Science.gov

Sample records for bioprosthetic regenerate template

  1. Warfare-related Complex Abdominal Wall Reconstruction Using a Bioprosthetic Regenerate Template and Negative Pressure Therapy

    PubMed Central

    Glaser, Jacob J.; Sheppard, Forest R.; Gage, Fred A.; Kumar, Anand R.; Liston, William A.; Elster, Eric A.; Dunne, James R.; Blankenship, Charles L.

    2009-01-01

    The views expressed in this article are those of the authors and do not reflect the official policy of the Department of the Army, Department of the Navy, the Department of Defense, or the United States Government. We are military service members (or employees of the US Government). This work was prepared as part of our official duties. Title 17 U.S.C. 105 provides that “Copyright protection under this title is not available for any work of the United States Government.” Title 17 U.S.C. 101 defines a US Government work as a work prepared by a military service member or employee of the US Government as part of that person's official duties. Warfare-related torso/abdominal wounds are often unique and complex and can pose a significant reconstructive challenge. The objective of this manuscript is to report the unique and successful management of a complex warfare-related abdominal wound. A dermal regenerate template in combination with negative pressure wound therapy was used to reconstitute lateral abdominal wall integrity after radical debridement and control of a necrotizing soft tissue infection of the torso. Adjunctive continuous negative pressure (vacuum assisted closure) therapy was used to provide external coverage and encourage the formation of granulation tissue. With this combination therapy, torso wound size decreased in surface area by 82% and the underlying musculofascial defect decreased by 64%. Neovascularization of a 55-cm2 acellular dermal graft was achieved as evidenced by surface granulation and complete survival of a partial-thickness skin graft. In our patient with a complex war injury, advanced tissue replacement techniques and negative pressure wound therapy resulted in a decreased abdominal wall defect, a restoration of abdominal wall integrity/domain, and allowed for concurrent surgical treatment of complex intra-abdominal injuries. PMID:19529754

  2. Salivary Gland Development: A Template for Regeneration

    PubMed Central

    Patel, Vaishali N.; Hoffman, Matthew P.

    2014-01-01

    The mammalian salivary gland develops as a highly branched structure designed to produce and secrete saliva. This review will focus on research on mouse submandibular gland development and the translation of this basic research towards therapy for patients suffering from salivary hypofunction. Here we review the most recent literature that has enabled a better understanding of the mechanisms of salivary gland development. Additionally, we discuss approaches proposed to restore salivary function using gene and cell-based therapy. Increasing our understanding of the developmental mechanisms involved during development is critical to design effective therapies for regeneration and repair of damaged glands. PMID:24333774

  3. Electrospun human keratin matrices as templates for tissue regeneration.

    PubMed

    Sow, Wan Ting; Lui, Yuan Siang; Ng, Kee Woei

    2013-04-01

    The aim of this work was to study the feasibility of fabricating human hair keratin matrices through electrospinning and to evaluate the potential of these matrices for tissue regeneration. Keratin was extracted from human hair using Na2S and blended with poly(ethylene oxide) in the weight ratio of 60:1 for electrospinning. Physical morphology and chemical properties of the matrices were characterized using scanning electron microscopy and Fourier transform infrared spectroscopy, respectively. Cell viability and morphology of murine and human fibroblasts cultured on the matrices were evaluated through the Live/Dead(®) assay and scanning electron microscopy. Electrospun keratin matrices were successfully produced without affecting the chemical conformation of keratin. Fibroblasts cultured on keratin matrices showed healthy morphology and penetration into matrices at day 7. Electrospun human hair keratin matrices provide a bioinductive and structural environment for cell growth and are thus attractive as alternative templates for tissue regeneration.

  4. Dermal regeneration template in the surgical management of diabetic foot ulcers: a series of five cases.

    PubMed

    Silverstein, Glenn

    2006-01-01

    Soft-tissue defects in the feet of patients with diabetes continue to pose a challenge because adequate debridement often leaves an extensive defect with exposed bone, tendon, and cartilage. The use of a dermal regeneration template followed by split-thickness skin grafts in the treatment of recalcitrant diabetic foot wounds was retrospectively reviewed. In a case series of 5 patients with diabetes and extensive tissue deficits of the foot, the use of a dermal regeneration template and split-thickness skin graft enabled closure of the lower-extremity defect. All patients completely healed and were able to resume ambulation with the aid of extradepth shoes and multidensity insoles. The take of the dermal regeneration template was excellent in all patients, and the grafts (dermal regeneration templates and split-thickness skin) were durable even when placed on difficult areas such as the plantar surface and heel. No infections occurred. Exposed bone, tendon, cartilage, and fascia were successfully covered. The experience in this case series suggests that the use of the dermal regeneration template followed by split-thickness skin graft offers an option for patients with diabetes with chronic wounds that have foot defects as a result of extensive tissue loss resulting from infection.

  5. Enhanced Elastic Modulus of Regenerated Silk Fibroin by Geometric Confinement in Anodized Aluminum Oxide Templates

    NASA Astrophysics Data System (ADS)

    Li, Jiankang; Li, Liang

    2017-02-01

    Geometric confinement is a promising method for the reconstruction of silk fibroin to form diversified structures with excellent mechanical properties. To accomplish geometric confinement, a water vapor assistant embossing process is used with porous anodic aluminum oxide templates, yielding silk fibroin nanopillars with diameters ranging from 40 nm to 130 nm. The elastic modulus of the regenerated silk fibroin nanopillars is investigated with atomic force microscopy nanoindentation analysis. Compared to films with the same treatment conditions, geometric confinement provided a twofold increase in elastic modulus in embossed silk fibroin nanopillars, indicating that β-sheet crystal ordering occurred during the water vapor assistant embossing process. These results demonstrate the feasibility and mechanical property enhancement of the embossing method to fabricate silk nanostructures, and will be useful in designing miniaturized devices.

  6. Vascularization of bioprosthetic valve material

    NASA Astrophysics Data System (ADS)

    Boughner, Derek R.; Dunmore-Buyze, Joy; Heenatigala, Dino; Lohmann, Tara; Ellis, Chris G.

    1999-04-01

    Cell membrane remnants represent a probable nucleation site for calcium deposition in bioprosthetic heart valves. Calcification is a primary failure mode of both bovine pericardial and porcine aortic heterograft bioprosthesis but the nonuniform pattern of calcium distribution within the tissue remains unexplained. Searching for a likely cellular source, we considered the possibility of a previously overlooked small blood vessel network. Using a videomicroscopy technique, we examined 5 matched pairs of porcine aortic and pulmonary valves and 14 samples from 6 bovine pericardia. Tissue was placed on a Leitz Metallux microscope and transilluminated with a 75 watt mercury lamp. Video images were obtained using a silicon intensified target camera equipped with a 431 nm interference filter to maximize contrast of red cells trapped in a capillary microvasculature. Video images were recorded for analysis on a Silicon Graphics Image Analysis work station equipped with a video frame grabber. For porcine valves, the technique demonstrated a vascular bed in the central spongiosa at cusp bases with vessel sizes from 6-80 micrometers . Bovine pericardium differed with a more uniform distribution of 7-100 micrometers vessels residing centrally. Thus, small blood vessel endothelial cells provide a potential explanation patterns of bioprosthetic calcification.

  7. Templated agarose scaffolds for the support of motor axon regeneration into sites of complete spinal cord transection.

    PubMed

    Gao, Mingyong; Lu, Paul; Bednark, Bridget; Lynam, Dan; Conner, James M; Sakamoto, Jeff; Tuszynski, Mark H

    2013-02-01

    Bioengineered scaffolds have the potential to support and guide injured axons after spinal cord injury, contributing to neural repair. In previous studies we have reported that templated agarose scaffolds can be fabricated into precise linear arrays and implanted into the partially injured spinal cord, organizing growth and enhancing the distance over which local spinal cord axons and ascending sensory axons extend into a lesion site. However, most human injuries are severe, sparing only thin rims of spinal cord tissue in the margins of a lesion site. Accordingly, in the present study we examined whether template agarose scaffolds seeded with bone marrow stromal cells secreting Brain-Derived Neurotrophic Factor (BDNF) would support regeneration into severe, complete spinal cord transection sites. Moreover, we tested responses of motor axon populations originating from the brainstem. We find that templated agarose scaffolds support motor axon regeneration into a severe spinal cord injury model and organize axons into fascicles of highly linear configuration. BDNF significantly enhances axonal growth. Collectively, these findings support the feasibility of scaffold implantation for enhancing central regeneration after even severe central nervous system injury.

  8. BDNF gene delivery within and beyond templated agarose multi-channel guidance scaffolds enhances peripheral nerve regeneration

    NASA Astrophysics Data System (ADS)

    Gao, Mingyong; Lu, Paul; Lynam, Dan; Bednark, Bridget; Campana, W. Marie; Sakamoto, Jeff; Tuszynski, Mark

    2016-12-01

    Objective. We combined implantation of multi-channel templated agarose scaffolds with growth factor gene delivery to examine whether this combinatorial treatment can enhance peripheral axonal regeneration through long sciatic nerve gaps. Approach. 15 mm long scaffolds were templated into highly organized, strictly linear channels, mimicking the linear organization of natural nerves into fascicles of related function. Scaffolds were filled with syngeneic bone marrow stromal cells (MSCs) secreting the growth factor brain derived neurotrophic factor (BDNF), and lentiviral vectors expressing BDNF were injected into the sciatic nerve segment distal to the scaffold implantation site. Main results. Twelve weeks after injury, scaffolds supported highly linear regeneration of host axons across the 15 mm lesion gap. The incorporation of BDNF-secreting cells into scaffolds significantly increased axonal regeneration, and additional injection of viral vectors expressing BDNF into the distal segment of the transected nerve significantly enhanced axonal regeneration beyond the lesion. Significance. Combinatorial treatment with multichannel bioengineered scaffolds and distal growth factor delivery significantly improves peripheral nerve repair, rivaling the gold standard of autografts.

  9. [Fluid solid interaction analysis of bioprosthetic heart valve].

    PubMed

    Ma, Xuejie; Du, Yawei; Zhang, Linan; Hou, Zengtao; Ye, Xin

    2014-09-01

    This paper constructs numerical models of bioprosthetic heart valve and blood. The fluid solid interaction is carried out using penalty function method. The mechanical property of the bioprosthetic heart valve during cardiac cycle is simulated with ANSYS software. Results show that the Von Mises stress concentrates at the junction of attachment edge and coaptation edge. The open time of bioprosthetic heart valve is consistent with that of actural measurement. The peak velocity of blood is in the range of physiology. This model provides more realistic mechanical property of bioprosthetic heart valve during cardiac cycle compared to pure solid model, and facilitates design and optimization of bioprosthetic heart valve.

  10. A bioartificial dermal regeneration template promotes skin cell proliferation in vitro and enhances large skin wound healing in vivo.

    PubMed

    Chang, Peng; Guo, Bingyu; Hui, Qiang; Liu, Xiaoyan; Tao, Kai

    2017-04-11

    A novel bioartificial dermal regeneration template has been developed using platelet-rich plasma and acellular animal skin collagen sponge for the treatment of larger area and full thickness skin wounds. This platelet-rich plasma-collagen sponge keeps native skin structure and contains huge amounts of growth factors. The effect of this bioartificial dermal regeneration template was tested in vitro and in vivo via a mimic poor wound healing process by adding collagenase I into cell culture medium or the wound area. The in vitro experimental results indicated that the rat skin cells grew faster and produced more collagen in platelet-rich plasma-collagen sponge with collagenase than those treated either with collagen sponge plus collagenase, or collagenase, or control group without treatment. The in vivo experiments were performed by large rat skin wounds, 1.5 cm diameter, treated either with collagenase, or collagenase plus collagen sponge, or collagenase plus platelet-rich plasma-collagen sponge. The wound without treatment was used as a control. The wounds treated with collagenase-containing platelet-rich plasma-collagen sponge healed 4 times faster than the untreated wounds, 6 times faster than the collagenase treated wounds, 2.4 times faster than collagenase-containing collagen sponge treated wounds. The immunostaining indicated that the healed tissues in the wound areas treated with collagenase-containing platelet-rich plasma-collagen sponge were composed of collagen type I and collagen III with blood vessels and hair follicles. The results demonstrated that this collagenase-containing platelet-rich plasma-collagen sponge works as a bioartificial dermal regeneration template. The application of this collagenase-containing platelet-rich plasma-collagen sponge promotes the traumatic skin wound healing and permits the reconstitution of the inherent barrier functions of the skin.

  11. Percutaneous Valvuloplasty for Bioprosthetic Tricuspid Valve Stenosis

    PubMed Central

    Malhotra, Rohit; Sharma, Anjali; Kakouros, Nikolaos

    2017-01-01

    Percutaneous transcatheter tricuspid balloon valvuloplasty (PTTBV) is an accepted treatment option for symptomatic severe native tricuspid valve stenosis, although surgical tricuspid valve replacement remains the treatment of choice. There have been few reports of successful PTTBV for bioprosthetic tricuspid valve stenosis. We present case reports of 3 patients from our hospital experience. Two of the 3 cases were successful, with lasting clinical improvement, whereas the 3rd patient failed to show a reduction in valve gradient. We describe the standard technique used for PTTBV. We present results from a literature review that identified 16 previously reported cases of PTTBV for bioprosthetic severe tricuspid stenosis, with overall favorable results. We conclude that PTTBV should perhaps be considered for a select patient population in which symptomatic improvement and hemodynamic stability are desired immediately, and particularly for patients who are inoperable or at high surgical risk. PMID:28265212

  12. A Primer on Wound Healing in Colorectal Surgery in the Age of Bioprosthetic Materials

    PubMed Central

    Lundy, Jonathan B.

    2014-01-01

    Wound healing is a complex, dynamic process that is vital for closure of cutaneous injuries, restoration of abdominal wall integrity after laparotomy closure, and to prevent anastomotic dehiscence after bowel surgery. Derangements in healing have been described in multiple processes including diabetes mellitus, corticosteroid use, irradiation for malignancy, and inflammatory bowel disease. A thorough understanding of the process of healing is necessary for clinical decision making and knowledge of the current state of the science may lead future researchers in developing methods to enable our ability to modulate healing, ultimately improving outcomes. An exciting example of this ability is the use of bioprosthetic materials used for abdominal wall surgery (hernia repair/reconstruction). These bioprosthetic meshes are able to regenerate and remodel from an allograft or xenograft collagen matrix into site-specific tissue; ultimately being degraded and minimizing the risk of long-term complications seen with synthetic materials. The purpose of this article is to review healing as it relates to cutaneous and intestinal trauma and surgery, factors that impact wound healing, and wound healing as it pertains to bioprosthetic materials. PMID:25435821

  13. Using templated agarose scaffolds to promote axon regeneration through sites of spinal cord injury.

    PubMed

    Koffler, Jacob; Samara, Ramsey F; Rosenzweig, Ephron S

    2014-01-01

    The past 30 years of research in spinal cord injury (SCI) have revealed that, under certain conditions, some types of axons are able to regenerate. To aid these axons in bridging the lesion site, many experimenters place cellular grafts at the lesion. However, to increase the potential for functional recovery, it is likely advantageous to maximize the number of axons that reach the intact spinal cord on the other side of the lesion. Implanting linear-channeled scaffolds at the lesion site provides growing axons with linear growth paths, which minimizes the distance they must travel to reach healthy tissue. Moreover, the linear channels help the regenerating axons maintain the correct mediolateral and dorsoventral position in the spinal cord, which may also improve functional recovery by keeping the axons nearer to their correct targets. Here, we provide a protocol to perform a full spinal cord transection in rats that accommodates an implanted scaffold.

  14. Use of vacuum-assisted closure and a dermal regeneration template as an alternative to flap reconstruction in pediatric grade IIIB open lower-extremity injuries.

    PubMed

    Barnett, Ted M; Shilt, Jeffrey S

    2009-06-01

    Severe degloving injuries to the pediatric lower extremity are difficult to treat, traditionally requiring local or free flaps for coverage. Combining vacuum-assisted closure techniques with a dermal regeneration template is proposed as a means for covering these difficult wounds. We retrospectively reviewed the charts of 7 consecutive patients (age range, 2-12 years) who underwent this treatment. All extremities healed without flap reconstruction or amputation. Mean follow-up was 24.4 months, and mean wound size was 196 cm2. There were 2 superficial graft complications, 1 nonunion successfully treated with bone grafting, 2 patients with subsequent bony deformity, and 1 patient who underwent subsequent soft-tissue procedures for equinus contracture. Use of vacuum-assisted closure and a dermal regeneration template has shown good results as a means of successfully managing grade IIIB injuries without performing complicated flap reconstructions.

  15. The migration of cells from the ruptured human anterior cruciate ligament into collagen-glycosaminoglycan regeneration templates in vitro.

    PubMed

    Murray, M M; Spector, M

    2001-09-01

    Guided tissue regeneration of the ruptured anterior cruciate ligament (ACL) offers the potential benefits of retaining the complex footprints of the ACL and the proprioceptive nerve fibers of the tissue. For this approach to be successful, ACL cells must retain the ability to migrate into an adjacent regeneration template, or scaffold, after ligament rupture. Ruptured ACLs were obtained from the knees of four men, ages 25-35, at the time of ACL reconstruction. Explants of ACL tissue were taken from three locations along the longitudinal axis of the remnant: the rupture site, the middle of the remnant, and far from the rupture site. These three areas have been found to be distinct histologically, with the region far from the rupture site having a histologic appearance similar to the intact ligament. Explants from each area were cultured in conventional tissue culture dishes (2-D culture) and on porous collagen-glycosaminoglycan (CG) scaffolds. Two-dimensional outgrowth was measured 3 times a week, and the 3-D explant/scaffold constructs were examined at 1, 2, 3 and 4 weeks to assess outgrowth of cells into the scaffold. The cell number density and expression of a-smooth muscle actin (SMA) were determined at each time point. The decrease in the diameter of the scaffolds and non-seeded controls were determined as a function of time in culture. The outgrowth of cells onto the tissue culture dishes was observed to begin as early as 3 days and as late as 21 days, with outgrowth first detected at an average of 6.8 +/- 2.0 days after explantation. In general, there was a larger area of outgrowth at the 2-week time point from explants with higher cell number density and higher blood vessel density. The 2-week area of outgrowth also correlated with the percentage of SMA-positive cells in the explant. In the experimental constructs with CG scaffolds, fibroblasts were noted to migrate from the human ACL explants into the templates at the earliest time point recorded (I week

  16. Regeneration

    Treesearch

    George A. Schier; Wayne D. Shepperd; John R. Jones

    1985-01-01

    There are basically two approaches to regenerating aspen stands-sexual reproduction using seed, or vegetative regeneration by root suckering. In the West, root suckering is the most practical method. The advantage of having an existing, well established root system capable of producing numerous root suckers easily outweighs natural or artificial reforestation in the...

  17. A Case Report of the First Nonburn-related Military Trauma Victim Treated with Spray Skin Regenerative Therapy in Combination with a Dermal Regenerate Template

    PubMed Central

    Hammer, Daniel A.; Rendon, Juan L.; Latham, Kerry P.; Fleming, Mark E.

    2016-01-01

    Summary: Massive soft tissue and skin loss secondary to war-related traumas are among the most frequently encountered challenges in the care of wounded warriors. This case report outlines the first military nonburn-related trauma patient treated by a combination of regenerative modalities. Our case employs spray skin technology to an established dermal regenerate matrix. Our patient, a 29-year-old active duty male, suffered a combat blast trauma in 2010 while deployed. The patient’s treatment course was complicated by a severe necrotizing fasciitis infection requiring over 100 surgical procedures for disease control and reconstruction. In secondary delayed reconstruction procedures, this triple-limb amputee underwent successful staged ventral hernia repair via a component separation technique with biologic mesh underlay although this resulted in a skin deficit of more than 600 cm2. A dermal regenerate template was applied to the abdominal wound to aid in establishing a “neodermis.” Three weeks after dermal regenerate application, spray skin was applied to the defect in conjunction with a 6:1 meshed split thickness skin graft. The dermal regenerate template allowed for optimization of the wound bed for skin grafting. The use of spray skin allowed for a 6:1 mesh ratio, thus minimizing the donor-site size and morbidity. Together, this approach resulted in complete healing of a large full-thickness wound. The patient is now able to perform activities of daily living, walk without a cane, and engage in various physical activities. Overall, our case highlights the potential that combining regenerative therapies can achieve in treating severe war-related and civilian traumatic injuries. PMID:28293522

  18. A Case Report of the First Nonburn-related Military Trauma Victim Treated with Spray Skin Regenerative Therapy in Combination with a Dermal Regenerate Template.

    PubMed

    Valerio, Ian L; Hammer, Daniel A; Rendon, Juan L; Latham, Kerry P; Fleming, Mark E

    2016-12-01

    Massive soft tissue and skin loss secondary to war-related traumas are among the most frequently encountered challenges in the care of wounded warriors. This case report outlines the first military nonburn-related trauma patient treated by a combination of regenerative modalities. Our case employs spray skin technology to an established dermal regenerate matrix. Our patient, a 29-year-old active duty male, suffered a combat blast trauma in 2010 while deployed. The patient's treatment course was complicated by a severe necrotizing fasciitis infection requiring over 100 surgical procedures for disease control and reconstruction. In secondary delayed reconstruction procedures, this triple-limb amputee underwent successful staged ventral hernia repair via a component separation technique with biologic mesh underlay although this resulted in a skin deficit of more than 600 cm(2). A dermal regenerate template was applied to the abdominal wound to aid in establishing a "neodermis." Three weeks after dermal regenerate application, spray skin was applied to the defect in conjunction with a 6:1 meshed split thickness skin graft. The dermal regenerate template allowed for optimization of the wound bed for skin grafting. The use of spray skin allowed for a 6:1 mesh ratio, thus minimizing the donor-site size and morbidity. Together, this approach resulted in complete healing of a large full-thickness wound. The patient is now able to perform activities of daily living, walk without a cane, and engage in various physical activities. Overall, our case highlights the potential that combining regenerative therapies can achieve in treating severe war-related and civilian traumatic injuries.

  19. Bioprosthetic Tissue Matrices in Complex Abdominal Wall Reconstruction

    PubMed Central

    Broyles, Justin M.; Abt, Nicholas B.; Sacks, Justin M.

    2013-01-01

    Background: Complex abdominal defects are difficult problems encountered by surgeons in multiple specialties. Although current evidence supports the primary repair of these defects with mesh reinforcement, it is unclear which mesh is superior for any given clinical scenario. The purpose of this review was to explore the characteristics of and clinical relevance behind bioprosthetic tissue matrices in an effort to better clarify their role in abdominal wall reconstruction. Methods: We reviewed the peer-reviewed literature on the use of bioprosthetic mesh in human subjects. Basic science articles and large retrospective and prospective reviews were included in author’s analysis. The clinical performance and characteristics of 13 bioprosthetic tissue matrices were evaluated. Results: The majority of the products evaluated perform well in contaminated fields, where the risk of wound-healing difficulties is high. Clinical outcomes, which included infection, reherniation, and bulge formation, were variable, and the majority of the studies had a mean follow-up of less than 24 months. Conclusions: Although bioprosthetic matrix has a multitude of indications within the growing field of abdominal wall reconstruction, the functionality, regenerative capacity, and long-term fate of these products have yet to be fully established. Furthermore, the clinical performance, indications, and contraindications for each type of matrix need to be fully evaluated in long-term outcome studies. PMID:25289285

  20. Nontuberculous Mycobacteria: An Underestimated Cause of Bioprosthetic Valve Infective Endocarditis

    PubMed Central

    Bouchiat, Coralie; Saison, Julien; Boisset, Sandrine; Flandrois, Jean-Pierre; Issartel, Bertrand; Dauwalder, Olivier; Benito, Yvonne; Jarraud, Sophie; Grando, Jacqueline; Boibieux, Andre; Dumitrescu, Oana; Delahaye, François; Farhat, Fadi; Thivolet-Bejui, Françoise; Frieh, Jean-Philippe; Vandenesch, François

    2015-01-01

    Background. Atypical mycobacteria, or nontuberculous mycobacteria (NTM), have been barely reported as infective endocarditis (IE) agents. Methods. From January 2010 to December 2013, cardiac valve samples sent to our laboratory as cases of blood culture-negative suspected IE were analyzed by 16S rDNA polymerase chain reaction (PCR). When positive for NTM, hsp PCR allowed species identification. Demographic, clinical, echocardiographic, histopathological, and Ziehl-Neelsen staining data were then collected. Results. Over the study period, 6 of 370 cardiac valves (belonging to 5 patients in 3 hospitals) were positive for Mycobacterium chelonae (n = 5) and Mycobacterium lentiflavum (n = 1) exclusively on bioprosthetic material. The 5 patients presented to the hospital for heart failure without fever 7.1–18.9 months (median 13.1 months) after biological prosthetic valve implantation. Echocardiography revealed paravalvular regurgitation due to prosthesis dehiscence in all patients. Histopathological examination of the explanted material revealed inflammatory infiltrates in all specimens, 3 of which were associated with giant cells. Gram staining and conventional cultures remained negative, whereas Ziehl-Neelsen staining showed acid-fast bacilli in all patients. Allergic etiology was ruled out by antiporcine immunoglobulin E dosages. These 5 cases occurred exclusively on porcine bioprosthetic material, revealing a statistically significant association between bioprosthetic valves and NTM IE (P < .001). Conclusions. The body of evidence confirmed the diagnosis of prosthetic IE. The statistically significant association between bioprosthetic valves and NTM IE encourages systematic Ziehl-Neelsen staining of explanted bioprosthetic valves in case of early bioprosthesis dysfunction, even without an obvious sign of IE. In addition, we strongly question the cardiac bioprosthesis conditioning process after animal sacrifice. PMID:26213691

  1. Bioprosthetic mitral valve thrombosis complicating antiphospholipid antibody syndrome, successfully treated with thrombolysis.

    PubMed

    Chamsi-Pasha, Mohammed A; Alyousef, Tareq; Sayyed, Samer

    2014-10-01

    The incidence of bioprosthetic valve thrombosis and related embolic complications is extremely rare, obviating the need for long-term anticoagulation. As a result, experience in the diagnosis and treatment of bioprosthetic valve thrombosis is fairly limited. We report the first case of antiphospholipid antibody syndrome presenting as bioprosthetic mitral valve thrombosis, 15 months after valve replacement, and successfully treated with thrombolytic therapy.

  2. Bioprosthetic mitral valve dysfunction due to native valve preserving procedure.

    PubMed

    Matsuno, Yukihiro; Mori, Yoshio; Umeda, Yukio; Takiya, Hiroshi

    2016-03-01

    Mitral valve replacement with preservation of the mitral leaflets and subvalvular apparatus is considered to maintain left ventricular geometry and function and reduce the risk of myocardial rupture. However, the routine use of this technique may lead to early complications such as left ventricular outflow tract obstruction and even mitral inflow obstruction, requiring reoperation. We describe a rare case of bioprosthetic mitral valve dysfunction caused by a native valve preserving procedure.

  3. Late bioprosthetic mitral valve thrombosis: a link with postoperative heparin-induced thrombocytopenia?

    PubMed

    Bouallal, Rachid; Montaigne, David; Fayad, George; Auffray, Jean Luc; Asseman, Philippe; Ennezat, Pierre Vladimir

    2009-11-01

    Bioprosthetic valve thrombosis is considered extremely unlikely, thus usually allowing patients to avoid long-term anticoagulation. The authors report the case of a patient with late bioprosthetic mitral valve thrombosis associated with a history of postoperative heparin-induced thrombocytopenia. The patient successfully underwent mitral valve replacement.

  4. Comparison of a sealed, polymer foam biodegradable temporizing matrix against Integra® dermal regeneration template in a porcine wound model.

    PubMed

    Greenwood, John Edward; Dearman, Bronwyn Louise

    2012-01-01

    The aim of this study is to develop and optimize the first stage of a proposed two-stage skin graft replacement strategy. This entails creation of a material that can be applied immediately after burn excision to "temporize" the wound bed, become integrated as a "neodermis," resist contraction and infection, and provide the grounding for the second stage (an autologous, cultured composite skin). Four 8 × 8 cm wounds were generated in six pigs to assess and compare wound contraction using Integra® dermal regeneration template, a biodegradable temporizing polymer matrix (sealed and unsealed), and a secondary intention wound. All dressings were contiguous. Infection resulted in early spontaneous delamination of the Integra® marring the long-term comparison. The wounds treated with the sealed polymer thus contracted significantly less than the wounds treated with Integra® over the 28 days. Histologically, a thick layer of scar developed superficial to the Integra®, unsealed polymer, and in the secondary intention wounds when compared with the sealed polymer, where such a scar layer was characteristically minimal. No clinical signs of infection were observed for any polymer-treated wound. Once the Integra® silicone layer delaminated, wound contraction was aggressive. Optimization of the biodegradable sealing membrane is imminent, and the second stage of composite skin development is under way.

  5. Animal studies with the Carmat bioprosthetic total artificial heart.

    PubMed

    Latrémouille, Christian; Duveau, Daniel; Cholley, Bernard; Zilberstein, Luca; Belbis, Guillaume; Boughenou, Marie-Fazia; Meleard, Denis; Bruneval, Patrick; Adam, Clovis; Neuschwander, Arthur; Perles, Jean-Christophe; Jansen, Piet; Carpentier, Alain

    2015-05-01

    The Carmat bioprosthetic total artificial heart (TAH) contains bioprosthetic blood-contacting surfaces, and is designed for orthotopic cardiac replacement. In preparation for clinical studies, we evaluated the TAH performance and its effects on end-organ function in an animal model. Twelve female Charolais calves, 2-3 months of age and weighing 102-122 kg, were implanted with the TAH through a mid-sternotomy to ensure an adequate anatomic fit. The intended support duration was 4-10 days. Haematological values, creatinine, bilirubin and lactate levels were measured and mean arterial and central venous pressure, central venous oxygen saturation and TAH parameters were monitored. The calves were placed in a cage immediately postoperatively, and extubated on postoperative day 1 in most cases. Average support duration was 3 days, with 4 of 12 calves supported for 4, 4, 8 and 10 days. The initial procedures were used to refine surgical techniques and postoperative care. Pump output ranged from 7.3 to 10 l/min. Haemodynamic parameters and blood analysis were within acceptable ranges. No device failures occurred. No anticoagulation was used in the postoperative phase. The calves were euthanized in case of discomfort compromising the animal well-being, such as respiratory dysfunction, severe blood loss and cerebral dysfunction. Device explant analysis showed no thrombus formation inside the blood cavities. Histological examination of kidneys showed isolated micro-infarction in 2/12 animals; brain histology revealed no thromboembolic depositions. The Carmat bioprosthetic TAH implanted in calves up to 10 days provided adequate blood flow to organs and tissues. Low levels of haemolysis and no visible evidence of thromboembolic depositions in major organs and device cavities, without the use of anticoagulation, may indicate early-phase haemocompatibility of the TAH. © The Author 2015. Published by Oxford University Press on behalf of the European Association for Cardio

  6. Bioprosthetic Aortic Valve Endocarditis in Association with Enterococcus durans

    PubMed Central

    Di Gioacchino, Lorena; Balestrini, Fabrizio

    2016-01-01

    Enterococci are common organisms associated with endocarditis, but infection by Enterococcus durans is very rare. To our knowledge, only 3 cases have been reported in the medical literature, and all 3 have involved native valves. Here we publish the first reported case (to our knowledge) of E. durans endocarditis in association with a bioprosthetic aortic valve. After the organism and its antibiotic susceptibility were identified, the 74-year-old male patient was treated successfully with teicoplanin and gentamicin, over a course of 6 weeks. PMID:27127436

  7. A Genomics-Based Model for Prediction of Severe Bioprosthetic Mitral Valve Calcification

    PubMed Central

    Ponasenko, Anastasia V.; Khutornaya, Maria V.; Kutikhin, Anton G.; Rutkovskaya, Natalia V.; Tsepokina, Anna V.; Kondyukova, Natalia V.; Yuzhalin, Arseniy E.; Barbarash, Leonid S.

    2016-01-01

    Severe bioprosthetic mitral valve calcification is a significant problem in cardiovascular surgery. Unfortunately, clinical markers did not demonstrate efficacy in prediction of severe bioprosthetic mitral valve calcification. Here, we examined whether a genomics-based approach is efficient in predicting the risk of severe bioprosthetic mitral valve calcification. A total of 124 consecutive Russian patients who underwent mitral valve replacement surgery were recruited. We investigated the associations of the inherited variation in innate immunity, lipid metabolism and calcium metabolism genes with severe bioprosthetic mitral valve calcification. Genotyping was conducted utilizing the TaqMan assay. Eight gene polymorphisms were significantly associated with severe bioprosthetic mitral valve calcification and were therefore included into stepwise logistic regression which identified male gender, the T/T genotype of the rs3775073 polymorphism within the TLR6 gene, the C/T genotype of the rs2229238 polymorphism within the IL6R gene, and the A/A genotype of the rs10455872 polymorphism within the LPA gene as independent predictors of severe bioprosthetic mitral valve calcification. The developed genomics-based model had fair predictive value with area under the receiver operating characteristic (ROC) curve of 0.73. In conclusion, our genomics-based approach is efficient for the prediction of severe bioprosthetic mitral valve calcification. PMID:27589735

  8. A Genomics-Based Model for Prediction of Severe Bioprosthetic Mitral Valve Calcification.

    PubMed

    Ponasenko, Anastasia V; Khutornaya, Maria V; Kutikhin, Anton G; Rutkovskaya, Natalia V; Tsepokina, Anna V; Kondyukova, Natalia V; Yuzhalin, Arseniy E; Barbarash, Leonid S

    2016-08-31

    Severe bioprosthetic mitral valve calcification is a significant problem in cardiovascular surgery. Unfortunately, clinical markers did not demonstrate efficacy in prediction of severe bioprosthetic mitral valve calcification. Here, we examined whether a genomics-based approach is efficient in predicting the risk of severe bioprosthetic mitral valve calcification. A total of 124 consecutive Russian patients who underwent mitral valve replacement surgery were recruited. We investigated the associations of the inherited variation in innate immunity, lipid metabolism and calcium metabolism genes with severe bioprosthetic mitral valve calcification. Genotyping was conducted utilizing the TaqMan assay. Eight gene polymorphisms were significantly associated with severe bioprosthetic mitral valve calcification and were therefore included into stepwise logistic regression which identified male gender, the T/T genotype of the rs3775073 polymorphism within the TLR6 gene, the C/T genotype of the rs2229238 polymorphism within the IL6R gene, and the A/A genotype of the rs10455872 polymorphism within the LPA gene as independent predictors of severe bioprosthetic mitral valve calcification. The developed genomics-based model had fair predictive value with area under the receiver operating characteristic (ROC) curve of 0.73. In conclusion, our genomics-based approach is efficient for the prediction of severe bioprosthetic mitral valve calcification.

  9. Cardiac crossroads: deciding between mechanical or bioprosthetic heart valve replacement

    PubMed Central

    Tillquist, Maggie N; Maddox, Thomas M

    2011-01-01

    Nearly 15 million people in the United States suffer from either aortic or mitral valvular disease. For patients with severe and symptomatic valvular heart disease, valve replacement surgery improves morbidity and mortality outcomes. In 2009, 90,000 valve replacement surgeries were performed in the United States. This review evaluates the advantages and disadvantages of mechanical and bioprosthetic prosthetic heart valves as well as the factors for consideration in deciding the appropriate valve type for an individual patient. Although many caveats exist, the general recommendation is for patients younger than 60 to 65 years to receive mechanical valves due to the valve’s longer durability and for patients older than 60 to 65 years to receive a bioprosthetic valve to avoid complications with anticoagulants. Situations that warrant special consideration include patient co-morbidities, the need for anticoagulation, and the potential for pregnancy. Once these characteristics have been considered, patients’ values, anxieties, and expectations for their lifestyle and quality of life should be incorporated into final valve selection. Decision aids can be useful in integrating preferences in the valve decision. Finally, future directions in valve technology, anticoagulation, and medical decision-making are discussed. PMID:21448466

  10. Patients' observations of bioprosthetic valve failure: "my heart is honking, doctor".

    PubMed Central

    Errington, M; Bloomfield, P; Starkey, I R; Shaw, T R

    1990-01-01

    Audible cardiac murmurs are uncommon and may indicate severe native valve dysfunction. In six patients with bioprosthetic mitral valves audible honking systolic murmurs suddenly developed. Doppler echocardiography showed characteristic striated regurgitant signals. At operation each prosthesis had torn cusps. New audible murmurs and striated Doppler signals originating from mitral bioprosthetic valves are indicators of cusp tears. Recognition of this is important because early detection of prosthetic valve dysfunction may improve subsequent surgical outcome. Images p394-a PMID:2271348

  11. Aortic root stiffness affects the kinematics of bioprosthetic aortic valves.

    PubMed

    Jahren, Silje Ekroll; Winkler, Bernhard Michael; Heinisch, Paul Philipp; Wirz, Jessica; Carrel, Thierry; Obrist, Dominik

    2017-02-01

    In this study, the influence of aortic root distensibility on the haemodynamic parameters and valve kinematics of a bioprosthetic aortic valve was investigated in a controlled in vitro experiment. An Edwards INTUITY Elite 21 mm sutureless aortic valve (Edwards Lifesciences, Irvine, CA, USA) was inserted in three transparent aortic root phantoms with different wall thicknesses (0.55, 0.85 and 1.50 mm) mimicking different physiological distensibilities. Haemodynamic measurements were performed in an in vitro flow loop at heart rates of 60, 80 and 100 bpm with corresponding cardiac outputs of 3.5, 4.0 and 5.0 l/min and aortic pressures of 100/60, 120/90 and 145/110 mmHg, respectively. Aortic valve kinematics were assessed using a high-speed camera. The geometric orifice area (GOA) was measured by counting pixels in the lumen of the open aortic valve. The effective orifice area (EOA) was calculated from the root-mean-square value of the systolic aortic valve flow rate and the mean systolic trans-valvular pressure gradient. The tested aortic root phantoms reproduce physiological distensibilities of healthy individuals in age groups ranging from 40 to 70 years (±10 years). The haemodynamic results show only minor differences between the aortic root phantoms: the trans-valvular pressure gradient tends to increase for stiffer aortic roots, whereas the systolic aortic valve flow rate remains constant. As a consequence, the EOA decreased slightly for less distensible aortic roots. The GOA and the aortic valve opening and closing velocities increase significantly with reduced distensibility for all haemodynamic measurements. The resulting mean systolic flow velocity in the aortic valve orifice is lower for the stiffer aortic root. Aortic root distensibility may influence GOA and aortic valve kinematics, which affects the mechanical load on the aortic valve cusps. Whether these changes have a significant effect on the onset of structural valve deterioration of bioprosthetic

  12. Glutaraldehyde exposures among workers making bioprosthetic heart valves.

    PubMed

    Sutton, Patrice M; Quint, Julia; Prudhomme, Janice; Flattery, Jennifer; Materna, Barbara; Harrison, Robert

    2007-05-01

    Exposure to glutaraldehyde is a recognized cause of work-related asthma. An investigation was undertaken to describe exposure to glutaraldehyde among workers making bioprosthetic heart valves and to make recommendations for prevention. At the two largest heart valve manufacturing facilities in California, the work process was observed; employer representatives and glutaraldehyde-exposed workers were interviewed; and employer written records, including company-generated industrial hygiene data, were analyzed. Approximately 600 female workers had continuous airborne exposure to glutaraldehyde over the course of every work shift and the routine potential for skin and eye contact with glutaraldehyde while making heart valves. Employee short-term (15-min) glutaraldehyde exposures were all well below the current regulatory ceiling level (0.20 ppm). Overall, approximately 40% of the glutaraldehyde-related job tasks involved exposures above the American Conference of Industrial Hygienists threshold limit value ceiling of 0.05 ppm; the majority (71.4% and 83.3%, depending on the company) involved exposures greater than 0.015 ppm. At one company, two cases of physician-diagnosed asthma were recorded by the employer in the previous 5-year period; these reports met the surveillance case definition for new-onset, work-related asthma associated with a known asthma inducer. Factors that contributed to worker exposure included large exposed surface areas of glutaraldehyde under agitation; working with glutaraldehyde-treated tissue in proximity to workers' breathing zones; manual pouring and disposal of glutaraldehyde solutions without local exhaust ventilation, eye protection, and waste neutralization; and prolonged use of latex gloves. Workers making bioprosthetic heart valves are at risk for occupationally acquired asthma. Employers should implement additional engineering controls to minimize workers' exposures to at least below a level of 0.015 ppm, an appropriate glove to

  13. Design and Fabrication of a Thin-Walled Freeform Scaffold on the Basis of Medical Image Data and a 3D Printed Template: Potential Use in Bile Duct Regeneration.

    PubMed

    Park, Suk Hee; Kang, Bo-Kyeong; Lee, Ji Eun; Chun, Seung Woo; Jang, Kiseok; Kim, Youn Hwan; Jeong, Mi Ae; Kim, Yohan; Kang, Kyo Jin; Lee, Nak Kyu; Choi, Dongho; Kim, Han Joon

    2017-03-21

    Three-dimensional (3D) printing, combined with medical imaging technologies, such as computed tomography (CT) and magnetic resonance imaging (MRI), has shown great potential in patient-specific tissue regeneration. Here, we successfully fabricated an ultrathin tubular freeform structure that has a wall thickness of several tens of micrometers and is capable of providing sufficient mechanical flexibility. Such a thin geometry cannot easily be achieved by 3D printing alone; therefore, it was realized through a serial combination of processes that included the 3D printing of a sacrificial template, the dip-coating of the biomaterial, and the removal of the inner template. We demonstrated the feasibility of this novel tissue engineering construct by conducting bile duct surgery on rabbits. Moving from a rational design based on MRI data to a successful surgical procedure for reconstruction, we confirmed that the presented method of fabricating scaffolds has the potential for use in customized bile duct regeneration. In addition to the specific application presented here, the developed process and scaffold are expected to have universal applicability in other soft tissue engineering fields, particularly those involving vascular, airway, and abdominal tubular tissues.

  14. Quantification of the edge effect in calcified bioprosthetic tissues.

    PubMed

    Wika, K E; Utoh, J; Brown, J; Harasaki, H

    1993-10-01

    In bioprosthetic tissue samples that had been implanted in the subcutaneous space of rats, and recurring pattern of calcification was observed. In this pattern, which we call the edge effect, the interior of the tissue is calcified and is surrounded and separated from the subcutaneous fluid by a zone that is free from calcification. The edge effect has been qualitatively described in the literature for subcutaneous implants and for valve leaflets, and it may be related to the mechanism of calcification for these materials. The thickness of the calcification free outer layer was quantified for glutaraldehyde treated bovine pericardium, glycerol treated bovine pericardium, glutaraldehyde treated human dura mater, and glycerol treated human dura mater. The edge effect values were found to be unique and consistent for each material type, and they were inversely related to the shrinkage temperatures and the calcium contents of the materials. It was determined that the chemical treatment was more important than the tissue type in determining the edge effect value.

  15. The susceptibility of bioprosthetic heart valve leaflets to oxidation.

    PubMed

    Christian, Abigail J; Lin, Hongqiao; Alferiev, Ivan S; Connolly, Jeanne M; Ferrari, Giovanni; Hazen, Stanley L; Ischiropoulos, Harry; Levy, Robert J

    2014-02-01

    The clinical use of bioprosthetic heart valves (BHV) is limited due to device failure caused by structural degeneration of BHV leaflets. In this study we investigated the hypothesis that oxidative stress contributes to this process. Fifteen clinical BHV that had been removed for device failure were analyzed for oxidized amino acids using mass spectrometry. Significantly increased levels of ortho-tyrosine, meta-tyrosine and dityrosine were present in clinical BHV explants as compared to the non-implanted BHV material glutaraldehyde treated bovine pericardium (BP). BP was exposed in vitro to oxidizing conditions (FeSO4/H2O2) to assess the effects of oxidation on structural degeneration. Exposure to oxidizing conditions resulted in significant collagen deterioration, loss of glutaraldehyde cross-links, and increased susceptibility to collagenase degradation. BP modified through covalent attachment of the oxidant scavenger 3-(4-hydroxy-3,5-di-tert-butylphenyl) propyl amine (DBP) was resistant to all of the monitored parameters of structural damage induced by oxidation. These results indicate that oxidative stress, particularly via hydroxyl radical and tyrosyl radical mediated pathways, may be involved in the structural degeneration of BHV, and that this mechanism may be attenuated through local delivery of antioxidants such as DBP. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Simulated bioprosthetic heart valve deformation under quasi-static loading.

    PubMed

    Sun, Wei; Abad, Ajay; Sacks, Michael S

    2005-11-01

    For more than 40 years, the replacement of diseased natural heart valves with prosthetic devices has dramatically extended the quality and length of the lives of millions of patients worldwide. However, bioprosthetic heart valves (BHV) continue to fail due to structural failure resulting from poor tissue durability and faulty design. Clearly, an in-depth understanding of the biomechanical behavior of BHV at both the tissue and functional prosthesis levels is essential to improving BHV design and to reduce rates of failure. In this study, we simulated quasi-static BHV leaflet deformation under 40, 80, and 120 mm Hg quasi-static transvalvular pressures. A Fung-elastic material model was used that incorporated material parameters and axes derived from actual leaflet biaxial tests and measured leaflet collagen fiber structure. Rigorous experimental validation of predicted leaflet strain field was used to validate the model results. An overall maximum discrepancy of 2.36% strain between the finite element (FE) results and experiment measurements was obtained, indicating good agreement between computed and measured major principal strains. Parametric studies utilizing the material parameter set from one leaflet for all three leaflets resulted in substantial variations in leaflet stress and strain distributions. This result suggests that utilization of actual leaflet material properties is essential for accurate BHV FE simulations. The present study also underscores the need for rigorous experimentation and accurate constitutive models in simulating BHV function and design.

  17. Design of Bioprosthetic Aortic Valves using biaxial test data.

    PubMed

    Dabiri, Y; Paulson, K; Tyberg, J; Ronsky, J; Ali, I; Di Martino, E; Narine, K

    2015-01-01

    Bioprosthetic Aortic Valves (BAVs) do not have the serious limitations of mechanical aortic valves in terms of thrombosis. However, the lifetime of BAVs is too short, often requiring repeated surgeries. The lifetime of BAVs might be improved by using computer simulations of the structural behavior of the leaflets. The goal of this study was to develop a numerical model applicable to the optimization of durability of BAVs. The constitutive equations were derived using biaxial tensile tests. Using a Fung model, stress and strain data were computed from biaxial test data. SolidWorks was used to develop the geometry of the leaflets, and ABAQUS finite element software package was used for finite element calculations. Results showed the model is consistent with experimental observations. Reaction forces computed by the model corresponded with experimental measurements when the biaxial test was simulated. As well, the location of maximum stresses corresponded to the locations of frequent tearing of BAV leaflets. Results suggest that BAV design can be optimized with respect to durability.

  18. Platelet activation of mechanical versus bioprosthetic heart valves during systole.

    PubMed

    Hedayat, Mohammadali; Asgharzadeh, Hafez; Borazjani, Iman

    2017-03-11

    Thrombus formation is a major concern for recipients of mechanical heart valves (MHVs), which requires them to take anticoagulant drugs for the rest of their lives. Bioprosthetic heart valves (BHVs) do not require life-long anticoagulant therapy but deteriorate after 10-15years. The thrombus formation is initiated by the platelet activation which is thought to be mainly generated in MHVs by the flow through the hinge and the leakage flow during the diastole. However, our results show that the activation in the bulk flow during the systole phase might play an essential role as well. This is based on our results obtained by comparing the thrombogenic performance of a MHV and a BHV (as control) in terms of shear induced platelet activation under exactly the same conditions. Three different mathematical activation models including linear level of activation, damage accumulation, and Soares model are tested to quantify the platelet activation during systole using the previous simulations of the flow through MHV and BHV in a straight aorta under the same physiologic flow conditions. Results indicate that the platelet activation in the MHV at the beginning of the systole phase is slightly less than the BHV. However, at the end of the systole phase the platelet activation by the bulk flow for the MHV is several folds (1.41, 5.12, and 2.81 for linear level of activation, damage accumulation, and Soares model, respectively) higher than the BHV for all tested platelet activation models.

  19. Determinants of aortic bioprosthetic valve calcification assessed by multidetector CT.

    PubMed

    Mahjoub, Haïfa; Mathieu, Patrick; Larose, Eric; Dahou, Abdelaziz; Sénéchal, Mario; Dumesnil, Jean-Gaston; Després, Jean-Pierre; Pibarot, Philippe

    2015-03-01

    Cusp calcification is the main mechanism leading to bioprosthetic heart valve (BPV) failure. Recent studies suggest that BPV calcification is an active rather than passive process probably modulated by several mechanisms including lipid-mediated inflammation and dysfunctional phosphocalcic metabolism. To identify the clinical and metabolic determinants of BPV calcification assessed by multidetector CT (MDCT). Presence of BPV calcification was assessed by MDCT in 194 patients who had undergone aortic valve replacement. A calcification score was individually calculated and expressed in mm(3). Patients also underwent a clinical evaluation, a Doppler echocardiographic exam, and a plasma lipid and phosphocalcic profile. 46 patients (24%) had BPV calcification (cusp calcification score >0 mm(3)). After adjustment for age, gender, and time interval since BPV implantation, increased calcium-phosphorus product (OR 1.11, 95% CI 1.01 to 1.23 per 1 unit; p=0.02) and the presence of prosthesis-patient mismatch (OR 3.67, 95% CI 1.25 to 10.6; p=0.01) were the strongest independent factors associated with BPV calcification. Calcium supplement intake, age and female gender were independently associated with increased calcium-phosphorus product. This study suggests that higher calcium-phosphorus product and prosthesis-patient mismatch promote BPV calcification. Furthermore, this study reports that calcium supplements, which are extensively prescribed in elderly patients, are independently associated with higher calcium-phosphorus product. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  20. A label-free fluorescent direct detection of live Salmonella typhimurium using cascade triple trigger sequences-regenerated strand displacement amplification and hairpin template-generated-scaffolded silver nanoclusters.

    PubMed

    Zhang, Peng; Liu, Hui; Li, Xiaocheng; Ma, Suzhen; Men, Shuai; Wei, Heng; Cui, Jingjing; Wang, Hongning

    2017-01-15

    The harm of Salmonella typhimurium (S. typhimurium) to public health mainly by the consumption of contaminated agricultural products or water stresses an urgent need for rapid detection methods to help control the spread of S. typhimurium. In this work, an intelligently designed sensor system took creative advantage of triple trigger sequences-regenerated strand displacement amplification and self-protective hairpin template-generated-scaffolded silver nanoclusters (AgNCs) for the first time. In the presence of live S. typhimurium, single-stranded trigger sequences were released from aptamer-trigger sequences complex, initiating a branch migration to open the hairpin template I containing complementary scaffolds of AgNCs. Then the first strand displacement amplification was induced to produce numerous scaffolds of AgNCs and reporter strands which initiated a branch migration to open the hairpin template II containing complementary scaffolds of AgNCs. Then the second strand displacement amplification was induced to generate numerous scaffolds of AgNCs and trigger sequences which initiated the third branch migration and strand displacement amplification to produce numerous scaffolds of AgNCs and reporter strands in succession. Cyclically, the reproduction of the trigger sequences and cascade successive production of scaffolds were achieved successfully, forming highly fluorescent AgNCs, thus providing significantly enhanced fluorescent signals to achieve ultrasensitive detection of live S. typhimurium down to 50 CFU/mL with a linear range from 10(2) to 10(7)CFU/mL. It is the first report on a fluorescent biosensor for detecting viable S. typhimurium directly, which can distinguish from heat denatured S. typhimurium. And it develops a new strategy to generate the DNA-scaffolds for forming AgNCs.

  1. [Study of cytotoxicity of bioprosthetic heart valve material and its store solution].

    PubMed

    Cheng, S; Shi, Y; Liang, W; Li, W

    1999-09-01

    This study compared the cytotoxicities of bioprosthetic heart valve materials crosslinked by glutaraldehyde, stored in 4% formaldehyde or Hank's solution. Human embryonic pulmonary fibroblasts or L-929 cell culture in vitro were used. Cell proliferative inhibition index(CP II) was calculated for bioprosthetic heart valve materials using different store methods in different rinse periods(before, 10 days, 20 days, 30 days). The results demonstrate: (1) bioprosthetic heart valve materials stored in 4% formaldehyde or in Hank's solution both have significant cytotoxicity, and the longer the rinse time continues, the lower the cytotoxicity declines; (2) HEL cell is more sensitive than L-929 cell in detecting the cytotoxicity of toxic biomaterials but for weak toxic biomaterials the two cell lines are not significanth different; (3) formatldehyde solution increases the cytotoxicity of biomaterials stored in it, but the enhanced cytotoxicity can be easily relieved by rinse. The authors conclude that bioprosthetic heart valve materials have long term significant cytotoxicity and the biomaterial cytotoxicity test using human fibroblasts is more sensitive and precise than other tests.

  2. Assessing Anticalcification Treatments in Bioprosthetic Tissue by Using the New Zealand Rabbit Intramuscular Model

    PubMed Central

    Wright, Gregory A; Faught, Joelle M; Olin, Jane M

    2009-01-01

    The objective of this work was to demonstrate that the New Zealand White (NZW) rabbit intramuscular model can be used for detecting calcification in bioprosthetic tissue and to compare the calcification in the rabbit to that of native human valves. The rabbit model was compared with the commonly used Sprague–Dawley rat subcutaneous model. Eighteen rabbits and 18 rats were used to assess calcification in bioprosthetic tissue over time (7, 14, 30, and 90 d). The explanted rabbit and rat tissue discs were measured for calcium by using atomic absorption and Raman spectroscopy. Calcium deposits on the human valve explants were assessed by using Raman spectroscopy. The results showed that the NZW rabbit model is robust for detecting calcification in a shorter duration (14 d), with less infection complications, more space to implant tissue groups (thereby reducing animal use numbers), and a more metabolically and mechanically dynamic environment than the rat subcutaneous model . The human explanted valves and rabbit explanted tissue both showed Raman peaks at 960 cm−1 which is representative of hydroxyapatite. Hydroxyapatite is the final calcium and phosphate species in the calcification of bioprosthetic heart valves and rabbit intramuscular implants. The NZW rabbit intramuscular model is an effective model for assessing calcification in bioprosthetic tissue. PMID:19619417

  3. Phosphatase enzyme activity is retained in glutaraldehyde treated bioprosthetic heart valves.

    PubMed

    Maranto, A R; Schoen, F J

    1988-01-01

    Calcification of bioprosthetic valves, which frequently causes their failure, begins in cell remnants analogous to matrix vesicles of physiologic mineralization. Because the enzyme alkaline phosphatase (AP) is important in normal skeletal mineralization, the authors hypothesized that AP also might be present in bioprosthetic valve tissue and thereby contribute to calcification. AP activity of fresh and glutaraldehyde (GLUT) treated bovine pericardium was measured by the conversion of p-nitrophenyl phosphate to p-nitrophenol. After 24 hrs in 0.6% HEPES buffered GLUT and storage for 2 weeks in 0.2% GLUT, considerable AP hydrolytic activity remained relative to that of fresh tissue (Vmax: 24 vs 45 microM reaction product/min/mg tissue protein, respectively), although binding was moderately reduced (KM: 1900 vs 1400 microM substrate, respectively). Light microscopic histochemistry suggested cell oriented AP activity. Ultrastructural examination of GLUT treated tissue demonstrated reaction product along membranes of vascular endothelial cells and fibroblasts, the sites of early calcific deposits in bioprosthetic valves. Thus, AP hydrolytic activity is largely preserved following GLUT treatment of bovine pericardium. These results indicate that the widely held view that GLUT eliminates all metabolic activities of bioprosthetic tissue is inaccurate and suggests that examination of the role of AP and other phosphatases may stimulate approaches for inhibiting calcification.

  4. Heidenhain variant of Creutzfeldt–Jakob disease in a patient who had bovine bioprosthetic valve implantation

    PubMed Central

    Hashoul, Jehard; Saliba, Waleed; Bloch, Irina; Jabaly-Habib, Haneen

    2016-01-01

    Creutzfeldt–Jakob disease (CJD) is a rare neurodegenerative disorder characterized by rapidly progressing dementia, general neurologic deterioration, and death. When the leading symptoms are visual disturbances, it is termed as the Heidenhain variant of CJD (HvCJD). CJD was reported following prion-contaminated pericardium transplants but never after bovine bioprosthetic cardiac valve. In this case report, we describe HvCJD in a patient who had a bovine bioprosthetic cardiac valve implant. An 82-year-old-woman was referred to neuro-ophthalmology clinic for unexplained visual loss that started 1 month previously. Medical history included aortic valve replacement with bovine bioprosthetic valve. On examination, best-corrected visual acuity was 20/120 in the right eye and 20/200 in the left eye; otherwise, the eye examination was normal. Humphrey visual fields revealed complete right homonymous hemianopsia. Magnetic resonance imaging (MRI) demonstrated nonspecific white matter changes. A week later, she was hospitalized due to memory impairment; repeated MRI and total body computed tomography scan showed no significant findings. Electroencephalography recordings and extremely elevated cerebrospinal fluid tau protein were compatible with CJD. The patient died 3 weeks later; autopsy was not performed. The patient had HvCJD. Ophthalmologists being first to see these patients should be aware of this diagnosis. Contaminated bovine bioprosthetic valve might be another source for prion disease. Further research is required to establish this issue. PMID:27905341

  5. The use of Integra® bilaminar dermal regeneration template in apert syndactyly reconstruction: a novel alternative to simplify care and improve outcomes.

    PubMed

    Jung, James J; Woo, Albert S; Borschel, Gregory H

    2012-01-01

    The reconstruction of the third web space in Apert syndactyly often involves pedicled groin flaps to resurface exposed distal (and sometimes proximal) phalanges. We report a case in which the right-hand third web space was reconstructed with traditional pedicled groin flaps and the left hand with the Integra(®) regenerative skin template. We report that both left and right hands achieved similar outcomes, but the hand reconstructed with groin flaps required debulking, whilst the hand reconstructed with Integra was easier to care for.

  6. Donkey pericardium as an alternative bioprosthetic heart valve material.

    PubMed

    Chen, Shanliang; Xu, Li; Liu, Yuxi; Li, Quan; Wang, Dong; Wang, Xuemei; Liu, Tianqi

    2013-03-01

    This study comparatively evaluates the characteristics of glutaraldehyde-treated acellular bovine and donkey pericardium using histological and electronic microscopic observation techniques, shrinkage temperature, and mechanical properties, as well as determining calcium and phosphorus content at 4 and 8 weeks after the subcutaneous implantation of donkey and bovine pericardium in Wistar rats. Donkey pericardium was significantly thinner compared with bovine pericardium (1.622 ±  0.161 mm vs. 4.027 ± 0.401 mm, P < 0.0001) and was associated with significantly greater tensile strength (14.21 ±  3.81 MPa vs. 3.78 ± 1.20 MPa, P = 0.001) and elastic modulus (81.67 ± 20.41 MPa vs. 21.67 ± 11.69 MPa, P <  0.0001) over bovine pericardium. Shrinkage temperature of donkey pericardium was similar to that of bovine pericardium (87.43 ± 0.55°C vs. 87.50 ± 0.36°C, P =  0.810). No differences between groups were observed for maximum load (donkey: 21.64 ± 7.02 KN/m vs. bovine: 15.05 ± 4.50 KN/m, P = 0.082) and tear strength (donkey: 11.54 ± 5.33 MPa vs. bovine: 10.69 ±  3.77 MPa, P = 0.757). Calcium content was significantly lower in donkey pericardium compared with bovine pericardium at 4 weeks (690.15 ± 191.27 µg/g vs. 1381.73 ± 62.52 µg/g, P = 0.001) and 8 weeks (205.24 ± 62.40 µg/g vs. 910.48 ± 398.29 µg/g, P = 0.037). This preliminary study has confirmed that glutaraldehyde-tanned donkey pericardium, demonstrating reduced calcification and increased tensile strength, may provide a suitable bioprosthetic valve substitute.

  7. Postoperative warfarin following mitral valve repair or bioprosthetic valve replacement.

    PubMed

    Thourani, Vinod H; Gunter, Rebecca L; Hurst, Stuart; Kilgo, Patrick; Padala, Murali; Puskas, John D; Lattouf, Omar M; Halkos, Michael E; Guyton, Robert A

    2013-09-01

    Short-term postoperative warfarin therapy has been used to decrease neurologic events following mitral valve repair or bioprosthetic replacement (MVR). The study aim was to compare the short- and long-term outcomes of patients undergoing mitral valve surgery with or without short-term postoperative warfarin. A single academic US institution retrospective review was performed on discharged patients who underwent MVR between January 1996 and March 2010. Patients were allocated to two groups: MVR with four to six weeks of postoperative warfarin (n = 315; Warfarin group) or MVR without postoperative warfarin (n = 257; No warfarin group). Patients who required either preoperative or postoperative warfarin for any disease process (e.g., atrial fibrillation, mechanical valve, deep venous thrombosis) were excluded. Logistic and Cox proportional hazards regression models were constructed to evaluate the effects of warfarin on short- and long-term outcomes, respectively. Adjusted odds ratios (AOR) and adjusted hazard ratios (AHR), with 95% confidence intervals (CI) were constructed for each outcome. To reduce selection bias, propensity scoring methods were employed to balance the groups with respect to 54 preoperative variables. Mean age was not significantly different between groups (No warfarin group = 56.8 +/- 14.5 years versus Warfarin group 55.9 +/- 12.9 years; p = 0.46). The average length of hospital stay was 9.8 +/- 8.4 days and 7.3 +/- 4.5 days in the No warfarin and Warfarin groups, respectively (p < 0.001). At the six-week follow up the incidences of stroke (p = 0.74), pleural effusions (p = 0.88), pericardial effusions (p = 0.75), and bleeding complications (p = 0.30) were similar between the two groups. In an unadjusted Kaplan-Meier analysis, the No warfarin group had a poorer long-term survival than the Warfarin group (p < 0.001). However, after propensity adjustment, the benefit of warfarin was not statistically significant (AHR = 0.66, 95% CI 0.40-1.08, p = 0

  8. Alkaline phosphatase activity of glutaraldehyde-treated bovine pericardium used in bioprosthetic cardiac valves.

    PubMed

    Maranto, A R; Schoen, F J

    1988-10-01

    Bioprosthetic valves fail frequently because of pathological mineralization, a process that begins in cell remnants of the glutaraldehyde (GLUT) fixed tissue. Other pathological cardiovascular calcification and physiological mineralization in skeletal/dental tissues are both largely initiated in cell-derived membranous structures (often called "matrix vesicles"), and the enzyme alkaline phosphatase (AP) likely has an important function in the pathogenesis of mineral nucleation. This study tested the hypothesis that AP might also be present in and contribute to calcification of bioprosthetic valves. AP activity of fresh and GLUT-treated bovine pericardium was measured by the conversion of p-nitrophenyl phosphate to p-nitrophenol. Following 24 hours in 0.6% HEPES-buffered GLUT and storage for 2 weeks in 0.2% GLUT, considerable AP hydrolytic activity remained in GLUT-treated tissue relative to that of fresh tissue (Vmax, 24 vs. 45 mumol reaction product/min/mg tissue protein, respectively), although binding was somewhat reduced (Km, 1.9 X 10(3) vs. 1.4 X 10(3) microM substrate, respectively). Enzyme reaction product was demonstrated in both fixed and fresh tissue by light microscopic histochemical studies, confirming the biochemical results. Reaction product was noted along membranes of vascular endothelial cells and interstitial fibroblasts, the sites of early calcific deposits in bioprosthetic valves, by ultrastructural examination of GLUT-treated tissue. We conclude that GLUT-treated bovine pericardium retains much of the hydrolytic activity of AP, an enzyme associated with normal skeletal and pathological cardiovascular and noncardiovascular mineralization, and suggest that further examination of the mechanistic role of this enzyme may stimulate new approaches for slowing or preventing calcification of bioprosthetic tissue.

  9. The Effect of Glycosaminoglycan Stabilization on Tissue Buckling in Bioprosthetic Heart Valves

    PubMed Central

    Shah, Sagar R.; Vyavahare, Naren R.

    2008-01-01

    Bioprosthetic valves are used in thousands of heart valve replacement surgeries. Existing glutaraldehyde-crosslinked bioprosthetic valves fail due to either calcification or degeneration. Glutaraldehyde crosslinking does not stabilize valvular glycosaminoglycans (GAGs). GAGs, predominantly present in the medial spongiosa layer of native heart valve cusps, play an important role in regulating physico-mechanical behavior of the native cuspal tissue during dynamic motion. The primary objective of this study was to identify the role of cuspal GAGs in valve tissue buckling. Glutaraldehyde-crosslinked cusps showed extensive buckling compared to fresh, native cusps. Removal of GAGs by treatment with GAG-degrading enzymes led to a marked increase in buckling behavior in glutaraldehyde-crosslinked cusps. We demonstrate that the retention of valvular GAGs by carbodiimide, crosslinking together with chemical attachment of neomycin trisulfate (a hyaluronidase inhibitor), prior to glutaraldehyde crosslinking, reduces the extent of buckling in bioprosthetic heart valves. Furthermore, following exposure to GAG-digestive enzymes, neomycin-trisulfate-bound cusps experienced no alterations in buckling behavior. Such moderate buckling patterns mimicked that of fresh, untreated cusps subjected to similar bending curvatures. Thus, GAG stabilization may subsequently improve the durability of these bioprostheses. PMID:18199477

  10. Implantation of mitral, aortic, and tricuspid bioprostheses due to infective endocarditis with necessary reimplantation of the bioprosthetic aortic valve.

    PubMed

    Danielecki, Cezary; Bugajski, Paweł; Olszewski, Roman; Greberski, Krzysztof; Kalawski, Ryszard

    2016-09-01

    The patient was admitted to the Department of Cardiac Surgery of the J. Struś City Hospital in Poznan due to infective endocarditis involving the aortic, mitral, and tricuspid valves. Implantation of three biological valve prostheses proceeded without complications. Starting on day 23, the patient's general condition deteriorated, with high fever. Despite postoperative antibiotic therapy, transesophageal echocardiography revealed the presence of vegetation on the bioprosthetic aortic valve. On the 46(th) day after the initial surgery, the patient required replacement of the aortic bioprosthesis, which exhibited the presence of numerous vegetations. The bioprosthetic mitral and tricuspid valves were not affected by the degenerative process. On the 12(th) day after the reimplantation of the bioprosthetic aortic valve, the patient was discharged from the hospital in good general condition.

  11. Implantation of mitral, aortic, and tricuspid bioprostheses due to infective endocarditis with necessary reimplantation of the bioprosthetic aortic valve

    PubMed Central

    Bugajski, Paweł; Olszewski, Roman; Greberski, Krzysztof; Kalawski, Ryszard

    2016-01-01

    The patient was admitted to the Department of Cardiac Surgery of the J. Struś City Hospital in Poznan due to infective endocarditis involving the aortic, mitral, and tricuspid valves. Implantation of three biological valve prostheses proceeded without complications. Starting on day 23, the patient's general condition deteriorated, with high fever. Despite postoperative antibiotic therapy, transesophageal echocardiography revealed the presence of vegetation on the bioprosthetic aortic valve. On the 46th day after the initial surgery, the patient required replacement of the aortic bioprosthesis, which exhibited the presence of numerous vegetations. The bioprosthetic mitral and tricuspid valves were not affected by the degenerative process. On the 12th day after the reimplantation of the bioprosthetic aortic valve, the patient was discharged from the hospital in good general condition. PMID:27785140

  12. Bioprosthetic versus mechanical prostheses for valve replacement in end-stage renal disease patients: systematic review and meta-analysis

    PubMed Central

    Zhao, Dong Fang; Zhou, Jessie J.; Karagaratnam, Aran; Phan, Steven; Yan, Tristan D.

