Sample records for biosensing techniques

  1. Optical Biosensing: Kinetics of Protein A-IGG Binding Using Biolayer Interferometry

    ERIC Educational Resources Information Center

    Wilson, Jo Leanna; Scott, Israel M.; McMurry, Jonathan L.

    2010-01-01

    An undergraduate biochemistry laboratory experiment has been developed using biolayer interferometry (BLI), an optical biosensing technique similar to surface plasmon resonance (SPR), in which students obtain and analyze kinetic data for a protein-protein interaction. Optical biosensing is a technique of choice to determine kinetic and affinity…

  2. Cell culture-based biosensing techniques for detecting toxicity in water.

    PubMed

    Tan, Lu; Schirmer, Kristin

    2017-06-01

    The significant increase of contaminants entering fresh water bodies calls for the development of rapid and reliable methods to monitor the aquatic environment and to detect water toxicity. Cell culture-based biosensing techniques utilise the overall cytotoxic response to external stimuli, mediated by a transduced signal, to specify the toxicity of aqueous samples. These biosensing techniques can effectively indicate water toxicity for human safety and aquatic organism health. In this review we account for the recent developments of the mainstream cell culture-based biosensing techniques for water quality evaluation, discuss their key features, potentials and limitations, and outline the future prospects of their development. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Biosensing utilizing magnetic markers and superconducting quantum interference devices

    NASA Astrophysics Data System (ADS)

    Enpuku, Keiji; Tsujita, Yuya; Nakamura, Kota; Sasayama, Teruyoshi; Yoshida, Takashi

    2017-05-01

    Magnetic biosensing techniques that are based on the use of bio-functionalized magnetic nanoparticles (magnetic markers) and superconducting quantum interference devices (SQUIDs) are expected to have various advantages when compared with conventional biosensing methods. In this paper, we review the recent progress made in magnetic biosensing techniques. First, we describe the most important parameters of magnetic markers that are intended for use in biosensing, i.e., the magnetic signal and the relaxation time that are determined by the Brownian and/or Néel relaxation mechanisms. We note that these parameters are significantly dependent on the marker size, and as a result, commercial markers exhibit a wide variety of values for these key parameters. Next, we describe three measurement methods that have been developed based on the magnetic properties of these markers, i.e., AC susceptibility, relaxation and remanence-based measurement methods. The weak (picotesla-range) signals emitted by the markers can be measured precisely with a SQUID system using these methods. Finally, we give examples of biosensing for in vitro and in vivo medical diagnosis applications. For in vitro diagnosis, high-sensitivity detection of various biological targets has been demonstrated without use of any washing process to separate the bound and free markers. For in vivo applications, detection of the quantities and the three-dimensional positions of the markers that have been injected into the test subject are demonstrated. These results confirm the effectiveness of magnetic biosensing techniques.

  4. Quantitative Analysis, Design, and Fabrication of Biosensing and Bioprocessing Devices in Living Cells

    DTIC Science & Technology

    2015-03-10

    AFRL-OSR-VA-TR-2015-0080 Biosensing and Bioprocessing Devices in Living Cells Domitilla Del Vecchio MASSACHUSETTS INSTITUTE OF TECHNOLOGY Final...Of Biosensing And Bioprocessing Devices In Living Cells FA9550-12-1-0129 D. Del Vecchio Massachusetts Institute of Technology -- 77 Massachusetts...research is to develop quantitative techniques for the de novo design and fabrication of biosensing devices in living cells . Such devices will be entirely

  5. MEMS-based power generation techniques for implantable biosensing applications.

    PubMed

    Lueke, Jonathan; Moussa, Walied A

    2011-01-01

    Implantable biosensing is attractive for both medical monitoring and diagnostic applications. It is possible to monitor phenomena such as physical loads on joints or implants, vital signs, or osseointegration in vivo and in real time. Microelectromechanical (MEMS)-based generation techniques can allow for the autonomous operation of implantable biosensors by generating electrical power to replace or supplement existing battery-based power systems. By supplementing existing battery-based power systems for implantable biosensors, the operational lifetime of the sensor is increased. In addition, the potential for a greater amount of available power allows additional components to be added to the biosensing module, such as computational and wireless and components, improving functionality and performance of the biosensor. Photovoltaic, thermovoltaic, micro fuel cell, electrostatic, electromagnetic, and piezoelectric based generation schemes are evaluated in this paper for applicability for implantable biosensing. MEMS-based generation techniques that harvest ambient energy, such as vibration, are much better suited for implantable biosensing applications than fuel-based approaches, producing up to milliwatts of electrical power. High power density MEMS-based approaches, such as piezoelectric and electromagnetic schemes, allow for supplemental and replacement power schemes for biosensing applications to improve device capabilities and performance. In addition, this may allow for the biosensor to be further miniaturized, reducing the need for relatively large batteries with respect to device size. This would cause the implanted biosensor to be less invasive, increasing the quality of care received by the patient.

  6. MEMS-Based Power Generation Techniques for Implantable Biosensing Applications

    PubMed Central

    Lueke, Jonathan; Moussa, Walied A.

    2011-01-01

    Implantable biosensing is attractive for both medical monitoring and diagnostic applications. It is possible to monitor phenomena such as physical loads on joints or implants, vital signs, or osseointegration in vivo and in real time. Microelectromechanical (MEMS)-based generation techniques can allow for the autonomous operation of implantable biosensors by generating electrical power to replace or supplement existing battery-based power systems. By supplementing existing battery-based power systems for implantable biosensors, the operational lifetime of the sensor is increased. In addition, the potential for a greater amount of available power allows additional components to be added to the biosensing module, such as computational and wireless and components, improving functionality and performance of the biosensor. Photovoltaic, thermovoltaic, micro fuel cell, electrostatic, electromagnetic, and piezoelectric based generation schemes are evaluated in this paper for applicability for implantable biosensing. MEMS-based generation techniques that harvest ambient energy, such as vibration, are much better suited for implantable biosensing applications than fuel-based approaches, producing up to milliwatts of electrical power. High power density MEMS-based approaches, such as piezoelectric and electromagnetic schemes, allow for supplemental and replacement power schemes for biosensing applications to improve device capabilities and performance. In addition, this may allow for the biosensor to be further miniaturized, reducing the need for relatively large batteries with respect to device size. This would cause the implanted biosensor to be less invasive, increasing the quality of care received by the patient. PMID:22319362

  7. Biosensing Using Magnetic Particle Detection Techniques

    PubMed Central

    Chen, Yi-Ting; Kolhatkar, Arati G.; Zenasni, Oussama; Xu, Shoujun

    2017-01-01

    Magnetic particles are widely used as signal labels in a variety of biological sensing applications, such as molecular detection and related strategies that rely on ligand-receptor binding. In this review, we explore the fundamental concepts involved in designing magnetic particles for biosensing applications and the techniques used to detect them. First, we briefly describe the magnetic properties that are important for bio-sensing applications and highlight the associated key parameters (such as the starting materials, size, functionalization methods, and bio-conjugation strategies). Subsequently, we focus on magnetic sensing applications that utilize several types of magnetic detection techniques: spintronic sensors, nuclear magnetic resonance (NMR) sensors, superconducting quantum interference devices (SQUIDs), sensors based on the atomic magnetometer (AM), and others. From the studies reported, we note that the size of the MPs is one of the most important factors in choosing a sensing technique. PMID:28994727

  8. Multiplex biosensing with highly sensitive magnetic nanoparticle quantification method

    NASA Astrophysics Data System (ADS)

    Nikitin, M. P.; Orlov, A. V.; Znoyko, S. L.; Bragina, V. A.; Gorshkov, B. G.; Ksenevich, T. I.; Cherkasov, V. R.; Nikitin, P. I.

    2018-08-01

    Unique properties of magnetic nanoparticles (MNP) have provided many breakthrough solutions for life science. The immense potential of MNP as labels in advanced immunoassays stems from the fact that they, unlike optical labels, can be easily detected inside 3D opaque porous biosensing structures or in colored mediums, manipulated by an external magnetic field, exhibit high stability and negligible background signal in biological samples, etc. In this research, the magnetic nanolabels and an original technique of their quantification by non-linear magnetization have permitted development of novel methods of multiplex biosensing. Several types of highly sensitive multi-channel readers that offer an extremely wide linear dynamic range are developed to count MNP in different recognition zones for quantitative concentration measurements of various analytes. Four approaches to multiplex biosensing based on MNP have been demonstrated in one-run tests based on several 3D porous structures; flat and micropillar microfluidic sensor chips; multi-line lateral flow strips and modular architecture of the strips, which is the first 3D multiplexing method that goes beyond the traditional planar techniques. Detection of cardio- and cancer markers, small molecules and oligonucleotides were used in the experiments. The analytical characteristics of the developed multiplex methods are on the level of the modern time-consuming laboratory techniques. The developed multiplex biosensing platforms are promising for medical and veterinary diagnostics, food inspection, environmental and security monitoring, etc.

  9. In vitro monitoring of oxidative processes with self-aggregating gold nanoparticles using all-optical photoacoustic spectroscopy.

    PubMed

    Yasmin, Zannatul; Khachatryan, Edward; Lee, Yuan-Hao; Maswadi, Saher; Glickman, Randolph; Nash, Kelly L

    2015-02-15

    In this work, the assembly of gold nanoparticles of (AuNPs) is used to detect the presence of the biomolecule glutathione (GSH) using a novel technique called "all-optical photoacoustic spectroscopy" (AOPAS). The AOPAS technique coupled with AuNPs forms the basis of a biosensing technique capable of probing the dynamic evolution of nano-bio interfaces within a microscopic volume. Dynamic Light Scattering (DLS) and ultraviolet-visible (UV-vis) spectra were measured to describe the kinetics governing the interparticle interactions by monitoring the AuNPs assembly and evolution of the surface plasmon resonance (SPR) band. A comparison of the same dynamic evolution of AuNPs assembly was performed using the AOPAS technique to confirm the validity of this method. The fundamental study is complemented by a demonstration of the performance of this biosensing technique in the presence of cell culture medium containing fetal bovine serum (FBS), which forms a protein corona on the surface of the AuNPs. This work demonstrates that the in vitro monitoring capabilities of the AOPAS provides sensitive measurement at the microscopic level and low nanoparticle concentrations without the artifacts limiting the use of conventional biosensing methods, such as fluorescent indicators. The AOPAS technique not only provides a facile approach for in vitro biosensing, but also shed a light on the real-time detection of thiol containing oxidative stress biomarkers in live systems using AuNPs. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Noble Metal Nanoparticles for Biosensing Applications

    PubMed Central

    Doria, Gonçalo; Conde, João; Veigas, Bruno; Giestas, Leticia; Almeida, Carina; Assunção, Maria; Rosa, João; Baptista, Pedro V.

    2012-01-01

    In the last decade the use of nanomaterials has been having a great impact in biosensing. In particular, the unique properties of noble metal nanoparticles have allowed for the development of new biosensing platforms with enhanced capabilities in the specific detection of bioanalytes. Noble metal nanoparticles show unique physicochemical properties (such as ease of functionalization via simple chemistry and high surface-to-volume ratios) that allied with their unique spectral and optical properties have prompted the development of a plethora of biosensing platforms. Additionally, they also provide an additional or enhanced layer of application for commonly used techniques, such as fluorescence, infrared and Raman spectroscopy. Herein we review the use of noble metal nanoparticles for biosensing strategies—from synthesis and functionalization to integration in molecular diagnostics platforms, with special focus on those that have made their way into the diagnostics laboratory. PMID:22438731

  11. Current and emerging challenges of field effect transistor based bio-sensing

    NASA Astrophysics Data System (ADS)

    Matsumoto, Akira; Miyahara, Yuji

    2013-10-01

    Field-effect-transistor (FET) based electrical signal transduction is an increasingly prevalent strategy for bio-sensing. This technique, often termed ``Bio-FETs'', provides an essentially label-free and real-time based bio-sensing platform effective for a variety of targets. This review highlights recent progress and challenges in the field. A special focus is on the comprehension of emerging nanotechnology-based approaches to facilitate signal-transduction and amplification. Some new targets of Bio-FETs and the future perspectives are also discussed.

  12. Current and emerging challenges of field effect transistor based bio-sensing.

    PubMed

    Matsumoto, Akira; Miyahara, Yuji

    2013-11-21

    Field-effect-transistor (FET) based electrical signal transduction is an increasingly prevalent strategy for bio-sensing. This technique, often termed "Bio-FETs", provides an essentially label-free and real-time based bio-sensing platform effective for a variety of targets. This review highlights recent progress and challenges in the field. A special focus is on the comprehension of emerging nanotechnology-based approaches to facilitate signal-transduction and amplification. Some new targets of Bio-FETs and the future perspectives are also discussed.

  13. Nanoporous Anodic Alumina: A Versatile Platform for Optical Biosensors

    PubMed Central

    Santos, Abel; Kumeria, Tushar; Losic, Dusan

    2014-01-01

    Nanoporous anodic alumina (NAA) has become one of the most promising nanomaterials in optical biosensing as a result of its unique physical and chemical properties. Many studies have demonstrated the outstanding capabilities of NAA for developing optical biosensors in combination with different optical techniques. These results reveal that NAA is a promising alternative to other widely explored nanoporous platforms, such as porous silicon. This review is aimed at reporting on the recent advances and current stage of development of NAA-based optical biosensing devices. The different optical detection techniques, principles and concepts are described in detail along with relevant examples of optical biosensing devices using NAA sensing platforms. Furthermore, we summarise the performance of these devices and provide a future perspective on this promising research field. PMID:28788678

  14. Phase sensitive spectral domain interferometry for label free biomolecular interaction analysis and biosensing applications

    NASA Astrophysics Data System (ADS)

    Chirvi, Sajal

    Biomolecular interaction analysis (BIA) plays vital role in wide variety of fields, which include biomedical research, pharmaceutical industry, medical diagnostics, and biotechnology industry. Study and quantification of interactions between natural biomolecules (proteins, enzymes, DNA) and artificially synthesized molecules (drugs) is routinely done using various labeled and label-free BIA techniques. Labeled BIA (Chemiluminescence, Fluorescence, Radioactive) techniques suffer from steric hindrance of labels on interaction site, difficulty of attaching labels to molecules, higher cost and time of assay development. Label free techniques with real time detection capabilities have demonstrated advantages over traditional labeled techniques. The gold standard for label free BIA is surface Plasmon resonance (SPR) that detects and quantifies the changes in refractive index of the ligand-analyte complex molecule with high sensitivity. Although SPR is a highly sensitive BIA technique, it requires custom-made sensor chips and is not well suited for highly multiplexed BIA required in high throughput applications. Moreover implementation of SPR on various biosensing platforms is limited. In this research work spectral domain phase sensitive interferometry (SD-PSI) has been developed for label-free BIA and biosensing applications to address limitations of SPR and other label free techniques. One distinct advantage of SD-PSI compared to other label-free techniques is that it does not require use of custom fabricated biosensor substrates. Laboratory grade, off-the-shelf glass or plastic substrates of suitable thickness with proper surface functionalization are used as biosensor chips. SD-PSI is tested on four separate BIA and biosensing platforms, which include multi-well plate, flow cell, fiber probe with integrated optics and fiber tip biosensor. Sensitivity of 33 ng/ml for anti-IgG is achieved using multi-well platform. Principle of coherence multiplexing for multi-channel label-free biosensing applications is introduced. Simultaneous interrogation of multiple biosensors is achievable with a single spectral domain phase sensitive interferometer by coding the individual sensograms in coherence-multiplexed channels. Experimental results demonstrating multiplexed quantitative biomolecular interaction analysis of antibodies binding to antigen coated functionalized biosensor chip surfaces on different platforms are presented.

  15. Optimization of a multi-well array SERS chip

    NASA Astrophysics Data System (ADS)

    Abell, J. L.; Driskell, J. D.; Dluhy, R. A.; Tripp, R. A.; Zhao, Y.-P.

    2009-05-01

    SERS-active substrates are fabricated by oblique angle deposition and patterned by a polymer-molding technique to provide a uniform array for high throughput biosensing and multiplexing. Using a conventional SERS-active molecule, 1,2-Bis(4-pyridyl)ethylene (BPE), we show that this device provides a uniform Raman signal enhancement from well to well. The patterning technique employed in this study demonstrates a flexibility allowing for patterning control and customization, and performance optimization of the substrate. Avian influenza is analyzed to demonstrate the ability of this multi-well patterned SERS substrate for biosensing.

  16. Current Trends in Ubiquitous Biosensing

    DTIC Science & Technology

    2013-08-01

    fundamental advances have been made in the synergistic combination of research in the fields of microfluidics and optics, coined “optofluidics” [24-26...microfabrication and clean-room techniques for the development of microfluidic devices [27]. Advances in the rapid fabrication of nano- and microfluidic ...Transduction Microfluidic Processing Sample Introduction Optofluidics Enabled Bio-Sensing A B C Figure 4: (A) Schematic diagram of optofluidic tomography

  17. Homogeneous Biosensing Based on Magnetic Particle Labels

    PubMed Central

    Schrittwieser, Stefan; Pelaz, Beatriz; Parak, Wolfgang J.; Lentijo-Mozo, Sergio; Soulantica, Katerina; Dieckhoff, Jan; Ludwig, Frank; Guenther, Annegret; Tschöpe, Andreas; Schotter, Joerg

    2016-01-01

    The growing availability of biomarker panels for molecular diagnostics is leading to an increasing need for fast and sensitive biosensing technologies that are applicable to point-of-care testing. In that regard, homogeneous measurement principles are especially relevant as they usually do not require extensive sample preparation procedures, thus reducing the total analysis time and maximizing ease-of-use. In this review, we focus on homogeneous biosensors for the in vitro detection of biomarkers. Within this broad range of biosensors, we concentrate on methods that apply magnetic particle labels. The advantage of such methods lies in the added possibility to manipulate the particle labels by applied magnetic fields, which can be exploited, for example, to decrease incubation times or to enhance the signal-to-noise-ratio of the measurement signal by applying frequency-selective detection. In our review, we discriminate the corresponding methods based on the nature of the acquired measurement signal, which can either be based on magnetic or optical detection. The underlying measurement principles of the different techniques are discussed, and biosensing examples for all techniques are reported, thereby demonstrating the broad applicability of homogeneous in vitro biosensing based on magnetic particle label actuation. PMID:27275824

  18. A Self-Powered Wearable Noninvasive Electronic-Skin for Perspiration Analysis Based on Piezo-Biosensing Unit Matrix of Enzyme/ZnO Nanoarrays.

    PubMed

    Han, Wuxiao; He, Haoxuan; Zhang, Linlin; Dong, Chuanyi; Zeng, Hui; Dai, Yitong; Xing, Lili; Zhang, Yan; Xue, Xinyu

    2017-09-06

    The emerging multifunctional flexible electronic-skin for establishing body-electric interaction can enable real-time monitoring of personal health status as a new personalized medicine technique. A key difficulty in the device design is the flexible power supply. Here a self-powered wearable noninvasive electronic-skin for perspiration analysis has been realized on the basis of a piezo-biosensing unit matrix of enzyme/ZnO nanoarrays. The electronic-skin can detect lactate, glucose, uric acid, and urea in the perspiration, and no outside electrical power supply or battery is used in the biosensing process. The piezoelectric impulse of the piezo-biosensing units serves as the power supply and the data biosensor. The working mechanism can be ascribed to the piezoelectric-enzymatic-reaction coupling effect of enzyme/ZnO nanowires. The electronic-skin can real-time/continuously monitor the physiological state of a runner through analyzing the perspiration on his skin. This approach can promote the development of a new-type of body electric and self-powered biosensing electronic-skin.

  19. Nanoroughened plasmonic films for enhanced biosensing detection

    NASA Astrophysics Data System (ADS)

    LeMoal, Eric; Lévêque-Fort, Sandrine; Potier, Marie-Claude; Fort, Emmanuel

    2009-06-01

    Although fluorescence is the prevailing labeling technique in biosensing applications, sensitivity improvement is still a striving challenge. We show that coating standard microscope slides with nanoroughened silver films provides a high fluorescence signal enhancement due to plasmonic interactions. As a proof of concept, we applied these films with tailored plasmonic properties to DNA microarrays. Using common optical scanning devices, we achieved signal amplifications of more than 40-fold.

  20. C-MEMS for bio-sensing applications

    NASA Astrophysics Data System (ADS)

    Song, Yin; Agrawal, Richa; Wang, Chunlei

    2015-05-01

    Developing highly sensitive, selective, and reproducible miniaturized bio-sensing platforms require reliable biointerface which should be compatible with microfabrication techniques. In this study, we have fabricated pyrolyzed carbon arrays with high surface area as a bio-sensing electrode, and developed the surface functionalization methods to increase biomolecules immobilization efficiency and further understand electrochemical phenomena at biointerfaces. The carbon microelectrode arrays with high aspect ratio have been fabricated by carbon microelectromechanical systems (C-MEMS) and nanomaterials such as graphene have been integrated to further increase surface area. To achieve the efficient covalent immobilization of biomolecules, various oxidation and reduction functionalization methods have been investigated. The oxidation treatment in this study includes vacuum ultraviolet, electrochemical activation, UV/Ozone and oxygen RIE. The reduction treatment includes direct amination and diazonium grafting. The developed bio-sensing platform was then applied for several applications, such as: DNA sensor; H2O2 sensor; aptamer sensor and HIV sensor.

  1. Resolution-improved in situ DNA hybridization detection based on microwave photonic interrogation.

    PubMed

    Cao, Yuan; Guo, Tuan; Wang, Xudong; Sun, Dandan; Ran, Yang; Feng, Xinhuan; Guan, Bai-ou

    2015-10-19

    In situ bio-sensing system based on microwave photonics filter (MPF) interrogation method with improved resolution is proposed and experimentally demonstrated. A microfiber Bragg grating (mFBG) is used as sensing probe for DNA hybridization detection. Different from the traditional wavelength monitoring technique, we use the frequency interrogation scheme for resolution-improved bio-sensing detection. Experimental results show that the frequency shift of MPF notch presents a linear response to the surrounding refractive index (SRI) change over the range of 1.33 to 1.38, with a SRI resolution up to 2.6 × 10(-5) RIU, which has been increased for almost two orders of magnitude compared with the traditional fundamental mode monitoring technique (~3.6 × 10(-3) RIU). Due to the high Q value (about 27), the whole process of DNA hybridization can be in situ monitored. The proposed MPF-based bio-sensing system provides a new interrogation method over the frequency domain with improved sensing resolution and rapid interrogation rate for biochemical and environmental measurement.

  2. Preparation, Modification, Characterization, and Biosensing Application of Nanoporous Gold Using Electrochemical Techniques

    PubMed Central

    Neupane, Dharmendra; Nepal, Bishal; Mikhaylov, Vasilii; Stine, Keith J.

    2018-01-01

    Nanoporous gold (np-Au), because of its high surface area-to-volume ratio, excellent conductivity, chemical inertness, physical stability, biocompatibility, easily tunable pores, and plasmonic properties, has attracted much interested in the field of nanotechnology. It has promising applications in the fields of catalysis, bio/chemical sensing, drug delivery, biomolecules separation and purification, fuel cell development, surface-chemistry-driven actuation, and supercapacitor design. Many chemical and electrochemical procedures are known for the preparation of np-Au. Recently, researchers are focusing on easier and controlled ways to tune the pores and ligaments size of np-Au for its use in different applications. Electrochemical methods have good control over fine-tuning pore and ligament sizes. The np-Au electrodes that are prepared using electrochemical techniques are robust and are easier to handle for their use in electrochemical biosensing. Here, we review different electrochemical strategies for the preparation, post-modification, and characterization of np-Au along with the synergistic use of both electrochemistry and np-Au for applications in biosensing. PMID:29547580

  3. Preparation, Modification, Characterization, and Biosensing Application of Nanoporous Gold Using Electrochemical Techniques.

    PubMed

    Bhattarai, Jay K; Neupane, Dharmendra; Nepal, Bishal; Mikhaylov, Vasilii; Demchenko, Alexei V; Stine, Keith J

    2018-03-16

    Nanoporous gold (np-Au), because of its high surface area-to-volume ratio, excellent conductivity, chemical inertness, physical stability, biocompatibility, easily tunable pores, and plasmonic properties, has attracted much interested in the field of nanotechnology. It has promising applications in the fields of catalysis, bio/chemical sensing, drug delivery, biomolecules separation and purification, fuel cell development, surface-chemistry-driven actuation, and supercapacitor design. Many chemical and electrochemical procedures are known for the preparation of np-Au. Recently, researchers are focusing on easier and controlled ways to tune the pores and ligaments size of np-Au for its use in different applications. Electrochemical methods have good control over fine-tuning pore and ligament sizes. The np-Au electrodes that are prepared using electrochemical techniques are robust and are easier to handle for their use in electrochemical biosensing. Here, we review different electrochemical strategies for the preparation, post-modification, and characterization of np-Au along with the synergistic use of both electrochemistry and np-Au for applications in biosensing.

  4. Recent technological advancements in tuberculosis diagnostics - A review.

    PubMed

    Gupta, Shagun; Kakkar, Vipan

    2018-09-15

    Early diagnosis and on-time effective treatment are indispensable for Tuberculosis (TB) control - a life threatening infectious communicable disease. The conventional techniques for diagnosing TB normally take two to three weeks. This delay in diagnosis and further increase in detection complexity due to the emerging risks of XDR-TB (Extensively drug Resistant-TB) and MDR-TB (Multidrug Resistant-TB) are evoking interest of researchers in the field of developing rapid TB detection techniques such as biosensing and other point-of-care (POC) techniques. Biosensing technologies along with the collaboration with nanotechnology have enormous potential to boost the MTB detection and for overall management in clinical diagnosis. A diverse range of portable, sensitive and rapid biosensors based on different signal transducer principles and with different biomarkers detection capabilities have been developed for TB detection in the early stages. Further, a lot of progress has been achieved over the years in developing various point-of-care diagnostic tools including non-molecular methods and molecular techniques. The objective of this study is to present a succinct review of the available TB detection techniques that are either in use or under development. The focus of this review is on the current developments occurred in nano-biosensing technologies. A synopsis of ameliorations in different non-molecular diagnostic tools and progress in the field of molecular techniques along with the role of emerging Lab-on-Chip technology for diagnosing and mitigating the TB consequences have also been presented. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Hydrogel microparticles for biosensing

    PubMed Central

    Le Goff, Gaelle C.; Srinivas, Rathi L.; Hill, W. Adam; Doyle, Patrick S.

    2015-01-01

    Due to their hydrophilic, biocompatible, and highly tunable nature, hydrogel materials have attracted strong interest in the recent years for numerous biotechnological applications. In particular, their solution-like environment and non-fouling nature in complex biological samples render hydrogels as ideal substrates for biosensing applications. Hydrogel coatings, and later, gel dot surface microarrays, were successfully used in sensitive nucleic acid assays and immunoassays. More recently, new microfabrication techniques for synthesizing encoded particles from hydrogel materials have enabled the development of hydrogel-based suspension arrays. Lithography processes and droplet-based microfluidic techniques enable generation of libraries of particles with unique spectral or graphical codes, for multiplexed sensing in biological samples. In this review, we discuss the key questions arising when designing hydrogel particles dedicated to biosensing. How can the hydrogel material be engineered in order to tune its properties and immobilize bioprobes inside? What are the strategies to fabricate and encode gel particles, and how can particles be processed and decoded after the assay? Finally, we review the bioassays reported so far in the literature that have used hydrogel particle arrays and give an outlook of further developments of the field. PMID:26594056

  6. Magnetic Particles Coupled to Disposable Screen Printed Transducers for Electrochemical Biosensing

    PubMed Central

    Yáñez-Sedeño, Paloma; Campuzano, Susana; Pingarrón, José M.

    2016-01-01

    Ultrasensitive biosensing is currently a growing demand that has led to the development of numerous strategies for signal amplification. In this context, the unique properties of magnetic particles; both of nano- and micro-size dimensions; have proved to be promising materials to be coupled with disposable electrodes for the design of cost-effective electrochemical affinity biosensing platforms. This review addresses, through discussion of selected examples, the way that nano- and micro-magnetic particles (MNPs and MMPs; respectively) have contributed significantly to the development of electrochemical affinity biosensors, including immuno-, DNA, aptamer and other affinity modes. Different aspects such as type of magnetic particles, assay formats, detection techniques, sensitivity, applicability and other relevant characteristics are discussed. Research opportunities and future development trends in this field are also considered. PMID:27681733

  7. Electron-Beam-Lithographed Nanostructures as Reference Materials for Label-Free Scattered-Light Biosensing of Single Filoviruses.

    PubMed

    Agrawal, Anant; Majdi, Joseph; Clouse, Kathleen A; Stantchev, Tzanko

    2018-05-23

    Optical biosensors based on scattered-light measurements are being developed for rapid and label-free detection of single virions captured from body fluids. Highly controlled, stable, and non-biohazardous reference materials producing virus-like signals are valuable tools to calibrate, evaluate, and refine the performance of these new optical biosensing methods. To date, spherical polymer nanoparticles have been the only non-biological reference materials employed with scattered-light biosensing techniques. However, pathogens like filoviruses, including the Ebola virus, are far from spherical and their shape strongly affects scattered-light signals. Using electron beam lithography, we fabricated nanostructures resembling individual filamentous virions attached to a biosensing substrate (silicon wafer overlaid with silicon oxide film) and characterized their dimensions with scanning electron and atomic force microscopes. To assess the relevance of these nanostructures, we compared their signals across the visible spectrum to signals recorded from Ebola virus-like particles which exhibit characteristic filamentous morphology. We demonstrate the highly stable nature of our nanostructures and use them to obtain new insights into the relationship between virion dimensions and scattered-light signal.

  8. Using Complementary Acoustic and Optical Techniques for Quantitative Monitoring of Biomolecular Adsorption at Interfaces

    PubMed Central

    Konradi, Rupert; Textor, Marcus; Reimhult, Erik

    2012-01-01

    The great wealth of different surface sensitive techniques used in biosensing, most of which claim to measure adsorbed mass, can at first glance look unnecessary. However, with each technique relying on a different transducer principle there is something to be gained from a comparison. In this tutorial review, different optical and acoustic evanescent techniques are used to illustrate how an understanding of the transducer principle of each technique can be exploited for further interpretation of hydrated and extended polymer and biological films. Some of the most commonly used surface sensitive biosensor techniques (quartz crystal microbalance, optical waveguide spectroscopy and surface plasmon resonance) are briefly described and five case studies are presented to illustrate how different biosensing techniques can and often should be combined. The case studies deal with representative examples of adsorption of protein films, polymer brushes and lipid membranes, and describe e.g., how to deal with strongly vs. weakly hydrated films, large conformational changes and ordered layers of biomolecules. The presented systems and methods are compared to other representative examples from the increasing literature on the subject. PMID:25586027

  9. Colorimetric detection of melamine in milk by using gold nanoparticles-based LSPR via optical fibers

    PubMed Central

    Chang, Keke; Wang, Shun; Zhang, Hao; Guo, Qingqian; Hu, Xinran; Lin, Zhili; Sun, Haifeng; Jiang, Min

    2017-01-01

    A biosensing system with optical fibers is proposed for the colorimetric detection of melamine in liquid milk samples by using the localized surface plasmon resonance (LSPR) of unmodified gold nanoparticles (AuNPs). The biosensing system consists of a broadband light source that covers the spectral range from 200 nm to 1700 nm, an optical attenuator, three types of 600 μm premium optical fibers with SMA905 connectors and a miniature spectrometer with a linear charge coupled device (CCD) array. The biosensing system with optical fibers is low-cost, simple and is well-proven for the detection of melamine. Its working principle is based on the color changes of AuNPs solution from wine-red to blue due to the inter-particle coupling effect that causes the shifts of wavelength and absorbance in LSPR band after the to-be-measured melamine samples were added. Under the optimized conditions, the detection response of the LSPR biosensing system was found to be linear in melamine detection in the concentration range from 0μM to 0.9 μM with a correlation coefficient (R2) 0.99 and a detection limit 33 nM. The experimental results obtained from the established LSPR biosensing system in the actual detection of melamine concentration in liquid milk samples show that this technique is highly specific and sensitive and would have a huge application prospects. PMID:28475597

  10. Biosensors for the Detection of Antibiotics in Poultry Industry—A Review

    PubMed Central

    Mungroo, Nawfal Adam; Neethirajan, Suresh

    2014-01-01

    Antibiotic resistance is emerging as a potential threat in the next decades. This is a global phenomenon whereby globalization is acting as a catalyst. Presently, the most common techniques used for the detection of antibiotics are biosensors, ELISA and liquid chromatography—mass spectrometry. Each of these techniques has its benefits as well as drawbacks. This review aims to evaluate different biosensing techniques and their working principles in order to accurately, quickly and practically detect antibiotics in chicken muscle and blood serum. The review is divided into three main sections, namely: a biosensors overview, a section on biosensor recognition and a section on biosensor transducing elements. The first segment provides a detailed overview on the different techniques available and their respective advantages and disadvantages. The second section consists of an evaluation of several analyte systems and their mechanisms. The last section of this review studies the working principles of biosensing transducing elements, focusing mainly on surface plasmon resonance (SPR) technology and its applications in industries. PMID:25587435

  11. SERS activity of Ag decorated nanodiamond and nano-β-SiC, diamond-like-carbon and thermally annealed diamond thin film surfaces.

    PubMed

    Kuntumalla, Mohan Kumar; Srikanth, Vadali Venkata Satya Siva; Ravulapalli, Satyavathi; Gangadharini, Upender; Ojha, Harish; Desai, Narayana Rao; Bansal, Chandrahas

    2015-09-07

    In the recent past surface enhanced Raman scattering (SERS) based bio-sensing has gained prominence owing to the simplicity and efficiency of the SERS technique. Dedicated and continuous research efforts have been made to develop SERS substrates that are not only stable, durable and reproducible but also facilitate real-time bio-sensing. In this context diamond, β-SiC and diamond-like-carbon (DLC) and other related thin films have been promoted as excellent candidates for bio-technological applications including real time bio-sensing. In this work, SERS activities of nanodiamond, nano-β-SiC, DLC, thermally annealed diamond thin film surfaces were examined. DLC and thermally annealed diamond thin films were found to show SERS activity without any metal nanostructures on their surfaces. The observed SERS activities of the considered surfaces are explained in terms of the electromagnetic enhancement mechanism and charge transfer resonance process.

  12. Optofluidic cellular immunofunctional analysis by localized surface plasmon resonance

    NASA Astrophysics Data System (ADS)

    Kurabayashi, Katsuo; Oh, Bo-Ram

    2014-08-01

    Cytokine secretion assays provide the means to quantify intercellular-signaling proteins secreted by blood immune cells. These assays allow researchers and clinicians to obtain valuable information on the immune status of the donor. Previous studies have demonstrated that localized surface plasmon resonance (LSPR) effects enable label-free, real-time biosensing on a nanostructured metallic surface with simple optics and sensing tunability. However, limited sensitivity coupled with a lack of sample handling capability makes it challenging to implement LSPR biosensing in cellular functional immunoanalysis based on cytokine secretion assay. This paper describes our recent progress towards full development of a label-free LSPR biosensing technique to detect cell-secreted tumor necrosis factor (TNF)-α cytokines in clinical blood samples. We integrate LSPR bionanosensors in an optofluidic platform capable of handling target immune cells in a microfluidic chamber while readily permitting optical access for cytokine detection.

  13. Understanding the role of thiol and disulfide self-assembled DNA receptor monolayers for biosensing applications.

    PubMed

    Carrascosa, Laura G; Martínez, Lidia; Huttel, Yves; Román, Elisa; Lechuga, Laura M

    2010-09-01

    A detailed study of the immobilization of three differently sulfur-modified DNA receptors for biosensing applications is presented. The three receptors are DNA-(CH)n-SH-, DNA-(CH)n-SS-(CH)n-DNA, and DNA-(CH)n-SS-DMTO. Nanomechanical and surface plasmon resonance biosensors and fluorescence and radiolabelling techniques were used for the experimental evaluation. The results highlight the critical role of sulfur linker type in DNA self-assembly, affecting the kinetic adsorption and spatial distribution of DNA chains within the monolayer and the extent of chemisorption and physisorption. A spacer (mercaptohexanol, MCH) is used to evaluate the relative efficiencies of chemisorption of the three receptors by analysing the extent to which MCH can remove physisorbed molecules from each type of monolayer. It is demonstrated that -SH derivatization is the most suitable for biosensing purposes as it results in densely packed monolayers with the lowest ratio of physisorbed probes.

  14. Aluminum Nanoholes for Optical Biosensing.

    PubMed

    Barrios, Carlos Angulo; Canalejas-Tejero, Víctor; Herranz, Sonia; Urraca, Javier; Moreno-Bondi, María Cruz; Avella-Oliver, Miquel; Maquieira, Ángel; Puchades, Rosa

    2015-07-09

    Sub-wavelength diameter holes in thin metal layers can exhibit remarkable optical features that make them highly suitable for (bio)sensing applications. Either as efficient light scattering centers for surface plasmon excitation or metal-clad optical waveguides, they are able to form strongly localized optical fields that can effectively interact with biomolecules and/or nanoparticles on the nanoscale. As the metal of choice, aluminum exhibits good optical and electrical properties, is easy to manufacture and process and, unlike gold and silver, its low cost makes it very promising for commercial applications. However, aluminum has been scarcely used for biosensing purposes due to corrosion and pitting issues. In this short review, we show our recent achievements on aluminum nanohole platforms for (bio)sensing. These include a method to circumvent aluminum degradation--which has been successfully applied to the demonstration of aluminum nanohole array (NHA) immunosensors based on both, glass and polycarbonate compact discs supports--the use of aluminum nanoholes operating as optical waveguides for synthesizing submicron-sized molecularly imprinted polymers by local photopolymerization, and a technique for fabricating transferable aluminum NHAs onto flexible pressure-sensitive adhesive tapes, which could facilitate the development of a wearable technology based on aluminum NHAs.

  15. Aluminum Nanoholes for Optical Biosensing

    PubMed Central

    Barrios, Carlos Angulo; Canalejas-Tejero, Víctor; Herranz, Sonia; Urraca, Javier; Moreno-Bondi, María Cruz; Avella-Oliver, Miquel; Maquieira, Ángel; Puchades, Rosa

    2015-01-01

    Sub-wavelength diameter holes in thin metal layers can exhibit remarkable optical features that make them highly suitable for (bio)sensing applications. Either as efficient light scattering centers for surface plasmon excitation or metal-clad optical waveguides, they are able to form strongly localized optical fields that can effectively interact with biomolecules and/or nanoparticles on the nanoscale. As the metal of choice, aluminum exhibits good optical and electrical properties, is easy to manufacture and process and, unlike gold and silver, its low cost makes it very promising for commercial applications. However, aluminum has been scarcely used for biosensing purposes due to corrosion and pitting issues. In this short review, we show our recent achievements on aluminum nanohole platforms for (bio)sensing. These include a method to circumvent aluminum degradation—which has been successfully applied to the demonstration of aluminum nanohole array (NHA) immunosensors based on both, glass and polycarbonate compact discs supports—the use of aluminum nanoholes operating as optical waveguides for synthesizing submicron-sized molecularly imprinted polymers by local photopolymerization, and a technique for fabricating transferable aluminum NHAs onto flexible pressure-sensitive adhesive tapes, which could facilitate the development of a wearable technology based on aluminum NHAs. PMID:26184330

  16. Transmissive Nanohole Arrays for Massively-Parallel Optical Biosensing

    PubMed Central

    2015-01-01

    A high-throughput optical biosensing technique is proposed and demonstrated. This hybrid technique combines optical transmission of nanoholes with colorimetric silver staining. The size and spacing of the nanoholes are chosen so that individual nanoholes can be independently resolved in massive parallel using an ordinary transmission optical microscope, and, in place of determining a spectral shift, the brightness of each nanohole is recorded to greatly simplify the readout. Each nanohole then acts as an independent sensor, and the blocking of nanohole optical transmission by enzymatic silver staining defines the specific detection of a biological agent. Nearly 10000 nanoholes can be simultaneously monitored under the field of view of a typical microscope. As an initial proof of concept, biotinylated lysozyme (biotin-HEL) was used as a model analyte, giving a detection limit as low as 0.1 ng/mL. PMID:25530982

  17. Fundamentals and commercial aspects of nanobiosensors in point-of-care clinical diagnostics.

    PubMed

    Mahato, Kuldeep; Maurya, Pawan Kumar; Chandra, Pranjal

    2018-03-01

    Among various problems faced by mankind, health-related concerns are prevailing since long which are commonly found in the form of infectious diseases and different metabolic disorders. The clinical cure and management of such abnormalities are greatly dependent on the availability of their diagnoses. The conventional diagnostics used for such purposes are extremely powerful; however, most of these are limited by time-consuming protocols and require higher volume of test sample, etc. A new evolving technology called "biosensor" in this context shows an enormous potential for an alternative diagnostic device, which constantly compliments the conventional diagnoses. In this review, we have summarized different kinds of biosensors and their fundamental understanding with various state-of-the-art examples. A critical examination of different types of biosensing mechanisms is also reported highlighting the advantages of electrochemical biosensors for its great potentials in next-generation commercially viable modules. In recent years, a number of nanomaterials are extensively used to enhance not only the performance of biosensing mechanism, but also obtain robust, cheap, and fabrication-friendly durable mechanism. Herein, we have summarized the importance of nanomaterials in biosensing mechanism, their syntheses as well as characterization techniques. Subsequently, we have discussed the probe fabrication processes along with various techniques for assessing its analytical performances and potentials for commercial viability.

  18. Plasmonic nanoparticles-decorated diatomite biosilica: extending the horizon of on-chip chromatography and label-free biosensing.

    PubMed

    Kong, Xianming; Li, Erwen; Squire, Kenny; Liu, Ye; Wu, Bo; Cheng, Li-Jing; Wang, Alan X

    2017-11-01

    Diatomite consists of fossilized remains of ancient diatoms and is a type of naturally abundant photonic crystal biosilica with multiple unique physical and chemical functionalities. In this paper, we explored the fluidic properties of diatomite as the matrix for on-chip chromatography and, simultaneously, the photonic crystal effects to enhance the plasmonic resonances of metallic nanoparticles for surface-enhanced Raman scattering (SERS) biosensing. The plasmonic nanoparticle-decorated diatomite biosilica provides a lab-on-a-chip capability to separate and detect small molecules from mixture samples with ultra-high detection sensitivity down to 1 ppm. We demonstrate the significant potential for biomedical applications by screening toxins in real biofluid, achieving simultaneous label-free biosensing of phenethylamine and miR21cDNA in human plasma with unprecedented sensitivity and specificity. To the best of our knowledge, this is the first time demonstration to detect target molecules from real biofluids by on-chip chromatography-SERS techniques. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Nanostructured plasmonic interferometers for ultrasensitive label-free biosensing

    NASA Astrophysics Data System (ADS)

    Gao, Yongkang

    Optical biosensors that utilize surface plasmon resonance (SPR) technique to analyze the biomolecular interactions have been extensively explored in the last two decades and have become the gold standard for label-free biosensing. These powerful sensing tools allow fast, highly-sensitive monitoring of the interaction between biomolecules in real time, without the need for laborious fluorescent labeling, and have found widely ranging applications from biomedical diagnostics and drug discovery, to environmental sensing and food safety monitoring. However, the prism-coupling SPR geometry is complex and bulky, and has severely limited the integration of this technique into low-cost portable biomedical devices for point-of-care diagnostics and personal healthcare applications. Also, the complex prism-coupling scheme prevents the use of high numerical aperture (NA) optics to increase the spatial resolution for multi-channel, high-throughput detection in SPR imaging mode. This dissertation is focused on the design and fabrication of a promising new class of nanopatterned interferometric SPR sensors that integrate the strengths of miniaturized nanoplasmonic architectures with sensitive optical interferometry techniques to achieve bold advances in SPR biosensing. The nanosensor chips developed provide superior sensing performance comparable to conventional SPR systems, but employing a far simpler collinear optical transmission geometry, which largely facilitates system integration, miniaturization, and low-cost production. Moreover, the fabricated nanostructure-based SPR sensors feature a very small sensor footprint, allowing massive multiplexing on a chip for high-throughput detection. The successful transformation of SPR technique from bulky prism-coupling setup into this low-cost compact plasmonic platform would have a far-reaching impact on point-of-care diagnostic tools and also lead to advances in high-throughput sensing applications in proteomics, immunology, drug discovery, and fundamental cell biology research.

  20. Comparative evaluation of differential laser-induced perturbation spectroscopy as a technique to discriminate emerging skin pathology

    NASA Astrophysics Data System (ADS)

    Kozikowski, Raymond T.; Smith, Sarah E.; Lee, Jennifer A.; Castleman, William L.; Sorg, Brian S.; Hahn, David W.

    2012-06-01

    Fluorescence spectroscopy has been widely investigated as a technique for identifying pathological tissue; however, unrelated subject-to-subject variations in spectra complicate data analysis and interpretation. We describe and evaluate a new biosensing technique, differential laser-induced perturbation spectroscopy (DLIPS), based on deep ultraviolet (UV) photochemical perturbation in combination with difference spectroscopy. This technique combines sequential fluorescence probing (pre- and post-perturbation) with sub-ablative UV perturbation and difference spectroscopy to provide a new spectral dimension, facilitating two improvements over fluorescence spectroscopy. First, the differential technique eliminates significant variations in absolute fluorescence response within subject populations. Second, UV perturbations alter the extracellular matrix (ECM), directly coupling the DLIPS response to the biological structure. Improved biosensing with DLIPS is demonstrated in vivo in a murine model of chemically induced skin lesion development. Component loading analysis of the data indicates that the DLIPS technique couples to structural proteins in the ECM. Analysis of variance shows that DLIPS has a significant response to emerging pathology as opposed to other population differences. An optimal likelihood ratio classifier for the DLIPS dataset shows that this technique holds promise for improved diagnosis of epithelial pathology. Results further indicate that DLIPS may improve diagnosis of tissue by augmenting fluorescence spectra (i.e. orthogonal sensing).

  1. Real-Time Label-Free Surface Plasmon Resonance Biosensing with Gold Nanohole Arrays Fabricated by Nanoimprint Lithography

    PubMed Central

    Martinez-Perdiguero, Josu; Retolaza, Aritz; Otaduy, Deitze; Juarros, Aritz; Merino, Santos

    2013-01-01

    In this work we present a surface plasmon resonance sensor based on enhanced optical transmission through sub-wavelength nanohole arrays. This technique is extremely sensitive to changes in the refractive index of the surrounding medium which result in a modulation of the transmitted light. The periodic gold nanohole array sensors were fabricated by high-throughput thermal nanoimprint lithography. Square periodic arrays with sub-wavelength hole diameters were obtained and characterized. Using solutions with known refractive index, the array sensitivities were obtained. Finally, protein absorption was monitored in real-time demonstrating the label-free biosensing capabilities of the fabricated devices. PMID:24135989

  2. Advanced materials for improving biosensing performances of propagating and localized plasmonic transducers

    NASA Astrophysics Data System (ADS)

    Manera, M. G.; Colombelli, A.; Convertino, A.; Rella, S.; De Lorenzis, E.; Taurino, A.; Malitesta, C.; Rella, R.

    2015-05-01

    Among all transduction methodologies reported in the field of solid state optical chemical sensors, the attention has been focused onto the optical sensing characterization by using propagating and localized surface plasmon resonance (SPR) techniques. The research in this field is always oriented in the improvement of the sensing features in terms of sensitivity and limits of detection. To this purpose different strategies have been proposed to realize advanced materials for high sensitive plasmonic devices. In this work nanostructured silica nanowires decorated by gold nanoparticles and active magneto-plasmonic transductors are considered as new biosensing transductors useful to increase the performance of sensitive devices.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tyagi, Mukta; Agrawal, V. V.; Chandran, Achu

    A unique cholesterol oxidase (ChOx) liquid crystal (LC) biosensor, based on the disruption of orientation in LCs, is developed for cholesterol detection. A self-assembled monolayer (SAM) of Dimethyloctadecyl[3-(trimethoxysilyl)propyl]ammonium chloride (DMOAP) and (3-Aminopropyl)trimethoxy-silane (APTMS) is prepared on a glass plate by adsorption. The enzyme (ChOx) is immobilized on SAM surface for 12 h before utilizing the film for biosensing purpose. LC based biosensing study is conducted on SAM/ChOx/LC (5CB) cells for cholesterol concentrations ranging from 10 mg/dl to 250 mg/dl. The sensing mechanism has been verified through polarizing optical microscopy, scanning electron microscopy, and spectrometric techniques.

  4. Plasmon-mediated Enhancement of Rhodamine 6G Spontaneous Emission on Laser-spalled Nanotextures

    NASA Astrophysics Data System (ADS)

    Kuchmizhak, A. A.; Nepomnyashchii, A. V.; Vitrik, O. B.; Kulchin, Yu. N.

    Biosensing characteristics of the laser-spalled nanotextures produced under single-pulse irradiation of a 500-nm thick Ag film surface were assessed by measuring spontaneous emission enhancement of overlaying Rhodamine 6G (Rh6G) molecules utilizing polarization-resolved confocal microspectroscopy technique. Our preliminary study shows for the first time that a single spalled micro-sized crater covered with sub-100 nm sharp tips at a certain excitation conditions provides up to 40-fold plasmon-mediated enhancement of the spontaneous emission from the 10-nm thick Rh6G over-layer indicating high potential of these easy-to-do structures for routine biosensing tasks.

  5. Interfacial nano-mixing in a miniaturised platform enables signal enhancement and in situ detection of cancer biomarkers.

    PubMed

    Wuethrich, Alain; Sina, Abu Ali Ibn; Ahmed, Mostak; Lin, Ting-Yun; Carrascosa, Laura G; Trau, Matt

    2018-06-14

    Interfacial biosensing performs the detection of biomolecules at the bare-metal interface for disease diagnosis by comparing how biological species derived from patients and healthy individuals interact with bare metal surfaces. This technique retrieves clinicopathological information without complex surface functionalisation which is a major limitation of conventional techniques. However, it is still challenging to detect subtle molecular changes by interfacial biosensing, and the detection often requires prolonged sensing times due to the slow diffusion process of the biomolecules towards the sensor surface. Herein, we report on a novel strategy for interfacial biosensing which involves in situ electrochemical detection under the action of an electric field-induced nanoscopic flow at nanometre distance to the sensing surface. This nanomixing significantly increases target adsorption, reduces sensing time, and enables the detection of small molecular changes with enhanced sensitivity. Using a multiplex electrochemical microdevice that enables nanomixing and in situ label-free electrochemical detection, we demonstrate the detection of multiple cancer biomarkers on the same device. We present data for the detection of aberrant phosphorylation in the EGFR protein and hypermethylation in the EN1 gene region. Our method significantly shortens the assay period (from 40 min and 20 min to 3 minutes for protein and DNA, respectively), increases the sensitivity by up to two orders of magnitude, and improves detection specificity.

