BCS can support the prediction of in vivo product performance and the development of mechanistic models that support formulation assessments through the generation of "what if" scenarios. To date, the applicability of existing human BCS criteria has not been evaluated in dogs, thereby limiting its use in canine drug development. Therefore, we examined 50 drugs for which absolute bioavailability (F) was available both in dogs and humans. The drugs were also evaluated for any potential association between solubility (calculated from the dose number, Do) or lipophilicity (LogP) and F in dogs. In humans, solubility is determined in 250 mL of fluid. However, the appropriate volume for classifying drug solubility in dogs has not been established. In this analysis, the estimated volume of a water flush administered to fasted dogs (6 mL) and a volume of 250 mL scaled to a Beagle dog (35 mL) were examined. In addition, in humans, a Do value greater than 1.0 is used to define a compound as highly soluble and a LogP value greater than 1.72 as high permeability. These same criteria were applied for defining highly soluble and highly permeable in dogs. Whether using 35 or 6 mL to determine Do, the canine solubility classification remained unchanged for all but seven compounds. There were no clear associations between a drug's F in dogs and humans or between the canine value of F and either its human BCS classification, its LogP value, or the canine Do estimate. There was a tendency for those drugs with canine values of F equal to or greater than 80% to have LogP values equal to or greater than 1.0. Exceptions to this observation tended to be those compounds known to be absorbed via mechanisms other than passive diffusion (e.g., via transporters or paracellular transporters). Although there are limitations to the approach used in this study, the results of our assessment strongly suggest that the human BCS classification system requires substantial modification before it can be reliably applied to dogs.

  18. Molecular farming of human cytokines and blood products from plants: challenges in biosynthesis and detection of plant-produced recombinant proteins.

    PubMed

    da Cunha, Nicolau B; Vianna, Giovanni R; da Almeida Lima, Thaina; Rech, Elíbio

    2014-01-01

    Plants have emerged as an attractive alternative to the traditional mammalian cell cultures or microbial cell-based systems system for the production of valuable recombinant proteins. Through recombinant DNA technology, plants can be engineered to produce large quantities of pharmaceuticals and industrial proteins of high quality at low costs. The recombinant production, by transgenic plants, of therapeutic proteins normally present in human plasma, such as cytokines, coagulation factors, anticoagulants, and immunoglobulins, represents a response to the ongoing challenges in meeting the demand for therapeutic proteins to treat serious inherited or acquired bleeding and immunological diseases. As the clinical utilization of fractionated plasma molecules is limited by high production costs, using recombinant biopharmaceuticals derived from plants represents a feasible alternative to provide efficient treatment. Plant-derived pharmaceuticals also reduce the potential risks to patients of infection with pathogens or unwanted immune responses due to immunogenic antigens. In this review, we summarize the recent advances in molecular farming of cytokines. We also examine the technological basis, upcoming challenges, and perspectives for the biosynthesis and detection of these molecules in different plant production platforms. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Monoclonal antibody disulfide reduction during manufacturing

    PubMed Central

    Hutterer, Katariina M.; Hong, Robert W.; Lull, Jonathon; Zhao, Xiaoyang; Wang, Tian; Pei, Rex; Le, M. Eleanor; Borisov, Oleg; Piper, Rob; Liu, Yaoqing Diana; Petty, Krista; Apostol, Izydor; Flynn, Gregory C.

    2013-01-01

    Manufacturing-induced disulfide reduction has recently been reported for monoclonal human immunoglobulin gamma (IgG) antibodies, a widely used modality in the biopharmaceutical industry. This effect has been tied to components of the intracellular thioredoxin reduction system that are released upon cell breakage. Here, we describe the effect of process parameters and intrinsic molecule properties on the extent of reduction. Material taken from cell cultures at the end of production displayed large variations in the extent of antibody reduction between different products, including no reduction, when subjected to the same reduction-promoting harvest conditions. Additionally, in a reconstituted model in which process variables could be isolated from product properties, we found that antibody reduction was dependent on the cell line (clone) and cell culture process. A bench-scale model using a thioredoxin/thioredoxin reductase regeneration system revealed that reduction susceptibility depended on not only antibody class but also light chain type; the model further demonstrates that the trend in reducibility was identical to DTT reduction sensitivity following the order IgG1λ > IgG1κ > IgG2λ > IgG2κ. Thus, both product attributes and process parameters contribute to the extent of antibody reduction during production. PMID:23751615

  20. Microscale bioprocess optimisation.

    PubMed

    Micheletti, Martina; Lye, Gary J

    2006-12-01

    Microscale processing techniques offer the potential to speed up the delivery of new drugs to the market, reducing development costs and increasing patient benefit. These techniques have application across both the chemical and biopharmaceutical sectors. The approach involves the study of individual bioprocess operations at the microlitre scale using either microwell or microfluidic formats. In both cases the aim is to generate quantitative bioprocess information early on, so as to inform bioprocess design and speed translation to the manufacturing scale. Automation can enhance experimental throughput and will facilitate the parallel evaluation of competing biocatalyst and process options.