    2016-01-01

    Background Patients with end-stage renal disease (ESRD) indicated for dialysis are increasingly requiring cardiac valve surgery. The choice of bioprosthetic or mechanic valve prosthesis for such patients requires careful risk assessment. A systematic review and meta-analysis was performed to assess current evidence available. Methods A comprehensive search from six electronic databases was performed from their inception to February 2015. Results from patients with ESRD undergoing cardiac surgery for bioprosthetic or mechanical valve replacement were identified. Results Sixteen studies with 8,483 patients with ESRD undergoing cardiac valve replacement surgery were included. No evidence of publication bias was detected. Prior angioplasty by percutaneous coronary intervention (PCI) or coronary artery bypass graft (CABG) surgery was significantly higher in the bioprosthetic group compared to the mechanical group (16.0% vs. 12.0%, P=0.04); all other preoperative baseline patient characteristics were similar. There was no significant difference in 30-day mortality or all-cause mortality between the two comparisons. Compared with the mechanical group, the frequency of bleeding (5.2% vs. 6.4%, P=0.04) and risk of thromboembolism (2.7% vs. 12.8%, P=0.02) were significantly lower in the bioprosthetic group. There were similar rates of reoperation and valve endocarditis. Conclusions The present study demonstrated that patients with ESRD undergoing bioprosthetic or mechanical valve replacement had similar mid-long term survival. The bioprosthetic group had lower rates of bleeding and thromboembolism. Further studies are required to differentiate the impact of valve location. The presented results may be applicable for ESRD patients requiring prosthetic valve replacement. PMID:27162649

  13. Retrograde transcatheter device closure of a complex paravalvular leak after bioprosthetic pulmonary valve replacement in a pediatric patient.

    PubMed

    Chikkabyrappa, Sathish; Mosca, Ralph S; McElhinney, Doff B

    2016-06-01

    We report a case of retrograde transcatheter device closure of a complex paravalvular leak (PVL) after bioprosthetic pulmonary valve replacement (PVR) in a 13-year-old patient with congenital pulmonary valve stenosis. There are prior reports of pulmonary PVL closure after PVR in adults (Seery and Slack, Congenit Heart Dis 2014;9:E19-F22), but indications for and technical considerations in PVL closure after bioprosthetic PVR, particularly in children, are not well defined. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  14. Aortico-Left Atrial Fistula: A Rare Complication of Bioprosthetic Aortic Valve Endocarditis Secondary to Enterococcus faecalis

    PubMed Central

    Iyer, Deepa; Parikh, Manan; Cohen, Marc

    2015-01-01

    Paravalvular aortic root abscess with intracardiac fistula formation is an exceedingly rare complication of infective endocarditis. This condition is even more rarely encountered in patients with bioprosthetic valve endocarditis. We report an unusual case of a 68-year-old Bosnian female with a bioprosthetic aortic valve, who developed an extensive aortic root abscess, complicated by an aortico-left atrial intracardiac fistula. This case illustrates that a high index of suspicion, prompt diagnosis by echocardiography, proper antibiotic therapy, and early surgical intervention are crucial to improving treatment outcomes for this rare condition. PMID:26246917

  15. Bioprosthetic Valve Fracture to Facilitate Transcatheter Valve-in-Valve Implantation.

    PubMed

    Allen, Keith B; Chhatriwalla, Adnan K; Cohen, David J; Saxon, John T; Aggarwal, Sanjeev; Hart, Anthony; Baron, Suzanne; Davis, J Russell; Pak, Alex F; Dvir, Danny; Borkon, A Michael

    2017-06-29

    Valve-in-valve transcatheter aortic valve replacement is less effective in small surgical bioprostheses. We evaluated the feasibility of bioprosthetic valve fracture with a high-pressure balloon to facilitate valve-in-valve transcatheter aortic valve replacement. In vitro bench testing on aortic tissue valves was performed on 19-mm and 21-mm Mitroflow (Sorin, Milan, Italy), Magna and Magna Ease (Edwards Lifesciences, Irvine, CA), Trifecta and Biocor Epic (St. Jude Medical, Minneapolis, MN), and Hancock II and Mosaic (Medtronic, Minneapolis, MN). High-pressure balloons Tru Dilation, Atlas Gold, and Dorado (C.R. Bard, Murray Hill, NJ) were used to determine which valves could be fractured and at what pressure fracture occurred. Mitroflow, Magna, Magna Ease, Mosaic, and Biocor Epic surgical valves were successfully fractured using high-pressures balloon 1 mm larger than the labeled valve size whereas Trifecta and Hancock II surgical valves could not be fractured. Only the internal valve frame was fractured, and the sewing cuff was never disrupted. Manufacturer's rated burst pressures for balloons were exceeded, with fracture pressures ranging from 8 to 24 atmospheres depending on the surgical valve. Testing further demonstrated that fracture facilitated the expansion of previously constrained, underexpanded transcatheter valves (both balloon and self-expanding) to the manufacturer's recommended size. Bench testing demonstrates that the frame of most, but not all, bioprosthetic surgical aortic valves can be fractured using high-pressure balloons. The safety of bioprosthetic valve fracture to optimize valve-in-valve transcatheter aortic valve replacement in small surgical valves requires further clinical investigation. Copyright © 2017 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  16. Diagnosis and treatment of early bioprosthetic malfunction in the mitral valve position due to thrombus formation.

    PubMed

    Butnaru, Adi; Shaheen, Joseph; Tzivoni, Dan; Tauber, Rachel; Bitran, Daniel; Silberman, Shuli

    2013-11-01

    Bioprosthetic valve thrombosis is uncommon and the diagnosis is often elusive and may be confused with valve degeneration. We report our experience with mitral bioprosthetic valve thrombosis and suggest a therapeutic approach. From 2002 to 2011, 149 consecutive patients who underwent mitral valve replacement with a bioprosthesis at a single center were retrospectively screened for clinical or echocardiographic evidence of valve malfunction. Nine were found to have valve thrombus. All 9 patients had their native valve preserved, representing 24% of those with preserved native valves. Five patients (group 1) presented with symptoms of congestive heart failure at 16.4 ± 12.4 months after surgery. Echocardiogram revealed homogenous echo-dense film on the ventricular surface of the bioprosthesis with elevated transvalvular gradient, resembling early degeneration. The first 2 patients underwent reoperation: valve thrombus was found and confirmed by histologic examination. Based on these, the subsequent 3 patients received anticoagulation treatment with complete thrombus resolution: mean mitral gradient decreased from 23 ± 4 to 6 ± 1 mm Hg and tricuspid regurgitation gradient decreased from 83 ± 20 to 49 ± 5 mm Hg. Four patients (group 2) were asymptomatic, but routine echocardiogram showed a discrete mass on the ventricular aspect of the valve: 1 underwent reoperation to replace the valve and 3 received anticoagulation with complete resolution of the echocardiographic findings. In conclusion, bioprosthetic mitral thrombosis occurs in about 6% of cases. In our experience, onset is early, before anticipated valve degeneration. Clinical awareness followed by an initial trial with anticoagulation is warranted. Surgery should be reserved for those who are not responsive or patients in whom the hemodynamic status does not allow delay. Nonresection of the native valve at the initial operation may play a role in the origin of this entity.

  17. Antiphospholipid Syndrome and Libman-Sacks Endocarditis in a Bioprosthetic Mitral Valve.

    PubMed

    Sladek, Eric H; Accola, Kevin D

    2016-02-01

    This report describes one the first cases of antiphospholipid syndrome and Libman-Sacks endocarditis in a bioprosthetic valve. A redo mitral valve replacement was carried out owing to early deterioration of the prior valve. Initially it was considered secondary to rheumatic heart disease; however, pathology analysis and autoimmune workup revealed antiphospholipid syndrome with Libman-Sacks endocarditis. We believe certain populations with mitral valve stenosis may have an underlying antiphospholipid syndrome. As a result, there needs to be a lower threshold for identifying this disease.

  18. Dynamic feature selection applied to the recognition of grasping movements in the control of bioprosthetic hand.

    PubMed

    Kurzynski, Marek

    2015-01-01

    The paper presents novel method of dynamic feature selection (DFS) and its application in the problem of recognition of patient intent in the bioprosthesis control system. In the proposed approach features are selected dynamically, i.e. separately for each classified object according to the local value of usability measure of primary features. The usability measure is determined in the supervised learning procedure using randomized reference model. The performance of the DFS method was experimentally compared with four other feature selection algorithms. The approach developed achieved the highest classification accuracy demonstrating the potential of the DSF method for the control of bioprosthetic hand.

  19. Inhibition of Calcification of Bioprosthetic Heart Valves by Local Controlled-Release Diphosphonate

    NASA Astrophysics Data System (ADS)

    Levy, Robert J.; Wolfrum, Jacqueline; Schoen, Frederick J.; Hawley, Marguerite A.; Lund, Sally Anne; Langer, Robert

    1985-04-01

    Bioprostheses fabricated from porcine aortic valves are widely used to replace diseased heart valves. Calcification is the principal cause of the clinical failure of these devices. In the present study, inhibition of the calcification of bioprosthetic heart valve cusps implanted subcutaneously in rats was achieved through the adjacent implantation of controlled-release matrices containing the anticalcification agent ethanehydroxydiphosphonate dispersed in a copolymer of ethylene-vinyl acetate. Prevention of calcification was virtually complete, without the adverse effects of retarded bone and somatic growth that accompany systemic administration of ethanehydroxydiphosphonate.

  20. Fluid-structure interaction analysis of bioprosthetic heart valves: significance of arterial wall deformation

    NASA Astrophysics Data System (ADS)

    Hsu, Ming-Chen; Kamensky, David; Bazilevs, Yuri; Sacks, Michael S.; Hughes, Thomas J. R.

    2014-10-01

    We propose a framework that combines variational immersed-boundary and arbitrary Lagrangian-Eulerian methods for fluid-structure interaction (FSI) simulation of a bioprosthetic heart valve implanted in an artery that is allowed to deform in the model. We find that the variational immersed-boundary method for FSI remains robust and effective for heart valve analysis when the background fluid mesh undergoes deformations corresponding to the expansion and contraction of the elastic artery. Furthermore, the computations presented in this work show that the arterial wall deformation contributes significantly to the realism of the simulation results, leading to flow rates and valve motions that more closely resemble those observed in practice.

  1. Biomechanical Behavior of Bioprosthetic Heart Valve Heterograft Tissues: Characterization, Simulation, and Performance.

    PubMed

    Soares, Joao S; Feaver, Kristen R; Zhang, Will; Kamensky, David; Aggarwal, Ankush; Sacks, Michael S

    2016-12-01

    The use of replacement heart valves continues to grow due to the increased prevalence of valvular heart disease resulting from an ageing population. Since bioprosthetic heart valves (BHVs) continue to be the preferred replacement valve, there continues to be a strong need to develop better and more reliable BHVs through and improved the general understanding of BHV failure mechanisms. The major technological hurdle for the lifespan of the BHV implant continues to be the durability of the constituent leaflet biomaterials, which if improved can lead to substantial clinical impact. In order to develop improved solutions for BHV biomaterials, it is critical to have a better understanding of the inherent biomechanical behaviors of the leaflet biomaterials, including chemical treatment technologies, the impact of repetitive mechanical loading, and the inherent failure modes. This review seeks to provide a comprehensive overview of these issues, with a focus on developing insight on the mechanisms of BHV function and failure. Additionally, this review provides a detailed summary of the computational biomechanical simulations that have been used to inform and develop a higher level of understanding of BHV tissues and their failure modes. Collectively, this information should serve as a tool not only to infer reliable and dependable prosthesis function, but also to instigate and facilitate the design of future bioprosthetic valves and clinically impact cardiology.

  2. Bioprosthetic tricuspid valve replacement in carcinoid heart disease from primary ovarian carcinoid tumor.

    PubMed

    Tsugu, Toshimitsu; Iwanaga, Shiro; Murata, Mitsushige; Fukuda, Keiichi

    2015-07-01

    Carcinoid heart disease (CHD) commonly occurs in association with primary gastrointestinal tract carcinoid tumors with hepatic metastases. Unlike primary gastrointestinal tract carcinoid tumors, primary ovarian carcinoid tumors may cause CHD without hepatic metastases, accounting for only 0.3 % of all carcinoid tumors. Only 37 cases of CHD from primary ovarian carcinoid tumors have been reported. We present a case of CHD in which tricuspid valve thickening and shortening led to reduced valve mobility with the resulting severe tricuspid regurgitation. Considering these characteristics of an abnormal tricuspid valve, we suspected CHD, but prosthetic valve replacement was performed without sufficient systemic examination before surgery. Two years after valve replacement, the patient underwent excision of a mass in the lower abdomen, which was diagnosed as an ovarian carcinoid tumor by histopathological examination. The patient has been observed for more than 3 years after tricuspid valve replacement. She has not experienced bioprosthetic valve leaflet degeneration or dysfunction, although it has been reported that bioprosthetic valves may degenerate in patients with carcinoid tumors. Sufficient systemic examinations should be performed to explore the cause of disease.

  3. Comparison of the Long-Term Outcomes of Mechanical and Bioprosthetic Aortic Valves - A Propensity Score Analysis.

    PubMed

    Minakata, Kenji; Tanaka, Shiro; Tamura, Nobushige; Yanagi, Shigeki; Ohkawa, Yohei; Okonogi, Shuichi; Kaneko, Tatsuo; Usui, Akihiko; Abe, Tomonobu; Shimamoto, Mitsuomi; Takahara, Yoshiharu; Yamanaka, Kazuo; Yaku, Hitoshi; Sakata, Ryuzo

    2017-07-25

    The aim of this study was to assess the long-term outcomes of aortic valve replacement (AVR) with either mechanical or bioprosthetic valves according to age at operation.Methods and Results:A total of 1,002 patients (527 mechanical valves and 475 bioprosthetic valves) undergoing first-time AVR were categorized according to age at operation: group Y, age <60 years; group M, age 60-69 years; and group O, age ≥70 years). Outcomes were compared on propensity score analysis (adjusted for 28 variables). Hazard ratio (HR) was calculated using the Cox regression model with adjustment for propensity score with bioprosthetic valve as a reference (HR=1). There were no significant differences in overall mortality between mechanical and bioprosthetic valves for all age groups. Valve-related mortality was significantly higher for mechanical valves in group O (HR, 2.53; P=0.02). Reoperation rate was significantly lower for mechanical valves in group Y (HR, 0.16; P<0.01) and group M (no events for mechanical valves). Although the rate of thromboembolic events was higher in mechanical valves in group Y (no events for tissue valves) and group M (HR, 9.05; P=0.03), there were no significant differences in bleeding events between all age groups. The type of prosthetic valve used in AVR does not significantly influence overall mortality.

  4. An immersogeometric variational framework for fluid-structure interaction: application to bioprosthetic heart valves.

    PubMed

    Kamensky, David; Hsu, Ming-Chen; Schillinger, Dominik; Evans, John A; Aggarwal, Ankush; Bazilevs, Yuri; Sacks, Michael S; Hughes, Thomas J R

    2015-02-01

    In this paper, we develop a geometrically flexible technique for computational fluid-structure interaction (FSI). The motivating application is the simulation of tri-leaflet bioprosthetic heart valve function over the complete cardiac cycle. Due to the complex motion of the heart valve leaflets, the fluid domain undergoes large deformations, including changes of topology. The proposed method directly analyzes a spline-based surface representation of the structure by immersing it into a non-boundary-fitted discretization of the surrounding fluid domain. This places our method within an emerging class of computational techniques that aim to capture geometry on non-boundary-fitted analysis meshes. We introduce the term "immersogeometric analysis" to identify this paradigm. The framework starts with an augmented Lagrangian formulation for FSI that enforces kinematic constraints with a combination of Lagrange multipliers and penalty forces. For immersed volumetric objects, we formally eliminate the multiplier field by substituting a fluid-structure interface traction, arriving at Nitsche's method for enforcing Dirichlet boundary conditions on object surfaces. For immersed thin shell structures modeled geometrically as surfaces, the tractions from opposite sides cancel due to the continuity of the background fluid solution space, leaving a penalty method. Application to a bioprosthetic heart valve, where there is a large pressure jump across the leaflets, reveals shortcomings of the penalty approach. To counteract steep pressure gradients through the structure without the conditioning problems that accompany strong penalty forces, we resurrect the Lagrange multiplier field. Further, since the fluid discretization is not tailored to the structure geometry, there is a significant error in the approximation of pressure discontinuities across the shell. This error becomes especially troublesome in residual-based stabilized methods for incompressible flow, leading to

  5. An immersogeometric variational framework for fluid–structure interaction: application to bioprosthetic heart valves

    PubMed Central

    Kamensky, David; Hsu, Ming-Chen; Schillinger, Dominik; Evans, John A.; Aggarwal, Ankush; Bazilevs, Yuri; Sacks, Michael S.; Hughes, Thomas J. R.

    2014-01-01

    In this paper, we develop a geometrically flexible technique for computational fluid–structure interaction (FSI). The motivating application is the simulation of tri-leaflet bioprosthetic heart valve function over the complete cardiac cycle. Due to the complex motion of the heart valve leaflets, the fluid domain undergoes large deformations, including changes of topology. The proposed method directly analyzes a spline-based surface representation of the structure by immersing it into a non-boundary-fitted discretization of the surrounding fluid domain. This places our method within an emerging class of computational techniques that aim to capture geometry on non-boundary-fitted analysis meshes. We introduce the term “immersogeometric analysis” to identify this paradigm. The framework starts with an augmented Lagrangian formulation for FSI that enforces kinematic constraints with a combination of Lagrange multipliers and penalty forces. For immersed volumetric objects, we formally eliminate the multiplier field by substituting a fluid–structure interface traction, arriving at Nitsche’s method for enforcing Dirichlet boundary conditions on object surfaces. For immersed thin shell structures modeled geometrically as surfaces, the tractions from opposite sides cancel due to the continuity of the background fluid solution space, leaving a penalty method. Application to a bioprosthetic heart valve, where there is a large pressure jump across the leaflets, reveals shortcomings of the penalty approach. To counteract steep pressure gradients through the structure without the conditioning problems that accompany strong penalty forces, we resurrect the Lagrange multiplier field. Further, since the fluid discretization is not tailored to the structure geometry, there is a significant error in the approximation of pressure discontinuities across the shell. This error becomes especially troublesome in residual-based stabilized methods for incompressible flow, leading

  6. Does implantation of larger bioprosthetic pulmonary valves in young patients guarantee durability in adults? Durability analysis of stented bioprosthetic valves in the pulmonary position in patients with Tetralogy of Fallot†.

    PubMed

    Kwak, Jae Gun; Lee, Cheul; Lee, Mina; Lee, Chang-Ha; Jang, So-Ick; Lee, Sang Yun; Park, Su-Jin; Song, Mi Kyoung; Kim, Seong-Ho

    2016-04-01

    In a previous study, we identified factors affecting the durability of bioprosthetic valves in the pulmonary position following total repair of Tetralogy of Fallot (TOF). In this study, we aimed to identify factors affecting the durability of the bioprosthetic valve with regard to patient age and implanted valve size in order to guide valve choice in adolescent patients. We enrolled and analysed 108 cases of pulmonary valve replacement (PVR) with stented bioprosthetic valves in TOF patients between January 1998 and February 2014. Valvular dysfunction was defined as at least a moderate amount of pulmonary regurgitation or a peak pressure gradient of ≥40 mmHg on the most recent echocardiography. We analysed the effect of patient age and valve size on the durability of the bioprosthetic valve in the pulmonary position. There were 2 early deaths; no late deaths were observed. The follow-up duration was 92.8 ± 44.5 months. The mean age at PVR was 19.3 ± 9.1 years. The mean valve size was 24.7 ± 1.8 mm. Whereas patients ≥20 years old showed no valvular dysfunction (i.e. 100% freedom from valvular dysfunction at 10 and 14 years), patients who were adolescents and children (<20 years) showed worse durability, regardless of the z-score of valve size (68.2% at 10 years and 24.7% at 14 years). Although a larger valve with a z-score of ≥2 was implanted, patients <20 years old did not exhibit good valvular durability. The results were particularly worse in patients <10 years old, with 66.7% freedom from valvular dysfunction at 6 years and 33.3% at 8 years, compared with patients within the age range of 10 to <20 years (75.1% at 10 years, and 20.5% at 14 years). The durability of bioprosthetic valves in the pulmonary position was acceptable in patients aged ≥20 years, regardless of the z-score of valve size. However, patients who were children and adolescents did not show optimal durability of the bioprosthetic valve, irrespective of the z-score of valve size. © The

  7. Fluid-structure interaction analysis of bioprosthetic heart valves: Significance of arterial wall deformation.

    PubMed

    Hsu, Ming-Chen; Kamensky, David; Bazilevs, Yuri; Sacks, Michael S; Hughes, Thomas J R

    2014-10-01

    We propose a framework that combines variational immersed-boundary and arbitrary Lagrangian-Eulerian (ALE) methods for fluid-structure interaction (FSI) simulation of a bioprosthetic heart valve implanted in an artery that is allowed to deform in the model. We find that the variational immersed-boundary method for FSI remains robust and effective for heart valve analysis when the background fluid mesh undergoes deformations corresponding to the expansion and contraction of the elastic artery. Furthermore, the computations presented in this work show that the arterial wall deformation contributes significantly to the realism of the simulation results, leading to flow rates and valve motions that more closely resemble those observed in practice.

  8. Fluid–structure interaction analysis of bioprosthetic heart valves: Significance of arterial wall deformation

    PubMed Central

    Hsu, Ming-Chen; Kamensky, David; Bazilevs, Yuri; Sacks, Michael S.; Hughes, Thomas J. R.

    2014-01-01

    We propose a framework that combines variational immersed-boundary and arbitrary Lagrangian–Eulerian (ALE) methods for fluid–structure interaction (FSI) simulation of a bioprosthetic heart valve implanted in an artery that is allowed to deform in the model. We find that the variational immersed-boundary method for FSI remains robust and effective for heart valve analysis when the background fluid mesh undergoes deformations corresponding to the expansion and contraction of the elastic artery. Furthermore, the computations presented in this work show that the arterial wall deformation contributes significantly to the realism of the simulation results, leading to flow rates and valve motions that more closely resemble those observed in practice. PMID:25580046

  9. Physiological vortices in the sinuses of Valsalva: An in vitro approach for bio-prosthetic valves.

    PubMed

    Toninato, Riccardo; Salmon, Jacob; Susin, Francesca Maria; Ducci, Andrea; Burriesci, Gaetano

    2016-09-06

    The physiological flow dynamics within the Valsalva sinuses, in terms of global and local parameters, are still not fully understood. This study attempts to identify the physiological conditions as closely as possible, and to give an explanation of the different and sometime contradictory results in literature. An in vitro approach was implemented for testing porcine bio-prosthetic valves operating within different aortic root configurations. All tests were performed on a pulse duplicator, under physiological pressure and flow conditions. The fluid dynamics established in the various cases were analysed by means of 2D Particle Image Velocimetry, and related with the achieved hydrodynamic performance. Each configuration is associated with substantially different flow dynamics, which significantly affects the valve performance. The configuration most closely replicating healthy native anatomy was characterised by the best hemodynamic performance, and any mismatch in size and position between the valve and the root produced substantial modification of the fluid dynamics downstream of the valve, hindering the hydrodynamic performance of the system. The worst conditions were observed for a configuration characterised by the total absence of the Valsalva sinuses. This study provides an explanation for the different vortical structures described in the literature downstream of bioprosthetic valves, enlightening the experimental complications in valve testing. Most importantly, the results clearly identify the fluid mechanisms promoted by the Valsalva sinuses to enhance the ejection and closing phases, and this study exposes the importance of an optimal integration of the valve and root, to operate as a single system. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. In vitro comparative assessment of decellularized bovine pericardial patches and commercial bioprosthetic heart valves.

    PubMed

    Aguiari, Paola; Iop, Laura; Favaretto, Francesca; Fidalgo, Cátia Marisa Lourenco; Naso, Filippo; Milan, Gabriella; Vindigni, Vincenzo; Spina, Michel; Bassetto, Franco; Bagno, Andrea; Vettor, Roberto; Gerosa, Gino

    2017-02-03

    Notwithstanding their wide exploitation, biological prosthetic heart valves are characterized by limited durability (10-15 years). The treatment of biological tissues with chemical crosslinking agents such as glutaraldehyde accounts for the enhanced risk of structural deterioration associated with the early failure of bioprosthetic valves. To overcome the shortcomings of the currently available solutions, adoption of decellularized biological tissues of animal origin has emerged as a promising approach. The present study aims to assess in vitro cardiovascular scaffolds composed of bovine pericardium decellularized with the novel TRITDOC (TRIton-X100 and TauroDeOxyCholic acid) procedure. The effects of the treatment have been assessed by means of histological, biomolecular, cellular, biochemical and biomechanical analyses. The TRITDOC procedure grants the complete decellularization of bovine pericardial scaffolds while preserving the extracellular matrix architecture and the biomechanical properties. With a dedicated ELISA test, the TRITDOC procedure has been proven to ensure the complete removal of the alphaGal antigen, responsible for hyperacute rejection and for long-term deterioration of xenogenic biomaterials. Static seeding of the acellular pericardial patches with human adipose-derived stem cells resulted in an evenly repopulated scaffold without signs of calcification. The in vitro cyto-/immuno-compatibility response of the TRITDOC-bovine pericardium was compared with glutaraldehyde-treated xenogenic pericardium collected from two bioprosthetic devices currently used in clinical practice: PERIMOUNT MAGNA and TRIFECTA(TM). TRITDOC-bovine pericardium exhibited lower complement activation, lower cytotoxicity and a lower tendency to secrete pro-inflammatory cytokines compared to the tested commercial bioprostheses. Therefore, TRITDOC-decellularized pericardium could be considered as possible candidate material for the production of prosthetic heart valves.

  11. Increased cellular expression of matrix proteins that regulate mineralization is associated with calcification of native human and porcine xenograft bioprosthetic heart valves.

    PubMed Central

    Srivatsa, S S; Harrity, P J; Maercklein, P B; Kleppe, L; Veinot, J; Edwards, W D; Johnson, C M; Fitzpatrick, L A

    1997-01-01

    Dystrophic mineralization remains the leading cause of stenotic or regurgitant failure in native human and porcine bioprosthetic heart valves. We hypothesized that cellular expression of noncollagenous matrix proteins (osteopontin, osteocalcin, and osteonectin) that regulate skeletal mineralization may orchestrate valvular calcification. Porcine bioprosthetic heart valves and native human heart valves obtained during replacement surgery were analyzed for cells, matrix proteins that regulate mineralization, and vessels. Cell accumulation and calcification were correlated for both valve types (rho = 0.75, P = 0.01, native; rho = 0.42, P = 0.08, bioprosthetic). Osteopontin expression correlated with cell accumulation (rho = 0.58, P = 0.04) and calcification (rho = 0.52, P = 0.06) for bioprosthetic valves. Osteocalcin expression correlated with calcification (rho = 0.77, P = 0.04) and cell accumulation (rho = 0.69, P = 0.07) in native valves. Comparisons of calcified versus noncalcified native and bioprosthetic valves for averaged total matrix protein mRNA signal score revealed increased noncollagenous proteins mRNA levels in calcified valves (P = 0.07, group I vs. group II; P = 0.02, group III vs. group IV). When stratified according to positive versus negative mRNA signal status, both calcified bioprosthetic valves (P = 0.03) and calcified native valves (P = 0.01) were significantly more positive for noncollagenous proteins mRNA than their noncalcified counterparts. Local cell-associated expression of proteins regulating mineralization suggests a highly coordinated mechanism of bioprosthetic and native valve calcification analogous to physiologic bone mineralization. Modulation of cellular infiltration or cellular expression of matrix proteins that regulate mineralization, may offer an effective therapeutic approach to the prevention of valve failure secondary to calcification. PMID:9062358

  12. Bio-fabrication and physiological self-release of tissue equivalents using smart peptide amphiphile templates.

    PubMed

    Gouveia, Ricardo M; Hamley, Ian W; Connon, Che J

    2015-10-01

    In this study we applied a smart biomaterial formed from a self-assembling, multi-functional synthetic peptide amphiphile (PA) to coat substrates with various surface chemistries. The combination of PA coating and alignment-inducing functionalised substrates provided a template to instruct human corneal stromal fibroblasts to adhere, become aligned and then bio-fabricate a highly-ordered, multi-layered, three-dimensional tissue by depositing an aligned, native-like extracellular matrix. The newly-formed corneal tissue equivalent was subsequently able to eliminate the adhesive properties of the template and govern its own complete release via the action of endogenous proteases. Tissues recovered through this method were structurally stable, easily handled, and carrier-free. Furthermore, topographical and mechanical analysis by atomic force microscopy showed that tissue equivalents formed on the alignment-inducing PA template had highly-ordered, compact collagen deposition, with a two-fold higher elastic modulus compared to the less compact tissues produced on the non-alignment template, the PA-coated glass. We suggest that this technology represents a new paradigm in tissue engineering and regenerative medicine, whereby all processes for the bio-fabrication and subsequent self-release of natural, bio-prosthetic human tissues depend solely on simple template-tissue feedback interactions.

  13. First clinical use of a bioprosthetic total artificial heart: report of two cases.

    PubMed

    Carpentier, Alain; Latrémouille, Christian; Cholley, Bernard; Smadja, David M; Roussel, Jean-Christian; Boissier, Elodie; Trochu, Jean-Noël; Gueffet, Jean-Pierre; Treillot, Michèle; Bizouarn, Philippe; Méléard, Denis; Boughenou, Marie-Fazia; Ponzio, Olivier; Grimmé, Marc; Capel, Antoine; Jansen, Piet; Hagège, Albert; Desnos, Michel; Fabiani, Jean-Noël; Duveau, Daniel

    2015-10-17

    The development of artificial hearts in patients with end-stage heart disease have been confronted with the major issues of thromboembolism or haemorrhage. Since valvular bioprostheses are associated with a low incidence of these complications, we decided to use bioprosthetic materials in the construction of a novel artificial heart (C-TAH). We report here the device characteristics and its first clinical applications in two patients with end-stage dilated cardiomyopathy. The aim of the study was to evaluate safety and feasibility of the CARMAT TAH for patients at imminent risk of death from biventricular heart failure and not eligible for transplant. The C-TAH is an implantable electro-hydraulically actuated pulsatile biventricular pump. All components, batteries excepted, are embodied in a single device positioned in the pericardial sac after excision of the native ventricles. We selected patients admitted to hospital who were at imminent risk of death, having irreversible biventricular failure, and not eligible for heart transplantation, from three cardiac surgery centres in France. The C-TAH was implanted in two male patients. Patient 1, aged 76 years, had the C-TAH implantation on Dec 18, 2013; patient 2, aged 68 years, had the implantation on Aug 5, 2014. The cardiopulmonary bypass times for C-TAH implantation were 170 min for patient 1 and 157 min for patient 2. Both patients were extubated within the first 12 postoperative hours and had a rapid recovery of their respiratory and circulatory functions as well as a normal mental status. Patient 1 presented with a tamponade on day 23 requiring re-intervention. Postoperative bleeding disorders prompted anticoagulant discontinuation. The C-TAH functioned well with a cardiac output of 4·8-5·8 L/min. On day 74, the patient died due to a device failure. Autopsy did not detect any relevant thrombus formation within the bioprosthesis nor the different organs, despite a 50-day anticoagulant-free period. Patient 2

  14. Harnessing osteopontin and other natural inhibitors to mitigate ectopic calcification of bioprosthetic heart valve material

    NASA Astrophysics Data System (ADS)

    Ohri, Rachit

    Dystrophic calcification has been the long-standing major cause of bioprosthetic heart valve failure, and has been well studied in terms of the underlying causative mechanisms. Such understanding has yielded several anti-calcification strategies involving biomaterial modification at the preparation stage: chemical alteration, extraction of calcifiable components, or material modification with small-molecule anti-calcific agents. However, newer therapeutic opportunities are offered by the growing illustration of the pathology as a dynamic, actively regulated process involving several gene products, such as osteopontin (OPN), matrix-gla protein (MGP) and glycosaminoglycans (GAGs). Osteopontin, a multi-functional matricellular glycosylated phosphoprotein has emerged as a prime candidate for the role of an in vivo inhibitor of ectopic calcification with two putative mechanisms: crystal poisoning and mineral-dissolution. The full therapeutic realization of its potential necessitates a better understanding of the mechanisms of anti-calcification by osteopontin, as well as appropriate in vivo models in which to evaluate its efficacy, potency and molecular mechanisms. In this work, we pursued the development and characterization of a reliable in vivo model with the OPN-null mouse to simulate the calcification of bioprosthetic valve material, namely glutaraldehyde-fixed bovine pericardium (GFBP) tissue. Subsequently, we used the calcification model to evaluate hypotheses based on the anti-calcific potential of osteopontin. Several modes of administering exogenous OPN to the implant site in OPN-null mice were explored, including soluble injected OPN, OPN covalently immobilized on the biomaterial, and OPN adsorbed onto the biomaterial. An investigation of the structure-function aspects of the anti-calcific ability of OPN was also pursued in the in vivo model. The OPN-null mouse was also used as an in vivo test-bed to evaluate the anti-calcific potential of other biomolecules

  15. Regeneration inducers in limb regeneration.

    PubMed

    Satoh, Akira; Mitogawa, Kazumasa; Makanae, Aki

    2015-08-01

    Limb regeneration ability, which can be observed in amphibians, has been investigated as a representative phenomenon of organ regeneration. Recently, an alternative experimental system called the accessory limb model was developed to investigate early regulation of amphibian limb regeneration. The accessory limb model contributed to identification of limb regeneration inducers in urodele amphibians. Furthermore, the accessory limb model may be applied to other species to explore universality of regeneration mechanisms. This review aims to connect the insights recently gained to emboss universality of regeneration mechanisms among species. The defined molecules (BMP7 (or2) + FGF2 + FGF8) can transform skin wound healing to organ (limb) regeneration responses. The same molecules can initiate regeneration responses in some species.

  16. New treatments using alginate in order to reduce the calcification of bovine bioprosthetic heart valve tissue.

    PubMed

    Shanthi, C; Rao, K P

    1997-01-01

    Calcification limits the functional lifetime of cardiac valve substitutes fabricated from glutaraldehyde preserved bovine pericardium. Host factors, mainly younger age, and implant factors, mainly glutaraldehyde cross-linking, are implicated in the calcification process. Glutaraldehyde cross-linking is believed to activate the potential sites in the tissues for biocalcification. In the present work, we investigated the possibility of using alginate azide (AA) instead of glutaraldehyde for the preservation of pericardial tissues in order to enhance the durability of bioprosthetic heart valves. Grafting with poly(GMA-BA) copolymer to the alginate azide cross-linked pericardial (AACPC) tissue was carried out to obtain better stability, strength, and anticalcification properties. The strength property and thermal stability of the AA cross-linked tissues were studied. Calcification studies in rat subdermal models reveal that AA cross-linking reduces the calcification to negligible levels. After 30 days implantation, the calcium content was found to be 10.4 +/- 1.2 and 6.1 +/- 0.3 micrograms mg-1 for untreated AACPC and polymer grafted AACPC, respectively, compared to a value of 100 +/- 1.2 micrograms mg-1 calcium recorded for control glutaraldehyde cross-linked pericardial (GCPC) tissues.

  17. Three-dimensional coupled fluid-structure simulation of pericardial bioprosthetic aortic valve function.

    PubMed

    Makhijani, V B; Yang, H Q; Dionne, P J; Thubrikar, M J

    1997-01-01

    A computational, three-dimensional coupled fluid-structure dynamics model was developed for a generic pericardial aortic valve in a rigid aortic root graft with physiologic sinuses. Valve geometry was based on that of the natural valve. Blood flow was modeled as pulsatile, laminar, Newtonian, incompressible flow. The structural model accounted for material and geometric nonlinearities and also simulated leaflet coaptation. A body fitted grid was used to subdivide the flow domain into computational finite volume cells. Shell finite elements were used to discretize the leaflet volume. A finite volume computational fluid dynamics code and finite element structure dynamics code were used to solve the flow and structure equations, respectively. The fluid flow and structural equations were coupled using an implicit "influence coefficient" technique. Physiologic ventricular and aortic pressure waveforms were prescribed as the flow boundary conditions. The aortic flow field, valve structural configuration, and leaflet stresses were computed at 2 msec intervals. Model predictions on aortic flow and transient variation in valve orifice area were in close agreement with corresponding experimental in vitro data. These findings suggest that the computer model has potential for being a powerful design tool for bioprosthetic aortic valves.

  18. Effects of Leaflet Design on Transvalvular Gradients of Bioprosthetic Heart Valves.

    PubMed

    Dabiri, Yaghoub; Ronsky, Janet; Ali, Imtiaz; Basha, Ameen; Bhanji, Alisha; Narine, Kishan

    2016-12-01

    Bioprosthetic aortic valves (BAVs) are becoming the prostheses of choice in heart valve replacement. The objective of this paper is to assess the effects of leaflet geometry on the mechanics and hemodynamics of BAVs in a fluid structure interaction model. The curvature and angle of leaflets were varied in 10 case studies whereby the following design parameters were altered: a circular arch, a line, and a parabola for the radial curvature, and a circular arch, a spline, and a parabola for the circumferential curvature. Six different leaflet angles (representative of the inclination of the leaflets toward the surrounding aortic wall) were analyzed. The 3-dimensional geometry of the models were created using SolidWorks, Pointwise was used for meshing, and Comsol Multiphysics was used for implicit finite element calculations. Realistic loading was enforced by considering the time-dependent strongly-coupled interaction between blood flow and leaflets. Higher mean pressure gradients as well as von Mises stresses were obtained with a parabolic or circular curvature for radial curvature or a parabolic or spline curvature for the circumferential curvature. A smaller leaflet angle was associated with a lower pressure gradient, and, a lower von Mises stress. The leaflet curvature and angle noticeably affected the speed of valve opening, and closing. When a parabola was used for circumferential or radial curvature, leaflets displacements were asymmetric, and they opened and closed more slowly. A circular circumferential leaflet curvature, a linear leaflet radial curvature, and leaflet inclination toward the surrounding aortic wall were associated with superior BAVs mechanics.

  19. Hydrodynamic performance of a prototype bioprosthetic valve derived from the pulmonary valve of Phoca groenlandica.

    PubMed

    Agathos, E Andreas; Shen, Ming; Styrc, Witold; Giannakopoulou, Stamatina; Lachanas, Elias; Tomos, Perikles

    2012-01-01

    Biological valves offer significant advantages over mechanical valves, and for this reason, we studied the possibility of using a new animal source such as that of Phoca groenlandica. Four aortic and four pulmonary leaflets were cut radially and their uniaxial tensile testing was evaluated. Three prototype pulmonary valves of Phoca groenlandica preserved in buffered glutaraldehyde solution 0.625% at pH 7.4 were mounted on a 19, 21, and 27 mm novel support system (stent) with heart shape commissural posts covered with polytetrafluoroethylene. The valves were tested in a steady flow system, the peak pressure gradients (PPGs) were measured, and the effective orifice areas (EOAs) were calculated for the flows of 3, 4, 5, 6, and 8 L/min. There were five different measurements for each flow variant. Aortic and pulmonary leaflets present no statistically significant difference in failure strength (p = 0.93). The PPGs across the valves for the flow of 3, 4, 5, 6, and 8 L/min for all three tested valves were low and the corresponding calculated EOAs were large. The new bioprosthetic valve derived from the pulmonary valve of Phoca groenlandica mounted on this novel support system presented a satisfactory hydrodynamic performance in a steady flow system. More research is needed before it can be considered suitable for human cardiac valve replacement.

  20. Comparison of transcatheter aortic valve and surgical bioprosthetic valve durability: A fatigue simulation study.

    PubMed

    Martin, Caitlin; Sun, Wei

    2015-09-18

    Transcatheter aortic valve (TAV) intervention is now the standard-of-care treatment for inoperable patients and a viable alternative treatment option for high-risk patients with symptomatic aortic stenosis. While the procedure is associated with lower operative risk and shorter recovery times than traditional surgical aortic valve (SAV) replacement, TAV intervention is still not considered for lower-risk patients due in part to concerns about device durability. It is well known that bioprosthetic SAVs have limited durability, and TAVs are generally assumed to have even worse durability, yet there is little long-term data to confirm this suspicion. In this study, TAV and SAV leaflet fatigue due to cyclic loading was investigated through finite element analysis by implementing a computational soft tissue fatigue damage model to describe the behavior of the pericardial leaflets. Under identical loading conditions and with identical leaflet tissue properties, the TAV leaflets sustained higher stresses, strains, and fatigue damage compared to the SAV leaflets. The simulation results suggest that the durability of TAVs may be significantly reduced compared to SAVs to about 7.8 years. The developed computational framework may be useful in optimizing TAV design parameters to improve leaflet durability, and assessing the effects of underexpanded, elliptical, or non-uniformly expanded stent deployment on TAV durability. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Scanning electron microscopy methodology for study of the pathophysiology of calcification in bioprosthetic heart valves

    SciTech Connect

    Nelson, A.C.; Schoen, F.J.; Levy, R.J.

    1985-01-01

    Scanning electron microscope (SEM) morphologic analysis combined with energy dispersive characteristic X-ray (EDX) microprobe analysis provides insight into the mechanisms associated with disease-related crystal formation in biological materials. SEM and EDX were employed in analyzing specimens which were embedded in standard fashion in glycolmethacrylate. The specimen surfaces under electron microscope investigation resulted from microtomy used in the preparation of reference light microscope histological sections; thus histology served as a direct reference for the SEM and EDX analyses. The particular application of these methods was in the study of bioprosthetic heart valve calcification, largely responsible for clinical failure of these heart valve substitutes. To simulate the clinically observed mineralization processes, glutaraldehyde-pretreated porcine heart valve leaflets were implanted subcutaneously in rats and subsequently removed at various time intervals from 1 to 56 days. Also, to address the hypothesis that the calcification process generates crystalline materials analogous to those in bone, EDX data obtained from pure hydroxyapatite were compared with the embedded tissue results. Further, EDX results were compared with data obtained by chemical analysis of the bulk specimens to assess the validity of the electron microscope technique.

  2. Neomycin binding preserves extracellular matrix in bioprosthetic heart valves during in vitro cyclic fatigue and storage

    PubMed Central

    Raghavan, Devanathan; Starcher, Barry C.; Vyavahare, Naren R.

    2009-01-01

    Bioprosthetic heart valve (BHV) cusps have a complex architecture consisting of an anisotropic arrangement of collagen, glycosaminoglycans (GAGs) and elastin. Glutaraldehyde (GLUT) is used as a fixative for all clinical BHV implants; however, it only stabilizes the collagen component of the tissue, and other components such as GAGs and elastin are lost from the tissue during processing, storage or after implantation. We have shown previously that the effectiveness of the chemical crosslinking can be increased by incorporating neomycin trisulfate, a hyaluronidase inhibitor, to prevent the enzyme-mediated GAG degradation. In the present study, we optimized carbodiimide-based GAG-targeted chemistry to incorporate neomycin into BHV cusps prior to conventional GLUT crosslinking. This crosslinking leads to enhanced preservation of GAGs during in vitro cyclic fatigue and storage. The neomycin group showed greater GAG retention after both 10 and 50 million accelerated-fatigue cycles and after 1 year of storage in GLUT solution. Thus, additional binding of neomycin to the cusps prior to standard GLUT crosslinking could enhance tissue stability and thus heart valve durability. PMID:19091637

  3. PROTEIN TEMPLATES IN HARD TISSUE ENGINEERING

    PubMed Central

    George, Anne; Ravindran, Sriram

    2010-01-01

    Biomineralization processes such as formation of bones and teeth require controlled mineral deposition and self-assembly into hierarchical biocomposites with unique mechanical properties. Ideal biomaterials for regeneration and repair of hard tissues must be biocompatible, possess micro and macroporosity for vascular invasion, provide surface chemistry and texture that facilitate cell attachment, proliferation, differentiation of lineage specific progenitor cells, and induce deposition of calcium phosphate mineral. To expect in-vivo like cellular response several investigators have used extracellular matrix proteins as templates to recreate in-vivo microenvironment for regeneration of hard tissues. Recently, several novel methods of designing tissue repair and restoration materials using bioinspired strategies are currently being formulated. Nanoscale structured materials can be fabricated via the spontaneous organization of self-assembling proteins to construct hierarchically organized nanomaterials. The advantage of such a method is that polypeptides can be specifically designed as building blocks incorporated with molecular recognition features and spatially distributed bioactive ligands that would provide a physiological environment for cells in-vitro and in-vivo. This is a rapidly evolving area and provides a promising platform for future development of nanostructured templates for hard tissue engineering. In this review we try to highlight the importance of proteins as templates for regeneration and repair of hard tissues as well as the potential of peptide based nanomaterials for regenerative therapies. PMID:20802848

  4. Mechanisms of the in vivo inhibition of calcification of bioprosthetic porcine aortic valve cusps and aortic wall with triglycidylamine/mercapto bisphosphonate.

    PubMed

    Rapoport, H Scott; Connolly, Jeanne M; Fulmer, James; Dai, Ning; Murti, Brandon H; Gorman, Robert C; Gorman, Joseph H; Alferiev, Ivan; Levy, Robert J

    2007-02-01

    Heart valve replacements fabricated from glutaraldehyde (Glut)-crosslinked heterograft materials, porcine aortic valves or bovine pericardium, have been widely used in cardiac surgery to treat heart valve disease. However, these bioprosthetic heart valves often fail in long-term clinical implants due to pathologic calcification of the bioprosthetic leaflets, and for stentless porcine aortic valve bioprostheses, bioprosthetic aortic wall calcification also typically occurs. Previous use of the epoxide-based crosslinker, triglycidyl amine (TGA), on cardiac bioprosthetic valve materials demonstrated superior biocompatibility, mechanics, and calcification resistance for porcine aortic valve cusps (but not porcine aortic wall) and bovine pericardium, vs. Glut-prepared controls. However, TGA preparation did not completely prevent long-term calcification of cusps or pericardium. Herein we report further mechanistic investigations of an added therapeutic component to this system, 2-mercaptoethylidene-1,1-bisphosphonic acid (MABP), a custom synthesized thiol bisphosphonate, which has previously been shown in a preliminary report to prevent bioprosthetic heterograft biomaterial calcification when used in combination with initial TGA crosslinking for 7 days. In the present studies, we have further investigated the effectiveness of MABP in experiments that examined: (1) The use of MABP after optimal TGA crosslinking, in order to avoid any competitive interference of MABP-reactions with TGA during crosslinking; (2) Furthermore, recognizing the importance of alkaline phosphatase (ALP) in the formation of dystrophic calcific nodules, we have investigated the hypothesis that the mechanism by which MABP primarily functions is through the reduction of ALP activity. Results from cell-free model systems, cell culture studies, and rat subcutaneous implants, show that materials functionalized with MABP after TGA crosslinking have reduced ALP activity, and in vivo have no significant

  5. Risk of breast cancer among patients with bioprosthetic or mechanical valve replacement: a population-based study in Sweden.

    PubMed

    Ji, Jianguang; Zöller, Bengt; Giaccia, Amato; Haile, Robert; Sundquist, Jan; Sundquist, Kristina

    2015-11-01

    The association between breast cancer and warfarin is inconclusive as most previous studies examined their association using patients with thromboembolism, whereas thromboembolism itself is a risk factor for cancer. We explored this issue using patients received mechanical heart valves replacement as a proxy for warfarin exposure as these patients need a lifelong warfarin treatment, and compared them with patients received bioprosthesis valves replacement (short-term warfarin treatment) in Sweden between 1987 and 2010. Patients who were operated on for valve replacement were identified from the Swedish Hospital Discharge Registry and linked to the Swedish Cancer Registry to examine the hazard ratios of subsequent breast cancer. A total of 12,242 women were operated on for valve replacement (5481 with mechanical valve and 6401 with bioprosthetic valve). For the entire cohort, the HR of breast cancer was 1.49 (95 % CI 1.09-2.02) among patients with mechanical valve replacement compared to those with bioprosthetic valve replacement. After controlling for a number of confounding factors using propensity score weighting, the HR was 1.69 (95 % CI 1.15-2.47). Our study found that patients with mechanical valve replacement have an increased risk of breast cancer compared to those with bioprosthetic valve replacement. If confirmed, this increased risk should be considered when recommending breast cancer screening for women with mechanical valve replacement. Long-term use of warfarin may explain the observed increase. If so, patients who have used warfarin long-term for other reasons should be studied for a possible increased risk of breast cancer.

  6. Calcification and Oxidative Modifications Are Associated With Progressive Bioprosthetic Heart Valve Dysfunction.

    PubMed

    Lee, Suengwon; Levy, Robert J; Christian, Abigail J; Hazen, Stanley L; Frick, Nathan E; Lai, Eric K; Grau, Juan B; Bavaria, Joseph E; Ferrari, Giovanni

    2017-05-08

    Bioprosthetic heart valves (BHVs), fabricated from glutaraldehyde-pretreated bovine pericardium or porcine aortic valves, are widely used for the surgical or interventional treatment of heart valve disease. Reoperation becomes increasingly necessary over time because of BHV dysfunction. Forty-seven explanted BHV aortic valve replacements were retrieved at reoperation for clinically severe BHV dysfunction over the period 2010-2016. Clinical explant analyses of BHV leaflets for calcium (atomic absorption spectroscopy) and oxidized amino acids, per mass spectroscopy, were primary end points. Comorbidities for earlier BHV explant included diabetes mellitus and coronary artery bypass grafting. Mean calcium levels in BHV leaflets were significantly increased compared with unimplanted BHV (P<0.001); however, time to reoperation did not differ comparing calcified and noncalcified BHV. BHV dityrosine, an oxidized amino acid cross-link, was significantly increased in the explants (227.55±33.27 μmol/mol [dityrosine/tyrosine]) but was undetectable in unimplanted leaflets (P<0.001). BHV regional analyses revealed that dityrosine, ranging from 57.5 to 227.8 μmol/mol (dityrosine/tyrosine), was detectable only in the midleaflet samples, indicating the site-specific nature of dityrosine formation. 3-Chlorotyrosine, an oxidized amino acid formed by myeloperoxidase-catalyzed chlorinating oxidants, correlated with BHV calcium content in leaflet explant analyses from coronary artery bypass graft patients (r=0.62, P=0.01) but was not significantly correlated with calcification in non-coronary artery bypass graft explanted BHV. Both increased BHV leaflet calcium levels and elevated oxidized amino acids were associated with bioprosthesis dysfunction necessitating reoperation; however, BHV calcium levels were not a determinant of implant duration, indicating a potentially important role for oxidized amino acid formation in BHV dysfunction. © 2017 The Authors. Published on behalf of

  7. Multiclassifier system with hybrid learning applied to the control of bioprosthetic hand.

    PubMed

    Kurzynski, Marek; Krysmann, Maciej; Trajdos, Pawel; Wolczowski, Andrzej

    2016-02-01

    In this paper the problem of recognition of the intended hand movements for the control of bio-prosthetic hand is addressed. The proposed method is based on recognition of electromiographic (EMG) and mechanomiographic (MMG) biosignals using a multiclassifier system (MCS) working in a two-level structure with a dynamic ensemble selection (DES) scheme and original concepts of competence function. Additionally, feedback information coming from bioprosthesis sensors on the correct/incorrect classification is applied to the adjustment of the combining mechanism during MCS operation through adaptive tuning competences of base classifiers depending on their decisions. Three MCS systems operating in decision tree structure and with different tuning algorithms are developed. In the MCS1 system, competence is uniformly allocated to each class belonging to the group indicated by the feedback signal. In the MCS2 system, the modification of competence depends on the node of decision tree at which a correct/incorrect classification is made. In the MCS3 system, the randomized model of classifier and the concept of cross-competence are used in the tuning procedure. Experimental investigations on the real data and computer-simulated procedure of generating feedback signals are performed. In these investigations classification accuracy of the MCS systems developed is compared and furthermore, the MCS systems are evaluated with respect to the effectiveness of the procedure of tuning competence. The results obtained indicate that modification of competence of base classifiers during the working phase essentially improves performance of the MCS system and that this improvement depends on the MCS system and tuning method used.

  8. Triglycidylamine Cross-linking Combined with Ethanol Inhibits Bioprosthetic Heart Valve Calcification

    PubMed Central

    Connolly, Jeanne M.; Bakay, Marina A.; Alferiev, Ivan S.; Gorman, Robert C.; Gorman, Joseph H.; Kruth, Howard S.; Ashworth, Paul E.; Kutty, Jaishankar K.; Schoen, Frederick J.; Bianco, Richard W.; Levy, Robert J.

    2012-01-01

    Background One of the most important factors responsible for the calcific failure of bioprosthetic heart valves is glutaraldehyde cross-linking. Ethanol (EtOH) incubation after glutaraldehyde cross-linking has previously been reported to confer anti-calcification efficacy for bioprostheses. The present studies investigated the anticalcification efficacy in vivo of the novel cross-linking agent, triglycidyl amine (TGA), with or without EtOH incubation, in comparison to glutaraldehyde. Methods TGA cross-linking (+/− EtOH) was used to prepare porcine aortic valves for both rat subdermal implants and sheep mitral valve replacements, for comparisons with glutaraldehyde-fixed controls. Thermal denaturation temperature (Ts), an index of cross-linking, cholesterol extraction, and hydrodynamic properties were quantified. Explant endpoints included quantitative and morphologic assessment of calcification. Results Ts after TGA were intermediate between unfixed and glutaraldehyde-fixed. EtOH incubation resulted in almost complete extraction of cholesterol from TGA or glutaraldehyde-fixed cusps. Rat subdermal explants (90days) demonstrated that TGA-EtOH resulted in a significantly greater level of inhibition of calcification than other conditions. Thus, TGA-ethanol stent mounted porcine aortic valve bioprostheses were fabricated for comparisons with glutaraldehyde-pretreated controls. In hydrodynamic studies, TGA-EtOH bioprostheses had lower pressure gradients than glutaraldehyde-fixed. TGA-ethanol bioprostheses used as mitral valve replacements in juvenile sheep (150 days) demonstrated significantly lower calcium levels in both explanted porcine aortic cusp and aortic wall samples compared to glutaraldehyde-fixed controls. However, TGA-EtOH sheep explants also demonstrated isolated calcific nodules and intracuspal hematomas. Conclusions TGA-EtOH pretreatment of porcine aortic valves confers significant calcification resistance in both rat subdermal and sheep circulatory

  9. Comparison of hemodynamics after aortic root replacement using valve-sparing or bioprosthetic valved conduit

    PubMed Central

    Collins, Jeremy D; Semaan, Edouard; Barker, Alex; McCarthy, Patrick; Carr, James C; Markl, Michael; Malaisrie, S. Chris

    2016-01-01

    Background The purpose is to compare aortic hemodynamics and blood flow patterns using in-vivo 4D flow MRI in patients following valve-sparing aortic root replacement (VSARR) and aortic root replacement with bio-prosthetic valves (BIO-ARR). Methods In-vivo 4D flow MRI was performed in 11 patients after VSARR (47±18 years, 6 BAV, 5 TAV), 16 patients after BIO-ARR (52±14 years), and 10 healthy controls (47±16 years). Analysis included 3D blood flow visualization and grading of helix flow in the ascending aorta (AAo) and arch. Peak systolic velocity was quantified in 9 analysis planes in the AAo, aortic arch, and descending aorta. Flow profile uniformity was evaluated in the aortic root and ascending aorta. Results Peak systolic velocity (2.0–2.5m/s) in the aortic root and AAo in both VSARR and BIO-ARR were elevated compared to controls (1.1–1.3m/s, p < 0.005). Flow asymmetry in BIO-ARR was increased compared to VSARR, evidenced by more AAo outflow jets (9 of 16 BIO-ARR, 0 of 11 in VSARR). BIO-ARR exhibited significantly (p<0.001) increased helix flow in the AAo as a measure of increased flow derangement. Finally, peak systolic velocities were elevated at the aortic root for BIO-ARR (2.5 vs 2.0m/s, p < 0.05) but lower in the distal AAo when compared to VSARR.. Conclusion VSARR results in improved hemodynamic outcomes when compared with BIO-ARR as indicated by reduced peak velocities in the aortic root and less helix flow in the AAo by 4D flow MRI. Longitudinal research assessing the clinical impact of these differences in hemodynamic outcomes is warranted. PMID:26212514

  10. Bioprosthetic Valve Fracture Improves the Hemodynamic Results of Valve-in-Valve Transcatheter Aortic Valve Replacement.

    PubMed

    Chhatriwalla, Adnan K; Allen, Keith B; Saxon, John T; Cohen, David J; Aggarwal, Sanjeev; Hart, Anthony J; Baron, Suzanne J; Dvir, Danny; Borkon, A Michael

    2017-07-01

    Valve-in-valve (VIV) transcatheter aortic valve replacement (TAVR) may be less effective in small surgical valves because of patient/prosthesis mismatch. Bioprosthetic valve fracture (BVF) using a high-pressure balloon can be performed to facilitate VIV TAVR. We report data from 20 consecutive clinical cases in which BVF was successfully performed before or after VIV TAVR by inflation of a high-pressure balloon positioned across the valve ring during rapid ventricular pacing. Hemodynamic measurements and calculation of the valve effective orifice area were performed at baseline, immediately after VIV TAVR, and after BVF. BVF was successfully performed in 20 patients undergoing VIV TAVR with balloon-expandable (n=8) or self-expanding (n=12) transcatheter valves in Mitroflow, Carpentier-Edwards Perimount, Magna and Magna Ease, Biocor Epic and Biocor Epic Supra, and Mosaic surgical valves. Successful fracture was noted fluoroscopically when the waist of the balloon released and by a sudden drop in inflation pressure, often accompanied by an audible snap. BVF resulted in a reduction in the mean transvalvular gradient (from 20.5±7.4 to 6.7±3.7 mm Hg, P<0.001) and an increase in valve effective orifice area (from 1.0±0.4 to 1.8±0.6 cm(2), P<0.001). No procedural complications were reported. BVF can be performed safely in small surgical valves to facilitate VIV TAVR with either balloon-expandable or self-expanding transcatheter valves and results in reduced residual transvalvular gradients and increased valve effective orifice area. © 2017 American Heart Association, Inc.

  11. Long-term survival for patients with metabolic syndrome after bioprosthetic or mechanical valve replacement.

    PubMed

    Polomsky, Marek; Kilgo, Patrick D; Puskas, John D; Halkos, Michael E; Thourani, Vinod H; Kelli, Heval M; Guyton, Robert A; Lattouf, Omar M

    2014-01-01

    Metabolic diseases are thought to negatively impact the long-term survival of cardiac patients and have been shown to be associated with reduced durability of bioprosthetic heart valves. The purpose of this study is to determine whether long-term survival of post-valve replacement patients is affected by the presence of metabolic disease, and whether choice of tissue versus mechanical prosthesis impacts survival. A retrospective review was conducted of all isolated valve replacements performed between 2002 and 2011 from the STS adult cardiac database of Emory Healthcare Hospitals. A total of 1,222 cases were reviewed, of which 909 patients had AVR (661 tissue, 248 mechanical), and 313 MVR (190 tissue, 123 mechanical). Cardiometabolic syndrome (CMS), in accordance with the World Health Organization (WHO) definition, was present in 242 of 1,222 (19.8%) cases in entire cohort, 203 of 909 (22.3%) in AVR, and 39 of 313 (12.5%) in MVR. Cox proportional hazard regression analysis was used to calculate long-term survival after adjusting for propensity score (PS), Society of Thoracic Surgeons Predicted Risk of Mortality (STS PROM), and direct covariates for valve and implant type and stratifying by CMS. In PS adjusted AVR, patients with CMS risk factors had worse survival compared to metabolic risk-free patients (AHR = 3.47), as was the case for MVR (AHR = 4.06). Tissue MVR patients with CMS had higher hazard of death compared to patients with no diabetes and no metabolic risk factors after adjusting for PROM (AHR = 3.33) and direct covariates (AHR = 3.91). Metabolic diseases negatively impact long-term survival of aortic and mitral valve replacement (MVR) patients. Tissue prostheses are associated with worse long-term survival following MVR. © 2013 Wiley Periodicals, Inc.

  12. Computational evaluation of platelet activation induced by a bioprosthetic heart valve.

    PubMed

    Sirois, Eric; Sun, Wei

    2011-02-01

    It is known that bioprosthetic heart valves (BHVs) have better hemodynamics and lower thromboembolic events compared with their mechanical counterparts; however, patients implanted with BHVs still face the potential of such complications. The risk of a clinical thromboembolism is on average 0.7% per year in patients with tissue valves in sinus rhythm. In this study, we developed a computational fluid dynamic (CFD) model of a BHV implanted in an aortic root and investigated the BHV-induced platelet activation using a damage accumulation model previously applied to mechanical valves. The CFD model was validated against published experimental data, including the flow velocity profile across the valve and the transvalvular pressure drop, and close matches were obtained. Hemodynamic performance measures such as flow velocity, turbulent kinetic energy, and wall shear stress were explored. Lagrangian particle tracking was used to calculate the extent of platelet activation for central bulk flow and flow in the vicinity of the leaflets. A peak flow of 2.22 m/s was observed at 40 msec after peak systole in the vicinity of a fold at the base of the leaflets. With the platelet activation expressed as 0-100% of activation threshold levels, mean damage on one pass was 2.489 × 10(-7)% and maximum damage on one pass was 8.778 × 10(-4)%. Our results suggested that the potential for BHV-induced platelet activation was low and that the leaflet's fully open geometry might play a role in the extent of blood element damage. © 2010, Copyright the Authors. Artificial Organs © 2010, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  13. Inhibition of bioprosthetic heart valve calcification with aminodiphosphonate covalently bound to residual aldehyde groups

    SciTech Connect

    Webb, C.L.; Benedict, J.J.; Schoen, F.J.; Linden, J.A.; Levy, R.J.

    1988-09-01

    Calcification is the principal mode of failure of bioprosthetic heart valves (BPHV) fabricated from glutaraldehyde-pretreated porcine aortic valves or bovine pericardium. Covalent binding of aminopropanehydroxy-diphosphonate (APDP) to residual glutaraldehyde in pericardial BPHV tissue was studied as an approach for the inhibition of calcification. BPHV tissue was preincubated in 0.14 M APDP at pH 7.4, 9.0, and 11.0 for various durations (1 hour to 8 days). The need for NaBH4 stabilization of the tissue-bound APDP was also examined in vitro. The bound APDP was determined using 14C-labeled APDP. APDP uptake was dependent on incubation duration and pH. Calcification of APDP-pretreated BPHV was studied using 21-day rat subdermal implants. Calcification inhibition was directly related to the amount of tissue APDP incorporation. Inhibition of calcification to less than 15% of control was achieved with a concentration of bound APDP of greater than or equal to 30 nM/mg dry tissue with more than 1 hour of incubation at pH 11.0 (bound APDP, 33.55 nM/mg; BPHV calcium content = 3.1 +/- 0.9 micrograms/mg). No adverse effects such as rat growth inhibition or disruption of bone architecture were observed after any treatment. Additionally, in vitro, NaBH4 stabilized tissue-bound APDP. In conclusion, APDP covalently bound to residual aldehyde functions markedly inhibited calcification of BPHV tissue. This inhibition was dependent on the amount of APDP incorporated. NaBH4 stabilized APDP-glutaraldehyde covalent bonds.

  14. Long-term durability of bioprosthetic aortic valves: implications from 12,569 implants.

    PubMed

    Johnston, Douglas R; Soltesz, Edward G; Vakil, Nakul; Rajeswaran, Jeevanantham; Roselli, Eric E; Sabik, Joseph F; Smedira, Nicholas G; Svensson, Lars G; Lytle, Bruce W; Blackstone, Eugene H

    2015-04-01

    Increased life expectancy and younger patients' desire to avoid lifelong anticoagulation requires a better understanding of bioprosthetic valve failure. This study evaluates risk factors associated with explantation for structural valve deterioration (SVD) in a long-term series of Carpentier-Edwards PERIMOUNT aortic valves (AV). From June 1982 to January 2011, 12,569 patients underwent AV replacement with Edwards Lifesciences Carpentier-Edwards PERIMOUNT stented bovine pericardial prostheses, models 2700PM (n = 310) or 2700 (n = 12,259). Mean age was 71 ± 11 years (range, 18 to 98 years). 93% had native AV disease, 48% underwent concomitant coronary artery bypass grafting, and 26% had additional valve surgery. There were 81,706 patient-years of systematic follow-up data available for analysis. Demographics, intraoperative variables, and 27,386 echocardiographic records were used to identify risks for explant for SVD and assess longitudinal changes in transprosthesis gradients using time-varying covariable analyses. Three hundred fifty-four explants were performed, with 41% related to endocarditis and 44% to SVD. Actuarial estimates of explant for SVD at 10 and 20 years were 1.9% and 15% overall, respectively, and in patients younger than 60 years, 5.6% and 46%, respectively. Younger age (p < 0.0001), lipid-lowering drugs (p = 0.002), prosthesis-patient mismatch (p = 0.001), and higher postoperative peak and mean AV gradients were associated with explant for SVD (p < 0.0001). The effect of gradient on SVD was greatest in patients younger than 60 years. Durability of the Carpentier-Edwards PERIMOUNT aortic valve is excellent even in younger patients. Explant for SVD is related to gradient at implantation, especially in younger patients. Strategies to reduce early postoperative AV gradients, such as root enlargement or more efficient prostheses, should be considered. Copyright © 2015 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights

  15. Vegetative regeneration

    Treesearch

    George A. Schier; John R. Jones; Robert P. Winokur

    1985-01-01

    Aspen is noted for its ability to regenerate vegetatively by adventitious shoots or suckers that arise on its long lateral roots. It also produces sprouts from stumps and root collars; but they are not common. In a survey of regeneration after clearcutting mature aspen in Utah. Baker (1918b) found that 92% of the shoots originated from roots, 7% from root collars, and...

  16. Regeneration methods

    Treesearch

    James P. Barnett; James B. Baker

    1991-01-01

    Southern pines can be regenerated naturally, by clearcutting, seedtree, shelterwood, or selection reproduction culling methods, or artificially, by direct seeding or by planting either container or bareroot seedlings. All regeneration methods have inherent advantages: and disadvantages; thus, land managers must consider many factors before deciding on a specific method...

  17. Programmable imprint lithography template

    DOEpatents

    Cardinale, Gregory F.; Talin, Albert A.

    2006-10-31

    A template for imprint lithography (IL) that reduces significantly template production costs by allowing the same template to be re-used for several technology generations. The template is composed of an array of spaced-apart moveable and individually addressable rods or plungers. Thus, the template can be configured to provide a desired pattern by programming the array of plungers such that certain of the plungers are in an "up" or actuated configuration. This arrangement of "up" and "down" plungers forms a pattern composed of protruding and recessed features which can then be impressed onto a polymer film coated substrate by applying a pressure to the template impressing the programmed configuration into the polymer film. The pattern impressed into the polymer film will be reproduced on the substrate by subsequent processing.