  6. Localized Surface Plasmon Resonance Biosensing: Current Challenges and Approaches

    PubMed Central

    Unser, Sarah; Bruzas, Ian; He, Jie; Sagle, Laura

    2015-01-01

    Localized surface plasmon resonance (LSPR) has emerged as a leader among label-free biosensing techniques in that it offers sensitive, robust, and facile detection. Traditional LSPR-based biosensing utilizes the sensitivity of the plasmon frequency to changes in local index of refraction at the nanoparticle surface. Although surface plasmon resonance technologies are now widely used to measure biomolecular interactions, several challenges remain. In this article, we have categorized these challenges into four categories: improving sensitivity and limit of detection, selectivity in complex biological solutions, sensitive detection of membrane-associated species, and the adaptation of sensing elements for point-of-care diagnostic devices. The first section of this article will involve a conceptual discussion of surface plasmon resonance and the factors affecting changes in optical signal detected. The following sections will discuss applications of LSPR biosensing with an emphasis on recent advances and approaches to overcome the four limitations mentioned above. First, improvements in limit of detection through various amplification strategies will be highlighted. The second section will involve advances to improve selectivity in complex media through self-assembled monolayers, “plasmon ruler” devices involving plasmonic coupling, and shape complementarity on the nanoparticle surface. The following section will describe various LSPR platforms designed for the sensitive detection of membrane-associated species. Finally, recent advances towards multiplexed and microfluidic LSPR-based devices for inexpensive, rapid, point-of-care diagnostics will be discussed. PMID:26147727

  7. Superior Sensitivity of Copper-Based Plasmonic Biosensors.

    PubMed

    Stebunov, Yury V; Yakubovsky, Dmitry I; Fedyanin, Dmitry Yu; Arsenin, Aleksey V; Volkov, Valentyn S

    2018-04-17

    Plasmonic biosensing has been demonstrated to be a powerful technique for quantitative determination of molecular analytes and kinetic analysis of biochemical reactions. However, interfaces of most plasmonic biosensors are made of noble metals, such as gold and silver, which are not compatible with industrial production technologies. This greatly limits biosensing applications beyond biochemical and pharmaceutical research. Here, we propose and investigate copper-based biosensor chips fully fabricated with a standard complementary metal-oxide-semiconductor (CMOS) process. The protection of thin copper films from oxidation is achieved with SiO 2 and Al 2 O 3 dielectric films deposited onto the metal surface. In addition, the deposition of dielectric films with thicknesses of only several tens of nanometers significantly improves the biosensing sensitivity, owing to better localization of electromagnetic field above the biosensing surface. According to surface plasmon resonance (SPR) measurements, the copper biosensor chips coated with thin films of SiO 2 (25 nm) and Al 2 O 3 (15 nm) show 55% and 75% higher sensitivity to refractive index changes, respectively, in comparison to pure gold sensor chips. To test biomolecule immobilization, the copper-dielectric biosensor chips are coated with graphene oxide linking layers and used for the selective analysis of oligonucleotide hybridization. The proposed plasmonic biosensors make SPR technology more affordable for various applications and provide the basis for compact biosensors integrated with modern electronic devices.

  8. A novel classification of prostate specific antigen (PSA) biosensors based on transducing elements.

    PubMed

    Najeeb, Mansoor Ani; Ahmad, Zubair; Shakoor, R A; Mohamed, A M A; Kahraman, Ramazan

    2017-06-01

    During the last few decades, there has been a tremendous rise in the number of research studies dedicated towards the development of diagnostic tools based on bio-sensing technology for the early detection of various diseases like cardiovascular diseases (CVD), many types of cancer, diabetes mellitus (DM) and many infectious diseases. Many breakthroughs have been developed in the areas of improving specificity, selectivity and repeatability of the biosensor devices. Innovations in the interdisciplinary areas like biotechnology, genetics, organic electronics and nanotechnology also had a great positive impact on the growth of bio-sensing technology. As a product of these improvements, fast and consistent sensing policies have been productively created for precise and ultrasensitive biomarker-based disease diagnostics. Prostate-specific antigen (PSA) is widely considered as an important biomarker used for diagnosing prostate cancer. There have been many publications based on various biosensors used for PSA detection, but a limited review was available for the classification of these biosensors used for the detection of PSA. This review highlights the various biosensors used for PSA detection and proposes a novel classification for PSA biosensors based on the transducer type used. We also highlight the advantages, disadvantages and limitations of each technique used for PSA biosensing which will make this article a complete reference tool for the future researches in PSA biosensing. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. A microfluidic system with integrated molecular imprinting polymer films for surface plasmon resonance detection

    NASA Astrophysics Data System (ADS)

    Huang, Shih-Chiang; Lee, Gwo-Bin; Chien, Fan-Ching; Chen, Shean-Jen; Chen, Wen-Janq; Yang, Ming-Chang

    2006-07-01

    This paper presents a novel microfluidic system with integrated molecular imprinting polymer (MIP) films designed for surface plasmon resonance (SPR) biosensing of multiple nanoscale biomolecules. The innovative microfluidic chip uses pneumatic microvalves and micropumps to transport a precise amount of the biosample through multiple microchannels to sensing regions containing the locally spin-coated MIP films. The signals of SPR biosensing are basically proportional to the number of molecules adsorbed on the MIP films. Hence, a precise control of flow rates inside microchannels is important to determine the adsorption amount of the molecules in the SPR/MIP chips. The integration of micropumps and microvalves can automate the sample introduction process and precisely control the amount of the sample injection to the microfluidic system. The proposed biochip enables the label-free biosensing of biomolecules in an automatic format, and provides a highly sensitive, highly specific and high-throughput detection performance. Three samples, i.e. progesterone, cholesterol and testosterone, are successfully detected using the developed system. The experimental results show that the proposed SPR/MIP microfluidic chip provides a comparable sensitivity to that of large-scale SPR techniques, but with reduced sample consumption and an automatic format. As such, the developed biochip has significant potential for a wide variety of nanoscale biosensing applications. The preliminary results of the current paper were presented at Transducers 2005, Seoul, Korea, 5-9 June 2005.

  10. Microcantilever-based platforms as biosensing tools.

    PubMed

    Alvarez, Mar; Lechuga, Laura M

    2010-05-01

    The fast and progressive growth of the biotechnology and pharmaceutical fields forces the development of new and powerful sensing techniques for process optimization and detection of biomolecules at very low concentrations. During the last years, the simplest MEMS structures, i.e. microcantilevers, have become an emerging and promising technology for biosensing applications, due to their small size, fast response, high sensitivity and their compatible integration into "lab-on-a-chip" devices. This article provides an overview of some of the most interesting bio-detections carried out during the last 2-3 years with the microcantilever-based platforms, which highlight the continuous expansion of this kind of sensor in the medical diagnosis field, reaching limits of detection at the single molecule level.

  11. Cost-effective SU-8 micro-structures by DUV excimer laser lithography for label-free biosensing

    NASA Astrophysics Data System (ADS)

    Sanza, F. J.; Laguna, M. F.; Casquel, R.; Holgado, M.; Barrios, C. A.; Ortega, F. J.; López-Romero, D.; García-Ballesteros, J. J.; Bañuls, M. J.; Maquieira, A.; Puchades, R.

    2011-04-01

    Cost-effective SU-8 micro-structures on a silicon substrate were developed using 248 nm excimer laser KrF projection, studying the influence of the different variables on the final pattern geometry, finding out that the most critical are exposure dose and post-bake condition. Also a novel and cost effective type of photomask based on commercial polyimide Kapton produced by 355 nm DPSS laser microprocessing was developed, studying the influence of the cutting conditions on the photomask. Finally, as a likely application the biosensing capability with a standard BSA/antiBSA immunoassay over a 10 × 10 micro-plates square lattice of around 10 μm in diameter, 15 μm of spacing and 400 nm in height was demonstrated, finding a limit of detection (LOD) of 33.4 ng/ml which is in the order of magnitude of bioapplications such as detection of cortisol hormone or insulin-like growth factor. Low cost fabrication and vertical interrogation characterization techniques lead to a promising future in the biosensing technology field.

  12. Dual-Mode Electro-Optical Techniques for Biosensing Applications: A Review

    PubMed Central

    Johnson, Steven

    2017-01-01

    The monitoring of biomolecular interactions is a key requirement for the study of complex biological processes and the diagnosis of disease. Technologies that are capable of providing label-free, real-time insight into these interactions are of great value for the scientific and clinical communities. Greater understanding of biomolecular interactions alongside increased detection accuracy can be achieved using technology that can provide parallel information about multiple parameters of a single biomolecular process. For example, electro-optical techniques combine optical and electrochemical information to provide more accurate and detailed measurements that provide unique insights into molecular structure and function. Here, we present a comparison of the main methods for electro-optical biosensing, namely, electrochemical surface plasmon resonance (EC-SPR), electrochemical optical waveguide lightmode spectroscopy (EC-OWLS), and the recently reported silicon-based electrophotonic approach. The comparison considers different application spaces, such as the detection of low concentrations of biomolecules, integration, the tailoring of light-matter interaction for the understanding of biomolecular processes, and 2D imaging of biointeractions on a surface. PMID:28880211

  13. Dual-Mode Electro-Optical Techniques for Biosensing Applications: A Review.

    PubMed

    Juan-Colás, José; Johnson, Steven; Krauss, Thomas F

    2017-09-07

    The monitoring of biomolecular interactions is a key requirement for the study of complex biological processes and the diagnosis of disease. Technologies that are capable of providing label-free, real-time insight into these interactions are of great value for the scientific and clinical communities. Greater understanding of biomolecular interactions alongside increased detection accuracy can be achieved using technology that can provide parallel information about multiple parameters of a single biomolecular process. For example, electro-optical techniques combine optical and electrochemical information to provide more accurate and detailed measurements that provide unique insights into molecular structure and function. Here, we present a comparison of the main methods for electro-optical biosensing, namely, electrochemical surface plasmon resonance (EC-SPR), electrochemical optical waveguide lightmode spectroscopy (EC-OWLS), and the recently reported silicon-based electrophotonic approach. The comparison considers different application spaces, such as the detection of low concentrations of biomolecules, integration, the tailoring of light-matter interaction for the understanding of biomolecular processes, and 2D imaging of biointeractions on a surface.

  14. A review of biosensing techniques for detection of trace carcinogen contamination in food products.

    PubMed

    Li, Zhanming; Yu, Yue; Li, Zhiliang; Wu, Tao

    2015-04-01

    Carcinogen contaminations in the food chain, for example heavy metal ions, pesticides, acrylamide, and mycotoxins, have caused serious health problems. A major objective of food-safety research is the identification and prevention of exposure to these carcinogens, because of their impossible-to-reverse tumorigenic effects. However, carcinogen detection is difficult because of their trace-level presence in food. Thus, reliable and accurate separation and determination methods are essential to protect food safety and human health. This paper summarizes the state of the art in separation and determination methods for analyzing carcinogen contamination, especially the advances in biosensing methods. Furthermore, the application of promising technology including nanomaterials, imprinted polymers, and microdevices is detailed. Challenges and perspectives are also discussed.

  15. Microfluidic Systems for Biosensing

    PubMed Central

    Liu, Kuo-Kang; Wu, Ren-Guei; Chuang, Yun-Ju; Khoo, Hwa Seng; Huang, Shih-Hao; Tseng, Fan-Gang

    2010-01-01

    In the past two decades, Micro Fluidic Systems (MFS) have emerged as a powerful tool for biosensing, particularly in enriching and purifying molecules and cells in biological samples. Compared with conventional sensing techniques, distinctive advantages of using MFS for biomedicine include ultra-high sensitivity, higher throughput, in-situ monitoring and lower cost. This review aims to summarize the recent advancements in two major types of micro fluidic systems, continuous and discrete MFS, as well as their biomedical applications. The state-of-the-art of active and passive mechanisms of fluid manipulation for mixing, separation, purification and concentration will also be elaborated. Future trends of using MFS in detection at molecular or cellular level, especially in stem cell therapy, tissue engineering and regenerative medicine, are also prospected. PMID:22163570

  16. Current Developments on Optical Feedback Interferometry as an All-Optical Sensor for Biomedical Applications

    PubMed Central

    Perchoux, Julien; Quotb, Adam; Atashkhooei, Reza; Azcona, Francisco J.; Ramírez-Miquet, Evelio E.; Bernal, Olivier; Jha, Ajit; Luna-Arriaga, Antonio; Yanez, Carlos; Caum, Jesus; Bosch, Thierry; Royo, Santiago

    2016-01-01

    Optical feedback interferometry (OFI) sensors are experiencing a consistent increase in their applications to biosensing due to their contactless nature, low cost and compactness, features that fit very well with current biophotonics research and market trends. The present paper is a review of the work in progress at UPC-CD6 and LAAS-CNRS related to the application of OFI to different aspects of biosensing, both in vivo and ex vivo. This work is intended to present the variety of opportunities and potential applications related to OFI that are available in the field. The activities presented are divided into two main sensing strategies: The measurement of optical path changes and the monitoring of flows, which correspond to sensing strategies linked to the reconstruction of changes of amplitude from the interferometric signal, and to classical Doppler frequency measurements, respectively. For optical path change measurements, measurements of transient pulses, usual in biosensing, together with the measurement of large displacements applied to designing palliative care instrumentation for Parkinson disease are discussed. Regarding the Doppler-based approach, progress in flow-related signal processing and applications in real-time monitoring of non-steady flows, human blood flow monitoring and OFI pressure myograph sensing will be presented. In all cases, experimental setups are discussed and results presented, showing the versatility of the technique. The described applications show the wide capabilities in biosensing of the OFI sensor, showing it as an enabler of low-cost, all-optical, high accuracy biomedical applications. PMID:27187406

  17. Current Developments on Optical Feedback Interferometry as an All-Optical Sensor for Biomedical Applications.

    PubMed

    Perchoux, Julien; Quotb, Adam; Atashkhooei, Reza; Azcona, Francisco J; Ramírez-Miquet, Evelio E; Bernal, Olivier; Jha, Ajit; Luna-Arriaga, Antonio; Yanez, Carlos; Caum, Jesus; Bosch, Thierry; Royo, Santiago

    2016-05-13

    Optical feedback interferometry (OFI) sensors are experiencing a consistent increase in their applications to biosensing due to their contactless nature, low cost and compactness, features that fit very well with current biophotonics research and market trends. The present paper is a review of the work in progress at UPC-CD6 and LAAS-CNRS related to the application of OFI to different aspects of biosensing, both in vivo and ex vivo. This work is intended to present the variety of opportunities and potential applications related to OFI that are available in the field. The activities presented are divided into two main sensing strategies: The measurement of optical path changes and the monitoring of flows, which correspond to sensing strategies linked to the reconstruction of changes of amplitude from the interferometric signal, and to classical Doppler frequency measurements, respectively. For optical path change measurements, measurements of transient pulses, usual in biosensing, together with the measurement of large displacements applied to designing palliative care instrumentation for Parkinson disease are discussed. Regarding the Doppler-based approach, progress in flow-related signal processing and applications in real-time monitoring of non-steady flows, human blood flow monitoring and OFI pressure myograph sensing will be presented. In all cases, experimental setups are discussed and results presented, showing the versatility of the technique. The described applications show the wide capabilities in biosensing of the OFI sensor, showing it as an enabler of low-cost, all-optical, high accuracy biomedical applications.

  18. Food pathogen detection using Ag nanorod-based surface plasmon resonance sensor

    USDA-ARS?s Scientific Manuscript database

    Food safety is world-wide issue for protecting public health. Many researchers have been working on development of biosensors for pathogenic bacteria detection. However, current biosensing methods and techniques do not meet the requirement of demanding as a biosensor in terms of sensitivity, speci...

  19. Nanoscale electrode arrays produced with microscale lithographic techniques for use in biomedical sensing applications.

    PubMed

    Terry, Jonathan G; Schmüser, Ilka; Underwood, Ian; Corrigan, Damion K; Freeman, Neville J; Bunting, Andrew S; Mount, Andrew R; Walton, Anthony J

    2013-12-01

    A novel technique for the production of nanoscale electrode arrays that uses standard microfabrication processes and micron-scale photolithography is reported here in detail. These microsquare nanoband edge electrode (MNEE) arrays have been fabricated with highly reproducible control of the key array dimensions, including the size and pitch of the individual elements and, most importantly, the width of the nanoband electrodes. The definition of lateral features to nanoscale dimensions typically requires expensive patterning techniques that are complex and low-throughput. However, the fabrication methodology used here relies on the fact that vertical dimensions (i.e. layer thicknesses) have long been manufacturable at the nanoscale using thin film deposition techniques that are well established in mainstream microelectronics. The authors report for the first time two aspects that highlight the particular suitability of these MNEE array systems for probe monolayer biosensing. The first is simulation, which shows the enhanced sensitivity to the redox reaction of the solution redox couple. The second is the enhancement of probe film functionalisation observed for the probe film model molecule, 6-mercapto-1-hexanol compared with microsquare electrodes. Such surface modification for specific probe layer biosensing and detection is of significance for a wide range of biomedical and other sensing and analytical applications.

  20. Recent Advances in Bioprinting and Applications for Biosensing

    PubMed Central

    Dias, Andrew D.; Kingsley, David M.; Corr, David T.

    2014-01-01

    Future biosensing applications will require high performance, including real-time monitoring of physiological events, incorporation of biosensors into feedback-based devices, detection of toxins, and advanced diagnostics. Such functionality will necessitate biosensors with increased sensitivity, specificity, and throughput, as well as the ability to simultaneously detect multiple analytes. While these demands have yet to be fully realized, recent advances in biofabrication may allow sensors to achieve the high spatial sensitivity required, and bring us closer to achieving devices with these capabilities. To this end, we review recent advances in biofabrication techniques that may enable cutting-edge biosensors. In particular, we focus on bioprinting techniques (e.g., microcontact printing, inkjet printing, and laser direct-write) that may prove pivotal to biosensor fabrication and scaling. Recent biosensors have employed these fabrication techniques with success, and further development may enable higher performance, including multiplexing multiple analytes or cell types within a single biosensor. We also review recent advances in 3D bioprinting, and explore their potential to create biosensors with live cells encapsulated in 3D microenvironments. Such advances in biofabrication will expand biosensor utility and availability, with impact realized in many interdisciplinary fields, as well as in the clinic. PMID:25587413

  1. Measuring Protein Interactions by Optical Biosensors

    PubMed Central

    Zhao, Huaying; Boyd, Lisa F.; Schuck, Peter

    2017-01-01

    This unit gives an introduction to the basic techniques of optical biosensing for measuring equilibrium and kinetics of reversible protein interactions. Emphasis is given to the description of robust approaches that will provide reliable results with few assumptions. How to avoid the most commonly encountered problems and artifacts is also discussed. PMID:28369667

  2. Initiator-catalyzed self-assembly of duplex-looped DNA hairpin motif based on strand displacement reaction for logic operations and amplified biosensing.

    PubMed

    Bi, Sai; Yue, Shuzhen; Wu, Qiang; Ye, Jiayan

    2016-09-15

    Here we program an initiator-catalyzed self-assembly of duplex-looped DNA hairpin motif based on strand displacement reaction. Due to the recycling of initiator and performance in a cascade manner, this system is versatilely extended to logic operations, including the construction of concatenated logic circuits with a feedback function and a biocomputing keypad-lock security system. Compared with previously reported molecular security systems, the prominent feature of our keypad lock is that it can be spontaneously reset and recycled with no need of any external stimulus and human intervention. Moreover, through integrating with an isothermal amplification technique of rolling circle amplification (RCA), this programming catalytic DNA self-assembly strategy readily achieves sensitive and selective biosensing of initiator. Importantly, a magnetic graphene oxide (MGO) is introduced to remarkably reduced background, which plays an important role in enhancing the signal-to-noise ratio and improving the detection sensitivity. Therefore, the proposed sophisticated DNA strand displacement-based methodology with engineering dynamic functions may find broad applications in the construction of programming DNA nanostructures, amplification biosensing platform, and large-scale DNA circuits. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Polarization-induced local pore-wall functionalization for biosensing: from micropore to nanopore.

    PubMed

    Liu, Jie; Pham, Pascale; Haguet, Vincent; Sauter-Starace, Fabien; Leroy, Loïc; Roget, André; Descamps, Emeline; Bouchet, Aurélie; Buhot, Arnaud; Mailley, Pascal; Livache, Thierry

    2012-04-03

    The use of biological-probe-modified solid-state pores in biosensing is currently hindered by difficulties in pore-wall functionalization. The surface to be functionalized is small and difficult to target and is usually chemically similar to the bulk membrane. Herein, we demonstrate the contactless electrofunctionalization (CLEF) approach and its mechanism. This technique enables the one-step local functionalization of the single pore wall fabricated in a silica-covered silicon membrane. CLEF is induced by polarization of the pore membrane in an electric field and requires a sandwich-like composition and a conducting or semiconducting core for the pore membrane. The defects in the silica layer of the micropore wall enable the creation of an electric pathway through the silica layer, which allows electrochemical reactions to take place locally on the pore wall. The pore diameter is not a limiting factor for local wall modification using CLEF. Nanopores with a diameter of 200 nm fabricated in a silicon membrane and covered with native silica layer have been successfully functionalized with this method, and localized pore-wall modification was obtained. Furthermore, through proof-of-concept experiments using ODN-modified nanopores, we show that functionalized nanopores are suitable for translocation-based biosensing.

  4. Enhanced Charge Collection in MOF‐525–PEDOT Nanotube Composites Enable Highly Sensitive Biosensing

    PubMed Central

    Huang, Tzu‐Yen; Kung, Chung‐Wei; Liao, Yu‐Te; Kao, Sheng‐Yuan; Cheng, Mingshan; Chang, Ting‐Hsiang; Henzie, Joel; Alamri, Hatem R.; Alothman, Zeid A.

    2017-01-01

    Abstract With the aim of a reliable biosensing exhibiting enhanced sensitivity and selectivity, this study demonstrates a dopamine (DA) sensor composed of conductive poly(3,4‐ethylenedioxythiophene) nanotubes (PEDOT NTs) conformally coated with porphyrin‐based metal–organic framework nanocrystals (MOF‐525). The MOF‐525 serves as an electrocatalytic surface, while the PEDOT NTs act as a charge collector to rapidly transport the electron from MOF nanocrystals. Bundles of these particles form a conductive interpenetrating network film that together: (i) improves charge transport pathways between the MOF‐525 regions and (ii) increases the electrochemical active sites of the film. The electrocatalytic response is measured by cyclic voltammetry and differential pulse voltammetry techniques, where the linear concentration range of DA detection is estimated to be 2 × 10−6–270 × 10−6 m and the detection limit is estimated to be 0.04 × 10−6 m with high selectivity toward DA. Additionally, a real‐time determination of DA released from living rat pheochromocytoma cells is realized. The combination of MOF5‐25 and PEDOT NTs creates a new generation of porous electrodes for highly efficient electrochemical biosensing. PMID:29201623

  5. Investigation of molybdenum-crosslinker interfaces for affinity based electrochemical biosensing applications

    NASA Astrophysics Data System (ADS)

    Kamakoti, Vikramshankar; Shanmugam, Nandhinee Radha; Tanak, Ambalika Sanjeev; Jagannath, Badrinath; Prasad, Shalini

    2018-04-01

    Molybdenum (Mo) has been investigated for implementation as an electrode material for affinity based biosensing towards devloping flexibe electronic biosensors. Treatment of the native oxide of molybdenum was investigated through two surface treatment strategies namely thiol and carbodiimide crosslinking methods. The binding interaction between cross-linker molecules and Mo electrode surface has been characterized using Fourier Transform Infrared Spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and optical microscopy. The efficacy of treatment of Mo with its native oxide using carbodiimide cross linking methodology was established. The carbodiimide cross-linking chemistry was found to possess better surface coverage and binding affinity with Molybdenum electrode surface when compared to thiol cross-linking chemistry.Electrochemical characterization of Mo electrode using Electrochemical Impedance Spectroscopy (EIS) and Cyclic Voltametry (CV) techniques was performed to evaluate the effect of ionic properties of solution buffer on the Mo electrode's performance. Affinity based biosensing of C-Reactive Protein (CRP) has been demonstrated on a flexible nanoporous polymeric substrate with detection threshold of 100 pg/ml in synthetic urine buffer medium. The biosensor has been evaluated to be developed as a dipstick based point of care device for detection of biomarkers in urine.

  6. Graphene-Based Materials for Biosensors: A Review

    PubMed Central

    Suvarnaphaet, Phitsini; Pechprasarn, Suejit

    2017-01-01

    The advantages conferred by the physical, optical and electrochemical properties of graphene-based nanomaterials have contributed to the current variety of ultrasensitive and selective biosensor devices. In this review, we present the points of view on the intrinsic properties of graphene and its surface engineering concerned with the transduction mechanisms in biosensing applications. We explain practical synthesis techniques along with prospective properties of the graphene-based materials, which include the pristine graphene and functionalized graphene (i.e., graphene oxide (GO), reduced graphene oxide (RGO) and graphene quantum dot (GQD). The biosensing mechanisms based on the utilization of the charge interactions with biomolecules and/or nanoparticle interactions and sensing platforms are also discussed, and the importance of surface functionalization in recent up-to-date biosensors for biological and medical applications. PMID:28934118

  7. Biosensors for plant pathogen detection.

    PubMed

    Khater, Mohga; de la Escosura-Muñiz, Alfredo; Merkoçi, Arben

    2017-07-15

    Infectious plant diseases are caused by pathogenic microorganisms such as fungi, bacteria, viruses, viroids, phytoplasma and nematodes. Worldwide, plant pathogen infections are among main factors limiting crop productivity and increasing economic losses. Plant pathogen detection is important as first step to manage a plant disease in greenhouses, field conditions and at the country boarders. Current immunological techniques used to detect pathogens in plant include enzyme-linked immunosorbent assays (ELISA) and direct tissue blot immunoassays (DTBIA). DNA-based techniques such as polymerase chain reaction (PCR), real time PCR (RT-PCR) and dot blot hybridization have also been proposed for pathogen identification and detection. However these methodologies are time-consuming and require complex instruments, being not suitable for in-situ analysis. Consequently, there is strong interest for developing new biosensing systems for early detection of plant diseases with high sensitivity and specificity at the point-of-care. In this context, we revise here the recent advancement in the development of advantageous biosensing systems for plant pathogen detection based on both antibody and DNA receptors. The use of different nanomaterials such as nanochannels and metallic nanoparticles for the development of innovative and sensitive biosensing systems for the detection of pathogens (i.e. bacteria and viruses) at the point-of-care is also shown. Plastic and paper-based platforms have been used for this purpose, offering cheap and easy-to-use really integrated sensing systems for rapid on-site detection. Beside devices developed at research and development level a brief revision of commercially available kits is also included in this review. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Surface Plasmon Resonance: An Introduction to a Surface Spectroscopy Technique

    ERIC Educational Resources Information Center

    Tang, Yijun; Zeng, Xiangqun; Liang, Jennifer

    2010-01-01

    Surface plasmon resonance (SPR) has become an important optical biosensing technology in the areas of biochemistry, biology, and medical sciences because of its real-time, label-free, and noninvasive nature. The high cost of commercial devices and consumables has prevented SPR from being introduced in the undergraduate laboratory. Here, we present…

  9. Ultra-small dye-doped silica nanoparticles via modified sol-gel technique

    NASA Astrophysics Data System (ADS)

    Riccò, R.; Nizzero, S.; Penna, E.; Meneghello, A.; Cretaio, E.; Enrichi, F.

    2018-05-01

    In modern biosensing and imaging, fluorescence-based methods constitute the most diffused approach to achieve optimal detection of analytes, both in solution and on the single-particle level. Despite the huge progresses made in recent decades in the development of plasmonic biosensors and label-free sensing techniques, fluorescent molecules remain the most commonly used contrast agents to date for commercial imaging and detection methods. However, they exhibit low stability, can be difficult to functionalise, and often result in a low signal-to-noise ratio. Thus, embedding fluorescent probes into robust and bio-compatible materials, such as silica nanoparticles, can substantially enhance the detection limit and dramatically increase the sensitivity. In this work, ultra-small fluorescent silica nanoparticles (NPs) for optical biosensing applications were doped with a fluorescent dye, using simple water-based sol-gel approaches based on the classical Stöber procedure. By systematically modulating reaction parameters, controllable size tuning of particle diameters as low as 10 nm was achieved. Particles morphology and optical response were evaluated showing a possible single-molecule behaviour, without employing microemulsion methods to achieve similar results. [Figure not available: see fulltext.

  10. Topographically Engineered Large Scale Nanostructures for Plasmonic Biosensing

    NASA Astrophysics Data System (ADS)

    Xiao, Bo; Pradhan, Sangram K.; Santiago, Kevin C.; Rutherford, Gugu N.; Pradhan, Aswini K.

    2016-04-01

    We demonstrate that a nanostructured metal thin film can achieve enhanced transmission efficiency and sharp resonances and use a large-scale and high-throughput nanofabrication technique for the plasmonic structures. The fabrication technique combines the features of nanoimprint and soft lithography to topographically construct metal thin films with nanoscale patterns. Metal nanogratings developed using this method show significantly enhanced optical transmission (up to a one-order-of-magnitude enhancement) and sharp resonances with full width at half maximum (FWHM) of ~15nm in the zero-order transmission using an incoherent white light source. These nanostructures are sensitive to the surrounding environment, and the resonance can shift as the refractive index changes. We derive an analytical method using a spatial Fourier transformation to understand the enhancement phenomenon and the sensing mechanism. The use of real-time monitoring of protein-protein interactions in microfluidic cells integrated with these nanostructures is demonstrated to be effective for biosensing. The perpendicular transmission configuration and large-scale structures provide a feasible platform without sophisticated optical instrumentation to realize label-free surface plasmon resonance (SPR) sensing.

  11. Optical biosensing strategies for DNA methylation analysis.

    PubMed

    Nazmul Islam, Md; Yadav, Sharda; Hakimul Haque, Md; Munaz, Ahmed; Islam, Farhadul; Al Hossain, Md Shahriar; Gopalan, Vinod; Lam, Alfred K; Nguyen, Nam-Trung; Shiddiky, Muhammad J A

    2017-06-15

    DNA methylation is an epigenetic modification of DNA, where a methyl group is added at the fifth carbon of the cytosine base to form 5 methyl cytosine (5mC) without altering the DNA sequences. It plays important roles in regulating many cellular processes by modulating key genes expression. Alteration in DNA methylation patterns becomes particularly important in the aetiology of different diseases including cancers. Abnormal methylation pattern could contribute to the pathogenesis of cancer either by silencing key tumor suppressor genes or by activating oncogenes. Thus, DNA methylation biosensing can help in the better understanding of cancer prognosis and diagnosis and aid the development of therapies. Over the last few decades, a plethora of optical detection techniques have been developed for analyzing DNA methylation using fluorescence, Raman spectroscopy, surface plasmon resonance (SPR), electrochemiluminescence and colorimetric readouts. This paper aims to comprehensively review the optical strategies for DNA methylation detection. We also present an overview of the remaining challenges of optical strategies that still need to be focused along with the lesson learnt while working with these techniques. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Microneedle arrays for biosensing and drug delivery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Joseph; Windmiller, Joshua Ray; Narayan, Roger

    Methods, structures, and systems are disclosed for biosensing and drug delivery techniques. In one aspect, a^ device for detecting an analyte and/or releasing a biochemical into a biological fluid can include an array of hollowed needles, in which each needle includes a protruded needle structure including an exterior wall forming a hollow interior and an opening at a terminal end of the protruded needle structure that exposes the hollow interior, and a probe inside the exterior wall to interact with one or more chemical or biological substances that come in contact with the probe via the opening to produce amore » probe sensing signal, and an array of wires that are coupled to probes of the array of hollowed needles, respectively, each wire being electrically conductive to transmit the probe sensing signal produced by a respective probe.« less

  13. APPLIED PHYSICS. Mid-infrared plasmonic biosensing with graphene.

    PubMed

    Rodrigo, Daniel; Limaj, Odeta; Janner, Davide; Etezadi, Dordaneh; García de Abajo, F Javier; Pruneri, Valerio; Altug, Hatice

    2015-07-10

    Infrared spectroscopy is the technique of choice for chemical identification of biomolecules through their vibrational fingerprints. However, infrared light interacts poorly with nanometric-size molecules. We exploit the unique electro-optical properties of graphene to demonstrate a high-sensitivity tunable plasmonic biosensor for chemically specific label-free detection of protein monolayers. The plasmon resonance of nanostructured graphene is dynamically tuned to selectively probe the protein at different frequencies and extract its complex refractive index. Additionally, the extreme spatial light confinement in graphene—up to two orders of magnitude higher than in metals—produces an unprecedentedly high overlap with nanometric biomolecules, enabling superior sensitivity in the detection of their refractive index and vibrational fingerprints. The combination of tunable spectral selectivity and enhanced sensitivity of graphene opens exciting prospects for biosensing. Copyright © 2015, American Association for the Advancement of Science.

  14. Biosensing with Förster Resonance Energy Transfer Coupling between Fluorophores and Nanocarbon Allotropes

    PubMed Central

    Ding, Shaowei; Cargill, Allison A.; Das, Suprem R.; Medintz, Igor L.; Claussen, Jonathan C.

    2015-01-01

    Nanocarbon allotropes (NCAs), including zero-dimensional carbon dots (CDs), one-dimensional carbon nanotubes (CNTs) and two-dimensional graphene, exhibit exceptional material properties, such as unique electrical/thermal conductivity, biocompatibility and high quenching efficiency, that make them well suited for both electrical/electrochemical and optical sensors/biosensors alike. In particular, these material properties have been exploited to significantly enhance the transduction of biorecognition events in fluorescence-based biosensing involving Förster resonant energy transfer (FRET). This review analyzes current advances in sensors and biosensors that utilize graphene, CNTs or CDs as the platform in optical sensors and biosensors. Widely utilized synthesis/fabrication techniques, intrinsic material properties and current research examples of such nanocarbon, FRET-based sensors/biosensors are illustrated. The future outlook and challenges for the research field are also detailed. PMID:26110411

  15. Microneedle arrays for biosensing and drug delivery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Joseph; Windmiller, Joshua Ray; Narayan, Roger

    Methods, structures, and systems are disclosed for biosensing and drug delivery techniques. In one aspect, a device for detecting an analyte and/or releasing a biochemical into a biological fluid can include an array of hollowed needles, in which each needle includes a protruded needle structure including an exterior wall forming a hollow interior and an opening at a terminal end of the protruded needle structure that exposes the hollow interior, and a probe inside the exterior wall to interact with one or more chemical or biological substances that come in contact with the probe via the opening to produce amore » probe sensing signal, and an array of wires that are coupled to probes of the array of hollowed needles, respectively, each wire being electrically conductive to transmit the probe sensing signal produced by a respective probe.« less

  16. Advances in sensing and biosensing of bisphenols: A review.

    PubMed

    Dhanjai; Sinha, Ankita; Wu, Lingxia; Lu, Xianbo; Chen, Jiping; Jain, Rajeev

    2018-01-15

    Bisphenols (BPs) are well known endocrine disrupting chemicals (EDCs) that cause adverse effects on the environment, biotic life and human health. BPs have been studied extensively because of an increasing concern for the safety of the environment and for human health. They are major raw materials for manufacturing polycarbonates, thermal papers and epoxy resins and are considered hazardous environmental contaminants. A vast array of sensors and biosensors have been developed for the sensitive screening of BPs based on carbon nanomaterials (carbon nanotubes, fullerenes, graphene and graphene oxide), quantum dots, metal and metal oxide nanocomposites, polymer nanocomposites, metal organic frameworks, ionic liquids and molecularly imprinted polymers. This review is devoted mainly to a variety of sensitive, selective and reliable sensing and biosensing methods for the detection of BPs using electrochemistry, fluorescence, colorimetry, surface plasmon resonance, luminescence, ELISAs, circular dichroism, resonance Rayleigh scattering and adsorption techniques in plastic products, food samples, food packaging, industrial wastes, pharmaceutical products, human body fluids and many other matrices. It summarizes the advances in sensing and biosensing methods for the detection of BPs since 2010. Furthermore, the article discusses challenges and future perspectives in the development of novel sensing methods for the detection of BP analogs. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Detection of trace heavy metal ions in water by nanostructured porous Si biosensors.

    PubMed

    Shtenberg, Giorgi; Massad-Ivanir, Naama; Segal, Ester

    2015-07-07

    A generic biosensing platform, based on nanostructured porous Si (PSi), Fabry-Pérot thin films, for label-free monitoring of heavy metal ions in aqueous solutions by enzymatic activity inhibition, is described. First, we show a general detection assay by immobilizing horseradish peroxidase (HRP) within the oxidized PSi nanostructure and monitor its catalytic activity in real time by reflective interferometric Fourier transform spectroscopy. Optical studies reveal the high specificity and sensitivity of the HRP-immobilized PSi towards three metal ions (Ag(+) > Pb(2+) > Cu(2+)), with a detection limit range of 60-120 ppb. Next, we demonstrate the concept of specific detection of Cu(2+) ions (as a model heavy metal) by immobilizing Laccase, a multi-copper oxidase, within the oxidized PSi. The resulting biosensor allows for specific detection and quantification of copper ions in real water samples by monitoring the Laccase relative activity. The optical biosensing results are found to be in excellent agreement with those obtained by the gold standard analytical technique (ICP-AES) for all water samples. The main advantage of the presented biosensing concept is the ability to detect heavy metal ions at environmentally relevant concentrations using a simple and portable experimental setup, while the specific biosensor design can be tailored by varying the enzyme type.

  18. Label-free thioflavin T/G-quadruplex-based real-time strand displacement amplification for biosensing applications.

    PubMed

    Du, Yi-Chen; Zhu, Li-Na; Kong, De-Ming

    2016-12-15

    To promote application of strand-displacement amplification (SDA) techniques in biosensing, a label-free, real-time monitoring strategy for isothermal nucleic acid amplification reactions was designed. G-quadruplex structures were introduced into SDA products using specific recognition of G-quadruplexes by the fluorogenic dye thioflavin T. Performance was good for real-time monitoring of traditional SDA by a linear-amplification mechanism and for exponential cross-triggered SDA amplification. The strategy worked on a commercial real-time PCR instrument, making it suitable for biosensing platforms. As examples, two highly sensitive and specific biosensors were designed for analysis of the activity of uracil-DNA glycosylase (UDG) and the restriction endonuclease EcoRI. Detection limits were 6×10(-5)U/mL for UDG and 0.016U/mL for EcoRI. Detection of corresponding targets in complex matrices such as cell lysates or human serum was also demonstrated. Compared to traditional end-point detection methods, real-time SDA-based approaches have the advantages of simple, fast operation; high sensitivity; low risk of carryover contamination; and very high throughput. The introduction of real-time monitoring strategies may promote application of SDA reactions in biosensor design. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. In situ ZnO-PVA nanocomposite coated microfluidic chips for biosensing

    NASA Astrophysics Data System (ADS)

    Habouti, Salah; Kunstmann-Olsen, Casper; Hoyland, James D.; Rubahn, Horst-Günter; Es-Souni, Mohammed

    2014-05-01

    Microfluidic chips with integrated fluid and optical connectors have been generated via a simple PDMS master-mould technique. In situ coating using a Zinc oxide polyvinylalcohol based sol-gel method results in ultrathin nanocomposite layers on the fluid channels, which makes them strongly hydrophilic and minimizes auto contamination of the chips by injected fluorescent biomarkers.

  20. Technological advancement in electrochemical biosensor based detection of Organophosphate pesticide chlorpyrifos in the environment: A review of status and prospects.

    PubMed

    Uniyal, Shivani; Sharma, Rajesh Kumar

    2018-09-30

    Chlorpyrifos (CP), an organophosphate insecticide is broadly used in the agricultural and industrial sectors to control a broad-spectrum of insects of economically important crops. CP detection has been gaining prominence due to its widespread contamination in different environmental matrices, high acute toxicity, and potential to cause long-term environmental and ecological damage even at trace levels. Traditional chromatographic methods for CP detection are complex and require sample preparation and highly skilled personnel for their operation. Over the past decades, electrochemical biosensors have emerged as a promising technology for CP detection as these circumvent deficiencies associated with classical chromatographic techniques. The advantageous features such as appreciable detection limit, miniaturization, sensitivity, low-cost and onsite detection potential are the propulsive force towards sustainable growth of electrochemical biosensing platforms. Recent development in enzyme immobilization methods, novel surface modifications, nanotechnology and fabrication techniques signify a foremost possibility for the design of electrochemical biosensing platforms with improved sensitivity and selectivity. The prime objective of this review is to accentuate the recent advances in the design of biosensing platforms based on diverse biomolecules and biomimetic molecules with unique properties, which would potentially fascinate their applicability for detection of CP residues in real samples. The review also covers the sensing principle of the prime biomolecule and biomimetic molecule based electrochemical biosensors along with their analytical performance, advantages and shortcomings. Present challenges and future outlooks in the field of electrochemical biosensors based CP detection are also discussed. This deep analysis of electrochemical biosensors will provide research directions for further approaching towards commercial development of the broad range of organophosphorus compounds. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Boronate-functionalized hydrogel as a novel biosensing interface for the glycated hemoglobin A1c (HbA1c) based on the competitive binding with signaling glycoprotein.

    PubMed

    Han, Yong Duk; Kim, Ka Ram; Park, Yoo Min; Song, Seung Yeon; Yang, Yong Ju; Lee, Kangsun; Ku, Yunhee; Yoon, Hyun C

    2017-08-01

    According to recent increases in public healthcare costs associated with diabetes mellitus, the development of new glycemic monitoring techniques based on the biosensing of glycated hemoglobin A1c (HbA 1c ), a promising long-term glycemic biomarker, has become a major challenge. In the development of HbA 1c biosensors for point-of-care applications, the selection of an effective biorecognition layer that provides a high reaction yield and specificity toward HbA 1c is regarded as the most significant issue. To address this, we developed a novel HbA 1c biosensing interfacial material by the integration of boronate hydrogel with glass fiber membrane. In the present study, a new boronate-functionalized hydrogel was designed and spatio-selectively photopolymerized on a hydrophilic glass fiber membrane by using N-hydroxyethyl acrylamide, 3-(acrylamido)phenylboronic acid, and bis(N,N'-methylene-bis-acrylamide). Using this approach, the boronic acid group, which specifically recognizes the cis-diol residue of glucose on the HbA 1c molecule, can be three-dimensionally coated on the surface of the glass fiber network with a high density. Because this network structure of boronate hydrogel-grafted fibers enables capillary-driven fluid control, facile HbA 1c biosensing in a lateral flow assay concept could be accomplished. On the proposed HbA 1c biosensing interface, various concentrations of HbA 1c (5-15%) in blood-originated samples were sensitively measured by a colorimetric assay using horseradish peroxidase, a glycoenzyme can generate chromogenic signal after the competitive binding against HbA 1c to the boronic acid residues. Based on the demonstrated advantages of boronate hydrogel-modified membrane including high analytical performance, easy operation, and cost-effectiveness, we expect that the proposed biorecognition interfacial material can be applied not only to point-of-care HbA 1c biosensors, but also to the quantitative analysis of other glycoprotein biomarkers. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Optical nano-biosensing interface via nucleic acid amplification strategy: construction and application.

    PubMed

    Zhou, Hong; Liu, Jing; Xu, Jing-Juan; Zhang, Shu-Sheng; Chen, Hong-Yuan

    2018-03-21

    Modern optical detection technology plays a critical role in current clinical detection due to its high sensitivity and accuracy. However, higher requirements such as extremely high detection sensitivity have been put forward due to the clinical needs for the early finding and diagnosing of malignant tumors which are significant for tumor therapy. The technology of isothermal amplification with nucleic acids opens up avenues for meeting this requirement. Recent reports have shown that a nucleic acid amplification-assisted modern optical sensing interface has achieved satisfactory sensitivity and accuracy, high speed and specificity. Compared with isothermal amplification technology designed to work completely in a solution system, solid biosensing interfaces demonstrated better performances in stability and sensitivity due to their ease of separation from the reaction mixture and the better signal transduction on these optical nano-biosensing interfaces. Also the flexibility and designability during the construction of these nano-biosensing interfaces provided a promising research topic for the ultrasensitive detection of cancer diseases. In this review, we describe the construction of the burgeoning number of optical nano-biosensing interfaces assisted by a nucleic acid amplification strategy, and provide insightful views on: (1) approaches to the smart fabrication of an optical nano-biosensing interface, (2) biosensing mechanisms via the nucleic acid amplification method, (3) the newest strategies and future perspectives.

  3. Micro- and nanofabrication methods in nanotechnological medical and pharmaceutical devices

    PubMed Central

    Betancourt, Tania; Brannon-Peppas, Lisa

    2006-01-01

    Micro- and nanofabrication techniques have revolutionized the pharmaceutical and medical fields as they offer the possibility for highly reproducible mass-fabrication of systems with complex geometries and functionalities, including novel drug delivery systems and bionsensors. The principal micro- and nanofabrication techniques are described, including photolithography, soft lithography, film deposition, etching, bonding, molecular self assembly, electrically induced nanopatterning, rapid prototyping, and electron, X-ray, colloidal monolayer, and focused ion beam lithography. Application of these techniques for the fabrication of drug delivery and biosensing systems including injectable, implantable, transdermal, and mucoadhesive devices is described. PMID:17722281

  4. In Vitro and In Vivo SERS Biosensing for Disease Diagnosis.

    PubMed

    Moore, T Joshua; Moody, Amber S; Payne, Taylor D; Sarabia, Grace M; Daniel, Alyssa R; Sharma, Bhavya

    2018-05-11

    For many disease states, positive outcomes are directly linked to early diagnosis, where therapeutic intervention would be most effective. Recently, trends in disease diagnosis have focused on the development of label-free sensing techniques that are sensitive to low analyte concentrations found in the physiological environment. Surface-enhanced Raman spectroscopy (SERS) is a powerful vibrational spectroscopy that allows for label-free, highly sensitive, and selective detection of analytes through the amplification of localized electric fields on the surface of a plasmonic material when excited with monochromatic light. This results in enhancement of the Raman scattering signal, which allows for the detection of low concentration analytes, giving rise to the use of SERS as a diagnostic tool for disease. Here, we present a review of recent developments in the field of in vivo and in vitro SERS biosensing for a range of disease states including neurological disease, diabetes, cardiovascular disease, cancer, and viral disease.

  5. New Trends in Food Allergens Detection: Toward Biosensing Strategies.

    PubMed

    Alves, Rita C; Barroso, M Fátima; González-García, María Begoña; Oliveira, M Beatriz P P; Delerue-Matos, Cristina

    2016-10-25

    Food allergens are a real threat to sensitized individuals. Although food labeling is crucial to provide information to consumers with food allergies, accidental exposure to allergenic proteins may result from undeclared allergenic substances by means of food adulteration, fraud or uncontrolled cross-contamination. Allergens detection in foodstuffs can be a very hard task, due to their presence usually in trace amounts, together with the natural interference of the matrix. Methods for allergens analysis can be mainly divided in two large groups: the immunological assays and the DNA-based ones. Mass spectrometry has also been used as a confirmatory tool. Recently, biosensors appeared as innovative, sensitive, selective, environmentally friendly, cheaper and fast techniques (especially when automated and/or miniaturized), able to effectively replace the classical methodologies. In this review, we present the advances in the field of food allergens detection toward the biosensing strategies and discuss the challenges and future perspectives of this technology.

  6. Highly stable aluminum-based metal-organic frameworks as biosensing platforms for assessment of food safety.

    PubMed

    Liu, Chun-Sen; Sun, Chun-Xiao; Tian, Jia-Yue; Wang, Zhuo-Wei; Ji, Hong-Fei; Song, Ying-Pan; Zhang, Shuai; Zhang, Zhi-Hong; He, Ling-Hao; Du, Miao

    2017-05-15

    Two unique immunosensors made of aluminum-based metal-organic frameworks (MOFs), namely, 515- and 516-MOFs, with 4,4',4''-nitrilotribenzoic acid (H 3 NTB) were successfully obtained to efficiently assess food safety. The as-prepared 515- and 516-MOFs exhibited superior thermal and physicochemical stability, high electrochemical activity, and good biocompatibility. Among these immunosensors, 516-MOF showed a preferable biosensing ability toward analytes determined by electrochemical techniques. The developed 516-MOF-based electrochemical biosensor not only demonstrated high sensitivity with low detection limits of 0.70 and 0.40pgmL -1 toward vomitoxin and salbutamol, respectively, but also showed good selectivity in the presence of other interferences. Therefore, with the advantages of high sensitivity, good selectivity, and simple operation, this new strategy is believed to exhibit great potential for simple and convenient detection of poisonous and harmful residues in food. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Robust label-free biosensing using microdisk laser arrays with on-chip references.

    PubMed

    Wondimu, S F; Hippler, M; Hussal, C; Hofmann, A; Krämmer, S; Lahann, J; Kalt, H; Freude, W; Koos, C

    2018-02-05

    Whispering-gallery mode (WGM) microdisk lasers show great potential for highly sensitive label-free detection in large-scale sensor arrays. However, when used in practical applications under normal ambient conditions, these devices suffer from temperature fluctuations and photobleaching. Here we demonstrate that these challenges can be overcome by a novel referencing scheme that allows for simultaneous compensation of temperature drift and photobleaching. The technique relies on reference structures protected by locally dispensed passivation materials, and can be scaled to extended arrays of hundreds of devices. We prove the viability of the concept in a series of experiments, demonstrating robust and sensitive label-free detection over a wide range of constant or continuously varying temperatures. To the best of our knowledge, these measurements represent the first demonstration of biosensing in active WGM devices with simultaneous compensation of both photobleaching and temperature drift.

  8. 77 FR 51808 - Agency Forms Undergoing Paperwork Reduction Act Review

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-27

    ... comments should be received within 30 days of this notice. Proposed Project BioSense 2.0 Recruitment of...{time} Centers for Disease Control and Prevention (CDC). Background and Brief Description The BioSense... (CDC) in 2003. BioSense is a near real-time surveillance system that receives and processes electronic...

  9. Aptamers, antibody scFv, and antibody Fab' fragments: An overview and comparison of three of the most versatile biosensor biorecognition elements.

    PubMed

    Crivianu-Gaita, Victor; Thompson, Michael

    2016-11-15

    The choice of biosensing elements is crucial for the development of the optimal biosensor. Three of the most versatile biosensing elements are antibody single-chain Fv fragments (scFv), antibody fragment-antigen binding (Fab') units, and aptamers. This article provides an overview of these three biorecognition elements with respects to their synthesis/engineering, various immobilization techniques, and examples of their use in biosensors. Furthermore, the final section of the review compares and contrasts their characteristics (time/cost of development, ease and variability of immobilization, affinity, stability) illustrating their advantages and disadvantages. Overall, scFv fragments are found to display the highest customizability (i.e. addition of functional groups, immobilizing peptides, etc.) due to recombinant synthesis techniques. If time and cost are an issue in the development of the biosensor, Fab' fragments should be chosen as they are relatively cheap and can be developed quickly from whole antibodies (several days). However, if there are sufficient funds and time is not a factor, aptamers should be utilized as they display the greatest affinity towards their target analytes and are extremely stable (excellent biosensor regenerability). Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Magnetoresistive biosensors for quantitative proteomics

    NASA Astrophysics Data System (ADS)

    Zhou, Xiahan; Huang, Chih-Cheng; Hall, Drew A.

    2017-08-01

    Quantitative proteomics, as a developing method for study of proteins and identification of diseases, reveals more comprehensive and accurate information of an organism than traditional genomics. A variety of platforms, such as mass spectrometry, optical sensors, electrochemical sensors, magnetic sensors, etc., have been developed for detecting proteins quantitatively. The sandwich immunoassay is widely used as a labeled detection method due to its high specificity and flexibility allowing multiple different types of labels. While optical sensors use enzyme and fluorophore labels to detect proteins with high sensitivity, they often suffer from high background signal and challenges in miniaturization. Magnetic biosensors, including nuclear magnetic resonance sensors, oscillator-based sensors, Hall-effect sensors, and magnetoresistive sensors, use the specific binding events between magnetic nanoparticles (MNPs) and target proteins to measure the analyte concentration. Compared with other biosensing techniques, magnetic sensors take advantage of the intrinsic lack of magnetic signatures in biological samples to achieve high sensitivity and high specificity, and are compatible with semiconductor-based fabrication process to have low-cost and small-size for point-of-care (POC) applications. Although still in the development stage, magnetic biosensing is a promising technique for in-home testing and portable disease monitoring.

  11. Rapid biosensing tools for cancer biomarkers.

    PubMed

    Ranjan, Rajeev; Esimbekova, Elena N; Kratasyuk, Valentina A

    2017-01-15

    The present review critically discusses the latest developments in the field of smart diagnostic systems for cancer biomarkers. A wide coverage of recent biosensing approaches involving aptamers, enzymes, DNA probes, fluorescent probes, interacting proteins and antibodies in vicinity to transducers such as electrochemical, optical and piezoelectric is presented. Recent advanced developments in biosensing approaches for cancer biomarker owes much credit to functionalized nanomaterials due to their unique opto-electronic properties and enhanced surface to volume ratio. Biosensing methods for a plenty of cancer biomarkers has been summarized emphasizing the key principles involved. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. 77 FR 33464 - Proposed Data Collections Submitted for Public Comment and Recommendations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-06

    ... days of this notice. Proposed Project BioSense 2.0 (OMB No. 0920-0824, exp. 10/31/2012)--Revision...). Background and Brief Description: The BioSense Program was created by congressional mandate as part of the... Centers for Disease Control and Prevention (CDC) in 2003. BioSense is a near real-time surveillance system...

