Sample records for bioscience research reporting

  1. Automatic Figure Ranking and User Interfacing for Intelligent Figure Search

    PubMed Central

    Yu, Hong; Liu, Feifan; Ramesh, Balaji Polepalli

    2010-01-01

    Background Figures are important experimental results that are typically reported in full-text bioscience articles. Bioscience researchers need to access figures to validate research facts and to formulate or to test novel research hypotheses. On the other hand, the sheer volume of bioscience literature has made it difficult to access figures. Therefore, we are developing an intelligent figure search engine (http://figuresearch.askhermes.org). Existing research in figure search treats each figure equally, but we introduce a novel concept of “figure ranking”: figures appearing in a full-text biomedical article can be ranked by their contribution to the knowledge discovery. Methodology/Findings We empirically validated the hypothesis of figure ranking with over 100 bioscience researchers, and then developed unsupervised natural language processing (NLP) approaches to automatically rank figures. Evaluating on a collection of 202 full-text articles in which authors have ranked the figures based on importance, our best system achieved a weighted error rate of 0.2, which is significantly better than several other baseline systems we explored. We further explored a user interfacing application in which we built novel user interfaces (UIs) incorporating figure ranking, allowing bioscience researchers to efficiently access important figures. Our evaluation results show that 92% of the bioscience researchers prefer as the top two choices the user interfaces in which the most important figures are enlarged. With our automatic figure ranking NLP system, bioscience researchers preferred the UIs in which the most important figures were predicted by our NLP system than the UIs in which the most important figures were randomly assigned. In addition, our results show that there was no statistical difference in bioscience researchers' preference in the UIs generated by automatic figure ranking and UIs by human ranking annotation. Conclusion/Significance The evaluation results conclude that automatic figure ranking and user interfacing as we reported in this study can be fully implemented in online publishing. The novel user interface integrated with the automatic figure ranking system provides a more efficient and robust way to access scientific information in the biomedical domain, which will further enhance our existing figure search engine to better facilitate accessing figures of interest for bioscientists. PMID:20949102

  2. Demand for interdisciplinary laboratories for physiology research by undergraduate students in biosciences and biomedical engineering.

    PubMed

    Clase, Kari L; Hein, Patrick W; Pelaez, Nancy J

    2008-12-01

    Physiology as a discipline is uniquely positioned to engage undergraduate students in interdisciplinary research in response to the 2006-2011 National Science Foundation Strategic Plan call for innovative transformational research, which emphasizes multidisciplinary projects. To prepare undergraduates for careers that cross disciplinary boundaries, students need to practice interdisciplinary communication in academic programs that connect students in diverse disciplines. This report surveys policy documents relevant to this emphasis on interdisciplinary training and suggests a changing role for physiology courses in bioscience and engineering programs. A role for a physiology course is increasingly recommended for engineering programs, but the study of physiology from an engineering perspective might differ from the study of physiology as a basic science. Indeed, physiology laboratory courses provide an arena where biomedical engineering and bioscience students can apply knowledge from both fields while cooperating in multidisciplinary teams under specified technical constraints. Because different problem-solving approaches are used by students of engineering and bioscience, instructional innovations are needed to break down stereotypes between the disciplines and create an educational environment where interdisciplinary teamwork is used to bridge differences.

  3. Developing Iowa's Bioscience Workforce: The Role of the Community Colleges of Iowa in Creating Skilled Workers for the Emerging Bioscience/Biotechnology Sector

    ERIC Educational Resources Information Center

    Iowa Department of Education, 2006

    2006-01-01

    This report provides an overview of the efforts of Iowa's community colleges to train workers for the emerging bioscience/biotechnology sector. The report explains the programs available and the future plans of individual community colleges designed to educate students for careers in the biosciences. Also detailed are a variety of creative…

  4. Division of energy biosciences: Annual report and summaries of FY 1995 activities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-04-01

    The mission of the Division of Energy Biosciences is to support research that advances the fundamental knowledge necessary for the future development of biotechnologies related to the Department of Energy`s mission. The departmental civilian objectives include effective and efficient energy production, energy conservation, environmental restoration, and waste management. The Energy Biosciences program emphasizes research in the microbiological and plant sciences, as these understudied areas offer numerous scientific opportunities to dramatically influence environmentally sensible energy production and conservation. The research supported is focused on the basic mechanisms affecting plant productivity, conversion of biomass and other organic materials into fuels and chemicalsmore » by microbial systems, and the ability of biological systems to replace energy-intensive or pollutant-producing processes. The Division also addresses the increasing number of new opportunities arising at the interface of biology with other basic energy-related sciences such as biosynthesis of novel materials and the influence of soil organisms on geological processes.« less

  5. A summary of the research program in the broad field of electronics

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Summary reports of research projects covering solid state materials, semiconductors and devices, quantum electronics, plasmas, applied electromagnetics, electrical engineering systems to include control communication, computer and power systems, biomedical engineering and mathematical biosciences.

  6. Biosciences within the pre-registration (pre-requisite) curriculum: an integrative literature review of curriculum interventions 1990-2012.

    PubMed

    McVicar, Andrew; Andrew, Sharon; Kemble, Ross

    2014-04-01

    The learning of biosciences is well-documented to be problematic as students find the subjects amongst the most difficult and anxiety-provoking of their pre-registration programme. Studies suggest that learning consequently is not at the level anticipated by the profession. Curriculum innovations might improve the situation but the effectiveness of applied interventions has not been evaluated. To undertake an integrative review and narrative synthesis of curriculum interventions and evaluate their effect on the learning of biosciences by pre-registration student nurses. Review methods A systematic search of electronic databases CINAHL, Medline, British Nursing Index and Google Scholar for empirical research studies was designed to evaluate the introduction of a curriculum intervention related to the biosciences, published in 1990-2012. Studies were evaluated for design, receptivity of the intervention and impact on bioscience learning. The search generated fourteen papers that met inclusion criteria. Seven studies introduced on-line learning packages, five an active learning format into classroom teaching or practical sessions, and two applied Audience Response Technology as an exercise in self-testing and reflection. Almost all studies reported a high level of student satisfaction, though in some there were access/utilization issues for students using on-line learning. Self-reporting suggested positive experiences, but objective evaluation suggests that impacts on learning were variable and unconvincing even where an effect on course progress was identified. Adjunct on-line programmes also show promise for supporting basic science or language acquisition. Published studies of curriculum interventions, including on-line support, have focused too heavily on the perceived benefit to students rather than objective measures of impact on actual learning. Future studies should include rigorous assessment evaluations within their design if interventions are to be adopted to reduce the 'bioscience problem'. © 2013.

  7. Bio-TDS: bioscience query tool discovery system.

    PubMed

    Gnimpieba, Etienne Z; VanDiermen, Menno S; Gustafson, Shayla M; Conn, Bill; Lushbough, Carol M

    2017-01-04

    Bioinformatics and computational biology play a critical role in bioscience and biomedical research. As researchers design their experimental projects, one major challenge is to find the most relevant bioinformatics toolkits that will lead to new knowledge discovery from their data. The Bio-TDS (Bioscience Query Tool Discovery Systems, http://biotds.org/) has been developed to assist researchers in retrieving the most applicable analytic tools by allowing them to formulate their questions as free text. The Bio-TDS is a flexible retrieval system that affords users from multiple bioscience domains (e.g. genomic, proteomic, bio-imaging) the ability to query over 12 000 analytic tool descriptions integrated from well-established, community repositories. One of the primary components of the Bio-TDS is the ontology and natural language processing workflow for annotation, curation, query processing, and evaluation. The Bio-TDS's scientific impact was evaluated using sample questions posed by researchers retrieved from Biostars, a site focusing on BIOLOGICAL DATA ANALYSIS: The Bio-TDS was compared to five similar bioscience analytic tool retrieval systems with the Bio-TDS outperforming the others in terms of relevance and completeness. The Bio-TDS offers researchers the capacity to associate their bioscience question with the most relevant computational toolsets required for the data analysis in their knowledge discovery process. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  8. [Research Misconduct in Japan and How It Is Covered by the Media].

    PubMed

    Enoki, Eisuke

    2018-01-01

     Cases of research misconduct (fabrication, falsification, and plagiarism) have been increasing worldwide, including in Japan. In particular, since 2006, many cases of research misconduct have been reported in Japan, and these cases have also been covered by the media. The 2014 case of the withdrawal of articles on STAP cells followed a rare course in which research misconduct became a full-blown social phenomenon. In recent years, even the University of Tokyo has experienced reported cases of research misconduct. In this report, I would like to introduce some representative cases of research misconduct in the field of life sciences over the past decade. These examples include studies conducted at Osaka University Graduate School of Medicine (2006), Osaka University Graduate School of Frontier Bioscience (2006), Ryukyu University School of Medicine (2010), Toho University School of Medicine (2012), The University of Tokyo Institute of Molecular and Cellular Biosciences (2013), and several cases outside of Japan. I will discuss what researchers should do to reduce the incidence of research misconduct. In addition, I will discuss how these cases were covered by the media, because the public's impression of research misconduct is formed by media coverage.

  9. Analysis of a Phase 2b Study of GEN-003, a Genital Herpes Immunotherapy, Showed Significant Reductions in Viral Shedding and Lesion Rate Vs Placebo

    PubMed Central

    Heineman, Thomas C; Bernstein, David; Wald, Anna; Van Wagoner, Nicholas; Leone, Peter; Mayer, Kenneth; Lucksinger, Gregg; Win, Sandra; Koltun, William; Desai, Nisha; Oliphant, Thomas; Natenshon, Andrew; McNeil, Lisa K; Flechtner, Jessica B; Hetherington, Seth

    2017-01-01

    Abstract Background GEN-003 is an investigational genital herpes immunotherapy comprising gD2ΔTMR, an HSV-2 antigen that induces neutralizing antibody and T cell responses, ICP4.2, an HSV-2 T cell antigen selected through human T cell screens, and Matrix-M2™, a saponin-based adjuvant. This Phase 2b study was designed to evaluate efficacy and safety of GEN-003 vs. placebo. Methods Healthy persons, age 18–50 years, with 3–9 HSV-2 genital herpes outbreaks annually were randomized to 3 groups: placebo, or 60 µg of each antigen combined with 50 µg (60/50 group) or 75 µg (60/75 group) of adjuvant, administered 3 times 21 days apart. Study endpoints included safety, immunogenicity, HSV-2 shedding frequency, lesion rate and recurrence frequency. Viral shedding was measured from anogenital swabs by PCR. Swabs were collected for 28 days at baseline, and after the third dose, 6 months and 1 year. The presence of herpes lesions was recorded daily by electronic diary. Results One hundred and thirty-one participants enrolled and >90% received all 3 doses. In the 28-day post-treatment period, viral shedding was reduced by 40% and 27% in the 60/50 and 60/75 groups, respectively, compared with a 5% increase in the placebo group. At 6 months post-treatment, median lesion rates were significantly lower in the 60/50 and 60/75 groups (2.7% and 1.9%, respectively) vs. the placebo group (5.6%, p < 0.05), resulting in median reductions of 52% and 66%. In participants not receiving suppressive antivirals, the median recurrence frequency was 1.0/6 months in the 60/50 group vs. 2.0 in the placebo group (p = 0.08). The median recurrence duration in the 60/50 group was lower than in the placebo group (2.8 vs. 4.2 days; p < 0.05). The most commonly reported adverse events (AEs) following GEN-003 vaccination were injection site pain/tenderness (97%), fatigue (82%), headache (82%) and myalgia (80%). No vaccine-related serious AEs, autoimmune events or other AEs of special interest were reported. Conclusion In adults with recurrent genital herpes, GEN-003 reduced HSV-2 shedding frequency, genital herpes lesion rate, recurrence frequency and recurrence duration through 6 months after the last dose. Local and systemic symptoms were common in GEN-003 recipients, but treatment completion was high with few discontinuations due to AEs. Disclosures T. C. Heineman, GSK group of companies: Consultant and Shareholder, Consulting fee; D. Bernstein, Genocea Biosciences: Consultant and Investigator, Consulting fee and Research support; A. Wald, Genocea Biosciences: Investigator, Research grant and Support for travel to meetings for the study; N. Van Wagoner, Genocea Biosciences: Consultant, Research support and Travel support to present at scientific meetings; P. Leone, Genocea Biosciences: Grant Investigator and Scientific Advisor, Consulting fee, Research grant and Speaker honorarium; 
T. Oliphant, Genocea Biosciences: Consultant, Consulting fee; A. Natenshon, Genocea Biosciences: Employee, Salary; L. K. McNeil, Genocea Biosciences: Employee, Salary; J. B. Flechtner, Genocea Biosciences: Employee, Salary; S. Hetherington, Genocea Biosciences: Employee, Salary

  10. Scientific Reports of Plasma Medicine and its Mechanism for Therapy in Plasma Bioscience Research Center

    NASA Astrophysics Data System (ADS)

    Choi, Eun Ha

    2015-09-01

    Scientific reports of plasma medicine and its basic mechanism for therapy will be introduced, especially, performed in Plasma Bioscience Research Center, Korea. We have investigated enhanced anticancer effect of monocytes and macrophages activated by nonthermal plasma which act as immune-modulator on these immune cells. Further, we investigated the action of the nanosecond pulsed plasma activated media (NPPAM) on the lung cancer cells and its DNA oxidation pathway. We observed OD induced apoptosis on melanocytes G361 cancer cells through DNA damage signaling cascade. We also studied DNA oxidation by extracting DNA from treated cancer cell and analyzed the effects of OD/OH/D2O2/H2O2 on protein modification and oxidation. Additionally, we attempted molecular docking approaches to check the action of D2O2 on the apoptosis related genes.

  11. Division of Energy Biosciences annual report and summaries of FY 1996 activities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-04-01

    The mission of the Division of Energy Biosciences is to support research that advances the fundamental knowledge necessary for the future development of biotechnologies related to the Department of Energy`s mission. The departmental civilian objectives include effective and efficient energy production, energy conservation, environmental restoration, and waste management. The Energy Biosciences program emphasizes research in the microbiological and plant sciences, as these understudied areas offer numerous scientific opportunities to dramatically influence environmentally sensible energy production and conservation. The research supported is focused on the basic mechanism affecting plant productivity, conversion of biomass and other organic materials into fuels and chemicalsmore » by microbial systems, and the ability of biological systems to replace energy-intensive or pollutant-producing processes. The Division also addresses the increasing number of new opportunities arising at the interface of biology with other basic energy-related sciences such as biosynthesis of novel materials and the influence of soil organisms on geological processes. This report gives summaries on 225 projects on photosynthesis, membrane or ion transport, plant metabolism and biosynthesis, carbohydrate metabolism lipid metabolism, plant growth and development, plant genetic regulation and genetic mechanisms, plant cell wall development, lignin-polysaccharide breakdown, nitrogen fixation and plant-microbial symbiosis, mechanism for plant adaptation, fermentative microbial metabolism, one and two carbon microbial metabolism, extremophilic microbes, microbial respiration, nutrition and metal metabolism, and materials biosynthesis.« less

  12. Registered nurses' reflections on bioscience courses during the undergraduate nursing programme: an exploratory study.

    PubMed

    Craft, Judy A; Hudson, Peter B; Plenderleith, Mark B; Gordon, Christopher J

    2017-06-01

    To explore new graduate registered nurses' reflections of bioscience courses during their nursing programme and the relationship between bioscience content and their clinical practice. Undergraduate nursing students internationally find bioscience courses challenging, which may be due to the volume of content and level of difficulty of these courses. Such challenges may be exacerbated by insufficient integration between bioscience theory and nursing clinical practice. A descriptive, cross-sectional mixed methods study was conducted. A 30-item questionnaire with five written response questions which explored recently registered nurses' reflections on bioscience courses during their nursing degree was employed. Descriptive analyses were reported for individual items. Thematic analysis of qualitative responses was grouped to reveal emerging themes. Registered nurses' (n = 22) reflections revealed that bioscience courses were a significant challenge during their undergraduate programme, and they lacked confidence explaining the biological basis of nursing. Participants would like improved knowledge of the relevant bioscience for nursing and agreed that bioscience courses should be extended into the undergraduate final year. The importance of relating bioscience content to nursing practice was elaborated extensively throughout written responses. Although registered nurses reflected that bioscience courses were difficult with large volumes of content, having more bioscience with greater relevance to nursing applications was considered important in their current clinical practice. It is suggested that bioscience academics develop greater contextual links between bioscience content and clinical practice relevant to nursing. After working as a registered nurse, there was appreciation of bioscience relevance for clinical practice, and the nurses believed they would have benefitted from more nursing-related bioscience during their undergraduate programme. Focussed integration of bioscience with clinical nursing courses should be driven by academics, nurse educators and clinical nurses to provide a biological basis for patient care to nursing students. © 2016 John Wiley & Sons Ltd.

  13. What is provided and what the registered nurse needs--bioscience learning through the pre-registration curriculum.

    PubMed

    Davis, Geraldine M

    2010-11-01

    Registered nurses undertaking programmes of study to become non-medical prescribers appear to have limited biological science knowledge. A case study was undertaken to determine whether the nurses entering Prescriber programmes considered studies in bioscience in their pre-registration nursing courses had been sufficient, linked to practice, and had prepared them for their roles as registered nurses. The literature identifies a continuing trend amongst nursing students describing a lack of sufficient bioscience in initial nurse education; there is limited literature on the views of experienced registered nurses. The participants in this study were 42 registered nurses from adult and mental health nursing, community and inpatient services. The results obtained from questionnaires and interviews are described. Questionnaire analysis identified that 57.1% of participants indicated bioscience in their pre-registration nursing programme had been limited and 40.5% stated the bioscience content had not prepared them for their roles on registration. Those reporting extensive coverage of bioscience were all aged over 41 years and had qualified before 1995. Greatest coverage of bioscience in pre-registration programmes was reported in relation to anatomy and physiology, with relatively limited coverage of microbiology, pharmacology or biochemistry. Respondents considered all five topics to be important. Interviews supported the questionnaire findings. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. Basic Energy Sciences FY 2011 Research Summaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    This report provides a collection of research abstracts for more than 1,300 research projects funded by the Office of Basic Energy Sciences (BES) in Fiscal Year 2011 at some 180 institutions across the U.S. This volume is organized along the three BES divisions: Materials Sciences and Engineering; Chemical Sciences, Geosciences, and Biosciences; and Scientific User Facilities.

  15. Basic Energy Sciences FY 2012 Research Summaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    This report provides a collection of research abstracts and highlights for more than 1,400 research projects funded by the Office of Basic Energy Sciences (BES) in Fiscal Year 2012 at some 180 institutions across the U.S. This volume is organized along the three BES Divisions: Materials Sciences and Engineering; Chemical Sciences, Geosciences, and Biosciences; and Scientific User Facilities.

  16. Basic Energy Sciences FY 2014 Research Summaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    This report provides a collection of research abstracts and highlights for more than 1,200 research projects funded by the Office of Basic Energy Sciences (BES) in Fiscal Year 2014 at some 200 institutions across the U.S. This volume is organized along the three BES Divisions: Materials Sciences and Engineering; Chemical Sciences, Geosciences, and Biosciences; and Scientific User Facilities.

  17. Biological Environmental Sampling Technologies Assessment

    DTIC Science & Technology

    2015-12-01

    unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT: U.S. Army Edgewood Chemical Biological Center, Research and Technology Directorate, BioSensors ...format (pdf) electronic version of this report: ECBC R&T Directorate, Biosciences Division, BioSensors Branch RDCB-DRB-S ATTN: Gostomski, J

  18. The Future of Bioscience Fieldwork in UK Higher Education

    ERIC Educational Resources Information Center

    Mauchline, Alice L.; Peacock, Julie; Park, Julian R.

    2013-01-01

    Fieldwork is an important and often enjoyable part of learning in Bioscience degree courses, however it is unclear how the recent reforms to Higher Education (HE) may impact the future funding of outdoor learning. This paper reports on the findings from a recent survey of 30 HE Bioscience practitioners from across the UK. Their current level of…

  19. Students Turned Off by Turnitin? Perception of Plagiarism and Collusion by Undergraduate Bioscience Students

    ERIC Educational Resources Information Center

    Thompsett, Andrew; Ahluwalia, Jatinder

    2010-01-01

    Research on undergraduate bioscience students and the incidence of plagiarism is still in its infancy and a key problem arises in gauging the perception of undergraduate students on plagiarism and collusion in biosciences subjects because of the lack of empirical data. The aim of this study was to provide qualitative data on the perceptions of…

  20. Gender Differences in NATO Anthropometry and the Implication for Protective Equipment

    DTIC Science & Technology

    2008-09-01

    National Research Council 2800 Q Street Wright-Patterson AFB OH 45433-7947 Kathleen M. Robinette Biomechanics Branch Biosciences and Protection...Air Force Research Laboratory Human Effectiveness Directorate Biosciences and Protection Division Biomechanics ...BARRY REEDER, Work Unit Manager MARK M. HOFFMAN, Deputy Chief Biomechanics

  1. Space Biosciences, Space-X, and the International Space Station

    NASA Technical Reports Server (NTRS)

    Wigley, Cecilia

    2014-01-01

    Space Biosciences Research on the International Space Station uses living organisms to study a variety of research questions. To enhance our understanding of fundamental biological processes. To develop the fundations for a safe, productive human exploration of space. To improve the quality of life on earth.

  2. Evaluation of Novel Antimicrobial Peptides as Topical Anti-Infectives with Broad-Spectrum Activity against Combat-Related Bacterial and Fungal Wound Infections

    DTIC Science & Technology

    2017-10-01

    proceed with studies at Bridge PTS in Austin , TX . 6. Products Poster #1054 presentation at MHSRS 2016 First Prize Award 7. Participants and...Bioscience, Inc. REPORT DATE: October 2017 TYPE OF REPORT: Annual PREPARED FOR: U.S. Army Medical Research and Materiel Command Fort Detrick...Medical Research and Materiel Command Fort Detrick, Maryland 21702-5012 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 12. DISTRIBUTION / AVAILABILITY

  3. Conference scene: Select Biosciences Epigenetics Europe 2010.

    PubMed

    Razvi, Enal S

    2011-02-01

    The field of epigenetics is now on a geometric rise, driven in a large part by the realization that modifiers of chromatin are key regulators of biological processes in vivo. The three major classes of epigenetic effectors are DNA methylation, histone post-translational modifications (such as acetylation, methylation or phosphorylation) and small noncoding RNAs (most notably microRNAs). In this article, I report from Select Biosciences Epigenetics Europe 2010 industry conference held on 14-15 September 2010 at The Burlington Hotel, Dublin, Ireland. This industry conference was extremely well attended with a global pool of delegates representing the academic research community, biotechnology companies and pharmaceutical companies, as well as the technology/tool developers. This conference represented the current state of the epigenetics community with cancer/oncology as a key driver. In fact, it has been estimated that approximately 45% of epigenetic researchers today identify cancer/oncology as their main area of focus vis-à-vis their epigenetic research efforts.

  4. The 'bioscience problem' for nursing students: an integrative review of published evaluations of Year 1 bioscience, and proposed directions for curriculum development.

    PubMed

    McVicar, Andrew; Andrew, Sharon; Kemble, Ross

    2015-03-01

    The difficulties that nursing students have in learning human biosciences have given cause for concern for over 20 years but the problem remains. To conduct an integrative review of published primary research into the 'bioscience problem', evaluate their outcomes, and provide a contemporary analysis of potential directions for curriculum planners. A systematic search of electronic databases CINAHL, Medline, British Nursing Index and Google Scholar was conducted for empirical research studies, published between 1990 and 2013, designed to either predict performance of students in bioscience assessments in Year 1 of their studies or identify in-course curriculum delivery issues. The search generated nineteen papers that met inclusion criteria. Twelve papers involved predictive factors for bioscience attainment and seven surveyed student views on curriculum issues. Four others that surveyed reflections of later-year students or qualified nurses on Year 1 outcomes were also retained for additional context. Prediction based on pre-admission academic achievement was not reliable. Student factors including age at entry, self-efficacy in science, and having appropriate study skills in particular appear to be confounding factors. In-course influences such as teaching strategy or lecturer skills are also inconsistent and likely to represent confounders operating at local, institutional level. The integrative review approach enabled analysis of incongruencies between studies that have been a barrier to curriculum development. Sound admissions criteria based on pre-university academic performance show promise in resolving the 'bioscience problem' but will likely be contingent on innovative support early in Year 1 for study skills and the fundamentals of human bioscience, plus attention to local quality assurance for curriculum delivery. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Design of an Integrated Team Project as Bachelor Thesis in Bioscience Engineering

    ERIC Educational Resources Information Center

    Peeters, Marie-Christine; Londers, Elsje; Van der Hoeven, Wouter

    2014-01-01

    Following the decision at the KU Leuven to implement the educational concept of guided independent learning and to encourage students to participate in scientific research, the Faculty of Bioscience Engineering decided to introduce a bachelor thesis. Competencies, such as communication, scientific research and teamwork, need to be present in the…

  6. Toxicologic and Analytical Studies with T-2 and Related Trichothecene Mycotoxins

    DTIC Science & Technology

    1984-09-01

    SUPPORTED BY U. S. ARMY MEDICAL RESEARCH AND DEVELOPMENT COMMAND Fort Detrick, Frederick, Maryland 21701 Contract No. DAMV 17-82-C-2179 College of...Paula M. Bratich, Researcher Robert H. Poppenga, Researcher Richard A. Corley, Researcher "SUBMITTED SEPTEMBER 4, 1984 SUPPORTED BY’ U. S. ARMY MEDICAL ... Medical Records Technician Technical Reports ,7V Toxicology Department of Vet Biosciences Walter E. Hoffmann Associate Professor of Clinical

  7. Laboratory directed research and development. FY 1995 progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vigil, J.; Prono, J.

    1996-03-01

    This document presents an overview of Laboratory Directed Research and Development Programs at Los Alamos. The nine technical disciplines in which research is described include materials, engineering and base technologies, plasma, fluids, and particle beams, chemistry, mathematics and computational science, atmic and molecular physics, geoscience, space science, and astrophysics, nuclear and particle physics, and biosciences. Brief descriptions are provided in the above programs.

  8. Preregistration nursing students' perspectives on the learning, teaching and application of bioscience knowledge within practice.

    PubMed

    Molesworth, Mark; Lewitt, Moira

    2016-03-01

    This paper aims to explore student nurses' experiences of bioscience learning, teaching and application within the practice setting. It draws upon the social learning theory of communities of practice to consider the issues raised. The teaching of bioscience within many nursing curricula has shifted from traditional to more integrated approaches. Student nurses recognise bioscience as a valuable component of their studies, but many find it challenging. The focus of previous research in this area has often focussed on bioscience learning in theoretical rather than practice settings. A phenomenological study. Data were collected via focus group or interview with a total of seven students across two campuses in a Scottish university. Participants were offered the opportunity to share their experiences at both the end of year one and year two of their studies. A thematic analysis was undertaken independently then jointly by the authors. The findings suggest that although participants recognise the value of bioscience within practice settings, they found that opportunities for learning were often limited. Bioscience-related learning, teaching and application was perceived to have been given less legitimacy by the practice setting than other aspects of placement activity. To enhance bioscience approaches participants expressed a desire for more structured and integrated approaches within both practice and university along with further peer learning opportunities. Students recognise that bioscience knowledge is important in relation to the provision of safe and effective care. They request greater structure and consistency in relation to the learning, teaching and application of this topic during their placements. Those with a stake in educating nurses within clinical settings may find the views of student nurses on the topic of bioscience learning useful when planning and facilitating placement experiences. © 2015 John Wiley & Sons Ltd.

  9. KDE Bioscience: platform for bioinformatics analysis workflows.

    PubMed

    Lu, Qiang; Hao, Pei; Curcin, Vasa; He, Weizhong; Li, Yuan-Yuan; Luo, Qing-Ming; Guo, Yi-Ke; Li, Yi-Xue

    2006-08-01

    Bioinformatics is a dynamic research area in which a large number of algorithms and programs have been developed rapidly and independently without much consideration so far of the need for standardization. The lack of such common standards combined with unfriendly interfaces make it difficult for biologists to learn how to use these tools and to translate the data formats from one to another. Consequently, the construction of an integrative bioinformatics platform to facilitate biologists' research is an urgent and challenging task. KDE Bioscience is a java-based software platform that collects a variety of bioinformatics tools and provides a workflow mechanism to integrate them. Nucleotide and protein sequences from local flat files, web sites, and relational databases can be entered, annotated, and aligned. Several home-made or 3rd-party viewers are built-in to provide visualization of annotations or alignments. KDE Bioscience can also be deployed in client-server mode where simultaneous execution of the same workflow is supported for multiple users. Moreover, workflows can be published as web pages that can be executed from a web browser. The power of KDE Bioscience comes from the integrated algorithms and data sources. With its generic workflow mechanism other novel calculations and simulations can be integrated to augment the current sequence analysis functions. Because of this flexible and extensible architecture, KDE Bioscience makes an ideal integrated informatics environment for future bioinformatics or systems biology research.

  10. Darwin v. 2.0: an interpreted computer language for the biosciences.

    PubMed

    Gonnet, G H; Hallett, M T; Korostensky, C; Bernardin, L

    2000-02-01

    We announce the availability of the second release of Darwin v. 2.0, an interpreted computer language especially tailored to researchers in the biosciences. The system is a general tool applicable to a wide range of problems. This second release improves Darwin version 1.6 in several ways: it now contains (1) a larger set of libraries touching most of the classical problems from computational biology (pairwise alignment, all versus all alignments, tree construction, multiple sequence alignment), (2) an expanded set of general purpose algorithms (search algorithms for discrete problems, matrix decomposition routines, complex/long integer arithmetic operations), (3) an improved language with a cleaner syntax, (4) better on-line help, and (5) a number of fixes to user-reported bugs. Darwin is made available for most operating systems free of char ge from the Computational Biochemistry Research Group (CBRG), reachable at http://chrg.inf.ethz.ch. darwin@inf.ethz.ch

  11. Assessment of Collaboration and Interoperability in an Information Management System to Support Bioscience Research

    PubMed Central

    Myneni, Sahiti; Patel, Vimla L.

    2009-01-01

    Biomedical researchers often have to work on massive, detailed, and heterogeneous datasets that raise new challenges of information management. This study reports an investigation into the nature of the problems faced by the researchers in two bioscience test laboratories when dealing with their data management applications. Data were collected using ethnographic observations, questionnaires, and semi-structured interviews. The major problems identified in working with these systems were related to data organization, publications, and collaboration. The interoperability standards were analyzed using a C4I framework at the level of connection, communication, consolidation, and collaboration. Such an analysis was found to be useful in judging the capabilities of data management systems at different levels of technological competency. While collaboration and system interoperability are the “must have” attributes of these biomedical scientific laboratory information management applications, usability and human interoperability are the other design concerns that must also be addressed for easy use and implementation. PMID:20351900

  12. Biosciences in nurse education: is the curriculum fit for practice? Lecturers' views and recommendations from across the UK.

    PubMed

    Taylor, Vanessa; Ashelford, Sarah; Fell, Patricia; Goacher, Penelope J

    2015-10-01

    This study aims to review the biosciences component of preregistration nursing programmes in higher education institutions across the UK through the experiences and perceptions of lecturers involved in nursing education. Studies suggest that some qualified nurses lack confidence in explaining the bio-scientific rationale for their clinical practice. Biosciences can be difficult to understand and integrate into clinical decision-making and require protected time within preregistration nurse education. In the absence of explicit national guidelines, it is unclear as to the depth and extent biosciences are taught across different institutions and the level achieved at the point of registration. A survey approach was adopted to generate quantitative and qualitative feedback. Data were collected using a semi-structured questionnaire seeking the experiences and views of lecturers involved in teaching biosciences to nursing students across the UK. Data received from 10 institutions were analysed using descriptive statistics and thematic analysis. Lecturers reported that the hours of taught biosciences ranged from 20-113 hours, principally within the first year. This represents between 0·4-2·4% of time within a preregistration nursing programme (4600 hours). Large group lectures predominate, supplemented by smaller group or practical work, and online materials. The biosciences are assessed specifically in half the institutions surveyed and as part of integrated assessments in the rest. In relation to student feedback, all respondents stated that students consistently requested more time and greater priority for biosciences in their programme. This survey suggests that the number of hours spent teaching biosciences is minimal and varies widely between higher education institutions. All respondents expressed concern about the challenges of teaching difficult bio-scientific concepts to large groups in such a limited time and called for greater clarity in national guidelines to ensure that all nurses are adequately educated and assessed in bioscience subjects. Failure to understand the biosciences underpinning care has implications for safe and competent nursing. © 2015 John Wiley & Sons Ltd.

  13. A tale of three next generation sequencing platforms: comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers.

    PubMed

    Quail, Michael A; Smith, Miriam; Coupland, Paul; Otto, Thomas D; Harris, Simon R; Connor, Thomas R; Bertoni, Anna; Swerdlow, Harold P; Gu, Yong

    2012-07-24

    Next generation sequencing (NGS) technology has revolutionized genomic and genetic research. The pace of change in this area is rapid with three major new sequencing platforms having been released in 2011: Ion Torrent's PGM, Pacific Biosciences' RS and the Illumina MiSeq. Here we compare the results obtained with those platforms to the performance of the Illumina HiSeq, the current market leader. In order to compare these platforms, and get sufficient coverage depth to allow meaningful analysis, we have sequenced a set of 4 microbial genomes with mean GC content ranging from 19.3 to 67.7%. Together, these represent a comprehensive range of genome content. Here we report our analysis of that sequence data in terms of coverage distribution, bias, GC distribution, variant detection and accuracy. Sequence generated by Ion Torrent, MiSeq and Pacific Biosciences technologies displays near perfect coverage behaviour on GC-rich, neutral and moderately AT-rich genomes, but a profound bias was observed upon sequencing the extremely AT-rich genome of Plasmodium falciparum on the PGM, resulting in no coverage for approximately 30% of the genome. We analysed the ability to call variants from each platform and found that we could call slightly more variants from Ion Torrent data compared to MiSeq data, but at the expense of a higher false positive rate. Variant calling from Pacific Biosciences data was possible but higher coverage depth was required. Context specific errors were observed in both PGM and MiSeq data, but not in that from the Pacific Biosciences platform. All three fast turnaround sequencers evaluated here were able to generate usable sequence. However there are key differences between the quality of that data and the applications it will support.

  14. Kotov works with samples from the Bioscience Experiment ASEPTIC during Joint Operations

    NASA Image and Video Library

    2010-02-19

    ISS022-E-068638 (18 Feb. 2010) --- Russian cosmonaut Oleg Kotov, Expedition 22 flight engineer, works with samples from the bioscience experiment ASEPTIC (BTKh-39) in the new Russian Glavboks-S (Glovebox) located in the Poisk Mini-Research Module 2 (MRM2) of the International Space Station.

  15. Kotov works with samples from the Bioscience Experiment ASEPTIC during Joint Operations

    NASA Image and Video Library

    2010-02-19

    ISS022-E-068640 (18 Feb. 2010) --- Russian cosmonaut Oleg Kotov, Expedition 22 flight engineer, works with samples from the bioscience experiment ASEPTIC (BTKh-39) in the new Russian Glavboks-S (Glovebox) located in the Poisk Mini-Research Module 2 (MRM2) of the International Space Station.

  16. Kotov works with samples from the Bioscience Experiment ASEPTIC during Joint Operations

    NASA Image and Video Library

    2010-02-19

    ISS022-E-068645 (18 Feb. 2010) --- Russian cosmonaut Oleg Kotov, Expedition 22 flight engineer, works with samples from the bioscience experiment ASEPTIC (BTKh-39) in the new Russian Glavboks-S (Glovebox) located in the Poisk Mini-Research Module 2 (MRM2) of the International Space Station.

  17. 77 FR 59611 - Notice of Receipt of Pesticide Products; Registration Applications

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-28

    ... Symbol: 85004-RN. Docket ID Number: EPA-HQ-OPP-2012- 0609. Applicant: Pasteuria Bioscience, Inc., 12085 Research Dr., Suite 185, Alachua, FL 32615. Active ingredient: Nematicide with Pasteuria spp. (Hoplolaimus... Symbol: 85004-RR. Docket ID Number: EPA-HQ-OPP-2012- 0609. Applicant: Pasteuria Bioscience, Inc., 12085...

  18. The Current State of Sustainability in Bioscience Laboratories: A Statistical Examination of a UK Tertiary Institute

    ERIC Educational Resources Information Center

    Wright, Hazel A.; Ironside, Joseph E.; Gwynn-Jones, Dylan

    2008-01-01

    Purpose: This study aims to identify the current barriers to sustainability in the bioscience laboratory setting and to determine which mechanisms are likely to increase sustainable behaviours in this specialised environment. Design/methodology/approach: The study gathers qualitative data from a sample of laboratory researchers presently…

  19. Gateway to the Future. Skill Standards for the Bioscience Industry for Technical Workers in Pharmaceutical Companies, Biotechnology Companies, and Clinical Laboratories.

    ERIC Educational Resources Information Center

    Education Development Center, Inc., Newton, MA.

    The Bioscience Industry Skills Standards Project (BISSP) is developing national, voluntary skill standards for technical jobs in biotechnology and pharmaceutical companies and clinical laboratories in hospitals, universities, government, and independent settings. Research with employees and educators has pinpointed three issues underscoring the…

  20. Developing Research Capabilities in Energy Biosciences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Donald D.

    2008-01-01

    Scientists founded the Life Sciences Research Foundation (LSRF) in 1983 as a non-profit pass through foundation that awards post doctoral fellowships in all areas of the life sciences. LSRF scientists review hundreds of applications each year from PhDs seeking support. For example this year, our 26th, we received 800 applications and our peer review committee will choose about 50 finalists who are eligible for these awards. We have no endowment so we solicit sponsors each year. The fellowships are sponsored by research oriented companies, foundations, philanthropists, the Howard Hughes Medical Institute, and other organizations who believe in the value ofmore » awarding fellowships to the best and the brightest young scientists. Our web site has a complete listing of all details about LSRF (http://www.lsrf.org/). In the late 1980s the Division of Bioscience in the Office of Basic Energy Science, a granting agency of the Department of Energy, joined this partnership. Bioscience's mandate was to support non-medical microbiology and plant sciences. LSRF received a series of 5 year grants from DOE to award fellowships to our top applicants in these fields of research. We began to support DOE-Energy Bioscience post doctoral fellows in 1989. From 1989 through 2004 when DOE funding ended our partnership awarded 41 DOE-Energy Bioscience Fellows of the Life Sciences Research Foundation. Each of these was a three year fellowship. DOE-Energy Biosciences was well matched with LSRF. Our extensive peer review screened applicants in all areas of the life sciences. Most LSRF sponsors are interested in supporting fellows who work on diseases. At the time that we began our partnership with DOE we had no sponsors willing to support plant biology and non medical microbiology. For 15 years DOE played a major role in the training of the very best young scientists in these important fields of research simply through its support of LSRF post doctoral fellows. Young scientists interested in plant biology knew to apply to LSRF for a chance to receive a post doctoral award. We are enclosing a list of the 41 fellows who were supported through this partnership. The list includes some of the most distinguished plant biologists in the country, and our training partnership has had a profound impact on the field of plant biology.« less

  1. Evaluation of Evidence for Altered Behavior and Auditory Deficits in Fishes Due to Human-Generated Noise Sources

    DTIC Science & Technology

    2006-04-01

    prepared by the Research and Animal Care Branch, Code 2351, of the Biosciences Division, Code 235, SSC San Diego. This is a work of the United...and Animal Care Branch Under authority of M. Rothe, Head Biosciences Division i EXECUTIVE SUMMARY In this study, we have evaluated peer... sharks , skates, and rays) and teleost fishes (modern bony fishes) and provide recommendations for research to address remaining issues. Clear responses

  2. Toward interoperable bioscience data

    PubMed Central

    Sansone, Susanna-Assunta; Rocca-Serra, Philippe; Field, Dawn; Maguire, Eamonn; Taylor, Chris; Hofmann, Oliver; Fang, Hong; Neumann, Steffen; Tong, Weida; Amaral-Zettler, Linda; Begley, Kimberly; Booth, Tim; Bougueleret, Lydie; Burns, Gully; Chapman, Brad; Clark, Tim; Coleman, Lee-Ann; Copeland, Jay; Das, Sudeshna; de Daruvar, Antoine; de Matos, Paula; Dix, Ian; Edmunds, Scott; Evelo, Chris T; Forster, Mark J; Gaudet, Pascale; Gilbert, Jack; Goble, Carole; Griffin, Julian L; Jacob, Daniel; Kleinjans, Jos; Harland, Lee; Haug, Kenneth; Hermjakob, Henning; Ho Sui, Shannan J; Laederach, Alain; Liang, Shaoguang; Marshall, Stephen; McGrath, Annette; Merrill, Emily; Reilly, Dorothy; Roux, Magali; Shamu, Caroline E; Shang, Catherine A; Steinbeck, Christoph; Trefethen, Anne; Williams-Jones, Bryn; Wolstencroft, Katherine; Xenarios, Ioannis; Hide, Winston

    2012-01-01

    To make full use of research data, the bioscience community needs to adopt technologies and reward mechanisms that support interoperability and promote the growth of an open ‘data commoning’ culture. Here we describe the prerequisites for data commoning and present an established and growing ecosystem of solutions using the shared ‘Investigation-Study-Assay’ framework to support that vision. PMID:22281772

  3. Expansion of genetic testing in the division of functional genomics, research center for bioscience and technology, tottori university from 2000 to 2013.

    PubMed

    Adachi, Kaori

    2014-03-01

    At the Division of Functional Genomics, Research Center for Bioscience and Technology, Tottori University, we have been making an effort to establish a genetic testing facility that can provide the same screening procedures conducted worldwide. Direct Sequencing of PCR products is the main method to detect point mutations, small deletions and insertions. Multiplex Ligation-dependent Probe Amplification (MLPA) was used to detect large deletions or insertions. Expansion of the repeat was analyzed for triplet repeat diseases. Original primers were constructed for 41 diseases when the reported primers failed to amplify the gene. Prediction of functional effects of human nsSNPs (PolyPhen) was used for evaluation of novel mutations. From January 2000 to September 2013, a total of 1,006 DNA samples were subjected to genetic testing in the Division of Functional Genomics, Research Center for Bioscience and Technology, Tottori University. The hospitals that requested genetic testing were located in 43 prefectures in Japan and in 11 foreign countries. The genetic testing covered 62 diseases, and mutations were detected in 287 out of 1,006 with an average mutation detection rate of 24.7%. There were 77 samples for prenatal diagnosis. The number of samples has rapidly increased since 2010. In 2013, the next-generation sequencers were introduced in our facility and are expected to provide more comprehensive genetic testing in the near future. Nowadays, genetic testing is a popular and powerful tool for diagnosis of many genetic diseases. Our genetic testing should be further expanded in the future.

  4. Effects of NIGMS Training Programs on Graduate Education in the Biomedical Sciences. An Evaluative Study of the Training Programs of the National Institute of General Medical Sciences 1958-1967.

    ERIC Educational Resources Information Center

    National Inst. of General Medical Sciences (NIH), Bethesda, MD.

    This report was prepared by the National Research Council, at the request of the National Institutes of Health, in an attempt to evaluate the Graduate Research Training Grant Program and Fellowship Program in bioscience. One of the purposes of the study was to collect objective data that would provide answers to such questions as: What have been…

  5. Production of Doctorates in the Biosciences, 1975-1980: An Experimental Forecast. Higher Education Panel Reports, No. 34.

    ERIC Educational Resources Information Center

    Atelsek, Frank J.; Gomberg, Irene L.

    A survey was undertaken in 1976 to obtain short-term estimates of doctorate production directly from the heads of the science departments involved. These biosciences departments were surveyed in the 235 member institutions of the Higher Education Panel that grant doctorates: anatomy, biochemistry, biology, biometry/biostatistics/biomathematics,…

  6. Assessment of Human Performance in a Simulated Rotorcraft Downwash Environment

    DTIC Science & Technology

    2007-05-01

    Plaga Biosciences and Protection Division Biomechanics Branch May 2007 Final Report for December 2004 to August 2005... Biomechanics Branch Wright-Patterson AFB OH 45433-7947 Approved for public release; distribution is unlimited NOTICE AND SIGNATURE PAGE...Human Effectiveness Directorate Biosciences & Protection Division Biomechanics Branch Wright-Patterson AFB OH 45433-7947 11. SPONSOR/MONITOR’S

  7. Effect of A-Level Subject Choice and Entry Tariff on Final Degree and Level 1 Performance in Biosciences

    ERIC Educational Resources Information Center

    King, Nicola C.; Aves, Stephen J.

    2012-01-01

    Following the publication of the higher education white paper increasing entry tariff and widening participation have become even more important issues for universities. This report examines the relationship between entry tariff and undergraduate achievement in Biosciences at the University of Exeter. We show that, whilst there is a significant…

  8. The Role of the Postgraduate Student in Delivering Bioscience Teaching

    ERIC Educational Resources Information Center

    Scott, Jon; Maw, Stephen J.

    2009-01-01

    There has been much recent interest in the extent to which the teaching in higher education delivered by non-academic staff has increased in the recent past. Within the Biosciences there has always been a tradition of engaging postgraduate students to support the delivery of some forms of teaching. In this paper we report on the findings of a…

  9. Promoting active learning using audience response system in large bioscience classes.

    PubMed

    Efstathiou, Nikolaos; Bailey, Cara

    2012-01-01

    This paper considers the challenges of bioscience teaching and learning in pre-registration nurse education. Effective learning requires active student participation which is problematic when teaching large groups of students. New technologies, such as the audience response system (ARS), have been introduced to increase student participation and support them in the understanding of complex bioscience concepts. Within one university department, an evaluation was undertaken to identify the perceptions of pre-registration nurse students on the use of ARS in the teaching and learning of bioscience. Our findings concur with others that ARS increases student participation and aids in identifying misconceptions and in correcting them. Students found ARS very useful and wanted ARS to be used in additional modules too. Although ARS did not seem to motivate students to study adequately before attending the relevant sessions, it increased discussion among students and awareness of their level of knowledge compared to their peers. Further research is required to identify the effectiveness of ARS in the teaching and learning of bioscience and its impact on the performance of the students in their final assessments. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Can active learning principles be applied to the bioscience assessments of nursing students? A review of the literature.

    PubMed

    Bakon, Shannon; Craft, Judy; Christensen, Martin; Wirihana, Lisa

    2016-02-01

    To explore if active learning principles be applied to nursing bioscience assessments and will this influence student perception of confidence in applying theory to practice? A review of the literature utilising searches of various databases including CINAHL, PUBMED, Google Scholar and Mosby's Journal Index. The literature search identified research from twenty-six original articles, two electronic books, one published book and one conference proceedings paper. Bioscience has been identified as an area that nurses struggle to learn in tertiary institutions and then apply to clinical practice. A number of problems have been identified and explored that may contribute to this poor understanding and retention. University academics need to be knowledgeable of innovative teaching and assessing modalities that focus on enhancing student learning and address the integration issues associated with the theory practice gap. Increased bioscience education is associated with improved patient outcomes therefore by addressing this "bioscience problem" and improving the integration of bioscience in clinical practice there will subsequently be an improvement in health care outcomes. From the literature several themes were identified. First there are many problems with teaching nursing students bioscience education. These include class sizes, motivation, concentration, delivery mode, lecturer perspectives, student's previous knowledge, anxiety, and a lack of confidence. Among these influences the type of assessment employed by the educator has not been explored or identified as a contributor to student learning specifically in nursing bioscience instruction. Second that educating could be achieved more effectively if active learning principles were applied and the needs and expectations of the student were met. Lastly, assessment influences student retention and the student experience and as such assessment should be congruent with the subject content, align with the learning objectives and be used as a stimulus tool for learning. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Design of an integrated team project as bachelor thesis in bioscience engineering

    NASA Astrophysics Data System (ADS)

    Peeters, Marie-Christine; Londers, Elsje; Van der Hoeven, Wouter

    2014-11-01

    Following the decision at the KU Leuven to implement the educational concept of guided independent learning and to encourage students to participate in scientific research, the Faculty of Bioscience Engineering decided to introduce a bachelor thesis. Competencies, such as communication, scientific research and teamwork, need to be present in the design of this thesis. Because of the high number of students and the multidisciplinary nature of the graduates, all research divisions of the faculty are asked to participate. The yearly surveys and hearings were used for further optimisation. The actual design of this bachelor thesis is presented and discussed in this paper.

  12. Laboratory-directed research and development: FY 1996 progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vigil, J.; Prono, J.

    1997-05-01

    This report summarizes the FY 1996 goals and accomplishments of Laboratory-Directed Research and Development (LDRD) projects. It gives an overview of the LDRD program, summarizes work done on individual research projects, and provides an index to the projects` principal investigators. Projects are grouped by their LDRD component: Individual Projects, Competency Development, and Program Development. Within each component, they are further divided into nine technical disciplines: (1) materials science, (2) engineering and base technologies, (3) plasmas, fluids, and particle beams, (4) chemistry, (5) mathematics and computational sciences, (6) atomic and molecular physics, (7) geoscience, space science, and astrophysics, (8) nuclear andmore » particle physics, and (9) biosciences.« less

  13. Dispatches from the Interface of Salivary Bioscience and Neonatal Research

    PubMed Central

    Voegtline, Kristin M.; Granger, Douglas A.

    2014-01-01

    The emergence of the interdisciplinary field of salivary bioscience has created opportunity for neonatal researchers to measure multiple components of biological systems non-invasively in oral fluids. The implications are profound and potentially high impact. From a single oral fluid specimen, information can be obtained about a vast array of biological systems (e.g., endocrine, immune, autonomic nervous system) and the genetic polymorphisms related to individual differences in their function. The purpose of this review is to describe the state of the art for investigators interested in integrating these unique measurement tools into the current and next generation of research on gonadal steroid exposure during the prenatal and neonatal developmental periods. PMID:24624119

  14. Ahead of the Curve; Hidden breakthroughs in the biosciences

    NASA Astrophysics Data System (ADS)

    Levin, Michael; Adams, Dany Spencer

    2016-12-01

    This unique book is a compendium of carefully curated published papers in the biosciences, which have (or will) precipitate a profound change in prevailing paradigms and research programs. A mix of new and classic papers, it shows the limitations of current thought or identifies novel vistas for investigations that have not yet been explored. The purpose of the book is to highlight scientific gems, most unrecognized, that suggest revisions to key pillars of thought in the biological sciences and further the education of young scientists. This will be achieved by including reprints of papers that demonstrate counter-paradigm, novel directions for future research featuring commentary from current, notable researchers in a variety of areas.

  15. Laboratory Directed Research and Development FY 1998 Progress Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John Vigil; Kyle Wheeler

    This is the FY 1998 Progress Report for the Laboratory Directed Research and Development (LDRD) Program at Los Alamos National Laboratory. It gives an overview of the LDRD Program, summarizes work done on individual research projects, relates the projects to major Laboratory program sponsors, and provides an index to the principle investigators. Project summaries are grouped by their LDRD component: Competency Development, Program Development, and Individual Projects. Within each component, they are further grouped into nine technical categories: (1) materials science, (2) chemistry, (3) mathematics and computational science, (4) atomic, molecular, optical, and plasma physics, fluids, and particle beams, (5)more » engineering science, (6) instrumentation and diagnostics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) bioscience.« less

  16. Laboratory directed research and development: FY 1997 progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vigil, J.; Prono, J.

    1998-05-01

    This is the FY 1997 Progress Report for the Laboratory Directed Research and Development (LDRD) program at Los Alamos National Laboratory. It gives an overview of the LDRD program, summarizes work done on individual research projects, relates the projects to major Laboratory program sponsors, and provides an index to the principal investigators. Project summaries are grouped by their LDRD component: Competency Development, Program Development, and Individual Projects. Within each component, they are further grouped into nine technical categories: (1) materials science, (2) chemistry, (3) mathematics and computational science, (4) atomic and molecular physics and plasmas, fluids, and particle beams, (5)more » engineering science, (6) instrumentation and diagnostics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) bioscience.« less

  17. Second Quarter Report Environmental Biosciences Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawrence C. Mohr, M.D.

    2002-10-31

    In May 2002, the United States Department of Energy (DOE) signed Assistance Instrument Number DE-FC09-02CH11109 with the Medical University of South Carolina (MUSC) to support the Environmental Biosciences Program (EBP). This funding instrument replaces DOE Assistance Instrument Number DE-FC02-98CH10902. EBP is an integrated, multidisciplinary scientific program, employing a range of research initiatives to identify, study and resolve environmental health risk issues. These initiatives are consistent with the Medical University's role as a comprehensive state-supported health sciences institution and the nation's need for new and better approaches to the solution of a complex and expansive array of environment-related health problems. Themore » intrinsic capabilities of a comprehensive health sciences institution enable the Medical University to be a national resource for the scientific investigation of environmental health issues. EBP's success in convening worldwide scientific expertise is due in part to the inherent credibility the Medical University brings to the process of addressing these complex issues.« less

  18. Environmental Biosciences Program Third Quarter Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawrence C. Mohr, M.D.