  18. Sonographic stroke templates.

    PubMed

    Govaert, Paul

    2009-10-01

    This chapter provides arterial and venous stroke templates, designed with neonatal brain ultrasound as the viewpoint and adult stroke templates as the basis. Images change with maturation of the stages of infarction: swelling, necrosis, organisation and tissue loss. Adult templates permit recognition of well-delineated stroke types observed in the newborn brain. All circle of Willis arteries can be involved, as can their perforator branches. Middle cerebral artery (MCA) truncal stroke (anterior or posterior) is an important entity, with different prognosis than complete MCA stroke. Knowledge of these templates also aids in the definition of combinations of infarction (e.g. internal carotid artery stroke or pial plus perforator stroke) and of interarterial watershed injury. Venous templates, even if still under development around the time of birth, permit us to understand brain injury associated with sinus or deep vein thrombosis, especially several types of intracranial haemorrhage. Hindbrain stroke templates are scarcely applied to perinatal lesions.

  19. Neomycin and pentagalloyl glucose enhanced cross-linking for elastin and glycosaminoglycans preservation in bioprosthetic heart valves.

    PubMed

    Tripi, Daniel R; Vyavahare, Naren R

    2014-01-01

    Glutaraldehyde cross-linked bioprosthetic heart valves fail within 12-15 years of implantation due to limited durability. Glutaraldehyde does not adequately stabilize extracellular matrix components such as glycosaminoglycans and elastin, and loss of these components could be a major cause of degeneration of valve after implantation. We have shown earlier that neomycin-based cross-linking stabilizes glycosaminoglycans in the tissue but fails to stabilize elastin component. Here, we report a new treatment where neomycin and pentagalloyl glucose (PGG) were incorporated into glutaraldehyde cross-linking neomycin-PGG-Glutaraldehyde (NPG) to stabilize both glycosaminoglycans and elastin in porcine aortic valves. In vitro studies demonstrated a marked increase in extracellular matrix stability against enzymatic degradation after cross-linking and 10 month storage in NPG group when compared to glutaraldehyde controls. Tensile properties showed increased lower elastic modulus in both radial and circumferential directions in NPG group as compared to glutaraldehyde, probably due to increased elastin stabilization with no changes in upper elastic modulus and extensibility. The enhanced extracellular matrix stability was further maintained in NPG-treated tissues after rat subdermal implantation for three weeks. NPG group also showed reduced calcification when compared to glutaraldehyde controls. We conclude that NPG cross-linking would be an excellent alternative to glutaraldehyde cross-linking of bioprosthetic heart valves to improve its durability.

  20. Ligation of the intersphincteric fistula tract plus a bioprosthetic anal fistula plug (LIFT-Plug): a new technique for fistula-in-ano.

    PubMed

    Han, J G; Yi, B Q; Wang, Z J; Zheng, Y; Cui, J J; Yu, X Q; Zhao, B C; Yang, X Q

    2013-05-01

    Ligation of the intersphincteric fistula tract and reinforcement with a bioprosthetic graft are two recently reported procedures that have shown promise in the treatment of anal fistula. This study was undertaken to validate combining ligation of the intersphincteric fistula tract plus bioprosthetic anal fistula plug and report our preliminary results and experience. Twenty-one patients with transsphincteric anal fistula were treated with ligation of the intersphincteric fistula tract plus concurrent bioprosthetic plug of the anal fistula. We evaluated healing time, fistula closure rate and postoperative anal function according to the Wexner continence score. No mortality or major complications were observed. Median operative time was 20 (range 15-40) min. After a median follow-up of 14 (range 12-15) months, the overall success rate was 95% (20/21), with a median healing time of 2 (range 2-3) weeks for external anal fistula opening and 4 (range 3-7) weeks for intersphincteric groove incision. Only 1 (5%) patient reported rare incontinence for gas postoperatively (Wexner score 1). Ligation of the intersphincteric fistula tract plus a bioprosthetic anal fistula plug is an easy, safe, effective and useful alternative in the management of anal fistula. Further randomized controlled studies are necessary to better evaluate long-term results. © 2012 The Authors. Colorectal Disease © 2012 The Association of Coloproctology of Great Britain and Ireland.

  1. Early mortality after aortic valve replacement with mechanical prosthetic vs bioprosthetic valves among Medicare beneficiaries: a population-based cohort study.

    PubMed

    Du, Dongyi Tony; McKean, Stephen; Kelman, Jeffrey A; Laschinger, John; Johnson, Chris; Warnock, Rob; Worrall, Chris M; Sedrakyan, Art; Encinosa, William; MaCurdy, Thomas E; Izurieta, Hector S

    2014-11-01

    Early mortality for patients who undergo aortic valve replacement (AVR) may differ between mechanical and biological prosthetic (hereinafter referred to as bioprosthetic) valves. Clinical trials may have difficulty addressing this issue owing to limited sample sizes and low mortality rates. To compare early mortality after AVR between the recipients of mechanical and bioprosthetic aortic valves. A retrospective analysis of patients 65 years or older in the Medicare databases who underwent AVR from July 1, 2006, through December 31, 2011. In the mixed-effects models adjusting for physician and hospital random effects, we estimated odds ratios (OR) of early mortality to compare mechanical vs bioprosthetic valves. Mechanical or bioprostheticaortic valve replacement. Early mortality was measured as death on the date of surgery, death within 1 to 30 or 31 to 365 days after the date of surgery, death within 30 days after the date of hospital discharge, and operative mortality (death within 30 days after surgery or at discharge, whichever is longer). Of the 66 453 Medicare beneficiaries who met inclusion criteria, 19 190 (28.88%) received a mechanical valve and 47 263 (71.12%) received a bioprosthetic valve. The risk for death on the date of surgery was 60% higher for recipients of mechanical valves than recipients of bioprosthetic valves (OR, 1.61 [95% CI, 1.27-2.04; P < .001]; risk ratio [RR], 1.60). The risk difference decreased to 16% during the 30 days after the date of surgery (OR, 1.18 [95% CI, 1.09-1.28; P < .001]; RR, 1.16). We found no differences within 31 to 365 days after the date of surgery and within the 30 days after discharge. The risk for operative mortality was 19% higher for recipients of mechanical compared with bioprosthetic valves (OR, 1.21 [95% CI, 1.13-1.30; P < .001]; RR, 1.19). The number needed to treat with mechanical valves to observe 1 additional death on the surgery date was 290; to observe 1 additional death within 30

  2. The use of a non-cultured autologous cell suspension and Integra dermal regeneration template to repair full-thickness skin wounds in a porcine model: a one-step process.

    PubMed

    Wood, Fiona M; Stoner, Marie L; Fowler, Bess V; Fear, Mark W

    2007-09-01

    Integra is a skin substitute used for dermal reconstruction. Current clinical practice consists of two procedures, first applying Integra to the wound and then replacing the silicone pseudo-epidermis with an epidermal autograft 3 weeks later. This two-step repair limits the clinical use of the product. An effective one-step procedure could reduce the time taken to repair and decrease the number of procedures for use of Integra. This study examined the effects of simultaneous application of a non-cultured autologous suspension of cells, isolated using the ReCell autologous cell harvesting device, in combination with Integra, to achieve a one-step skin repair. In two female Yorkshire swine, 10 full-thickness wounds were created. Wounds were treated with Integra seeded with cell suspension and compared to controls of Integra alone and cell suspension alone. Weekly macroscopic and histological assessment demonstrated that the wounds treated simultaneously with Integra and non-cultured autologous cells had enhanced epithelialization at an early time-point compared to controls. Wounds treated simultaneously with Integra and cell suspension demonstrate that cells remain viable, migrate through the Integra template and self-organize into differentiated epidermis. The results indicate that combining Integra with autologous cells facilitates one-step skin reconstruction of a full-thickness skin wound.

  3. Templates, Numbers & Watercolors.

    ERIC Educational Resources Information Center

    Clemesha, David J.

    1990-01-01

    Describes how a second-grade class used large templates to draw and paint five-digit numbers. The lesson integrated artistic knowledge and vocabulary with their mathematics lesson in place value. Students learned how draftspeople use templates, and they studied number paintings by Charles Demuth and Jasper Johns. (KM)

  4. Templates, Numbers & Watercolors.

    ERIC Educational Resources Information Center

    Clemesha, David J.

    1990-01-01

    Describes how a second-grade class used large templates to draw and paint five-digit numbers. The lesson integrated artistic knowledge and vocabulary with their mathematics lesson in place value. Students learned how draftspeople use templates, and they studied number paintings by Charles Demuth and Jasper Johns. (KM)

  5. Silicon nanowires as a rechargeable template for hydride transfer in redox biocatalysis

    NASA Astrophysics Data System (ADS)

    Lee, Hwa Young; Kim, Jae Hong; Son, Eun Jin; Park, Chan Beum

    2012-11-01

    We report a new possible application of hydrogen-terminated silicon nanowires (H-SiNWs) as a rechargeable template for hydride transfer in redox biocatalysis. H-SiNWs transfer hydride efficiently to regenerate NADH by oxidizing Si-Hx bonds. The oxidized H-SiNWs were readily recharged for the continuous regeneration of NADH and enzymatic reactions.

  6. Template-Mediated Biomineralization for Bone Tissue Engineering.

    PubMed

    Leiendecker, Alexander; Witzleben, Steffen; Schulze, Margit; Tobiasch, Edda

    2017-01-01

    Template-mediated mineralization describes a research field of materials chemistry that deals with templates influencing product formation of foremost inorganic functional materials and composites. These templates are usually organic compounds - as far as molecules with natural origin are involved, the terminology "biomineralization" or "biomimetic mineralization: is used. The present review gives insight into recent developments in the research area of bone-tissue engineering with focus on chemical templates and cell-based approaches. The review is structured as follows: (1) a brief general overview about the principle of templating and recently used template materials, (2) important analytical methods, (3) examples of template-guided mineralization of various bone-related materials, (4) natural bone mineralization, (5) scaffolds for bone-tissue regeneration and (6) cell-based therapeutic approaches. For this purpose, a literature screening with emphasis on promising potential practical applications was performed. In particular, macromolecular structures and polymer composites with relation to naturally occurring compounds were favored. Priority was given to publications of the last five years. Although the present review does not cover the whole topic to full extent, it should provide information about current trends and the most promising approaches in the research area of bone-tissue engineering based on applications of organic templates/scaffolds as well as cell-based strategies. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  7. Virus templated metallic nanoparticles.

    PubMed

    Aljabali, Alaa A A; Barclay, J Elaine; Lomonossoff, George P; Evans, David J

    2010-12-01

    Plant viruses are considered as nanobuilding blocks that can be used as synthons or templates for novel materials. Cowpea mosaic virus (CPMV) particles have been shown to template the fabrication of metallic nanoparticles by an electroless deposition metallization process. Palladium ions were electrostatically bound to the virus capsid and, when reduced, acted as nucleation sites for the subsequent metal deposition from solution. The method, although simple, produced highly monodisperse metallic nanoparticles with a diameter of ca. ≤35 nm. CPMV-templated particles were prepared with cobalt, nickel, iron, platinum, cobalt-platinum and nickel-iron.

  8. On a two-level multiclassifier system with error correction applied to the control of bioprosthetic hand.

    PubMed

    Kurzynski, Marek

    2013-01-01

    The paper presents an advanced method of recognition of patient's intention to move of hand prosthesis. The proposed method is based on two-level multiclassifier system (MCS) with homogeneous base classifiers dedicated to EEG, EMG and MMG biosignals and with combining mechanism using a dynamic ensemble selection (DES) scheme and probabilistic competence function. Additionally, the feedback signal derived from the prosthesis sensors is applied to the correction of classification algorithm. The performance of MCS with proposed competence function and combining procedure were experimentally compared against three benchmark MCSs using real data concerning the recognition of six types of grasping movements. The systems developed achieved the highest classification accuracies demonstrating the potential of multiple classifier systems with multimodal biosignals for the control of bioprosthetic hand.

  9. E3 Charter Template

    EPA Pesticide Factsheets

    This is a charter template which includes decisions made during the project planning phase, as well as local project goals, a communication strategy, an outreach strategy, distribution of responsibilities and a schedule.

  10. A fast template periodogram

    NASA Astrophysics Data System (ADS)

    Hoffman, John; VanderPlas, Jake; Hartman, Joel; Bakos, Gáspár

    2017-09-01

    This proceedings contribution presents a novel, non-linear extension to the Lomb-Scargle periodogram that allows periodograms to be generated for arbitrary signal shapes. Such periodograms are already known as "template periodograms" or "periodic matched filters," but current implementations are computationally inefficient. The "fast template periodogram" presented here improves existing techniques by a factor of ˜a few for small test cases (O(10) observations), and over three orders of magnitude for lightcurves containing O(104) observations. The fast template periodogram scales asymptotically as O(HNf log HNf + H4Nf), where H denotes the number of harmonics required to adequately approximate the template and Nf is the number of trial frequencies. Existing implementations scale as O(NobsNf), where Nobs is the number of observations in the lightcurve. An open source Python implementation is available on GitHub.

  11. Bone Marrow–Derived Mesenchymal Stem Cells Enhance Bacterial Clearance and Preserve Bioprosthetic Integrity in a Model of Mesh Infection

    PubMed Central

    Criman, Erik T.; Kurata, Wendy E.; Matsumoto, Karen W.; Aubin, Harry T.; Campbell, Carmen E.

    2016-01-01

    Background: The reported incidence of mesh infection in contaminated operative fields is as high as 30% regardless of the material used. Recently, mesenchymal stem cells (MSCs) have been shown to possess favorable immunomodulatory properties and improve tissue incorporation when seeded onto bioprosthetics. The aim of this study was to evaluate whether seeding noncrosslinked bovine pericardium (Veritas Collagen Matrix) with allogeneic bone marrow–derived MSCs improves infection resistance in vivo after inoculation with Escherichia coli (E. coli). Methods: Rat bone marrow–derived MSCs at passage 3 were seeded onto bovine pericardium and cultured for 7 days before implantation. Additional rats (n = 24) were implanted subcutaneously with MSC-seeded or unseeded mesh and inoculated with 7 × 105 colony-forming units of E. coli or saline before wound closure (group 1, unseeded mesh/saline; group 2, unseeded mesh/E. coli; group 3, MSC-seeded mesh/E. coli; 8 rats per group). Meshes were explanted at 4 weeks and underwent microbiologic and histologic analyses. Results: MSC-seeded meshes inoculated with E. coli demonstrated superior bacterial clearance and preservation of mesh integrity compared with E. coli–inoculated unseeded meshes (87.5% versus 0% clearance; p = 0.001). Complete mesh degradation concurrent with abscess formation was observed in 100% of rats in the unseeded/E. coli group, which is in contrast to 12.5% of rats in the MSC-seeded/E. coli group. Histologic evaluation determined that remodeling characteristics of E. coli–inoculated MSC-seeded meshes were similar to those of uninfected meshes 4 weeks after implantation. Conclusions: Augmenting a bioprosthetic material with stem cells seems to markedly enhance resistance to bacterial infection in vivo and preserve mesh integrity. PMID:27482490

  12. Virus templated metallic nanoparticles

    NASA Astrophysics Data System (ADS)

    Aljabali, Alaa A. A.; Barclay, J. Elaine; Lomonossoff, George P.; Evans, David J.

    2010-12-01

    Plant viruses are considered as nanobuilding blocks that can be used as synthons or templates for novel materials. Cowpea mosaic virus (CPMV) particles have been shown to template the fabrication of metallic nanoparticles by an electroless deposition metallization process. Palladium ions were electrostatically bound to the virus capsid and, when reduced, acted as nucleation sites for the subsequent metal deposition from solution. The method, although simple, produced highly monodisperse metallic nanoparticles with a diameter of ca. <=35 nm. CPMV-templated particles were prepared with cobalt, nickel, iron, platinum, cobalt-platinum and nickel-iron.Plant viruses are considered as nanobuilding blocks that can be used as synthons or templates for novel materials. Cowpea mosaic virus (CPMV) particles have been shown to template the fabrication of metallic nanoparticles by an electroless deposition metallization process. Palladium ions were electrostatically bound to the virus capsid and, when reduced, acted as nucleation sites for the subsequent metal deposition from solution. The method, although simple, produced highly monodisperse metallic nanoparticles with a diameter of ca. <=35 nm. CPMV-templated particles were prepared with cobalt, nickel, iron, platinum, cobalt-platinum and nickel-iron. Electronic supplementary information (ESI) available: Additional experimental detail, agarose gel electrophoresis results, energy dispersive X-ray spectra, ζ-potential measurements, dynamic light scattering data, nanoparticle tracking analysis and an atomic force microscopy image of Ni-CPMV. See DOI: 10.1039/c0nr00525h

  13. Cartilage Regeneration

    PubMed Central

    Tuan, Rocky S.; Chen, Antonia F.; Klatt, Brian A.

    2016-01-01

    Cartilage damaged by trauma has a limited capacity to regenerate. Current methods for treating small chondral defects include palliative treatment with arthroscopic debridement and lavage, reparative treatment with marrow stimulation techniques (e.g. microfracture), and restorative treatment, including osteochondral grafting and autologous chondrocyte implantation. Larger defects are treated by osteochondral allografting or total joint replacements. However, the future of treating cartilage defects lies in providing biologic solutions through cartilage regeneration. Laboratory and clinical studies have examined the treatment of larger lesions using tissue engineered cartilage. Regenerated cartilage can be derived from various cell types, including chondrocytes, mesenchymal stem cells, and pluripotent stem cells. Common scaffolding materials include proteins, carbohydrates, synthetic materials, and composite polymers. Scaffolds may be woven, spun into nanofibers, or configured as hydrogels. Chondrogenesis may be enhanced with the application of chondroinductive growth factors. Finally, bioreactors are being developed to enhance nutrient delivery and provide mechanical stimulation to tissue-engineered cartilage ex vivo. The multi-disciplinary approaches currently being developed to produce cartilage promise to bring the dream of cartilage regeneration in clinical use to reality. PMID:23637149

  14. Templated blue phases.

    PubMed

    Ravnik, Miha; Fukuda, Jun-ichi

    2015-11-21

    Cholesteric blue phases of a chiral liquid crystal are interesting examples of self-organised three-dimensional nanostructures formed by soft matter. Recently it was demonstrated that a polymer matrix introduced by photopolymerization inside a bulk blue phase not only stabilises the host blue phase significantly, but also serves as a template for blue phase ordering. We show with numerical modelling that the transfer of the orientational order of the blue phase to the surfaces of the polymer matrix, together with the resulting surface anchoring, can account for the templating behaviour of the polymer matrix inducing the blue phase ordering of an achiral nematic liquid crystal. Furthermore, tailoring the anchoring conditions of the polymer matrix surfaces can bring about orientational ordering different from those of bulk blue phases, including an intertwined complex of the polymer matrix and topological line defects of orientational order. Optical Kerr response of templated blue phases is explored, finding large Kerr constants in the range of K = 2-10 × 10(-9) m V(-2) and notable dependence on the surface anchoring strength. More generally, the presented numerical approach is aimed to clarify the role and actions of templating polymer matrices in complex chiral nematic fluids, and further to help design novel template-based materials from chiral liquid crystals.

  15. Periodontal regeneration.

    PubMed

    Ivanovski, S

    2009-09-01

    The ultimate goal of periodontal therapy is the regeneration of the tissues destroyed as a result of periodontal disease. Currently, two clinical techniques, based on the principles of "guided tissue regeneration" (GTR) or utilization of the biologically active agent "enamel matrix derivative" (EMD), can be used for the regeneration of intrabony and Class II mandibular furcation periodontal defects. In cases where additional support and space-making requirements are necessary, both of these procedures can be combined with a bone replacement graft. There is no evidence that the combined use of GTR and EMD results in superior clinical results compared to the use of each material in isolation. Great variability in clinical outcomes has been reported in relation to the use of both EMD and GTR, and these procedures can be generally considered to be unpredictable. Careful case selection and treatment planning, including consideration of patient, tooth, site and surgical factors, is required in order to optimize the outcomes of treatment. There are limited data available for the clinical effectiveness of other biologically active molecules, such as growth factors and platelet concentrates, and although promising results have been reported, further clinical trials are required in order to confirm their effectiveness. Current active areas of research are centred on tissue engineering and gene therapy strategies which may result in more predictable regenerative outcomes in the future.

  16. Periodontal regeneration.

    PubMed

    Wang, Hom-Lay; Greenwell, Henry; Fiorellini, Joseph; Giannobile, William; Offenbacher, Steven; Salkin, Leslie; Townsend, Cheryl; Sheridan, Phillip; Genco, Robert J

    2005-09-01

    Untreated periodontal disease leads to tooth loss through destruction of the attachment apparatus and tooth-supporting structures. The goals of periodontal therapy include not only the arrest of periodontal disease progression,but also the regeneration of structures lost to disease where appropriate. Conventional surgical approaches (e.g., flap debridement) continue to offer time-tested and reliable methods to access root surfaces,reduce periodontal pockets, and attain improved periodontal form/architecture. However, these techniques offer only limited potential towards recovering tissues destroyed during earlier disease phases. Recently, surgical procedures aimed at greater and more predictable regeneration of periodontal tissues and functional attachment close to their original level have been developed, analyzed, and employed in clinical practice. This paper provides a review of the current understanding of the mechanisms, cells, and factors required for regeneration of the periodontium and of procedures used to restore periodontal tissues around natural teeth. Targeted audiences for this paper are periodontists and/or researchers with an interest in improving the predictability of regenerative procedures. This paper replaces the version published in 1993.

  17. Biometric template revocation

    NASA Astrophysics Data System (ADS)

    Arndt, Craig M.

    2004-08-01

    Biometric are a powerful technology for identifying humans both locally and at a distance. In order to perform identification or verification biometric systems capture an image of some biometric of a user or subject. The image is then converted mathematical to representation of the person call a template. Since we know that every human in the world is different each human will have different biometric images (different fingerprints, or faces, etc.). This is what makes biometrics useful for identification. However unlike a credit card number or a password to can be given to a person and later revoked if it is compromised and biometric is with the person for life. The problem then is to develop biometric templates witch can be easily revoked and reissued which are also unique to the user and can be easily used for identification and verification. In this paper we develop and present a method to generate a set of templates which are fully unique to the individual and also revocable. By using bases set compression algorithms in an n-dimensional orthogonal space we can represent a give biometric image in an infinite number of equally valued and unique ways. The verification and biometric matching system would be presented with a given template and revocation code. The code will then representing where in the sequence of n-dimensional vectors to start the recognition.

  18. Environmental Learning Centers: A Template.

    ERIC Educational Resources Information Center

    Vozick, Eric

    1999-01-01

    Provides a working model, or template, for community-based environmental learning centers (ELCs). The template presents a philosophy as well as a plan for staff and administration operations, educational programming, and financial support. The template also addresses "green" construction and maintenance of buildings and grounds and…

  19. The Carmat Bioprosthetic Total Artificial Heart Is Associated With Early Hemostatic Recovery and no Acquired von Willebrand Syndrome in Calves.

    PubMed

    Smadja, David M; Susen, Sophie; Rauch, Antoine; Cholley, Bernard; Latrémouille, Christian; Duveau, Daniel; Zilberstein, Luca; Méléard, Denis; Boughenou, Marie-Fazia; Belle, Eric Van; Gaussem, Pascale; Capel, Antoine; Jansen, Piet; Carpentier, Alain

    2017-03-01

    To determine hemostasis perturbations, including von Willebrand factor (VWF) multimers, after implantation of a new bioprosthetic and pulsatile total artificial heart (TAH). Preclinical study SETTING: Single-center biosurgical research laboratory. Female Charolais calves, 2-to-6 months old, weighing 102-to-122 kg. Surgical implantation of TAH through a mid-sternotomy approach. Four of 12 calves had a support duration of several days (4, 4, 8, and 10 days), allowing for the exploration of early steps of hemostasis parameters, including prothrombin time; coagulation factor levels (II, V, VII+X, and fibrinogen); and platelet count. Multimeric analysis of VWF was performed to detect a potential loss of high-molecular weight (HMW) multimers, as previously described for continuous flow rotary blood pumps. Despite the absence of anticoagulant treatment administered in the postoperative phase, no signs of coagulation activation were detected. Indeed, after an immediate postsurgery decrease of prothrombin time, platelet count, and coagulation factor levels, most parameters returned to baseline values. HMW multimers of VWF remained stable either after initiation or during days of support. Coagulation parameters and platelet count recovery in the postoperative phase of the Carmat TAH (Camat SA, Velizy Villacoublay Cedex, France) implantation in calves, in the absence of anticoagulant treatment and associated with the absence of decrease in HMW multimers of VWF, is in line with early hemocompatibility that is currently being validated in human clinical studies. Copyright © 2017. Published by Elsevier Inc.

  20. Regenerator seal

    DOEpatents

    Davis, Leonard C.; Pacala, Theodore; Sippel, George R.

    1981-01-01

    A method for manufacturing a hot side regenerator cross arm seal assembly having a thermally stablilized wear coating with a substantially flat wear surface thereon to seal between low pressure and high pressure passages to and from the hot inboard side of a rotary regenerator matrix includes the steps of forming a flat cross arm substrate member of high nickel alloy steel; fixedly securing the side edges of the substrate member to a holding fixture with a concave surface thereacross to maintain the substrate member to a slightly bent configuration on the fixture surface between the opposite ends of the substrate member to produce prestress therein; applying coating layers on the substrate member including a wear coating of plasma sprayed nickel oxide/calcium flouride material to define a wear surface of slightly concave form across the restrained substrate member between the free ends thereon; and thereafter subjecting the substrate member and the coating thereon to a heat treatment of 1600.degree. F. for sixteen hours to produce heat stabilizing growth in the coating layers on the substrate member and to produce a thermally induced growth stress in the wear surface that substantially equalizes the prestress in the substrate whereby when the cross arm is removed from the fixture surface following the heat treatment step a wear face is formed on the cross arm assembly that will be substantially flat between the ends.

  1. Regenerator seal

    NASA Technical Reports Server (NTRS)

    Davis, Leonard C. (Inventor); Pacala, Theodore (Inventor); Sippel, George R. (Inventor)

    1981-01-01

    A method for manufacturing a hot side regenerator cross arm seal assembly having a thermally stablilized wear coating with a substantially flat wear surface thereon to seal between low pressure and high pressure passages to and from the hot inboard side of a rotary regenerator matrix includes the steps of forming a flat cross arm substrate member of high nickel alloy steel; fixedly securing the side edges of the substrate member to a holding fixture with a concave surface thereacross to maintain the substrate member to a slightly bent configuration on the fixture surface between the opposite ends of the substrate member to produce prestress therein; applying coating layers on the substrate member including a wear coating of plasma sprayed nickel oxide/calcium flouride material to define a wear surface of slightly concave form across the restrained substrate member between the free ends thereon; and thereafter subjecting the substrate member and the coating thereon to a heat treatment of 1600.degree. F. for sixteen hours to produce heat stabilizing growth in the coating layers on the substrate member and to produce a thermally induced growth stress in the wear surface that substantially equalizes the prestress in the substrate whereby when the cross arm is removed from the fixture surface following the heat treatment step a wear face is formed on the cross arm assembly that will be substantially flat between the ends.

  2. Mechanisms of Cardiac Regeneration

    PubMed Central

    Uygur, Aysu; Lee, Richard T.

    2016-01-01

    Adult humans fail to regenerate their hearts following injury, and this failure to regenerate myocardium is a leading cause of heart failure and death worldwide. Although all adult mammals appear to lack significant cardiac regeneration potential, some vertebrates can regenerate myocardium throughout life. In addition, new studies indicate that mammals have cardiac regeneration potential during development and very soon after birth. The mechanisms of heart regeneration among model organisms, including neonatal mice, appear remarkably similar. Orchestrated waves of inflammation, matrix deposition and remodeling, and cardiomyocyte proliferation are commonly seen in heart regeneration models. Understanding why adult mammals develop extensive scarring instead of regeneration is a crucial goal for regenerative biology. PMID:26906733

  3. Heart regeneration.

    PubMed

    Breckwoldt, Kaja; Weinberger, Florian; Eschenhagen, Thomas

    2016-07-01

    Regenerating an injured heart holds great promise for millions of patients suffering from heart diseases. Since the human heart has very limited regenerative capacity, this is a challenging task. Numerous strategies aiming to improve heart function have been developed. In this review we focus on approaches intending to replace damaged heart muscle by new cardiomyocytes. Different strategies for the production of cardiomyocytes from human embryonic stem cells or human induced pluripotent stem cells, by direct reprogramming and induction of cardiomyocyte proliferation are discussed regarding their therapeutic potential and respective advantages and disadvantages. Furthermore, different methods for the transplantation of pluripotent stem cell-derived cardiomyocytes are described and their clinical perspectives are discussed. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel.

  4. Dynamic and fluid-structure interaction simulations of bioprosthetic heart valves using parametric design with T-splines and Fung-type material models

    NASA Astrophysics Data System (ADS)

    Hsu, Ming-Chen; Kamensky, David; Xu, Fei; Kiendl, Josef; Wang, Chenglong; Wu, Michael C. H.; Mineroff, Joshua; Reali, Alessandro; Bazilevs, Yuri; Sacks, Michael S.

    2015-06-01

    This paper builds on a recently developed immersogeometric fluid-structure interaction (FSI) methodology for bioprosthetic heart valve (BHV) modeling and simulation. It enhances the proposed framework in the areas of geometry design and constitutive modeling. With these enhancements, BHV FSI simulations may be performed with greater levels of automation, robustness and physical realism. In addition, the paper presents a comparison between FSI analysis and standalone structural dynamics simulation driven by prescribed transvalvular pressure, the latter being a more common modeling choice for this class of problems. The FSI computation achieved better physiological realism in predicting the valve leaflet deformation than its standalone structural dynamics counterpart.

  5. Dynamic and fluid–structure interaction simulations of bioprosthetic heart valves using parametric design with T-splines and Fung-type material models

    PubMed Central

    Kamensky, David; Xu, Fei; Kiendl, Josef; Wang, Chenglong; Wu, Michael C. H.; Mineroff, Joshua; Reali, Alessandro; Bazilevs, Yuri; Sacks, Michael S.

    2015-01-01

    This paper builds on a recently developed immersogeometric fluid–structure interaction (FSI) methodology for bioprosthetic heart valve (BHV) modeling and simulation. It enhances the proposed framework in the areas of geometry design and constitutive modeling. With these enhancements, BHV FSI simulations may be performed with greater levels of automation, robustness and physical realism. In addition, the paper presents a comparison between FSI analysis and standalone structural dynamics simulation driven by prescribed transvalvular pressure, the latter being a more common modeling choice for this class of problems. The FSI computation achieved better physiological realism in predicting the valve leaflet deformation than its standalone structural dynamics counterpart. PMID:26392645

  6. Prognosis after surgical replacement with a bioprosthetic aortic valve in patients with severe symptomatic aortic stenosis: systematic review of observational studies.

    PubMed

    Foroutan, Farid; Guyatt, Gordon H; O'Brien, Kathleen; Bain, Eva; Stein, Madeleine; Bhagra, Sai; Sit, Daegan; Kamran, Rakhshan; Chang, Yaping; Devji, Tahira; Mir, Hassan; Manja, Veena; Schofield, Toni; Siemieniuk, Reed A; Agoritsas, Thomas; Bagur, Rodrigo; Otto, Catherine M; Vandvik, Per O

    2016-09-28

     To determine the frequency of survival, stroke, atrial fibrillation, structural valve deterioration, and length of hospital stay after surgical replacement of an aortic valve (SAVR) with a bioprosthetic valve in patients with severe symptomatic aortic stenosis.  Systematic review and meta-analysis of observational studies.  Medline, Embase, PubMed (non-Medline records only), Cochrane Database of Systematic Reviews, and Cochrane CENTRAL from 2002 to June 2016.  Eligible observational studies followed patients after SAVR with a bioprosthetic valve for at least two years.  Reviewers, independently and in duplicate, evaluated study eligibility, extracted data, and assessed risk of bias for patient important outcomes. We used the GRADE system to quantify absolute effects and quality of evidence. Published survival curves provided data for survival and freedom from structural valve deterioration, and random effect models provided the framework for estimates of pooled incidence rates of stroke, atrial fibrillation, and length of hospital stay.  In patients undergoing SAVR with a bioprosthetic valve, median survival was 16 years in those aged 65 or less, 12 years in those aged 65 to 75, seven years in those aged 75 to 85, and six years in those aged more than 85. The incidence rate of stroke was 0.25 per 100 patient years (95% confidence interval 0.06 to 0.54) and atrial fibrillation 2.90 per 100 patient years (1.78 to 4.79). Post-SAVR, freedom from structural valve deterioration was 94.0% at 10 years, 81.7% at 15 years, and 52% at 20 years, and mean length of hospital stay was 12 days (95% confidence interval 9 to 15).  Patients with severe symptomatic aortic stenosis undergoing SAVR with a bioprosthetic valve can expect only slightly lower survival than those without aortic stenosis, and a low incidence of stroke and, up to 10 years, of structural valve deterioration. The rate of deterioration increases rapidly after 10 years, and particularly after 15 years

  7. Prognosis after surgical replacement with a bioprosthetic aortic valve in patients with severe symptomatic aortic stenosis: systematic review of observational studies

    PubMed Central

    Guyatt, Gordon H; O’Brien, Kathleen; Bain, Eva; Stein, Madeleine; Bhagra, Sai; Sit, Daegan; Kamran, Rakhshan; Chang, Yaping; Devji, Tahira; Mir, Hassan; Manja, Veena; Schofield, Toni; Siemieniuk, Reed A; Agoritsas, Thomas; Bagur, Rodrigo; Otto, Catherine M; Vandvik, Per O

    2016-01-01

    Objective To determine the frequency of survival, stroke, atrial fibrillation, structural valve deterioration, and length of hospital stay after surgical replacement of an aortic valve (SAVR) with a bioprosthetic valve in patients with severe symptomatic aortic stenosis. Design Systematic review and meta-analysis of observational studies. Data sources Medline, Embase, PubMed (non-Medline records only), Cochrane Database of Systematic Reviews, and Cochrane CENTRAL from 2002 to June 2016. Study selection Eligible observational studies followed patients after SAVR with a bioprosthetic valve for at least two years. Methods Reviewers, independently and in duplicate, evaluated study eligibility, extracted data, and assessed risk of bias for patient important outcomes. We used the GRADE system to quantify absolute effects and quality of evidence. Published survival curves provided data for survival and freedom from structural valve deterioration, and random effect models provided the framework for estimates of pooled incidence rates of stroke, atrial fibrillation, and length of hospital stay. Results In patients undergoing SAVR with a bioprosthetic valve, median survival was 16 years in those aged 65 or less, 12 years in those aged 65 to 75, seven years in those aged 75 to 85, and six years in those aged more than 85. The incidence rate of stroke was 0.25 per 100 patient years (95% confidence interval 0.06 to 0.54) and atrial fibrillation 2.90 per 100 patient years (1.78 to 4.79). Post-SAVR, freedom from structural valve deterioration was 94.0% at 10 years, 81.7% at 15 years, and 52% at 20 years, and mean length of hospital stay was 12 days (95% confidence interval 9 to 15). Conclusion Patients with severe symptomatic aortic stenosis undergoing SAVR with a bioprosthetic valve can expect only slightly lower survival than those without aortic stenosis, and a low incidence of stroke and, up to 10 years, of structural valve deterioration. The rate of deterioration

  8. Dynamic and fluid-structure interaction simulations of bioprosthetic heart valves using parametric design with T-splines and Fung-type material models.

    PubMed

    Hsu, Ming-Chen; Kamensky, David; Xu, Fei; Kiendl, Josef; Wang, Chenglong; Wu, Michael C H; Mineroff, Joshua; Reali, Alessandro; Bazilevs, Yuri; Sacks, Michael S

    2015-06-01

    This paper builds on a recently developed immersogeometric fluid-structure interaction (FSI) methodology for bioprosthetic heart valve (BHV) modeling and simulation. It enhances the proposed framework in the areas of geometry design and constitutive modeling. With these enhancements, BHV FSI simulations may be performed with greater levels of automation, robustness and physical realism. In addition, the paper presents a comparison between FSI analysis and standalone structural dynamics simulation driven by prescribed transvalvular pressure, the latter being a more common modeling choice for this class of problems. The FSI computation achieved better physiological realism in predicting the valve leaflet deformation than its standalone structural dynamics counterpart.

  9. Templated biomimetic multifunctional coatings

    NASA Astrophysics Data System (ADS)

    Sun, Chih-Hung; Gonzalez, Adriel; Linn, Nicholas C.; Jiang, Peng; Jiang, Bin

    2008-02-01

    We report a bioinspired templating technique for fabricating multifunctional optical coatings that mimic both unique functionalities of antireflective moth eyes and superhydrophobic cicada wings. Subwavelength-structured fluoropolymer nipple arrays are created by a soft-lithography-like process. The utilization of fluoropolymers simultaneously enhances the antireflective performance and the hydrophobicity of the replicated films. The specular reflectivity matches the optical simulation using a thin-film multilayer model. The dependence of the size and the crystalline ordering of the replicated nipples on the resulting antireflective properties have also been investigated by experiment and modeling. These biomimetic materials may find important technological application in self-cleaning antireflection coatings.

  10. Cubic nitride templates

    DOEpatents

    Burrell, Anthony K; McCleskey, Thomas Mark; Jia, Quanxi; Mueller, Alexander H; Luo, Hongmei

    2013-04-30

    A polymer-assisted deposition process for deposition of epitaxial cubic metal nitride films and the like is presented. The process includes solutions of one or more metal precursor and soluble polymers having binding properties for the one or more metal precursor. After a coating operation, the resultant coating is heated at high temperatures under a suitable atmosphere to yield metal nitride films and the like. Such films can be used as templates for the development of high quality cubic GaN based electronic devices.

  11. Assessing regeneration potential

    Treesearch

    Ivan L. Sander

    1989-01-01

    When a regeneration harvest cut is planned for even-aged stands or it is time to make another cut in uneven-aged stands, the first thing to do is assess the regeneration potential. Regeneration potential is the likelihood of being successful in reproducing desired species. You need an assessment to be reasonably sure that regeneration and management objectives can be...

  12. Mechanism of valve failure and efficacy of reintervention through catheterization in patients with bioprosthetic valves in the pulmonary position

    PubMed Central

    Callahan, Ryan; Bergersen, Lisa; Baird, Christopher W; Porras, Diego; Esch, Jesse J; Lock, James E; Marshall, Audrey C

    2017-01-01

    Background: Surgical and transcatheter bioprosthetic valves (BPVs) in the pulmonary position in patients with congenital heart disease may ultimately fail and undergo transcatheter reintervention. Angiographic assessment of the mechanism of BPV failure has not been previously described. Aims: The aim of this study was to determine the mode of BPV failure (stenosis/regurgitation) requiring transcatheter reintervention and to describe the angiographic characteristics of the failed BPVs and report the types and efficacy of reinterventions. Materials and Methods: This is a retrospective single-center review of consecutive patients who previously underwent pulmonary BPV placement (surgical or transcatheter) and subsequently underwent percutaneous reintervention from 2005 to 2014. Results: Fifty-five patients with surgical (41) and transcutaneous pulmonary valve (TPV) (14) implantation of BPVs underwent 66 catheter reinterventions. The surgically implanted valves underwent fifty reinterventions for indications including 16 for stenosis, seven for regurgitation, and 27 for both, predominantly associated with leaflet immobility, calcification, and thickening. Among TPVs, pulmonary stenosis (PS) was the exclusive failure mode, mainly due to loss of stent integrity (10) and endocarditis (4). Following reintervention, there was a reduction of right ventricular outflow tract gradient from 43 ± 16 mmHg to 16 ± 10 mmHg (P < 0.001) and RVp/AO ratio from 0.8 ± 0.2 to 0.5 ± 0.2 (P < 0.001). Reintervention with TPV placement was performed in 45 (82%) patients (34 surgical, 11 transcatheter) with no significant postintervention regurgitation or paravalvular leak. Conclusion: Failing surgically implanted BPVs demonstrate leaflet calcification, thickness, and immobility leading to PS and/or regurgitation while the mechanism of TPV failure in the short- to mid-term is stenosis, mainly from loss of stent integrity. This can be effectively treated with a catheter-based approach

  13. Templating Water Stains for Nanolithography

    PubMed Central

    Liao, Wei-Ssu; Chen, Xin; Chen, Jixin; Cremer, Paul S.

    2008-01-01

    Herein, a nanoscale patterning technique is demonstrated for creating twin features in polymers and metals. The process works by combining evaporative staining with a templating process. Well-ordered hexagonally arrayed double rings were fabricated using hydrophobic spherical templates. The diameter of the rings, the width of individual rings, and the spacing between concentric and adjacent rings could be tuned by varying the solution conditions. Arrays could be made without the outer ring by employing hydrophilic templates. PMID:17637019

  14. DNA-templated nanofabrication.

    PubMed

    Becerril, Héctor A; Woolley, Adam T

    2009-02-01

    Nanofabrication, or the organizational control over matter at the nanometre scale, is an intriguing scientific challenge requiring multidisciplinary tools for its solution. DNA is a biomolecule that can be combined with other nanometre-scale entities through chemical self-assembly to form a broad variety of nanomaterials. In this tutorial review we present the principles that allow DNA to interact with other chemical species, and describe the challenges and potential applications of DNA as a template for making both biological and inorganic features with nanometre resolution. As such, this report should be of interest to chemists, surface and materials scientists, biologists, and nanotechnologists, as well as others who seek to use DNA in nanofabrication.

  15. Templated quasicrystalline molecular layers

    NASA Astrophysics Data System (ADS)

    Smerdon, Joe; Young, Kirsty; Lowe, Michael; Hars, Sanger; Yadav, Thakur; Hesp, David; Dhanak, Vinod; Tsai, An-Pang; Sharma, Hem Raj; McGrath, Ronan

    2014-03-01

    Quasicrystals are materials with long range ordering but no periodicity. We report scanning tunneling microscopy (STM) observations of quasicrystalline molecular layers on five-fold quasicrystal surfaces. The molecules adopt positions and orientations on the surface consistent with the quasicrystalline ordering of the substrate. Carbon-60 adsorbs atop sufficiently-separated Fe atoms on icosahedral Al-Cu-Fe to form a unique quasicrystalline lattice whereas further C60 molecules decorate remaining surface Fe atoms in a quasi-degenerate fashion. Pentacene (Pn) adsorbs at tenfold-symmetric points around surface-bisected rhombic triacontahedral clusters in icosahedral Ag-In-Yb. These systems constitute the first demonstrations of quasicrystalline molecular ordering on a template. EPSRC EP/D05253X/1, EP/D071828/1, UK BIS.

  16. A Template for Insect Cryopreservation

    USDA-ARS?s Scientific Manuscript database

    This article is intended to update the reader on the progress made on insect embryo cryopreservation in the past 20 years and gives information for developing a protocol for cryopreserving insects by using a 2001 study as a template. The study used for the template is the cryopreservation of the Old...

  17. The angiotensin II type 1 receptor blocker losartan attenuates bioprosthetic valve leaflet calcification in a rabbit intravascular implant model.

    PubMed

    Shin, Hong Ju; Kim, Dae-Hyun; Park, Han Ki; Park, Young Hwan

    2016-12-01

    There is evidence that angiotensin II type I receptor blocker (ARB) could reduce structural valve deterioration. However, the anticalcification effect on the bioprosthetic heart valve (BHV) has not been investigated. Thus, we investigated the effects of losartan (an ARB) on calcification of implanted bovine pericardial tissue in a rabbit intravascular implant model. A total of 16 male New Zealand White rabbits (20 weeks old, 2.98-3.34 kg) were used in this study. Commercially available BHV leaflet of bovine pericardium was trimmed to the shape of a 3-mm triangle and implanted to both external jugular veins of the rabbit. The ARB group (n = 8) was given 25 mg/kg of powdered losartan daily until 6 weeks after surgery by direct administration in the buccal pouch of the animals. The control group (n = 8) was given 5 ml of normal saline by the same method. After 6 weeks, quantitative calcium determination, histological evaluation and western blot analysis of interleukin-6 (IL-6), osteopontin and bone morphogenetic protein 2 (BMP-2) were performed to investigate the mechanisms of the anticalcification effect of losartan. No deaths or complications such as infection or haematoma were recorded during the experiment. All animals were euthanized on the planned date. The calcium measurement level in the ARB group (2.28 ± 0.65 mg/g) was significantly lower than that in the control group (3.68 ± 1.00 mg/g) (P = 0.0092). Immunohistochemistry analyses revealed that BMP-2-positive reactions were significantly attenuated in the ARB group. Western blot analysis showed that losartan suppressed the expression of IL-6, osteopontin and BMP-2. Our results indicate that losartan significantly attenuates postimplant degenerative calcification of a bovine pericardial bioprosthesis in a rabbit intravascular implant model. Further studies are required to assess the effects of ARBs on BHV tissue in orthotopic implantations using a large animal model. © The Author 2016. Published by Oxford

  18. Active magnetic regenerator

    DOEpatents

    Barclay, John A.; Steyert, William A.

    1982-01-01

    The disclosure is directed to an active magnetic regenerator apparatus and method. Brayton, Stirling, Ericsson, and Carnot cycles and the like may be utilized in an active magnetic regenerator to provide efficient refrigeration over relatively large temperature ranges.

  19. Brain templates and atlases.

    PubMed

    Evans, Alan C; Janke, Andrew L; Collins, D Louis; Baillet, Sylvain

    2012-08-15

    The core concept within the field of brain mapping is the use of a standardized, or "stereotaxic", 3D coordinate frame for data analysis and reporting of findings from neuroimaging experiments. This simple construct allows brain researchers to combine data from many subjects such that group-averaged signals, be they structural or functional, can be detected above the background noise that would swamp subtle signals from any single subject. Where the signal is robust enough to be detected in individuals, it allows for the exploration of inter-individual variance in the location of that signal. From a larger perspective, it provides a powerful medium for comparison and/or combination of brain mapping findings from different imaging modalities and laboratories around the world. Finally, it provides a framework for the creation of large-scale neuroimaging databases or "atlases" that capture the population mean and variance in anatomical or physiological metrics as a function of age or disease. However, while the above benefits are not in question at first order, there are a number of conceptual and practical challenges that introduce second-order incompatibilities among experimental data. Stereotaxic mapping requires two basic components: (i) the specification of the 3D stereotaxic coordinate space, and (ii) a mapping function that transforms a 3D brain image from "native" space, i.e. the coordinate frame of the scanner at data acquisition, to that stereotaxic space. The first component is usually expressed by the choice of a representative 3D MR image that serves as target "template" or atlas. The native image is re-sampled from native to stereotaxic space under the mapping function that may have few or many degrees of freedom, depending upon the experimental design. The optimal choice of atlas template and mapping function depend upon considerations of age, gender, hemispheric asymmetry, anatomical correspondence, spatial normalization methodology and disease

  20. Templated nanocarbons for energy storage.

    PubMed

    Nishihara, Hirotomo; Kyotani, Takashi

    2012-08-28

    The template carbonization method is a powerful tool for producing carbon materials with precisely controlled structures at the nanometer level. The resulting templated nanocarbons exhibit extraordinarily unique (often ordered) structures that could never be produced by any of the conventional methods for carbon production. This review summarizes recent publications about templated nanocarbons and their composites used for energy storage applications, including hydrogen storage, electrochemical capacitors, and lithium-ion batteries. The main objective of this review is to clarify the true significance of the templated nanocarbons for each application. For this purpose, the performance characteristics of almost all templated nanocarbons reported thus far are listed and compared with those of conventional materials, so that the advantages/disadvantages of the templated nanocarbons are elucidated. From the practical point of view, the high production cost and poor mass-producibility of the templated nanocarbons make them rather difficult to utilize; however, the study of their unique, specific, and ordered structures enables a deeper insight into energy storage mechanisms and the guidelines for developing energy storage materials. Thus, another important purpose of this work is to establish such general guidelines and to propose future strategies for the production of carbon materials with improved performance for energy storage applications. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Cloning nanocrystal morphology with soft templates

    NASA Astrophysics Data System (ADS)

    Thapa, Dev Kumar; Pandey, Anshu

    2016-08-01

    In most template directed preparative methods, while the template decides the nanostructure morphology, the structure of the template itself is a non-general outcome of its peculiar chemistry. Here we demonstrate a template mediated synthesis that overcomes this deficiency. This synthesis involves overgrowth of silica template onto a sacrificial nanocrystal. Such templates are used to copy the morphologies of gold nanorods. After template overgrowth, gold is removed and silver is regrown in the template cavity to produce a single crystal silver nanorod. This technique allows for duplicating existing nanocrystals, while also providing a quantifiable breakdown of the structure - shape interdependence.

  2. Principles of natural regeneration

    Treesearch

    Paul S. Johnson

    1989-01-01

    To maximize chances of successful regeneration, carefully consider the following regeneration principles. Harvesting alone does not guarantee that the desired species will be established. The conditions required for the initial establishment and early growth of the desired species largely determine what regeneration method you should use and any supplemental treatments...

  3. Incremental Prognostic Use of Left Ventricular Global Longitudinal Strain in Asymptomatic/Minimally Symptomatic Patients With Severe Bioprosthetic Aortic Stenosis Undergoing Redo Aortic Valve Replacement.

    PubMed

    Naji, Peyman; Shah, Shailee; Svensson, Lars G; Gillinov, A Marc; Johnston, Douglas R; Rodriguez, L Leonardo; Grimm, Richard A; Griffin, Brian P; Desai, Milind Y

    2017-06-01

    With improved survival of patients undergoing primary bioprosthetic aortic valve replacement (AVR), reoperation to relieve severe prosthetic aortic stenosis (PAS) is increasing. Timing of redo surgery in asymptomatic/minimally symptomatic patients remains controversial. Left ventricular (LV) global longitudinal strain (GLS) is a marker of subclinical LV dysfunction. In asymptomatic/minimally symptomatic patients with severe PAS undergoing redo AVR, we sought to determine whether LV-GLS provides incremental prognostic use. We studied 191 patients with severe bioprosthetic PAS (63±16 years, 58% men) who underwent redo AVR between 2000 and 2012 (excluding mechanical PAS, severe other valve disease transcatheter AVR, and LV ejection fraction <50%). Society of Thoracic Surgeons score was calculated. Standard echocardiography data were obtained. LV-GLS was measured on 2-, 3-, and 4-chamber views using velocity vector imaging. Severe PAS was defined as aortic valve area <0.8 cm(2), mean aortic valve gradient ≥40 mm Hg, and dimensionless index <0.25. A composite outcome of death and congestive heart failure admission was recorded. At baseline, mean Society of Thoracic Surgeons score, LV ejection fraction, mean aortic valve gradients, and right ventricular systolic pressure were 7±6, 58±6%, 54±10 mm Hg and 40±14 mm Hg, whereas 50% had >2+ aortic regurgitation. Median LV-GLS was -14.2% (-11.4, -17.1%). At 4.2±3 years, 41 (22%) patients met the composite end point (2.5% deaths and 1% strokes at 30 days postoperatively). On multivariable Cox survival analysis, LV-GLS was independently associated with longer-term composite events (hazard ratio, 1.21; 95% confidence interval, 1.10-1.33), P<0.01. The C statistic for the clinical model (Society of Thoracic Surgeons score, degree of aortic regurgitation, and right ventricular systolic pressure) was 0.64 (95% confidence interval 0.54-0.79), P<0.001. Addition of LV-GLS to the clinical model increased the C statistic

  4. Bioactive and biodegradable nanocomposites and hybrid biomaterials for bone regeneration.

    PubMed

    Allo, Bedilu A; Costa, Daniel O; Dixon, S Jeffrey; Mequanint, Kibret; Rizkalla, Amin S

    2012-06-20

    Strategies for bone tissue engineering and regeneration rely on bioactive scaffolds to mimic the natural extracellular matrix and act as templates onto which cells attach, multiply, migrate and function. Of particular interest are nanocomposites and organic-inorganic (O/I) hybrid biomaterials based on selective combinations of biodegradable polymers and bioactive inorganic materials. In this paper, we review the current state of bioactive and biodegradable nanocomposite and O/I hybrid biomaterials and their applications in bone regeneration. We focus specifically on nanocomposites based on nano-sized hydroxyapatite (HA) and bioactive glass (BG) fillers in combination with biodegradable polyesters and their hybrid counterparts. Topics include 3D scaffold design, materials that are widely used in bone regeneration, and recent trends in next generation biomaterials. We conclude with a perspective on the future application of nanocomposites and O/I hybrid biomaterials for regeneration of bone.

  5. Bioactive and Biodegradable Nanocomposites and Hybrid Biomaterials for Bone Regeneration

    PubMed Central

    Allo, Bedilu A.; Costa, Daniel O.; Dixon, S. Jeffrey; Mequanint, Kibret; Rizkalla, Amin S.

    2012-01-01

    Strategies for bone tissue engineering and regeneration rely on bioactive scaffolds to mimic the natural extracellular matrix and act as templates onto which cells attach, multiply, migrate and function. Of particular interest are nanocomposites and organic-inorganic (O/I) hybrid biomaterials based on selective combinations of biodegradable polymers and bioactive inorganic materials. In this paper, we review the current state of bioactive and biodegradable nanocomposite and O/I hybrid biomaterials and their applications in bone regeneration. We focus specifically on nanocomposites based on nano-sized hydroxyapatite (HA) and bioactive glass (BG) fillers in combination with biodegradable polyesters and their hybrid counterparts. Topics include 3D scaffold design, materials that are widely used in bone regeneration, and recent trends in next generation biomaterials. We conclude with a perspective on the future application of nanocomposites and O/I hybrid biomaterials for regeneration of bone. PMID:24955542

  6. Asymmetric Image-Template Registration

    PubMed Central

    Sabuncu, Mert R.; Yeo, B.T. Thomas; Van Leemput, Koen; Vercauteren, Tom; Golland, Polina

    2010-01-01

    A natural requirement in pairwise image registration is that the resulting deformation is independent of the order of the images. This constraint is typically achieved via a symmetric cost function and has been shown to reduce the effects of local optima. Consequently, symmetric registration has been successfully applied to pairwise image registration as well as the spatial alignment of individual images with a template. However, recent work has shown that the relationship between an image and a template is fundamentally asymmetric. In this paper, we develop a method that reconciles the practical advantages of symmetric registration with the asymmetric nature of image-template registration by adding a simple correction factor to the symmetric cost function. We instantiate our model within a log-domain diffeomorphic registration framework. Our experiments show exploiting the asymmetry in image-template registration improves alignment in the image coordinates. PMID:20426033

  7. Template Synthesis of Carbon Nanotubules

    NASA Astrophysics Data System (ADS)

    Tee, J. C.; Sanip, S. M.; Aziz, M.; Ismail, A. F.

    2010-03-01

    The template synthesis of carbon nanostructures formed in porous anodic aluminium oxide (AAO) template with a pore size of 200 nm by a liquid phase impregnation of the template with a polymer, polyfurfuryl alcohol, followed by carbonization is studied. The temperatures of exposure to furfuryl alcohol vapour were varied between 50 and 70° C. The resultant carbon nanotubules formed were hollow with open ends having diameter ranging from 220-300 nm which is in agreement with the pore size of the template used. The BET surface area was found to increase from 11.64 m2/g before pyrolysis to 90.19 m2/g after pyrolysis as a result of the formation of carbon nanotubules.

  8. Templated Growth of Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Siochik Emilie J. (Inventor)

    2007-01-01

    A method of growing carbon nanotubes uses a synthesized mesoporous si lica template with approximately cylindrical pores being formed there in. The surfaces of the pores are coated with a carbon nanotube precu rsor, and the template with the surfaces of the pores so-coated is th en heated until the carbon nanotube precursor in each pore is convert ed to a carbon nanotube.

  9. Regeneration of periodontal tissues: guided tissue regeneration.

    PubMed

    Villar, Cristina C; Cochran, David L

    2010-01-01

    The concept that only fibroblasts from the periodontal ligament or undifferentiated mesenchymal cells have the potential to re-create the original periodontal attachment has been long recognized. Based on this concept, guided tissue regeneration has been applied with variable success to regenerate periodontal defects. Quantitative analysis of clinical outcomes after guided tissue regeneration suggests that this therapy is a successful and predictable procedure to treat narrow intrabony defects and class II mandibular furcations, but offers limited benefits in the treatment of other types of periodontal defects.

  10. Anatomy, biogenesis, and regeneration of salivary glands

    PubMed Central

    Holmberg, Kyle V.; Hoffman, Matthew P.

    2014-01-01

    An overview of the anatomy and biogenesis of salivary glands is important in order to understand the physiology, functions and disorders associated with saliva. A major disorder of salivary glands is salivary hypofunction and resulting xerostomia, or dry mouth, which affects hundreds of thousands of patients per year who suffer from salivary gland diseases or undergo head and neck cancer treatment. There is currently no curative therapy for these patients. To improve these patients’ quality of life, new therapies are being developed based on findings in salivary gland cell and developmental biology. Here we discuss the anatomy and biogenesis of the major human salivary glands and the rodent submandibular gland (SMG), which has been used extensively as a research model. We also include a review of recent research on the identification and function of stem cells in salivary glands, and the emerging field of research suggesting nerves play an instructive role during development and may be essential for adult gland repair and regeneration. Understanding the molecular mechanisms involved in gland biogenesis provides a template for regenerating, repairing or reengineering diseased or damaged adult human salivary glands. We provide an overview of three general approaches currently being developed to regenerate damaged salivary tissue, including gene therapy, stem cell-based therapy, and tissue engineering. In the future, it may be that a combination of all three will be used to repair, regenerate and reengineer functional salivary glands in patients to increase the secretion of their saliva, the focus of this monograph. PMID:24862590

  11. Anatomy, biogenesis and regeneration of salivary glands.

    PubMed

    Holmberg, Kyle V; Hoffman, Matthew P

    2014-01-01

    An overview of the anatomy and biogenesis of salivary glands is important in order to understand the physiology, functions and disorders associated with saliva. A major disorder of salivary glands is salivary hypofunction and resulting xerostomia, or dry mouth, which affects hundreds of thousands of patients each year who suffer from salivary gland diseases or undergo head and neck cancer treatment. There is currently no curative therapy for these patients. To improve these patients' quality of life, new therapies are being developed based on findings in salivary gland cell and developmental biology. Here we discuss the anatomy and biogenesis of the major human salivary glands and the rodent submandibular gland, which has been used extensively as a research model. We also include a review of recent research on the identification and function of stem cells in salivary glands, and the emerging field of research suggesting that nerves play an instructive role during development and may be essential for adult gland repair and regeneration. Understanding the molecular mechanisms involved in gland biogenesis provides a template for regenerating, repairing or reengineering diseased or damaged adult human salivary glands. We provide an overview of 3 general approaches currently being developed to regenerate damaged salivary tissue, including gene therapy, stem cell-based therapy and tissue engineering. In the future, it may be that a combination of all three will be used to repair, regenerate and reengineer functional salivary glands in patients to increase the secretion of their saliva, the focus of this monograph.

  12. Ten-year experience with the porcine bioprosthetic valve: interrelationship of valve survival and patient survival in 1,050 valve replacements.

    PubMed

    Jones, E L; Weintraub, W S; Craver, J M; Guyton, R A; Cohen, C L; Corrigan, V E; Hatcher, C R

    1990-03-01

    The porcine bioprosthetic valve was used in 440 patients having isolated mitral valve replacement (MVR), 522 patients having isolated aortic valve replacement (AVR), and 88 patients having MVR + AVR between 1974 and 1981. Patients with associated surgical procedures were excluded. Mean follow-up was 8.3 years. At 10 years, there was no difference in patient survival between those having AVR and those having MVR. Reoperations were performed on 192 patients. Endocarditis was the reason for reoperation in 3.7% of patients who had MVR and 10.6% of those who had AVR. Structural valve degeneration was the reason for reoperation in 89.7% of MVR patients and 78.8% of AVR patients (p = 0.04). Hospital mortality among patients having valve reoperations was 4.7%. At 10 years, the freedom from valve reoperation for all causes and from structural valve degeneration was significantly better for the AVR group than the MVR group (74% +/- 3% versus 61% +/- 4%, p = 0.004; and 79% +/- 3% versus 63% +/- 4%, p = 0.0006, respectively). For patients in their 60s, the 10-year freedom from reoperation was 92% +/- 2% for AVR and 80% +/- 6% for MVR (p = not significant). At 10 years, freedom from cardiac-related death and valve reoperation was best for both MVR and AVR patients in their 60s. Patients 70 years old or older rarely had reoperation but died before valve failure occurred. The 10-year freedom from all major valve-related events (cardiac-related death, reoperation, thromboembolism, endocarditis, and anticoagulant-related bleeding) was practically the same for both MVR and AVR patients (48% +/- 3% versus 49% +/- 3%, respectively). The porcine bioprosthetic valve is the valve of choice only for patients 60 years old or older. Patients in their 70s have an extremely low rate of reoperation but a high rate of cardiac-related death and do not outlive the prostheses.

  13. Emerging rules for inducing organ regeneration.

    PubMed

    Yannas, Ioannis V

    2013-01-01

    We review the available evidence for regeneration of adult organs of very diverse nature and examine the applicability of simple rules that can be used to summarize these treatments. In the field of regenerative medicine no widely accepted paradigm is currently available that can guide formulation of new theories on the mechanism of regeneration in adults and open new directions for improved regeneration outcomes. The four rules have emerged from multiyear quantitative studies with skin and peripheral nerve regeneration using scaffold libraries based on a simple, well-defined collagen scaffold. These largely quantitative rules distinguish sharply between spontaneously regenerative and nonregenerative tissues, select the two reactants that are required for regeneration, recognize the essential modification of the wound healing process that must be realized prior to regeneration, and identify three structural features of scaffolds that are required for regenerative activity. The combined evidence points at certain requirements for the structure of a collagen scaffold with regenerative activity. An active scaffold emerges as a temporarily insoluble collagen surface, equipped with sufficient ligands for integrins of contractile cells, that inhibits wound contraction while also serving as a topographic template for new stroma synthesis. The four rules, based on studies with just two organs (skin and peripheral nerves), are now viewed in the context of ongoing studies using scaffolds based on decellularized matrices, which are mostly based on collagen. Decellularized matrices have been used during the past few years to regenerate, in whole or in part, the urethra, the abdominal wall, the Achilles tendon, the bladder, the trachea and other organs in several animal models and occasionally in humans. Although these acellular matrices are distinctly different from simple collagen scaffolds, and the methods used by the investigators are still evolving, the results obtained

  14. e-Stars Template Builder

    NASA Technical Reports Server (NTRS)

    Cox, Brian

    2003-01-01

    e-Stars Template Builder is a computer program that implements a concept of enabling users to rapidly gain access to information on projects of NASA's Jet Propulsion Laboratory. The information about a given project is not stored in a data base, but rather, in a network that follows the project as it develops. e-Stars Template Builder resides on a server computer, using Practical Extraction and Reporting Language (PERL) scripts to create what are called "e-STARS node templates," which are software constructs that allow for project-specific configurations. The software resides on the server and does not require specific software on the user machine except for an Internet browser. A user's computer need not be equipped with special software (other than an Internet-browser program). e-Stars Template Builder is compatible with Windows, Macintosh, and UNIX operating systems. A user invokes e-Stars Template Builder from a browser window. Operations that can be performed by the user include the creation of child processes and the addition of links and descriptions of documentation to existing pages or nodes. By means of this addition of "child processes" of nodes, a network that reflects the development of a project is generated.

  15. Exploring the dermal "template effect" and its structure.

    PubMed

    Jiang, Yuzhi; Lu, Shuliang

    2013-08-01

    Scar formation is the problem for clinic surgery. Recent studies showed that the scar formation was closely related to the dermal defect. Three-dimensional (3-d) structures of dermal tissues act as a template to modulate cell functions that are essential the regeneration of skin structure and function. The dermal tissue's integrity and continuity is a prerequisite for repair to take place. Loss of the dermal tissue integrity and continuity due to trauma leads to a lack of the template effect, which may be one important mechanism that hinders the recovery of cell function, resulting in scar formation. These studies give us two questions: what is the three-dimensional (3-d) structure of the dermal tissue? How do the tissues form? Up to now, it is well known that the molecular structure of collagen, the micro-structure of microfibril, however, the mesoscopic structure of dermal tissues is still unclear. Our recently rudimentary studies showed the problem might be resolved by phase-contrast micro-tomography with synchrotron radiation, which is likely to open new avenues for further investigations on wound regeneration and skin tissue engineering.

  16. Desulfurization sorbent regeneration

    DOEpatents

    Jalan, V.M.; Frost, D.G.

    1982-07-07

    A spent solid sorbent resulting from the removal of hydrogen sulfide from a fuel gas flow is regenerated with a steam-air mixture. The mixture of steam and air may also include additional nitrogen or carbon dioxide. The gas mixture contacts the spent sorbent containing metal sulfide at a temperature above 500/sup 0/C to regenerate the sulfide to metal oxide or carbonate. Various metal species including the period four transition metals and the lanthanides are suitable sorbents that may be regenerated by this method. In addition, the introduction of carbon dioxide gas permits carbonates such as those of strontium, barium and calcium to be regenerated. The steam permits regeneration of spent sorbent without formation of metal sulfate. Moreover, the regeneration will proceed with low oxygen concentrations and will occur without the increase in temperature to minimize the risk of sintering and densification of the sorbent. This method may be used for high-temperature fuel cells.

  17. Future directions. Collagen-based prostheses for meniscal regeneration.

    PubMed

    Stone, K R; Rodkey, W G; Webber, R J; McKinney, L; Steadman, J R

    1990-03-01

    Prosthetic meniscal replacement offers the ability to stabilize the meniscectomized knee and provide prophylaxis against early degenerative arthritis. Since prosthetic meniscal replacement may be performed in the setting of normal articular cartilage, a prosthesis will be required to match the exact joint configuration, induce the same lubricity, produce the same coefficient of friction, and absorb and dampen the same joint forces (without incurring significant creep or abrasion) as does the normal meniscus. This feat is currently beyond the capabilities of artificial materials alone. Alternatively, collagen-based prostheses acting as resorbable regeneration templates offer the possibility of inducing regrowth of new menisci. This paper presents a summary of hypotheses, considerations, and laboratory evidence for the use of collagen-based, resorbable matrices as regeneration templates.

  18. Regeneration Heat Exchange

    SciTech Connect

    J. Lin

    2003-07-30

    The original project goals were to establish the viability of the proposed gas turbine regenerator concept by performing the following tasks: (1) Perform detailed design of a working model of the regenerator concept. (2) Construct a ''bench-top'' model of the regenerator concept based upon the detail design. (3) Test the bench-top model and gather data to support the concept's viability. The project funding was used to acquire the tools and material to perform the aforementioned tasks.

  19. Cooperation of catalysts and templates

    NASA Technical Reports Server (NTRS)

    White, D. H.; Kanavarioti, A.; Nibley, C. W.; Macklin, J. W.

    1986-01-01

    In order to understand how self-reproducing molecules could have originated on the primitive Earth or extraterrestrial bodies, it would be useful to find laboratory models of simple molecules which are able to carry out processes of catalysis and templating. Furthermore, it may be anticipated that systems in which several components are acting cooperatively to catalyze each other's synthesis will have different behavior with respect to natural selection than those of purely replicating systems. As the major focus of this work, laboratory models are devised to study the influence of short peptide catalysts on template reactions which produce oligonucleotides or additional peptides. Such catalysts could have been the earliest protoenzymes of selective advantage produced by replicating oligonucleotides. Since this is a complex problem, simpler systems are also studied which embody only one aspect at a time, such as peptide formation with and without a template, peptide catalysis of nontemplated peptide synthesis, and model reactions for replication of the type pioneered by Orgel.