  1. The Innovative Medicines Initiative moves translational immunology forward.

    PubMed

    Goldman, Michel; Wittelsberger, Angela; De Magistris, Maria-Teresa

    2013-02-01

    The Innovative Medicines Initiative (IMI) was established in 2008 as a public-private partnership between the European Union and the European Federation of Pharmaceutical Industries and Associations with the mission to promote the development of novel therapies through collaborative efforts based on the concept of pre-competitive research. Several consortia supported by IMI are dedicated to immuno-inflammatory disorders, immune-based biopharmaceuticals and vaccines. Herein, we present the key principles underlying IMI, briefly review the status of projects related to translational immunology, and present future topics of interest to immunologists.

  2. Benefits and Limitations of Protein Hydrolysates as Components of Serum-Free Media for Animal Cell Culture Applications

    NASA Astrophysics Data System (ADS)

    Lobo-Alfonso, Juliet; Price, Paul; Jayme, David

    Increased understanding of influential factors for the cultivation of animal cells, combined with heightened regulatory concern over potential transmission of adventitious contaminants associated with serum and other animal-derived components, has elevated interest in using protein hydrolysates as serum replacements or nutrient supplements. This paper reviews the chemistry and biology of various hydrolysates derived from animal, plant and microbial sources. It provides specific examples of a beneficial selection of plant and yeast hydrolysates as ingredients of serum-free nutrient formulations for bioproduction applications of cultured mammalian and insect cells. Strategies for customizing and optimizing nutrients for specialized applications and general benefits and limitations of protein hydrolysates for biopharmaceutical production are also discussed.

  3. AMCP Partnership Forum: FDAMA Section 114-Improving the Exchange of Health Care Economic Data.

    PubMed

    2016-07-01

    The Food and Drug Administration Modernization Act (FDAMA) of 1997 included Section 114 as a regulatory safe harbor with the goal of increasing the dissemination of health care economic information (HCEI) to those responsible for formulary decision making. HCEI is typically not included within FDA-approved labeling. Although it has been nearly 20 years since passage and enactment of Section 114, proactive distribution of HCEI has been underutilized by biopharmaceutical companies partly because of (a) vague wording in the statute and (b) the absence of FDA-implementing regulations. Consequently, companies and health care decisions makers have had to speculate about the scope of the provisions. As a result, the biopharmaceutical industry has significant concerns about stepping over the line when using the safe harbor. Also, payers and other "payer-like" decision makers (e.g., self-funded corporate insurers) who are trying to make appropriate coverage and utilization decisions are demanding this information but are not receiving it because of the uncertainties in the statute. Considering this renewed interest by multiple stakeholders regarding the need for revisions and/or guidance pertaining to Section 114, the Academy of Managed Care Pharmacy held a partnership forum on March 1-2, 2016, with a diverse group of health care stakeholders to provide the FDA with considerations for disseminating a guidance document on current thinking for the sharing of HCEI with health care decision makers. Forum participants represented the managed care industry, biopharmaceutical industry, health care providers, pharmacoeconomic experts, policy experts, and patient advocacy groups with specific expertise in the development, use, and dissemination of HCEI. The multistakeholder group represented the key professionals and entities affected by the provisions of Section 114 and present the collective credibility necessary for Congress and the FDA to modernize and operationalize the safe harbor by using the consensus recommendations developed during the forum. Speakers, panelists, and attendees focused on 4 terms in Section 114 that remain open to interpretation by companies and enforcement bodies: (1) the scope of HCEI, (2) the scope of "formulary committee or similar entity," (3) the definition of "competent and reliable scientific evidence (CRSE)," and (4) the parameters of how information "directly relates to an approved indication." Based on the forum results, it was recommended that the safe harbor for companies' proactive dissemination of information under Section 114 should include health care decision makers beyond health plan formulary committees, including organizations, or individuals in their role in an organization, who make health care decisions for patient populations. Recommendations also suggested expansion to organizations that evaluate HCEI or develop value frameworks and compendia and individuals in such organizations. Forum participants also recommended that HCEI be truthful, and not misleading, and be based on the expertise of professionals in the relevant area. HCEI must also be developed and disclosed in a transparent, reproducible, and accurate manner. Forum participants also discussed and agreed on the types of information, format, and processes by which managed care pharmacy and other health care decision makers seek to receive HCEI from biopharmaceutical companies. Finally, participants encouraged the FDA, Congress, and other stakeholders to find ways to ensure that patients or their representative organizations have appropriate access to a full range of information about their medications and that information related to the medication pipeline is communicated to appropriate stakeholders in a timely manner. The AMCP Partnership Forum on FDAMA Section 114-Improving the Exchange of Pharmacoeconomic Data and the development of this proceedings document were supported by AbbVie, Amgen, Boehringer Ingelheim Pharmaceuticals, Merck & Co., National Pharmaceutical Council, Pharmaceutical Research and Manufacturers of America, Precision for Value, Pfizer, Takeda Pharmaceuticals, U.S.A., and Xcenda. All sponsors participated in the forum and participated in revising and approving the manuscript.