    2003-01-31

    In May 2002, the United States Department of Energy (DOE) signed Assistance Instrument Number DE-FC09-02CH11109 with the Medical University of South Carolina (MUSC) to support the Environmental Biosciences Program (EBP). This funding instrument replaces DOE Assistance Instrument Number DE-FC02-98CH10902. EBP is an integrated, multidisciplinary scientific program, employing a range of research initiatives to identify, study and resolve environmental health risk issues. These initiatives are consistent with the Medical University's role as a comprehensive state-supported health sciences institution and the nation's need for new and better approaches to the solution of a complex and expansive array of environment-related health problems. Themore » intrinsic capabilities of a comprehensive health sciences institution enable the Medical University to be a national resource for the scientific investigation of environmental health issues. EBP's success in convening worldwide scientific expertise is due in part to the inherent credibility the Medical University brings to the process of addressing these complex issues.« less

  19. MUSC Environmental Biosciences Program First Quarter Report May - June, 2002

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawrence C. Mohr

    2002-07-31

    In May 2002, the United States Department of Energy (DOE) signed Assistance Instrument Number DE-FC02-98CH11109 with the Medical University of South Carolina (MUSC) to support the Environmental Biosciences Program (EBP). This funding instrument replaces DOE Assistance Instrument Number DE-FC02-98CH10902. EBP is an integrated, multidisciplinary scientific program, employing a range of research initiatives to identify, study and resolve environmental health risk issues. These initiatives are consistent with the Medical University's role as a comprehensive state-supported health sciences institution and the nation's need for new and better approaches to the solution of a complex and expansive array of environment-related health problems. Themore » intrinsic capabilities of a comprehensive health sciences institution enable the Medical University to be a national resource for the scientific investigation of environmental health issues. EBP's success in convening worldwide scientific expertise is due in part to the inherent credibility the Medical University brings to the process of addressing these complex issues.« less

  20. Closing the Social Class Achievement Gap for First-Generation Students in Undergraduate Biology

    PubMed Central

    Harackiewicz, Judith M.; Canning, Elizabeth A.; Tibbetts, Yoi; Giffen, Cynthia J.; Blair, Seth S.; Rouse, Douglas I.; Hyde, Janet S.

    2014-01-01

    Many students start college intending to pursue a career in the biosciences, but too many abandon this goal because they struggle in introductory biology. Interventions have been developed to close achievement gaps for underrepresented minority students and women, but no prior research has attempted to close the gap for first-generation students, a population that accounts for nearly a fifth of college students. We report a values affirmation intervention conducted with 798 U.S. students (154 first-generation) in an introductory biology course for majors. For first-generation students, values affirmation significantly improved final course grades and retention in the second course in the biology sequence, as well as overall GPA for the semester. This brief intervention narrowed the achievement gap between first-generation and continuing generation students for course grades by 50% and increased retention in a critical gateway course by 20%. Our results suggest that educators can expand the pipeline for first-generation students to continue studying in the biosciences with psychological interventions. PMID:25049437

  1. Harnessing the power of communities: career networking strategies for bioscience PhD students and postdoctoral researchers.

    PubMed

    Blackford, Sarah

    2018-04-01

    With an ever more competitive global labour market, coupled with an ever-increasing population of PhD-qualified graduates, the ability to communicate effectively and build strategic connections with others can be advantageous in the job-search process. Whether in pursuit of a tenure-track or non-academic position, many postdoctoral researchers and PhD students will benefit from networking as early as possible to enhance their career prospects. Sometimes viewed cynically as 'using people' or dismissed as 'the old boy network,' the ability to make meaningful connections and build relationships can be more valuable than other job-related skills in order to gain entry to, and progress within, many professions. This mini-review highlights the positive influence of networking and how bioscience PhD students and postdoctoral researchers can harness the power of communities to achieve career success. It is argued that those who make connections and promote personal patronage through networking can gain an advantage over their contemporaries. A summary of key theories and research studies that underpin the practice of networking provides credence to these assertions, which are further substantiated with examples pertinent to the academic community. Although primarily focussed on the biosciences, much of the content is applicable to other scientists at a similar career stage.

  2. The future of graduate and postdoctoral training in the biosciences.

    PubMed

    Hitchcock, Peter; Mathur, Ambika; Bennett, Jabbar; Cameron, Patricia; Chow, Christine; Clifford, Philip; Duvoisin, Robert; Feig, Andrew; Finneran, Kevin; Klotz, Diane M; McGee, Richard; O'Riordan, Mary; Pfund, Christine; Pickett, Christopher; Schwartz, Nancy; Street, Nancy E; Watkins, Elizabeth; Wiest, Jonathan; Engelke, David

    2017-10-19

    This article summarizes the outcomes of the second national conference on the Future of Bioscience Graduate and Postdoctoral Training. Five topics were addressed during the conference: diversity in leadership positions; mentoring; modernizing the curriculum; experiential learning; and the need for better data on trainees. The goal of the conference was to develop a consensus around these five topics and to recommend policies that can be implemented by academic and research institutions and federal funding agencies in the United States.

  3. The future of graduate and postdoctoral training in the biosciences

    PubMed Central

    Bennett, Jabbar; Cameron, Patricia; Chow, Christine; Clifford, Philip; Duvoisin, Robert; Feig, Andrew; Finneran, Kevin; Klotz, Diane M; McGee, Richard; O'Riordan, Mary; Pfund, Christine; Pickett, Christopher; Schwartz, Nancy; Street, Nancy E; Watkins, Elizabeth; Wiest, Jonathan; Engelke, David

    2017-01-01

    This article summarizes the outcomes of the second national conference on the Future of Bioscience Graduate and Postdoctoral Training. Five topics were addressed during the conference: diversity in leadership positions; mentoring; modernizing the curriculum; experiential learning; and the need for better data on trainees. The goal of the conference was to develop a consensus around these five topics and to recommend policies that can be implemented by academic and research institutions and federal funding agencies in the United States. PMID:29049023

  4. Inkjet Gene Printing: A Novel Approach to Achieve Gene Modified Cells for Tissue Engineering

    DTIC Science & Technology

    2008-12-01

    and pIRES-VEGF-GFP (BD Biosciences, Bedford, MA) encoding the cDNAs of jellyfish Aequorea victoria green fluorescent protein, driven by the...prepared from rat-tail Type I collagen gels using a previously reported protocol(Xu et al. 2005). Briefly, rat- tail Type I collagen (BD Biosciences...aliquots of the mixture were dispersed onto coverslips and cured in an incubator for 3–5 h. Once the gel set, the collagen bio-paper was ready for

  5. Self-efficacy and relevance of bioscience for nursing, midwifery and healthcare students.

    PubMed

    Andrew, Sharon; McVicar, Andrew; Zanganeh, Mandana; Henderson, Nigel

    2015-10-01

    To examine nursing, midwifery and allied healthcare students' self-efficacy for science, perceived relevance of bioscience to their studies and expectations for academic success and the changes that occur after completing first-year introductory bioscience subjects. Bioscience is a foundation subject that underpins nursing, midwifery and other allied health courses. Bioscience subjects continue to be source of anxiety for students in those courses. Raising students' self-efficacy and perceptions of the importance and utility of bioscience to practice may be a way of ameliorating students' expectations and confidence in this subject area. A prospective correlational survey design. Students were surveyed in the first semester of first year and the commencement of the second year. Students were drawn from nursing, midwifery, public health and allied health courses. The surveys contained scales for self-efficacy for science, perceived relevance of bioscience to their course and personal expectations for success in their bioscience subject. Ninety-seven and 82 students completed survey 1 and 2 respectively. Twenty-six surveys could be matched. Self-efficacy increased from survey 1 to survey 2, but expectations for academic success and task value, a measure for relevance, were lower. This was statistically significant for the matched pair sample. Using a mean split, students with high self-efficacy valued science more and had higher expectations for success in their bioscience courses than those with low self-efficacy. Academic success in bioscience, confidence undertaking science tasks and perceiving bioscience as relevant to their course are interwoven concepts that are important for nursing, midwifery and applied healthcare students and ultimately for their professional practice. Literature indicates practitioners may not feel confident in their bioscience knowledge. Assisting undergraduate students to develop confidence in and perceive the relevance of bioscience to their discipline may ultimately impact on clinical practice. © 2015 John Wiley & Sons Ltd.

  6. Wei Wang | NREL

    Science.gov Websites

    Research Interests Yeast strain development for production of hydrocarbon via metabolic engineering CBP Research Scientist, National Renewable Energy Laboratory, Bioscience Center, 2009-present Postdoctoral Research Fellow, Auburn University, Chemical Engineering Department, Y.Y. Lee's group Research Scientist

  7. Course-based undergraduate research experiences in molecular biosciences-patterns, trends, and faculty support.

    PubMed

    Wang, Jack T H

    2017-08-15

    Inquiry-driven learning, research internships and course-based undergraduate research experiences all represent mechanisms through which educators can engage undergraduate students in scientific research. In life sciences education, the benefits of undergraduate research have been thoroughly evaluated, but limitations in infrastructure and training can prevent widespread uptake of these practices. It is not clear how faculty members can integrate complex laboratory techniques and equipment into their unique context, while finding the time and resources to implement undergraduate research according to best practice guidelines. This review will go through the trends and patterns in inquiry-based undergraduate life science projects with particular emphasis on molecular biosciences-the research-aligned disciplines of biochemistry, molecular cell biology, microbiology, and genomics and bioinformatics. This will provide instructors with an overview of the model organisms, laboratory techniques and research questions that are adaptable for semester-long projects, and serve as starting guidelines for course-based undergraduate research. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Quantitative skills as a graduate learning outcome of university science degree programmes: student performance explored through theplanned-enacted-experiencedcurriculum model

    NASA Astrophysics Data System (ADS)

    Matthews, Kelly E.; Adams, Peter; Goos, Merrilyn

    2016-07-01

    Application of mathematical and statistical thinking and reasoning, typically referred to as quantitative skills, is essential for university bioscience students. First, this study developed an assessment task intended to gauge graduating students' quantitative skills. The Quantitative Skills Assessment of Science Students (QSASS) was the result, which examined 10 mathematical and statistical sub-topics. Second, the study established an evidential baseline of students' quantitative skills performance and confidence levels by piloting the QSASS with 187 final-year biosciences students at a research-intensive university. The study is framed within the planned-enacted-experienced curriculum model and contributes to science reform efforts focused on enhancing the quantitative skills of university graduates, particularly in the biosciences. The results found, on average, weak performance and low confidence on the QSASS, suggesting divergence between academics' intentions and students' experiences of learning quantitative skills. Implications for curriculum design and future studies are discussed.

  9. Sandia National Laboratories: About Sandia: Environmental Responsibility:

    Science.gov Websites

    Environmental Management: Sandia Sandia National Laboratories Exceptional service in the Environmental Responsibility Environmental Management System Pollution Prevention History 60 impacts Diversity ; Verification Research Research Foundations Bioscience Computing & Information Science Electromagnetics

  10. Study of denture-induced fibrous hyperplasia cases diagnosed from 1979 to 2001.

    PubMed

    Macedo Firoozmand, Leily; Dias Almeida, Janete; Guimarães Cabral, Luiz Antonio

    2005-01-01

    The purpose of this research was to study the cases of inflammatory fibrous hyperplasia (IFH) at the Clinic of Semiology, Department of Bioscience and Oral Diagnosis, São Jose dos Campos Dental School, State University of São Paulo, Brazil. A total of 141 clinical file cards indicating a final diagnosis of IFH, from the archives of the Department of Bioscience and Oral Diagnosis and dated from 1979 to 2001, were included in the study. Of these files, 50 indicated a diagnosis of denture-induced fibrous hyperplasia. Sex, age, race, duration, and clinical features that confirm their classification in the non-neoplastic proliferating process were analyzed statistically. Of the 50 analyzed cases of denture-induced lesion, 22% occurred in men and 78% in women. Patients in the age group of 41 to 50 years presented the highest frequency of the lesion. Inflammatory fibrous hyperplasia occurs more frequently in women (71.63%), and denture-induced lesions appear mainly in patients over 40 years of age (70% of cases). Patients with denture-induced hyperplasia reported pain associated with the lesion (70%).

  11. Ethics in research.

    PubMed

    Bevan, Joan C

    2007-04-01

    This review will examine research ethics in the context of globalization of clinical trials and recent rapid developments in bioscience. It will focus on international ethical guidelines and the functions of research ethics review boards in research governance. Consent issues in genetic research, which must comply with privacy laws by protecting confidentiality and privacy of personal health data, will be discussed. There has been a rapid expansion of genomic and proteonomic research and biotechnology in the last decade. International ethical guidelines have been updated and the bioscience industry has developed ethics policies. At the same time, problems in academic anesthesia in the US and UK have been identified, leading to recommendations to train physician-scientists in anesthesia to stimulate research activity in the future. Anesthesiologists are joining interdisciplinary research teams and the concept of evidence-based translational research is emerging. Anesthesiologists are moving towards participation in interdisciplinary research teams. They are well placed to speed the translation of research discovery into clinical practice and provide evidence-based perioperative care. This review provides the ethical framework that anesthesiologists will need to meet the challenges of this changing pattern of practice.

  12. Overview of the immune response to phytonutrient in poultry

    USDA-ARS?s Scientific Manuscript database

    Overview of the immune response to phytonutrient in poultry. Lillehoj, Hyun S. Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, MD 20705, USA Phytochemicals are non-nutritive, plant-derived chemicals, many w...

  13. Sandia National Laboratories: Research: Bioscience

    Science.gov Websites

    Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios

  14. Lensless high-resolution on-chip optofluidic microscopes for Caenorhabditis elegans and cell imaging

    PubMed Central

    Cui, Xiquan; Lee, Lap Man; Heng, Xin; Zhong, Weiwei; Sternberg, Paul W.; Psaltis, Demetri; Yang, Changhuei

    2008-01-01

    Low-cost and high-resolution on-chip microscopes are vital for reducing cost and improving efficiency for modern biomedicine and bioscience. Despite the needs, the conventional microscope design has proven difficult to miniaturize. Here, we report the implementation and application of two high-resolution (≈0.9 μm for the first and ≈0.8 μm for the second), lensless, and fully on-chip microscopes based on the optofluidic microscopy (OFM) method. These systems abandon the conventional microscope design, which requires expensive lenses and large space to magnify images, and instead utilizes microfluidic flow to deliver specimens across array(s) of micrometer-size apertures defined on a metal-coated CMOS sensor to generate direct projection images. The first system utilizes a gravity-driven microfluidic flow for sample scanning and is suited for imaging elongate objects, such as Caenorhabditis elegans; and the second system employs an electrokinetic drive for flow control and is suited for imaging cells and other spherical/ellipsoidal objects. As a demonstration of the OFM for bioscience research, we show that the prototypes can be used to perform automated phenotype characterization of different Caenorhabditis elegans mutant strains, and to image spores and single cellular entities. The optofluidic microscope design, readily fabricable with existing semiconductor and microfluidic technologies, offers low-cost and highly compact imaging solutions. More functionalities, such as on-chip phase and fluorescence imaging, can also be readily adapted into OFM systems. We anticipate that the OFM can significantly address a range of biomedical and bioscience needs, and engender new microscope applications. PMID:18663227

  15. 40 Years of Discovery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weinstein, B; Heller, A

    2003-07-08

    History is most interesting when seen through the eyes of those who lived it. In this 40th anniversary retrospective of bioscience research at Lawrence Livermore National Laboratory, we've asked 19 scientists to share their personal recollections about a major accomplishment in the program's history. We have not tried to create a comprehensive or seamless story. Rather, we've attempted to capture the perspectives of key individuals, each of whom worked on a research program that met significant milestones. We have focused particularly on programs and accomplishments that have shaped the current Biology and Biotechnology Research Program (BBRP). In addition, we havemore » included a timeline of biosciences at LLNL, a history of the directorate that appeared in the Laboratory's magazine, ''Science & Technology Review'', in 2002, and a list of bioscience-related articles that have appeared over the years in ''Science & Technology Review and its predecessor, Energy & Technology Review''. The landscape of biological science today is stunningly different from 40 years ago. When LLNL bioscience began in 1963, we knew about the structure of DNA and that it was the carrier of genetic information. However, it would be another year before scientists would understand how DNA codes for the production of proteins and more than a decade before the earliest DNA sequence would be known. It is sometimes difficult to remember that it was only 15 years ago that the polymerase chain reaction, a synthetic method to amplify pieces of DNA was developed, and that only within the last half-dozen years has sequence data for entire organisms begun to be available. In this publication, we have tried to capture some of the landmark and seminal research history: radiation effects studies, which were a major reason for founding the biological research program, and flow sorting and chromosome painting, which dramatically changed our ability to study DNA damage and enabled the creation of chromosome-specific clone libraries, a key step toward sequencing the human genome. Several histories relate to the Human Genome Project itself and surrounding technologies, and several to long-standing research themes such as DNA repair, food mutagens, and reproductive biology. Others describe more recent developments such as computational biology, health-care technologies, and biodefense research.« less

  16. New Directions for Biosciences Research in Agriculture. High-Reward Opportunities.

    ERIC Educational Resources Information Center

    National Academy of Sciences - National Research Council, Washington, DC. Board on Agriculture.

    To aid in the effort to define comprehensive long-range planning goals in bioregulation, the Agricultural Research Service (ARS) asked the Board of Agriculture of the National Research Council to undertake a study of the ARS research programs concerned with bioregulation. (For the purposes of this study bioregulation was interpreted broadly to be…

  17. Demand for Interdisciplinary Laboratories for Physiology Research by Undergraduate Students in Biosciences and Biomedical Engineering

    ERIC Educational Resources Information Center

    Clase, Kari L.; Hein, Patrick W.; Pelaez, Nancy J.

    2008-01-01

    Physiology as a discipline is uniquely positioned to engage undergraduate students in interdisciplinary research in response to the 2006-2011 National Science Foundation Strategic Plan call for innovative transformational research, which emphasizes multidisciplinary projects. To prepare undergraduates for careers that cross disciplinary…

  18. Plant Habitat Facility Clean

    NASA Image and Video Library

    2018-03-12

    iss055e001931 (Mar. 12, 2018) --- Dwarf wheat plants during routine cleaning in the Advanced Plant Habitat Facility, a facility to conduct plant bioscience research on the International Space Stations (ISS).

  19. Has bioscience reconciled mind and body?

    PubMed

    Davies, Carmel; Redmond, Catherine; Toole, Sinead O; Coughlan, Barbara

    2016-09-01

    The aim of this discursive paper is to explore the question 'has biological science reconciled mind and body?'. This paper has been inspired by the recognition that bioscience has a historical reputation for privileging the body over the mind. The disregard for the mind (emotions and behaviour) cast bioscience within a 'mind-body problem' paradigm. It has also led to inherent limitations in its capacity to contribute to understanding the complex nature of health. This is a discursive paper. Literature from the history and sociology of science and psychoneuroimmunology (1975-2015) inform the arguments in this paper. The historical and sociological literature provides the basis for a socio-cultural debate on mind-body considerations in science since the 1970s. The psychoneuroimmunology literature draws on mind-body bioscientific theory as a way to demonstrate how science is reconciling mind and body and advancing its understanding of the interconnections between emotions, behaviour and health. Using sociological and biological evidence, this paper demonstrates how bioscience is embracing and advancing its understanding of mind-body interconnectedness. It does this by demonstrating the emotional and behavioural alterations that are caused by two common phenomena; prolonged, chronic peripheral inflammation and prolonged psychological stress. The evidence and arguments provided has global currency that advances understanding of the inter-relationship between emotions, behaviour and health. This paper shows how bioscience has reconciled mind and body. In doing so, it has advanced an understanding of science's contribution to the inter-relationship between emotions, behaviour and health. The biological evidence supporting mind-body science has relevance to clinical practice for nurses and other healthcare professions. This paper discusses how this evidence can inform and enhance clinical practice directly and through research, education and policy. © 2015 John Wiley & Sons Ltd.

  20. 1999 LDRD Laboratory Directed Research and Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rita Spencer; Kyle Wheeler

    This is the FY 1999 Progress Report for the Laboratory Directed Research and Development (LDRD) Program at Los Alamos National Laboratory. It gives an overview of the LDRD Program, summarizes work done on individual research projects, relates the projects to major Laboratory program sponsors, and provides an index to the principal investigators. Project summaries are grouped by their LDRD component: Competency Development, Program Development, and Individual Projects. Within each component, they are further grouped into nine technical categories: (1) materials science, (2) chemistry, (3) mathematics and computational science, (4) atomic, molecular, optical, and plasma physics, fluids, and particle beams, (5)more » engineering science, (6) instrumentation and diagnostics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) bioscience.« less

  1. Foods: Where Innovation, Agriculture, Molecular Biosciences and Human Nutrition Meet.

    PubMed

    Brennan, Charles

    2012-11-21

    There is one commodity the world over that unites mankind-food. In 2011 the United Nations claimed that the world's population had reached the seven billion mark, a number which is set to increase dramatically in the decades to come. Food security, supply and sustainability are of paramount concern to the future economic and social progress of humanity. It is the responsibility of the food industry, together with food scientists and technologists, to shoulder the burden of ensuring an adequate supply of nutritious, safe and sensorially acceptable foods for a range of demanding consumers. In responding to this challenge, we need to understand the link between agriculture, engineering, food processing, molecular biosciences, human nutrition, commercialisation and innovation. Access to information concerning the composition and quality of foods has never been so easy for consumers and technologists alike. A plethora of research publications are made available each month to scientists and associated interested parties. The outcomes of these research manuscripts are often distilled and disseminated into messages available to everyone through bulletin boards, forums and the popular press. Newspapers and new agencies constantly report on the latest pharma-medical finding, or news regarding food safety and security concerns. We live in an age where information is so readily available to everyone that the task of finding credible and reputable data can be difficult at times. Providing sound evidenced based research is where a peer-reviewed journal can provide clarity. [...].

  2. Advancing student nurse knowledge of the biomedical sciences: A mixed methods study.

    PubMed

    Craft, Judy; Christensen, Martin; Bakon, Shannon; Wirihana, Lisa

    2017-01-01

    Nursing students' ability to learn, integrate and apply bioscience knowledge to their clinical practice remains a concern. To evaluate the implementation, influence, and student perspective of a team-teaching workshop to integrate bioscience theory with clinical nursing practice. The team-teaching workshop was offered prior to commencement of the university semester as a refresher course at an Australian university. This study employed a sequential explanatory mixed methods design incorporating both quantitative and qualitative items. An evaluation survey with quantitative and qualitative items and a focus group were employed. The qualitative data were analysed using a thematic approach. The quantitative data was combined with the emergent themes in the qualitative data. Participants were final year nursing students. Nine students attended the workshop. All students completed the evaluation (N=9) and 44.4% (N=4) attended the focus group. The results revealed six themes: (1) lectures are an inadequate teaching strategy for bioscience; (2) teaching strategies which incorporate active learning engage students; (3) the team-teaching workshop provides an effective learning environment; (4) the workshop content should be expanded; (5) pharmacology should relate to bioscience, and bioscience should relate to nursing; and (6) team-teaching was effective in integrating pharmacology with bioscience, and then translating this into nursing practice. Students had felt there was disjointedness between pharmacology and bioscience, and between bioscience and nursing care within their undergraduate studies. The workshop that was based on team-teaching bridged those gaps, utilised active learning strategies and provided an effective learning environment. Team-teaching that employs active learning strategies is an effective approach to assist nursing students to integrate bioscience knowledge into their nursing practice. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. On the evolving portfolio of community-standards and data sharing policies: turning challenges into new opportunities.

    PubMed

    Sansone, Susanna-Assunta; Rocca-Serra, Philippe

    2012-07-12

    There are thousands of biology databases with hundreds of terminologies, reporting guidelines, representations models, and exchange formats to help annotate, report, and share bioscience investigations. It is evident, however, that researchers and bioinformaticians struggle to navigate the various standards and to find the appropriate database to collect, manage, and share data. Further, policy makers, funders, and publishers lack sufficient information to formulate their guidelines. In this paper, we highlight a number of key issues that can be used to turn these challenges into new opportunities. It is time for all stakeholders to work together to reconcile cause and effect and make the data-sharing culture functional and efficient.

  4. Sustainability in Bioscience Fieldwork: Practical Information from a UK Agricultural Research Institute

    ERIC Educational Resources Information Center

    Wright, Hazel A.; Ironside, Joseph E.; Gwynn-Jones, Dylan

    2009-01-01

    Purpose: Owing to the specialist nature of biological experimentation, scientific research staff have been largely neglected from the pro-environmental initiatives which have inundated other areas of higher education. This dearth of studies is surprising given that scientific research is recognised as a substantial contributor to the environmental…

  5. IBBR and Frederick National Laboratory Collaborate to Study Vaccine-Boosting Compounds | Frederick National Laboratory for Cancer Research

    Cancer.gov

    The Frederick National Laboratory and the University of Maryland’s Institute for Bioscience and Biotechnology Research (IBBR) will work under a formal collaboration to evaluate the effectiveness of new compounds that might be used to enhance the im

  6. Multimedia Interactive eBooks in Laboratory Bioscience Education

    ERIC Educational Resources Information Center

    Morris, Neil P.; Lambe, James

    2017-01-01

    Bioscience students in the UK higher education system are making increasing use of technology to support their learning within taught classes and during private study. This experimental study was designed to assess the role for multimedia interactive eBooks in bioscience laboratory classes, delivered using a blended learning approach. Thirty-nine…

  7. The Benefits of Multi-Year Research Experiences: Differences in Novice and Experienced Students’ Reported Gains from Undergraduate Research

    PubMed Central

    Thiry, Heather; Weston, Timothy J.; Laursen, Sandra L.; Hunter, Anne-Barrie

    2012-01-01

    This mixed-methods study explores differences in novice and experienced undergraduate students’ perceptions of their cognitive, personal, and professional gains from engaging in scientific research. The study was conducted in four different undergraduate research (UR) programs at two research-extensive universities; three of these programs had a focus on the biosciences. Seventy-three entry-level and experienced student researchers participated in in-depth, semi-structured interviews and completed the quantitative Undergraduate Research Student Self-Assessment (URSSA) instrument. Interviews and surveys assessed students’ developmental outcomes from engaging in UR. Experienced students reported distinct personal, professional, and cognitive outcomes relative to their novice peers, including a more sophisticated understanding of the process of scientific research. Students also described the trajectories by which they developed not only the intellectual skills necessary to advance in science, but also the behaviors and temperament necessary to be a scientist. The findings suggest that students benefit from multi-year UR experiences. Implications for UR program design, advising practices, and funding structures are discussed. PMID:22949423

  8. Apprenticeship in Science Research: Whom Does It Serve?

    ERIC Educational Resources Information Center

    Davies, Paul

    2016-01-01

    This article advances the thinking of Thompson, Conaway and Dolan's "Undergraduate students' development of social, cultural, and human capital in a network research experience". Set against a background of change in the biosciences, and participation, it firstly explores ideas of what it means to be a scientist, then challenges the…

  9. History of cotton fiber bioscience research at USDA-ARS Southern Regional Research Center

    USDA-ARS?s Scientific Manuscript database

    Improving fiber quality has been an important breeding goal for cotton breeders. Better understanding of fiber development helps cotton scientists to devise a strategy for crop improvement either through marker-assisted selection or via manipulation of fiber genes. USDA-ARS Southern Regional Researc...

  10. Defining the Problem: Mathematical Errors and Misconceptions Exhibited by First-Year Bioscience Undergraduates

    ERIC Educational Resources Information Center

    Tariq, V. N.

    2008-01-01

    This study extends the debate concerning the mathematical skills deficit of bioscience undergraduates towards a deeper understanding of their mathematics learning, since only through the latter can appropriate and effective explicit teaching be implemented. Three hundred and twenty-six first-year bioscience undergraduates, from three pre- and four…

  11. 75 FR 64733 - Arcadia Biosciences, Inc.; Filing of Food Additive Petition (Animal Use); Safflower Seed Meal

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-20

    ...] Arcadia Biosciences, Inc.; Filing of Food Additive Petition (Animal Use); Safflower Seed Meal AGENCY: Food... announcing that Arcadia Biosciences, Inc., has filed a petition proposing that the food additive regulations..., Davis, CA 95618. The petition proposes to amend the food additive regulations in part 573 Food Additives...

  12. Frederick National Lab Collaboration Success Stories | FNLCR Staging

    Cancer.gov

    IBBR and Frederick National Lab Collaborate to Study Vaccine-Boosting Compounds The Frederick National Lab and the University of Maryland’s Institute for Bioscience and Biotechnology Research (IBBR) will work under a formal collaboration to eval

  13. Bioculture System Expanding ISS Capabilities for Space Biosciences Research and Commercial Applications

    NASA Technical Reports Server (NTRS)

    Sato, Kevin Y.

    2013-01-01

    Oral presentation at the ASGSR 2013 Annual Meeting. The presentation describes the NASA Bioculture System hardware design, capabilities, enabling science research capabilities, and flight concept of operations. The presentation is part of the Enabling Technologies special session and will be presented to perspective users in both academics and commercial communities.

  14. Curating Blood: How Students' and Researchers' Drawings Bring Potential Phenomena to Light

    ERIC Educational Resources Information Center

    Hay, D. B.; Pitchford, S.

    2016-01-01

    This paper explores students and researchers drawings of white blood cell recruitment. The data combines interviews with exhibit of review-type academic images and analyses of student model-drawings. The analysis focuses on the material aspects of bioscientific data-making and we use the literature of concrete bioscience modelling to differentiate…

  15. 21 CFR 212.5 - To what drugs do the regulations in this part apply?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... requirements in parts 210 and 211 of this chapter. (b) Investigational and research PET drugs. For... part 312 of this chapter, and PET drugs produced with the approval of a Radioactive Drug Research... Drug Administration Biosciences Library, 10903 New Hampshire Ave., Silver Spring, MD, 20993-0002, 301...

  16. Environmental Biosciences Program Second Quarter Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawrence C. Mohr, M.D.

    2004-12-31

    In May 2002, the United States Department of Energy (DOE) signed Assistance Instrument Number DE-FC09-02CH11109 with the Medical University of South Carolina (MUSC) to support the Environmental Biosciences Program (EBP). This funding instrument replaces DOE Assistance Instrument Number DE-FC02-98CH10902. EBP is an integrated, multidisciplinary scientific research program, employing a range of research initiatives to identify, study and resolve environmental health risks. These initiatives are consistent with the MUSC role as a comprehensive state-supported health sciences institution and with the nation's need for new and better approaches to the solution of a complex and expansive array of environment-related health problems. Themore » intrinsic capabilities of a comprehensive health sciences institution enable MUSC to be a national resource for the scientific investigation of environmental health issues. EBPs success as a nationally prominent research program is due, in part, to its ability to task-organize scientific expertise from multiple disciplines in addressing these complex problems Current research projects have focused EBP talent and resources on providing the scientific basis for risk-based standards, risk-based decision making and the accelerated clean-up of widespread environmental hazards. These hazards include trichloroethylene (TCE), polychlorinated biphenyls (PCBs), and low-dose ionizing radiation. A project is also being conducted in the use of geographical information system technology to analyze population health risks related to environmental hazards as a tool for risk-based decision-making. Questions, comments or requests for further information concerning the activities under this cooperative agreement can be forwarded to Dr. Lawrence C. Mohr in the EBP office of the Medical University of South Carolina at (843) 792-1532.« less

  17. Environmental Biosciences Program Quarterly Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawrence C. Mohr, M.D.

    2006-10-31

    In May 2002, the United States Department of Energy (DOE) signed Assistance Instrument Number DE-FC09-02CH11109 with the Medical University of South Carolina (MUSC) to support the Environmental Biosciences Program (EBP). This funding instrument replaces DOE Assistance Instrument Number DE-FC02-98CH10902. EBP is an integrated, multidisciplinary scientific research program, employing a range of research initiatives to identify, study and resolve environmental health risks. These initiatives are consistent with the MUSC role as a comprehensive state-supported health sciences institution and with the nation's need for new and better approaches to the solution of a complex and expansive array of environment-related health problems. Themore » intrinsic capabilities of a comprehensive health sciences institution enable MUSC to be a national resource for the scientific investigation of environmental health issues. EBPs success as a nationally prominent research program is due, in part, to its ability to task-organize scientific expertise from multiple disciplines in addressing these complex problems Current research projects have focused EBP talent and resources on providing the scientific basis for risk-based standards, risk-based decision making and the accelerated clean-up of widespread environmental hazards. These hazards include trichloroethylene and low-dose ionizing radiation. A project is also being conducted in the use of geographical information system technology to analyze population health risks related to environmental hazards as a tool for risk-based decision-making. Questions, comments or requests for further information concerning the activities under this cooperative agreement can be forwarded to Dr. Lawrence C. Mohr in the EBP office of the Medical University of South Carolina at (843) 792-1532.« less

  18. Environmental Biosciences Program Fourth Quarter Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawrence C. Mohr, M.D.

    2005-06-30

    In May 2002, the United States Department of Energy (DOE) signed Assistance Instrument Number DE-FC09-02CH11109 with the Medical University of South Carolina (MUSC) to support the Environmental Biosciences Program (EBP). This funding instrument replaces DOE Assistance Instrument Number DE-FC02-98CH10902. EBP is an integrated, multidisciplinary scientific research program, employing a range of research initiatives to identify, study and resolve environmental health risks. These initiatives are consistent with the MUSC role as a comprehensive state-supported health sciences institution and with the nation s need for new and better approaches to the solution of a complex and expansive array of environment-related health problems.more » The intrinsic capabilities of a comprehensive health sciences institution enable MUSC to be a national resource for the scientific investigation of environmental health issues. EBPs success as a nationally prominent research program is due, in part, to its ability to task-organize scientific expertise from multiple disciplines in addressing these complex problems. Current research projects have focused EBP talent and resources on providing the scientific basis for risk-based standards, risk-based decision making and the accelerated clean-up of widespread environmental hazards. These hazards include trichloroethylene (TCE), polychlorinated biphenyles (PCBs), and low-dose ionizing radiation. A project is also being conducted in the use of geographical information system technology to analyze population health risks related to environmental hazards as a tool for risk-based decision-making. Questions, comments or requests for further information concerning the activities under this cooperative agreement can be forwarded to Dr. Lawrence C. Mohr in the EBP office of the Medical University of South Carolina at (843) 792-1532.« less

  19. Plant Habitat Facility in the JPM

    NASA Image and Video Library

    2017-11-21

    iss053e234714 (Nov. 21, 2017) --- Advanced Plant Habitat (APH) Facility in the Japanese Experiment Module (JEM) Pressurized Module (JPM). The Plant Habitat is a fully automated facility that provides a large, enclosed, environmentally-controlled chamber for plant bioscience research.

  20. Reflective Writing as a Tool for Assessing Teamwork in Bioscience: Insights into Student Performance and Understanding of Teamwork

    ERIC Educational Resources Information Center

    Mayne, Lynne

    2012-01-01

    To ensure a modern bioscience curriculum that responds to the current needs of stakeholders, there is a need to embed a range of generic capabilities that enables graduates to succeed in and contribute to a rapidly changing world, as well as building strong bioscience skills and knowledge. The curriculum must also prepare students for a rapidly…

  1. 55th Annual Canadian Society for Molecular Biosciences Conference on Epigenetics and Genomic Stability. Whistler, British Columbia, Canada, 14–18 March 2012.

    PubMed

    Nelson, Christopher J; Ausió, Juan

    2012-06-01

    The 55th Annual Canadian Society for Molecular Biosciences Conference on Epigenetics and Genomic Stability in Whistler, Canada, 14-18 March 2012, brought together 31 speakers from different nationalities. The organizing committee, led by Jim Davie (Chair) at the University of Manitoba (Manitoba, Canada), consisted of several established researchers in the fields of chromatin and epigenetics from across Canada. The meeting was centered on the contribution of epigenetics to gene expression, DNA damage and repair, and the role of environmental factors. A few interesting talks on replication added some insightful information on the controversial issue of histone post-translational modifications as genuine epigenetic marks that are inherited through cell division.

  2. Scientists repurpose HPV vaccine technology to fight eye cancer | Center for Cancer Research

    Cancer.gov

    Uveal melanoma is a rare eye cancer that affects about 1,600 people in the United States. A study by scientists in the Center for Cancer Research and Aura Biosciences, Cambridge, Mass., published December 14, 2017, in Molecular Cancer Therapeutics, provides new hope for the early treatment of uveal melanoma. Read more…

  3. Factors Affecting Student Choice of the Undergraduate Research Project: Staff and Student Perceptions

    ERIC Educational Resources Information Center

    Harland, Janice; Pitt, Sarah; Saunders, Venetia

    2005-01-01

    As pressures on resources are growing and some question the value and types of final year research work for students in the biosciences and other disciplines, it is important to be well informed about student expectations of their project. In this case study within Biomolecular Sciences, questionnaires were used to compare staff and student…

  4. The returning tide: how China, the world's most populous country, is building a competitive research base.

    PubMed

    Wells, William A

    2007-02-19

    When China turned its back on the Cultural Revolution, it aimed to build a thriving capitalist sector. It got one. Now, it wants a world-class research enterprise. How far has it progressed in the biosciences, how did it get there, and how far does it have to go?

  5. 21 CFR 212.5 - To what drugs do the regulations in this part apply?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 210 and 211 of this chapter. (b) Investigational and research PET drugs. For investigational PET drugs... this chapter, and PET drugs produced with the approval of a Radioactive Drug Research Committee in... Biosciences Library, 10903 New Hampshire Ave., Silver Spring, MD, 20993-0002, 301-796-3504, or at the National...

  6. 21 CFR 212.5 - To what drugs do the regulations in this part apply?

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 210 and 211 of this chapter. (b) Investigational and research PET drugs. For investigational PET drugs... this chapter, and PET drugs produced with the approval of a Radioactive Drug Research Committee in... Biosciences Library, 10903 New Hampshire Ave., Silver Spring, MD, 20993-0002, 301-796-3504, or at the National...

  7. 21 CFR 212.5 - To what drugs do the regulations in this part apply?

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 210 and 211 of this chapter. (b) Investigational and research PET drugs. For investigational PET drugs... this chapter, and PET drugs produced with the approval of a Radioactive Drug Research Committee in... Biosciences Library, 10903 New Hampshire Ave., Silver Spring, MD, 20993-0002, 301-796-3504, or at the National...

  8. 21 CFR 212.5 - To what drugs do the regulations in this part apply?

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 210 and 211 of this chapter. (b) Investigational and research PET drugs. For investigational PET drugs... this chapter, and PET drugs produced with the approval of a Radioactive Drug Research Committee in... Biosciences Library, 10903 New Hampshire Ave., Silver Spring, MD, 20993-0002, 301-796-3504, or at the National...

  9. Nursing students collaborating to develop multiple-choice exam revision questions: A student engagement study.

    PubMed

    Craft, Judy A; Christensen, Martin; Shaw, Natasha; Bakon, Shannon

    2017-12-01

    Nursing students find bioscience subjects challenging. Bioscience exams pose particular concerns for these students, which may lead to students adopting a surface-approach to learning. To promote student collective understanding of bioscience, improve their confidence for the final exam, and improve deeper understanding of bioscience. In order to address exam anxiety, and improve student understanding of content, this student engagement project involved nursing students collaborating in small groups to develop multiple-choice questions and answers, which became available to the entire student cohort. This study was conducted at two campuses of an Australian university, within a first year bioscience subject as part of the undergraduate nursing programme. All students enrolled in the subject were encouraged to attend face-to-face workshops, and collaborate in revision question writing. Online anonymous questionnaires were used to invite student feedback on this initiative; 79 respondents completed this feedback. Students collaborated in groups to write revision questions as part of in-class activities. These questions were made available on the student online learning site for revision. An online feedback survey was deployed at the conclusion of all workshops for this subject, with questions rated using a Likert scale. Participants indicated that they enjoyed the opportunity to collaborate in this activity, and almost all of these respondents used these questions in their exam preparation. There was strong agreement that this activity improved their confidence for the final exam. Importantly, almost two-thirds of respondents agreed that writing questions improved their understanding of content, and assisted in their active reflection of content. Overall, this initiative revealed various potential benefits for the students, including promoting bioscience understanding and confidence. This may improve their long-term understanding of bioscience for nursing practice, as registered nurses' bioscience knowledge can impact on patient outcomes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Is LabTutor a helpful component of the blended learning approach to biosciences?

    PubMed

    Swift, Amelia; Efstathiou, Nikolaos; Lameu, Paula

    2016-09-01

    To evaluate the use of LabTutor (a physiological data capture and e-learning package) in bioscience education for student nurses. Knowledge of biosciences is important for nurses the world over, who have to monitor and assess their patient's clinical condition, and interpret that information to determine the most appropriate course of action. Nursing students have long been known to find acquiring useable bioscience knowledge challenging. Blended learning strategies are common in bioscience teaching to address the difficulties students have. Student nurses have a preference for hands-on learning, small group sessions and are helped by close juxtaposition of theory and practice. An evaluation of a new teaching method using in-classroom voluntary questionnaire. A structured survey instrument including statements and visual analogue response format and open questions was given to students who participated in Labtutor sessions. The students provided feedback in about the equipment, the learning and the session itself. First year (n = 93) and third year (n = 36) students completed the evaluation forms. The majority of students were confident about the equipment and using it to learn although a few felt anxious about computer-based learning. They all found the equipment helpful as part of their bioscience education and they all enjoyed the sessions. This equipment provides a helpful way to encourage guided independent learning through practice and discovery and because each session is case study based and the relationship of the data to the patient is made clear. Our students helped to evaluate our initial use of LabTutor and found the sessions enjoyable and helpful. LabTutor provides an effective learning tool as part of a blended learning strategy for biosciences teaching. Improving bioscience knowledge will lead to a greater understanding of pathophysiology, treatments and interventions and monitoring. © 2016 John Wiley & Sons Ltd.

  11. Multi-Variant/Capability Next Generation Troop Seat (M-V/C NGTS)

    DTIC Science & Technology

    2009-01-01

    John Plaga , Work Unit Manager MARK M. HOFFMAN Deputy Chief Biomechanics Branch Biosciences and Protection Division Human...John A. Plaga a. REPORT U b. ABSTRACT U c. THIS PAGE U SAR 20 19b. TELEPHONE NUMBER (include area

  12. Comparison of Document Data Bases

    ERIC Educational Resources Information Center

    Schipma, Peter B.; And Others

    This paper presents a detailed analysis of the content and format of seven machine-readable bibliographic data bases: Chemical Abstracts Service Condensates, Chemical and Biological Activities, and Polymer Science and Technology, Biosciences Information Service's BA Previews including Biological Abstracts and BioResearch Index, Institute for…

  13. High pressure in bioscience and biotechnology: pure science encompassed in pursuit of value.

    PubMed

    Hayashi, Rikimaru

    2002-03-25

    A fundamental factors, pressure (P), is indispensable to develop and support applications in the field of bioscience and biotechnology. This short sentence describes an example how high pressure bioscience and biotechnology, which started from applied science, stimulates challenges of basic science and pure science in the biology-related fields including not only food science, medicine, and pharmacology but also biochemistry, molecular biology, cell biology, physical chemistry, and engineering.

  14. Francis Crick, cross-worlds influencer: A narrative model to historicize big bioscience

    PubMed Central

    Aicardi, Christine

    2016-01-01

    The essay is an empirical case study of famed British scientist Francis Crick. Viewing him as a ‘cross-worlds influencer’ who was moreover dedicated to a cause, I have tried to understand how these two characteristics influenced the trajectory of his long career and how they shaped his contributions to the diverse research fields in which he was active, and concluded that these characteristics reconfigure Crick's career into a coherent whole. First, I identify a major thread running through Crick's career: helping organise ‘un-disciplined’ new research fields, and show that his successive choices were not serendipitous but motivated by what he construed as a crusade against ‘vitalism’: anti-vitalism was a defining driver of his career. I then examine how Crick put his skills as a crossworlds influencer to the service of his cause, by helping organise his chosen fields of intervention. I argue that his activities as a cross-worlds influencer were an integral part of his way of ‘doing science’ and that his contributions to science, neuroscience in particular, should be re-evaluated in this light. This leads me to advance a possible strategy for historians to investigate big bioscience fields. Following Abir-Am, I propose to trace their genealogies back to the fluctuating semi-institutional gatherings and the institutional structures that sustained them. My research on Crick supports the view that such studies can bring insights into the question of why the contours of contemporary big bioscience endeavours have come to be shaped the way they are. Further, the essay provides a heuristic device for approaching these enquiries: ‘follow the cross-worlds influencers’ who worked to build and organise these semi-institutional gatherings and institutional structures. PMID:26383132

  15. Francis Crick, cross-worlds influencer: A narrative model to historicize big bioscience.

    PubMed

    Aicardi, Christine

    2016-02-01

    The essay is an empirical case study of famed British scientist Francis Crick. Viewing him as a 'cross-worlds influencer' who was moreover dedicated to a cause, I have tried to understand how these two characteristics influenced the trajectory of his long career and how they shaped his contributions to the diverse research fields in which he was active, and concluded that these characteristics reconfigure Crick's career into a coherent whole. First, I identify a major thread running through Crick's career: helping organise 'un-disciplined' new research fields, and show that his successive choices were not serendipitous but motivated by what he construed as a crusade against 'vitalism': anti-vitalism was a defining driver of his career. I then examine how Crick put his skills as a crossworlds influencer to the service of his cause, by helping organise his chosen fields of intervention. I argue that his activities as a cross-worlds influencer were an integral part of his way of 'doing science' and that his contributions to science, neuroscience in particular, should be re-evaluated in this light. This leads me to advance a possible strategy for historians to investigate big bioscience fields. Following Abir-Am, I propose to trace their genealogies back to the fluctuating semi-institutional gatherings and the institutional structures that sustained them. My research on Crick supports the view that such studies can bring insights into the question of why the contours of contemporary big bioscience endeavours have come to be shaped the way they are. Further, the essay provides a heuristic device for approaching these enquiries: 'follow the cross-worlds influencers' who worked to build and organise these semi-institutional gatherings and institutional structures. Copyright © 2015 The Author. Published by Elsevier Ltd.. All rights reserved.

  16. Novel full-length major histocompatibility complex class I allele discovery and haplotype definition in pig-tailed macaques.

    PubMed

    Semler, Matthew R; Wiseman, Roger W; Karl, Julie A; Graham, Michael E; Gieger, Samantha M; O'Connor, David H

    2018-06-01

    Pig-tailed macaques (Macaca nemestrina, Mane) are important models for human immunodeficiency virus (HIV) studies. Their infectability with minimally modified HIV makes them a uniquely valuable animal model to mimic human infection with HIV and progression to acquired immunodeficiency syndrome (AIDS). However, variation in the pig-tailed macaque major histocompatibility complex (MHC) and the impact of individual transcripts on the pathogenesis of HIV and other infectious diseases is understudied compared to that of rhesus and cynomolgus macaques. In this study, we used Pacific Biosciences single-molecule real-time circular consensus sequencing to describe full-length MHC class I (MHC-I) transcripts for 194 pig-tailed macaques from three breeding centers. We then used the full-length sequences to infer Mane-A and Mane-B haplotypes containing groups of MHC-I transcripts that co-segregate due to physical linkage. In total, we characterized full-length open reading frames (ORFs) for 313 Mane-A, Mane-B, and Mane-I sequences that defined 86 Mane-A and 106 Mane-B MHC-I haplotypes. Pacific Biosciences technology allows us to resolve these Mane-A and Mane-B haplotypes to the level of synonymous allelic variants. The newly defined haplotypes and transcript sequences containing full-length ORFs provide an important resource for infectious disease researchers as certain MHC haplotypes have been shown to provide exceptional control of simian immunodeficiency virus (SIV) replication and prevention of AIDS-like disease in nonhuman primates. The increased allelic resolution provided by Pacific Biosciences sequencing also benefits transplant research by allowing researchers to more specifically match haplotypes between donors and recipients to the level of nonsynonymous allelic variation, thus reducing the risk of graft-versus-host disease.

  17. Bench to Bedside: The Effectiveness of a Professional Development Program Focused on Biomedical Sciences and Action Research

    PubMed Central

    Barnes, Marianne B.; Barnes, Lehman W.; Cooper, Lou Ann; Bokor, Julie R.; Koroly, Mary Jo

    2017-01-01

    A three-year, National Institutes of Health-funded residential project at a southeastern research university immersed 83 secondary science teachers in a summer institute called “Bench to Bedside.” Teachers were provided with knowledge, skills, experiences, and incentives to improve their science teaching and increase their awareness of scientific processes, technologies, and careers by examining the translational medicine continuum of basic to clinical research. This was done with the help of medical school researchers, clinical personnel, biotechnology entrepreneurs, program mentors, and prior year participants. A critical component of the institute was the preparation and implementation of an action research project that reflected teachers’ newly acquired knowledge and skills. Action research proposals were critiqued by project team members and feedback provided prior to action research implementation in schools during the following year. Teachers shared their action research with colleagues and project team at a symposium and online as a critical step in networking the teachers. Results of a mixed methods program evaluation strategy indicate that the program produced significant gains in teachers’ confidence to explain advanced biosciences topics, development of action research skills, and formation of a statewide biosciences network of key stakeholders. Constraints of time, variation in teacher content and action research background, technology availability, and school-related variables, among others, are discussed. PMID:29733086

  18. IBBR and Frederick National Lab Collaborate to Study Vaccine-Boosting Compounds | FNLCR Staging

    Cancer.gov

    The Frederick National Lab and the University of Maryland’s Institute for Bioscience and Biotechnology Research (IBBR) will work under a formal collaboration to evaluate the effectiveness of new compounds that might be used to enhance the immune re

  19. Digitizing and Securing Archived Laboratory Notebooks

    ERIC Educational Resources Information Center

    Caporizzo, Marilyn

    2008-01-01

    The Information Group at Millipore has been successfully using a digital rights management tool to secure the email distribution of archived laboratory notebooks. Millipore is a life science leader providing cutting-edge technologies, tools, and services for bioscience research and biopharmaceutical manufacturing. Consisting of four full-time…

  20. 75 FR 71697 - Pesticide Products; Registration Applications

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-24

    ...: MacIntosh and Associates, Inc., 1203 Hartford Avenue, Saint Paul, MN 55116-1622 (on behalf of Pasteuria Bioscience, Inc., 12085 Research Drive, Suite 185, Alachua, FL 32615). Product name: Pasteuria nishizawae--Pn1. Active ingredient: Pasteuria nishizawae--Pn1 at 0.01%. Proposed classification/Use: Manufacturing...

  1. Metabonomics and its role in amino acid nutrition research.

    PubMed

    He, Qinghua; Yin, Yulong; Zhao, Feng; Kong, Xiangfeng; Wu, Guoyao; Ren, Pingping

    2011-06-01

    Metabonomics combines metabolic profiling and multivariate data analysis to facilitate the high-throughput analysis of metabolites in biological samples. This technique has been developed as a powerful analytical tool and hence has found successful widespread applications in many areas of bioscience. Metabonomics has also become an important part of systems biology. As a sensitive and powerful method, metabonomics can quantitatively measure subtle dynamic perturbations of metabolic pathways in organisms due to changes in pathophysiological, nutritional, and epigenetic states. Therefore, metabonomics holds great promise to enhance our understanding of the complex relationship between amino acids and metabolism to define the roles for dietary amino acids in maintaining health and the development of disease. Such a technique also aids in the studies of functions, metabolic regulation, safety, and individualized requirements of amino acids. Here, we highlight the common workflow of metabonomics and some of the applications to amino acid nutrition research to illustrate the great potential of this exciting new frontier in bioscience.

  2. Youtube for millennial nursing students; using internet technology to support student engagement with bioscience.

    PubMed

    Johnston, Amy Nb; Barton, Matthew J; Williams-Pritchard, Grant A; Todorovic, Michael

    2018-06-09

    Undergraduate nursing programs typically include students with limited 'on-campus' time who need learning resources that are flexible, technologically appropriate, remotely-accessible (mobile smart devices), and above all, engaging. This has presented academics with challenges surrounding institutional security firewalls, password-access requirements, intellectual property/ownership and staff/student privacy. To overcome these challenges a collection of evidence-based YouTube videos, posted on the Biological Sciences YouTube Channel, supported by the Biosciences in Nurse Education, and underpinned by Benner's pedagogical framework, were developed with the intention of moving students from novice to competent clinical bioscience users. The videos are highly successful; with over 310,000 views, 1.5 million minutes of viewing and more than 5000 subscribers since its inception (<20 months). Spontaneous comments as well as evidence from students identified their usefulness, suggesting the videos enrich student experience and performance with perceivably difficult biosciences content. Student confidence and subsequent access of the YouTube videos was enhanced by their familiarity with the presenter and the breadth of information available in small portions, creating a solid basis for the development of bioscience-competent nursing graduates. Moreover, these open source videos provide a free resource for continual revision and professional development informed by an international minimum bioscience standard for nurses post registration. Crown Copyright © 2018. Published by Elsevier Ltd. All rights reserved.