  20. Cooperation of catalysts and templates

    NASA Technical Reports Server (NTRS)

    White, D. H.; Kanavarioti, A.; Nibley, C. W.; Macklin, J. W.

    1986-01-01

    In order to understand how self-reproducing molecules could have originated on the primitive Earth or extraterrestrial bodies, it would be useful to find laboratory models of simple molecules which are able to carry out processes of catalysis and templating. Furthermore, it may be anticipated that systems in which several components are acting cooperatively to catalyze each other's synthesis will have different behavior with respect to natural selection than those of purely replicating systems. As the major focus of this work, laboratory models are devised to study the influence of short peptide catalysts on template reactions which produce oligonucleotides or additional peptides. Such catalysts could have been the earliest protoenzymes of selective advantage produced by replicating oligonucleotides. Since this is a complex problem, simpler systems are also studied which embody only one aspect at a time, such as peptide formation with and without a template, peptide catalysis of nontemplated peptide synthesis, and model reactions for replication of the type pioneered by Orgel.

  1. Biometric template transformation: a security analysis

    NASA Astrophysics Data System (ADS)

    Nagar, Abhishek; Nandakumar, Karthik; Jain, Anil K.

    2010-01-01

    One of the critical steps in designing a secure biometric system is protecting the templates of the users that are stored either in a central database or on smart cards. If a biometric template is compromised, it leads to serious security and privacy threats because unlike passwords, it is not possible for a legitimate user to revoke his biometric identifiers and switch to another set of uncompromised identifiers. One methodology for biometric template protection is the template transformation approach, where the template, consisting of the features extracted from the biometric trait, is transformed using parameters derived from a user specific password or key. Only the transformed template is stored and matching is performed directly in the transformed domain. In this paper, we formally investigate the security strength of template transformation techniques and define six metrics that facilitate a holistic security evaluation. Furthermore, we analyze the security of two wellknown template transformation techniques, namely, Biohashing and cancelable fingerprint templates based on the proposed metrics. Our analysis indicates that both these schemes are vulnerable to intrusion and linkage attacks because it is relatively easy to obtain either a close approximation of the original template (Biohashing) or a pre-image of the transformed template (cancelable fingerprints). We argue that the security strength of template transformation techniques must consider also consider the computational complexity of obtaining a complete pre-image of the transformed template in addition to the complexity of recovering the original biometric template.

  2. Template polymerization of nucleotide analogues

    NASA Technical Reports Server (NTRS)

    Orgel, L. E.

    1991-01-01

    Recent work on the template-directed reactions of the natural D-nucleotides has made it clear that l-nucleotides and nucleotide-like derivatives of other sugars would strongly inhibit the formation of long oligonucleotides. Consequently, attention is focusing on molecules simpler than nucleotides that might have acted as monomers of an information transfer system. We have begun a general exploration of the template directed reactions of diverse peptide analogues. I will present work by Dr. Taifeng Wu on oxidative oligomerization of phosphorothioates and of Dr. Mary Tohidi on the cyclic polymerization of nucleoside and related cyclic pyrophosphates.

  3. Wide band gap semiconductor templates

    DOEpatents

    Arendt, Paul N.; Stan, Liliana; Jia, Quanxi; DePaula, Raymond F.; Usov, Igor O.

    2010-12-14

    The present invention relates to a thin film structure based on an epitaxial (111)-oriented rare earth-Group IVB oxide on the cubic (001) MgO terminated surface and the ion-beam-assisted deposition ("IBAD") techniques that are amendable to be over coated by semiconductors with hexagonal crystal structures. The IBAD magnesium oxide ("MgO") technology, in conjunction with certain template materials, is used to fabricate the desired thin film array. Similarly, IBAD MgO with appropriate template layers can be used for semiconductors with cubic type crystal structures.

  4. A new regenerator theory

    NASA Astrophysics Data System (ADS)

    Jones, J. D.

    The performance of a Stirling Engine regenerator having finite mass and operated under realistic conditions of pressure and flow cycling is analysed. It is shown that cyclic variations in the matrix temperature due to its finite mass cause an increase in the apparent regenerator effectiveness, but a decrease in engine power. Approximate closed-form expressions for both of these effects are deduced.

  5. Supply-Chain Optimization Template

    NASA Technical Reports Server (NTRS)

    Quiett, William F.; Sealing, Scott L.

    2009-01-01

    The Supply-Chain Optimization Template (SCOT) is an instructional guide for identifying, evaluating, and optimizing (including re-engineering) aerospace- oriented supply chains. The SCOT was derived from the Supply Chain Council s Supply-Chain Operations Reference (SCC SCOR) Model, which is more generic and more oriented toward achieving a competitive advantage in business.

  6. Progress of NIL template making

    NASA Astrophysics Data System (ADS)

    Yusa, Satoshi; Hiraka, Takaaki; Kobiki, Ayumi; Sasaki, Shiho; Itoh, Kimio; Toyama, Nobuhito; Kurihara, Masaaki; Mohri, Hiroshi; Hayashi, Naoya

    2007-05-01

    Nano-imprint lithography (NIL) has been counted as one of the lithography solutions for hp32nm node and beyond. Recently, the small line edge roughness (LER) as well as the potentially high resolution that will ensure no-OPC mask feature is attracting many researchers. The template making is one of the most critical issues for the realization of NIL. Especially when we think of a practical template fabrication process on a 65mm square format that is going to be the industry standard, the resolution of the template making process showed a limitation. We have achieved for the first time an hp22nm resolution on the 65nm template format. Both line and space patterns and hole patterns were well resolved. Regarding dot patterns, we still need improvement, but we have achieved resolution down to hp28nm. Although so far we cannot achieve these resolution limits of various pattern category at the same time on one substrate, an intermediate process condition showed sufficient uniformity both in lateral CD and in vertical depth. Global pattern image placement also showed sufficient numbers at this stage of lithography development. A 20nm feature (with a pitch of 80nm) showed sufficient imprint result.

  7. [Resources of regeneration in planarians].

    PubMed

    Sheĭman, I M; Sedel'nikov, Z V; Kreshchenko, N D

    2006-01-01

    We studied the intensity of blastema growth in operated planarians at an early stage of regeneration as a function of the following factors: area of regenerate and its function and number of regeneration foci (volume of regeneration). There was no direct dependence between the intensity of regeneration and the size of regenerating fragment, as well as the volume of regeneration. Some specific features of the early stage of regeneration have been described, which suggest its determinate character. The behavior of neoblasts during formation of blastemas with different localization is discussed.

  8. Ceramic regenerator program

    NASA Technical Reports Server (NTRS)

    Franklin, Jerrold E.

    1991-01-01

    The feasibility of fabricating an Air Turbo Ramjet (ATR) regenerator containing intricate hydraulic passages from a ceramic material in order to allow operation with high temperature combustion gas and to reduce weight as compared with metallic materials was demonstrated. Platelet technology, ceramic tape casting, and multilayer ceramic packaging techniques were used in this fabrication of subscale silicon nitride components. Proof-of-concept demonstrations were performed to simulate a methane cooled regenerator for an ATR engine. The regenerator vane was designed to operate at realistic service conditions, i.e., 600 psi in a 3500 R (3040 F), 500 fps combustion gas environment. A total of six regenerators were fabricated and tested. The regenerators were shown to be able to withstand internal pressurization to 1575 psi. They were subjected to testing in 500 fps, 3560 R (3100 F) air/propane combustion products and were operated satisfactorily for an excess of 100 hr and 40 thermal cycles which exceeded 2460 R (2000 F).

  9. Specialized progenitors and regeneration.

    PubMed

    Reddien, Peter W

    2013-03-01

    Planarians are flatworms capable of regenerating all body parts. Planarian regeneration requires neoblasts, a population of dividing cells that has been studied for over a century. Neoblast progeny generate new cells of blastemas, which are the regenerative outgrowths at wounds. If the neoblasts comprise a uniform population of cells during regeneration (e.g. they are all uncommitted and pluripotent), then specialization of new cell types should occur in multipotent, non-dividing neoblast progeny cells. By contrast, recent data indicate that some neoblasts express lineage-specific transcription factors during regeneration and in uninjured animals. These observations raise the possibility that an important early step in planarian regeneration is the specialization of neoblasts to produce specified rather than naïve blastema cells.

  10. [Pharynx regeneration in planarians].

    PubMed

    Kreshchenko, N D

    2009-01-01

    The obtained and published data on pharynx regeneration in planarians have been reviewed. Planarians can regenerate from a small body fragment and restore all missing organs including the pharynx. The pharynx is a relatively autonomous organ with a differentiated structure and specialized function. Pharynx regeneration has specific features, and its studies are of considerable theoretical interest. Pharynx regeneration can also be a convenient model to study the molecular mechanisms of regeneration that remain undisclosed. In addition, this model can be used to test biologically active compounds in order to elucidate their effect on morphogenesis. This subject of investigation benefits by a simpler and more adequate analysis as well as a possibility to use large numbers of animals and small quantities of analyzed substances.

  11. Viral-templated Palladium Nanocatalysts

    NASA Astrophysics Data System (ADS)

    Yang, Cuixian

    Despite recent progress on nanocatalysis, there exist several critical challenges in simple and readily controllable nanocatalyst synthesis including the unpredictable particle growth, deactivation of catalytic activity, cumbersome catalyst recovery and lack of in-situ reaction monitoring. In this dissertation, two novel approaches are presented for the fabrication of viral-templated palladium (Pd) nanocatalysts, and their catalytic activities for dichromate reduction reaction and Suzuki Coupling reaction were thoroughly studied. In the first approach, viral template based bottom-up assembly is employed for the Pd nanocatalyst synthesis in a chip-based format. Specifically, genetically displayed cysteine residues on each coat protein of Tobacco Mosaic Virus (TMV) templates provide precisely spaced thiol functionalities for readily controllable surface assembly and enhanced formation of catalytically active Pd nanoparticles. Catalysts with the chip-based format allow for simple separation and in-situ monitoring of the reaction extent. Thorough examination of synthesis-structure-activity relationship of Pd nanoparticles formed on surface-assembled viral templates shows that Pd nanoparticle size, catalyst loading density and catalytic activity of viral-templated Pd nanocatalysts can be readily controlled simply by tuning the synthesis conditions. The viral-templated Pd nanocatalysts with optimized synthesis conditions are shown to have higher catalytic activity per unit Pd mass than the commercial Pd/C catalysts. Furthermore, tunable and selective surface assembly of TMV biotemplates is exploited to control the loading density and location of Pd nanocatalysts on solid substrates via preferential electroless deposition. In addition, the catalytic activities of surface-assembled TMV-templated Pd nanocatalysts were also investigated for the ligand-free Suzuki Coupling reaction under mild reaction conditions. The chip-based format enables simple catalyst separation and

  12. Spreadsheet Templates for Chemical Equilibrium Calculations.

    ERIC Educational Resources Information Center

    Joshi, Bhairav D.

    1993-01-01

    Describes two general spreadsheet templates to carry out all types of one-equation chemical equilibrium calculations encountered by students in undergraduate chemistry courses. Algorithms, templates, macros, and representative examples are presented to illustrate the approach. (PR)

  13. Fumigant Management Plan - Phase 1 Templates

    EPA Pesticide Factsheets

    FMPs are required by pesticide labels, so EPA provides chemical-specific soil fumigant templates and samples in PDF and Word formats. Choose the appropriate template for products containing chloropicrin, dazomet, metam sodium/potassium, or methyl bromide.

  14. Transforming surgery through biomaterial template technology.

    PubMed

    Hodde, Jason; Hiles, Michael

    2016-03-01

    Templates inserted into surgical wounds strongly influence the healing responses in humans. The science of these templates, in the form of extracellular matrix biomaterials, is rapidly evolving and improving as the natural interactions with the body become better understood.

  15. AN EXPRESSION TEMPLATE AWARE LAMBDA FUNCTION

    SciTech Connect

    S. A. SMITH; J. STRIEGNITZ

    2000-09-19

    The authors show how the paradigms of lambda functions and expression templates fit together in order to provide a means to increase the expressiveness of existing STL algorithms. They demonstrate how the expression templates approach could be extended in order to work with built-in types. To be portable, their solution is based on the Portable Expression Template Engine (PETE), which is a framework that enables the development of expression template aware classes.

  16. Notch Signaling Inhibits Axon Regeneration

    PubMed Central

    Bejjani, Rachid El; Hammarlund, Marc

    2013-01-01

    Summary Many neurons have limited capacity to regenerate their axons after injury. Neurons in the mammalian CNS do not regenerate, and even neurons in the PNS often fail to regenerate to their former targets. This failure is likely due in part to pathways that actively restrict regeneration; however, only a few factors that limit regeneration are known. Here, using single-neuron analysis of regeneration in vivo, we show that Notch/lin-12 signaling inhibits the regeneration of mature C. elegans neurons. Notch signaling suppresses regeneration by acting autonomously in the injured cell to prevent growth cone formation. The metalloprotease and gamma-secretase cleavage events that lead to Notch activation during development are also required for its activity in regeneration. Furthermore, blocking Notch activation immediately after injury improves regeneration. Our results define a novel, post-developmental role for the Notch pathway as a repressor of axon regeneration in vivo. PMID:22284182

  17. How to protect biometric templates

    NASA Astrophysics Data System (ADS)

    Sutcu, Yagiz; Li, Qiming; Memon, Nasir

    2007-02-01

    In addition to the inherent qualities that biometrics posses, powerful signal processing tools enabled widespread deployment of the biometric-based identification/verification systems. However, due to the nature of biometric data, well-established cryptographic tools (such as hashing, encryption, etc.) are not sufficient for solving one of the most important problems related to biometric systems, namely, template security. In this paper, we examine and show how to apply a recently proposed secure sketch scheme in order to protect the biometric templates. We consider face biometrics and study how the performance of the authentication scheme would be affected after the application of the secure sketch. We further study the trade-off between the performance of the scheme and the bound of the entropy loss from the secure sketch.

  18. Porous Networks Through Colloidal Templates

    NASA Astrophysics Data System (ADS)

    Li, Qin; Retsch, Markus; Wang, Jianjun; Knoll, Wolfgang; Jonas, Ulrich

    Porous networks represent a class of materials with interconnected voids with specific properties concerning adsorption, mass and heat transport, and spatial confinement, which lead to a wide range of applications ranging from oil recovery and water purification to tissue engineering. Porous networks with well-defined, highly ordered structure and periodicities around the wavelength of light can furthermore show very sophisticated optical properties. Such networks can be fabricated from a very large range of materials by infiltration of a sacrificial colloidal crystal template and subsequent removal of the template. The preparation procedures reported in the literature are discussed in this review and the resulting porous networks are presented with respect to the underlying material class. Furthermore, methods for hierarchical superstructure formation and functionalization of the network walls are discussed.

  19. Template boundary definition in mammalian telomerase.

    PubMed

    Chen, Jiunn-Liang; Greider, Carol W

    2003-11-15

    Telomerase uses a short template sequence in its intrinsic RNA component to synthesize telomere repeats. Disruption of the helix P1b in human telomerase RNA or alteration of its distance from the template resulted in telomerase copying residues past the normal template boundary both in vivo and in vitro. Therefore, helix P1b is important for template boundary definition in human telomerase. Mouse telomerase RNA lacks helix P1b, and the boundary is established at 2 nt downstream of the 5'-end. The divergent structure of boundary definition elements in mammals, yeast, and ciliates suggests diverse mechanisms for template boundary definition in telomerase.

  20. RNA-templated DNA repair

    PubMed Central

    Storici, Francesca; Bebenek, Katarzyna; Kunkel, Thomas A.; Gordenin, Dmitry A.; Resnick, Michael A.

    2007-01-01

    RNA can act as a template for DNA synthesis in the reverse transcription of retroviruses and retrotransposons1 and in the elongation of telomeres2. Despite its abundance in the nucleus, there has been no evidence for a direct role of RNA as a template in the repair of any chromosomal DNA lesions, including DNA double-strand breaks (DSBs), which are repaired in most organisms by homologous recombination or by non-homologous end joining3. An indirect role for RNA in DNA repair, following reverse transcription and formation of a complementary DNA, has been observed in the non-homologous joining of DSB ends4,5. In the yeast Saccharomyces cerevisiae, in which homologous recombination is efficient3, RNA was shown to mediate recombination, but only indirectly through a cDNA intermediate6,7 generated by the reverse transcriptase function of Ty retrotransposons in Ty particles in the cytoplasm8. Although pairing between duplex DNA and single-strand (ss)RNA can occur in vitro9,10 and in vivo11, direct homologous exchange of genetic information between RNA and DNA molecules has not been observed. We show here that RNA can serve as a template for DNA synthesis during repair of a chromosomal DSB in yeast. The repair was accomplished with RNA oligonucleotides complementary to the broken ends. This and the observation that even yeast replicative DNA polymerases such as α and δ can copy short RNA template tracts in vitro demonstrate that RNA can transfer genetic information in vivo through direct homologous interaction with chromosomal DNA. PMID:17429354

  1. Metal nanodisks using bicellar templates

    SciTech Connect

    Song, Yujiang; Shelnutt, John A

    2013-12-03

    Metallic nanodisks and a method of making them. The metallic nanodisks are wheel-shaped structures that that provide large surface areas for catalytic applications. The metallic nanodisks are grown within bicelles (disk-like micelles) that template the growth of the metal in the form of approximately circular dendritic sheets. The zero-valent metal forming the nanodisks is formed by reduction of a metal ion using a suitable electron donor species.

  2. Indentation hardness: A simple test that correlates with the dissipated-energy predictor for fatigue-life in bovine pericardium membranes for bioprosthetic heart valves.

    PubMed

    Tobaruela, Almudena; Rojo, Francisco Javier; García Paez, José María; Bourges, Jean Yves; Herrero, Eduardo Jorge; Millán, Isabel; Alvarez, Lourdes; Cordon, Ángeles; Guinea, Gustavo V

    2016-08-01

    The aim of this study was to evaluate the variation of hardness with fatigue in calf pericardium, a biomaterial commonly used in bioprosthetic heart valves, and its relationship with the energy dissipated during the first fatigue cycle that has been shown to be a predictor of fatigue-life (García Páez et al., 2006, 2007; Rojo et al., 2010). Fatigue tests were performed in vitro on 24 pericardium specimens cut in a root-to-apex direction. The specimens were subjected to a maximum stress of 1MPa in blocks of 10, 25, 50, 100, 250, 500, 1000 and 1500 cycles. By means of a modified Shore A hardness test procedure, the hardness of the specimen was measured before and after fatigue tests. Results showed a significant correlation of such hardness with fatigue performance and with the energy dissipated in the first cycle of fatigue, a predictor of pericardium durability. The study showed indentation hardness as a simple and reliable indicator of mechanical performance, one which could be easily implemented in improving tissue selection. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. [A multicenter randomized controlled clinical trial of Ligation of the Intersphincteric Fistula Tract Plus Bioprosthetic Anal Fistula Plug in the treatment of chronic anal fistula].

    PubMed

    Zheng, Yi; Wang, Zhenjun; Yang, Xinqing; Cui, Jinjie; Chen, Chaowen; Zhang, Xuebin; Wang, Xiaoqiang; Zhang, Xiling; Che, Xiangming; Chen, Jincai; Cui, Feibo; Song, Weiliang; Chen, Yuzhuo

    2015-11-10

    To evaluate the effectiveness and safety of Ligation of the Intersphincteric Fistula Tract Plus Bioprosthetic Anal Fistula Plug (LIFT-plug) in the treatment of chronic anal fistula. A total of 239 patients (199 males, 40 females) with chronic anal fistula were recruited from 5 hospitals between March 2011 and April 2013. These patients were randomly assigned to the experimental group (n=119) treated with LIFT-plug or the control group (n=120) treated with LIFT. The follow-up period was 180 days. The collected data included healing rate, the median healing time, the recurrence rate, the Visual Analogue Scale (VAS), the incontinence rate, and the safety indicators associated with the anal fistula plug. The healing rate of the experimental group was better than the control group (96.5% vs 83.7%, P<0.05). The median healing time of the experimental group was 22 days and the latter was 30 days (P<0.05). By the end of the follow-up period, there was no recurrence found in the two groups. The VAS and the incontinence rate had no statistically significant difference between the two groups. There were no adverse events associated with the anal fistula plug in the experimental group. LIFT-plug is simple, less invasive, and with shorter healing time and more satisfactory healing rate in treating chronic anal fistula compared with LIFT.

  4. A preliminary durability study of two types of low-profile pericardial bioprosthetic valves through the use of accelerated fatigue testing and flow characterization.

    PubMed

    Schuster, P R; Wagner, J W

    1989-02-01

    Bioprosthetic heart valves are being used more often because of certain advantages they have over artificial valves. The bioprostheses are less thrombogenic, cause a lower incidence of hemolysis, and usually fail in a slow progressive manner. A combination of flow characterization and accelerated testing was used to assess the durability of two types of pericardial valves, the Ionescu-Shiley Low Profile Mitral and the Carpentier-Edwards Low Profile Aortic valve. The flow characterization work was done in an aortic chamber designed for in vivo simulation. The function of the valve was monitored between different stages of the accelerated testing using laser Doppler anemometry. Accelerated testing was performed at 1300 cardiac cycles per minute, and physiologic conditions both in closing pressures and the ambient temperature were maintained. Results indicated a change in flow characteristics owing to cyclic loading of the leaflet tissue. The flow orifice increased over time leading to a decrease in peak velocity. Future developments in Doppler ultrasound may facilitate non-invasive assessment of these peak velocity variations. Calcification of the tissue was not considered, since this was an in vitro study.

  5. FUZZY SUPERNOVA TEMPLATES. I. CLASSIFICATION

    SciTech Connect

    Rodney, Steven A.; Tonry, John L. E-mail: jt@ifa.hawaii.ed

    2009-12-20

    Modern supernova (SN) surveys are now uncovering stellar explosions at rates that far surpass what the world's spectroscopic resources can handle. In order to make full use of these SN data sets, it is necessary to use analysis methods that depend only on the survey photometry. This paper presents two methods for utilizing a set of SN light-curve templates to classify SN objects. In the first case, we present an updated version of the Bayesian Adaptive Template Matching program (BATM). To address some shortcomings of that strictly Bayesian approach, we introduce a method for Supernova Ontology with Fuzzy Templates (SOFT), which utilizes fuzzy set theory for the definition and combination of SN light-curve models. For well-sampled light curves with a modest signal-to-noise ratio (S/N >10), the SOFT method can correctly separate thermonuclear (Type Ia) SNe from core collapse SNe with >=98% accuracy. In addition, the SOFT method has the potential to classify SNe into sub-types, providing photometric identification of very rare or peculiar explosions. The accuracy and precision of the SOFT method are verified using Monte Carlo simulations as well as real SN light curves from the Sloan Digital Sky Survey and the SuperNova Legacy Survey. In a subsequent paper, the SOFT method is extended to address the problem of parameter estimation, providing estimates of redshift, distance, and host galaxy extinction without any spectroscopy.

  6. Titanium template for scaphoid reconstruction.

    PubMed

    Haefeli, M; Schaefer, D J; Schumacher, R; Müller-Gerbl, M; Honigmann, P

    2015-06-01

    Reconstruction of a non-united scaphoid with a humpback deformity involves resection of the non-union followed by bone grafting and fixation of the fragments. Intraoperative control of the reconstruction is difficult owing to the complex three-dimensional shape of the scaphoid and the other carpal bones overlying the scaphoid on lateral radiographs. We developed a titanium template that fits exactly to the surfaces of the proximal and distal scaphoid poles to define their position relative to each other after resection of the non-union. The templates were designed on three-dimensional computed tomography reconstructions and manufactured using selective laser melting technology. Ten conserved human wrists were used to simulate the reconstruction. The achieved precision measured as the deviation of the surface of the reconstructed scaphoid from its virtual counterpart was good in five cases (maximal difference 1.5 mm), moderate in one case (maximal difference 3 mm) and inadequate in four cases (difference more than 3 mm). The main problems were attributed to the template design and can be avoided by improved pre-operative planning, as shown in a clinical case. © The Author(s) 2014.

  7. Template synthesis of nanophase mesocarbon.

    PubMed

    Yang, Nancy Y; Jian, Kengqing; Külaots, Indrek; Crawford, Gregory P; Hurt, Robert H

    2003-10-01

    Templating techniques are used increasingly to create carbon materials with precisely engineered pore systems. This article presents a new templating technique that achieves simultaneous control of pore structure and molecular (crystal) structure in a single synthesis step. With the use of discotic liquid crystalline precursors, unique carbon structures can be engineered by selecting the size and geometry of the confining spaces and selecting the template material to induce edge-on or face-on orientation of the discotic precursor. Here mesophase pitch is infiltrated by capillary forces into a nanoporous glass followed by slow carbonization and NaOH etching. The resulting porous carbon material exhibits interconnected solid grains about 100 nm in size, a monodisperse pore size of 60 nm, 42% total porosity, and an abundance of edge-plane inner surfaces that reflect the favored edge-on anchoring of the mesophase precursor on glass. This new carbon form is potentially interesting for a number of important applications in which uniform large pores, active-site-rich surfaces, and easy access to interlayer spaces in nanometric grains are advantageous.

  8. LTL - The Little Template Library

    NASA Astrophysics Data System (ADS)

    Gössl, C. A.; Drory, N.; Snigula, J.

    2004-07-01

    The Little Template Library is an expression templates based C++ library for array processing, image processing, FITS and ASCII I/O, and linear algebra. It is released under the GNU Public License (GPL). Although the library is developed with application to astronomical image and data processing in mind, it is by no means restricted to these fields of application. In fact, it qualifies as a fully general array processing package. Focus is laid on a high abstraction level regarding the handling of expressions involving arrays or parts thereof and linear algebra related operations without the usually involved negative impact on performance. The price to pay is dependence on a compiler implementing enough of the current ANSI C++ specification, as well as significantly higher demand on resources at compile time. The LTL provides dynamic arrays of up to 5 dimensions, sub-arrays and slicing, support for fixed size vectors and matrices including basic linear algebra operations, expression templates based evaluation, and I/O facilities for columnar ASCII and FITS format files. In addition it supplies utility classes for statistics, linear and non-linear least squares fitting, and command line and configuration file parsing. YODA (Drory 2002) and all elements of the WeCAPP reduction pipeline (Riffeser et al. 2001, Gössl & Riffeser 2002, 2003) were implemented using the LTL.

  9. Random template banks and relaxed lattice coverings

    NASA Astrophysics Data System (ADS)

    Messenger, C.; Prix, R.; Papa, M. A.

    2009-05-01

    Template-based searches for gravitational waves are often limited by the computational cost associated with searching large parameter spaces. The study of efficient template banks, in the sense of using the smallest number of templates, is therefore of great practical interest. The traditional approach to template-bank construction requires every point in parameter space to be covered by at least one template, which rapidly becomes inefficient at higher dimensions. Here we study an alternative approach, where any point in parameter space is covered only with a given probability η<1. We find that by giving up complete coverage in this way, large reductions in the number of templates are possible, especially at higher dimensions. The prime examples studied here are random template banks in which templates are placed randomly with uniform probability over the parameter space. In addition to its obvious simplicity, this method turns out to be surprisingly efficient. We analyze the statistical properties of such random template banks, and compare their efficiency to traditional lattice coverings. We further study relaxed lattice coverings (using Zn and An* lattices), which similarly cover any signal location only with probability η. The relaxed An* lattice is found to yield the most efficient template banks at low dimensions (n≲10), while random template banks increasingly outperform any other method at higher dimensions.

  10. Random template banks and relaxed lattice coverings

    SciTech Connect

    Messenger, C.; Prix, R.; Papa, M. A.

    2009-05-15

    Template-based searches for gravitational waves are often limited by the computational cost associated with searching large parameter spaces. The study of efficient template banks, in the sense of using the smallest number of templates, is therefore of great practical interest. The traditional approach to template-bank construction requires every point in parameter space to be covered by at least one template, which rapidly becomes inefficient at higher dimensions. Here we study an alternative approach, where any point in parameter space is covered only with a given probability {eta}<1. We find that by giving up complete coverage in this way, large reductions in the number of templates are possible, especially at higher dimensions. The prime examples studied here are random template banks in which templates are placed randomly with uniform probability over the parameter space. In addition to its obvious simplicity, this method turns out to be surprisingly efficient. We analyze the statistical properties of such random template banks, and compare their efficiency to traditional lattice coverings. We further study relaxed lattice coverings (using Z{sub n} and A{sub n}* lattices), which similarly cover any signal location only with probability {eta}. The relaxed A{sub n}* lattice is found to yield the most efficient template banks at low dimensions (n < or approx. 10), while random template banks increasingly outperform any other method at higher dimensions.

  11. Nanomaterials and bone regeneration

    PubMed Central

    Gong, Tao; Xie, Jing; Liao, Jinfeng; Zhang, Tao; Lin, Shiyu; Lin, Yunfeng

    2015-01-01

    The worldwide incidence of bone disorders and conditions has been increasing. Bone is a nanomaterials composed of organic (mainly collagen) and inorganic (mainly nano-hydroxyapatite) components, with a hierarchical structure ranging from nanoscale to macroscale. In consideration of the serious limitation in traditional therapies, nanomaterials provide some new strategy in bone regeneration. Nanostructured scaffolds provide a closer structural support approximation to native bone architecture for the cells and regulate cell proliferation, differentiation, and migration, which results in the formation of functional tissues. In this article, we focused on reviewing the classification and design of nanostructured materials and nanocarrier materials for bone regeneration, their cell interaction properties, and their application in bone tissue engineering and regeneration. Furthermore, some new challenges about the future research on the application of nanomaterials for bone regeneration are described in the conclusion and perspectives part. PMID:26558141

  12. Distorted colloidal arrays as designed template

    NASA Astrophysics Data System (ADS)

    Yu, Ye; Zhou, Ziwei; Möhwald, Helmuth; Ai, Bin; Zhao, Zhiyuan; Ye, Shunsheng; Zhang, Gang

    2015-01-01

    In this paper, a novel type of colloidal template with broken symmetry was generated using commercial, inductively coupled plasma reactive ion etching (ICP-RIE). With proper but simple treatment, the traditional symmetric non-close-packed colloidal template evolves into an elliptical profile with high uniformity. This unique feature can add flexibility to colloidal lithography and/or other lithography techniques using colloidal particles as building blocks to fabricate nano-/micro-structures with broken symmetry. Beyond that the novel colloidal template we developed possesses on-site tunability, i.e. the transformability from a symmetric into an asymmetric template. Sandwich-type particles with eccentric features were fabricated utilizing this tunable template. This distinguishing feature will provide the possibility to fabricate structures with unique asymmetric features using one set of colloidal template, providing flexibility and broad tunability to enable nano-/micro-structure fabrication with colloidal templates.

  13. Distorted colloidal arrays as designed template.

    PubMed

    Yu, Ye; Zhou, Ziwei; Möhwald, Helmuth; Ai, Bin; Zhao, Zhiyuan; Ye, Shunsheng; Zhang, Gang

    2015-01-21

    In this paper, a novel type of colloidal template with broken symmetry was generated using commercial, inductively coupled plasma reactive ion etching (ICP-RIE). With proper but simple treatment, the traditional symmetric non-close-packed colloidal template evolves into an elliptical profile with high uniformity. This unique feature can add flexibility to colloidal lithography and/or other lithography techniques using colloidal particles as building blocks to fabricate nano-/micro-structures with broken symmetry. Beyond that the novel colloidal template we developed possesses on-site tunability, i.e. the transformability from a symmetric into an asymmetric template. Sandwich-type particles with eccentric features were fabricated utilizing this tunable template. This distinguishing feature will provide the possibility to fabricate structures with unique asymmetric features using one set of colloidal template, providing flexibility and broad tunability to enable nano-/micro-structure fabrication with colloidal templates.

  14. Air regenerating and conditioning

    NASA Technical Reports Server (NTRS)

    Grishayenkov, B. G.

    1975-01-01

    Various physicochemical methods of regenerating and conditioning air for spacecraft are described with emphasis on conditions which affect efficiency of the system. Life support systems used in closed, hermetically sealed environments are discussed with references to actual application in the Soviet Soyuz and Voskhod manned spacecraft. Temperature and humidity control, removal of carbon dioxide, oxygen regeneration, and removal of bacteria and viruses are among the factors considered.

  15. Air regenerating and conditioning

    NASA Technical Reports Server (NTRS)

    Grishayenkov, B. G.

    1975-01-01

    Various physicochemical methods of regenerating and conditioning air for spacecraft are described with emphasis on conditions which affect efficiency of the system. Life support systems used in closed, hermetically sealed environments are discussed with references to actual application in the Soviet Soyuz and Voskhod manned spacecraft. Temperature and humidity control, removal of carbon dioxide, oxygen regeneration, and removal of bacteria and viruses are among the factors considered.

  16. Functional Programming with C++ Template Metaprograms

    NASA Astrophysics Data System (ADS)

    Porkoláb, Zoltán

    Template metaprogramming is an emerging new direction of generative programming. With the clever definitions of templates we can force the C++ compiler to execute algorithms at compilation time. Among the application areas of template metaprograms are the expression templates, static interface checking, code optimization with adaption, language embedding and active libraries. However, as template metaprogramming was not an original design goal, the C++ language is not capable of elegant expression of metaprograms. The complicated syntax leads to the creation of code that is hard to write, understand and maintain. Although template metaprogramming has a strong relationship with functional programming, this is not reflected in the language syntax and existing libraries. In this paper we give a short and incomplete introduction to C++ templates and the basics of template metaprogramming. We will enlight the role of template metaprograms, and some important and widely used idioms. We give an overview of the possible application areas as well as debugging and profiling techniques. We suggest a pure functional style programming interface for C++ template metaprograms in the form of embedded Haskell code which is transformed to standard compliant C++ source.

  17. Health Benefits Of Manuka Honey As An Essential Constituent For Tissue Regeneration.

    PubMed

    Niaz, Kamal; Maqbool, Faheem; Bahadar, Haji; Abdollahi, Mohammad

    2017-09-11

    Honey is known for its therapeutic properties from ancient civilizations but only since last few decades its mechanism has been studied on how it causes epithelial regeneration leading to wound and ulcer healing.. In the present review the health perspectives of honey, its chemical composition with special reference to flavonoids, polyphenol composition and other bioactive trace compounds used in tissue regeneration have been highlighted. Honey can inhibit carcinogenesis by moderating with molecular processes of initiation, advancement and progression stage of cancer cells, therefore it is considered a promising anti-cancer agent. Several, well-intentioned characteristics have drawn the attention of researchers to check copious endowed-biological activities of Manuka honey, including antioxidant, antimicrobial and anti-proliferative capacities against cancer cells. Thus, scientists are trying to use Manuka honey in the area of biomedical and tissue engineering to design a template for regeneration. Naturally derived antibacterial agents, like Manuka honey, contain mixture of compounds, which can influence antibacterial potency. The non-peroxide bacteriostatic properties of Manuka honey have been formerly associated to the presence of methylglyoxal (MGO). The assimilation of MGO as a functional antibacterial additive during designing a tissue template production would explore its properties as a potential agent for manufacturing tissue regeneration template.The role of glyoxal (GO) and MGO in the bacterial growth inhibition, and in addition to immunomodulatory role, it also enhances wound healing and tissue regeneration. Researchers should step forward to explore the biomedical application, particularly integration into tissue regeneration templates. Therefore, further studies are fully needed to provide detailed information on active components of Manuka honey and their potential therapeutic efficacy in numerous models of human diseases. Copyright© Bentham Science

  18. Hard template synthesis of metal nanowires

    PubMed Central

    Kawamura, Go; Muto, Hiroyuki; Matsuda, Atsunori

    2014-01-01

    Metal nanowires (NWs) have attracted much attention because of their high electron conductivity, optical transmittance, and tunable magnetic properties. Metal NWs have been synthesized using soft templates such as surface stabilizing molecules and polymers, and hard templates such as anodic aluminum oxide, mesoporous oxide, carbon nanotubes. NWs prepared from hard templates are composites of metals and the oxide/carbon matrix. Thus, selecting appropriate elements can simplify the production of composite devices. The resulting NWs are immobilized and spatially arranged, as dictated by the ordered porous structure of the template. This avoids the NWs from aggregating, which is common for NWs prepared with soft templates in solution. Herein, the hard template synthesis of metal NWs is reviewed, and the resulting structures, properties and potential applications are discussed. PMID:25453031

  19. Learning templates for artistic portrait lighting analysis.

    PubMed

    Chen, Xiaowu; Jin, Xin; Wu, Hongyu; Zhao, Qinping

    2015-02-01

    Lighting is a key factor in creating impressive artistic portraits. In this paper, we propose to analyze portrait lighting by learning templates of lighting styles. Inspired by the experience of artists, we first define several novel features that describe the local contrasts in various face regions. The most informative features are then selected with a stepwise feature pursuit algorithm to derive the templates of various lighting styles. After that, the matching scores that measure the similarity between a testing portrait and those templates are calculated for lighting style classification. Furthermore, we train a regression model by the subjective scores and the feature responses of a template to predict the score of a portrait lighting quality. Based on the templates, a novel face illumination descriptor is defined to measure the difference between two portrait lightings. Experimental results show that the learned templates can well describe the lighting styles, whereas the proposed approach can assess the lighting quality of artistic portraits as human being does.

  20. Vertical Carbon Nanotube Device in Nanoporous Templates

    NASA Technical Reports Server (NTRS)

    Maschmann, Matthew Ralph (Inventor); Fisher, Timothy Scott (Inventor); Sands, Timothy (Inventor); Bashir, Rashid (Inventor)

    2014-01-01

    A modified porous anodic alumina template (PAA) containing a thin CNT catalyst layer directly embedded into the pore walls. CNT synthesis using the template selectively catalyzes SWNTs and DWNTs from the embedded catalyst layer to the top PAA surface, creating a vertical CNT channel within the pores. Subsequent processing allows for easy contact metallization and adaptable functionalization of the CNTs and template for a myriad of applications.

  1. DNA-templated gold nanowires

    NASA Astrophysics Data System (ADS)

    Mohammadzadegan, Reza; Mohabatkar, Hassan; Sheikhi, Mohammad Hossein; Safavi, Afsaneh; Khajouee, Mahmood Barati

    2008-10-01

    We have developed simple methods of reproducibly creating deoxyribonucleic acid (DNA)-templated gold nanowires on silicon. First DNA nanowires were aligned on silicon surfaces. Briefly, modified silicon wafer was soaked in the DNA solution, and then the solution was removed using micropipettes; the surface tension at the moving air-solution interface is sufficient to align the DNA nanowires on the silicon wafer. In another attempt, an aqueous dispersion of sodium azide-stabilized gold nanoparticles was prepared. The nanoparticles aligned double-stranded λ-DNA to form a linear nanoparticle array. Continuous gold nanowires were obtained. The above nanowires were structurally characterized using scanning electron microscopy. The results of the characterizations show the wires to be 57-323 nm wide, to be continuous with a length of 2.8-9.5 μm. The use of DNA as a template for the self-assembly of conducting nanowires represents a potentially important approach in the fabrication of nanoscale interconnects.

  2. Atlas Regeneration, Inc.

    PubMed

    Makarev, Eugene; Isayev, Olexandr; Atala, Anthony

    2016-03-01

    Atlas Regeneration is dedicated to the development of novel data-driven solutions for regenerative medicine, adapting proven technologies, and analysis strategies to take a multiomics-wide view of stem cell quality and cell fate design. Our core offering is a global comprehensive map of stem cell differentiation, Universal Signalome Atlas for Regenerative Medicine, reflecting the pathway activation states across all characterized stem cells and their differentiated products. Key applications of Universal Signalome Atlas for Regenerative Medicine will include quality assurance for engineered cell products, and directed regeneration pharmacology, where we will screen and identify compounds that can efficiently convert pluripotent cells into desired subtypes. Another marketable piece of IP is development of specialized signaling pathway analysis systems Regeneration Intelligence which supposed to target the unmet needs of determination and prediction of stem cell signaling pathway activation to govern cell differentiation in specific directions.

  3. Nanostructured Biomaterials for Regeneration**

    PubMed Central

    Wei, Guobao; Ma, Peter X.

    2009-01-01

    Biomaterials play a pivotal role in regenerative medicine, which aims to regenerate and replace lost/dysfunctional tissues or organs. Biomaterials (scaffolds) serve as temporary 3D substrates to guide neo tissue formation and organization. It is often beneficial for a scaffolding material to mimic the characteristics of extracellular matrix (ECM) at the nanometer scale and to induce certain natural developmental or/and wound healing processes for tissue regeneration applications. This article reviews the fabrication and modification technologies for nanofibrous, nanocomposite, and nanostructured drug-delivering scaffolds. ECM-mimicking nanostructured biomaterials have been shown to actively regulate cellular responses including attachment, proliferation, differentiation and matrix deposition. Nano-scaled drug delivery systems can be successfully incorporated into a porous 3D scaffold to enhance the tissue regeneration capacity. In conclusion, nano-structured biomateials are a very exciting and rapidly expanding research area, and are providing new enabling technologies for regenerative medicine. PMID:19946357

  4. Bioelectricity and epimorphic regeneration.

    PubMed

    Stewart, Scott; Rojas-Muñoz, Agustin; Izpisúa Belmonte, Juan Carlos

    2007-11-01

    All cells have electric potentials across their membranes, but is there really compelling evidence to think that such potentials are used as instructional cues in developmental biology? Numerous reports indicate that, in fact, steady, weak bioelectric fields are observed throughout biology and function during diverse biological processes, including development. Bioelectric fields, generated upon amputation, are also likely to play a key role during vertebrate regeneration by providing the instructive cues needed to direct migrating cells to form a wound epithelium, a structure unique to regenerating animals. However, mechanistic insight is still sorely lacking in the field. What are the genes required for bioelectric-dependent cell migration during regeneration? The power of genetics combined with the use of zebrafish offers the best opportunity for unbiased identification of the molecular players in bioelectricity.

  5. Method of installing sub-sea templates

    SciTech Connect

    Hampton, J.E.

    1984-03-06

    A subsea template is installed by a method which includes the steps of securing the template in a position beneath the deck of a semi-submersible drilling vessel, moving the semi-submersible drilling vessel to an appropriate offshore site and subsequently lowering the template from the semi-submersible to the sea bed. In addition, at least three anchorage templates may be loaded onto one or both of the pontoons of the semi-submersible drilling vessel at its original position and are subsequently lowered from the pontoons to their respective locations on the sea bed after the semi-submersible has moved to the offshore site.

  6. Template overlap method for massive jets

    NASA Astrophysics Data System (ADS)

    Almeida, Leandro G.; Lee, Seung J.; Perez, Gilad; Sterman, George; Sung, Ilmo

    2010-09-01

    We introduce a new class of infrared safe jet observables, which we refer to as template overlaps, designed to filter targeted highly-boosted particle decays from QCD jets and other background. Template overlaps are functional measures that quantify how well the energy flow of a physical jet matches the flow of a boosted partonic decay. Any region of the partonic phase space for the boosted decays defines a template. We will refer to the maximum functional overlap found this way as the template overlap. To illustrate the method, we test lowest-order templates designed to distinguish highly-boosted top and Higgs decays from backgrounds produced by event generators. For the functional overlap, we find good results with a simple construction based on a Gaussian in energy differences within angular regions surrounding the template partons. Although different event generators give different averages for our template overlaps, we find in each case excellent rejection power, especially when combined with cuts based on jet shapes. The template overlaps are capable of systematic improvement by including higher-order corrections in the template phase space.

  7. Templated Dry Printing of Conductive Metal Nanoparticles

    NASA Astrophysics Data System (ADS)

    Rolfe, David Alexander

    Printed electronics can lower the cost and increase the ubiquity of electrical components such as batteries, sensors, and telemetry systems. Unfortunately, the advance of printed electronics has been held back by the limited minimum resolution, aspect ratio, and feature fidelity of present printing techniques such as gravure, screen printing and inkjet printing. Templated dry printing offers a solution to these problems by patterning nanoparticle inks into templates before drying. This dissertation shows advancements in two varieties of templated dry nanoprinting. The first, advective micromolding in vapor-permeable templates (AMPT) is a microfluidic approach that uses evaporation-driven mold filling to create submicron features with a 1:1 aspect ratio. We will discuss submicron surface acoustic wave (SAW) resonators made through this process, and the refinement process in the template manufacturing process necessary to make these devices. We also present modeling techniques that can be applied to future AMPT templates. We conclude with a modified templated dry printing that improves throughput and isolated feature patterning by transferring dry-templated features with laser ablation. This method utilizes surface energy-defined templates to pattern features via doctor blade coating. Patterned and dried features can be transferred to a polymer substrate with an Nd:YAG MOPA fiber laser, and printed features can be smaller than the laser beam width.

  8. Optimized periocular template selection for human recognition.

    PubMed

    Bakshi, Sambit; Sa, Pankaj K; Majhi, Banshidhar

    2013-01-01

    A novel approach for selecting a rectangular template around periocular region optimally potential for human recognition is proposed. A comparatively larger template of periocular image than the optimal one can be slightly more potent for recognition, but the larger template heavily slows down the biometric system by making feature extraction computationally intensive and increasing the database size. A smaller template, on the contrary, cannot yield desirable recognition though the smaller template performs faster due to low computation for feature extraction. These two contradictory objectives (namely, (a) to minimize the size of periocular template and (b) to maximize the recognition through the template) are aimed to be optimized through the proposed research. This paper proposes four different approaches for dynamic optimal template selection from periocular region. The proposed methods are tested on publicly available unconstrained UBIRISv2 and FERET databases and satisfactory results have been achieved. Thus obtained template can be used for recognition of individuals in an organization and can be generalized to recognize every citizen of a nation.

  9. A hybrid approach for face template protection

    NASA Astrophysics Data System (ADS)

    Feng, Y. C.; Yuen, Pong C.; Jain, Anil K.

    2008-03-01

    Biometric template protection is one of the important issues in deploying a practical biometric system. To tackle this problem, many algorithms have been reported in recent years, most of them being applicable to fingerprint biometric. Since the content and representation of fingerprint template is different from templates of other modalities such as face, the fingerprint template protection algorithms cannot be directly applied to face template. Moreover, we believe that no single template protection method is capable of satisfying the diversity, revocability, security and performance requirements. We propose a three-step cancelable framework which is a hybrid approach for face template protection. This hybrid algorithm is based on the random projection, class distribution preserving transform and hash function. Two publicly available face databases, namely FERET and CMU-PIE, are used for evaluating the template protection scheme. Experimental results show that the proposed method maintains good template discriminability, resulting in good recognition performance. A comparison with the recently developed random multispace quantization (RMQ) biohashing algorithm shows that our method outperforms the RMQ algorithm.

  10. Influence of template fill in graphoepitaxy DSA

    NASA Astrophysics Data System (ADS)

    Doise, Jan; Bekaert, Joost; Chan, Boon Teik; Hong, SungEun; Lin, Guanyang; Gronheid, Roel

    2016-03-01

    Directed self-assembly (DSA) of block copolymers (BCP) is considered a promising patterning approach for the 7 nm node and beyond. Specifically, a grapho-epitaxy process using a cylindrical phase BCP may offer an efficient solution for patterning randomly distributed contact holes with sub-resolution pitches, such as found in via and cut mask levels. In any grapho-epitaxy process, the pattern density impacts the template fill (local BCP thickness inside the template) and may cause defects due to respectively over- or underfilling of the template. In order to tackle this issue thoroughly, the parameters that determine template fill and the influence of template fill on the resulting pattern should be investigated. In this work, using three process flow variations (with different template surface energy), template fill is experimentally characterized as a function of pattern density and film thickness. The impact of these parameters on template fill is highly dependent on the process flow, and thus pre-pattern surface energy. Template fill has a considerable effect on the pattern transfer of the DSA contact holes into the underlying layer. Higher fill levels give rise to smaller contact holes and worse critical dimension uniformity. These results are important towards DSA-aware design and show that fill is a crucial parameter in grapho-epitaxy DSA.

  11. Early experience of reinforcing the ligation of the intersphincteric fistula tract procedure with a bioprosthetic graft (BioLIFT) for anal fistula.

    PubMed

    Tan, Ker-Kan; Lee, Peter J

    2014-04-01

    The BioLIFT procedure involves placing a bioprosthetic graft in the intersphincteric space during the ligation of the intersphincteric fistula tract (LIFT) procedure. Our study was aimed to describe our experience in the BioLIFT procedure. A review of all patients who underwent the BioLIFT procedure for anal fistula from September 2011 to August 2012 was performed. Endoanal ultrasonography and manometry tests were performed in all patients. Thirteen patients with 16 fistulas underwent the BioLIFT procedure. All of them had at least a seton inserted previously and the median interval to the BioLIFT procedure was 20 (range, 10-41) weeks. Four patients failed a prior LIFT procedure. More than half of the fistulas (56.3%) had anterior internal openings and there was a female preponderance (n = 7, 53.8%). Over a median follow up of 26 (12-51) weeks, 11 (68.8%) fistulas had healed. The median interval between the BioLIFT procedure to the diagnosis of failure was 3 (2-7) weeks. All five failures had only isolated discharges at the intersphincteric wounds. Two had already undergone successful lay-open fistulotomy, giving a secondary success rate of 81.3%. The remaining three patients are on review. No patient developed incontinent symptoms following the BioLIFT procedure and there were no significant differences between the pre-procedural or post-procedural maximal resting and squeeze anal manometric pressures. The BioLIFT procedure can achieve a primary success rate of 68.8%. When coupled with a simple lay-open fistulotomy for the subsequent intersphincteric fistula, the success rate in eradicating the fistula rose to 81.3%. © 2013 Royal Australasian College of Surgeons.

  12. [Regeneration of airway epithelium].

    PubMed

    Adam, D; Perotin, J-M; Lebargy, F; Birembaut, P; Deslée, G; Coraux, C

    2014-04-01

    Epithelial regeneration is a complex process. It can lead to the remodeling of the airway epithelium as in asthma, COPD or cystic fibrosis. The development of in vivo and in vitro models has allowed the analysis of remodeling mechanisms and showed the role of components of extracellular matrix, proteases, cytokines and growth factors. Airway epithelial progenitors and stems cells have been studied in these models. However, their identification remains difficult. Identification and characterization of airway epithelial progenitor/stem-cells, and a better knowledge of the regeneration process may allow the development of new therapeutic strategies for airway epithelial reconstitution. Copyright © 2013 SPLF. Published by Elsevier Masson SAS. All rights reserved.

  13. Electrochemically regenerable carbon dioxide absorber

    NASA Technical Reports Server (NTRS)

    Woods, R. R.; Marshall, R. D.; Schubert, F. H.; Heppner, D. B.

    1979-01-01

    Preliminary designs were generated for two electrochemically regenerable carbon dioxide absorber concepts. Initially, an electrochemically regenerable absorption bed concept was designed. This concept incorporated the required electrochemical regeneration components in the absorber design, permitting the absorbent to be regenerated within the absorption bed. This hardware was identified as the electrochemical absorber hardware. The second hardware concept separated the functional components of the regeneration and absorption process. This design approach minimized the extravehicular activity component volume by eliminating regeneration hardware components within the absorber. The electrochemical absorber hardware was extensively characterized for major operating parameters such as inlet carbon dioxide partial pressure, process air flow rate, operational pressure, inlet relative humidity, regeneration current density and absorption/regeneration cycle endurance testing.

  14. Upland Oak Regeneration and Management

    Treesearch

    David L. Loftis

    2004-01-01

    In oak-dominated plant communities and in other communities where oaks are important, the keys to natural regeneration of upland oak components are (1) to ensure presence of competitive regeneration sources, and (2) to provide timely, sufficient release of these sources. Regeneration sources vary significantly among different types of plant communities and disturbance...

  15. Natural Regeneration of Longleaf Pine

    Treesearch

    William D. Boyer

    1979-01-01

    Natural regeneration is now a reliable alternative for existing longleaf pine forests. The shelterwood system, or modifications of it, has been used experimentally to regenerate longleaf pine for over 20 years, and regional tests have confirmed its value for a wide range of site conditions. Natural regeneration, because of its low cost when compared to other...

  16. Regenerator seal design

    DOEpatents

    Eckart, Francis H.

    1982-01-01

    A rotary regenerator disc matrix has a face seal with a cross arm and arcuate rim segments joined by prestress clamps to prestrain the arcuate rim seals so as to compensate seal rim twisting or coning and resultant disc face seal leakage as produced by operating thermal gradients across the seal.

  17. Regenerating Longleaf Pine Naturally

    Treesearch

    Thomas C. Croker; William D. Boyer

    1975-01-01

    Research has developed guides for consistent natural regeneration of longleaf pine by a shelterwood system. Key measures include hardwood control by fire and other means, timely preparatory and seed cuts, seed crop monitoring, seedbed preparation, protection of established seedlings, prompt removal of parent trees when reproduction is adequate, and control of...

  18. Air Sampling System Evaluation Template

    SciTech Connect

    Blunt, Brent

    2000-05-09

    The ASSET1.0 software provides a template with which a user can evaluate an Air Sampling System against the latest version of ANSI N13.1 "Sampling and Monitoring Releases of Airborne Radioactive Substances from the Stacks and Ducts of Nuclear Facilities". The software uses the ANSI N13.1 PIC levels to establish basic design criteria for the existing or proposed sampling system. The software looks at such criteria as PIC level, type of radionuclide emissions, physical state of the radionuclide, nozzle entrance effects, particulate transmission effects, system and component accuracy and precision evaluations, and basic system operations to provide a detailed look at the subsystems of a monitoring and sampling system/program. A GAP evaluation can then be completed which leads to identification of design and operational flaws in the proposed systems. Corrective measures can then be limited to the GAPs.

  19. Mesoporous silica templated zirconia nanoparticles

    NASA Astrophysics Data System (ADS)

    Ballem, Mohamed A.; Córdoba, José M.; Odén, Magnus

    2011-07-01

    Nanoparticles of zirconium oxide (ZrO2) were synthesized by infiltration of a zirconia precursor (ZrOCl2·8H2O) into a SBA-15 mesoporous silica mold using a wet-impregnation technique. X-ray diffractometry and high-resolution transmission electron microscopy show formation of stable ZrO2 nanoparticles inside the silica pores after a thermal treatment at 550 °C. Subsequent leaching out of the silica template by NaOH resulted in well-dispersed ZrO2 nanoparticles with an average diameter of 4 nm. The formed single crystal nanoparticles are faceted with 110 surfaces termination suggesting it to be the preferred growth orientation. A growth model of these nanoparticles is also suggested.

  20. Regenerated Fe is tasty!

    NASA Astrophysics Data System (ADS)

    Nuester, J.; Twining, B. S.

    2012-12-01

    Bioavailability of nutrients is an essential factor controlling primary productivity in the ocean. In addition to macronutrients such as nitrogen and phosphorous, availability of the trace element iron unequivocally affects growth rates and community structure of phytoplankton and thereby primary productivity in many ocean regions. External sources of iron such as Aeolian dust, upwelling of Fe-rich waters, and hydrothermal are reduced in high-nutrient low-chlorophyll regions, and most Fe used by phytoplankton has been regenerated by zooplankton. While zooplankton regeneration of Fe was first shown two decades ago, major factors controlling this process such as chemical composition of prey and grazer taxonomy are not well constrained. As pH varies significantly in digestive systems between protozoa and mesozooplankton, we hypothesize that the extent and the bioavailability of regenerated Fe is a function of the digestive physiology. Furthermore, major element components such as silica for diatoms and calcium carbonate for cocolithophores may be able to buffer the pH of digestive systems of different grazer taxa. Such effects may further influence the magnitude and bioavailability of regenerated Fe. In order to constrain the effect of grazer taxonomy and chemical composition of prey on Fe bioavailability, 55Fe-labeled phytoplankton were fed to different grazers and unlabeled phytoplankton were subsequently inoculated to the filtrate of the grazing experiment in the regrowth phase of the experiment, and the uptake of 55Fe into the phytoplankton biomass was monitored over time. A parallel uptake experiment using inorganic 55Fe was used to compare the bioavailability of regenerated and inorganic Fe to the same phytoplankton species. Furthermore, some samples of the inorganic and the regenerated uptake experiments were treated with an oxalate rinse to remove any adsorbed Fe. This allowed us to estimate the adsorption of 55Fe from either source to the cell walls of

  1. Visual Templates in Pattern Generalization Activity

    ERIC Educational Resources Information Center

    Rivera, F. D.

    2010-01-01

    In this research article, I present evidence of the existence of visual templates in pattern generalization activity. Such templates initially emerged from a 3-week design-driven classroom teaching experiment on pattern generalization involving linear figural patterns and were assessed for existence in a clinical interview that was conducted four…

  2. Visual Templates in Pattern Generalization Activity

    ERIC Educational Resources Information Center

    Rivera, F. D.

    2010-01-01

    In this research article, I present evidence of the existence of visual templates in pattern generalization activity. Such templates initially emerged from a 3-week design-driven classroom teaching experiment on pattern generalization involving linear figural patterns and were assessed for existence in a clinical interview that was conducted four…

  3. Template synthesis of ordered macroporous hydroxyapatite bioceramics.

    PubMed

    Ji, Lijun; Jell, Gavin; Dong, Yixiang; Jones, Julian R; Stevens, Molly M

    2011-08-28

    Hydroxyapatite has found wide application in bone tissue engineering. Here we use a macroporous carbon template to generate highly ordered macroporous hydroxyapatite bioceramics composed of close-packed hollow spherical pores with interconnected channels. The template has advantages for the preparation of ordered materials.

  4. Subject Matter Expert's Training Module Template.

    ERIC Educational Resources Information Center

    Beaudin, Bart P.; Quick, Don

    This template was designed to assist subject matter experts in developing presentations. The template is for a training session plan (lesson plan, presentation plan, evaluation suggestions) that can be used to determine the sequence of what the presenter will say and do. Subject matter experts can easily copy the pages for use during the design…

  5. Nanoimprint lithography using disposable biomass template

    NASA Astrophysics Data System (ADS)

    Hanabata, Makoto; Takei, Satoshi; Sugahara, Kigen; Nakajima, Shinya; Sugino, Naoto; Kameda, Takao; Fukushima, Jiro; Matsumoto, Yoko; Sekiguchi, Atsushi

    2016-04-01

    A novel nanoimprint lithography process using disposable biomass template having gas permeability was investigated. It was found that a disposable biomass template derived from cellulose materials shows an excellent gas permeability and decreases transcriptional defects in conventional templates such as quartz, PMDS, DLC that have no gas permeability. We believe that outgasses from imprinted materials are easily removed through the template. The approach to use a cellulose for template material is suitable as the next generation of clean separation technology. It is expected to be one of the defect-less thermal nanoimprint lithographic technologies. It is also expected that volatile materials and solvent including materials become available that often create defects and peelings in conventional temples that have no gas permeability.

  6. Limb regeneration: a new development?

    PubMed

    Nacu, Eugen; Tanaka, Elly M

    2011-01-01

    Salamander limb regeneration is a classical model of tissue morphogenesis and patterning. Through recent advances in cell labeling and molecular analysis, a more precise, mechanistic understanding of this process has started to emerge. Long-standing questions include to what extent limb regeneration recapitulates the events observed in mammalian limb development and to what extent are adult- or salamander- specific aspects deployed. Historically, researchers studying limb development and limb regeneration have proposed different models of pattern formation. Here we discuss recent data on limb regeneration and limb development to argue that although patterning mechanisms are likely to be similar, cell plasticity and signaling from nerves play regeneration-specific roles.

  7. Facile preparation of hierarchically porous carbon using diatomite as both template and catalyst and methylene blue adsorption of carbon products.

    PubMed

    Liu, Dong; Yuan, Peng; Tan, Daoyong; Liu, Hongmei; Wang, Tong; Fan, Mingde; Zhu, Jianxi; He, Hongping

    2012-12-15

    Hierarchically porous carbons were prepared using a facile preparation method in which diatomite was utilized as both template and catalyst. The porous structures of the carbon products and their formation mechanisms were investigated. The macroporosity and microporosity of the diatomite-templated carbons were derived from replication of diatom shell and structure-reconfiguration of the carbon film, respectively. The macroporosity of carbons was strongly dependent on the original morphology of the diatomite template. The macroporous structure composed of carbon plates connected by the pillar- and tube-like macropores resulted from the replication of the central and edge pores of the diatom shells with disk-shaped morphology, respectively. And another macroporous carbon tubes were also replicated from canoe-shaped diatom shells. The acidity of diatomite dramatically affected the porosity of the carbons, more acid sites of diatomite template resulted in higher surface area and pore volume of the carbon products. The diatomite-templated carbons exhibited higher adsorption capacity for methylene blue than the commercial activated carbon (CAC), although the specific surface area was much smaller than that of CAC, due to the hierarchical porosity of diatomite-templated carbons. And the carbons were readily reclaimed and regenerated. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. A Finger Vein Identification Method Based on Template Matching

    NASA Astrophysics Data System (ADS)

    Zou, Hui; Zhang, Bing; Tao, Zhigang; Wang, Xiaoping

    2016-01-01

    New methods for extracting vein features from finger vein image and generating templates for matching are proposed. In the algorithm for generating templates, we proposed a parameter-templates quality factor (TQF) - to measure the quality of generated templates. So that we can use fewer finger vein samples to generate templates that meet the quality requirement of identification. The recognition accuracy of using proposed methods of finger vein feature extraction and template generation strategy for identification is 97.14%.

  9. Tissue regeneration with photobiomodulation

    NASA Astrophysics Data System (ADS)

    Tang, Elieza G.; Arany, Praveen R.

    2013-03-01

    Low level light therapy (LLLT) has been widely reported to reduce pain and inflammation and enhance wound healing and tissue regeneration in various settings. LLLT has been noted to have both stimulatory and inhibitory biological effects and these effects have been termed Photobiomodulation (PBM). Several elegant studies have shown the key role of Cytochrome C oxidase and ROS in initiating this process. The downstream biological responses remain to be clearly elucidated. Our work has demonstrated activation of an endogenous latent growth factor complex, TGF-β1, as one of the major biological events in PBM. TGF-β1 has critical roles in various biological processes especially in inflammation, immune responses, wound healing and stem cell biology. This paper overviews some of the studies demonstrating the efficacy of PBM in promoting tissue regeneration.

  10. Template optimization and transfer in perceptual learning.

    PubMed

    Kurki, Ilmari; Hyvärinen, Aapo; Saarinen, Jussi

    2016-08-01

    We studied how learning changes the processing of a low-level Gabor stimulus, using a classification-image method (psychophysical reverse correlation) and a task where observers discriminated between slight differences in the phase (relative alignment) of a target Gabor in visual noise. The method estimates the internal "template" that describes how the visual system weights the input information for decisions. One popular idea has been that learning makes the template more like an ideal Bayesian weighting; however, the evidence has been indirect. We used a new regression technique to directly estimate the template weight change and to test whether the direction of reweighting is significantly different from an optimal learning strategy. The subjects trained the task for six daily sessions, and we tested the transfer of training to a target in an orthogonal orientation. Strong learning and partial transfer were observed. We tested whether task precision (difficulty) had an effect on template change and transfer: Observers trained in either a high-precision (small, 60° phase difference) or a low-precision task (180°). Task precision did not have an effect on the amount of template change or transfer, suggesting that task precision per se does not determine whether learning generalizes. Classification images show that training made observers use more task-relevant features and unlearn some irrelevant features. The transfer templates resembled partially optimized versions of templates in training sessions. The template change direction resembles ideal learning significantly but not completely. The amount of template change was highly correlated with the amount of learning.

  11. Templated Growth of Magnetic Recording Media

    NASA Astrophysics Data System (ADS)

    Sundar, Vignesh

    Current and potential next-generation magnetic recording technologies are based on the writing and reading of bits on a magnetic thin film with a granular microstructure, with grains of the magnetic material surrounded by an amorphous segregant. In order to realize the highest achievable data storage capabilities, there is a need for better control of the magnetic media microstructure, particularly in terms of minimizing grain size and grain boundary thickness distributions. In this work, a guided magnetic media growth is attempted by creating a pre-fabricated template with a specific material and morphology. The template is designed in such a way that, when magnetic media consisting of the magnetic alloy and segregant are sputtered, the sites on the template result in a controlled two-phase growth of magnetic media. The template is fabricated using self-assembling block copolymers, which can be used to fabricate nanostructures with a regular hexagonal lattice of spheres of one block in the other's matrix. These are then used as etch-masks to fabricate the template. In this thesis, we describe the approach used to fabricate these templates and demonstrate the two-phase growth of magnetic recording media. In such an approach, the magnetic grain size is defined by the uniform pitch of the block copolymer pattern, resulting in a uniform microstructure with much better grain size distribution than can be obtained with conventional un-templated media growth. The templated growth technique is also a suitable additive technique for the fabrication of Bit Patterned Media, another potential next-generation technology wherein the magnetic bits are isolated patterned islands. Combining nanoimprint lithography with templated growth, we can generate a long range spatially ordered array of magnetic islands with no etching of the magnetic material.

  12. [Periodontitis and tissue regeneration].

    PubMed

    Yamazaki, Kazuhisa

    2005-08-01

    Chronic periodontitis is a destructive disease that affects the supporting structures of the teeth including periodontal ligament, cementum, and alveolar bone. If left untreated, patients may lose multiple teeth and extensive prosthetic treatment will be required. In order to re-engineer lost tooth-supporting tissues, various therapeutic modalities have been used clinically. Periodontal regeneration procedures including guided tissue regeneration have achieved substantial effects. However, there are several issues to be solved. They are highly technique-sensitive, applicable to limited cases which are susceptible to treatment, and supposed to have relatively low predictability. Therefore, it is necessary to develop new approaches to improve the predictability and effectiveness of regenerative therapies for periodontal tissues. Recently, the concept of tissue engineering has been introduced to restore lost tissues more effectively where the biological process of healing is mimicked. To achieve this, integration of three key elements is required: progenitor/stem cells, growth factors and the extracellular matrix scaffold. Although it has been shown that implantation of bone marrow-derived mesenchymal stem cells into periodontal osseous defects induced regeneration of cementum, periodontal ligament and alveolar bone in dogs, further extensive preclinical studies are required. On the other hand, application of growth factors, particularly basic fibroblast growth factor in the treatment of human periodontitis, is promising and is now in clinical trial. Furthermore, the rate of release of growth factor from the scaffold also can profoundly affect the results of tissue engineering strategies and the development of new materials is expected. In addition, as tissue regenerative potential is negatively regulated by aging, the effects of aging have to be clarified to gain complete regeneration.

  13. Regenerable adsorption system

    NASA Technical Reports Server (NTRS)

    Roychoudhury, Subir (Inventor); Perry, Jay (Inventor); Walsh, Dennis (Inventor)

    2006-01-01

    A method for regenerable adsorption includes providing a substrate that defines at least one layer of ultra short channel length mesh capable of conducting an electrical current therethrough, coating at least a portion of the substrate with a desired sorbent for trace contaminant control or CO.sub.2 sorption, resistively heating the substrate, and passing a flowstream through the substrate and in contact with the sorbent.