  13. Low-Cost Label-Free Biosensing Bimetallic Cellulose Strip with SILAR-Synthesized Silver Core-Gold Shell Nanoparticle Structures.

    PubMed

    Kim, Wansun; Lee, Jae-Chul; Lee, Gi-Ja; Park, Hun-Kuk; Lee, Anbok; Choi, Samjin

    2017-06-20

    We introduce a label-free biosensing cellulose strip sensor with surface-enhanced Raman spectroscopy (SERS)-encoded bimetallic core@shell nanoparticles. Bimetallic nanoparticles consisting of a synthesis of core Ag nanoparticles (AgNP) and a synthesis of shell gold nanoparticles (AuNPs) were fabricated on a cellulose substrate by two-stage successive ionic layer absorption and reaction (SILAR) techniques. The bimetallic nanoparticle-enhanced localized surface plasmon resonance (LSPR) effects were theoretically verified by computational calculations with finite element models of optimized bimetallic nanoparticles interacting with an incident laser source. Well-dispersed raspberry-like bimetallic nanoparticles with highly polycrystalline structure were confirmed through X-ray and electron analyses despite ionic reaction synthesis. The stability against silver oxidation and high sensitivity with superior SERS enhancement factor (EF) of the low-cost SERS-encoded cellulose strip, which achieved 3.98 × 10 8 SERS-EF, 6.1%-RSD reproducibility, and <10%-degraded sustainability, implicated the possibility of practical applications in high analytical screening methods, such as single-molecule detection. The remarkable sensitivity and selectivity of this bimetallic biosensing strip in determining aquatic toxicities for prohibited drugs, such as aniline, sodium azide, and malachite green, as well as monitoring the breast cancer progression for urine, confirmed its potential as a low-cost label-free point-of-care test chip for the early diagnosis of human diseases.

  14. Recent Progress in SERS Biosensing

    PubMed Central

    Bantz, Kyle C.; Meyer, Audrey F.; Wittenberg, Nathan J.; Im, Hyungsoon; Kurtuluş, Özge; Lee, Si Hoon; Lindquist, Nathan C.

    2011-01-01

    This perspective gives an overview of recent developments in surface-enhanced Raman scattering (SERS) for biosensing. We focus this review on SERS papers published in the last 10 years and to specific applications of detecting biological analytes. Both intrinsic and extrinsic SERS biosensing schemes have been employed to detect and identify small molecules, nucleic acids, lipids, peptides, and proteins, as well as for in vivo and cellular sensing. Current SERS substrate technologies along with a series of advancements in surface chemistry, sample preparation, intrinsic/extrinsic signal transduction schemes, and tip-enhanced Raman spectroscopy are discussed. The progress covered herein shows great promise for widespread adoption of SERS biosensing. PMID:21509385

  15. Silicon nano-membrane based photonic crystal microcavities for high sensitivity bio-sensing.

    PubMed

    Lai, Wei-Cheng; Chakravarty, Swapnajit; Zou, Yi; Chen, Ray T

    2012-04-01

    We experimentally demonstrated photonic crystal microcavity based resonant sensors coupled to photonic crystal waveguides in silicon nano-membrane on insulator for chemical and bio-sensing. Linear L-type microcavities are considered. In contrast to cavities with small mode volumes, but low quality factors for bio-sensing, we showed increasing the length of the microcavity enhances the quality factor of the resonance by an order of magnitude and increases the resonance wavelength shift while retaining compact device characteristics. Q~26760 and sensitivity down to 15 ng/ml and ~110 pg/mm2 in bio-sensing was experimentally demonstrated on silicon-on-insulator devices.

  16. All-carbon suspended nanowire sensors as a rapid highly-sensitive label-free chemiresistive biosensing platform.

    PubMed

    Thiha, Aung; Ibrahim, Fatimah; Muniandy, Shalini; Dinshaw, Ignatius Julian; Teh, Swe Jyan; Thong, Kwai Lin; Leo, Bey Fen; Madou, Marc

    2018-06-01

    Nanowire sensors offer great potential as highly sensitive electrochemical and electronic biosensors because of their small size, high aspect ratios, and electronic properties. Nevertheless, the available methods to fabricate carbon nanowires in a controlled manner remain limited to expensive techniques. This paper presents a simple fabrication technique for sub-100 nm suspended carbon nanowire sensors by integrating electrospinning and photolithography techniques. Carbon Microelectromechanical Systems (C-MEMS) fabrication techniques allow fabrication of high aspect ratio carbon structures by patterning photoresist polymers into desired shapes and subsequent carbonization of resultant structures by pyrolysis. In our sensor platform, suspended nanowires were deposited by electrospinning while photolithography was used to fabricate support structures. We have achieved suspended carbon nanowires with sub-100 nm diameters in this study. The sensor platform was then integrated with a microfluidic chip to form a lab-on-chip device for label-free chemiresistive biosensing. We have investigated this nanoelectronics label-free biosensor's performance towards bacterial sensing by functionalization with Salmonella-specific aptamer probes. The device was tested with varying concentrations of Salmonella Typhimurium to evaluate sensitivity and various other bacteria to investigate specificity. The results showed that the sensor is highly specific and sensitive in detection of Salmonella with a detection limit of 10 CFU mL -1 . Moreover, this proposed chemiresistive assay has a reduced turnaround time of 5 min and sample volume requirement of 5 µL which are much less than reported in the literature. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Impedance nanopore biosensor: influence of pore dimensions on biosensing performance.

    PubMed

    Kant, Krishna; Yu, Jingxian; Priest, Craig; Shapter, Joe G; Losic, Dusan

    2014-03-07

    Knowledge about electrochemical and electrical properties of nanopore structures and the influence of pore dimensions on these properties is important for the development of nanopore biosensing devices. The aim of this study was to explore the influence of nanopore dimensions (diameter and length) on biosensing performance using non-faradic electrochemical impedance spectroscopy (EIS). Nanoporous alumina membranes (NPAMs) prepared by self-ordered electrochemical anodization of aluminium were used as model nanopore sensing platforms. NPAMs with different pore diameters (25-65 nm) and lengths (4-18 μm) were prepared and the internal pore surface chemistry was modified by covalently attaching streptavidin and biotin. The performance of this antibody nanopore biosensing platform was evaluated using various concentrations of biotin as a model analyte. EIS measurements of pore resistivity and conductivity were carried out for pores with different diameters and lengths. The results showed that smaller pore dimensions of 25 nm and pore lengths up to 10 μm provide better biosensing performance.

  18. Ultra-small dye-doped silica nanoparticles via modified sol-gel technique.

    PubMed

    Riccò, R; Nizzero, S; Penna, E; Meneghello, A; Cretaio, E; Enrichi, F

    2018-01-01

    In modern biosensing and imaging, fluorescence-based methods constitute the most diffused approach to achieve optimal detection of analytes, both in solution and on the single-particle level. Despite the huge progresses made in recent decades in the development of plasmonic biosensors and label-free sensing techniques, fluorescent molecules remain the most commonly used contrast agents to date for commercial imaging and detection methods. However, they exhibit low stability, can be difficult to functionalise, and often result in a low signal-to-noise ratio. Thus, embedding fluorescent probes into robust and bio-compatible materials, such as silica nanoparticles, can substantially enhance the detection limit and dramatically increase the sensitivity. In this work, ultra-small fluorescent silica nanoparticles (NPs) for optical biosensing applications were doped with a fluorescent dye, using simple water-based sol-gel approaches based on the classical Stöber procedure. By systematically modulating reaction parameters, controllable size tuning of particle diameters as low as 10 nm was achieved. Particles morphology and optical response were evaluated showing a possible single-molecule behaviour, without employing microemulsion methods to achieve similar results. Graphical abstractWe report a simple, cheap, reliable protocol for the synthesis and systematic tuning of ultra-small (< 10 nm) dye-doped luminescent silica nanoparticles.

  19. Surface plasmon microscopy with low-cost metallic nanostructures for biosensing I

    NASA Astrophysics Data System (ADS)

    Lindquist, Nathan; Oh, Sang-Hyun; Otto, Lauren

    2012-02-01

    The field of plasmonics aims to manipulate light over dimensions smaller than the optical wavelength by exploiting surface plasmon resonances in metallic films. Typically, surface plasmons are excited by illuminating metallic nanostructures. For meaningful research in this exciting area, the fabrication of high-quality nanostructures is critical, and in an undergraduate setting, low-cost methods are desirable. Careful optical characterization of the metallic nanostructures is also required. Here, we present the use of novel, inexpensive nanofabrication techniques and the development of a customized surface plasmon microscopy setup for interdisciplinary undergraduate experiments in biosensing, surface-enhanced Raman spectroscopy, and surface plasmon imaging. A Bethel undergraduate student performs the nanofabrication in collaboration with the University of Minnesota. The rewards of mentoring undergraduate students in cooperation with a large research university are numerous, exposing them to a wide variety of opportunities. This research also interacts with upper-level, open-ended laboratory projects, summer research, a semester-long senior research experience, and will enable a large range of experiments into the future.

  20. Nanochannels preparation and application in biosensing.

    PubMed

    de la Escosura-Muñiz, Alfredo; Merkoçi, Arben

    2012-09-25

    Selective transport in nanochannels (protein-based ion channels) is already used in living systems for electrical signaling in nerves and muscles, and this natural behavior is being approached for the application of biomimetic nanochannels in biosensors. On the basis of this principle, single nanochannels and nanochannel arrays seem to bring new advantages for biosensor development and applications. The purpose of this review is to provide a general comprehensive and critical overview on the latest trends in the development of nanochannel-based biosensing systems. A detailed description and discussion of representative and recent works covering the main nanochannel fabrication techniques, nanoporous material characterizations, and especially their application in both electrochemical and optical sensing systems is given. The state-of-the-art of the developed technology may open the way to new advances in the integration of nanochannels with (bio)molecules and synthetic receptors for the development of novel biodetection systems that can be extended to many other applications with interest for clinical analysis, safety, and security as well as environmental and other industrial studies and applications.

  1. Urea impedimetric biosensing using electrospun nanofibers modified with zinc oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Migliorini, Fernanda L.; Sanfelice, Rafaela C.; Mercante, Luiza A.; Andre, Rafaela S.; Mattoso, Luiz H. C.; Correa, Daniel. S.

    2018-06-01

    Reliable analytical techniques to evaluate dairy products, including milk, are of outmost importance to ensure food safety against contaminants. Among possible substances employed as adulterants in milk, urea raises deep concern due to its harmful effects to consumer's health. In the present study, a biosensing platform was developed to be applied in the electrochemical detection of urea. The sensing platform was fabricated using polymeric electrospun nanofibers of polyamide 6 (PA6) and polypyrrole (PPy) deposited onto fluorine doped tin oxide (FTO) electrodes, which were then modified with zinc oxide nanoparticles (ZnO). This material showed excellent properties for the immobilization of urease enzyme, conferring the FTO/PA6/PPy/ZnO/urease electrode high sensitivity for urea detection within the concentration range between 0.1 and 250 mg dL-1 with a limit of detection of 0.011 mg dL-1. The results achieved evidence the potential of electrospun nanofibers-based electrodes for applications in biosensors aiming at dairy products analysis.

  2. Graphene: The Missing Piece for Cancer Diagnosis?

    PubMed Central

    Cruz, Sandra M. A.; Girão, André F.; Gonçalves, Gil; Marques, Paula A. A. P.

    2016-01-01

    This paper reviews recent advances in graphene-based biosensors development in order to obtain smaller and more portable devices with better performance for earlier cancer detection. In fact, the potential of Graphene for sensitive detection and chemical/biological free-label applications results from its exceptional physicochemical properties such as high electrical and thermal conductivity, aspect-ratio, optical transparency and remarkable mechanical and chemical stability. Herein we start by providing a general overview of the types of graphene and its derivatives, briefly describing the synthesis procedure and main properties. It follows the reference to different routes to engineer the graphene surface for sensing applications with organic biomolecules and nanoparticles for the development of advanced biosensing platforms able to detect/quantify the characteristic cancer biomolecules in biological fluids or overexpressed on cancerous cells surface with elevated sensitivity, selectivity and stability. We then describe the application of graphene in optical imaging methods such as photoluminescence and Raman imaging, electrochemical sensors for enzymatic biosensing, DNA sensing, and immunosensing. The bioquantification of cancer biomarkers and cells is finally discussed, particularly electrochemical methods such as voltammetry and amperometry which are generally adopted transducing techniques for the development of graphene based sensors for biosensing due to their simplicity, high sensitivity and low-cost. To close, we discuss the major challenges that graphene based biosensors must overcome in order to reach the necessary standards for the early detection of cancer biomarkers by providing reliable information about the patient disease stage. PMID:26805845

  3. Ultra-sensitive fluorescent imaging-biosensing using biological photonic crystals

    NASA Astrophysics Data System (ADS)

    Squire, Kenny; Kong, Xianming; Wu, Bo; Rorrer, Gregory; Wang, Alan X.

    2018-02-01

    Optical biosensing is a growing area of research known for its low limits of detection. Among optical sensing techniques, fluorescence detection is among the most established and prevalent. Fluorescence imaging is an optical biosensing modality that exploits the sensitivity of fluorescence in an easy-to-use process. Fluorescence imaging allows a user to place a sample on a sensor and use an imager, such as a camera, to collect the results. The image can then be processed to determine the presence of the analyte. Fluorescence imaging is appealing because it can be performed with as little as a light source, a camera and a data processor thus being ideal for nontrained personnel without any expensive equipment. Fluorescence imaging sensors generally employ an immunoassay procedure to selectively trap analytes such as antigens or antibodies. When the analyte is present, the sensor fluoresces thus transducing the chemical reaction into an optical signal capable of imaging. Enhancement of this fluorescence leads to an enhancement in the detection capabilities of the sensor. Diatoms are unicellular algae with a biosilica shell called a frustule. The frustule is porous with periodic nanopores making them biological photonic crystals. Additionally, the porous nature of the frustule allows for large surface area capable of multiple analyte binding sites. In this paper, we fabricate a diatom based ultra-sensitive fluorescence imaging biosensor capable of detecting the antibody mouse immunoglobulin down to a concentration of 1 nM. The measured signal has an enhancement of 6× when compared to sensors fabricated without diatoms.

  4. Enhancement of integrated photonic biosensing by magnetic controlled nano-particles

    NASA Astrophysics Data System (ADS)

    Peserico, N.; Sharma, P. Pratim; Belloni, A.; Damin, F.; Chiari, M.; Bertacco, R.; Melloni, A.

    2018-02-01

    Integrated Mach-Zehnder interferometers, ring resonators, Bragg reflectors or simple waveguides are commonly used as photonic biosensing elements. They can be used for label-free detection relating the changes in the optical signal in realtime, as optical power or spectral response, to the presence and even the quantity of a target analyte on the surface of the photonic waveguide. The label-free method has advantages in term of sample preparation but it is more sensitive to spurious effects such as temperature and refractive index sample variation, biological noise, etc. Label methods can be more robust, more sensitive and able to manipulate the biological targets. In this work, we present an innovative labeled biosensing technique exploiting magnetic nano-beads for enhancement of sensitivity over integrated optic microrings. A sandwich binding is exploited to bring the magnetic labels close to the surface of the optical waveguide and interact with the optical evanescent field. The proximity and the quantity of the magnetic nano-beads are seen as a shift in the resonance of the microring. Detection of antibodies permits to reach a high level of sensitivity, down to 8 pM with a high confidence level. The sizes of the nano-beads are 50 to 250 nm. Furthermore, time-varying magnetic fields permit to manipulate the beads and even induce specific signals on the detected light to easy the processing and provide a reliable identification of the presence of the desired analyte. Multiple analytes detection is also possible.

  5. A paper based graphene-nanocauliflower hybrid composite for point of care biosensing

    NASA Astrophysics Data System (ADS)

    Burrs, S. L.; Sidhu, R.; Bhargava, M.; Kiernan-Lewis, J.; Schwalb, N.; Rong, Y.; Gomes, C.; Claussen, J.; Vanegas, D. C.; McLamore, E. S.

    2016-05-01

    Graphene paper has diverse applications in printed circuit board electronics, bioassays, 3D cell culture, and biosensing. Although development of nanometal-graphene hybrid composites is commonplace in the sensing literature, to date there are only a few examples of nanometal-decorated graphene paper for use in biosensing. In this manuscript, we demonstrate the synthesis and application of Pt nano cauliflower-functionalized graphene paper for use in electrochemical biosensing of small molecules (glucose, acetone, methanol) or detection of pathogenic bacteria (Escherichia coli O157:H7). Raman spectroscopy, scanning electron microscopy and energy dispersive spectroscopy were used to show that graphene oxide deposited on nanocellulose crystals was partially reduced by both thermal and chemical treatment. Fractal platinum nanostructures were formed on the reduced graphene oxide paper, producing a conductive paper with an extremely high electroactive surface area, confirmed by cyclic voltammetry and electrochemical impedance spectroscopy. To show the broad applicability of the material, the platinum surface was functionalized with three different biomaterials: 1) glucose oxidase (via chitosan encapsulation); 2) a DNA aptamer (via covalent linking), or 3) a chemosensory protein (via his linking). We demonstrate the application of this device for point of care biosensing. The detection limit for both glucose (0.08 +/- 0.02 μM) and E. coli O157:H7 (1.3 +/- 0.1 CFU mL-1) were competitive with, or superior to, previously reported devices in the biosensing literature. The response time (6 sec for glucose and 10 min for E. coli) were also similar to silicon biochip and commercial electrode sensors. The results demonstrate that the nanocellulose-graphene-nanoplatinum material is an excellent paper-based platform for development of electrochemical biosensors targeting small molecules or whole cells for use in point of care biosensing.

  6. Micro and nanotechnology for biological and biomedical applications.

    PubMed

    Lim, Chwee Teck; Han, Jongyoon; Guck, Jochen; Espinosa, Horacio

    2010-10-01

    This special issue contains some of the current state-of-the-art development and use of micro and nanotechnological tools, devices and techniques for both biological and biomedical research and applications. These include nanoparticles for bioimaging and biosensing, optical and biophotonic techniques for probing diseases at the nanoscale, micro and nano-fabricated tools for elucidating molecular mechanisms of mechanotransduction in cell and molecular biology and cell separation microdevices and techniques for isolating and enriching targeted cells for disease detection and diagnosis. Although some of these works are still at the research stage, there is no doubt that some of the important outcomes will eventually see actual biomedical applications in the not too distant future.

  7. Direct transfer of subwavelength plasmonic nanostructures on bioactive silk films.

    PubMed

    Lin, Dianmin; Tao, Hu; Trevino, Jacob; Mondia, Jessica P; Kaplan, David L; Omenetto, Fiorenzo G; Dal Negro, Luca

    2012-11-27

    By a reusable transfer fabrication technique, we demonstrate high-fidelity fabrication of metal nanoparticles, optical nanoantennas, and nanohole arrays directly on a functional silk biopolymer. The ability to reproducibly pattern silk biopolymers with arbitrarily complex plasmonic arrays is of importance for a variety of applications in optical biosensing, tissue engineering, cell biology, and the development of novel bio-optoelectronic medical devices. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Mobile phone-based biosensing: An emerging "diagnostic and communication" technology.

    PubMed

    Quesada-González, Daniel; Merkoçi, Arben

    2017-06-15

    In this review we discuss recent developments on the use of mobile phones and similar devices for biosensing applications in which diagnostics and communications are coupled. Owing to the capabilities of mobile phones (their cameras, connectivity, portability, etc.) and to advances in biosensing, the coupling of these two technologies is enabling portable and user-friendly analytical devices. Any user can now perform quick, robust and easy (bio)assays anywhere and at any time. Among the most widely reported of such devices are paper-based platforms. Herein we provide an overview of a broad range of biosensing possibilities, from optical to electrochemical measurements; explore the various reported designs for adapters; and consider future opportunities for this technology in fields such as health diagnostics, safety & security, and environment monitoring. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Wireless Biological Electronic Sensors.

    PubMed

    Cui, Yue

    2017-10-09

    The development of wireless biological electronic sensors could open up significant advances for both fundamental studies and practical applications in a variety of areas, including medical diagnosis, environmental monitoring, and defense applications. One of the major challenges in the development of wireless bioelectronic sensors is the successful integration of biosensing units and wireless signal transducers. In recent years, there are a few types of wireless communication systems that have been integrated with biosensing systems to construct wireless bioelectronic sensors. To successfully construct wireless biological electronic sensors, there are several interesting questions: What types of biosensing transducers can be used in wireless bioelectronic sensors? What types of wireless systems can be integrated with biosensing transducers to construct wireless bioelectronic sensors? How are the electrical sensing signals generated and transmitted? This review will highlight the early attempts to address these questions in the development of wireless biological electronic sensors.

  10. Chemical modification of TiO2 nanotube arrays for label-free optical biosensing applications

    NASA Astrophysics Data System (ADS)

    Terracciano, Monica; Galstyan, Vardan; Rea, Ilaria; Casalino, Maurizio; De Stefano, Luca; Sbervegleri, Giorgio

    2017-10-01

    In this study, we have fabricated TiO2 nanotube arrays by the potentiostatic anodic oxidation of Ti foils in fluoride-containing electrolyte and explored them as versatile devices for biosensing applications. TiO2 nanotubes have been chemically modified in order to bind Protein A as a specific target analyte for the optical biosensing. The obtained structures have been characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, water contact angle, fluorescence microscopy, spectroscopic reflectometry and photoluminescence. Investigations show that the prepared TiO2 nanotubes, 2.5 μm long and 75 nm thick, can be easily and efficiently bio-modified, and the obtained structures are strongly photoluminescent, thus suitable for the label-free biosensing applications in the range of μM, due to their peculiar optical properties.

  11. Electroactive and biocompatible functionalization of graphene for the development of biosensing platforms.

    PubMed

    Halder, Arnab; Zhang, Minwei; Chi, Qijin

    2017-01-15

    Design and synthesis of low-cost, highly stable, electroactive and biocompatible material is one of the key steps for the advancement of electrochemical biosensing systems. To this end, we have explored a facile way for the successful synthesis of redox active and bioengineering of reduced graphene oxide (RGO) for the development of versatile biosensing platform. A highly branched polymer (PEI) is used for reduction and simultaneous derivation of graphene oxide (GO) to form a biocompatible polymeric matrix on RGO nanosheet. Ferrocene redox moieties are then wired onto RGO nanosheets through the polymer matrix. The as-prepared functional composite is electrochemically active and enables to accommodate enzymes stably. For proof-of-concept studies, two crucial redox enzymes for biosensors (i.e. cholesterol oxidase and glucose oxidase) are targeted. The enzyme integrated and RGO supported biosensing hybrid systems show high stability, excellent selectivity, good reproducibility and fast sensing response. As measured, the detection limit of the biosensors for glucose and cholesterol is 5µM and 0.5µM (S/N=3), respectively. The linear response range of the biosensor is from 0.1 to 15.5mM for glucose and from 2.5 to 25µM for cholesterol. Furthermore, this biosensing platform shows good anti-interference ability and reasonable stability. The nanohybrid biosensing materials can be combined with screen-printed electrodes, which are successfully used for measuring the glucose and cholesterol level of real human serum samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Plasmonic biosensors.

    PubMed

    Hill, Ryan T

    2015-01-01

    The unique optical properties of plasmon resonant nanostructures enable exploration of nanoscale environments using relatively simple optical characterization techniques. For this reason, the field of plasmonics continues to garner the attention of the biosensing community. Biosensors based on propagating surface plasmon resonances (SPRs) in films are the most well-recognized plasmonic biosensors, but there is great potential for the new, developing technologies to surpass the robustness and popularity of film-based SPR sensing. This review surveys the current plasmonic biosensor landscape with emphasis on the basic operating principles of each plasmonic sensing technique and the practical considerations when developing a sensing platform with the various techniques. The 'gold standard' film SPR technique is reviewed briefly, but special emphasis is devoted to the up-and-coming localized surface plasmon resonance and plasmonically coupled sensor technology. © 2014 Wiley Periodicals, Inc.

  13. Plasmonic Biosensors

    PubMed Central

    Hill, Ryan T.

    2015-01-01

    The unique optical properties of plasmon resonant nanostructures enable exploration of nanoscale environments using relatively simple optical characterization techniques. For this reason, the field of plasmonics continues to garner the attention of the biosensing community. Biosensors based on propagating surface plasmon resonances (SPRs) in films are the most well-recognized plasmonic biosensors, but there is great potential for the new, developing technologies to surpass the robustness and popularity of film-based SPR sensing. This review surveys the current plasmonic biosensor landscape with emphasis on the basic operating principles of each plasmonic sensing technique and the practical considerations when developing a sensing platform with the various techniques. The “gold standard” film SPR technique is reviewed briefly, but special emphasis is devoted to the up-and-coming LSPR-based and plasmonically coupled sensor technology. PMID:25377594

  14. Photoelectrochemical enzymatic biosensing of glucose using mesoporous TiO2

    NASA Astrophysics Data System (ADS)

    Chithralekha, P.; Kumar, V. T. Fidal; Chandra, T. S.; Roy, Somnath C.

    2017-05-01

    Mesoporous titania is prepared by sol-gel method. The enzymatic biosensing of glucose is done with mesoporous tiatania on ITO coated glass plates using photoelectrochemical method and mechanism of sensing is discussed.

  15. Remote calorimetric detection of urea via flow injection analysis

    PubMed Central

    Gaddes, David E.; Demirel, Melik C.; Reeves, W. Brian; Tadigadapa, Srinivas

    2017-01-01

    The design and development of a calorimetric biosensing system enabling relatively high throughput sample analysis are reported. The calorimetric biosensor system consists of a thin (~20 μm) micromachined Y-cut quartz crystal resonator (QCR) as a temperature sensor placed in close proximity to a fluidic chamber packed with an immobilized enzyme. Layer by layer enzyme immobilization of urease is demonstrated and its activity as a function of the number of layers, pH, and time has been evaluated. This configuration enables a sensing system where a transducer element is physically separated from the analyte solution of interest and is thereby free from fouling effects typically associated with biochemical reactions occuring on the sensor surface. The performance of this biosensing system is demonstrated by detection of 1–200 mM urea in phosphate buffer via a flow injection analysis (FIA) technique. Miniaturized fluidic systems were used to provide continuous flow through a reaction column. Under this configuration the biosensor has an ultimate resolution of less than 1 mM urea and showed a linear response between 0–50 mM. This work demonstrates a sensing modality in which the sensor itself is not fouled or contaminated by the solution of interest and the enzyme immobilized Kapton® fluidic reaction column can be used as a disposable cartridge. Such a system enables reuse and reliability for long term sampling measurements. Based on this concept a biosensing system is envisioned which can perform rapid measurements to detect biomarkers such as glucose, creatinine, cholesterol, urea and lactate in urine and blood continuously over extended periods of time. PMID:26479269

  16. Remote calorimetric detection of urea via flow injection analysis.

    PubMed

    Gaddes, David E; Demirel, Melik C; Reeves, W Brian; Tadigadapa, Srinivas

    2015-12-07

    The design and development of a calorimetric biosensing system enabling relatively high throughput sample analysis are reported. The calorimetric biosensor system consists of a thin (∼20 μm) micromachined Y-cut quartz crystal resonator (QCR) as a temperature sensor placed in close proximity to a fluidic chamber packed with an immobilized enzyme. Layer by layer enzyme immobilization of urease is demonstrated and its activity as a function of the number of layers, pH, and time has been evaluated. This configuration enables a sensing system where a transducer element is physically separated from the analyte solution of interest and is thereby free from fouling effects typically associated with biochemical reactions occuring on the sensor surface. The performance of this biosensing system is demonstrated by detection of 1-200 mM urea in phosphate buffer via a flow injection analysis (FIA) technique. Miniaturized fluidic systems were used to provide continuous flow through a reaction column. Under this configuration the biosensor has an ultimate resolution of less than 1 mM urea and showed a linear response between 0-50 mM. This work demonstrates a sensing modality in which the sensor itself is not fouled or contaminated by the solution of interest and the enzyme immobilized Kapton® fluidic reaction column can be used as a disposable cartridge. Such a system enables reuse and reliability for long term sampling measurements. Based on this concept a biosensing system is envisioned which can perform rapid measurements to detect biomarkers such as glucose, creatinine, cholesterol, urea and lactate in urine and blood continuously over extended periods of time.

  17. Electrical Detection of C-Reactive Protein Using a Single Free-Standing, Thermally Controlled Piezoresistive Microcantilever for Highly Reproducible and Accurate Measurements

    PubMed Central

    Yen, Yi-Kuang; Lai, Yu-Cheng; Hong, Wei-Ting; Pheanpanitporn, Yotsapoom; Chen, Chuin-Shan; Huang, Long-Sun

    2013-01-01

    This study demonstrates a novel method for electrical detection of C-reactive protein (CRP) as a means of identifying an infection in the body, or as a cardiovascular disease risk assay. The method uses a single free-standing, thermally controlled piezoresistive microcantilever biosensor. In a commonly used sensing arrangement of conventional dual cantilevers in the Wheatstone bridge circuit, reference and gold-coated sensing cantilevers that inherently have heterogeneous surface materials and different multilayer structures may yield independent responses to the liquid environmental changes of chemical substances, flow field and temperature, leading to unwanted signal disturbance for biosensing targets. In this study, the single free-standing microcantilever for biosensing applications is employed to resolve the dual-beam problem of individual responses in chemical solutions and, in a thermally controlled system, to maintain its sensor performance due to the sensitive temperature effect. With this type of single temperature-controlled microcantilever sensor, the electrical detection of various CRP concentrations from 1 μg/mL to 200 μg/mL was performed, which covers the clinically relevant range. Induced surface stresses were measured at between 0.25 N/m and 3.4 N/m with high reproducibility. Moreover, the binding affinity (KD) of CRP and anti-CRP interaction was found to be 18.83 ± 2.99 μg/mL, which agreed with results in previous reported studies. This biosensing technique thus proves valuable in detecting inflammation, and in cardiovascular disease risk assays. PMID:23899933

  18. Electron Irradiation Effects on Nanocrystal Quantum Dots Used in Bio-Sensing Applications

    NASA Technical Reports Server (NTRS)

    Leon, R.; Nadeau, J.; Evans, K.; Paskova, T.; Monemar, B.

    2004-01-01

    Effects of electron irradiation on some of the optical properties in organic CdSe nanocrystals coated in trioctylphosphine oxide (TOPO) and biologically compatible CdSe nanocrystals coated in mercaptoacetic acid, as CdSe as CdSe nanocrystals conjugated with the protein are investigated using the technique of cathodoluminescence. Effects of varying the beam energy and temperatures were examined and faster degradation at cryogenic temperatures and higher beam energies was found under some conditions.

  19. Surface Enhanced Raman Spectroscopy (SERS) methods for endpoint and real-time quantification of miRNA assays

    NASA Astrophysics Data System (ADS)

    Restaino, Stephen M.; White, Ian M.

    2017-03-01

    Surface Enhanced Raman spectroscopy (SERS) provides significant improvements over conventional methods for single and multianalyte quantification. Specifically, the spectroscopic fingerprint provided by Raman scattering allows for a direct multiplexing potential far beyond that of fluorescence and colorimetry. Additionally, SERS generates a comparatively low financial and spatial footprint compared with common fluorescence based systems. Despite the advantages of SERS, it has remained largely an academic pursuit. In the field of biosensing, techniques to apply SERS to molecular diagnostics are constantly under development but, most often, assay protocols are redesigned around the use of SERS as a quantification method and ultimately complicate existing protocols. Our group has sought to rethink common SERS methodologies in order to produce translational technologies capable of allowing SERS to compete in the evolving, yet often inflexible biosensing field. This work will discuss the development of two techniques for quantification of microRNA, a promising biomarker for homeostatic and disease conditions ranging from cancer to HIV. First, an inkjet-printed paper SERS sensor has been developed to allow on-demand production of a customizable and multiplexable single-step lateral flow assay for miRNA quantification. Second, as miRNA concentrations commonly exist in relatively low concentrations, amplification methods (e.g. PCR) are therefore required to facilitate quantification. This work presents a novel miRNA assay alongside a novel technique for quantification of nuclease driven nucleic acid amplification strategies that will allow SERS to be used directly with common amplification strategies for quantification of miRNA and other nucleic acid biomarkers.

  20. In situ biosensing of the nanomechanical property and electrochemical spectroscopy of Streptococcus mutans-containing biofilms

    NASA Astrophysics Data System (ADS)

    Haochih Liu, Bernard; Li, Kun-Lin; Kang, Kai-Li; Huang, Wen-Ke; Liao, Jiunn-Der

    2013-07-01

    This work presents in situ biosensing approaches to study the nanomechanical and electrochemical behaviour of Streptococcus mutans biofilms under different cultivation conditions and microenvironments. The surface characteristics and sub-surface electrochemistry of the cell wall of S. mutans were measured by atomic force microscopy (AFM) based techniques to monitor the in situ biophysical status of biofilms under common anti-pathogenic procedures such as ultraviolet (UV) radiation and alcohol treatment. The AFM nanoindentation suggested a positive correlation between nanomechanical strength and the level of UV radiation of S. mutans; scanning impedance spectroscopy of dehydrated biofilms revealed reduced electrical resistance that is distinctive from that of living biofilms, which can be explained by the discharge of cytoplasm after alcohol treatment. Furthermore, the localized elastic moduli of four regions of the biofilm were studied: septum (Z-ring), cell wall, the interconnecting area between two cells and extracellular polymeric substance (EPS) area. The results indicated that cell walls exhibit the highest elastic modulus, followed by Z-ring, interconnect and EPS. Our approach provides an effective alternative for the characterization of the viability of living cells without the use of biochemical labelling tools such as fluorescence dyeing, and does not rely on surface binding or immobilization for detection. These AFM-based techniques can be very promising approaches when the conventional methods fall short.

  1. Biosensing Technologies for Mycobacterium tuberculosis Detection: Status and New Developments

    PubMed Central

    Zhou, Lixia; He, Xiaoxiao; He, Dinggeng; Wang, Kemin; Qin, Dilan

    2011-01-01

    Biosensing technologies promise to improve Mycobacterium tuberculosis (M. tuberculosis) detection and management in clinical diagnosis, food analysis, bioprocess, and environmental monitoring. A variety of portable, rapid, and sensitive biosensors with immediate “on-the-spot” interpretation have been developed for M. tuberculosis detection based on different biological elements recognition systems and basic signal transducer principles. Here, we present a synopsis of current developments of biosensing technologies for M. tuberculosis detection, which are classified on the basis of basic signal transducer principles, including piezoelectric quartz crystal biosensors, electrochemical biosensors, and magnetoelastic biosensors. Special attention is paid to the methods for improving the framework and analytical parameters of the biosensors, including sensitivity and analysis time as well as automation of analysis procedures. Challenges and perspectives of biosensing technologies development for M. tuberculosis detection are also discussed in the final part of this paper. PMID:21437177

  2. Wireless Biological Electronic Sensors

    PubMed Central

    Cui, Yue

    2017-01-01

    The development of wireless biological electronic sensors could open up significant advances for both fundamental studies and practical applications in a variety of areas, including medical diagnosis, environmental monitoring, and defense applications. One of the major challenges in the development of wireless bioelectronic sensors is the successful integration of biosensing units and wireless signal transducers. In recent years, there are a few types of wireless communication systems that have been integrated with biosensing systems to construct wireless bioelectronic sensors. To successfully construct wireless biological electronic sensors, there are several interesting questions: What types of biosensing transducers can be used in wireless bioelectronic sensors? What types of wireless systems can be integrated with biosensing transducers to construct wireless bioelectronic sensors? How are the electrical sensing signals generated and transmitted? This review will highlight the early attempts to address these questions in the development of wireless biological electronic sensors. PMID:28991220

  3. Electrocatalytic tuning of biosensing response through electrostatic or hydrophobic enzyme-graphene oxide interactions.

    PubMed

    Baptista-Pires, Luis; Pérez-López, Briza; Mayorga-Martinez, Carmen C; Morales-Narváez, Eden; Domingo, Neus; Esplandiu, Maria Jose; Alzina, Francesc; Sotomayor-Torres, Clivia M; Merkoçi, Arben

    2014-11-15

    The effect of graphene oxidative grades upon the conductivity and hydrophobicity and consequently the influence on an enzymatic biosensing response is presented. The electrochemical responses of reduced graphene oxide (rGO) have been compared with the responses obtained from the oxide form (oGO) and their performances have been accordingly discussed with various evidences obtained by optical techniques. We used tyrosinase enzyme as a proof of concept receptor with interest for phenolic compounds detection through its direct adsorption onto a screen-printed carbon electrode previously modified with oGO or rGO with a carbon-oxygen ratio of 1.07 or 1.53 respectively. Different levels of oGO directly affect the (bio)conjugation properties of the biosensor due to changes at enzyme/graphene oxide interface coming from the various electrostatic or hydrophobic interactions with biomolecules. The developed biosensor was capable of reaching a limit of detection of 0.01 nM catechol. This tuning capability of the biosensor response can be of interest for building several other biosensors, including immunosensors and DNA sensors for various applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Selective Cell Adhesion and Biosensing Applications of Bio-Active Block Copolymers Prepared by CuAAC/Thiol-ene Double Click Reactions.

    PubMed

    Oyman Eyrilmez, Gizem; Doran, Sean; Murtezi, Eljesa; Demir, Bilal; Odaci Demirkol, Dilek; Coskunol, Hakan; Timur, Suna; Yagci, Yusuf

    2015-09-01

    N-Acetyl-l-cysteine (NAC)-capped poly(methyl methacrylate)-b-polycaprolactone block copolymer (PMMA-b-PCL-NAC) was prepared using the previously described one-pot photoinduced sequential CuAAC/thiol-ene double click procedure. PMMA-b-PCL-NAC had previously shown good applicability as a matrix for cell adhesion of cells from the Vero cell line (African green monkey kidney epithelial). Here, in this work, PMMA-b-PCL-NAC served as an excellent immobilization matrix for biomolecule conjugation. Covalent binding of RGD (R: arginine, G: glycine, and D: aspartic acid) peptide sequence onto the PMMA-b-PCL-NAC-coated surface was performed via EDC chemistry. RGD-modified PMMA-b-PCL-NAC (PMMA-b-PCL-NAC-RGD) as a non-toxic cell proliferation platform was used for selective "integrin αvβ3-mediated cell adhesion and biosensing studies. Both optical and electrochemical techniques were used to monitor the adhesion differences between "integrin αvβ3" receptor positive and negative cell lines on to the designed biofunctional surfaces. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Convergence Science in a Nano World

    PubMed Central

    Cady, Nathaniel

    2013-01-01

    Convergence is a new paradigm that brings together critical advances in the life sciences, physical sciences and engineering. Going beyond traditional “interdisciplinary” studies, “convergence” describes the culmination of truly integrated research and development, yielding revolutionary advances in both scientific research and new technologies. At its core, nanotechnology embodies these elements of convergence science by bringing together multiple disciplines with the goal of creating innovative and groundbreaking technologies. In the biological and biomedical sciences, nanotechnology research has resulted in dramatic improvements in sensors, diagnostics, imaging, and even therapeutics. In particular, there is a current push to examine the interface between the biological world and micro/nano-scale systems. For example, my laboratory is developing novel strategies for spatial patterning of biomolecules, electrical and optical biosensing, nanomaterial delivery systems, cellular patterning techniques, and the study of cellular interactions with nano-structured surfaces. In this seminar, I will give examples of how convergent research is being applied to three major areas of biological research &endash; cancer diagnostics, microbiology, and DNA-based biosensing. These topics will be presented as case studies, showing the benefits (and challenges) of multi-disciplinary, convergent research and development.

  6. Considerations on Circuit Design and Data Acquisition of a Portable Surface Plasmon Resonance Biosensing System.

    PubMed

    Chang, Keke; Chen, Ruipeng; Wang, Shun; Li, Jianwei; Hu, Xinran; Liang, Hao; Cao, Baiqiong; Sun, Xiaohui; Ma, Liuzheng; Zhu, Juanhua; Jiang, Min; Hu, Jiandong

    2015-08-19

    The aim of this study was to develop a circuit for an inexpensive portable biosensing system based on surface plasmon resonance spectroscopy. This portable biosensing system designed for field use is characterized by a special structure which consists of a microfluidic cell incorporating a right angle prism functionalized with a biomolecular identification membrane, a laser line generator and a data acquisition circuit board. The data structure, data memory capacity and a line charge-coupled device (CCD) array with a driving circuit for collecting the photoelectric signals are intensively focused on and the high performance analog-to-digital (A/D) converter is comprehensively evaluated. The interface circuit and the photoelectric signal amplifier circuit are first studied to obtain the weak signals from the line CCD array in this experiment. Quantitative measurements for validating the sensitivity of the biosensing system were implemented using ethanol solutions of various concentrations indicated by volume fractions of 5%, 8%, 15%, 20%, 25%, and 30%, respectively, without a biomembrane immobilized on the surface of the SPR sensor. The experiments demonstrated that it is possible to detect a change in the refractive index of an ethanol solution with a sensitivity of 4.99838 × 10(5) ΔRU/RI in terms of the changes in delta response unit with refractive index using this SPR biosensing system, whereby the theoretical limit of detection of 3.3537 × 10(-5) refractive index unit (RIU) and a high linearity at the correlation coefficient of 0.98065. The results obtained from a series of tests confirmed the practicality of this cost-effective portable SPR biosensing system.

  7. Nanoband array electrode as a platform for high sensitivity enzyme-based glucose biosensing.

    PubMed

    Falk, Magnus; Sultana, Reshma; Swann, Marcus J; Mount, Andrew R; Freeman, Neville J

    2016-12-01

    We describe a novel glucose biosensor based on a nanoband array electrode design, manufactured using standard semiconductor processing techniques, and bio-modified with glucose oxidase immobilized at the nanoband electrode surface. The nanoband array architecture allows for efficient diffusion of glucose and oxygen to the electrode, resulting in a thousand-fold improvement in sensitivity and wide linear range compared to a conventional electrode. The electrode constitutes a robust and manufacturable sensing platform. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Recent Advances in Nanodisc Technology for Membrane Proteins Studies (2012–2017)

    PubMed Central

    Rouck, John; Krapf, John; Roy, Jahnabi; Huff, Hannah; Das, Aditi

    2017-01-01

    Historically, progress in membrane protein research has been hindered due to solubility issues. The introduction of biomembrane mimetics has since stimulated the field’s momentum. One mimetic, the nanodisc, has proved to be an exceptional system for solubilizing membrane proteins. Herein, we critically evaluate the advantages and imperfections from employing nanodiscs in biophysical and biochemical studies. Specifically, we examine the techniques that have been modified to study membrane proteins in nanodiscs. Techniques discussed include fluorescence microscopy, solution state/solid state NMR, electron microscopy, SAXS, and several mass spectroscopy methods. Newer techniques such as SPR, charge sensitive optical detection, and scintillation proximity assays are also reviewed. Lastly, we cover nanodiscs advancing nanotechnology through nanoplasmonic biosensing, lipoprotein-nanoplatelets, and sortase-mediated labeling of nanodiscs. PMID:28581067

  9. Design of a lithium niobate-on-insulator-based optical microring resonator for biosensing applications

    NASA Astrophysics Data System (ADS)

    Naznin, Shakila; Sher, Md. Sohel Mahmud

    2016-08-01

    A label-free optical microring resonator biosensor based on lithium niobate-on-insulator (LNOI) technology is designed and simulated for biosensing applications. Although silicon-on-insulator technology is quite mature over LNOI for fabricating more compact microring resonators, the latter is attractive for its excellent electro-optic, ferroelectric, piezoelectric, photoelastic, and nonlinear optic properties, which can offer a wide range of tuning facilities for sensing. To satisfy the requirement of high sensitivity in biosensing, the dual-microring resonator model is applied to design the proposed sensor. The transmission spectrum obtained from two-dimensional simulations based on finite-difference time-domain method demonstrates that the designed LNOI microring sensor consisting of a 10-μm outer ring and a 5-μm inner ring offers a sensitivity of ˜68 nm/refractive index unit (RIU) and a minimum detection limit of 10-2 RIU. Finally, the sensor's performance is simulated for glucose sensing, a biosensing application.

  10. Recent developments in Förster resonance energy transfer (FRET) diagnostics using quantum dots.

    PubMed

    Geißler, Daniel; Hildebrandt, Niko

    2016-07-01

    The exceptional photophysical properties and the nanometric dimensions of colloidal semiconductor quantum dots (QD) have strongly attracted the bioanalytical community over the last approximately 20 y. In particular, the integration of QDs in the analysis of biological components and interactions, and the related diagnostics using Förster resonance energy transfer (FRET), have allowed researchers to significantly improve and diversify fluorescence-based biosensing. In this TRENDS article, we review some recent developments in QD-FRET biosensing that have implemented this technology in electronic consumer products, multiplexed analysis, and detection without light excitation for diagnostic applications. In selected examples of smartphone-based imaging, single- and multistep FRET, steady-state and time-resolved spectroscopy, and bio/chemiluminescence detection of QDs used as both FRET donors and acceptors, we highlight the advantages of QD-based FRET biosensing for multiplexed and sensitive diagnostics. Graphical Abstract Quantum dots (QDs) can be applied as donors and/or acceptors for Förster resonance energy transfer- (FRET-) based biosensing for multiplexed and sensitive diagnostics in various assay formats.

  11. Photonic crystal enhanced fluorescence immunoassay on diatom biosilica.

    PubMed

    Squire, Kenneth; Kong, Xianming; LeDuff, Paul; Rorrer, Gregory L; Wang, Alan X

    2018-05-16

    Fluorescence biosensing is one of the most established biosensing methods, particularly fluorescence spectroscopy and microscopy. These are two highly sensitive techniques but require high grade electronics and optics to achieve the desired sensitivity. Efforts have been made to implement these methods using consumer grade electronics and simple optical setups for applications such as point-of-care diagnostics, but the sensitivity inherently suffers. Sensing substrates, capable of enhancing fluorescence are thus needed to achieve high sensitivity for such applications. In this paper, we demonstrate a photonic crystal-enhanced fluorescence immunoassay biosensor using diatom biosilica, which consists of silica frustules with sub-100 nm periodic pores. Utilizing the enhanced local optical field, the Purcell effect and increased surface area from the diatom photonic crystals, we create ultrasensitive immunoassay biosensors that can significantly enhance fluorescence spectroscopy as well as fluorescence imaging. Using standard antibody-antigen-labeled antibody immunoassay protocol, we experimentally achieved 100× and 10× better detection limit with fluorescence spectroscopy and fluorescence imaging respectively. The limit of detection of the mouse IgG goes down to 10 -16 M (14 fg/mL) and 10 -15 M (140 fg/mL) for the two respective detection modalities, virtually sensing a single mouse IgG molecule on each diatom frustule. The effectively enhanced fluorescence imaging in conjunction with the simple hot-spot counting analysis method used in this paper proves the great potential of diatom fluorescence immunoassay for point-of-care biosensing. Scanning electron microscope image of biosilica diatom frustule that enables significant enhancement of fluorescence spectroscopy and fluorescence image. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  12. Design of label-free, homogeneous biosensing platform based on plasmonic coupling and surface-enhanced Raman scattering using unmodified gold nanoparticles.

    PubMed

    Yi, Zi; Li, Xiao-Yan; Liu, Feng-Juan; Jin, Pei-Yan; Chu, Xia; Yu, Ru-Qin

    2013-05-15

    Surface-enhanced Raman scattering (SERS) has emerged as a promising spectroscopic technique for biosensing. However, to design a SERS-based biosensor, almost all currently used methods involve the time-consuming and complicated modification of the metallic nanoparticles with the Raman active dye and biorecognition element, which restricts their widespread applications. Herein, we report a label-free, homogeneous and easy-to-operate biosensing platform for the rapid, simple and sensitive SERS detection by using the unmodified gold nanoparticles (Au NPs). This strategy utilizes the difference in adsorption property of single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA) on citrate-coated Au NPs. In the presence of dsDNA, the aggregation of Au NPs takes place after adding salt solution because the dsDNA cannot adsorb on the Au NPs to protect them from salt-induced aggregation. Such aggregation gives rise to the plasmonic coupling of adjacent metallic NPs and turns on the enhancement of the Raman scattering, displaying a strong SERS signal. In contrast, the ssDNA can adsorb on the Au NPs surface through strong electrostatic attraction and protect them from salt-induced aggregation, showing a weak SERS signal. This approach is not only straightforward and simple in design but also rapid and convenient in operation. The feasibility and universality of the design have been demonstrated successfully by the detection of DNA and Hg(2+), and the assay possesses the superior signal-to-background ratio as high as ∼30 and excellent selectivity. The method can be extended to detect various analytes, such as other metal ions, proteins and small molecules by using the oligonucleotides that can selectively bind the analytes. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Microneedles for Transdermal Biosensing: Current Picture and Future Direction.

    PubMed

    Ventrelli, Letizia; Marsilio Strambini, Lucanos; Barillaro, Giuseppe

    2015-12-09

    A novel trend is rapidly emerging in the use of microneedles, which are a miniaturized replica of hypodermic needles with length-scales of hundreds of micrometers, aimed at the transdermal biosensing of analytes of clinical interest, e.g., glucose, biomarkers, and others. Transdermal biosensing via microneedles offers remarkable opportunities for moving biosensing technologies and biochips from research laboratories to real-field applications, and envisages easy-to-use point-of-care microdevices with pain-free, minimally invasive, and minimal-training features that are very attractive for both developed and emerging countries. In addition to this, microneedles for transdermal biosensing offer a unique possibility for the development of biochips provided with end-effectors for their interaction with the biological system under investigation. Direct and efficient collection of the biological sample to be analyzed will then become feasible in situ at the same length-scale of the other biochip components by minimally trained personnel and in a minimally invasive fashion. This would eliminate the need for blood extraction using hypodermic needles and reduce, in turn, related problems, such as patient infections, sample contaminations, analysis artifacts, etc. The aim here is to provide a thorough and critical analysis of state-of-the-art developments in this novel research trend, and to bridge the gap between microneedles and biosensors. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. H2O2 sensing using HRP modified catalyst-free ZnO nanorods synthesized by RF sputtering

    NASA Astrophysics Data System (ADS)

    Srivastava, Amit; Kumar, Naresh; Singh, Priti; Singh, Sunil Kumar

    2017-06-01

    Catalyst-free ( 00 l) oriented ZnO nanorods (NRs) -based biosensor for the H2O2 sensing has been reported. The (002) oriented ZnO NRs as confirmed by X-ray diffraction were successfully grown on indium tin oxide (ITO) coated glass substrate by radio frequency (RF) sputtering technique without using any catalyst. Horseradish peroxidase (HRP) enzyme was immobilized on ZnO NRs by physical adsorption technique to prepare the biosensor. In this HRP/ZnO NR/ITO bioelectrode, nafion solution was added to form a tight membrane on surface. The prepared bioelectrode has been used for biosensing measurements by electrochemical analyzer. The electrochemical studies reveal that the prepared HRP/ZnO NR/ITO biosensor is highly sensitive to the detection of H2O2 over a linear range of 0.250-10 μM. The ZnO NR-based biosensor showed lower value of detection limit (0.125 μM) and higher sensitivity (13.40 µA/µM cm2) towards H2O2. The observed value of higher sensitivity attributed to larger surface area of ZnO nanostructure for effective loading of HRP besides its high electron communication capability. In addition, the biosensor also shows lower value of enzyme's kinetic parameter (Michaelis-Menten constant, K m) of 0.262 μM which indicates enhanced enzyme affinity of HRP to H2O2. The reported biosensor may be useful for various applications in biosensing, clinical, food, and beverage industry.