  4. Investigating the dissolution profiles of amoxicillin, metronidazole, and zidovudine formulations used in Trinidad and Tobago, West Indies.

    PubMed

    Stuart, Arlene Villarroel; Zuo, Jieyu; Löbenberg, Raimar

    2014-10-01

    Trinidad and Tobago is a twin-island Republic in the Caribbean and like many developing countries, it has included generic drugs on the national drug formulary to decrease the financial burden of pharmaceutical medications. However, to ensure that medications received by patients are beneficial, generic drugs need to be interchangeable with the innovator which has demonstrated safety, efficacy, and quality. The objective of the study was to compare the dissolution profiles and weight variations for different formulations of amoxicillin, metronidazole, and zidovudine that are on the national drug formulary and marketed in Trinidad and Tobago. All the products investigated are categorized as class 1 drugs according to the Biopharmaceutics Classification System (BCS) and the dissolution profiles were assessed according to the World Health Organization (WHO) criteria for interchangeability between products. The similarity factor, f 2, was used to determine sameness between the products. No generic formulation was found to be similar to Amoxil® 500-mg capsules. The two generic products for metronidazole 200-mg tablets demonstrated more than 85% drug release within 15 min in all three of the buffers; however, their 400-mg counterparts did not fulfill this requirement. The zidovudine 300-mg tablet complied with the requirements in buffer pH 4.5 and simulated gastric fluid (SGF) but not for simulated intestinal fluid (SIF). Some Class 1 pharmaceutical formulations may possess the same active ingredient and amount of drug but may show significant differences to in vitro equivalence requirements. Nevertheless, the dissolution process is suitable to detect these variations.

  5. QbD-Enabled Development of Novel Stimuli-Responsive Gastroretentive Systems of Acyclovir for Improved Patient Compliance and Biopharmaceutical Performance.

    PubMed

    Singh, Bhupinder; Kaur, Anterpreet; Dhiman, Shashi; Garg, Babita; Khurana, Rajneet Kaur; Beg, Sarwar

    2016-04-01

    The current studies entail systematic quality by design (QbD)-based development of stimuli-responsive gastroretentive drug delivery systems (GRDDS) of acyclovir using polysaccharide blends for attaining controlled drug release profile and improved patient compliance. The patient-centric quality target product profile was defined and critical quality attributes (CQAs) earmarked. Risk assessment studies, carried out through Ishikawa fish bone diagram and failure mode, effect, and criticality analysis, helped in identifying the plausible risks or failure modes affecting the quality attributes of the drug product. A face-centered cubic design was employed for systematic development and optimization of the concentration of sodium alginate (X 1) and gellan (X 2) as the critical material attributes (CMAs) in the stimuli-responsive formulations, which were evaluated for CQAs viz. viscosity, gel strength, onset of floatation, and drug release characteristics. Mathematical modeling was carried out for generation of design space, and optimum formulation was embarked upon, exhibiting formulation characteristics marked by excellent floatation and bioadhesion characteristics along with promising drug release control up to 24 h. Drug-excipient compatibility studies through FTIR and DSC revealed absence of any interaction(s) among the formulation excipients. In vivo pharmacokinetic studies in Wistar rats corroborated extension in the drug absorption profile from the optimized stimuli-responsive GR formulations vis-à-vis the marketed suspension (ZOVIRAX®). Establishment of in vitro/in vivo correlation (IVIVC) revealed a high degree of correlation between the in vitro and in vivo data. In a nutshell, the present investigations report the successful development of stimuli-responsive GRDDS of acyclovir, which can be applicable as a platform approach for other drugs too.