  14. Templated Native Silk Smectic Gels

    NASA Technical Reports Server (NTRS)

    Jin, Hyoung-Joon (Inventor); Park, Jae-Hyung (Inventor); Valluzzi, Regina (Inventor)

    2016-01-01

    One aspect of the present invention relates to a method of preparing a fibrous protein smectic hydrogel by way of a solvent templating process, comprising the steps of pouring an aqueous fibrous protein solution into a container comprising a solvent that is not miscible with water; sealing the container and allowing it to age at about room temperature; and collecting the resulting fibrous protein smectic hydrogel and allowing it to dry. Another aspect of the present invention relates to a method of obtaining predominantly one enantiomer from a racemic mixture, comprising the steps of pouring an aqueous fibrous protein solution into a container comprising a solvent that is not miscible with water; sealing the container and allowing it to age at about room temperature; allowing the enantiomers of racemic mixture to diffuse selectively into the smectic hydrogel in solution; removing the smectic hydrogel from the solution; rinsing predominantly one enantiomer from the surface of the smectic hydrogel; and extracting predominantly one enantiomer from the interior of the smectic hydrogel. The present invention also relates to a smectic hydrogel prepared according to an aforementioned method.

  15. Templated Native Silk Smectic Gels

    NASA Technical Reports Server (NTRS)

    Jin, Hyoung-Joon (Inventor); Park, Jae-Hyung (Inventor); Valluzzi, Regina (Inventor)

    2013-01-01

    One aspect of the present invention relates to a method of preparing a fibrous protein smectic hydrogel by way of a solvent templating process, comprising the steps of pouring an aqueous fibrous protein solution into a container comprising a solvent that is not miscible with water; sealing the container and allowing it to age at about room temperature; and collecting the resulting fibrous protein smectic hydrogel and allowing it to dry. Another aspect of the present invention relates to a method of obtaining predominantly one enantiomer from a racemic mixture, comprising the steps of pouring an aqueous fibrous protein solution into a container comprising a solvent that is not miscible with water; sealing the container and allowing it to age at about room temperature; allowing the enantiomers of racemic mixture to diffuse selectively into the smectic hydrogel in solution; removing the smectic hydrogel from the solution; rinsing predominantly one enantiomer from the surface of the smectic hydrogel; and extracting predominantly one enantiomer from the interior of the smectic hydrogel. The present invention also relates to a smectic hydrogel prepared according to an aforementioned method.

  16. Biomineralization Guided by Paper Templates

    PubMed Central

    Camci-Unal, Gulden; Laromaine, Anna; Hong, Estrella; Derda, Ratmir; Whitesides, George M.

    2016-01-01

    This work demonstrates the fabrication of partially mineralized scaffolds fabricated in 3D shapes using paper by folding, and by supporting deposition of calcium phosphate by osteoblasts cultured in these scaffolds. This process generates centimeter-scale free-standing structures composed of paper supporting regions of calcium phosphate deposited by osteoblasts. This work is the first demonstration that paper can be used as a scaffold to induce template-guided mineralization by osteoblasts. Because paper has a porous structure, it allows transport of O2 and nutrients across its entire thickness. Paper supports a uniform distribution of cells upon seeding in hydrogel matrices, and allows growth, remodelling, and proliferation of cells. Scaffolds made of paper make it possible to construct 3D tissue models easily by tuning material properties such as thickness, porosity, and density of chemical functional groups. Paper offers a new approach to study mechanisms of biomineralization, and perhaps ultimately new techniques to guide or accelerate the repair of bone. PMID:27277575

  17. Templated native silk smectic gels

    NASA Technical Reports Server (NTRS)

    Jin, Hyoung-Joon (Inventor); Park, Jae-Hyung (Inventor); Valluzzi, Regina (Inventor)

    2009-01-01

    One aspect of the present invention relates to a method of preparing a fibrous protein smectic hydrogel by way of a solvent templating process, comprising the steps of pouring an aqueous fibrous protein solution into a container comprising a solvent that is not miscible with water; sealing the container and allowing it to age at about room temperature; and collecting the resulting fibrous protein smectic hydrogel and allowing it to dry. Another aspect of the present invention relates to a method of obtaining predominantly one enantiomer from a racemic mixture, comprising the steps of pouring an aqueous fibrous protein solution into a container comprising a solvent that is not miscible with water; sealing the container and allowing it to age at about room temperature; allowing the enantiomers of racemic mixture to diffuse selectively into the smectic hydrogel in solution; removing the smectic hydrogel from the solution; rinsing predominantly one enantiomer from the surface of the smectic hydrogel; and extracting predominantly one enantiomer from the interior of the smectic hydrogel. The present invention also relates to a smectic hydrogel prepared according to an aforementioned method.

  18. Templating irreversible covalent macrocyclization by using anions.

    PubMed

    Kataev, Evgeny A; Kolesnikov, Grigory V; Arnold, Rene; Lavrov, Herman V; Khrustalev, Victor N

    2013-03-11

    Inorganic anions were used as templates in the reaction between a diamine and an activated diacid to form macrocyclic amides. The reaction conditions were found to perform the macrocyclization sufficiently slow to observe a template effect. A number of analytical methods were used to clarify the reaction mechanisms and to show that the structure of the intermediate plays a decisive role in determining the product distribution. For the macrocyclization under kinetic control, it was shown that the amount of a template, the conformational rigidity of building blocks, and the anion affinities of reaction components and intermediates are important parameters that one should take into consideration to achieve high yields.

  19. NPTFit: Non-Poissonian Template Fitting

    NASA Astrophysics Data System (ADS)

    Safdi, Benjamin R.; Rodd, Nicholas L.; Mishra-Sharma, Siddharth

    2017-05-01

    NPTFit is a specialized Python/Cython package that implements Non-Poissonian Template Fitting (NPTF), originally developed for characterizing populations of unresolved point sources. It offers fast evaluation of likelihoods for NPTF analyses and has an easy-to-use interface for performing non-Poissonian (as well as standard Poissonian) template fits using MultiNest (ascl:1109.006) or other inference tools. It allows inclusion of an arbitrary number of point source templates, with an arbitrary number of degrees of freedom in the modeled flux distribution, and has modules for analyzing and plotting the results of an NPTF.

  20. A PANOPLY OF CEPHEID LIGHT CURVE TEMPLATES

    SciTech Connect

    Yoachim, Peter; McCommas, Les P.; Dalcanton, Julianne J.; Williams, Benjamin F.

    2009-06-15

    We have generated accurate V and I template light curves using a combination of Fourier decomposition and principal component analysis for a large sample of Cepheid light curves. Unlike previous studies, we include short-period Cepheids and stars pulsating in the first overtone mode in our analysis. Extensive Monte Carlo simulations show that our templates can be used to precisely measure Cepheid magnitudes and periods, even in cases where there are few observational epochs. These templates are ideal for characterizing serendipitously discovered Cepheids and can be used in conjunction with surveys such as Pan-Starrs and LSST where the observational sampling may not be optimized for Cepheids.

  1. Template boundary definition in Tetrahymena telomerase.

    PubMed

    Lai, Cary K; Miller, Michael C; Collins, Kathleen

    2002-02-15

    Telomerase elongates chromosome ends by addition of telomeric DNA repeats. The telomerase ribonucleoprotein can copy only a short template sequence within the telomerase RNA subunit. Here, we identify a region of telomerase RNA that is necessary for both correct 5' template boundary definition and high affinity telomerase reverse transcriptase (TERT) interaction. We also demonstrate that TERT mutants in the RNA binding domain compromise both 5' boundary definition and RNA binding. Our results indicate that sequence-specific interaction of a telomerase RNA element with the TERT RNA binding domain, not the active site motifs, defines the template boundary.

  2. Smart soft-templating synthesis of hollow mesoporous bioactive glass spheres.

    PubMed

    Li, Yunqi; Bastakoti, Bishnu Prasad; Yamauchi, Yusuke

    2015-05-26

    Hollow bioactive glass spheres with mesoporous shells were prepared by using dual soft templates, a diblock co-polymer poly(styrene-b-acrylic acid) (PS-b-PAA) and a cationic surfactant cetyltrimethylammonium bromide (CTAB). Hollow mesoporous bioactive glass (HMBG) spheres comprise the large hollow interior with vertical mesochannels in shell, which realize large uptake of drugs and their sustained release. The formation of hydroxyapatite layer on the surface of HMBG particles shows the clear evidence for promising application in bone regeneration. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Fascinating properties of bioactive templated glasses: A new generation of nanostructured bioceramics

    NASA Astrophysics Data System (ADS)

    Izquierdo-Barba, Isabel; Vallet-Regí, María

    2011-04-01

    This review article, dedicated to Prof. Osamu Terasaki, is focused on current trends in nanostructured bioceramics in the field of bone repair and regeneration. This communication overviews the main characteristics of so called "templated glasses" recently described which exhibit an outstanding bioactive behavior compared with conventional bioactive glasses. A deep study regarding the control of textural, structural and compositional properties in the nanometric scale in relation to the charming bioactivity properties described for these nanostructured materials is herein discussed. The possibility to tailor such properties offers a wide range of reactivity/bioactivity depending on the medical application requested.

  4. Templated and template-free fabrication strategies for zero-dimensional hollow MOF superstructures.

    PubMed

    Kim, Hyehyun; Lah, Myoung Soo

    2017-05-16

    Various fabrication strategies for hollow metal-organic framework (MOF) superstructures are reviewed and classified using various types of external templates and their properties. Hollow MOF superstructures have also been prepared without external templates, wherein unstable intermediates obtained during reactions convert to the final hollow MOF superstructures. Many hollow MOF superstructures have been fabricated using hard templates. After the core-shell core@MOF structure was prepared using a hard template, the core was selectively etched to generate a hollow MOF superstructure. Another approach for generating hollow superstructures is to use a solid reactant as a sacrificial template; this method requires no additional etching process. Soft templates such as discontinuous liquid/emulsion droplets and gas bubbles in a continuous soft phase have also been employed to prepare hollow MOF superstructures.

  5. Fast Legendre moment computation for template matching

    NASA Astrophysics Data System (ADS)

    Li, Bing C.

    2017-05-01

    Normalized cross correlation (NCC) based template matching is insensitive to intensity changes and it has many applications in image processing, object detection, video tracking and pattern recognition. However, normalized cross correlation implementation is computationally expensive since it involves both correlation computation and normalization implementation. In this paper, we propose Legendre moment approach for fast normalized cross correlation implementation and show that the computational cost of this proposed approach is independent of template mask sizes which is significantly faster than traditional mask size dependent approaches, especially for large mask templates. Legendre polynomials have been widely used in solving Laplace equation in electrodynamics in spherical coordinate systems, and solving Schrodinger equation in quantum mechanics. In this paper, we extend Legendre polynomials from physics to computer vision and pattern recognition fields, and demonstrate that Legendre polynomials can help to reduce the computational cost of NCC based template matching significantly.

  6. Dazomet Fumigant Management Plan Phase 2 Templates

    EPA Pesticide Factsheets

    These templates provide a framework for reporting application block information, buffer zones, emergency response plan, tarp plan, soil conditions, air monitoring, and more for pesticide products containing the active ingredient dazomet, such as Basamid G.

  7. Template definition by Tetrahymena telomerase reverse transcriptase.

    PubMed

    Miller, M C; Liu, J K; Collins, K

    2000-08-15

    The ribonucleoprotein enzyme telomerase extends chromosome ends by copying a specific template sequence within its integral RNA component. An active recombinant telomerase RNP is minimally composed of this RNA and the telomerase reverse transcriptase (TERT) protein, which contains sequence motifs conserved among viral reverse transcriptases (RTs), flanked by N- and C-terminal extensions specific to TERTs. We have used site-directed mutagenesis to explore the roles of Tetrahymena TERT in determining features of telomerase activity in general and in establishing the boundaries and use of an internal RNA template in specific. We identify a new ciliate-specific motif in the TERT N-terminus required for template definition. Moreover, several residues in reverse transcriptase motifs 1, 2, A and D are critical for specific aspects of internal template use. Our results indicate that the unique specificity of telomerase activity is conferred to a reverse transcriptase active site by TERT residues both within and beyond the RT motif region.

  8. Water Quality Exchange Web Template User Guide

    EPA Pesticide Factsheets

    This is a step by step guide to using the WQX Web Monitoring Data Entry Template for Physical/Chemical data to prepare your data for import into the WQX Web tool, and subsequent transfer to the STORET Data Warehouse.

  9. Nucleic Acid Templated Reactions for Chemical Biology.

    PubMed

    Di Pisa, Margherita; Seitz, Oliver

    2017-06-21

    Nucleic acid directed bioorthogonal reactions offer the fascinating opportunity to unveil and redirect a plethora of intracellular mechanisms. Nano- to picomolar amounts of specific RNA molecules serve as templates and catalyze the selective formation of molecules that 1) exert biological effects, or 2) provide measurable signals for RNA detection. Turnover of reactants on the template is a valuable asset when concentrations of RNA templates are low. The idea is to use RNA-templated reactions to fully control the biodistribution of drugs and to push the detection limits of DNA or RNA analytes to extraordinary sensitivities. Herein we review recent and instructive examples of conditional synthesis or release of compounds for in cellulo protein interference and intracellular nucleic acid imaging. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  10. Using wavelets to learn pattern templates

    NASA Astrophysics Data System (ADS)

    Scott, Clayton D.; Nowak, Robert D.

    2002-07-01

    Despite the success of wavelet decompositions in other areas of statistical signal and image processing, current wavelet-based image models are inadequate for modeling patterns in images, due to the presence of unknown transformations (e.g., translation, rotation, location of lighting source) inherent in most pattern observations. In this paper we introduce a hierarchical wavelet-based framework for modeling patterns in digital images. This framework takes advantage of the efficient image representations afforded by wavelets, while accounting for unknown translation and rotation. Given a trained model, we can use this framework to synthesize pattern observations. If the model parameters are unknown, we can infer them from labeled training data using TEMPLAR (Template Learning from Atomic Representations), a novel template learning algorithm with linear complexity. TEMPLAR employs minimum description length (MDL) complexity regularization to learn a template with a sparse representation in the wavelet domain. We discuss several applications, including template learning, pattern classification, and image registration.

  11. The Template: A Way To Control

    ERIC Educational Resources Information Center

    Schueneman, Margot

    1977-01-01

    When beginning students first attempt coil pots, there is a tendency to rely on the design of the coil to cover up any irregularities in form. One of the ways to help students see whether or not a form is getting away from then is to use a template. Explains and demonstrates how the contour of the template helps to guide the placement of the…

  12. Lipid bilayers on nano-templates

    DOEpatents

    Noy, Aleksandr; Artyukhin, Alexander B.; Bakajin, Olgica; Stoeve, Pieter

    2009-08-04

    A lipid bilayer on a nano-template comprising a nanotube or nanowire and a lipid bilayer around the nanotube or nanowire. One embodiment provides a method of fabricating a lipid bilayer on a nano-template comprising the steps of providing a nanotube or nanowire and forming a lipid bilayer around the polymer cushion. One embodiment provides a protein pore in the lipid bilayer. In one embodiment the protein pore is sensitive to specific agents

  13. Template synthesis of monodisperse carbon nanodots

    NASA Astrophysics Data System (ADS)

    Kurdyukov, D. A.; Eurov, D. A.; Stovpiaga, E. Yu.; Kirilenko, D. A.; Konyakhin, S. V.; Shvidchenko, A. V.; Golubev, V. G.

    2016-12-01

    Monodisperse carbon nanodots in pores of mesoporous silica particles are obtained by template synthesis. This method is based on introducing a precursor (organosilane) into pores, its thermal decomposition with formation of carbon nanodots, and the template removal. Structural analysis of the nanomaterial has been performed, which showed that carbon nanodots have an approximately spherical form and a graphite-like structure. According to dynamic light scattering data, the size of carbon nanodots is 3.3 ± 0.9 nm.

  14. Regenerating Water-Sterilizing Resins

    NASA Technical Reports Server (NTRS)

    Colombo, G. V.; Putnam, D. F.

    1982-01-01

    Iodine-dispensing resin can be regenerated after iodine content has been depleted, without being removed from water system. Resin is used to make water potable by killing bacteria, fungi, and viruses. Regeneration technique may be come basis of water purifier for very long space missions. Enough crystalline iodine for multiple regenerations during mission can be stored in one small cartridge. Cartridge could be inserted in waterline as necessary on signal from iodine monitor or timer.

  15. Regenerating Water-Sterilizing Resins

    NASA Technical Reports Server (NTRS)

    Colombo, G. V.; Putnam, D. F.

    1982-01-01

    Iodine-dispensing resin can be regenerated after iodine content has been depleted, without being removed from water system. Resin is used to make water potable by killing bacteria, fungi, and viruses. Regeneration technique may be come basis of water purifier for very long space missions. Enough crystalline iodine for multiple regenerations during mission can be stored in one small cartridge. Cartridge could be inserted in waterline as necessary on signal from iodine monitor or timer.

  16. Development of Korean Standard Brain Templates

    PubMed Central

    Lee, Jae Sung; Kim, Jinsu; Kim, Yu Kyeong; Kang, Eunjoo; Kang, Hyejin; Kang, Keon Wook; Lee, Jong Min; Kim, Jae-Jin; Park, Hae-Jeong; Kwon, Jun Soo; Kim, Sun I.; Yoo, Tae Woo; Chang, Kee-Hyun; Lee, Myung Chul

    2005-01-01

    We developed age, gender and ethnic specific brain templates based on MR and Positron-Emission Tomography (PET) images of Korean normal volunteers. Seventy-eight normal right-handed volunteers (M/F=49/29) underwent 3D T1-weighted SPGR MR and F-18-FDG PET scans. For the generation of standard templates, an optimal target brain that has the average global hemispheric shape was selected for each gender. MR images were then spatially normalized by linear transformation to the target brains, and normalization parameters were reapplied to PET images. Subjects were subdivided into 2 groups for each gender: the young/midlife (<55 yr) and the elderly groups. Young and elderly MRI/PET templates were composed by averaging the spatially normalized images. Korean templates showed different shapes and sizes (mean length, width, and height of the brains were 16.5, 14.3 and 12.1 cm for man, and 15.6, 13.5 and 11.4 cm for woman) from the template based on Caucasian (18.3, 14.2, and 13.3 cm). MRI and PET templates developed in this study will provide the framework for more accurate stereotactic standardization and anatomical localization. PMID:15953874

  17. Understanding Urban Regeneration in Turkey

    NASA Astrophysics Data System (ADS)

    Candas, E.; Flacke, J.; Yomralioglu, T.

    2016-06-01

    In Turkey, rapid population growth, informal settlements, and buildings and infrastructures vulnerable to natural hazards are seen as the most important problems of cities. Particularly disaster risk cannot be disregarded, as large parts of various cities are facing risks from earthquakes, floods and landslides and have experienced loss of lives in the recent past. Urban regeneration is an important planning tool implemented by local and central governments in order to reduce to disaster risk and to design livable environments for the citizens. The Law on the Regeneration of Areas under Disaster Risk, commonly known as the Urban Regeneration Law, was enacted in 2012 (Law No.6306, May 2012). The regulation on Implementation of Law No. 6306 explains the fundamental steps of the urban regeneration process. The relevant institutions furnished with various authorities such as expropriation, confiscation and changing the type and place of your property which makes urban regeneration projects very important in terms of property rights. Therefore, urban regeneration projects have to be transparent, comprehensible and acceptable for all actors in the projects. In order to understand the urban regeneration process, the legislation and projects of different municipalities in Istanbul have been analyzed. While some steps of it are spatial data demanding, others relate to land values. In this paper an overview of the urban regeneration history and activities in Turkey is given. Fundamental steps of the urban regeneration process are defined, and particularly spatial-data demanding steps are identified.

  18. Brain regeneration in anuran amphibians.

    PubMed

    Endo, Tetsuya; Yoshino, Jun; Kado, Koji; Tochinai, Shin

    2007-02-01

    Urodele amphibians are highly regenerative animals. After partial removal of the brain in urodeles, ependymal cells around the wound surface proliferate, differentiate into neurons and glias and finally regenerate the lost tissue. In contrast to urodeles, this type of brain regeneration is restricted only to the larval stages in anuran amphibians (frogs). In adult frogs, whereas ependymal cells proliferate in response to brain injury, they cannot migrate and close the wound surface, resulting in the failure of regeneration. Therefore frogs, in particular Xenopus, provide us with at least two modes to study brain regeneration. One is to study normal regeneration by using regenerative larvae. In this type of study, the requirement of reconnection between a regenerating brain and sensory neurons was demonstrated. Functional restoration of a regenerated telencephalon was also easily evaluated because Xenopus shows simple responses to the stimulus of a food odor. The other mode is to compare regenerative larvae and non-regenerative adults. By using this mode, it is suggested that there are regeneration-competent cells even in the non-regenerative adult brain, and that immobility of those cells might cause the failure of regeneration. Here we review studies that have led to these conclusions.

  19. Regeneration therapy for diabetes mellitus.

    PubMed

    Yamaoka, Takashi

    2003-06-01

    Regeneration therapy can be classified into three categories. The first category, in vitro regeneration therapy, makes use of transplanted cultured cells, including embryonic stem (ES) cells, pancreatic precursor cells and beta-cell lines, in conjunction with immunosuppressive therapy or immunoisolation for the treatment of patients with Type 1 diabetes. In the second type of regeneration therapy, ex vivo regeneration therapy, a patient's own cells, such as bone marrow stem cells, are transiently removed and induced to differentiate into beta-cells in vitro. However, at the present time, insulin-producing cells cannot be generated from bone marrow stem cells. In vivo regeneration therapy, the third type of regeneration therapy, enables impaired tissue to regenerate from a patient's own cells in vivo. beta-Cell neogenesis from non-beta-cells, and beta-cell proliferation in vivo have been considered in particular as regeneration therapies for patients with Type 2 diabetes. Regeneration therapy for pancreatic beta-cells can be combined with various other therapeutic strategies, including islet transplantation, cell-based therapy, gene therapy and drug therapy, to promote beta-cell proliferation and neogenesis; it is hoped that these strategies will, in the future, provide a cure for diabetes.

  20. Calcifying tissue regeneration via biomimetic materials chemistry.

    PubMed

    Green, David W; Goto, Tazuko K; Kim, Kye-Seong; Jung, Han-Sung

    2014-12-06

    Materials chemistry is making a fundamental impact in regenerative sciences providing many platforms for tissue development. However, there is a surprising paucity of replacements that accurately mimic the structure and function of the structural fabric of tissues or promote faithful tissue reconstruction. Methodologies in biomimetic materials chemistry have shown promise in replicating morphologies, architectures and functional building blocks of acellular mineralized tissues dentine, enamel and bone or that can be used to fully regenerate them with integrated cell populations. Biomimetic materials chemistry encompasses the two processes of crystal formation and mineralization of crystals into inorganic formations on organic templates. This review will revisit the successes of biomimetics materials chemistry in regenerative medicine, including coccolithophore simulants able to promote in vivo bone formation. In-depth knowledge of biomineralization throughout evolution informs the biomimetic materials chemist of the most effective techniques for regenerative framework construction exemplified via exploitation of liquid crystals (LCs) and complex self-organizing media. Therefore, a new innovative direction would be to create chemical environments that perform reaction-diffusion exchanges as the basis for building complex biomimetic inorganic structures. This has evolved widely in biology, as have LCs, serving as self-organizing templates in pattern formation of structural biomaterials. For instance, a study is highlighted in which artificially fabricated chiral LCs, made from bacteriophages are transformed into a faithful copy of enamel. While chemical-based strategies are highly promising at creating new biomimetic structures there are limits to the degree of complexity that can be generated. Thus, there may be good reason to implement living or artificial cells in 'morphosynthesis' of complex inorganic constructs. In the future, cellular construction is probably

  1. Calcifying tissue regeneration via biomimetic materials chemistry

    PubMed Central

    Green, David W.; Goto, Tazuko K.; Kim, Kye-Seong; Jung, Han-Sung

    2014-01-01

    Materials chemistry is making a fundamental impact in regenerative sciences providing many platforms for tissue development. However, there is a surprising paucity of replacements that accurately mimic the structure and function of the structural fabric of tissues or promote faithful tissue reconstruction. Methodologies in biomimetic materials chemistry have shown promise in replicating morphologies, architectures and functional building blocks of acellular mineralized tissues dentine, enamel and bone or that can be used to fully regenerate them with integrated cell populations. Biomimetic materials chemistry encompasses the two processes of crystal formation and mineralization of crystals into inorganic formations on organic templates. This review will revisit the successes of biomimetics materials chemistry in regenerative medicine, including coccolithophore simulants able to promote in vivo bone formation. In-depth knowledge of biomineralization throughout evolution informs the biomimetic materials chemist of the most effective techniques for regenerative framework construction exemplified via exploitation of liquid crystals (LCs) and complex self-organizing media. Therefore, a new innovative direction would be to create chemical environments that perform reaction–diffusion exchanges as the basis for building complex biomimetic inorganic structures. This has evolved widely in biology, as have LCs, serving as self-organizing templates in pattern formation of structural biomaterials. For instance, a study is highlighted in which artificially fabricated chiral LCs, made from bacteriophages are transformed into a faithful copy of enamel. While chemical-based strategies are highly promising at creating new biomimetic structures there are limits to the degree of complexity that can be generated. Thus, there may be good reason to implement living or artificial cells in ‘morphosynthesis’ of complex inorganic constructs. In the future, cellular construction is

  2. Biomaterials for orthopaedic implants and bone regeneration

    NASA Astrophysics Data System (ADS)

    Sargeant, Timothy David

    For bone regeneration, there is need for biodegradable, synthetic scaffolds that direct the formation of de novo mineralized tissue. Orthopaedic implants additionally require mechanical function. The work described herein attempts to address both of these needs. The general strategy involves integrating molecularly designed tissue engineering scaffolds with porous metallic foams to create hybrid materials to direct cellular behavior. Peptide amphiphiles (PAs) that self-assemble into nanofibers were designed to template hydroxyapatite mineral under biological conditions. The molecular design incorporated either serine (S) or phosphoserine S(P) and was mixed with RGDS-bearing PA to evaluate of the key parameters for mineral formation. This led to the discovery of nanoscale hydroxyapatite spheres templated on both S- and S(P)-bearing PA nanofibers. Stem cells were encapsulated in these gels and RT-PCR showed osteoblastic differentiation in all samples. Osteoblast maturation was increased in S-bearing PA compared to S(P)-bearing PA, although the reason is not yet understood. A method to create robust PA nanofiber coatings on NiTi was developed by optimizing the NiTi oxide surface chemistry, optimizing silane vapor deposition, and covalently attaching the PAs to the silanized substrate. The surfaces were characterized by XPS, SIMS, AFM, and fluorimetry. In vitro experiments demonstrated the importance of covalent attachment for cellular adhesion and proved the materials were not cytotoxic. Orthopaedic hybrid materials were created by triggering PA self-assembly within the interconnected pores of Ti foams developed by the Dunand research group. In vitro experiments demonstrate that pre-osteoblasts adhere to, proliferate on, and migrate into PA-Ti hybrids made with S(P)- and RGDS-bearing PA mixtures. The cells differentiate into mature osteoblasts and remain viable up to 28 days. In vivo studies using a rat model demonstrate osteointegration and boney ingrowth into bare

  3. Mechanobiology of skeletal regeneration.

    PubMed

    Carter, D R; Beaupré, G S; Giori, N J; Helms, J A

    1998-10-01

    Skeletal regeneration is accomplished by a cascade of biologic processes that may include differentiation of pluripotential tissue, endochondral ossification, and bone remodeling. It has been shown that all these processes are influenced strongly by the local tissue mechanical loading history. This article reviews some of the mechanobiologic principles that are thought to guide the differentiation of mesenchymal tissue into bone, cartilage, or fibrous tissue during the initial phase of regeneration. Cyclic motion and the associated shear stresses cause cell proliferation and the production of a large callus in the early phases of fracture healing. For intermittently imposed loading in the regenerating tissue: (1) direct intramembranous bone formation is permitted in areas of low stress and strain; (2) low to moderate magnitudes of tensile strain and hydrostatic tensile stress may stimulate intramembranous ossification; (3) poor vascularity can promote chondrogenesis in an otherwise osteogenic environment; (4) hydrostatic compressive stress is a stimulus for chondrogenesis; (5) high tensile strain is a stimulus for the net production of fibrous tissue; and (6) tensile strain with a superimposed hydrostatic compressive stress will stimulate the development of fibrocartilage. Finite element models are used to show that the patterns of tissue differentiation observed in fracture healing and distraction osteogenesis can be predicted from these fundamental mechanobiologic concepts. In areas of cartilage formation, subsequent endochondral ossification normally will proceed, but it can be inhibited by intermittent hydrostatic compressive stress and accelerated by octahedral shear stress (or strain). Later, bone remodeling at these sites can be expected to follow the same mechanobiologic adaptation rules as normal bone.

  4. Regenerable solid imine sorbents

    DOEpatents

    Gray, McMahan; Champagne, Kenneth J.; Fauth, Daniel; Beckman, Eric

    2013-09-10

    Two new classes of amine-based sorbents are disclosed. The first class comprises new polymer-immobilized tertiary amine sorbents; the second class new polymer-bound amine sorbents. Both classes are tailored to facilitate removal of acid anhydrides, especially carbon dioxide (CO.sub.2), from effluent gases. The amines adsorb acid anhydrides in a 1:1 molar ratio. Both classes of amine sorbents adsorb in the temperature range from about 20.degree. C. upwards to 90.degree. C. and can be regenerated by heating upwards to 100.degree. C.

  5. Closed end regeneration method

    DOEpatents

    Yang, Arthur Jing-Min; Zhang, Yuehua

    2006-06-27

    A nanoporous reactive adsorbent incorporates a relatively small number of relatively larger reactant, e.g. metal, enzyme, etc. particles (10) forming a discontinuous or continuous phase interspersed among and surrounded by a continuous phase of smaller adsorbent particles (12) and connected interstitial pores (14) therebetween. The reactive adsorbent can effectively remove inorganic or organic impurities in a liquid by causing the liquid to flow through the adsorbent. For example, silver ions may be adsorbed by the adsorbent particles (12) and reduced to metallic silver by reducing metal, such as irons, as the reactant particles (10). The column can be regenerated by backwashing with the liquid effluent containing, for example, acetic acid.

  6. Polymer scaffolds with preferential parallel grooves enhance nerve regeneration.

    PubMed

    Mobasseri, Atefeh; Faroni, Alessandro; Minogue, Ben M; Downes, Sandra; Terenghi, Giorgio; Reid, Adam J

    2015-03-01

    We have modified the surface topography of poly ɛ-caprolactone (PCL) and polylactic acid (PLA) blended films to improve cell proliferation and to guide the regeneration of peripheral nerves. Films with differing shaped grooves were made using patterned silicon templates, sloped walls (SL), V-shaped (V), and square-shaped (SQ), and compared with nongrooved surfaces with micropits. The solvent cast films were tested in vitro using adult adipose-derived stem cells differentiated to Schwann cell-like cells. Cell attachment, proliferation, and cell orientation were all improved on the grooved surfaces, with SL grooves giving the best results. We present in vivo data on Sprague-Dawley rat sciatic nerve injury with a 10-mm gap, evaluating nerve regeneration at 3 weeks across a polymer nerve conduit modified with intraluminal grooves (SL, V, and SQ) and differing wall thicknesses (70, 100, 120, and 210 μm). The SL-grooved nerve conduit showed a significant improvement over the other topographical-shaped grooves, while increasing the conduit wall thickness saw no positive effect on the biological response of the regenerating nerve. Furthermore, the preferred SL-grooved conduit (C) with 70 μm wall thickness was compared with the current clinical gold standard of autologous nerve graft (Ag) in the rat 10-mm sciatic nerve gap model. At 3 weeks postsurgery, all nerve gaps across both groups were bridged with regenerated nerve fibers. At 16 weeks, features of regenerated axons were comparable between the autograft (Ag) and conduit (C) groups. End organ assessments of muscle weight, electromyography, and skin reinnervation were also similar between the groups. The comparable experimental outcome between conduit and autograft, suggests that the PCL/PLA conduit with inner lumen microstructured grooves could be used as a potential alternative treatment for peripheral nerve repair.

  7. Pre-operative templating for trauma hemiarthroplasty (Thompson's)

    PubMed Central

    Green, Robert Nicholas; Rushton, Paul R.P.; Kramer, Derek; Inman, Dominic; Partington, Paul F.

    2015-01-01

    Introduction Surgical complications may be avoided by preoperative templating in trauma hemiarthroplasty. Materials and methods Digital templates for the Stryker™ range of Thompson's prostheses were created and fifty trauma patients that had undergone cemented hemiarthroplasty were retrospectively templated by 2 blinded surgeons. Results Templating for prosthesis size was highly accurate with excellent Inter and intra-observer reproducibility. Sensitivity for identifying femoral canals too narrow for a Thompsons was 100%. Conclusions Templating is a valuable tool and should be standard practice in trauma. We have demonstrated that it is possible to generate custom templates to allow accurate templating. PMID:26566327

  8. Regeneration of desiccants with solar energy

    SciTech Connect

    Ghate, S.R.; Butts, C.L.; Lown, J.B.

    1985-01-01

    Saturated silica gel was regenerated with solar energy. This paper describes the experimental set-up for silica gel regeneration and data collection. The regenerated silica gel can be used to dry high moisture in-shell pecans.

  9. Nanobiomaterials for neural regeneration.

    PubMed

    Chen, Nuan; Tian, Lingling; He, Liumin; Ramakrishna, Seeram

    2016-09-01

    Diseases and disorders associated with nervous system such as injuries by trauma and neurodegeneration are shown to be one of the most serious problems in medicine, requiring innovative strategies to trigger and enhance the nerve regeneration. Tissue engineering aims to provide a highly biomimetic environment by using a combination of cells, materials and suitable biological cues, by which the lost body part may be regenerated or even fully rebuilt. Electrospinning, being able to produce extracellular matrix (ECM)-like nanostructures with great flexibility in design and choice of materials, have demonstrated their great potential for fabrication of nerve tissue engineered scaffolds. The review here begins with a brief description of the anatomy of native nervous system, which provides basic knowledge and ideas for the design of nerve tissue scaffolds, followed by five main parts in the design of electrospun nerve tissue engineered scaffolds including materials selection, structural design, in vitro bioreactor, functionalization and cellular support. Performances of biomimetic electrospun nanofibrous nerve implant devices are also reviewed. Finally, future directions for advanced electrospun nerve tissue engineered scaffolds are discussed.

  10. Nanobiomaterials for neural regeneration

    PubMed Central

    Chen, Nuan; Tian, Lingling; He, Liumin; Ramakrishna, Seeram

    2016-01-01

    Diseases and disorders associated with nervous system such as injuries by trauma and neurodegeneration are shown to be one of the most serious problems in medicine, requiring innovative strategies to trigger and enhance the nerve regeneration. Tissue engineering aims to provide a highly biomimetic environment by using a combination of cells, materials and suitable biological cues, by which the lost body part may be regenerated or even fully rebuilt. Electrospinning, being able to produce extracellular matrix (ECM)-like nanostructures with great flexibility in design and choice of materials, have demonstrated their great potential for fabrication of nerve tissue engineered scaffolds. The review here begins with a brief description of the anatomy of native nervous system, which provides basic knowledge and ideas for the design of nerve tissue scaffolds, followed by five main parts in the design of electrospun nerve tissue engineered scaffolds including materials selection, structural design, in vitro bioreactor, functionalization and cellular support. Performances of biomimetic electrospun nanofibrous nerve implant devices are also reviewed. Finally, future directions for advanced electrospun nerve tissue engineered scaffolds are discussed. PMID:27857724

  11. Stimuli-responsive one-dimensional copolymer nanostructures fabricated by metallogel template polymerization and their adsorption of aspirin.

    PubMed

    Wen, Xing; Tang, Liming; Qiang, Lu

    2014-06-14

    pH responsive poly(N,N'-methylenebisacrylamide-co-4-vinylpyridine) (P(MBA-4VP)) one dimensional (1D) nanostructures have been prepared by metallogel template copolymerization, which was carried out in an Ag(i)-coordinated organogel with benzoyl peroxide (BPO) as the initiator. The product has been characterized using infrared spectroscopy, scanning electron microscopy and transmission electron microscopy. The experimental results reveal that the gel fiber is a crucial template for polymerization. Due to the degradation of the template in copolymerization, nanofibers of metallogel were transcribed to copolymer nanowires. The introduction of co-monomer 4-vinylpyridine (4VP) imparts to the 1D copolymer nanostructures pH sensitivity and the possible use as an adsorption material of aspirin. Adsorbed 1D copolymer nanostructures could be regenerated using proton solvent, acid medium and salt solution. In addition, silver nanoparticle loaded copolymer nanowires have been produced from the reduction of silver ions instead of template removal, where silver ions act both as the template and as the nanoparticle growth substrate.

  12. Regenerable Iodine Water-Disinfection System

    NASA Technical Reports Server (NTRS)

    Sauer, Richard L.; Colombo, Gerald V.; Jolly, Clifford D.

    1994-01-01

    Iodinated resin bed for disinfecting water regenerated to extend useful life. Water flows through regeneration bed of crystalline iodine during regeneration. At other times, flow diverted around regeneration bed. Although regeneration cycle manually controlled readily automated to start and stop according to signals from concentration sensors. Further benefit of regeneration is bed provides highly concentrated biocide source when needed. Concentrated biocide used to superiodinate system after contamination from routine maintenance or unexpected introduction of large concentration of microbes.

  13. Regenerable Iodine Water-Disinfection System

    NASA Technical Reports Server (NTRS)

    Sauer, Richard L.; Colombo, Gerald V.; Jolly, Clifford D.

    1994-01-01

    Iodinated resin bed for disinfecting water regenerated to extend useful life. Water flows through regeneration bed of crystalline iodine during regeneration. At other times, flow diverted around regeneration bed. Although regeneration cycle manually controlled readily automated to start and stop according to signals from concentration sensors. Further benefit of regeneration is bed provides highly concentrated biocide source when needed. Concentrated biocide used to superiodinate system after contamination from routine maintenance or unexpected introduction of large concentration of microbes.

  14. Neural tissue engineering options for peripheral nerve regeneration.

    PubMed

    Gu, Xiaosong; Ding, Fei; Williams, David F

    2014-08-01

    Tissue engineered nerve grafts (TENGs) have emerged as a potential alternative to autologous nerve grafts, the gold standard for peripheral nerve repair. Typically, TENGs are composed of a biomaterial-based template that incorporates biochemical cues. A number of TENGs have been used experimentally to bridge long peripheral nerve gaps in various animal models, where the desired outcome is nerve tissue regeneration and functional recovery. So far, the translation of TENGs to the clinic for use in humans has met with a certain degree of success. In order to optimize the TENG design and further approach the matching of TENGs with autologous nerve grafts, many new cues, beyond the traditional ones, will have to be integrated into TENGs. Furthermore, there is a strong requirement for monitoring the real-time dynamic information related to the construction of TENGs. The aim of this opinion paper is to specifically and critically describe the latest advances in the field of neural tissue engineering for peripheral nerve regeneration. Here we delineate new attempts in the design of template (or scaffold) materials, especially in the context of biocompatibility, the choice and handling of support cells, and growth factor release systems. We further discuss the significance of RNAi for peripheral nerve regeneration, anticipate the potential application of RNAi reagents for TENGs, and speculate on the possible contributions of additional elements, including angiogenesis, electrical stimulation, molecular inflammatory mediators, bioactive peptides, antioxidant reagents, and cultured biological constructs, to TENGs. Finally, we consider that a diverse array of physicochemical and biological cues must be orchestrated within a TENG to create a self-consistent coordinated system with a close proximity to the regenerative microenvironment of the peripheral nervous system. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Waveform Similarity Analysis: A Simple Template Comparing Approach for Detecting and Quantifying Noisy Evoked Compound Action Potentials.

    PubMed

    Potas, Jason Robert; de Castro, Newton Gonçalves; Maddess, Ted; de Souza, Marcio Nogueira

    2015-01-01

    Experimental electrophysiological assessment of evoked responses from regenerating nerves is challenging due to the typical complex response of events dispersed over various latencies and poor signal-to-noise ratio. Our objective was to automate the detection of compound action potential events and derive their latencies and magnitudes using a simple cross-correlation template comparison approach. For this, we developed an algorithm called Waveform Similarity Analysis. To test the algorithm, challenging signals were generated in vivo by stimulating sural and sciatic nerves, whilst recording evoked potentials at the sciatic nerve and tibialis anterior muscle, respectively, in animals recovering from sciatic nerve transection. Our template for the algorithm was generated based on responses evoked from the intact side. We also simulated noisy signals and examined the output of the Waveform Similarity Analysis algorithm with imperfect templates. Signals were detected and quantified using Waveform Similarity Analysis, which was compared to event detection, latency and magnitude measurements of the same signals performed by a trained observer, a process we called Trained Eye Analysis. The Waveform Similarity Analysis algorithm could successfully detect and quantify simple or complex responses from nerve and muscle compound action potentials of intact or regenerated nerves. Incorrectly specifying the template outperformed Trained Eye Analysis for predicting signal amplitude, but produced consistent latency errors for the simulated signals examined. Compared to the trained eye, Waveform Similarity Analysis is automatic, objective, does not rely on the observer to identify and/or measure peaks, and can detect small clustered events even when signal-to-noise ratio is poor. Waveform Similarity Analysis provides a simple, reliable and convenient approach to quantify latencies and magnitudes of complex waveforms and therefore serves as a useful tool for studying evoked compound

  16. Waveform Similarity Analysis: A Simple Template Comparing Approach for Detecting and Quantifying Noisy Evoked Compound Action Potentials

    PubMed Central

    Potas, Jason Robert; de Castro, Newton Gonçalves; Maddess, Ted; de Souza, Marcio Nogueira

    2015-01-01

    Experimental electrophysiological assessment of evoked responses from regenerating nerves is challenging due to the typical complex response of events dispersed over various latencies and poor signal-to-noise ratio. Our objective was to automate the detection of compound action potential events and derive their latencies and magnitudes using a simple cross-correlation template comparison approach. For this, we developed an algorithm called Waveform Similarity Analysis. To test the algorithm, challenging signals were generated in vivo by stimulating sural and sciatic nerves, whilst recording evoked potentials at the sciatic nerve and tibialis anterior muscle, respectively, in animals recovering from sciatic nerve transection. Our template for the algorithm was generated based on responses evoked from the intact side. We also simulated noisy signals and examined the output of the Waveform Similarity Analysis algorithm with imperfect templates. Signals were detected and quantified using Waveform Similarity Analysis, which was compared to event detection, latency and magnitude measurements of the same signals performed by a trained observer, a process we called Trained Eye Analysis. The Waveform Similarity Analysis algorithm could successfully detect and quantify simple or complex responses from nerve and muscle compound action potentials of intact or regenerated nerves. Incorrectly specifying the template outperformed Trained Eye Analysis for predicting signal amplitude, but produced consistent latency errors for the simulated signals examined. Compared to the trained eye, Waveform Similarity Analysis is automatic, objective, does not rely on the observer to identify and/or measure peaks, and can detect small clustered events even when signal-to-noise ratio is poor. Waveform Similarity Analysis provides a simple, reliable and convenient approach to quantify latencies and magnitudes of complex waveforms and therefore serves as a useful tool for studying evoked compound

  17. Manipulations to regenerate aspen ecosystems

    Treesearch

    Wayne D. Shepperd

    2001-01-01

    Vegetative regeneration of aspen can be initiated through manipulations that provide hormonal stimulation, proper growth environment, and sucker protection - the three elements of the aspen regeneration triangle. The correct course of action depends upon a careful evaluation of the size, vigor, age, and successional status of the existing clone. Soils and site...

  18. Molecular approach to echinoderm regeneration.

    PubMed

    Thorndyke, M C; Chen, W C; Beesley, P W; Patruno, M

    2001-12-15

    Until very recently echinoderm regeneration research and indeed echinoderm research in general has suffered because of the lack of critical mass. In terms of molecular studies of regeneration, echinoderms in particular have lagged behind other groups in this respect. This is in sharp contrast to the major advances achieved with molecular and genetic techniques in the study of embryonic development in echinoderms. The aim of our studies has been to identify genes involved in the process of regeneration and in particular neural regeneration in different echinoderm species. Our survey included the asteroid Asterias rubens and provided evidence for the expression of Hox gene homologues in regenerating radial nerve cords. Present evidence suggests: 1) ArHox1 expression is maintained in intact radial nerve cord and may be upregulated during regeneration. 2) ArHox1 expression may contribute to the dedifferentiation and/or cell proliferation process during epimorphic regeneration. From the crinoid Antedon bifida, we have been successful in cloning a fragment of a BMP2/4 homologue (AnBMP2/4) and analysing its expression during arm regeneration. Here, we discuss the importance of this family of growth factors in several regulatory spheres, including maintaining the identity of pluripotent blastemal cells or as a classic skeletal morphogenic regulator. There is clearly substantial scope for future echinoderm research in the area of molecular biology and certain aspects are discussed in this review.

  19. Conversion of Radiology Reporting Templates to the MRRT Standard.

    PubMed

    Kahn, Charles E; Genereaux, Brad; Langlotz, Curtis P

    2015-10-01

    In 2013, the Integrating the Healthcare Enterprise (IHE) Radiology workgroup developed the Management of Radiology Report Templates (MRRT) profile, which defines both the format of radiology reporting templates using an extension of Hypertext Markup Language version 5 (HTML5), and the transportation mechanism to query, retrieve, and store these templates. Of 200 English-language report templates published by the Radiological Society of North America (RSNA), initially encoded as text and in an XML schema language, 168 have been converted successfully into MRRT using a combination of automated processes and manual editing; conversion of the remaining 32 templates is in progress. The automated conversion process applied Extensible Stylesheet Language Transformation (XSLT) scripts, an XML parsing engine, and a Java servlet. The templates were validated for proper HTML5 and MRRT syntax using web-based services. The MRRT templates allow radiologists to share best-practice templates across organizations and have been uploaded to the template library to supersede the prior XML-format templates. By using MRRT transactions and MRRT-format templates, radiologists will be able to directly import and apply templates from the RSNA Report Template Library in their own MRRT-compatible vendor systems. The availability of MRRT-format reporting templates will stimulate adoption of the MRRT standard and is expected to advance the sharing and use of templates to improve the quality of radiology reports.

  20. Acoustic field modulation in regenerators

    NASA Astrophysics Data System (ADS)

    Hu, J. Y.; Wang, W.; Luo, E. C.; Chen, Y. Y.

    2016-12-01

    The regenerator is a key component that transfers energy between heat and work. The conversion efficiency is significantly influenced by the acoustic field in the regenerator. Much effort has been spent to quantitatively determine this influence, but few comprehensive experimental verifications have been performed because of difficulties in modulating and measuring the acoustic field. In this paper, a method requiring two compressors is introduced and theoretically investigated that achieves acoustic field modulation in the regenerator. One compressor outputs the acoustic power for the regenerator; the other acts as a phase shifter. A RC load dissipates the acoustic power out of both the regenerator and the latter compressor. The acoustic field can be modulated by adjusting the current in the two compressors and opening the RC load. The acoustic field is measured with pressure sensors instead of flow-field imaging equipment, thereby greatly simplifying the experiment.

  1. Synthesis of RNA oligomers on heterogeneous templates

    NASA Technical Reports Server (NTRS)

    Ertem, G.; Ferris, J. P.

    1996-01-01

    The concept of an RNA world in the chemical origin of life is appealing, as nucleic acids are capable of both information storage and acting as templates that catalyse the synthesis of complementary molecules. Template-directed synthesis has been demonstrated for homogeneous oligonucleotides that, like natural nucleic acids, have 3',5' linkages between the nucleotide monomers. But it seems likely that prebiotic routes to RNA-like molecules would have produced heterogeneous molecules with various kinds of phosphodiester linkages and both linear and cyclic nucleotide chains. Here we show that such heterogeneity need be no obstacle to the templating of complementary molecules. Specifically, we show that heterogeneous oligocytidylates, formed by the montmorillonite clay-catalysed condensation of actuated monomers, can serve as templates for the synthesis of oligoguanylates. Furthermore, we show that oligocytidylates that are exclusively 2',5'-linked can also direct synthesis of oligoguanylates. Such heterogeneous templating reactions could have increased the diversity of the pool of protonucleic acids from which life ultimately emerged.

  2. Microbial Factors and Antimicrobial Strategies in Dental Pulp Regeneration.

    PubMed

    Fouad, Ashraf F

    2017-09-01

    Dental pulp regeneration after pulp necrosis in immature teeth represents a major departure from traditional endodontic therapy of these conditions. Preliminary clinical attempts have shown the feasibility of developing mineralized repair tissue, which may provide a clinically acceptable outcome. However, this outcome may not provide sufficient host response and root strength to ensure the longevity of the involved teeth. It is not clear if these preliminary suboptimal results are caused by the inability to fully disinfect the pulp space or the absence of a suitable progenitor cell/scaffold template together with adequate vascularity. Moreover, it is not known to what degree the root canal system needs to be disinfected in order for clinical success to be evident. This article describes the current clinical strategies and protocols for the optimal disinfection and preparation of the pulp space environment to promote periapical healing as well as soft and hard tissue development after an infectious process. Current and future strategies for disinfecting the pulp space with minimal disruption of the necessary biological factors from dentin, the progenitor cells in periapical vital tissues, and the vascularity are discussed. The potential for success of pulp regeneration after necrosis and infection would transform the practice of endodontics, even for mature teeth. This is a goal worth pursuing because it would achieve the restoration of normal host responses in the pulp space and the regeneration of destroyed dental tissues. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  3. Nanofibrous structured biomimetic strategies for skin tissue regeneration.

    PubMed

    Jayarama Reddy, Venugopal; Radhakrishnan, Sridhar; Ravichandran, Rajeswari; Mukherjee, Shayanti; Balamurugan, Ramalingam; Sundarrajan, Subramanian; Ramakrishna, Seeram

    2013-01-01

    Mimicking porous topography of natural extracellular matrix is advantageous for successful regeneration of damaged tissues or organs. Nanotechnology being one of the most promising and growing technology today shows an extremely huge potential in the field of tissue engineering. Nanofibrous structures that mimic the native extracellular matrix and promote the adhesion of various cells are being developed as tissue-engineered scaffolds for skin, bone, vasculature, heart, cornea, nervous system, and other tissues. A range of novel biocomposite materials has been developed to enhance the bioactive or therapeutic properties of these nanofibrous scaffolds via surface modifications, including the immobilization of functional cell-adhesive ligands and bioactive molecules such as drugs, enzymes, and cytokines. In skin tissue engineering, usage of allogeneic skin is avoided to reestablish physiological continuity and also to address the challenge of curing acute and chronic wounds, which remains as the area of exploration with various biomimetic approaches. Two-dimensional, three-dimensional scaffolds and stem cells are presently used as dermal regeneration templates for the treatment of full-thickness skin defects resulting from injuries and severe burns. The present review elaborates specifically on the fabrication of nanofibrous structured strategies for wound dressings, wound healing, and controlled release of growth factors for skin tissue regeneration.

  4. Implication of two different regeneration systems in limb regeneration

    PubMed Central

    Makanae, Aki; Mitogawa, Kazumasa

    2014-01-01

    Abstract Limb regeneration is a representative phenomenon of organ regeneration in urodele amphibians, such as an axolotl. An amputated limb starts regenerating from a remaining stump (proximal) to lost finger tips (distal). In the present case, proximal−distal (PD) reorganization takes place in a regenerating tissue, called a blastema. It has been a mystery how an induced blastema recognizes its position and restores an exact replica of missing parts. Recently, a new experimental system called the accessory limb model (ALM) has been established. The gained ALM phenotypes are demanding to reconsider the reorganization PD positional values. Based on the ALM phenotype, it is reasonable to hypothesize that reorganization of positional values has a certain discontinuity and that two different regeneration systems cooperatively reorganize the PD axis to restore an original structure. In this review, PD axis reestablishments are focused on limb regeneration. Knowledge from ALM studies in axolotls and Xenopus is providing a novel concept of PD axis reorganization in limb regeneration. PMID:27499860

  5. Injectable Silk Foams for Soft Tissue Regeneration

    PubMed Central

    Bellas, E.; Lo, T.J.; Fournier, E.P.; Brown, J.E.; Abbott, R.D.; Gil, E.S.; Marra, K.G.; Rubin, J.P.; Leisk, G.G.; Kaplan, D.L.

    2015-01-01

    Soft tissue fillers are needed for restoration of a defect or augmentation of existing tissues. Autografts and lipotransfer have been under study for soft tissue reconstruction but yield inconsistent results, often with considerable resorption of the grafted tissue. A minimally invasive procedure would reduce scarring and recovery time as well as allow for the implant and/or grafted tissue to be placed closer to existing vasculature. Here, we demonstrate the feasibility of an injectable silk foam for soft tissue regeneration. Adipose derived stem cells survive and migrate through the foam over a 10 day period in vitro. The silk foams are also successfully injected into the subcutaneous space in a rat and over a 3 month period integrating with the surrounding native tissue. The injected foams are palpable and soft to the touch through the skin and returning to their original dimensions after pressure was applied and then released. The foams readily absorb lipoaspirate making the foams useful as a scaffold or template for existing soft tissue filler technologies, useful either as a biomaterial alone or in combination with the lipoaspirate. PMID:25323438

  6. Injectable silk foams for soft tissue regeneration.

    PubMed

    Bellas, Evangelia; Lo, Tim J; Fournier, Eric P; Brown, Joseph E; Abbott, Rosalyn D; Gil, Eun S; Marra, Kacey G; Rubin, J Peter; Leisk, Gary G; Kaplan, David L

    2015-02-18

    Soft tissue fillers are needed for restoration of a defect or augmentation of existing tissues. Autografts and lipotransfer have been under study for soft tissue reconstruction but yield inconsistent results, often with considerable resorption of the grafted tissue. A minimally invasive procedure would reduce scarring and recovery time as well as allow the implant and/or grafted tissue to be placed closer to existing vasculature. Here, the feasibility of an injectable silk foam for soft tissue regeneration is demonstrated. Adipose-derived stem cells survive and migrate through the foam over a 10-d period in vitro. The silk foams are also successfully injected into the subcutaneous space in a rat and over a 3-month period integrating with the surrounding native tissue. The injected foams are palpable and soft to the touch through the skin and returning to their original dimensions after pressure is applied and then released. The foams readily absorb lipoaspirate making the foams useful as a scaffold or template for existing soft tissue filler technologies, useful either as a biomaterial alone or in combination with the lipoaspirate.

  7. Biofunctionalization and capping of template synthesized nanotubes.

    PubMed

    Hillebrenner, Heather; Buyukserin, Fatih; Stewart, Jon D; Martin, Charles R

    2007-07-01

    Using alumina templates both nanotubes (open on both ends) and nano test tubes (open on only one end) have been synthesized from many different materials and these have great potential as delivery vehicles for biomedical applications. This review focuses on our recent results directed towards developing "smart" nanotubes for biomolecule delivery applications. While intensive efforts have focused on spherical nanoparticles that are easier to make, cylindrical particles or nanotubes offer many advantages. First, the tunable alumina template allows one to dictate both the pore diameter and length of the nanotube. In addition, template synthesized nanotubes can be differentially functionalized on their inner and outer surfaces. This review highlights these advantages in the contexts of drug extraction and antibody-antigen interactions, the synthesis of protein nanotubes, and recent advances in covalently capped ("corked") nanotubes designed to prevent premature payload leakage. Though diverse applications for nanotubes have already been discovered, many new and exciting paths await exploration.

  8. A Hybrid Approach to Protect Palmprint Templates

    PubMed Central

    Sun, Dongmei; Xiong, Ke; Qiu, Zhengding

    2014-01-01

    Biometric template protection is indispensable to protect personal privacy in large-scale deployment of biometric systems. Accuracy, changeability, and security are three critical requirements for template protection algorithms. However, existing template protection algorithms cannot satisfy all these requirements well. In this paper, we propose a hybrid approach that combines random projection and fuzzy vault to improve the performances at these three points. Heterogeneous space is designed for combining random projection and fuzzy vault properly in the hybrid scheme. New chaff point generation method is also proposed to enhance the security of the heterogeneous vault. Theoretical analyses of proposed hybrid approach in terms of accuracy, changeability, and security are given in this paper. Palmprint database based experimental results well support the theoretical analyses and demonstrate the effectiveness of proposed hybrid approach. PMID:24982977

  9. Regenerable biocide delivery unit

    NASA Technical Reports Server (NTRS)

    Colombo, Gerald V.; Jolly, Clifford D.; Sauer, Richard L.

    1991-01-01

    The Microbial Check Valve (MCV) is used on the Space Shuttle to impart an iodine residual to the drinking water to maintain microbial control. Approximately twenty MCV locations have been identified in the Space Station Freedom design, each with a 90-day life. This translates to 2400 replacement units in 30 years of operation. An in situ regeneration concept has been demonstrated that will reduce this replacement requirement to less than 300 units based on data to date. A totally automated system will result in significant savings in crew time, resupply requirements, and replacement costs. An additional feature of the device is the ability to provide a concentrated biocide source (200 mg/liter of I2) that can be used to superiodinate systems routinely or after a microbial upset.

  10. Bone regeneration in dentistry

    PubMed Central

    Tonelli, Paolo; Duvina, Marco; Barbato, Luigi; Biondi, Eleonora; Nuti, Niccolò; Brancato, Leila; Rose, Giovanna Delle

    2011-01-01

    Summary The edentulism of the jaws and the periodontal disease represent conditions that frequently leads to disruption of the alveolar bone. The loss of the tooth and of its bone of support lead to the creation of crestal defects or situation of maxillary atrophy. The restoration of a functional condition involves the use of endosseous implants who require adequate bone volume, to deal with the masticatory load. In such situations the bone need to be regenerated, taking advantage of the biological principles of osteogenesis, osteoinduction and osteoconduction. Several techniques combine these principles with different results, due to the condition of the bone base on which we operate changes, the surgical technique that we use, and finally for the bone metabolic conditions of the patient who can be in a state of systemic osteopenia or osteoporosis; these can also affect the result of jaw bone reconstruction. PMID:22461825

  11. Augmenter of liver regeneration.

    PubMed

    Gandhi, Chandrashekhar R

    2012-07-09

    'Augmenter of liver regeneration' (ALR) (also known as hepatic stimulatory substance or hepatopoietin) was originally found to promote growth of hepatocytes in the regenerating or injured liver. ALR is expressed ubiquitously in all organs, and exclusively in hepatocytes in the liver. ALR, a survival factor for hepatocytes, exhibits significant homology with ERV1 (essential for respiration and viability) protein that is essential for the survival of the yeast, Saccharomyces cerevisiae. ALR comprises 198 to 205 amino acids (approximately 22 kDa), but is post-translationally modified to three high molecular weight species (approximately 38 to 42 kDa) found in hepatocytes. ALR is present in mitochondria, cytosol, endoplasmic reticulum, and nucleus. Mitochondrial ALR may be involved in oxidative phosphorylation, but also functions as sulfhydryl oxidase and cytochrome c reductase, and causes Fe/S maturation of proteins. ALR, secreted by hepatocytes, stimulates synthesis of TNF-α, IL-6, and nitric oxide in Kupffer cells via a G-protein coupled receptor. While the 22 kDa rat recombinant ALR does not stimulate DNA synthesis in hepatocytes, the short form (15 kDa) of human recombinant ALR was reported to be equipotent as or even stronger than TGF-α or HGF as a mitogen for hepatocytes. Altered serum ALR levels in certain pathological conditions suggest that it may be a diagnostic marker for liver injury/disease. Although ALR appears to have multiple functions, the knowledge of its role in various organs, including the liver, is extremely inadequate, and it is not known whether different ALR species have distinct functions. Future research should provide better understanding of the expression and functions of this enigmatic molecule.

  12. Nanocomposites and bone regeneration

    NASA Astrophysics Data System (ADS)

    James, Roshan; Deng, Meng; Laurencin, Cato T.; Kumbar, Sangamesh G.

    2011-12-01

    This manuscript focuses on bone repair/regeneration using tissue engineering strategies, and highlights nanobiotechnology developments leading to novel nanocomposite systems. About 6.5 million fractures occur annually in USA, and about 550,000 of these individual cases required the application of a bone graft. Autogenous and allogenous bone have been most widely used for bone graft based therapies; however, there are significant problems such as donor shortage and risk of infection. Alternatives using synthetic and natural biomaterials have been developed, and some are commercially available for clinical applications requiring bone grafts. However, it remains a great challenge to design an ideal synthetic graft that very closely mimics the bone tissue structurally, and can modulate the desired function in osteoblast and progenitor cell populations. Nanobiomaterials, specifically nanocomposites composed of hydroxyapatite (HA) and/or collagen are extremely promising graft substitutes. The biocomposites can be fabricated to mimic the material composition of native bone tissue, and additionally, when using nano-HA (reduced grain size), one mimics the structural arrangement of native bone. A good understanding of bone biology and structure is critical to development of bone mimicking graft substitutes. HA and collagen exhibit excellent osteoconductive properties which can further modulate the regenerative/healing process following fracture injury. Combining with other polymeric biomaterials will reinforce the mechanical properties thus making the novel nano-HA based composites comparable to human bone. We report on recent studies using nanocomposites that have been fabricated as particles and nanofibers for regeneration of segmental bone defects. The research in nanocomposites, highlight a pivotal role in the future development of an ideal orthopaedic implant device, however further significant advancements are necessary to achieve clinical use.

  13. Implementation of the template model of vision.

    PubMed

    Sobey, P J; Horridge, G A

    1990-06-22

    Adopting principles learnt from insect vision we have constructed model of a general-purpose front-end visual system for motion detection that is designed to operate in parallel along each photoreceptor axis with only local connections. The model is also designed to assist electrophysiological analysis of visual processing because it puts the response to a moving scene into sets of template responses similar to the distribution of activity among different neurons. An earlier template model divided the visual image into the fields of adjacent receptors, measured as intensity or receptor modulation at small increments of time. As soon as we used this model with natural scenes, however, we found that we had to look at changes in intensity, not intensity itself. Running the new model also generated new insights into the effects of very fast motion, of blurring the image, and the value of lateral inhibition. We also experimented with ways of measuring the angular velocity of the image moving across the eye. The camera eye is moved at a known speed and the range to objects is calculated from the angular velocity of contrasts moving across the receptor array. The original template model is modified so that contrast is saturated in a new representation of the original image data. This reduces the 8-bit grey-scale image to a log, 3 = 1.6-bit image, which becomes the input to a look-up table of templates. The output consists of groups of responding templates in specific ratios that define the input features, and these ratios lead into types of invariance at a higher level of further logic. At any stage, there can be persistent parallel inputs from all earlier stages. This design would enable groups of templates to be tuned to different expected situations, such as different velocities, different directions and different types of edges.

  14. How useful is templating for total knee replacement component sizing?

    PubMed

    Peek, A C; Bloch, B; Auld, J

    2012-08-01

    This study aims to assess the accuracy of digital templating at our institution, by comparing the templated component sizes with those implanted, and to determine whether templating the preoperative films had any measurable difference on the radiographic outcome, and if, where there was a mismatch between the implanted and templated sizes, the templated size would have been preferable. While a number of studies have evaluated the accuracy of both acetate and digital templating, none has to our knowledge looked back at post-operative radiographs and reviewed these in light of the templated and implanted sizes. Data was collected from 90 PFC Sigma (DePuy, UK) total knee replacements done sequentially, 45 of whom were templated digitally using a calibrating ball and Agfa Orthopaedic Tools software. Postoperative radiographs were graded independently for correct sizing. All templates were within one size of the implanted prosthesis. The femoral component appeared to be more often oversized on the postoperative radiographs in the non-templated group. In addition, most tibial trays that were found be too small had been templated to a larger size. There was a trend towards tibial trays templated too large to have been templated to a smaller size. We conclude that digital templating with a calibrating device is a useful part of preoperative planning for total knee arthroplasty.

  15. Vertex finding with deformable templates at LHC

    NASA Astrophysics Data System (ADS)

    Stepanov, Nikita; Khanov, Alexandre

    1997-02-01

    We present a novel vertex finding technique. The task is formulated as a discrete-continuous optimisation problem in a way similar to the deformable templates approach for the track finding. Unlike the track finding problem, "elastic hedgehogs" rather than elastic arms are used as deformable templates. They are initialised by a set of procedures which provide zero level approximation for vertex positions and track parameters at the vertex point. The algorithm was evaluated using the simulated events for the LHC CMS detector and demonstrated good performance.

  16. Templates for Deposition of Microscopic Pointed Structures

    NASA Technical Reports Server (NTRS)

    Pugel, Diane E.

    2008-01-01

    Templates for fabricating sharply pointed microscopic peaks arranged in nearly regular planar arrays can be fabricated by a relatively inexpensive technique that has recently been demonstrated. Depending on the intended application, a semiconducting, insulating, or metallic film could be deposited on such a template by sputtering, thermal evaporation, pulsed laser deposition, or any other suitable conventional deposition technique. Pointed structures fabricated by use of these techniques may prove useful as photocathodes or field emitters in plasma television screens. Selected peaks could be removed from such structures and used individually as scanning tips in atomic force microscopy or mechanical surface profiling.

  17. Preparation of porous lanthanum phosphate with templates

    SciTech Connect

    Onoda, Hiroaki; Ishima, Yuya; Takenaka, Atsushi; Tanaka, Isao

    2009-08-05

    Malonic acid, propionic acid, glycine, n-butylamine, and urea were added to the preparation of lanthanum phosphate from lanthanum nitrate and phosphoric acid solutions. All additives were taken into lanthanum phosphate particles. The additives that have a basic site were easy to contain in precipitates. The addition of templates improved the specific surface area of lanthanum phosphate. The amount of pore, with radius smaller than 4 nm, increased with the addition of templates. The remained additives had influence on the acidic properties of lanthanum phosphate.

  18. Affordance Templates for Shared Robot Control

    NASA Technical Reports Server (NTRS)

    Hart, Stephen; Dinh, Paul; Hambuchen, Kim

    2014-01-01

    This paper introduces the Affordance Template framework used to supervise task behaviors on the NASA-JSC Valkyrie robot at the 2013 DARPA Robotics Challenge (DRC) Trials. This framework provides graphical interfaces to human supervisors that are adjustable based on the run-time environmental context (e.g., size, location, and shape of objects that the robot must interact with, etc.). Additional improvements, described below, inject degrees of autonomy into instantiations of affordance templates at run-time in order to enable efficient human supervision of the robot for accomplishing tasks.

  19. From Templated Nucleation to Functional Materials Engineering

    NASA Astrophysics Data System (ADS)

    Liu, Xiang Yang

    2007-06-01

    Templated nucleation is considered theoretically and experimentally in terms of a so-called interface correlation factor f(m,R'). The quantitative experimental evidence of pre and pro nucleation dynamic processes was presented. Based on the f(m,R') function, the "zero sized" effect of foreign particles allowing us to achieve homogeneous like nucleation was identified for the first time. Based on the principles of templated nucleation, the architecture of new functional materials can be achieved at the micro/nano scales.

  20. Porous Ba Ferrite Prepared from Wood Template

    PubMed Central

    Adachi, Nobuyasu; Kuwahara, Masayuki; Sia, Chee Kiong; Ota, Toshitaka

    2009-01-01

    Ba ferrite materials with porous microstructures were prepared from a natural cedar wood template in order to investigate new electromagnetic shielding materials. The wood templates were infiltrated with barium nitrate and iron nitrate solutions (molar ratio = 1:12) and dried to form ferrite gel, then, they were sintered in air at a temperature between 800 °C and 1400 °C. The 1-dimensional porous structures were retained after sintering and the pore size was approximately 10–20 μm. These ferrites show large coercive force and anisotropy field. The largest coercive force was obtained for the specimen sintered at 800 °C.