  3. Predictors of academic performance in the discipline-specific bioscience paper: a retrospective qualitative study.

    PubMed

    Khareedi, R

    2018-05-01

    The cohort of students enrolled in the discipline-specific bioscience paper reflects a structural diversity in that it includes students of multiple ethnicities, varied age groups, differing scholastic and life experiences. These divergent identities of students are known to influence academic performance. The purpose of this retrospective quantitative study was to determine the ability of a set of variables such as age, gender, ethnicity, level of prior education, the place from which prior education was obtained, work experience and prior academic achievement to predict academic performance in the discipline-specific bioscience paper. The sample for this study was a purposive sample of all oral health students who had enrolled in the paper at the Auckland University of Technology from 2011 to 2014. The desensitised empirical data of 116 students from the University's database were subject to multivariable regression analysis. Pearson's correlation coefficients were calculated. Prior academic achievement was a statistically significant predictor variable (P < 0.001) for the academic performance in the discipline-specific bioscience paper and was also positively correlated (r = 0.641, P < 0.001) to the grades in the discipline-specific bioscience paper. Prior academic achievement was the only variable that was demonstrated to be correlated to and predictive of the academic performance in the discipline-specific bioscience paper. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. The Effects of Ejection Seat Cushion Design on Physical Fatigue and Cognitive Performance

    DTIC Science & Technology

    2006-11-01

    Protection Division Biomechanics Branch Wright-Patterson AFB Ohio 45433-7947 Approved for public release; distribution is unlimited. NOTICE...ADDRESS(ES *Air Force Materiel Command Air Force Research Laboratory Human Effectiveness Directorate Biosciences & Protection Division Biomechanics ...Dayton, Ohio. Analyses of the data were accomplished by the Biomechanics Branch, Human Effectiveness Directorate of the Air Force Research Laboratory

  5. Research and technology

    NASA Technical Reports Server (NTRS)

    1990-01-01

    As the NASA center responsible for assembly, checkout, servicing, launch, recovery, and operational support of Space Transportation System elements and payloads, Kennedy Space Center (KSC) is placing increasing emphasis on KSC's research and technology program. In addition to strengthening those areas of engineering and operations technology that contribute to safer, more efficient, and more economical execution of the current mission, the technological tools needed to execute KSC's mission relative to future programs are being developed. The Engineering Development Directorate encompasses most of the laboratories and other KSC resources that are key elements of research and technology program implementation and is responsible for implementation of the majority of the projects in this KSC 1990 annual report. Projects under the following topics are covered: (1) materials science; (2) hazardous emissions and contamination monitoring; (3) biosciences; (4) autonomous systems; (5) communications and control; (6) meteorology; (7) technology utilization; and (8) mechanics, structures, and cryogenics.

  6. Environmental Biosciences Program Quarterly Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawrence C. Mohr, M.D.

    2007-07-31

    In May 2002, the United States Department of Energy (DOE) signed Assistance Instrument Number DE-FC09-02CH11109 with the Medical University of South Carolina (MUSC) to support the Environmental Biosciences Program (EBP). This funding instrument replaces DOE Assistance Instrument Number DE-FC02-98CH10902. EBP is an integrated, multidisciplinary scientific research program, employing a range of research initiatives to identify, study and resolve environmental health risks. These initiatives are consistent with the MUSC role as a comprehensive state-supported health sciences institution and with the nation's need for new and better approaches to the solution of a complex and expansive array of environment-related health problems. Themore » intrinsic capabilities of a comprehensive health sciences institution enable MUSC to be a national resource for the scientific investigation of environmental health issues. EBPs success as a nationally prominent research program is due, in part, to its ability to task-organize scientific expertise from multiple disciplines in addressing these complex problems Current research projects have focused EBP talent and resources on providing the scientific basis for risk-based standards, risk-based decision making and the accelerated clean-up of widespread environmental hazards. These hazards include trichloroethylene and low-dose ionizing radiation. Work on the trichloroethylene research projects has been slowed as a result of funding uncertainties. The impact of these funding uncertainties has been discussed with the DOE. Plans for restructuring the performance schedule of the trichloroethylene projects have been submitted to the department. A project is also being conducted in the use of geographical information system technology to analyze population health risks related to environmental hazards as a tool for risk-based decision-making. Questions, comments or requests for further information concerning the activities under this cooperative agreement can be forwarded to Dr. Lawrence C. Mohr in the EBP office of the Medical University of South Carolina at (843) 792-1532.« less

  7. Environmental Biosciences Program Report for Year 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawrence C. Mohr, M.D.

    2007-04-30

    In May 2002, the United States Department of Energy (DOE) signed Assistance Instrument Number DE-FC09-02CH11109 with the Medical University of South Carolina (MUSC) to support the Environmental Biosciences Program (EBP). This funding instrument replaces DOE Assistance Instrument Number DE-FC02-98CH10902. EBP is an integrated, multidisciplinary scientific research program, employing a range of research initiatives to identify, study and resolve environmental health risks. These initiatives are consistent with the MUSC role as a comprehensive state-supported health sciences institution and with the nation's need for new and better approaches to the solution of a complex and expansive array of environment-related health problems. Themore » intrinsic capabilities of a comprehensive health sciences institution enable MUSC to be a national resource for the scientific investigation of environmental health issues. EBPs success as a nationally prominent research program is due, in part, to its ability to task-organize scientific expertise from multiple disciplines in addressing these complex problems. Current research projects have focused EBP talent and resources on providing the scientific basis for risk-based standards, risk-based decision making and the accelerated clean-up of widespread environmental hazards. These hazards include trichloroethylene and low-dose ionizing radiation. Work on the trichloroethylene research projects has been slowed as a result of funding uncertainties. The impact of these funding uncertainties has been discussed with the DOE. Plans for restructuring the performance schedule of the trichloroethylene projects have been submitted to the department. A project is also being conducted in the use of geographical information system technology to analyze population health risks related to environmental hazards as a tool for risk-based decision-making. Questions, comments or requests for further information concerning the activities under this cooperative agreement can be forwarded to Dr. Lawrence C. Mohr in the EBP office of the Medical University of South Carolina at (843) 792-1532.« less

  8. Environmental Biosciences Report for Year 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawrence C. Mohr, M.D.

    2007-10-31

    In May 2002, the United States Department of Energy (DOE) signed Assistance Instrument Number DE-FC09-02CH11109 with the Medical University of South Carolina (MUSC) to support the Environmental Biosciences Program (EBP). This funding instrument replaces DOE Assistance Instrument Number DE-FC02-98CH10902. EBP is an integrated, multidisciplinary scientific research program, employing a range of research initiatives to identify, study and resolve environmental health risks. These initiatives are consistent with the MUSC role as a comprehensive state-supported health sciences institution and with the nation's need for new and better approaches to the solution of a complex and expansive array of environment-related health problems. Themore » intrinsic capabilities of a comprehensive health sciences institution enable MUSC to be a national resource for the scientific investigation of environmental health issues. EBPs success as a nationally prominent research program is due, in part, to its ability to task-organize scientific expertise from multiple disciplines in addressing these complex problems Current research projects have focused EBP talent and resources on providing the scientific basis for risk-based standards, risk-based decision making and the accelerated clean-up of widespread environmental hazards. These hazards include trichloroethylene and low-dose ionizing radiation. Work on the trichloroethylene research projects has been slowed as a result of funding uncertainties. The impact of these funding uncertainties has been discussed with the DOE. Plans for restructuring the performance schedule of the trichloroethylene projects have been submitted to the department. A project is also being conducted in the use of geographical information system technology to analyze population health risks related to environmental hazards as a tool for risk based decision-making. Questions, comments or requests for further information concerning the activities under this cooperative agreement can be forwarded to Dr. Lawrence C. Mohr in the EBP office of the Medical University of South Carolina at (843) 792-1532.« less

  9. Environmental Biosciences Quarterly Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawrence C. Mohr, M.D.

    2007-01-31

    In May 2002, the United States Department of Energy (DOE) signed Assistance Instrument Number DE-FC09-02CH11109 with the Medical University of South Carolina (MUSC) to support the Environmental Biosciences Program (EBP). This funding instrument replaces DOE Assistance Instrument Number DE-FC02-98CH10902. EBP is an integrated, multidisciplinary scientific research program, employing a range of research initiatives to identify, study and resolve environmental health risks. These initiatives are consistent with the MUSC role as a comprehensive state-supported health sciences institution and with the nation's need for new and better approaches to the solution of a complex and expansive array of environment-related health problems. Themore » intrinsic capabilities of a comprehensive health sciences institution enable MUSC to be a national resource for the scientific investigation of environmental health issues. EBPs success as a nationally prominent research program is due, in part, to its ability to task-organize scientific expertise from multiple disciplines in addressing these complex problems. Current research projects have focused EBP talent and resources on providing the scientific basis for risk-based standards, risk-based decision making and the accelerated clean-up of widespread environmental hazards. These hazards include trichloroethylene and low-dose ionizing radiation. Work on the trichloroethylene research projects has been slowed as a result of funding uncertainties. The impact of these funding uncertainties has been discussed with the DOE. Plans for restructuring the performance schedule of the trichloroethylene projects have been submitted to the department. A project is also being conducted in the use of geographical information system technology to analyze population health risks related to environmental hazards as a tool for risk-based decision-making. Questions, comments or requests for further information concerning the activities under this cooperative agreement can be forwarded to Dr. Lawrence C. Mohr in the EBP office of the Medical University of South Carolina at (843) 792-1532.« less

  10. The returning tide:

    PubMed Central

    Wells, William A.

    2007-01-01

    When China turned its back on the Cultural Revolution, it aimed to build a thriving capitalist sector. It got one. Now, it wants a world-class research enterprise. How far has it progressed in the biosciences, how did it get there, and how far does it have to go? PMID:17296791

  11. Case Studies of Leading Edge Small Urban High Schools. Relevance Strategic Designs: 5. Life Academy of Health and Bioscience

    ERIC Educational Resources Information Center

    Shields, Regis Anne; Ireland, Nicole; City, Elizabeth; Derderian, Julie; Miles, Karen Hawley

    2008-01-01

    This report is one of nine detailed case studies of small urban high schools that served as the foundation for the Education Resource Strategies (ERS) report "Strategic Designs: Lessons from Leading Edge Small Urban High Schools." These nine schools were dubbed "Leading Edge Schools" because they stand apart from other high…

  12. Time Based Subjective Evaluations of Seated Cushion Comfort

    DTIC Science & Technology

    2007-04-01

    Protection Division Biomechanics Branch Hilary L. Gallagher, MS Oak Ridge Institute for Science and Education (ORISE) 1299 Bethel Valley Road...MONITOR’S REPORT NUMBER(S) Biosciences and Protection Division AFRL-HE-WP-TR-2007-0062 Biomechanics Branch Wright-Patterson AFB OH 45433-7947 12...13 iv PREFACE The cushion comfort tests and data analysis described in this report were accomplished by the Biomechanics

  13. Laboratory directed research and development program FY 1999

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, Todd; Levy, Karin

    2000-03-08

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operatemore » unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. This is the annual report on Laboratory Directed Research and Development (LDRD) program for FY99.« less

  14. Conference scene: molecular pharming: manufacturing medicines in plants.

    PubMed

    Lössl, Andreas G; Clarke, Jihong L

    2013-01-01

    Within the expanding area of molecular pharming, the development of plants for manufacturing immunoglobulins, enzymes, virus-like particles and vaccines has become a major focus point. On 21 September 2012, the meeting 'Molecular Pharming - recent progress in manufacturing medicines in plants', hosted by EuroSciCon, was held at the Bioscience Catalyst campus, Stevenage, UK. The scientific program of this eventful meeting covered diverse highlights of biopharming: monoclonal antibodies, virus-like particles from transient and chloroplast expression systems, for example, for Dengue and HPV, apolipoproteins from safflower seeds, and new production platforms, such as potato or hydroponics by rhizosecretion. This report summarizes the stimulating scientific presentations and fruitful panel discussions on the current topics in this promising research field.

  15. A Decline in Numeracy Skills among Bioscience Undergraduates.

    ERIC Educational Resources Information Center

    Tariq, Vicki N.

    2002-01-01

    Provides evidence of a decline in basic numeracy skills among first-year bioscience undergraduate students. Tests conceptualized numeracy skills which form a component of an introductory microbiology module. (Contains 23 references.) (Author/YDS)

  16. Focus on Methodology: Salivary Bioscience and Research on Adolescence: An Integrated Perspective

    ERIC Educational Resources Information Center

    Granger, Douglas A.; Fortunato, Christine K.; Beltzer, Emilie K.; Virag, Marta; Bright, Melissa A.; Out, Dorothee

    2012-01-01

    The characterization of the salivary proteome and advances in biotechnology create an opportunity for developmental scientists to measure multi-level components of biological systems in oral fluids and identify relationships with developmental processes and behavioral and social forces. The implications for developmental science are profound…

  17. Bioinformatics for Undergraduates: Steps toward a Quantitative Bioscience Curriculum

    ERIC Educational Resources Information Center

    Chapman, Barbara S.; Christmann, James L.; Thatcher, Eileen F.

    2006-01-01

    We describe an innovative bioinformatics course developed under grants from the National Science Foundation and the California State University Program in Research and Education in Biotechnology for undergraduate biology students. The project has been part of a continuing effort to offer students classroom experiences focused on principles and…

  18. A Biosafety Level 2 Virology Lab for Biotechnology Undergraduates

    ERIC Educational Resources Information Center

    Matza-Porges, Sigal; Nathan, Dafna

    2017-01-01

    Medical, industrial, and basic research relies heavily on the use of viruses and vectors. Therefore, it is important that bioscience undergraduates learn the practicalities of handling viruses. Teaching practical virology in a student laboratory setup presents safety challenges, however. The aim of this article is to describe the design and…

  19. Injury and Disability: Identification and Reduction

    DTIC Science & Technology

    2009-09-01

    Biomechanics Branch September 2009 Final Report for October 2005 to August 2009 DESTRUCTION NOTICE – Destroy by any method that will prevent...Division Biomechanics Branch Wright-Patterson AFB OH 45433 Approved for public release, distribution unlimited. NOTICE AND SIGNATURE PAGE...Chief Biomechanics Branch Biosciences and Protection Division Human Effectiveness Directorate 711 th

  20. Vegetable Oil from Leaves and Stems: Vegetative Production of Oil in a C4 Crop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2012-01-01

    PETRO Project: Arcadia Biosciences, in collaboration with the University of California-Davis, is developing plants that produce vegetable oil in their leaves and stems. Ordinarily, these oils are produced in seeds, but Arcadia Biosciences is turning parts of the plant that are not usually harvested into a source of concentrated energy. Vegetable oil is a concentrated source of energy that plants naturally produce and is easily separated after harvest. Arcadia Biosciences will isolate traits that control oil production in seeds and transfer them into leaves and stems so that all parts of the plants are oil-rich at harvest time. After demonstratingmore » these traits in a fast-growing model plant, Arcadia Biosciences will incorporate them into a variety of dedicated biofuel crops that can be grown on land not typically suited for food production« less

  1. Bioscience and the Sociology of Education: The Case for Biosocial Education

    ERIC Educational Resources Information Center

    Youdell, Deborah

    2017-01-01

    This article makes a case for biosocial education as a field of research and as a potential framework for education practice. The article engages with sociology of education's contemporary interests in embodiment and affect, the possibilities offered by concept studies, and uses of assemblage and complexity theory for thinking about educational…

  2. Written Feedback for Students: Too Much, Too Detailed or Too Incomprehensible to Be Effective?

    ERIC Educational Resources Information Center

    Glover, Chris; Brown, Evelyn

    2006-01-01

    A three year research study entitled "Improving the effectiveness of Formative Assessment in Science Teaching", involving Biosciences and Physical Sciences staff and students at two UK Universities, has been examining the potential for improving student learning by making changes to the way formative assessment and feedback are…

  3. Entrepreneurship for Bioscience Researchers: A Case Study of an Entrepreneurship Programme

    ERIC Educational Resources Information Center

    Heinonen, Jarna; Poikkijoki, Sari-Anne; Vento-Vierikko, Irma

    2007-01-01

    Entrepreneurship is reaching new areas in which the concept of business is more or less unfamiliar and remote. This study focuses on a specific entrepreneurship education programme in the fields of chemistry, physics, information technology and bioinformatics, life sciences and medicine development. The aim is to gain a deeper understanding of the…

  4. Nursing as a scientific undertaking and the intersection with science in undergraduate studies: implications for nursing management.

    PubMed

    Logan, Patricia A; Angel, Lyndall

    2011-04-01

    To explore the science-nursing tension and impact for nursing students studying bioscience. Several studies have examined why nursing students struggle to be successful in bioscience subjects. Undeveloped science background and theory-practice gaps are noted as contributing factors. A qualitative study explored the science-nursing tension with 100 Australian Registered Nurses using focus groups and a survey. The survey response rate was 85 from 550. Of survey respondents, 88% viewed nursing as an applied science. An emphasis on procedural skills and task busyness undermines theoretical understanding of care and can be a negative influence upon the student bioscience experience. Practicum mentors confident in scientific knowledge enhance the student experience of bioscience by providing opportunities for integration with practice. Competing philosophies that reinforce the science-nursing tension have an impact upon student endeavours yet the nexus created by practice can be used to activate student curiosity and scientific understanding. Nurse managers need to structure the student practicum to encompass scientific theory applied to practice with equal emphasis on task efficiency. This improves student attitudes to learning bioscience and potentially minimizes the impact of the science-nursing tension on student learning. © 2011 The Authors. Journal compilation © 2011 Blackwell Publishing Ltd.

  5. An Introduction to Programming for Bioscientists: A Python-Based Primer

    PubMed Central

    Mura, Cameron

    2016-01-01

    Computing has revolutionized the biological sciences over the past several decades, such that virtually all contemporary research in molecular biology, biochemistry, and other biosciences utilizes computer programs. The computational advances have come on many fronts, spurred by fundamental developments in hardware, software, and algorithms. These advances have influenced, and even engendered, a phenomenal array of bioscience fields, including molecular evolution and bioinformatics; genome-, proteome-, transcriptome- and metabolome-wide experimental studies; structural genomics; and atomistic simulations of cellular-scale molecular assemblies as large as ribosomes and intact viruses. In short, much of post-genomic biology is increasingly becoming a form of computational biology. The ability to design and write computer programs is among the most indispensable skills that a modern researcher can cultivate. Python has become a popular programming language in the biosciences, largely because (i) its straightforward semantics and clean syntax make it a readily accessible first language; (ii) it is expressive and well-suited to object-oriented programming, as well as other modern paradigms; and (iii) the many available libraries and third-party toolkits extend the functionality of the core language into virtually every biological domain (sequence and structure analyses, phylogenomics, workflow management systems, etc.). This primer offers a basic introduction to coding, via Python, and it includes concrete examples and exercises to illustrate the language’s usage and capabilities; the main text culminates with a final project in structural bioinformatics. A suite of Supplemental Chapters is also provided. Starting with basic concepts, such as that of a “variable,” the Chapters methodically advance the reader to the point of writing a graphical user interface to compute the Hamming distance between two DNA sequences. PMID:27271528

  6. An Introduction to Programming for Bioscientists: A Python-Based Primer.

    PubMed

    Ekmekci, Berk; McAnany, Charles E; Mura, Cameron

    2016-06-01

    Computing has revolutionized the biological sciences over the past several decades, such that virtually all contemporary research in molecular biology, biochemistry, and other biosciences utilizes computer programs. The computational advances have come on many fronts, spurred by fundamental developments in hardware, software, and algorithms. These advances have influenced, and even engendered, a phenomenal array of bioscience fields, including molecular evolution and bioinformatics; genome-, proteome-, transcriptome- and metabolome-wide experimental studies; structural genomics; and atomistic simulations of cellular-scale molecular assemblies as large as ribosomes and intact viruses. In short, much of post-genomic biology is increasingly becoming a form of computational biology. The ability to design and write computer programs is among the most indispensable skills that a modern researcher can cultivate. Python has become a popular programming language in the biosciences, largely because (i) its straightforward semantics and clean syntax make it a readily accessible first language; (ii) it is expressive and well-suited to object-oriented programming, as well as other modern paradigms; and (iii) the many available libraries and third-party toolkits extend the functionality of the core language into virtually every biological domain (sequence and structure analyses, phylogenomics, workflow management systems, etc.). This primer offers a basic introduction to coding, via Python, and it includes concrete examples and exercises to illustrate the language's usage and capabilities; the main text culminates with a final project in structural bioinformatics. A suite of Supplemental Chapters is also provided. Starting with basic concepts, such as that of a "variable," the Chapters methodically advance the reader to the point of writing a graphical user interface to compute the Hamming distance between two DNA sequences.

  7. Manufacturing methods and applications of membranes in microfluidics.

    PubMed

    Chen, Xueye; Shen, Jienan; Hu, Zengliang; Huo, Xuyao

    2016-12-01

    Applications of membranes in microfluidics solved many thorny problems for analytical chemistry and bioscience, so that the use of membranes in microfluidics has been a topic of growing interest. Many different examples have been reported, demonstrating the versatile use of membranes. This work reviews a lot of applications of membranes in microfluidics. Membranes in microfluidics for applications including chemical reagents detection, gas detection, drug screening, cell, protein, microreactor, electrokinetical fluid, pump and valve and fluid transport control and so on, have been analyzed and discussed. In addition, the definition and basic concepts of membranes are summed up. And the methods of manufacturing membranes in microfluidics are discussed. This paper will provide a helpful reference to researchers who want to study applications of membranes in microfluidics.

  8. On the outside looking in: redefining the role of analytical chemistry in the biosciences.

    PubMed

    Hare, Dominic J; New, Elizabeth J

    2016-07-12

    Biomedical research has moved on from the study of the structure of organs, cells and organelles. Today, the key questions that must be addressed to understand the body in health and disease are related to fundamental biochemistry: the distribution and speciation of chemicals, the regulation of chemical reactions, and the control of chemical environments. To see advances in this field, it is essential for analytical chemists to actively engage in this process, from beginning to end. In this Feature Article, we review the progress that has been made towards gaining an understanding of the chemistry of the body, while commenting on the intrinsic disconnect between new innovations in the field of analytical chemistry and practical application within the biosciences. We identify the challenges that prevent chemists from making a greater impact in this field, and highlight key steps for moving forward.

  9. Complete Genome Sequence of Kluyveromyces lactis Strain GG799, a Common Yeast Host for Heterologous Protein Expression

    PubMed Central

    Chuzel, Léa; Ganatra, Mehul B.; Schermerhorn, Kelly M.; Gardner, Andrew F.; Anton, Brian P.

    2017-01-01

    ABSTRACT We report the genome sequence of the dairy yeast Kluyveromyces lactis strain GG799 obtained using the Pacific Biosciences RS II platform. K. lactis strain GG799 is a common host for the expression of proteins at both laboratory and industrial scales. PMID:28751387

  10. Mathematical Struggles and Ensuring Success: Post-Compulsory Mathematics as Preparation for Undergraduate Bioscience

    ERIC Educational Resources Information Center

    Bowyer, Jessica; Darlington, Ellie

    2018-01-01

    This article reports on data from a large-scale study investigating students' mathematical transitions to higher education. Three hundred and seventy-one undergraduate bioscientists were surveyed in order to investigate their perceptions and experiences of studying post-compulsory mathematics, as preparation for the mathematics elements of their…

  11. A survey of Asian life scientists :the state of biosciences, laboratory biosecurity, and biosafety in Asia.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaudioso, Jennifer Marie

    2006-02-01

    Over 300 Asian life scientists were surveyed to provide insight into work with infectious agents. This report provides the reader with a more complete understanding of the current practices employed to study infectious agents by laboratories located in Asian countries--segmented by level of biotechnology sophistication. The respondents have a variety of research objectives and study over 60 different pathogens and toxins. Many of the respondents indicated that their work was hampered by lack of adequate resources and the difficulty of accessing critical resources. The survey results also demonstrate that there appears to be better awareness of laboratory biosafety issues comparedmore » to laboratory biosecurity. Perhaps not surprisingly, many of these researchers work with pathogens and toxins under less stringent laboratory biosafety and biosecurity conditions than would be typical for laboratories in the West.« less

  12. DNA Data Bank of Japan

    PubMed Central

    Mashima, Jun; Kodama, Yuichi; Fujisawa, Takatomo; Katayama, Toshiaki; Okuda, Yoshihiro; Kaminuma, Eli; Ogasawara, Osamu; Okubo, Kousaku; Nakamura, Yasukazu; Takagi, Toshihisa

    2017-01-01

    The DNA Data Bank of Japan (DDBJ) (http://www.ddbj.nig.ac.jp) has been providing public data services for thirty years (since 1987). We are collecting nucleotide sequence data from researchers as a member of the International Nucleotide Sequence Database Collaboration (INSDC, http://www.insdc.org), in collaboration with the US National Center for Biotechnology Information (NCBI) and European Bioinformatics Institute (EBI). The DDBJ Center also services Japanese Genotype-phenotype Archive (JGA), with the National Bioscience Database Center to collect human-subjected data from Japanese researchers. Here, we report our database activities for INSDC and JGA over the past year, and introduce retrieval and analytical services running on our supercomputer system and their recent modifications. Furthermore, with the Database Center for Life Science, the DDBJ Center improves semantic web technologies to integrate and to share biological data, for providing the RDF version of the sequence data. PMID:27924010

  13. Standards for the Ph.D. Degree in the Molecular Biosciences.

    ERIC Educational Resources Information Center

    Vella, F.; de Meis, Leopoldo; Mehler, Alan H.; Rombauts, Wilfried; White, Harold B., III; Wood, E. J.

    2000-01-01

    Argues that the barriers between the traditional biosciences have disappeared while interdisciplinarity has become commonplace. Presents the suggested standards for Ph.D. degrees in biochemistry and molecular biology recommended by the Committee on Education of the International Union of Biochemistry. (Author/CCM)

  14. Full Text and Figure Display Improves Bioscience Literature Search

    PubMed Central

    Divoli, Anna; Wooldridge, Michael A.; Hearst, Marti A.

    2010-01-01

    When reading bioscience journal articles, many researchers focus attention on the figures and their captions. This observation led to the development of the BioText literature search engine [1], a freely available Web-based application that allows biologists to search over the contents of Open Access Journals, and see figures from the articles displayed directly in the search results. This article presents a qualitative assessment of this system in the form of a usability study with 20 biologist participants using and commenting on the system. 19 out of 20 participants expressed a desire to use a bioscience literature search engine that displays articles' figures alongside the full text search results. 15 out of 20 participants said they would use a caption search and figure display interface either frequently or sometimes, while 4 said rarely and 1 said undecided. 10 out of 20 participants said they would use a tool for searching the text of tables and their captions either frequently or sometimes, while 7 said they would use it rarely if at all, 2 said they would never use it, and 1 was undecided. This study found evidence, supporting results of an earlier study, that bioscience literature search systems such as PubMed should show figures from articles alongside search results. It also found evidence that full text and captions should be searched along with the article title, metadata, and abstract. Finally, for a subset of users and information needs, allowing for explicit search within captions for figures and tables is a useful function, but it is not entirely clear how to cleanly integrate this within a more general literature search interface. Such a facility supports Open Access publishing efforts, as it requires access to full text of documents and the lifting of restrictions in order to show figures in the search interface. PMID:20418942

  15. Using Capstones to Develop Research Skills and Graduate Capabilities: A Case Study from Physiology

    ERIC Educational Resources Information Center

    Julien, Brianna L.; Lexis, Louise; Schuijers, Johannes; Samiric, Tom; McDonald, Stuart

    2012-01-01

    In 2011, the Department of Human Biosciences introduced two physiology capstone subjects as part of the Design for Learning Project at La Trobe University. Consistent with the project, the aims of these subjects were to provide an effective culmination point for the Bachelor of Health Science course and to offer students orientation to…

  16. Closing the Social Class Achievement Gap for First-Generation Students in Undergraduate Biology

    ERIC Educational Resources Information Center

    Harackiewicz, Judith M.; Canning, Elizabeth A.; Tibbetts, Yoi; Giffen, Cynthia J.; Blair, Seth S.; Rouse, Douglas I.; Hyde, Janet S.

    2014-01-01

    Many students start college intending to pursue a career in the biosciences, but too many abandon this goal because they struggle in introductory biology. Interventions have been developed to close achievement gaps for underrepresented minority students and women, but no prior research has attempted to close the gap for first-generation students,…

  17. "Cancer Cell Biology:" A Student-Centered Instructional Module Exploring the Use of Multimedia to Enrich Interactive, Constructivist Learning of Science

    ERIC Educational Resources Information Center

    Bockholt, Susanne M.; West, J. Paige; Bollenbacher, Walter E.

    2003-01-01

    Multimedia has the potential of providing bioscience education novel learning environments and pedagogy applications to foster student interest, involve students in the research process, advance critical thinking/problem-solving skills, and develop conceptual understanding of biological topics. "Cancer Cell Biology," an interactive, multimedia,…

  18. U.S. Army Research Laboratory 2010 Annual Review

    DTIC Science & Technology

    2010-12-01

    Translation Between Scales battlefield neuroscience Neuro-Cognitive Measurement Cognitive/Information – Decision Making Neurally Inspired Systems...the areas of Bioscience, Neuroscience , Network Science of Decision Making, Nanoscience, GaN High Power Electronics, Power for Microsystems, Graphene...source project POF, and NSA Trickler have also demonstrated that networks can be understood through passive observation of traffic as it exits a

  19. Sensitivity of S-Cat to Sleep Deprivation

    DTIC Science & Technology

    2006-01-01

    DIRECTORATE BIOSCIENCES AND PROTECTION DVSION BIOBEHAVIORAL PERFORMANCE BRANCH 2485 GILLINGHAM DRIVE BROOKS CITY-BASE TX 78235 Approved for public...7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT Embry-Riddle Arrorautical CHII Systemns, Inc. NTI, Inc. Lyndon B...non-invasive means to objectively evaluate the cognitive ability of astronauts to perform ruission critical tasks, particularly during extended

  20. Writing Activities Embedded in Bioscience Laboratory Courses to Change Students' Attitudes and Enhance Their Scientific Writing

    ERIC Educational Resources Information Center

    Lee, Susan E.; Woods, Kyra J.; Tonissen, Kathryn F.

    2011-01-01

    We introduced writing activities into a project style third year undergraduate biomolecular science laboratory to assist the students to produce a final report in the form of a journal article. To encourage writing while the experimental work was proceeding, the embedded writing activities required ongoing analysis of experimental data. After…

  1. The Findings of an Assessment Audit: An NTFS Project Report

    ERIC Educational Resources Information Center

    Hughes, Ian

    2006-01-01

    An Assessment Audit is described consisting of 47 questions, each being scored 0 to 4, by the module team depending on the extent to which the audit point was satisfied. Scores of 2 or less indicated unsatisfactory provision. Audits were carried out on 14 bioscience- or medicine-based modules in 13 universities. There was great variability between…

  2. Using Explicit Teaching to Improve How Bioscience Students Write to the Lay Public

    ERIC Educational Resources Information Center

    Moni, Roger W.; Hryciw, Deanne H.; Poronnik, Philip; Moni, Karen B.

    2007-01-01

    The media role model was recently developed to frame how science faculty members can teach their students to write more effectively to lay audiences (14). An Opinion Editorial (Op-Ed) was introduced as a novel assignment for final-year physiology and pharmacology undergraduates. This second phase of this study, reported here, demonstrated the…

  3. Integrating anticipated nutrigenomics bioscience applications with ethical aspects.

    PubMed

    Lévesque, Lise; Ozdemir, Vural; Gremmen, Bart; Godard, Béatrice

    2008-03-01

    Nutrigenomics is a subspecialty of nutrition science which aims to understand how gene-diet interactions influence individuals' response to food, disease susceptibility, and population health. Yet ethical enquiry into this field is being outpaced by nutrigenomics bioscience. The ethical issues surrounding nutrigenomics face the challenges of a rapidly evolving field which bring forward the additional dimension of crossdisciplinary integrative research between social and biomedical sciences. This article outlines the emerging nutrigenomics definitions and concepts and analyzes the existing ethics literature concerning personalized nutrition and presents "points to consider" over ethical issues regarding future nutrigenomics applications. The interest in nutrigenomics coincides with a shift in emphasis in medicine and biosciences toward prevention of future disease susceptibilities rather than treatment of already established disease. Hence, unique ethical issues emerge concerning the extent to which nutrigenomics can alter our relation to food, boundaries between health and disease, and the folklore of medical practice. Nutrigenomics can result in new social values, norms, and responsibilities for both individuals and societies. Nutrigenomics is not only another new application of "-omics" technologies in the context of gene-diet interactions. Nutrigenomics may fundamentally change the way we perceive human illness while shifting the focus and broadening the scope of health interventions from patients to healthy individuals. In resource- and time-limited healthcare settings, this creates unique ethical dilemmas and distributive justice issues. Ethical aspects of nutrigenomics applications should be addressed proactively, as this new science develops and increasingly coalesces with other applications of genomics in medicine and public health.

  4. Development of an Electronic Role-Play Assessment Initiative in Bioscience for Nursing Students

    ERIC Educational Resources Information Center

    Craft, Judy; Ainscough, Louise

    2015-01-01

    Devising authentic assessments for subjects with large enrolments is a challenge. This study describes an electronic role-play assessment for approximately 600 first-year nursing students to learn and apply pathophysiology (bioscience) concepts to nursing practice. Students used Microsoft Office PowerPoint[R] to prepare electronic role-plays both…

  5. Challenges in Understanding Photosynthesis in a University Introductory Biosciences Class

    ERIC Educational Resources Information Center

    Södervik, Ilona; Virtanen, Viivi; Mikkilä-Erdmann, Mirjamaija

    2015-01-01

    University students' understanding of photosynthesis was examined in a large introductory biosciences class. The focus of this study was to first examine the conceptions of photosynthesis among students in class and then to investigate how a certain type of text could enhance students' understanding of photosynthesis. The study was based on pre-…

  6. New Generation Sequencing Technology Panel at SFAF-Part II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fiske, Haley; Turner, Steve; Rhodes, Michael

    2009-05-27

    From left to right: Haley Fiske of Illumina Inc., Steve Turner of Pacific Biosciences, Michael Rhodes of Applied Biosystems, Patrice Milos of Helicos Biosciences and Tim Harkins of Roche Diagnostics answer questions in a forum moderated by Bob Fulton at the "Sequencing, Finishing, Analysis in the Future" meeting in Santa Fe, NM.

  7. New Generation Sequencing Technology Panel at SFAF-Part I

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fiske, Haley; Turner, Steve; Rhodes, Michael

    2009-05-27

    From left to right: Haley Fiske of Illumina Inc., Steve Turner of Pacific Biosciences, Michael Rhodes of Applied Biosystems, Patrice Milos of Helicos Biosciences and Tim Harkins of Roche Diagnostics answer questions in a forum moderated by Bob Fulton at the "Sequencing, Finishing, Analysis in the Future" meeting in Santa Fe, NM.

  8. Aligning Biochemistry to the Interests of Biology Students Using Haloperoxidase to Illustrate Reactions of Environmental and Biomedical Importance

    ERIC Educational Resources Information Center

    Jervis, Les; Jervis, Loretta M.; Giovannelli, Donato

    2005-01-01

    Undergraduate degree programs in the biosciences almost always include elements of biochemistry. In the United Kingdom, biosciences programs often have optional pathways to accommodate students of diverse interests. These programs rarely require students to demonstrate any school-level chemistry knowledge, and many students find biochemistry…

  9. Bella's Beetle: Approaching Bioscience Practice from Its Silent Kinaesthetic and Affective Side

    ERIC Educational Resources Information Center

    Hay, David

    2017-01-01

    This article critically explores the epistemic "practices" of bioscience, using creative writing and analyses of science studies to implicate the non-linguistic side of science where a "feeling for the organism" matters more, perhaps, than theoretical precision. It offers new critique of curricula in science which are so…

  10. "Novice Teachers" Views of an Introductory Workshop about Teaching in the Biosciences

    ERIC Educational Resources Information Center

    Gartland, Kevan M. A.; Perkins, Joy; Shearer, Morven C.; Tierney, Anne M.; Wilson, Jackie J.

    2013-01-01

    Seven regional networking events, aimed at supporting and developing "early stage" novice university bioscience teachers were held across the UK. These workshops allowed 230 participants to reflect on teaching styles, learn about Higher Education Academy resources and discuss strategies to deal with a range of teaching situations.…

  11. Next-Generation Technologies for Multiomics Approaches Including Interactome Sequencing

    PubMed Central

    Ohashi, Hiroyuki; Miyamoto-Sato, Etsuko

    2015-01-01

    The development of high-speed analytical techniques such as next-generation sequencing and microarrays allows high-throughput analysis of biological information at a low cost. These techniques contribute to medical and bioscience advancements and provide new avenues for scientific research. Here, we outline a variety of new innovative techniques and discuss their use in omics research (e.g., genomics, transcriptomics, metabolomics, proteomics, and interactomics). We also discuss the possible applications of these methods, including an interactome sequencing technology that we developed, in future medical and life science research. PMID:25649523

  12. Environmental Biosciences Program Quarterly Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawrence C. Mohr, M.D.

    2009-01-30

    Current research projects have focused Environmental Biosciences Program (EBP) talent and resources on providing the scientific basis for risk-based standards, risk-based decision making and the accelerated clean-up of widespread environmental hazards. These hazards include trichloroethylene, low-dose ionizing radiation (gamma and neutron) and alpha radiation from plutonium. Trichloroethylene research has been conducted as a joint collaborative effort with the University of Georgia. Work on the trichloroethylene research projects has been slowed as a result of funding uncertainties. The impact of these funding uncertainties has been discussed with the United States Department of Energy (DOE). Laboratory work has been completed on severalmore » trichloroethylene risk assessment projects, and these projects have been brought to a close. Plans for restructuring the performance schedule of the remaining trichloroethylene projects have been submitted to the department. A comprehensive manuscript on the scientific basis of trichloroethylene risk assessment is in preparation. Work on the low-dose radiation risk assessment projects is also progressing at a slowed rate as a result of funding uncertainties. It has been necessary to restructure the proponency and performance schedule of these projects, with the project on Low-Dose Radiation: Epidemiology Risk Models transferred to DOE Office of Science proponency under a separate funding instrument. Research on this project will continue under the provisions of the DOE Office of Science funding instrument, with progress reported in accordance with the requirements of that funding instrument. Progress on that project will no longer be reported in quarterly reports for DE-FC09-02CH11109. Following a meeting at the Savannah River Site on May 8, 2008, a plan was submitted for development of an epidemiological cohort study and prospective medical surveillance system for the assessment of disease rates among workers at the Savannah River Site (SRS). This project will be incorporated into the ongoing project on Population Health Risks in the Vicinity of the Savannah River Site. During a meeting at the SRS on October 21, 2008, a presentation was made on EBP participation in the development and operation of an Epidemiology Consortium at the SRS. A follow-up meeting with SRS officials is planned for 29 and 30 January 2009 at Medical University of South Carolina (MUSC).An epidemiology project on population health risk assessment is being conducted to assess health risks among populations in the vicinity of the SRS. This project is using the capabilities of the EBP GIS for the geographical assessment of cancer and non-cancer disease rates, as well as the potential association of population health risks with environmental exposures. Although funding uncertainties have slowed progress on some aspects of this project, it has not been necessary to restructure the performance schedule to date.« less

  13. Proceedings of a Symposium - Consequences of Wearing the Chemical Protective Ensemble: Illustrative Assessment Approaches (33rd) Held in San Antonio, Texas on October 31, 1991

    DTIC Science & Technology

    1992-03-01

    marksmanship. Proceedings of the 1989 Medical Defense Bioscience Review (pp. 823-826). Aberdeen Proving Ground , MD: US Army Medical Research Institute of...MILITARY PERSONNEL PERFORM THEIR MOS IN MOPP4 William K. Blewett Chemical Research, Development and Engineering Center Aberdeen Proving Ground , MD 21010...approximately the same evaporation rate, surface tension, solubility, and detectability as the agent mustard . The MS is detectable by use of the Chemical

  14. Inventory of Innovative Learning Materials in Marine Science and Technology. UNESCO Reports in Marine Science 60.

    ERIC Educational Resources Information Center

    Richards, Adrian F.; Richards, Efrosine A.

    The Inventory of Innovative Learning Materials in Marine Science and Technology includes 32 computer-, 148 video-, 16 film-, and 11 CD-ROM-based entries. They concern materials in biosciences (67), chemistry (5), geosciences (16), physics (23), technology (76) and other (20). This first, initial compilations is conceived as the basis for more…

  15. Skills and Knowledge Needs among Recent Bioscience Graduates--How Do Our Courses Measure Up?

    ERIC Educational Resources Information Center

    Brown, Colin A.; Calvert, Jane; Charman, Paul; Newton, Chris; Wiles, Kathy; Hughes, Ian

    2005-01-01

    A telephone survey was conducted of 2002 or 2003 graduates (942 in total) from various bioscience degree programmes at 4 universities. A structured and scripted interview determined: title/class of degree; nature of current occupation (unemployed, further degree, job) and if regarded as "career related" post or just "filling in"; if current…

  16. "Biomathtutor": Evaluation of a New Multimedia E-Learning Resource to Support Mathematics in the Biosciences

    ERIC Educational Resources Information Center

    Tariq, V. N.; Jackson, V.

    2008-01-01

    The objective of this study was to evaluate "biomathtutor" by (i) investigating the impact of "biomathtutor" on the mathematics skills competencies of bioscience undergraduates, and (ii) assessing students' and tutors' reactions to "biomathtutor", identifying whether and how tutors might integrate it into their curricula and blend it with more…

  17. 78 FR 27468 - Order of Suspension of Trading in the Matter of CoreCare Systems, Inc., Forticell Bioscience, Inc...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-10

    ... SECURITIES AND EXCHANGE COMMISSION [File No. 500-1] Order of Suspension of Trading in the Matter of CoreCare Systems, Inc., Forticell Bioscience, Inc., Michelex Corporation, and Rx for Africa, Inc... accurate information concerning the securities of CoreCare Systems, Inc. because it has not filed any...

  18. Students' and Teacher's Experiences of the Validity and Reliability of Assessment in a Bioscience Course

    ERIC Educational Resources Information Center

    Räisänen, Milla; Tuononen, Tarja; Postareff, Liisa; Hailikari, Telle; Virtanen, Viivi

    2016-01-01

    This case study explores the assessment of students' learning outcomes in a second-year lecture course in biosciences. The aim is to deeply explore the teacher's and the students' experiences of the validity and reliability of assessment and to compare those perspectives. The data were collected through stimulated recall interviews. The results…

  19. The eBioKit, a stand-alone educational platform for bioinformatics.

    PubMed

    Hernández-de-Diego, Rafael; de Villiers, Etienne P; Klingström, Tomas; Gourlé, Hadrien; Conesa, Ana; Bongcam-Rudloff, Erik

    2017-09-01

    Bioinformatics skills have become essential for many research areas; however, the availability of qualified researchers is usually lower than the demand and training to increase the number of able bioinformaticians is an important task for the bioinformatics community. When conducting training or hands-on tutorials, the lack of control over the analysis tools and repositories often results in undesirable situations during training, as unavailable online tools or version conflicts may delay, complicate, or even prevent the successful completion of a training event. The eBioKit is a stand-alone educational platform that hosts numerous tools and databases for bioinformatics research and allows training to take place in a controlled environment. A key advantage of the eBioKit over other existing teaching solutions is that all the required software and databases are locally installed on the system, significantly reducing the dependence on the internet. Furthermore, the architecture of the eBioKit has demonstrated itself to be an excellent balance between portability and performance, not only making the eBioKit an exceptional educational tool but also providing small research groups with a platform to incorporate bioinformatics analysis in their research. As a result, the eBioKit has formed an integral part of training and research performed by a wide variety of universities and organizations such as the Pan African Bioinformatics Network (H3ABioNet) as part of the initiative Human Heredity and Health in Africa (H3Africa), the Southern Africa Network for Biosciences (SAnBio) initiative, the Biosciences eastern and central Africa (BecA) hub, and the International Glossina Genome Initiative.

  20. The eBioKit, a stand-alone educational platform for bioinformatics

    PubMed Central

    Conesa, Ana; Bongcam-Rudloff, Erik

    2017-01-01

    Bioinformatics skills have become essential for many research areas; however, the availability of qualified researchers is usually lower than the demand and training to increase the number of able bioinformaticians is an important task for the bioinformatics community. When conducting training or hands-on tutorials, the lack of control over the analysis tools and repositories often results in undesirable situations during training, as unavailable online tools or version conflicts may delay, complicate, or even prevent the successful completion of a training event. The eBioKit is a stand-alone educational platform that hosts numerous tools and databases for bioinformatics research and allows training to take place in a controlled environment. A key advantage of the eBioKit over other existing teaching solutions is that all the required software and databases are locally installed on the system, significantly reducing the dependence on the internet. Furthermore, the architecture of the eBioKit has demonstrated itself to be an excellent balance between portability and performance, not only making the eBioKit an exceptional educational tool but also providing small research groups with a platform to incorporate bioinformatics analysis in their research. As a result, the eBioKit has formed an integral part of training and research performed by a wide variety of universities and organizations such as the Pan African Bioinformatics Network (H3ABioNet) as part of the initiative Human Heredity and Health in Africa (H3Africa), the Southern Africa Network for Biosciences (SAnBio) initiative, the Biosciences eastern and central Africa (BecA) hub, and the International Glossina Genome Initiative. PMID:28910280

  1. MALDI mass spectrometry imaging, from its origins up to today: the state of the art.

    PubMed

    Francese, Simona; Dani, Francesca R; Traldi, Pietro; Mastrobuoni, Guido; Pieraccini, Giuseppe; Moneti, Gloriano

    2009-02-01

    Mass Spectrometry (MS) has a number of features namely sensitivity, high dynamic range, high resolution, and versatility which make it a very powerful analytical tool for a wide spectrum of applications spanning all the life science fields. Among all the MS techniques, MALDI Imaging mass spectrometry (MALDI MSI) is currently one of the most exciting both for its rapid technological improvements, and for its great potential in high impact bioscience fields. Here, MALDI MSI general principles are described along with technical and instrumental details as well as application examples. Imaging MS instruments and imaging mass spectrometric techniques other than MALDI, are presented along with examples of their use. As well as reporting MSI successes in several bioscience fields, an attempt is made to take stock of what has been achieved so far with this technology and to discuss the analytical and technological advances required for MSI to be applied as a routine technique in clinical diagnostics, clinical monitoring and in drug discovery.

  2. Importance of Peer Support and Tutor Involvement in Entrepreneurship Education for Overseas Bioscience Students

    ERIC Educational Resources Information Center

    Mitchell, P. C.; McKeown, A. E.

    2004-01-01

    An increasing number of Bioscience courses embed entrepreneurship learning outcomes within the curriculum, across a number of modules and/or within a dedicated module. The level 2, Developing People and Products module is one such example, involving students in 100 study effort hours over 7 weeks. This module was delivered to students (n = 37)…

  3. The Use of Team-Based, Guided Inquiry Learning to Overcome Educational Disadvantages in Learning Human Physiology: A Structural Equation Model

    ERIC Educational Resources Information Center

    Rathner, Joseph A.; Byrne, Graeme

    2014-01-01

    The study of human bioscience is viewed as a crucial curriculum in allied health. Nevertheless, bioscience (and particularly physiology) is notoriously difficult for undergraduates, particularly academically disadvantaged students. So endemic are the high failure rates (particularly in nursing) that it has come to be known as "the human…

  4. Ellipticity dependence of high harmonics generated using 400 nm driving lasers

    NASA Astrophysics Data System (ADS)

    Cheng, Yan; Khan, Sabih; Zhao, Kun; Zhao, Baozhen; Chini, Michael; Chang, Zenghu

    2011-05-01

    High order harmonics generated from 400 nm driving pulses hold promise of scaling photon flux of single attosecond pulses by one to two orders of magnitude. We report ellipticity dependence and phase matching of high order harmonics generated from such pulses in Neon gas target and compared them with similar measurements using 800 nm driving pulses. Based on measured ellipticity dependence, we predict that double optical gating (DOG) and generalized double optical gating (GDOG) can be employed to extract intense single attosecond pulses from pulse train, while polarization gating (PG) may not work for this purpose. This material is supported by the U.S. Army Research Office under grant number W911NF-07-1-0475, and by the Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy.

  5. Reflective writing as a tool for assessing teamwork in bioscience: insights into student performance and understanding of teamwork.

    PubMed

    Mayne, Lynne

    2012-07-01

    To ensure a modern bioscience curriculum that responds to the current needs of stakeholders, there is a need to embed a range of generic capabilities that enables graduates to succeed in and contribute to a rapidly changing world, as well as building strong bioscience skills and knowledge. The curriculum must also prepare students for a rapidly evolving competitive work place and align with the needs of industry. This creates a challenge, how do we develop generic capabilities without losing discipline content. This report analyses teamwork projects embedded in an undergraduate Biotechnology degree designed to promote teamwork skills along with a deeper understanding of the underpinning biochemistry. Student reflective writing was used to capture students' understanding and experience of teamwork as well as provide insight into their metacognition. The analysis demonstrates that 73% of Year 3 and 93% of Year 4 students were capable of learning about teamwork through reflective writing. While the importance of frequent high quality communication was a common theme, evidence suggests that many students were unsophisticated in their use of communication software. The analysis also highlighted the depth of metacognition that underpins successful team function and the significant weaknesses in self-insight some students possess. These findings challenge assumptions regarding student capacity for leadership and the ability of some students to contribute to successful team outcomes. It is essential for the design of teamwork experiences to fully understand the competencies that underlie teamwork, the metacognitive processes required, and ensure that assessments are fair and measure individual academic performance. Copyright © 2012 Wiley Periodicals, Inc.

  6. The use of team-based, guided inquiry learning to overcome educational disadvantages in learning human physiology: a structural equation model.

    PubMed

    Rathner, Joseph A; Byrne, Graeme

    2014-09-01

    The study of human bioscience is viewed as a crucial curriculum in allied health. Nevertheless, bioscience (and particularly physiology) is notoriously difficult for undergraduates, particularly academically disadvantaged students. So endemic are the high failure rates (particularly in nursing) that it has come to be known as "the human bioscience problem." In the present report, we describe the outcomes for individual success in studying first-year human physiology in a subject that emphasises team-based active learning as the major pedagogy for mastering subject learning outcomes. Structural equation modeling was used to develop a model of the impact team learning had on individual performance. Modeling was consistent with the idea that students with similar academic abilities (as determined by tertiary entrance rank) were advantaged (scored higher on individual assessment items) by working in strong teams (teams that scored higher in team-based assessments). Analysis of covariance revealed that students who studied the subject with active learning as the major mode of learning activities outperformed students who studied the subject using the traditional didactic teaching format (lectures and tutorials, P = 0.000). After adjustment for tertiary entrance rank (via analysis of covariance) on two individual tests (the final exam and a late-semester in-class test), individual student grades improved by 8% (95% confidence interval: 6-10%) and 12% (95% confidence interval: 10-14%) when students engaged in team-based active learning. These data quantitatively support the notion that weaker students working in strong teams can overcome their educational disadvantages. Copyright © 2014 The American Physiological Society.

  7. The use of team-based, guided inquiry learning to overcome educational disadvantages in learning human physiology: a structural equation model

    PubMed Central

    Byrne, Graeme

    2014-01-01

    The study of human bioscience is viewed as a crucial curriculum in allied health. Nevertheless, bioscience (and particularly physiology) is notoriously difficult for undergraduates, particularly academically disadvantaged students. So endemic are the high failure rates (particularly in nursing) that it has come to be known as “the human bioscience problem.” In the present report, we describe the outcomes for individual success in studying first-year human physiology in a subject that emphasises team-based active learning as the major pedagogy for mastering subject learning outcomes. Structural equation modeling was used to develop a model of the impact team learning had on individual performance. Modeling was consistent with the idea that students with similar academic abilities (as determined by tertiary entrance rank) were advantaged (scored higher on individual assessment items) by working in strong teams (teams that scored higher in team-based assessments). Analysis of covariance revealed that students who studied the subject with active learning as the major mode of learning activities outperformed students who studied the subject using the traditional didactic teaching format (lectures and tutorials, P = 0.000). After adjustment for tertiary entrance rank (via analysis of covariance) on two individual tests (the final exam and a late-semester in-class test), individual student grades improved by 8% (95% confidence interval: 6–10%) and 12% (95% confidence interval: 10–14%) when students engaged in team-based active learning. These data quantitatively support the notion that weaker students working in strong teams can overcome their educational disadvantages. PMID:25179611

  8. Static and Dynamic Human Shape Modeling - A Review of the Literature and State of the Art

    DTIC Science & Technology

    2009-04-01

    Figure 60. Confluent marker-based animation (Aguiar et al. 2006). Subsequent frames showing the female scan authentically performing a soccer kick ...Infoscitex Corp. 4027 Colonel Glenn Highway Suite 210 Dayton OH 45431-1672 Kathleen Robinette Biosciences and Protection Division Biomechanics ...Biosciences and Protection Division Biomechanics Branch Wright-Patterson AFB OH 45433 Approved for public release; distribution unlimited. NOTICE

  9. Attitudes to Teaching Ethics to Bioscience Students: An Interview-Based Study Comparing British and American University Teachers

    ERIC Educational Resources Information Center

    Bryant, John A.; Morgan, Cindy L.

    2007-01-01

    An interview-based survey was carried out with British and American university teachers. In both countries there was widespread (but in the UK, not unanimous) support for the proposition that ethics should be taught to Bioscience students. Reasons included a need to help students engage with the ethical issues associated with their subject and the…

  10. Algae-Derived Dietary Ingredients Nourish Animals

    NASA Technical Reports Server (NTRS)

    2015-01-01

    In the 1980s, Columbia, Maryland-based Martek Biosciences Corporation worked with Ames Research Center to pioneer the use of microalgae as a source of essential omega-3 fatty acids, work that led the company to develop its highly successful Formulaid product. Now the Nutritional Products Division of Royal DSM, the company also manufactures DHAgold, a nutritional supplement for pets, livestock and farm-raised fish that uses algae to deliver docosahexaenoic acid (DHA).