  15. Hybridization chain reaction: a versatile molecular tool for biosensing, bioimaging, and biomedicine.

    PubMed

    Bi, Sai; Yue, Shuzhen; Zhang, Shusheng

    2017-07-17

    Developing powerful, simple and low-cost DNA amplification techniques is of great significance to bioanalysis and biomedical research. Thus far, many signal amplification strategies have been developed, such as polymerase chain reaction (PCR), rolling circle amplification (RCA), and DNA strand displacement amplification (SDA). In particular, hybridization chain reaction (HCR), a type of toehold-mediated strand displacement (TMSD) reaction, has attracted great interest because of its enzyme-free nature, isothermal conditions, simple protocols, and excellent amplification efficiency. In a typical HCR, an analyte initiates the cross-opening of two DNA hairpins, yielding nicked double helices that are analogous to alternating copolymers. As an efficient amplification platform, HCR has been utilized for the sensitive detection of a wide variety of analytes, including nucleic acids, proteins, small molecules, and cells. In recent years, more complicated sets of monomers have been designed to develop nonlinear HCR, such as branched HCR and even dendritic systems, achieving quadratic and exponential growth mechanisms. In addition, HCR has attracted enormous attention in the fields of bioimaging and biomedicine, including applications in fluorescence in situ hybridization (FISH) imaging, live cell imaging, and targeted drug delivery. In this review, we introduce the fundamentals of HCR and examine the visualization and analysis techniques for HCR products in detail. The most recent HCR developments in biosensing, bioimaging, and biomedicine are subsequently discussed with selected examples. Finally, the review provides insight into the challenges and future perspectives of HCR.

  16. Manipulation of biological samples using micro and nano techniques.

    PubMed

    Castillo, Jaime; Dimaki, Maria; Svendsen, Winnie Edith

    2009-01-01

    The constant interest in handling, integrating and understanding biological systems of interest for the biomedical field, the pharmaceutical industry and the biomaterial researchers demand the use of techniques that allow the manipulation of biological samples causing minimal or no damage to their natural structure. Thanks to the advances in micro- and nanofabrication during the last decades several manipulation techniques offer us the possibility to image, characterize and manipulate biological material in a controlled way. Using these techniques the integration of biomaterials with remarkable properties with physical transducers has been possible, giving rise to new and highly sensitive biosensing devices. This article reviews the different techniques available to manipulate and integrate biological materials in a controlled manner either by sliding them along a surface (2-D manipulation), by grapping them and moving them to a new position (3-D manipulation), or by manipulating and relocating them applying external forces. The advantages and drawbacks are mentioned together with examples that reflect the state of the art of manipulation techniques for biological samples (171 references).

  17. A novel liquid-filled microstructured polymer optical fiber as bio-sensing platform for Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Azkune, Mikel; Arrospide, Eneko; Berganza, Amaia; Bikandi, Iñaki; Aldabaldetreku, Gotzon; Durana, Gaizka; Zubia, Joseba

    2018-02-01

    One approach to overcome the poor efficiency of the Raman scattering as a sensing platform is to use microstructured optical fibers. In this type of fibers with a longitudinal holey structure, light interacts with the target sample, which is confined in the core, giving rise to a light intensity increase of the obtained Raman spectra due to the large interaction distances and the guidance of the scattered light. In this work, we present an ad-hoc fabricated liquid-core microstructured polymer optical fiber (LC-mPOF) as a bio-sensing platform for Raman Spectroscopy. Arising from an initial simulation stage, we create the desired preform using the drilling technique and afterwards the LC-mPOF is drawn in our fiber drawing tower. The guiding mechanism of the light through the solution has a major importance, being a key factor to obtain appreciable enhancements in Raman scattering. In this case, in order to optimize the Raman scattering signal of dissolved glucose (target molecule), we have filled the core with an aqueous solution of the target molecule, enabling in this way the modified total internal reflection mechanism. Experimental Raman measurements are performed and results are discussed.

  18. Second-order distributed-feedback surface plasmon resonator for single-mode fiber end-facet biosensing

    NASA Astrophysics Data System (ADS)

    Lei, Zeyu; Zhou, Xin; Yang, Jie; He, Xiaolong; Wang, Yalin; Yang, Tian

    2017-04-01

    Integrating surface plasmon resonance (SPR) devices upon single-mode fiber (SMF) end facets renders label-free biosensing systems that have a dip-and-read configuration, high compatibility with fiber-optic techniques, and in vivo monitoring capability, which however meets the challenge to match the performance of free-space counterparts. We report a second-order distributed feedback (DFB) SPR cavity on an SMF end facet and its application in protein interaction analysis. In our device, a periodic array of nanoslits in a gold film is used to couple fiber guided lightwaves to surface plasmon polaritons (SPPs) with its first order spatial Fourier component, while the second order spatial Fourier component provides DFB to SPP propagation and produces an SPP bandgap. A phase shift section in the DFB structure introduces an SPR defect state within the SPP bandgap, whose mode profile is optimized to match that of the SMF to achieve a reasonable coupling efficiency. We report an experimental refractive index sensitivity of 628 nm RIU-1, a figure-of-merit of 80 RIU-1, and a limit of detection of 7 × 10-6 RIU. The measurement of the real-time interaction between human immunoglobulin G molecules and their antibodies is demonstrated.

  19. Optical Properties of Plasmonic Nanostructures for Bio-Imaging and Bio-Sensing Applications

    NASA Astrophysics Data System (ADS)

    Kravets, Vira V.

    Kravets, Vira V. (Ph.D., Physics). Optical properties of plasmonic nanostructures for bio-imaging and bio-sensing applications. Dissertation directed by Associate Professor Anatoliy Pinchuk. ABSTRACT. This dissertation explores the physics of free electron excitations in gold nanoparticle chains, silver nanoparticle colloids, and thin gold films. Electron excitations in nanostructures (surface plasmons, SP) are responsible for unique optical properties, which are applied in bio-sensing and bio-imaging applications. For gold nanoparticle chains, the effect of SP on resonance light absorption was studied experimentally and theoretically. Mainly, how the spectral position of the absorption peak depends on inter-particle distances. This dependence is used in “molecular rulers”, providing spatial resolution below the Rayleigh limit. The underlying theory is based on particle interaction via scattered dipole fields. Often in literature only the near-field component of the scattered field is considered. Here, I show that middle and far fields should not be neglected for calculation of extinction by particle chains. In silver nanoparticles, SP excitations produce two independent effects: (a) the intrinsic fluorescence of the particles, and (b) the enhancement of a molecule’s fluorescence by a particle’s surface. The mechanism of (a) is deduced by studying how fluorescence depends on particle size. For (b), I show that fluorescence of a dye molecule on the surface of a nanoparticle is enhanced, when compared to that of the free-standing dye. I demonstrate that the dye’s fluorescent quantum yield is dependent on the particle’s size, making labeled silver nanoparticles attractive candidates as bio-imaging agents. Labeled nanoparticles are applied to cell imaging, and their bio-compatibility with two cell lines is evaluated here. Finally, in gold films under attenuated total internal reflection (ATR) conditions, the SP create a propagating wave (SP-polariton, SPP) when coupled with the incident light. Because of the sensitivity of SPPs to the medium adjacent to the gold film surface, they are widely applied in bio-sensing applications. A toolbox for the description of sputter-deposited gold films is presented here: it employs three experimental techniques (ATR, transmittance and atomic force microscopy) in combination with the effective medium theory for double-layered film model. Our findings have allowed for the avoidance of superficial fitting parameters in our model.

  20. Label-Free Biosensing with High Selectivity in Complex Media using Microtoroidal Optical Resonators

    NASA Astrophysics Data System (ADS)

    Ozgur, Erol; Toren, Pelin; Aktas, Ozan; Huseyinoglu, Ersin; Bayindir, Mehmet

    2015-08-01

    Although label-free biosensors comprised of optical microcavities inherently possess the capability of resolving molecular interactions at individual level, this extreme sensitivity restricts their convenience for large scale applications by inducing vulnerability towards non-specific interactions that readily occur within complex media. Therefore, the use of optical microresonators for biosensing is mostly limited within strictly defined laboratory conditions, instead of field applications as early detection of cancer markers in blood, or identification of contamination in food. Here, we propose a novel surface modification strategy suitable for but not limited to optical microresonator based biosensors, enabling highly selective biosensing with considerable sensitivity as well. Using a robust, silane-based surface coating which is simultaneously protein resistant and bioconjugable, we demonstrate that it becomes possible to perform biosensing within complex media, without compromising the sensitivity or reliability of the measurement. Functionalized microtoroids are successfully shown to resist nonspecific interactions, while simultaneously being used as sensitive biological sensors. This strategy could pave the way for important applications in terms of extending the use of state-of-the-art biosensors for solving problems similar to the aforementioned.

  1. The ITO-capped WO3 nanowires biosensor based on field-effect transistor in label-free protein sensing

    NASA Astrophysics Data System (ADS)

    Shariati, Mohsen

    2017-05-01

    The fabrication of ITO-capped WO3 nanowires associated with their bio-sensing properties in field-effect transistor diagnostics basis as a biosensor has been reported. The bio-sensing property for manipulated nanowires elucidated that the grown nanostructures were very sensitive to protein. The ITO-capped WO3 nanowires biosensor showed an intensive bio-sensing activity against reliable protein. Polylysine strongly charged bio-molecule was applied as model system to demonstrate the implementation of materialized biosensor. The employed sensing mechanism was `label-free' and depended on bio-molecule's intrinsic charge. For nanowires synthesis, the vapor-liquid-solid mechanism was used. Nanowires were beyond a few hundred nanometers in lengths and around 15-20 nm in diameter, while the globe cap's size on the nanowires was around 15-25 nm. The indium tin oxide (ITO) played as catalyst in nanofabrication for WO3 nanowires growth and had outstanding role in bio-sensing especially for bio-molecule adherence. In applied electric field presence, the fabricated device showed the great potential to enhance medical diagnostics.

  2. Biosensors for Sustainable Food Engineering: Challenges and Perspectives.

    PubMed

    Neethirajan, Suresh; Ragavan, Vasanth; Weng, Xuan; Chand, Rohit

    2018-03-12

    Current food production faces tremendous challenges from growing human population, maintaining clean resources and food qualities, and protecting climate and environment. Food sustainability is mostly a cooperative effort resulting in technology development supported by both governments and enterprises. Multiple attempts have been promoted in tackling challenges and enhancing drivers in food production. Biosensors and biosensing technologies with their applications, are being widely applied to tackling top challenges in food production and its sustainability. Consequently, a growing demand in biosensing technologies exists in food sustainability. Microfluidics represents a technological system integrating multiple technologies. Nanomaterials, with its technology in biosensing, is thought to be the most promising tool in dealing with health, energy, and environmental issues closely related to world populations. The demand of point of care (POC) technologies in this area focus on rapid, simple, accurate, portable, and low-cost analytical instruments. This review provides current viewpoints from the literature on biosensing in food production, food processing, safety and security, food packaging and supply chain, food waste processing, food quality assurance, and food engineering. The current understanding of progress, solution, and future challenges, as well as the commercialization of biosensors are summarized.

  3. Nucleic acid-functionalized transition metal nanosheets for biosensing applications

    PubMed Central

    Mo, Liuting; Li, Juan; Liu, Qiaoling; Qiu, Liping; Tan, Weihong

    2017-01-01

    In clinical diagnostics, as well as food and environmental safety practices, biosensors are powerful tools for monitoring biological or biochemical processes. Two-dimensional (2D) transition metal nanomaterials, including transition metal chalcogenides (TMCs) and transition metal oxides (TMOs), are receiving growing interest for their use in biosensing applications based on such unique properties as high surface area and fluorescence quenching abilities. Meanwhile, nucleic acid probes based on Watson-Crick base-pairing rules are also being widely applied in biosensing based on their excellent recognition capability. In particular, the emergence of functional nucleic acids in the 1980s, especially aptamers, has substantially extended the recognition capability of nucleic acids to various targets, ranging from small organic molecules and metal ions to proteins and cells. Based on π-π stacking interaction between transition metal nanosheets and nucleic acids, biosensing systems can be easily assembled. Therefore, the combination of 2D transition metal nanomaterials and nucleic acids brings intriguing opportunities in bioanalysis and biomedicine. In this review, we summarize recent advances of nucleic acid-functionalized transition metal nanosheets in biosensing applications. The structure and properties of 2D transition metal nanomaterials are first discussed, emphasizing the interaction between transition metal nanosheets and nucleic acids. Then, the applications of nucleic acid-functionalized transition metal nanosheet-based biosensors are discussed in the context of different signal transducing mechanisms, including optical and electrochemical approaches. Finally, we provide our perspectives on the current challenges and opportunities in this promising field. PMID:27020066

  4. Nucleic acid-functionalized transition metal nanosheets for biosensing applications.

    PubMed

    Mo, Liuting; Li, Juan; Liu, Qiaoling; Qiu, Liping; Tan, Weihong

    2017-03-15

    In clinical diagnostics, as well as food and environmental safety practices, biosensors are powerful tools for monitoring biological or biochemical processes. Two-dimensional (2D) transition metal nanomaterials, including transition metal chalcogenides (TMCs) and transition metal oxides (TMOs), are receiving growing interest for their use in biosensing applications based on such unique properties as high surface area and fluorescence quenching abilities. Meanwhile, nucleic acid probes based on Watson-Crick base-pairing rules are also being widely applied in biosensing based on their excellent recognition capability. In particular, the emergence of functional nucleic acids in the 1980s, especially aptamers, has substantially extended the recognition capability of nucleic acids to various targets, ranging from small organic molecules and metal ions to proteins and cells. Based on π-π stacking interaction between transition metal nanosheets and nucleic acids, biosensing systems can be easily assembled. Therefore, the combination of 2D transition metal nanomaterials and nucleic acids brings intriguing opportunities in bioanalysis and biomedicine. In this review, we summarize recent advances of nucleic acid-functionalized transition metal nanosheets in biosensing applications. The structure and properties of 2D transition metal nanomaterials are first discussed, emphasizing the interaction between transition metal nanosheets and nucleic acids. Then, the applications of nucleic acid-functionalized transition metal nanosheet-based biosensors are discussed in the context of different signal transducing mechanisms, including optical and electrochemical approaches. Finally, we provide our perspectives on the current challenges and opportunities in this promising field. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Visible light-sensitive APTES-bound ZnO nanowire toward a potent nanoinjector sensing biomolecules in a living cell

    NASA Astrophysics Data System (ADS)

    Lee, Jooran; Choi, Sunyoung; Bae, Seon Joo; Yoon, Seok Min; Choi, Joon Sig; Yoon, Minjoong

    2013-10-01

    Nanoscale cell injection techniques combined with nanoscopic photoluminescence (PL) spectroscopy have been important issues in high-resolution optical biosensing, gene and drug delivery and single-cell endoscopy for medical diagnostics and therapeutics. However, the current nanoinjectors remain limited for optical biosensing and communication at the subwavelength level, requiring an optical probe such as semiconductor quantum dots, separately. Here, we show that waveguided red emission is observed at the tip of a single visible light-sensitive APTES-modified ZnO nanowire (APTES-ZnO NW) and it exhibits great enhancement upon interaction with a complementary sequence-based double stranded (ds) DNA, whereas it is not significantly affected by non-complementary ds DNA. Further, the tip of a single APTES-ZnO NW can be inserted into the subcellular region of living HEK 293 cells without significant toxicity, and it can also detect the enhancement of the tip emission from subcellular regions with high spatial resolution. These results indicate that the single APTES-ZnO NW would be useful as a potent nanoinjector which can guide visible light into intracellular compartments of mammalian cells, and can also detect nanoscopic optical signal changes induced by interaction with the subcellular specific target biomolecules without separate optical probes.Nanoscale cell injection techniques combined with nanoscopic photoluminescence (PL) spectroscopy have been important issues in high-resolution optical biosensing, gene and drug delivery and single-cell endoscopy for medical diagnostics and therapeutics. However, the current nanoinjectors remain limited for optical biosensing and communication at the subwavelength level, requiring an optical probe such as semiconductor quantum dots, separately. Here, we show that waveguided red emission is observed at the tip of a single visible light-sensitive APTES-modified ZnO nanowire (APTES-ZnO NW) and it exhibits great enhancement upon interaction with a complementary sequence-based double stranded (ds) DNA, whereas it is not significantly affected by non-complementary ds DNA. Further, the tip of a single APTES-ZnO NW can be inserted into the subcellular region of living HEK 293 cells without significant toxicity, and it can also detect the enhancement of the tip emission from subcellular regions with high spatial resolution. These results indicate that the single APTES-ZnO NW would be useful as a potent nanoinjector which can guide visible light into intracellular compartments of mammalian cells, and can also detect nanoscopic optical signal changes induced by interaction with the subcellular specific target biomolecules without separate optical probes. Electronic supplementary information (ESI) available: Synthesis of APTES-modified ZnO nanowires, DNA functionalization and spectroscopic measurements with additional fluorescence image ad fluorescence decay times, cell culture, injection of a single nanowire into living cells, subcellular imaging and determination of cytotoxicity. See DOI: 10.1039/c3nr03042c

  6. Bone biosensors: knowing the present and predicting the future

    NASA Astrophysics Data System (ADS)

    Khashayar, Patricia; Amoabediny, Ghassem; Larijani, Bagher; Vanfleteren, Jan

    2016-02-01

    Bone is an active organ with the capacity of continuous remodeling throughout adult life. In view of the fact that the current gold standard to assess bone remodeling, bone mineral density, suffers from certain limitations, newer techniques are being developed. Currently enzyme-linked immunosorbent assay is commonly used to assess bone turnover markers; the technique, however, is expensive, time consuming and needs trained personnel. Thus, there is a growing demand to fabricate different types of biosensors to provide low cost miniaturized platforms to assess the bone remodeling process more accurately. This review focuses on the latest advancements in the field of bone biosensing technologies. Its results might help provide possible solutions for translation of this technology for point-of-care diagnostic applications.

  7. Highly sensitive biofunctionalized mesoporous electrospun TiO(2) nanofiber based interface for biosensing.

    PubMed

    Mondal, Kunal; Ali, Md Azahar; Agrawal, Ved V; Malhotra, Bansi D; Sharma, Ashutosh

    2014-02-26

    The surface modified and aligned mesoporous anatase titania nanofiber mats (TiO2-NF) have been fabricated by electrospinning for esterified cholesterol detection by electrochemical technique. The electrospinning and porosity of mesoporous TiO2-NF were controlled by use of polyvinylpyrrolidone (PVP) as a sacrificial carrier polymer in the titanium isopropoxide precursor. The mesoporous TiO2-NF of diameters ranging from 30 to 60 nm were obtained by calcination at 470 °C and partially aligned on a rotating drum collector. The functional groups such as -COOH, -CHO etc. were introduced on TiO2-NF surface via oxygen plasma treatment making the surface hydrophilic. Cholesterol esterase (ChEt) and cholesterol oxidase (ChOx) were covalently immobilized on the plasma treated surface of NF (cTiO2-NF) via N-ethyl-N0-(3-dimethylaminopropyl carbodiimide) and N-hydroxysuccinimide (EDC-NHS) chemistry. The high mesoporosity (∼61%) of the fibrous film allowed enhanced loading of the enzyme molecules in the TiO2-NF mat. The ChEt-ChOx/cTiO2-NF-based bioelectrode was used to detect esterified cholesterol using electrochemical technique. The high aspect ratio, surface area of aligned TiO2-NF showed excellent voltammetric and catalytic response resulting in improved detection limit (0.49 mM). The results of response studies of this biosensor show excellent sensitivity (181.6 μA/mg dL(-1)/cm(2)) and rapid detection (20 s). This proposed strategy of biomolecule detection is thus a promising platform for the development of miniaturized device for biosensing applications.

  8. Electrochemical Quartz Crystal Nanobalance (EQCN) Based Biosensor for Sensitive Detection of Antibiotic Residues in Milk.

    PubMed

    Bhand, Sunil; Mishra, Geetesh K

    2017-01-01

    An electrochemical quartz crystal nanobalance (EQCN), which provides real-time analysis of dynamic surface events, is a valuable tool for analyzing biomolecular interactions. EQCN biosensors are based on mass-sensitive measurements that can detect small mass changes caused by chemical binding to small piezoelectric crystals. Among the various biosensors, the piezoelectric biosensor is considered one of the most sensitive analytical techniques, capable of detecting antigens at picogram levels. EQCN is an effective monitoring technique for regulation of the antibiotics below the maximum residual limit (MRL). The analysis of antibiotic residues requires high sensitivity, rapidity, reliability and cost effectiveness. For analytical purposes the general approach is to take advantage of the piezoelectric effect by immobilizing a biosensing layer on top of the piezoelectric crystal. The sensing layer usually comprises a biological material such as an antibody, enzymes, or aptamers having high specificity and selectivity for the target molecule to be detected. The biosensing layer is usually functionalized using surface chemistry modifications. When these bio-functionalized quartz crystals are exposed to a particular substance of interest (e.g., a substrate, inhibitor, antigen or protein), binding interaction occurs. This causes a frequency or mass change that can be used to determine the amount of material interacted or bound. EQCN biosensors can easily be automated by using a flow injection analysis (FIA) setup coupled through automated pumps and injection valves. Such FIA-EQCN biosensors have great potential for the detection of different analytes such as antibiotic residues in various matrices such as water, waste water, and milk.

  9. Metallic nanoparticles and their medicinal potential. Part II: aluminosilicates, nanobiomagnets, quantum dots and cochleates.

    PubMed

    Loomba, Leena; Scarabelli, Tiziano

    2013-09-01

    Metallic miniaturization techniques have taken metals to nanoscale size where they can display fascinating properties and their potential applications in medicine. In recent years, metal nanoparticles such as aluminium, silicon, iron, cadmium, selenium, indium and calcium, which find their presence in aluminosilicates, nanobiomagnets, quantum dots (Q-dots) and cochleates, have caught attention of medical industries. The increasing impact of metallic nanoparticles in life sciences has significantly advanced the production techniques for these nanoparticles. In this Review, the various methods for the synthesis of nanoparticles are outlined, followed by their physicochemical properties, some recent applications in wound healing, diagnostic imaging, biosensing, assay labeling, antimicrobial activity, cancer therapy and drug delivery are listed, and finally their toxicological impacts are revised. The first half of this article describes the medicinal uses of two noble nanoparticles - gold and silver. This Review provides further information on the ability of aluminum, silicon, iron, selenium, indium, calcium and zinc to be used as nanoparticles in biomedical sciences. Aluminosilicates find their utility in wound healing and antibacterial growth. Iron-oxide nanoparticles enhance the properties of MRI contrast agents and are also used as biomagnets. Cadmium, selenium, tellurium and indium form the core nanostructures of tiny Q-dots used in cellular assay labeling, high-resolution cell imaging and biosensing. Cochleates have the bivalent nano ions calcium, magnesium or zinc imbedded in their structures and are considered to be highly effective agents for drug and gene delivery. The aluminosilicates, nanobiomagnets, Q-dots and cochleates are discussed in the light of their properties, synthesis and utility.

  10. Recent advances in cytochrome c biosensing technologies.

    PubMed

    Manickam, Pandiaraj; Kaushik, Ajeet; Karunakaran, Chandran; Bhansali, Shekhar

    2017-01-15

    This review is an attempt, for the first time, to describe advancements in sensing technology for cytochrome c (cyt c) detection, at point-of-care (POC) application. Cyt c, a heme containing metalloprotein is located in the intermembrane space of mitochondria and released into bloodstream during pathological conditions. The release of cyt c from mitochondria is a key initiative step in the activation of cell death pathways. Circulating cyt c levels represents a novel in-vivo marker of mitochondrial injury after resuscitation from heart failure and chemotherapy. Thus, cyt c detection is not only serving as an apoptosis biomarker, but also is of great importance to understand certain diseases at cellular level. Various existing techniques such as enzyme-linked immunosorbent assays (ELISA), Western blot, high performance liquid chromatography (HPLC), spectrophotometry and flow cytometry have been used to estimate cyt c. However, the implementation of these techniques at POC application is limited due to longer analysis time, expensive instruments and expertise needed for operation. To overcome these challenges, significant efforts are being made to develop electrochemical biosensing technologies for fast, accurate, selective, and sensitive detection of cyt c. Presented review describes the cutting edge technologies available in the laboratories to detect cyt c. The recent advancements in designing and development of electrochemical cyt c biosensors for the quantification of cyt c are also discussed. This review also highlights the POC cyt c biosensors developed recently, that would prove of interest to biologist and therapist to get real time informatics needed to evaluate death process, diseases progression, therapeutics and processes related with mitochondrial injury. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Advanced biosensors for detection of pathogens related to livestock and poultry.

    PubMed

    Vidic, Jasmina; Manzano, Marisa; Chang, Chung-Ming; Jaffrezic-Renault, Nicole

    2017-02-21

    Infectious animal diseases caused by pathogenic microorganisms such as bacteria and viruses threaten the health and well-being of wildlife, livestock, and human populations, limit productivity and increase significantly economic losses to each sector. The pathogen detection is an important step for the diagnostics, successful treatment of animal infection diseases and control management in farms and field conditions. Current techniques employed to diagnose pathogens in livestock and poultry include classical plate-based methods and conventional biochemical methods as enzyme-linked immunosorbent assays (ELISA). These methods are time-consuming and frequently incapable to distinguish between low and highly pathogenic strains. Molecular techniques such as polymerase chain reaction (PCR) and real time PCR (RT-PCR) have also been proposed to be used to diagnose and identify relevant infectious disease in animals. However these DNA-based methodologies need isolated genetic materials and sophisticated instruments, being not suitable for in field analysis. Consequently, there is strong interest for developing new swift point-of-care biosensing systems for early detection of animal diseases with high sensitivity and specificity. In this review, we provide an overview of the innovative biosensing systems that can be applied for livestock pathogen detection. Different sensing strategies based on DNA receptors, glycan, aptamers and antibodies are presented. Besides devices still at development level some are validated according to standards of the World Organization for Animal Health and are commercially available. Especially, paper-based platforms proposed as an affordable, rapid and easy to perform sensing systems for implementation in field condition are included in this review.

  12. An amperometric enzyme electrode and its biofuel cell based on a glucose oxidase-poly(3-anilineboronic acid)-Pd nanoparticles bionanocomposite for glucose biosensing.

    PubMed

    Sun, Lingen; Ma, Yixuan; Zhang, Pei; Chao, Long; Huang, Ting; Xie, Qingji; Chen, Chao; Yao, Shouzhuo

    2015-06-01

    A new amperometric enzyme electrode and its biofuel cell were fabricated based on a glucose oxidase (GOx)-poly(3-anilineboronic acid) (PABA)-Pd nanoparticles (PdNPs) bionanocomposite for biosensing of glucose. Briefly, Pd was electroplated on a multiwalled carbon nanotubes (MWCNTs)-modified Au electrode, and the GOx-PABA-PdNPs bionanocomposite was prepared on the Pd(plate)/MWCNTs/Au electrode through the chemical oxidation of a GOx-3-anilineboronic acid adduct by Na2PdCl4, followed by electrode-modification with an outer-layer chitosan (CS) film. The thus-prepared CS/GOx-PABA-PdNPs/Pd(plate)/MWCNTs/Au electrode exhibited a linear amperometric response to glucose concentration from 2.0 μM to 4.5 mM with a sensitivity of 160 μA/mM/cm(2), sub-μM detection limit, and excellent operation/storage stability in the first-generation biosensing mode, as well as excellent analytical performance in the second-generation biosensing mode. The good recoveries of glucose obtained from spiked urine samples revealed the application potential of our amperometric enzyme electrode. In addition, a glucose/O2 biofuel cell was constructed using this enzyme electrode as the anode and a Pt/MWCNTs/Au electrode as the cathode, and this biofuel cell as a self-powered biosensing device showed a linear voltage response to glucose concentration from 100 μM to 13.5 mM with a sensitivity of 43.5 mV/mM/cm(2) and excellent operation/storage stability. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Hairlike Percutaneous Photochemical Sensors

    NASA Technical Reports Server (NTRS)

    George, Thomas; Loeb, Gerald

    2004-01-01

    Instrumentation systems based on hairlike fiber-optic photochemical sensors have been proposed as minimally invasive means of detecting biochemicals associated with cancer and other diseases. The fiber-optic sensors could be mass-produced as inexpensive, disposable components. The sensory tip of a fiber-optic sensor would be injected through the patient's skin into subcutaneous tissue. A biosensing material on the sensory tip would bind or otherwise react with the biochemical(s) of interest [the analyte(s)] to produce a change in optical properties that would be measured by use of an external photonic analyzer. After use, a fiber-optic sensor could be simply removed by plucking it out with tweezers. A fiber-optic sensor according to the proposal would be of the approximate size and shape of a human hair, and its sensory tip would resemble a follicle. Once inserted into a patient's subcutaneous tissue, the sensor would even more closely resemble a hair growing from a follicle (see Figure 1). The biosensing material on the sensory tip could consist of a chemical and/or cells cultured and modified for the purpose. The biosensing material would be contained within a membrane that would cover the tip. If the membrane were not permeable by an analyte, then it would be necessary to create pores in the membrane that would be large enough to allow analyte molecules to diffuse to the biosensing material, but not so large as to allow cells (if present as part of the biosensing material) to diffuse out. The end of the fiber-optic sensor opposite the sensory tip would be inserted in a fiberoptic socket in the photonic analyzer.

  14. Development of Bacterial Display Peptides for use in Biosensing Applications

    DTIC Science & Technology

    2012-09-01

    performance. Specific results on peptides binders to Protective Antigen (PA) protein of Bacillus anthracis and Staphylococcal Enterotoxin B (SEB...reagent, affinity reagent, bacterial display, multi-scale modeling, docking, protective antigen , SEB, biosensing 16. SECURITY CLASSIFICATION OF: 17...performance. Specific results on peptides binders to Protective Antigen (PA) protein of Bacillus anthracis and Staphylococcal Enterotoxin B (SEB) will be

  15. Inorganic nanolayers: structure, preparation, and biomedical applications.

    PubMed

    Saifullah, Bullo; Hussein, Mohd Zobir B

    2015-01-01

    Hydrotalcite-like compounds are two-dimensional inorganic nanolayers also known as clay minerals or anionic clays or layered double hydroxides/layered hydroxy salts, and have emerged as a single type of material with numerous biomedical applications, such as drug delivery, gene delivery, cosmetics, and biosensing. Inorganic nanolayers are promising materials due to their fascinating properties, such as ease of preparation, ability to intercalate different type of anions (inorganic, organic, biomolecules, and even genes), high thermal stability, delivery of intercalated anions in a sustained manner, high biocompatibility, and easy biodegradation. Inorganic nanolayers have been the focus for researchers over the last decade, resulting in widening application horizons, especially in the field of biomedical science. These nanolayers have been widely applied in drug and gene delivery. They have also been applied in biosensing technology, and most recently in bioimaging science. The suitability of inorganic nanolayers for application in drug delivery, gene delivery, biosensing technology, and bioimaging science makes them ideal materials to be applied for theranostic purposes. In this paper, we review the structure, methods of preparation, and latest advances made by inorganic nanolayers in such biomedical applications as drug delivery, gene delivery, biosensing, and bioimaging.

  16. Microfluidics Integrated Biosensors: A Leading Technology towards Lab-on-a-Chip and Sensing Applications

    PubMed Central

    Luka, George; Ahmadi, Ali; Najjaran, Homayoun; Alocilja, Evangelyn; DeRosa, Maria; Wolthers, Kirsten; Malki, Ahmed; Aziz, Hassan; Althani, Asmaa; Hoorfar, Mina

    2015-01-01

    A biosensor can be defined as a compact analytical device or unit incorporating a biological or biologically derived sensitive recognition element immobilized on a physicochemical transducer to measure one or more analytes. Microfluidic systems, on the other hand, provide throughput processing, enhance transport for controlling the flow conditions, increase the mixing rate of different reagents, reduce sample and reagents volume (down to nanoliter), increase sensitivity of detection, and utilize the same platform for both sample preparation and detection. In view of these advantages, the integration of microfluidic and biosensor technologies provides the ability to merge chemical and biological components into a single platform and offers new opportunities for future biosensing applications including portability, disposability, real-time detection, unprecedented accuracies, and simultaneous analysis of different analytes in a single device. This review aims at representing advances and achievements in the field of microfluidic-based biosensing. The review also presents examples extracted from the literature to demonstrate the advantages of merging microfluidic and biosensing technologies and illustrate the versatility that such integration promises in the future biosensing for emerging areas of biological engineering, biomedical studies, point-of-care diagnostics, environmental monitoring, and precision agriculture. PMID:26633409

  17. Biosensors for Sustainable Food Engineering: Challenges and Perspectives

    PubMed Central

    Ragavan, Vasanth; Weng, Xuan; Chand, Rohit

    2018-01-01

    Current food production faces tremendous challenges from growing human population, maintaining clean resources and food qualities, and protecting climate and environment. Food sustainability is mostly a cooperative effort resulting in technology development supported by both governments and enterprises. Multiple attempts have been promoted in tackling challenges and enhancing drivers in food production. Biosensors and biosensing technologies with their applications, are being widely applied to tackling top challenges in food production and its sustainability. Consequently, a growing demand in biosensing technologies exists in food sustainability. Microfluidics represents a technological system integrating multiple technologies. Nanomaterials, with its technology in biosensing, is thought to be the most promising tool in dealing with health, energy, and environmental issues closely related to world populations. The demand of point of care (POC) technologies in this area focus on rapid, simple, accurate, portable, and low-cost analytical instruments. This review provides current viewpoints from the literature on biosensing in food production, food processing, safety and security, food packaging and supply chain, food waste processing, food quality assurance, and food engineering. The current understanding of progress, solution, and future challenges, as well as the commercialization of biosensors are summarized. PMID:29534552

  18. Inorganic nanolayers: structure, preparation, and biomedical applications

    PubMed Central

    Saifullah, Bullo; Hussein, Mohd Zobir B

    2015-01-01

    Hydrotalcite-like compounds are two-dimensional inorganic nanolayers also known as clay minerals or anionic clays or layered double hydroxides/layered hydroxy salts, and have emerged as a single type of material with numerous biomedical applications, such as drug delivery, gene delivery, cosmetics, and biosensing. Inorganic nanolayers are promising materials due to their fascinating properties, such as ease of preparation, ability to intercalate different type of anions (inorganic, organic, biomolecules, and even genes), high thermal stability, delivery of intercalated anions in a sustained manner, high biocompatibility, and easy biodegradation. Inorganic nanolayers have been the focus for researchers over the last decade, resulting in widening application horizons, especially in the field of biomedical science. These nanolayers have been widely applied in drug and gene delivery. They have also been applied in biosensing technology, and most recently in bioimaging science. The suitability of inorganic nanolayers for application in drug delivery, gene delivery, biosensing technology, and bioimaging science makes them ideal materials to be applied for theranostic purposes. In this paper, we review the structure, methods of preparation, and latest advances made by inorganic nanolayers in such biomedical applications as drug delivery, gene delivery, biosensing, and bioimaging. PMID:26366081

  19. Recent Progress in Optical Biosensors Based on Smartphone Platforms

    PubMed Central

    Geng, Zhaoxin; Zhang, Xiong; Fan, Zhiyuan; Lv, Xiaoqing; Su, Yue; Chen, Hongda

    2017-01-01

    With a rapid improvement of smartphone hardware and software, especially complementary metal oxide semiconductor (CMOS) cameras, many optical biosensors based on smartphone platforms have been presented, which have pushed the development of the point-of-care testing (POCT). Imaging-based and spectrometry-based detection techniques have been widely explored via different approaches. Combined with the smartphone, imaging-based and spectrometry-based methods are currently used to investigate a wide range of molecular properties in chemical and biological science for biosensing and diagnostics. Imaging techniques based on smartphone-based microscopes are utilized to capture microscale analysts, while spectrometry-based techniques are used to probe reactions or changes of molecules. Here, we critically review the most recent progress in imaging-based and spectrometry-based smartphone-integrated platforms that have been developed for chemical experiments and biological diagnosis. We focus on the analytical performance and the complexity for implementation of the platforms. PMID:29068375

  20. Recent Progress in Optical Biosensors Based on Smartphone Platforms.

    PubMed

    Geng, Zhaoxin; Zhang, Xiong; Fan, Zhiyuan; Lv, Xiaoqing; Su, Yue; Chen, Hongda

    2017-10-25

    With a rapid improvement of smartphone hardware and software, especially complementary metal oxide semiconductor (CMOS) cameras, many optical biosensors based on smartphone platforms have been presented, which have pushed the development of the point-of-care testing (POCT). Imaging-based and spectrometry-based detection techniques have been widely explored via different approaches. Combined with the smartphone, imaging-based and spectrometry-based methods are currently used to investigate a wide range of molecular properties in chemical and biological science for biosensing and diagnostics. Imaging techniques based on smartphone-based microscopes are utilized to capture microscale analysts, while spectrometry-based techniques are used to probe reactions or changes of molecules. Here, we critically review the most recent progress in imaging-based and spectrometry-based smartphone-integrated platforms that have been developed for chemical experiments and biological diagnosis. We focus on the analytical performance and the complexity for implementation of the platforms.

  1. Selective biosensing of Staphylococcus aureus using chitosan quantum dots

    NASA Astrophysics Data System (ADS)

    Abdelhamid, Hani Nasser; Wu, Hui-Fen

    2018-01-01

    Selective biosensing of Staphylococcus aureus (S. aureus) using chitosan modified quantum dots (CTS@CdS QDs) in the presence of hydrogen peroxide is reported. The method is based on the intrinsic positive catalase activity of S. aureus. CTS@CdS quantum dots provide high dispersion in aqueous media with high fluorescence emission. Staphylococcus aureus causes a selective quenching of the fluorescence emission of CTS@CdS QDs in the presence of H2O2 compared to other pathogens such as Escherichia coli and Pseudomonas aeruginosa. The intrinsic enzymatic character of S. aureus (catalase positive) offers selective and fast biosensing. The present method is highly selective for positive catalase species and requires no expensive reagents such as antibodies, aptamers or microbeads. It could be extended for other species that are positive catalase.

  2. Towards autonomous lab-on-a-chip devices for cell phone biosensing.

    PubMed

    Comina, Germán; Suska, Anke; Filippini, Daniel

    2016-03-15

    Modern cell phones are a ubiquitous resource with a residual capacity to accommodate chemical sensing and biosensing capabilities. From the different approaches explored to capitalize on such resource, the use of autonomous disposable lab-on-a-chip (LOC) devices-conceived as only accessories to complement cell phones-underscores the possibility to entirely retain cell phones' ubiquity for distributed biosensing. The technology and principles exploited for autonomous LOC devices are here selected and reviewed focusing on their potential to serve cell phone readout configurations. Together with this requirement, the central aspects of cell phones' resources that determine their potential for analytical detection are examined. The conversion of these LOC concepts into universal architectures that are readable on unaccessorized phones is discussed within this context. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Nanoscale Biosensors Based on Self-Propelled Objects.

    PubMed

    Jurado-Sánchez, Beatriz

    2018-06-25

    This review provides a comprehensive overview of the latest developments (2016⁻2018 period) in the nano and micromotors field for biosensing applications. Nano and micromotor designs, functionalization, propulsion modes and transduction mechanism are described. A second important part of the review is devoted to novel in vitro and in vivo biosensing schemes. The potential and future prospect of such moving nanoscale biosensors are given in the conclusions.

  4. Introduction to biosensors

    PubMed Central

    Bhalla, Nikhil; Jolly, Pawan; Formisano, Nello

    2016-01-01

    Biosensors are nowadays ubiquitous in biomedical diagnosis as well as a wide range of other areas such as point-of-care monitoring of treatment and disease progression, environmental monitoring, food control, drug discovery, forensics and biomedical research. A wide range of techniques can be used for the development of biosensors. Their coupling with high-affinity biomolecules allows the sensitive and selective detection of a range of analytes. We give a general introduction to biosensors and biosensing technologies, including a brief historical overview, introducing key developments in the field and illustrating the breadth of biomolecular sensing strategies and the expansion of nanotechnological approaches that are now available. PMID:27365030

  5. Silicon nanowires reliability and robustness investigation using AFM-based techniques

    NASA Astrophysics Data System (ADS)

    Bieniek, Tomasz; Janczyk, Grzegorz; Janus, Paweł; Grabiec, Piotr; Nieprzecki, Marek; Wielgoszewski, Grzegorz; Moczała, Magdalena; Gotszalk, Teodor; Buitrago, Elizabeth; Badia, Montserrat F.; Ionescu, Adrian M.

    2013-07-01

    Silicon nanowires (SiNWs) have undergone intensive research for their application in novel integrated systems such as field effect transistor (FET) biosensors and mass sensing resonators profiting from large surface-to-volume ratios (nano dimensions). Such devices have been shown to have the potential for outstanding performances in terms of high sensitivity, selectivity through surface modification and unprecedented structural characteristics. This paper presents the results of mechanical characterization done for various types of suspended SiNWs arranged in a 3D array. The characterization has been performed using techniques based on atomic force microscopy (AFM). This investigation is a necessary prerequisite for the reliable and robust design of any biosensing system. This paper also describes the applied investigation methodology and reports measurement results aggregated during series of AFM-based tests.

  6. Autonomous capillary microfluidic system with embedded optics for improved troponin I cardiac biomarker detection.

    PubMed

    Mohammed, M I; Desmulliez, M P Y

    2014-11-15

    Cardiovascular diseases are the most prevalent medical conditions affecting the modern world, reducing the quality of life for those affected and causing an ever increasing burden on clinical resources. Cardiac biomarkers are crucial in the diagnosis and management of patient outcomes. In that respect, such proteins are desirable to be measured at the point of care, overcoming the shortcomings of current instrumentation. We present a CO2 laser engraving technique for the rapid prototyping of a polymeric autonomous capillary system with embedded on-chip planar lenses and biosensing elements, the first step towards a fully miniaturised and integrated cardiac biosensing platform. The system has been applied to the detection of cardiac Troponin I, the gold standard biomarker for the diagnosis of acute myocardial infarction. The devised lab-on-a-chip device was demonstrated to have 24 pg/ml limit of detection, which is well within the minimum threshold for clinically applicable concentrations. Assays were completed within approximately 7-9 min. Initial results suggest that, given the portability, low power consumption and high sensitivity of the device, this technology could be developed further into point of care instrumentation useful in the diagnosis of various forms of cardiovascular diseases. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. A new real-time method for investigation of affinity properties and binding kinetics of magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Orlov, Alexey V.; Nikitin, Maxim P.; Bragina, Vera A.; Znoyko, Sergey L.; Zaikina, Marina N.; Ksenevich, Tatiana I.; Gorshkov, Boris G.; Nikitin, Petr I.

    2015-04-01

    A method for quantitative investigation of affinity constants of receptors immobilized on magnetic nanoparticles (MP) is developed based on spectral correlation interferometry (SCI). The SCI records with a picometer resolution the thickness changes of a layer of molecules or nanoparticles due to a biochemical reaction on a cover slip, averaged over the sensing area. The method is compatible with other types of sensing surfaces employed in biosensing. The measured values of kinetic association constants of magnetic nanoparticles are 4 orders of magnitude higher than those of molecular antibody association with antigen. The developed method also suggests highly sensitive detection of antigens in a wide dynamic range. The limit of detection of 92 pg/ml has been demonstrated for prostate-specific antigen (PSA) with 50-nm MP employed as labels, which produce 3-order amplification of the SCI signals. The calibration curve features high sensitivity (slope) of 3-fold signal raise per 10-fold increase of PSA concentration within 4-order dynamic range, which is an attractive compromise for precise quantitative and highly sensitive immunoassay. The proposed biosensing technique offers inexpensive disposable sensor chips of cover slips and represents an economically sound alternative to traditional immunoassays for disease diagnostics, detection of pathogens in food and environmental monitoring.

  8. Surface plasmon resonance biosensing: Approaches for screening and characterising antibodies for food diagnostics.

    PubMed

    Yakes, B J; Buijs, J; Elliott, C T; Campbell, K

    2016-08-15

    Research in biosensing approaches as alternative techniques for food diagnostics for the detection of chemical contaminants and foodborne pathogens has increased over the last twenty years. The key component of such tests is the biorecognition element whereby polyclonal or monoclonal antibodies still dominate the market. Traditionally the screening of sera or cell culture media for the selection of polyclonal or monoclonal candidate antibodies respectively has been performed by enzyme immunoassays. For niche toxin compounds, enzyme immunoassays can be expensive and/or prohibitive methodologies for antibody production due to limitations in toxin supply for conjugate production. Automated, self-regenerating, chip-based biosensors proven in food diagnostics may be utilised as rapid screening tools for antibody candidate selection. This work describes the use of both single channel and multi-channel surface plasmon resonance (SPR) biosensors for the selection and characterisation of antibodies, and their evaluation in shellfish tissue as standard techniques for the detection of domoic acid, as a model toxin compound. The key advantages in the use of these biosensor techniques for screening hybridomas in monoclonal antibody production were the real time observation of molecular interaction and rapid turnaround time in analysis compared to enzyme immunoassays. The multichannel prototype instrument was superior with 96 analyses completed in 2h compared to 12h for the single channel and over 24h for the ELISA immunoassay. Antibodies of high sensitivity, IC50's ranging from 4.8 to 6.9ng/mL for monoclonal and 2.3-6.0ng/mL for polyclonal, for the detection of domoic acid in a 1min analysis time were selected. Although there is a progression for biosensor technology towards low cost, multiplexed portable diagnostics for the food industry, there remains a place for laboratory-based SPR instrumentation for antibody development for food diagnostics as shown herein. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Optical Biosensors Based on Semiconductor Nanostructures

    PubMed Central

    Martín-Palma, Raúl J.; Manso, Miguel; Torres-Costa, Vicente

    2009-01-01

    The increasing availability of semiconductor-based nanostructures with novel and unique properties has sparked widespread interest in their use in the field of biosensing. The precise control over the size, shape and composition of these nanostructures leads to the accurate control of their physico-chemical properties and overall behavior. Furthermore, modifications can be made to the nanostructures to better suit their integration with biological systems, leading to such interesting properties as enhanced aqueous solubility, biocompatibility or bio-recognition. In the present work, the most significant applications of semiconductor nanostructures in the field of optical biosensing will be reviewed. In particular, the use of quantum dots as fluorescent bioprobes, which is the most widely used application, will be discussed. In addition, the use of some other nanometric structures in the field of biosensing, including porous semiconductors and photonic crystals, will be presented. PMID:22346691

  10. Neural network processing of microbial fuel cell signals for the identification of chemicals present in water.

    PubMed

    Feng, Yinghua; Barr, William; Harper, W F

    2013-05-15

    Biosensing is emerging as an important element of water quality monitoring. This research demonstrated that microbial fuel cell (MFC)-based biosensing can be integrated with artificial neural networks (ANNs) to identify specific chemicals present in water samples. The non-fermentable substrates, acetate and butyrate, induced peak areas (PA) and peak heights (PH) that were generally larger than those caused by the injection of fermentable substrates, glucose and corn starch. The ANN successfully identified peaks associated with these four chemicals under a variety of experimental conditions and for two MFCs that had different levels of sensitivity. ANNs that employ the hyperbolic tangent sigmoid transfer function performed better than those using non-continuous transfer functions. ANNs should be integrated into water quality monitoring efforts for smart biosensing. Published by Elsevier Ltd.

  11. Novel graphene-oxide-coated SPR interfaces for biosensing applications

    NASA Astrophysics Data System (ADS)

    Volkov, V. S.; Stebunov, Yu. V.; Yakubovsky, D. I.; Fedyanin, D. Yu.; Arsenin, A. V.

    2017-09-01

    Carbon allotropes-based nanomaterials possess unique physical and chemical properties including high surface area, the possibility of pi-stacking interaction with a wide range of biological objects, rich availability of oxygen-containing functional groups in graphene-oxide (GO), and excellent optical properties, which make them an ideal candidate for use as a universal immobilization platform in SPR biosensing. Here, we propose a new surface plasmon resonance (SPR) biosensing interface for sensitive and selective detection of small molecules. This interface is based on the GO linking layers deposited on the gold/copper surface of SPR sensor chips. To estimate the binding capacity of GO layers, modification of carboxyl groups to N-Hydroxysuccinimide esters was performed in the flow cell of SPR instrument. For comparison, the same procedure was applied to commercial sensor chips based on linking layers of carboxymethylated dextran.

  12. Microstructured optical fiber-based luminescent biosensing: Is there any light at the end of the tunnel? - A review.

    PubMed

    Pidenko, Sergey A; Burmistrova, Natalia A; Shuvalov, Andrey A; Chibrova, Anastasiya A; Skibina, Yulia S; Goryacheva, Irina Y

    2018-08-17

    This review covers the current state of the art of luminescent biosensors based on various types of microstructured optical fiber. The unique optical and structural properties of this type of optical fiber make them one of the most promising integrated platforms for bioassays. The individual sections of this review are devoted to a) classification of microstructured optical fibers, b) microstructured optical fiber materials, c) aspects of biosensing based on the biomolecules incorporated into the microstructured optical fibers, and d) development of models for prediction of the efficiency of luminescent signal processing. The authors' views on current trends and limitations of microstructured optical fibers for biosensing as well as the most promising areas and technologies for application in analytical practice are presented. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Nano/microvehicles for efficient delivery and (bio)sensing at the cellular level

    PubMed Central

    Esteban-Fernández de Ávila, B.; Yáñez-Sedeño, P.

    2017-01-01

    A perspective review of recent strategies involving the use of nano/microvehicles to address the key challenges associated with delivery and (bio)sensing at the cellular level is presented. The main types and characteristics of the different nano/microvehicles used for these cellular applications are discussed, including fabrication pathways, propulsion (catalytic, magnetic, acoustic or biological) and navigation strategies, and relevant parameters affecting their propulsion performance and sensing and delivery capabilities. Thereafter, selected applications are critically discussed. An emphasis is made on enhancing the extra- and intra-cellular biosensing capabilities, fast cell internalization, rapid inter- or intra-cellular movement, efficient payload delivery and targeted on-demand controlled release in order to greatly improve the monitoring and modulation of cellular processes. A critical discussion of selected breakthrough applications illustrates how these smart multifunctional nano/microdevices operate as nano/microcarriers and sensors at the intra- and extra-cellular levels. These advances allow both the real-time biosensing of relevant targets and processes even at a single cell level, and the delivery of different cargoes (drugs, functional proteins, oligonucleotides and cells) for therapeutics, gene silencing/transfection and assisted fertilization, while overcoming challenges faced by current affinity biosensors and delivery vehicles. Key challenges for the future and the envisioned opportunities and future perspectives of this remarkably exciting field are discussed. PMID:29147499

  14. Recent Advances in Electrospun Nanofiber Interfaces for Biosensing Devices

    PubMed Central

    Sapountzi, Eleni; Braiek, Mohamed; Chateaux, Jean-François; Lagarde, Florence

    2017-01-01

    Electrospinning has emerged as a very powerful method combining efficiency, versatility and low cost to elaborate scalable ordered and complex nanofibrous assemblies from a rich variety of polymers. Electrospun nanofibers have demonstrated high potential for a wide spectrum of applications, including drug delivery, tissue engineering, energy conversion and storage, or physical and chemical sensors. The number of works related to biosensing devices integrating electrospun nanofibers has also increased substantially over the last decade. This review provides an overview of the current research activities and new trends in the field. Retaining the bioreceptor functionality is one of the main challenges associated with the production of nanofiber-based biosensing interfaces. The bioreceptors can be immobilized using various strategies, depending on the physical and chemical characteristics of both bioreceptors and nanofiber scaffolds, and on their interfacial interactions. The production of nanobiocomposites constituted by carbon, metal oxide or polymer electrospun nanofibers integrating bioreceptors and conductive nanomaterials (e.g., carbon nanotubes, metal nanoparticles) has been one of the major trends in the last few years. The use of electrospun nanofibers in ELISA-type bioassays, lab-on-a-chip and paper-based point-of-care devices is also highly promising. After a short and general description of electrospinning process, the different strategies to produce electrospun nanofiber biosensing interfaces are discussed. PMID:28813013

  15. Real-time label-free biosensing with integrated planar waveguide ring resonators

    NASA Astrophysics Data System (ADS)

    Sohlström, Hans; Gylfason, Kristinn B.; Hill, Daniel

    2010-05-01

    We review the use of planar integrated optical waveguide ring resonators for label free bio-sensing and present recent results from two European biosensor collaborations: SABIO and InTopSens. Planar waveguide ring resonators are attractive for label-free biosensing due to their small footprint, high Q-factors, and compatibility with on-chip optics and microfluidics. This enables integrated sensor arrays for compact labs-on-chip. One application of label-free sensor arrays is for point-of-care medical diagnostics. Bringing such powerful tools to the single medical practitioner is an important step towards personalized medicine, but requires addressing a number of issues: improving limit of detection, managing the influence of temperature, parallelization of the measurement for higher throughput and on-chip referencing, efficient light-coupling strategies to simplify alignment, and packaging of the optical chip and integration with microfluidics. From the SABIO project we report refractive index measurement and label-free biosensing in an 8-channel slotwaveguide ring resonator sensor array, within a compact cartridge with integrated microfluidics. The sensors show a volume sensing detection limit of 5 x 10-6 RIU and a surface sensing detection limit of 0.9 pg/mm2. From the InTopSens project we report early results on silicon-on-insulator racetrack resonators.