  1. Cardiac Regeneration and Stem Cells

    PubMed Central

    Zhang, Yiqiang; Mignone, John; MacLellan, W. Robb

    2015-01-01

    After decades of believing the heart loses the ability to regenerate soon after birth, numerous studies are now reporting that the adult heart may indeed be capable of regeneration, although the magnitude of new cardiac myocyte formation varies greatly. While this debate has energized the field of cardiac regeneration and led to a dramatic increase in our understanding of cardiac growth and repair, it has left much confusion in the field as to the prospects of regenerating the heart. Studies applying modern techniques of genetic lineage tracing and carbon-14 dating have begun to establish limits on the amount of endogenous regeneration after cardiac injury, but the underlying cellular mechanisms of this regeneration remained unclear. These same studies have also revealed an astonishing capacity for cardiac repair early in life that is largely lost with adult differentiation and maturation. Regardless, this renewed focus on cardiac regeneration as a therapeutic goal holds great promise as a novel strategy to address the leading cause of death in the developed world. PMID:26269526

  2. Biomaterial Selection for Tooth Regeneration

    PubMed Central

    Yuan, Zhenglin; Nie, Hemin; Wang, Shuang; Lee, Chang Hun; Li, Ang; Fu, Susan Y.; Zhou, Hong

    2011-01-01

    Biomaterials are native or synthetic polymers that act as carriers for drug delivery or scaffolds for tissue regeneration. When implanted in vivo, biomaterials should be nontoxic and exert intended functions. For tooth regeneration, biomaterials have primarily served as a scaffold for (1) transplanted stem cells and/or (2) recruitment of endogenous stem cells. This article critically synthesizes our knowledge of biomaterial use in tooth regeneration, including the selection of native and/or synthetic polymers, three-dimensional scaffold fabrication, stem cell transplantation, and stem cell homing. A tooth is a complex biological organ. Tooth loss represents the most common organ failure. Tooth regeneration encompasses not only regrowth of an entire tooth as an organ, but also biological restoration of individual components of the tooth including enamel, dentin, cementum, or dental pulp. Regeneration of tooth root represents perhaps more near-term opportunities than the regeneration of the whole tooth. In the adult, a tooth owes its biological vitality, arguably more, to the root than the crown. Biomaterials are indispensible for the regeneration of tooth root, tooth crown, dental pulp, or an entire tooth. PMID:21699433

  3. Si-doping bone composite based on protein template-mediated assembly for enhancing bone regeneration

    NASA Astrophysics Data System (ADS)

    Yang, Qin; Du, Yingying; Wang, Yifan; Wang, Zhiying; Ma, Jun; Wang, Jianglin; Zhang, Shengmin

    2017-06-01

    Bio-inspired hybrid materials that contain organic and inorganic networks interpenetration at the molecular level have been a particular focus of interest on designing novel nanoscale composites. Here we firstly synthesized a series of hybrid bone composites, silicon-hydroxyapatites/silk fibroin/collagen, based on a specific molecular assembled strategy. Results of material characterization confirmed that silicate had been successfully doped into nano-hydroxyapatite lattice. In vitro evaluation at the cellular level clearly showed that these Si-doped composites were capable of promoting the adhesion and proliferation of rat mesenchymal stem cells (rMSCs), extremely enhancing osteoblastic differentiation of rMSCs compared with silicon-free composite. More interestingly, we found there was a critical point of silicon content in the composition on regulating multiple cell behaviors. In vivo animal evaluation further demonstrated that Si-doped composites enabled to significantly improve the repair of cranial bone defect. Consequently, our current work not only suggests fabricating a potential bone repair materials by integrating element-doping and molecular assembled strategy in one system, but also paves a new way for constructing multi-functional composite materials in the future.

  4. Use of templates to fabricate nanoscale spherical structures for defined architectural control.

    PubMed

    Réthoré, Gildas; Pandit, Abhay

    2010-02-22

    Architectural design of biomaterial structures is essential to reach the full potential of the materials' chemical and biological properties. Clinically, these properties depend on the targeted applications of delivery, such as tissue regeneration, imaging, or cancer. To get an efficient material for biological applications, key properties are needed, such as degradability, low toxicity, cell specificity, relative efficiency, and capability of delivering multiple molecules. In recent years, significant progress has been made through either the design of the material itself (synthetic or natural polymers, dendrimers, crosslinking) or the fabrication technique (nozzle reactor, emulsion, and template). The combination of these materials and techniques results in a large variety of biomaterials that have varied shape and physico-chemical and biological properties. Nevertheless, these inherent properties are not sufficient and interest in discovering and developing new techniques that present these biomaterials in different light is now under focus. A useful strategy to prepare biomaterials with unique and novel architectures is through the use of templates that have defined geometrical features. This holds great promise, especially for the development of hollow structures, such as spheres. The nanoscale structural design of biomaterials via the use of templates and their potential clinical applications are discussed. In addition, the conceptual hurdles that must be overcome to produce applications that are clinically relevant are examined.

  5. Wound Healing and Skin Regeneration

    PubMed Central

    Takeo, Makoto; Lee, Wendy; Ito, Mayumi

    2015-01-01

    The skin is a complex organ consisting of the epidermis, dermis, and skin appendages, including the hair follicle and sebaceous gland. Wound healing in adult mammals results in scar formation without any skin appendages. Studies have reported remarkable examples of scarless healing in fetal skin and appendage regeneration in adult skin following the infliction of large wounds. The models used in these studies have offered a new platform for investigations of the cellular and molecular mechanisms underlying wound healing and skin regeneration in mammals. In this article, we will focus on the contribution of skin appendages to wound healing and, conversely, skin appendage regeneration following injuries. PMID:25561722

  6. Evaluation of advanced regenerator systems

    NASA Technical Reports Server (NTRS)

    Cook, J. A.; Fucinari, C. A.; Lingscheit, J. N.; Rahnke, C. J.

    1978-01-01

    The major considerations are discussed which will affect the selection of a ceramic regenerative heat exchanger for an improved 100 HP automotive gas turbine engine. The regenerator considered for this application is about 36cm in diameter. Regenerator comparisons are made on the basis of material, method of fabrication, cost, and performance. A regenerator inlet temperature of 1000 C is assumed for performance comparisons, and laboratory test results are discussed for material comparisons at 1100 and 1200 C. Engine test results using the Ford 707 industrial gas turbine engine are also discussed.

  7. Coculture in musculoskeletal tissue regeneration.

    PubMed

    Im, Gun-Il

    2014-10-01

    Most tissues in the body are made up of more than one cell type. For successful tissue regeneration, it is essential to simulate the natural conditions of the cellular environment as much as possible. In a coculture system, two or more cell types are brought together, interact, and communicate in the same culture environment. The coculture system provides a powerful in vitro tool in research on cell-to-cell communications, repair, and regeneration. This review provides an overview on recent studies on general platforms and applications of coculture systems to enhance musculoskeletal regeneration, with a particular focus on osteogenesis, chondrogensis, and angiogenesis.

  8. Coverage of Deep Cutaneous Wounds Using Dermal Template in Combination with Negative-pressure Therapy and Subsequent Skin Graft

    PubMed Central

    Chang, Alexandre A.; Lobato, Rodolfo C.; Nakamoto, Hugo A.; Tuma, Paulo; Ferreira, Marcus C.

    2014-01-01

    Background: We consider the use of dermal matrix associated with a skin graft to cover deep wounds in the extremities when tendon and bone are exposed. The objective of this article was to evaluate the efficacy of covering acute deep wounds through the use of a dermal regeneration template (Integra) associated with vacuum therapy and subsequent skin grafting. Methods: Twenty patients were evaluated prospectively. All of them had acute (up to 3 weeks) deep wounds in the limbs. We consider a deep wound to be that with exposure of bone, tendon, or joint. Results: The average area of integration of the dermal regeneration template was 86.5%. There was complete integration of the skin graft over the dermal matrix in 14 patients (70%), partial integration in 5 patients (25%), and total loss in 1 case (5%). The wound has completely closed in 95% of patients. Conclusions: The use of Integra dermal template associated with negative-pressure therapy and skin grafting showed an adequate rate of resolution of deep wounds with low morbidity. PMID:25289363

  9. Distinctive Capillary Action by Micro-channels in Bone-like Templates can Enhance Recruitment of Cells for Restoration of Large Bony Defect.

    PubMed

    Oh, Daniel S; Koch, Alia; Eisig, Sidney; Kim, Sahng Gyoon; Kim, Yoon Hyuk; Kim, Do-Gyoon; Shim, Jae Hyuck

    2015-09-11

    Without an active, thriving cell population that is well-distributed and stably anchored to the inserted template, exceptional bone regeneration does not occur. With conventional templates, the absence of internal micro-channels results in the lack of cell infiltration, distribution, and inhabitance deep inside the templates. Hence, a highly porous and uniformly interconnected trabecular-bone-like template with micro-channels (biogenic microenvironment template; BMT) has been developed to address these obstacles. The novel BMT was created by innovative concepts (capillary action) and fabricated with a sponge-template coating technique. The BMT consists of several structural components: inter-connected primary-pores (300-400 µm) that mimic pores in trabecular bone, micro-channels (25-70 µm) within each trabecula, and nanopores (100-400 nm) on the surface to allow cells to anchor. Moreover, the BMT has been documented by mechanical test study to have similar mechanical strength properties to those of human trabecular bone (~3.8 MPa)12. The BMT exhibited high absorption, retention, and habitation of cells throughout the bridge-shaped (Π) templates (3 cm height and 4 cm length). The cells that were initially seeded into one end of the templates immediately mobilized to the other end (10 cm distance) by capillary action of the BMT on the cell media. After 4 hr, the cells homogenously occupied the entire BMT and exhibited normal cellular behavior. The capillary action accounted for the infiltration of the cells suspended in the media and the distribution (active migration) throughout the BMT. Having observed these capabilities of the BMT, we project that BMTs will absorb bone marrow cells, growth factors, and nutrients from the periphery under physiological conditions. The BMT may resolve current limitations via rapid infiltration, homogenous distribution and inhabitance of cells in large, volumetric templates to repair massive skeletal defects.

  10. Distinctive Capillary Action by Micro-channels in Bone-like Templates can Enhance Recruitment of Cells for Restoration of Large Bony Defect

    PubMed Central

    Oh, Daniel S.; Koch, Alia; Eisig, Sidney; Kim, Sahng Gyoon; Kim, Yoon Hyuk; Kim, Do-Gyoon; Shim, Jae Hyuck

    2015-01-01

    Without an active, thriving cell population that is well-distributed and stably anchored to the inserted template, exceptional bone regeneration does not occur. With conventional templates, the absence of internal micro-channels results in the lack of cell infiltration, distribution, and inhabitance deep inside the templates. Hence, a highly porous and uniformly interconnected trabecular-bone-like template with micro-channels (biogenic microenvironment template; BMT) has been developed to address these obstacles. The novel BMT was created by innovative concepts (capillary action) and fabricated with a sponge-template coating technique. The BMT consists of several structural components: inter-connected primary-pores (300-400 µm) that mimic pores in trabecular bone, micro-channels (25-70 µm) within each trabecula, and nanopores (100-400 nm) on the surface to allow cells to anchor. Moreover, the BMT has been documented by mechanical test study to have similar mechanical strength properties to those of human trabecular bone (~3.8 MPa)12. The BMT exhibited high absorption, retention, and habitation of cells throughout the bridge-shaped (Π) templates (3 cm height and 4 cm length). The cells that were initially seeded into one end of the templates immediately mobilized to the other end (10 cm distance) by capillary action of the BMT on the cell media. After 4 hr, the cells homogenously occupied the entire BMT and exhibited normal cellular behavior. The capillary action accounted for the infiltration of the cells suspended in the media and the distribution (active migration) throughout the BMT. Having observed these capabilities of the BMT, we project that BMTs will absorb bone marrow cells, growth factors, and nutrients from the periphery under physiological conditions. The BMT may resolve current limitations via rapid infiltration, homogenous distribution and inhabitance of cells in large, volumetric templates to repair massive skeletal defects. PMID:26380953

  11. The biogeochemical cycle of the adsorbed template. II - Selective adsorption of mononucleotides on adsorbed polynucleotide templates

    NASA Technical Reports Server (NTRS)

    Lazard, Daniel; Lahav, Noam; Orenberg, James B.

    1988-01-01

    Experimental results are presented for the verification of the specific interaction step of the 'adsorbed template' biogeochemical cycle, a simple model for a primitive prebiotic replication system. The experimental system consisted of gypsum as the mineral to which an oligonucleotide template attaches (Poly-C or Poly-U) and (5-prime)-AMP, (5-prime)-GMP, (5-prime)-CMP and (5-prime)-UMP as the interacting biomonomers. When Poly-C or Poly-U were used as adsorbed templates, (5-prime)-GMP and (5-prime)-AMP, respectively, were observed to be the most strongly adsorbed species.

  12. Regenerable Iodine Water-Disinfection System

    NASA Technical Reports Server (NTRS)

    Sauer, Richard L.; Colombo, Gerald V.; Jolly, Clifford D.

    1994-01-01

    Iodinated resin bed for disinfecting water regenerated to extend its useful life. Water flows through regeneration bed of crystalline iodine during regeneration. At other times, flow diverted around regeneration bed. Although regeneration cycle was manually controlled in demonstration, readily automated to start and stop according to signals and stop according to signals from concentration sensors. Further benefit of regeneration is that regeneration bed provides highly concentrated biocide source (200 mg/L) when needed. Concentrated biocide used to superiodinate system after contamination from routine maintenance or unexpected introduction of large concentration of microbes.

  13. Regenerable Iodine Water-Disinfection System

    NASA Technical Reports Server (NTRS)

    Sauer, Richard L.; Colombo, Gerald V.; Jolly, Clifford D.

    1994-01-01

    Iodinated resin bed for disinfecting water regenerated to extend its useful life. Water flows through regeneration bed of crystalline iodine during regeneration. At other times, flow diverted around regeneration bed. Although regeneration cycle was manually controlled in demonstration, readily automated to start and stop according to signals and stop according to signals from concentration sensors. Further benefit of regeneration is that regeneration bed provides highly concentrated biocide source (200 mg/L) when needed. Concentrated biocide used to superiodinate system after contamination from routine maintenance or unexpected introduction of large concentration of microbes.

  14. Organic or organometallic template mediated clay synthesis

    SciTech Connect

    Gregar, K.C.; Winans, R.E.; Botto, R.E.

    1992-12-31

    A method is given for incorporating diverse varieties of intercalants or templates directly during hydrothermal synthesis of clays such as hectorite or montmorillonite-type layer-silicate clays. For a hectorite layer-silicate clay, refluxing a gel of silica sol, magnesium hydroxide sol and LiF for 2 days with an organic or organometallic intercalant or template results in crystalline products containing either (a) organic dye molecules such as ethyl violet and methyl green, (b) dye molecules such as alcian blue based on a Cu(II)-phthalocyannine complex, or (c) transition metal complexes such as Ru(II)phenanthroline and Co(III)sepulchrate or (d) water-soluble porphyrins and metalloporphyrins. Montmorillonite-type clays are made by the method taught by US patent No. 3,887,454 issued to Hickson, June 13, 1975; however, a variety of intercalants or templates may be introduced. The intercalants or templates should have water-solubility, positive charge, and thermal stability under moderately basic (pH 9-10) aqueous reflux conditions or hydrothermal pressurized conditions for the montmorillonite-type clays.

  15. A lightweight approach for biometric template protection

    NASA Astrophysics Data System (ADS)

    Al-Assam, Hisham; Sellahewa, Harin; Jassim, Sabah

    2009-05-01

    Privacy and security are vital concerns for practical biometric systems. The concept of cancelable or revocable biometrics has been proposed as a solution for biometric template security. Revocable biometric means that biometric templates are no longer fixed over time and could be revoked in the same way as lost or stolen credit cards are. In this paper, we describe a novel and an efficient approach to biometric template protection that meets the revocability property. This scheme can be incorporated into any biometric verification scheme while maintaining, if not improving, the accuracy of the original biometric system. However, we shall demonstrate the result of applying such transforms on face biometric templates and compare the efficiency of our approach with that of the well-known random projection techniques. We shall also present the results of experimental work on recognition accuracy before and after applying the proposed transform on feature vectors that are generated by wavelet transforms. These results are based on experiments conducted on a number of well-known face image databases, e.g. Yale and ORL databases.

  16. Public Notification - RTCR Treatment Technique Violation Template

    EPA Pesticide Factsheets

    When a PWS receives a Treatment Technique Violation following an RTCR Level 1 or Level 2 assessment, it must issue a public notice to inform consumers of that violation. This template can be used as a guide to prepare that public notice.

  17. Performance Templates and the Regulation of Learning

    ERIC Educational Resources Information Center

    Lyons, Paul

    2009-01-01

    Purpose: The purpose of this paper is to provide a detailed, theoretical underpinning for the training and performance improvement method: performance template (P-T). The efficacy of P-T, with limitations, has been demonstrated in this journal and in others. However, the theoretical bases of the P-T approach had not been well-developed. The other…

  18. Stacked subsea templates accelerate deepwater development

    SciTech Connect

    Ramsey, J.F.; Blincow, R.M.; Pickard, R.D. )

    1991-10-21

    This paper reports on a deepwater project that can be brought on-line more quickly because of stackable drilling and production templates. Historically, one of the primary barriers to the economic development of deepwater reserves has been the long lead time from discovery to first production. Typically, production facilities must be built and often installed before development wells are drilled. The use of three-slot drilling templates allows development drilling to proceed while the production templates, Christmas trees, flow lines, and production platform are constructed. Thus, the time from initial investment to first revenue reduced. Enserch Exploration Inc., along with partners Petrofina Delaware Inc. and AGIP Petroleum, is using a piggy-back or transportable stacked template system to develop deepwater gas reserves in Mississippi Canyon Block 441, approximately 50 miles south of Grand Isle, La. The discovery is located in 1,410-1,520 ft of water. The Louisiana Offshore Oil Port (LOOP) safety fairway running north to south covers the eastern three fourths of Mississippi Canyon Block 441 and rules out surface production facilities over the well locations.

  19. Organic or organometallic template mediated clay synthesis

    DOEpatents

    Gregar, Kathleen C.; Winans, Randall E.; Botto, Robert E.

    1994-01-01

    A method for incorporating diverse Varieties of intercalants or templates directly during hydrothermal synthesis of clays such as hectorite or montmorillonite-type layer-silicate clays. For a hectorite layer-silicate clay, refluxing a gel of silica sol, magnesium hydroxide sol and lithium fluoride for two days in the presence of an organic or organometallic intercalant or template results in crystalline products containing either (a) organic dye molecules such as ethyl violet and methyl green, (b) dye molecules such as alcian blue that are based on a Cu(II)-phthalocyannine complex, or (c) transition metal complexes such as Ru(II)phenanthroline and Co(III)sepulchrate or (d) water-soluble porphyrins and metalloporphyrins. Montmorillonite-type clays are made by the method taught by U.S. Pat. No. 3,887,454 issued to Hickson, Jun. 13, 1975; however, a variety of intercalants or templates may be introduced. The intercalants or templates should have (i) water-solubility, (ii) positive charge, and (iii) thermal stability under moderately basic (pH 9-10) aqueous reflux conditions or hydrothermal pressurized conditions for the montmorillonite-type clays.

  20. Organic or organometallic template mediated clay synthesis

    DOEpatents

    Gregar, K.C.; Winans, R.E.; Botto, R.E.

    1994-05-03

    A method is described for incorporating diverse varieties of intercalates or templates directly during hydrothermal synthesis of clays such as hectorite or montmorillonite-type layer-silicate clays. For a hectorite layer-silicate clay, refluxing a gel of silica sol, magnesium hydroxide sol and lithium fluoride for two days in the presence of an organic or organometallic intercalate or template results in crystalline products containing either (a) organic dye molecules such as ethyl violet and methyl green, (b) dye molecules such as alcian blue that are based on a Cu(II)-phthalocyannine complex, or (c) transition metal complexes such as Ru(II)phenanthroline and Co(III)sepulchrate or (d) water-soluble porphyrins and metalloporphyrins. Montmorillonite-type clays are made by the method taught by U.S. Pat. No. 3,887,454 issued to Hickson, Jun. 13, 1975; however, a variety of intercalates or templates may be introduced. The intercalates or templates should have (i) water-solubility, (ii) positive charge, and (iii) thermal stability under moderately basic (pH 9-10) aqueous reflux conditions or hydrothermal pressurized conditions for the montmorillonite-type clays. 22 figures.

  1. Templated Electrodeposition of Highly Porous Nanostructured Materials

    NASA Astrophysics Data System (ADS)

    Yang, Han-Chang; Lim, Stephanie; Liu, Jiabin; Wu, Qian; Cheng, X. M.

    2011-03-01

    The fabrication of nanoporous materials has been of great interest for applications such as biosensors, photonic materials and energy storage. Compared to many other methods, the templated electrodeposition method is low cost, fast, and compatible with large-scale production. In this work, we developed a templated electrochemical deposition technique for fabricating highly ordered and highly porous nanostructured materials. The fabrication involves the following steps: self-assembly of monodispersed polystyrene spheres, electrochemical deposition of the desired materials, and sphere removal by a dissolution process. Deposition of Au and Ni layered metallic nanoporous structures were studied using different electrolytes at appropriate potentials. The pore size of the materials was tuned by using different sizes of template polystyrene spheres ranging from 50nm to 1000nm. Scanning electron microscopy images confirmed the highly ordered 3-dimensional hexagonal closed pack (hcp) structures in the samples. The templated electrochemical deposition technique provides a promising alternative approach to preparing highly porous anode materials for battery applications. Work supported by Bryn Mawr K/G fund for faculty research.

  2. Templates Aid Removal Of Defects From Castings

    NASA Technical Reports Server (NTRS)

    Hendrickson, Robert G.

    1992-01-01

    Templates used to correlate defects in castings with local wall thicknesses. Placed on part to be inspected after coated with penetrant dye. Positions of colored spots (indicative of defects) noted. Ultrasonic inspector measures thickness of wall at unacceptable defects only - overall inspection not necessary.

  3. ARA testbed template based UHE neutrino search

    NASA Astrophysics Data System (ADS)

    Prohira, Steven

    2014-03-01

    The Askaryan Radio Array (ARA) is an in-ice Antarctic neutrino detector deployed near the South Pole. ARA is designed to detect ultra high energy (UHE) neutrinos in the range of 0.1-10 EeV. Data from the ARA testbed, deployed in the 2010-2011 season, is used for a template based neutrino search. Askaryan Radio Array.

  4. Imaginal disc regeneration takes flight.

    PubMed

    Hariharan, Iswar K; Serras, Florenci

    2017-04-01

    Drosophila imaginal discs, the larval precursors of adult structures such as the wing and leg, are capable of regenerating after damage. During the course of regeneration, discs can sometimes generate structures that are appropriate for a different type of disc, a phenomenon termed transdetermination. Until recently, these phenomena were studied by physically fragmenting discs and then transplanting them into the abdomens of adult female flies. This field has experienced a renaissance following the development of genetic ablation systems that can damage precisely defined regions of the disc without the need for surgery. Together with more traditional approaches, these newer methods have generated many novel insights into wound healing, the mechanisms that drive regenerative growth, plasticity during regeneration and systemic effects of tissue damage and regeneration.

  5. A numerical method of regenerator

    NASA Astrophysics Data System (ADS)

    Zhu, Shaowei; Matsubara, Yoichi

    2004-02-01

    A numerical method for regenerators is introduced in this paper. It is not only suitable for the regenerators in cryocoolers and Stirling engines, but also suitable for the stacks in acoustic engines and the pulse tubes in pulse tube refrigerators. The numerical model is one dimensional periodic unsteady flow model. The numerical method is based on the control volume concept with the implicitly solve method. The iteration acceleration method, which considers the one-dimensional periodic unsteady problem as the steady two-dimensional problem, is used for decreasing the calculation time. By this method, the regenerator in an inertance tube pulse tube refrigerator was simulated. The result is useful for understanding how the inefficiency of the regenerator changes with the inertance effect.

  6. Tissue engineering for periodontal regeneration.

    PubMed

    Kao, Richard T; Conte, Greg; Nishimine, Dee; Dault, Scott

    2005-03-01

    As a result of periodontal regeneration research, a series of clinical techniques have emerged that permit tissue engineering to be performed for more efficient regeneration and repair of periodontal defects and improved implant site development. Historically, periodontal regeneration research has focused on a quest for "magic filler" material. This search has led to the development of techniques utilizing autologous bone and bone marrow, allografts, xenografts, and various man-made bone substitutes. Though these techniques have had limited success, the desire for a more effective regenerative approach has resulted in the development of tissue engineering techniques. Tissue engineering is a relatively new field of reconstructive biology which utilizes mechanical, cellular, or biologic mediators to facilitate reconstruction/regeneration of a particular tissue. In periodontology, the concept of tissue engineering had its beginnings with guided tissue regeneration, a mechanical approach utilizing nonresorbable membranes to obtain regeneration in defects. In dental implantology, guided bone regeneration membranes +/- mechanical support are used for bone augmentation of proposed implant placement sites. With the availability of partially purified protein mixture from developing teeth and growth factors from recombinant technology, a new era of tissue engineering whereby biologic mediators can be used for periodontal regeneration. The advantage of recombinant growth factors is this tissue engineering device is consistent in its regenerative capacity, and variations in regenerative response are due to individual healing response and/or poor surgical techniques. In this article, the authors review how tissue engineering has advanced and discuss its impact on the clinical management of both periodontal and osseous defects in preparation for implant placement. An understanding of these new tissue engineering techniques is essential for comprehending today's ever

  7. Regeneration and Remodeling of Materials

    DTIC Science & Technology

    2012-08-01

    Turchyn (Chem) Brett Krull (MatSE) Concepts and Motivation Regeneration and Remodeling in biology: Tree skink lizard Linckia starfish Human Bone...Damage Fill Pumping Regime Microchannels in Specimen Overhead Camera Damage Regeneration Setup 45mm 2mm Pressurized Delivery 5.0 mm gap with bi...phase resin 4.0 mm gap (PDMS healing system) 3.5 mm gap (PDMS healing system) Damage Filling Results Maximum Fill Size PDMS Pre-mixed Epoxy 3mm

  8. Templated Self Assemble of Nano-Structures

    SciTech Connect

    Suo, Zhigang

    2013-04-29

    This project will identify and model mechanisms that template the self-assembly of nanostructures. We focus on a class of systems involving a two-phase monolayer of molecules adsorbed on a solid surface. At a suitably elevated temperature, the molecules diffuse on the surface to reduce the combined free energy of mixing, phase boundary, elastic field, and electrostatic field. With no template, the phases may form a pattern of stripes or disks. The feature size is on the order of 1-100 nm, selected to compromise the phase boundary energy and the long-range elastic or electrostatic interaction. Both experimental observations and our theoretical simulations have shown that the pattern resembles a periodic lattice, but has abundant imperfections. To form a perfect periodic pattern, or a designed aperiodic pattern, one must introduce a template to guide the assembly. For example, a coarse-scale pattern, lithographically defined on the substrate, will guide the assembly of the nanoscale pattern. As another example, if the molecules on the substrate surface carry strong electric dipoles, a charged object, placed in the space above the monolayer, will guide the assembly of the molecular dipoles. In particular, the charged object can be a mask with a designed nanoscale topographic pattern. A serial process (e.g., e-beam lithography) is necessary to make the mask, but the pattern transfer to the molecules on the substrate is a parallel process. The technique is potentially a high throughput, low cost process to pattern a monolayer. The monolayer pattern itself may serve as a template to fabricate a functional structure. This project will model fundamental aspects of these processes, including thermodynamics and kinetics of self-assembly, templated self-assembly, and self-assembly on unconventional substrates. It is envisioned that the theory will not only explain the available experimental observations, but also motivate new experiments.

  9. Approaches towards endogenous pancreatic regeneration.

    PubMed

    Banerjee, Meenal; Kanitkar, Meghana; Bhonde, Ramesh R

    2005-01-01

    The phenomenon of pancreatic regeneration in mammals has been well documented. It has been shown that pancreatic tissue is able to regenerate in several species of mammal after surgical insult. This tissue is also known to have the potential to maintain or increase its beta-cell mass in response to metabolic demands during pregnancy and obesity. Since deficiency in beta-cell mass is the hallmark of most forms of diabetes, it is worthwhile understanding pancreatic regeneration in the context of this disease. With this view in mind, this article aims to discuss the potential use in clinical strategies of knowledge that we obtained from studies carried out in animal models of diabetes. Approaches to achieve this goal involve the use of biomolecules, adult stem cells and gene therapy. Various molecules, such as glucagon-like peptide-1, beta-cellulin, nicotinamide, gastrin, epidermal growth factor-1 and thyroid hormone, play major roles in the initiation of endogenous islet regeneration in diabetes. The most accepted hypothesis is that these molecules stimulate islet precursor cells to undergo neogenesis or to induce replication of existing beta-cells, emphasizing the importance of pancreas-resident stem/progenitor cells in islet regeneration. Moreover, the potential of adult stem cell population from bone marrow, umbilical cord blood, liver, spleen, or amniotic membrane, is also discussed with regard to their potential to induce pancreatic regeneration.

  10. Visual cluster analysis and pattern recognition template and methods

    DOEpatents

    Osbourn, G.C.; Martinez, R.F.

    1999-05-04

    A method of clustering using a novel template to define a region of influence is disclosed. Using neighboring approximation methods, computation times can be significantly reduced. The template and method are applicable and improve pattern recognition techniques. 30 figs.

  11. Visual cluster analysis and pattern recognition template and methods

    DOEpatents

    Osbourn, Gordon Cecil; Martinez, Rubel Francisco

    1999-01-01

    A method of clustering using a novel template to define a region of influence. Using neighboring approximation methods, computation times can be significantly reduced. The template and method are applicable and improve pattern recognition techniques.

  12. 48 CFR 302.7100 - HHS standard templates and formats.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... GENERAL DEFINITIONS OF WORDS AND TERMS HHS Standard Templates and Formats 302.7100 HHS standard templates..., may be accessed on the ASFR/OGAPA/DA Internet Web site. A complete listing of the standard...

  13. Visual cluster analysis and pattern recognition template and methods

    SciTech Connect

    Osbourn, G.C.; Martinez, R.F.

    1993-12-31

    This invention is comprised of a method of clustering using a novel template to define a region of influence. Using neighboring approximation methods, computation times can be significantly reduced. The template and method are applicable and improve pattern recognition techniques.

  14. Biomaterials for periodontal regeneration

    PubMed Central

    Shue, Li; Yufeng, Zhang; Mony, Ullas

    2012-01-01

    Periodontal disease is characterized by the destruction of periodontal tissues. Various methods of regenerative periodontal therapy, including the use of barrier membranes, bone replacement grafts, growth factors and the combination of these procedures have been investigated. The development of biomaterials for tissue engineering has considerably improved the available treatment options above. They fall into two broad classes: ceramics and polymers. The available ceramic-based materials include calcium phosphate (eg, tricalcium phosphate and hydroxyapatite), calcium sulfate and bioactive glass. The bioactive glass bonds to the bone with the formation of a layer of carbonated hydroxyapatite in situ. The natural polymers include modified polysaccharides (eg, chitosan,) and polypeptides (collagen and gelatin). Synthetic polymers [eg, poly(glycolic acid), poly(L-lactic acid)] provide a platform for exhibiting the biomechanical properties of scaffolds in tissue engineering. The materials usually work as osteogenic, osteoconductive and osteoinductive scaffolds. Polymers are more widely used as a barrier material in guided tissue regeneration (GTR). They are shown to exclude epithelial downgrowth and allow periodontal ligament and alveolar bone cells to repopulate the defect. An attempt to overcome the problems related to a collapse of the barrier membrane in GTR or epithelial downgrowth is the use of a combination of barrier membranes and grafting materials. This article reviews various biomaterials including scaffolds and membranes used for periodontal treatment and their impacts on the experimental or clinical management of periodontal defect. PMID:23507891

  15. Regenerable biocide delivery unit

    NASA Technical Reports Server (NTRS)

    Sauer, Richard L. (Inventor); Colombo, Gerald V. (Inventor); Jolly, Clifford D. (Inventor)

    1993-01-01

    A method and apparatus are disclosed for maintaining continuous, long-term microbial control in the water supply for potable, hygiene, and experimental water for space activities, as well as treatment of water supplies on Earth. The water purification is accomplished by introduction of molecular iodine into the water supply to impart a desired iodine residual. The water is passed through an iodinated anion exchange resin bed. The iodine is bound as I-(sub n) at the anion exchange sites and releases I(sub 2) into the water stream flowing through the bed. The concentration of I(sub 2) in the flowing water gradually decreases and, in the prior art, the ion-exchange bed has had to be replaced. In a preferred embodiment, a bed of iodine crystals is provided with connections for flowing water therethrough to produce a concentrated (substantially saturated) aqueous iodine solution which is passed through the iodinated resin bed to recharge the bed with bound iodine. The bed of iodine crystals is connected in parallel with the iodinated resin bed and is activated periodically (e.g., by timer, by measured flow of water, or by iodine residual level) to recharge the bed. Novelty resides in the capability of inexpensively and repeatedly regenerating the ion-exchange bed in situ.

  16. Emergency department documentation templates: variability in template selection and association with physical examination and test ordering in dizziness presentations.

    PubMed

    Kerber, Kevin A; Hofer, Timothy P; Meurer, William J; Fendrick, A Mark; Morgenstern, Lewis B

    2011-03-24

    Clinical documentation systems, such as templates, have been associated with process utilization. The T-System emergency department (ED) templates are widely used but lacking are analyses of the templates association with processes. This system is also unique because of the many different template options available, and thus the selection of the template may also be important. We aimed to describe the selection of templates in ED dizziness presentations and to investigate the association between items on templates and process utilization. Dizziness visits were captured from a population-based study of EDs that use documentation templates. Two relevant process outcomes were assessed: head computerized tomography (CT) scan and nystagmus examination. Multivariable logistic regression was used to estimate the probability of each outcome for patients who did or did not receive a relevant-item template. Propensity scores were also used to adjust for selection effects. The final cohort was 1,485 visits. Thirty-one different templates were used. Use of a template with a head CT item was associated with an increase in the adjusted probability of head CT utilization from 12.2% (95% CI, 8.9%-16.6%) to 29.3% (95% CI, 26.0%-32.9%). The adjusted probability of documentation of a nystagmus assessment increased from 12.0% (95%CI, 8.8%-16.2%) when a nystagmus-item template was not used to 95.0% (95% CI, 92.8%-96.6%) when a nystagmus-item template was used. The associations remained significant after propensity score adjustments. Providers use many different templates in dizziness presentations. Important differences exist in the various templates and the template that is used likely impacts process utilization, even though selection may be arbitrary. The optimal design and selection of templates may offer a feasible and effective opportunity to improve care delivery.

  17. Emergency department documentation templates: variability in template selection and association with physical examination and test ordering in dizziness presentations

    PubMed Central

    2011-01-01

    Background Clinical documentation systems, such as templates, have been associated with process utilization. The T-System emergency department (ED) templates are widely used but lacking are analyses of the templates association with processes. This system is also unique because of the many different template options available, and thus the selection of the template may also be important. We aimed to describe the selection of templates in ED dizziness presentations and to investigate the association between items on templates and process utilization. Methods Dizziness visits were captured from a population-based study of EDs that use documentation templates. Two relevant process outcomes were assessed: head computerized tomography (CT) scan and nystagmus examination. Multivariable logistic regression was used to estimate the probability of each outcome for patients who did or did not receive a relevant-item template. Propensity scores were also used to adjust for selection effects. Results The final cohort was 1,485 visits. Thirty-one different templates were used. Use of a template with a head CT item was associated with an increase in the adjusted probability of head CT utilization from 12.2% (95% CI, 8.9%-16.6%) to 29.3% (95% CI, 26.0%-32.9%). The adjusted probability of documentation of a nystagmus assessment increased from 12.0% (95%CI, 8.8%-16.2%) when a nystagmus-item template was not used to 95.0% (95% CI, 92.8%-96.6%) when a nystagmus-item template was used. The associations remained significant after propensity score adjustments. Conclusions Providers use many different templates in dizziness presentations. Important differences exist in the various templates and the template that is used likely impacts process utilization, even though selection may be arbitrary. The optimal design and selection of templates may offer a feasible and effective opportunity to improve care delivery. PMID:21435250

  18. Textile-templated electrospun anisotropic scaffolds for regenerative cardiac tissue engineering.

    PubMed

    Şenel Ayaz, H Gözde; Perets, Anat; Ayaz, Hasan; Gilroy, Kyle D; Govindaraj, Muthu; Brookstein, David; Lelkes, Peter I

    2014-10-01

    For patients with end-stage heart disease, the access to heart transplantation is limited due to the shortage of donor organs and to the potential for rejection of the donated organ. Therefore, current studies focus on bioengineering approaches for creating biomimetic cardiac patches that will assist in restoring cardiac function, by repairing and/or regenerating the intrinsically anisotropic myocardium. In this paper we present a simplified, straightforward approach for creating bioactive anisotropic cardiac patches, based on a combination of bioengineering and textile-manufacturing techniques in concert with nano-biotechnology based tissue-engineering stratagems. Using knitted conventional textiles, made of cotton or polyester yarns as template targets, we successfully electrospun anisotropic three-dimensional scaffolds from poly(lactic-co-glycolic) acid (PLGA), and thermoplastic polycarbonate-urethane (PCU, Bionate(®)). The surface topography and mechanical properties of textile-templated anisotropic scaffolds significantly differed from those of scaffolds electrospun from the same materials onto conventional 2-D flat-target electrospun scaffolds. Anisotropic textile-templated scaffolds electrospun from both PLGA and PCU, supported the adhesion and proliferation of H9C2 cardiac myoblasts cell line, and guided the cardiac tissue-like anisotropic organization of these cells in vitro. All cell-seeded PCU scaffolds exhibited mechanical properties comparable to those of a human heart, but only the cells on the polyester-templated scaffolds exhibited prolonged spontaneous synchronous contractility on the entire engineered construct for 10 days in vitro at a near physiologic frequency of ∼120 bpm. Taken together, the methods described here take advantage of straightforward established textile manufacturing strategies as an efficient and cost-effective approach to engineering 3D anisotropic, elastomeric PCU scaffolds that can serve as a cardiac patch.

  19. 21 CFR 888.4800 - Template for clinical use.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Template for clinical use. 888.4800 Section 888...) MEDICAL DEVICES ORTHOPEDIC DEVICES Surgical Devices § 888.4800 Template for clinical use. (a) Identification. A template for clinical use is a device that consists of a pattern or guide intended for...

  20. Chemical Strategies for Template Syntheses of Composite Micro and Nanostructures.

    DTIC Science & Technology

    1997-05-02

    CHEMICAL STRATEGIES FOR TEMPLATE SYNTHESES OF COMPOSITE MICRO AND NANOSTRUCTURES Veronica M. Cepak, John C. Hulteen, Guangli Che, Kshama B. Jirage...for the first time, template-based syntheses of composite micro and nanostructures in which an outer tubule composed of one material encapsulates...ropolymerizations. The template method for preparing nanomaterials entails synthesis of monodisperse tubular and fibrillar nanostructures within the

  1. Template changes with perceptual learning are driven by feature informativeness

    PubMed Central

    Kurki, Ilmari; Eckstein, Miguel P.

    2014-01-01

    Perceptual learning changes the way the human visual system processes stimulus information. Previous studies have shown that the human brain's weightings of visual information (the perceptual template) become better matched to the optimal weightings. However, the dynamics of the template changes are not well understood. We used the classification image method to investigate whether visual field or stimulus properties govern the dynamics of the changes in the perceptual template. A line orientation discrimination task where highly informative parts were placed in the peripheral visual field was used to test three hypotheses: (1) The template changes are determined by the visual field structure, initially covering stimulus parts closer to the fovea and expanding toward the periphery with learning; (2) the template changes are object centered, starting from the center and expanding toward edges; and (3) the template changes are determined by stimulus information, starting from the most informative parts and expanding to less informative parts. Results show that, initially, the perceptual template contained only the more peripheral, highly informative parts. Learning expanded the template to include less informative parts, resulting in an increase in sampling efficiency. A second experiment interleaved parts with high and low signal-to-noise ratios and showed that template reweighting through learning was restricted to stimulus elements that are spatially contiguous to parts with initial high template weights. The results suggest that the informativeness of features determines how the perceptual template changes with learning. Further, the template expansion is constrained by spatial proximity. PMID:25194018

  2. Chemical-template synthesis of micro/nanoscale magnesium silicate hollow spheres for waste-water treatment.

    PubMed

    Wang, Yongqiang; Wang, Guozhong; Wang, Hongqiang; Liang, Changhao; Cai, Weiping; Zhang, Lide

    2010-03-15

    Micro/nanoscale magnesium silicate hollow spheres were synthesized by using silica colloidal spheres as a chemical template in one pot. The hollow spherical structure, consisting of well-separated nanoscale units, was microscale as a whole and could be easily handled in solution. The as-synthesized magnesium silicate hollow spheres with large specific surface area showed availability for the removal of organic and heavy-metal ions efficiently from waste water. Importantly, the micro/nanoscale magnesium silicate hollow spheres that had adsorbed organic pollutants could be regenerated by calcination and used repeatedly in pollutant removal. Magnesium silicate hollow spheres synthesized by a scaled-up chemical template method may have potential applications in removing cationic dyes and heavy-metal ions from waste water.

  3. Template based rotation: a method for functional connectivity analysis with a priori templates.

    PubMed

    Schultz, Aaron P; Chhatwal, Jasmeer P; Huijbers, Willem; Hedden, Trey; van Dijk, Koene R A; McLaren, Donald G; Ward, Andrew M; Wigman, Sarah; Sperling, Reisa A

    2014-11-15

    Functional connectivity magnetic resonance imaging (fcMRI) is a powerful tool for understanding the network level organization of the brain in research settings and is increasingly being used to study large-scale neuronal network degeneration in clinical trial settings. Presently, a variety of techniques, including seed-based correlation analysis and group independent components analysis (with either dual regression or back projection) are commonly employed to compute functional connectivity metrics. In the present report, we introduce template based rotation,(1) a novel analytic approach optimized for use with a priori network parcellations, which may be particularly useful in clinical trial settings. Template based rotation was designed to leverage the stable spatial patterns of intrinsic connectivity derived from out-of-sample datasets by mapping data from novel sessions onto the previously defined a priori templates. We first demonstrate the feasibility of using previously defined a priori templates in connectivity analyses, and then compare the performance of template based rotation to seed based and dual regression methods by applying these analytic approaches to an fMRI dataset of normal young and elderly subjects. We observed that template based rotation and dual regression are approximately equivalent in detecting fcMRI differences between young and old subjects, demonstrating similar effect sizes for group differences and similar reliability metrics across 12 cortical networks. Both template based rotation and dual-regression demonstrated larger effect sizes and comparable reliabilities as compared to seed based correlation analysis, though all three methods yielded similar patterns of network differences. When performing inter-network and sub-network connectivity analyses, we observed that template based rotation offered greater flexibility, larger group differences, and more stable connectivity estimates as compared to dual regression and seed based

  4. Cementum and Periodontal Ligament Regeneration.

    PubMed

    Menicanin, Danijela; Hynes, K; Han, J; Gronthos, S; Bartold, P M

    2015-01-01

    The unique anatomy and composition of the periodontium make periodontal tissue healing and regeneration a complex process. Periodontal regeneration aims to recapitulate the crucial stages of wound healing associated with periodontal development in order to restore lost tissues to their original form and function and for regeneration to occur, healing events must progress in an ordered and programmed sequence both temporally and spatially, replicating key developmental events. A number of procedures have been employed to promote true and predictable regeneration of the periodontium. Principally, the approaches are based on the use of graft materials to compensate for the bone loss incurred as a result of periodontal disease, use of barrier membranes for guided tissue regeneration and use of bioactive molecules. More recently, the concept of tissue engineering has been integrated into research and applications of regenerative dentistry, including periodontics, to aim to manage damaged and lost oral tissues, through reconstruction and regeneration of the periodontium and alleviate the shortcomings of more conventional therapeutic options. The essential components for generating effective cellular based therapeutic strategies include a population of multi-potential progenitor cells, presence of signalling molecules/inductive morphogenic signals and a conductive extracellular matrix scaffold or appropriate delivery system. Mesenchymal stem cells are considered suitable candidates for cell-based tissue engineering strategies owing to their extensive expansion rate and potential to differentiate into cells of multiple organs and systems. Mesenchymal stem cells derived from multiple tissue sources have been investigated in pre-clinical animal studies and clinical settings for the treatment and regeneration of the periodontium.

  5. a Low Temperature Regenerator Test Facility

    NASA Astrophysics Data System (ADS)

    Kashani, A.; Helvensteijn, B. P. M.; Feller, J. R.; Salerno, L. J.; Kittel, P.

    2008-03-01

    Testing regenerators presents an interesting challenge. When incorporated into a cryocooler, a regenerator is intimately coupled to the other components: expander, heat exchangers, and compressor. It is difficult to isolate the performance of any single component. We have developed a low temperature test facility that will allow us to separate the performance of the regenerator from the rest of the cryocooler. The purpose of the facility is the characterization of test regenerators using novel materials and/or geometries in temperature ranges down to 15 K. It consists of the following elements: The test column has two regenerators stacked in series. The coldest stage regenerator is the device under test. The warmer stage regenerator contains a stack of stainless steel screen, a well-characterized material. A commercial cryocooler is used to fix the temperatures at both ends of the test regenerator, cooling both heat exchangers flanging the regenerator stack. Heaters allow varying the temperatures and allow measurement of the remaining cooling power, and thus, regenerator effectiveness. A linear compressor delivers an oscillating pressure to the regenerator assembly. An inertance tube and reservoir provide the proper phase difference between mass flow and pressure. This phase shift, along with the imposed temperature differential, simulates the conditions of the test regenerator when used in an actual pulse tube cryocooler. This paper presents development details of the regenerator test facility, and test results on a second stage, stainless steel screen test regenerator.

  6. A multi-template combination algorithm for protein comparative modeling

    PubMed Central

    Cheng, Jianlin

    2008-01-01

    Background Multiple protein templates are commonly used in manual protein structure prediction. However, few automated algorithms of selecting and combining multiple templates are available. Results Here we develop an effective multi-template combination algorithm for protein comparative modeling. The algorithm selects templates according to the similarity significance of the alignments between template and target proteins. It combines the whole template-target alignments whose similarity significance score is close to that of the top template-target alignment within a threshold, whereas it only takes alignment fragments from a less similar template-target alignment that align with a sizable uncovered region of the target. We compare the algorithm with the traditional method of using a single top template on the 45 comparative modeling targets (i.e. easy template-based modeling targets) used in the seventh edition of Critical Assessment of Techniques for Protein Structure Prediction (CASP7). The multi-template combination algorithm improves the GDT-TS scores of predicted models by 6.8% on average. The statistical analysis shows that the improvement is significant (p-value < 10-4). Compared with the ideal approach that always uses the best template, the multi-template approach yields only slightly better performance. During the CASP7 experiment, the preliminary implementation of the multi-template combination algorithm (FOLDpro) was ranked second among 67 servers in the category of high-accuracy structure prediction in terms of GDT-TS measure. Conclusion We have developed a novel multi-template algorithm to improve protein comparative modeling. PMID:18366648

  7. Template analysis of a Faraday disk dynamo

    NASA Astrophysics Data System (ADS)

    Moroz, I. M.

    2008-12-01

    In a recent paper Moroz [1] returned to a nonlinear three-dimensional model of dynamo action for a self-exciting Faraday disk dynamo introduced by Hide et al. [2]. Since only two examples of chaotic behaviour were shown in [2], Moroz [1] performed a more extensive analysis of the dynamo model, producing a selection of bifurcation transition diagrams, including those encompassing the two examples of chaotic behaviour in [2]. Unstable periodic orbits were extracted and presented in [1], but no attempt was made to identify the underlying chaotic attractor. We rectify that here. Illustrating the procedure with one of the cases considered in [1], we use some of the unstable periodic orbits to identify a possible template for the chaotic attractor, using ideas from topology [3]. In particular, we investigate how the template is affected by changes in bifurcation parameter.

  8. Macroporous polymer foams by hydrocarbon templating.

    PubMed

    Shastri, V P; Martin, I; Langer, R

    2000-02-29

    Porous polymeric media (polymer foams) are utilized in a wide range of applications, such as thermal and mechanical insulators, solid supports for catalysis, and medical devices. A process for the production of polymer foams has been developed. This process, which is applicable to a wide range of polymers, uses a hydrocarbon particulate phase as a template for the precipitation of the polymer phase and subsequent pore formation. The use of a hydrocarbon template allows for enhanced control over pore structure, porosity, and other structural and bulk characteristics of the polymer foam. Polymer foams with densities as low as 120 mg/cc, porosity as high as 87%, and high surface areas (20 m(2)/g) have been produced. Foams of poly(l-lactic acid), a biodegradable polymer, produced by this process have been used to engineer a variety of different structures, including tissues with complex geometries such as in the likeness of a human nose.

  9. A template for integrated community sustainability planning.

    PubMed

    Ling, Christopher; Hanna, Kevin; Dale, Ann

    2009-08-01

    This article describes a template for implementing an integrated community sustainability plan. The template emphasizes community engagement and outlines the components of a basic framework for integrating ecological, social and economic dynamics into a community plan. The framework is a series of steps that support a sustainable community development process. While it reflects the Canadian experience, the tools and techniques have applied value for a range of environmental planning contexts around the world. The research is case study based and draws from a diverse range of communities representing many types of infrastructure, demographics and ecological and geographical contexts. A critical path for moving local governments to sustainable community development is the creation and implementation of integrated planning approaches. To be effective and to be implemented, a requisite shift to sustainability requires active community engagement processes, political will, and a commitment to political and administrative accountability, and measurement.

  10. Carbon Nanotube Templated Asembly of Protein

    SciTech Connect

    Liu, Guodong; Lin, Yuehe

    2006-04-01

    This paper describes a novel general strategy for fabricating protein-polyion multilayers by electrostatic layer-by-layer (LBL) self-assembly on a carbon nanotube (CNT) template. Such a noncovalent functionalization method is important for preserving the activity of biomolecules and the mechanical and electrical properties of CNTs. Glucose oxidase and poly (diallydimethylammonium) chloride polymer were used as a model to investigate the LBL process on a CNT template. High-resolution transmission electron microscopy and electrochemical characterization confirm the formation of LBL nanostructures on carboxyl functionalized CNTs. We have also demonstrated the applications of these nanoshell bioreactors to the direct electrochemistry of proteins and biosensing. This strategy can be applied to assemble other biological molecules, such as antibodies, antigens, and DNA, for wide bioassay applications.

  11. Assessing particle kinematics via template matching algorithms.

    PubMed

    Weber, M; Fink, M; Fortov, V; Lipaev, A; Molotkov, V; Morfill, G; Petrov, O; Pustylnik, M; Thoma, M; Thomas, H; Usachev, A; Raeth, C

    2016-04-18

    Template matching algorithms represent a viable tool to locate particles in optical images. A crucial factor of the performance of these methods is the choice of the similarity measure. Recently, it was shown in [Gao and Helgeson, Opt. Express 22 (2014)] that the correlation coefficient (CC) leads to good results. Here, we introduce the mutual information (MI) as a nonlinear similarity measure and compare the performance of the MI and the CC for different noise scenarios. It turns out that the mutual information leads to superior results in the case of signal dependent noise. We propose a novel approach to estimate the velocity of particles which is applicable in imaging scenarios where the particles appear elongated due to their movement. By designing a bank of anisotropic templates supposed to fit the elongation of the particles we are able to reliably estimate their velocity and direction of motion out of a single image.

  12. Metathesis depolymerization for removable surfactant templates.

    SciTech Connect

    Zifer, Thomas; Wheeler, David Roger; Rahimian, Kamayar; McElhanon, James Ross; Long, Timothy Michael; Jamison, Gregory Marks; Loy, Douglas Anson; Kline, Steven R.; Simmons, Blake Alexander

    2005-03-01

    Current methodologies for the production of meso- and nanoporous materials include the use of a surfactant to produce a self-assembled template around which the material is formed. However, post-production surfactant removal often requires centrifugation, calcination, and/or solvent washing which can damage the initially formed material architecture(s). Surfactants that can be disassembled into easily removable fragments following material preparation would minimize processing damage to the material structure, facilitating formation of templated hybrid architectures. Herein, we describe the design and synthesis of novel cationic and anionic surfactants with regularly spaced unsaturation in their hydrophobic hydrocarbon tails and the first application of ring closing metathesis depolymerization to surfactant degradation resulting in the mild, facile decomposition of these new compounds to produce relatively volatile nonsurface active remnants.

  13. Macroporous polymer foams by hydrocarbon templating

    PubMed Central

    Shastri, Venkatram Prasad; Martin, Ivan; Langer, Robert

    2000-01-01

    Porous polymeric media (polymer foams) are utilized in a wide range of applications, such as thermal and mechanical insulators, solid supports for catalysis, and medical devices. A process for the production of polymer foams has been developed. This process, which is applicable to a wide range of polymers, uses a hydrocarbon particulate phase as a template for the precipitation of the polymer phase and subsequent pore formation. The use of a hydrocarbon template allows for enhanced control over pore structure, porosity, and other structural and bulk characteristics of the polymer foam. Polymer foams with densities as low as 120 mg/cc, porosity as high as 87%, and high surface areas (20 m2/g) have been produced. Foams of poly(l-lactic acid), a biodegradable polymer, produced by this process have been used to engineer a variety of different structures, including tissues with complex geometries such as in the likeness of a human nose. PMID:10696111

  14. A plug and play polymeric template driven by supramolecular interactions.

    PubMed

    Xiao, Wang; Chen, Wei-Hai; Li, Cao; Chen, Jin-Xiao; Zhang, Xian-Zheng; Zhuo, Ren-Xi

    2012-01-01

    A new "plug and play" polymeric template with the driving force of host-guest interaction between β-CD and naphthalene-modified functional groups was designed and studied. Multiple functional groups can be loaded into the template directly and conveniently. Importantly, the "plug and play" effect of the polymeric template is reversible and the functional groups could be removed from the polymeric template conveniently by adding AD-HCl. The studies on the cell viability and phagocytosis proved that the loading and unloading process of this template could be realized in vitro. Copyright © 2011 Wiley Periodicals, Inc.

  15. Multibiometric Systems: Fusion Strategies and Template Security

    DTIC Science & Technology

    2008-01-01

    gratitude to Linda Moore, Debbie Kruch, Cathy Davison, Starr Portice, Norma Teague, Kim Thompson, Cathy Sparks, Sue Watson and Adam Pitcher for their...Weighted sum rule Red, Green , Blue channels for face [109] Match score Sum and min rules [166] Feature; match score Feature selection and concatenation...FVC2002-DB2 database, mosaiced template leads to a GAR of 94% and 3The core point was detected using the commercial Neurotechnologija Verifinger software

  16. Template Synthesis of Electronically Conductive Polymers

    DTIC Science & Technology

    1993-12-01

    polyace.ylene (7), and polyaniline (8). This enhancement in conductivity results from enhancements in molecular and supermolecular order in the template...present conductivity data for polyaniline tubules synthesized within these membranes. The monomer solution was 0.325 M in aniline and 1 M in HCI. The...polymerization, the polyaniline surface layers were removed by polishing the faces of the membrane with alumina powder, and the tubule-impregnated membrane

  17. Deep Human Parsing with Active Template Regression.

    PubMed

    Liang, Xiaodan; Liu, Si; Shen, Xiaohui; Yang, Jianchao; Liu, Luoqi; Dong, Jian; Lin, Liang; Yan, Shuicheng

    2015-12-01

    In this work, the human parsing task, namely decomposing a human image into semantic fashion/body regions, is formulated as an active template regression (ATR) problem, where the normalized mask of each fashion/body item is expressed as the linear combination of the learned mask templates, and then morphed to a more precise mask with the active shape parameters, including position, scale and visibility of each semantic region. The mask template coefficients and the active shape parameters together can generate the human parsing results, and are thus called the structure outputs for human parsing. The deep Convolutional Neural Network (CNN) is utilized to build the end-to-end relation between the input human image and the structure outputs for human parsing. More specifically, the structure outputs are predicted by two separate networks. The first CNN network is with max-pooling, and designed to predict the template coefficients for each label mask, while the second CNN network is without max-pooling to preserve sensitivity to label mask position and accurately predict the active shape parameters. For a new image, the structure outputs of the two networks are fused to generate the probability of each label for each pixel, and super-pixel smoothing is finally used to refine the human parsing result. Comprehensive evaluations on a large dataset well demonstrate the significant superiority of the ATR framework over other state-of-the-arts for human parsing. In particular, the F1-score reaches 64.38 percent by our ATR framework, significantly higher than 44.76 percent based on the state-of-the-art algorithm [28].

  18. Template synthesis and characterizations of nickel nanorods

    SciTech Connect

    Ghosh, T.; Satpati, B.

    2012-06-05

    Template assisted Ni nanorods were grown using electro-deposition process and investigated using an Analytical Transmission Electron Microscope. Transmission Electron Microscopy (TEM) images and diffraction patterns reveal the polycrystalline nature of grown Ni nanorods and the composition of these nanorods were verified using energy dispersive X-ray (EDX) spectroscopy. The morphology of the grown nanorods was also characterized using Scanning Electron Microscope (SEM).

  19. CLIPS template system for program understanding

    NASA Technical Reports Server (NTRS)

    Finkbine, Ronald B.

    1994-01-01

    Program understanding is a subfield of software reengineering and attempts to recognize the run-time behavior of source code. To this point, success in this area has been limited to very small code segments. An expert system, HLAR (High-Level Algorithm Recognizer), has been written in CLIPS and recognizes three sorting algorithms, selection sort, quicksort, and heapsort. This paper describes the HLAR system in general and, in depth, the CLIPS templates used for program representation and understanding.

  20. Cell cycle regulation and regeneration.

    PubMed

    Heber-Katz, Ellen; Zhang, Yong; Bedelbaeva, Khamila; Song, Fengyu; Chen, Xiaoping; Stocum, David L

    2013-01-01

    Regeneration of ear punch holes in the MRL mouse and amputated limbs of the axolotl show a number of similarities. A large proportion of the fibroblasts of the uninjured MRL mouse ear are arrested in G2 of the cell cycle, and enter nerve-dependent mitosis after injury to form a ring-shaped blastema that regenerates the ear tissue. Multiple cell types contribute to the establishment of the regeneration blastema of the urodele limb by dedifferentiation, and there is substantial reason to believe that the cells of this early blastema are also arrested in G2, and enter mitosis under the influence of nerve-dependent factors supplied by the apical epidermal cap. Molecular analysis reveals other parallels, such as; (1) the upregulation of Evi5, a centrosomal protein that prevents mitosis by stabilizing Emi1, a protein that inhibits the degradation of cyclins by the anaphase promoting complex and (2) the expression of sodium channels by the epidermis. A central feature in the entry into the cell cycle by MRL ear fibroblasts is a natural downregulation of p21, and knockout of p21 in wild-type mice confers regenerative capacity on non-regenerating ear tissue. Whether the same is true for entry into the cell cycle in regenerating urodele limbs is presently unknown.

  1. Hindlimb suspension reduces muscle regeneration

    NASA Technical Reports Server (NTRS)

    Mozdziak, P. E.; Truong, Q.; Macius, A.; Schultz, E.

    1998-01-01

    Exposure of juvenile skeletal muscle to a weightless environment reduces growth and satellite cell mitotic activity. However, the effect of a weightless environment on the satellite cell population during muscle repair remains unknown. Muscle injury was induced in rat soleus muscles using the myotoxic snake venom, notexin. Rats were placed into hindlimb-suspended or weightbearing groups for 10 days following injury. Cellular proliferation during regeneration was evaluated using 5-bromo-2'-deoxyuridine (BrdU) immunohistochemistry and image analysis. Hindlimb suspension reduced (P < 0.05) regenerated muscle mass, regenerated myofiber diameter, uninjured muscle mass, and uninjured myofiber diameter compared to weightbearing rats. Hindlimb suspension reduced (P < 0.05) BrdU labeling in uninjured soleus muscles compared to weight-bearing muscles. However, hindlimb suspension did not abolish muscle regeneration because myofibers formed in the injured soleus muscles of hindlimb-suspended rats, and BrdU labeling was equivalent (P > 0.10) on myofiber segments isolated from the soleus muscles of hindlimb-suspended and weightbearing rats following injury. Thus, hindlimb suspension (weightlessness) does not suppress satellite cell mitotic activity in regenerating muscles before myofiber formation, but reduces growth of the newly formed myofibers.

  2. Bone Morphogenetic Proteins: Periodontal Regeneration

    PubMed Central

    Rao, Subramaniam M; Ugale, Gauri M; Warad, Shivaraj B

    2013-01-01

    Periodontitis is an infectious inflammatory disease that results in attachment loss and bone loss. Regeneration of the periodontal tissues entails de novo formation of cementum, periodontal ligament, and alveolar bone. Several different approaches are currently being explored to achieve complete, reliable, and reproducible regeneration of periodontal tissues. The therapeutic management of new bone formation is one of the key issues in successful periodontal regeneration. Bone morphogenetic proteins form a unique group of proteins within the transforming growth factor superfamily of genes and have a vital role in the regulation in the bone induction and maintenance. The activity of bone morphogenetic proteins was first identified in the 1960s, but the proteins responsible for bone induction were unknown until the purification and cloning of human bone morphogenetic proteins in the 1980s, because of their osteoinductive potential. Bone morphogenetic proteins have gained a lot of interest as therapeutic agents for treating periodontal defects. A systematic search for data related to the use of bone morphogenetic proteins for the regeneration of periodontal defects was performed to recognize studies on animals and human (PUBMED, MEDLINE, COCHRANE, and Google search). All the studies included showed noticeable regeneration of periodontal tissues with the use of BMP. PMID:23626951

  3. Cell Therapy for Cardiovascular Regeneration

    PubMed Central

    2013-01-01

    A great numbers of cardiovascular disease patients all over the world are suffering in the poor outcomes. Under this situation, cardiac regeneration therapy to reorganize the postnatal heart that is defined as a terminal differentiated-organ is a very important theme and mission for human beings. However, the temporary success of several clinical trials using usual cell types with uncertain cell numbers has provided the transient effect of cell therapy to these patients. We therefore should redevelop the evidence of cell-based cardiovascular regeneration therapy, focusing on targets (disease, patient’s status, cardiac function), materials (cells, cytokines, genes), and methodology (transplantation route, implantation technology, tissue engineering). Meanwhile, establishment of the induced pluripotent stem (iPS) cells is an extremely innovative technology which should be proposed as embryonic stem (ES) cellularization of post natal somatic cells, and this application have also showed the milestones of the direct conversion to reconstruct cardiomyocyte from the various somatic cells, which does not need the acquisition of the re-pluripotency. This review discusses the new advance in cardiovascular regeneration therapy from cardiac regeneration to cardiac re-organization, which is involved in recent progress of on-going clinical trials, basic research in cardiovascular regeneration, and the possibility of tissue engineering technology. PMID:23825492

  4. Hindlimb suspension reduces muscle regeneration

    NASA Technical Reports Server (NTRS)

    Mozdziak, P. E.; Truong, Q.; Macius, A.; Schultz, E.

    1998-01-01

    Exposure of juvenile skeletal muscle to a weightless environment reduces growth and satellite cell mitotic activity. However, the effect of a weightless environment on the satellite cell population during muscle repair remains unknown. Muscle injury was induced in rat soleus muscles using the myotoxic snake venom, notexin. Rats were placed into hindlimb-suspended or weightbearing groups for 10 days following injury. Cellular proliferation during regeneration was evaluated using 5-bromo-2'-deoxyuridine (BrdU) immunohistochemistry and image analysis. Hindlimb suspension reduced (P < 0.05) regenerated muscle mass, regenerated myofiber diameter, uninjured muscle mass, and uninjured myofiber diameter compared to weightbearing rats. Hindlimb suspension reduced (P < 0.05) BrdU labeling in uninjured soleus muscles compared to weight-bearing muscles. However, hindlimb suspension did not abolish muscle regeneration because myofibers formed in the injured soleus muscles of hindlimb-suspended rats, and BrdU labeling was equivalent (P > 0.10) on myofiber segments isolated from the soleus muscles of hindlimb-suspended and weightbearing rats following injury. Thus, hindlimb suspension (weightlessness) does not suppress satellite cell mitotic activity in regenerating muscles before myofiber formation, but reduces growth of the newly formed myofibers.

  5. UV NIL template making and imprint evaluation

    NASA Astrophysics Data System (ADS)

    Sasaki, Shiho; Hiraka, Takaaki; Mizuochi, Jun; Fujii, Akiko; Sakai, Yuko; Sutou, Takanori; Yusa, Satoshi; Kuriyama, Koki; Sakaki, Masashi; Morikawa, Yasutaka; Mohri, Hiroshi; Hayashi, Naoya

    2008-10-01

    UV NIL shows excellent resolution capability with remarkable low line edge roughness, and has been attracting pioneers in the industry who were searching for the finest patterns. We have been focused on the resolution improvement in NIL template making with a 100keV acceleration voltage spot beam EB writer process, and have established a template making process to meet the requirements of the pioneers. Usually such templates needed just a small field (several hundred microns square or so). Now, for several semiconductor devices, the UV NIL is considered not only as a patterning solution for R&D purpose but eventually as a potential candidate for production, and instead of a small field, a full chip field mask is required. Although the 100kV EB writers have excellent resolution capability, they are adopting spot beams (SB) to generate the pattern and have a fatally low throughput if we need full chip writing. In this paper, we are focusing on the 50keV variable shaped beam (VSB) EB writers, which are used in current 4X photomask manufacturing. The 50keV VSB writers can generate full chip pattern in a reasonable time, and by choosing the right patterning material and process, we achieved resolution down to 28nm.

  6. UV NIL template making and imprint evaluation

    NASA Astrophysics Data System (ADS)

    Sasaki, Shiho; Hiraka, Takaaki; Mizuochi, Jun; Sakai, Yuko; Yusa, Satoshi; Morikawa, Yasutaka; Mohri, Hiroshi; Hayashi, Naoya

    2009-01-01

    UV NIL shows excellent resolution capability with remarkable low line edge roughness, and has been attracting pioneers in the industry who were searching for the finest patterns. We have been focused on the resolution improvement in NIL template making with a 100keV acceleration voltage spot beam EB writer process, and have established a template making process to meet the requirements of the pioneers. Usually such templates needed just a small field (several hundred microns square or so) Now, for several semiconductor devices, the UV NIL is considered not only as a patterning solution for R&D purpose but eventually as a potential candidate for production, and instead of a small field, a full chip field mask is required. Although the 100kV EB writers have excellent resolution capability, they are adopting spot beams (SB) to generate the pattern and have a fatally low throughput if we need full chip writing. In this paper, we are focusing on the 50keV variable shaped beam (VSB) EB writers, which are used in current 4X photomask manufacturing. The 50keV VSB writers can generate full chip pattern in a reasonable time, and by choosing the right patterning material and process, we achieved resolution down to hp28nm, and initial promising results of hp22nm (partial resolution) for line and spaces, and hp26nm for dense holes were observed..