  11. Omics Integration in Biology and Medicine Workshop | Office of Cancer Clinical Proteomics Research

    Cancer.gov

    The focus of this meeting will be on the emerging field of integrating disparate omic data from genomics, proteomics, glycomics, etc. in order to better understand key biological processes and also improve clinical practice. Discussants will focus on identifying the technical and biological barriers in omic integration, with solutions to build a consensus towards data integration in bioscience and to better define phenotypes.

  12. Advanced Plant Habitat - Packing and Planting Seeds

    NASA Image and Video Library

    2017-02-15

    Dr. Oscar Monje, a research scientist, packs a growing substrate called arcillite in the science carrier, or base, of the Advanced Plant Habitat (APH) inside a laboratory at the Space Station Processing Facility at NASA's Kennedy Space Center in Florida. Developed by NASA and ORBITEC of Madison, Wisconsin, the APH is the largest plant chamber built for the agency. It is a fully automated plant growth facility that will be used to conduct bioscience research on the International Space Station. The APH will be delivered to the space station aboard future Commercial Resupply Services missions.

  13. Advanced Plant Habitat - Packing and Planting Seeds

    NASA Image and Video Library

    2017-02-15

    Dr. Oscar Monje, a research scientist, pours a growing substrate called arcillite in the science carrier, or base, of the Advanced Plant Habitat (APH) inside a laboratory at the Space Station Processing Facility at NASA's Kennedy Space Center in Florida. Developed by NASA and ORBITEC of Madison, Wisconsin, the APH is the largest plant chamber built for the agency. It is a fully automated plant growth facility that will be used to conduct bioscience research on the International Space Station. The APH will be delivered to the space station aboard future Commercial Resupply Services missions.

  14. Preface for the special issue of Mathematical Biosciences and Engineering, BIOCOMP 2012.

    PubMed

    Buonocore, Aniello; Di Crescenzo, Antonio; Hastings, Alan

    2014-04-01

    The International Conference "BIOCOMP2012 - Mathematical Modeling and Computational Topics in Biosciences'', was held in Vietri sul Mare (Italy), June 4-8, 2012. It was dedicated to the Memory of Professor Luigi M. Ricciardi (1942-2011), who was a visionary and tireless promoter of the 3 previous editions of the BIOCOMP conference series. We thought that the best way to honor his memory was to continue the BIOCOMP program. Over the years, this conference promoted scientific activities related to his wide interests and scientific expertise, which ranged in various areas of applications of mathematics, probability and statistics to biosciences and cybernetics, also with emphasis on computational problems. We are pleased that many of his friends and colleagues, as well as many other scientists, were attracted by the goals of this recent event and offered to contribute to its success.

  15. Gene-enriched draft genome of the cattle tick Rhipicephalus microplus: Assembly by the hybrid Pacific Biosciences/Illumina approach enabled analysis of the highly repetitive genome

    USDA-ARS?s Scientific Manuscript database

    The genome of the cattle tick R. microplus, an ectoparasite with global distribution, is estimated to be 7.1 Gbp and consists of ~70% repetitive DNA. We report the first assembly of a tick genome that utilized a hybrid sequencing and assembly approach to capture the repetitive fractions of the genom...

  16. Facilitating long-term changes in student approaches to learning science.

    PubMed

    Buchwitz, Brian J; Beyer, Catharine H; Peterson, Jon E; Pitre, Emile; Lalic, Nevena; Sampson, Paul D; Wakimoto, Barbara T

    2012-01-01

    Undergraduates entering science curricula differ greatly in individual starting points and learning needs. The fast pace, high enrollment, and high stakes of introductory science courses, however, limit students' opportunities to self-assess and modify learning strategies. The University of Washington's Biology Fellows Program (BFP) intervenes through a 20-session, premajors course that introduces students to the rigor expected of bioscience majors and assists their development as science learners. This study uses quantitative and qualitative approaches to assess whether the 2007-2009 BFP achieved its desired short- and long-term impacts on student learning. Adjusting for differences in students' high school grade point average and Scholastic Aptitude Test scores, we found that participation in the BFP was associated with higher grades in two subsequent gateway biology courses, across multiple quarters and instructors. Two to 4 yr after participating in the program, students attributed changes in how they approached learning science to BFP participation. They reported having learned to "think like a scientist" and to value active-learning strategies and learning communities. In addition, they reported having developed a sense of belonging in bioscience communities. The achievement of long-term impacts for a short-term instructional investment suggests a practical means to prepare diverse students for the rigors of science curricula.

  17. Facilitating Long-Term Changes in Student Approaches to Learning Science

    PubMed Central

    Buchwitz, Brian J.; Beyer, Catharine H.; Peterson, Jon E.; Pitre, Emile; Lalic, Nevena; Sampson, Paul D.; Wakimoto, Barbara T.

    2012-01-01

    Undergraduates entering science curricula differ greatly in individual starting points and learning needs. The fast pace, high enrollment, and high stakes of introductory science courses, however, limit students’ opportunities to self-assess and modify learning strategies. The University of Washington's Biology Fellows Program (BFP) intervenes through a 20-session, premajors course that introduces students to the rigor expected of bioscience majors and assists their development as science learners. This study uses quantitative and qualitative approaches to assess whether the 2007–2009 BFP achieved its desired short- and long-term impacts on student learning. Adjusting for differences in students’ high school grade point average and Scholastic Aptitude Test scores, we found that participation in the BFP was associated with higher grades in two subsequent gateway biology courses, across multiple quarters and instructors. Two to 4 yr after participating in the program, students attributed changes in how they approached learning science to BFP participation. They reported having learned to “think like a scientist” and to value active-learning strategies and learning communities. In addition, they reported having developed a sense of belonging in bioscience communities. The achievement of long-term impacts for a short-term instructional investment suggests a practical means to prepare diverse students for the rigors of science curricula. PMID:22949424

  18. Breakthrough: Using Microbes to Make Advanced Biofuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keasling, Jay

    Jay Keasling, Berkeley Lab's Associate Director for Bioscience and the CEO of DOE's Joint BioEnergy Institute (JBEI), explains how special strains of microbes can convert the biomass of non-food crops and agricultural waste into fuels for cars, trucks and jet planes. Keasling's research team at JBEI has developed E.coli that can digest switchgrass and convert the plant sugars into gasoline, diesel or jet fuel, not unlike the process by which beer is brewed.

  19. Breakthrough: Using Microbes to Make Advanced Biofuels

    ScienceCinema

    Keasling, Jay

    2018-02-14

    Jay Keasling, Berkeley Lab's Associate Director for Bioscience and the CEO of DOE's Joint BioEnergy Institute (JBEI), explains how special strains of microbes can convert the biomass of non-food crops and agricultural waste into fuels for cars, trucks and jet planes. Keasling's research team at JBEI has developed E.coli that can digest switchgrass and convert the plant sugars into gasoline, diesel or jet fuel, not unlike the process by which beer is brewed.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Somerville, Chris

    Summer Lecture Series 2007: Chris Somerville, Director of the Energy Biosciences Institute and an award-winning plant biochemist with Berkeley Lab's Physical Biosciences Division, is a leading authority on the structure and function of plant cell walls. He discusses an overview of some of the technical challenges associated with the production of cellulosic biofuels, which will require an improved understanding of a diverse range of topics in fields such as agronomy, chemical engineering, microbiology, structural biology, genomics, environmental sciences, and socioeconomics.

  1. Object-oriented programming for the biosciences.

    PubMed

    Wiechert, W; Joksch, B; Wittig, R; Hartbrich, A; Höner, T; Möllney, M

    1995-10-01

    The development of software systems for the biosciences is always closely connected to experimental practice. Programs must be able to handle the inherent complexity and heterogeneous structure of biological systems in combination with the measuring equipment. Moreover, a high degree of flexibility is required to treat rapidly changing experimental conditions. Object-oriented methodology seems to be well suited for this purpose. It enables an evolutionary approach to software development that still maintains a high degree of modularity. This paper presents experience with object-oriented technology gathered during several years of programming in the fields of bioprocess development and metabolic engineering. It concentrates on the aspects of experimental support, data analysis, interaction and visualization. Several examples are presented and discussed in the general context of the experimental cycle of knowledge acquisition, thus pointing out the benefits and problems of object-oriented technology in the specific application field of the biosciences. Finally, some strategies for future development are described.

  2. Numerical modelling in biosciences using delay differential equations

    NASA Astrophysics Data System (ADS)

    Bocharov, Gennadii A.; Rihan, Fathalla A.

    2000-12-01

    Our principal purposes here are (i) to consider, from the perspective of applied mathematics, models of phenomena in the biosciences that are based on delay differential equations and for which numerical approaches are a major tool in understanding their dynamics, (ii) to review the application of numerical techniques to investigate these models. We show that there are prima facie reasons for using such models: (i) they have a richer mathematical framework (compared with ordinary differential equations) for the analysis of biosystem dynamics, (ii) they display better consistency with the nature of certain biological processes and predictive results. We analyze both the qualitative and quantitative role that delays play in basic time-lag models proposed in population dynamics, epidemiology, physiology, immunology, neural networks and cell kinetics. We then indicate suitable computational techniques for the numerical treatment of mathematical problems emerging in the biosciences, comparing them with those implemented by the bio-modellers.

  3. Bioinformatics by Example: From Sequence to Target

    NASA Astrophysics Data System (ADS)

    Kossida, Sophia; Tahri, Nadia; Daizadeh, Iraj

    2002-12-01

    With the completion of the human genome, and the imminent completion of other large-scale sequencing and structure-determination projects, computer-assisted bioscience is aimed to become the new paradigm for conducting basic and applied research. The presence of these additional bioinformatics tools stirs great anxiety for experimental researchers (as well as for pedagogues), since they are now faced with a wider and deeper knowledge of differing disciplines (biology, chemistry, physics, mathematics, and computer science). This review targets those individuals who are interested in using computational methods in their teaching or research. By analyzing a real-life, pharmaceutical, multicomponent, target-based example the reader will experience this fascinating new discipline.

  4. Embedded academic writing support for nursing students with English as a second language.

    PubMed

    Salamonson, Yenna; Koch, Jane; Weaver, Roslyn; Everett, Bronwyn; Jackson, Debra

    2010-02-01

    This paper reports a study which evaluated a brief, embedded academic support workshop as a strategy for improving academic writing skills in first-year nursing students with low-to-medium English language proficiency. Nursing students who speak English as a second language have lower academic success compared with their native English-speaking counterparts. The development of academic writing skills is known to be most effective when embedded into discipline-specific curricula. Using a randomized controlled design, in 2008 106 students pre-enrolled in an introductory bioscience subject were randomized to receive either the intervention, a 4-day embedded academic learning support workshop facilitated by two bioscience (content) nursing academics and a writing and editing professional, or to act as the control group. The primary focus of the workshop was to support students to work through a mock assignment by providing progressive feedback and written suggestions on how to improve their answers. Of the 59 students randomized to the intervention, only 28 attended the workshop. Bioscience assignment results were analysed for those who attended (attendees), those randomized to the intervention but who did not attend (non-attendees), and the control group. Using anova, the results indicated that attendees achieved statistically significantly higher mean scores (70.8, sd: 6.1) compared to both control group (58.4, sd: 3.4, P = 0.002) and non-attendees (48.5, sd: 5.5, P = 0.001). A brief, intensive, embedded academic support workshop was effective in improving the academic writing ability of nursing students with low-to-medium English language proficiency, although reaching all students who are likely to benefit from this intervention remains a challenge.

  5. Quantitative Methods for Determining U.S. Air Force Crew Cushion Comfort

    DTIC Science & Technology

    2006-09-01

    Directorate Biosciences and Protection Division Biomechanics Branch Wright Patterson AFB OH 45433-7947 Form Approved REPORT DOCUMENTATION PAGE OMB No...Division Biomechanics Branch Wright-Patterson AFB OH 45433-7947 9. SPONSORING I MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S...workstations were constructed utilizing ejection seat long-term flight. mockups and foot pedal assemblies modified to simulate the ACES II seat in the F-16

  6. Studying the Immunomodulatory Effects of Small Molecule Ras-Inhibitors in Animal Models of Rheumatoid Arthritis

    DTIC Science & Technology

    2017-10-01

    found in joints, develop in the early stages of CIA creating neo-antigens that further boost the "epitope spreading" during the autoimmune response(8...ready-made ELISA kits. (eBioscience Inc.). We find that at the early stages of arthritis development FTS significantly reduces the upregulation of...reprints of manuscripts and abstracts, a curriculum vitae, patent applications, study questionnaires, and surveys , etc. “Nothing to Report

  7. Organizing human functioning and rehabilitation research into distinct scientific fields. Part I: Developing a comprehensive structure from the cell to society.

    PubMed

    Stucki, Gerold; Grimby, Gunnar

    2007-05-01

    There is a need to organize rehabilitation and related research into distinct scientific fields in order to overcome the current limitations of rehabilitation research. Based on the general distinction in basic, applied and professional sciences applicable to research in general, and the rehabilitation relevant distinction between the comprehensive perspective based on WHO's integrative model of human functioning (ICF) and the partial perspective focusing on the biomedical aspects of functioning, it is possible to identify 5 distinct scientific fields of human functioning and rehabilitation research. These are the emerging human functioning sciences and integrative rehabilitation sciences from the comprehensive perspective, the established biosciences and biomedical rehabilitation sciences and engineering from the partial perspective, and the professional rehabilitation sciences at the cutting edge of research and practice. The human functioning sciences aim to understand human functioning and to identify targets for comprehensive interventions, with the goal of contributing to the minimization of the experience of disability in the population. The biosciences in rehabilitation aim to explain body injury and repair and to identify targets for biomedical interventions. The integrative rehabilitation sciences design and study comprehensive assessments and interventions that integrate biomedical, personal factor and environmental approaches suited to optimize people's performance. The biomedical rehabilitation sciences and engineering study diagnostic measures and interventions suitable to minimize impairment, including symptom control, and to optimize people's capacity. The professional rehabilitation sciences study how to provide best care with the goal of enabling people with health conditions experiencing or likely to experience disability to achieve and maintain optimal functioning in interaction with the environment. The organization of human functioning and rehabilitation research into the 5 distinct scientific fields facilitates the development of academic training programs and career building as well as the development of research structures dedicated to human functioning and rehabilitation research.

  8. The role biomedical science laboratories can play in improving science knowledge and promoting first-year nursing academic success

    NASA Astrophysics Data System (ADS)

    Arneson, Pam

    The Role Biomedical Science Laboratories Can Play In Improving Science Knowledge and Promoting First-Year Nursing Academic Success The need for additional nursing and health care professionals is expected to increase dramatically over the next 20 years. With this in mind, students must have strong biomedical science knowledge to be competent in their field. Some studies have shown that participation in bioscience laboratories can enhance science knowledge. If this is true, an analysis of the role bioscience labs have in first-year nursing academic success is apposite. In response, this study sought to determine whether concurrent enrollment in anatomy and microbiology lecture and lab courses improved final lecture course grades. The investigation was expanded to include a comparison of first-year nursing GPA and prerequisite bioscience concurrent lecture/lab enrollment. Additionally, research has indicated that learning is affected by student perception of the course, instructor, content, and environment. To gain an insight regarding students' perspectives of laboratory courses, almost 100 students completed a 20-statement perception survey to understand how lab participation affects learning. Data analyses involved comparing anatomy and microbiology final lecture course grades between students who concurrently enrolled in the lecture and lab courses and students who completed the lecture course alone. Independent t test analyses revealed that there was no significant difference between the groups for anatomy, t(285) = .11, p = .912, but for microbiology, the lab course provided a significant educational benefit, t(256) = 4.47, p = .000. However, when concurrent prerequisite bioscience lecture/lab enrollment was compared to non-concurrent enrollment for first-year nursing GPA using independent t test analyses, no significant difference was found for South Dakota State University, t(37) = -1.57, p = .125, or for the University of South Dakota, t(38) = -0.46, p = .651. Student perception survey examination included computation of means and standard deviations for statements related to the educational importance of lab courses, the value of lab experimentation, and the usefulness of concurrent lecture/lab enrollment. Independent t test analyses sought to determine differences within the courses of anatomy lab and microbiology lab as well as differences between the instructors involved. Results suggested that student perceptions may be dependent on the course, the instructor, and possibly the content.

  9. COMPARISON OF OVERALL METABOLISM OF 2, 3, 7, 8-TETRACHLORODIBENZO-P-DIOXIN IN CYP1A2(-/-) KNOCKOUT AND C57BL/6N PARENTAL STRAINS OF MICE

    EPA Science Inventory

    Comparison of Overall Metabolism of 2,3,7,8-TCDD
    in CYP1A2 (-/-) Knockout and C57BL/6N Parental Strains of Mice

    Heldur Hakk* and Janet J. Diliberto**

    * USDA-ARS Biosciences Research Laboratory, P.O. Box 5674, Fargo, ND, USA
    ** US-EPA ORD, National Health Eff...

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Peter L; Rhyne, James J

    The unique properties of synchrotron radiation are its continuous spectrum, high flux and brightness, and high coherence, which make it an indispensable tool in the exploration of matter. The wavelengths of the emitted photons span a range of dimensions from the atomic level to biological cells, thereby providing incisive probes for advanced research in materials science, physical and chemical sciences, metrology, geosciences, environmental sciences, biosciences, medical sciences, and pharmaceutical sciences. The features of synchrotron radiation are especially well matched to the needs of nanoscience.

  11. Development of Cellulosic Biofuels (LBNL Summer Lecture Series)

    ScienceCinema

    Somerville, Chris [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Physical Biosciences Division; Stanford Univ., CA (United States). Dept. of Biological Sciences

    2018-05-18

    Summer Lecture Series 2007: Chris Somerville, Director of the Energy Biosciences Institute and an award-winning plant biochemist with Berkeley Lab's Physical Biosciences Division, is a leading authority on the structure and function of plant cell walls. He discusses an overview of some of the technical challenges associated with the production of cellulosic biofuels, which will require an improved understanding of a diverse range of topics in fields such as agronomy, chemical engineering, microbiology, structural biology, genomics, environmental sciences, and socioeconomics.

  12. Hemostatic Function of Apheresis Platelets Stored at 4 deg C and 22 deg C

    DTIC Science & Technology

    2014-05-01

    utilized. Thromboxane B2 (TxB2) enzyme immunoassay kits were purchased from Cayman Chemicals (Ann Arbor, MI), and human soluble CD40L (sCD40L) extra...sensitive platinum enzyme linked immunosorbent assay kits were pur chased from eBioscience (Vienna, Austria). CG4+ and CHEM8+ cartridges were purchased from...TruCount tubes (BD Biosciences). Enzyme linked immunosorbent assay Commercially available kits were used to assess sCD40L and TxB2 levels released into

  13. Communications Specialist | Center for Cancer Research

    Cancer.gov

    Be part of our mission to support research against cancer. We have an exciting opportunity for a talented communicator to join our team and be part of the effort to find cures for cancer. We are looking for a creative, team-oriented communications professional, with strong writing skills to publicize our research advances, employment and training opportunities and clinical trials program. Work involves production of a monthly internal newsletter with circulation of 3,000, writing and editing a variety of stories, such as features on patients, and developing content for communications tactics. Must have a Bachelor’s degree in Communications, Biosciences and/or related field; Master’s degree or equivalent professional experience preferred. Full time position, business hours.

  14. Science & Technology Review October/November 2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orme, C.; Meissner, C.; Kotta, P. A.

    At Lawrence Livermore National Laboratory, we focus on science and technology research to ensure our nation’s security. We also apply that expertise to solve other important national problems in energy, bioscience, and the environment. Science & Technology Review is published eight times a year to communicate, to a broad audience, the Laboratory’s scientific and technological accomplishments in fulfilling its primary missions. The publication’s goal is to help readers understand these accomplishments and appreciate their value to the individual citizen, the nation, and the world.

  15. Science & Technology Review January/February 2018

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duoss, E. B.; Meissner, C. N.; Kotta, P. R.

    At Lawrence Livermore National Laboratory, we focus on science and technology research to ensure our nation’s security. We also apply that expertise to solve other important national problems in energy, bioscience, and the environment. Science & Technology Review is published eight times a year to communicate, to a broad audience, the Laboratory’s scientific and technological accomplishments in fulfilling its primary missions. The publication’s goal is to help readers understand these accomplishments and appreciate their value to the individual citizen, the nation, and the world.

  16. COMPARISON OF OVERALL METABOLISM OF 1, 2, 7, 8-PECDD IN CYP1A2(-L-) KNOCKOUT AND C57BL/6N PARENTAL STRAINS OF MICE

    EPA Science Inventory

    COMPARISON OF OVERALL METABOLISM OF 1,2,3,7,8-PeCDD
    IN CYP1A2 (-/-) KNOCKOUT AND C57BL/6N PARENTAL
    STRAINS OF MICE

    Heldur Hakk1 and Janet J. Diliberto2

    1 USDA-ARS, Biosciences Research Laboratory, P.O. Box 5674, Fargo, ND, USA
    2 US EPA, ORD, National Heal...

  17. Science & Technology Review January/February 2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orme, C. A.; Meissner, C. N.; Kotta, P. R.

    2016-01-18

    At Lawrence Livermore National Laboratory, we focus on science and technology research to ensure our nation’s security. We also apply that expertise to solve other important national problems in energy, bioscience, and the environment. Science & Technology Review is published eight times a year to communicate, to a broad audience, the Laboratory’s scientific and technological accomplishments in fulfilling its primary missions. The publication’s goal is to help readers understand these accomplishments and appreciate their value to the individual citizen, the nation, and the world.

  18. Sscience & technology review; Science Technology Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-07-01

    This review is published ten times a year to communicate, to a broad audience, Lawrence Livermore National Laboratory`s scientific and technological accomplishments, particularly in the Laboratory`s core mission areas - global security, energy and the environment, and bioscience and biotechnology. This review for the month of July 1996 discusses: Frontiers of research in advanced computations, The multibeam Fabry-Perot velocimeter: Efficient measurement of high velocities, High-tech tools for the American textile industry, and Rock mechanics: can the Tuff take the stress.

  19. Science & Technology Review June 2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vogt, Ramona L.; Chinn, Ken B.; Kotta, Paul

    At Lawrence Livermore National Laboratory, we focus on science and technology research to ensure our nation’s security. We also apply that expertise to solve other important national problems in energy, bioscience, and the environment. Science & Technology Review is published eight times a year to communicate, to a broad audience, the Laboratory’s scientific and technological accomplishments in fulfilling its primary missions. The publication’s goal is to help readers understand these accomplishments and appreciate their value to the individual citizen, the nation, and the world.

  20. Science & Technology Review January/February 2017

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vogt, R. L.; Meissner, C. N.; Kotta, P. R.

    At Lawrence Livermore National Laboratory, we focus on science and technology research to ensure our nation’s security. We also apply that expertise to solve other important national problems in energy, bioscience, and the environment. Science & Technology Review is published eight times a year to communicate, to a broad audience, the Laboratory’s scientific and technological accomplishments in fulfilling its primary missions. The publication’s goal is to help readers understand these accomplishments and appreciate their value to the individual citizen, the nation, and the world.

  1. Synthetic Biology between Self-Regulation and Public Discourse: Ethical Issues and the Many Roles of the Ethicist.

    PubMed

    Arnason, Gardar

    2017-04-01

    This article discusses the roles of ethicists in the governance of synthetic biology. I am particularly concerned with the idea of self-regulation of bioscience and its relationship to public discourse about ethical issues in bioscience. I will look at the role of philosophical ethicists at different levels and loci, from the "embedded ethicist" in the laboratory or research project, to ethicists' impact on policy and public discourse. In a democratic society, the development of governance frameworks for emerging technologies, such as synthetic biology, needs to be guided by a well-informed public discourse. In the case of synthetic biology, the public discourse has to go further than merely considering technical issues of biosafety and biosecurity, or risk management, to consider more philosophical issues concerning the meaning and value of "life" between the natural and the synthetic. I argue that ethicists have moral expertise to bring to the public arena, which consists not only in guiding the debate but also in evaluating arguments and moral positions and making normative judgments. When ethicists make normative claims or moral judgments, they must be transparent about their theoretical positions and basic moral standpoints.

  2. Silica Microspheres Are Superior to Polystyrene for Microvesicle Analysis by Flow Cytometry

    DTIC Science & Technology

    2015-02-16

    Vacutainer® tubes (BD Biosciences, San Jose, CA, USA) that contained sodium citrate. Platelet - rich plasma (PRP) was prepared by centrifugation of the...Microvesicles derived from platelets , leukocytes, and endothelial cells have been reported in a variety of biological fluids that include plasma ...blood tube at 200 ×g for 10 min. Platelet -poor plasma (PPP) was prepared by centrifugation of the blood tube at 3,000 ×g for 10 min followed by a second

  3. Nutritional Products from Space Research

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Six scientists from Martin Marietta who did research for NASA on algae as food supply, oxygen source and a recycling agent for long duration space travel founded Martek Biosciences Corporation. Martek's main product is Formulaid for infants, an algae-based, vegetable-like oil containing two essential polyunsaturated fatty acids known as DHA (docosahexaenoic acid) and ARA (arachidonic acid). The acids are found in human milk but not in most infant formulas, and they are believed to be associated with mental and visual development. Formulaid is on the market in two European countries and licensed to the Mead Johnson Division of Bristol-Myers Squibb, American Home Products and others.

  4. Advanced Plant Habitat - Packing and Planting Seeds

    NASA Image and Video Library

    2017-02-15

    Dr. Oscar Monje, a research scientist, packs a growing substrate called arcillite in the science carrier, or base, of the Advanced Plant Habitat (APH) inside a laboratory at the Space Station Processing Facility at NASA's Kennedy Space Center in Florida. Seated at right is Susan Manning-Roach, a quality assurance specialist on the Engineering Services Contract. Developed by NASA and ORBITEC of Madison, Wisconsin, the APH is the largest plant chamber built for the agency. It is a fully automated plant growth facility that will be used to conduct bioscience research on the International Space Station. The APH will be delivered to the space station aboard future Commercial Resupply Services missions.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weiss, Charles J.; Wiedner, Eric S.; Roberts, John A.

    Nickel phosphine complexes with pendant amines have been found to be electrocatalysts for the oxidation of primary and secondary alcohols, with turnover frequencies as high as 3.3 s-1. These complexes are the first electrocatalysts for alcohol oxidation based on non-precious metals, which will be critical for use in fuel cells. The research by CJW, ESW, and AMA was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. The research by JASR was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center fundedmore » by the U.S. Department of Energy, Office of Science. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.« less

  6. Challenges and opportunities for early-career Teaching-Focussed academics in the biosciences.

    PubMed

    Hubbard, Katharine; Gretton, Sarah; Jones, Katherine; Tallents, Lucy

    2015-01-01

    Twenty-seven percent of academics in UK Higher Education (HE) are in Teaching-Focussed positions, making major contributions to undergraduate programmes in an era of high student expectations when it comes to teaching quality. However, institutional support for Teaching-Focussed academics is often limited, both in terms of peer networking and opportunities for career development. As four early-career stage Teaching-Focussed academics working in a variety of institutions, we explore what motivated our choices to make teaching our primary academic activity, and the challenges that we have faced in doing so. In addition to highlighting the need for universities to fully recognise the achievements of teaching staff, we discuss the role that the various biosciences learned societies have in supporting Teaching-Focussed academics. We identify that there is a need for the learned societies to come together and pool their expertise in this area. The fragmented nature of the Teaching-Focussed academic community means that clear sources of national support are needed in order to best enable the next generation of bioscience educators to reach their full potential.

  7. Challenges and opportunities for early-career Teaching-Focussed academics in the biosciences

    PubMed Central

    Hubbard, Katharine; Gretton, Sarah; Jones, Katherine; Tallents, Lucy

    2015-01-01

    Twenty-seven percent of academics in UK Higher Education (HE) are in Teaching-Focussed positions, making major contributions to undergraduate programmes in an era of high student expectations when it comes to teaching quality. However, institutional support for Teaching-Focussed academics is often limited, both in terms of peer networking and opportunities for career development. As four early-career stage Teaching-Focussed academics working in a variety of institutions, we explore what motivated our choices to make teaching our primary academic activity, and the challenges that we have faced in doing so. In addition to highlighting the need for universities to fully recognise the achievements of teaching staff, we discuss the role that the various biosciences learned societies have in supporting Teaching-Focussed academics. We identify that there is a need for the learned societies to come together and pool their expertise in this area. The fragmented nature of the Teaching-Focussed academic community means that clear sources of national support are needed in order to best enable the next generation of bioscience educators to reach their full potential. PMID:25977754

  8. Providing ethical guidance for collaborative research in developing countries

    PubMed Central

    Morris, Nina

    2015-01-01

    Experience has shown that the application of ethical guidelines developed for research in developed countries to research in developing countries can be, and often is, impractical and raises a number of contentious issues. Various attempts have been made to provide guidelines more appropriate to the developing world context; however, to date these efforts have been dominated by the fields of bioscience, medical research and nutrition. There is very little advice available for those seeking to undertake collaborative social science or natural science research in developing countries and what is there tends to be held within disparate sources. Charting the development of a set of ethics documentation for future use by the Ecosystem Services for Poverty Alleviation (ESPA) programme research community, this paper outlines past and present attitudes towards ethics procedures amongst this community and suggests ways in which ethics procedures might be made more relevant and user-friendly to researchers working in this area. PMID:26640509

  9. Preface.

    PubMed

    Ditlevsen, Susanne; Lansky, Petr

    2016-06-01

    This Special Issue of Mathematical Biosciences and Engineering contains 11 selected papers presented at the Neural Coding 2014 workshop. The workshop was held in the royal city of Versailles in France, October 6-10, 2014. This was the 11th of a series of international workshops on this subject, the first held in Prague (1995), then Versailles (1997), Osaka (1999), Plymouth (2001), Aulla (2003), Marburg (2005), Montevideo (2007), Tainan (2009), Limassol (2010), and again in Prague (2012). Also selected papers from Prague were published as a special issue of Mathematical Biosciences and Engineering and in this way a tradition was started. Similarly to the previous workshops, this was a single track multidisciplinary event bringing together experimental and computational neuroscientists. The Neural Coding Workshops are traditionally biennial symposia. They are relatively small in size, interdisciplinary with major emphasis on the search for common principles in neural coding. The workshop was conceived to bring together scientists from different disciplines for an in-depth discussion of mathematical model-building and computational strategies. Further information on the meeting can be found at the NC2014 website at https://colloque6.inra.fr/neural_coding_2014. The meeting was supported by French National Institute for Agricultural Research, the world's leading institution in this field. This Special Issue of Mathematical Biosciences and Engineering contains 11 selected papers presented at the Neural Coding 2014 workshop. The workshop was held in the royal city of Versailles in France, October 6-10, 2014. This was the 11th of a series of international workshops on this subject, the first held in Prague (1995), then Versailles (1997), Osaka (1999), Plymouth (2001), Aulla (2003), Marburg (2005), Montevideo (2007), Tainan (2009), Limassol (2010), and again in Prague (2012). Also selected papers from Prague were published as a special issue of Mathematical Biosciences and Engineering and in this way a tradition was started. Similarly to the previous workshops, this was a single track multidisciplinary event bringing together experimental and computational neuroscientists. The Neural Coding Workshops are traditionally biennial symposia. They are relatively small in size, interdisciplinary with major emphasis on the search for common principles in neural coding. The workshop was conceived to bring together scientists from different disciplines for an in-depth discussion of mathematical model-building and computational strategies. Further information on the meeting can be found at the NC2014 website at https://colloque6.inra.fr/neural_coding_2014. The meeting was supported by French National Institute for Agricultural Research, the world's leading institution in this field. Understanding how the brain processes information is one of the most challenging subjects in neuroscience. The papers presented in this special issue show a small corner of the huge diversity of this field, and illustrate how scientists with different backgrounds approach this vast subject. The diversity of disciplines engaged in these investigations is remarkable: biologists, mathematicians, physicists, psychologists, computer scientists, and statisticians, all have original tools and ideas by which to try to elucidate the underlying mechanisms. In this issue, emphasis is put on mathematical modeling of single neurons. A variety of problems in computational neuroscience accompanied with a rich diversity of mathematical tools and approaches are presented. We hope it will inspire and challenge the readers in their own research. We would like to thank the authors for their valuable contributions and the referees for their priceless effort of reviewing the manuscripts. Finally, we would like to thank Yang Kuang for supporting us and making this publication possible.

  10. Acquisition of Oceanographic Measurements from Baleen Whales and Acquisition of Oceanographic Measurements from Baleen Whales: Field Deployments of Tags Developed Under Grant ONR (N00014-13-1-0854)

    DTIC Science & Technology

    2015-09-30

    Jonas Teilmann Department of Bioscience Aarhus University Fredriksborgvej 399 DK-4000 Roskilde Denmark phone: +45 21424291 fax: +45 87 16 87 51...Mammal Research Unit (SMRU, www.smru.st-andrews.ac.uk), University of St. Andrews, Scotland. WORK COMPLETED The project developed a prototype CTD...temperature and depth components from that work along with the tag controller/transmitter etc, are all still valid. • The risk for building a new tag fall

  11. Biomaterials in medical devices: an interview with Jörg Vienken of Fresenius Medical Care, Germany.

    PubMed

    Vienken, Jörg

    2012-06-01

    Biomaterial and biopolymer research have significant impact on the development as well as application of biotechnology. Biotechnology Journal recently attended the "Nanomaterials for Biomedical Technologies 2012" conference. We were privileged to have the opportunity to ask Prof. Dr. Jörg Vienken, VP of BioSciences at Fresenius Medical Care, a few questions relating to medical devices, the importance of publishing for industry, and also his advice for young scientists/engineers looking for a career in industry. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Advanced Plant Habitat (APH)

    NASA Image and Video Library

    2017-03-16

    A test unit, or prototype, of NASA's Advanced Plant Habitat (APH) with its first initial grow test in the Space Station Processing Facility at the agency's Kennedy Space Center in Florida. The taller plants pictured are dwarf wheat and the smaller plants are Arabidopsis. Developed by NASA and ORBITEC of Madison, Wisconsin, the APH is the largest plant chamber built for the agency. It is a fully automated plant growth facility that will be used to conduct bioscience research on the International Space Station. The APH will be delivered to the space station aboard future Commercial Resupply Services missions.

  13. Yeasts for Global Happiness: report of the 14th International Congress on Yeasts (ICY14) held in Awaji Island.

    PubMed

    Watanabe, Daisuke; Takagi, Hiroshi

    2017-02-01

    The 14th International Congress on Yeasts (ICY14) was held at Awaji Yumebutai International Conference Center (Awaji, Hyogo) in Japan from 11 to 15 September 2016. The main slogan of ICY14 was 'Yeasts for Global Happiness', which enabled us to acknowledge the high-potential usefulness of yeasts contributing to the global happiness in terms of food/beverage, health/medicine and energy/environment industries, as well as to basic biosciences. In addition, two more concepts were introduced: 'from Japan to the world' and 'from senior to junior'. As it was the first ICY meeting held in Japan or other Asian countries, ICY14 provided a good opportunity to widely spread the great achievements by Japanese and Asian yeast researchers, such as those by the 2016 Nobel Laureate Dr. Yoshinori Ohsumi, and also, to convey the fun and importance of yeasts to the next generation of researchers from Asia and all over the world. As a result, a total of 426 yeast lovers from 42 countries (225 overseas and 201 domestic participants) with different generations attended ICY14 to share the latest knowledge of a wide range of yeast research fields and to join active and constructive scientific discussions. © 2017 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd.

  14. The biological sciences in nursing: a developing country perspective.

    PubMed

    Kyriacos, Una; Jordan, Sue; van den Heever, Jean

    2005-10-01

    This paper reports a study to inform curriculum development by exploring the contribution of bioscience education programmes to nurses' clinical practice, their understanding of the rationale for practice, and their perceptions of their continuing professional development needs. The future of the health services worldwide depends on nurse education programmes equipping practitioners to deliver safe and effective patient care. In the developed world, the structure and indicative content of nursing curricula have been debated extensively. However, despite the rapid expansion in nursing roles brought about by social change, there is little information on the educational needs of nurses in developing countries. This study was undertaken in government teaching hospitals in Cape Town, South Africa in 2003. A purposive sample of 54 nurses from a range of clinical settings completed questionnaires and described critical incidents where bioscience knowledge had directed practice. Questionnaires were analysed descriptively, in the main. Analysis of critical incident reports was based on Akinsanya's bionursing model. Most nurses felt that their understanding of the biological, but not the physical sciences, was adequate or better: all felt confident with their knowledge of anatomy, compared with 57.4% (31/54) for microbiology. Respondents attributed the successes and failures of their education programmes to their teachers' delivery of content, ability to relate to practice and management of the process of learning. The biological, but not the physical, sciences were universally (96-100%) regarded as relevant to nursing. However, the critical incidents and nurses' own reports indicated a need for further education in pharmacology (40/54, 74.1%) and microbiology (29/54, 53.7%). To meet the needs of nurses in developing countries, and empower them to meet the increasingly complex demands of their expanding roles, nurse educators need to consider increasing the curriculum content in certain key areas, including pharmacology and microbiology.

  15. Mapping the yeast host cell response to recombinant membrane protein production: relieving the biological bottlenecks.

    PubMed

    Ashe, Mark P; Bill, Roslyn M

    2011-06-01

    Understanding the structures and functions of membrane proteins is an active area of research within bioscience. Membrane proteins are key players in essential cellular processes such as the uptake of nutrients, the export of waste products, and the way in which cells communicate with their environment. It is therefore not surprising that membrane proteins are targeted by over half of all prescription drugs. Since most membrane proteins are not abundant in their native membranes, it is necessary to produce them in recombinant host cells to enable further structural and functional studies. Unfortunately, achieving the required yields of functional recombinant membrane proteins is still a bottleneck in contemporary bioscience. This has highlighted the need for defined and rational optimization strategies based upon experimental observation rather than relying on trial and error. We have published a transcriptome and subsequent genetic analysis that has identified genes implicated in high-yielding yeast cells. These results have highlighted a role for alterations to a cell's protein synthetic capacity in the production of high yields of recombinant membrane protein: paradoxically, reduced protein synthesis favors higher yields. These results highlight a potential bottleneck at the protein folding or translocation stage of protein production. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. p95HER2 Methionine 611 Carboxy-Terminal Fragment Is Predictive of Trastuzumab Adjuvant Treatment Benefit in the FinHer Trial.

    PubMed

    Sperinde, Jeff; Huang, Weidong; Vehtari, Aki; Chenna, Ahmed; Kellokumpu-Lehtinen, Pirkko-Liisa; Winslow, John; Bono, Petri; Lie, Yolanda S; Petropoulos, Christos J; Weidler, Jodi; Joensuu, Heikki

    2018-03-13

    Purpose: Expression of p95HER2 (p95), a truncated form of the HER2 receptor, which lacks the trastuzumab binding site but retains kinase activity, has been reported as a prognostic biomarker for poor outcomes in patients with trastuzumab-treated HER2-positive metastatic breast cancer. The impact of p95 expression on trastuzumab treatment efficacy in early HER2-positive breast cancer is less clear. In the current study, p95 was tested as a predictive marker of trastuzumab treatment benefit in the HER2-positive subset of the FinHer adjuvant phase III trial. Experimental Design: In the FinHer trial, 232 patients with HER2-positive early breast cancer were randomized to receive chemotherapy plus 9 weeks of trastuzumab or no trastuzumab treatment. Quantitative p95 protein expression was measured in formalin-fixed paraffin-embedded samples using the p95 VeraTag assay (Monogram Biosciences), specific for the M611 form of p95. Quantitative HER2 protein expression was measured using the HERmark assay (Monogram Biosciences). Distant disease-free survival (DDFS) was used as the primary outcome measure. Results: In the arm receiving chemotherapy only, increasing log 10 (p95) correlated with shorter DDFS (HR, 2.0; P = 0.02). In the arm receiving chemotherapy plus trastuzumab ( N = 95), increasing log 10 (p95) was not correlated with a shorter DDFS. In a combined analysis of both treatment arms, high breast tumor p95 content was significantly correlated with trastuzumab treatment benefit in multivariate models (interaction P = 0.01). Conclusions: A high p95HER2/HER2 ratio identified patients with metastatic breast cancer with poor outcomes on trastuzumab-based therapies. Further investigation of the p95HER2/HER2 ratio as a potential prognostic or predictive biomarker for HER2-targeted therapy is warranted. Clin Cancer Res; 1-7. ©2018 AACR. ©2018 American Association for Cancer Research.

  17. Proceedings of the Annual Chemical Defense Bioscience Review (5th) Held at Columbia, Maryland on 29-31 May 1985. Appendix 1

    DTIC Science & Technology

    1985-06-01

    and Meyer, H.G. Life Sciences 36: 1715-1720, 1985. 3. Van Helden, H.P.M.; van der Well, H.J.; and Wolthius, O.L. TNO Technical Report # MBL-1984-3...SYNTHESIS IN OUR LABORA- TORY BY STANDARD LITERATURE PROCEDURES OR AS A GIFT FROM PHARMA - CEUTICAL MANUFACTURERS THAT MARKET THE DRUGS, ALL OF THE COM- POUNDS...Rosenberry, T. L. Croatia Chemica Acto 1975, _7 235 Incursion of other steps then general base catalysis, such as confor-:ational changes, in rate

  18. Comparative epigenetics: relevance to the regulation of production and health traits in cattle.

    PubMed

    Doherty, Rachael; O' Farrelly, Cliona; Meade, Kieran G

    2014-08-01

    With the development of genomic, transcriptomic and bioinformatic tools, recent advances in molecular technologies have significantly impacted bovine bioscience research and are revolutionising animal selection and breeding. Integration of epigenetic information represents yet another challenging molecular frontier. Epigenetics is the study of biochemical modifications to DNA and to histones, the proteins that provide stability to DNA. These epigenetic changes are induced by environmental stimuli; they alter gene expression and are potentially heritable. Epigenetics research holds the key to understanding how environmental factors contribute to phenotypic variation in traits of economic importance in cattle including development, nutrition, behaviour and health. In this review, we discuss the potential applications of epigenetics in bovine research, using breakthroughs in human and murine research to signpost the way. © 2014 Stichting International Foundation for Animal Genetics.

  19. Science & Technology Review September 2017

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duoss, Eric B.; Kotta, Paul R.; Meissner, Caryn N.

    This is the September 2017 edition of the LLNL, Science and Technology Review. At Lawrence Livermore National Laboratory, we focus on science and technology research to ensure our nation’s security. We also apply that expertise to solve other important national problems in energy, bioscience, and the environment. Science & Technology Review is published eight times a year to communicate, to a broad audience, the Laboratory’s scientific and technological accomplishments in fulfilling its primary missions. The publication’s goal is to help readers understand these accomplishments and appreciate their value to the individual citizen, the nation, and the world.

  20. Advanced Plant Habitat - Packing and Planting Seeds

    NASA Image and Video Library

    2017-02-15

    Inside a laboratory at the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, scientists prepared the science carrier, or base, of the Advanced Plant Habitat (APH). A growing substrate called arcillite was packed down in the base and coverings were secured on top of the base. Developed by NASA and ORBITEC of Madison, Wisconsin, the APH is the largest plant chamber built for the agency. It is a fully automated plant growth facility that will be used to conduct bioscience research on the International Space Station. The APH will be delivered to the space station aboard future Commercial Resupply Services missions.

  1. Biohumanities: rethinking the relationship between biosciences, philosophy and history of science, and society.

    PubMed

    Stotz, Karola; Griffiths, Paul E

    2008-03-01

    We argue that philosophical and historical research can constitute a "Biohumanities" that deepens our understanding of biology itself engages in constructive "science criticism," helps formulate new "visions of biology," and facilitates "critical science communication." We illustrate these ideas with two recent "experimental philosophy" studies of the concept of the gene and of the concept of innateness conducted by ourselves and collaborators. We conclude that the complex and often troubled relations between science and society are critical to both parties, and argue that the philosophy and history of science can help to make this relationship work.

  2. Apprenticeship in science research: whom does it serve?

    NASA Astrophysics Data System (ADS)

    Davies, Paul

    2016-12-01

    This article advances the thinking of Thompson, Conaway and Dolan's "Undergraduate students' development of social, cultural, and human capital in a network research experience". Set against a background of change in the biosciences, and participation, it firstly explores ideas of what it means to be a scientist, then challenges the current view of the apprenticeship model of career trajectory, before going onto to consider the nature of participation in communities of practice and issues related to underrepresented minority groups in science. Central to this analysis is the place that the notion of habitus plays in thinking about shaping future scientists and the how this can both support, but also suppress, opportunities for individuals through a maintenance of the status quo.

  3. Advanced Plant Habitat (APH) Seed Planting

    NASA Image and Video Library

    2018-05-09

    Inside a laboratory in the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, research scientists prepare the science carrier, or base, of the Advanced Plant Habitat (APH) for planting of Arabidopsis seeds, commonly known as thale cress, on Wednesday, May 9. The APH base will be delivered to the International Space Station aboard Orbital ATK's Cygnus spacecraft on the company's ninth Commercial Resupply Services mission for NASA. The APH is the largest plant chamber built for the agency. It is a fully automated plant growth facility that is being used to conduct bioscience research on the space station. Cygnus will launch on Orbital ATK's Antares rocket from Wallops Flight Facility in Wallops Island, Virginia. Launch is targeted for May 20, 2018.

  4. Biomedical wellness challenges and opportunities

    NASA Astrophysics Data System (ADS)

    Tangney, John F.

    2012-06-01

    The mission of ONR's Human and Bioengineered Systems Division is to direct, plan, foster, and encourage Science and Technology in cognitive science, computational neuroscience, bioscience and bio-mimetic technology, social/organizational science, training, human factors, and decision making as related to future Naval needs. This paper highlights current programs that contribute to future biomedical wellness needs in context of humanitarian assistance and disaster relief. ONR supports fundamental research and related technology demonstrations in several related areas, including biometrics and human activity recognition; cognitive sciences; computational neurosciences and bio-robotics; human factors, organizational design and decision research; social, cultural and behavioral modeling; and training, education and human performance. In context of a possible future with automated casualty evacuation, elements of current science and technology programs are illustrated.

  5. Science and Technology Review April/May 2011

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nikolic, R J

    2011-03-03

    At Lawrence Livermore National Laboratory, the focus is on science and technology research to ensure the nation's security. That expertise is also applied to solve other important national problems in energy, bioscience, and the environment. Science & Technology Review is published eight time a year to communicate, to a broad audience, the Laboratory's scientific and technological accomplishments in fulfilling its primary missions. The publication's goal is to help readers understand these accomplishments and appreciate their value to the individual citizen, the nation, and the world. In this issue for April/May 2011, the features are 'Dealing with the Nonlinear Battlefield' andmore » 'From Video to Knowledge.' Research highlights are 'Kinetic Models Predict Biofuel Efficiency,' Going Deep with MEGa-Rays' and 'Energy on Demand.'« less

  6. Advanced Plant Habitat - Packing and Planting Seeds

    NASA Image and Video Library

    2017-02-15

    Dr. Oscar Monje, (far right) a research scientist, packs a growing substrate called arcillite in the science carrier, or base, of the Advanced Plant Habitat (APH) inside a laboratory at the Space Station Processing Facility at NASA's Kennedy Space Center in Florida. Assisting him is Jeffrey Richards, project science coordinator with SGT on the Engineering Services Contract (ESC). Seated in the foreground is Susan Manning-Roach, a quality assurance specialist, also with ESC. Developed by NASA and ORBITEC of Madison, Wisconsin, the APH is the largest plant chamber built for the agency. It is a fully automated plant growth facility that will be used to conduct bioscience research on the International Space Station. The APH will be delivered to the space station aboard future Commercial Resupply Services missions.

  7. Laboratory Directed Research and Development Program FY 2006

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen

    2007-03-08

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operatemore » unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness.« less

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mann, Reinhold C.

    This is the first formal progress report issued by the ORNL Life Sciences Division. It covers the period from February 1997 through December 1998, which has been critical in the formation of our new division. The legacy of 50 years of excellence in biological research at ORNL has been an important driver for everyone in the division to do their part so that this new research division can realize the potential it has to make seminal contributions to the life sciences for years to come. This reporting period is characterized by intense assessment and planning efforts. They included thorough scrutinymore » of our strengths and weaknesses, analyses of our situation with respect to comparative research organizations, and identification of major thrust areas leading to core research efforts that take advantage of our special facilities and expertise. Our goal is to develop significant research and development (R&D) programs in selected important areas to which we can make significant contributions by combining our distinctive expertise and resources in the biological sciences with those in the physical, engineering, and computational sciences. Significant facilities in mouse genomics, mass spectrometry, neutron science, bioanalytical technologies, and high performance computing are critical to the success of our programs. Research and development efforts in the division are organized in six sections. These cluster into two broad areas of R&D: systems biology and technology applications. The systems biology part of the division encompasses our core biological research programs. It includes the Mammalian Genetics and Development Section, the Biochemistry and Biophysics Section, and the Computational Biosciences Section. The technology applications part of the division encompasses the Assessment Technology Section, the Environmental Technology Section, and the Toxicology and Risk Analysis Section. These sections are the stewards of the division's core competencies. The common mission of the division is to advance science and technology to understand complex biological systems and their relationship with human health and the environment.« less

  9. Active Hydrogenation Catalyst with a Structured, Peptide-Based Outer-Coordination Sphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jain, Avijita; Buchko, Garry W.; Reback, Matthew L.

    2012-10-05

    The synthesis, catalytic activity, and structural features of a rhodium-based hydrogenation catalyst containing a phosphine ligand coupled to a 14-residue peptide are reported. Both CD and NMR spectroscopy show that the peptide adopts a helical structure in 1:1:1 TFE/MeCN/H2O that is maintained when the peptide is attached to the ligand and when the ligand is attached to the metal complex. The metal complex hydrogenates aqueous solutions of 3-butenol to 1-butanol at 360 ± 50 turnovers/Rh/h at 294 K. This peptide- based catalyst represents a starting point for developing and characterizing a peptide-based outer-coordination sphere that can be used to introducemore » enzyme-like features into molecular catalysts. This work was funded by the US DOE Basic Energy Sciences, Chemical Sciences, Geoscience and Biosciences Division (AJ, JCL and WJS), the Office of Science Early Career Research Program through the Office of Basic Energy Sciences (GWB, MLR and WJS). Part of the research was conducted at the W.R. Wiley Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by U.S. Department of Energy’s Office of Biolog-ical and Environmental Research (BER) program located at Pacific Northwest National Laboratory (PNNL). PNNL is operated by Battelle for the U.S. Department of Energy.« less

  10. 77 FR 51786 - Proposed Collection; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-27

    ... to increasing the number and quality of the nation's scientists and engineers. Application... Engineering, Biosciences, Chemical Engineering, Chemistry, Civil Engineering, Cognitive, Neural, and...

  11. Research Translation and Emerging Health Technologies: Synthetic Biology and Beyond.

    PubMed

    Chan, Sarah

    2016-12-09

    New health technologies are rapidly emerging from various areas of bioscience research, such as gene editing, regenerative medicine and synthetic biology. These technologies raise promising medical possibilities but also a range of ethical considerations. Apart from the issues involved in considering whether novel health technologies can or should become part of mainstream medical treatment once established, the process of research translation to develop such therapies itself entails particular ethical concerns. In this paper I use synthetic biology as an example of a new and largely unexplored area of health technology to consider the ways in which novel health technologies are likely to emerge and the ethical challenges these will present. I argue that such developments require us to rethink conventional attitudes towards clinical research, the roles of doctors/researchers and patients/participants with respect to research, and the relationship between science and society; and that a broader framework is required to address the plurality of stakeholder roles and interests involved in the development of treatments based on novel technologies.

  12. New developments in crystallography: exploring its technology, methods and scope in the molecular biosciences.

    PubMed

    Helliwell, John R

    2017-08-31

    Since the Protein Data Bank (PDB) was founded in 1971, there are now over 120,000 depositions, the majority of which are from X-ray crystallography and 90% of those made use of synchrotron beamlines. At the Cambridge Structure Database (CSD), founded in 1965, there are more than 800,000 'small molecule' crystal structure depositions and a very large number of those are relevant in the biosciences as ligands or cofactors. The technology for crystal structure analysis is still developing rapidly both at synchrotrons and in home labs. Determination of the details of the hydrogen atoms in biological macromolecules is well served using neutrons as probe. Large multi-macromolecular complexes cause major challenges to crystallization; electrons as probes offer unique advantages here. Methods developments naturally accompany technology change, mainly incremental but some, such as the tuneability, intensity and collimation of synchrotron radiation, have effected radical changes in capability of biological crystallography. In the past few years, the X-ray laser has taken X-ray crystallography measurement times into the femtosecond range. In terms of applications many new discoveries have been made in the molecular biosciences. The scope of crystallographic techniques is indeed very wide. As examples, new insights into chemical catalysis of enzymes and relating ligand bound structures to thermodynamics have been gained but predictive power is seen as not yet achieved. Metal complexes are also an emerging theme for biomedicine applications. Our studies of coloration of live and cooked lobsters proved to be an unexpected favourite with the public and schoolchildren. More generally, public understanding of the biosciences and crystallography's role within the field have been greatly enhanced by the United Nations International Year of Crystallography coordinated by the International Union of Crystallography. This topical review describes each of these areas along with illustrative results to document the scope of each methodology. © 2017 The Author(s).