  16. Fabrication and functionalization of carbon nanotube field effect transistors for bio-sensing applications

    NASA Astrophysics Data System (ADS)

    Zhou, Jianyun

    Single walled carbon nanotube based field effect transistors are fabricated using photolithography and electron beam lithography techniques. First catalyst islands are deposited onto the substrate using standard optical lithographic techniques, and the nanotubes are grown by catalytic chemical vapor deposition from the pre-patterned catalyst islands. After imaging the grown nanotubes, the metal contact electrodes are patterned using lithography, followed by metal deposition using a sputtering technique. Both single nanotube devices and nanotube film devices are fabricated using this method. The single nanotube devices can be semiconducting, ambipolar, or metallic, with the resistance ranging from tens of kilo ohms to a few mega ohms, while the film devices are generally metallic, with only a few kilo ohms of resistance. Semiconducting single nanotube devices are functionalized for sensor applications. An electrodeposition technique was developed to functionalize the nanotube with a few materials, including avidin, chitosan, and metal nanoparticles. Among them, metal nanoparticle deposition is the most successful, and both gold and silver nanoparticles have been successfully deposited onto the sidewalls of the nanotubes from an "in situ" sacrificial electrode. The size and density of the nanoparticles, to some extent, can be tailored by controlling the deposition voltage. The gold nanoparticles are generally spherical, while the silver nanoparticles have branching snowflake shapes. These nanoparticles change the ON-state conductance of the nanotube while maintaining its semiconducting characteristics. The gold nanoparticles on the nanotube sidewalls can serve as anchoring sites for thiol-terminated biomolecules to functionalize the device for biosensing purposes. Results have shown that the thiol-terminated molecules can bind to the Au nanoparticles; however, nonspecific binding to the SiO2 surface is still abundant. Therefore, a self assembled monolayer (SAM) of protein-resistant polyethylene glycol (PEG) is deposited onto the SiO 2 surface to provide protein resistance, which results in selective immobilization of bio-receptors to the gold nanoparticles on the nanotube only. This reduces possible noise signals from the nonspecific substrate binding, and is expected to improve the device sensitivity.

  17. Electroanalytical Evaluation of Nanoparticles by Nano-impact Electrochemistry

    NASA Astrophysics Data System (ADS)

    Karimi, Anahita

    Applications of engineered nanoparticles in electronics, catalysis, solid oxide fuel cells, medicine and sensing continue to increase. Traditionally, nanoparticle systems are characterized by spectroscopic and microscopic techniques. These methods are cumbersome and expensive, which limit their routine use for screening purposes. Electrochemistry is a powerful, yet underutilized tool, for the detection and classification of nanoparticles. The first part of this dissertation investigates a recently developed electrochemical method -- nanoparticle collision electrochemistry -- for detection and characterization of nanoparticles. Three independent projects have been described to evaluate the use of this technique for characterizing nanoparticle based systems including: conjugation with biomolecules, interaction with environmental contaminants and fundamental investigation of conformational changes of nanoparticle capping ligands. The thesis reports the first use of nano-impact electrochemistry to quantitatively investigate bioconjugation and biomolecular recognition at conductive nanoparticles. Furthermore, we also demonstrate the potential of this method as a single step, reagentless and label-free technique for the ultra-sensitive detection of biomolecular targets. A fundamental study of biorecognition is important for the development of therapeutics and molecular diagnosis probes in the biomedical, biosensing and biotechnology fields. The second project describes the use of this method as a screening tool of particle reactivity. We study the interaction and adsorption of a toxic environmental metalloid (Arsenic) with metal oxide nanoparticles to extract mechanistic, speciation and loading information. We discuss the potential of this approach to complement or replace costly characterization techniques and enable routine study of nanoparticles and their reactivity. In the third project, we use the nano-impact method to study the pH-dependent conformational changes of polymeric capping agents on the surface of silver nanoparticles. Nano-impact elecrochemistry has demonstrated promising results for studying functionality, stability and conformational changes of stabilizing agents. The second part of this thesis explores the use of carbon nanomaterials such as graphene and Pt-doped CeO2 for the rational design of enzyme-conjugated nanostructures for biosensing applications. The dissertation reports fabrication, characterization and properties of hybrid CeO2-based bioelectrocatalytic nanostructure material with PEDOT:PSS [poly(3,4ethylenedioxythiophene):poly-styrene-sulfonic acid] on porous carbon materials as novel materials for designing high performance laccase (Lac) biocathodes and biofuel cells.

  18. Adaptive and Cognitive Ground and Wall Penetrating Radar System

    DTIC Science & Technology

    2015-04-24

    biosensing and active entangled photon radar. The concept behind the nonlinear biosensing is to the use the AC-GWPRS as a probe to measure the...the UVM campus that are willing to collaborate on this line of research. The active entangled photon radar concept centers around recent...Figure 44 Typical OFDM radar test results: a. Time domain OFDM signal with top trace original signal in time domain from Matlab , and bottom trace

  19. DNA biosensing with 3D printing technology.

    PubMed

    Loo, Adeline Huiling; Chua, Chun Kiang; Pumera, Martin

    2017-01-16

    3D printing, an upcoming technology, has vast potential to transform conventional fabrication processes due to the numerous improvements it can offer to the current methods. To date, the employment of 3D printing technology has been examined for applications in the fields of engineering, manufacturing and biological sciences. In this study, we examined the potential of adopting 3D printing technology for a novel application, electrochemical DNA biosensing. Metal 3D printing was utilized to construct helical-shaped stainless steel electrodes which functioned as a transducing platform for the detection of DNA hybridization. The ability of electroactive methylene blue to intercalate into the double helix structure of double-stranded DNA was then exploited to monitor the DNA hybridization process, with its inherent reduction peak serving as an analytical signal. The designed biosensing approach was found to demonstrate superior selectivity against a non-complementary DNA target, with a detection range of 1-1000 nM.

  20. Behaviour of a ZnO thin film as MSG for biosensing material in sub-wavelength regime

    NASA Astrophysics Data System (ADS)

    Iftimie, N.; Steigmann, R.; Danila, N. A.; Iacomi, F.; Faktorova, D.; Savin, A.

    2016-11-01

    Zinc oxide nanostructured materials, such as films and nanoparticles, could provide a suitable platform for development of high performance biosensing material due to their unique fundamental material properties. In this study, the enzyme biosensing consisting of a zinc oxide (ZnO) nanoparticles were grown on SiO2/Si substrates by vacuum thermal evaporation method and their sensing characteristics are examined in air and investigated. The film morphology is characterized by X-ray diffraction (XRD) the film crystalline quality and by scanning electron microscopy (SEM). Also, the interest in surface waves appeared due to evanescent waves in the metallic strip grating structure (MSG-Ag/ZnO/SiO2/Si) in sub-wavelength regime. Before testing the sensor with metamaterials (MMs) lens in the sub-wavelength regime, a simulation of the evanescent wave's formation has been performed at the edge of Ag strips, with thicknesses in the range of micrometers.

  1. Fabrication of Nanopipette Arrays for Biosensing

    NASA Technical Reports Server (NTRS)

    Meyyappan, Meyya (Inventor)

    2015-01-01

    Method for providing a nanopipette array for biosensing applications. A thin substrate of anodizable metal ("AN-metal," such as Al, Mg, Zn, Ti, Ta and/or Nb) is anodized at temperature T=20-200.degree. C., chemical bath pH=4-6 and electrical potential 1-300 Volts, to produce an array of anodized nanopipette channels, having diameters 10-50 nm, with oxidized channel surfaces of thickness 5-20 nm. A portion of exposed non-oxidized AN-metal between adjacent nanopipette channels, of length 1-5 .mu.m, is etched away, exposing inner and outer surfaces of a nanopipette channel. A probe molecule, is deposited on one or both surfaces to provide biosensing capability for K(.gtoreq.1) target molecules. Target molecule presence, in an above-threshold concentration, in a fluid passed through or adjacent to a nanopipette channel, produces characteristic detection signals associated with the probe molecule site.

  2. Enhanced photoelectrochemical property of ZnO nanorods array synthesized on reduced graphene oxide for self-powered biosensing application.

    PubMed

    Kang, Zhuo; Gu, Yousong; Yan, Xiaoqin; Bai, Zhiming; Liu, Yichong; Liu, Shuo; Zhang, Xiaohui; Zhang, Zheng; Zhang, Xueji; Zhang, Yue

    2015-02-15

    We have realized the direct synthesis of ZnO nanorods (ZnO NRs) array on reduced graphene layer (rGO), and demonstrated the enhanced photoelectrochemical (PEC) property of the rGO/ZnO based photoanode under UV irradiation compared with the pristine ZnO NRs array. The introduction of the rGO layer resulted in a favorable energy band structure for electron migration, which finally led to the efficient photoinduced charge separation. Such nanostructure was subsequently employed for self-powered PEC biosensing of glutathione in the condition of 0 V bias, with a linear range from 10 to 200 µM, a detection limit of 2.17 µM, as well as excellent selectivity, reproducibility and stability. The results indicated the rGO/ZnO nanostructure is a competitive candidate in the PEC biosensing field. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. An integrated micro-manipulation and biosensing platform built in glass-based LTPS TFT technology

    NASA Astrophysics Data System (ADS)

    Chen, Lei-Guang; Wu, Dong-Yi; S-C Lu, Michael

    2012-09-01

    The glass-based low-temperature polycrystalline-silicon (LTPS) thin-film transistor (TFT) process, widely known for making liquid crystal displays, is utilized in this work to realize a fully integrated, microbead-based micro-manipulation and biosensing platform. The operation utilizes arrays of microelectrodes made of transparent iridium tin oxide (ITO) to move the immobilized polystyrene microbeads to the sensor surface by dielectrophoresis (DEP). Detection of remaining microbeads after a specific antigen/antibody reaction is accomplished by photo-detectors under the transparent electrodes. It was found that microbeads can be driven successfully by the 30 × 30 µm2 microelectrodes separated by 10 µm with no more than 6 Vp-p, which is compatible with the operating range of thin-film transistors. Microbeads immobilized with antimouse immunoglobulin (IgG) and prostate-specific antigen (PSA) antibody were successfully detected after specific binding, illustrating the potential of LTPS TFT microarrays for more versatile biosensing applications.

  4. Functional Carbon Quantum Dots: A Versatile Platform for Chemosensing and Biosensing.

    PubMed

    Feng, Hui; Qian, Zhaosheng

    2018-05-01

    Carbon quantum dot has emerged as a new promising fluorescent nanomaterial due to its excellent optical properties, outstanding biocompatibility and accessible fabrication methods, and has shown huge application perspective in a variety of areas, especially in chemosensing and biosensing applications. In this personal account, we give a brief overview of carbon quantum dots from its origin and preparation methods, present some advance on fluorescence origin of carbon quantum dots, and focus on development of chemosensors and biosensors based on functional carbon quantum dots. Comprehensive advances on functional carbon quantum dots as a versatile platform for sensing from our group are included and summarized as well as some typical examples from the other groups. The biosensing applications of functional carbon quantum dots are highlighted from selective assays of enzyme activity to fluorescent identification of cancer cells and bacteria. © 2018 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Suitable combination of noble/ferromagnetic metal multilayers for enhanced magneto-plasmonic biosensing.

    PubMed

    Regatos, David; Sepúlveda, Borja; Fariña, David; Carrascosa, Laura G; Lechuga, Laura M

    2011-04-25

    We present a theoretical and experimental study on the biosensing sensitivity of Au/Co/Au multilayers as transducers of the magneto-optic surface-plasmon-resonance (MOSPR) sensor. We demonstrate that the sensing response of these magneto-plasmonic (MP) transducers is a trade-off between the optical absorption and the magneto-optical activity, observing that the MP multilayer with larger MO effect does not provide the best sensing response. We show that it is possible to design highly-sensitive MP transducers able to largely surpass the limit of detection of the conventional surface-plasmon-resonance (SPR) sensor. This was proved comparing the biosensing performance of both sensors for the label-free detection of short DNA chains hybridization. For this purpose, we used and tested a novel label-free biofunctionalization protocol based on polyelectrolytes, which increases the resistance of MP transducers in aqueous environments.

  6. Electrochemical biosensing of galactose based on carbon materials: graphene versus multi-walled carbon nanotubes.

    PubMed

    Dalkıran, Berna; Erden, Pınar Esra; Kılıç, Esma

    2016-06-01

    In this study, two enzyme electrodes based on graphene (GR), Co3O4 nanoparticles and chitosan (CS) or multi-walled carbon nanotubes (MWCNTs), Co3O4 nanoparticles, and CS, were fabricated as novel biosensing platforms for galactose determination, and their performances were compared. Galactose oxidase (GaOx) was immobilized onto the electrode surfaces by crosslinking with glutaraldehyde. Optimum working conditions of the biosensors were investigated and the analytical performance of the biosensors was compared with respect to detection limit, linearity, repeatability, and stability. The MWCNTs-based galactose biosensor provided about 1.6-fold higher sensitivity than its graphene counterpart. Moreover, the linear working range and detection limit of the MWCNTs-based galactose biosensor was superior to the graphene-modified biosensor. The successful application of the purposed biosensors for galactose biosensing in human serum samples was also investigated.

  7. Chemical Modification of Boron-Doped Diamond Electrodes for Applications to Biosensors and Biosensing.

    PubMed

    Svítková, Jana; Ignat, Teodora; Švorc, Ľubomír; Labuda, Ján; Barek, Jiří

    2016-05-03

    Boron-doped diamond (BDD) is a prospective electrode material that possesses many exceptional properties including wide potential window, low noise, low and stable background current, chemical and mechanical stability, good biocompatibility, and last but not least exceptional resistance to passivation. These characteristics extend its usability in various areas of electrochemistry as evidenced by increasing number of published articles over the past two decades. The idea of chemically modifying BDD electrodes with molecular species attached to the surface for the purpose of creating a rational design has found promising applications in the past few years. BDD electrodes have appeared to be excellent substrate materials for various chemical modifications and subsequent application to biosensors and biosensing. Hence, this article presents modification strategies that have extended applications of BDD electrodes in electroanalytical chemistry. Different methods and steps of surface modification of this electrode material for biosensing and construction of biosensors are discussed.

  8. Imaging-based molecular barcoding with pixelated dielectric metasurfaces

    NASA Astrophysics Data System (ADS)

    Tittl, Andreas; Leitis, Aleksandrs; Liu, Mingkai; Yesilkoy, Filiz; Choi, Duk-Yong; Neshev, Dragomir N.; Kivshar, Yuri S.; Altug, Hatice

    2018-06-01

    Metasurfaces provide opportunities for wavefront control, flat optics, and subwavelength light focusing. We developed an imaging-based nanophotonic method for detecting mid-infrared molecular fingerprints and implemented it for the chemical identification and compositional analysis of surface-bound analytes. Our technique features a two-dimensional pixelated dielectric metasurface with a range of ultrasharp resonances, each tuned to a discrete frequency; this enables molecular absorption signatures to be read out at multiple spectral points, and the resulting information is then translated into a barcode-like spatial absorption map for imaging. The signatures of biological, polymer, and pesticide molecules can be detected with high sensitivity, covering applications such as biosensing and environmental monitoring. Our chemically specific technique can resolve absorption fingerprints without the need for spectrometry, frequency scanning, or moving mechanical parts, thereby paving the way toward sensitive and versatile miniaturized mid-infrared spectroscopy devices.

  9. Self-Powered Implantable Skin-Like Glucometer for Real-Time Detection of Blood Glucose Level In Vivo

    NASA Astrophysics Data System (ADS)

    Zhang, Wanglinhan; Zhang, Linlin; Gao, Huiling; Yang, Wenyan; Wang, Shuai; Xing, Lili; Xue, Xinyu

    2018-06-01

    Implantable bioelectronics for analyzing physiological biomarkers has recently been recognized as a promising technique in medical treatment or diagnostics. In this study, we developed a self-powered implantable skin-like glucometer for real-time detection of blood glucose level in vivo. Based on the piezo-enzymatic-reaction coupling effect of GOx@ZnO nanowire, the device under an applied deformation can actively output piezoelectric signal containing the glucose-detecting information. No external electricity power source or battery is needed for this device, and the outputting piezoelectric voltage acts as both the biosensing signal and electricity power. A practical application of the skin-like glucometer implanted in mouse body for detecting blood glucose level has been simply demonstrated. These results provide a new technique path for diabetes prophylaxis and treatment.

  10. Scanning electrochemical microscopy (SECM) as a tool in biosensor research.

    PubMed

    Stoica, Leonard; Neugebauer, Sebastian; Schuhmann, Wolfgang

    2008-01-01

    Scanning electrochemical microscopy (SECM) is discussed as a versatile tool to provide localized (electro)chemical information in the context of biosensor research. Advantages of localized electrochemical measurements will be discussed and a brief introduction to SECM and its operation modes will be given. Experimental challenges of the different detection modes of SECM and its applicability for different fields in biosensor research are discussed. Among these are the evaluation of immobilization techniques by probing the local distribution of biological activity, the visualization of diffusion profiles of reactants, cofactors, mediators, and products, and the elucidation of (local) kinetic parameters. The combination of SECM with other scanning-probe techniques allows to maximize the information on a given biosensing system. The potential of SECM as a tool in micro-fabrication aiming for the fabrication of microstructured biosensors will be shortly discussed.

  11. Progress in the biosensing techniques for trace-level heavy metals.

    PubMed

    Mehta, Jyotsana; Bhardwaj, Sanjeev K; Bhardwaj, Neha; Paul, A K; Kumar, Pawan; Kim, Ki-Hyun; Deep, Akash

    2016-01-01

    Diverse classes of sensors have been developed over the past few decades for on-site detections of heavy metals. Most of these sensor systems have exploited optical, electrochemical, piezoelectric, ion-selective (electrode), and electrochemical measurement techniques. As such, numerous efforts have been made to explore the role of biosensors in the detection of heavy metals based on well-known interactions between heavy metals and biomolecules (e.g. proteins, peptides, enzymes, antibodies, whole cells, and nucleic acids). In this review, we cover the recent progress made on different types of biosensors for the detection of heavy metals. Our major focus was examining the use of biomolecules for constructing these biosensors. The discussion is extended further to cover the biosensors' performance along with challenges and opportunities for practical utilization. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Photoacoustic measurement of refractive index of dye solutions and myoglobin for biosensing applications

    PubMed Central

    Goldschmidt, Benjamin S.; Mehta, Smit; Mosley, Jeff; Walter, Chris; Whiteside, Paul J. D.; Hunt, Heather K.; Viator, John A.

    2013-01-01

    Current methods of determining the refractive index of chemicals and materials, such as ellipsometry and reflectometry, are limited by their inability to analyze highly absorbing or highly transparent materials, as well as the required prior knowledge of the sample thickness and estimated refractive index. Here, we present a method of determining the refractive index of solutions using the photoacoustic effect. We show that a photoacoustic refractometer can analyze highly absorbing dye samples to within 0.006 refractive index units of a handheld optical refractometer. Further, we use myoglobin, an early non-invasive biomarker for malignant hyperthermia, as a proof of concept that this technique is applicable for use as a medical diagnostic. Comparison of the speed, cost, simplicity, and accuracy of the techniques shows that this photoacoustic method is well-suited for optically complex systems. PMID:24298407

  13. Localized Surface Plasmon Resonance as a Biosensing Platform for Developing Countries

    PubMed Central

    Hammond, Jules L.; Bhalla, Nikhil; Rafiee, Sarah D.; Estrela, Pedro

    2014-01-01

    The discovery of the phenomena known as localized surface plasmon resonance (LSPR) has provided the basis for many research areas, ranging from materials science to biosensing. LSPR has since been viewed as a transduction platform that could yield affordable, portable devices for a multitude of applications. This review aims to outline the potential applications within developing countries and the challenges that are likely to be faced before the technology can be effectively employed. PMID:25587417

  14. Recent progress on the development of biofuel cells for self-powered electrochemical biosensing and logic biosensing: A review

    DOE PAGES

    Zhou, Ming

    2015-06-12

    Biofuel cells (BFCs) based on enzymes and microorganisms have been recently received considerable attention because they are recognized as an attractive type of energy conversion technology. In addition to the research activities related to the application of BFCs as power source, we have witnessed recently a growing interest in using BFCs for self-powered electrochemical biosensing and electrochemical logic biosensing applications. Compared with traditional biosensors, one of the most significant advantages of the BFCs-based self-powered electrochemical biosensors and logic biosensors is their ability to detect targets integrated with chemical-to-electrochemical energy transformation, thus obviating the requirement of external power sources. Following mymore » previous review (Electroanalysis 2012, 24, 197-209), the present review summarizes, discusses and updates the most recent progress and latest advances on the design and construction of BFCs-based self-powered electrochemical biosensors and logic biosensors. In addition to the traditional approaches based on substrate effect, inhibition effect, blocking effect and gene regulation effect for BFCs-based self-powered electrochemical biosensors and logic biosensors design, some new principles including enzyme effect, co-stabilization effect, competition effect and hybrid effect are summarized and discussed by me in details. The outlook and recommendation of future directions of BFCs-based self-powered electrochemical biosensors and logic biosensors are discussed in the end.« less

  15. Flexible plastic, paper and textile lab-on-a chip platforms for electrochemical biosensing.

    PubMed

    Economou, Anastasios; Kokkinos, Christos; Prodromidis, Mamas

    2018-06-26

    Flexible biosensors represent an increasingly important and rapidly developing field of research. Flexible materials offer several advantages as supports of biosensing platforms in terms of flexibility, weight, conformability, portability, cost, disposability and scope for integration. On the other hand, electrochemical detection is perfectly suited to flexible biosensing devices. The present paper reviews the field of integrated electrochemical bionsensors fabricated on flexible materials (plastic, paper and textiles) which are used as functional base substrates. The vast majority of electrochemical flexible lab-on-a-chip (LOC) biosensing devices are based on plastic supports in a single or layered configuration. Among these, wearable devices are perhaps the ones that most vividly demonstrate the utility of the concept of flexible biosensors while diagnostic cards represent the state-of-the art in terms of integration and functionality. Another important type of flexible biosensors utilize paper as a functional support material enabling the fabrication of low-cost and disposable paper-based devices operating on the lateral flow, drop-casting or folding (origami) principles. Finally, textile-based biosensors are beginning to emerge enabling real-time measurements in the working environment or in wound care applications. This review is timely due to the significant advances that have taken place over the last few years in the area of LOC biosensors and aims to direct the readers to emerging trends in this field.

  16. A polymeric liquid membrane electrode responsive to 3,3',5,5'-tetramethylbenzidine oxidation for sensitive peroxidase/peroxidase mimetic-based potentiometric biosensing.

    PubMed

    Wang, Xuewei; Yang, Yangang; Li, Long; Sun, Mingshuang; Yin, Haogen; Qin, Wei

    2014-05-06

    The oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) has great utility in bioanalysis such as peroxidase/peroxidase mimetic-based biosensing. In this paper, the behaviors of TMB oxidation intermediates/products in liquid/liquid biphasic systems have been investigated for the first time. The free radical, charge transfer complex, and diimine species generated by TMB oxidation are all positively charged under acidic and near-neutral conditions. Electron paramagnetic resonance and visible absorbance spectroscopy data demonstrate that these cationic species can be effectively transferred from an aqueous phase into a water-immiscible liquid phase functionalized by an appropriate cation exchanger. Accordingly, sensitive potential responses of TMB oxidation have been obtained on a cation exchanger-doped polymeric liquid membrane electrode under mildly acidic and near-neutral conditions. By using the membrane electrode responsive to TMB oxidations, two sensitive potentiometric biosensing schemes including the peroxidase-labeled sandwich immunoassay and G-quadruplex DNAzyme-based DNA hybridization assay have been developed. The obtained detection limits for the target antigen and DNA are 0.02 ng/mL and 0.1 nM, respectively. Coupled with other advantages such as low cost, high reliability, and ease of miniaturization and integration, the proposed polymeric liquid membrane electrode holds great promise as a facile and efficient transducer for TMB oxidation and related biosensing applications.

  17. Conformal electronics for longitudinal bio-sensing in at-home assistive and rehabilitative devices.

    PubMed

    Batchelor, John C; Yeates, Stephen G; Casson, Alexander J

    2016-08-01

    Wearable electronics are revolutionizing personalized and preventative healthcare by allowing the easy, unobtrusive, and long term monitoring of a range of body parameters. Conformal electronics which attach directly to the skin in a very robust and long term manner are envisioned as the next generation of highly portable miniaturized computing devices, beyond wearables. In this paper we overview the state-of-the-art in conformal electronics created using silver nanoparticle inkjet printed techniques for home assistive and rehabilitative devices. The barriers to wider adaption, particularly the challenges of high performance antenna design when placed close to the body, are discussed in detail.

  18. Resolution enhancement of wide-field interferometric microscopy by coupled deep autoencoders.

    PubMed

    Işil, Çağatay; Yorulmaz, Mustafa; Solmaz, Berkan; Turhan, Adil Burak; Yurdakul, Celalettin; Ünlü, Selim; Ozbay, Ekmel; Koç, Aykut

    2018-04-01

    Wide-field interferometric microscopy is a highly sensitive, label-free, and low-cost biosensing imaging technique capable of visualizing individual biological nanoparticles such as viral pathogens and exosomes. However, further resolution enhancement is necessary to increase detection and classification accuracy of subdiffraction-limited nanoparticles. In this study, we propose a deep-learning approach, based on coupled deep autoencoders, to improve resolution of images of L-shaped nanostructures. During training, our method utilizes microscope image patches and their corresponding manual truth image patches in order to learn the transformation between them. Following training, the designed network reconstructs denoised and resolution-enhanced image patches for unseen input.

  19. Nanocapillary Atmospheric Pressure Plasma Jet: A Tool for Ultrafine Maskless Surface Modification at Atmospheric Pressure.

    PubMed

    Motrescu, Iuliana; Nagatsu, Masaaki

    2016-05-18

    With respect to microsized surface functionalization techniques we proposed the use of a maskless, versatile, simple tool, represented by a nano- or microcapillary atmospheric pressure plasma jet for producing microsized controlled etching, chemical vapor deposition, and chemical modification patterns on polymeric surfaces. In this work we show the possibility of size-controlled surface amination, and we discuss it as a function of different processing parameters. Moreover, we prove the successful connection of labeled sugar chains on the functionalized microscale patterns, indicating the possibility to use ultrafine capillary atmospheric pressure plasma jets as versatile tools for biosensing, tissue engineering, and related biomedical applications.

  20. Optical sensing: recognition elements and devices

    NASA Astrophysics Data System (ADS)

    Gauglitz, Guenter G.

    2012-09-01

    The requirements in chemical and biochemical sensing with respect to recognition elements, avoiding non-specific interactions, and high loading of the surface for detection of low concentrations as well as optimized detection systems are discussed. Among the many detection principles the optical techniques are classified. Methods using labeled compounds like Total Internal Reflection Fluorescence (TIRF) and direct optical methods like micro reflectometry or refractometry are discussed in comparison. Reflectometric Interference Spectroscopy (RIfS) is presented as a robust simple method for biosensing. As applications, trace analysis of endocrine disruptors in water, hormones in food, detection of viruses and bacteria in food and clinical diagnostics are discussed.

  1. Screen-Printed Electrodes Modified with “Green” Metals for Electrochemical Stripping Analysis of Toxic Elements

    PubMed Central

    Economou, Anastasios

    2018-01-01

    This work reviews the field of screen-printed electrodes (SPEs) modified with “green” metals for electrochemical stripping analysis of toxic elements. Electrochemical stripping analysis has been established as a useful trace analysis technique offering many advantages compared to competing optical techniques. Although mercury has been the preferred electrode material for stripping analysis, the toxicity of mercury and the associated legal requirements in its use and disposal have prompted research towards the development of “green” metals as alternative electrode materials. When combined with the screen-printing technology, such environment-friendly metals can lead to disposable sensors for trace metal analysis with excellent operational characteristics. This review focuses on SPEs modified with Au, Bi, Sb, and Sn for stripping analysis of toxic elements. Different modification approaches (electroplating, bulk modification, use of metal precursors, microengineering techniques) are considered and representative applications are described. A developing related field, namely biosensing based on stripping analysis of metallic nanoprobe labels, is also briefly mentioned. PMID:29596391

  2. Screen-Printed Electrodes Modified with "Green" Metals for Electrochemical Stripping Analysis of Toxic Elements.

    PubMed

    Economou, Anastasios

    2018-03-29

    This work reviews the field of screen-printed electrodes (SPEs) modified with "green" metals for electrochemical stripping analysis of toxic elements. Electrochemical stripping analysis has been established as a useful trace analysis technique offering many advantages compared to competing optical techniques. Although mercury has been the preferred electrode material for stripping analysis, the toxicity of mercury and the associated legal requirements in its use and disposal have prompted research towards the development of "green" metals as alternative electrode materials. When combined with the screen-printing technology, such environment-friendly metals can lead to disposable sensors for trace metal analysis with excellent operational characteristics. This review focuses on SPEs modified with Au, Bi, Sb, and Sn for stripping analysis of toxic elements. Different modification approaches (electroplating, bulk modification, use of metal precursors, microengineering techniques) are considered and representative applications are described. A developing related field, namely biosensing based on stripping analysis of metallic nanoprobe labels, is also briefly mentioned.

  3. High-sensitivity determination of Zn(II) and Cu(II) in vitro by fluorescence polarization

    NASA Astrophysics Data System (ADS)

    Thompson, Richard B.; Maliwal, Badri P.; Feliccia, Vincent; Fierke, Carol A.

    1998-04-01

    Recent work has suggested that free Cu(II) may play a role in syndromes such as Crohn's and Wilson's diseases, as well as being a pollutant toxic at low levels to shellfish and sheep. Similarly, Zn(II) has been implicated in some neural damage in the brain resulting from epilepsy and ischemia. Several high sensitivity methods exist for determining these ions in solution, including GFAAS, ICP-MS, ICP-ES, and electrochemical techniques. However, these techniques are generally slow and costly, require pretreatment of the sample, require complex instruments and skilled personnel, and are incapable of imaging at the cellular and subcellular level. To address these shortcomings we developed fluorescence polarization (anisotropy) biosensing methods for these ions which are very sensitivity, highly selective, require simple instrumentation and little pretreatment, and are inexpensive. Thus free Cu(II) or Zn(II) can be determined at picomolar levels by changes in fluorescence polarization, lifetime, or wavelength ratio using these methods; these techniques may be adapted to microscopy.

  4. An Optical Biosensing Strategy Based on Selective Light Absorption and Wavelength Filtering from Chromogenic Reaction

    PubMed Central

    Chun, Hyeong Jin; Han, Yong Duk; Park, Yoo Min; Kim, Ka Ram; Lee, Seok Jae

    2018-01-01

    To overcome the time and space constraints in disease diagnosis via the biosensing approach, we developed a new signal-transducing strategy that can be applied to colorimetric optical biosensors. Our study is focused on implementation of a signal transduction technology that can directly translate the color intensity signals—that require complicated optical equipment for the analysis—into signals that can be easily counted with the naked eye. Based on the selective light absorption and wavelength-filtering principles, our new optical signaling transducer was built from a common computer monitor and a smartphone. In this signal transducer, the liquid crystal display (LCD) panel of the computer monitor served as a light source and a signal guide generator. In addition, the smartphone was used as an optical receiver and signal display. As a biorecognition layer, a transparent and soft material-based biosensing channel was employed generating blue output via a target-specific bienzymatic chromogenic reaction. Using graphics editor software, we displayed the optical signal guide patterns containing multiple polygons (a triangle, circle, pentagon, heptagon, and 3/4 circle, each associated with a specified color ratio) on the LCD monitor panel. During observation of signal guide patterns displayed on the LCD monitor panel using a smartphone camera via the target analyte-loaded biosensing channel as a color-filtering layer, the number of observed polygons changed according to the concentration of the target analyte via the spectral correlation between absorbance changes in a solution of the biosensing channel and color emission properties of each type of polygon. By simple counting of the changes in the number of polygons registered by the smartphone camera, we could efficiently measure the concentration of a target analyte in a sample without complicated and expensive optical instruments. In a demonstration test on glucose as a model analyte, we could easily measure the concentration of glucose in the range from 0 to 10 mM. PMID:29509682

  5. An Optical Biosensing Strategy Based on Selective Light Absorption and Wavelength Filtering from Chromogenic Reaction.

    PubMed

    Chun, Hyeong Jin; Han, Yong Duk; Park, Yoo Min; Kim, Ka Ram; Lee, Seok Jae; Yoon, Hyun C

    2018-03-06

    To overcome the time and space constraints in disease diagnosis via the biosensing approach, we developed a new signal-transducing strategy that can be applied to colorimetric optical biosensors. Our study is focused on implementation of a signal transduction technology that can directly translate the color intensity signals-that require complicated optical equipment for the analysis-into signals that can be easily counted with the naked eye. Based on the selective light absorption and wavelength-filtering principles, our new optical signaling transducer was built from a common computer monitor and a smartphone. In this signal transducer, the liquid crystal display (LCD) panel of the computer monitor served as a light source and a signal guide generator. In addition, the smartphone was used as an optical receiver and signal display. As a biorecognition layer, a transparent and soft material-based biosensing channel was employed generating blue output via a target-specific bienzymatic chromogenic reaction. Using graphics editor software, we displayed the optical signal guide patterns containing multiple polygons (a triangle, circle, pentagon, heptagon, and 3/4 circle, each associated with a specified color ratio) on the LCD monitor panel. During observation of signal guide patterns displayed on the LCD monitor panel using a smartphone camera via the target analyte-loaded biosensing channel as a color-filtering layer, the number of observed polygons changed according to the concentration of the target analyte via the spectral correlation between absorbance changes in a solution of the biosensing channel and color emission properties of each type of polygon. By simple counting of the changes in the number of polygons registered by the smartphone camera, we could efficiently measure the concentration of a target analyte in a sample without complicated and expensive optical instruments. In a demonstration test on glucose as a model analyte, we could easily measure the concentration of glucose in the range from 0 to 10 mM.

  6. Enzyme-labeled Pt@BSA nanocomposite as a facile electrochemical biosensing interface for sensitive glucose determination.

    PubMed

    Hu, Chenyi; Yang, Da-Peng; Zhu, Fengjuan; Jiang, Fengjing; Shen, Shuiyun; Zhang, Junliang

    2014-03-26

    Electrocatalytic reactions of glucose oxidation based on enzyme-labeled electrochemical biosensors demand a high enzymatic activity and fast electron transfer property to produce the amplified signal response. Through a "green" synthesis method, Pt@BSA nanocomposite was prepared as a biosensing interface for the first time. Herein we presented a convenient and effective glucose sensing matrix based on Pt@BSA nanocomposite along with the covalent adsorption of glucose oxidase (GOD). The electrocatalytic activity toward oxygen reduction was significantly enhanced due to the excellent bioactivity of anchored GOD and superior catalytic performance of interior platinum nanoparticles, which was gradually restrained with the addition of glucose. A sensitive glucose biosensor was then successfully developed upon the restrained oxygen reduction peak current. Differential pulse voltammetry (DPV) was employed to investigate the determination performance of the enzyme biosensor, resulting in a linear response range from 0.05 to 12.05 mM with an optimal detection limit of 0.015 mM. The as-proposed sensing technique revealed high selectivity against endogenous interfering species, satisfactory storage stability, acceptable durability, and favorable fabrication reproducibility with the RSD of 3.8%. During the practical application in human blood serum samples, this glucose biosensor obtained a good detection accuracy of analytical recoveries within 97.5 to 104.0%, providing an alternative scheme for glucose level assay in clinical application.

  7. Label-free surface plasmon sensing towards cancer diagnostics

    NASA Astrophysics Data System (ADS)

    Sankaranarayanan, Goutham

    The main objective of this thesis is to develop a conventional, home-built SPR bio-sensor to demonstrate bio-sensing applications. This emphasizes the understanding of basic concepts of Surface Plasmon Resonance and various interrogation techniques. Intensity Modulation was opted to perform the label-free SPR bio-sensing experiments due to its cost-efficient and compact setup. Later, label-free surface plasmon sensing was carried out to study and understand the bio-molecular interactions between (1). BSA and Anti BSA molecules and (2). Exosome/Liposome on thin metal (Au) films. Exosomes are cell-derived vesicles present in bodily fluids like blood, saliva, urine, epididymal fluid containing miRNAs, RNA, proteins, etc., at stable quantities during normal health conditions. The exosomes comprise varied constituents based on their cell origin from where they are secreted and is specific to that particular origin. However an exacerbated release is observed during tumor or cancer conditions. This increased level of exosomes present in the sample, can be detected using the SPR bio-sensor demonstrated in this thesis and effective thickness of adsorption on Au surface can be estimated. Also, chemically synthesized liposome particles were studied to determine if they can generate an equivalent sensor response to that of exosomes to consider them as an alternate. Finally a 10ppb Mercury (Hg) sensing was performed as part of Environment Monitoring application and results have been tabulated and compared.

  8. A comprehensive review on nano-molybdenum disulfide/DNA interfaces as emerging biosensing platforms.

    PubMed

    Kukkar, Manil; Mohanta, Girish C; Tuteja, Satish K; Kumar, Parveen; Bhadwal, Akhshay Singh; Samaddar, Pallabi; Kim, Ki-Hyun; Deep, Akash

    2018-06-01

    The development of nucleic acid-based portable platforms for the real-time analysis of diseases has attracted considerable scientific and commercial interest. Recently, 2D layered molybdenum sulfide (2D MoS 2 from here on) nanosheets have shown great potential for the development of next-generation platforms for efficient signal transduction. Through combination with DNA as a biorecognition medium, MoS 2 nanostructures have opened new opportunities to design and construct highly sensitive, specific, and commercially viable sensing devices. The use of specific short ssDNA sequences like aptamers has been proven to bind well with the unique transduction properties of 2D MoS 2 nanosheets to realize aptasensing devices. Such sensors can be operated on the principles of fluorescence, electro-cheumuluminescence, and electrochemistry with many advantageous features (e.g., robust biointerfacing through various conjugation chemistries, facile sensor assembly, high stability with regard to temperature/pH, and high affinity to target). This review encompasses the state of the art information on various design tactics and working principles of MoS 2 /DNA sensor technology which is emerging as one of the most sought-after and valuable fields with the advent of nucleic acid inspired devices. To help achieve a new milestone in biosensing applications, great potential of this emerging technique is described further with regard to sensitivity, specificity, operational convenience, and versatility. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Fiber-optic particle plasmon resonance sensor for detection of interleukin-1β in synovial fluids.

    PubMed

    Chiang, Chang-Yue; Hsieh, Ming-Lung; Huang, Kuo-Wei; Chau, Lai-Kwan; Chang, Chia-Ming; Lyu, Shaw-Ruey

    2010-11-15

    A facile and label-free biosensing method has been developed for determining an osteoarthritis concerned cytokine, interleukin-1β (IL-1β), in synovial fluids. The biosensing technique, fiber-optic particle plasmon resonance (FOPPR), is based on gold nanoparticles-modified optical fiber where the gold nanoparticle surface has been modified by a mixed self-assembled monolayer for further conjugation of anti-IL-1β antibody and minimization of nonspecific adsorption. Upon binding of IL-1β to anti-IL-1β on the gold nanoparticle surface, the absorbance of the gold nanoparticle layer on the optical fiber changes and the signal change is enhanced through multiple total internal reflections along the optical fiber. Results show that the detection of IL-1β in synovial fluid by this sensor agrees quantitatively with the clinically accepted enzyme-linked immunosorbent assay (ELISA) method but a much shorter analysis time is required (<10 min). The sensor response versus log concentration of IL-1β was linear (r=0.9947) over the concentration range of 0.050-10 ng/mL and a limit of detection (LOD) of 21 pg/mL (1.2 pM) was achieved. Such a LOD for IL-1β (17 kDa) represents a major advancement in the field of real-time monitoring of low molecular weight proteins in complex biological fluids. Copyright © 2010 Elsevier B.V. All rights reserved.

  10. Smart Nanocomposites of Cu-Hemin Metal-Organic Frameworks for Electrochemical Glucose Biosensing

    PubMed Central

    He, Juan; Yang, Han; Zhang, Yayun; Yu, Jie; Miao, Longfei; Song, Yonghai; Wang, Li

    2016-01-01

    Herein, a smart porous material, Cu-hemin metal-organic-frameworks (Cu-hemin MOFs), was synthesized via assembling of Cu2+ with hemin to load glucose oxidase (GOD) for electrochemical glucose biosensing for the first time. The formation of the Cu-hemin MOFs was verified by scanning electron microscopy, X-ray powder diffraction, Fourier transform infrared spectroscopy, N2 adsorption/desorption isotherms, UV-vis absorption spectroscopy, fluorescence spectroscopy, thermal analysis and electrochemical techniques. The results indicated that the Cu-hemin MOFs showed a ball-flower-like hollow cage structure with a large specific surface area and a large number of mesopores. A large number of GOD molecules could be successfully loaded in the pores of Cu-hemin MOFs to keep their bioactivity just like in a solution. The GOD/Cu-hemin MOFs exhibited both good performance toward oxygen reduction reaction via Cu-hemin MOFs and catalytic oxidation of glucose via GOD, superior to other GOD/MOFs and GOD/nanomaterials. Accordingly, the performance of GOD/Cu-hemin MOFs-based electrochemical glucose sensor was enhanced greatly, showing a wide linear range from 9.10 μM to 36.0 mM and a low detection limit of 2.73 μM. Moreover, the sensor showed satisfactory results in detection of glucose in human serum. This work provides a practical design of new electrochemical sensing platform based on MOFs and biomolecules. PMID:27811998

  11. Quasi-monodimensional polyaniline nanostructures for enhanced molecularly imprinted polymer-based sensing.

    PubMed

    Berti, Francesca; Todros, Silvia; Lakshmi, Dhana; Whitcombe, Michael J; Chianella, Iva; Ferroni, Matteo; Piletsky, Sergey A; Turner, Anthony P F; Marrazza, Giovanna

    2010-10-15

    Recent advances in nanotechnology have allowed significant progress in utilising cutting-edge techniques associated with nanomaterials and nano-fabrication to expand the scope and capability of biosensors to a new level of novelty and functionality. The aim of this work was the development and characterisation of conductive polyaniline (PANI) nanostructures for applications in electrochemical biosensing. We explore a simple, inexpensive and fast route to grow PANI nanotubes, arranged in an ordered structure directly on an electrode surface, by electrochemical polymerisation using alumina nanoporous membranes as a 'nano-mould'. The deposited nanostructures have been characterised electrochemically and morphologically prior to grafting with a molecularly imprinted polymer (MIP) receptor in order to create a model sensor for catechol detection. In this way, PANI nanostructures resulted in a conductive nanowire system which allowed direct electrical connection between the electrode and the synthetic receptor (MIP). To our knowledge, this is the first example of integration between molecularly imprinted polymers and PANI nanostructured electrodes. The advantages of using nanostructures in this particular biosensing application have been evaluated by comparing the analytical performance of the sensor with an analogous non-nanostructured MIP-sensor for catechol detection that was previously developed. A significantly lower limit of detection for catechol has been obtained (29 nM, one order of magnitude), thus demonstrating that the nanostructures are capable of improving the analytical performance of the sensor. Copyright © 2010 Elsevier B.V. All rights reserved.

  12. Genetically designed biosensing systems for high-throughput screening of pharmaceuticals, clinical diagnostics, and environmental monitoring

    NASA Astrophysics Data System (ADS)

    Wenner, Brett R.; Douglass, Phillip; Shrestha, Suresh; Sharma, Bethel V.; Lai, Siyi; Madou, Marc J.; Daunert, Sylvia

    2001-05-01

    The genetically-modified binding proteins calmodulin, the phosphate binding protein, the sulfate binding protein, and the galactose/glucose binding protein have been successfully employed as biosensing elements for the detection of phenothiazines, phosphate, sulfate, and glucose, respectively. Mutant proteins containing unique cysteine residues were utilized in the site-specific labeling of environment-sensitive fluorescent probes. Changes in the environment of the probes upon ligand-induced conformational changes of the proteins result in changes in fluorescence intensity.

  13. Synthesis of porous NiO/CeO2 hybrid nanoflake arrays as a platform for electrochemical biosensing

    NASA Astrophysics Data System (ADS)

    Cui, Jiewu; Luo, Jinbao; Peng, Bangguo; Zhang, Xinyi; Zhang, Yong; Wang, Yan; Qin, Yongqiang; Zheng, Hongmei; Shu, Xia; Wu, Yucheng

    2015-12-01

    Porous NiO/CeO2 hybrid nanoflake arrays fabricated by a facile hydrothermal method were employed as substrates for electrochemical biosensors. The resulting NiO/CeO2 hybrid nanoflake arrays with a large specific surface area and good biocompatibility presented an excellent platform for electrochemical biosensing.Porous NiO/CeO2 hybrid nanoflake arrays fabricated by a facile hydrothermal method were employed as substrates for electrochemical biosensors. The resulting NiO/CeO2 hybrid nanoflake arrays with a large specific surface area and good biocompatibility presented an excellent platform for electrochemical biosensing. Electronic supplementary information (ESI) available: Optical photographs of the as-prepared samples, SEM, TEM, EDS, XRD and BET data of the samples are presented, I-t curves of glucose biosensors based on NiO and NiO/CeO2 NFAs, EIS results of different electrodes. See DOI: 10.1039/c5nr05924k

  14. 3D DNA origami as programmable anchoring points for bioreceptors in fiber optic surface plasmon resonance biosensing.

    PubMed

    Daems, Devin; Pfeifer, Wolfgang; Rutten, Iene; Sacca, Barbara; Spasic, Dragana; Lammertyn, Jeroen

    2018-06-27

    Many challenges in biosensing originate from the fact that the all-important nano-architecture of the biosensor's surface, including precise density and orientation of bioreceptors, is not entirely comprehended. Here we introduced a 3D DNA origami as bioreceptor carrier to functionalize the fiber optic surface plasmon resonance (FO-SPR) sensor with nanoscale precision. Starting from a 24-helix bundle, two distinct DNA origami structures were designed to position thrombin-specific aptamers with different density and distance (27 and 113 nm) from the FO-SPR surface. The origami-based biosensors proved to be not only capable of reproducible, label-free thrombin detection, but revealed also valuable innovative features: (1) a significantly better performance in the absence of backfilling, known as essential in biosensing field, suggesting improved bioreceptor orientation and accessibility and (2) a wider linear range compared to previously reported thrombin biosensors. We envisage that our method will be beneficial both for scientists and clinicians looking for new surface (bio)chemistry and improved diagnostics.

  15. Toxicity of graphene nanoflakes evaluated by cell-based electrochemical impedance biosensing.

    PubMed

    Yoon, Ok Ja; Kim, Insu; Sohn, Il Yung; Kieu, Truong Thuy; Lee, Nae-Eung

    2014-07-01

    Graphene nanoflake toxicity was analyzed using cell-based electrochemical impedance biosensing with interdigitated indium tin oxide (ITO) electrodes installed in a custom-built mini-incubator positioned on an inverted optical microscope. Sensing with electrochemical measurements from interdigitated ITO electrodes was highly linear (R(2) = 0.93 and 0.96 for anodic peak current (Ipa) and cathodic peak current (Ipc), respectively). Size-dependent analysis of Graphene nanoflake toxicity was carried out in a mini-incubator system with cultured HeLa cells treated with Graphene nanoflakes having an average size of 80 or 30 nm for one day. Biological assays of cell proliferation and viability complemented electrochemical impedance measurements. The increased toxicity of smaller Graphene nanoflakes (30 nm) as measured by electrochemical impedance sensing and optical monitoring of treated cells was consistent with the biological assay results. Cell-based electrochemical impedance biosensing can be used to assess the toxicity of nanomaterials with different biomedical and environmental applications. © 2013 Wiley Periodicals, Inc.

  16. Enhanced vibrational spectroscopy, intracellular refractive indexing for label-free biosensing and bioimaging by multiband plasmonic-antenna array.

    PubMed

    Chen, Cheng-Kuang; Chang, Ming-Hsuan; Wu, Hsieh-Ting; Lee, Yao-Chang; Yen, Ta-Jen

    2014-10-15

    In this study, we report a multiband plasmonic-antenna array that bridges optical biosensing and intracellular bioimaging without requiring a labeling process or coupler. First, a compact plasmonic-antenna array is designed exhibiting a bandwidth of several octaves for use in both multi-band plasmonic resonance-enhanced vibrational spectroscopy and refractive index probing. Second, a single-element plasmonic antenna can be used as a multifunctional sensing pixel that enables mapping the distribution of targets in thin films and biological specimens by enhancing the signals of vibrational signatures and sensing the refractive index contrast. Finally, using the fabricated plasmonic-antenna array yielded reliable intracellular observation was demonstrated from the vibrational signatures and intracellular refractive index contrast requiring neither labeling nor a coupler. These unique features enable the plasmonic-antenna array to function in a label-free manner, facilitating bio-sensing and imaging development. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. A novel 'Gold on Gold' biosensing scheme for an on-fiber immunoassay

    NASA Astrophysics Data System (ADS)

    Punjabi, N.; Satija, J.; Mukherji, S.

    2015-05-01

    In this paper, we propose a novel „gold on gold‟ biosensing scheme for absorbance based fiber-optic biosensor. First, a self-assembled monolayer of gold nanoparticles is formed at the sensing region of the fiber-optic probe by incubating an amino-silanized probe in a colloidal gold solution. Thereafter, the receptor moieties, i.e. Human immunoglobulin G (HIgG) were immobilized by using standard alkanethiol and classic carbodiimide coupling chemistry. Finally, biosensing experiments were performed with different concentrations of gold nanoparticle-tagged analyte, i.e. Goat anti- Human immunoglobulin G (Nanogold-GaHIgG). The sensor response was observed to be more than five-fold compared to the control bioassay, in which the sensor matrix was devoid of gold nanoparticle film. Also, the response was found to be ~10 times higher compared to the FITC-tagged scheme and ~14.5 times better compared to untagged scheme. This novel scheme also demonstrated the potential in improving the limit of detection for the fiber-optic biosensors.

  18. An auto-biotinylated bifunctional protein nanowire for ultra-sensitive molecular biosensing.

    PubMed

    Men, Dong; Zhang, Zhi-Ping; Guo, Yong-Chao; Zhu, Duan-Hao; Bi, Li-Jun; Deng, Jiao-Yu; Cui, Zong-Qiang; Wei, Hong-Ping; Zhang, Xian-En

    2010-12-15

    In order to obtain an ultra-sensitive molecular biosensor, we designed an auto-biotinylated bifunctional protein nanowire (bFPNw) based on the self-assembly of a yeast amyloid protein, Sup35, to which protein G and a biotin acceptor peptide (BAP) were genetically fused. These auto-biotinylated bFPNws can transfer hundreds of commercially available diagnostic enzymes to an antigen-antibody complex via the biotin-avidin system, greatly enhancing the sensitivity of immune-biosensing. Compared to our previously reported seeding-induced bFPNws (Men et al., 2009), these auto-biotinylated bFPNws gave greater signal amplification, reduced non-specific binding and improved stability. The auto-biotinylated self-assembled bFPNw molecular biosensors were applied to detect Yersinia pestis (Y. pestis) F1 antigen and showed a 2000- to 4000-fold increase in sensitivity compared to traditional immunoassays, demonstrating the potential use of these self-assembling protein nanowires in biosensing. Copyright © 2010 Elsevier B.V. All rights reserved.