  6. Fluorescence dye-based detection of mAb aggregates in CHO culture supernatants.

    PubMed

    Paul, Albert Jesuran; Schwab, Karen; Prokoph, Nina; Haas, Elena; Handrick, René; Hesse, Friedemann

    2015-06-01

    Product yields, efficacy, and safety of monoclonal antibodies (mAbs) are reduced by the formation of higher molecular weight aggregates during upstream processing. In-process characterization of mAb aggregate formation is a challenge since there is a lack of a fast detection method to identify mAb aggregates in cell culture. In this work, we present a rapid method to characterize mAb aggregate-containing Chinese hamster ovary (CHO) cell culture supernatants. The fluorescence dyes thioflavin T (ThT) and 4-4-bis-1-phenylamino-8-naphthalene sulfonate (Bis-ANS) enabled the detection of soluble as well as large mAb aggregates. Partial least square (PLS) regression models were used to evaluate the linearity of the dye-based mAb aggregate detection in buffer down to a mAb aggregate concentration of 2.4 μg mL(-1). Furthermore, mAb aggregates were detected in bioprocess medium using Bis-ANS and ThT. Dye binding to aggregates was stable for 60 min, making the method robust and reliable. Finally, the developed method using 10 μmol L(-1) Bis-ANS enabled discrimination between CHO cell culture supernatants containing different levels of mAb aggregates. The method can be adapted for high-throughput screening, e.g., to screen for cell culture conditions influencing mAb product quality, and hence can contribute to the improvement of production processes of biopharmaceuticals in mammalian cell culture.

  7. Use of a small molecule cell cycle inhibitor to control cell growth and improve specific productivity and product quality of recombinant proteins in CHO cell cultures.

    PubMed

    Du, Zhimei; Treiber, David; McCarter, John D; Fomina-Yadlin, Dina; Saleem, Ramsey A; McCoy, Rebecca E; Zhang, Yuling; Tharmalingam, Tharmala; Leith, Matthew; Follstad, Brian D; Dell, Brad; Grisim, Brent; Zupke, Craig; Heath, Carole; Morris, Arvia E; Reddy, Pranhitha

    2015-01-01

    The continued need to improve therapeutic recombinant protein productivity has led to ongoing assessment of appropriate strategies in the biopharmaceutical industry to establish robust processes with optimized critical variables, that is, viable cell density (VCD) and specific productivity (product per cell, qP). Even though high VCD is a positive factor for titer, uncontrolled proliferation beyond a certain cell mass is also undesirable. To enable efficient process development to achieve consistent and predictable growth arrest while maintaining VCD, as well as improving qP, without negative impacts on product quality from clone to clone, we identified an approach that directly targets the cell cycle G1-checkpoint by selectively inhibiting the function of cyclin dependent kinases (CDK) 4/6 with a small molecule compound. Results from studies on multiple recombinant Chinese hamster ovary (CHO) cell lines demonstrate that the selective inhibitor can mediate a complete and sustained G0/G1 arrest without impacting G2/M phase. Cell proliferation is consistently and rapidly controlled in all recombinant cell lines at one concentration of this inhibitor throughout the production processes with specific productivities increased up to 110 pg/cell/day. Additionally, the product quality attributes of the mAb, with regard to high molecular weight (HMW) and glycan profile, are not negatively impacted. In fact, high mannose is decreased after treatment, which is in contrast to other established growth control methods such as reducing culture temperature. Microarray analysis showed major differences in expression of regulatory genes of the glycosylation and cell cycle signaling pathways between these different growth control methods. Overall, our observations showed that cell cycle arrest by directly targeting CDK4/6 using selective inhibitor compound can be utilized consistently and rapidly to optimize process parameters, such as cell growth, qP, and glycosylation profile in recombinant antibody production cultures. © 2014 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc.

  8. Toward global standards for comparator pharmaceutical products: case studies of amoxicillin, metronidazole, and zidovudine in the Americas.

    PubMed

    Löbenberg, Raimar; Chacra, Nadia B; Stippler, Erika S; Shah, Vinod P; DeStefano, Anthony J; Hauck, Walter W; Williams, Roger L

    2012-09-01

    This study compared in vitro dissolution characteristics and other quality measures of different amoxicillin, metronidazole, and zidovudine products purchased in the Americas to a comparator pharmaceutical product (CPP). These three drugs are classified as Biopharmaceutics Classification System Class I drugs with the possibility that dissolution findings might be used to document bioequivalence. All investigated zidovudine products were found to be in vitro equivalent to the CPP. Only 3 of 12 tested amoxicillin products were found to be in vitro equivalent to the CPP. None of the tested metronidazole products were in vitro equivalent to the CPP. These findings suggest but do not confirm bioinequivalence where in vitro comparisons failed, given that an in vivo blood level study might have confirmed bioequivalence. At times, identifying a CPP in one of the selected markets proved difficult. The study demonstrates that products sold across national markets may not be bioequivalent. When coupled with the challenge of identifying a CPP in different countries, the results of this study suggest the value of an international CPP as well as increased use of BCS approaches as means of either documenting bioequivalence or signaling the need for further in vivo studies. Because of increased movement of medicines across national borders, practitioners and patients would benefit from these approaches.