  13. A CRISPR/Cas9 Toolbox for Multiplexed Plant Genome Editing and Transcriptional Regulation.

    PubMed

    Lowder, Levi G; Zhang, Dengwei; Baltes, Nicholas J; Paul, Joseph W; Tang, Xu; Zheng, Xuelian; Voytas, Daniel F; Hsieh, Tzung-Fu; Zhang, Yong; Qi, Yiping

    2015-10-01

    The relative ease, speed, and biological scope of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated Protein9 (Cas9)-based reagents for genomic manipulations are revolutionizing virtually all areas of molecular biosciences, including functional genomics, genetics, applied biomedical research, and agricultural biotechnology. In plant systems, however, a number of hurdles currently exist that limit this technology from reaching its full potential. For example, significant plant molecular biology expertise and effort is still required to generate functional expression constructs that allow simultaneous editing, and especially transcriptional regulation, of multiple different genomic loci or multiplexing, which is a significant advantage of CRISPR/Cas9 versus other genome-editing systems. To streamline and facilitate rapid and wide-scale use of CRISPR/Cas9-based technologies for plant research, we developed and implemented a comprehensive molecular toolbox for multifaceted CRISPR/Cas9 applications in plants. This toolbox provides researchers with a protocol and reagents to quickly and efficiently assemble functional CRISPR/Cas9 transfer DNA constructs for monocots and dicots using Golden Gate and Gateway cloning methods. It comes with a full suite of capabilities, including multiplexed gene editing and transcriptional activation or repression of plant endogenous genes. We report the functionality and effectiveness of this toolbox in model plants such as tobacco (Nicotiana benthamiana), Arabidopsis (Arabidopsis thaliana), and rice (Oryza sativa), demonstrating its utility for basic and applied plant research. © 2015 American Society of Plant Biologists. All Rights Reserved.

  14. Laboratory Directed Research and Development FY2010 Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, K J

    2011-03-22

    A premier applied-science laboratory, Lawrence Livermore National Laboratory (LLNL) has at its core a primary national security mission - to ensure the safety, security, and reliability of the nation's nuclear weapons stockpile without nuclear testing, and to prevent and counter the spread and use of weapons of mass destruction: nuclear, chemical, and biological. The Laboratory uses the scientific and engineering expertise and facilities developed for its primary mission to pursue advanced technologies to meet other important national security needs - homeland defense, military operations, and missile defense, for example - that evolve in response to emerging threats. For broader nationalmore » needs, LLNL executes programs in energy security, climate change and long-term energy needs, environmental assessment and management, bioscience and technology to improve human health, and for breakthroughs in fundamental science and technology. With this multidisciplinary expertise, the Laboratory serves as a science and technology resource to the U.S. government and as a partner with industry and academia. This annual report discusses the following topics: (1) Advanced Sensors and Instrumentation; (2) Biological Sciences; (3) Chemistry; (4) Earth and Space Sciences; (5) Energy Supply and Use; (6) Engineering and Manufacturing Processes; (7) Materials Science and Technology; Mathematics and Computing Science; (8) Nuclear Science and Engineering; and (9) Physics.« less

  15. The impact of maths support tutorials on mathematics confidence and academic performance in a cohort of HE Animal Science students

    PubMed Central

    Amory, Jonathan

    2014-01-01

    Students embarking on a bioscience degree course, such as Animal Science, often do not have sufficient experience in mathematics. However, mathematics forms an essential and integral part of any bioscience degree and is essential to enhance employability. This paper presents the findings of a project looking at the effect of mathematics tutorials on a cohort of first year animal science and management students. The results of a questionnaire, focus group discussions and academic performance analysis indicate that small group tutorials enhance students’ confidence in maths and improve students’ academic performance. Furthermore, student feedback on the tutorial programme provides a deeper insight into student experiences and the value students assign to the tutorials. PMID:25024925

  16. Contentious problems in bioscience and biotechnology: a pilot study of an approach to ethics education.

    PubMed

    Berry, Roberta M; Borenstein, Jason; Butera, Robert J

    2013-06-01

    This manuscript describes a pilot study in ethics education employing a problem-based learning approach to the study of novel, complex, ethically fraught, unavoidably public, and unavoidably divisive policy problems, called "fractious problems," in bioscience and biotechnology. Diverse graduate and professional students from four US institutions and disciplines spanning science, engineering, humanities, social science, law, and medicine analyzed fractious problems employing "navigational skills" tailored to the distinctive features of these problems. The students presented their results to policymakers, stakeholders, experts, and members of the public. This approach may provide a model for educating future bioscientists and bioengineers so that they can meaningfully contribute to the social understanding and resolution of challenging policy problems generated by their work.

  17. The impact of maths support tutorials on mathematics confidence and academic performance in a cohort of HE Animal Science students.

    PubMed

    van Veggel, Nieky; Amory, Jonathan

    2014-01-01

    Students embarking on a bioscience degree course, such as Animal Science, often do not have sufficient experience in mathematics. However, mathematics forms an essential and integral part of any bioscience degree and is essential to enhance employability. This paper presents the findings of a project looking at the effect of mathematics tutorials on a cohort of first year animal science and management students. The results of a questionnaire, focus group discussions and academic performance analysis indicate that small group tutorials enhance students' confidence in maths and improve students' academic performance. Furthermore, student feedback on the tutorial programme provides a deeper insight into student experiences and the value students assign to the tutorials.

  18. Advanced Plant Habitat (APH) Seed Planting

    NASA Image and Video Library

    2018-05-09

    Inside a laboratory in the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, a research scientist prepares a fixative which will be used to secure Arabidopsis seeds, commonly known as thale cress, inside the science carrier, or base, of the Advanced Plant Habitat (APH) on Wednesday, May 9. The APH base will be delivered to the International Space Station aboard Orbital ATK's Cygnus spacecraft on the company's ninth Commercial Resupply Services mission for NASA. The APH is the largest plant chamber built for the agency. It is a fully automated plant growth facility that is being used to conduct bioscience research on the space station. Cygnus will launch on Orbital ATK's Antares rocket from Wallops Flight Facility in Wallops Island, Virginia. Launch is targeted for May 20, 2018.

  19. Advanced Plant Habitat - Packing and Planting Seeds

    NASA Image and Video Library

    2017-02-15

    Inside a laboratory at the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, a scientist inserts Apogee wheat seeds into the science carrier, or base, of the Advanced Plant Habitat (APH). A growing substrate called arcillite was packed down in the base and coverings were secured on top of the base. Developed by NASA and ORBITEC of Madison, Wisconsin, the APH is the largest plant chamber built for the agency. It is a fully automated plant growth facility that will be used to conduct bioscience research on the International Space Station. The APH will be delivered to the space station aboard future Commercial Resupply Services missions.

  20. Advanced Plant Habitat - Packing and Planting Seeds

    NASA Image and Video Library

    2017-02-15

    Inside a laboratory at the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, scientists prepare Apogee wheat seeds for the science carrier, or base, of the Advanced Plant Habitat (APH). A growing substrate called arcillite was packed down in the base and coverings were secured on top of the base. Developed by NASA and ORBITEC of Madison, Wisconsin, the APH is the largest plant chamber built for the agency. It is a fully automated plant growth facility that will be used to conduct bioscience research on the International Space Station. The APH will be delivered to the space station aboard future Commercial Resupply Services missions.

  1. KSC-08pd0165

    NASA Image and Video Library

    2008-02-06

    KENNEDY SPACE CENTER, FLA. -- On the flight deck of space shuttle Atlantis, STS-122 Mission Specialist Stanley Love looks at cables and controls. The STS-122 mission to the International Space Station is scheduled to launch at 2:45 p.m. Feb. 7 with a crew of seven. Atlantis will carry the Columbus Laboratory, Europe's largest contribution to the construction of the station. Columbus will support scientific and technological research in a microgravity environment. Columbus is a multifunctional, pressurized laboratory that will be permanently attached to the Harmony module to carry out experiments in materials science, fluid physics and biosciences, as well as to perform a number of technological applications. Photo credit: NASA/Kim Shiflett

  2. Advanced Plant Habitat - Packing and Planting Seeds

    NASA Image and Video Library

    2017-02-15

    Inside a laboratory at the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, scientists are preparing the science carrier, or base, of the Advanced Plant Habitat (APH). A growing substrate called arcillite has been packed down in the base and coverings are being secured to seal the base. Developed by NASA and ORBITEC of Madison, Wisconsin, the APH is the largest plant chamber built for the agency. It is a fully automated plant growth facility that will be used to conduct bioscience research on the International Space Station. The APH will be delivered to the space station aboard future Commercial Resupply Services missions.

  3. Taking stock: A meta-analysis of studies on the media's coverage of science.

    PubMed

    Schäfer, Mike S

    2012-08-01

    The presentation of science in the mass media is one of the most important questions facing social scientists who analyse science. Accordingly, media coverage of science has been a constant focal point in the respective literature, and a flurry of such publications has appeared in the past few years. Yet the activity and growth of the respective research have not been accompanied by systematic overviews. This article aims to provide such an overview by means of a meta-analysis: it analyses existing studies systematically and provides an empirical overview of the literature. The analysis shows that while the research field grew significantly in the past few years and employs a variety of research strategies and methods, it has been biased in three ways: mainly natural sciences (and namely biosciences and medicine), Western countries, and print media have been analysed.

  4. Presidential Green Chemistry Challenge: 2001 Small Business Award

    EPA Pesticide Factsheets

    Presidential Green Chemistry Challenge 2001 award winner, EDEN Bioscience, discovered and commercialized harpins: nontoxic, naturally occurring, biodegradable proteins that activate a plant's defense and growth mechanisms.

  5. Interscience Conference on Antimicrobial Agents and Chemotherapy--49th annual meeting. Part 2. 12-15 September 2009, San Francisco, CA, USA.

    PubMed

    Turner, Ben; Murch, Lisa

    2009-11-01

    The Interscience Conference on Antimicrobial Agents and Chemotherapy held in San Francisco included topics covering new therapeutic developments for the treatment of infectious diseases. This conference report highlights selected presentations on several antibiotics in development including a broad-spectrum penem beta-lactam antibiotic, a novel siderophore monobactam, as well as other novel antibiotics. Investigational drugs discussed include sulopenem and sulopenem etzadroxil (both Pfizer Inc), BAL-30072 (Basilea Pharmaceutica International Ltd), TP-120 and TP-787 (both Tetraphase Pharmaceuticals Inc), NAI-107 (New Anti Infectives Consortium/NexThera Biosciences) and ABI-200 (AdRem Biotech/US Department of Agriculture).

  6. Topical Calendula officinalis L. successfully treated exfoliative cheilitis: a case report

    PubMed Central

    2009-01-01

    Authors describe a case of recurrent exfoliative cheilitis that responded to treatment with a standardized topical preparation of Calendula officinalis L. An eighteen-year-old man was referred to UNESP - São Paulo State University, Department of Biosciences and Oral Diagnosis, São José dos Campos Dental School to investigate a chronic dry scaling lesion on his lips. The patient's main chief was aesthetic compromising. Corticoid therapy was suspended and Calendula officinalis ointment 10% for ad libitum use has been prescribed. The results presented allow the authors to consider Calendula officinalis L. as a potential therapy in cases of cheilitis exfoliative. PMID:20062714

  7. Fabrication of free-standing, electrochemically active, and biocompatible graphene oxide-polyaniline and graphene-polyaniline hybrid papers.

    PubMed

    Yan, Xingbin; Chen, Jiangtao; Yang, Jie; Xue, Qunji; Miele, Philippe

    2010-09-01

    In this work, we report a low-cost technique via simple rapid-mixture polymerization of aniline using graphene oxide (GO) and graphene papers as substrates, respectively, to fabricate free-standing, flexible GO-polyaniline (PANI) and graphene-PANI hybrid papers. The morphology and microstructure of the obtained papers were characterized by FESEM, FTIR, Raman, and XRD. As results, nanostructural PANI can be deposited on the surfaces of GO and graphene papers, forming thin, lightweight, and flexible paperlike hybrid papers. The hybrid papers display a remarkable combination of excellent electrochemical performances and biocompatibility, making the paperlike materials attractive for new kinds of applications in biosciences.

  8. Communication and re-use of chemical information in bioscience

    PubMed Central

    Murray-Rust, Peter; Mitchell, John BO; Rzepa, Henry S

    2005-01-01

    The current methods of publishing chemical information in bioscience articles are analysed. Using 3 papers as use-cases, it is shown that conventional methods using human procedures, including cut-and-paste are time-consuming and introduce errors. The meaning of chemical terms and the identity of compounds is often ambiguous. valuable experimental data such as spectra and computational results are almost always omitted. We describe an Open XML architecture at proof-of-concept which addresses these concerns. Compounds are identified through explicit connection tables or links to persistent Open resources such as PubChem. It is argued that if publishers adopt these tools and protocols, then the quality and quantity of chemical information available to bioscientists will increase and the authors, publishers and readers will find the process cost-effective. PMID:16026614

  9. Establishing an academic biobank in a resource-challenged environment.

    PubMed

    Soo, Cassandra Claire; Mukomana, Freedom; Hazelhurst, Scott; Ramsay, Michele

    2017-05-24

    Past practices of informal sample collections and spreadsheets for data and sample management fall short of best-practice models for biobanking, and are neither cost effective nor efficient to adequately serve the needs of large research studies. The biobank of the Sydney Brenner Institute for Molecular Bioscience serves as a bioresource for institutional, national and international research collaborations. It provides high-quality human biospecimens from African populations, secure data and sample curation and storage, as well as monitored sample handling and management processes, to promote both non-communicable and infectious-disease research. Best-practice guidelines have been adapted to align with a low-resource setting and have been instrumental in the development of a quality-management system, including standard operating procedures and a quality-control regimen. Here, we provide a summary of 10 important considerations for initiating and establishing an academic research biobank in a low-resource setting. These include addressing ethical, legal, technical, accreditation and/or certification concerns and financial sustainability.

  10. Establishing an academic biobank in a resource-challenged environment

    PubMed Central

    Soo, C C; Mukomana, F; Hazelhurst, S; Ramsay, M

    2018-01-01

    Past practices of informal sample collections and spreadsheets for data and sample management fall short of best-practice models for biobanking, and are neither cost effective nor efficient to adequately serve the needs of large research studies. The biobank of the Sydney Brenner Institute for Molecular Bioscience serves as a bioresource for institutional, national and international research collaborations. It provides high-quality human biospecimens from African populations, secure data and sample curation and storage, as well as monitored sample handling and management processes, to promote both non-communicable and infectious-disease research. Best-practice guidelines have been adapted to align with a low-resource setting and have been instrumental in the development of a quality-management system, including standard operating procedures and a quality-control regimen. Here, we provide a summary of 10 important considerations for initiating and establishing an academic research biobank in a low-resource setting. These include addressing ethical, legal, technical, accreditation and/or certification concerns and financial sustainability. PMID:28604319

  11. Single-molecule fluorescence microscopy review: shedding new light on old problems

    PubMed Central

    Shashkova, Sviatlana

    2017-01-01

    Fluorescence microscopy is an invaluable tool in the biosciences, a genuine workhorse technique offering exceptional contrast in conjunction with high specificity of labelling with relatively minimal perturbation to biological samples compared with many competing biophysical techniques. Improvements in detector and dye technologies coupled to advances in image analysis methods have fuelled recent development towards single-molecule fluorescence microscopy, which can utilize light microscopy tools to enable the faithful detection and analysis of single fluorescent molecules used as reporter tags in biological samples. For example, the discovery of GFP, initiating the so-called ‘green revolution’, has pushed experimental tools in the biosciences to a completely new level of functional imaging of living samples, culminating in single fluorescent protein molecule detection. Today, fluorescence microscopy is an indispensable tool in single-molecule investigations, providing a high signal-to-noise ratio for visualization while still retaining the key features in the physiological context of native biological systems. In this review, we discuss some of the recent discoveries in the life sciences which have been enabled using single-molecule fluorescence microscopy, paying particular attention to the so-called ‘super-resolution’ fluorescence microscopy techniques in live cells, which are at the cutting-edge of these methods. In particular, how these tools can reveal new insights into long-standing puzzles in biology: old problems, which have been impossible to tackle using other more traditional tools until the emergence of new single-molecule fluorescence microscopy techniques. PMID:28694303

  12. Computational biology for cardiovascular biomarker discovery.

    PubMed

    Azuaje, Francisco; Devaux, Yvan; Wagner, Daniel

    2009-07-01

    Computational biology is essential in the process of translating biological knowledge into clinical practice, as well as in the understanding of biological phenomena based on the resources and technologies originating from the clinical environment. One such key contribution of computational biology is the discovery of biomarkers for predicting clinical outcomes using 'omic' information. This process involves the predictive modelling and integration of different types of data and knowledge for screening, diagnostic or prognostic purposes. Moreover, this requires the design and combination of different methodologies based on statistical analysis and machine learning. This article introduces key computational approaches and applications to biomarker discovery based on different types of 'omic' data. Although we emphasize applications in cardiovascular research, the computational requirements and advances discussed here are also relevant to other domains. We will start by introducing some of the contributions of computational biology to translational research, followed by an overview of methods and technologies used for the identification of biomarkers with predictive or classification value. The main types of 'omic' approaches to biomarker discovery will be presented with specific examples from cardiovascular research. This will include a review of computational methodologies for single-source and integrative data applications. Major computational methods for model evaluation will be described together with recommendations for reporting models and results. We will present recent advances in cardiovascular biomarker discovery based on the combination of gene expression and functional network analyses. The review will conclude with a discussion of key challenges for computational biology, including perspectives from the biosciences and clinical areas.

  13. Cancer Cell Biology: A Student-Centered Instructional Module Exploring the Use of Multimedia to Enrich Interactive, Constructivist Learning of Science

    PubMed Central

    Bockholt, Susanne M.; West, J. Paige; Bollenbacher, Walter E.

    2003-01-01

    Multimedia has the potential of providing bioscience education novel learning environments and pedagogy applications to foster student interest, involve students in the research process, advance critical thinking/problem-solving skills, and develop conceptual understanding of biological topics. Cancer Cell Biology, an interactive, multimedia, problem-based module, focuses on how mutations in protooncogenes and tumor suppressor genes can lead to uncontrolled cell proliferation by engaging students as research scientists/physicians with the task of diagnosing the molecular basis of tumor growth for a group of patients. The process of constructing the module, which was guided by scientist and student feedback/responses, is described. The completed module and insights gained from its development are presented as a potential “multimedia pedagogy” for the development of other multimedia science learning environments. PMID:12822037

  14. Near quantitative agreement of model free DFT- MD predictions with XAFS observations of the hydration structure of highly charged transition metal ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fulton, John L.; Bylaska, Eric J.; Bogatko, Stuart A.

    DFT-MD simulations (PBE96 and PBE0) with MD-XAFS scattering calculations (FEFF9) show near quantitative agreement with new and existing XAFS measurements for a comprehensive series of transition metal ions which interact with their hydration shells via complex mechanisms (high spin, covalency, charge transfer, etc.). This work was supported by the U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences. Pacific Northwest National Laboratory (PNNL) is operated for the U.S. DOE by Battelle. A portion of the research was performed using EMSL, a national scientific user facility sponsored by the U.S. DOE's Office ofmore » Biological and Environmental Research and located at Pacific Northwest National Laboratory.« less

  15. Education: Bioscience Education through Bioparks.

    ERIC Educational Resources Information Center

    Robinson, Michael H.

    1988-01-01

    Suggests creating a biological park to stress the interrelationships between plants and animals. States that the techniques of a zoo should be applied to paleontology, anatomy, anthropology. Gives advantages of this creative concept. (RT)

  16. Biosciences | Argonne National Laboratory

    Science.gov Websites

    understanding of the fundamental molecular mechanisms of life. Our goal is to enable important advances in processes at the molecular level. As a division, our goals include gaining predictive understanding of

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Somerville, Chris

    Berkeley Lab's Chris Somerville is a leading authority on the structure and function of plant cell walls, which comprise most of the body mass of higher plants. He views the knowledge of cell wall structure and function as furthering the development of plants with improved usefulness: these plants are strong potential sources of renewable materials and biofuel feedstocks. His scientific expertise defines an ideal match of his interest - in the development of cellulosic and other solar-to-fuel science - with his recent appointment as Director of the Energy Biosciences Institute (EBI). With colleagues in biology, physical sciences, engineering, and environmentalmore » and the social sciences, he now leads the EBI multidisciplinary teams' research efforts to develop next-generation, carbon-neutral transportation fuels.« less

  18. OA-7 Advanced Plant Habitat

    NASA Image and Video Library

    2017-02-15

    Inside a laboratory at the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, scientists prepare Apogee wheat seeds for the science carrier, or base, of the Advanced Plant Habitat (APH). A growing substrate called arcillite is packed down in the base and coverings are secured to seal the base. The Apogee wheat seeds are then inserted into the carrier. Developed by NASA and ORBITEC of Madison, Wisconsin, the APH is the largest plant chamber built for the agency. It is a fully automated plant growth facility that will be used to conduct bioscience research on the International Space Station. The APH will be delivered to the space station aboard future Commercial Resupply Services missions.

  19. KSC-07pd3534

    NASA Image and Video Library

    2007-12-03

    KENNEDY SPACE CENTER, FLA. -- STS-122 Mission Specialist Stanley Love checks the fit of his helmet for his launch and entry suit before space shuttle Atlantis' launch scheduled for 4:31 p.m. EST on Dec. 6. Love will make his first shuttle flight. Atlantis will carry the Columbus Lab, Europe’s largest contribution to the construction of the International Space Station. It will support scientific and technological research in a microgravity environment. Columbus, a program of ESA, is a multifunctional, pressurized laboratory that will be permanently attached to Node 2 of the space station to carry out experiments in materials science, fluid physics and biosciences, as well as to perform a number of technological applications. Photo credit: NASA/Kim Shiflett

  20. KSC-07pd3531

    NASA Image and Video Library

    2007-12-03

    KENNEDY SPACE CENTER, FLA. -- STS-122 Mission Specialist Stanley Love dons his launch and entry suit for a final fitting before space shuttle Atlantis' launch scheduled for 4:31 p.m. EST on Dec. 6. Love will make his first shuttle flight. Atlantis will carry the Columbus Lab, Europe’s largest contribution to the construction of the International Space Station. It will support scientific and technological research in a microgravity environment. Columbus, a program of ESA, is a multifunctional, pressurized laboratory that will be permanently attached to Node 2 of the space station to carry out experiments in materials science, fluid physics and biosciences, as well as to perform a number of technological applications. Photo credit: NASA/Kim Shiflett

  1. A biosafety level 2 virology lab for biotechnology undergraduates

    PubMed Central

    Matza‐Porges, Sigal

    2017-01-01

    Abstract Medical, industrial, and basic research relies heavily on the use of viruses and vectors. Therefore, it is important that bioscience undergraduates learn the practicalities of handling viruses. Teaching practical virology in a student laboratory setup presents safety challenges, however. The aim of this article is to describe the design and implementation of a virology laboratory, with emphasis on student safety, for biotechnology undergraduates. Cell culture techniques, animal virus infection, quantification, and identification are taught at a biosafety level 2 for a diverse group of undergraduates ranging from 20 to 50 students per group. © 2017 by The International Union of Biochemistry and Molecular Biology, 45(6):537–543, 2017. PMID:28758332

  2. KSC-07pd3536

    NASA Image and Video Library

    2007-12-03

    KENNEDY SPACE CENTER, FLA. -- STS-122 Mission Specialist Rex Walheim checks the helmet to his launch and entry suit for a final fitting before space shuttle Atlantis' launch scheduled for 4:31 p.m. EST on Dec. 6. Walheim will make his second shuttle flight. Atlantis will carry the Columbus Lab, Europe’s largest contribution to the construction of the International Space Station. It will support scientific and technological research in a microgravity environment. Columbus, a program of ESA, is a multifunctional, pressurized laboratory that will be permanently attached to Node 2 of the space station to carry out experiments in materials science, fluid physics and biosciences, as well as to perform a number of technological applications. Photo credit: NASA/Kim Shiflett

  3. KSC-07pd3533

    NASA Image and Video Library

    2007-12-03

    KENNEDY SPACE CENTER, FLA. -- STS-122 Mission Specialist Rex Walheim checks the helmet to his launch and entry suit for a final fitting before space shuttle Atlantis' launch scheduled for 4:31 p.m. EST on Dec. 6. Walheim will make his second shuttle flight. Atlantis will carry the Columbus Lab, Europe’s largest contribution to the construction of the International Space Station. It will support scientific and technological research in a microgravity environment. Columbus, a program of ESA, is a multifunctional, pressurized laboratory that will be permanently attached to Node 2 of the space station to carry out experiments in materials science, fluid physics and biosciences, as well as to perform a number of technological applications. Photo credit: NASA/Kim Shiflett

  4. KSC-07pd3535

    NASA Image and Video Library

    2007-12-03

    KENNEDY SPACE CENTER, FLA. -- STS-122 Mission Specialist Leland Melvin dons his launch and entry suit for a final fitting before space shuttle Atlantis' launch scheduled for 4:31 p.m. EST on Dec. 6. Melvin will make his first shuttle flight. Atlantis will carry the Columbus Lab, Europe’s largest contribution to the construction of the International Space Station. It will support scientific and technological research in a microgravity environment. Columbus, a program of ESA, is a multifunctional, pressurized laboratory that will be permanently attached to Node 2 of the space station to carry out experiments in materials science, fluid physics and biosciences, as well as to perform a number of technological applications. Photo credit: NASA/Kim Shiflett

  5. KSC-07pd3537

    NASA Image and Video Library

    2007-12-03

    KENNEDY SPACE CENTER, FLA. -- STS-122 Mission Specialist Leland Melvin tests his gloves for a final fitting before space shuttle Atlantis' launch scheduled for 4:31 p.m. EST on Dec. 6. Melvin will make his first shuttle flight. Atlantis will carry the Columbus Lab, Europe’s largest contribution to the construction of the International Space Station. It will support scientific and technological research in a microgravity environment. Columbus, a program of ESA, is a multifunctional, pressurized laboratory that will be permanently attached to Node 2 of the space station to carry out experiments in materials science, fluid physics and biosciences, as well as to perform a number of technological applications. Photo credit: NASA/Kim Shiflett

  6. Minimizing the formation of coke and methane on Co nanoparticles in steam reforming of biomass-derived oxygenates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Junming; Mei, Donghai; Karim, Ayman M.

    2013-06-01

    Fundamental understanding and control of chemical transformations are essential to the development of technically feasible and economically viable catalytic processes for efficient conversion of biomass to fuels and chemicals. Using an integrated experimental and theoretical approach, we report high hydrogen selectivity and catalyst durability of acetone steam reforming (ASR) on inert carbon supported Co nanoparticles. The observed catalytic performance is further elucidated on the basis of comprehensive first-principles calculations. Instead of being considered as an undesired intermediate prone for catalyst deactivation during bioethanol steam reforming (ESR), acetone is suggested as a key and desired intermediate in proposed two-stage ESR processmore » that leads to high hydrogen selectivity and low methane formation on Co-based catalysts. The significance of the present work also sheds a light on controlling the chemical transformations of key intermediates in biomass conversion such as ketones. We gratefully acknowledge the financial support from U. S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences, and the Laboratory directed research and development (LDRD) project of Pacific Northwest National Laboratory (PNNL). Computing time was granted by the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL). The EMSL is a U.S. DOE national scientific user facility located at PNNL, and sponsored by the U.S. DOE’s Office of Biological and Environmental Research.« less

  7. Teaching wave phenomena via biophysical applications

    NASA Astrophysics Data System (ADS)

    Reich, Daniel; Robbins, Mark; Leheny, Robert; Wonnell, Steven

    2014-03-01

    Over the past several years we have developed a two-semester second-year physics course sequence for students in the biosciences, tailored in part to the needs of undergraduate biophysics majors. One semester, ``Biological Physics,'' is based on the book of that name by P. Nelson. This talk will focus largely on the other semester, ``Wave Phenomena with Biophysical Applications,'' where we provide a novel introduction to the physics of waves, primarily through the study of experimental probes used in the biosciences that depend on the interaction of electromagnetic radiation with matter. Topic covered include: Fourier analysis, sound and hearing, diffraction - culminating in an analysis of x-ray fiber diffraction and its use in the determination of the structure of DNA - geometrical and physical optics, the physics of modern light microscopy, NMR and MRI. Laboratory exercises tailored to this course will also be described.

  8. 'Personalized medicine': what's in a name?

    PubMed

    Pokorska-Bocci, Anna; Stewart, Alison; Sagoo, Gurdeep S; Hall, Alison; Kroese, Mark; Burton, Hilary

    2014-03-01

    Over the last decade genomics and other molecular biosciences have enabled new capabilities that, according to many, have the potential to revolutionize medicine and healthcare. These developments have been associated with a range of terminologies, including 'precision', 'personalized', 'individualized' and 'stratified' medicine. In this article, based on a literature review, we examine how the terms have arisen and their various meanings and definitions. We discuss the impact of the new technologies on disease classification, prevention and management. We suggest that although genomics and molecular biosciences will undoubtedly greatly enhance the power of medicine, they will not lead to a conceptually new paradigm of medical care. What is new is the portfolio of modern tools that medicine and healthcare can use for better targeted approaches to health and disease management, and the sociopolitical contexts within which these tools are applied.

  9. Diagnosis of Clostridium difficile-associated disease: examination of multiple algorithms using toxin EIA, glutamate dehydrogenase EIA and loop-mediated isothermal amplification.

    PubMed

    Bamber, A I; Fitzsimmons, K; Cunniffe, J G; Beasor, C C; Mackintosh, C A; Hobbs, G

    2012-01-01

    The laboratory diagnosis of Clostridium difficile infection (CDI) needs to be accurate and timely to ensure optimal patient management, infection control and reliable surveillance. Three methods are evaluated using 810 consecutive stool samples against toxigenic culture: CDT TOX A/B Premier enzyme immunoassay (EIA) kit (Meridian Bioscience, Europe), Premier EIA for C. difficile glutamate dehydrogenase (GDH) (Meridian Bioscience, Europe) and the Illumigene kit (Meridian Bioscience, Europe), both individually and within combined testing algorithms. The study revealed that the CDT TOX A/B Premier EIA gave rise to false-positive and false-negative results and demonstrated poor sensitivity (56.47%), compared to Premier EIA for C. difficile GDH (97.65%), suggesting this GDH EIA can be a useful negative screening method. Results for the Illumigene assay alone showed sensitivity, specificity, negative predictive value (NPV) and positive predictive value (PPV) of 91.57%, 98.07%, 99.03% and 84.44%, respectively. A two-stage algorithm using Premier EIA for C. difficile GDH/Illumigene assay yielded superior results compared with other testing algorithms (91.57%, 98.07%, 99.03% and 84.44%, respectively), mirroring the Illumigene performance. However, Illumigene is approximately half the cost of current polymerase chain reaction (PCR) methods, has a rapid turnaround time and requires no specialised skill base, making it an attractive alternative to assays such as the Xpert C. difficile assay (Cepheid, Sunnyvale, CA). A three-stage algorithm offered no improvement and would hamper workflow.

  10. Microorganisms under high pressure--adaptation, growth and biotechnological potential.

    PubMed

    Mota, Maria J; Lopes, Rita P; Delgadillo, Ivonne; Saraiva, Jorge A

    2013-12-01

    Hydrostatic pressure is a well-known physical parameter which is now considered an important variable of life, since organisms have the ability to adapt to pressure changes, by the development of resistance against this variable. In the past decades a huge interest in high hydrostatic pressure (HHP) technology is increasingly emerging among food and biosciences researchers. Microbial specific stress responses to HHP are currently being investigated, through the evaluation of pressure effects on biomolecules, cell structure, metabolic behavior, growth and viability. The knowledge development in this field allows a better comprehension of pressure resistance mechanisms acquired at sub-lethal pressures. In addition, new applications of HHP could arise from these studies, particularly in what concerns to biotechnology. For instance, the modulation of microbial metabolic pathways, as a response to different pressure conditions, may lead to the production of novel compounds with potential biotechnological and industrial applications. Considering pressure as an extreme life condition, this review intends to present the main findings so far reported in the scientific literature, focusing on microorganisms with the ability to withstand and to grow in high pressure conditions, whether they have innated or acquired resistance, and show the potential of the application of HHP technology for microbial biotechnology. © 2013.

  11. Developing Research Capabilities in Energy Biosciences: Design principles of photosynthetic biofuel production.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donald D. Brown; David Savage

    2012-06-30

    The current fossil fuel-based energy infrastructure is not sustainable. Solar radiation is a plausible alternative, but realizing it as such will require significant technological advances in the ability to harvest light energy and convert it into suitable fuels. The biological system of photosynthesis can carry out these reactions, and in principle could be engineered using the tools of synthetic biology. One desirable implementation would be to rewire the reactions of a photosynthetic bacterium to direct the energy harvested from solar radiation into the synthesis of the biofuel H2. Proposed here is a series of experiments to lay the basic sciencemore » groundwork for such an attempt. The goal is to elucidate the transcriptional network of photosynthesis using a novel driver-reporter screen, evolve more robust hydrogenases for improved catalysis, and to test the ability of the photosynthetic machinery to directly produce H2 in vivo. The results of these experiments will have broad implications for the understanding of photosynthesis, enzyme function, and the engineering of biological systems for sustainable energy production. The ultimate impact could be a fundamental transformation of the world's energy economy.« less

  12. 12th Annual ALS Users' Association Meeting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, Arthur L.

    1999-12-17

    Science took the front seat as 219 Advanced Light Source (ALS) users and staff gathered on Monday and Tuesday, October 18 and 19 for the twelfth annual users' meeting. The bulk of the meeting was dedicated to reports on science at the ALS. Packed into two busy days were 31 invited oral presentations and 80 submitted poster presentations, as well as time to visit 24 vendor booths. The oral sessions were dedicated to environmental science, chemical dynamics, biosciences, magnetic materials, and atomic and molecular science. In addition, there was an ALS highlights session that emphasized new results and a sessionmore » comprising highlights from the young scientists who will carry the ALS into the future.« less

  13. Institutional profile: the national Swedish academic drug discovery & development platform at SciLifeLab

    PubMed Central

    Arvidsson, Per I; Sandberg, Kristian; Sakariassen, Kjell S

    2017-01-01

    The Science for Life Laboratory Drug Discovery and Development Platform (SciLifeLab DDD) was established in Stockholm and Uppsala, Sweden, in 2014. It is one of ten platforms of the Swedish national SciLifeLab which support projects run by Swedish academic researchers with large-scale technologies for molecular biosciences with a focus on health and environment. SciLifeLab was created by the coordinated effort of four universities in Stockholm and Uppsala: Stockholm University, Karolinska Institutet, KTH Royal Institute of Technology and Uppsala University, and has recently expanded to other Swedish university locations. The primary goal of the SciLifeLab DDD is to support selected academic discovery and development research projects with tools and resources to discover novel lead therapeutics, either molecules or human antibodies. Intellectual property developed with the help of SciLifeLab DDD is wholly owned by the academic research group. The bulk of SciLifeLab DDD's research and service activities are funded from the Swedish state, with only consumables paid by the academic research group through individual grants. PMID:28670468

  14. Institutional profile: the national Swedish academic drug discovery & development platform at SciLifeLab.

    PubMed

    Arvidsson, Per I; Sandberg, Kristian; Sakariassen, Kjell S

    2017-06-01

    The Science for Life Laboratory Drug Discovery and Development Platform (SciLifeLab DDD) was established in Stockholm and Uppsala, Sweden, in 2014. It is one of ten platforms of the Swedish national SciLifeLab which support projects run by Swedish academic researchers with large-scale technologies for molecular biosciences with a focus on health and environment. SciLifeLab was created by the coordinated effort of four universities in Stockholm and Uppsala: Stockholm University, Karolinska Institutet, KTH Royal Institute of Technology and Uppsala University, and has recently expanded to other Swedish university locations. The primary goal of the SciLifeLab DDD is to support selected academic discovery and development research projects with tools and resources to discover novel lead therapeutics, either molecules or human antibodies. Intellectual property developed with the help of SciLifeLab DDD is wholly owned by the academic research group. The bulk of SciLifeLab DDD's research and service activities are funded from the Swedish state, with only consumables paid by the academic research group through individual grants.

  15. Science & Technology Review July/August 2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vogt, Ramona L.; Meissner, Caryn N.; Chinn, Ken B.

    At Lawrence Livermore National Laboratory, we focus on science and technology research to ensure our nation’s security. We also apply that expertise to solve other important national problems in energy, bioscience, and the environment. Science & Technology Review is published eight times a year to communicate, to a broad audience, the Laboratory’s scientific and technological accomplishments in fulfilling its primary missions. The publication’s goal is to help readers understand these accomplishments and appreciate their value to the individual citizen, the nation, and the world. In this issue for the months of July and August 2016, there are two features: onemore » on Science and Technology in Support of Nuclear Nonproliferation, and another on Seeking Out Hidden Radioactive Materials. Then there are highlights are three research projects--on optics, plasma science, and the nature of neutrinos--along with a news section and patents and awards.« less

  16. sbv IMPROVER: Modern Approach to Systems Biology.

    PubMed

    Guryanova, Svetlana; Guryanova, Anna

    2017-01-01

    The increasing amount and variety of data in biosciences call for innovative methods of visualization, scientific verification, and pathway analysis. Novel approaches to biological networks and research quality control are important because of their role in development of new products, improvement, and acceleration of existing health policies and research for novel ways of solving scientific challenges. One such approach is sbv IMPROVER. It is a platform that uses crowdsourcing and verification to create biological networks with easy public access. It contains 120 networks built in Biological Expression Language (BEL) to interpret data from PubMed articles with high-quality verification available for free on the CBN database. Computable, human-readable biological networks with a structured syntax are a powerful way of representing biological information generated from high-density data. This article presents sbv IMPROVER, a crowd-verification approach for the visualization and expansion of biological networks.

  17. DNA Data Bank of Japan: 30th anniversary.

    PubMed

    Kodama, Yuichi; Mashima, Jun; Kosuge, Takehide; Kaminuma, Eli; Ogasawara, Osamu; Okubo, Kousaku; Nakamura, Yasukazu; Takagi, Toshihisa

    2018-01-04

    The DNA Data Bank of Japan (DDBJ) Center (http://www.ddbj.nig.ac.jp) has been providing public data services for 30 years since 1987. We are collecting nucleotide sequence data and associated biological information from researchers as a member of the International Nucleotide Sequence Database Collaboration (INSDC), in collaboration with the US National Center for Biotechnology Information and the European Bioinformatics Institute. The DDBJ Center also services the Japanese Genotype-phenotype Archive (JGA) with the National Bioscience Database Center to collect genotype and phenotype data of human individuals. Here, we outline our database activities for INSDC and JGA over the past year, and introduce submission, retrieval and analysis services running on our supercomputer system and their recent developments. Furthermore, we highlight our responses to the amended Japanese rules for the protection of personal information and the launch of the DDBJ Group Cloud service for sharing pre-publication data among research groups. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  18. Sandia National Laboratories: Locations: Kauai Test Facility

    Science.gov Websites

    Defense Systems & Assessments About Defense Systems & Assessments Program Areas Accomplishments Foundations Bioscience Computing & Information Science Electromagnetics Engineering Science Geoscience Suppliers iSupplier Account Accounts Payable Contract Information Construction & Facilities Contract

  19. The Year In Science.

    ERIC Educational Resources Information Center

    Discover, 1984

    1984-01-01

    Highlights advances/discoveries (and scientists responsible for them) in various science areas during 1983: space science (shuttle flights, Russia); astronomy (infrared satellite, inflationary universe); physics (W/Z particles); chemistry (carbon bonding); environment (acid rain, dioxins, El Nino); bioscience (chemical signals); paleontology…

  20. Helicos BioSciences.

    PubMed

    Milos, Patrice

    2008-04-01

    Helicos BioSciences Corporation is a life sciences company developing revolutionary new single molecule sequencing technology to provide the path to the US$1000 genome. True Single Molecule Sequencing (tSMS) will drive advancements in pharmacogenomics that can enable a better understanding of an individual's susceptibility to disease, develop more effective disease diagnoses and differentiate response to disease therapies. During 2007, genome-wide disease-association studies, the encylopedia of DNA elements (ENCODE) and the published genome sequence of two individuals have revealed human genome variation far more extensive than originally believed. These also demonstrated that common variations explain only a fraction of the genetic basis of disease. Therefore, the capability to understand an individual genome is critical in setting the foundation for the next great revolution in healthcare. Helicos is committed to this vision and will provide cost-effective genome sequencing and comprehensive analysis of the transcribed genome that can unlock the era of personalized healthcare.

  1. Pioneering better science through the 3Rs: an introduction to the national centre for the replacement, refinement, and reduction of animals in research (NC3Rs).

    PubMed

    Burden, Natalie; Chapman, Kathryn; Sewell, Fiona; Robinson, Vicky

    2015-03-01

    The National Centre for the Replacement, Refinement, and Reduction of Animals in Research (NC3Rs) is an independent scientific organization that is based in the United Kingdom, which was set up by the government to lead the discovery and application of new technologies and approaches that minimize the use of animals in research and improve animal welfare. The NC3Rs uses a range of strategies to improve and advance science through application of the 3Rs. These include funding basic research, open innovation (CRACK IT), and programs run by inhouse scientists. We present several case studies from the NC3Rs portfolio, featuring asthma research, the use of nonhuman primates in monoclonal antibody development, and CRACK IT. Finally, we anticipate the future, as we use our experience to move into new research fields and expand toward international collaboration. Here we highlight how equipping scientists with relevant and emerging 3Rs tools can help overcome the challenges and limitations of the use of animals in research to the benefit of the whole bioscience community.

  2. Pioneering Better Science through the 3Rs: An Introduction to the National Centre for the Replacement, Refinement, and Reduction of Animals in Research (NC3Rs)

    PubMed Central

    Burden, Natalie; Chapman, Kathryn; Sewell, Fiona; Robinson, Vicky

    2015-01-01

    The National Centre for the Replacement, Refinement, and Reduction of Animals in Research (NC3Rs) is an independent scientific organization that is based in the United Kingdom, which was set up by the government to lead the discovery and application of new technologies and approaches that minimize the use of animals in research and improve animal welfare. The NC3Rs uses a range of strategies to improve and advance science through application of the 3Rs. These include funding basic research, open innovation (CRACK IT), and programs run by inhouse scientists. We present several case studies from the NC3Rs portfolio, featuring asthma research, the use of nonhuman primates in monoclonal antibody development, and CRACK IT. Finally, we anticipate the future, as we use our experience to move into new research fields and expand toward international collaboration. Here we highlight how equipping scientists with relevant and emerging 3Rs tools can help overcome the challenges and limitations of the use of animals in research to the benefit of the whole bioscience community. PMID:25836967

  3. Programmable bio-nano-chip system: a flexible point-of-care platform for bioscience and clinical measurements

    PubMed Central

    McRae, Michael. P.; Simmons, Glennon. W.; Wong, Jorge; Shadfan, Basil; Gopalkrishnan, Sanjiv; Christodoulides, Nicolaos

    2015-01-01

    The development of integrated instrumentation for universal bioassay systems serves as a key goal for the lab-on-a-chip community. The programmable bio-nano-chip (p-BNC) system is a versatile multiplexed and multiclass chemical- and bio-sensing system for bioscience and clinical measurements. The system is comprised of two main components, a disposable cartridge and a portable analyzer. The customizable single-use plastic cartridges, which now can be manufactured in high volumes using injection molding, are designed for analytical performance, ease of use, reproducibility, and low cost. These labcard devices implement high surface area nano-structured biomarker capture elements that enable high performance signaling and are index matched to real-world biological specimens. This detection modality, along with the convenience of on-chip fluid storage in blisters and self-contained waste, represents a standard process to digitize biological signatures at the point-of-care. A companion portable analyzer prototype has been developed to integrate fluid motivation, optical detection, and automated data analysis, and it serves as the human interface for complete assay automation. In this report, we provide a systems-level perspective of the p-BNC universal biosensing platform with an emphasis on flow control, device integration, and automation. To demonstrate the flexibility of the p-BNC, we distinguish diseased and non-case patients across three significant disease applications: prostate cancer, ovarian cancer, and acute myocardial infarction. Progress towards developing a rapid 7 minute myoglobin assay is presented using the fully automated p-BNC system. PMID:26308851

  4. Saturday Morning Science programs: a model to increase diversity in the biosciences.

    PubMed

    Phillips, James L; Harris, Toi Blakley; Ihedigbo, Kara M Green; Hawkins, Jacqueline

    2012-01-01

    To examine a pathway program for middle and high school students from underrepresented backgrounds designed to foster career interest in the biomedical sciences. In 2002, the Institute of Medicine released a report entitled Unequal Treatment, which examined the racial and ethnic disparities in health and health care within the United States and encouraged the development of a diverse health care workforce as a means to reduce health care disparities. Saturday Morning Science (SMS) is a program model presented as a pipeline strategy that addresses this specific recommendation. SMS is a 10-week program that emphasized the importance of science and math. Post-SMS evaluations were conducted to assess biomedical career knowledge, attitudes regarding future career plans, and the effectiveness of the program. A total of 87.5% of middle and high school students who were enrolled in SMS completed the program (113 of 130). Seventy percent of SMS participants were underrepresented minorities. Snapshot program evaluation data exposed new ideas about science (strongly agree/agree, 98%; 64 of 65), exposed new ideas about medicine (strongly agree/agree, 97%; 63 of 65, and increased desire to enter science related field (strongly agree/agree 82% (53 of 65). SMS was designed to motivate students of underrepresented ethnic backgrounds from middle through high school to attend college and prepare for careers in the health sciences. SMS students had the opportunity to interact with scientists, physicians, medical and graduate students, and other academicians. They provided direction and guidance to ensure that students had meaningful experiences specifically designed to expose them to opportunities in the biosciences.

  5. Carbon Nanotube Membranes for Water Purification

    NASA Astrophysics Data System (ADS)

    Bakajin, Olgica

    2009-03-01

    Carbon nanotubes are an excellent platform for the fundamental studies of transport through channels commensurate with molecular size. Water transport through carbon nanotubes is also believed to be similar to transport in biological channels such as aquaporins. I will discuss the transport of gas, water and ions through microfabricated membranes with sub-2 nanometer aligned carbon nanotubes as ideal atomically-smooth pores. The measured gas flow through carbon nanotubes exceeded predictions of the Knudsen diffusion model by more than an order of magnitude. The measured water flow exceeded values calculated from continuum hydrodynamics models by more than three orders of magnitude and is comparable to flow rates extrapolated from molecular dynamics simulations and measured for aquaporins. More recent reverse osmosis experiments reveal ion rejection by our membranes. Based on our experimental findings, the current understanding of the fundamentals of water and gas transport and of ion rejection will be discussed. The potential application space that exploits these unique nanofluidic phenomena will be explored. The extremely high permeabilities of these membranes, combined with their small pore size will enable energy efficient filtration and eventually decrease the cost of water purification.[4pt] In collaboration with Francesco Fornasiero, Biosciences and Biotechnology Division, PLS, LLNL, Livermore, CA 94550; Sangil Kim, NSF Center for Biophotonics Science & Technology, University of California at Davis, Sacramento CA 95817; Jung Bin In, Mechanical Engineering Department, UC Berkeley, Berkeley CA 94720; Hyung Gyu Park, Jason K Holt, and Michael Stadermann, Biosciences and Biotechnology Division, PLS, LLNL; Costas P. Grigoropoulos, Mechanical Engineering Department, UC Berkeley; Aleksandr Noy, Biosciences and Biotechnology Division, PLS, LLNL and School of Natural Sciences, University of California at Merced.

  6. KSC-07pd3532

    NASA Image and Video Library

    2007-12-03

    KENNEDY SPACE CENTER, FLA. -- STS-122 Mission Specialist Hans Schlegel checks the helmet to his launch and entry suit for a final fitting before space shuttle Atlantis' launch scheduled for 4:31 p.m. EST on Dec. 6. Schlegel, who represents the European Space Agency, will make his second shuttle flight. Atlantis will carry the Columbus Lab, Europe’s largest contribution to the construction of the International Space Station. It will support scientific and technological research in a microgravity environment. Columbus, a program of ESA, is a multifunctional, pressurized laboratory that will be permanently attached to Node 2 of the space station to carry out experiments in materials science, fluid physics and biosciences, as well as to perform a number of technological applications. Photo credit: NASA/Kim Shiflett

  7. KSC-08pd0164

    NASA Image and Video Library

    2008-02-06

    KENNEDY SPACE CENTER, FLA. -- On the flight deck of space shuttle Atlantis, STS-122 Mission Specialist Hans Schlegel handles the camera to be used during the mission. Schlegel represents the European Space Agency. The STS-122 mission to the International Space Station is scheduled to launch at 2:45 p.m. Feb. 7 with a crew of seven. Atlantis will carry the Columbus Laboratory, Europe's largest contribution to the construction of the station. Columbus will support scientific and technological research in a microgravity environment. Columbus is a multifunctional, pressurized laboratory that will be permanently attached to the Harmony module to carry out experiments in materials science, fluid physics and biosciences, as well as to perform a number of technological applications. Photo credit: NASA/Kim Shiflett

  8. KSC-07pd3530

    NASA Image and Video Library

    2007-12-03

    KENNEDY SPACE CENTER, FLA. -- STS-122 Mission Specialist Hans Schlegel dons his launch and entry suit for a final fitting before space shuttle Atlantis' launch scheduled for 4:31 p.m. EST on Dec. 6. Schlegel, who represents the European Space Agency, will make his second shuttle flight. Atlantis will carry the Columbus Lab, Europe’s largest contribution to the construction of the International Space Station. It will support scientific and technological research in a microgravity environment. Columbus, a program of ESA, is a multifunctional, pressurized laboratory that will be permanently attached to Node 2 of the space station to carry out experiments in materials science, fluid physics and biosciences, as well as to perform a number of technological applications. Photo credit: NASA/Kim Shiflett

  9. Reducing Our Carbon Footprint: Converting Plants to Fuel (LBNL Science at the Theater)

    ScienceCinema

    Somerville, Chris [Univ. of California, Berkeley, CA (United States)

    2018-05-23

    Berkeley Lab's Chris Somerville is a leading authority on the structure and function of plant cell walls, which comprise most of the body mass of higher plants. He views the knowledge of cell wall structure and function as furthering the development of plants with improved usefulness: these plants are strong potential sources of renewable materials and biofuel feedstocks. His scientific expertise defines an ideal match of his interest - in the development of cellulosic and other solar-to-fuel science - with his recent appointment as Director of the Energy Biosciences Institute (EBI). With colleagues in biology, physical sciences, engineering, and environmental and the social sciences, he now leads the EBI multidisciplinary teams' research efforts to develop next-generation, carbon-neutral transportation fuels.

  10. Advanced Plant Habitat (APH) Seed Planting

    NASA Image and Video Library

    2018-05-09

    Inside a laboratory in the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, several varieties of Arabidopsis seeds, commonly known as thale cress, are being prepared for securing in the science carrier, or base, of the Advanced Plant Habitat (APH) on Wednesday, May 9. The APH base will be delivered to the International Space Station aboard Orbital ATK's Cygnus spacecraft on the company's ninth Commercial Resupply Services mission for NASA. The APH is the largest plant chamber built for the agency. It is a fully automated plant growth facility that is being used to conduct bioscience research on the space station. Cygnus will launch on Orbital ATK's Antares rocket from Wallops Flight Facility in Wallops Island, Virginia. Launch is targeted for May 20, 2018.

  11. New and improved proteomics technologies for understanding complex biological systems: Addressing a grand challenge in the life sciences

    PubMed Central

    Hood, Leroy E.; Omenn, Gilbert S.; Moritz, Robert L.; Aebersold, Ruedi; Yamamoto, Keith R.; Amos, Michael; Hunter-Cevera, Jennie; Locascio, Laurie

    2014-01-01

    This White Paper sets out a Life Sciences Grand Challenge for Proteomics Technologies to enhance our understanding of complex biological systems, link genomes with phenotypes, and bring broad benefits to the biosciences and the US economy. The paper is based on a workshop hosted by the National Institute of Standards and Technology (NIST) in Gaithersburg, MD, 14–15 February 2011, with participants from many federal R&D agencies and research communities, under the aegis of the US National Science and Technology Council (NSTC). Opportunities are identified for a coordinated R&D effort to achieve major technology-based goals and address societal challenges in health, agriculture, nutrition, energy, environment, national security, and economic development. PMID:22807061

  12. Honors

    NASA Astrophysics Data System (ADS)

    2014-01-01

    Peter Molnar, professor of geological sciences at the University of Colorado at Boulder, is the recipient of the 2014 Crafoord Prize in Geosciences, the Royal Swedish Academy of Sciences (RAS) announced on 16 January. RAS noted that the award is being presented to Molnar "for his ground-breaking contribution to the understanding of global tectonics, in particular the deformation of continents and the structure and evolution of mountain ranges, as well as the impact of tectonic processes on ocean-atmosphere circulation and climate." The award, which comes with a prize of 4 million Swedish kronor (about US$600,000), was established in 1980 to promote international basic research in astronomy, mathematics, geosciences, biosciences, and rheumatoid arthritis. According to RAS, those disciplines were chosen to complement those for which the Nobel Prizes are awarded.