  19. A 0.18 μm biosensor front-end based on 1/f noise, distortion cancelation and chopper stabilization techniques.

    PubMed

    Balasubramanian, Viswanathan; Ruedi, Pierre-Francois; Temiz, Yuksel; Ferretti, Anna; Guiducci, Carlotta; Enz

    2013-10-01

    This paper presents a novel sensor front-end circuit that addresses the issues of 1/f noise and distortion in a unique way by using canceling techniques. The proposed front-end is a fully differential transimpedance amplifier (TIA) targeted for current mode electrochemical biosensing applications. In this paper, we discuss the architecture of this canceling based front-end and the optimization methods followed for achieving low noise, low distortion performance at minimum current consumption are presented. To validate the employed canceling based front-end, it has been realized in a 0.18 μm CMOS process and the characterization results are presented. The front-end has also been tested as part of a complete wireless sensing system and the cyclic voltammetry (CV) test results from electrochemical sensors are provided. Overall current consumption in the front-end is 50 μA while operating on a 1.8 V supply.

  20. Numerical techniques for high-throughput reflectance interference biosensing

    NASA Astrophysics Data System (ADS)

    Sevenler, Derin; Ünlü, M. Selim

    2016-06-01

    We have developed a robust and rapid computational method for processing the raw spectral data collected from thin film optical interference biosensors. We have applied this method to Interference Reflectance Imaging Sensor (IRIS) measurements and observed a 10,000 fold improvement in processing time, unlocking a variety of clinical and scientific applications. Interference biosensors have advantages over similar technologies in certain applications, for example highly multiplexed measurements of molecular kinetics. However, processing raw IRIS data into useful measurements has been prohibitively time consuming for high-throughput studies. Here we describe the implementation of a lookup table (LUT) technique that provides accurate results in far less time than naive methods. We also discuss an additional benefit that the LUT method can be used with a wider range of interference layer thickness and experimental configurations that are incompatible with methods that require fitting the spectral response.

  1. Aptamer-integrated DNA nanostructures for biosensing, bioimaging and cancer therapy.

    PubMed

    Meng, Hong-Min; Liu, Hui; Kuai, Hailan; Peng, Ruizi; Mo, Liuting; Zhang, Xiao-Bing

    2016-05-03

    The combination of nanostructures with biomolecules leading to the generation of functional nanosystems holds great promise for biotechnological and biomedical applications. As a naturally occurring biomacromolecule, DNA exhibits excellent biocompatibility and programmability. Also, scalable synthesis can be readily realized through automated instruments. Such unique properties, together with Watson-Crick base-pairing interactions, make DNA a particularly promising candidate to be used as a building block material for a wide variety of nanostructures. In the past few decades, various DNA nanostructures have been developed, including one-, two- and three-dimensional nanomaterials. Aptamers are single-stranded DNA or RNA molecules selected by Systematic Evolution of Ligands by Exponential Enrichment (SELEX), with specific recognition abilities to their targets. Therefore, integrating aptamers into DNA nanostructures results in powerful tools for biosensing and bioimaging applications. Furthermore, owing to their high loading capability, aptamer-modified DNA nanostructures have also been altered to play the role of drug nanocarriers for in vivo applications and targeted cancer therapy. In this review, we summarize recent progress in the design of aptamers and related DNA molecule-integrated DNA nanostructures as well as their applications in biosensing, bioimaging and cancer therapy. To begin with, we first introduce the SELEX technology. Subsequently, the methodologies for the preparation of aptamer-integrated DNA nanostructures are presented. Then, we highlight their applications in biosensing and bioimaging for various targets, as well as targeted cancer therapy applications. Finally, we discuss several challenges and further opportunities in this emerging field.

  2. Microfluidic Biosensing Systems Using Magnetic Nanoparticles

    PubMed Central

    Giouroudi, Ioanna; Keplinger, Franz

    2013-01-01

    In recent years, there has been rapidly growing interest in developing hand held, sensitive and cost-effective on-chip biosensing systems that directly translate the presence of certain bioanalytes (e.g., biomolecules, cells and viruses) into an electronic signal. The impressive and rapid progress in micro- and nanotechnology as well as in biotechnology enables the integration of a variety of analytical functions in a single chip. All necessary sample handling and analysis steps are then performed within the chip. Microfluidic systems for biomedical analysis usually consist of a set of units, which guarantees the manipulation, detection and recognition of bioanalytes in a reliable and flexible manner. Additionally, the use of magnetic fields for performing the aforementioned tasks has been steadily gaining interest. This is because magnetic fields can be well tuned and applied either externally or from a directly integrated solution in the biosensing system. In combination with these applied magnetic fields, magnetic nanoparticles are utilized. Some of the merits of magnetic nanoparticles are the possibility of manipulating them inside microfluidic channels by utilizing high gradient magnetic fields, their detection by integrated magnetic microsensors, and their flexibility due to functionalization by means of surface modification and specific binding. Their multi-functionality is what makes them ideal candidates as the active component in miniaturized on-chip biosensing systems. In this review, focus will be given to the type of biosening systems that use microfluidics in combination with magnetoresistive sensors and detect the presence of bioanalyte tagged with magnetic nanoparticles. PMID:24022689

  3. Ambient light-based optical biosensing platform with smartphone-embedded illumination sensor.

    PubMed

    Park, Yoo Min; Han, Yong Duk; Chun, Hyeong Jin; Yoon, Hyun C

    2017-07-15

    We present a hand-held optical biosensing system utilizing a smartphone-embedded illumination sensor that is integrated with immunoblotting assay method. The smartphone-embedded illumination sensor is regarded as an alternative optical receiver that can replaces the conventional optical analysis apparatus because the illumination sensor can respond to the ambient light in a wide range of wavelengths, including visible and infrared. To demonstrate the biosensing applicability of our system employing the enzyme-mediated immunoblotting and accompanying light interference, various types of ambient light conditions including outdoor sunlight and indoor fluorescent were tested. For the immunoblotting assay, the biosensing channel generating insoluble precipitates as an end product of the enzymatic reaction is fabricated and mounted on the illumination sensor of the smartphone. The intensity of penetrating light arrives on the illumination sensor is inversely proportional to the amount of precipitates produced in the channel, and these changes are immediately analyzed and quantified via smartphone software. In this study, urinary C-terminal telopeptide fragment of type II collagen (uCTX-II), a biomarker of osteoarthritis diagnosis, was tested as a model analyte. The developed smartphone-based sensing system efficiently measured uCTX-II in the 0-5ng/mL concentration range with a high sensitivity and accuracy under various light conditions. These assay results show that the illumination sensor-based optical biosensor is suitable for point-of-care testing (POCT). Copyright © 2016 Elsevier B.V. All rights reserved.

  4. A paper based graphene-nanocauliflower hybrid composite for point of care biosensing.

    PubMed

    Burrs, S L; Bhargava, M; Sidhu, R; Kiernan-Lewis, J; Gomes, C; Claussen, J C; McLamore, E S

    2016-11-15

    We demonstrate the first report of graphene paper functionalized with fractal platinum nanocauliflower for use in electrochemical biosensing of small molecules (glucose) or detection of pathogenic bacteria (Escherichia coli O157:H7). Raman spectroscopy, scanning electron microscopy and energy dispersive spectroscopy show that graphene oxide-coated nanocellulose was partially reduced by both thermal treatment, and further reduced by chemical treatment (ascorbic acid). Fractal nanoplatinum with cauliflower-like morphology was formed on the reduced graphene oxide paper using pulsed sonoelectrodeposition, producing a conductive paper with an extremely high electroactive surface area (0.29±0.13cm(2)), confirmed by cyclic voltammetry and electrochemical impedance spectroscopy. The platinum surface was functionalized with either glucose oxidase (via chitosan encapsulation) or a RNA aptamer (via covalent linking) for demonstration as a point of care biosensor. The detection limit for both glucose (0.08±0.02μM) and E. coli O157:H7 (≈4 CFUmL(-1)) were competitive with, or superior to, previously reported devices in the biosensing literature. The response time (6s for glucose and 12min for E. coli) were also similar to silicon biochip and commercial electrode sensors. The results demonstrate that the nanocellulose-graphene-nanoplatinum material is an excellent paper-based platform for development of electrochemical biosensors targeting small molecules or whole cells for use in point of care biosensing. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Characterization of carrier erythrocytes for biosensing applications

    NASA Astrophysics Data System (ADS)

    Bustamante López, Sandra C.; Meissner, Kenith E.

    2017-09-01

    Erythrocyte abundance, mobility, and carrying capacity make them attractive as a platform for blood analyte sensing as well as for drug delivery. Sensor-loaded erythrocytes, dubbed erythrosensors, could be reinfused into the bloodstream, excited noninvasively through the skin, and used to provide measurement of analyte levels in the bloodstream. Several techniques to load erythrocytes, thus creating carrier erythrocytes, exist. However, their cellular characteristics remain largely unstudied. Changes in cellular characteristics lead to removal from the bloodstream. We hypothesize that erythrosensors need to maintain native erythrocytes' (NEs) characteristics to serve as a long-term sensing platform. Here, we investigate two loading techniques and the properties of the resulting erythrosensors. For loading, hypotonic dilution requires a hypotonic solution while electroporation relies on electrical pulses to perforate the erythrocyte membrane. We analyze the resulting erythrosensor signal, size, morphology, and hemoglobin content. Although the resulting erythrosensors exhibit morphological changes, their size was comparable with NEs. The hypotonic dilution technique was found to load erythrosensors much more efficiently than electroporation, and the sensors were loaded throughout the volume of the erythrosensors. Finally, both techniques resulted in significant loss of hemoglobin. This study points to the need for continued development of loading techniques that better preserve NE characteristics.

  6. A low-cost photonic biosensor built on a polymer platform

    NASA Astrophysics Data System (ADS)

    Wang, Linghua; Kodeck, Valérie; Van Vlierberghe, Sandra; Ren, Jun; Teng, Jie; Han, Xiuyou; Jian, Xigao; Baets, Roel; Morthier, Geert; Zhao, Mingshan

    2011-12-01

    Planar integrated optical biosensors are becoming more and more important as they facilitate label-free and real time monitoring biosensing with high sensitivity. In this paper, the systematic research on one kind of optical biosensor, based on a resonant principle in a polymer ring resonator, will be presented. Reduced footprint and high sensitivity are advantages of this kind of biosensor. Rather than expensive CMOS fabrication, the device with high performance is fabricated through a simple UV based soft imprint technique utilizing self-developed low loss polymer material. The measurement results for the bulk sensing of a NaCl solution and the surface sensing of a minimal amount of avidin molecules in a buffered solution will be presented.

  7. Carbon dots: emerging theranostic nanoarchitectures.

    PubMed

    Mishra, Vijay; Patil, Akshay; Thakur, Sourav; Kesharwani, Prashant

    2018-06-01

    Nanotechnology has gained significant interest from biomedical and analytical researchers in recent years. Carbon dots (C-dots), a new member of the carbon nanomaterial family, are spherical, nontoxic, biocompatible, and discrete particles less than 10nm in diameter. Research interest has focused on C-dots because of their ultra-compact nanosize, favorable biocompatibility, outstanding photoluminescence, superior electron transfer ability, and versatile surface engineering properties. C-dots show significant potential for use in cellular imaging, biosensing, targeted drug delivery, and other biomedical applications. Here we discuss C-dots, in terms of their physicochemical properties, fabrication techniques, toxicity issues, surface engineering and biomedical potential in drug delivery, targeting as well as bioimaging. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Nanostructured magnesium oxide biosensing platform for cholera detection

    NASA Astrophysics Data System (ADS)

    Patel, Manoj K.; Azahar Ali, Md.; Agrawal, Ved V.; Ansari, Z. A.; Ansari, S. G.; Malhotra, B. D.

    2013-04-01

    We report fabrication of highly crystalline nanostructured magnesium oxide (NanoMgO, size >30 nm) film electrophoretically deposited onto indium-tin-oxide (ITO) glass substrate for Vibrio cholerae detection. The single stranded deoxyribonucleic acid (ssDNA) probe, consisting of 23 bases (O1 gene sequence) immobilized onto NanoMgO/ITO electrode surface, has been characterized using electrochemical, Fourier Transform-Infra Red, and UltraViolet-visible spectroscopic techniques. The hybridization studies of ssDNA/NanoMgO/ITO bioelectrode with fragmented target DNA conducted using differential pulse voltammetry reveal sensitivity as 16.80 nA/ng/cm2, response time of 3 s, linearity as 100-500 ng/μL, and stability of about 120 days.

  9. Gold nanoparticles: From nanomedicine to nanosensing

    PubMed Central

    Chen, Po C; Mwakwari, Sandra C; Oyelere, Adegboyega K

    2008-01-01

    Because of their photo-optical distinctiveness and biocompatibility, gold nanoparticles (AuNPs) have proven to be powerful tools in various nanomedicinal and nanomedical applications. In this review article, we discuss recent advances in the application of AuNPs in diagnostic imaging, biosensing and binary cancer therapeutic techniques. We also provide an eclectic collection of AuNPs delivery strategies, including assorted classes of delivery vehicles, which are showing great promise in specific targeting of AuNPs to diseased tissues. However, successful clinical implementations of the promised applications of AuNPs are still hampered by many barriers. In particular, more still needs to be done regarding our understanding of the pharmacokinetics and toxicological profiles of AuNPs and AuNPs-conjugates. PMID:24198460

  10. Hybrid integration of VCSELs onto a silicon photonic platform for biosensing application

    NASA Astrophysics Data System (ADS)

    Lu, Huihui; Lee, Jun Su; Zhao, Yan; Cardile, Paolo; Daly, Aidan; Carroll, Lee; O'Brien, Peter

    2017-02-01

    This paper presents a technology of hybrid integration vertical cavity surface emitting lasers (VCSELs) directly on silicon photonics chip. By controlling the reflow of the solder balls used for electrical and mechanical bonding, the VCSELs were bonded at 10 degree to achieve the optimum angle-of-incidence to the planar grating coupler through vision based flip-chip techniques. The 1 dB discrepancy between optical loss values of flip-chip passive assembly and active alignment confirmed that the general purpose of the flip-chip design concept is achieved. This hybrid approach of integrating a miniaturized light source on chip opens the possibly of highly compact sensor system, which enable future portable and wearable diagnostics devices.

  11. Fiber Optic Surface Plasmon Resonance-Based Biosensor Technique: Fabrication, Advancement, and Application.

    PubMed

    Liang, Gaoling; Luo, Zewei; Liu, Kunping; Wang, Yimin; Dai, Jianxiong; Duan, Yixiang

    2016-05-03

    Fiber optic-based biosensors with surface plasmon resonance (SPR) technology are advanced label-free optical biosensing methods. They have brought tremendous progress in the sensing of various chemical and biological species. This review summarizes four sensing configurations (prism, grating, waveguide, and fiber optic) with two ways, attenuated total reflection (ATR) and diffraction, to excite the surface plasmons. Meanwhile, the designs of different probes (U-bent, tapered, and other probes) are also described. Finally, four major types of biosensors, immunosensor, DNA biosensor, enzyme biosensor, and living cell biosensor, are discussed in detail for their sensing principles and applications. Future prospects of fiber optic-based SPR sensor technology are discussed.

  12. Microfluidic Surface Plasmon Resonance Sensors: From Principles to Point-of-Care Applications

    PubMed Central

    Wang, Da-Shin; Fan, Shih-Kang

    2016-01-01

    Surface plasmon resonance (SPR) is a label-free, highly-sensitive, and real-time sensing technique. Conventional SPR sensors, which involve a planar thin gold film, have been widely exploited in biosensing; various miniaturized formats have been devised for portability purposes. Another type of SPR sensor which utilizes localized SPR (LSPR), is based on metal nanostructures with surface plasmon modes at the structural interface. The resonance condition is sensitive to the refractive index change of the local medium. The principles of these two types of SPR sensors are reviewed and their integration with microfluidic platforms is described. Further applications of microfluidic SPR sensors to point-of-care (POC) diagnostics are discussed. PMID:27472340

  13. Wireless powering and data telemetry for biomedical implants.

    PubMed

    Young, Darrin J

    2009-01-01

    Wireless powering and data telemetry techniques for two biomedical implant studies based on (1) wireless in vivo EMG sensor for intelligent prosthetic control and (2) adaptively RF powered implantable bio-sensing microsystem for real-time genetically engineered mice monitoring are presented. Inductive-coupling-based RF powering and passive data telemetry is effective for wireless in vivo EMG sensing, where the internal and external RF coils are positioned with a small separation distance and fixed orientation. Adaptively controlled RF powering and active data transmission are critical for mobile implant application such as real-time physiological monitoring of untethered laboratory animals. Animal implant studies have been successfully completed to demonstrate the wireless and batteryless in vivo sensing capabilities.

  14. Introduction to biosensors.

    PubMed

    Bhalla, Nikhil; Jolly, Pawan; Formisano, Nello; Estrela, Pedro

    2016-06-30

    Biosensors are nowadays ubiquitous in biomedical diagnosis as well as a wide range of other areas such as point-of-care monitoring of treatment and disease progression, environmental monitoring, food control, drug discovery, forensics and biomedical research. A wide range of techniques can be used for the development of biosensors. Their coupling with high-affinity biomolecules allows the sensitive and selective detection of a range of analytes. We give a general introduction to biosensors and biosensing technologies, including a brief historical overview, introducing key developments in the field and illustrating the breadth of biomolecular sensing strategies and the expansion of nanotechnological approaches that are now available. © 2016 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  15. Plasma Enhanced Growth of Carbon Nanotubes For Ultrasensitive Biosensors

    NASA Technical Reports Server (NTRS)

    Cassell, Alan M.; Meyyappan, M.

    2004-01-01

    The multitude of considerations facing nanostructure growth and integration lends itself to combinatorial optimization approaches. Rapid optimization becomes even more important with wafer-scale growth and integration processes. Here we discuss methodology for developing plasma enhanced CVD growth techniques for achieving individual, vertically aligned carbon nanostructures that show excellent properties as ultrasensitive electrodes for nucleic acid detection. We utilize high throughput strategies for optimizing the upstream and downstream processing and integration of carbon nanotube electrodes as functional elements in various device types. An overview of ultrasensitive carbon nanotube based sensor arrays for electrochemical bio-sensing applications and the high throughput methodology utilized to combine novel electrode technology with conventional MEMS processing will be presented.

  16. Plasma Enhanced Growth of Carbon Nanotubes For Ultrasensitive Biosensors

    NASA Technical Reports Server (NTRS)

    Cassell, Alan M.; Li, J.; Ye, Q.; Koehne, J.; Chen, H.; Meyyappan, M.

    2004-01-01

    The multitude of considerations facing nanostructure growth and integration lends itself to combinatorial optimization approaches. Rapid optimization becomes even more important with wafer-scale growth and integration processes. Here we discuss methodology for developing plasma enhanced CVD growth techniques for achieving individual, vertically aligned carbon nanostructures that show excellent properties as ultrasensitive electrodes for nucleic acid detection. We utilize high throughput strategies for optimizing the upstream and downstream processing and integration of carbon nanotube electrodes as functional elements in various device types. An overview of ultrasensitive carbon nanotube based sensor arrays for electrochemical biosensing applications and the high throughput methodology utilized to combine novel electrode technology with conventional MEMS processing will be presented.

  17. Optical and Electric Multifunctional CMOS Image Sensors for On-Chip Biosensing Applications.

    PubMed

    Tokuda, Takashi; Noda, Toshihiko; Sasagawa, Kiyotaka; Ohta, Jun

    2010-12-29

    In this review, the concept, design, performance, and a functional demonstration of multifunctional complementary metal-oxide-semiconductor (CMOS) image sensors dedicated to on-chip biosensing applications are described. We developed a sensor architecture that allows flexible configuration of a sensing pixel array consisting of optical and electric sensing pixels, and designed multifunctional CMOS image sensors that can sense light intensity and electric potential or apply a voltage to an on-chip measurement target. We describe the sensors' architecture on the basis of the type of electric measurement or imaging functionalities.

  18. Bio-sensing with butterfly wings: naturally occurring nano-structures for SERS-based malaria parasite detection.

    PubMed

    Garrett, Natalie L; Sekine, Ryo; Dixon, Matthew W A; Tilley, Leann; Bambery, Keith R; Wood, Bayden R

    2015-09-07

    Surface enhanced Raman scattering (SERS) is a powerful tool with great potential to provide improved bio-sensing capabilities. The current 'gold-standard' method for diagnosis of malaria involves visual inspection of blood smears using light microscopy, which is time consuming and can prevent early diagnosis of the disease. We present a novel surface-enhanced Raman spectroscopy substrate based on gold-coated butterfly wings, which enabled detection of malarial hemozoin pigment within lysed blood samples containing 0.005% and 0.0005% infected red blood cells.

  19. Biosensing using long-range surface plasmon waveguides

    NASA Astrophysics Data System (ADS)

    Krupin, Oleksiy; Khodami, Maryam; Fan, Hui; Wong, Wei Ru; Mahamd Adikan, Faisal Rafiq; Berini, Pierre

    2017-05-01

    Long-range surface plasmon waveguides, and their application to various transducer architectures for amplitude- or phase-sensitive biosensing, are discussed. Straight and Y-junction waveguides are used for direct intensity-based detection, whereas Bragg gratings and single-, dual- and triple-output Mach Zehnder interferometers are used for phasebased detection. In either case, multiple-output biosensors which provide means for referencing are very useful to eliminate common perturbations and drift. Application of the biosensors to disease detection in complex fluids is discussed. Application to biomolecular interaction analysis and kinetics extraction is also discussed.

  20. Biosensing with Quantum Dots: A Microfluidic Approach

    PubMed Central

    Vannoy, Charles H.; Tavares, Anthony J.; Noor, M. Omair; Uddayasankar, Uvaraj; Krull, Ulrich J.

    2011-01-01

    Semiconductor quantum dots (QDs) have served as the basis for signal development in a variety of biosensing technologies and in applications using bioprobes. The use of QDs as physical platforms to develop biosensors and bioprobes has attracted considerable interest. This is largely due to the unique optical properties of QDs that make them excellent choices as donors in fluorescence resonance energy transfer (FRET) and well suited for optical multiplexing. The large majority of QD-based bioprobe and biosensing technologies that have been described operate in bulk solution environments, where selective binding events at the surface of QDs are often associated with relatively long periods to reach a steady-state signal. An alternative approach to the design of biosensor architectures may be provided by a microfluidic system (MFS). A MFS is able to integrate chemical and biological processes into a single platform and allows for manipulation of flow conditions to achieve, by sample transport and mixing, reaction rates that are not entirely diffusion controlled. Integrating assays in a MFS provides numerous additional advantages, which include the use of very small amounts of reagents and samples, possible sample processing before detection, ultra-high sensitivity, high throughput, short analysis time, and in situ monitoring. Herein, a comprehensive review is provided that addresses the key concepts and applications of QD-based microfluidic biosensors with an added emphasis on how this combination of technologies provides for innovations in bioassay designs. Examples from the literature are used to highlight the many advantages of biosensing in a MFS and illustrate the versatility that such a platform offers in the design strategy. PMID:22163723

  1. Solid-state devices for detection of DNA, protein biomarkers and cells

    NASA Astrophysics Data System (ADS)

    Asghar, Waseem

    Nanobiotechnology and BioMEMS have had tremendous impact on biosensing in the areas of cancer cell detection and therapeutics, disease diagnostics, proteomics and DNA analysis. Diseases are expressed on all levels including DNA, protein, cell and tissue. Therefore it is very critical to develop biosensors at each level. The power of the nanotechnology lies in the fact that we can fabricate devices on all scales from micro to nano. This dissertation focuses on four areas: 1) Development of nanopore sensors for DNA analysis; 2) Development of micropore sensors for early detection of circulating tumor cells (CTCs) from whole blood; 3) Synthesis of nano-textured substrates for cancer isolation and tissue culture applications; 4) Fabrication of nanoscale break-junctions. All of these sensors are fabricated using standard silicon processing techniques. Pulsed plasma polymer deposition is also utilized to control the density of the biosensor surface charges. These devices are then used for efficient detection of DNA, proteins and cells, and can be potentially used in point-of-care systems. Overall, our designed biosensing platforms offer improved selectivity, yield and reliability. Novel approaches to nanopore shrinking are simple, reliable and do not change the material composition around the pore boundary. The micropores provide a direct interface to distinguish CTCs from normal cell without requiring fluorescent dyes and surface functionalization. Nano-textured surfaces and break-junctions can be used for enhanced adhesion of cells and selective detection of proteins respectively.

  2. Electrochemical sensor and biosensor platforms based on advanced nanomaterials for biological and biomedical applications.

    PubMed

    Maduraiveeran, Govindhan; Sasidharan, Manickam; Ganesan, Vellaichamy

    2018-04-30

    Introduction of novel functional nanomaterials and analytical technologies signify a foremost possibility for the advance of electrochemical sensor and biosensor platforms/devices for a broad series of applications including biological, biomedical, biotechnological, clinical and medical diagnostics, environmental and health monitoring, and food industries. The design of sensitive and selective electrochemical biological sensor platforms are accomplished conceivably by offering new surface modifications, microfabrication techniques, and diverse nanomaterials with unique properties for in vivo and in vitro medical analysis via relating a sensibly planned electrode/solution interface. The advantageous attributes such as low-cost, miniaturization, energy efficient, easy fabrication, online monitoring, and the simultaneous sensing capability are the driving force towards continued growth of electrochemical biosensing platforms, which have fascinated the interdisciplinary research arenas spanning chemistry, material science, biological science, and medical industries. The electrochemical biosensor platforms have potential applications in the early-stage detection and diagnosis of disease as stout and tunable diagnostic and therapeutic systems. The key aim of this review is to emphasize the newest development in the design of sensing and biosensing platforms based on functional nanomaterials for biological and biomedical applications. High sensitivity and selectivity, fast response, and excellent durability in biological media are all critical aspects which will also be wisely addressed. Potential applications of electrochemical sensor and biosensor platforms based on advanced functional nanomaterials for neuroscience diagnostics, clinical, point-of-care diagnostics and medical industries are also concisely presented. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Optical characterization of Jerusalem cross-shaped nanoaperture antenna arrays

    NASA Astrophysics Data System (ADS)

    Turkmen, Mustafa; Aslan, Ekin; Aslan, Erdem

    2014-03-01

    Recent advances in nanofabrication and computational electromagnetic design techniques have enabled the realization of metallic nanostructures in different shapes and sizes with adjustable resonance frequencies. To date, many metamaterial designs in various geometries with the used of different materials have been presented for the applications of surface plasmons, cloaking, biosensing, and frequency selective surfaces1-5. Surface plasmons which are collective electron oscillations on metal surfaces ensure that plasmonic nanoantennas can be used in many applications like biosensing at infrared (IR) and visible regions. The nanostructure that we introduce has a unit cell that consists of Jerusalem crossshaped nanoaperture on a gold layer, which is standing on suspended SiNx, Si or glass membranes. The proposed nanoaperture antenna array has a regular and stable spectral response. In this study, we present sensitivity of the resonance characteristics of Jerusalem cross-shaped nanoaperture antenna arrays to the changes in substrate parameters and metal thickness. We demonstrate that resonance frequency values can be adjusted by changing the thicknesses and types of the dielectric substrate and the metallic layer. Numerical calculations on spectral response of the nanoantenna array are performed by using Finite Difference Time Domain (FDTD) method6. The results of the simulations specify that resonance frequencies, the reflectance and transmittance values at resonances, and the band gap vary by the change of substrate parameters and metal thicknesses. These variations is a sign of that the proposed nanoantenna can be employed for sensing applications.

  4. Carbon Nanotubes Arranged As Smart Interfaces in Lipid Langmuir-Blodgett Films Enhancing the Enzymatic Properties of Penicillinase for Biosensing Applications.

    PubMed

    Scholl, Fabio A; Morais, Paulo V; Gabriel, Rayla C; Schöning, Michael J; Siqueira, José R; Caseli, Luciano

    2017-09-13

    In this paper, carbon nanotubes (CNTs) were incorporated in penicillinase-phospholipid Langmuir and Langmuir-Blodgett (LB) films to enhance the enzyme catalytic properties. Adsorption of the penicillinase and CNTs at dimyristoylphosphatidic acid (DMPA) monolayers at the air-water interface was investigated by surface pressure-area isotherms, vibrational spectroscopy, and Brewster angle microscopy. The floating monolayers were transferred to solid supports through the LB technique, forming mixed DMPA-CNTs-PEN films, which were investigated by quartz crystal microbalance, vibrational spectroscopy, and atomic force microscopy. Enzyme activity was studied with UV-vis spectroscopy and the feasibility of the supramolecular device nanostructured as ultrathin films were essayed in a capacitive electrolyte-insulator-semiconductor (EIS) sensor device. The presence of CNTs in the enzyme-lipid LB film not only tuned the catalytic activity of penicillinase but also helped conserve its enzyme activity after weeks, showing increased values of activity. Viability as penicillin sensor was demonstrated with capacitance/voltage and constant capacitance measurements, exhibiting regular and distinctive output signals over all concentrations used in this work. These results may be related not only to the nanostructured system provided by the film, but also to the synergism between the compounds on the active layer, leading to a surface morphology that allowed a fast analyte diffusion because of an adequate molecular accommodation, which also preserved the penicillinase activity. This work therefore demonstrates the feasibility of employing LB films composed of lipids, CNTs, and enzymes as EIS devices for biosensing applications.

  5. Using ruthenium polypyridyl functionalized ZnO mesocrystals and gold nanoparticle dotted graphene composite for biological recognition and electrochemiluminescence biosensing

    NASA Astrophysics Data System (ADS)

    Liu, Suli; Zhang, Jinxing; Tu, Wenwen; Bao, Jianchun; Dai, Zhihui

    2014-01-01

    Using ruthenium polypyridyl functionalized ZnO mesocrystals as bionanolabels, a universal biological recognition and biosensing platform based on gold nanoparticle (AuNP) dotted reduced graphene oxide (rGO) composite was developed. AuNP-rGO accelerated electron transfer between the detection probe and the electrode, and increased the surface area of the working electrode to load greater amounts of the capture antibodies. The large surface area of ZnO mesocrystals was beneficial for loading a high content ruthenium polypyridyl complex, leading to an enhanced electrochemiluminescence signal. Using α-fetoprotein (AFP) as a model, a simple and sensitive sandwich-type electrochemiluminescence biosensor with tripropylamine (TPrA) as a coreactant for detection of AFP was constructed. The designed biosensor provided a good linear range from 0.04 to 500 ng mL-1 with a low detection limit of 0.031 ng mL-1 at a S/N of 3 for AFP determination. The proposed biological recognition and biosensing platform extended the application of ruthenium polypyridyl functionalized ZnO mesocrystals, which provided a new promising prospect.

  6. An Optical Biosensing Platform using Reprecipitated Polyaniline Microparticles

    NASA Astrophysics Data System (ADS)

    Nemzer, Louis; Epstein, Arthur

    2009-03-01

    A great deal of effort remains focused on the goal of developing a continuous in vivo glucose monitoring system for patients with diabetes mellitus. We report a proof-of-concept study on a reagentless optical biosensing platform that circumvents the problems usually associated with direct glucose detection by utilizing the UV-VIS absorption properties of polyaniline, a biocompatible polymer. When the enzyme glucose oxidase is entrapped within reprecipitated polyaniline microparticles, a glucose molecule readily donates two protons and two electrons to the polyaniline, reversibly altering the polymer's oxidation state. The resultant change can be monitored by measuring the absorption at wavelengths that fall within the ``optical window'' for skin. The micro-structured morphology also insures a high surface-area to volume ratio. Data from in vitro prototype devices indicate that in the low enzyme-loading regime, the response can be fit to the Michaelis-Menten model for enzyme kinetics, but at higher enzyme loading, diffusion effects dominate. As a biosensing platform, the system also has the potential to be adapted to detect other biologically relevant analytes, including cholesterol and ethanol.

  7. A Graphene-Based Biosensing Platform Based on Regulated Release of an Aptameric DNA Biosensor

    PubMed Central

    Mao, Yu; Chen, Yongli; Li, Song; Lin, Shuo; Jiang, Yuyang

    2015-01-01

    A novel biosensing platform was developed by integrating an aptamer-based DNA biosensor with graphene oxide (GO) for rapid and facile detection of adenosine triphosphate (ATP, as a model target). The DNA biosensor, which is locked by GO, is designed to contain two sensing modules that include recognition site for ATP and self-replication track that yields the nicking domain for Nt.BbvCI. By taking advantage of the different binding affinity of single-stranded DNA, double-stranded DNA and aptamer-target complex toward GO, the DNA biosensor could be efficiently released from GO in the presence of target with the help of a complementary DNA strand (CPDNA) that partially hybridizes to the DNA biosensor. Then, the polymerization/nicking enzyme synergetic isothermal amplification could be triggered, leading to the synthesis of massive DNA amplicons, thus achieving an enhanced sensitivity with a wide linear dynamic response range of four orders of magnitude and good selectivity. This biosensing strategy expands the applications of GO-DNA nanobiointerfaces in biological sensing, showing great potential in fundamental research and biomedical diagnosis. PMID:26569239

  8. A Graphene-Based Biosensing Platform Based on Regulated Release of an Aptameric DNA Biosensor.

    PubMed

    Mao, Yu; Chen, Yongli; Li, Song; Lin, Shuo; Jiang, Yuyang

    2015-11-09

    A novel biosensing platform was developed by integrating an aptamer-based DNA biosensor with graphene oxide (GO) for rapid and facile detection of adenosine triphosphate (ATP, as a model target). The DNA biosensor, which is locked by GO, is designed to contain two sensing modules that include recognition site for ATP and self-replication track that yields the nicking domain for Nt.BbvCI. By taking advantage of the different binding affinity of single-stranded DNA, double-stranded DNA and aptamer-target complex toward GO, the DNA biosensor could be efficiently released from GO in the presence of target with the help of a complementary DNA strand (CPDNA) that partially hybridizes to the DNA biosensor. Then, the polymerization/nicking enzyme synergetic isothermal amplification could be triggered, leading to the synthesis of massive DNA amplicons, thus achieving an enhanced sensitivity with a wide linear dynamic response range of four orders of magnitude and good selectivity. This biosensing strategy expands the applications of GO-DNA nanobiointerfaces in biological sensing, showing great potential in fundamental research and biomedical diagnosis.

  9. Polypeptide Functional Surface for the Aptamer Immobilization: Electrochemical Cocaine Biosensing.

    PubMed

    Bozokalfa, Guliz; Akbulut, Huseyin; Demir, Bilal; Guler, Emine; Gumus, Z Pınar; Odaci Demirkol, Dilek; Aldemir, Ebru; Yamada, Shuhei; Endo, Takeshi; Coskunol, Hakan; Timur, Suna; Yagci, Yusuf

    2016-04-05

    Electroanalytical technologies as a beneficial subject of modern analytical chemistry can play an important role for abused drug analysis which is crucial for both legal and social respects. This article reports a novel aptamer-based biosensing procedure for cocaine analysis by combining the advantages of aptamers as selective recognition elements with the well-known advantages of biosensor systems such as the possibility of miniaturization and automation, easy fabrication and modification, low cost, and sensitivity. In order to construct the aptasensor platform, first, polythiophene bearing polyalanine homopeptide side chains (PT-Pala) was electrochemically coated onto the surface of an electrode and then cocaine aptamer was attached to the polymer via covalent conjugation chemistry. The stepwise modification of the surface was confirmed by electrochemical characterization. The designed biosensing system was applied for the detection of cocaine and its metabolite, benzoylecgonine (BE), which exhibited a linear correlation in the range from 2.5 up to 10 nM and 0.5 up to 50 μM for cocaine and BE, respectively. In order to expand its practical application, the proposed method was successfully tested for the analysis of synthetic biological fluids.

  10. Comparative study of ZnO nanorods and thin films for chemical and biosensing applications and the development of ZnO nanorods based potentiometric strontium ion sensor

    NASA Astrophysics Data System (ADS)

    Khun, K.; Ibupoto, Z. H.; Chey, C. O.; Lu, Jun.; Nur, O.; Willander, M.

    2013-03-01

    In this study, the comparative study of ZnO nanorods and ZnO thin films were performed regarding the chemical and biosensing properties and also ZnO nanorods based strontium ion sensor is proposed. ZnO nanorods were grown on gold coated glass substrates by the hydrothermal growth method and the ZnO thin films were deposited by electro deposition technique. ZnO nanorods and thin films were characterised by field emission electron microscopy [FESEM] and X-ray diffraction [XRD] techniques and this study has shown that the grown nanostructures are highly dense, uniform and exhibited good crystal quality. Moreover, transmission electron microscopy [TEM] was used to investigate the quality of ZnO thin film and we observed that ZnO thin film was comprised of nano clusters. ZnO nanorods and thin films were functionalised with selective strontium ionophore salicylaldehyde thiosemicarbazone [ST] membrane, galactose oxidase, and lactate oxidase for the detection of strontium ion, galactose and L-lactic acid, respectively. The electrochemical response of both ZnO nanorods and thin films sensor devices was measured by using the potentiometric method. The strontium ion sensor has exhibited good characteristics with a sensitivity of 28.65 ± 0.52 mV/decade, for a wide range of concentrations from 1.00 × 10-6 to 5.00 × 10-2 M, selectivity, reproducibility, stability and fast response time of 10.00 s. The proposed strontium ion sensor was used as indicator electrode in the potentiometric titration of strontium ion versus ethylenediamine tetra acetic acid [EDTA]. This comparative study has shown that ZnO nanorods possessed better performance with high sensitivity and low limit of detection due to high surface area to volume ratio as compared to the flat surface of ZnO thin films.

  11. Electrochemical monitoring of biointeraction by graphene-based material modified pencil graphite electrode.

    PubMed

    Eksin, Ece; Zor, Erhan; Erdem, Arzum; Bingol, Haluk

    2017-06-15

    Recently, the low-cost effective biosensing systems based on advanced nanomaterials have received a key attention for development of novel assays for rapid and sequence-specific nucleic acid detection. The electrochemical biosensor based on reduced graphene oxide (rGO) modified disposable pencil graphite electrodes (PGEs) were developed herein for electrochemical monitoring of DNA, and also for monitoring of biointeraction occurred between anticancer drug, Daunorubicin (DNR), and DNA. First, rGO was synthesized chemically and characterized by using UV-Vis, TGA, FT-IR, Raman Spectroscopy and SEM techniques. Then, the quantity of rGO assembling onto the surface of PGE by passive adsorption was optimized. The electrochemical behavior of rGO-PGEs was examined by cyclic voltammetry (CV). rGO-PGEs were then utilized for electrochemical monitoring of surface-confined interaction between DNR and DNA using differential pulse voltammetry (DPV) technique. Additionally, voltammetric results were complemented with electrochemical impedance spectroscopy (EIS) technique. Electrochemical monitoring of DNR and DNA was resulted with satisfying detection limits 0.55µM and 2.71µg/mL, respectively. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Construction and Potential Applications of Biosensors for Proteins in Clinical Laboratory Diagnosis

    PubMed Central

    Liu, Xuan

    2017-01-01

    Biosensors for proteins have shown attractive advantages compared to traditional techniques in clinical laboratory diagnosis. In virtue of modern fabrication modes and detection techniques, various immunosensing platforms have been reported on basis of the specific recognition between antigen-antibody pairs. In addition to profit from the development of nanotechnology and molecular biology, diverse fabrication and signal amplification strategies have been designed for detection of protein antigens, which has led to great achievements in fast quantitative and simultaneous testing with extremely high sensitivity and specificity. Besides antigens, determination of antibodies also possesses great significance for clinical laboratory diagnosis. In this review, we will categorize recent immunosensors for proteins by different detection techniques. The basic conception of detection techniques, sensing mechanisms, and the relevant signal amplification strategies are introduced. Since antibodies and antigens have an equal position to each other in immunosensing, all biosensing strategies for antigens can be extended to antibodies under appropriate optimizations. Biosensors for antibodies are summarized, focusing on potential applications in clinical laboratory diagnosis, such as a series of biomarkers for infectious diseases and autoimmune diseases, and an evaluation of vaccine immunity. The excellent performances of these biosensors provide a prospective space for future antibody-detection-based disease serodiagnosis. PMID:29207528

  13. Surface Plasmon Resonance: New Biointerface Designs and High-Throughput Affinity Screening

    NASA Astrophysics Data System (ADS)

    Linman, Matthew J.; Cheng, Quan Jason

    Surface plasmon resonance (SPR) is a surface optical technique that measures minute changes in refractive index at a metal-coated surface. It has become increasingly popular in the study of biological and chemical analytes because of its label-free measurement feature. In addition, SPR allows for both quantitative and qualitative assessment of binding interactions in real time, making it ideally suited for probing weak interactions that are often difficult to study with other methods. This chapter presents the biosensor development in the last 3 years or so utilizing SPR as the principal analytical technique, along with a concise background of the technique itself. While SPR has demonstrated many advantages, it is a nonselective method and so, building reproducible and functional interfaces is vital to sensing applications. This chapter, therefore, focuses mainly on unique surface chemistries and assay approaches to examine biological interactions with SPR. In addition, SPR imaging for high-throughput screening based on microarrays and novel hyphenated techniques involving the coupling of SPR to other analytical methods is discussed. The chapter concludes with a commentary on the current state of SPR biosensing technology and the general direction of future biosensor research.

  14. Construction and Potential Applications of Biosensors for Proteins in Clinical Laboratory Diagnosis.

    PubMed

    Liu, Xuan; Jiang, Hui

    2017-12-04

    Biosensors for proteins have shown attractive advantages compared to traditional techniques in clinical laboratory diagnosis. In virtue of modern fabrication modes and detection techniques, various immunosensing platforms have been reported on basis of the specific recognition between antigen-antibody pairs. In addition to profit from the development of nanotechnology and molecular biology, diverse fabrication and signal amplification strategies have been designed for detection of protein antigens, which has led to great achievements in fast quantitative and simultaneous testing with extremely high sensitivity and specificity. Besides antigens, determination of antibodies also possesses great significance for clinical laboratory diagnosis. In this review, we will categorize recent immunosensors for proteins by different detection techniques. The basic conception of detection techniques, sensing mechanisms, and the relevant signal amplification strategies are introduced. Since antibodies and antigens have an equal position to each other in immunosensing, all biosensing strategies for antigens can be extended to antibodies under appropriate optimizations. Biosensors for antibodies are summarized, focusing on potential applications in clinical laboratory diagnosis, such as a series of biomarkers for infectious diseases and autoimmune diseases, and an evaluation of vaccine immunity. The excellent performances of these biosensors provide a prospective space for future antibody-detection-based disease serodiagnosis.

  15. A better understanding of organic electrochemical transistors for biosensing applications (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Friedlein, Jacob T.; Malliaras, George G.; Shaheen, Sean E.; McLeod, Robert R.

    2015-10-01

    Due to their biocompatibility, high transconductance, and low operating voltages, organic electrochemical transistors (OECTs) are promising platforms for biosensing applications. They have been used for measuring enzymes such as glucose and lactate, detecting disruptions of epithelial cell integrity, and amplifying epileptic voltage signals in rat brains. Accelerating the development of OECTs in this diverse range of potential applications, and those unforeseen, requires continued investigation of the device physics and material properties. In this presentation, we will describe our work to better understand OECT behavior, and we will discuss how this understanding can be used to develop more effective biosensors.

  16. Optical and Electric Multifunctional CMOS Image Sensors for On-Chip Biosensing Applications

    PubMed Central

    Tokuda, Takashi; Noda, Toshihiko; Sasagawa, Kiyotaka; Ohta, Jun

    2010-01-01

    In this review, the concept, design, performance, and a functional demonstration of multifunctional complementary metal-oxide-semiconductor (CMOS) image sensors dedicated to on-chip biosensing applications are described. We developed a sensor architecture that allows flexible configuration of a sensing pixel array consisting of optical and electric sensing pixels, and designed multifunctional CMOS image sensors that can sense light intensity and electric potential or apply a voltage to an on-chip measurement target. We describe the sensors’ architecture on the basis of the type of electric measurement or imaging functionalities. PMID:28879978

  17. Pterin detection using surface-enhanced Raman spectroscopy incorporating a straightforward silver colloid-based synthesis technique

    NASA Astrophysics Data System (ADS)

    Smyth, Ciarán A.; Mehigan, Sam; Rakovich, Yury P.; Bell, Steven E. J.; McCabe, Eithne M.

    2011-07-01

    Optical techniques toward the realization of sensitive and selective biosensing platforms have received considerable attention in recent times. Techniques based on interferometry, surface plasmon resonance, and waveguides have all proved popular, while spectroscopy in particular offers much potential. Raman spectroscopy is an information-rich technique in which the vibrational frequencies reveal much about the structure of a compound, but it is a weak process and offers poor sensitivity. In response to this problem, surface-enhanced Raman scattering (SERS) has received much attention, due to significant increases in sensitivity instigated by bringing the sample into contact with an enhancing substrate. Here we discuss a facile and rapid technique for the detection of pterins using SERS-active colloidal silver suspensions. Pterins are a family of biological compounds that are employed in nature in color pigmentation and as facilitators in metabolic pathways. In this work, small volumes of xanthopterin, isoxanthopterin, and 7,8-dihydrobiopterin have been examined while adsorbed to silver colloids. Limits of detection have been examined for both xanthopterin and isoxanthopterin using a 10-s exposure to a 12 mW 532 nm laser, which, while showing a trade-off between scan time and signal intensity, still provides the opportunity for the investigation of simultaneous detection of both pterins in solution.

  18. Chitosan nanocomposites based on distinct inorganic fillers for biomedical applications

    PubMed Central

    Moura, Duarte; Mano, João F.; Paiva, Maria C.; Alves, Natália M.

    2016-01-01

    Abstract Chitosan (CHI), a biocompatible and biodegradable polysaccharide with the ability to provide a non-protein matrix for tissue growth, is considered to be an ideal material in the biomedical field. However, the lack of good mechanical properties limits its applications. In order to overcome this drawback, CHI has been combined with different polymers and fillers, leading to a variety of chitosan-based nanocomposites. The extensive research on CHI nanocomposites as well as their main biomedical applications are reviewed in this paper. An overview of the different fillers and assembly techniques available to produce CHI nanocomposites is presented. Finally, the properties of such nanocomposites are discussed with particular focus on bone regeneration, drug delivery, wound healing and biosensing applications. PMID:27877909

  19. Recent Progress in Biosensors for Environmental Monitoring: A Review

    PubMed Central

    2017-01-01

    The environmental monitoring has been one of the priorities at the European and global scale due to the close relationship between the environmental pollution and the human health/socioeconomic development. In this field, the biosensors have been widely employed as cost-effective, fast, in situ, and real-time analytical techniques. The need of portable, rapid, and smart biosensing devices explains the recent development of biosensors with new transduction materials, obtained from nanotechnology, and for multiplexed pollutant detection, involving multidisciplinary experts. This review article provides an update on recent progress in biosensors for the monitoring of air, water, and soil pollutants in real conditions such as pesticides, potentially toxic elements, and small organic molecules including toxins and endocrine disrupting chemicals. PMID:29244756

  20. Analytical and Theranostic Applications of Gold Nanoparticles and Multifunctional Nanocomposites

    PubMed Central

    Khlebtsov, Nikolai; Bogatyrev, Vladimir; Dykman, Lev; Khlebtsov, Boris; Staroverov, Sergey; Shirokov, Alexander; Matora, Larisa; Khanadeev, Vitaly; Pylaev, Timofey; Tsyganova, Natalia; Terentyuk, Georgy

    2013-01-01

    Gold nanoparticles (GNPs) and GNP-based multifunctional nanocomposites are the subject of intensive studies and biomedical applications. This minireview summarizes our recent efforts in analytical and theranostic applications of engineered GNPs and nanocomposites by using plasmonic properties of GNPs and various optical techniques. Specifically, we consider analytical biosensing; visualization and bioimaging of bacterial, mammalian, and plant cells; photodynamic treatment of pathogenic bacteria; and photothermal therapy of xenografted tumors. In addition to recently published reports, we discuss new data on dot immunoassay diagnostics of mycobacteria, multiplexed immunoelectron microscopy analysis of Azospirillum brasilense, materno-embryonic transfer of GNPs in pregnant rats, and combined photodynamic and photothermal treatment of rat xenografted tumors with gold nanorods covered by a mesoporous silica shell doped with hematoporphyrin. PMID:23471188

  1. Recent Progress in Biosensors for Environmental Monitoring: A Review.

    PubMed

    Justino, Celine I L; Duarte, Armando C; Rocha-Santos, Teresa A P

    2017-12-15

    The environmental monitoring has been one of the priorities at the European and global scale due to the close relationship between the environmental pollution and the human health/socioeconomic development. In this field, the biosensors have been widely employed as cost-effective, fast, in situ, and real-time analytical techniques. The need of portable, rapid, and smart biosensing devices explains the recent development of biosensors with new transduction materials, obtained from nanotechnology, and for multiplexed pollutant detection, involving multidisciplinary experts. This review article provides an update on recent progress in biosensors for the monitoring of air, water, and soil pollutants in real conditions such as pesticides, potentially toxic elements, and small organic molecules including toxins and endocrine disrupting chemicals.

  2. Toxicity assessment using different bioassays and microbial biosensors.

    PubMed

    Hassan, Sedky H A; Van Ginkel, Steven W; Hussein, Mohamed A M; Abskharon, Romany; Oh, Sang-Eun

    2016-01-01

    Toxicity assessment of water streams, wastewater, and contaminated sediments, is a very important part of environmental pollution monitoring. Evaluation of biological effects using a rapid, sensitive and cost effective method can indicate specific information on ecotoxicity assessment. Recently, different biological assays for toxicity assessment based on higher and lower organisms such as fish, invertebrates, plants and algal cells, and microbial bioassays have been used. This review focuses on microbial biosensors as an analytical device for environmental, food, and biomedical applications. Different techniques which are commonly used in microbial biosensing include amperometry, potentiometry, conductometry, voltammetry, microbial fuel cells, fluorescence, bioluminescence, and colorimetry. Examples of the use of different microbial biosensors in assessing a variety of environments are summarized. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Fabrication of two-dimensional visible wavelength nanoscale plasmonic structures using hydrogen silsesquioxane based resist

    NASA Astrophysics Data System (ADS)

    Smith, Kyle Z.; Gadde, Akshitha; Kadiyala, Anand; Dawson, Jeremy M.

    2016-03-01

    In recent years, the global market for biosensors has continued to increase in combination with their expanding use in areas such as biodefense/detection, home diagnostics, biometric identification, etc. A constant necessity for inexpensive, portable bio-sensing methods, while still remaining simple to understand and operate, is the motivation behind novel concepts and designs. Labeled visible spectrum bio-sensing systems provide instant feedback that is both simple and easy to work with, but are limited by the light intensity thresholds required by the imaging systems. In comparison, label-free bio-sensing systems and other detection modalities like electrochemical, frequency resonance, thermal change, etc., can require additional technical processing steps to convey the final result, increasing the system's complexity and possibly the time required for analysis. Further decrease in the detection limit can be achieved through the addition of plasmonic structures into labeled bio-sensing systems. Nano-structures that operate in the visible spectrum have feature sizes typically in the order of the operating wavelength, calling for high aspect ratio nanoscale fabrication capabilities. In order to achieve these dimensions, electron beam lithography (EBL) is used due to its accurate feature production. Hydrogen silsesquioxane (HSQ) based electron beam resist is chosen for one of its benefits, which is after exposure to oxygen plasma, the patterned resist cures into silicon dioxide (SiO2). These cured features in conjunction with nanoscale gold particles help in producing a high electric field through dipole generation. In this work, a detailed process flow of the fabrication of square lattice of plasmonic structures comprising of gold coated silicon dioxide pillars designed to operate at 560 nm wavelength and produce an intensity increase of roughly 100 percent will be presented.