  9. Stock Market Returns and Clinical Trial Results of Investigational Compounds: An Event Study Analysis of Large Biopharmaceutical Companies

    PubMed Central

    Hwang, Thomas J.

    2013-01-01

    Background For biopharmaceutical companies, investments in research and development are risky, and the results from clinical trials are key inflection points in the process. Few studies have explored how and to what extent the public equity market values clinical trial results. Methods Our study dataset matched announcements of clinical trial results for investigational compounds from January 2011 to May 2013 with daily stock market returns of large United States-listed pharmaceutical and biotechnology companies. Event study methodology was used to examine the relationship between clinical research events and changes in stock returns. Results We identified public announcements for clinical trials of 24 investigational compounds, including 16 (67%) positive and 8 (33%) negative events. The majority of announcements were for Phase 3 clinical trials (N = 13, 54%), and for oncologic (N = 7, 29%) and neurologic (N = 6, 24%) indications. The median cumulative abnormal returns on the day of the announcement were 0.8% (95% confidence interval [CI]: –2.3, 13.4%; P = 0.02) for positive events and –2.0% (95% CI: –9.1, 0.7%; P = 0.04) for negative events, with statistically significant differences from zero. In the day immediately following the announcement, firms with positive events were associated with stock price corrections, with median cumulative abnormal returns falling to 0.4% (95% CI: –3.8, 12.3%; P = 0.33). For firms with negative announcements, the median cumulative abnormal returns were –1.7% (95% CI: –9.5, 1.0%; P = 0.03), and remained significantly negative over the two day event window. The magnitude of abnormal returns did not differ statistically by indication, by trial phase, or between biotechnology and pharmaceutical firms. Conclusions The release of clinical trial results is an economically significant event and has meaningful effects on market value for large biopharmaceutical companies. Stock return underperformance due to negative events is greater in magnitude and persists longer than abnormal returns due to positive events, suggesting asymmetric market reactions. PMID:23951273

  10. A Roadmap for the Implementation of Continued Process Verification.

    PubMed

    Boyer, Marcus; Gampfer, Joerg; Zamamiri, Abdel; Payne, Robin

    2016-01-01

    In 2014, the members of the BioPhorum Operations Group (BPOG) produced a 100-page continued process verification case study, entitled "Continued Process Verification: An Industry Position Paper with Example Protocol". This case study captures the thought processes involved in creating a continued process verification plan for a new product in response to the U.S. Food and Drug Administration's guidance on the subject introduced in 2011. In so doing, it provided the specific example of a plan developed for a new molecular antibody product based on the "A MAb Case Study" that preceded it in 2009.This document provides a roadmap that draws on the content of the continued process verification case study to provide a step-by-step guide in a more accessible form, with reference to a process map of the product life cycle. It could be used as a basis for continued process verification implementation in a number of different scenarios: For a single product and process;For a single site;To assist in the sharing of data monitoring responsibilities among sites;To assist in establishing data monitoring agreements between a customer company and a contract manufacturing organization. The U.S. Food and Drug Administration issued guidance on the management of manufacturing processes designed to improve quality and control of drug products. This involved increased focus on regular monitoring of manufacturing processes, reporting of the results, and the taking of opportunities to improve. The guidance and practice associated with it is known as continued process verification This paper summarizes good practice in responding to continued process verification guidance, gathered from subject matter experts in the biopharmaceutical industry. © PDA, Inc. 2016.