  7. Sacrificial template method of fabricating a nanotube

    DOEpatents

    Yang, Peidong; He, Rongrui; Goldberger, Joshua; Fan, Rong; Wu, Yi-Ying; Li, Deyu; Majumdar, Arun

    2007-05-01

    Methods of fabricating uniform nanotubes are described in which nanotubes were synthesized as sheaths over nanowire templates, such as using a chemical vapor deposition process. For example, single-crystalline zinc oxide (ZnO) nanowires are utilized as templates over which gallium nitride (GaN) is epitaxially grown. The ZnO templates are then removed, such as by thermal reduction and evaporation. The completed single-crystalline GaN nanotubes preferably have inner diameters ranging from 30 nm to 200 nm, and wall thicknesses between 5 and 50 nm. Transmission electron microscopy studies show that the resultant nanotubes are single-crystalline with a wurtzite structure, and are oriented along the <001> direction. The present invention exemplifies single-crystalline nanotubes of materials with a non-layered crystal structure. Similar "epitaxial-casting" approaches could be used to produce arrays and single-crystalline nanotubes of other solid materials and semiconductors. Furthermore, the fabrication of multi-sheath nanotubes are described as well as nanotubes having multiple longitudinal segments.

  8. Human action recognition using motion energy template

    NASA Astrophysics Data System (ADS)

    Shao, Yanhua; Guo, Yongcai; Gao, Chao

    2015-06-01

    Human action recognition is an active and interesting research topic in computer vision and pattern recognition field that is widely used in the real world. We proposed an approach for human activity analysis based on motion energy template (MET), a new high-level representation of video. The main idea for the MET model is that human actions could be expressed as the composition of motion energy acquired in a three-dimensional (3-D) space-time volume by using a filter bank. The motion energies were directly computed from raw video sequences, thus some problems, such as object location and segmentation, etc., are definitely avoided. Another important competitive merit of this MET method is its insensitivity to gender, hair, and clothing. We extract MET features by using the Bhattacharyya coefficient to measure the motion energy similarity between the action template video and the tested video, and then the 3-D max-pooling. Using these features as input to the support vector machine, extensive experiments on two benchmark datasets, Weizmann and KTH, were carried out. Compared with other state-of-the-art approaches, such as variation energy image, dynamic templates and local motion pattern descriptors, the experimental results demonstrate that our MET model is competitive and promising.

  9. Template learning in morphological neural nets

    NASA Astrophysics Data System (ADS)

    Davidson, Jennifer L.; Sun, K.

    1991-07-01

    This paper presents an application of morphology neural networks to a template learning problem. Morphology neural networks are a nonlinear version of the familiar artificial neural networks. Typically, an artificial neural net is used to solve pattern classification problems One useful characterization of many neural network algorithms is the ability to 'learn' to respond correctly to new data based only on a selection of known data responses. For example, in the multilayer perceptron model, the 'learning' is a procedure whereby parameters are fed back from output to input neurons and the weights changed to give a better response. The morphological neural net in this paper solves a different type of image processing problem. Specifically, given an input image and an output image which corresponds to a dilated version of the input, one would like to determine what template produced the output. The problem corresponds to teaching the network to solve for the weights in a morphological net, as the weights are the template's values. A reasonable method has been investigated for the boolean case; in this paper results are presented for gray scale images. Image algebra has been shown to provide a succinct expression of neural networks algorithms and also to allow a generalization of neural networks, and thus the authors describe the algorithm in image algebra. The remainder of the paper gives a brief discussion of image algebra, the relationship of image algebra and neural networks, a recap of the dilation morphology neural network boolean for boolean images, and the generalization to grayscale data.

  10. Converting Basic D3 Charts into Reusable Style Templates.

    PubMed

    Harper, Jonathan; Agrawala, Maneesh

    2017-02-07

    We present a technique for converting a basic D3 chart into a reusable style template. Then, given a new data source we can apply the style template to generate a chart that depicts the new data, but in the style of the template. To construct the style template we first deconstruct the input D3 chart to recover its underlying structure: the data, the marks and the mappings that describe how the marks encode the data. We then rank the perceptual effectiveness of the deconstructed mappings. To apply the resulting style template to a new data source we first obtain importance ranks for each new data field. We then adjust the template mappings to depict the source data by matching the most important data fields to the most perceptually effective mappings. We show how the style templates can be applied to source data in the form of either a data table or another D3 chart. While our implementation focuses on generating templates for basic chart types (e.g. variants of bar charts, line charts, dot plots, scatterplots, etc.), these are the most commonly used chart types today. Users can easily find such basic D3 charts on the Web, turn them into templates, and immediately see how their own data would look in the visual style (e.g. colors, shapes, fonts, etc.) of the templates. We demonstrate the effectiveness of our approach by applying a diverse set of style templates to a variety of source datasets.

  11. Self-regenerating column chromatography

    DOEpatents

    Park, W.K.

    1995-05-30

    The present invention provides a process for treating both cations and anions by using a self-regenerating, multi-ionic exchange resin column system which requires no separate regeneration steps. The process involves alternating ion-exchange chromatography for cations and anions in a multi-ionic exchange column packed with a mixture of cation and anion exchange resins. The multi-ionic mixed-charge resin column works as a multi-function column, capable of independently processing either cationic or anionic exchange, or simultaneously processing both cationic and anionic exchanges. The major advantage offered by the alternating multi-function ion exchange process is the self-regeneration of the resins.

  12. Cardiac Regeneration: Lessons From Development.

    PubMed

    Galdos, Francisco X; Guo, Yuxuan; Paige, Sharon L; VanDusen, Nathan J; Wu, Sean M; Pu, William T

    2017-03-17

    Palliative surgery for congenital heart disease has allowed patients with previously lethal heart malformations to survive and, in most cases, to thrive. However, these procedures often place pressure and volume loads on the heart, and over time, these chronic loads can cause heart failure. Current therapeutic options for initial surgery and chronic heart failure that results from failed palliation are limited, in part, by the mammalian heart's low inherent capacity to form new cardiomyocytes. Surmounting the heart regeneration barrier would transform the treatment of congenital, as well as acquired, heart disease and likewise would enable development of personalized, in vitro cardiac disease models. Although these remain distant goals, studies of heart development are illuminating the path forward and suggest unique opportunities for heart regeneration, particularly in fetal and neonatal periods. Here, we review major lessons from heart development that inform current and future studies directed at enhancing cardiac regeneration. © 2017 American Heart Association, Inc.

  13. Regenerator cross arm seal assembly

    DOEpatents

    Jackman, Anthony V.

    1988-01-01

    A seal assembly for disposition between a cross arm on a gas turbine engine block and a regenerator disc, the seal assembly including a platform coextensive with the cross arm, a seal and wear layer sealingly and slidingly engaging the regenerator disc, a porous and compliant support layer between the platform and the seal and wear layer porous enough to permit flow of cooling air therethrough and compliant to accommodate relative thermal growth and distortion, a dike between the seal and wear layer and the platform for preventing cross flow through the support layer between engine exhaust and pressurized air passages, and air diversion passages for directing unregenerated pressurized air through the support layer to cool the seal and wear layer and then back into the flow of regenerated pressurized air.

  14. Wound healing and skin regeneration.

    PubMed

    Takeo, Makoto; Lee, Wendy; Ito, Mayumi

    2015-01-05

    The skin is a complex organ consisting of the epidermis, dermis, and skin appendages, including the hair follicle and sebaceous gland. Wound healing in adult mammals results in scar formation without any skin appendages. Studies have reported remarkable examples of scarless healing in fetal skin and appendage regeneration in adult skin following the infliction of large wounds. The models used in these studies have offered a new platform for investigations of the cellular and molecular mechanisms underlying wound healing and skin regeneration in mammals. In this article, we will focus on the contribution of skin appendages to wound healing and, conversely, skin appendage regeneration following injuries. Copyright © 2015 Cold Spring Harbor Laboratory Press; all rights reserved.

  15. Bone regeneration during distraction osteogenesis.

    PubMed

    Amir, Lisa R; Everts, Vincent; Bronckers, Antonius L J J

    2009-07-01

    Bone has the capacity to regenerate in response to injury. During distraction osteogenesis, the renewal of bone is enhanced by gradual stretching of the soft connective tissues in the gap area between two separated bone segments. This procedure has received much clinical attention as a way to correct congenital growth retardation of bone tissue or to generate bone to fill skeletal defects. The process of bone regeneration involves a complex system of biological changes whereby mechanical stress is converted into a cascade of signals that activate cellular behavior resulting in (enhanced) formation of bone. Over the last decade, significant progress has been made in understanding the bone regeneration process during distraction osteogenesis. The mechanical and biological factors that are important for the success of the distraction treatment have been partially characterized and are discussed in this review.

  16. Ceramic regenerator systems development program

    NASA Technical Reports Server (NTRS)

    Fucinari, C. A.; Rahnke, C. J.; Rao, V. D. N.; Vallance, J. K.

    1980-01-01

    The DOE/NASA Ceramic Regenerator Design and Reliability Program aims to develop ceramic regenerator cores that can be used in passenger car and industrial/truck gas turbine engines. The major cause of failure of early gas turbine regenerators was found to be chemical attack of the ceramic material. Improved materials and design concepts aimed at reducing or eliminating chemical attack were placed on durability test in Ford 707 industrial gas turbine engines late in 1974. Results of 53,065 hours of turbine engine durability testing are described. Two materials, aluminum silicate and magnesium aluminum silicate, show promise. Five aluminum silicate cores attained the durability objective of 10,000 hours at 800 C (1472 F). Another aluminum silicate core shows minimal evidence of chemical attack after 8071 hours at 982 C (1800 F). Results obtained in ceramic material screening tests, aerothermodynamic performance tests, stress analysis, cost studies, and material specifications are included.

  17. Molecular Sieve Regeneration System (MSRS)

    SciTech Connect

    Nasise, J.E.; Anderson, J.L. ); Naruse, Y. )

    1992-01-01

    A Molecular Sieve Regeneration System (MSRS) was added to the existing Tritium Waste Treatment system (TWT) within the Tritium Systems Test Assembly (TSTA) at Los Alamos National Laboratory. The Department of Energy (DOE) no longer allows inventory by difference'' for radioactive wastes that are to be buried. The MSRS was designed and built to comply with this requirement. Within the TWT, water is generated by the catalytic conversion of hydrogen isotopes and removed by molecular sieve trapping prior to release to the environment. Molecular sieve regeneration is required to remove the trapped water and to rejuvenate the beds. The MSRS permits the collection and direct tritium assay of regenerated tritiated water from molecular sieve beds. This paper describes the MSRS in detail and how it is interfaced with the TWT.

  18. Molecular Sieve Regeneration System (MSRS)

    SciTech Connect

    Nasise, J.E.; Anderson, J.L.; Naruse, Y.

    1992-03-01

    A Molecular Sieve Regeneration System (MSRS) was added to the existing Tritium Waste Treatment system (TWT) within the Tritium Systems Test Assembly (TSTA) at Los Alamos National Laboratory. The Department of Energy (DOE) no longer allows ``inventory by difference`` for radioactive wastes that are to be buried. The MSRS was designed and built to comply with this requirement. Within the TWT, water is generated by the catalytic conversion of hydrogen isotopes and removed by molecular sieve trapping prior to release to the environment. Molecular sieve regeneration is required to remove the trapped water and to rejuvenate the beds. The MSRS permits the collection and direct tritium assay of regenerated tritiated water from molecular sieve beds. This paper describes the MSRS in detail and how it is interfaced with the TWT.

  19. Some principles of regeneration in mammalian systems.

    PubMed

    Carlson, Bruce M

    2005-11-01

    This article presents some general principles underlying regenerative phenomena in vertebrates, starting with the epimorphic regeneration of the amphibian limb and continuing with tissue and organ regeneration in mammals. Epimorphic regeneration following limb amputation involves wound healing, followed shortly by a phase of dedifferentiation that leads to the formation of a regeneration blastema. Up to the point of blastema formation, dedifferentiation is guided by unique regenerative pathways, but the overall developmental controls underlying limb formation from the blastema generally recapitulate those of embryonic limb development. Damaged mammalian tissues do not form a blastema. At the cellular level, differentiation follows a pattern close to that seen in the embryo, but at the level of the tissue and organ, regeneration is strongly influenced by conditions inherent in the local environment. In some mammalian systems, such as the liver, parenchymal cells contribute progeny to the regenerate. In others, e.g., skeletal muscle and bone, tissue-specific progenitor cells constitute the main source of regenerating cells. The substrate on which regeneration occurs plays a very important role in determining the course of regeneration. Epimorphic regeneration usually produces an exact replica of the structure that was lost, but in mammalian tissue regeneration the form of the regenerate is largely determined by the mechanical environment acting on the regenerating tissue, and it is normally an imperfect replica of the original. In organ hypertophy, such as that occurring after hepatic resection, the remaining liver mass enlarges, but there is no attempt to restore the original form.

  20. A Neonatal Bimodal MR-CT Head Template

    PubMed Central

    Mohtasebi, Mehrana; Abrishami Moghaddam, Hamid; Grebe, Reinhard; Gity, Masoumeh; Wallois, Fabrice

    2017-01-01

    Neonatal MR templates are appropriate for brain structural analysis and spatial normalization. However, they do not provide the essential accurate details of cranial bones and fontanels-sutures. Distinctly, CT images provide the best contrast for bone definition and fontanels-sutures. In this paper, we present, for the first time, an approach to create a fully registered bimodal MR-CT head template for neonates with a gestational age of 39 to 42 weeks. Such a template is essential for structural and functional brain studies, which require precise geometry of the head including cranial bones and fontanels-sutures. Due to the special characteristics of the problem (which requires inter-subject inter-modality registration), a two-step intensity-based registration method is proposed to globally and locally align CT images with an available MR template. By applying groupwise registration, the new neonatal CT template is then created in full alignment with the MR template to build a bimodal MR-CT template. The mutual information value between the CT and the MR template is 1.17 which shows their perfect correspondence in the bimodal template. Moreover, the average mutual information value between normalized images and the CT template proposed in this study is 1.24±0.07. Comparing this value with the one reported in a previously published approach (0.63±0.07) demonstrates the better generalization properties of the new created template and the superiority of the proposed method for the creation of CT template in the standard space provided by MR neonatal head template. The neonatal bimodal MR-CT head template is freely downloadable from https://www.u-picardie.fr/labo/GRAMFC. PMID:28129340

  1. Repair and regeneration in endodontics.

    PubMed

    Lin, L M; Rosenberg, P A

    2011-10-01

    The ideal objective of treatment of established diseases, including irreversible pulpitis and apical periodontitis, is to achieve wound healing. Wound healing can result in repair or regeneration. The ultimate goal of wound healing is to restore the original architecture and biological function of the injured tissue or organ. Although humans are equipped with powerful innate and adaptive immune defence mechanisms, many intrinsic and extrinsic factors can affect wound healing. Complete regeneration following injury in humans can occur only in the pre-natal foetus within 24 weeks of gestation. Post-natal wounds including irreversible pulpitis or apical periodontitis always heal by repair or by a combination of repair and regeneration. Somatic cells, such as fibroblasts, macrophages, cementoblasts and osteoblasts, in the pulp and periapical tissues have limited potential for regeneration following injury and lack of telomerase. Wound healing of irreversible pulpitis and apical periodontitis requires recruitment and differentiation of progenitor/stem cells into tissue-committed somatic cells. Stem cell differentiation is regulated by intrinsic factors and extrinsic micro-environmental cues. Functionality of stem cells appears to show an age-related decline because of the change in intrinsic properties and diminished signals within the extrinsic local and systemic environment that modulate the function of stem cells or their progeny. Infection induces an immuno-inflammatory response and tissue destruction, which hinders the potential of tissue regeneration. Therefore, prevention, early detection and treatment of inflammation/infection of pulpal and periapical disease can enhance regeneration and minimize the repair of pulpal and periapical tissues after endodontic therapy. © 2011 International Endodontic Journal.

  2. Ceramic regenerator systems development program

    NASA Technical Reports Server (NTRS)

    Cook, J. A.; Fucinari, C. A.; Lingscheit, J. N.; Rahnke, C. J.; Rao, V. D.

    1978-01-01

    Ceramic regenerator cores are considered that can be used in passenger car gas turbine engines, Stirling engines, and industrial/truck gas turbine engines. Improved materials and design concepts aimed at reducing or eliminating chemical attack were placed on durability tests/in industrial gas turbine engines. A regenerator core made from aluminum silicate shows minimal evidence of chemical attack damage after 7804 hours of engine test at 800 C and another showed little distress after 4983 hours at 982 C. The results obtained in ceramic material screening tests, aerothermodynamic performance tests, stress analysis, cost studies, and material specifications are also included.

  3. Solvothermal removal of the organic template from L 3 ("sponge") templated silica monoliths

    NASA Astrophysics Data System (ADS)

    Dabbs, Daniel M.; Mulders, Norbert; Aksay, Ilhan A.

    2006-10-01

    We compare the methods of continuous solvent (Soxhlet) and supercritical solvent extractions for the removal of the organic template from nanostructured silica monoliths. Our monoliths are formed by templating the L 3 liquid crystal phase of cetylpyridinium chloride in aqueous solutions with tetramethoxy silane. The monoliths that result from both Soxhlet and supercritical extraction methods are mechanically robust, optically clear, and free of cracks. The Soxhlet method compares favorably with supercritical solvent extraction in that equivalent L 3-templated silica can be synthesized without the use of specialized reactor hardware or higher temperatures and high pressures, while avoiding noxious byproducts. The comparative effectiveness of various solvents in the Soxhlet process is related to the Hildebrand solubility parameter, determined by the effective surface area of the extracted silica.

  4. Regulation of crustacean molting and regeneration

    SciTech Connect

    Skinner, D.M.; Graham, D.E.; Holland, C.A.; Soumoff, C.; Mykles, D.L.

    1981-01-01

    The regulation of molting and regeneration by two antagonistic hormones is discussed. The time course of ecdysteroid titers in crustacean tissues has been followed during molt and regeneration cycles. (ACR)

  5. A model regenerator for a Stirling cycle

    NASA Astrophysics Data System (ADS)

    Carolan, James

    2001-05-01

    An essential feature of the engine patented by Robert Stirling in 1817 was the careful description of the idea of regeneration. In the standard thermodynamic cycle representation of the engine, regeneration is the storing and the reusing of the thermal energy released in the constant volume cooling part of the cycle. Due to the difficulty in treating regeneration quantitatively, introductory physics texts generally either ignore the concept or assume the regeneration to be perfect. As a result students obtain little or no understanding of regeneration. In addition there seem to be differing views in various texts about the efficiency of Stirling engines. In this work a simple finite element model regenerator is presented with which one can do simple calculations. The model does not accurately represent actual regeneration in a practical engine. But the model might help students gain better insight into Stirling engine efficiency and the idea of regeneration.

  6. Economics and policy environments for forest regeneration.

    Treesearch

    Donald F. Flora

    1970-01-01

    MOST OF YOUR DAILY CONCERNS IN FOREST REGENERATION are biologic, technologic, and mechanical. But periodically, perhaps once a year, many of you must consider regeneration in a context that includes alternative uses for the financial resources you have.

  7. Proceedings of the Shortleaf Pine Regeneration Workshop

    Treesearch

    John C. Brissette; James P. Barnett; [Compilers}

    1992-01-01

    This proceedings documents the results of a workshop to develop state-of-the-art information on the regeneration of shortleaf pine. Regeneration by both artificial and natural means is discussed in detail.

  8. DNA repair by RNA: Templated, or not templated, that is the question.

    PubMed

    Meers, Chance; Keskin, Havva; Storici, Francesca

    2016-08-01

    Cells are continuously exposed to both endogenous and exogenous sources of genomic stress. To maintain chromosome stability, a variety of mechanisms have evolved to cope with the multitude of genetic abnormalities that can arise over the life of a cell. Still, failures to repair these lesions are the driving force of cancers and other degenerative disorders. DNA double-strand breaks (DSBs) are among the most toxic genetic lesions, inhibiting cell ability to replicate, and are sites of mutations and chromosomal rearrangements. DSB repair is known to proceed via two major mechanisms: homologous recombination (HR) and non-homologous end joining (NHEJ). HR reliance on the exchange of genetic information between two identical or nearly identical DNA molecules offers increased accuracy. While the preferred substrate for HR in mitotic cells is the sister chromatid, this is limited to the S and G2 phases of the cell cycle. However, abundant amounts of homologous genetic substrate may exist throughout the cell cycle in the form of RNA. Considered an uncommon occurrence, the direct transfer of information from RNA to DNA is thought to be limited to special circumstances. Studies have shown that RNA molecules reverse transcribed into cDNA can be incorporated into DNA at DSB sites via a non-templated mechanism by NHEJ or a templated mechanism by HR. In addition, synthetic RNA molecules can directly template the repair of DSBs in yeast and human cells via an HR mechanism. New work suggests that even endogenous transcript RNA can serve as a homologous template to repair a DSB in chromosomal DNA. In this perspective, we will review and discuss the recent advancements in DSB repair by RNA via non-templated and templated mechanisms. We will provide current findings, models and future challenges investigating RNA and its role in DSB repair. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Patterned substrates and methods for nerve regeneration

    DOEpatents

    Mallapragada, Surya K.; Heath, Carole; Shanks, Howard; Miller, Cheryl A.; Jeftinija, Srdija

    2004-01-13

    Micropatterned substrates and methods for fabrication of artificial nerve regeneration conduits and methods for regenerating nerves are provided. Guidance compounds or cells are seeded in grooves formed on the patterned substrate. The substrates may also be provided with electrodes to provide electrical guidance cues to the regenerating nerve. The micropatterned substrates give physical, chemical, cellular and/or electrical guidance cues to promote nerve regeneration at the cellular level.

  10. Cryogenic regenerator including sarancarbon heat conduction matrix

    NASA Technical Reports Server (NTRS)

    Jones, Jack A. (Inventor); Petrick, S. Walter (Inventor); Britcliffe, Michael J. (Inventor)

    1989-01-01

    A saran carbon matrix is employed to conduct heat through the heat storing volume of a cryogenic regenerator. When helium is adsorbed into the saran carbon matrix, the combination exhibits a volumetric specific heat much higher than previously used lead balls. A helium adsorbed saran regenerator should allow much lower refrigerator temperatures than those practically obtainable with lead based regenerators for regenerator type refrigeration systems.

  11. The optimal template effect in hippocampus studies of diseased populations.

    PubMed

    Avants, Brian B; Yushkevich, Paul; Pluta, John; Minkoff, David; Korczykowski, Marc; Detre, John; Gee, James C

    2010-02-01

    We evaluate the impact of template choice on template-based segmentation of the hippocampus in epilepsy. Four dataset-specific strategies are quantitatively contrasted: the "closest to average" individual template, the average shape version of the closest to average template, a best appearance template and the best appearance and shape template proposed here and implemented in the open source toolkit Advanced Normalization Tools (ANTS). The cross-correlation similarity metric drives the correspondence model and is used consistently to determine the optimal appearance. Minimum shape distance in the diffeomorphic space determines optimal shape. Our evaluation results show that, with respect to gold-standard manual labeling of hippocampi in epilepsy, optimal shape and appearance template construction outperforms the other strategies for gaining data-derived templates. Our results also show the improvement is most significant on the diseased side and insignificant on the healthy side. Thus, the importance of the template increases when used to study pathology and may be less critical for normal control studies. Furthermore, explicit geometric optimization of the shape component of the unbiased template positively impacts the study of diseased hippocampi. Copyright (c) 2009 Elsevier Inc. All rights reserved.

  12. Regional Longleaf Pine (Pinus palustris) Natural Regeneration

    Treesearch

    William D. Boyer

    1998-01-01

    Duration: 1968-present Objective: Test the shelterwood system of longleaf pine natural regeneration. Methods: Longleaf pine natural regeneration tests were established from 1966 through 1970 at ten locations in seven states from North Carolina to Louisiana. One of these was established on a 50-acre flatwoods site on Eglin AFB in 1968. Regeneration was initially...

  13. Full regeneration of the tribasal Polypterus fin.

    PubMed

    Cuervo, Rodrigo; Hernández-Martínez, Rocío; Chimal-Monroy, Jesús; Merchant-Larios, Horacio; Covarrubias, Luis

    2012-03-06

    Full limb regeneration is a property that seems to be restricted to urodele amphibians. Here we found that Polypterus, the most basal living ray-finned fish, regenerates its pectoral lobed fins with a remarkable accuracy. Pectoral Polypterus fins are complex, formed by a well-organized endoskeleton to which the exoskeleton rays are connected. Regeneration initiates with the formation of a blastema similar to that observed in regenerating amphibian limbs. Retinoic acid induces dose-dependent phenotypes ranging from inhibition of regeneration to apparent anterior-posterior duplications. As in all developing tetrapod limbs and regenerating amphibian blastema, Sonic hedgehog is expressed in the posterior mesenchyme during fin regeneration. Hedgehog signaling plays a role in the regeneration and patterning processes: an increase or reduction of fin bony elements results when this signaling is activated or disrupted, respectively. The tail fin also regenerates but, in contrast with pectoral fins, regeneration can resume after release from the arrest caused by hedgehog inhibition. A comparative analysis of fin phenotypes obtained after retinoic acid treatment or altering the hedgehog signaling levels during regeneration allowed us to assign a limb tetrapod equivalent segment to Polypterus fin skeletal structures, thus providing clues to the origin of the autopod. We propose that appendage regeneration was a common property of vertebrates during the fin to limb transition.

  14. Guide to Regeneration of Bottomland Hardwoods

    Treesearch

    Martha R. McKevlin

    1992-01-01

    This guide will help landowners, consulting foresters, and public service foresters regenerate bottomland hardwoods. It discusses (1) interpretation of site characteristics, (2) selection of species, and (3) selection of regeneration methods. A dichotomous key for selection of appropriate regeneration methods under various conditions is presented.

  15. Regeneration of southern hardwoods: some ecological concepts

    Treesearch

    David L. Loftis

    1989-01-01

    Classical concepts of post-disturbance succession through well-defined seral stages to a well-defined ,climax stage( s) are not a useful conceptual framework for predicting species composition of regeneration resulting from the application of regeneration treatments in complex southern hardwood forests. Hardwood regeneration can be better understood, and more useful...

  16. Deer antler regeneration: cells, concepts, and controversies.

    PubMed

    Kierdorf, Uwe; Kierdorf, Horst; Szuwart, Thomas

    2007-08-01

    The periodic replacement of antlers is an exceptional regenerative process in mammals, which in general are unable to regenerate complete body appendages. Antler regeneration has traditionally been viewed as an epimorphic process closely resembling limb regeneration in urodele amphibians, and the terminology of the latter process has also been applied to antler regeneration. More recent studies, however, showed that, unlike urodele limb regeneration, antler regeneration does not involve cell dedifferentiation and the formation of a blastema from these dedifferentiated cells. Rather, these studies suggest that antler regeneration is a stem-cell-based process that depends on the periodic activation of, presumably neural-crest-derived, periosteal stem cells of the distal pedicle. The evidence for this hypothesis is reviewed and as a result, a new concept of antler regeneration as a process of stem-cell-based epimorphic regeneration is proposed that does not involve cell dedifferentiation or transdifferentiation. Antler regeneration illustrates that extensive appendage regeneration in a postnatal mammal can be achieved by a developmental process that differs in several fundamental aspects from limb regeneration in urodeles.

  17. Needed: Guidelines for defining acceptable advance regeneration

    Treesearch

    Dennis E. Ferguson

    1984-01-01

    Advance regeneration is an important component in many stands scheduled for harvesting. Properly managed, such regeneration can contribute to a healthy, new stand, but too often trees do not quickly respond to the new environment or take too long to adjust. Definitions of acceptable advance regeneration are needed for pre- and postharvest inventories. The author...

  18. Oak regeneration why big is better

    Treesearch

    Paul P. Kormanik; Shi-Jean S. Sung; T.L. Kormanik; Stanley J. Zarnoch

    1995-01-01

    It is generally accepted that large preharvest advanced oak regeneration is required for maintaining a significant oak component in future stands. However, developing advanced oak regeneration on productive sites has been difficult because stand prescriptions encouraging oak regeneration are the same conditions that favor development of potentially faster growing...

  19. Oak Regeneration: A Knowledge Synthesis

    Treesearch

    H. Michael Rauscher; David L. Loftis; Charles E. McGee; Christopher V. Worth

    1997-01-01

    This scientific literature is represented by a hypertext software. To view this literature you must download and install the hypertext software.Abstract: The scientific literature concerning oak regeneration problems is lengthy, complex, paradoxical, and often perplexing. Despite a large scientific literature and numerous conference...

  20. Lodgepole pine: regeneration and management.

    Treesearch

    Mayo. Murray

    1983-01-01

    Early in 1979, the School of Agriculture and Land Resources Management of the University of Alaska surveyed forest managers in a number of northern countries to identify topics of circumpolar interest in forest management. Responses most frequently centered on problems of forest regeneration. As a result we initiated what was to be a series of international workshops...

  1. Birch regeneration: a stochastic model

    Treesearch

    William B. Leak

    1968-01-01

    The regeneration of a clearcutting with paper or yellow birch is expressed as an elementary stochastic (probabalistic) model that is computationally similar to an absorbing Markov chain. In the general case, the model contains 29 states beginning with the development of a flower (ament) and terminating with the abortion of a flower or seed, or the development of an...

  2. Stem Cells and Liver Regeneration

    PubMed Central

    DUNCAN, ANDREW W.; DORRELL, CRAIG; GROMPE, MARKUS

    2011-01-01

    One of the defining features of the liver is the capacity to maintain a constant size despite injury. Although the precise molecular signals involved in the maintenance of liver size are not completely known, it is clear that the liver delicately balances regeneration with overgrowth. Mammals, for example, can survive surgical removal of up to 75% of the total liver mass. Within 1 week after liver resection, the total number of liver cells is restored. Moreover, liver overgrowth can be induced by a variety of signals, including hepatocyte growth factor or peroxisome proliferators; the liver quickly returns to its normal size when the proliferative signal is removed. The extent to which liver stem cells mediate liver regeneration has been hotly debated. One of the primary reasons for this controversy is the use of multiple definitions for the hepatic stem cell. Definitions for the liver stem cell include the following: (1) cells responsible for normal tissue turnover, (2) cells that give rise to regeneration after partial hepatectomy, (3) cells responsible for progenitor-dependent regeneration, (4) cells that produce hepatocyte and bile duct epithelial phenotypes in vitro, and (5) transplantable liver-repopulating cells. This review will consider liver stem cells in the context of each definition. PMID:19470389

  3. Regenerating oaks in Missouri's bottomlands

    Treesearch

    Dan Dey; John Kabrick

    2004-01-01

    Bottomland oaks are valuable timber species that are also important for wildlife, but regenerating them is about as easy as training blackbirds to plant acorns. Missouri once had an estimated 5 million acres of wetlands, much of which were bottomland forests that included some oak. Today, less than 15 percent of those historical wetlands remain in the state. Many...

  4. Forest regeneration at high latitudes.

    Treesearch

    Mayo Murray; Robert M. VanVeldhuizen

    1980-01-01

    Early in 1979 we surveyed forest managers and researchers in a number of northern countries to identify topics in forest management of circumpolar interest. Responses most frequently centered on problems of forest regeneration and related harvesting practices. As a result, an international workshop was held in Fairbanks, Alaska, on 13-15 November 1979, to obtain a...

  5. New Developments in Cardiac Regeneration.

    PubMed

    Le, Thi Yen Loan; Thavapalachandran, Sujitha; Kizana, Eddy; Chong, James Jh

    2017-04-01

    Numerous pharmacological and device therapies have improved adverse cardiac remodelling and mortality in heart failure. However, none are able to regenerate damaged cardiac tissue. Stem cell based therapies using multipotent (adult) stem cells and pluripotent stem cells are new approaches that could potentially achieve the elusive goal of true cardiac regeneration. Over the past two decades, various stem cell based approaches have been shown to improve left ventricular function in pre-clinical animal models. Promising results rapidly led to clinical trials, initially using bone marrow-derived mononuclear cells, then mesenchymal stromal cell populations and, more recently, progenitor cells from the adult heart itself. These have been shown to be safe and have advanced our understanding of potential suitable recipients, cell delivery routes, and possible mechanisms of action. However, efficacy in these trials has been inconsistent. Human pluripotent stem cells (hPSCs) are another potential source of stem cells for cardiac regeneration. They could theoretically provide an unlimited source of cardiomyocytes or cardiac progenitors. Pre-clinical studies in both small and large animal models have shown robust engraftment and improvements in cardiac function. The first clinical trial using hPSC-derived cardiac derivatives has now commenced and others are imminent. In this brief review article, we summarise recent developments in stem cell therapies aimed at cardiac regeneration, including discussion of types of cell and non-cell-based strategies being explored.

  6. National regeneration of shortleaf pine

    Treesearch

    Edwin R. Lawson

    1986-01-01

    Natural regeneration with clearcutting, shelterwood, seed tree, and selection systems is a viable method for establishing and managing shortleaf pine stands. An adequate seed source, a suitable seedbed, control of competing vegetation, follow-up cultural treatments, and protection of reproduction are the primary prerequisites for establishing and maintaining natural...

  7. Prescriptions vary in ponderosa regeneration

    Treesearch

    Dale O. Hall

    1969-01-01

    Nonproducing acres and unproductive years are both costly to timberland owners. These costs are reduced by restoring timber stocking with minimum delay. The proper prescription for regeneration can insure fast restocking. But the silviculturist prescribes slash disposal, site preparation, seeding, and planting only after he has carefully examined the site environment...

  8. Pine regeneration following wildland fire

    Treesearch

    Katherine J. Elliott; James M. Vose; Alan S. White

    2008-01-01

    Pine regeneration following wildland fire continues to be a serious problem across the western and southeastern U.S. Frequency of large wildfires has increased over the last several decades and restoration of these burned areas is a major problem confronting land managers. Prescribed fires are used primarily to reduce heavy fuel loads and secondarily to reduce...

  9. Fluorescent DNA-templated silver nanoclusters

    NASA Astrophysics Data System (ADS)

    Lin, Ruoqian

    Because of the ultra-small size and biocompatibility of silver nanoclusters, they have attracted much research interest for their applications in biolabeling. Among the many ways of synthesizing silver nanoclusters, DNA templated method is particularly attractive---the high tunability of DNA sequences provides another degree of freedom for controlling the chemical and photophysical properties. However, systematic studies about how DNA sequences and concentrations are controlling the photophysical properties are still lacking. The aim of this thesis is to investigate the binding mechanisms of silver clusters binding and single stranded DNAs. Here in this thesis, we report synthesis and characterization of DNA-templated silver nanoclusters and provide a systematic interrogation of the effects of DNA concentrations and sequences, including lengths and secondary structures. We performed a series of syntheses utilizing five different sequences to explore the optimal synthesis condition. By characterizing samples with UV-vis and fluorescence spectroscopy, we achieved the most proper reactants ratio and synthesis conditions. Two of them were chosen for further concentration dependence studies and sequence dependence studies. We found that cytosine-rich sequences are more likely to produce silver nanoclusters with stronger fluorescence signals; however, sequences with hairpin secondary structures are more capable in stabilizing silver nanoclusters. In addition, the fluorescence peak emission intensities and wavelengths of the DNA templated silver clusters have sequence dependent fingerprints. This potentially can be applied to sequence sensing in the future. However all the current conclusions are not warranted; there is still difficulty in formulating general rules in DNA strand design and silver nanocluster production. Further investigation of more sequences could solve these questions in the future.

  10. New organically templated photoluminescence iodocuprates(I)

    SciTech Connect

    Hou Qin; Zhao Jinjing; Zhao Tianqi; Jin Juan; Yu Jiehui; Xu Jiqing

    2011-07-15

    Two types of organic cyclic aliphatic diamine molecules piperazine (pip) and 1,3-bis(4-piperidyl)propane (bpp) were used, respectively, to react with an inorganic mixture of CuI and KI in the acidic CH{sub 3}OH solutions under the solvothermal conditions, generating finally three new organically templated iodocuprates as 2-D layered [(Hpip)Cu{sub 3}I{sub 4}] 1, 1-D chained [tmpip][Cu{sub 2}I{sub 4}] 2 (tmpip=N,N,N',N'-tetramethylpiperazinium) and dinuclear [H{sub 2}bpp]{sub 2}[Cu{sub 2}I{sub 5}] I.2H{sub 2}O 3. Note that the templating agent tmpip{sup 2+} in compound 2 originated from the in situ N-alkylation reaction between the pip molecule and the methanol solvent. The photoluminescence analysis indicates that the title compounds emit the different lights: yellow for 1, blue for 2 and yellow-green for 3, respectively. - Graphical abstract: The solvothermal self-assemblies of CuI, KI and pip/bpp in acidic CH{sub 3}OH solutions created three iodocuprates 2-D layered [(Hpip)Cu{sub 3}I{sub 4}] 1, 1-D chained [tmpip][Cu{sub 2}I{sub 4}] 2 and dinuclear [H{sub 2}bpp]{sub 2}[Cu{sub 2}I{sub 5}] I.2H{sub 2}O 3. Highlights: > A new layered iodocuprate(I) with 20-membered rings was hydrothermally prepared. > A simple approach to prepare the new organic templating agent was reported. > Photoluminescence analysis indicates the emission for iodocuprate(I) is associated with the Cu...Cu interactions.

  11. Hemodynamic characterization of geometric cerebral aneurysm templates.

    PubMed

    Nair, Priya; Chong, Brian W; Indahlastari, Aprinda; Lindsay, James; DeJeu, David; Parthasarathy, Varsha; Ryan, Justin; Babiker, Haithem; Workman, Christopher; Gonzalez, L Fernando; Frakes, David

    2016-07-26

    Hemodynamics are currently considered to a lesser degree than geometry in clinical practices for evaluating cerebral aneurysm (CA) risk and planning CA treatment. This study establishes fundamental relationships between three clinically recognized CA geometric factors and four clinically relevant hemodynamic responses. The goal of the study is to develop a more combined geometric/hemodynamic basis for informing clinical decisions. Flows within eight idealized template geometries were simulated using computational fluid dynamics and measured using particle image velocimetry under both steady and pulsatile flow conditions. The geometric factor main effects were then analyzed to quantify contributions made by the geometric factors (aneurysmal dome size (DS), dome-to-neck ratio (DNR), and parent-vessel contact angle (PV-CA)) to effects on the hemodynamic responses (aneurysmal and neck-plane root-mean-square velocity magnitude (Vrms), aneurysmal wall shear stress (WSS), and cross-neck flow (CNF)). Two anatomical aneurysm models were also examined to investigate how well the idealized findings would translate to more realistic CA geometries. DNR made the greatest contributions to effects on hemodynamics including a 75.05% contribution to aneurysmal Vrms and greater than 35% contributions to all responses. DS made the next greatest contributions, including a 43.94% contribution to CNF and greater than 20% contributions to all responses. PV-CA and several factor interactions also made contributions of greater than 10%. The anatomical aneurysm models and the most similar idealized templates demonstrated consistent hemodynamic response patterns. This study demonstrates how individual geometric factors, and combinations thereof, influence CA hemodynamics. Bridging the gap between geometry and flow in this quantitative yet practical way may have potential to improve CA evaluation and treatment criteria. Agreement among results from idealized and anatomical models further

  12. Protein-templated biomimetic silica nanoparticles.

    PubMed

    Jackson, Erienne; Ferrari, Mariana; Cuestas-Ayllon, Carlos; Fernández-Pacheco, Rodrigo; Perez-Carvajal, Javier; de la Fuente, Jesús M; Grazú, Valeria; Betancor, Lorena

    2015-03-31

    Biomimetic silica particles can be synthesized as a nanosized material within minutes in a process mimicked from living organisms such as diatoms and sponges. In this work, we have studied the effect of bovine serum albumin (BSA) as a template to direct the synthesis of silica nanoparticles (NPs) with the potential to associate proteins on its surface. Our approach enables the formation of spheres with different physicochemical properties. Particles using BSA as a protein template were smaller (∼250-380 nm) and were more monodisperse than those lacking the proteic core (∼700-1000 nm) as seen by dynamic light scattering (DLS), scanning electron microscopy (SEM), and environmental scanning electron microscopy (ESEM) analysis. The absence of BSA during synthesis produced silica nanoparticles without any porosity that was detectable by nitrogen adsorption, whereas particles containing BSA developed porosity in the range of 4 to 5 nm which collapsed on the removal of BSA, thus producing smaller pores. These results were in accordance with the pore size calculated by high-resolution transmission electron microscopy (HTEM). The reproducibility of the BSA-templated nanoparticle properties was determined by analyzing four batches of independent synthesizing experiments that maintained their properties. The high positive superficial charge of the nanoparticles facilitated adsorption under mild conditions of a range of proteins from an E. coli extract and a commercial preparation of laccase from Trametes versicolor. All of the proteins were quantitatively desorbed. Experiments conducted showed the reusability of the particles as supports for the ionic adsorption of the biomolecules. The protein loading capacity of the BSA-based biomimetic particles was determined using laccase as 98.7 ± 6.6 mg·g(-1) of particles.

  13. Template for Systems Engineering Tools Trade Study

    NASA Technical Reports Server (NTRS)

    Bailey, Michelle D.

    2005-01-01

    A discussion of Systems Engineering tools brings out numerous preferences and reactions regarding tools of choice as well as the functions those tools are to perform. A recent study of Systems Engineering Tools for a new Program illustrated the need for a generic template for use by new Programs or Projects to determine the toolset appropriate for their use. This paper will provide the guidelines new initiatives can follow and tailor to their specific needs, to enable them to make their choice of tools in an efficient and informed manner. Clearly, those who perform purely technical functions will need different tools than those who perform purely systems engineering functions. And, everyone has tools they are comfortable with. That degree of comfort is frequently the deciding factor in tools choice rather than an objective study of all criteria and weighting factors. This paper strives to produce a comprehensive list of criteria for selection with suggestions for weighting factors based on a number of assumptions regarding the given Program or Project. In addition, any given Program will begin with assumptions for its toolset based on Program size, tool cost, user base and technical needs. In providing a template for tool selection, this paper will guide the reader through assumptions based on Program need; decision criteria; potential weighting factors; the need for a compilation of available tools; the importance of tool demonstrations; and finally a down selection of tools. While specific vendors cannot be mentioned in this work, it is expected that this template could serve other Programs in the formulation phase by alleviating the trade study process of some of its subjectivity.

  14. Scale estimation of objects using template matching

    NASA Astrophysics Data System (ADS)

    Gaxiola, Leopoldo N.; Diaz-Ramirez, Victor H.; Tapia, Juan J.

    2016-09-01

    Scale estimation of objects is a challenging problem in image processing. This work presents a novel method to detect and estimate the scaling factor of a target in an observed scene corrupted with additive noise and clutter. Given a set of available views of the target the proposed method is able to detect the target and estimate its scaling factor using a template matched filters and a scale pyramidal representation. The performance of the proposed method is evaluated in synthetic and real-life scenes in different pattern recognition applications. The obtained results are characterized in terms of objective metrics.

  15. The Contextualization of Archetypes: Clinical Template Governance.

    PubMed

    Pedersen, Rune; Ulriksen, Gro-Hilde; Ellingsen, Gunnar

    2015-01-01

    This paper is a status report from a large-scale openEHR-based EPR project from the North Norway Regional Health Authority. It concerns the standardization of a regional ICT portfolio and the ongoing development of a new process oriented EPR systems encouraged by the unfolding of a national repository for openEHR archetypes. Subject of interest; the contextualization of clinical templates is governed over multiple national boundaries which is complex due to the dependency of clinical resources. From the outset of this, we are interested in how local, regional, and national organizers maneuver to standardize while applying OpenEHR technology.

  16. Reduced basis catalogs for gravitational wave templates.

    PubMed

    Field, Scott E; Galley, Chad R; Herrmann, Frank; Hesthaven, Jan S; Ochsner, Evan; Tiglio, Manuel

    2011-06-03

    We introduce a reduced basis approach as a new paradigm for modeling, representing and searching for gravitational waves. We construct waveform catalogs for nonspinning compact binary coalescences, and we find that for accuracies of 99% and 99.999% the method generates a factor of about 10-10(5) fewer templates than standard placement methods. The continuum of gravitational waves can be represented by a finite and comparatively compact basis. The method is robust under variations in the noise of detectors, implying that only a single catalog needs to be generated.

  17. Progress of UV-NIL template making

    NASA Astrophysics Data System (ADS)

    Hiraka, Takaaki; Mizuochi, Jun; Nakanishi, Yuko; Yusa, Satoshi; Sasaki, Shiho; Morikawa, Yasutaka; Mohri, Hiroshi; Hayashi, Naoya

    2009-04-01

    Nano-imprint lithography (NIL) has been counted as one of the lithography candidates for hp32nm node and beyond and has showed excellent resolution capability with remarkable low line edge roughness that is attracting many researchers in the industry who were searching for the finest patterning technology. Therefore, recently we have been focusing on the resolution improvement on the NIL templates with the 100keV acceleration voltage spot beam (SB) EB writer and the 50keV acceleration voltage variable shaped beam (VSB) EB writer. The 100keV SB writers have high resolution capability, but they show fatally low throughput if we need full chip writing. Usually templates for resolution pioneers needed just a small field (several hundred microns square or so), but recently requirements for full chip templates are increasing. For full chip writing, we have also started the resolution improvement with the 50keV VSB writers used in current 4X photomask manufacturing. The 50keV VSB writers could generate full chip pattern in a reasonable time though resolution limits are inferior to that with the 100keV SB writers. In this paper, we will show latest results with both the 100keV SB and the 50keV VSB EB writers. With the 100keV SB EB writer, we have achieved down to hp15nm resolution for line and space pattern, but found that to achieve further improvement, an innovation in pattern generation method or material would be inevitable. With the 50keV VSB EB writer, we have achieved down to hp22nm resolution for line and space pattern. Though NIL has excellent resolution capability, solutions for defect inspection and repair are not clearly shown yet. In this paper, we will show preliminary inspection results with an EB inspection tool. We tested an EB inspection tool by Hermes Microvision, Inc. (HMI), which was originally developed for and are currently used as a wafer inspection tool, and now have been started to seek the application for mask use, using a programmed defect

  18. Surfactant-Templated Mesoporous Metal Oxide Nanowires

    DOE PAGES

    Luo, Hongmei; Lin, Qianglu; Baber, Stacy; ...

    2010-01-01

    We demore » monstrate two approaches to prepare mesoporous metal oxide nanowires by surfactant assembly and nanoconfinement via sol-gel or electrochemical deposition. For example, mesoporous Ta 2 O 5 and zeolite nanowires are prepared by block copolymer Pluronic 123-templated sol-gel method, and mesoporous ZnO nanowires are prepared by electrodeposition in presence of anionic surfactant sodium dodecyl sulfate (SDS) surfactant, in porous membranes. The morphologies of porous nanowires are studied by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analyses.« less

  19. Automatic target detection using binary template matching

    NASA Astrophysics Data System (ADS)

    Jun, Dong-San; Sun, Sun-Gu; Park, HyunWook

    2005-03-01

    This paper presents a new automatic target detection (ATD) algorithm to detect targets such as battle tanks and armored personal carriers in ground-to-ground scenarios. Whereas most ATD algorithms were developed for forward-looking infrared (FLIR) images, we have developed an ATD algorithm for charge-coupled device (CCD) images, which have superior quality to FLIR images in daylight. The proposed algorithm uses fast binary template matching with an adaptive binarization, which is robust to various light conditions in CCD images and saves computation time. Experimental results show that the proposed method has good detection performance.

  20. Generating Test Templates via Automated Theorem Proving

    NASA Technical Reports Server (NTRS)

    Kancherla, Mani Prasad

    1997-01-01

    Testing can be used during the software development process to maintain fidelity between evolving specifications, program designs, and code implementations. We use a form of specification-based testing that employs the use of an automated theorem prover to generate test templates. A similar approach was developed using a model checker on state-intensive systems. This method applies to systems with functional rather than state-based behaviors. This approach allows for the use of incomplete specifications to aid in generation of tests for potential failure cases. We illustrate the technique on the cannonical triangle testing problem and discuss its use on analysis of a spacecraft scheduling system.

  1. Rank-based decompositions of morphological templates.

    PubMed

    Sussner, P; Ritter, G X

    2000-01-01

    Methods for matrix decomposition have found numerous applications in image processing, in particular for the problem of template decomposition. Since existing matrix decomposition techniques are mainly concerned with the linear domain, we consider it timely to investigate matrix decomposition techniques in the nonlinear domain with applications in image processing. The mathematical basis for these investigations is the new theory of rank within minimax algebra. Thus far, only minimax decompositions of rank 1 and rank 2 matrices into outer product expansions are known to the image processing community. We derive a heuristic algorithm for the decomposition of matrices having arbitrary rank.

  2. Conductive Nanowires Templated by Molecular Brushes.

    PubMed

    Raguzin, Ivan; Stamm, Manfred; Ionov, Leonid

    2015-10-21

    In this paper, we report the fabrication of conductive nanowires using polymer bottle brushes as templates. In our approach, we synthesized poly(2-dimethylamino)ethyl methacrylate methyl iodide quaternary salt brushes by two-step atom transfer radical polymerization, loaded them with palladium salt, and reduced them in order to form metallic nanowires with average lengths and widths of 300 and 20 nm, respectively. The obtained nanowires were deposited between conductive gold pads and were connected to them by sputtering of additional pads to form an electric circuit. We connected the nanowires in an electric circuit and demonstrated that the conductivity of these nanowires is around 100 S·m(-1).

  3. The breakage of nanopore in AAO template

    NASA Astrophysics Data System (ADS)

    Jia, X. R.; Wang, H.; Zhen, Y.

    2016-07-01

    In the present work, AAO template is fabricated in oxalic acid solution under a constant voltage by several steps. By the Bernoulli principle, the pressure on the wall of hole increases which lead to the breakage of nanopore as a result of the reducing effective migration rate of Al3+. The quantity of the breakage of nanopore rises with the increase of the concentration of Al3+. Further, nanopore is closed by oxide due to the decrease of effective migration rate of Al3+. Finally, a “nanoflower-like” shape can be observed in experiments.

  4. Gene therapy for bone regeneration.

    PubMed

    Luo, Jeffrey; Sun, Michael H; Kang, Quan; Peng, Ying; Jiang, Wei; Luu, Hue H; Luo, Qing; Park, Jae Yoon; Li, Yien; Haydon, Rex C; He, Tong-Chuan

    2005-04-01

    Efficacious bone regeneration could revolutionize the clinical management of many bone and musculoskeletal disorders. Bone has the unique ability to regenerate and continuously remodel itself throughout life. However, clinical situations arise when bone is unable to heal itself, as with segmental bone loss, fracture non-union, and failed spinal fusion. This leads to significant morbidity and mortality. Current attempts at improved bone healing have been met with limited success, fueling the development of improved techniques. Gene therapy in many ways represents an ideal approach for augmenting bone regeneration. Gene therapy allows specific gene products to be delivered to a precise anatomic location. In addition, the level of transgene expression as well as the duration of expression can be regulated with current techniques. For bone regeneration, the gene of interest should be delivered to the fracture site, expressed at appropriate levels, and then deactivated once the fracture has healed. Delivery of biological factors, mostly bone morphogenetic proteins (BMPs), has yielded promising results both in animal and clinical studies. There has also been tremendous work on discovering new growth factors and exploring previously defined ones. Finally, significant advances are being made in the delivery systems of the genes, ranging from viral and non-viral vectors to tissue engineering scaffolds. Despite some public hesitation to gene therapy, its use has great potential to expand our ability to treat a variety of human bone and musculoskeletal disorders. It is conceivable that in the near future gene therapy can be utilized to induce bone formation in virtually any region of the body in a minimally invasive manner. As bone biology and gene therapy research progresses, the goal of successful human gene transfer for augmentation of bone regeneration draws nearer.

  5. Fabrication of Trabecular Bone-Templated Tissue-Engineered Constructs by 3D Inkjet Printing.

    PubMed

    Vanderburgh, Joseph P; Fernando, Shanik J; Merkel, Alyssa R; Sterling, Julie A; Guelcher, Scott A

    2017-09-11

    3D printing enables the creation of scaffolds with precisely controlled morphometric properties for multiple tissue types, including musculoskeletal tissues such as cartilage and bone. Computed tomography (CT) imaging has been combined with 3D printing to fabricate anatomically scaled patient-specific scaffolds for bone regeneration. However, anatomically scaled scaffolds typically lack sufficient resolution to recapitulate the <100 micrometer-scale trabecular architecture essential for investigating the cellular response to the morphometric properties of bone. In this study, it is hypothesized that the architecture of trabecular bone regulates osteoblast differentiation and mineralization. To test this hypothesis, human bone-templated 3D constructs are fabricated via a new micro-CT/3D inkjet printing process. It is shown that this process reproducibly fabricates bone-templated constructs that recapitulate the anatomic site-specific morphometric properties of trabecular bone. A significant correlation is observed between the structure model index (a morphometric parameter related to surface curvature) and the degree of mineralization of human mesenchymal stem cells, with more concave surfaces promoting more extensive osteoblast differentiation and mineralization compared to predominately convex surfaces. These findings highlight the significant effects of trabecular architecture on osteoblast function. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. A subpopulation of adult skeletal muscle stem cells retains all template DNA strands after cell division.

    PubMed

    Rocheteau, Pierre; Gayraud-Morel, Barbara; Siegl-Cachedenier, Irene; Blasco, Maria A; Tajbakhsh, Shahragim

    2012-01-20

    Satellite cells are adult skeletal muscle stem cells that are quiescent and constitute a poorly defined heterogeneous population. Using transgenic Tg:Pax7-nGFP mice, we show that Pax7-nGFP(Hi) cells are less primed for commitment and have a lower metabolic status and delayed first mitosis compared to Pax7-nGFP(Lo) cells. Pax7-nGFP(Hi) can give rise to Pax7-nGFP(Lo) cells after serial transplantations. Proliferating Pax7-nGFP(Hi) cells exhibit lower metabolic activity, and the majority performs asymmetric DNA segregation during cell division, wherein daughter cells retaining template DNA strands express stem cell markers. Using chromosome orientation-fluorescence in situ hybridization, we demonstrate that all chromatids segregate asymmetrically, whereas Pax7-nGFP(Lo) cells perform random DNA segregation. Therefore, quiescent Pax7-nGFP(Hi) cells represent a reversible dormant stem cell state, and during muscle regeneration, Pax7-nGFP(Hi) cells generate distinct daughter cell fates by asymmetrically segregating template DNA strands to the stem cell. These findings provide major insights into the biology of stem cells that segregate DNA asymmetrically.

  7. Assessing Usage Patterns of Electronic Clinical Documentation Templates

    PubMed Central

    Vawdrey, David K.

    2008-01-01

    Many vendors of electronic medical records support structured and free-text entry of clinical documents using configurable templates. At a healthcare institution comprising two large academic medical centers, a documentation management data mart and a custom, Web-accessible business intelligence application were developed to track the availability and usage of electronic documentation templates. For each medical center campus, template availability and usage trends were measured from November 2007 through February 2008. By February 2008, approximately 65,000 electronic notes were authored per week on the two campuses. One site had 934 available templates, with 313 being used to author at least one note. The other site had 765 templates, of which 480 were used. The most commonly used template at both campuses was a free text note called “Miscellaneous Nursing Note,” which accounted for 33.3% of total documents generated at one campus and 15.2% at the other. PMID:18998863

  8. Hierarchically structured porous cadmium selenide polycrystals using polystyrene bilayer templates.

    PubMed

    Park, Jin Young; Hendricks, Nicholas R; Carter, Kenneth R

    2012-09-18

    In this study, a novel approach is demonstrated to fabricate hierarchically structured cadmium selenide (CdSe) layers with size-tunable nano/microporous morphologies achieved using polystyrene (PS) bilayered templates (top layer: colloidal template) via potentiostatic electrochemical deposition. The PS bilayer template is made in two steps. First, various PS patterns (stripes, ellipsoids, and circles) are prepared as the bottom layers through imprint lithography. In a second step, a top template is deposited that consists of a self-assembled layer of colloidal 2D packed PS particles. Electrochemical growth of CdSe crystals in the voids and selective removal of the PS bilayered templates give rise to hierarchically patterned 2D hexagonal porous CdSe structures. This simple and facile technique provides various unconventional porous CdSe films, arising from the effect of the PS bottom templates.

  9. Molecular engineering of porous silica using aryl templates

    DOEpatents

    Loy, D.A.; Shea, K.J.

    1994-06-14

    A process is described for manipulating the porosity of silica using a series of organic template groups covalently incorporated into the silicate matrix. The templates in the bridged polysilsesquioxanes are selectively removed from the material by oxidation with oxygen plasma or other means, leaving engineered voids or pores. The size of these pores is dependent upon the length or size of the template or spacer. The size of the templates is measured in terms of Si-Si distances which range from about 0.67 nm to 1.08 nm. Changes introduced by the loss of the templates result in a narrow range of micropores (i.e. <2 nm). Both aryl and alkyl template groups are used as spacers. Novel microporous silica materials useful as molecular sieves, desiccants, and catalyst supports are produced. 3 figs.

  10. Molecular engineering of porous silica using aryl templates

    DOEpatents

    Loy, Douglas A.; Shea, Kenneth J.

    1994-01-01

    A process for manipulating the porosity of silica using a series of organic template groups covalently incorporated into the silicate matrix. The templates in the bridged polysilsesquioxanes are selectively removed from the material by oxidation with oxygen plasma or other means, leaving engineered voids or pores. The size of these pores is dependent upon the length or size of the template or spacer. The size of the templates is measured in terms of Si-Si distances which range from about 0.67 nm to 1.08 nm. Changes introduced by the loss of the templates result in a narrow range of micropores (i.e. <2 nm). Both aryl and alkyl template groups are used as spacers. Novel microporous silica materials useful as molecular seives, dessicants, and catalyst supports are produced.

  11. Two methods to generate templates for template-based partial volume effect correction: SPECT phantom experiments.

    PubMed

    Shcherbinin, S; Grimes, J; Celler, A

    2013-02-21

    In this paper, we explore the applicability of template-based compensation for the partial volume effect (PVE) for situations where (i) the image has multiple uptake sites (tumors and organs) but only one of them is treated as a region of interest (ROI) with the boundaries available from a high-resolution modality and (ii) no information regarding activities inside or outside this ROI is a priori available. We modeled this situation by performing SPECT acquisitions of phantoms containing 21 containers, which had different shapes and sizes and were filled with different levels of activity. In our analysis, each of these containers was treated as an individual ROI. We compared the performance of two methods of template construction. In method 1, the ROI template value was obtained from a conventionally reconstructed (without PVEC) image. In method 2, the ROI template value was directly (bypassing the PVE-affected conventional image) calculated from projections using region-based reconstruction. Our processing shows that method 1 resulted in consistent (activities for all 21 ROIs were improved) but relatively weak PVE compensation (errors of recovered total activities were equal to or lower than 10% for 5 ROIs only). Application of method 2 resulted in a selective (activities for 19 ROIs were improved) but considerably better compensation when compared to method 1 (errors of recovered total activities were equal to or lower than 10% for 10 ROIs).

  12. Nonenzymatic template-directed synthesis on hairpin oligonucleotides. 2. Templates containing cytidine and guanosine residues

    NASA Technical Reports Server (NTRS)

    Wu, T.; Orgel, L. E.

    1992-01-01

    We have prepared hairpin oligonucleotides in which a 5'-terminal single-stranded segment contains cytidylate (C) and guanylate (G) residues. When these hairpin substrates are incubated with a mixture of cytidine 5'-phosphoro(2-methly)imidazolide (2-MeImpC) and guanosine 5'-phosphoro(2-methyl)imidazolide (2-MeImpG), the 5'-terminal segment acts as a template to facilitate sequence-specific addition of G and C residues to the 3'-terminus of the hairpin. If an isolated G residue is present at the 3'-end of the template strand, it is copied regiospecifically in the presence of 2-MeImpC and 2-MeImpG to give a product containing an isolated C residue linked to its G neighbors by 3'-5'-internucleotide bonds. However, if only 2-MeImpC is present in the reaction mixture, very little reaction occurs. Thus, the presence of 2-MeImpG catalyzes the incorporation of C. If the template strand contains a short sequence of G residues, it is copied in the presence of a mixture of 2-MeImpC and 2-MeImpG. If only 2-MeImpC is present in the reaction mixture, efficient synthesis occurs to give a final product containing one fewer C residue than the number of G residues in the template.

  13. Method And Apparatus For Regenerating Nox Adsorbers

    DOEpatents

    Driscoll, J. Joshua; Endicott, Dennis L.; Faulkner, Stephen A.; Verkiel, Maarten

    2006-03-28

    Methods and apparatuses for regenerating a NOx adsorber coupled with an exhaust of an engine. An actuator drives a throttle valve to a first position when regeneration of the NOx adsorber is desired. The first position is a position that causes the regeneration of the NOx adsorber. An actuator drives the throttle valve to a second position while regeneration of the NOx adsorber is still desired. The second position being a position that is more open than the first position and operable to regenerate a NOx adsorber.

  14. Research of Search Template Based on Distributed Computing

    NASA Astrophysics Data System (ADS)

    Xiao, Yao; Huang, Long-Jun; Zuo, Yi

    Aiming at the problem of requirement identification in the field of search engine, we proposed a scheme that makes use of nature language template. In the help of map-reduce analyze of the user searching log, high frequency template can be obtained. Besides, based on tire tree we designed a algorithm that can make the search engine distinguish user requirements using the template. In that case, the search engine can offer different service according to the user requirements.

  15. Constructing binary black hole template banks using numerical relativity waveforms

    NASA Astrophysics Data System (ADS)

    Kumar, Prayush

    2013-04-01

    We present methods for constructing and validating template banks for gravitational waves from high mass binary black holes in advanced gravitational-wave detectors using waveforms from numerical relativity. We construct these template banks using numerical waveforms from the Simulating eXtreme Spacetimes (SXS) collaboration. We show how a template bank can be constructed using numerical waveforms for non-spinning black hole binaries and discuss how this can be extended into the aligned spin black hole binary space.

  16. Kinetic theory of amyloid fibril templating.

    PubMed

    Schmit, Jeremy D

    2013-05-14

    The growth of amyloid fibrils requires a disordered or partially unfolded protein to bind to the fibril and adapt the same conformation and alignment established by the fibril template. Since the H-bonds stabilizing the fibril are interchangeable, it is inevitable that H-bonds form between incorrect pairs of amino acids which are either incorporated into the fibril as defects or must be broken before the correct alignment can be found. This process is modeled by mapping the formation and breakage of H-bonds to a one-dimensional random walk. The resulting microscopic model of fibril growth is governed by two timescales: the diffusion time of the monomeric proteins, and the time required for incorrectly bound proteins to unbind from the fibril. The theory predicts that the Arrhenius behavior observed in experiments is due to off-pathway states rather than an on-pathway transition state. The predicted growth rates are in qualitative agreement with experiments on insulin fibril growth rates as a function of protein concentration, denaturant concentration, and temperature. These results suggest a templating mechanism where steric clashes due to a single mis-aligned molecule prevent the binding of additional molecules.

  17. Metal templated design of protein interfaces.

    PubMed

    Salgado, Eric N; Ambroggio, Xavier I; Brodin, Jeffrey D; Lewis, Richard A; Kuhlman, Brian; Tezcan, F Akif

    2010-02-02

    Metal coordination is a key structural and functional component of a large fraction of proteins. Given this dual role we considered the possibility that metal coordination may have played a templating role in the early evolution of protein folds and complexes. We describe here a rational design approach, Metal Templated Interface Redesign (MeTIR), that mimics the time course of a hypothetical evolutionary pathway for the formation of stable protein assemblies through an initial metal coordination event. Using a folded monomeric protein, cytochrome cb(562), as a building block we show that its non-self-associating surface can be made self-associating through a minimal number of mutations that enable Zn coordination. The protein interfaces in the resulting Zn-directed, D(2)-symmetrical tetramer are subsequently redesigned, yielding unique protein architectures that self-assemble in the presence or absence of metals. Aside from its evolutionary implications, MeTIR provides a route to engineer de novo protein interfaces and metal coordination environments that can be tuned through the extensive noncovalent bonding interactions in these interfaces.

  18. Random template placement and prior information

    NASA Astrophysics Data System (ADS)

    Röver, Christian

    2010-05-01

    In signal detection problems, one is usually faced with the task of searching a parameter space for peaks in the likelihood function which indicate the presence of a signal. Random searches have proven to be very efficient as well as easy to implement, compared e.g. to searches along regular grids in parameter space. Knowledge of the parameterised shape of the signal searched for adds structure to the parameter space, i.e., there are usually regions requiring to be densely searched while in other regions a coarser search is sufficient. On the other hand, prior information identifies the regions in which a search will actually be promising or may likely be in vain. Defining specific figures of merit allows one to combine both template metric and prior distribution and devise optimal sampling schemes over the parameter space. We show an example related to the gravitational wave signal from a binary inspiral event. Here the template metric and prior information are particularly contradictory, since signals from low-mass systems tolerate the least mismatch in parameter space while high-mass systems are far more likely, as they imply a greater signal-to-noise ratio (SNR) and hence are detectable to greater distances. The derived sampling strategy is implemented in a Markov chain Monte Carlo (MCMC) algorithm where it improves convergence.

  19. Prior expectations induce prestimulus sensory templates.

    PubMed

    Kok, Peter; Mostert, Pim; de Lange, Floris P

    2017-09-26

    Perception can be described as a process of inference, integrating bottom-up sensory inputs and top-down expectations. However, it is unclear how this process is neurally implemented. It has been proposed that expectations lead to prestimulus baseline increases in sensory neurons tuned to the expected stimulus, which in turn, affect the processing of subsequent stimuli. Recent fMRI studies have revealed stimulus-specific patterns of activation in sensory cortex as a result of expectation, but this method lacks the temporal resolution necessary to distinguish pre- from poststimulus processes. Here, we combined human magnetoencephalography (MEG) with multivariate decoding techniques to probe the representational content of neural signals in a time-resolved manner. We observed a representation of expected stimuli in the neural signal shortly before they were presented, showing that expectations indeed induce a preactivation of stimulus templates. The strength of these prestimulus expectation templates correlated with participants' behavioral improvement when the expected feature was task-relevant. These results suggest a mechanism for how predictive perception can be neurally implemented.

  20. Adaptive, template moderated, spatially varying statistical classification.

    PubMed

    Warfield, S K; Kaus, M; Jolesz, F A; Kikinis, R

    2000-03-01

    A novel image segmentation algorithm was developed to allow the automatic segmentation of both normal and abnormal anatomy from medical images. The new algorithm is a form of spatially varying statistical classification, in which an explicit anatomical template is used to moderate the segmentation obtained by statistical classification. The algorithm consists of an iterated sequence of spatially varying classification and nonlinear registration, which forms an adaptive, template moderated (ATM), spatially varying statistical classification (SVC). Classification methods and nonlinear registration methods are often complementary, both in the tasks where they succeed and in the tasks where they fail. By integrating these approaches the new algorithm avoids many of the disadvantages of each approach alone while exploiting the combination. The ATM SVC algorithm was applied to several segmentation problems, involving different image contrast mechanisms and different locations in the body. Segmentation and validation experiments were carried out for problems involving the quantification of normal anatomy (MRI of brains of neonates) and pathology of various types (MRI of patients with multiple sclerosis, MRI of patients with brain tumors, MRI of patients with damaged knee cartilage). In each case, the ATM SVC algorithm provided a better segmentation than statistical classification or elastic matching alone.