  4. Comparative Study of Two Systems for the Assessment of Static Balance in Veterans with Mild Traumatic Brain Injury.

    PubMed

    Leland, Azadeh; Tavakol, Kamran; Scholten, Joel; Bakhshi, Simin; Kelarestaghi, Kaveh

    2018-04-01

    Traditionally, the diagnosis of postural instability relies on the clinical examination of static balance. In recent years, computerized technologies have provided a new approach for the accurate detection of positional changes during functional balance. The aim of this study was to investigate the similarities and differences between two electronic systems, NeuroCom and BioSensics , and their application in the clinical assessment of impaired balance in American veterans. We examined the sway around the center of mass during static balance conditions in 25 veterans with mild traumatic brain injury, using the two electronic systems. These patients met the inclusion criteria and were assessed for their impaired balance at the District of Columbia Veterans Affair Medical Center, Washington, DC, USA. There were six static balance tests conducted on either NeuroCom or BioSensics system in triplicate. Of the data for 36 sets of statistical data analyses, there were significant correlations among those for eight data sets (22.2%) between the two systems. The strongest positive correlation between the data from the two systems was found during the baseline test, when inputs from visual, vestibular and sensorymotor sources were uninterrupted. The data from the remaining experimental conditions did not correlate significantly with one another. Both NeuroCom and BioSensics provided comparable data in eight out of 36 experimental conditions in the assessment of static balance in patients with mild traumatic brain injury. The findings clarified the ambiguities in the application of NeuroCom versus BioSensics, provided new knowledge for the field of physical medicine and rehabilitation, and improved the clinical assessment of static balance in patients with mTBI.

  5. A common-path phase-shift interferometry surface plasmon imaging system

    NASA Astrophysics Data System (ADS)

    Su, Y.-T.; Chen, Shean-Jen; Yeh, T.-L.

    2005-03-01

    A biosensing imaging system is proposed based on the integration of surface plasmon resonance (SPR) and common-path phase-shift interferometry (PSI) techniques to measure the two-dimensional spatial phase variation caused by biomolecular interactions upon a sensing chip. The SPR phase imaging system can offer high resolution and high-throughout screening capabilities to analyze microarray biomolecular interaction without the need for additional labeling. With the long-term stability advantage of the common-path PSI technique even with external disturbances such as mechanical vibration, buffer flow noise, and laser unstable issue, the system can match the demand of real-time kinetic study for biomolecular interaction analysis (BIA). The SPR-PSI imaging system has achieved a detection limit of 2×10-7 refraction index change, a long-term phase stability of 2.5x10-4π rms over four hours, and a spatial phase resolution of 10-3 π with a lateral resolution of 100μm.

  6. Imaging-based molecular barcoding with pixelated dielectric metasurfaces.

    PubMed

    Tittl, Andreas; Leitis, Aleksandrs; Liu, Mingkai; Yesilkoy, Filiz; Choi, Duk-Yong; Neshev, Dragomir N; Kivshar, Yuri S; Altug, Hatice

    2018-06-08

    Metasurfaces provide opportunities for wavefront control, flat optics, and subwavelength light focusing. We developed an imaging-based nanophotonic method for detecting mid-infrared molecular fingerprints and implemented it for the chemical identification and compositional analysis of surface-bound analytes. Our technique features a two-dimensional pixelated dielectric metasurface with a range of ultrasharp resonances, each tuned to a discrete frequency; this enables molecular absorption signatures to be read out at multiple spectral points, and the resulting information is then translated into a barcode-like spatial absorption map for imaging. The signatures of biological, polymer, and pesticide molecules can be detected with high sensitivity, covering applications such as biosensing and environmental monitoring. Our chemically specific technique can resolve absorption fingerprints without the need for spectrometry, frequency scanning, or moving mechanical parts, thereby paving the way toward sensitive and versatile miniaturized mid-infrared spectroscopy devices. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  7. Polyaniline modified flexible conducting paper for cancer detection

    NASA Astrophysics Data System (ADS)

    Kumar, Saurabh; Sen, Anindita; Kumar, Suveen; Augustine, Shine; Yadav, Birendra K.; Mishra, Sandeep; Malhotra, Bansi D.

    2016-05-01

    We report results of studies relating to the fabrication of a flexible, disposable, and label free biosensing platform for detection of the cancer biomarker (carcinoembryonic antigen, CEA). Polyaniline (PANI) has been electrochemically deposited over gold sputtered paper (Au@paper) for covalent immobilization of monoclonal carcinoembryonic antibodies (anti-CEA). The bovine serum albumin (BSA) has been used for blocking nonspecific binding sites at the anti-CEA conjugated PANI/Au@Paper. The PANI/Au@Paper, anti-CEA/PANI/Au@Paper, and BSA/anti-CEA/PANI/Au@Paper platforms have been characterized using scanning electron microscopy, X-ray diffraction, Fourier transmission infrared spectroscopy, chronoamperometry, and electrochemical impedance techniques. The results of the electrochemical response studies indicate that this BSA/anti-CEA/PANI/Au@paper electrode has sensitivity of 13.9 μA ng-1 ml cm2, shelf life of 22 days, and can be used to estimate CEA in the range of 2-20 ng ml-1. This paper sensor has been validated by detection of CEA in serum samples of cancer patients via immunoassay technique.

  8. Nitrate biosensors and biological methods for nitrate determination.

    PubMed

    Sohail, Manzar; Adeloju, Samuel B

    2016-06-01

    The inorganic nitrate (NO3‾) anion is present under a variety of both natural and artificial environmental conditions. Nitrate is ubiquitous within the environment, food, industrial and physiological systems and is mostly present as hydrated anion of a corresponding dissolved salt. Due to the significant environmental and toxicological effects of nitrate, its determination and monitoring in environmental and industrial waters are often necessary. A wide range of analytical techniques are available for nitrate determination in various sample matrices. This review discusses biosensors available for nitrate determination using the enzyme nitrate reductase (NaR). We conclude that nitrate determination using biosensors is an excellent non-toxic alternative to all other available analytical methods. Over the last fifteen years biosensing technology for nitrate analysis has progressed very well, however, there is a need to expedite the development of nitrate biosensors as a suitable alternative to non-enzymatic techniques through the use of different polymers, nanostructures, mediators and strategies to overcome oxygen interference. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Biosensing operations based on whispering-gallery-mode optical cavities in single 1.0-µm diameter hexagonal GaN microdisks grown by radio-frequency plasma-assisted molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Kouno, Tetsuya; Sakai, Masaru; Kishino, Katsumi; Hara, Kazuhiko

    2016-05-01

    Biosensing operations based on a whispering-gallery-mode optical cavity in a single hexagonal GaN microdisk of approximately 1.0 µm diameter were demonstrated here. The sharp resonant peak in the photoluminescence spectrum obtained from the microdisk in aqueous sucrose solution redshifts with a change in sucrose concentration. The results indicate that an extremely small microdisk could be used as an optical transducer for sensing sugar, namely, as a biosensor. Furthermore, we investigate the relationship between the diameter of the microdisk and the sensitivity of the biosensor.

  10. Laser-ablative engineering of phase singularities in plasmonic metamaterial arrays for biosensing applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aristov, Andrey I.; Kabashin, Andrei V., E-mail: kabashin@lp3.univ-mrs.fr; Zywietz, Urs

    2014-02-17

    By using methods of laser-induced transfer combined with nanoparticle lithography, we design and fabricate large-area gold nanoparticle-based metamaterial arrays exhibiting extreme Heaviside-like phase jumps in reflected light due to a strong diffractive coupling of localized plasmons. When employed in sensing schemes, these phase singularities provide the sensitivity of 5 × 10{sup 4} deg. of phase shift per refractive index unit change that is comparable with best values reported for plasmonic biosensors. The implementation of sensor platforms on the basis of such metamaterial arrays promises a drastic improvement of sensitivity and cost efficiency of plasmonic biosensing devices.

  11. Functionalized nanopipettes: toward label-free, single cell biosensors.

    PubMed

    Actis, Paolo; Mak, Andy C; Pourmand, Nader

    2010-08-01

    Nanopipette technology has been proven to be a label-free biosensor capable of identifying DNA and proteins. The nanopipette can include specific recognition elements for analyte discrimination based on size, shape, and charge density. The fully electrical read-out and the ease and low-cost fabrication are unique features that give this technology an enormous potential. Unlike other biosensing platforms, nanopipettes can be precisely manipulated with submicron accuracy and used to study single cell dynamics. This review is focused on creative applications of nanopipette technology for biosensing. We highlight the potential of this technology with a particular attention to integration of this biosensor with single cell manipulation platforms.

  12. Functionalized nanopipettes: toward label-free, single cell biosensors

    PubMed Central

    Actis, Paolo; Mak, Andy C.

    2010-01-01

    Nanopipette technology has been proven to be a label-free biosensor capable of identifying DNA and proteins. The nanopipette can include specific recognition elements for analyte discrimination based on size, shape, and charge density. The fully electrical read-out and the ease and low-cost fabrication are unique features that give this technology an enormous potential. Unlike other biosensing platforms, nanopipettes can be precisely manipulated with submicron accuracy and used to study single cell dynamics. This review is focused on creative applications of nanopipette technology for biosensing. We highlight the potential of this technology with a particular attention to integration of this biosensor with single cell manipulation platforms. PMID:20730113

  13. Dynamic modeling of the hydrogel molecular filter in a metamaterial biosensing system for glucose concentration estimation.

    PubMed

    Teutsch, T; Mesch, M; Giessen, H; Tarin, C

    2014-01-01

    We present a novel concept for ophthalmic glucose sensing using a biosensing system that consists of plasmonic dipole metamaterial covered by a layer of functionalized hydrogel. The metamaterial together with the hydrogel can be integrated into a contact lens. This optical sensor changes its properties such as reflectivity upon the ambient glucose concentration, which allows in situ measurements in the eye. The functionalization of the sensor with hydrogel allows for a glucose-specific detection, providing both selectivity and sensitivity. As a result of the presented work we derive a dynamic model of the hydrogel that can be used for further simulation studies.

  14. Passivated aluminum nanohole arrays for label-free biosensing applications.

    PubMed

    Canalejas-Tejero, Víctor; Herranz, Sonia; Bellingham, Alyssa; Moreno-Bondi, María Cruz; Barrios, Carlos Angulo

    2014-01-22

    We report the fabrication and performance of a surface plasmon resonance aluminum nanohole array refractometric biosensor. An aluminum surface passivation treatment based on oxygen plasma is developed in order to circumvent the undesired effects of oxidation and corrosion usually found in aluminum-based biosensors. Immersion tests in deionized water and device simulations are used to evaluate the effectiveness of the passivation process. A label-free bioassay based on biotin analysis through biotin-functionalized dextran-lipase conjugates immobilized on the biosensor-passivated surface in aqueous media is performed as a proof of concept to demonstrate the suitability of these nanostructured aluminum films for biosensing.

  15. Facile Coating Strategy to Functionalize Inorganic Nanoparticles for Biosensing.

    PubMed

    Park, Yong Il; Kim, Eunha; Huang, Chen-Han; Park, Ki Soo; Castro, Cesar M; Lee, Hakho; Weissleder, Ralph

    2017-01-18

    The use of inorganic nanoparticles (NPs) for biosensing requires that they exhibit high colloidal stability under various physiological conditions. Here, we report on a general approach to render hydrophobic NPs into hydrophilic ones that are ready for bioconjugation. The method uses peglyated polymers conjugated with multiple dopamines, which results in multidentate coordination. As proof-of-concept, we applied the coating to stabilize ferrite and lanthanide NPs synthesized by thermal decomposition. Both polymer-coated NPs showed excellent water solubility and were stable at high salt concentrations under physiological conditions. We used these NPs as molecular-sensing agents to detect exosomes and bacterial nucleic acids.

  16. Functionalization of reduced graphene oxide by electroactive polymer for biosensing applications

    NASA Astrophysics Data System (ADS)

    Nguyen, Le Huy; Dzung Nguyen, Tuan; Hoang Tran, Vinh; Thu Huyen Dang, Thi; Tran, Dai Lam

    2014-09-01

    A novel biosensing platform was designed by the functionalizing reduced graphene oxide sheets (rGO) with electroactive copolymer juglone. The composite film showed well-defined, stable electroactivity in a biocompatible buffer medium. Square wave voltammetry is used to record the redox signal for DNA hybridization. Current increase upon hybridization (signal-on) evidenced that short DNA target as well as polymerase chain reaction (PCR), so called ‘real sample’ products, related to different lineages of Mycobacterium tuberculosis strain. The signal-on reached ∼40% with 1 nM of short DNA (25 mer) target, while PCR product (Africanum, EAI and Beijing strains) produced a current change of ∼20%.

  17. Biosensing applications of titanium dioxide coated graphene modified disposable electrodes.

    PubMed

    Kuralay, Filiz; Tunç, Selma; Bozduman, Ferhat; Oksuz, Lutfi; Oksuz, Aysegul Uygun

    2016-11-01

    In the present work, preparation of titanium dioxide coated graphene (TiO2/graphene) and the use of this nanocomposite modified electrode for electrochemical biosensing applications were detailed. The nanocomposite was prepared with radio frequency (rf) rotating plasma method which serves homogeneous distribution of TiO2 onto graphene. TiO2/graphene was characterized with scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD) analysis. Then, this nanocomposite was dissolved in phosphate buffer solution (pH 7.4) and modified onto disposable pencil graphite electrode (PGE) by dip coating for the investigation of the biosensing properties of the prepared electrode. TiO2/graphene modified PGE was characterized with SEM, EDS and cyclic voltammetry (CV). The sensor properties of the obtained surface were examined for DNA and DNA-drug interaction. The detection limit was calculated as 1.25mgL(-1) (n=3) for double-stranded DNA (dsDNA). RSD% was calculated as 2.4% for three successive determinations at 5mgL(-1) dsDNA concentration. Enhanced results were obtained compared to the ones obtained with graphene and unmodified (bare) electrodes. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. A highly sensitive SPRi biosensing strategy for simultaneous detection of multiplex miRNAs based on strand displacement amplification and AuNP signal enhancement.

    PubMed

    Wei, Xiaotong; Duan, Xiaolei; Zhou, Xiaoyan; Wu, Jiangling; Xu, Hongbing; Min, Xun; Ding, Shijia

    2018-06-07

    Herein, a dual channel surface plasmon resonance imaging (SPRi) biosensor has been developed for the simultaneous and highly sensitive detection of multiplex miRNAs based on strand displacement amplification (SDA) and DNA-functionalized AuNP signal enhancement. In the presence of target miRNAs (miR-21 or miR-192), the miRNAs could specifically hybridize with the corresponding hairpin probes (H) and initiate the SDA, resulting in massive triggers. Subsequently, the two parts of the released triggers could hybridize with capture probes (CP) and DNA-functionalized AuNPs, assembling DNA sandwiches with great mass on the chip surface. A significantly amplified SPR signal readout was achieved. This established biosensing method was capable of simultaneously detecting multiplex miRNAs with a limit of detection down to 0.15 pM for miR-21 and 0.22 pM for miR-192. This method exhibited good specificity and acceptable reproducibility. Moreover, the developed method was applied to the determination of target miRNAs in a complex matrix. Thus, this developed SPRi biosensing method may present a potential alternative tool for miRNA detection in biomedical research and clinical diagnosis.

  19. Rapid on-site detection of airborne asbestos fibers and potentially hazardous nanomaterials using fluorescence microscopy-based biosensing.

    PubMed

    Kuroda, Akio; Alexandrov, Maxym; Nishimura, Tomoki; Ishida, Takenori

    2016-06-01

    A large number of peptides with binding affinity to various inorganic materials have been identified and used as linkers, catalysts, and building blocks in nanotechnology and nanobiotechnology. However, there have been few applications of material-binding peptides in the fluorescence microscopy-based biosensing (FM method) of environmental pollutants. A notable exception is the application of the FM method for the detection of asbestos, a dangerous industrial toxin that is still widely used in many developing countries. This review details the selection and isolation of asbestos-binding proteins and peptides with sufficient specificity to distinguish asbestos from a large variety of safer fibrous materials used as asbestos substitutes. High sensitivity to nanoscale asbestos fibers (30-35 nm in diameter) invisible under conventional phase contrast microscopy can be achieved. The FM method is the basis for developing an automated system for asbestos biosensing that can be used for on-site testing with a portable fluorescence microscope. In the future, the FM method could also become a useful tool for detecting other potentially hazardous nanomaterials in the environment. Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Proximity-activated nanoparticles: in vitro performance of specific structural modification by enzymatic cleavage

    PubMed Central

    Adam Smith, R; Sewell, Sarah L; Giorgio, Todd D

    2008-01-01

    The development and in vitro performance of a modular nanoscale system capable of specific structural modification by enzymatic activity is described in this work. Due to its small physical size and adaptable characteristics, this system has the potential for utilization in targeted delivery systems and biosensing. Nanoparticle probes were synthesized containing two distinct fluorescent species including a quantum dot base particle and fluorescently labeled cleavable peptide substrate. Activity of these probes was monitored by gel electrophoresis with quantitative cleavage measurements made by fluorometric analysis. The model proximity-activated nanoparticles studied here exhibit significant susceptibility to cleavage by matrix metalloprotease-7 (MMP-7) at physiologically relevant concentrations, with nearly complete cleavage of available substrate molecules after 24 hours. This response is specific to MMP-7 enzyme activity, as cleavage is completely inhibited with the addition of EDTA. Utilization of enzyme-specific modification is a sensitive approach with broad applications for targeted therapeutics and biosensing. The versatility of this nanoparticle system is highlighted in its modular design, as it has the capability to integrate characteristics for detection, biosensing, targeting, and payload delivery into a single, multifunctional nanoparticle structure. PMID:18488420

  1. Aptamer-Modified Semiconductor Quantum Dots for Biosensing Applications

    PubMed Central

    Wen, Lin; Qiu, Liping; Wu, Yongxiang; Hu, Xiaoxiao; Zhang, Xiaobing

    2017-01-01

    Semiconductor quantum dots have attracted extensive interest in the biosensing area because of their properties, such as narrow and symmetric emission with tunable colors, high quantum yield, high stability and controllable morphology. The introduction of various reactive functional groups on the surface of semiconductor quantum dots allows one to conjugate a spectrum of ligands, antibodies, peptides, or nucleic acids for broader and smarter applications. Among these ligands, aptamers exhibit many advantages including small size, high chemical stability, simple synthesis with high batch-to-batch consistency and convenient modification. More importantly, it is easy to introduce nucleic acid amplification strategies and/or nanomaterials to improve the sensitivity of aptamer-based sensing systems. Therefore, the combination of semiconductor quantum dots and aptamers brings more opportunities in bioanalysis. Here we summarize recent advances on aptamer-functionalized semiconductor quantum dots in biosensing applications. Firstly, we discuss the properties and structure of semiconductor quantum dots and aptamers. Then, the applications of biosensors based on aptamer-modified semiconductor quantum dots by different signal transducing mechanisms, including optical, electrochemical and electrogenerated chemiluminescence approaches, is discussed. Finally, our perspectives on the challenges and opportunities in this promising field are provided. PMID:28788080

  2. Simple method for self-referenced and lable-free biosensing by using a capillary sensing element.

    PubMed

    Liu, Yun; Chen, Shimeng; Liu, Qiang; Liu, Zigeng; Wei, Peng

    2017-05-15

    We demonstrated a simple method for self-reference and label free biosensing based on a capillary sensing element and common optoelectronic devices. The capillary sensing element is illuminated by a light-emitting diode (LED) light source and detected by a webcam. Part of gold film that deposited on the tubing wall is functionalized to carry on the biological information in the excited SPR modes. The end face of the capillary was monitored and separate regions of interest (ROIs) were selected as the measurement channel and the reference channel. In the ROIs, the biological information can be accurately extracted from the image by simple image processing. Moreover, temperature fluctuation, bulk RI fluctuation, light source fluctuation and other factors can be effectively compensated during detection. Our biosensing device has a sensitivity of 1145%/RIU and a resolution better than 5.287 × 10 -4 RIU, considering a 0.79% noise level. We apply it for concanavalin A (Con A) biological measurement, which has an approximately linear response to the specific analyte concentration. This simple method provides a new approach for multichannel SPR sensing and reference-compensated calibration of SPR signal for label-free detection.

  3. Nanopore extended field-effect transistor for selective single-molecule biosensing.

    PubMed

    Ren, Ren; Zhang, Yanjun; Nadappuram, Binoy Paulose; Akpinar, Bernice; Klenerman, David; Ivanov, Aleksandar P; Edel, Joshua B; Korchev, Yuri

    2017-09-19

    There has been a significant drive to deliver nanotechnological solutions to biosensing, yet there remains an unmet need in the development of biosensors that are affordable, integrated, fast, capable of multiplexed detection, and offer high selectivity for trace analyte detection in biological fluids. Herein, some of these challenges are addressed by designing a new class of nanoscale sensors dubbed nanopore extended field-effect transistor (nexFET) that combine the advantages of nanopore single-molecule sensing, field-effect transistors, and recognition chemistry. We report on a polypyrrole functionalized nexFET, with controllable gate voltage that can be used to switch on/off, and slow down single-molecule DNA transport through a nanopore. This strategy enables higher molecular throughput, enhanced signal-to-noise, and even heightened selectivity via functionalization with an embedded receptor. This is shown for selective sensing of an anti-insulin antibody in the presence of its IgG isotype.Efficient detection of single molecules is vital to many biosensing technologies, which require analytical platforms with high selectivity and sensitivity. Ren et al. combine a nanopore sensor and a field-effect transistor, whereby gate voltage mediates DNA and protein transport through the nanopore.

  4. Reusable split-aptamer-based biosensor for rapid detection of cocaine in serum by using an all-fiber evanescent wave optical biosensing platform.

    PubMed

    Tang, Yunfei; Long, Feng; Gu, Chunmei; Wang, Cheng; Han, Shitong; He, Miao

    2016-08-24

    A rapid, facile, and sensitive assay of cocaine in biological fluids is important to prevent illegal abuse of drugs. A two-step structure-switching aptasensor has been developed for cocaine detection based on evanescent wave optical biosensing platform. In the proposed biosensing platform, two tailored aptamer probes were used to construct the molecular structure switching. In the existence of cocaine, two fragments of cocaine aptamer formed a three-way junction quickly, and the fluorophore group of one fragment was effectively quenched by the quencher group of the other one. The tail of the three-way junction hybridized with the cDNA sequences immobilized on the optical fiber biosensor. Fluorescence was excited by evanescent wave, and the fluorescence signal was proportional to cocaine concentration. Cocaine was detected in 450 s (300 s for incubation and 150 s for detection and regeneration) with a limit of detection (LOD) of 165.2 nM. The proposed aptasensor was evaluated in human serum samples, and it exhibited good recovery, precision, and accuracy without complicated sample pretreatments. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Aptamer-Modified Semiconductor Quantum Dots for Biosensing Applications.

    PubMed

    Wen, Lin; Qiu, Liping; Wu, Yongxiang; Hu, Xiaoxiao; Zhang, Xiaobing

    2017-07-28

    Semiconductor quantum dots have attracted extensive interest in the biosensing area because of their properties, such as narrow and symmetric emission with tunable colors, high quantum yield, high stability and controllable morphology. The introduction of various reactive functional groups on the surface of semiconductor quantum dots allows one to conjugate a spectrum of ligands, antibodies, peptides, or nucleic acids for broader and smarter applications. Among these ligands, aptamers exhibit many advantages including small size, high chemical stability, simple synthesis with high batch-to-batch consistency and convenient modification. More importantly, it is easy to introduce nucleic acid amplification strategies and/or nanomaterials to improve the sensitivity of aptamer-based sensing systems. Therefore, the combination of semiconductor quantum dots and aptamers brings more opportunities in bioanalysis. Here we summarize recent advances on aptamer-functionalized semiconductor quantum dots in biosensing applications. Firstly, we discuss the properties and structure of semiconductor quantum dots and aptamers. Then, the applications of biosensors based on aptamer-modified semiconductor quantum dots by different signal transducing mechanisms, including optical, electrochemical and electrogenerated chemiluminescence approaches, is discussed. Finally, our perspectives on the challenges and opportunities in this promising field are provided.

  6. Microscopic Imaging and Spectroscopy with Scattered Light

    PubMed Central

    Boustany, Nada N.; Boppart, Stephen A.; Backman, Vadim

    2012-01-01

    Optical contrast based on elastic scattering interactions between light and matter can be used to probe cellular structure and dynamics, and image tissue architecture. The quantitative nature and high sensitivity of light scattering signals to subtle alterations in tissue morphology, as well as the ability to visualize unstained tissue in vivo, has recently generated significant interest in optical scatter based biosensing and imaging. Here we review the fundamental methodologies used to acquire and interpret optical scatter data. We report on recent findings in this field and present current advances in optical scatter techniques and computational methods. Cellular and tissue data enabled by current advances in optical scatter spectroscopy and imaging stand to impact a variety of biomedical applications including clinical tissue diagnosis, in vivo imaging, drug discovery and basic cell biology. PMID:20617940

  7. Diffractive Optical Analysis for Refractive Index Sensing using Transparent Phase Gratings

    PubMed Central

    Kumawat, Nityanand; Pal, Parama; Varma, Manoj

    2015-01-01

    We report the implementation of a micro-patterned, glass-based photonic sensing element that is capable of label-free biosensing. The diffractive optical analyzer is based on the differential response of diffracted orders to bulk as well as surface refractive index changes. The differential read-out suppresses signal drifts and enables time-resolved determination of refractive index changes in the sample cell. A remarkable feature of this device is that under appropriate conditions, the measurement sensitivity of the sensor can be enhanced by more than two orders of magnitude due to interference between multiply reflected diffracted orders. A noise-equivalent limit of detection (LoD) of 6 × 10−7 was achieved with this technique with scope for further improvement. PMID:26578408

  8. Small-volume multiparametric electrochemical detection at low cost polymeric devices featuring nanoelectrodes

    NASA Astrophysics Data System (ADS)

    Kitsara, Maria; Cirera, Josep Maria; Aller-Pellitero, Miguel; Sabaté, Neus; Punter, Jaume; Colomer-Farrarons, Jordi; Miribel-Català, Pere; del Campo, F. Javier

    2015-06-01

    The development of a low-cost multiparametric platform for enzymatic electrochemical biosensing that can be integrated in a disposable, energy autonomous analytical device is the target of the current work. We propose a technology to fabricate nano-electrodes and ultimately biosensors on flexible polymeric-based substrates (cyclo olefin polymer, and polyimide) using standard microfabrication (step and repeat lithography and lift-off) and rapid prototyping techniques (blade cutting). Our target is towards the fabrication of a miniaturized prototype that can work with small sample volumes in the range of 5-10μL without the need for external pumps for sample loading and handling. This device can be used for the simultaneous detection of metabolites such as glucose, cholesterol and triglycerides for the early diagnosis of diabetes.

  9. Amperometric IFN-γ immunosensors with commercially fabricated PCB sensing electrodes.

    PubMed

    Moschou, Despina; Greathead, Louise; Pantelidis, Panagiotis; Kelleher, Peter; Morgan, Hywel; Prodromakis, Themistoklis

    2016-12-15

    Lab-on-a-Chip (LoC) technology has the potential to revolutionize medical Point-of-Care diagnostics. Currently, considerable research efforts are focused on innovative production technologies that will make commercial upscaling of lab-on-chip products financially viable. Printed circuit board (PCB) manufacturing techniques have several advantages in this field. In this paper we focus on transferring a complete IFN-γ enzyme-linked immune-sorbent assay (ELISA) onto a commercial PCB electrochemical biosensing platform, We adapted a commercially available ELISA to detect the enzyme product TMB/H2O2 using amperometry, successfully reproducing the colorimetry-obtained ELISA standard curve. The results demonstrate the potential for the integration of these components into an automated, disposable, electronic ELISA Lab-on-PCB diagnostic platform. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Phase-Sensitive Surface Plasmon Resonance Sensors: Recent Progress and Future Prospects

    PubMed Central

    Deng, Shijie; Wang, Peng; Yu, Xinglong

    2017-01-01

    Surface plasmon resonance (SPR) is an optical sensing technique that is capable of performing real-time, label-free and high-sensitivity monitoring of molecular interactions. SPR biosensors can be divided according to their operating principles into angle-, wavelength-, intensity- and phase-interrogated devices. With their complex optical configurations, phase-interrogated SPR sensors generally provide higher sensitivity and throughput, and have thus recently emerged as prominent biosensing devices. To date, several methods have been developed for SPR phase interrogation, including heterodyne detection, polarimetry, shear interferometry, spatial phase modulation interferometry and temporal phase modulation interferometry. This paper summarizes the fundamentals of phase-sensitive SPR sensing, reviews the available methods for phase interrogation of these sensors, and discusses the future prospects for and trends in the development of this technology. PMID:29206182

  11. Peptide-based biosensors: From self-assembled interfaces to molecular probes in electrochemical assays.

    PubMed

    Puiu, Mihaela; Bala, Camelia

    2018-04-01

    Redox-tagged peptides have emerged as functional materials with multiple applications in the area of sensing and biosensing applications due to their high stability, excellent redox properties and versatility of biomolecular interactions. They allow direct observation of molecular interactions in a wide range of affinity and enzymatic assays and act as electron mediators. Short helical peptides possess the ability to self-assemble in specific configurations with the possibility to develop in highly-ordered, stable 1D, 2D and 3D architectures in a hierarchical controlled manner. We provide here a brief overview of the electrochemical techniques available to study the electron transfer in peptide films with particular interest in developing biosensors with immobilized peptide motifs, for biological and clinical applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Tip-enhanced Raman scattering of DNA aptamers for Listeria monocytogenes.

    PubMed

    He, Siyu; Li, Hongyuan; Gomes, Carmen L; Voronine, Dmitri V

    2018-05-03

    Optical detection and conformational mapping of aptamers are important for improving medical and biosensing technologies and for better understanding of biological processes at the molecular level. The authors investigate the vibrational signals of deoxyribonucleic acid aptamers specific to Listeria monocytogenes immobilized on gold substrates using tip-enhanced Raman scattering (TERS) spectroscopy and nanoscale imaging. The authors compare topographic and nano-optical signals and investigate the fluctuations of the position-dependent TERS spectra. They perform spatial TERS mapping with 3 nm step size and discuss the limitation of the resulting spatial resolution under the ambient conditions. TERS mapping provides information about the chemical composition and conformation of aptamers and paves the way to future label-free biosensing.

  13. Probing Subdiffraction Limit Separations with Plasmon Coupling Microscopy: Concepts and Applications

    PubMed Central

    Wu, Linxi

    2014-01-01

    Due to their advantageous materials properties, noble metal nanoparticles are versatile tools in biosensing and imaging. A characteristic feature of gold and silver nanoparticles is their ability to sustain localized surface plasmons that provide both large optical cross-sections and extraordinary photophysical stability. Plasmon Coupling Microscopy takes advantage of the beneficial optical properties and utilizes electromagnetic near-field coupling between individual noble metal nanoparticle labels to resolve subdiffraction limit separations in an all-optical fashion. This Tutorial provides an introduction into the physical concepts underlying distance dependent plasmon coupling, discusses potential experimental implementations of Plasmon Coupling Microscopy, and reviews applications in the area of biosensing and imaging. PMID:24390574

  14. Wafer Scale Integration of CMOS Chips for Biomedical Applications via Self-Aligned Masking.

    PubMed

    Uddin, Ashfaque; Milaninia, Kaveh; Chen, Chin-Hsuan; Theogarajan, Luke

    2011-12-01

    This paper presents a novel technique for the integration of small CMOS chips into a large area substrate. A key component of the technique is the CMOS chip based self-aligned masking. This allows for the fabrication of sockets in wafers that are at most 5 µm larger than the chip on each side. The chip and the large area substrate are bonded onto a carrier such that the top surfaces of the two components are flush. The unique features of this technique enable the integration of macroscale components, such as leads and microfluidics. Furthermore, the integration process allows for MEMS micromachining after CMOS die-wafer integration. To demonstrate the capabilities of the proposed technology, a low-power integrated potentiostat chip for biosensing implemented in the AMI 0.5 µm CMOS technology is integrated in a silicon substrate. The horizontal gap and the vertical displacement between the chip and the large area substrate measured after the integration were 4 µm and 0.5 µm, respectively. A number of 104 interconnects are patterned with high-precision alignment. Electrical measurements have shown that the functionality of the chip is not affected by the integration process.

  15. Optical power-based interrogation of plasmonic tilted fiber Bragg grating biosensors

    NASA Astrophysics Data System (ADS)

    González-Vila, Á.; Lopez-Aldaba, A.; Kinet, D.; Mégret, P.; Lopez-Amo, M.; Caucheteur, C.

    2017-04-01

    Two interrogation techniques for plasmonic tilted fiber Bragg grating sensors are reported and experimentally tested. Typical interrogation methods are usually based on tracking the wavelength shift of the most sensitive cladding mode, but for biosensing applications, spectrometer-based methods can be replaced by more efficient solutions. The proposed techniques thus rely on the measurement of the induced changes in optical power. The first one consists of a properly polarized tunable laser source set to emit at the wavelength of the sensor most sensitive mode and an optical power meter to measure the transmitted response. For the second method, a uniform fiber Bragg grating is photo-inscribed beyond the sensor in such a way that its central wavelength matches the sensor most sensitive mode, acting as an optical filter. Using a LED source, light reflected backwards by this grating is partially attenuated when passing through the sensor due to plasmon wave excitation and the power changes are quantified once again with an optical power meter. A performance analysis of the techniques is carried out and they both result competitive interrogation solutions. The work thus focuses on the development of cost-effective alternatives for monitoring this kind of biosensors in practical situations.

  16. Application of surface plasmon resonance for the detection of carbohydrates, glycoconjugates, and measurement of the carbohydrate-specific interactions: a comparison with conventional analytical techniques. A critical review.

    PubMed

    Safina, Gulnara

    2012-01-27

    Carbohydrates (glycans) and their conjugates with proteins and lipids contribute significantly to many biological processes. That makes these compounds important targets to be detected, monitored and identified. The identification of the carbohydrate content in their conjugates with proteins and lipids (glycoforms) is often a challenging task. Most of the conventional instrumental analytical techniques are time-consuming and require tedious sample pretreatment and utilising various labeling agents. Surface plasmon resonance (SPR) has been intensively developed during last two decades and has received the increasing attention for different applications, from the real-time monitoring of affinity bindings to biosensors. SPR does not require any labels and is capable of direct measurement of biospecific interaction occurring on the sensing surface. This review provides a critical comparison of modern analytical instrumental techniques with SPR in terms of their analytical capabilities to detect carbohydrates, their conjugates with proteins and lipids and to study the carbohydrate-specific bindings. A few selected examples of the SPR approaches developed during 2004-2011 for the biosensing of glycoforms and for glycan-protein affinity studies are comprehensively discussed. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Single Molecule Bioelectronics and Their Application to Amplification-Free Measurement of DNA Lengths

    PubMed Central

    Gül, O. Tolga; Pugliese, Kaitlin M.; Choi, Yongki; Sims, Patrick C.; Pan, Deng; Rajapakse, Arith J.; Weiss, Gregory A.; Collins, Philip G.

    2016-01-01

    As biosensing devices shrink smaller and smaller, they approach a scale in which single molecule electronic sensing becomes possible. Here, we review the operation of single-enzyme transistors made using single-walled carbon nanotubes. These novel hybrid devices transduce the motions and catalytic activity of a single protein into an electronic signal for real-time monitoring of the protein’s activity. Analysis of these electronic signals reveals new insights into enzyme function and proves the electronic technique to be complementary to other single-molecule methods based on fluorescence. As one example of the nanocircuit technique, we have studied the Klenow Fragment (KF) of DNA polymerase I as it catalytically processes single-stranded DNA templates. The fidelity of DNA polymerases makes them a key component in many DNA sequencing techniques, and here we demonstrate that KF nanocircuits readily resolve DNA polymerization with single-base sensitivity. Consequently, template lengths can be directly counted from electronic recordings of KF’s base-by-base activity. After measuring as few as 20 copies, the template length can be determined with <1 base pair resolution, and different template lengths can be identified and enumerated in solutions containing template mixtures. PMID:27348011

  18. Single Molecule Bioelectronics and Their Application to Amplification-Free Measurement of DNA Lengths.

    PubMed

    Gül, O Tolga; Pugliese, Kaitlin M; Choi, Yongki; Sims, Patrick C; Pan, Deng; Rajapakse, Arith J; Weiss, Gregory A; Collins, Philip G

    2016-06-24

    As biosensing devices shrink smaller and smaller, they approach a scale in which single molecule electronic sensing becomes possible. Here, we review the operation of single-enzyme transistors made using single-walled carbon nanotubes. These novel hybrid devices transduce the motions and catalytic activity of a single protein into an electronic signal for real-time monitoring of the protein's activity. Analysis of these electronic signals reveals new insights into enzyme function and proves the electronic technique to be complementary to other single-molecule methods based on fluorescence. As one example of the nanocircuit technique, we have studied the Klenow Fragment (KF) of DNA polymerase I as it catalytically processes single-stranded DNA templates. The fidelity of DNA polymerases makes them a key component in many DNA sequencing techniques, and here we demonstrate that KF nanocircuits readily resolve DNA polymerization with single-base sensitivity. Consequently, template lengths can be directly counted from electronic recordings of KF's base-by-base activity. After measuring as few as 20 copies, the template length can be determined with <1 base pair resolution, and different template lengths can be identified and enumerated in solutions containing template mixtures.

  19. Innovations in biomedical nanoengineering: nanowell array biosensor.

    PubMed

    Seo, YoungTae; Jeong, Sunil; Lee, JuKyung; Choi, Hak Soo; Kim, Jonghan; Lee, HeaYeon

    2018-01-01

    Nanostructured biosensors have pioneered biomedical engineering by providing highly sensitive analyses of biomolecules. The nanowell array (NWA)-based biosensing platform is particularly innovative, where the small size of NWs within the array permits extremely profound sensing of a small quantity of biomolecules. Undoubtedly, the NWA geometry of a gently-sloped vertical wall is critical for selective docking of specific proteins without capillary resistances, and nanoprocessing has contributed to the fabrication of NWA electrodes on gold substrate such as molding process, e-beam lithography, and krypton-fluoride (KrF) stepper semiconductor method. The Lee group at the Mara Nanotech has established this NW-based biosensing technology during the past two decades by engineering highly sensitive electrochemical sensors and providing a broad range of detection methods from large molecules (e.g., cells or proteins) to small molecules (e.g., DNA and RNA). Nanosized gold dots in the NWA enhance the detection of electrochemical biosensing to the range of zeptomoles in precision against the complementary target DNA molecules. In this review, we discuss recent innovations in biomedical nanoengineering with a specific focus on novel NWA-based biosensors. We also describe our continuous efforts in achieving a label-free detection without non-specific binding while maintaining the activity and stability of immobilized biomolecules. This research can lay the foundation of a new platform for biomedical nanoengineering systems.

  20. Influence of aspect ratio and surface defect density on hydrothermally grown ZnO nanorods towards amperometric glucose biosensing applications

    NASA Astrophysics Data System (ADS)

    Shukla, Mayoorika; Pramila; Dixit, Tejendra; Prakash, Rajiv; Palani, I. A.; Singh, Vipul

    2017-11-01

    In this work, hydrothermally grown ZnO Nanorods Array (ZNA) has been synthesized over Platinum (Pt) coated glass substrate, for biosensing applications. In-situ addition of strong oxidizing agent viz KMnO4 during hydrothermal growth was found to have profound effect on the physical properties of ZNA. Glucose oxidase (GOx) was later immobilized over ZNA by means of physical adsorption process. Further influence of varying aspect ratio, enzyme loading and surface defects on amperometric glucose biosensor has been analyzed. Significant variation in biosensor performance was observed by varying the amount of KMnO4 addition during the growth. Moreover, investigations revealed that the suppression of surface defects and aspect ratio variation of the ZNA played key role towards the observed improvement in the biosensor performance, thereby significantly affecting the sensitivity and response time of the fabricated biosensor. Among different biosensors fabricated having varied aspect ratio and surface defect density of ZNA, the best electrode resulted into sensitivity and response time to be 18.7 mA cm-2 M-1 and <5 s respectively. The observed results revealed that apart from high aspect ratio nanostructures and the extent of enzyme loading, surface defect density also hold a key towards ZnO nanostructures based bio-sensing applications.

  1. On-Chip Synthesis of Protein Microarrays from DNA Microarrays Via Coupled In Vitro Transcription and Translation for Surface Plasmon Resonance Imaging Biosensor Applications

    PubMed Central

    Seefeld, Ting H.; Halpern, Aaron R.; Corn, Robert M.

    2012-01-01

    Protein microarrays are fabricated from double-stranded DNA (dsDNA) microarrays by a one-step, multiplexed enzymatic synthesis in an on-chip microfluidic format and then employed for antibody biosensing measurements with surface plasmon resonance imaging (SPRI). A microarray of dsDNA elements (denoted as generator elements) that encode either a His-tagged green fluorescent protein (GFP) or a His-tagged luciferase protein is utilized to create multiple copies of messenger RNA (mRNA) in a surface RNA polymerase reaction; the mRNA transcripts are then translated into proteins by cell-free protein synthesis in a microfluidic format. The His-tagged proteins diffuse to adjacent Cu(II)-NTA microarray elements (denoted as detector elements) and are specifically adsorbed. The net result is the on-chip, cell-free synthesis of a protein microarray that can be used immediately for SPRI protein biosensing. The dual element format greatly reduces any interference from the nonspecific adsorption of enzyme or proteins. SPRI measurements for the detection of the antibodies anti-GFP and anti-luciferase were used to verify the formation of the protein microarray. This convenient on-chip protein microarray fabrication method can be implemented for multiplexed SPRI biosensing measurements in both clinical and research applications. PMID:22793370

  2. Innovations in biomedical nanoengineering: nanowell array biosensor

    NASA Astrophysics Data System (ADS)

    Seo, YoungTae; Jeong, Sunil; Lee, JuKyung; Choi, Hak Soo; Kim, Jonghan; Lee, HeaYeon

    2018-04-01

    Nanostructured biosensors have pioneered biomedical engineering by providing highly sensitive analyses of biomolecules. The nanowell array (NWA)-based biosensing platform is particularly innovative, where the small size of NWs within the array permits extremely profound sensing of a small quantity of biomolecules. Undoubtedly, the NWA geometry of a gently-sloped vertical wall is critical for selective docking of specific proteins without capillary resistances, and nanoprocessing has contributed to the fabrication of NWA electrodes on gold substrate such as molding process, e-beam lithography, and krypton-fluoride (KrF) stepper semiconductor method. The Lee group at the Mara Nanotech has established this NW-based biosensing technology during the past two decades by engineering highly sensitive electrochemical sensors and providing a broad range of detection methods from large molecules (e.g., cells or proteins) to small molecules (e.g., DNA and RNA). Nanosized gold dots in the NWA enhance the detection of electrochemical biosensing to the range of zeptomoles in precision against the complementary target DNA molecules. In this review, we discuss recent innovations in biomedical nanoengineering with a specific focus on novel NWA-based biosensors. We also describe our continuous efforts in achieving a label-free detection without non-specific binding while maintaining the activity and stability of immobilized biomolecules. This research can lay the foundation of a new platform for biomedical nanoengineering systems.

  3. An Integrated Patient Information and In-Home Health Monitoring System Using Smartphones and Web Services.

    PubMed

    Sorwar, Golam; Ali, Mortuza; Islam, Md Kamrul; Miah, Mohammad Selim

    2016-01-01

    Modern healthcare systems are undergoing a paradigm shift from in-hospital care to in-home monitoring, leveraging the emerging technologies in the area of bio-sensing, wireless communication, mobile computing, and artificial intelligence. In-home monitoring promises to significantly reduce healthcare spending by preventing unnecessary hospital admissions and visits to healthcare professionals. Most of the in-home monitoring systems, proposed in the literature, focus on monitoring a set of specific vital signs. However, from the perspective of caregivers it is infeasible to maintain a collection of specialized monitoring systems. In this paper, we view the problem of in-home monitoring from the perspective of caregivers and present a framework that supports various monitoring capabilities while making the complexity transparent to the end users. The essential idea of the framework is to define a 'general purpose architecture' where the system specifies a particular protocol for communication and makes it public. Then any bio-sensing system can communicate with the system as long as it conforms to the protocol. We then argue that as the system grows in terms of number of patients and bio-sensing systems, artificial intelligence technologies need to be employed for patients' risk assessment, prioritization, and recommendation. Finally, we present an initial prototype of the system designed according to the proposed framework.

  4. Biosensors to Diagnose Chagas Disease: A Brief Review

    PubMed Central

    Rocha-Gaso, María-Isabel; Beyssen, Denis; Sarry, Frédéric; Reyna, Marco-Antonio

    2017-01-01

    Chagas disease (CD), which mostly affects those living in deprived areas, has become one of Latin America’s main public health problems. Effective prevention of the disease requires early diagnosis, initiation of therapy, and regular blood monitoring of the infected individual. However, the majority of the Trypanosoma cruzi infections go undiagnosed because of mild symptoms, limited access to medical attention and to a high variability in the sensitivity and specificity of diagnostic tests. Consequently, more affordable and accessible detection technologies capable of providing early diagnosis and T. cruzi load measurements in settings where CD is most prevalent are needed to enable enhanced intervention strategies. This work analyzes the potential contribution of biosensing technologies, reviewing examples that have been tested and contrasted with traditional methods, both serological and parasitological (i.e., molecular detection by PCR), and discusses some emerging biosensing technologies that have been applied for this public health issue. Even if biosensing technologies still require further research efforts to develop portable systems, we arrive at the conclusion that biosensors could improve the accuracy of CD diagnosis and the follow-up of patients’ treatments in terms of the rapidity of results, small sample volume, high integration, ease of use, real-time and low cost detection when compared with current conventional technologies. PMID:29140309

  5. Label-free protein sensing by employing blue phase liquid crystal.

    PubMed

    Lee, Mon-Juan; Chang, Chung-Huan; Lee, Wei

    2017-03-01

    Blue phases (BPs) are mesophases existing between the isotropic and chiral nematic phases of liquid crystals (LCs). In recent years, blue phase LCs (BPLCs) have been extensively studied in the field of LC science and display technology. However, the application of BPLCs in biosensing has not been explored. In this study, a BPLC-based biosensing technology was developed for the detection and quantitation of bovine serum albumin (BSA). The sensing platform was constructed by assembling an empty cell with two glass slides coated with homeotropic alignment layers and with immobilized BSA atop. The LC cells were heated to isotropic phase and then allowed to cool down to and maintained at distinct BP temperatures for spectral measurements and texture observations. At BSA concentrations below 10 -6 g/ml, we observed that the Bragg reflection wavelength blue-shifted with increasing concentration of BSA, suggesting that the BP is a potentially sensitive medium in the detection and quantitation of biomolecules. By using the BPLC at 37 °C and the same polymorphic material in the smectic A phase at 20 °C, two linear correlations were established for logarithmic BSA concentrations ranging from 10 -9 to 10 -6 g/ml and from 10 -6 to 10 -3 g/ml. Our results demonstrate the potential of BPLCs in biosensing and quantitative analysis of biomolecules.

  6. Direct ultrasensitive electrochemical biosensing of pathogenic DNA using homogeneous target-initiated transcription amplification

    PubMed Central

    Yan, Yurong; Ding, Shijia; Zhao, Dan; Yuan, Rui; Zhang, Yuhong; Cheng, Wei

    2016-01-01

    Sensitive and specific methodologies for detection of pathogenic gene at the point-of-care are still urgent demands in rapid diagnosis of infectious diseases. This work develops a simple and pragmatic electrochemical biosensing strategy for ultrasensitive and specific detection of pathogenic nucleic acids directly by integrating homogeneous target-initiated transcription amplification (HTITA) with interfacial sensing process in single analysis system. The homogeneous recognition and specific binding of target DNA with the designed hairpin probe triggered circular primer extension reaction to form DNA double-strands which contained T7 RNA polymerase promoter and served as templates for in vitro transcription amplification. The HTITA protocol resulted in numerous single-stranded RNA products which could synchronously hybridized with the detection probes and immobilized capture probes for enzyme-amplified electrochemical detection on the biosensor surface. The proposed electrochemical biosensing strategy showed very high sensitivity and selectivity for target DNA with a dynamic response range from 1 fM to 100 pM. Using salmonella as a model, the established strategy was successfully applied to directly detect invA gene from genomic DNA extract. This proposed strategy presented a simple, pragmatic platform toward ultrasensitive nucleic acids detection and would become a versatile and powerful tool for point-of-care pathogen identification. PMID:26729209

  7. Design and Validation of a 150 MHz HFFQCM Sensor for Bio-Sensing Applications

    PubMed Central

    Fernández, Román; García, Pablo; García, María; Jiménez, Yolanda; Arnau, Antonio

    2017-01-01

    Acoustic wave resonators have become suitable devices for a broad range of sensing applications due to their sensitivity, low cost, and integration capability, which are all factors that meet the requirements for the resonators to be used as sensing elements for portable point of care (PoC) platforms. In this work, the design, characterization, and validation of a 150 MHz high fundamental frequency quartz crystal microbalance (HFF-QCM) sensor for bio-sensing applications are introduced. Finite element method (FEM) simulations of the proposed design are in good agreement with the electrical characterization of the manufactured resonators. The sensor is also validated for bio-sensing applications. For this purpose, a specific sensor cell was designed and manufactured that addresses the critical requirements associated with this type of sensor and application. Due to the small sensing area and the sensor’s fragility, these requirements include a low-volume flow chamber in the nanoliter range, and a system approach that provides the appropriate pressure control for assuring liquid confinement while maintaining the integrity of the sensor with a good base line stability and easy sensor replacement. The sensor characteristics make it suitable for consideration as the elemental part of a sensor matrix in a multichannel platform for point of care applications. PMID:28885551

  8. Direct ultrasensitive electrochemical biosensing of pathogenic DNA using homogeneous target-initiated transcription amplification

    NASA Astrophysics Data System (ADS)

    Yan, Yurong; Ding, Shijia; Zhao, Dan; Yuan, Rui; Zhang, Yuhong; Cheng, Wei

    2016-01-01

    Sensitive and specific methodologies for detection of pathogenic gene at the point-of-care are still urgent demands in rapid diagnosis of infectious diseases. This work develops a simple and pragmatic electrochemical biosensing strategy for ultrasensitive and specific detection of pathogenic nucleic acids directly by integrating homogeneous target-initiated transcription amplification (HTITA) with interfacial sensing process in single analysis system. The homogeneous recognition and specific binding of target DNA with the designed hairpin probe triggered circular primer extension reaction to form DNA double-strands which contained T7 RNA polymerase promoter and served as templates for in vitro transcription amplification. The HTITA protocol resulted in numerous single-stranded RNA products which could synchronously hybridized with the detection probes and immobilized capture probes for enzyme-amplified electrochemical detection on the biosensor surface. The proposed electrochemical biosensing strategy showed very high sensitivity and selectivity for target DNA with a dynamic response range from 1 fM to 100 pM. Using salmonella as a model, the established strategy was successfully applied to directly detect invA gene from genomic DNA extract. This proposed strategy presented a simple, pragmatic platform toward ultrasensitive nucleic acids detection and would become a versatile and powerful tool for point-of-care pathogen identification.

  9. Direct ultrasensitive electrochemical biosensing of pathogenic DNA using homogeneous target-initiated transcription amplification.

    PubMed

    Yan, Yurong; Ding, Shijia; Zhao, Dan; Yuan, Rui; Zhang, Yuhong; Cheng, Wei

    2016-01-05

    Sensitive and specific methodologies for detection of pathogenic gene at the point-of-care are still urgent demands in rapid diagnosis of infectious diseases. This work develops a simple and pragmatic electrochemical biosensing strategy for ultrasensitive and specific detection of pathogenic nucleic acids directly by integrating homogeneous target-initiated transcription amplification (HTITA) with interfacial sensing process in single analysis system. The homogeneous recognition and specific binding of target DNA with the designed hairpin probe triggered circular primer extension reaction to form DNA double-strands which contained T7 RNA polymerase promoter and served as templates for in vitro transcription amplification. The HTITA protocol resulted in numerous single-stranded RNA products which could synchronously hybridized with the detection probes and immobilized capture probes for enzyme-amplified electrochemical detection on the biosensor surface. The proposed electrochemical biosensing strategy showed very high sensitivity and selectivity for target DNA with a dynamic response range from 1 fM to 100 pM. Using salmonella as a model, the established strategy was successfully applied to directly detect invA gene from genomic DNA extract. This proposed strategy presented a simple, pragmatic platform toward ultrasensitive nucleic acids detection and would become a versatile and powerful tool for point-of-care pathogen identification.