  13. KSC-08pd0163

    NASA Image and Video Library

    2008-02-06

    KENNEDY SPACE CENTER, FLA. -- On the flight deck of space shuttle Atlantis, STS-122 Mission Specialist Hans Schlegel handles the camera to be used during the mission. Schlegel represents the European Space Agency. The STS-122 mission to the International Space Station is scheduled to launch at 2:45 p.m. Feb. 7 with a crew of seven. Atlantis will carry the Columbus Laboratory, Europe's largest contribution to the construction of the station. Columbus will support scientific and technological research in a microgravity environment. Columbus is a multifunctional, pressurized laboratory that will be permanently attached to the Harmony module to carry out experiments in materials science, fluid physics and biosciences, as well as to perform a number of technological applications. Photo credit: NASA/Kim Shiflett

  14. KSC-07pd2838

    NASA Image and Video Library

    2007-10-11

    KENNEDY SPACE CENTER, FLA. -- In the Vehicle Assembly Building at NASA's Kennedy Space Center, the frustum is lifted from a transporter to be moved onto a stand. The solid rocket booster segment will be added to the stack for space shuttle Atlantis, launch vehicle for mission STS-122 targeted for a December launch. Atlantis will be carrying the Columbus Laboratory, Europe’s largest contribution to the construction of the International Space Station. It will support scientific and technological research in a microgravity environment. Columbus, a program of ESA, is a multifunctional, pressurized laboratory that will be permanently attached to Node 2 of the space station to carry out experiments in materials science, fluid physics and biosciences, as well as to perform a number of technological applications. Photo credit: NASA/Jack Pfaller

  15. KSC-07pd2837

    NASA Image and Video Library

    2007-10-11

    KENNEDY SPACE CENTER, FLA. -- In the Vehicle Assembly Building at NASA's Kennedy Space Center, the frustum is lifted from a transporter to be moved onto a stand. The solid rocket booster segment will be added to the stack for space shuttle Atlantis, launch vehicle for mission STS-122 targeted for a December launch. Atlantis will be carrying the Columbus Laboratory, Europe’s largest contribution to the construction of the International Space Station. It will support scientific and technological research in a microgravity environment. Columbus, a program of ESA, is a multifunctional, pressurized laboratory that will be permanently attached to Node 2 of the space station to carry out experiments in materials science, fluid physics and biosciences, as well as to perform a number of technological applications. Photo credit: NASA/Jack Pfaller

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pukall, Rudiger; Lapidus, Alla L.; Glavina Del Rio, Tijana

    The genus Kribbella consists of 15 species, with Kribbella flavida (Park et al. 1999) as the type species. The name Kribbella was formed from the acronym of the Korea Research Institute of Bioscience and Biotechnology, KRIBB. Strains of the various Kribbella species were originally isolated from soil, potato, alum slate mine, patinas of catacombs or from horse racecourses. Here we describe the features of K. flavida together with the complete genome sequence and annotation. In addition to the 5.3 Mbp genome of Nocardioides sp. JS614, this is only the second completed genome sequence of the family Nocardioidaceae. The 7,579,488 bpmore » long genome with its 7,086 protein-coding and 60 RNA genes and is part of the Genomic Encyc-lopedia of Bacteria and Archaea project.« less

  17. 75 FR 47549 - Foreign-Trade Zone 119 - Minneapolis, Minnesota, Site Renumbering Notice

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-06

    ...)--Chaska Bio-Science Corporate Campus, located at the intersection of Carver County Road 10 and New U.S. Highway 212, Chaska (sunset provision - June 30, 2017); Site 8 (200 acres)--Elk Run Bio-Business Park...

  18. Intervention, integration and translation in obesity research: Genetic, developmental and metaorganismal approaches

    PubMed Central

    2011-01-01

    Obesity is the focus of multiple lines of inquiry that have -- together and separately -- produced many deep insights into the physiology of weight gain and maintenance. We examine three such streams of research and show how they are oriented to obesity intervention through multilevel integrated approaches. The first research programme is concerned with the genetics and biochemistry of fat production, and it links metabolism, physiology, endocrinology and neurochemistry. The second account of obesity is developmental and draws together epigenetic and environmental explanations that can be embedded in an evolutionary framework. The third line of research focuses on the role of gut microbes in the production of obesity, and how microbial activities interact with host genetics, development and metabolism. These interwoven explanatory strategies are driven by an orientation to intervention, both for experimental and therapeutic outcomes. We connect the integrative and intervention-oriented aspects of obesity research through a discussion of translation, broadening the concept to capture the dynamic, iterative processes of scientific practice and therapy development. This system-oriented analysis of obesity research expands the philosophical scrutiny of contemporary developments in the biosciences and biomedicine, and has the potential to enrich philosophy of science and medicine. PMID:21276254

  19. Life sciences payload definition and integration study. Volume 4: Appendix, costs, and data management requirements of the dedicated 30-day laboratory. [carry-on laboratory for Spacelab

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The results of the updated 30-day life sciences dedicated laboratory scheduling and costing activities are documented, and the 'low cost' methodology used to establish individual equipment item costs is explained in terms of its allowances for equipment that is commerical off-the-shelf, modified commercial, and laboratory prototype; a method which significantly lowers program costs. The costs generated include estimates for non-recurring development, recurring production, and recurring operations costs. A cost for a biomedical emphasis laboratory and a Delta cost to provide a bioscience and technology laboratory were also generated. All cost reported are commensurate with the design and schedule definitions available.

  20. Alternative interpretations of oil spill data

    USGS Publications Warehouse

    Piatt, John F.

    1997-01-01

    In his article "Oil, Seabirds, and Science" (BioScience 46: 587-597), John Wiens attempted to review Exxon Valdez oil spill (EVOS) damage assessment studies and the politics of EVOS science in one stroke. In my opinion, neither purpose was particularly well served.

  1. Establishment of Maximum Voluntary Compressive Neck Tolerance Levels

    DTIC Science & Technology

    2011-07-01

    Bridges Casey Pirnstill Chris Burneka John Plaga Grant Roush Biosciences and Performance Division Vulnerability Analysis Branch July 2011...S) Michael Cote, John Buhrman, Nathaniel Bridges, Casey Pirnstill, Chris Burneka, John Plaga , Grant Roush 5d. PROJECT NUMBER OSMS 5e. TASK

  2. LabTrove: A Lightweight, Web Based, Laboratory “Blog” as a Route towards a Marked Up Record of Work in a Bioscience Research Laboratory

    PubMed Central

    Milsted, Andrew J.; Hale, Jennifer R.; Frey, Jeremy G.; Neylon, Cameron

    2013-01-01

    Background The electronic laboratory notebook (ELN) has the potential to replace the paper notebook with a marked-up digital record that can be searched and shared. However, it is a challenge to achieve these benefits without losing the usability and flexibility of traditional paper notebooks. We investigate a blog-based platform that addresses the issues associated with the development of a flexible system for recording scientific research. Methodology/Principal Findings We chose a blog-based approach with the journal characteristics of traditional notebooks in mind, recognizing the potential for linking together procedures, materials, samples, observations, data, and analysis reports. We implemented the LabTrove blog system as a server process written in PHP, using a MySQL database to persist posts and other research objects. We incorporated a metadata framework that is both extensible and flexible while promoting consistency and structure where appropriate. Our experience thus far is that LabTrove is capable of providing a successful electronic laboratory recording system. Conclusions/Significance LabTrove implements a one-item one-post system, which enables us to uniquely identify each element of the research record, such as data, samples, and protocols. This unique association between a post and a research element affords advantages for monitoring the use of materials and samples and for inspecting research processes. The combination of the one-item one-post system, consistent metadata, and full-text search provides us with a much more effective record than a paper notebook. The LabTrove approach provides a route towards reconciling the tensions and challenges that lie ahead in working towards the long-term goals for ELNs. LabTrove, an electronic laboratory notebook (ELN) system from the Smart Research Framework, based on a blog-type framework with full access control, facilitates the scientific experimental recording requirements for reproducibility, reuse, repurposing, and redeployment. PMID:23935832

  3. LabTrove: a lightweight, web based, laboratory "blog" as a route towards a marked up record of work in a bioscience research laboratory.

    PubMed

    Milsted, Andrew J; Hale, Jennifer R; Frey, Jeremy G; Neylon, Cameron

    2013-01-01

    The electronic laboratory notebook (ELN) has the potential to replace the paper notebook with a marked-up digital record that can be searched and shared. However, it is a challenge to achieve these benefits without losing the usability and flexibility of traditional paper notebooks. We investigate a blog-based platform that addresses the issues associated with the development of a flexible system for recording scientific research. We chose a blog-based approach with the journal characteristics of traditional notebooks in mind, recognizing the potential for linking together procedures, materials, samples, observations, data, and analysis reports. We implemented the LabTrove blog system as a server process written in PHP, using a MySQL database to persist posts and other research objects. We incorporated a metadata framework that is both extensible and flexible while promoting consistency and structure where appropriate. Our experience thus far is that LabTrove is capable of providing a successful electronic laboratory recording system. LabTrove implements a one-item one-post system, which enables us to uniquely identify each element of the research record, such as data, samples, and protocols. This unique association between a post and a research element affords advantages for monitoring the use of materials and samples and for inspecting research processes. The combination of the one-item one-post system, consistent metadata, and full-text search provides us with a much more effective record than a paper notebook. The LabTrove approach provides a route towards reconciling the tensions and challenges that lie ahead in working towards the long-term goals for ELNs. LabTrove, an electronic laboratory notebook (ELN) system from the Smart Research Framework, based on a blog-type framework with full access control, facilitates the scientific experimental recording requirements for reproducibility, reuse, repurposing, and redeployment.

  4. Eddy Covariance Method for CO2 Emission Measurements: CCS Applications, Principles, Instrumentation and Software

    NASA Astrophysics Data System (ADS)

    Burba, George; Madsen, Rod; Feese, Kristin

    2013-04-01

    The Eddy Covariance method is a micrometeorological technique for direct high-speed measurements of the transport of gases, heat, and momentum between the earth's surface and the atmosphere. Gas fluxes, emission and exchange rates are carefully characterized from single-point in-situ measurements using permanent or mobile towers, or moving platforms such as automobiles, helicopters, airplanes, etc. Since the early 1990s, this technique has been widely used by micrometeorologists across the globe for quantifying CO2 emission rates from various natural, urban and agricultural ecosystems [1,2], including areas of agricultural carbon sequestration. Presently, over 600 eddy covariance stations are in operation in over 120 countries. In the last 3-5 years, advancements in instrumentation and software have reached the point when they can be effectively used outside the area of micrometeorology, and can prove valuable for geological carbon capture and sequestration, landfill emission measurements, high-precision agriculture and other non-micrometeorological industrial and regulatory applications. In the field of geological carbon capture and sequestration, the magnitude of CO2 seepage fluxes depends on a variety of factors. Emerging projects utilize eddy covariance measurement to monitor large areas where CO2 may escape from the subsurface, to detect and quantify CO2 leakage, and to assure the efficiency of CO2 geological storage [3,4,5,6,7,8]. Although Eddy Covariance is one of the most direct and defensible ways to measure and calculate turbulent fluxes, the method is mathematically complex, and requires careful setup, execution and data processing tailor-fit to a specific site and a project. With this in mind, step-by-step instructions were created to introduce a novice to the conventional Eddy Covariance technique [9], and to assist in further understanding the method through more advanced references such as graduate-level textbooks, flux networks guidelines, journals and technical papers. A free open-source software package with a user-friendly interface was developed accordingly for computing final fully corrected CO2 emission numbers [10]. The presentation covers highlights of the eddy covariance method, its application to geological carbon sequestration, key requirements, instrumentation and software, and reviews educational resources particularly useful for carbon sequestration research. References: [1] Aubinet, M., T. Vesala, and D. Papale (Eds.), 2012. Eddy Covariance: A Practical Guide to Measurement and Data Analysis. Springer-Verlag, 442 pp. [2] Foken T., 2008. Micrometeorology. Springer-Verlag, 308 pp. [4] Finley, R., 2009. An Assessment of Geological Carbon Sequestration in the Illinois Basin Overview of the Decatur-Illinois Basin Site. MGSC, http://www.istc.illinois.edu/info/govs_awards_docs/2009-GSA-1100-Finley.pdf [5] Liu, G. (Ed.), 2012. Greenhouse Gases: Capturing, Utilization and Reduction. Intech, 338 pp. [6] LI-COR Biosciences, 2011. Surface Monitoring for Geologic Carbon Sequestration Monitoring: Methods, Instrumentation, and Case Studies. LI-COR Biosciences, Pub. 980-11916, 15 pp. [7] Benson, S., 2006. Monitoring carbon dioxide sequestration in deep geological formations for inventory verification and carbon credits, SPE-102833, Presentation [8] Lewicki, J., G. Hilley, M. Fischer, L. Pan, C. Olden-burg, C. Dobeck, and L. Spangler, 2009.Eddy covariance observations of leakage during shallow subsurface CO2 releases. Journal of Geophys Res, 114: D12302 [9] Burba, G., 2013. Eddy Covariance Method for Scientific, Industrial, Agricultural and Regulatory Applications. LI-COR Biosciences, 328 pp. [10] LI-COR Biosciences, 2012. EddyPro 4.0: Help and User's Guide. Lincoln, NE, 208 pp.

  5. Instability of Hydrogenated TiO2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nandasiri, Manjula I.; Shutthanandan, V.; Manandhar, Sandeep

    2015-11-06

    Hydrogenated TiO2 (H-TiO2) is toted as a viable visible light photocatalyst. We report a systematic study on the thermal stability of H-implanted TiO2 using X-ray photoelectron spectroscopy (XPS), ultraviolet photoelectron spectroscopy (UPS), Rutherford backscattering spectrometry (RBS) and nuclear reaction analysis (NRA). Protons (40 keV) implanted at a ~2 atom % level within a ~120 nm wide profile of rutile TiO2(110) were situated ~300 nm below the surface. NRA revealed that this H-profile broadened preferentially toward the surface after annealing at 373 K, dissipated out of the crystal into vacuum at 473 K, and was absent within the beam sampling depthmore » (~800 nm) at 523 K. Photoemission showed that the surface was reduced in concert with these changes. Similar anneals had no effect on pristine TiO2(110). The facile bulk diffusivity of H in rutile, as well as its activity toward interfacial reduction, significantly limits the utilization of H-TiO2 as a photocatalyst. This work was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle. The research was performed using the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory.« less

  6. Sandia National Laboratories: Careers: Hiring Process

    Science.gov Websites

    Suppliers iSupplier Account Accounts Payable Contract Information Construction & Facilities Contract Foundations Bioscience Computing & Information Science Electromagnetics Engineering Science Geoscience notifications. Visit our Careers tool to search for jobs and register for an account. Registering will enable

  7. Tackling the Triple-Threat Genome of Miscanthus x giganteus (2010 JGI User Meeting)

    ScienceCinema

    Moose, Steve

    2018-02-05

    Steve Moose from the University of Illinois at Urbana-Champaign and the Energy Biosciences Institute on "Tackling the Triple-Threat Genome of Miscanthus x giganteus" on March 25, 2010 at the 5th Annual DOE JGI User Meeting.

  8. The draft genome of Globodera ellingtonae

    USDA-ARS?s Scientific Manuscript database

    Globodera ellingtonae is a newly described potato cyst nematode found in Idaho, Oregon, and Argentina. Here we present a genome assembly for G. ellingtonae, a relative of the quarantine nematodes G. pallida and G. rostochiensis, produced using data from Illumina and Pacific Biosciences sequencing te...

  9. Tackling the Triple-Threat Genome of Miscanthus x giganteus (2010 JGI User Meeting)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moose, Steve

    2010-03-25

    Steve Moose from the University of Illinois at Urbana-Champaign and the Energy Biosciences Institute on "Tackling the Triple-Threat Genome of Miscanthus x giganteus" on March 25, 2010 at the 5th Annual DOE JGI User Meeting.

  10. Pioneering Partnerships for Progress

    ERIC Educational Resources Information Center

    Borden, Sam

    2006-01-01

    This paper presents a brief description of the Center for Bioscience and the Integration of Computer and Telecommunications Technology (BioCATT) at Gateway Technical College in Kenosha, Wisconsin. BioCATT is designed to serve as a catalyst for innovation in educational programming, business services, and technology applications.

  11. Quantitative measurements of tumoral p95HER2 protein expression in metastatic breast cancer patients treated with trastuzumab: independent validation of the p95HER2 clinical cutoff.

    PubMed

    Duchnowska, Renata; Sperinde, Jeff; Chenna, Ahmed; Haddad, Mojgan; Paquet, Agnes; Lie, Yolanda; Weidler, Jodi M; Huang, Weidong; Winslow, John; Jankowski, Tomasz; Czartoryska-Arłukowicz, Bogumiła; Wysocki, Piotr J; Foszczyńska-Kłoda, Małgorzata; Radecka, Barbara; Litwiniuk, Maria M; Zok, Jolanta; Wiśniewski, Michał; Zuziak, Dorota; Biernat, Wojciech; Jassem, Jacek

    2014-05-15

    P95HER2 (p95) is a truncated form of the HER2, which lacks the trastuzumab-binding site and contains a hyperactive kinase domain. Previously, an optimal clinical cutoff of p95 expression for progression-free survival (PFS) and overall survival (OS) was defined using a quantitative VeraTag assay (Monogram Biosciences) in a training set of trastuzumab-treated metastatic breast cancer (MBC) patients. In the current study, the predictive value of the p95 VeraTag assay cutoff established in the training set was retrospectively validated for PFS and OS in an independent series of 240 trastuzumab-treated MBC patients from multiple institutions. In the subset of 190 tumors assessed as HER2-total (H2T)-positive using the quantitative HERmark assay (Monogram Biosciences), p95 VeraTag values above the predefined cutoff correlated with shorter PFS (HR = 1.43; P = 0.039) and shorter OS (HR = 1.94; P = 0.0055) where both outcomes were stratified by hormone receptor status and tumor grade. High p95 expression correlated with shorter PFS (HR = 2.41; P = 0.0003) and OS (HR = 2.57; P = 0.0025) in the hormone receptor-positive subgroup of patients (N = 78), but not in the hormone receptor-negative group. In contrast with the quantitative p95 VeraTag measurements, p95 immunohistochemical expression using the same antibody was not significantly correlated with outcomes. The consistency in the p95 VeraTag cutoff across different cohorts of patients with MBC treated with trastuzumab justifies additional studies using blinded analyses in larger series of patients. ©2014 American Association for Cancer Research.

  12. CEE-ing is believing

    PubMed Central

    Lamb, Katrina

    2011-01-01

    Bioscience ventures in Central and Eastern Europe are becoming a presence in world healthcare markets despite a perennially short supply of venture funding and other support mechanisms relative to other world economic regions. Here are three up-and-coming CEE stories worth keeping an eye on. PMID:21869613

  13. Dynamic nano-imaging of label-free living cells using electron beam excitation-assisted optical microscope

    PubMed Central

    Fukuta, Masahiro; Kanamori, Satoshi; Furukawa, Taichi; Nawa, Yasunori; Inami, Wataru; Lin, Sheng; Kawata, Yoshimasa; Terakawa, Susumu

    2015-01-01

    Optical microscopes are effective tools for cellular function analysis because biological cells can be observed non-destructively and non-invasively in the living state in either water or atmosphere condition. Label-free optical imaging technique such as phase-contrast microscopy has been analysed many cellular functions, and it is essential technology for bioscience field. However, the diffraction limit of light makes it is difficult to image nano-structures in a label-free living cell, for example the endoplasmic reticulum, the Golgi body and the localization of proteins. Here we demonstrate the dynamic imaging of a label-free cell with high spatial resolution by using an electron beam excitation-assisted optical (EXA) microscope. We observed the dynamic movement of the nucleus and nano-scale granules in living cells with better than 100 nm spatial resolution and a signal-to-noise ratio (SNR) around 10. Our results contribute to the development of cellular function analysis and open up new bioscience applications. PMID:26525841

  14. Dynamic nano-imaging of label-free living cells using electron beam excitation-assisted optical microscope.

    PubMed

    Fukuta, Masahiro; Kanamori, Satoshi; Furukawa, Taichi; Nawa, Yasunori; Inami, Wataru; Lin, Sheng; Kawata, Yoshimasa; Terakawa, Susumu

    2015-11-03

    Optical microscopes are effective tools for cellular function analysis because biological cells can be observed non-destructively and non-invasively in the living state in either water or atmosphere condition. Label-free optical imaging technique such as phase-contrast microscopy has been analysed many cellular functions, and it is essential technology for bioscience field. However, the diffraction limit of light makes it is difficult to image nano-structures in a label-free living cell, for example the endoplasmic reticulum, the Golgi body and the localization of proteins. Here we demonstrate the dynamic imaging of a label-free cell with high spatial resolution by using an electron beam excitation-assisted optical (EXA) microscope. We observed the dynamic movement of the nucleus and nano-scale granules in living cells with better than 100 nm spatial resolution and a signal-to-noise ratio (SNR) around 10. Our results contribute to the development of cellular function analysis and open up new bioscience applications.

  15. Dynamic nano-imaging of label-free living cells using electron beam excitation-assisted optical microscope

    NASA Astrophysics Data System (ADS)

    Fukuta, Masahiro; Kanamori, Satoshi; Furukawa, Taichi; Nawa, Yasunori; Inami, Wataru; Lin, Sheng; Kawata, Yoshimasa; Terakawa, Susumu

    2015-11-01

    Optical microscopes are effective tools for cellular function analysis because biological cells can be observed non-destructively and non-invasively in the living state in either water or atmosphere condition. Label-free optical imaging technique such as phase-contrast microscopy has been analysed many cellular functions, and it is essential technology for bioscience field. However, the diffraction limit of light makes it is difficult to image nano-structures in a label-free living cell, for example the endoplasmic reticulum, the Golgi body and the localization of proteins. Here we demonstrate the dynamic imaging of a label-free cell with high spatial resolution by using an electron beam excitation-assisted optical (EXA) microscope. We observed the dynamic movement of the nucleus and nano-scale granules in living cells with better than 100 nm spatial resolution and a signal-to-noise ratio (SNR) around 10. Our results contribute to the development of cellular function analysis and open up new bioscience applications.

  16. Advanced Plant Habitat Flight Unit #1

    NASA Image and Video Library

    2017-07-24

    Inside a laboratory in the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, a quality technician checks the hardware for the Advanced Plant Habitat flight unit. The flight unit is an exact replica of the APH that was delivered to the International Space Station. Validation tests and post-delivery checkout was performed to prepare for space station in-orbit APH activities. The flight unit will be moved to the International Space Station Environmental Simulator to begin an experiment verification test for the science that will fly on the first mission, PH-01. Developed by NASA and ORBITEC of Madison, Wisconsin, the APH is the largest plant chamber built for the agency. It is a fully automated plant growth facility that will be used to conduct bioscience research on the space station.

  17. Advanced Plant Habitat Flight Unit #1

    NASA Image and Video Library

    2017-07-24

    Inside a laboratory in the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, quality technicians check the hardware for the Advanced Plant Habitat flight unit. The flight unit is an exact replica of the APH that was delivered to the International Space Station. Validation tests and post-delivery checkout was performed to prepare for space station in-orbit APH activities. The flight unit will be moved to the International Space Station Environmental Simulator to begin an experiment verification test for the science that will fly on the first mission, PH-01. Developed by NASA and ORBITEC of Madison, Wisconsin, the APH is the largest plant chamber built for the agency. It is a fully automated plant growth facility that will be used to conduct bioscience research on the space station.

  18. Advanced Plant Habitat Flight Unit #1

    NASA Image and Video Library

    2017-07-24

    Inside a laboratory in the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, quality technicians check components of the hardware for the Advanced Plant Habitat flight unit. The flight unit is an exact replica of the APH that was delivered to the International Space Station. Validation tests and post-delivery checkout was performed to prepare for space station in-orbit APH activities. The flight unit will be moved to the International Space Station Environmental Simulator to begin an experiment verification test for the science that will fly on the first mission, PH-01. Developed by NASA and ORBITEC of Madison, Wisconsin, the APH is the largest plant chamber built for the agency. It is a fully automated plant growth facility that will be used to conduct bioscience research on the space station.

  19. Advanced Plant Habitat Flight Unit #1

    NASA Image and Video Library

    2017-07-24

    Inside a laboratory in the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, quality technicians check the hardware for the Advanced Plant Habitat flight unit. The flight unit is an exact replica of the APH that was delivered to the International Space Station. Validation tests and post-delivery checkout was performed to prepare for space station in-orbit APH activities. The flight unit will be moved to the International Space Station Environment Simulator to begin an experiment verification test for the science that will fly on the first mission, PH-01. Developed by NASA and ORBITEC of Madison, Wisconsin, the APH is the largest plant chamber built for the agency. It is a fully automated plant growth facility that will be used to conduct bioscience research on the space station.

  20. Advanced Plant Habitat Flight Unit #1

    NASA Image and Video Library

    2017-07-24

    Inside a laboratory in the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, a quality technician checks the control panel on hardware for the Advanced Plant Habitat flight unit. The flight unit is an exact replica of the APH that was delivered to the International Space Station. Validation tests and post-delivery checkout was performed to prepare for space station in-orbit APH activities. The flight unit will be moved to the International Space Station Environmental Simulator to begin an experiment verification test for the science that will fly on the first mission, PH-01. Developed by NASA and ORBITEC of Madison, Wisconsin, the APH is the largest plant chamber built for the agency. It is a fully automated plant growth facility that will be used to conduct bioscience research on the space station.

  1. Space Research Fortifies Nutrition Worldwide

    NASA Technical Reports Server (NTRS)

    2008-01-01

    NASA's Controlled Ecological Life Support Systems program attempted to address basic needs of crews, meet stringent payload and power usage restrictions, and minimize space occupancy, by developing living, regenerative ecosystems that would take care of themselves and their inhabitants. An experiment from this program evolved into one of the most widespread NASA spinoffs of all time-a method for manufacturing an algae-based food supplement that provides the nutrients previously only available in breast milk. Martek Biosciences Corporation, in Columbia, Maryland, now manufactures this supplement, and it can be found in over 90 percent of the infant formulas sold in the United States, as well as those sold in over 65 other countries. With such widespread use, the company estimates that over 24 million babies worldwide have consumed its nutritional additives.

  2. Advanced Plant Habitat (APH) Seed Planting

    NASA Image and Video Library

    2018-05-09

    Jeffrey Richards, at left, a project science coordinator with URS Federal Services, secures Arabidopsis seeds, commonly known as thale cress, in the science carrier, or base, of the Advanced Plant Habitat (APH) inside a laboratory in the Space Station Processing Facility at NASA's Kennedy Space Center in Florida on Wednesday, May 9. The APH base will be delivered to the International Space Station aboard Orbital ATK's Cygnus spacecraft on the company's ninth Commercial Resupply Services mission for NASA. The APH is the largest plant chamber built for the agency. It is a fully automated plant growth facility that is being used to conduct bioscience research on the space station. Cygnus will launch on Orbital ATK's Antares rocket from Wallops Flight Facility in Wallops Island, Virginia. Launch is targeted for May 20, 2018.

  3. Advanced Plant Habitat (APH) Seed Planting

    NASA Image and Video Library

    2018-05-09

    Jeffrey Richards, a project science coordinator with URS Federal Services, secures Arabidopsis seeds, commonly known as thale cress, in the science carrier, or base, of the Advanced Plant Habitat (APH) inside a laboratory in the Space Station Processing Facility at NASA's Kennedy Space Center in Florida on Wednesday, May 9. The APH base will be delivered to the International Space Station aboard Orbital ATK's Cygnus spacecraft on the company's ninth Commercial Resupply Services mission for NASA. The APH is the largest plant chamber built for the agency. It is a fully automated plant growth facility that is being used to conduct bioscience research on the space station. Cygnus will launch on Orbital ATK's Antares rocket from Wallops Flight Facility in Wallops Island, Virginia. Launch is targeted for May 20, 2018.

  4. Advanced Plant Habitat (APH) Seed Planting

    NASA Image and Video Library

    2018-05-09

    Jeffrey Richards, a project science coordinator with URS Federal Services, uses a fixative to secure Arabidopsis seeds, commonly known as thale cress, in the science carrier, or base, of the Advanced Plant Habitat (APH) inside a laboratory in the Space Station Processing Facility at NASA's Kennedy Space Center in Florida on Wednesday, May 9. The APH base will be delivered to the International Space Station aboard Orbital ATK's Cygnus spacecraft on the company's ninth Commercial Resupply Services mission for NASA. The APH is the largest plant chamber built for the agency. It is a fully automated plant growth facility that is being used to conduct bioscience research on the space station. Cygnus will launch on Orbital ATK's Antares rocket from Wallops Flight Facility in Wallops Island, Virginia. Launch is targeted for May 20, 2018.

  5. BioImg.org: A Catalog of Virtual Machine Images for the Life Sciences

    PubMed Central

    Dahlö, Martin; Haziza, Frédéric; Kallio, Aleksi; Korpelainen, Eija; Bongcam-Rudloff, Erik; Spjuth, Ola

    2015-01-01

    Virtualization is becoming increasingly important in bioscience, enabling assembly and provisioning of complete computer setups, including operating system, data, software, and services packaged as virtual machine images (VMIs). We present an open catalog of VMIs for the life sciences, where scientists can share information about images and optionally upload them to a server equipped with a large file system and fast Internet connection. Other scientists can then search for and download images that can be run on the local computer or in a cloud computing environment, providing easy access to bioinformatics environments. We also describe applications where VMIs aid life science research, including distributing tools and data, supporting reproducible analysis, and facilitating education. BioImg.org is freely available at: https://bioimg.org. PMID:26401099

  6. BioImg.org: A Catalog of Virtual Machine Images for the Life Sciences.

    PubMed

    Dahlö, Martin; Haziza, Frédéric; Kallio, Aleksi; Korpelainen, Eija; Bongcam-Rudloff, Erik; Spjuth, Ola

    2015-01-01

    Virtualization is becoming increasingly important in bioscience, enabling assembly and provisioning of complete computer setups, including operating system, data, software, and services packaged as virtual machine images (VMIs). We present an open catalog of VMIs for the life sciences, where scientists can share information about images and optionally upload them to a server equipped with a large file system and fast Internet connection. Other scientists can then search for and download images that can be run on the local computer or in a cloud computing environment, providing easy access to bioinformatics environments. We also describe applications where VMIs aid life science research, including distributing tools and data, supporting reproducible analysis, and facilitating education. BioImg.org is freely available at: https://bioimg.org.

  7. A biosafety level 2 virology lab for biotechnology undergraduates.

    PubMed

    Matza-Porges, Sigal; Nathan, Dafna

    2017-11-01

    Medical, industrial, and basic research relies heavily on the use of viruses and vectors. Therefore, it is important that bioscience undergraduates learn the practicalities of handling viruses. Teaching practical virology in a student laboratory setup presents safety challenges, however. The aim of this article is to describe the design and implementation of a virology laboratory, with emphasis on student safety, for biotechnology undergraduates. Cell culture techniques, animal virus infection, quantification, and identification are taught at a biosafety level 2 for a diverse group of undergraduates ranging from 20 to 50 students per group. © 2017 by The International Union of Biochemistry and Molecular Biology, 45(6):537-543, 2017. © 2017 The Authors Biochemistry and Molecular Biology Education published by Wiley Periodicals, Inc. on behalf of International Union of Biochemistry and Molecular Biology.

  8. New and improved proteomics technologies for understanding complex biological systems: addressing a grand challenge in the life sciences.

    PubMed

    Hood, Leroy E; Omenn, Gilbert S; Moritz, Robert L; Aebersold, Ruedi; Yamamoto, Keith R; Amos, Michael; Hunter-Cevera, Jennie; Locascio, Laurie

    2012-09-01

    This White Paper sets out a Life Sciences Grand Challenge for Proteomics Technologies to enhance our understanding of complex biological systems, link genomes with phenotypes, and bring broad benefits to the biosciences and the US economy. The paper is based on a workshop hosted by the National Institute of Standards and Technology (NIST) in Gaithersburg, MD, 14-15 February 2011, with participants from many federal R&D agencies and research communities, under the aegis of the US National Science and Technology Council (NSTC). Opportunities are identified for a coordinated R&D effort to achieve major technology-based goals and address societal challenges in health, agriculture, nutrition, energy, environment, national security, and economic development. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. KSC-07pd2836

    NASA Image and Video Library

    2007-10-11

    KENNEDY SPACE CENTER, FLA. -- In the Vehicle Assembly Building at NASA's Kennedy Space Center, the frustum is ready to be lifted from a transporter to move onto a stand. The solid rocket booster segment will be added to the stack for space shuttle Atlantis, launch vehicle for mission STS-122 targeted for a December launch. Atlantis will be carrying the Columbus Laboratory, Europe’s largest contribution to the construction of the International Space Station. It will support scientific and technological research in a microgravity environment. Columbus, a program of ESA, is a multifunctional, pressurized laboratory that will be permanently attached to Node 2 of the space station to carry out experiments in materials science, fluid physics and biosciences, as well as to perform a number of technological applications. Photo credit: NASA/Jack Pfaller

  10. Long non-coding RNAs in anti-cancer drug resistance.

    PubMed

    Chen, Qin-Nan; Wei, Chen-Chen; Wang, Zhao-Xia; Sun, Ming

    2017-01-03

    Chemotherapy is one of the basic treatments for cancers; however, drug resistance is mainly responsible for the failure of clinical treatment. The mechanism of drug resistance is complicated because of interaction among various factors including drug efflux, DNA damage repair, apoptosis and targets mutation. Long non-coding RNAs (lncRNAs) have been a focus of research in the field of bioscience, and the latest studies have revealed that lncRNAs play essential roles in drug resistance in breast cancer, gastric cancer and lung cancer, et al. Dysregulation of multiple targets and pathways by lncRNAs results in the occurrence of chemoresistance. In this review, we will discuss the mechanisms underlying lncRNA-mediated resistance to chemotherapy and the therapeutic potential of lncRNAs in future cancer treatment.

  11. Laboratory Directed Research and Development Program FY 2008 Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    editor, Todd C Hansen

    2009-02-23

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operatemore » unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. Berkeley Lab's research and the Laboratory Directed Research and Development (LDRD) program support DOE's Strategic Themes that are codified in DOE's 2006 Strategic Plan (DOE/CF-0010), with a primary focus on Scientific Discovery and Innovation. For that strategic theme, the Fiscal Year (FY) 2008 LDRD projects support each one of the three goals through multiple strategies described in the plan. In addition, LDRD efforts support the four goals of Energy Security, the two goals of Environmental Responsibility, and Nuclear Security (unclassified fundamental research that supports stockpile safety and nonproliferation programs). The LDRD program supports Office of Science strategic plans, including the 20-year Scientific Facilities Plan and the Office of Science Strategic Plan. The research also supports the strategic directions periodically under consideration and review by the Office of Science Program Offices, such as LDRD projects germane to new research facility concepts and new fundamental science directions. Berkeley Lab LDRD program also play an important role in leveraging DOE capabilities for national needs. The fundamental scientific research and development conducted in the program advances the skills and technologies of importance to our Work For Others (WFO) sponsors. Among many directions, these include a broad range of health-related science and technology of interest to the National Institutes of Health, breast cancer and accelerator research supported by the Department of Defense, detector technologies that should be useful to the Department of Homeland Security, and particle detection that will be valuable to the Environmental Protection Agency. The Berkeley Lab Laboratory Directed Research and Development Program FY2008 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the supported projects and summarizes their accomplishments. It constitutes a part of the LDRD program planning and documentation process that includes an annual planning cycle, project selection, implementation, and review.« less

  12. Public health research support through the European structural funds in central and eastern Europe and the Mediterranean.

    PubMed

    McCarthy, Mark

    2012-04-05

    Public health research provides evidence for practice across fields including health care, health promotion and health surveillance. Levels of public health research vary markedly across European Union (EU) countries, and are lowest in the EU's new member states (in Central and Eastern Europe and the Mediterranean). However, these countries now receive most of the EU's Structural Funds, some of which are allocated to research. STEPS, an EU-funded study, sought to assess support for public health research at national and European levels. To identify support through the Structural funds, STEPS drew information from country respondents and internet searches for all twelve EU new member states. The EU allocates annually around €7 billion through the Structural Funds for member states' own use on research. These funds can cover infrastructure, academic employment, and direct research grants. The programmes emphasise links to business. Support for health research includes major projects in biosciences, but direct support for public health research was found in only three countries - Cyprus, Latvia and Lithuania. Public health research is not prioritised in the EU's Structural Funds programme in comparison with biomedicine. For the research dimension of the new European programme for Structural Funds 2014-2002, ministries of health should propose public health research to strengthen the evidence-base for European public health policy and practice.

  13. The organization of scientists and its relation to scientific productivity: Perceptions of Chinese stem cell researchers

    PubMed Central

    Zhang, Joy Yueyue

    2013-01-01

    Chinese government funding of R&D ranks third in the world. Yet China ranks only 17th in terms of scientific productivity per unit of investment. The author recently conducted fieldwork on the team structure of 22 Chinese stem cell research groups. Interview data suggest that although Chinese research groups closely resemble their international counter-parts in many respects, there are also significant differences which are perceived by interviewees to affect levels of scientific productivity. One characteristic of Chinese research teams is a common deficiency in middle-layer positions. This shortage of experienced professionals is perceived by scientists participating in this study to have led to two consequences. First, inexperienced student researchers often form the backbone of scientific teams in China, which leads to frequent interruptions of research and extended laboratory training. Second, research teams consist of a relatively small number of personnel. These structural features are seen to create excessive social boundaries, which impede the exchange of information and further worsens the segmentation of resources. This article engages the question of the extent to which interviewees’ local ‘embedded’ understandings of these difficulties may make a productive contribution to the analysis of the structural, and infra-structural, organization of Chinese professional bioscience teams. PMID:24143153

  14. How Regenerative Medicine Stakeholders Adapt to Ever-Changing Technology and Regulatory Challenges? Snapshots from the World TERMIS Industry Symposium (September 10, 2015, Boston).

    PubMed

    Bayon, Yves; Van Dyke, Mark; Buelher, Robert; Tubo, Ross; Bertram, Tim; Malfroy-Camine, Bernard; Rathman, Michelle; Ronfard, Vincent

    2017-04-01

    Regenerative medicine (RM) is a fascinating area of research and innovation. The huge potential of the field has been fairly underexploited so far. Both TERMIS-AM and TERMIS-EU Industry Committees are committed to mentoring and training young entrepreneurs for more successful commercial translation of upstream research. With this objective in mind, the two entities jointly organized an industry symposium during the past TERMIS World Congress (Boston, September 8-11, 2015) and invited senior managers of the RM industry for lectures and panel discussions. One of the two sessions of the symposium-How to overcome obstacles encountered when bringing products to the commercial phase?-aimed to share the inside, real experiences of leaders from TEI Biosciences (an Integra Company), Vericel (formerly Aastrom; acquirer of Genzyme Regenerative Medicine assets), RegenMedTX (formerly Tengion), Mindset Rx, ViThera Pharmaceuticals, and L'Oreal Research & Innovation. The symposium provided practical recommendations for RM product development, for remaining critical and objective when reviewing progress, for keeping solutions simple, and for remaining relevant and persistent.

  15. Millie Hughes-Fulford, Scientist and Prior Astronaut

    NASA Image and Video Library

    2014-03-13

    CAPE CANAVERAL, Fla. - Researcher and former NASA payload specialist Millie Hughes-Fulford, of the Hughes-Fulford Laboratory, San Francisco, Calif., discusses her laboratory's T-cell experiment and the impact the research may have on aging adults and their immune systems with an interviewer in the Space Station Processing Facility at NASA's Kennedy Space Center in Florida. The immunology experiment will launch on SpaceX-3 and focus on the effects of microgravity on early T-cell signaling pathways. Current work aims to identify and compare the gene expression of microRNAs miRNAs during T-cell activation under normal gravity and in microgravity, and compare those patterns to changes seen in aging populations. The experiment will be the first flown on SpaceX funded by the National Institutes of Health. Dr. Hughes-Fulford flew aboard space shuttle mission STS-40 in June 1991, the first Spacelab mission dedicated to biomedical studies. For more information on the T-cell experiment, visit http://hughesfulfordlab.com and http://www.nasa.gov/ames/research/space-biosciences/t-cell-activation-in-aging-spacex-3/. Photo credit: NASA/Cory Huston

  16. Air Pollution Publications, A Selected Bibliography With Abstracts, 1966-1968.

    ERIC Educational Resources Information Center

    National Air Pollution Control Administration (DHEW), Washington, DC.

    Contained are over 1000 entries with abstracts spanning the literature from 1966 to 1968. The references are grouped into broad subject categories: emission sources; atmospheric interactions; measurement; control methods; biosciences and medicine; plants; materials deterioration; air quality; legal and administrative aspects; social aspects; basic…

  17. Competitiveness of Second Generation Biofuel Feedstocks: Role of Technology and Policy (2010 JGI User Meeting)

    ScienceCinema

    Khanna, Madhu

    2018-02-19

    Madhu Khanna from the University of Illinois at Urbana-Champaign and the Energy Biosciences Institute on Competitiveness of Second Generation Biofuel Feedstocks: Role of Technology and Policy on March 25, 2010 at the 5th Annual DOE JGI User Meeting.

  18. Lessons from Interspecies Mammalian Chimeras.

    PubMed

    Suchy, Fabian; Nakauchi, Hiromitsu

    2017-10-06

    As chimeras transform from beasts of Greek mythology into tools of contemporary bioscience, secrets of developmental biology and evolutionary divergence are being revealed. Recent advances in stem cell biology and interspecies chimerism have generated new models with extensive basic and translational applications, including generation of transplantable, patient-specific organs.

  19. Key Facts about Higher Education in Washington

    ERIC Educational Resources Information Center

    Washington Higher Education Coordinating Board, 2011

    2011-01-01

    Since its establishment in the 1860s, Washington's higher education system has evolved rapidly to meet a myriad of state needs in fields as diverse as agriculture, bioscience, chemistry, environmental sciences, engineering, medicine, law, business, computer science, and architecture. Today, higher education, like other vital state functions, faces…

  20. Industry update: what is new in the field of therapeutic delivery?

    PubMed

    Harris, Elaine

    2018-02-01

    The present industry update covers the period 1-30 November 2017. Sources of information include company press releases, regulatory and patent agencies' notices, scientific literature and various news websites. A number of companies reported positive clinical trial results for therapeutic candidates enabled by different delivery strategies including Vascular Therapies, Adapt and Altemia. November also saw the announcement of some significant collaborations and acquisitions; Cerenis Therapeutics acquired Lypro Biosciences, which gives them access to a proprietary drug delivery nanotechnology platform, NanoDisk ® , and Takeda announced a collaboration with Portal Instruments to develop a needle-free delivery device for its biological therapeutics. From a patenting perspective, Allergan's strategy of transferring the rights of some of their patents to Saint Regis Mohawk Tribe has drawn scrutiny (and criticism) from US Senators.

  1. KSC-07pd2601

    NASA Image and Video Library

    2007-09-28

    KENNEDY SPACE CENTER, FLA. STS-122 Mission Specialist Hans Schlegel looks closely at the hatch on the Columbus Research Laboratory in the Space Station Processing Facility. Schegel represents the European Space Agency. The crew is at Kennedy to take part in a crew equipment interface test, which helps familiarize them with equipment and payloads for the mission. Among the activities standard to a CEIT are harness training, inspection of the thermal protection system and camera operation for planned extravehicular activities, or EVAs. The Columbus Lab is Europe’s largest contribution to the construction of the International Space Station. It will support scientific and technological research in a microgravity environment. Columbus, a program of ESA, is a multifunctional, pressurized laboratory that will be permanently attached to Node 2 of the space station to carry out experiments in materials science, fluid physics and biosciences, as well as to perform a number of technological applications. STS-122 is targeted for launch in December. Photo credit: NASA/Jim Grossmann

  2. Millie Hughes-Fulford, Scientist and Prior Astronaut

    NASA Image and Video Library

    2014-03-13

    CAPE CANAVERAL, Fla. - Researcher and principal investigator Dr. Millie Hughes-Fulford, of the Hughes-Fulford Laboratory, San Francisco, Calif., at the microscope, examines T-cells as part of preflight experiment operations in the Space Station Processing Facility at NASA's Kennedy Space Center in Florida. The immunology experiment will launch on SpaceX-3 and focus on the effects of microgravity on early T-cell signaling pathways. Current work aims to identify and compare the gene expression of microRNAs miRNAs during T-cell activation under normal gravity and in microgravity, and compare those patterns to changes seen in aging populations. The experiment will be the first flown on SpaceX funded by the National Institutes of Health. Dr. Hughes-Fulford flew aboard space shuttle mission STS-40 in June 1991, the first Spacelab mission dedicated to biomedical studies. For more information on the T-cell experiment, visit http://hughesfulfordlab.com and http://www.nasa.gov/ames/research/space-biosciences/t-cell-activation-in-aging-spacex-3/. Photo credit: NASA/Cory Huston

  3. Nickel Complexes of a Binucleating Ligand Derived from an SCS Pincer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, Sonja M.; Helm, Monte L.; Appel, Aaron M.

    2015-01-01

    A binucleating ligand has been prepared that contains an SCS pincer and three oxygen donor ligands in a partial crown ether loop. To enable metalation with Ni0, a bromoarene precursor was used and resulted in the formation of a nickel-bromide complex in the SCS pincer. Reaction of the nickel complex with a lithium salt yielded a heterobimetallic complex with bromide bridging the two metal centers. The solid-state structures were determined for this heterobimetallic complex and the nickel-bromide precursor, and the two complexes were characterized electrochemically to determine the influence of coordinating the second metal. This research was supported by themore » US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. MLH was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle.« less

  4. A Bimetallic Nickel–Gallium Complex Catalyzes CO 2 Hydrogenation via the Intermediacy of an Anionic d 10 Nickel Hydride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cammarota, Ryan C.; Vollmer, Matthew V.; Xie, Jing

    Large-scale CO2 hydrogenation could offer a renewable stream of industrially important C1 chemicals while reducing CO2 emissions. Critical to this opportunity is the requirement for inexpensive catalysts based on earth-abundant metals instead of precious metals. We report a nickel-gallium complex featuring a Ni(0)→Ga(III) bond that shows remarkable catalytic activity for hydrogenating CO2 to formate at ambient temperature (3150 turnovers, turnover frequency = 9700 h-1), compared with prior homogeneous Ni-centred catalysts. The Lewis acidic Ga(III) ion plays a pivotal role by stabilizing reactive catalytic intermediates, including a rare anionic d10 Ni hydride. The structure of this reactive intermediate shows a terminalmore » Ni-H, for which the hydride donor strength rivals those of precious metal-hydrides. Collectively, our experimental and computational results demonstrate that modulating a transition metal center via a direct interaction with a Lewis acidic support can be a powerful strategy for promoting new reactivity paradigms in base-metal catalysis. The work was supported as part of the Inorganometallic Catalysis Design Center, an Energy Frontier Research Center funded by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences under Award DE-SC0012702. R.C.C. and M.V.V. were supported by DOE Office of Science Graduate Student Research and National Science Foundation Graduate Research Fellowship programs, respectively. J.C.L., S.A.B., and A.M.A. were supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy.« less

  5. Using yeast to determine the functional consequences of mutations in the human p53 tumor suppressor gene: An introductory course-based undergraduate research experience in molecular and cell biology.

    PubMed

    Hekmat-Scafe, Daria S; Brownell, Sara E; Seawell, Patricia Chandler; Malladi, Shyamala; Imam, Jamie F Conklin; Singla, Veena; Bradon, Nicole; Cyert, Martha S; Stearns, Tim

    2017-03-04

    The opportunity to engage in scientific research is an important, but often neglected, component of undergraduate training in biology. We describe the curriculum for an innovative, course-based undergraduate research experience (CURE) appropriate for a large, introductory cell and molecular biology laboratory class that leverages students' high level of interest in cancer. The course is highly collaborative and emphasizes the analysis and interpretation of original scientific data. During the course, students work in teams to characterize a collection of mutations in the human p53 tumor suppressor gene via expression and analysis in yeast. Initially, student pairs use both qualitative and quantitative assays to assess the ability of their p53 mutant to activate expression of reporter genes, and they localize their mutation within the p53 structure. Through facilitated discussion, students suggest possible molecular explanations for the transactivation defects displayed by their p53 mutants and propose experiments to test these hypotheses that they execute during the second part of the course. They use a western blot to determine whether mutant p53 levels are reduced, a DNA-binding assay to test whether recognition of any of three p53 target sequences is compromised, and fluorescence microscopy to assay nuclear localization. Students studying the same p53 mutant periodically convene to discuss and interpret their combined data. The course culminates in a poster session during which students present their findings to peers, instructors, and the greater biosciences community. Based on our experience, we provide recommendations for the development of similar large introductory lab courses. © 2016 by The International Union of Biochemistry and Molecular Biology, 45(2):161-178, 2017. © 2016 The International Union of Biochemistry and Molecular Biology.