  11. Risk-based Process Development of Biosimilars as Part of the Quality by Design Paradigm.

    PubMed

    Zalai, Dénes; Dietzsch, Christian; Herwig, Christoph

    2013-01-01

    In the last few years, several quality by design (QbD) studies demonstrated the benefit of systematic approaches for biopharmaceutical development. However, only very few studies identified biosimilars as a special case of product development. The targeted quality profile of biosimilars is strictly defined by the originator's product characteristic. Moreover, the major source of prior knowledge is the experience with the originator product itself. Processing this information in biosimilar development has a major effect on risk management and process development strategies. The main objective of this contribution is to demonstrate how risk management can facilitate the implementation of QbD in early-stage product development with special emphasis on fitting the reported approaches to biosimilars. Risk assessments were highlighted as important tools to integrate prior knowledge in biosimilar development. The risk assessment process as suggested by the International Conference on Harmonization (ICH Q9) was reviewed and three elements were identified to play a key role in targeted risk assessment approaches: proper understanding of target linkage, risk assessment tool compliance, and criticality threshold value. Adjusting these steps to biosimilar applications helped to address some unique challenges of these products such as a strictly defined quality profile or a lack of process knowledge. This contribution demonstrates the need for tailored risk management approaches for the risk-based development of biosimilars and provides novel tools for the integration of additional knowledge available for these products. The pharmaceutical industry is facing challenges such as profit loss and price competition. Companies are forced to rationalize business models and to cut costs in development as well as manufacturing. These trends recently hinder the implementation of any concepts that do not offer certain financial benefit or promise a long return of investment. Quality by design (QbD) is a concept that is currently struggling for more acceptance from the side of the pharmaceutical industry. To achieve this, the major goals of QbD have to be revisited and QbD tools have to be subsequently developed. This contribution offers an example as to how implement risk management in early-stage biosimilar development as part of the QbD concept. The main goal was to go beyond the conventional QbD workflow and to adjust risk management to the challenges of biosimilar products. Accordingly, instead of using methods like failure mode and effects analysis, recommendations of the ICH Q9 guideline were reviewed and put into practice by creating tailored risk assessment tools. The novelty of this contribution is to report those tailored tools ready-to-use for early bioprocess development of biosimilars along QbD principles.

  12. Fully Automated Sample Preparation for Ultrafast N-Glycosylation Analysis of Antibody Therapeutics.

    PubMed

    Szigeti, Marton; Lew, Clarence; Roby, Keith; Guttman, Andras

    2016-04-01

    There is a growing demand in the biopharmaceutical industry for high-throughput, large-scale N-glycosylation profiling of therapeutic antibodies in all phases of product development, but especially during clone selection when hundreds of samples should be analyzed in a short period of time to assure their glycosylation-based biological activity. Our group has recently developed a magnetic bead-based protocol for N-glycosylation analysis of glycoproteins to alleviate the hard-to-automate centrifugation and vacuum-centrifugation steps of the currently used protocols. Glycan release, fluorophore labeling, and cleanup were all optimized, resulting in a <4 h magnetic bead-based process with excellent yield and good repeatability. This article demonstrates the next level of this work by automating all steps of the optimized magnetic bead-based protocol from endoglycosidase digestion, through fluorophore labeling and cleanup with high-throughput sample processing in 96-well plate format, using an automated laboratory workstation. Capillary electrophoresis analysis of the fluorophore-labeled glycans was also optimized for rapid (<3 min) separation to accommodate the high-throughput processing of the automated sample preparation workflow. Ultrafast N-glycosylation analyses of several commercially relevant antibody therapeutics are also shown and compared to their biosimilar counterparts, addressing the biological significance of the differences. © 2015 Society for Laboratory Automation and Screening.

  13. Enhancement of Curcumin Bioavailability Via the Prodrug Approach: Challenges and Prospects.

    PubMed

    Ratnatilaka Na Bhuket, Pahweenvaj; El-Magboub, Asma; Haworth, Ian S; Rojsitthisak, Pornchai

    2017-06-01

    Curcumin is a natural product with many interesting pharmacological properties. However, these are offset by the particularly poor biopharmaceutical properties. The oral bioavailability of curcumin in humans is very low, mainly due to low solubility, poor stability, and extensive metabolism. This has led to multiple approaches to improve bioavailability, including administration of curcumin with metabolism inhibitors, formulation into nanoparticles, modification of the curcumin structure, and development of curcumin prodrugs. In this paper, we focus on the pharmacokinetic outcomes of these approaches. Pharmacokinetic parameters of curcumin after release from prodrugs are dependent on the linker between curcumin and the promoiety, and the release itself may depend on the physiological and enzymatic environment at the site of cleavage. This is an area in which more data are required for rational design of improved linkers. Cytotoxicity of curcumin prodrugs seems to correlate well with cellular uptake in vitro, but the in vivo relevance is uncertain. We conclude that improved experimental and theoretical models of absorption of curcumin prodrugs, development of accurate analytical methods for simultaneous measurement of plasma levels of prodrug and released curcumin, and acquisition of more pharmacokinetic data in animal models for dose prediction in humans are required to facilitate movement of curcumin prodrugs into clinical trials.

  14. Simultaneous monitoring of oxidation, deamidation, isomerization, and glycosylation of monoclonal antibodies by liquid chromatography-mass spectrometry method with ultrafast tryptic digestion.