  1. Fluorogenic Templated Reaction Cascades for RNA Detection.

    PubMed

    Velema, Willem A; Kool, Eric T

    2017-03-27

    Nucleic acids detection is essential to the study of biological processes and to diagnosis of pathological states. Although PCR is highly effective in vitro, methods that can function without prior sample preparation, thermal cycling, or enzymes are of interest due to their simplicity. Most current non-PCR detection methods rely on linear signal amplification, which hinders the detection of small amounts of genetic material. To address this limitation, we tested a new strategy for attaining higher-order signal amplification, in which a target sequence templates a chemical ligation and the product of this reaction is in turn detected with a second templated reaction. The method is nonenzymatic, isothermal and fluorogenic, allowing the direct detection of nucleic acids in complex matrices. Using this approach, as little as 500 attomoles (10 pM) could be detected with single nucleotide resolution. In a test of selectivity, single nucleotide substitutions and deletions could successfully be detected, including a deletion that is associated with tetracycline resistance in Helicobacter pylori. Compatibility with biological matrices was demonstrated by the direct detection of rRNA in bacterial lysate. Imaging and detection of target sequences on a solid support further illustrates the potential of the new approach for high-throughput analysis.

  2. Fluid discrimination based on rock physics templates

    NASA Astrophysics Data System (ADS)

    Liu, Qian; Yin, Xingyao; Li, Chao

    2015-10-01

    Reservoir fluid discrimination is an indispensable part of seismic exploration. Reliable fluid discrimination helps to decrease the risk of exploration and to increase the success ratio of drilling. There are many kinds of fluid indicators that are used in fluid discriminations, most of which are single indicators. But single indicators do not always work well under complicated reservoir conditions. Therefore, combined fluid indicators are needed to increase accuracies of discriminations. In this paper, we have proposed an alternative strategy for the combination of fluid indicators. An alternative fluid indicator, the rock physics template-based indicator (RPTI) has been derived to combine the advantages of two single indicators. The RPTI is more sensitive to the contents of fluid than traditional indicators. The combination is implemented based on the characteristic of the fluid trend in the rock physics template, which means few subjective factors are involved. We also propose an inversion method to assure the accuracy of the RPTI input data. The RPTI profile is an intuitionistic interpretation of fluid content. Real data tests demonstrate the applicability and validity.

  3. Regeneration: Thomas Hunt Morgan's window into development.

    PubMed

    Sunderland, Mary Evelyn

    2010-01-01

    Early in his career Thomas Hunt Morgan was interested in embryology and dedicated his research to studying organisms that could regenerate. Widely regarded as a regeneration expert, Morgan was invited to deliver a series of lectures on the topic that he developed into a book, Regeneration (1901). In addition to presenting experimental work that he had conducted and supervised, Morgan also synthesized and critiqued a great deal of work by his peers and predecessors. This essay probes into the history of regeneration studies by looking in depth at Regeneration and evaluating Morgan's contribution. Although famous for his work with fruit fly genetics, studying Regeneration illuminates Morgan's earlier scientific approach which emphasized the importance of studying a diversity of organisms. Surveying a broad range of regenerative phenomena allowed Morgan to institute a standard scientific terminology that continues to inform regeneration studies today. Most importantly, Morgan argued that regeneration was a fundamental aspect of the growth process and therefore should be accounted for within developmental theory. Establishing important similarities between regeneration and development allowed Morgan to make the case that regeneration could act as a model of development. The nature of the relationship between embryogenesis and regeneration remains an active area of research.

  4. An ice-templated, linearly aligned chitosan-alginate scaffold for neural tissue engineering.

    PubMed

    Francis, Nicola L; Hunger, Philipp M; Donius, Amalie E; Riblett, Benjamin W; Zavaliangos, Antonios; Wegst, Ulrike G K; Wheatley, Margaret A

    2013-12-01

    Several strategies have been investigated to enhance axonal regeneration after spinal cord injury, however, the resulting growth can be random and disorganized. Bioengineered scaffolds provide a physical substrate for guidance of regenerating axons towards their targets, and can be produced by freeze casting. This technique involves the controlled directional solidification of an aqueous solution or suspension, resulting in a linearly aligned porous structure caused by ice templating. In this study, freeze casting was used to fabricate porous chitosan-alginate (C/A) scaffolds with longitudinally oriented channels. Chick dorsal root ganglia explants adhered to and extended neurites through the scaffold in parallel alignment with the channel direction. Surface adsorption of a polycation and laminin promoted significantly longer neurite growth than the uncoated scaffold (poly-L-ornithine + Laminin = 793.2 ± 187.2 μm; poly-L-lysine + Laminin = 768.7 ± 241.2 μm; uncoated scaffold = 22.52 ± 50.14 μm) (P < 0.001). The elastic modulus of the hydrated scaffold was determined to be 5.08 ± 0.61 kPa, comparable to reported spinal cord values. The present data suggested that this C/A scaffold is a promising candidate for use as a nerve guidance scaffold, because of its ability to support neuronal attachment and the linearly aligned growth of DRG neurites.

  5. Nerves Regulate Cardiomyocyte Proliferation and Heart Regeneration.

    PubMed

    Mahmoud, Ahmed I; O'Meara, Caitlin C; Gemberling, Matthew; Zhao, Long; Bryant, Donald M; Zheng, Ruimao; Gannon, Joseph B; Cai, Lei; Choi, Wen-Yee; Egnaczyk, Gregory F; Burns, Caroline E; Burns, C Geoffrey; MacRae, Calum A; Poss, Kenneth D; Lee, Richard T

    2015-08-24

    Some organisms, such as adult zebrafish and newborn mice, have the capacity to regenerate heart tissue following injury. Unraveling the mechanisms of heart regeneration is fundamental to understanding why regeneration fails in adult humans. Numerous studies have revealed that nerves are crucial for organ regeneration, thus we aimed to determine whether nerves guide heart regeneration. Here, we show using transgenic zebrafish that inhibition of cardiac innervation leads to reduction of myocyte proliferation following injury. Specifically, pharmacological inhibition of cholinergic nerve function reduces cardiomyocyte proliferation in the injured hearts of both zebrafish and neonatal mice. Direct mechanical denervation impairs heart regeneration in neonatal mice, which was rescued by the administration of neuregulin 1 (NRG1) and nerve growth factor (NGF) recombinant proteins. Transcriptional analysis of mechanically denervated hearts revealed a blunted inflammatory and immune response following injury. These findings demonstrate that nerve function is required for both zebrafish and mouse heart regeneration.

  6. Light Weight Biomorphous Cellular Ceramics from Cellulose Templates

    NASA Technical Reports Server (NTRS)

    Singh, Mrityunjay; Yee, Bo-Moon; Gray, Hugh R. (Technical Monitor)

    2003-01-01

    Bimorphous ceramics are a new class of materials that can be fabricated from the cellulose templates derived from natural biopolymers. These biopolymers are abundantly available in nature and are produced by the photosynthesis process. The wood cellulose derived carbon templates have three- dimensional interconnectivity. A wide variety of non-oxide and oxide based ceramics have been fabricated by template conversion using infiltration and reaction-based processes. The cellular anatomy of the cellulose templates plays a key role in determining the processing parameters (pyrolysis, infiltration conditions, etc.) and resulting ceramic materials. The processing approach, microstructure, and mechanical properties of the biomorphous cellular ceramics (silicon carbide and oxide based) have been discussed.

  7. Piled tool will level subsea well template for Heidrun TLP

    SciTech Connect

    Not Available

    1992-01-13

    This paper reports on piled leveling tools that were contracted for use during the installation of the subsea well template for Conoco Norway Inc.'s Heidrun tension leg platform (TLP) in the Norwegian sector of the North Sea. The leveling tools are employed after a template has been positioned on the seafloor and anchor pilings have been driven through the template sleeves. One or more tools are lowered and landed on anchor pilings at the low side of the template. No diver support or guidelines are required.

  8. Enhanced ICBM Diffusion Tensor Template of the Human Brain

    PubMed Central

    Zhang, Shengwei; Peng, Huiling; Dawe, Robert J.; Arfanakis, Konstantinos

    2010-01-01

    Development of a diffusion tensor (DT) template that is representative of the micro-architecture of the human brain is crucial for comparisons of neuronal structural integrity and brain connectivity across populations, as well as for the generation of a detailed white matter atlas. Furthermore, a DT template in ICBM space may simplify consolidation of information from DT, anatomical and functional MRI studies. The previously developed “IIT DT brain template” was produced in ICBM-152 space, based on a large number of subjects from a limited age-range, using data with minimal image artifacts, and non-linear registration. That template was characterized by higher image sharpness, provided the ability to distinguish smaller white matter fiber structures, and contained fewer image artifacts, than several previously published DT templates. However, low-dimensional registration was used in the development of that template, which led to a mismatch of DT information across subjects, eventually manifested as loss of local diffusion information and errors in the final tensors. Also, low-dimensional registration led to a mismatch of the anatomy in the IIT and ICBM-152 templates. In this work, a significantly improved DT brain template in ICBM-152 space was developed, using high-dimensional non-linear registration and the raw data collected for the purposes of the IIT template. The accuracy of inter-subject DT matching was significantly increased compared to that achieved for the development of the IIT template. Consequently, the new template contained DT information that was more representative of single-subject human brain data, and was characterized by higher image sharpness than the IIT template. Furthermore, a bootstrap approach demonstrated that the variance of tensor characteristics was lower in the new template. Additionally, compared to the IIT template, brain anatomy in the new template more accurately matched ICBM-152 space. Finally, spatial normalization of a

  9. Influence of template fill in graphoepitaxy directed self-assembly

    NASA Astrophysics Data System (ADS)

    Doise, Jan; Bekaert, Joost; Chan, Boon Teik; Hong, SungEun; Lin, Guanyang; Gronheid, Roel

    2016-07-01

    Directed self-assembly (DSA) of block copolymers (BCP) is considered a promising patterning approach for the 7-nm node and beyond. Specifically, a graphoepitaxy process using a cylindrical phase BCP may offer an efficient solution for patterning randomly distributed contact holes with subresolution pitches, such as found in via and cut mask levels. In any graphoepitaxy process, the pattern density impacts the template fill (local BCP thickness inside the template) and may cause defects due to over- or underfilling of the template. In order to tackle this issue thoroughly, the parameters that determine template fill and the influence of template fill on the resulting pattern should be investigated. Using three process flow variations (with different template surface energy), template fill is experimentally characterized as a function of pattern density and film thickness. The impact of these parameters on template fill is highly dependent on the process flow, and thus prepattern surface energy. Template fill has a considerable effect on the pattern transfer of the DSA contact holes into the underlying layer. Higher fill levels give rise to smaller contact holes and worse critical dimension uniformity. These results are important for DSA-aware design and show that fill is a crucial parameter in graphoepitaxy DSA.

  10. Guided tissue regeneration. Absorbable barriers.

    PubMed

    Wang, H L; MacNeil, R L

    1998-07-01

    Over the past 15 years, techniques aimed at regeneration of lost periodontal tissue have become widely used and accepted in clinical practice. Among these techniques are those which use the principles of guided tissue regeneration (GTR), wherein barriers (i.e., membranes) are used to control cell and tissue repopulation of the periodontal wound. A variety of non-absorbable and absorbable barriers have been developed and used for this purpose, with a trend in recent years toward increased use of absorbable GTR materials. This article describes the evolution of absorbable barrier materials and overview materials available for clinical use today. In addition, advantages and disadvantages of these materials are discussed, as well as possible new developments in barrier-based GTR therapy.

  11. Solvent-regenerated activated carbon

    SciTech Connect

    McLaughlin, H. )

    1988-07-01

    This report summarizes the results of a University/Industry research project, sponsored by the New York State Energy Research and Development Authority and Fluids Design Corporation. The research project studied the solvent regeneration of activated carbon. Activate carbon was used to remove trace organics from aqueous streams, then regenerated by desorbing the adsorbates with organic solvents. The project included a survey of the potential applications in New York State industries, fundamental research on the adsorption/desorption phenomena, and design of a full-scale process. The economics of the full-scale process were evaluated and compared to alternate available technologies. The result of this work is a versatile process with attractive economics. A wide range of adsorbates and solvents were found to be acceptable for this process. The design methodologies are developed and the techniques for evaluating a new application are delineated. 13 refs., 12 figs., 4 tabs.

  12. Image Hashes as Templates for Verification

    SciTech Connect

    Janik, Tadeusz; Jarman, Kenneth D.; Robinson, Sean M.; Seifert, Allen; McDonald, Benjamin S.; White, Timothy A.

    2012-07-17

    Imaging systems can provide measurements that confidently assess characteristics of nuclear weapons and dismantled weapon components, and such assessment will be needed in future verification for arms control. Yet imaging is often viewed as too intrusive, raising concern about the ability to protect sensitive information. In particular, the prospect of using image-based templates for verifying the presence or absence of a warhead, or of the declared configuration of fissile material in storage, may be rejected out-of-hand as being too vulnerable to violation of information barrier (IB) principles. Development of a rigorous approach for generating and comparing reduced-information templates from images, and assessing the security, sensitivity, and robustness of verification using such templates, are needed to address these concerns. We discuss our efforts to develop such a rigorous approach based on a combination of image-feature extraction and encryption-utilizing hash functions to confirm proffered declarations, providing strong classified data security while maintaining high confidence for verification. The proposed work is focused on developing secure, robust, tamper-sensitive and automatic techniques that may enable the comparison of non-sensitive hashed image data outside an IB. It is rooted in research on so-called perceptual hash functions for image comparison, at the interface of signal/image processing, pattern recognition, cryptography, and information theory. Such perceptual or robust image hashing—which, strictly speaking, is not truly cryptographic hashing—has extensive application in content authentication and information retrieval, database search, and security assurance. Applying and extending the principles of perceptual hashing to imaging for arms control, we propose techniques that are sensitive to altering, forging and tampering of the imaged object yet robust and tolerant to content-preserving image distortions and noise. Ensuring that the

  13. Template-Directed Synthesis of Nanoparticles

    NASA Astrophysics Data System (ADS)

    You, Eun-Ah

    The physical and optical properties of the particles can be tuned by the rational design of nanoparticles (NPs)---the ability to select, in advance, desired particle geometry. In particular, template-directed synthesis can define the geometry of NPs with precise control over the size and shape of individual particles over a wide range of dimensions. This dissertation describes different approaches to create geometry-controlled particles. First, we generated multiscale Au NPs spanning multiple length scales (e.g. >100 nm dimensions, >10 nm thin shells/components, and >1 nm sharp features) with different aspect ratios ranging from 1.0 to 7.7 using Si templates. Three dimensional (3D) multiscale Au particles showed that increasing the length of the particles resulted in excitation of a longitudinal mode and two different transverse modes having different multipolar orders. The multipolar orders increased for both longitudinal and transverse modes as the aspect ratio increased. Finite-difference time-domain calculations revealed that the structural asymmetry of the 3D anisotropic particles resulted in two distinct transverse plasmon resonances. When the 3D structural change occurred at the ends of the multiscale particle, however, the optical response showed two resonances in the longitudinal direction and only a single resonance in the transverse direction. Second, we created arsenic trioxide (ATO) nanoparticles using nanowell templates. The different sizes of ATO nanocrystals were generated by controlling the concentration of the precursor materials while keeping the well volume the same. Selected area electron diffraction showed that the nanoparticles are single crystalline. Furthermore, the biological activity of ATO nanocrystals as anticancer drug was tested by investigating their cytotoxicity. We found that ATO nanocrystals have a modestly attenuated activity compared to free ATO. Finally, we synthesized Au nanospheres with size control and functionalized the

  14. Flow tube wall regenerator performance

    NASA Astrophysics Data System (ADS)

    Decher, Reiner

    1990-07-01

    The performance of a regenerator processing a fluid in a reciprocating manner is described in terms of the fluid and the wall material characteristics as well as the geometry of the flow tubes through which the fluid is forced. It is shown that the effectiveness cannot exceed 50 percent and that it requires a wall material of low thermal heat capacity with good thermal contact between wall and fluid. Quantitative results are presented for a representative analysis model.

  15. Composite Hydrogels for Bone Regeneration

    PubMed Central

    Tozzi, Gianluca; De Mori, Arianna; Oliveira, Antero; Roldo, Marta

    2016-01-01

    Over the past few decades, bone related disorders have constantly increased. Among all pathological conditions, osteoporosis is one of the most common and often leads to bone fractures. This is a massive burden and it affects an estimated 3 million people only in the UK. Furthermore, as the population ages, numbers are due to increase. In this context, novel biomaterials for bone fracture regeneration are constantly under development. Typically, these materials aim at favoring optimal bone integration in the scaffold, up to complete bone regeneration; this approach to regenerative medicine is also known as tissue engineering (TE). Hydrogels are among the most promising biomaterials in TE applications: they are very flexible materials that allow a number of different properties to be targeted for different applications, through appropriate chemical modifications. The present review will focus on the strategies that have been developed for formulating hydrogels with ideal properties for bone regeneration applications. In particular, aspects related to the improvement of hydrogels’ mechanical competence, controlled delivery of drugs and growth factors are treated in detail. It is hoped that this review can provide an exhaustive compendium of the main aspects in hydrogel related research and, therefore, stimulate future biomaterial development and applications. PMID:28773392

  16. Regeneration of pancreatic beta cells.

    PubMed

    Jun, Hee-Sook

    2008-05-01

    Diabetes mellitus results from inadequate mass of insulin-producing pancreatic beta cells. Type 1 diabetes is characterized by absolute loss of beta cells due to autoimmune-mediated destruction. Type 2 diabetes is characterized by relative deficiency of beta cells due to lack of compensation for insulin resistance. Restoration of deficient beta cell mass by transplantation from exogenous sources or by endogenous regeneration of insulin-producing cells would be therapeutic options. Mature beta cells have an ability to proliferate; however, it has been shown to be difficult to expand adult beta cells in vitro. Alternatively, regeneration of beta cells from embryonic and adult stem cells and pancreatic progenitor cells is an attractive method to restore islet cell mass. With information obtained from the biology of pancreatic development, direct differentiation of stem and progenitor cells toward a pancreatic beta cell phenotype has been tried using various strategies, including forced expression of beta cell-specific transcription factors. Further research is required to understand how endogenous beta cells differentiate and to develop methods to regenerate beta cells for clinically applicable therapies for diabetes.

  17. MHD (Magnetohydrodynamics) recovery and regeneration

    SciTech Connect

    McIlroy, R. A.; Probert, P. B.; Lahoda, E. J.; Swift, W. M.; Jackson, D. M.; Prasad, J.; Martin, J.; Rogers, C.; Ho, K. K.; Senary, M. K.; Lee, S.; Westinghouse Electric Corp., Pittsburgh, PA; Argonne National Lab., IL; Tennessee Univ., Tullahoma, TN . Space Inst.; Hudson Engineering; Babcock and Wilcox Co., Alliance, OH . Re

    1988-10-01

    A two-phase program investigating MHD seed regeneration is described. In Phase I, bench scale experiments were carried out to demonstrate the technical feasibility of a proposed Seed Regeneration Process. The Phase I data has been used for the preliminary design of a Proof-of-Concept (POC) plant which will be built and tested in Phase II. The Phase I data will also be used to estimate the costs of a 300 Mw(t) demonstration plant for comparison with other processes. The Seed Regeneration Process consists of two major subprocesses; a Westinghouse Dry Reduction process and a modified Tampella (sulfur) Recovery process. The Westinghouse process reduces the recovered spent seed (i.e., potassium sulfate) to potassium polysulfide in a rotary kiln. The reduction product is dissolved in water to form green liquor, clarified to remove residual coal ash, and sent to the Tampella sulfur release system. The sulfur is released using carbon dioxide from flue gas in a two stage reaction. The sulfur is converted to elemental sulfur as a marketable by product. The potassium is crystallized from the green liquor and dried to the anhydrous form for return to the MHD unit.

  18. Genetic and epigenetic controls of plant regeneration.

    PubMed

    Xu, Lin; Huang, Hai

    2014-01-01

    Plants have evolved powerful regeneration abilities to recover from damage. Studies on plant regeneration are of high significance as the underlying mechanisms of plant regeneration are not only linking to the fundamental researches in many fields but also to the development of widely used plant biotechnology. Higher plants show three main types of regeneration: tissue regeneration, de novo organogenesis, and somatic embryogenesis. In this review, we summarize recent research on plant regeneration, mainly focusing on Arabidopsis thaliana and moss. New data suggest that plant hormones trigger regeneration and that several key transcription factors respond to hormone signals to determine cell-fate transition. Cell-fate transition requires genome-wide changes in gene expression, which are regulated via epigenetic pathways. Certain epigenetic factors may be recruited by transcription factors to relocate to new loci and regulate gene expression. Cross talk among hormone signaling, transcription factors, and epigenetic factors is involved in different types of plant regeneration, suggesting that elegant and complex regulatory mechanisms control which type of regeneration is triggered in plants under different circumstances. Since regeneration is initiated by wounding, identification of the wound signal is an important objective for future research.

  19. Controlling template erosion with advanced cleaning methods

    NASA Astrophysics Data System (ADS)

    Singh, SherJang; Yu, Zhaoning; Wähler, Tobias; Kurataka, Nobuo; Gauzner, Gene; Wang, Hongying; Yang, Henry; Hsu, Yautzong; Lee, Kim; Kuo, David; Dress, Peter

    2012-03-01

    We studied the erosion and feature stability of fused silica patterns under different template cleaning conditions. The conventional SPM cleaning is compared with an advanced non-acid process. Spectroscopic ellipsometry optical critical dimension (SE-OCD) measurements were used to characterize the changes in pattern profile with good sensitivity. This study confirmed the erosion of the silica patterns in the traditional acid-based SPM cleaning mixture (H2SO4+H2O2) at a rate of ~0.1nm per cleaning cycle. The advanced non-acid clean process however only showed CD shift of ~0.01nm per clean. Contamination removal & pattern integrity of sensitive 20nm features under MegaSonic assisted cleaning is also demonstrated.

  20. Cross-Correlation: Statistics, Templating, and Doctrine

    DTIC Science & Technology

    1984-02-29

    g ze26.19 u)U*O D 0 Lb4 S ! 94a p*L 6 a 0 6 m n 00M op op C 4j 1 L* 2 C- 4 0.1 "I I LU C*~i 0:01:06 s - U Ib ILO) -0 ) 0...0 a as1 -x * c x 40 U 1m0u -,L-60 .C51 £ 1 - , It 0;0341 C4 WI - CU-acO 2 . 2 , 0 b llzU 1s to 6 aU - 3 I wCSSa . G % wooa a.. S -I0f 0=: f-l _ VV1 4A...L ru S .. 0 0~ 0 t- L -4 bot- I’D 0 ~ ~~cl e___ ’~C~-~. 2 - 1 2.2.2 Situational Templating For purposes of this report terrain, vegetation,

  1. Using archetypes for defining CDA templates.

    PubMed

    Moner, David; Moreno, Alberto; Maldonado, José A; Robles, Montserrat; Parra, Carlos

    2012-01-01

    While HL7 CDA is a widely adopted standard for the documentation of clinical information, the archetype approach proposed by CEN/ISO 13606 and openEHR is gaining recognition as a means of describing domain models and medical knowledge. This paper describes our efforts in combining both standards. Using archetypes as an alternative for defining CDA templates permit new possibilities all based on the formal nature of archetypes and their ability to merge into the same artifact medical knowledge and technical requirements for semantic interoperability of electronic health records. We describe the process followed for the normalization of existing legacy data in a hospital environment, from the importation of the HL7 CDA model into an archetype editor, the definition of CDA archetypes and the application of those archetypes to obtain normalized CDA data instances.

  2. Nanoporous alumina as templates for multifunctional applications

    NASA Astrophysics Data System (ADS)

    Sousa, C. T.; Leitao, D. C.; Proenca, M. P.; Ventura, J.; Pereira, A. M.; Araujo, J. P.

    2014-09-01

    Due to its manufacturing and size tailoring ease, porous anodic alumina (PAA) templates are an elegant physical-chemical nanopatterning approach and an emergent alternative to more sophisticated and expensive methods currently used in nanofabrication. In this review, we will describe the ground work on the fabrication methods of PAA membranes and PAA-based nanostructures. We will present the specificities of the electrochemical growth processes of multifunctional nanomaterials with diversified shapes (e.g., nanowires and nanotubes), and the fabrication techniques used to grow ordered nanohole arrays. We will then focus on the fabrication, properties and applications of magnetic nanostructures grown on PAA and illustrate their dependence on internal (diameter, interpore distance, length, composition) and external (temperature and applied magnetic field intensity and direction) parameters. Finally, the most outstanding experimental findings on PAA-grown nanostructures and their trends for technological applications (sensors, energy harvesting, metamaterials, and biotechnology) will be addressed.

  3. Virus Assemblies as Templates for Nanocircuits

    SciTech Connect

    James N Culver; Michael T Harris

    2011-08-31

    The goals of this project were directed at the identification and characterization of bio-mineralization processes and patterning methods for the development of nano scale materials and structures with novel energy and conductive traits. This project utilized a simple plant virus as a model template to investigate methods to attach and coat metals and other inorganic compounds onto biologically based nanotemplates. Accomplishments include: the development of robust biological nanotemplates with enhanced inorganic coating activities; novel coating strategies that allow for the deposition of a continuous inorganic layer onto a bio-nanotemplate even in the absence of a reducing agent; three-dimensional patterning methods for the assemble of nano-featured high aspect ratio surfaces and the demonstrated use of these surfaces in enhancing battery and energy storage applications. Combined results from this project have significantly advanced our understanding and ability to utilize the unique self-assembly properties of biologically based molecules to produce novel materials at the nanoscale level.

  4. Business planning: a template for success.

    PubMed

    Dye, Judy

    2002-01-01

    Because managing a laboratory, or any health-care entity, is as much a business as a service, it is important for you to have a good grasp on how you can take opportunities from idea conception to implementation to assessment/revision. Regardless of the size of your proposed project, you need to consider a number of factors, among them: your history and what opportunities you can seize from your strengths and weaknesses; the overall business climate; anticipated costs; staff involvement; how you will market your project; and what measures to use to determine your success. Above all else, you need to set goals, both ultimate and intermediate, to instill focus, incentive, and a sense of achievement. The next time someone on your staff says, "Why don't we try that?," refer to this Template Topic. It can serve as a tool to help you determine whether you should try "that" and be the compass that helps guide your efforts.

  5. Biologically Inspired Flagella-Templated Silica Nanotubes

    NASA Astrophysics Data System (ADS)

    Jo, Wonjin

    The desire and need for various types of nanostructures have been met with challenges of feasibility, reproducibility, and long fabrication time. To work towards improved bottom-up methods of nanofabrication, bacterial flagella are particularly attractive bio-templates for nanotubes due to their tubular structures and small inner and outer diameters. In this work, flagella isolated from Salmonella typhimurium are used as bio-templates to fabricate silica mineralized nanotubes. The process involves as well-controlled hydrolysis and condensation reaction with aminopropyltriethoxysilane (APTES), followed by the addition of tetraethoxysilane (TEOS). By controlling the concentration of TEOS and the reaction time, a simple and precise method is developed for creating silica-mineralized flagella nanotubes (SMFNs) with various thicknesses of the silica layer. In addition, the SMFNs are further modified to multifunctional nanotubes by coating metal nanoparticles (NPs) or metal oxide NPs such as gold, palladium, and iron oxide. The metallized SMFNs are achieved through reactions including reductive metallization or oxidative hydrolysis. The results from these studies provide evidence for the complete coating of SMFNs with uniform metal NP sizes and high surface area coverage. The metallized SMFNs are found to be electrically conductive along their network structures. The current-voltage characteristics show remarkably improved electrical conductivities depending on the types of metal NPs loading and SMFN networks concentration. The biologically inspired SMFNs with metal loading will allow have controlled electrical properties that can lead to the potential of creating unique and precise nanoelectronic materials. Lastly, the randomly entangled SMFNs are characterized to demonstrate their capabilities for hydrophilic and hydrophobic surface applications.

  6. QUANTITATIVE TEMPLATE FOR SUBTYPING PRIMARY PROGRESSIVE APHASIA

    PubMed Central

    Mesulam, Marsel; Wieneke, Christina; Rogalski, Emily; Cobia, Derin; Thompson, Cynthia; Weintraub, Sandra

    2009-01-01

    Objective To provide a quantitative algorithm for classifying primary progressive aphasia (PPA) into agrammatic (PPA-G), semantic (PPA-S) and logopenic (PPA-L) variants, each of which is known to have a different probability of association with Alzheimer’s disease (AD) versus frontotemporal lobar degeneration (FTLD). Design Prospectively and consecutively enrolled 16 PPA patients tested with neuropsychological instruments and magnetic resonance imaging (MRI). Setting University medical center. Participants PPA patients recruited nationally in the USA as part of a longitudinal study. Results A two-dimensional template, reflecting performance on tests of syntax (Northwestern Anagram Test) and lexical semantics (Peabody Picture Vocabulary Test), classified all 16 patients in concordance with a clinical diagnosis that had been made prior to the administration of the quantitative tests. All three subtypes had distinctly asymmetrical atrophy of the left perisylvian language network. Each subtype also had distinctive peak atrophy sites. Only PPA-G had peak atrophy in the IFG (Broca’s area), only PPA-S had peak atrophy in the anterior temporal lobe, and only PPA-L had peak atrophy in area 37. Conclusions Once an accurate root diagnosis of PPA is made, subtyping can be quantitatively guided using a two-dimensional template based on orthogonal tasks of grammatical competence and word comprehension. Although the choice of tasks and precise cut-off levels may evolve in time, this set of 16 patients demonstrates the feasibility of using a simple algorithm for clinico-anatomical classification in PPA. Prospective studies will show whether this suptyping can improve the clinical prediction of underlying neuropathology. PMID:20008661

  7. Quantitative template for subtyping primary progressive aphasia.

    PubMed

    Mesulam, Marsel; Wieneke, Christina; Rogalski, Emily; Cobia, Derin; Thompson, Cynthia; Weintraub, Sandra

    2009-12-01

    The syndrome of primary progressive aphasia (PPA) is diagnosed when a gradual failure of word usage or comprehension emerges as the principal feature of a neurodegenerative disease. To provide a quantitative algorithm for classifying PPA into agrammatic (PPA-G), semantic (PPA-S), and logopenic (PPA-L) variants, each of which is known to have a different probability of association with Alzheimer disease vs frontotemporal lobar degeneration. Prospective study. University medical center. Sixteen consecutively enrolled patients with PPA who underwent neuropsychological testing and magnetic resonance imaging recruited nationally in the United States as part of a longitudinal study. A 2-dimensional template that reflects performance on tests of syntax (Northwestern Anagram Test) and lexical semantics (Peabody Picture Vocabulary Test-Fourth Edition) classified all 16 patients in concordance with a clinical diagnosis that had been made before the administration of quantitative tests. All 3 PPA subtypes had distinctly asymmetrical atrophy of the left perisylvian language network. Each subtype also had distinctive peak atrophy sites: PPA-G in the inferior frontal gyrus (Broca area), PPA-S in the anterior temporal lobe, and PPA-L in Brodmann area 37. Once an accurate root diagnosis of PPA is made, subtyping can be quantitatively guided using a 2-dimensional template based on orthogonal tasks of grammatical competence and word comprehension. Although the choice of tasks and the precise cutoff levels may need to be adjusted to fit linguistic and educational backgrounds, these 16 patients demonstrate the feasibility of using a simple algorithm for clinicoanatomical classification in PPA. Prospective studies will show whether this subtyping can improve clinical prediction of the underlying neuropathologic condition.

  8. FUZZY SUPERNOVA TEMPLATES. II. PARAMETER ESTIMATION

    SciTech Connect

    Rodney, Steven A.; Tonry, John L. E-mail: jt@ifa.hawaii.ed

    2010-05-20

    Wide-field surveys will soon be discovering Type Ia supernovae (SNe) at rates of several thousand per year. Spectroscopic follow-up can only scratch the surface for such enormous samples, so these extensive data sets will only be useful to the extent that they can be characterized by the survey photometry alone. In a companion paper we introduced the Supernova Ontology with Fuzzy Templates (SOFT) method for analyzing SNe using direct comparison to template light curves, and demonstrated its application for photometric SN classification. In this work we extend the SOFT method to derive estimates of redshift and luminosity distance for Type Ia SNe, using light curves from the Sloan Digital Sky Survey (SDSS) and Supernova Legacy Survey (SNLS) as a validation set. Redshifts determined by SOFT using light curves alone are consistent with spectroscopic redshifts, showing an rms scatter in the residuals of rms{sub z} = 0.051. SOFT can also derive simultaneous redshift and distance estimates, yielding results that are consistent with the currently favored {Lambda}CDM cosmological model. When SOFT is given spectroscopic information for SN classification and redshift priors, the rms scatter in Hubble diagram residuals is 0.18 mag for the SDSS data and 0.28 mag for the SNLS objects. Without access to any spectroscopic information, and even without any redshift priors from host galaxy photometry, SOFT can still measure reliable redshifts and distances, with an increase in the Hubble residuals to 0.37 mag for the combined SDSS and SNLS data set. Using Monte Carlo simulations, we predict that SOFT will be able to improve constraints on time-variable dark energy models by a factor of 2-3 with each new generation of large-scale SN surveys.

  9. Electromagnetically tracked personalized templates for surgical navigation.

    PubMed

    Dickinson, Andrew W L; Zec, Michelle L; Pichora, David R; Rasquinha, Brian J; Ellis, Randy E

    2017-06-01

    An electromagnetic (EM) surgical tracking system was developed for orthopedic navigation. The reportedly poor accuracy of point-based EM navigation was improved by using anatomical impressions, which were EM-tracked personalized templates. Lines, rather than points, were consistently used for calibration and error evaluation. Technical accuracy was tested using models derived from CT scans of ten cadaver shoulders. Tracked impressions were first designed, calibrated, and tested using lines as fiducial objects. Next, tracked impressions were tested against EM point-based navigation and optical point-based navigation, in environments that were either relatively empty or that included surgical instruments. Finally, a tracked impression was tested on a cadaver forearm in a simulated fracture-repair task. Calibration of anatomical impressions to EM tracking was highly accurate, with mean fiducial localization errors in positions of 0.3 mm and in angles of [Formula: see text]. Technical accuracy on physical shoulder models was also highly accurate; in an EM field with surgical instruments, the mean of target registration errors in positions was 2.2 mm and in angles was [Formula: see text]. Preclinical accuracy in a cadaver forearm in positions was 0.4 mm and in angles was [Formula: see text]. The technical accuracy was significantly better than point-based navigation, whether by EM tracking or by optical tracking. The preclinical accuracy was comparable to that achieved by point-based optical navigation. EM-tracked impressions-a hybrid of personalized templates and EM navigation-are a promising technology for orthopedic applications. The two technical contributions are the novel hybrid navigation and the consistent use of lines as fiducial objects, replacing traditional point-based computations. The accuracy improvement was attributed to the combination of physical surfaces and line directions in the processes of calibration and registration. The technical studies and

  10. Transdisciplinary Pedagogical Templates and Their Potential for Adaptive Reuse

    ERIC Educational Resources Information Center

    Dobozy, Eva; Dalziel, James

    2016-01-01

    This article explores the use and usefulness of carefully designed transdisciplinary pedagogical templates (TPTs) aligned to different learning theories. The TPTs are based on the Learning Design Framework outlined in the Larnaca Declaration (Dalziel et al. in this collection). The generation of pedagogical plans or templates is not new. However,…

  11. DEXTRON TEMPLATED MICROWAVE-ASSISTED SYNTHESIS OF POROUS TITANIUM DIOXIDE

    EPA Science Inventory

    An alternative route to the preparation and formation of porous titania powders and carbon coated titania using microwave radiation is described. Inexpensive dextrose was chosen as capping agent or template in view of its high water solubility when compared to other sugar templat...

  12. DEXTRON TEMPLATED MICROWAVE-ASSISTED SYNTHESIS OF POROUS TITANIUM DIOXIDE

    EPA Science Inventory

    An alternative route to the preparation and formation of porous titania powders and carbon coated titania using microwave radiation is described. Inexpensive dextrose was chosen as capping agent or template in view of its high water solubility when compared to other sugar templat...

  13. Graphene Emerges as a Versatile Template for Materials Preparation.

    PubMed

    Li, Zhengjie; Wu, Sida; Lv, Wei; Shao, Jiao-Jing; Kang, Feiyu; Yang, Quan-Hong

    2016-05-01

    Graphene and its derivatives are emerging as a class of novel but versatile templates for the controlled preparation and functionalization of materials. In this paper a conceptual review on graphene-based templates is given, highlighting their versatile roles in materials preparation. Graphene is capable of acting as a low-dimensional hard template, where its two-dimensional morphology directs the formation of novel nanostructures. Graphene oxide and other functionalized graphenes are amphiphilic and may be seen as soft templates for formatting the growth or inducing the controlled assembly of nanostructures. In addition, nanospaces in restacked graphene can be used for confining the growth of sheet-like nanostructures, and assemblies of interlinked graphenes can behave either as skeletons for the formation of composite materials or as sacrificial templates for novel materials with a controlled network structure. In summary, flexible graphene and its derivatives together with an increasing number of assembled structures show great potentials as templates for materials production. Many challenges remain, for example precise structural control of such novel templates and the removal of the non-functional remaining templates.

  14. Template induced conformational change of amyloid-β monomer.

    PubMed

    Xi, Wenhui; Li, Wenfei; Wang, Wei

    2012-06-28

    Population of aggregation-prone conformers for the monomeric amyloid-β (Aβ) can dramatically speed up its fibrillar aggregation. In this work, we study the effect of preformed template on the conformational distributions of the monomeric Aβ by replica exchange molecular dynamics. Our results show that the template consisting of Aβ peptides with cross-β structure can induce the formation of β-rich conformations for the monomeric Aβ, which is the key feature of the aggregation-prone conformers. Similar effect is observed when the hIAPP peptides and poly alanine peptides were used as templates, suggesting that the template effect is insensitive to the sequence details of the template peptides. In comparison, the template with helical structure has no significant effects on the β-propensity of the monomeric Aβ. Analysis to the interaction details revealed that the template tends to disrupt the intrapeptide interactions of the monomeric Aβ, which are absent in the fibrillar state, suggesting that the preformed template can reorganize the intrapeptide interactions of the monomeric Aβ during the capturing stage and reduce the energy frustrations for the fibrillar aggregations.

  15. The Applicability of Interactive Item Templates in Varied Knowledge Types

    ERIC Educational Resources Information Center

    Koong, Chorng-Shiuh; Wu, Chi-Ying

    2011-01-01

    A well-edited assessment can enhance student's learning motives. Applicability of items, which includes item content and template, plays a crucial role in authoring a good assessment. Templates in discussion contain not only conventional true & false, multiple choice, completion item and short answer but also of those interactive ones. Methods…

  16. Non-enzymatic template-directed synthesis on RNA random copolymers - Poly(C, U) templates

    NASA Technical Reports Server (NTRS)

    Joyce, G. F.; Inoue, T.; Orgel, L. E.

    1984-01-01

    Random copolymer templates containing cytosine and uracil in ratios of 3:1 and 1:1 are used to explore the optimum conditions for efficient synthesis of guanine and adenine-containing oligonucleotides. The experimental procedure is described, including the preparation of mononucleoside 5'-phospho-2-methylimidazolides and random copolymers, the template-directed oligomerization, the removal and reintroduction of mononucleotides in interrupted reactions, the determination of oligomerization efficiency, the alkaline and enzymatic hydrolysis of reaction products, and the column chromatography. Results are presented and discussed for the dependence of adenine incorporation on the formation of short oligo(G)s, optimization of incorporation efficiencies by adjusting monomer concentrations, the characterization of oligomeric product distribution, and the regiospecificity of adenine incorporation. The prebiotic significance of the results is assessed.

  17. DNA-templated nickel nanostructures and protein assemblies.

    PubMed

    Becerril, Hector A; Ludtke, Paul; Willardson, Barry M; Woolley, Adam T

    2006-11-21

    We report a straightforward method for the fabrication of DNA-templated nickel nanostructures on surfaces. These nickel nanomaterials have potential to be applied as nanowires, as templated catalyst lines, as nanoscale magnetic domains, or in directed protein localization. Indeed, we show here that histidine-tagged phosducin-like protein (His-PhLP) binds with high selectivity to both Ni2+-treated surface DNA and DNA-templated nickel metal to create linear protein assemblies on surfaces. The association of His-PhLP with DNA-templated nickel ions or metal is reversible under appropriate rinsing conditions. Nanoscale DNA-templated protein assemblies might be useful in the construction of high-density protein lines for proteomic analysis, for example. Importantly, these nanofabrication procedures are not limited to linear DNA and can be applied readily to other self-assembled DNA topologies.

  18. A series of template plasmids for Escherichia coli genome engineering.

    PubMed

    Deb, Shalini S; Reshamwala, Shamlan M S; Lali, Arvind M

    2016-06-01

    Metabolic engineering strategies often employ multi-copy episomal vectors to overexpress genes. However, chromosome-based overexpression is preferred as it avoids the use of selective pressure and reduces metabolic burden on the cell. We have constructed a series of template plasmids for λ Red-mediated Escherichia coli genome engineering. The template plasmids allow construction of genome integrating cassettes that can be used to integrate single copies of DNA sequences at predetermined sites or replace promoter regions. The constructed cassettes provide flexibility in terms of expression levels achieved and antibiotics used for selection, as well as allowing construction of marker-free strains. The modular design of the template plasmids allows replacement of genetic parts to construct new templates. Gene integration and promoter replacement using the template plasmids are illustrated. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Assembly of synthetic Aβ miniamyloids on polyol templates

    PubMed Central

    Fischer, Sebastian Nils

    2015-01-01

    Summary Covalent dynamic chemistry is used to mimic the first steps of the highly cooperative fibril formation of Aβ peptides. For that purpose, Aβ peptide pentapeptide boronic acids 1 and 2 were synthesized by solid-phase peptide synthesis and studied in esterification experiments with polyhydroxylated templates. The bis-hydroxylated dipeptide Hot=Tap serves as a template of adjustable degree of oligomerization which spontaneously forms boronic esters with peptides of type 1 and 2. Nuclear magnetic resonance can differentiate between regioisomeric boronic esters and identifies preferred sites of esterification on the dimeric template 9. 2-Formylphenylboronic acid (14) is used to link the parent pentapeptide Leu-Val-Phe-Phe-Ala to the template 16 to obtain threefold boronic ester 17. The miniamyloid 17 assembles from seven components by imine and boronic ester bonds between the peptides and the template. The relative orientation and spacing of the peptides mimic the assembly of peptides in Alzheimer β-amyloids. PMID:26734110

  20. Nanostructure templating using low temperature atomic layer deposition

    DOEpatents

    Grubbs, Robert K [Albuquerque, NM; Bogart, Gregory R [Corrales, NM; Rogers, John A [Champaign, IL

    2011-12-20

    Methods are described for making nanostructures that are mechanically, chemically and thermally stable at desired elevated temperatures, from nanostructure templates having a stability temperature that is less than the desired elevated temperature. The methods comprise depositing by atomic layer deposition (ALD) structural layers that are stable at the desired elevated temperatures, onto a template employing a graded temperature deposition scheme. At least one structural layer is deposited at an initial temperature that is less than or equal to the stability temperature of the template, and subsequent depositions made at incrementally increased deposition temperatures until the desired elevated temperature stability is achieved. Nanostructure templates include three dimensional (3D) polymeric templates having features on the order of 100 nm fabricated by proximity field nanopatterning (PnP) methods.

  1. Assistant template and co-template agents in modeling mesoporous silicas and post-synthesizing organofunctionalizations

    NASA Astrophysics Data System (ADS)

    Oliveira, Vaeudo V.; Airoldi, Claudio

    2012-12-01

    Mesoporous SBA-16 silicas were synthesized through a direct methodology using the template (F127) combined with co-templates (ethanol and n-butanol), with tetraethylorthosilicate as the silica source. These ordered mesoporous silica were characterized by elemental analyses, infrared spectroscopy, solid-state nuclear magnetic resonance for 13C (CP/MAS) and 29Si (HP/DEC) nuclei, nitrogen sorption/desorption processes, small angle X-ray analyses (SAXS) and transmission electron microscopy (TEM). SAXS and TEM results confirmed the space group Im3m and cubic 3D symmetry, typical for highly ordered SBA-16. The sorption/desorption data for SBA-16 and when functionalized gave type IV isotherms, with hysteresis loop H2. Surface areas of 836; 657 and 618 m2 g-1 and average pore diameters of 7.99; 8.10 and 9.85 nm, for SBA-16A, SBA-16B and SBA-16C were obtained, respectively. When functionalized the silicas presented a reduction in surface area, pore volume and pore diameter due to the pendant chains that interfere with nitrogen sorption in these measurements. The co-template ethanol favors the ordered mesopores with highest wall thicknesses.

  2. Anterior regeneration in the hemichordate Ptychodera flava

    PubMed Central

    Rychel, Amanda L.; Swalla, Billie J.

    2008-01-01

    Ptychodera flava is a hemichordate whose anterior structures regenerate reproducibly from posterior trunk pieces when amputated. We characterized the cellular processes of anterior regeneration with respect to programmed cell death and cell proliferation, following wound healing. We found scattered proliferating cells at day two of regeneration using a PCNA antibody. On day four, most proliferating cells were associated with the nerve tract under the epidermis, and on day six, a small proboscis derived from proliferated cells was regenerated, and a mouth had broken though the epidermis. TUNEL detected elevated levels of apoptosis in the endoderm that began furthest away from the region of wound healing, then moved anteriorly over eight days. Posterior to anterior apoptosis is likely to remove digestive endoderm for later differentiation of pharyngeal endoderm. We hypothesize that P. flava regeneration is nerve dependent and that remodeling in the gut endoderm plays an important role in regeneration. PMID:18924231

  3. Platelet-Derived Serotonin Mediates Liver Regeneration

    NASA Astrophysics Data System (ADS)

    Lesurtel, Mickael; Graf, Rolf; Aleil, Boris; Walther, Diego J.; Tian, Yinghua; Jochum, Wolfram; Gachet, Christian; Bader, Michael; Clavien, Pierre-Alain

    2006-04-01

    The liver can regenerate its volume after major tissue loss. In a mouse model of liver regeneration, thrombocytopenia, or impaired platelet activity resulted in the failure to initiate cellular proliferation in the liver. Platelets are major carriers of serotonin in the blood. In thrombocytopenic mice, a serotonin agonist reconstituted liver proliferation. The expression of 5-HT2A and 2B subtype serotonin receptors in the liver increased after hepatectomy. Antagonists of 5-HT2A and 2B receptors inhibited liver regeneration. Liver regeneration was also blunted in mice lacking tryptophan hydroxylase 1, which is the rate-limiting enzyme for the synthesis of peripheral serotonin. This failure of regeneration was rescued by reloading serotonin-free platelets with a serotonin precursor molecule. These results suggest that platelet-derived serotonin is involved in the initiation of liver regeneration.

  4. Automatic Offloading C++ Expression Templates to CUDA Enabled GPUs

    SciTech Connect

    Chen, Jie; Joo, Balint; Watson, William A.; Edwards, Robert G.

    2012-05-01

    In the last few years, many scientific applications have been developed for powerful graphics processing units (GPUs) and have achieved remarkable speedups. This success can be partially attributed to high performance host callable GPU library routines that are offloaded to GPUs at runtime. These library routines are based on C/C++-like programming toolkits such as CUDA from NVIDIA and have the same calling signatures as their CPU counterparts. Recently, with the sufficient support of C++ templates from CUDA, the emergence of template libraries have enabled further advancement in code reusability and rapid software development for GPUs. However, Expression Templates (ET), which have been very popular for implementing data parallel scientific software for host CPUs because of their intuitive and mathematics-like syntax, have been underutilized by GPU development libraries. The lack of ET usage is caused by the difficulty of offloading expression templates from hosts to GPUs due to the inability to pass instantiated expressions to GPU kernels as well as the absence of the exact form of the expressions for the templates at the time of coding. This paper presents a general approach that enables automatic offloading of C++ expression templates to CUDA enabled GPUs by using the C++ metaprogramming technique and Just-In-Time (JIT) compilation methodology to generate and compile CUDA kernels for corresponding expression templates followed by executing the kernels with appropriate arguments. This approach allows developers to port applications to run on GPUs with virtually no code modifications. More specifically, this paper uses a large ET based data parallel physics library called QDP++ as an example to illustrate many aspects of the approach to offload expression templates automatically and to demonstrate very good speedups for typical QDP++ applications running on GPUs against running on CPUs using this method of offloading. In addition, this approach of automatic offlo

  5. Regeneration: the ultimate example of wound healing.

    PubMed

    Murawala, Prayag; Tanaka, Elly M; Currie, Joshua D

    2012-12-01

    The outcome of wound repair in mammals is often characterized by fibrotic scaring. Vertebrates such as zebrafish, frogs, and salamanders not only heal scarlessly, but also can regenerate lost appendages. Decades of study on the process of animal regeneration has produced key insights into the mechanisms of how complex tissue is restored. By examining our current knowledge of regeneration, we can draw parallels with mammalian wound healing to identify the molecular determinants that produce such differing outcomes.

  6. A quantitative metabolomics peek into planarian regeneration.

    PubMed

    Natarajan, Nivedita; Ramakrishnan, Padma; Lakshmanan, Vairavan; Palakodeti, Dasaradhi; Rangiah, Kannan

    2015-05-21

    The fresh water planarian species Schmidtea mediterranea is an emerging stem cell model because of its capability to regenerate a whole animal from a small piece of tissue. It is one of the best model systems to address the basic mechanisms essential for regeneration. Here, we are interested in studying the roles of various amines, thiols and nucleotides in planarian regeneration, stem cell function and growth. We developed mass spectrometry based quantitative methods and validated the differential enrichment of 35 amines, 7 thiol metabolites and 4 nucleotides from both intact and regenerating planarians. Among the amines, alanine in sexual and asparagine in asexual are the highest (>1000 ng/mg) in the intact planarians. The levels of thiols such as cysteine and GSH are 651 and 1107 ng mg(-1) in planarians. Among the nucleotides, the level of cGMP is the lowest (0.03 ng mg(-1)) and the level of AMP is the highest (187 ng mg(-1)) in both of the planarian strains. We also noticed increasing levels of amines in both anterior and posterior regenerating planarians. The blastema from day 3 regenerating planarians also showed higher amounts of many amines. Interestingly, the thiol (cysteine and GSH) levels are well maintained during planarian regeneration. This suggests an inherent and effective mechanism to control induced oxidative stress because of the robust regeneration and stem cell proliferation. Like in intact planarians, the level of cGMP is also very low in regenerating planarians. Surprisingly, the levels of amines and thiols in head regenerating blastemas are ∼3 times higher compared to those for tail regenerating blastemas. Thus our results strongly indicate the potential roles of amines, thiols and nucleotides in planarian regeneration.

  7. Proteomic analysis of zebrafish caudal fin regeneration.

    PubMed

    Saxena, Sandeep; Singh, Sachin K; Lakshmi, Mula G Meena; Meghah, Vuppalapaty; Bhatti, Bhawna; Swamy, Cherukuvada V Brahmendra; Sundaram, Curam S; Idris, Mohammed M

    2012-06-01

    The epimorphic regeneration of zebrafish caudal fin is rapid and complete. We have analyzed the biomechanism of zebrafish caudal fin regeneration at various time points based on differential proteomics approaches. The spectrum of proteome changes caused by regeneration were analyzed among controls (0 h) and 1, 12, 24, 48, and 72 h postamputation involving quantitative differential proteomics analysis based on two-dimensional gel electrophoresis matrix-assisted laser desorption/ionization and differential in-gel electrophoresis Orbitrap analysis. A total of 96 proteins were found differentially regulated between the control nonregenerating and regenerating tissues of different time points for having at least 1.5-fold changes. 90 proteins were identified as differentially regulated for regeneration based on differential in-gel electrophoresis analysis between the control and regenerating tissues. 35 proteins were characterized for its expression in all of the five regenerating time points against the control samples. The proteins identified and associated with regeneration were found to be directly allied with various molecular, biological, and cellular functions. Based on network pathway analysis, the identified proteome data set for regeneration was majorly associated in maintaining cellular structure and architecture. Also the proteins were found associated for the cytoskeleton remodeling pathway and cellular immune defense mechanism. The major proteins that were found differentially regulated during zebrafish caudal fin regeneration includes keratin and its 10 isoforms, cofilin 2, annexin a1, skeletal α1 actin, and structural proteins. Annexin A1 was found to be exclusively undergoing phosphorylation during regeneration. The obtained differential proteome and the direct association of the various proteins might lead to a new understanding of the regeneration mechanism.

  8. Regeneration and Remodeling of Composite Materials

    DTIC Science & Technology

    2015-08-27

    AFRL-AFOSR-VA-TR-2015-0263 REGENERATION AND REMODELING OF COMPOSITE MATERIALS Scott White UNIVERSITY OF ILLINOIS Final Report 08/27/2015 DISTRIBUTION...Remodeling of Composite Materials 5a. CONTRACT NUMBER FA9550-10-1-0255 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) White, Scott R., Sottos...distribution unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT The Regeneration and Remodeling of Composite Materials (Regeneration) Program was

  9. Effect of ground skidding on oak advance regeneration

    Treesearch

    Jeffrey W. Stringer

    2006-01-01

    Vigorous advance regeneration is required to naturally regenerate oaks. However, a reduction in the number of advance regeneration stems from harvesting activities could be an important factor in determining successful oak regeneration. This study assessed the harvest survivability of advance regeneration of oak (Quercus spp.) and co-occurring...

  10. Assistant template and co-template agents in modeling mesoporous silicas and post-synthesizing organofunctionalizations

    SciTech Connect

    Oliveira, Vaeudo V.; Airoldi, Claudio

    2012-12-15

    Mesoporous SBA-16 silicas were synthesized through a direct methodology using the template (F127) combined with co-templates (ethanol and n-butanol), with tetraethylorthosilicate as the silica source. These ordered mesoporous silica were characterized by elemental analyses, infrared spectroscopy, solid-state nuclear magnetic resonance for {sup 13}C (CP/MAS) and {sup 29}Si (HP/DEC) nuclei, nitrogen sorption/desorption processes, small angle X-ray analyses (SAXS) and transmission electron microscopy (TEM). SAXS and TEM results confirmed the space group Im3m and cubic 3D symmetry, typical for highly ordered SBA-16. The sorption/desorption data for SBA-16 and when functionalized gave type IV isotherms, with hysteresis loop H2. Surface areas of 836; 657 and 618 m{sup 2} g{sup -1} and average pore diameters of 7.99; 8.10 and 9.85 nm, for SBA-16A, SBA-16B and SBA-16C were obtained, respectively. When functionalized the silicas presented a reduction in surface area, pore volume and pore diameter due to the pendant chains that interfere with nitrogen sorption in these measurements. The co-template ethanol favors the ordered mesopores with highest wall thicknesses. - Graphical Abstract: The mesoporous SBA-16 can be synthesized from binary (F127/TEOS) or ternary (F127/alcohol/TEOs) systems to give well-ordered mesoporous silicas. The co-templates ethanol or butanol gave the final material with highest wall thickness, mainly with ethanol. After these syntheses the pores were successfully organofunctionalized to give a good incorporation of the silylating agents. The final silicas presented of well-arranged solid characteristics as expressing by three distinct peaks, as indexed by the corresponding planes. Highlights: Black-Right-Pointing-Pointer Syntheses of mesoporous silicas by using ternary (F127/agent/TEOS) and binary (F127/TEOS) systems. Black-Right-Pointing-Pointer Use of co-templates to synthesize mesoporous silicas with larger wall thicknesses. Black

  11. Angiogenesis is inhibitory for mammalian digit regeneration

    PubMed Central

    Yu, Ling; Yan, Mingquan; Simkin, Jennifer; Ketcham, Paulina D.; Leininger, Eric; Han, Manjong

    2014-01-01

    Abstract The regenerating mouse digit tip is a unique model for investigating blastema formation and epimorphic regeneration in mammals. The blastema is characteristically avascular and we previously reported that blastema expression of a known anti‐angiogenic factor gene, Pedf, correlated with a successful regenerative response (Yu, L., Han, M., Yan, M., Lee, E. C., Lee, J. & Muneoka, K. (2010). BMP signaling induces digit regeneration in neonatal mice. Development, 137, 551–559). Here we show that during regeneration Vegfa transcripts are not detected in the blastema but are expressed at the onset of differentiation. Treating the amputation wound with vascular endothelial growth factor enhances angiogenesis but inhibits regeneration. We next tested bone morphogenetic protein 9 (BMP9), another known mediator of angiogenesis, and found that BMP9 is also a potent inhibitor of digit tip regeneration. BMP9 induces Vegfa expression in the digit stump suggesting that regenerative failure is mediated by enhanced angiogenesis. Finally, we show that BMP9 inhibition of regeneration is completely rescued by treatment with pigment epithelium‐derived factor. These studies show that precocious angiogenesis is inhibitory for regeneration, and provide compelling evidence that the regulation of angiogenesis is a critical factor in designing therapies aimed at stimulating mammalian regeneration. PMID:27499862

  12. Intrinsic determinants of optic nerve regeneration.

    PubMed

    Zhu, Rui-lin; Cho, Kin-sang; Guo, Chen-ying; Chew, Justin; Chen, Dong-feng; Yang, Liu

    2013-07-01

    To review the functions of these intracellular signals in their regulation of retinal ganglion cell (RGC) axon regeneration. Relevant articles published in English or Chinese from 1970 to present were selected from PubMed. Searches were made using the terms "intrinsic determinants, axon regeneration, RGC, optic nerve regeneration, and central nervous system axon regeneration." Articles studying the mechanisms controlling RGC and central nervous system (CNS) axon regeneration were reviewed. Articles focusing on the intrinsic determinants of axon regeneration were selected. Like other CNS neurons of mammals, RGCs undergo a developmental loss in their ability to grow axons as they mature, which is a critical contributing factor to the failure of nerve regeneration and repair after injury. This growth failure can be attributed, at least in part, by the induction of molecular programs preventing cellular overgrowth and termination of axonal growth upon maturation. Key intracellular signals and transcription factors, including B cell lymphoma/leukemia 2, cyclic adenine monophosphate, mammalian target of rapamycin, and Krüppel-like transcription factors, have been identified to play central roles in this process. Intense effort and substantial progress have been made to identify the various intrinsic growth pathways that regulate RGC axon regeneration. More work is needed to elucidate the mechanisms of and the interrelationship between the actions of these factors and to successfully achieve regeneration and repair of the severed RGC axons.

  13. [Regeneration processes in various species of planarians].

    PubMed

    Sheĭman, I M; Kreshchenko, N D; Netreba, M V

    2010-01-01

    Blastema growth and functional maturation of the pharynx during regeneration in various planarian species were compared. The intensity of blastema growth was highest in Polycelis tenuis; the lowest, in Schmidtea mediterranea. In the sexual and asexual races of Girardia tigrina blastema growth differed inconsiderably. The function of the pharynx during the regeneration of caudal fragments lacking pharynx was manifested in G. tigrina in the usual amount of time, while in the regeneration of head fragments lacking pharynx, this function occured earlier. In other planarian species of the other two typed, the times of pharynx regeneration had no regular character and took longer compared to the same process in G. tigrina.

  14. The cellular basis for animal regeneration

    PubMed Central

    Tanaka, Elly; Reddien, Peter W.

    2011-01-01

    The ability of animals to regenerate missing parts is a dramatic and poorly understood aspect of biology. The sources of new cells for these regenerative phenomena have been sought for decades. Recent advances involving cell fate tracking in complex tissues have shed new light on the cellular underpinnings of regeneration in Hydra, planarians, zebrafish, Xenopus, and Axolotl. Planarians accomplish regeneration with use of adult pluripotent stem cells, whereas several vertebrates utilize a collection of lineage-restricted progenitors from different tissues. Together, an array of cellular strategies—from pluripotent stem cells to tissue-specific stem cells and dedifferentiation—are utilized for regeneration. PMID:21763617

  15. Myomaker is essential for muscle regeneration.

    PubMed

    Millay, Douglas P; Sutherland, Lillian B; Bassel-Duby, Rhonda; Olson, Eric N

    2014-08-01

    Regeneration of injured adult skeletal muscle involves fusion of activated satellite cells to form new myofibers. Myomaker is a muscle-specific membrane protein required for fusion of embryonic myoblasts, but its potential involvement in adult muscle regeneration has not been explored. We show that myogenic basic helix-loop-helix (bHLH) transcription factors induce myomaker expression in satellite cells during acute and chronic muscle regeneration. Moreover, genetic deletion of myomaker in adult satellite cells completely abolishes muscle regeneration, resulting in severe muscle destruction after injury. Myomaker is the only muscle-specific protein known to be absolutely essential for fusion of embryonic and adult myoblasts.

  16. Myomaker is essential for muscle regeneration

    PubMed Central

    Millay, Douglas P.; Sutherland, Lillian B.; Bassel-Duby, Rhonda

    2014-01-01

    Regeneration of injured adult skeletal muscle involves fusion of activated satellite cells to form new myofibers. Myomaker is a muscle-specific membrane protein required for fusion of embryonic myoblasts, but its potential involvement in adult muscle regeneration has not been explored. We show that myogenic basic helix–loop–helix (bHLH) transcription factors induce myomaker expression in satellite cells during acute and chronic muscle regeneration. Moreover, genetic deletion of myomaker in adult satellite cells completely abolishes muscle regeneration, resulting in severe muscle destruction after injury. Myomaker is the only muscle-specific protein known to be absolutely essential for fusion of embryonic and adult myoblasts. PMID:25085416

  17. Angiogenesis is inhibitory for mammalian digit regeneration.

    PubMed

    Yu, Ling; Yan, Mingquan; Simkin, Jennifer; Ketcham, Paulina D; Leininger, Eric; Han, Manjong; Muneoka, Ken

    2014-06-01

    The regenerating mouse digit tip is a unique model for investigating blastema formation and epimorphic regeneration in mammals. The blastema is characteristically avascular and we previously reported that blastema expression of a known anti-angiogenic factor gene, Pedf, correlated with a successful regenerative response (Yu, L., Han, M., Yan, M., Lee, E. C., Lee, J. & Muneoka, K. (2010). BMP signaling induces digit regeneration in neonatal mice. Development, 137, 551-559). Here we show that during regeneration Vegfa transcripts are not detected in the blastema but are expressed at the onset of differentiation. Treating the amputation wound with vascular endothelial growth factor enhances angiogenesis but inhibits regeneration. We next tested bone morphogenetic protein 9 (BMP9), another known mediator of angiogenesis, and found that BMP9 is also a potent inhibitor of digit tip regeneration. BMP9 induces Vegfa expression in the digit stump suggesting that regenerative failure is mediated by enhanced angiogenesis. Finally, we show that BMP9 inhibition of regeneration is completely rescued by treatment with pigment epithelium-derived factor. These studies show that precocious angiogenesis is inhibitory for regeneration, and provide compelling evidence that the regulation of angiogenesis is a critical factor in designing therapies aimed at stimulating mammalian regeneration.

  18. Microenvironment of liver regeneration in liver cancer.

    PubMed

    Li, Han-Min; Ye, Zhi-Hua

    2017-07-01

    The occurrence and development of liver cancer are essentially the most serious outcomes of uncontrolled liver regeneration. The progression of liver cancer is inevitably related to the abnormal microenvironment of liver regeneration. The deterioration observed in the microenvironment of liver regeneration is a necessary condition for the occurrence, development and metastasis of cancer. Therefore, the use of a technique to prevent and treat liver cancer via changes in the microenvironment of liver regeneration is a novel strategy. This strategy would be an effective way to delay, prevent or even reverse cancer occurrence, development and metastasis through an improvement in the liver regeneration microenvironment along with the integrated regulation of multiple components, targets, levels, channels and time sequences. In addition, the treatment of "tonifying Shen (Kidney) to regulate liver regeneration and repair by affecting stem cells and their microenvironment" can regulate "the dynamic imbalance between the normal liver regeneration and the abnormal liver regeneration"; this would improve the microenvironment of liver regeneration, which is also a mechanism by which liver cancer may be prevented or treated.

  19. Endochondral Priming: A Developmental Engineering Strategy for Bone Tissue Regeneration.

    PubMed

    Freeman, Fiona E; McNamara, Laoise M

    2017-04-01

    Tissue engineering and regenerative medicine have significant potential to treat bone pathologies by exploiting the capacity for bone progenitors to grow and produce tissue constituents under specific biochemical and physical conditions. However, conventional tissue engineering approaches, which combine stem cells with biomaterial scaffolds, are limited as the constructs often degrade, due to a lack of vascularization, and lack the mechanical integrity to fulfill load bearing functions, and as such are not yet widely used for clinical treatment of large bone defects. Recent studies have proposed that in vitro tissue engineering approaches should strive to simulate in vivo bone developmental processes and, thereby, imitate natural factors governing cell differentiation and matrix production, following the paradigm recently defined as "developmental engineering." Although developmental engineering strategies have been recently developed that mimic specific aspects of the endochondral ossification bone formation process, these findings are not widely understood. Moreover, a critical comparison of these approaches to standard biomaterial-based bone tissue engineering has not yet been undertaken. For that reason, this article presents noteworthy experimental findings from researchers focusing on developing an endochondral-based developmental engineering strategy for bone tissue regeneration. These studies have established that in vitro approaches, which mimic certain aspects of the endochondral ossification process, namely the formation of the cartilage template and the vascularization of the cartilage template, can promote mineralization and vascularization to a certain extent both in vitro and in vivo. Finally, this article outlines specific experimental challenges that must be overcome to further exploit the biology of endochondral ossification and provide a tissue engineering construct for clinical treatment of large bone/nonunion defects and obviate the need for

  20. Templated repair of long bone defects in rats with bioactive spiral-wrapped electrospun amphiphilic polymer/hydroxyapatite scaffolds.

    PubMed

    Kutikov, Artem B; Skelly, Jordan D; Ayers, David C; Song, Jie

    2015-03-04

    Effective repair of critical-size long bone defects presents a significant clinical challenge. Electrospun scaffolds can be exploited to deliver protein therapeutics and progenitor cells, but their standalone application for long bone repair has not been explored. We have previously shown that electrospun composites of amphiphilic poly(d,l-lactic acid)-co-poly(ethylene glycol)-co-poly(d,l-lactic acid) (PELA) and hydroxyapatite (HA) guide the osteogenic differentiation of bone marrow stromal cells (MSCs), making these scaffolds uniquely suited for evaluating cell-based bone regeneration approaches. Here we examine whether the in vitro bioactivity of these electrospun scaffolds can be exploited for long bone defect repair, either through the participation of exogenous MSCs or through the activation of endogenous cells by a low dose of recombinant human bone morphogenetic protein-2 (rhBMP-2). In critical-size rat femoral segmental defects, spiral-wrapped electrospun HA-PELA with preseeded MSCs resulted in laminated endochondral ossification templated by the scaffold across the longitudinal span of the defect. Using GFP labeling, we confirmed that the exogenous MSCs adhered to HA-PELA survived at least 7 days postimplantation, suggesting direct participation of these exogenous cells in templated bone formation. When loaded with 500 ng of rhBMP-2, HA-PELA spirals led to more robust but less clearly templated bone formation than MSC-bearing scaffolds. Both treatment groups resulted in new bone bridging over the majority of the defect by 12 weeks. This study is the first demonstration of a standalone bioactive electrospun scaffold for templated bone formation in critical-size long bone defects.