  6. In Situ Fabrication of PtCo Alloy Embedded in Nitrogen-Doped Graphene Nanopores as Synergistic Catalyst for Oxygen Reduction Reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong, Xing; Wang, Lei; Zhou, Hu

    A novel PtCo alloy in situ etched and embedded in graphene nanopores (PtCo/NPG) as a high-performance catalyst for ORR was reported. Graphene nanopores were fabricated in situ while forming PtCo nanoparticles that were uniformly embedded in the graphene nanopores. Given the synergistic effect between PtCo alloy and nanopores, PtCo/NPG exhibited 11.5 times higher mass activity than that of the commercial Pt/C cathode electrocatalyst. DFT calculations indicated that the nanopores in NPG cannot only stabilize PtCo nanoparticles but can also definitely change the electronic structures, thereby change its adsorption abilities. This enhancement can lead to a favorable reaction pathway on PtCo/NPGmore » for ORR. This study showed that PtCo/NPG is a potential candidate for the next generation of Pt-based catalysts in fuel cells. This study also offered a promising alternative strategy and enabled the fabrication of various kinds of metal/graphene nanopore nanohybrids with potential applications in catalysts and potential use for other technological devices. The authors acknowledge the financial support from the National Basic Research Program (973 program, No. 2013CB733501), Zhejiang Provincial Education Department Research Program (Y201326554) and the National Natural Science Foundation of China (No. 21306169, 21101137, 21136001, 21176221 and 91334013). D. Mei acknowledges the support from the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle. Computing time was granted by the grand challenge of computational catalysis of the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) and by the National Energy Research Scientific Computing Center (NERSC).« less

  7. Synergistic Effect of Nitrogen in Cobalt Nitride and Nitrogen-Doped Hollow Carbon Spheres for Oxygen Reduction Reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong, Xing; Liu, Lin; Jiang, Yu

    The need for inexpensive and high-activity oxygen reduction reaction (ORR) electrocatalysts has attracted considerable research interest over the past years. Here we report a novel hybrid that contains cobalt nitride/nitrogen-rich hollow carbon spheres (CoxN/NHCS) as a high-performance catalyst for ORR. The CoxN nanoparticles were uniformly dispersed and confined in the hollow NHCS shell. The performance of the resulting CoxN/NHCS hybrid was comparable with that of a commercial Pt/C at the same catalyst loading toward ORR, but the mass activity of the former was 5.7 times better than that of the latter. The nitrogen in both CoxN and NHCS, especially CoxN,more » could weaken the adsorption of reaction intermediates (O and OOH), which follows the favourable reaction pathway on CoxN/NHCS according to the DFT-calculated Gibbs free energy diagrams. Our results demonstrated a new strategy for designing and developing inexpensive, non-precious metal electrocatalysts for next-generation fuels. The authors acknowledge the financial support from the National Basic Research Program (973 program, No. 2013CB733501) and the National Natural Science Foundation of China (No. 21306169, 21101137, 21136001, 21176221 and 91334013). Dr. D. Mei is supported by the US Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle. Computing time was granted by the grand challenge of computational catalysis of the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL). EMSL is a national scientific user facility located at Pacific Northwest National Laboratory (PNNL) and sponsored by DOE’s Office of Biological and Environmental Research.« less

  8. Using yeast to determine the functional consequences of mutations in the human p53 tumor suppressor gene: An introductory course‐based undergraduate research experience in molecular and cell biology

    PubMed Central

    Brownell, Sara E.; Seawell, Patricia Chandler; Malladi, Shyamala; Imam, Jamie F. Conklin; Singla, Veena; Bradon, Nicole; Cyert, Martha S.; Stearns, Tim

    2016-01-01

    Abstract The opportunity to engage in scientific research is an important, but often neglected, component of undergraduate training in biology. We describe the curriculum for an innovative, course‐based undergraduate research experience (CURE) appropriate for a large, introductory cell and molecular biology laboratory class that leverages students′ high level of interest in cancer. The course is highly collaborative and emphasizes the analysis and interpretation of original scientific data. During the course, students work in teams to characterize a collection of mutations in the human p53 tumor suppressor gene via expression and analysis in yeast. Initially, student pairs use both qualitative and quantitative assays to assess the ability of their p53 mutant to activate expression of reporter genes, and they localize their mutation within the p53 structure. Through facilitated discussion, students suggest possible molecular explanations for the transactivation defects displayed by their p53 mutants and propose experiments to test these hypotheses that they execute during the second part of the course. They use a western blot to determine whether mutant p53 levels are reduced, a DNA‐binding assay to test whether recognition of any of three p53 target sequences is compromised, and fluorescence microscopy to assay nuclear localization. Students studying the same p53 mutant periodically convene to discuss and interpret their combined data. The course culminates in a poster session during which students present their findings to peers, instructors, and the greater biosciences community. Based on our experience, we provide recommendations for the development of similar large introductory lab courses. © 2016 by The International Union of Biochemistry and Molecular Biology, 45(2):161–178, 2017. PMID:27873457

  9. LDRD Annual Report FY2006

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sketchley, J A; Kotta, P; De Yoreo, J

    The Laboratory Directed Research and Development (LDRD) Program, authorized by Congress in 1991 and administered by the Laboratory Science and Technology Office, is our primary means for pursuing innovative, long-term, high-risk, and potentially high-payoff research that supports the missions of the Laboratory, the Department of Energy, and National Nuclear Security Administration in national security, energy security, environmental management, bioscience and technology to improve human health, and breakthroughs in fundamental science and technology. The accomplishments described in this Annual Report demonstrate the strong alignment of the LDRD portfolio with these missions and contribute to the Laboratory's success in meeting its goals.more » The LDRD budget of $92 million for FY2006 sponsored 188 projects. These projects were selected through an extensive peer-review process to ensure the highest scientific quality and mission relevance. Each year, the number of deserving proposals far exceeds the funding available, making the selection a tough one indeed. Our ongoing investments in LDRD have reaped long-term rewards for the Laboratory and the nation. Many Laboratory programs trace their roots to research thrusts that began several years ago under LDRD sponsorship. In addition, many LDRD projects contribute to more than one mission area, leveraging the Laboratory's multidisciplinary team approach to science and technology. Safeguarding the nation from terrorist activity and the proliferation of weapons of mass destruction will be an enduring mission of this Laboratory, for which LDRD will continue to play a vital role. The LDRD Program is a success story. Our projects continue to win national recognition for excellence through prestigious awards, papers published in peer-reviewed journals, and patents granted. With its reputation for sponsoring innovative projects, the LDRD Program is also a major vehicle for attracting and retaining the best and the brightest technical staff and for establishing collaborations with universities, industry, and other scientific and research institutions. By keeping the Laboratory at the forefront of science and technology, the LDRD Program enables us to meet our mission challenges, especially those of our ever-evolving national security mission.« less

  10. LDRD FY2004 Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kotta, P. R.; Kline, K. M.

    2005-02-28

    The Laboratory Directed Research and Development (LDRD) Program is our primary means for pursuing innovative, long-term, high-risk, and potentially high-payoff research that supports the missions of the Laboratory, the Department of Energy, and the National Nuclear Security Administration in national security, homeland security, energy security, environmental management, bioscience and healthcare technology, and breakthroughs in fundamental science and technology. The LDRD Program was authorized by Congress in 1991 and is administered by the Laboratory Science and Technology Office. The accomplishments described in this Annual Report demonstrate how the LDRD portfolio is strongly aligned with these missions and contributes to the Laboratory’smore » success in meeting its goals. The LDRD budget of $69.8 million for FY2004 sponsored 220 projects. These projects were selected through an extensive peer-review process to ensure the highest scientific and technical quality and mission relevance. Each year, the number of meritorious proposals far exceeds the funding available, making the selection a challenging one indeed. Our ongoing investments in LDRD have reaped long-term rewards for the Laboratory and the Nation. Many Laboratory programs trace their roots to research thrusts that began several years ago under LDRD sponsorship. In addition, many LDRD projects contribute to more than one mission area, leveraging the Laboratory’s multidisciplinary team approach to science and technology. Safeguarding the Nation from terrorist activity and the proliferation of weapons of mass destruction will be an enduring mission of this Laboratory, for which LDRD will continue to play a vital role. The LDRD Program is a success story. Our projects continue to win national recognition for excellence through prestigious awards, papers published in peer-reviewed journals, and patents granted. With its reputation for sponsoring innovative projects, the LDRD Program is also a major vehicle for attracting and retaining the best and the brightest technical staff and for establishing collaborations with universities, industry, and other scientific and research institutions. By keeping the Laboratory at the forefront of science and technology, the LDRD Program enables us to meet our mission challenges, especially those of our ever-evolving national security and homeland security missions.« less

  11. Messy entanglements: research assemblages in heart transplantation discourses and practices

    PubMed Central

    Shildrick, Margrit; Carnie, Andrew; Wright, Alexa; McKeever, Patricia; Jan, Emily Huan-Ching; De Luca, Enza; Bachmann, Ingrid; Abbey, Susan; Dal Bo, Dana; Poole, Jennifer; El-Sheikh, Tammer; Ross, Heather

    2018-01-01

    The paper engages with a variety of data around a supposedly single biomedical event, that of heart transplantation. In conventional discourse, organ transplantation constitutes an unproblematised form of spare part surgery in which failing biological components are replaced by more efficient and enduring ones, but once that simple picture is complicated by employing a radically interdisciplinary approach, any biomedical certainty is profoundly disrupted. Our aim, as a cross-sectorial partnership, has been to explore the complexities of heart transplantation by explicitly entangling research from the arts, biosciences and humanities without privileging any one discourse. It has been no easy enterprise yet it has been highly productive of new insights. We draw on our own ongoing funded research with both heart donor families and recipients to explore our different perceptions of what constitutes data and to demonstrate how the dynamic entangling of multiple data produces a constitutive assemblage of elements in which no one can claim priority. Our claim is that the use of such research assemblages and the collaborations that we bring to our project breaks through disciplinary silos to enable a fuller comprehension of the significance and experience of heart transplantation in both theory and practice. PMID:28972037

  12. How Does One "Open" Science? Questions of Value in Biological Research.

    PubMed

    Levin, Nadine; Leonelli, Sabina

    2017-03-01

    Open Science policies encourage researchers to disclose a wide range of outputs from their work, thus codifying openness as a specific set of research practices and guidelines that can be interpreted and applied consistently across disciplines and geographical settings. In this paper, we argue that this "one-size-fits-all" view of openness sidesteps key questions about the forms, implications, and goals of openness for research practice. We propose instead to interpret openness as a dynamic and highly situated mode of valuing the research process and its outputs, which encompasses economic as well as scientific, cultural, political, ethical, and social considerations. This interpretation creates a critical space for moving beyond the economic definitions of value embedded in the contemporary biosciences landscape and Open Science policies, and examining the diversity of interests and commitments that affect research practices in the life sciences. To illustrate these claims, we use three case studies that highlight the challenges surrounding decisions about how--and how best--to make things open. These cases, drawn from ethnographic engagement with Open Science debates and semistructured interviews carried out with UK-based biologists and bioinformaticians between 2013 and 2014, show how the enactment of openness reveals judgments about what constitutes a legitimate intellectual contribution, for whom, and with what implications.

  13. How Does One “Open” Science? Questions of Value in Biological Research

    PubMed Central

    Levin, Nadine

    2016-01-01

    Open Science policies encourage researchers to disclose a wide range of outputs from their work, thus codifying openness as a specific set of research practices and guidelines that can be interpreted and applied consistently across disciplines and geographical settings. In this paper, we argue that this “one-size-fits-all” view of openness sidesteps key questions about the forms, implications, and goals of openness for research practice. We propose instead to interpret openness as a dynamic and highly situated mode of valuing the research process and its outputs, which encompasses economic as well as scientific, cultural, political, ethical, and social considerations. This interpretation creates a critical space for moving beyond the economic definitions of value embedded in the contemporary biosciences landscape and Open Science policies, and examining the diversity of interests and commitments that affect research practices in the life sciences. To illustrate these claims, we use three case studies that highlight the challenges surrounding decisions about how––and how best––to make things open. These cases, drawn from ethnographic engagement with Open Science debates and semistructured interviews carried out with UK-based biologists and bioinformaticians between 2013 and 2014, show how the enactment of openness reveals judgments about what constitutes a legitimate intellectual contribution, for whom, and with what implications. PMID:28232768

  14. Breakdown Breakthrough: NREL Finds Easier Ways to Deconstruct Biomass |

    Science.gov Websites

    soften biomass. Photo by Dennis Schroeder, NREL If there's an easier, more efficient method, science will Dennis Schroeder, NREL The process normally used to deconstruct biomass, called simultaneous in NREL's Biosciences Center. Photo by Dennis Schroeder, NREL New Technology Could Provide Boost to

  15. Comparison of Soluble and Immobilised Enzymes

    ERIC Educational Resources Information Center

    Wiseman, Alan

    2003-01-01

    This short article was written in response to a proposed practical featured in the Spring 2002 issue of the "Journal of Biological Education." Beaumont, Cotterill and Williams described a system representing a useful way by which the deleterious effects of free radical attack on enzymes can be demonstrated to undergraduate bioscience students,…

  16. The Promise and Challenge of Producing Biofuel Feedstocks: An Ecological Perspective (2010 JGI User Meeting)

    ScienceCinema

    DeLucia, Evan

    2018-02-13

    Evan DeLucia of the University of Illinois at Urbana-Champaign and the Energy Biosciences Institute talks about The Promise and Challenge of Producing Biofuel Feedstocks: An Ecological Perspective on March 25, 2010 at the 5th Annual DOE JGI User Meeting.

  17. Development of an Interdisciplinary Undergraduate Bioengineering Program at Lehigh University

    ERIC Educational Resources Information Center

    Herz, Lori; Russo, M. Jean; Ou-Yang, H. Daniel; El-Aasser, Mohamed; Jagota, Anand; Tatic-Lucic, Svetlana; Ochs, John

    2011-01-01

    The undergraduate Bioengineering Program at Lehigh University was established as part of the university's Bioscience and Biotechnology Initiative with support from the National Science Foundation through a grant from its Division of Engineering Education and Centers (EEC). The objective here is to describe the program development and…

  18. Bioethics Center: An Idea Whose Time Had Come

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1974

    1974-01-01

    The functioning of the Kennedy Institute, which aims at dealing with ethical and social questions raised by advances in biosciences and medicine, is described. Three major projects now underway are briefly discussed: a core reference library in bioethics, an Encyclopedia of Bioethics, and a bioethics information retrieval system. (DT)

  19. Changes in Academic Entrepreneurship among Japanese University Bioscientists, 1980-2012

    ERIC Educational Resources Information Center

    Kameo, Nahoko

    2014-01-01

    The dissertation examines how Japanese university scientists in the biosciences responded to legal and institutional changes in academic entrepreneurship. Beginning in the 1990s, the Japanese government initiated a series of policy initiatives that attempted to imitate the U.S. academic environment's approach to promoting entrepreneurship. Using…

  20. The Role of the Virtual Microscope in Distance Learning

    ERIC Educational Resources Information Center

    Whalley, Peter; Kelley, Simon; Tindle, Andrew

    2011-01-01

    Screen-based microscopes allow for a shared visualisation and task-directed conversations that offer significant pedagogic advantages for the science disciplines involving observation of natural samples such as the geosciences and biosciences, and particularly for distance education in these disciplines. The role and development of a virtual…

  1. Embedding Enterprise in Biosciences: Added Value for Employability

    ERIC Educational Resources Information Center

    Watts, Carys; Wray, Katie; Kennedy, Ciara; Freeman, Paul; Trainer, Gareth

    2010-01-01

    Enterprise education at Newcastle University, UK, is embedded in the fabric of the curriculum via the Newcastle University Graduate Skills Framework. An example of this is the "Business for the Bioscientist" module. The authors discuss this module with regard to good practice, enterprise development and the wider arena of graduate…

  2. Estimating the Size of Onion Epidermal Cells from Diffraction Patterns

    ERIC Educational Resources Information Center

    Groff, Jeffrey R.

    2012-01-01

    Bioscience and premedical profession students are a major demographic served by introductory physics courses at many colleges and universities. Exposing these students to biological applications of physical principles will help them to appreciate physics as a useful tool for their future professions. Here I describe an experiment suitable for…

  3. Enrichment and Strengthening of Indian Biotechnology Industry along with Academic Interface

    ERIC Educational Resources Information Center

    Singh, Shalini

    2014-01-01

    For many years, humankind has been incorporating biosciences in different places--from agriculture to food and medicine. Today, the nomenclature of biology has been recoined as Biotechnology, a technological science with a perfect blend of sophisticated techniques, manuals and application of fast delivery equipment and vehicles. It encompasses…

  4. Cloning: Past, Present, and the Exciting Future. Breakthroughs in Bioscience.

    ERIC Educational Resources Information Center

    Di Berardino, Marie A.

    This document explores the history of cloning by focusing on Dolly the Sheep, one of the first large animal clonings. The disadvantages and advantages of transgenic clones are discussed as well as the future implications of cloning from the perspective of human health. (Contains 10 resources.) (YDS)

  5. 78 FR 32248 - Notice of Receipt of a Request to Voluntarily Cancel Certain Pesticide Registrations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-29

    ...). ACTION: Notice. SUMMARY: In accordance with the Federal Insecticide, Fungicide, and Rodenticide Act... for the allethrins end-use products will be effective December 31, 2016, as described in Unit II. If... 2020. The technical registrants (Sumitomo Chemical Company Limited and Valent BioSciences Corporation...

  6. Enhancing the Student Experience of Laboratory Practicals through Digital Video Guides

    ERIC Educational Resources Information Center

    Croker, Karen; Andersson, Holger; Lush, David; Prince, Rob; Gomez, Stephen

    2010-01-01

    Laboratory-based learning allows students to experience bioscience principles first hand. In our experience, practical content and equipment may have changed over time, but teaching methods largely remain the same, typically involving; whole class introduction with a demonstration, students emulating the demonstration in small groups, gathering…

  7. Biology Students Building Computer Simulations Using StarLogo TNG

    ERIC Educational Resources Information Center

    Smith, V. Anne; Duncan, Ishbel

    2011-01-01

    Confidence is an important issue for biology students in handling computational concepts. This paper describes a practical in which honours-level bioscience students simulate complex animal behaviour using StarLogo TNG, a freely-available graphical programming environment. The practical consists of two sessions, the first of which guides students…

  8. Online Preparation Resources Help First Year Students to Benefit from Practical Classes

    ERIC Educational Resources Information Center

    Whittle, Sue R.; Bickerdike, Sue R.

    2015-01-01

    Practical skills are important for the employability of biosciences graduates; however, first year science undergraduates often struggle to adapt to university practical classes, affecting skills development and decreasing their enthusiasm for laboratory work. This study describes the effects of introducing online multimedia practical support…

  9. 77 FR 14023 - National Institute on Alcohol Abuse and Alcoholism; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-08

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Institute on Alcohol Abuse and Alcoholism; Notice of Closed Meeting Pursuant to section 10(d) of the Federal Advisory... and Alcoholism Special Emphasis Panel; NIAAA Member Conflict application reviews--Biosciences. Date...

  10. Stimulate Students' Interest by Genetics Exordium Teaching

    ERIC Educational Resources Information Center

    Li, Yan

    2009-01-01

    Genetics is the important specialized course of bioscience and whether exordium is taught wonderfully or not plays the important and pivotal role. Well teaching exordium class may stimulate students, deep interest and intense desire for knowledge in this class. This text, according to teaching experience and taste, puts forward several teaching…

  11. Additional annotation of the pig transcriptome using integrated Iso-seq and Illumina RNA-seq analysis

    USDA-ARS?s Scientific Manuscript database

    Alternative splicing is a well-known phenomenon that dramatically increases eukaryotic transcriptome diversity. The extent of mRNA isoform diversity among porcine tissues was assessed using Pacific Biosciences single-molecule long-read isoform sequencing (Iso-Seq) and Illumina short read sequencing ...

  12. An incomplete analysis

    USGS Publications Warehouse

    Smith, David; Hallerman, Eric M.; Millard, Michael J.; Sweka, John A.; Weber, Richard G.

    2009-01-01

    Niles and colleagues (2009) do not present all of the data relevant to the issues they address in the article they wrote for BioScience. They reference unnamed sources for pre-1997 horseshoe crab harvest to conclude that recent harvest exceeds historic harvest. In fact, reported landings from New Jersey, Delaware, Maryland, and Virginia in 2006 (352 metric tons [mt]) were between landings in 1989 (365 mt) and 1990 (232 mt) (www.st.nmfs.noaa.gov/st1/commercial/inaex.html), despite nonmandatory reporting coastwide before 1998 (Kreamer and Michels 2009). They present egg densities from New Jersey beaches only. Of the 11 Delaware beaches sampled, eggs in the top 5 centimeters exceeded their monitoring target of 50,000 per square meter at 5 in 2006 and at 6 in 2007 (Kalasz et al. 2008). They rely on the Delaware trawl survey for historic trends. Nine fishery-independent surveys have been used to assess trends in the Delaware Bay region, and several began before 1990 (Smith et al. 2009a).

  13. A mixed methods evaluation of team-based learning for applied pathophysiology in undergraduate nursing education.

    PubMed

    Branney, Jonathan; Priego-Hernández, Jacqueline

    2018-02-01

    It is important for nurses to have a thorough understanding of the biosciences such as pathophysiology that underpin nursing care. These courses include content that can be difficult to learn. Team-based learning is emerging as a strategy for enhancing learning in nurse education due to the promotion of individual learning as well as learning in teams. In this study we sought to evaluate the use of team-based learning in the teaching of applied pathophysiology to undergraduate student nurses. A mixed methods observational study. In a year two, undergraduate nursing applied pathophysiology module circulatory shock was taught using Team-based Learning while all remaining topics were taught using traditional lectures. After the Team-based Learning intervention the students were invited to complete the Team-based Learning Student Assessment Instrument, which measures accountability, preference and satisfaction with Team-based Learning. Students were also invited to focus group discussions to gain a more thorough understanding of their experience with Team-based Learning. Exam scores for answers to questions based on Team-based Learning-taught material were compared with those from lecture-taught material. Of the 197 students enrolled on the module, 167 (85% response rate) returned the instrument, the results from which indicated a favourable experience with Team-based Learning. Most students reported higher accountability (93%) and satisfaction (92%) with Team-based Learning. Lectures that promoted active learning were viewed as an important feature of the university experience which may explain the 76% exhibiting a preference for Team-based Learning. Most students wanted to make a meaningful contribution so as not to let down their team and they saw a clear relevance between the Team-based Learning activities and their own experiences of teamwork in clinical practice. Exam scores on the question related to Team-based Learning-taught material were comparable to those related to lecture-taught material. Most students had a preference for, and reported higher accountability and satisfaction with Team-based Learning. Through contextualisation and teamwork, Team-based Learning appears to be a strategy that confers strong pedagogical benefits for teaching applied pathophysiology (bioscience) to student nurses. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Consumption of a high-fat, high-calorie meal is associated with an increase in intracellular co-localization of PPAR-γ mRNA and protein in monocytes.

    PubMed

    Henning, Andrea L; McFarlin, Brian K

    2017-01-01

    Acute and habitual dietary habits contribute to the onset and progression of many forms of cardiovascular disease. Circulating peripheral blood monocytes have been a target of pre-clinical research related to the risk of atherosclerosis. Specifically, when monocytes migrate into the subendothelial space and endocytosize modified LDL (i.e. acLDL or oxLDL) they phenotypically transform into foam cells. The endocytosis of modified LDL is mediated by the scavenger receptor CD36, whose expression is in tern regulated by the transcription factor PPAR-γ. In this report, we describe a novel technique for the simultaneous measurement of intracellular PPAR-γ mRNA and protein in peripheral blood monocytes collected from human subjects in fasted state or 3 and 5-h after consuming a high-calorie (65% of daily calorie needs), high-fat meal. Intracellular detection and co-localization of PPAR-γ was made possible using a combination of image-based flow cytometry (MilliporeSigma FlowSight) and an amplified mRNA FISH staining technique (Affymetrix/eBioscience PrimeFlow). Consumption of a high-calorie, high-fat meal increased the percentage of co-localization at both 3 and 5-h post prandial compared to pre-meal. No obvious difference in co-localization was observed when cells were treated by acLDL in vitro. More research is needed to determine how to best use this method to study pre-clinical risk of atherosclerosis. Copyright © 2016. Published by Elsevier Inc.

  15. KSC-07pd2652

    NASA Image and Video Library

    2007-09-28

    KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility, STS-122 crew members practice working with equipment for the mission. From left are Commander Stephen Frick and Mission Specialists Hans Schlegel, Rex Walheim and Stanley Love. Schlegel represents the European Space Agency. The crew is at Kennedy Space Center to take part in a crew equipment interface test, which includes equipment familiarization. The mission will carry and install the Columbus Lab, a multifunctional, pressurized laboratory that will be permanently attached to Node 2 of the space station to carry out experiments in materials science, fluid physics and biosciences, as well as to perform a number of technological applications. It is Europe’s largest contribution to the construction of the International Space Station and will support scientific and technological research in a microgravity environment. STS-122 is targeted for launch in December. Photo credit: NASA/Kim Shiflett

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henzler, Katja; Fetisov, Evgenii O.; Galib, Mirza

    We will present a description of nucleation phenomena in the condensed phase that takes into account non-ideal solution effects associated with cluster-cluster interaction. To do this we employ aggregation-volume bias Monte Carlo simulation, making the estimation of free-energy of large pre-critical clusters of sizes 10-20 tractable. We will compare and contrast empirical potential and electronic structure (e.g. Density functional theory) based descriptions of molecular interaction associated with the nucleation of CaCO3, highlighting free-energy trends and qualitative differences in populations of pre-critical clusters as a function of supersaturation. The influence of how the precise local interaction influences the non-ideal solution behaviormore » on the nucleation and growth processes will be highlighted. This research was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences.« less

  17. Biona-C Cell Culture pH Monitoring System

    NASA Technical Reports Server (NTRS)

    Friedericks, C.

    1999-01-01

    Sensors 2000! is developing a system to demonstrate the ability to perform accurate, real-time measurements of pH and CO2 in a cell culture media in Space. The BIONA-C Cell Culture pH Monitoring System consists of S2K! developed ion selective sensors and control electronics integrated with the fluidics of a cell culture system. The integrated system comprises a "rail" in the Cell Culture Module (CCM) of WRAIR (Space Biosciences of Walter Read Army Institute of Research). The CCM is a Space Shuttle mid-deck locker experiment payload. The BIONA-C is displayed along with associated graphics and text explanations. The presentation will stimulate interest in development of sensor technology for real-time cell culture measurements. The transfer of this technology to other applications will also be of interest. Additional information is contained in the original document.

  18. Advanced Plant Habitat Flight Unit #1

    NASA Image and Video Library

    2017-07-24

    Inside a laboratory in the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, LED plant growth lights are being checked out on the hardware for the Advanced Plant Habitat flight unit. The flight unit is an exact replica of the APH that was delivered to the International Space Station. Validation tests and post-delivery checkout was performed to prepare for space station in-orbit APH activities. The flight unit will be moved to the International Space Station Environmental Simulator to begin an experiment verification test for the science that will fly on the first mission, PH-01. Developed by NASA and ORBITEC of Madison, Wisconsin, the APH is the largest plant chamber built for the agency. It is a fully automated plant growth facility that will be used to conduct bioscience research on the space station.

  19. Biosynthesis of luminescent CdS quantum dots using plant hairy root culture

    NASA Astrophysics Data System (ADS)

    Borovaya, Mariya N.; Naumenko, Antonina P.; Matvieieva, Nadia A.; Blume, Yaroslav B.; Yemets, Alla I.

    2014-12-01

    CdS nanoparticles have a great potential for application in chemical research, bioscience and medicine. The aim of this study was to develop an efficient and environmentally-friendly method of plant-based biosynthesis of CdS quantum dots using hairy root culture of Linaria maroccana L. By incubating Linaria root extract with inorganic cadmium sulfate and sodium sulfide we synthesized stable luminescent CdS nanocrystals with absorption peaks for UV-visible spectrometry at 362 nm, 398 nm and 464 nm, and luminescent peaks at 425, 462, 500 nm. Transmission electron microscopy of produced quantum dots revealed their spherical shape with a size predominantly from 5 to 7 nm. Electron diffraction pattern confirmed the wurtzite crystalline structure of synthesized cadmium sulfide quantum dots. These results describe the first successful attempt of quantum dots synthesis using plant extract.

  20. About the Barriers to Reaction of CCl4 with HFeOH and FeCl2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ginovska-Pangovska, Bojana; Camaioni, Donald M.; Dupuis, Michel

    2011-08-11

    The reactivity of iron nanoparticles in aqueous environments has received considerable attention due to their potential utilization in environmental remediation technologies. As part of a broader program aiming at an improved understanding of the mechanisms involved in the degradation of harmful chlorocarbons, joint experimental and computational studies of model systems were initiated. We previously reported on the reaction of one and two Fe atoms reactions with carbon tetrachloride (CCl4) in direct mimic of “atom-dropping” experiments, with insights into the formation of novel iron-carbon-chlorine complexes, their structures and possible reaction mechanisms. Increasing the level of complexity, we report here on themore » modeling of the reaction of HFeOH and CCl4 as companion research of recent ultra high vacuum experiments of the reaction of Fe with water and CCl4. HFeOH is a stable molecular species formed in the reaction of Fe with H2O. Experimentally the (Fe, H2O, CCl4) system showed no reactivity up to the desorption temperature of CCl4. Electron correlated CCSD(T) calculations (at DFT(B3LYP) optimized structures) indicated an energy barrier to reactivity of 24.5 kcal/mol following the formation of a stable ( 7.5 kcal/mol) long-range precursor complex. This finding is consistent with the lack of experimentally detected reaction products. This work was supported by the US Department of Energy Basic Energy Sciences' Chemical Sciences, Geosciences & Biosciences Division. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.« less

  1. Simulating Phase Variation: A Practical Approach to Teaching Mutation and Diversity

    ERIC Educational Resources Information Center

    Wanford, Joe; Aidley, Jack; Bayliss, Chris; Ketley, Julian; Goodwin, Mark

    2018-01-01

    Mutation, diversity, natural selection and the biology of human pathogens (including antibiotic resistance) are key features of the biosciences curriculum at A Level and undergraduate study. Few resources exist to allow students to engage with these topics in an interactive manner. This paper describes an interactive, online simulation of mutation…

  2. The Utility of Writing Assignments in Undergraduate Bioscience

    ERIC Educational Resources Information Center

    Libarkin, Julie; Ording, Gabriel

    2012-01-01

    We tested the hypothesis that engagement in a few, brief writing assignments in a nonmajors science course can improve student ability to convey critical thought about science. A sample of three papers written by students (n = 30) was coded for presence and accuracy of elements related to scientific writing. Scores for different aspects of…

  3. Quantitative Skills as a Graduate Learning Outcome: Exploring Students' Evaluative Expertise

    ERIC Educational Resources Information Center

    Matthews, Kelly E.; Adams, Peter; Goos, Merrilyn

    2017-01-01

    In the biosciences, quantitative skills are an essential graduate learning outcome. Efforts to evidence student attainment at the whole of degree programme level are rare and making sense of such data is complex. We draw on assessment theories from Sadler (evaluative expertise) and Boud (sustainable assessment) to interpret final-year bioscience…

  4. Box 11: Tissue Engineering and Bioscience Methods Using Proton Beam Writing

    NASA Astrophysics Data System (ADS)

    van Kan, J. A.

    Tissue engineering is a rapidly developing and highly interdisciplinary field that applies the principles of cell biology, engineering, and materials science to the culture of biological tissue. The artificially grown tissue then can be implanted directly into the body, or it can form part of a device that replaces organ functionality.

  5. Communicating Biotech Advances: Fiction versus Reality.

    PubMed

    Małyska, Aleksandra; Bolla, Robert; Twardowski, Tomasz

    2018-02-01

    Bioscience novels use selected technologies of genetic engineering and synthetic biology to create entertaining stories. These novels are usually based on scientific knowledge, but they may arouse public concerns about technology and drive public reluctance to accept innovative technologies. The scientific community must adopt more efficient communication and transparency. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Bioinformatics: Current Practice and Future Challenges for Life Science Education

    ERIC Educational Resources Information Center

    Hack, Catherine; Kendall, Gary

    2005-01-01

    It is widely predicted that the application of high-throughput technologies to the quantification and identification of biological molecules will cause a paradigm shift in the life sciences. However, if the biosciences are to evolve from a predominantly descriptive discipline to an information science, practitioners will require enhanced skills in…

  7. Evaluation of production method and formulation for optimizing in-vitro produced Gypchek

    Treesearch

    R. E. Webb; G. B. White; K. W. Thorpe; J. M. Slavicek; J. D. Podgwaite; R. W. Fuester; P. B. Taylor; R. A. Peiffer; M. A. Valenti

    2003-01-01

    Gypchek (USDA Forest Service, Washington, DC), a product with the Lymantria dispar multi-enveloped nucleopolyhedrovirus (LdMNPV) as the active ingredient, is a general use biopesticide for use against the gypsy moth. Successful field trials with Gypchek incorporated with the commercially-produced Carrier 038 (Valent BioSciences Corp., Libertyville,...

  8. The Endangered Species Act and Sound Science

    DTIC Science & Technology

    2006-10-05

    A. Mehrhoff, Mary J. Parkin, Diane R. Elam, and Linus Y. Chen, “Endangered Species Recovery and the SCB Study: A U.S. Fish and Wildlife Service...2003. 99 Ellen Paul , “Science: The Newest Political Football in the Endangered Species Game,” BioScience, v. 52, no. 9 (September 2002): 792. A

  9. "Here's One We Prepared Earlier": Involving Former Students in Careers Advice

    ERIC Educational Resources Information Center

    Willmott, Chris

    2011-01-01

    Graduate employability is an important concern for contemporary universities. Alongside the development of employability skills, it is also crucial that students of bioscience, a "non-vocational" subject, have awareness of the breadth of potential careers that can follow from their initial degree. Over the past five years we have developed the…

  10. Teaching Bioethics via the Production of Student-Generated Videos

    ERIC Educational Resources Information Center

    Willmott, Christopher J. R.

    2015-01-01

    There is growing recognition that science is not conducted in a vacuum and that advances in the biosciences have ethical and social implications for the wider community. An exercise is described in which undergraduate students work in teams to produce short videos about the science and ethical dimensions of current developments in biomedicine.…

  11. Lessons Learned from Undergraduate Students in Designing a Science-Based Course in Bioethics

    ERIC Educational Resources Information Center

    Loike, John D.; Rush, Brittany S.; Schweber, Adam; Fischbach, Ruth L.

    2013-01-01

    Columbia University offers two innovative undergraduate science-based bioethics courses for student majoring in biosciences and pre-health studies. The goals of these courses are to introduce future scientists and healthcare professionals to the ethical questions they will confront in their professional lives, thus enabling them to strategically…

  12. Sequencing Technologies Panel at SFAF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turner, Steve; Fiske, Haley; Knight, Jim

    2010-06-02

    From left to right: Steve Turner of Pacific Biosciences, Haley Fiske of Illumina, Jim Knight of Roche, Michael Rhodes of Life Technologies and Peter Vander Horn of Life Technologies' Single Molecule Sequencing group discuss new sequencing technologies and applications on June 2, 2010 at the "Sequencing, Finishing, Analysis in the Future" meeting in Santa Fe, NM

  13. Integrating Standard Operating Procedures and Industry Notebook Standards to Evaluate Students in Laboratory Courses

    ERIC Educational Resources Information Center

    Wallert, Mark A.; Provost, Joseph J.

    2014-01-01

    To enhance the preparedness of graduates from the Biochemistry and Biotechnology (BCBT) Major at Minnesota State University Moorhead for employment in the bioscience industry we have developed a new Industry certificate program. The BCBT Industry Certificate was developed to address specific skill sets that local, regional, and national industry…

  14. Sediment Flux to the Coastal Zone: Predictions for the Navy

    DTIC Science & Technology

    2001-09-30

    synthesis paper on anthropogenic disturbance of the water cycle (Vörösmarty and Sahagian 2000) which was found to be significant in terms of distorting...Practice, pp. 43-80. Island Press, Washington DC. Vörösmarty, C.J. and Sahagian, D., 2000. Anthropogenic disturbance of the terrestrial water cycle . BioScience

  15. The Notion of Scientific Knowledge in Biology

    ERIC Educational Resources Information Center

    Morante, Silvia; Rossi, Giancarlo

    2016-01-01

    The purpose of this work is to reconsider and critically discuss the conceptual foundations of modern biology and bio-sciences in general, and provide an epistemological guideline to help framing the teaching of these disciplines and enhancing the quality of their presentation in High School, Master and Ph.D. courses. After discussing the…

  16. Interaction of resident sperm with sperm-storage tubule (SST) epithelial cell microvilli in the turkey breeder hen

    USDA-ARS?s Scientific Manuscript database

    Interaction of resident sperm with sperm-storage tubule (SST) epithelial cell microvilli in the turkey breeder hen M.R. Bakst*1 and C. Murphy2, 1Animal Biosciences and Biotechnology Laboratory, 2Electron & Confocal Microscopy Unit, Beltsville Area, ARS, USDA, Beltsville MD Sustained fertilization o...

  17. Aeolian Nutrient Fluxes Following Wildfire in Sagebrush Steppe: Implications for Soil Carbon Storage

    DTIC Science & Technology

    2011-12-14

    World atlas of desertification , Arnold, London, 1997. Miller, R. F. and Heyerdahl, E. K.: Fine-scale variation of historical fire regimes in...Fredrickson, E. L.: Do changes in connectivity explain desertification ?, Bioscience, 59, 237–244, 2009. Rau, B. M., Chambers, J. C., Blank, R. R., and

  18. The Learning Gains and Student Perceptions of a Second Life Virtual Lab

    ERIC Educational Resources Information Center

    Cobb, Stephanie; Heaney, Rose; Corcoran, Olivia; Henderson-Begg, Stephanie

    2009-01-01

    This study examines students' reactions to the virtual biosciences laboratory developed in Second Life[R] (SL) at the University of East London. Final year undergraduates and masters students studying biotechnology took part in a trial of a virtual Polymerase Chain Reaction (PCR) experiment in Second Life and evaluated their experience by…

  19. Novel GM animal technologies and their governance.

    PubMed

    Bruce, Ann; Castle, David; Gibbs, Corrina; Tait, Joyce; Whitelaw, C Bruce A

    2013-08-01

    Scientific advances in methods of producing genetically modified (GM) animals continue, yet few such animals have reached commercial production. Existing regulations designed for early techniques of genetic modification pose formidable barriers to commercial applications. Radically improved techniques for producing GM animals invite a re-examination of current regulatory regimes. We critically examine current GM animal regulations, with a particular focus on the European Union, through a framework that recognises the importance of interactions among regulatory regimes, innovation outcomes and industry sectors. The current focus on the regulation of risk is necessary but is unable to discriminate among applications and tends to close down broad areas of application rather than facilitate innovation and positive industry interactions. Furthermore, the fields of innovative animal biosciences appear to lack networks of organisations with co-ordinated future oriented actions. Such networks could drive coherent programmes of innovation towards particular visions and contribute actively to the development of regulatory systems for GM animals. The analysis presented makes the case for regulatory consideration of each animal bioscience related innovation on the basis of the nature of the product itself and not the process by which it was developed.

  20. Electrocatalytic Oxidation of Formate with Nickel Diphosphane Dipeptide Complexes. Effect of Ligands Modified with Amino Acids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galan, Brandon R.; Reback, Matthew L.; Jain, Avijita

    2013-09-03

    A series of nickel bis-diphosphine complexes with dipeptides appended to the ligands were investigated for the catalytic oxidation of formate. Typical rates of ~7 s -1 were found, similar to the parent complex (~8 s -1), with amino acid size and positioning contributing very little to rate or operating potential. Hydroxyl functionalities did result in lower rates, which were recovered by protecting the hydroxyl group. The results suggest that the overall dielectric introduced by the dipeptides does not play an important role in catalysis, but free hydroxyl groups do influence activity suggesting contributions from intra- or intermolecular interactions. These observationsmore » are important in developing a fundamental understanding of the affect that an enzyme-like outer coordination sphere can have upon molecular catalysts. This work was funded by the US DOE Basic Energy Sciences, Chemical Sciences, Geoscience and Biosciences Division (BRG, AJ, AMA, WJS), the US DOE Basic Energy Sciences, Physical Bioscience program (MLR). Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy.« less

  1. The (Mathematical) Modeling Process in Biosciences.

    PubMed

    Torres, Nestor V; Santos, Guido

    2015-01-01

    In this communication, we introduce a general framework and discussion on the role of models and the modeling process in the field of biosciences. The objective is to sum up the common procedures during the formalization and analysis of a biological problem from the perspective of Systems Biology, which approaches the study of biological systems as a whole. We begin by presenting the definitions of (biological) system and model. Particular attention is given to the meaning of mathematical model within the context of biology. Then, we present the process of modeling and analysis of biological systems. Three stages are described in detail: conceptualization of the biological system into a model, mathematical formalization of the previous conceptual model and optimization and system management derived from the analysis of the mathematical model. All along this work the main features and shortcomings of the process are analyzed and a set of rules that could help in the task of modeling any biological system are presented. Special regard is given to the formative requirements and the interdisciplinary nature of this approach. We conclude with some general considerations on the challenges that modeling is posing to current biology.

  2. Interactive problem-solving sessions in an introductory bioscience course engaged students and gave them feedback, but did not increase their exam scores.

    PubMed

    McEvoy, James P

    2017-10-02

    Active learning, including the promotion of student interactivity in lectures, has been found to improve student engagement and performance in university science classes. This letter describes the use of Pearson's Learning Catalytics to run regular, formatively assessed problem-solving sessions as part of the semiflipped redesign of an introductory level university bioscience course. Students found the problem-solving sessions more engaging than a traditional lecture, and felt that they were receiving better feedback on their progress in the course. Their participation in the problem-solving sessions was strongly associated with their performance in the course's summative assessments, making it possible to identify and assist probable poor performers early in the course. Other measures of student engagement with the course were not improved, and neither were their average exam grades when compared with their grades in a course which had not been redesigned. Possible reasons for this are discussed. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Bioculture System: Expanding ISS Space Bioscience Capabilities for Fundamental Stem Cell Research and Commercial Applications

    NASA Astrophysics Data System (ADS)

    Blaber, Elizabeth; Dvorochkin, Natalya; Almeida, Eduardo; Fitzpatrick, Garret; Ellingson, Lance; Mitchell, Sarah; Yang, Anthony; Kosnik, Cristine; Rayl, Nicole; Cannon, Tom; Austin, Edward; Sato, Kevin

    With the recent call by the 2011 Decadal Report and the 2010 Space Biosciences Roadmap for the International Space Station (ISS) to be used as a National Laboratory for scientific research, there is now a need for new laboratory instruments on ISS to enable such research to occur. The Bioculture System supports the extended culturing of multiple cell types and microbiological specimens. It consists of a docking station that carries ten independent incubation units or ‘Cassettes’. Each Cassette contains a cooling chamber (5(°) C) for temperature sensitive solutions and samples, or long duration fluids and sample storage, as well as an incubation chamber (ambient up to 42(°) C). Each Cassette houses an independent fluidics system comprised of a biochamber, medical-grade fluid tubing, medium warming module, oxygenation module, fluid pump, and sixteen solenoid valves for automated biochamber injections of sampling. The Bioculture System provides the user with the ability to select the incubation temperature, fluid flow rate and automated biochamber sampling or injection events for each separate Cassette. Furthermore, the ISS crew can access the biochamber, media bag, and accessory bags on-orbit using the Microgravity Science Glovebox. The Bioculture System also permits initiation of cultures, subculturing, injection of compounds, and removal of samples for on-orbit processing using ISS facilities. The Bioculture System therefore provides a unique opportunity for the study of stem cells and other cell types in space. The first validation flight of the Bioculture System will be conducted on SpaceX5, consisting of 8 Cassettes and lasting for 30-37 days. During this flight we plan to culture two different mammalian cell types in bioreactors: a mouse osteocytic-like cell line, and human induced pluripotent stem cell (iPS)-derived cardiomyocytes. Specifically, the osteocytic line will enable the study of a type of cell that has been flown on the Bioculture System’s predecessor, the Cell Culture Module, whilst demonstrating the Bioculture Systems bead-based sub-culturing capabilities, automated sampling and fixation, manual sample removal/storage by ISS crew members, and whole bioreactor fixation. These activities will enable, for the first time, the long-duration culture of a proliferative cell line. Furthermore, these activities will facilitate genetic and proteomic analysis of these cells at several time points to determine cell health throughout the culture period. The long-duration culture of iPS-derived cardiomyocytes will afford us the capability to assess the maturation and formation of a cardiac-like tissue in microgravity conditions. Automated sampling of this culture immediately prior to un-berthing from the ISS will enable genetic analysis of the mature cardiomyocyte tissue, whilst still enabling the return of live cultures for analysis of cardiomyocyte morphology, contractility, and viability in response to spaceflight. This validation flight will demonstrate the new functional capabilities of the Bioculture System and the System will enable, for the first time, the study of the response of stem cells and other cell lineages to long-duration spaceflight exposure, whilst enabling normal cell culturing techniques to be automatically conducted on ISS.

  4. The Notion of Scientific Knowledge in Biology

    NASA Astrophysics Data System (ADS)

    Morante, Silvia; Rossi, Giancarlo

    2016-03-01

    The purpose of this work is to reconsider and critically discuss the conceptual foundations of modern biology and bio-sciences in general, and provide an epistemological guideline to help framing the teaching of these disciplines and enhancing the quality of their presentation in High School, Master and Ph.D. courses. After discussing the methodological problems that arise in trying to construct a sensible and useful scientific approach applicable to the study of living systems, we illustrate what are the general requirements that a workable scheme of investigation should meet to comply with the principles of the Galilean method. The amazing success of basic physics, the Galilean science of election, can be traced back to the development of a radically " reductionistic" approach in the interpretation of experiments and a systematic procedure tailored on the paradigm of " falsifiability" aimed at consistently incorporating new information into extended models/theories. The development of bio-sciences seems to fit with neither reductionism (the deeper is the level of description of a biological phenomenon the more difficult looks finding general and simple laws), nor falsifiability (not always experiments provide a yes-or-no answer). Should we conclude that biology is not a science in the Galilean sense? We want to show that this is not so. Rather in the study of living systems, the novel interpretative paradigm of " complexity" has been developed that, without ever conflicting with the basic principles of physics, allows organizing ideas, conceiving new models and understanding the puzzling lack of reproducibility that seems to affect experiments in biology and in other modern areas of investigation. In the delicate task of conveying scientific concepts and principles to students as well as in popularising bio-sciences to a wider audience, it is of the utmost importance for the success of the process of learning to highlight the internal logical consistency of biology and its compliance with the fundamental laws of physics.

  5. Persistent Ion Pairing in Aqueous Hydrochloric Acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baer, Marcel D.; Fulton, John L.; Balasubramanian, Mahalingam

    2014-07-03

    For strong acids, like hydrochloric acid, the complete dissociation into an excess proton and conjugated base as well as the formation of independent solvated charged fragments is assumed. The existence of a chloride-Hyronium (Cl-H3O+) contact ion pairs even in moderate concentration hydrochloric acid (2.5 m) demonstrates that the counter ions do not behave merely as spectators. Through the use of modern extended X-ray absorption fine structure (EXAFS) measurements in conjunction with state-of-the-art density functional theory (DFT) simulations, we are able to obtain an unprecedented view into the molecular structure of medium to high concentrated electrolytes. Here we report that themore » Cl-H3O+ contact ion pair structure persists throughout the entire concentration range studied and that these structures differ significantly from moieties studied in micro-solvated hydrochloric acid clusters. Characterizing distinct populations of these ion pairs gives rise to a novel molecular level description of how to think about the activity of the proton that impacts our picture of the pH scale. Funding for CJM, GKS, and JLF was provided by DOE Office of Science, Office of Basic Energy Science, Division of Chemical Sciences, Geosciences, and Biosciences. Funding for MDB was provided throught the Laboratory Directed Research and Development program at Pacific Northwest National Laboratory. MB was funded through Argonne National Laboratory.« less

  6. Complete genome sequence and analysis of the industrial Saccharomyces cerevisiae strain N85 used in Chinese rice wine production.

    PubMed

    Zhang, Weiping; Li, Yudong; Chen, Yiwang; Xu, Sha; Du, Guocheng; Shi, Huidong; Zhou, Jingwen; Chen, Jian

    2018-02-05

    Chinese rice wine is a popular traditional alcoholic beverage in China, while its brewing processes have rarely been explored. We herein report the first gapless, near-finished genome sequence of the yeast strain Saccharomyces cerevisiae N85 for Chinese rice wine production. Several assembly methods were used to integrate Pacific Bioscience (PacBio) and Illumina sequencing data to achieve high-quality genome sequencing of the strain. The genome encodes more than 6,000 predicted proteins, and 238 long non-coding RNAs, which are validated by RNA-sequencing data. Moreover, our annotation predicts 171 novel genes that are not present in the reference S288c genome. We also identified 65,902 single nucleotide polymorphisms and small indels, many of which are located within genic regions. Dozens of larger copy-number variations and translocations were detected, mainly enriched in the subtelomeres, suggesting these regions may be related to genomic evolution. This study will serve as a milestone in studying of Chinese rice wine and related beverages in China and in other countries. It will help to develop more scientific and modern fermentation processes of Chinese rice wine, and explore metabolism pathways of desired and harmful components in Chinese rice wine to improve its taste and nutritional value. © The Author(s) 2018. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  7. Improving Stability of Zeolites in Aqueous Phase via Selective Removal of Structural Defects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prodinger, Sebastian; Derewinski, Miroslaw A.; Vjunov, Aleksei

    2016-03-13

    This work reports significant improvement in the hydrothermal stability of a well-characterized BEA zeolite via the selective removal of structural defects. Recent work suggests that the presence of silanol defects destabilizes the framework integrity of most zeolites and makes them susceptible to hydrolysis of the siloxy bonds by hot liquid water. The described approach allows for a key removal of silanols as shown with 29Si-MAS-NMR. Subsequently, the material stability in hot liquid water, measured by retention of its crystallinity with X-ray diffraction (XRD), is found to be superior to defective zeolites. In addition, N2-sorption measurements (BET) and transmission electron microscopymore » (TEM) show the formation of different types of mesoporosity for water-treated stabilized and unmodified materials. While the sorption capacity for untreated materials drops, related to re-precipitation of dissolved silica and pore blocking, the stabilized material retains its microporosity and improves its overall sorption capacity. The authors would like to thank B. W. Arey (PNNL) for HIM measurements and I. Arslan for TEM imaging. This work was supported by the U. S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. SP and MD acknowledge support by the Materials Synthesis and Simulation Across Scales (MS3 Initiative) conducted under Laboratory Directed Research & Development Program at PNNL.« less

  8. Curating blood: how students' and researchers' drawings bring potential phenomena to light

    NASA Astrophysics Data System (ADS)

    Hay, D. B.; Pitchford, S.

    2016-11-01

    This paper explores students and researchers drawings of white blood cell recruitment. The data combines interviews with exhibit of review-type academic images and analyses of student model-drawings. The analysis focuses on the material aspects of bio-scientific data-making and we use the literature of concrete bioscience modelling to differentiate the qualities of students model-making choices: novelty versus reproduction; completeness versus simplicity; and the achievement of similarity towards selected model targets. We show that while drawing on already published images, some third-year undergraduates are able to curate novel, and yet plausible causal channels in their graphic representations, implicating new phenomenal potentials as lead researchers do in their review-type academic publications. Our work links the virtues of drawing to learn to the disclosure of potential epistemic things, involving close attention to the contours of non-linguistic stuff and corresponding sensory perception of substance; space; time; shape and size; position; and force. The paper documents the authority and power students may achieve through making knowledge rather than repeating it. We show the ways in which drawing on the images elicited by others helps to develop physical, sensory, and sometimes affective relations towards the real and concrete world of scientific practice.

  9. Nonprofit pharma: solutions to what ails the industry.

    PubMed

    Moos, W H; Kodukula, K

    2011-01-01

    Nonprofit organizations (NPOs) play an increasingly important role providing solutions to the significant challenges faced today by both large pharmaceutical and smaller biotechnology companies, not to mention academia. NPOs chartered for the public benefit are common in the USA and in selected other parts of the world. SRI International, originally founded as the Stanford Research Institute in 1946, is one of the largest and most successful independent NPOs. To provide a perspective on NPO business models, a number of SRI case studies spanning a broad range of technical and business initiatives will be summarized, including basic and contract research, discovery and development of new drugs and biologics, pharmaceutical and biotech research and development and contract services, technology pivots, company spin-ins and spin-outs, and the creation of new NPOs. How to bridge the National Institute of Health's "Valley of Death" and how to navigate the Food and Drug Administration's "Critical Path" will be discussed. We conclude with lessons learned about collaborations and routes to commercialization, along with food for thought for bioscience companies and outsourcing participants. Throughout, we attempt to explain why the role of NPOs is important to both the scientific and business communities and to patients and caregivers.

  10. Growing trend of CE at the omics level: the frontier of systems biology.

    PubMed

    Oh, Eulsik; Hasan, Md Nabiul; Jamshed, Muhammad; Park, Soo Hyun; Hong, Hye-Min; Song, Eun Joo; Yoo, Young Sook

    2010-01-01

    In a novel attempt to comprehend the complexity of life, systems biology has recently emerged as a state-of-the-art approach for biological research in contrast to the reductionist approaches that have been used in molecular cell biology since the 1950s. Because a massive amount of information is required in many systems biology studies of life processes, we have increasingly come to depend on techniques that provide high-throughput omics data. CE and CE coupled to MS have served as powerful analytical tools for providing qualitative and quantitative omics data. Recent systems biology studies have focused strongly on the diagnosis and treatment of diseases. The increasing number of clinical research papers on drug discovery and disease therapies reflects this growing interest among scientists. Since such clinical research reflects one of the ultimate purposes of bioscience, these trends will be sustained for a long time. Thus, this review mainly focuses on the application of CE and CE-MS in diagnosis as well as on the latest CE methods developed. Furthermore, we outline the new challenges that arose in 2008 and later in elucidating the system-level functions of the bioconstituents of living organisms.

  11. Millie Hughes-Fulford, Scientist and Prior Astronaut

    NASA Image and Video Library

    2014-03-13

    CAPE CANAVERAL, Fla. - Researcher and principal investigator Dr. Millie Hughes-Fulford, of the Hughes-Fulford Laboratory, San Francisco, Calif., discusses her laboratory's T-cell experiment and the impact the research may have on aging adults and their immune systems with an interviewer in the Space Station Processing Facility. From left, T-cell science team members Miya Yoshida, Emily Martinez and Tara Candelario are at work preparing for launch in the background. The immunology experiment will launch on SpaceX-3 and focus on the effects of microgravity on early T-cell signaling pathways. Current work aims to identify and compare the gene expression of microRNAs miRNAs during T-cell activation under normal gravity and in microgravity, and compare those patterns to changes seen in aging populations. The experiment will be the first flown on SpaceX funded by the National Institutes of Health. Dr. Hughes-Fulford flew aboard space shuttle mission STS-40 in June 1991, the first Spacelab mission dedicated to biomedical studies. For more information on the T-cell experiment, visit http://hughesfulfordlab.com and http://www.nasa.gov/ames/research/space-biosciences/t-cell-activation-in-aging-spacex-3/. Photo credit: NASA/Cory Huston

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weiss, Charles J.; Das, Partha Pratim; Higgins, Deanna LM

    Nickel complexes were prepared with diphosphine ligands that contain pendant amines, and these complexes catalytically oxidize primary and secondary alcohols to their respective aldehydes and ketones. Kinetic and mechanistic studies of these prospective electrocatalysts were performed to understand what influences the catalytic activity. For the oxidation of diphenylmethanol, the catalytic rates were determined to be dependent on the concentration of both the catalyst and the alcohol. The catalytic rates were found to be independent of the concentration of base and oxidant. The incorporation of pendant amines to the phosphine ligand results in substantial increases in the rate of alcohol oxidationmore » with more electron-donating substituents on the pendant amine exhibiting the fastest rates. We thank Dr. John C. Linehan, Dr. Elliott B. Hulley, Dr. Jonathan M. Darmon, and Dr. Elizabeth L. Tyson for helpful discussions. Research by CJW, PD, DLM, and AMA was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Research by MLH was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle.« less

  13. Needlestick Injuries in Agriculture Workers and Prevention Programs.

    PubMed

    Buswell, Minden L; Hourigan, Mary; Nault, André J; Bender, Jeffrey B

    2016-01-01

    There are a variety of biologics, vaccines, antibiotics, and hormones used in animal agriculture. Depending upon the procedure or pharmaceutical used, accidental injections or product exposures can result in mild to severe injuries. Needlestick injury (NSI) prevention, research, and education for veterinarians and agriculture workers is limited. The objective of this study was to collect and review published case reports and case series/surveys on human needlestick exposure to veterinary biologics and to summarize needlestick prevention strategies for agricultural workers/veterinarians. A search was conducted of PubMed and Centre for Agriculture Bioscience International (CABI) databases. References were reviewed to identify additional articles. NSI among agricultural workers were primarily included in this review. Thirty articles were applicable to exposures in agricultural settings. Relevant literature consisted of case reports, survey/case series articles, prevention documents, and background articles. Fifty-nine case patients were identified. Most of these cases were associated with exposures to specific vaccines or veterinary products. Injury location was identified from 36 individuals: 24 (67%) NSI to the hands, 10 (28%) injuries to the legs, and 2 to other body locations. Of the 59 cases, 20 (34%) involved oil-adjuvant vaccines. Evidence of hospitalization was recorded for 30 case patients. The length of hospitalization was available from 11 case patients. Median length of hospitalization was 3 days (range: 1-4). Surgical intervention was reported in 25 case patients. Outcome information was available on 30 case patients. Fifteen made a complete recovery within 2 weeks of treatment, 14 had residual sequelae attributed to the injury, and there was 1 reported death. Of the 13 survey/case series articles: 2 focused on oil-adjuvant products, 1 on Brucellosis RB-51 vaccine, 3 on tilmicosin, 1 on Salmonella enteritidis vaccine, 1 on high-pressure injection, and 5 were nonspecific. NSI in agriculture workers and veterinarians can result in significant bodily injury and loss of work. There is a need for varied and comprehensive educational programs for agricultural workers and veterinarians to prevent NSI on livestock operations.