    PubMed

    Wang, Yi; Li, Xiaojuan; Liu, Yan-Hui; Richardson, Daisy; Li, Huijuan; Shameem, Mohammed; Yang, Xiaoyu

    Monoclonal antibodies are subjected to a wide variety of post-translational modifications (PTMs) that cause structural heterogeneity. Characterization and control of these modifications or quality attributes are critical to ensure antibody quality and to define any potential effects on the ultimate safety and potency of antibody therapeutics. The biopharmaceutical industry currently uses numerous tools to analyze these quality attributes individually, which requires substantial time and resources. Here, we report a simple and ultrafast bottom-up liquid chromatography-mass spectrometry (uLC-MS) method with 5 min tryptic digestion to simultaneously analyze multiple modifications, including oxidation, deamidation, isomerization, glycation, glycosylation, and N-terminal pyro-glutamate formation, which can occur during antibody production in mammalian cell culture, during purification and/or on storage. Compared to commonly used preparation procedures, this uLC-MS method eliminates assay artifacts of falsely-increased Met oxidation, Asp isomerization, and Asn deamidation, a problem associated with long digestion times in conventional LC-MS methods. This simple, low artifact multi-attribute uLC-MS method can be used to quickly and accurately analyze samples at any stage of antibody drug development, in particular for clone and media selection during cell culture development.

  15. Product Development Studies on Sonocrystallized Curcumin for the Treatment of Gastric Cancer

    PubMed Central

    Ashif Khan, Mohammad; Akhtar, Nida; Sharma, Vijay; Pathak, Kamla

    2015-01-01

    Curcumin suffers from the limitation of poor solubility and low dissolution that can lead to limited applications. The investigation was aimed to substantiate the potentiality of melt sonocrystallized gastroretentive tablets of curcumin. Melt sonocrystallized curcumin (MSC CMN) was developed and its therapeutic potential was validated by in vitro cytotoxicity studies against Human oral cancer cell line KB. MSC curcumin was then formulated as floating tablet and evaluated. MSC form of CMN exhibited 2.36-fold and 2.40-fold solubility enhancement in distilled water and phosphate buffer, pH 4.5, respectively, better flow properties and intrinsic dissolution rate (0.242 ± 1.42 and 0.195 ± 1.26 mg/cm2/min) in comparison to its original form. The GI50 value of MSC CMN was found to be less than 10, specifying inhibition of growth more effectively at its least concentration by 50%. The gastroretentive-floating tablet (Formulation F4) displayed controlled drug release (96.22% ± 1.43%) for over 12 h. The present study revealed melt sonocrystallization can be used to produce particles with superior biopharmaceutical properties without the use of organic solvents or the addition of other excipients, and amenable to formulation in to a pharmaceutical dosage form. PMID:25923809

  16. Product development studies on sonocrystallized curcumin for the treatment of gastric cancer.

    PubMed

    Khan, Mohammad Ashif; Akhtar, Nida; Sharma, Vijay; Pathak, Kamla

    2015-04-27

    Curcumin suffers from the limitation of poor solubility and low dissolution that can lead to limited applications. The investigation was aimed to substantiate the potentiality of melt sonocrystallized gastroretentive tablets of curcumin. Melt sonocrystallized curcumin (MSC CMN) was developed and its therapeutic potential was validated by in vitro cytotoxicity studies against Human oral cancer cell line KB. MSC curcumin was then formulated as floating tablet and evaluated. MSC form of CMN exhibited 2.36-fold and 2.40-fold solubility enhancement in distilled water and phosphate buffer, pH 4.5, respectively, better flow properties and intrinsic dissolution rate (0.242 ± 1.42 and 0.195 ± 1.26 mg/cm2/min) in comparison to its original form. The GI50 value of MSC CMN was found to be less than 10, specifying inhibition of growth more effectively at its least concentration by 50%. The gastroretentive-floating tablet (Formulation F4) displayed controlled drug release (96.22% ± 1.43%) for over 12 h. The present study revealed melt sonocrystallization can be used to produce particles with superior biopharmaceutical properties without the use of organic solvents or the addition of other excipients, and amenable to formulation in to a pharmaceutical dosage form.

  17. Healthcare sustainability and the challenges of innovation to biopharmaceuticals in Canada.

    PubMed

    Rosenberg-Yunger, Zahava R S; Daar, Abdallah S; Singer, Peter A; Martin, Douglas K

    2008-09-01

    Governments around the world have focused on issues of sustainability, innovations and priority setting within their health systems. Tension exists between governments' desire to increase biotechnology innovation and the need to address health system sustainability. This commentary will: (1) review government initiatives in biotechnology in health innovation; (2) discuss how innovation, specifically biopharmaceuticals, challenges health system sustainability; and (3) explore how the tension between innovation and sustainability can be addressed using fairness and legitimacy. It is evident that a uni-jurisdictional approach may not be optimal in promoting innovation while ensuring a sustainable health system. Harmonization of biotechnology policies across the federal, provincial, and territorial governments will ensure consistent policies across all branches in order to circumvent the possibility of one governmental branch refusing to reimburse the very innovations other branches are promoting.

  18. Heterologous expression and purification of active L-asparaginase I of Saccharomyces cerevisiae in Escherichia coli host.

    PubMed

    Santos, João H P M; Costa, Iris M; Molino, João V D; Leite, Mariana S M; Pimenta, Marcela V; Coutinho, João A P; Pessoa, Adalberto; Ventura, Sónia P M; Lopes, André M; Monteiro, Gisele

    2017-03-01

    l-asparaginase (ASNase) is a biopharmaceutical widely used to treat child leukemia. However, it presents some side effects, and in order to provide an alternative biopharmaceutical, in this work, the genes encoding ASNase from Saccharomyces cerevisiae (Sc_ASNaseI and Sc_ASNaseII) were cloned in the prokaryotic expression system Escherichia coli. In the 93 different expression conditions tested, the Sc_ASNaseII protein was always obtained as an insoluble and inactive form. However, the Sc_ASNaseI (His) 6 -tagged recombinant protein was produced in large amounts in the soluble fraction of the protein extract. Affinity chromatography was performed on a Fast Protein Liquid Chromatography (FPLC) system using Ni 2+ -charged, HiTrap Immobilized Metal ion Affinity Chromatography (IMAC) FF in order to purify active Sc_ASNaseI recombinant protein. The results suggest that the strategy for the expression and purification of this potential new biopharmaceutical protein with lower side effects was efficient since high amounts of soluble Sc_ASNaseI with high specific activity (110.1 ± 0.3 IU mg -1 ) were obtained. In addition, the use of FPLC-IMAC proved to be an efficient tool in the purification of this enzyme, since a good recovery (40.50 ± 0.01%) was achieved with a purification factor of 17-fold. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:416-424, 2017. © 2016 American Institute of Chemical Engineers.

  19. Drug carrier systems for solubility enhancement of BCS class II drugs: a critical review.

    PubMed

    Kumar, Sumit; Bhargava, Deepak; Thakkar, Arti; Arora, Saahil

    2013-01-01

    Poor aqueous solubility impedes a drug's bioavailability and challenges its pharmaceutical development. Pharmaceutical development of drugs with poor water solubility requires the establishment of a suitable formulation layout among various techniques. Various approaches have been investigated extensively to improve the aqueous solubility and poor dissolution rate of BCS class II and IV drugs. In this literature review, novel formulation options, particularly for class II drugs designed for applications such as micronization, self-emulsification, cyclodextrin complexation, co-crystallisation, super critical fluid technology, solubilisation by change in pH, salt formation, co-solvents, melt granulation, and solid dispersion, liposomal/niosomal formulations, are discussed in detail to introduce biopharmaceutical challenges and recent approaches to facilitate more efficient drug formulation and development.

  20. Improved Performance in Mammalian Cell Perfusion Cultures by Growth Inhibition.

    PubMed

    Wolf, Moritz K F; Closet, Aurélie; Bzowska, Monika; Bielser, Jean-Marc; Souquet, Jonathan; Broly, Hervé; Morbidelli, Massimo

    2018-05-21

    Mammalian cell perfusion cultures represent a promising alternative to the current fed-batch technology for the production of various biopharmaceuticals. Long-term operation at a fixed viable cell density (VCD) requires a viable culture and a constant removal of excessive cells. Product loss in the cell removing bleed stream deteriorates the process yield. In this study, the authors investigate the use of chemical and environmental growth inhibition on culture performance by either adding valeric acid (VA) to the production media or by reducing the culture temperature (33.0 °C) with respect to control conditions (36.5 °C, no VA). Low temperature significantly reduces cellular growth, thus, resulting in lower bleed rates accompanied by a reduced product loss of 11% compared to 26% under control conditions. Additionally, the cell specific productivity of the target protein improves and maintained stable leading to media savings per mass of product. VA shows initially an inhibitory effect on cellular growth. However, cells seemed to adapt to the presence of the inhibitor resulting in a recovery of the cellular growth. Cell cycle and Western blot analyses support the observed results. This work underlines the role of temperature as a key operating variable for the optimization of perfusion cultures. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Top