  14. Career development for women scientists in Asia.

    PubMed

    Ip, Nancy Y

    2011-06-23

    Previously, challenges faced by women scientists have made it difficult for them to realize their dreams. The remarkable growth of Asian bioscience over the past decade, however, has created opportunities for young women in their home countries. The time is ripe for women in Asia to pursue their scientific aspirations. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Attitudes to the Uses of Animals in Higher Education: Has Anything Changed?

    ERIC Educational Resources Information Center

    Donaldson, Lynda; Downie, Roger

    2007-01-01

    Bioscience staff and students at Glasgow University in session 2005-06 were questioned on their attitudes to animal uses in higher education, as follow-up to a similar survey 20 years before. Disapproval by students of animal use was generally reduced compared to 20 years ago, but students remained in a "moral bind", recognising the…

  16. Decoupling Policy and Practice: How Life Scientists Respond to Ethics Education

    ERIC Educational Resources Information Center

    Smith-Doerr, Laurel

    2008-01-01

    Many graduate programmes in science now require courses in ethics. However, little is known about their reception or use. Using websites and interviews, this essay examines ethics requirements in the field of biosciences in three countries (the United States of America, the United Kingdom, and Italy) between 2000 and 2005. Evidence suggests that…

  17. Hooked on Science: How an Ohio Teacher is Training Students to Be Linked in to Forensics

    ERIC Educational Resources Information Center

    Technology & Learning, 2008

    2008-01-01

    This article features Ohio teacher Carol Fleck's use of videoconferencing in teaching Contemporary BioScience and Genetics. Fleck, who says her initial vision for the class was "science without classroom walls," covers such topics as emerging diseases, bioterrorism, and forensic science. Collaboration between schools is a key part of the…

  18. SMRT sequencing of the Vitis vinifera cv. ‘Flame seedless’ genome using a SMRTbell-free library preparation from Swift Biosciences

    USDA-ARS?s Scientific Manuscript database

    Single Molecule Real-Time (SMRT) sequencing provides advantages to the sequencing of complex genomes. The long reads generated are superior for resolving complex genomic regions and provide highly contiguous de novo assemblies. Current SMRTbell libraries generate average read lengths of 10-15kb. How...

  19. An Expanded Framework for Biomolecular Visualization in the Classroom: Learning Goals and Competencies

    ERIC Educational Resources Information Center

    Dries, Daniel R.; Dean, Diane M.; Listenberger, Laura L.; Novak, Walter R. P.; Franzen, Margaret A.; Craig, Paul A.

    2017-01-01

    A thorough understanding of the molecular biosciences requires the ability to visualize and manipulate molecules in order to interpret results or to generate hypotheses. While many instructors in biochemistry and molecular biology use visual representations, few indicate that they explicitly teach visual literacy. One reason is the need for a list…

  20. Perceptions of Play: Using Play-Doh to Enhance the Student Experience in Bioscience Higher Education

    ERIC Educational Resources Information Center

    Lace-Costigan, Gemma

    2017-01-01

    Playful and kinaesthetic learning approaches are used in numerous early years (birth to 5 years old) learning environments, however studies in HE STEM disciplines are uncommon. This study aimed to explore the use of Play-Doh in an undergraduate anatomy module as a method of enhancing engagement. 63 students attended the "kinaesthetic…

  1. Approaches to the Teaching of Bioethics and Professional Ethics in Undergraduate Courses

    ERIC Educational Resources Information Center

    Downie, Roger; Clarkeburn, Henriikka

    2005-01-01

    The role of ethics in bioscience undergraduate degrees is now widely accepted, but how ethics should be taught, who should teach it and what the curriculum should include are matters for debate. This article discusses teaching strategies: specialist options, or embed ethics in other courses, or both; use of professional philosophers, or…

  2. The "Ethics Committee": A Practical Approach to Introducing Bioethics and Ethical Thinking

    ERIC Educational Resources Information Center

    Goodwin, Mark; Kramer, Cas; Cashmore, Annette

    2012-01-01

    Bioethics is an increasingly important part of the biosciences curriculum at school and in higher education, but few science teachers have much experience of teaching the subject in an engaging or interactive manner. This article sets out a session that allows students to practise the skills of ethical thinking and ethical debate in a relevant…

  3. Secondary School Science Predictors of Academic Performance in University Bioscience Subjects

    ERIC Educational Resources Information Center

    Green, Rod; Brown, Elizabeth; Ward, Alex

    2009-01-01

    In 2009 the Faculty of Health Sciences at La Trobe University in Melbourne, Australia is introducing a common first year for 11 different undergraduate courses in the faculty. Current prerequisite science entry requirements vary with course and range from none to at least two science or mathematics subjects and from [approximately]50 to 99 in…

  4. CTC-Endothelial Cell Interactions during Metastasis

    DTIC Science & Technology

    2014-06-01

    antibody. For these experiments, we first tested the Bioflux Microfluidics system. In our hands, the Bioflux microfluidic system was suboptimal for...indicated in the results, a subset of rolling assay experiments were also performed using Bioflux Microfluidics technologies (Fluxion Biosciences...behavior of MDA cells in the presence of neutralizing anti-E-selectin antibody. We performed these experiments using Bioflux Microfluidics technology

  5. 76 FR 4692 - Notice of Receipt of Requests To Voluntarily Cancel Certain Pesticide Registrations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-26

    ... Central Life Sciences, 301 West Osborn Road, Phoenix, AZ 85013. 432 Bayer Environmental Science, 2 T. W... Seaboard Industrial Blvd., NW., Atlanta, GA 30318. 62719 Dow AgroSciences LLC, 9330 Zionsville Road, 308/2E..., Cary, NC 27513. 73049 Valent BioSciences Corporation, 870 Technology Way, Suite 100, Libertyville, IL...

  6. 76 FR 44309 - Notice of Intent To Grant a Partially Exclusive Patent License; TransMembrane Bioscience, Inc.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-25

    ... Coxiella burnetii; U.S. Patent No. 7,824,875: Recombinant antigens for the detection of Coxiella burnetii; and U.S. Patent No. 7,824,909: Recombinant antigens for the detection of Coxiella burnetii in the... Coxiella burnetii infection by antibody-based assays using recombinant, immunodominant C. burnetii...

  7. Biotechnology at the Cutting Edge - Keasling

    ScienceCinema

    Keasling, Jay

    2018-05-11

    Jay Keasling, Berkeley Lab ALD for Biosciences and CEO of the Joint BioEnergy Institute, appears in a video on biotechnology at the Smithsonian's National Museum of American History. The video is part of en exhibit titled "Science in American Life," which examines the relationship between science, technology, progress and culture through artifacts, historical photographs and multimedia technology.

  8. The mitochondrial genome of a Texas outbreak strain of the cattle tick, Rhipicephalus (Boophilus) microplus, derived from whole genome sequencing Pacific Biosciences and Illumina reads

    USDA-ARS?s Scientific Manuscript database

    The cattle fever tick, Rhipicephalus (Boophilus) microplus is one of the most significant medical veterinary pests in the world, vectoring several serious livestock diseases negatively impacting agricultural economies of tropical and subtropical countries around the world. We assembled the complete ...

  9. Recruitment and Retention of Students--An Integrated and Holistic Vision of Mathematics Support

    ERIC Educational Resources Information Center

    Croft, A. C.; Harrison, M. C.; Robinson, C. L.

    2009-01-01

    Students' lack of preparedness for the mathematical demands of higher education is affecting a wide range of programmes in universities worldwide. In the UK this has been recognized at the highest levels and provoked several inquiries. The ability to use mathematics in courses as varied as nursing, biosciences, and business is an essential skill…

  10. Academic Performance and Pass Rates: Comparison of Three First-Year Life Science Courses

    ERIC Educational Resources Information Center

    Downs, C. T.

    2009-01-01

    First year students' academic performance in three Life Science courses (Botany, Zoology and Bioscience) was compared. Pass rates, as well as the means and distributions of final marks were analysed. Of the three components (coursework, practical and theory examinations) contributing to the final mark of each course, students performed best in the…

  11. Making Bioinformatics Projects a Meaningful Experience in an Undergraduate Biotechnology or Biomedical Science Programme

    ERIC Educational Resources Information Center

    Sutcliffe, Iain C.; Cummings, Stephen P.

    2007-01-01

    Bioinformatics has emerged as an important discipline within the biological sciences that allows scientists to decipher and manage the vast quantities of data (such as genome sequences) that are now available. Consequently, there is an obvious need to provide graduates in biosciences with generic, transferable skills in bioinformatics. We present…

  12. Basic Science for a Secure Energy Future

    NASA Astrophysics Data System (ADS)

    Horton, Linda

    2010-03-01

    Anticipating a doubling in the world's energy use by the year 2050 coupled with an increasing focus on clean energy technologies, there is a national imperative for new energy technologies and improved energy efficiency. The Department of Energy's Office of Basic Energy Sciences (BES) supports fundamental research that provides the foundations for new energy technologies and supports DOE missions in energy, environment, and national security. The research crosses the full spectrum of materials and chemical sciences, as well as aspects of biosciences and geosciences, with a focus on understanding, predicting, and ultimately controlling matter and energy at electronic, atomic, and molecular levels. In addition, BES is the home for national user facilities for x-ray, neutron, nanoscale sciences, and electron beam characterization that serve over 10,000 users annually. To provide a strategic focus for these programs, BES has held a series of ``Basic Research Needs'' workshops on a number of energy topics over the past 6 years. These workshops have defined a number of research priorities in areas related to renewable, fossil, and nuclear energy -- as well as cross-cutting scientific grand challenges. These directions have helped to define the research for the recently established Energy Frontier Research Centers (EFRCs) and are foundational for the newly announced Energy Innovation Hubs. This overview will review the current BES research portfolio, including the EFRCs and user facilities, will highlight past research that has had an impact on energy technologies, and will discuss future directions as defined through the BES workshops and research opportunities.

  13. Human embryonic stem cell science and policy: The case of Iran☆

    PubMed Central

    Saniei, Mansooreh

    2013-01-01

    The paper is based on a large qualitative study of ethics, policy and regulation of human embryonic stem cell (hESC) science in Iran. This case study in five academic research centres used semi-structured interviews to examine in depth the views of stem cell scientists, embryologists and ethics committee members on hESC research policy in this Shia Muslim country. Although Iran's policy approach has been considered 'intermediate', what is described here seems to be a 'more flexible' policy on hESC science. This article describes three arguments to explain why Iran has shaped such a policy. These are: (1) a flexibility of the Shia tradition has allowed for hESC science; (2) permissive policy related to other fields of biomedicine, such as new assisted reproductive technologies, facilitated approval of hESC research; and (3) a lack of public debate of bioscience in Iran influences how its hESC research policy is perceived. Based on the empirical data, this paper then expands and refines the conceptual bioethical basis for the co-production of science, policy, and society in Iran. The notion of co-production implies that scientists, policy-makers, and sometimes other societal actors cooperate in the exchange, production, and application of knowledge to make science policy. PMID:24230960

  14. Human embryonic stem cell science and policy: the case of Iran.

    PubMed

    Saniei, Mansooreh

    2013-12-01

    The paper is based on a large qualitative study of ethics, policy and regulation of human embryonic stem cell (hESC) science in Iran. This case study in five academic research centres used semi-structured interviews to examine in depth the views of stem cell scientists, embryologists and ethics committee members on hESC research policy in this Shia Muslim country. Although Iran's policy approach has been considered 'intermediate', what is described here seems to be a 'more flexible' policy on hESC science. This article describes three arguments to explain why Iran has shaped such a policy. These are: (1) a flexibility of the Shia tradition has allowed for hESC science; (2) permissive policy related to other fields of biomedicine, such as new assisted reproductive technologies, facilitated approval of hESC research; and (3) a lack of public debate of bioscience in Iran influences how its hESC research policy is perceived. Based on the empirical data, this paper then expands and refines the conceptual bioethical basis for the co-production of science, policy, and society in Iran. The notion of co-production implies that scientists, policy-makers, and sometimes other societal actors cooperate in the exchange, production, and application of knowledge to make science policy. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. KSC-07pd3516

    NASA Image and Video Library

    2007-12-03

    KENNEDY SPACE CENTER, FLA. -- After the mission STS-122 crew's arrival at NASA's Kennedy Space Center, Mission Specialist Hans Schlegel is introduced during a media opportunity on the Shuttle Landing Facility. Schlegel represents the European Space Agency. The crew's arrival signals the imminent launch of space shuttle Atlantis on mission STS-122. The launch countdown begins at 7 p.m. Dec. 3. Launch is scheduled for 4:31 p.m. EST on Dec. 6. Atlantis will carry the Columbus Lab, Europe's largest contribution to the construction of the International Space Station. It will support scientific and technological research in a microgravity environment. Columbus, a program of ESA, is a multifunctional, pressurized laboratory that will be permanently attached to Node 2 of the space station to carry out experiments in materials science, fluid physics and biosciences, as well as to perform a number of technological applications. Photo credit: NASA/Kim Shiflett

  16. KSC-07pd3511

    NASA Image and Video Library

    2007-12-03

    KENNEDY SPACE CENTER, FLA. -- Center Director Bill Parsons welcomes STS-122 Mission Specialist Rex Walheim after the mission crew's arrival at NASA's Kennedy Space Center. Behind Walheim are Mission Specialists Hans Schlegel and Stanley Love. Schlegel represents the European Space Agency. The crew's arrival signals the imminent launch of space shuttle Atlantis on mission STS-122. The launch countdown begins at 7 p.m. Dec. 3. Launch is scheduled for 4:31 p.m. EST on Dec. 6. Atlantis will carry the Columbus Lab, Europe's largest contribution to the construction of the International Space Station. It will support scientific and technological research in a microgravity environment. Columbus, a program of ESA, is a multifunctional, pressurized laboratory that will be permanently attached to Node 2 of the space station to carry out experiments in materials science, fluid physics and biosciences, as well as to perform a number of technological applications. Photo credit: NASA/Kim Shiflett

  17. KSC-07pd2660

    NASA Image and Video Library

    2007-09-28

    KENNEDY SPACE CENTER, FLA. -- STS-122 crew members get a close look at shuttle equipment from inside the payload bay of space shuttle Atlantis. The crew comprises six astronauts: Commander Stephen Frick, Pilot Alan Poindexter and Mission Specialists Rex Walheim, Stanley Love, Leland Melvin and Hans Schlegel, who represents the European Space Agency. A seventh astronaut is Leopold Eyharts, also with the ESA, who will join the Expedition 16 crew as flight engineer on the International Space Station. The mission will carry and install the Columbus Lab, a multifunctional, pressurized laboratory that will be permanently attached to Node 2 of the space station to carry out experiments in materials science, fluid physics and biosciences, as well as to perform a number of technological applications. It is Europe’s largest contribution to the construction of the International Space Station and will support scientific and technological research in a microgravity environment. STS-122 is targeted for launch in December. Photo credit: NASA/Kim Shiflett

  18. KSC-07pd2658

    NASA Image and Video Library

    2007-09-28

    KENNEDY SPACE CENTER, FLA. -- STS-122 crew members get a close look at shuttle equipment from inside the payload bay of space shuttle Atlantis. The crew comprises six astronauts: Commander Stephen Frick, Pilot Alan Poindexter and Mission Specialists Rex Walheim, Stanley Love, Leland Melvin and Hans Schlegel, who represents the European Space Agency. A seventh astronaut is Leopold Eyharts, also with the ESA, who will join the Expedition 16 crew as flight engineer on the International Space Station. The mission will carry and install the Columbus Lab, a multifunctional, pressurized laboratory that will be permanently attached to Node 2 of the space station to carry out experiments in materials science, fluid physics and biosciences, as well as to perform a number of technological applications. It is Europe’s largest contribution to the construction of the International Space Station and will support scientific and technological research in a microgravity environment. STS-122 is targeted for launch in December. Photo credit: NASA/Kim Shiflett

  19. KSC-07pd3599

    NASA Image and Video Library

    2007-12-09

    KENNEDY SPACE CENTER, FLA. -- Doug Lyons, STS-122 launch director, participates in a news briefing following the conclusion of a Mission Management Team, or MMT, meeting. The meeting followed the morning's launch scrub of the space shuttle Atlantis STS-122 mission caused by problems experienced with the external tank's engine cutoff sensor system during tanking for the second launch attempt. An announcement was made during the briefing that the STS-122 launch is postponed to no earlier than Jan. 2, 2008, to give the team time to resolve the system's problems. Atlantis will carry the Columbus Laboratory, the European Space Agency's largest contribution to the construction of the International Space Station. It will support scientific and technological research in a microgravity environment. Permanently attached to the Harmony node of the space station, the laboratory will carry out experiments in materials science, fluid physics and biosciences, as well as perform a number of technological applications. Photo credit: NASA/Kim Shiflett

  20. KSC-07pd3598

    NASA Image and Video Library

    2007-12-09

    KENNEDY SPACE CENTER, FLA. -- LeRoy Cain, the Mission Management Team chairman, participates in a news briefing following the conclusion of a team meeting. The meeting followed the morning's launch scrub caused by problems experienced with the space shuttle Atlantis STS-122 external tank's engine cutoff sensor system during tanking for the second launch attempt. An announcement was made during the briefing that the STS-122 launch is postponed to no earlier than Jan. 2, 2008, to give the team time to resolve the system's problems. Atlantis will carry the Columbus Laboratory, the European Space Agency's largest contribution to the construction of the International Space Station. It will support scientific and technological research in a microgravity environment. Permanently attached to the Harmony node of the space station, the laboratory will carry out experiments in materials science, fluid physics and biosciences, as well as perform a number of technological applications. Photo credit: NASA/Kim Shiflett

  1. KSC-07pd3597

    NASA Image and Video Library

    2007-12-09

    KENNEDY SPACE CENTER, FLA. -- Bill Gerstenmaier, associate administrator for Space Operations, participates in a news briefing following the conclusion of a Mission Management Team, or MMT, meeting. The meeting followed the morning's launch scrub of the space shuttle Atlantis STS-122 mission caused by problems experienced with the external tank's engine cutoff sensor system during tanking for the second launch attempt. An announcement was made during the briefing that the STS-122 launch is postponed to no earlier than Jan. 2, 2008, to give the team time to resolve the system's problems. Atlantis will carry the Columbus Laboratory, the European Space Agency's largest contribution to the construction of the International Space Station. It will support scientific and technological research in a microgravity environment. Permanently attached to the Harmony node of the space station, the laboratory will carry out experiments in materials science, fluid physics and biosciences, as well as perform a number of technological applications. Photo credit: NASA/Kim Shiflett

  2. KSC-07pd2649

    NASA Image and Video Library

    2007-09-28

    KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility, STS-122 Mission Specialist Rex Walheim practices working with equipment for the mission. In the background, at right, is European Space Agency astronaut Leopold Eyharts, who will be on the mission and joining the Expedition 16 crew as flight engineer on the International Space Station. The crew is at Kennedy Space Center to take part in a crew equipment interface test, which includes equipment familiarization. The mission will carry and install the Columbus Lab, a multifunctional, pressurized laboratory that will be permanently attached to Node 2 of the space station to carry out experiments in materials science, fluid physics and biosciences, as well as to perform a number of technological applications. It is Europe’s largest contribution to the construction of the International Space Station and will support scientific and technological research in a microgravity environment. STS-122 is targeted for launch in December. Photo credit: NASA/Kim Shiflett

  3. KSC-07pd2651

    NASA Image and Video Library

    2007-09-28

    KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility, STS-122 crew members practice working with equipment for the mission. From left are Commander Stephen Frick and Mission Specialists Hans Schlegel, Leland Melvin (behind), Rex Walheim and Stanley Love. Schlegel represents the European Space Agency. The crew is at Kennedy Space Center to take part in a crew equipment interface test, which includes equipment familiarization. The mission will carry and install the Columbus Lab, a multifunctional, pressurized laboratory that will be permanently attached to Node 2 of the space station to carry out experiments in materials science, fluid physics and biosciences, as well as to perform a number of technological applications. It is Europe’s largest contribution to the construction of the International Space Station and will support scientific and technological research in a microgravity environment. STS-122 is targeted for launch in December. Photo credit: NASA/Kim Shiflett

  4. KSC-07pd2659

    NASA Image and Video Library

    2007-09-28

    KENNEDY SPACE CENTER, FLA. -- STS-122 crew members get a close look at shuttle equipment from inside the payload bay of space shuttle Atlantis. The crew comprises six astronauts: Commander Stephen Frick, Pilot Alan Poindexter and Mission Specialists Rex Walheim, Stanley Love, Leland Melvin and Hans Schlegel, who represents the European Space Agency. A seventh astronaut is Leopold Eyharts, also with the ESA, who will join the Expedition 16 crew as flight engineer on the International Space Station. The mission will carry and install the Columbus Lab, a multifunctional, pressurized laboratory that will be permanently attached to Node 2 of the space station to carry out experiments in materials science, fluid physics and biosciences, as well as to perform a number of technological applications. It is Europe’s largest contribution to the construction of the International Space Station and will support scientific and technological research in a microgravity environment. STS-122 is targeted for launch in December. Photo credit: NASA/Kim Shiflett

  5. Exploring the potential of laser capture microdissection technology in integrated oral biosciences.

    PubMed

    Thennavan, A; Sharma, M; Chandrashekar, C; Hunter, K; Radhakrishnan, R

    2017-09-01

    Laser capture microdissection (LCM) is a high-end research and diagnostic technology that helps in obtaining pure cell populations for the purpose of cell- or lesion-specific genomic and proteomic analysis. Literature search on the application of LCM in oral tissues was made through PubMed. There is ample evidence to substantiate the utility of LCM in understanding the underlying molecular mechanism involving an array of oral physiological and pathological processes, including odontogenesis, taste perception, eruptive tooth movement, oral microbes, and cancers of the mouth and jaw tumors. This review is aimed at exploring the potential application of LCM in oral tissues as a high-throughput tool for integrated oral sciences. The indispensable application of LCM in the construction of lesion-specific genomic libraries with emphasis on some of the novel molecular markers thus discovered is also highlighted. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Design and performance of an X-ray scanning microscope at the Hard X-ray Nanoprobe beamline of NSLS-II

    DOE PAGES

    Nazaretski, E.; Yan, H.; Lauer, K.; ...

    2017-10-05

    A hard X-ray scanning microscope installed at the Hard X-ray Nanoprobe beamline of the National Synchrotron Light Source II has been designed, constructed and commissioned. The microscope relies on a compact, high stiffness, low heat dissipation approach and utilizes two types of nanofocusing optics. It is capable of imaging with ~15 nm × 15 nm spatial resolution using multilayer Laue lenses and 25 nm × 26 nm resolution using zone plates. Fluorescence, diffraction, absorption, differential phase contrast, ptychography and tomography are available as experimental techniques. The microscope is also equipped with a temperature regulation system which allows the temperature ofmore » a sample to be varied in the range between 90 K and 1000 K. The constructed instrument is open for general users and offers its capabilities to the material science, battery research and bioscience communities.« less

  7. Design and performance of an X-ray scanning microscope at the Hard X-ray Nanoprobe beamline of NSLS-II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nazaretski, E.; Yan, H.; Lauer, K.

    A hard X-ray scanning microscope installed at the Hard X-ray Nanoprobe beamline of the National Synchrotron Light Source II has been designed, constructed and commissioned. The microscope relies on a compact, high stiffness, low heat dissipation approach and utilizes two types of nanofocusing optics. It is capable of imaging with ~15 nm × 15 nm spatial resolution using multilayer Laue lenses and 25 nm × 26 nm resolution using zone plates. Fluorescence, diffraction, absorption, differential phase contrast, ptychography and tomography are available as experimental techniques. The microscope is also equipped with a temperature regulation system which allows the temperature ofmore » a sample to be varied in the range between 90 K and 1000 K. The constructed instrument is open for general users and offers its capabilities to the material science, battery research and bioscience communities.« less

  8. KSC-07pd2645

    NASA Image and Video Library

    2007-09-28

    KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility, STS-122 Commander Stephen Frick checks out the cockpit on space shuttle Atlantis. He and other crew members are at Kennedy Space Center to take part in a crew equipment interface test, which helps familiarize them with equipment and payloads for the mission. Among the activities standard to a CEIT are harness training, inspection of the thermal protection system and camera operation for planned extravehicular activities, or EVAs. The mission will carry and install the Columbus Lab, a multifunctional, pressurized laboratory that will be permanently attached to Node 2 of the space station to carry out experiments in materials science, fluid physics and biosciences, as well as to perform a number of technological applications. It is Europe’s largest contribution to the construction of the International Space Station and will support scientific and technological research in a microgravity environment. STS-122 is targeted for launch in December. Photo credit: NASA/Kim Shiflett

  9. KSC-07pd2644

    NASA Image and Video Library

    2007-09-28

    KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility, STS-122 Commander Stephen Frick checks out the cockpit on space shuttle Atlantis. He and other crew members are at Kennedy Space Center to take part in a crew equipment interface test, which helps familiarize them with equipment and payloads for the mission. Among the activities standard to a CEIT are harness training, inspection of the thermal protection system and camera operation for planned extravehicular activities, or EVAs. The mission will carry and install the Columbus Lab, a multifunctional, pressurized laboratory that will be permanently attached to Node 2 of the space station to carry out experiments in materials science, fluid physics and biosciences, as well as to perform a number of technological applications. It is Europe’s largest contribution to the construction of the International Space Station and will support scientific and technological research in a microgravity environment. STS-122 is targeted for launch in December. Photo credit: NASA/Kim Shiflett

  10. KSC-07pd2647

    NASA Image and Video Library

    2007-09-28

    KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility, STS-122 Pilot Alan Poindexter checks out the cockpit on space shuttle Atlantis. The crew is at Kennedy Space Center to take part in a crew equipment interface test, which helps familiarize them with equipment and payloads for the mission. Among the activities standard to a CEIT are harness training, inspection of the thermal protection system and camera operation for planned extravehicular activities, or EVAs. The mission will carry and install the Columbus Lab, a multifunctional, pressurized laboratory that will be permanently attached to Node 2 of the space station to carry out experiments in materials science, fluid physics and biosciences, as well as to perform a number of technological applications. It is Europe’s largest contribution to the construction of the International Space Station and will support scientific and technological research in a microgravity environment. STS-122 is targeted for launch in December. Photo credit: NASA/Kim Shiflett

  11. KSC-07pd2648

    NASA Image and Video Library

    2007-09-28

    KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility, STS-122 Pilot Alan Poindexter checks out the cockpit on space shuttle Atlantis. The crew is at Kennedy Space Center to take part in a crew equipment interface test, which helps familiarize them with equipment and payloads for the mission. Among the activities standard to a CEIT are harness training, inspection of the thermal protection system and camera operation for planned extravehicular activities, or EVAs. The mission will carry and install the Columbus Lab, a multifunctional, pressurized laboratory that will be permanently attached to Node 2 of the space station to carry out experiments in materials science, fluid physics and biosciences, as well as to perform a number of technological applications. It is Europe’s largest contribution to the construction of the International Space Station and will support scientific and technological research in a microgravity environment. STS-122 is targeted for launch in December. Photo credit: NASA/Kim Shiflett

  12. Mutualism between tree shrews and pitcher plants: perspectives and avenues for future research.

    PubMed

    Clarke, Charles; Moran, Jonathan A; Chin, Lijin

    2010-10-01

    Three species of Nepenthes pitcher plants from Borneo engage in a mutualistic interaction with mountain tree shrews, the basis of which is the exchange of nutritional resources. The plants produce modified "toilet pitchers" that produce copious amounts of exudates, the latter serving as a food source for tree shrews. The exudates are only accessible to the tree shrews when they position their hindquarters over the pitcher orifice. Tree shrews mark valuable resources with faeces and regularly defecate into the pitchers when they visit them to feed. Faeces represent a valuable source of nitrogen for these Nepenthes species, but there are many facets of the mutualism that are yet to be investigated. These include, but are not limited to, seasonal variation in exudate production rates by the plants, behavioral ecology of visiting tree shrews, and the mechanism by which the plants signal to tree shrews that their pitchers represent a food source. Further research into this extraordinary animal-plant interaction is required to gain a better understanding of the benefits to the participating species. © 2010 Landes Bioscience

  13. 3D Printing in the Laboratory: Maximize Time and Funds with Customized and Open-Source Labware.

    PubMed

    Coakley, Meghan; Hurt, Darrell E

    2016-08-01

    3D printing, also known as additive manufacturing, is the computer-guided process of fabricating physical objects by depositing successive layers of material. It has transformed manufacturing across virtually every industry, bringing about incredible advances in research and medicine. The rapidly growing consumer market now includes convenient and affordable "desktop" 3D printers. These are being used in the laboratory to create custom 3D-printed equipment, and a growing community of designers are contributing open-source, cost-effective innovations that can be used by both professionals and enthusiasts. User stories from investigators at the National Institutes of Health and the biomedical research community demonstrate the power of 3D printing to save valuable time and funding. While adoption of 3D printing has been slow in the biosciences to date, the potential is vast. The market predicts that within several years, 3D printers could be commonplace within the home; with so many practical uses for 3D printing, we anticipate that the technology will also play an increasingly important role in the laboratory. © 2016 Society for Laboratory Automation and Screening.

  14. Molecular cell biology and advanced microscopy: an interview with Joshua Z. Rappoport.

    PubMed

    Rappoport, Joshua Z

    2018-05-01

    Dr Joshua Z Rappoport, PhD, speaks to Nawsheen Boodhun, Managing Editor. Rappoport completed his bachelor's degree in Biology at Brown University (RI, USA). He then went on to earn a PhD from the Program in Mechanisms of Disease and Therapeutics at the Mount Sinai School of Medicine Graduate School of Biological Sciences of New York University (USA). Rappoport spent the early parts of his career working as a postdoctoral researcher at the Laboratory of Cellular Biophysics based in The Rockefeller University (NY, USA). He was subsequently recruited as a tenured faculty member to work as part of the School of Biosciences at the University of Birmingham (UK). 2014 marked the return of Rappoport to the USA, where he is currently a Research Professor in Molecular Cell Biology at the Northwestern University Feinberg School of Medicine (IL, USA). He is also the Director of the Center for Advanced Microscopy (CAM) and Nikon Imaging Center (NIC), a large core facility consisting of eight members of staff that support around 200 different laboratories.

  15. Electron-Scavenging Chemistry of Benzoquinone on TiO2(110)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henderson, Michael A.; Shen, Mingmin

    The chemistry of benzoquinone (BQ) on TiO2(110) was examined using temperature programmed desorption (TPD), electron energy loss spectroscopy (EELS) and Auger electron spectroscopy (AES). BQ adsorbs mostly molecularly on the clean surface, although EELS demonstrates that electrons from surface Ti3+ sites at oxygen vacancy sites (VO) are readily oxidized by the high electron scavenging ability of the molecule. In contrast, when the surface is covered with water, subsequently adsorbed BQ molecules that scavenge surface electrons also abstract H from surface OHbr groups to form hydroquinone (HQ), which desorbs at ~450 K. This work was supported by the US Department ofmore » Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle. The research was performed using the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory.« less

  16. 3D Printing in the Laboratory: Maximize Time and Funds with Customized and Open-Source Labware

    PubMed Central

    Coakley, Meghan; Hurt, Darrell E.

    2016-01-01

    3D printing, also known as additive manufacturing, is the computer-guided process of fabricating physical objects by depositing successive layers of material. It has transformed manufacturing across virtually every industry, bringing about incredible advances in research and medicine. The rapidly growing consumer market now includes convenient and affordable “desktop” 3D printers. These are being used in the laboratory to create custom 3D-printed equipment, and a growing community of designers are contributing open-source, cost-effective innovations that can be used by both professionals and enthusiasts. User stories from investigators at the National Institutes of Health and the biomedical research community demonstrate the power of 3D printing to save valuable time and funding. While adoption of 3D printing has been slow in the biosciences to date, the potential is vast. The market predicts that within several years, 3D printers could be commonplace within the home; with so many practical uses for 3D printing, we anticipate that the technology will also play an increasingly important role in the laboratory. PMID:27197798

  17. Millie Hughes-Fulford, Scientist and Prior Astronaut

    NASA Image and Video Library

    2014-03-13

    CAPE CANAVERAL, Fla. - From left, T-cell science team members Emily Martinez, Miya Yoshida and Tara Candelario, of the Hughes-Fulford Laboratory, San Francisco, Calif., discuss preflight and post-flight experiment operations with researcher and principal investigator Dr. Millie Hughes-Fulford in the Space Station Processing Facility at NASA's Kennedy Space Center in Florida. The immunology experiment will launch on SpaceX-3 and focus on the effects of microgravity on early T-cell signaling pathways. Current work aims to identify and compare the gene expression of microRNAs miRNAs during T-cell activation under normal gravity and in microgravity, and compare those patterns to changes seen in aging populations. The experiment will be the first flown on SpaceX funded by the National Institutes of Health. Dr. Hughes-Fulford flew aboard space shuttle mission STS-40 in June 1991, the first Spacelab mission dedicated to biomedical studies. For more information on the T-cell experiment, visit http://hughesfulfordlab.com and http://www.nasa.gov/ames/research/space-biosciences/t-cell-activation-in-aging-spacex-3/. Photo credit: NASA/Cory Huston

  18. Millie Hughes-Fulford, Scientist and Prior Astronaut

    NASA Image and Video Library

    2014-03-13

    CAPE CANAVERAL, Fla. - T-cell science team member Tara Candelario of the Hughes-Fulford Laboratory, San Francisco, Calif., at the microscope, discusses preflight and post-flight experiment operations with researcher and principal investigator Dr. Millie Hughes-Fulford in the Space Station Processing Facility at NASA's Kennedy Space Center in Florida as T-cell science team members Emily Martinez, left, and Miya Yoshida look on. The immunology experiment will launch on SpaceX-3 and focus on the effects of microgravity on early T-cell signaling pathways. Current work aims to identify and compare the gene expression of microRNAs miRNAs during T-cell activation under normal gravity and in microgravity, and compare those patterns to changes seen in aging populations. The experiment will be the first flown on SpaceX funded by the National Institutes of Health. Dr. Hughes-Fulford flew aboard space shuttle mission STS-40 in June 1991, the first Spacelab mission dedicated to biomedical studies. For more information on the T-cell experiment, visit http://hughesfulfordlab.com and http://www.nasa.gov/ames/research/space-biosciences/t-cell-activation-in-aging-spacex-3/. Photo credit: NASA/Cory Huston

  19. Millie Hughes-Fulford, Scientist and Prior Astronaut

    NASA Image and Video Library

    2014-03-13

    CAPE CANAVERAL, Fla. - Researcher and principal investigator Dr. Millie Hughes-Fulford of the Hughes-Fulford Laboratory, San Francisco, Calif., at right, plans preflight and post-flight experiment operations with T-cell science team members Emily Martinez, left, and Tara Candelario in the Space Station Processing Facility at NASA's Kennedy Space Center in Florida. The immunology experiment will launch on SpaceX-3 and focus on the effects of microgravity on early T-cell signaling pathways. Current work aims to identify and compare the gene expression of microRNAs miRNAs during T-cell activation under normal gravity and in microgravity, and compare those patterns to changes seen in aging populations. The experiment will be the first flown on SpaceX funded by the National Institutes of Health. Dr. Hughes-Fulford flew aboard space shuttle mission STS-40 in June 1991, the first Spacelab mission dedicated to biomedical studies. For more information on the T-cell experiment, visit http://hughesfulfordlab.com and http://www.nasa.gov/ames/research/space-biosciences/t-cell-activation-in-aging-spacex-3/. Photo credit: NASA/Cory Huston

  20. Environmentally Benign and Permanent Modifications to Prevent Biofouling on Marine and Hydrokinetic Devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng Zhang

    2012-04-19

    Semprus Biosciences is developing environmentally benign and permanent modifications to prevent biofouling on Marine and Hydrokinetic (MHK) devices. Biofouling, including growth on external surfaces by bacteria, algae, barnacles, mussels, and other marine organisms, accumulate quickly on MHK devices, causing mechanical wear and changes in performance. Biofouling on crucial components of hydrokinetic devices, such as rotors, generators, and turbines, imposes substantial mass and hydrodynamic loading with associated efficiency loss and maintenance costs. Most antifouling coatings leach toxic ingredients, such as copper and tributyltin, through an eroding process, but increasingly stringent regulation of biocides has led to interest in the development ofmore » non-biocidal technologies to control fouling. Semprus Biosciences research team is developing modifications to prevent fouling from a broad spectrum of organisms on devices of all shapes, sizes, and materials for the life of the product. The research team designed and developed betaine-based polymers as novel underwater coatings to resist the attachment of marine organisms. Different betaine-based monomers and polymers were synthesized and incorporated within various coating formulations. The formulations and application methods were developed on aluminum panels with required adhesion strength and mechanical properties. The coating polymers were chemically stable under UV, hydrolytic and oxidative environments. The sulfobetaine formulations are applicable as nonleaching and stable underwater coatings. For the first time, coating formulations modified with highly packed sulfobetaine polymers were prepared and demonstrated resistance to a broad spectrum of marine organisms. Assays for comparing nonfouling performance were developed to evaluate protein adsorption and bacteria attachment. Barnacle settlement and removal were evaluated and a 60-day field test was performed. Silicone substrates including a commercial fouling release coating were used for comparison. Compared with the unmodified silicone substrates, the sulfobetaine-modified formulations were able to exhibit a 98% reduction in fibrinogen adsorption, 97.0% (E. coli), 99.6% (S. aureus), and 99.5% (C. lytica) reduction in bacteria attachment, and 100% reduction in barnacles cyprid attachment. In addition to the significant improvement in fouling resistance of various organisms, the 60-day field test also showed an evident efficacy from visual assessment, foul rating, and fouling removal test. The research confirmed that the novel antifouling mechanism of betaine polymers provides a new avenue for marine coating development. The developed coatings out-performed currently used nontoxic underwater coatings in a broad spectrum of fouling resistance. By further developing formulations and processing methods for specific devices, the technology is ready for the next stage of development with demonstration in MHK systems.« less

  1. SON is a spliceosome-associated factor required for mitotic progression.

    PubMed

    Huen, Michael S Y; Sy, Shirley M H; Leung, Ka Man; Ching, Yick-Pang; Tipoe, George L; Man, Cornelia; Dong, Shuo; Chen, Junjie

    2010-07-01

    The eukaryotic RNA splicing machinery is dedicated to the daunting task of excising intronic sequences on the many nascent RNA transcripts in a cell, and in doing so facilitates proper translation of its transcriptome. Notably, emerging evidence suggests that RNA splicing may also play direct roles in maintaining genome stability. Here we report the identification of the RNA/DNA-binding protein SON as a component of spliceosome that plays pleiotropic roles during mitotic progression. We found that SON is essential for cell proliferation, and that its inactivation triggers a MAD2-dependent mitotic delay. Moreover, SON deficiency is accompanied by defective chromosome congression, compromised chromosome segregation and cytokinesis, which in turn contributes to cellular aneuploidy and cell death. In summary, our study uncovers a specific link between SON and mitosis, and highlights the potential of RNA processing as additional regulatory mechanisms that govern cell proliferation and division. © 2010 Landes Bioscience

  2. A new method for stable lead isotope extraction from seawater.

    PubMed

    Zurbrick, Cheryl M; Gallon, Céline; Flegal, A Russell

    2013-10-24

    A new technique for stable lead (Pb) isotope extraction from seawater is established using Toyopearl AF-Chelate 650M(®) resin (Tosoh Bioscience LLC). This new method is advantageous because it is semi-automated and relatively fast; in addition it introduces a relatively low blank by minimizing the volume of chemicals used in the extraction. Subsequent analyses by HR ICP-MS have a good relative external precision (2σ) of 3.5‰ for (206)Pb/(207)Pb, while analyses by MC-ICP-MS have a better relative external precision of 0.6‰. However, Pb sample concentrations limit MC-ICP-MS analyses to (206)Pb, (207)Pb, and (208)Pb. The method was validated by processing the common Pb isotope reference material NIST SRM-981 and several GEOTRACES intercalibration samples, followed by analyses by HR ICP-MS, all of which showed good agreement with previously reported values. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. The first near-complete assembly of the hexaploid bread wheat genome, Triticum aestivum.

    PubMed

    Zimin, Aleksey V; Puiu, Daniela; Hall, Richard; Kingan, Sarah; Clavijo, Bernardo J; Salzberg, Steven L

    2017-11-01

    Common bread wheat, Triticum aestivum, has one of the most complex genomes known to science, with 6 copies of each chromosome, enormous numbers of near-identical sequences scattered throughout, and an overall haploid size of more than 15 billion bases. Multiple past attempts to assemble the genome have produced assemblies that were well short of the estimated genome size. Here we report the first near-complete assembly of T. aestivum, using deep sequencing coverage from a combination of short Illumina reads and very long Pacific Biosciences reads. The final assembly contains 15 344 693 583 bases and has a weighted average (N50) contig size of 232 659 bases. This represents by far the most complete and contiguous assembly of the wheat genome to date, providing a strong foundation for future genetic studies of this important food crop. We also report how we used the recently published genome of Aegilops tauschii, the diploid ancestor of the wheat D genome, to identify 4 179 762 575 bp of T. aestivum that correspond to its D genome components. © The Author 2017. Published by Oxford University Press.

  4. Mechanistic Insights into the Structure-Dependent Selectivity of Catalytic Furfural Conversion on Platinum Catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Qiuxia; Wang, Jianguo; Wang, Yang-Gang

    The effects of structure and size on the selectivity of catalytic furfural conversion over supported Pt catalysts in the presence of hydrogen have been studied using first principles density functional theory (DFT) calculations and microkinetic modeling. Four Pt model systems, i.e., periodic Pt(111), Pt(211) surfaces, as well as small nanoclusters (Pt13 and Pt55) are chosen to represent the terrace, step, and corner sites of Pt nanoparticles. Our DFT results show that the reaction routes for furfural hydrogenation and decarbonylation are strongly dependent on the type of reactive sites, which lead to the different selectivity. On the basis of the size-dependentmore » site distribution rule, we correlate the site distributions as a function of the Pt particle size. Our microkinetic results indicate the critical particle size that controls the furfural selectivity is about 1.0 nm, which is in good agreement with the reported experimental value under reaction conditions. This work was supported by National Basic Research Program of China (973 Program) (2013CB733501) and the National Natural Science Foundation of China (NSFC-21306169, 21176221, 21136001, 21101137 and 91334103). This work was also partially supported by the US Department of Energy (DOE), the Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle. Computing time was granted by the grand challenge of computational catalysis of the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL). EMSL is a national scientific user facility located at Pacific Northwest National Laboratory (PNNL) and sponsored by DOE’s Office of Biological and Environmental Research.« less

  5. Biocatalysis and biomimetics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burrington, J.D.; Clark, D.S.

    1989-01-01

    The proceedings are divided into three parts: Bioscience and biotechnology; Structure-function relationships; and Biomimetics. Topics include: the chemistry of biotechnology, biomimetics, and biocatalysts; crystallography and mutagenesis; computerized simulation of biocatalysis and biomimetic processes; enzymatic reactions in micellar systems; hydroxylation of hydrocarbons; oxidation of lignin; zeolite catalysts as enzyme mimics; and immobilization of proteins and enzymes. Some papers have been processed separately for inclusion on the data base.

  6. Reducing Enzyme Costs Increases the Market Potential of Biofuels (Fact Sheet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Cellulosic ethanol prices depend heavily on the cost of the cellulase enzymes used to break down the biomass into fermentable sugars. To reduce these costs, NREL partnered with two leading enzyme companies, Novozymes and Genencor, to engineer new cellulase enzymes that are exceptionally good at breaking down cellulose. Genencor is now part of DuPont Industrial Biosciences.

  7. Integrin Alpha-v and HER2 in Breast Cancer Brain Metastasis

    DTIC Science & Technology

    2015-10-01

    ZOOM live cell imaging machine (ESSEN Bioscience; Figure 2). c. Interactions of αv integrin and HER2 in breast cancer brain metastases. We found...HCC1954 breast cancer cells. C) Real time live cell imaging of MM2BH cells treated with cilengitide (0, .3, 1, 3, and 10 µg/mL) using IncuCyte ZOOM

  8. Taking Nanomedicine Teaching into Practice with Atomic Force Microscopy and Force Spectroscopy

    ERIC Educational Resources Information Center

    Carvalho, Filomena A.; Freitas, Teresa; Santos, Nuno C.

    2015-01-01

    Atomic force microscopy (AFM) is a useful and powerful tool to study molecular interactions applied to nanomedicine. The aim of the present study was to implement a hands-on atomic AFM course for graduated biosciences and medical students. The course comprises two distinct practical sessions, where students get in touch with the use of an atomic…

  9. Rapid detection and classification of Salmonella enterica shedding in feedlot cattle utilizing Roka Bioscience Atlas Salmonella detection assay for the analysis of rectoanal mucosal swabs

    USDA-ARS?s Scientific Manuscript database

    With an increasing focus on preharvest food safety, rapid methods are required for the detection and quantification of foodborne pathogens such as Salmonella enterica in beef cattle. We validated the Atlas Salmonella Detection Assay (SEN), a nucleic acid amplification technology that targets Salmone...

  10. New Sensors to Track Head Acceleration during Possible Injurious Events

    DTIC Science & Technology

    2009-02-01

    Chris Perry John Plaga Biosciences and Protection Division Biomechanics Branch Jesse Bonfeld Endevco 30700 Rancho Viejo Road San Juan...GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 62202F 6. AUTHOR(S) Ted Knox, Joseph Pellettiere, Chris Perry, John Plaga Jesse Bonfeld 5d...Possible Injurious Events Ted Knox, Joseph Pellettiere, Chris Perry, John Plaga AFRL/RHPA Jesse Bonfeld Endevco ABSTRACT Instrumented

  11. Quantitative Skills as a Graduate Learning Outcome of University Science Degree Programmes: Student Performance Explored through the "Planned-Enacted-Experienced" Curriculum Model

    ERIC Educational Resources Information Center

    Matthews, Kelly E.; Adams, Peter; Goos, Merrilyn

    2016-01-01

    Application of mathematical and statistical thinking and reasoning, typically referred to as quantitative skills, is essential for university bioscience students. First, this study developed an assessment task intended to gauge graduating students' quantitative skills. The Quantitative Skills Assessment of Science Students (QSASS) was the result,…

  12. An "in silico" Bioinformatics Laboratory Manual for Bioscience Departments: "Prediction of Glycosylation Sites in Phosphoethanolamine Transferases"

    ERIC Educational Resources Information Center

    Alyuruk, Hakan; Cavas, Levent

    2014-01-01

    Genomics and proteomics projects have produced a huge amount of raw biological data including DNA and protein sequences. Although these data have been stored in data banks, their evaluation is strictly dependent on bioinformatics tools. These tools have been developed by multidisciplinary experts for fast and robust analysis of biological data.…

  13. Supporting the Development of Undergraduates' Experimental Design Skills and Investigating their Perceptions of Project Work

    ERIC Educational Resources Information Center

    MacKenzie, Jane; Ruxton, Graeme

    2006-01-01

    Project work represents a significant component of most Bioscience degrees. Conscious that students are not necessarily given adequate preparation for their final year project, we have investigated two core elements in the 3rd year of a 4-year Honours programme. One element, an investigative project on aspects of insect biology, has run for…

  14. The Impact of Attaining the Welsh Baccalaureate Advanced Diploma on Academic Performance in Bioscience Higher Education

    ERIC Educational Resources Information Center

    Yhnell, Emma; Wood, Heather; Baker, Mathew; Amici-Dargan, Sheila; Taylor, Chris; Randerson, Peter; Shore, Andrew

    2016-01-01

    Since the introduction of the Welsh Baccalaureate Advanced Diploma Qualification (WBQ) in 2003, an increasing number of students are applying to higher education institutions (HEIs) with this qualification. The advanced-level WBQ is regarded as equivalent to one General Certificate of Education A-Level (GCE A-Level). This study assesses the impact…

  15. Improving the Effectiveness and Efficiency of Teaching Large Classes: Development and Evaluation of a Novel e-Resource in Cancer Biology

    ERIC Educational Resources Information Center

    Hejmadi, Momna V.

    2007-01-01

    This paper describes the development and evaluation of a blended learning resource in the biosciences, created by combining online learning with formal face-face lectures and supported by formative assessments. In order to improve the effectiveness and efficiency of teaching large classes with mixed student cohorts, teaching was delivered through…

  16. Students' Knowledge of, and Attitudes towards Biotechnology Revisited, 1995-2014: Changes in Agriculture Biotechnology but Not in Medical Biotechnology

    ERIC Educational Resources Information Center

    Chen, Shao-Yen; Chu, Yih-Ru; Lin, Chen-Yung; Chiang, Tzen-Yuh

    2016-01-01

    Modern biotechnology is one of the most important scientific and technological revolutions in the 21st century, with an increasing and measurable impact on society. Development of biotechnology curriculum has become important to high school bioscience classrooms. This study has monitored high school students in Taiwan on their knowledge of and…

  17. The Complex Relationship between Students' Critical Thinking and Epistemological Beliefs in the Context of Problem Solving

    ERIC Educational Resources Information Center

    Hyytinen, Heidi; Holma, Katariina; Toom, Auli; Shavelson, Richard J.; Lindblom-Ylänne, Sari

    2014-01-01

    The study utilized a multi-method approach to explore the connection between critical thinking and epistemological beliefs in a specific problem-solving situation. Data drawn from a sample of ten third-year bioscience students were collected using a combination of a cognitive lab and a performance task from the Collegiate Learning Assessment…

  18. 77 FR 56175 - Arcadia Biosciences, Inc.; Filing of Food Additive Petition (Animal Use)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-12

    ... additive regulations be amended to provide for the safe use in dry dog food of oil from a variety of... the safe use in dry dog food of oil from a variety of bioengineered safflower (Carthamus tinctorius L... will be used as a source of omega-6 fatty acids in dry food for adult dogs. The petitioner has...

  19. The (Mathematical) Modeling Process in Biosciences

    PubMed Central

    Torres, Nestor V.; Santos, Guido

    2015-01-01

    In this communication, we introduce a general framework and discussion on the role of models and the modeling process in the field of biosciences. The objective is to sum up the common procedures during the formalization and analysis of a biological problem from the perspective of Systems Biology, which approaches the study of biological systems as a whole. We begin by presenting the definitions of (biological) system and model. Particular attention is given to the meaning of mathematical model within the context of biology. Then, we present the process of modeling and analysis of biological systems. Three stages are described in detail: conceptualization of the biological system into a model, mathematical formalization of the previous conceptual model and optimization and system management derived from the analysis of the mathematical model. All along this work the main features and shortcomings of the process are analyzed and a set of rules that could help in the task of modeling any biological system are presented. Special regard is given to the formative requirements and the interdisciplinary nature of this approach. We conclude with some general considerations on the challenges that modeling is posing to current biology. PMID:26734063

  20. An Internship May Not Be Enough: Enhancing Bioscience Industry Job Readiness through Practicum Experiences.

    PubMed

    Cramer, Jason M; Hamilton, Paul T

    2017-04-01

    In contrast to the narrowing of options in academic careers, the bioscience industry offers robust employment opportunities for STEM-trained workers, especially those who display both scientific and business talent. Unfortunately, traditional science programs typically lack curricular features that develop this type of worker. The North Carolina State University Master of Microbial Biotechnology (MMB) program facilitates industry-specific experiential learning to fill this training gap. Similar programs often rely on a single industry internship to provide students relevant work experience, but completion of one internship might not suffice to position students for employment in a highly competitive job market. The MMB program requires students to complete an internship and three practicum projects in an industry setting, to promote development of key skills in a variety of areas, to build confidence in the ability to perform initial job duties, and to establish a more extensive work history in industry. In this Perspective we discuss an unmet need in undergraduate and graduate STEM education that can be filled by incorporating a similar set of industry-specific work experiences for students who desire to transition from academe into the life science industry.

Top