  10. Biosensors to Diagnose Chagas Disease: A Brief Review.

    PubMed

    Rocha-Gaso, María-Isabel; Villarreal-Gómez, Luis-Jesús; Beyssen, Denis; Sarry, Frédéric; Reyna, Marco-Antonio; Ibarra-Cerdeña, Carlos-Napoleón

    2017-11-15

    Chagas disease (CD), which mostly affects those living in deprived areas, has become one of Latin America's main public health problems. Effective prevention of the disease requires early diagnosis, initiation of therapy, and regular blood monitoring of the infected individual. However, the majority of the Trypanosoma cruzi infections go undiagnosed because of mild symptoms, limited access to medical attention and to a high variability in the sensitivity and specificity of diagnostic tests. Consequently, more affordable and accessible detection technologies capable of providing early diagnosis and T. cruzi load measurements in settings where CD is most prevalent are needed to enable enhanced intervention strategies. This work analyzes the potential contribution of biosensing technologies, reviewing examples that have been tested and contrasted with traditional methods, both serological and parasitological (i.e., molecular detection by PCR), and discusses some emerging biosensing technologies that have been applied for this public health issue. Even if biosensing technologies still require further research efforts to develop portable systems, we arrive at the conclusion that biosensors could improve the accuracy of CD diagnosis and the follow-up of patients' treatments in terms of the rapidity of results, small sample volume, high integration, ease of use, real-time and low cost detection when compared with current conventional technologies.

  11. Electrical double layer modulation of hybrid room temperature ionic liquid/aqueous buffer interface for enhanced sweat based biosensing.

    PubMed

    Jagannath, Badrinath; Muthukumar, Sriram; Prasad, Shalini

    2018-08-03

    We have investigated the role of kosmotropic anionic moieties and chaotropic cationic moieties of room temperature hydrophilic ionic liquids in enhancing the biosensing performance of affinity based immunochemical biosensors in human sweat. Two ionic liquids, 1-butyl-3-methylimidazolium tetrafluoroborate (BMIM[BF 4 ]) and choline dihydrogen phosphate (Choline[DHP]) were investigated in this study with Choline[DHP] being more kosmotropic in nature having a more protein stabilizing effect based on the hofmeister series. Non-faradaic interfacial charge transfer has been employed as the mechanism for evaluating the formation and the biosensing of capture probe antibodies in room temperature ionic liquids (RTILs)/aqueous human sweat interface. The charge of the ionic moieties were utilized to form compact electrical double layers around the antibodies for enhancing the stability of the antibody capture probes, which was evaluated through zeta potential measurements. The zeta potential measurements indicated stability of antibodies due to electrostatic repulsion of the RTIL charged moieties encompassing the antibodies, thus preventing any aggregation. Here, we report for the first time of non-faradaic electrochemical impedance spectroscopy equivalent circuit model analysis for analyzing and interpreting affinity based biosensing at hybrid electrode/ionic liquid-aqueous sweat buffer interface guided by the choice of the ionic liquid. Interleukin-6 (IL-6) and cortisol two commonly occurring biomarkers in human sweat were evaluated using this method. The limit of detection (LOD) obtained using both ionic liquids for IL-6 was 0.2 pg mL -1 with cross-reactivity studies indicating better performance of IL-6 detection using Choline[DHP] and no response to cross-reactive molecule. The LOD of 0.1 ng/mL was achieved for cortisol and the cross-reactivity studies indicated that cortisol antibody in BMIM[BF 4 ] did not show any signal response to cross-reactive molecules. Furthermore, improved sensitivity and LOD was achieved using ionic liquids as compared to capture probes in aqueous buffer. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Exploiting enzyme catalysis in ultra-low ion strength media for impedance biosensing of avian influenza virus using a bare interdigitated electrode.

    PubMed

    Fu, Yingchun; Callaway, Zachary; Lum, Jacob; Wang, Ronghui; Lin, Jianhan; Li, Yanbin

    2014-02-18

    Enzyme catalysis is broadly used in various fields but generally applied in media with high ion strength. Here, we propose the exploitation of enzymatic catalysis in ultra-low ion strength media to induce ion strength increase for developing a novel impedance biosensing method. Avian influenza virus H5N1, a serious worldwide threat to poultry and human health, was adopted as the analyte. Magnetic beads were modified with H5N1-specific aptamer to capture the H5N1 virus. This was followed by binding concanavalin A (ConA), glucose oxidase (GOx), and Au nanoparticles (AuNPs) to create bionanocomposites through a ConA-glycan interaction. The yielded sandwich complex was transferred to a glucose solution to trigger an enzymatic reaction to produce gluconic acid, which ionized to increase the ion strength of the solution, thus decreasing the impedance on a screen-printed interdigitated array electrode. This method took advantages of the high efficiency of enzymatic catalysis and the high susceptibility of electrochemical impedance on the ion strength and endowed the biosensor with high sensitivity and a detection limit of 8 × 10(-4) HAU in 200 μL sample, which was magnitudes lower than that of some analogues based on biosensing methods. Furthermore, the proposed method required only a bare electrode for measurements of ion strength change and had negligible change on the surficial properties of the electrode, though some modification of magnetic beads/Au nanoparticles and the construction of a sandwich complex were still needed. This helped to avoid the drawbacks of commonly used electrode immobilization methods. The merit for this method makes it highly useful and promising for applications. The proposed method may create new possibilities in the broad and well-developed enzymatic catalysis fields and find applications in developing sensitive, rapid, low-cost, and easy-to-operate biosensing and biocatalysis devices.

  13. Oxidative polymerization of 5-hydroxytryptamine to physically and chemically immobilize glucose oxidase for electrochemical biosensing.

    PubMed

    Huang, Ting; Liu, Zaichun; Li, Yunlong; Li, Yanqiu; Chao, Long; Chen, Chao; Tan, Yueming; Xie, Qingji; Yao, Shouzhuo; Wu, Yuping

    2018-07-12

    Poly(5-hydroxytryptamine) (poly(5-HT)) is exploited as a new and efficient enzyme-immobilization matrix for amperometric and biofuel cell (BFC)-based biosensing. A GOx-poly(5-HT)-Pd nanoparticles (PdNPs) bionanocomposite is prepared by Na 2 PdCl 4 -initiated oxidized polymerization of 5-hydroxytryptamine (5-HT) in a neutral aqueous solution containing glucose oxidase (GOx), and this bionanocomposite and then chitosan (CS) are cast-coated on a Pd-plated Au electrode to yield a CS/GOx-poly(5-HT)-PdNPs/Pd plate /Au enzyme electrode. Scanning/transmission electron microscopy, UV-vis spectrophotometry and electrochemical quartz crystal microbalance are employed for material characterization and/or process monitoring. Under optimized conditions, the amperometric response of the enzyme electrode is linear with glucose concentration from 2.0 μM to 6.66 mM with a sensitivity of 110 μA mM -1  cm -2 , a limit of detection of 0.2 μM, and excellent operation/storage stability in the first-generation biosensing mode. The sensitivity is larger than those of some conventional electrodes under identical conditions. The enzyme electrode also works well in the second-generation biosensing mode. By using the enzyme electrode as the anode for glucose oxidation and a Pd plate /Au electrode as the cathode for KMnO 4 reduction, a monopolar BFC is constructed as a self-powered biosensor, the current response of which is linear with glucose concentration from 50 μM to 34.5 mM. Experiments also show that poly(5-HT) is a physical and chemical dual-immobilization matrix of enzyme, since the abundant amino groups in poly(5-HT) can be used for chemical bonding of GOx. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Indium tin oxide with zwitterionic interfacial design for biosensing applications in complex matrices

    NASA Astrophysics Data System (ADS)

    Darwish, Nadia T.; Alias, Yatimah; Khor, Sook Mei

    2015-01-01

    Biosensing interfaces consisting of linker molecules (COOH or NH2) and charged, antifouling moieties ((sbnd SO3- and N+(Me)3) for biosensing applications were prepared for the first time by the in situ deposition of mixtures of aryl diazonium cations on indium tin oxide (ITO) electrodes. A linker molecule is required for the attachment of biorecognition molecules (e.g., antibodies, enzymes, DNA chains, and aptamers) close to the transducer surface. The attached molecules improve the biosensing sensitivity and also provide a short response time for analyte detection. Thus, the incorporation of a linker and antifouling molecules is an important interfacial design for both affinity and enzymatic biosensors. The reductive adsorption behavior and electrochemical measurement were studied for (1) an individual compound and (2) a mixture of antifouling zwitterionic molecules together with linker molecules [combination 1: 4-sulfophenyl (SP), 4-trimethylammoniophenyl (TMAP), and 1,4-phenylenediamine (PPD); combination 2: 4-sulfophenyl (SP), 4-trimethylammoniophenyl (TMAP), and 4-aminobenzoic acid (PABA)] of aryl diazonium cations grafted onto an ITO electrode. The mixture ratios of SP:TMAP:PPD and SP:TMAP:PABA that provided the greatest resistance to non-specific protein adsorptions of bovine serum albumin labeled with fluorescein isothiocyanate (BSA-FITC) and cytochrome c labeled with rhodamine B isothiocyanate (RBITC-Cyt c) were determined by confocal laser scanning microscopy (CLSM). For the surface antifouling study, we used 2-[2-(2-methoxyethoxy) ethoxy]acetic acid (OEG) as a standard control because of its prominent antifouling properties. Surface compositions of combinations 1 and 2 were characterized using X-ray photoelectron spectroscopy (XPS). Field-emission scanning electron microscopy (FE-SEM) was used to characterize the morphology of the grafted films to confirm the even distribution between linker and antifouling molecules grafted onto the ITO surfaces. Combination 1 (SP:TMAP:PPD) with a ratio of 0.5:1.5:0.37 exhibited the best antifouling capability with respect to resisting the nonspecific adsorption of proteins.

  15. Electrophoretically deposited reduced graphene oxide platform for food toxin detection

    NASA Astrophysics Data System (ADS)

    Srivastava, Saurabh; Kumar, Vinod; Ali, Md Azahar; Solanki, Pratima R.; Srivastava, Anchal; Sumana, Gajjala; Saxena, Preeti Suman; Joshi, Amish G.; Malhotra, B. D.

    2013-03-01

    Reduced graphene oxide (RGO) due to its excellent electrochemical properties and large surface area, has recently aroused much interest for electrochemical biosensing application. Here, the chemically active RGO has been synthesized and deposited onto an indium tin oxide (ITO) coated glass substrate by the electrophoretic deposition technique. This novel platform has been utilized for covalent attachment of the monoclonal antibodies of aflatoxin B1 (anti-AFB1) for food toxin (AFB1) detection. The electron microscopy, X-ray diffraction, and UV-visible studies reveal successful synthesis of reduced graphene oxide while the XPS and FTIR studies suggest its carboxylic functionalized nature. The electrochemical sensing results of the anti-AFB1/RGO/ITO based immunoelectrode obtained as a function of aflatoxin concentration show high sensitivity (68 μA ng-1 mL cm-2) and improved detection limit (0.12 ng mL-1). The association constant (ka) for antigen-antibody interaction obtained as 5 × 10-4 ng mL-1 indicates high affinity of antibodies toward the antigen (AFB1).Reduced graphene oxide (RGO) due to its excellent electrochemical properties and large surface area, has recently aroused much interest for electrochemical biosensing application. Here, the chemically active RGO has been synthesized and deposited onto an indium tin oxide (ITO) coated glass substrate by the electrophoretic deposition technique. This novel platform has been utilized for covalent attachment of the monoclonal antibodies of aflatoxin B1 (anti-AFB1) for food toxin (AFB1) detection. The electron microscopy, X-ray diffraction, and UV-visible studies reveal successful synthesis of reduced graphene oxide while the XPS and FTIR studies suggest its carboxylic functionalized nature. The electrochemical sensing results of the anti-AFB1/RGO/ITO based immunoelectrode obtained as a function of aflatoxin concentration show high sensitivity (68 μA ng-1 mL cm-2) and improved detection limit (0.12 ng mL-1). The association constant (ka) for antigen-antibody interaction obtained as 5 × 10-4 ng mL-1 indicates high affinity of antibodies toward the antigen (AFB1). Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr32242d

  16. In vitro osteosarcoma biosensing using THz time domain spectroscopy

    NASA Astrophysics Data System (ADS)

    Ferguson, Bradley S.; Liu, Haibo; Hay, Shelley; Findlay, David; Zhang, Xi-Cheng; Abbott, Derek

    2004-03-01

    Terahertz time domain spectroscopy (THz-TDS) has a wide range of applications from semiconductor diagnostics to biosensing. Recent attention has focused on bio-applications and several groups have noted the ability of THz-TDS to differentiate basal cell carcinoma tissue from healthy dermal tissue ex vivo. The contrast mechanism is unclear but has been attributed to increased interstitial water in cancerous tissue. In this work we investigate the THz response of human osteosarcoma cells and normal human bone cells grown in culture to isolate the cells' responses from other effects. A classification algorithms based on a frequency selection by genetic algorithm is used to attempt to differentiate between the cell types based on the THz spectra. Encouraging preliminary results have been obtained.

  17. Carbon nanotube biosensors

    PubMed Central

    Tîlmaciu, Carmen-Mihaela; Morris, May C.

    2015-01-01

    Nanomaterials possess unique features which make them particularly attractive for biosensing applications. In particular, carbon nanotubes (CNTs) can serve as scaffolds for immobilization of biomolecules at their surface, and combine several exceptional physical, chemical, electrical, and optical characteristics properties which make them one of the best suited materials for the transduction of signals associated with the recognition of analytes, metabolites, or disease biomarkers. Here we provide a comprehensive review on these carbon nanostructures, in which we describe their structural and physical properties, functionalization and cellular uptake, biocompatibility, and toxicity issues. We further review historical developments in the field of biosensors, and describe the different types of biosensors which have been developed over time, with specific focus on CNT-conjugates engineered for biosensing applications, and in particular detection of cancer biomarkers. PMID:26579509

  18. Carbon Nanotube Biosensors

    NASA Astrophysics Data System (ADS)

    Tilmaciu, Carmen-Mihaela; Morris, May

    2015-10-01

    Nanomaterials possess unique features which make them particularly attractive for biosensing applications. In particular Carbon Nanotubes (CNTs) can serve as scaffolds for immobilization of biomolecules at their surface, and combine several exceptional physical, chemical, electrical and optical characteristics properties which make them one of the best suited materials for the transduction of signals associated with the recognition of analytes, metabolites or disease biomarkers. Here we provide a comprehensive review on these carbon nanostructures, in which we will describe their structural and physical properties, discuss functionalization and cellular uptake, biocompatibility and toxicity issues. We further review historical developments in the field of biosensors, and describe the different types of biosensors which have been developed over time, with specific focus on CNT-conjugates engineered for biosensing applications, and in particular detection of cancer biomarkers.

  19. Third generation biosensing matrix based on Fe-implanted ZnO thin film

    NASA Astrophysics Data System (ADS)

    Saha, Shibu; Gupta, Vinay; Sreenivas, K.; Tan, H. H.; Jagadish, C.

    2010-09-01

    Third generation biosensor based on Fe-implanted ZnO (Fe-ZnO) thin film has been demonstrated. Implantation of Fe in rf-sputtered ZnO thin film introduces redox center along with shallow donor level and thereby enhance its electron transfer property. Glucose oxidase (GOx), chosen as model enzyme, has been immobilized on the surface of the matrix. Cyclic voltammetry and photometric assay show that the prepared bioelectrode, GOx/Fe-ZnO/ITO/Glass is sensitive to the glucose concentration with enhanced response of 0.326 μA mM-1 cm-2 and low Km of 2.76 mM. The results show promising application of Fe-implanted ZnO thin film as an attractive matrix for third generation biosensing.

  20. Controlling the shapes and sizes of metallic nanoantennas for detection of biological molecules using hybridization phase of plasmon resonances and photonic lattice modes

    NASA Astrophysics Data System (ADS)

    Gutha, Rithvik R.; Sharp, Christina; Wing, Waylin J.; Sadeghi, Seyed M.

    2018-02-01

    Chemical sensing based on Localized Surface Plasmonic Resonances (LSPR) and the ultra-sharp optical features of surface lattice resonances (SLR) of arrays of metallic nanoantennas have attracted much attention. Recently we studied biosensing based on the transition between LSPR and SLR (hybridization phase), demonstrating significantly higher refractive index sensitivity than each of these resonances individually. In this contribution we study the impact of size and shape of the metallic nanoantennas on the hybridization process and the way they influence application of this process for biosensing, wherein miniscule variation of the refractive index of the environment leads to dramatic changes in the spectral properties of the arrays.

  1. Graphene-like 2D nanomaterial-based biointerfaces for biosensing applications.

    PubMed

    Zhu, Chengzhou; Du, Dan; Lin, Yuehe

    2017-03-15

    Due to their unique structures and multifunctionalities, two-dimensional (2D) nanomaterials have aroused increasing interest in the construction of the novel biointerfaces for biosensing applications. Efforts in constructing novel biointerfaces led to exploit the more versatile and tunable graphene-like 2D nanomaterials (e.g. graphitic carbon nitride, boron nitride, transition metal dichalcogenides, and transition metal oxides) with various structural and compositional characteristics. This review highlights recent efforts in the design of graphene-like 2D nanomaterials and their derived biointerfaces and exploitation of their research on fluorescent sensors and a series of electrochemical sensors, including amperometric, electrochemiluminescence, photoelectrochemical and field-effect transistor sensors. Finally, we discuss some critical challenges and future perspectives in this field. Copyright © 2016. Published by Elsevier B.V.

  2. Recent applications of carbon nanomaterials in fluorescence biosensing and bioimaging.

    PubMed

    Wen, Jia; Xu, Yongqian; Li, Hongjuan; Lu, Aiping; Sun, Shiguo

    2015-07-21

    Carbon-based nanomaterials as important agents for biological applications have emerged in the past few years due to their unique optical, electronic, mechanical, and chemical properties. Many of these applications rely on successful surface modifications. This review article comprises two main parts. In the first part, we briefly review the properties and surface modifications of several classes of carbon nanomaterials, mainly carbon nanotubes (CNTs), graphene and its derivatives, carbon dots (CDs) and graphene quantum dots (GQDs), as well as some other forms of carbon-based nanomaterials such as fullerene, carbon nanohorns (CNHs) and carbon nanoonions (CNOs). In the second part, we focus on the biological applications of these carbon nanomaterials, in particular their applications for fluorescence biosensing as well as bioimaging.

  3. In Situ Synthesis of Reduced Graphene Oxide and Gold Nanocomposites for Nanoelectronics and Biosensing.

    PubMed

    Dong, Xiaochen; Huang, Wei; Chen, Peng

    2011-12-01

    In this study, an in situ chemical synthesis approach has been developed to prepare graphene-Au nanocomposites from chemically reduced graphene oxide (rGO) in aqueous media. UV-Vis absorption, atomic force microscopy, scanning electron microscopy, transmission electron microscopy, and Raman spectroscopy were used to demonstrate the successful attachment of Au nanoparticles to graphene sheets. Configured as field-effect transistors (FETs), the as-synthesized single-layered rGO-Au nanocomposites exhibit higher hole mobility and conductance when compared to the rGO sheets, promising its applications in nanoelectronics. Furthermore, we demonstrate that the rGO-Au FETs are able to label-freely detect DNA hybridization with high sensitivity, indicating its potentials in nanoelectronic biosensing.

  4. M-DNA: a self-assembling molecular wire for nanoelectronics and biosensing.

    PubMed

    Wettig, Shawn D; Li, Chen-Zhong; Long, Yi-Tao; Kraatz, Heinz-Bernhard; Lee, Jeremy S

    2003-01-01

    M-DNA is a complex between divalent metal ions such as Zn2+ and duplex DNA which forms at pH 8.5. Unlike B-DNA, M-DNA does not bind ethidium so that M-DNA formation can be monitored conveniently by an ethidium fluorescence assay. M-DNA was shown to be a better conductor than B-DNA by fluorometric measurements of electron transport in donor-acceptor labelled duplexes; by direct conductivity measurements of M-DNA bound between gold electrodes and by cyclic voltammetric studies on ferrocene labelled duplexes attached to gold microelectrodes. As is the case with B-DNA, M-DNA can self-assemble into a variety of structures and is anticipated to find widespread use in nanoelectronics and biosensing.

  5. In Situ Synthesis of Reduced Graphene Oxide and Gold Nanocomposites for Nanoelectronics and Biosensing

    PubMed Central

    2011-01-01

    In this study, an in situ chemical synthesis approach has been developed to prepare graphene–Au nanocomposites from chemically reduced graphene oxide (rGO) in aqueous media. UV–Vis absorption, atomic force microscopy, scanning electron microscopy, transmission electron microscopy, and Raman spectroscopy were used to demonstrate the successful attachment of Au nanoparticles to graphene sheets. Configured as field-effect transistors (FETs), the as-synthesized single-layered rGO-Au nanocomposites exhibit higher hole mobility and conductance when compared to the rGO sheets, promising its applications in nanoelectronics. Furthermore, we demonstrate that the rGO-Au FETs are able to label-freely detect DNA hybridization with high sensitivity, indicating its potentials in nanoelectronic biosensing. PMID:27502682

  6. DC biased low-frequency insulating constriction dielectrophoresis for protein biomolecules concentration.

    PubMed

    Zhang, Peng; Liu, Yuxin

    2017-09-01

    Sample enrichment or molecules concentration is considered an essential step in sample processing of miniaturized devices aimed at biosensing and bioanalysis. Among all the means involved to achieve this aim, dielectrophoresis (DEP) is increasingly employed in molecules manipulation and concentration because it is non-destructive and high efficiency. This paper presents a methodology to achieve protein concentration utilizing the combination effects of electrokinetics and low frequency insulating dielectrophoresis (iDEP) generated within a microfluidic device, in which a submicron constricted channel was fabricated using DNA molecular combing and replica molding. This fabrication technique avoids using e-beam lithography or other complicated nanochannel fabrication methods, and provides an easy and low cost approach with the flexibility of controlling channel dimensions to create highly constricted channels embedded in a microfluidic device. With theoretical analysis and experiments, we demonstrated that fluorescein isothiocyanate conjugated bovine serum albumin (FITC-BSA) protein molecules can be significantly concentrated to form an arc-shaped band near the constricted channel under the effects of a negative dielectrophoretic force and DC electrokinetic forces within a short period of time. It was also observed that the amplitudes of the applied DC and AC electric fields, the AC frequencies as well as the suspending medium conductivities had strong effects on the concentration responses of the FITC-BSA molecules, including the concentrated area and position, intensities of the focused molecules, and concentration speed. Our method provides a simple and flexible approach for quickly concentrating protein molecules by controlling the applied electric field parameters. The iDEP device reported in this paper can be used as a stand-alone sensor or worked as a pre-concentration module integrated with biosensors for protein biomarker detection. Furthermore, low frequency dielectrophoresis provides practical uses for integrating the concentration module with a portable biosensing system.

  7. A dye-sensitized solar cell acting as the electrical reading box of an immunosensor: Application to CEA determination.

    PubMed

    Truta, Liliana A A N A; Moreira, Felismina T C; Sales, M Goreti F

    2018-06-01

    Monitoring cancer biomarkers in biological fluids has become a key tool for disease diagnosis, which should be of easy access anywhere in the world. The possibility of reducing basic requirements in the field of electrochemical biosensing may open doors in this direction. This work proposes for this purpose an innovative electrochemical immunosensing system using a photovoltaic cell as an electrical reading box. Immunosensing ensures accuracy, the electrochemical-ground of the device ensures sensitivity and detectability, and the photovoltaic cell drives the system towards electrical autonomy. As proof-of-concept, Carcinoembryonic antigen (CEA) was used herein, a cancer biomarker of clinical relevance. In brief, a conductive glass with a fluorine doped tin oxide film was used as conductive support and modified with anti-CEA by means of a bottom-up approach. All stages involved in the biochemical modification of the FTO surface were followed by electrochemical techniques, namely electrochemical impedance spectroscopy and cyclic voltammetry. This electrode acted as counter electrode of a dye-sensitized solar cells, and the electrical output of this cell was monitored for the different concentrations of CEA. Under optimized conditions, the device displayed a linear behaviour against CEA concentration, from 5 pg/mL to 15 ng/mL. The immunosensor was applied to the analysis of CEA in urine from healthy individual and spiked with the antigen. Overall, the presented approach demonstrates that photovoltaic cells may be employed as an electrical reading box of electrochemical biosensors, yielding a new direction towards autonomous electrochemical biosensing. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  8. Layer-by-Layer-Assembled AuNPs-Decorated First-Generation Poly(amidoamine) Dendrimer with Reduced Graphene Oxide Core as Highly Sensitive Biosensing Platform with Controllable 3D Nanoarchitecture for Rapid Voltammetric Analysis of Ultratrace DNA Hybridization.

    PubMed

    Jayakumar, Kumarasamy; Camarada, María Belén; Dharuman, Venkataraman; Rajesh, Rajendiran; Venkatesan, Rengarajan; Ju, Huangxian; Maniraj, Mahalingam; Rai, Abhishek; Barman, Sudipta Roy; Wen, Yangping

    2018-06-27

    The structure and electrochemical properties of layer-by-layer-assembled gold nanoparticles (AuNPs)-decorated first-generation (G1) poly(amidoamine) dendrimer (PD) with reduced graphene oxide (rGO) core as a highly sensitive and label-free biosensing platform with a controllable three-dimensional (3D) nanoarchitecture for the rapid voltammetric analysis of DNA hybridization at ultratrace levels were characterized. Mercaptopropinoic acid (MPA) was self-assembled onto Au substrate, then GG1PD formed by the covalent functionalization between the amino terminals of G1PD and carboxyl terminals of rGO was covalently linked onto MPA, and finally AuNPs were decorated onto GG1PD by strong physicochemical interaction between AuNPs and -OH of rGO in GG1PD, which was characterized through different techniques and confirmed by computational calculation. This 3D controllable thin-film electrode was optimized and evaluated using [Fe(CN) 6 ] 3-/4- as the redox probe and employed to covalently immobilize thiol-functionalized single-stranded DNA as biorecognition element to form the DNA nanobiosensor, which achieved fast, ultrasensitive, and high-selective differential pulse voltammetric analysis of DNA hybridization in a linear range from 1 × 10 -6 to 1 × 10 -13 g m -1 with a low detection limit of 9.07 × 10 -14 g m -1 . This work will open a new pathway for the controllable 3D nanoarchitecture of the layer-by-layer-assembled metal nanoparticles-functionalized lower-generation PD with two-dimensional layered nanomaterials as cores that can be employed as ultrasensitive and label-free nanobiodevices for the fast diagnosis of specific genome diseases in the field of biomedicine.

  9. 2D zirconium-based metal-organic framework nanosheets for highly sensitive detection of mucin 1: consistency between electrochemical and surface plasmon resonance methods

    NASA Astrophysics Data System (ADS)

    He, Linghao; Duan, Fenghe; Song, Yingpan; Guo, Chuanpan; Zhao, Hui; Tian, Jia-Yue; Zhang, Zhihong; Liu, Chun-Sen; Zhang, Xiaojing; Wang, Peiyuan; Du, Miao; Fang, Shao-Ming

    2017-06-01

    Two-dimensional (2D) zirconium-based metal-organic framework (denoted as 521-MOF) nanosheets with the thickness of 6.0-7.5 nm were prepared with the aid of polyvinyl pyrrolidone (PVP) under the mild conditions and low temperature (50 °C). Since 521-MOF nanosheets displayed good electrochemical activity, high surface area, and strong affinity interaction between the MOF and the oligonucleotides sequences, they can impel the immobilization of large amounts of aptamer strands when applied as a platform of biosensor. As a result, the developed aptasensor exhibited sensitive bio-recognition for the cancer determination marker protein, mucin 1 (MUC1). The combination of electrochemical techniques and surface plasmon resonance spectroscopy (SPR) was performed to probe the kinetic processes of the aptamer immobilization and the MUC1 detection. The consistency between different determination approaches was observed, in which the developed aptasensor based on 521-MOF nanosheets exhibits pretty high sensitivity for detecting MUC1 with a low detect limit of 0.12 and 0.65 pg·ml-1 deduced from electrochemical impedance spectroscopy and SPR, respectively, within the broad concentration range of MUC1 from 0.001 to 0.5 ng·ml-1. Simultaneously, a comparable affinity constant, K a, was derived from EIS and SPR, which also demonstrates that this new biosensing strategy has high selectivity, stability, reproducibility, and good applicability for the MUC1 detection in the human serum. The present finding indicates that the synthesized 521-MOF nanosheets can be employed in the fields of the biosensing or biomedical diagnosis and explored for different kinds of biosensors.

  10. Fc-specific biotinylation of antibody using an engineered photoactivatable Z-Biotin and its biosensing application.

    PubMed

    Yang, Hong-Ming; Bao, Ru-Meng; Yu, Chang-Mei; Lv, Yan-Na; Zhang, Wei-Fen; Tang, Jin-Bao

    2017-01-01

    The development of a site-specific and covalent attachment methodology is crucial for antibody-biotin conjugates to preserve the antigen-binding ability of antibodies and yield homogeneous products. In this study, an engineered photoactivatable Z-domain variant [an UV-active amino acid benzoylphenylalanine (Bpa) was genetically incorporated into the Z-domain] carrying one biotin molecule (Z Bpa -Biotin) was prepared by employing aminoacyl-tRNA synthetase/suppressor tRNA and Avitag/BirA techniques. The site-specific and covalent attachment of IgG-biotin conjugates, viz. photo-biotinylated IgG, was successfully achieved after UV exposure by combining the inherent Fc-binding capability of the Z-domain with the formation of covalent bond by the photo-crosslinker. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis assay showed that more than 90% of IgGs conjugated with Z Bpa -Biotin molecules suffered 3 h UV irradiation. Further pepsin digestion analysis confirmed that the Z Bpa -Biotin was conjugated to the Fc fragment of IgG without interference. We took the tumor biomarker carcinoembryoic antigen (CEA) as model to evaluate the detection efficiency of the site-specific photo-biotinylated IgG in biosensing application using surface plasmon resonance (SPR) technology. The photo-biotinylated IgG coated surface gave a limit of detection (LOD) of 2 ng mL -1 , is 5-fold lower than that of the randomly NHS-biotinylated IgG (10 ng mL -1 ). Given that the (strept)avidin-biotin complex is extensively used in immunoassays, the proposed method for biotinylated IgG provides a powerful approach to further expand related applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Efficient protein immobilization on polyethersolfone electrospun nanofibrous membrane via covalent binding for biosensing applications.

    PubMed

    Mahmoudifard, Matin; Soudi, Sara; Soleimani, Masoud; Hosseinzadeh, Simzar; Esmaeili, Elaheh; Vossoughi, Manouchehr

    2016-01-01

    In this paper we introduce novel strategy for antibody immobilization using high surface area electrospun nanofibrous membrane based on ethyl-3-(3-dimethylaminopropyl)-carbodiimide/N-hydroxysuccinimide (EDC/NHS) coupling chemistry. To present the high performance of proposed biosensors, anti-staphylococcus enterotoxin B (anti-SEB) was used as a model to demonstrate the utility of our proposed system. Polymer solution of polyethersolfone was used to fabricate fine nanofibrous membrane. Moreover, industrial polyvinylidene fluoride membrane and conventional microtiter plate were also used to compare the efficiency of antibody immobilization. Scanning electron microscopy images were taken to study the morphology of the membranes. The surface activation of nanofibrous membrane was done with the help of O2 plasma. PES nanofibrous membrane with carboxyl functional groups for covalent attachment of antibodies were treated by EDC/NHS coupling agent. The quantity of antibody immobilization was measured by enzyme-linked immuno sorbent assay (ELISA) method. Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) spectroscopy was performed to confirm the covalent immobilization of antibody on membrane. Atomic force microscopy, scanning electron microscopy and invert fluorescence microscopy were used to analyze the antibody distribution pattern on solid surfaces. Results show that oxygen plasma treatment effectively increased the amount of antibody immobilization through EDC/NHS coupling chemistry. It was found that the use of nanofibrous membrane causes the improved detection signal of ELISA based biosensors in comparison to the standard assay carried out in the 96-well microtiter plate. This method has the potential to improve the ELISA-based biosensor and we believe that this technique can be used in various biosensing methods. Copyright © 2015. Published by Elsevier B.V.

  12. [Liposomes: support for the formation of stable capsules made of reticulated polyelectrolytes or silicum].

    PubMed

    Germain, M; Paquereau, L; Winterhalter, M; Hochepied, J-F; Fournier, D

    2007-03-01

    Uses of enzymes for therapeutic purpose or for biosensing require a well-controlled nanoenvironnement to avoid degradation by proteolytic agents, pH variations or dilution effects. A solution is encapsulation under undenaturating conditions into a nanometer sized and stable capsule. The nanometer scall decreases recognition by the reticulo-endothelial system recognition and subsequent immune reaction. Liposomes are the method of choice since they allow protein encapsulation under mild conditions. However they lack in stability. In contrast, other type of capsules exhibit strong stability but with conditions required for formation that are incompatible with enzyme integrity. Here we combine different capsule formation techniques and use liposomes as templates for further stabilization. Here we demonstrate two types of multicomposite capsules. The first type is to coat the liposome surface with polyelectrolytes followed by secondary covalent crosslinking of the polyelectrolytes multilayer. In the second type of capsules we used silica to build an inorganic shell around liposome. Both techniques allow the formation of detergent stable nanocapsules which exhibits properties protective against acetylcholinesterase protein degradation, an enzyme of much interest for pesticide detection.

  13. Shrink-induced graphene sensor for alpha-fetoprotein detection with low-cost self-assembly and label-free assay

    NASA Astrophysics Data System (ADS)

    Sando, Shota; Zhang, Bo; Cui, Tianhong

    2017-12-01

    Combination of shrink induced nano-composites technique and layer-by-layer (LbL) self-assembled graphene challenges controlling surface morphology. Adjusting shrink temperature achieves tunability on graphene surface morphology on shape memory polymers, and it promises to be an alternative in fields of high-surface-area conductors and molecular detection. In this study, self-assembled graphene on a shrink polymer substrate exhibits nanowrinkles after heating. Induced nanowrinkles on graphene with different shrink temperature shows distinct surface roughness and wettability. As a result, it becomes more hydrophilic with higher shrink temperatures. The tunable wettability promises to be utilized in, for example, microfluidic devices. The graphene on shrink polymer also exhibits capability of being used in sensing applications for pH and alpha-fetoprotein (AFP) detection with advantages of label free and low cost, due to self-assembly technique, easy functionalization, and antigen-antibody reaction on graphene surface. The detection limit of AFP detection is down to 1 pg/mL, and therefore the sensor also has a significant potential for biosensing as it relies on low-cost self-assembly and label-free assay.

  14. Polyaniline modified flexible conducting paper for cancer detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Saurabh; Sen, Anindita; Kumar, Suveen

    We report results of studies relating to the fabrication of a flexible, disposable, and label free biosensing platform for detection of the cancer biomarker (carcinoembryonic antigen, CEA). Polyaniline (PANI) has been electrochemically deposited over gold sputtered paper (Au@paper) for covalent immobilization of monoclonal carcinoembryonic antibodies (anti-CEA). The bovine serum albumin (BSA) has been used for blocking nonspecific binding sites at the anti-CEA conjugated PANI/Au@Paper. The PANI/Au@Paper, anti-CEA/PANI/Au@Paper, and BSA/anti-CEA/PANI/Au@Paper platforms have been characterized using scanning electron microscopy, X-ray diffraction, Fourier transmission infrared spectroscopy, chronoamperometry, and electrochemical impedance techniques. The results of the electrochemical response studies indicate that this BSA/anti-CEA/PANI/Au@paper electrodemore » has sensitivity of 13.9 μA ng{sup −1} ml cm{sup 2}, shelf life of 22 days, and can be used to estimate CEA in the range of 2–20 ng ml{sup −1}. This paper sensor has been validated by detection of CEA in serum samples of cancer patients via immunoassay technique.« less

  15. Electrochemical recognition and quantification of cytochrome c expression in Bacillus subtilis and aerobe/anaerobe Escherichia coli using N,N,N′,N′-tetramethyl-para-phenylene-diamine (TMPD)† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c7sc03498a

    PubMed Central

    Kuss, S.; Tanner, E. E. L.; Ordovas-Montanes, M.

    2017-01-01

    The colorimetric identification of pathogenic and non-pathogenic bacteria in cell culture is commonly performed using the redox mediator N,N,N′,N′-tetramethyl-para-phenylene-diamine (TMPD) in the so-called oxidase test, which indicates the presence of bacterial cytochrome c oxidases. The presented study demonstrates the ability of electrochemistry to employ TMPD to detect bacteria and quantify the activity of bacterial cytochrome c oxidases. Cyclic voltammetry studies and chronoamperometry measurements performed on the model organism Bacillus subtilis result in a turnover number, calculated for single bacteria. Furthermore, trace amounts of cytochrome c oxidases were revealed in aerobically cultured Escherichia coli, which to our knowledge no other technique is currently able to quantify in molecular biology. The reported technique could be applied to a variety of pathogenic bacteria and has the potential to be employed in future biosensing technology. PMID:29568431

  16. Single Nanoparticle Plasmonic Sensors

    PubMed Central

    Sriram, Manish; Zong, Kelly; Vivekchand, S. R. C.; Gooding, J. Justin

    2015-01-01

    The adoption of plasmonic nanomaterials in optical sensors, coupled with the advances in detection techniques, has opened the way for biosensing with single plasmonic particles. Single nanoparticle sensors offer the potential to analyse biochemical interactions at a single-molecule level, thereby allowing us to capture even more information than ensemble measurements. We introduce the concepts behind single nanoparticle sensing and how the localised surface plasmon resonances of these nanoparticles are dependent upon their materials, shape and size. Then we outline the different synthetic approaches, like citrate reduction, seed-mediated and seedless growth, that enable the synthesis of gold and silver nanospheres, nanorods, nanostars, nanoprisms and other nanostructures with tunable sizes. Further, we go into the aspects related to purification and functionalisation of nanoparticles, prior to the fabrication of sensing surfaces. Finally, the recent developments in single nanoparticle detection, spectroscopy and sensing applications are discussed. PMID:26473866

  17. Nanoporous Anodic Alumina Platforms: Engineered Surface Chemistry and Structure for Optical Sensing Applications

    PubMed Central

    Kumeria, Tushar; Santos, Abel; Losic, Dusan

    2014-01-01

    Electrochemical anodization of pure aluminum enables the growth of highly ordered nanoporous anodic alumina (NAA) structures. This has made NAA one of the most popular nanomaterials with applications including molecular separation, catalysis, photonics, optoelectronics, sensing, drug delivery, and template synthesis. Over the past decades, the ability to engineer the structure and surface chemistry of NAA and its optical properties has led to the establishment of distinctive photonic structures that can be explored for developing low-cost, portable, rapid-response and highly sensitive sensing devices in combination with surface plasmon resonance (SPR) and reflective interference spectroscopy (RIfS) techniques. This review article highlights the recent advances on fabrication, surface modification and structural engineering of NAA and its application and performance as a platform for SPR- and RIfS-based sensing and biosensing devices. PMID:25004150

  18. Surveying colloid sedimentation by coplanar waveguides

    NASA Astrophysics Data System (ADS)

    Duţu, C. A.; Vlad, A.; Roda-Neve, C.; Avram, I.; Sandu, G.; Raskin, J.-P.; Melinte, S.

    2016-06-01

    By using coplanar waveguides, direct access to the dielectric properties of aqueous solutions of polystyrene beads with different diameters from 330 nm to 10 μm is provided. The relative variation of the transmission parameter with respect to water is monitored, ranging from ˜ {3}% obtained for a 9.5% solution with 330 nm diameter beads to ˜22% for 10 μm diameter particles at the same concentration. To highlight its applicability in biosensing, the technique was further employed to survey the clustering between biotin and streptavidin-coated beads. The transmission parameter displays a ˜50% increase for mixtures containing nine volumes of biotin and one volume of streptavidin-modified beads (4.5 ng μl-1 of streptavidin) and reaches ˜400% higher values when equal volumes of biotin and streptavidin-coated beads (22.5 ng μl-1 of streptavidin) were mixed.

  19. Fast optoelectric printing of plasmonic nanoparticles into tailored circuits

    NASA Astrophysics Data System (ADS)

    Rodrigo, José A.

    2017-04-01

    Plasmonic nanoparticles are able to control light at nanometre-scale by coupling electromagnetic fields to the oscillations of free electrons in metals. Deposition of such nanoparticles onto substrates with tailored patterns is essential, for example, in fabricating plasmonic structures for enhanced sensing. This work presents an innovative micro-patterning technique, based on optoelectic printing, for fast and straightforward fabrication of curve-shaped circuits of plasmonic nanoparticles deposited onto a transparent electrode often used in optoelectronics, liquid crystal displays, touch screens, etc. We experimentally demonstrate that this kind of plasmonic structure, printed by using silver nanoparticles of 40 nm, works as a plasmonic enhanced optical device allowing for polarized-color-tunable light scattering in the visible. These findings have potential applications in biosensing and fabrication of future optoelectronic devices combining the benefits of plasmonic sensing and the functionality of transparent electrodes.

  20. Enhanced Vibrational Spectroscopies as Tools for Small Molecule Biosensing

    PubMed Central

    Boujday, Souhir; Lamy de la Chapelle, Marc; Srajer, Johannes; Knoll, Wolfgang

    2015-01-01

    In this short summary we summarize some of the latest developments in vibrational spectroscopic tools applied for the sensing of (small) molecules and biomolecules in a label-free mode of operation. We first introduce various concepts for the enhancement of InfraRed spectroscopic techniques, including the principles of Attenuated Total Reflection InfraRed (ATR-IR), (phase-modulated) InfraRed Reflection Absorption Spectroscopy (IRRAS/PM-IRRAS), and Surface Enhanced Infrared Reflection Absorption Spectroscopy (SEIRAS). Particular attention is put on the use of novel nanostructured substrates that allow for the excitation of propagating and localized surface plasmon modes aimed at operating additional enhancement mechanisms. This is then be complemented by the description of the latest development in Surface- and Tip-Enhanced Raman Spectroscopies, again with an emphasis on the detection of small molecules or bioanalytes. PMID:26343666

  1. Nanoscale optical interferometry with incoherent light

    PubMed Central

    Li, Dongfang; Feng, Jing; Pacifici, Domenico

    2016-01-01

    Optical interferometry has empowered an impressive variety of biosensing and medical imaging techniques. A widely held assumption is that devices based on optical interferometry require coherent light to generate a precise optical signature in response to an analyte. Here we disprove that assumption. By directly embedding light emitters into subwavelength cavities of plasmonic interferometers, we demonstrate coherent generation of surface plasmons even when light with extremely low degrees of spatial and temporal coherence is employed. This surprising finding enables novel sensor designs with cheaper and smaller light sources, and consequently increases accessibility to a variety of analytes, such as biomarkers in physiological fluids, or even airborne nanoparticles. Furthermore, these nanosensors can now be arranged along open detection surfaces, and in dense arrays, accelerating the rate of parallel target screening used in drug discovery, among other high volume and high sensitivity applications. PMID:26880171

  2. Nanoscale optical interferometry with incoherent light.

    PubMed

    Li, Dongfang; Feng, Jing; Pacifici, Domenico

    2016-02-16

    Optical interferometry has empowered an impressive variety of biosensing and medical imaging techniques. A widely held assumption is that devices based on optical interferometry require coherent light to generate a precise optical signature in response to an analyte. Here we disprove that assumption. By directly embedding light emitters into subwavelength cavities of plasmonic interferometers, we demonstrate coherent generation of surface plasmons even when light with extremely low degrees of spatial and temporal coherence is employed. This surprising finding enables novel sensor designs with cheaper and smaller light sources, and consequently increases accessibility to a variety of analytes, such as biomarkers in physiological fluids, or even airborne nanoparticles. Furthermore, these nanosensors can now be arranged along open detection surfaces, and in dense arrays, accelerating the rate of parallel target screening used in drug discovery, among other high volume and high sensitivity applications.

  3. Diamond nanoparticles as a way to improve electron transfer in sol-gel L-lactate biosensing platforms.

    PubMed

    Briones, M; Casero, E; Vázquez, L; Pariente, F; Lorenzo, E; Petit-Domínguez, M D

    2016-02-18

    In the present work, we have included for the first time diamond nanoparticles (DNPs) in a sol-gel matrix derived from (3-mercaptopropyl)-trimethoxysilane (MPTS) in order to improve electron transfer in a lactate oxidase (LOx) based electrochemical biosensing platform. Firstly, an exhaustive AFM study, including topographical, surface potential (KFM) and capacitance gradient (CG) measurements, of each step involved in the biosensing platform development was performed. The platform is based on gold electrodes (Au) modified with the sol-gel matrix (Au/MPTS) in which diamond nanoparticles (Au/MPTS/DNPs) and lactate oxidase (Au/MPTS/DNPs/LOx) have been included. For the sake of comparison, we have also characterized a gold electrode directly modified with DNPs (Au/DNPs). Secondly, the electrochemical behavior of a redox mediator (hydroxymethyl-ferrocene, HMF) was evaluated at the platforms mentioned above. The response of Au/MPTS/DNPs/LOx towards lactate was obtained. A linear concentration range from 0.053 mM to 1.6 mM, a sensitivity of 2.6 μA mM(-1) and a detection limit of 16 μM were obtained. These analytical properties are comparable to other biosensors, presenting also as advantages that DNPs are inexpensive, environment-friendly and easy-handled nanomaterials. Finally, the developed biosensor was applied for lactate determination in wine samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. A low cost surface plasmon resonance biosensor using a laser line generator

    NASA Astrophysics Data System (ADS)

    Chen, Ruipeng; Wang, Manping; Wang, Shun; Liang, Hao; Hu, Xinran; Sun, Xiaohui; Zhu, Juanhua; Ma, Liuzheng; Jiang, Min; Hu, Jiandong; Li, Jianwei

    2015-08-01

    Due to the instrument designed by using a common surface plasmon resonance biosensor is extremely expensive, we established a portable and cost-effective surface plasmon resonance biosensing system. It is mainly composed of laser line generator, P-polarizer, customized prism, microfluidic cell, and line Charge Coupled Device (CCD) array. Microprocessor PIC24FJ128GA006 with embedded A/D converter, communication interface circuit and photoelectric signal amplifier circuit are used to obtain the weak signals from the biosensing system. Moreover, the line CCD module is checked and optimized on the number of pixels, pixels dimension, output amplifier and the timing diagram. The micro-flow cell is made of stainless steel with a high thermal conductivity, and the microprocessor based Proportional-Integral-Derivative (PID) temperature-controlled algorithm was designed to keep the constant temperature (25 °C) of the sample solutions. Correspondingly, the data algorithms designed especially to this biosensing system including amplitude-limiting filtering algorithm, data normalization and curve plotting were programmed efficiently. To validate the performance of the biosensor, ethanol solution samples at the concentrations of 5%, 7.5%, 10%, 12.5% and 15% in volumetric fractions were used, respectively. The fitting equation ΔRU = - 752987.265 + 570237.348 × RI with the R-Square of 0.97344 was established by delta response units (ΔRUs) to refractive indexes (RI). The maximum relative standard deviation (RSD) of 4.8% was obtained.

  5. Template-Stripped Smooth Ag Nanohole Arrays with Silica Shells for Surface Plasmon Resonance Biosensing

    PubMed Central

    Im, Hyungsoon; Lee, Si Hoon; Wittenberg, Nathan J.; Johnson, Timothy W.; Lindquist, Nathan C.; Nagpal, Prashant; Norris, David J.; Oh, Sang-Hyun

    2011-01-01

    Inexpensive, reproducible and high-throughput fabrication of nanometric apertures in metallic films can benefit many applications in plasmonics, sensing, spectroscopy, lithography and imaging. Here we use template stripping to pattern periodic nanohole arrays in optically thick, smooth Ag films with a silicon template made via nanoimprint lithography. Ag is a low-cost material with good optical properties, but it suffers from poor chemical stability and biocompatibility. However, a thin silica shell encapsulating our template-stripped Ag nanoholes facilitates biosensing applications by protecting the Ag from oxidation as well as providing a robust surface that can be readily modified with a variety of biomolecules using well-established silane chemistry. The thickness of the conformal silica shell can be precisely tuned by atomic layer deposition, and a 15-nm-thick silica shell can effectively prevent fluorophore quenching. The Ag nanohole arrays with silica shells can also be bonded to polydimethylsiloxane (PDMS) microfluidic channels for fluorescence imaging, formation of supported lipid bilayers, and real-time, label-free SPR sensing. Additionally, the smooth surfaces of the template-stripped Ag films enhance refractive index sensitivity compared with as-deposited, rough Ag films. Because nearly centimeter-sized nanohole arrays can be produced inexpensively without using any additional lithography, etching or lift-off, this method can facilitate widespread applications of metallic nanohole arrays for plasmonics and biosensing. PMID:21770414

  6. Design and Experimental Verification of a 0.19 V 53 μW 65 nm CMOS Integrated Supply-Sensing Sensor With a Supply-Insensitive Temperature Sensor and an Inductive-Coupling Transmitter for a Self-Powered Bio-sensing System Using a Biofuel Cell.

    PubMed

    Kobayashi, Atsuki; Ikeda, Kei; Ogawa, Yudai; Kai, Hiroyuki; Nishizawa, Matsuhiko; Nakazato, Kazuo; Niitsu, Kiichi

    2017-12-01

    In this paper, we present a self-powered bio-sensing system with the capability of proximity inductive-coupling communication for supply sensing and temperature monitoring. The proposed bio-sensing system includes a biofuel cell as a power source and a sensing frontend that is associated with the CMOS integrated supply-sensing sensor. The sensor consists of a digital-based gate leakage timer, a supply-insensitive time-domain temperature sensor, and a current-driven inductive-coupling transmitter and achieves low-voltage operation. The timer converts the output voltage from a biofuel cell to frequency. The temperature sensor provides a pulse width modulation (PWM) output that is not dependent on the supply voltage, and the associated inductive-coupling transmitter enables proximity communication. A test chip was fabricated in 65 nm CMOS technology and consumed 53 μW with a supply voltage of 190 mV. The low-voltage-friendly design satisfied the performance targets of each integrated sensor without any trimming. The chips allowed us to successfully demonstrate proximity communication with an asynchronous receiver, and the measurement results show the potential for self-powered operation using biofuel cells. The analysis and experimental verification of the system confirmed their robustness.

  7. Surface plasmon resonance biosensor for enzymatic detection of small analytes

    NASA Astrophysics Data System (ADS)

    Massumi Miyazaki, Celina; Makoto Shimizu, Flávio; Mejía-Salazar, J. R.; Oliveira, Osvaldo N., Jr.; Ferreira, Marystela

    2017-04-01

    Surface plasmon resonance (SPR) biosensing is based on the detection of small changes in the refractive index on a gold surface modified with molecular recognition materials, thus being mostly limited to detecting large molecules. In this paper, we report on a SPR biosensing platform suitable to detect small molecules by making use of the mediator-type enzyme microperoxidase-11 (MP11) in layer-by-layer films. By depositing a top layer of glucose oxidase or uricase, we were able to detect glucose or uric acid with limits of detection of 3.4 and 0.27 μmol l-1, respectively. Measurable SPR signals could be achieved because of the changes in polarizability of MP11, as it is oxidized upon interaction with the analyte. Confirmation of this hypothesis was obtained with finite difference time domain simulations, which also allowed us to discard the possible effects from film roughness changes observed in atomic force microscopy images. The main advantage of this mediator-type enzyme approach is in the simplicity of the experimental method that does not require an external potential, unlike similar approaches for SPR biosensing of small molecules. The detection limits reported here were achieved without optimizing the film architecture, and therefore the performance can in principle be further enhanced, while the proposed SPR platform may be extended to any system where hydrogen peroxide is generated in enzymatic reactions.

  8. Biosensing of glucose in flow injection analysis system based on glucose oxidase-quantum dot modified pencil graphite electrode.

    PubMed

    Sağlam, Özlem; Kızılkaya, Bayram; Uysal, Hüseyin; Dilgin, Yusuf

    2016-01-15

    A novel amperometric glucose biosensor was proposed in flow injection analysis (FIA) system using glucose oxidase (GOD) and Quantum dot (ZnS-CdS) modified Pencil Graphite Electrode (PGE). After ZnS-CdS film was electrochemically deposited onto PGE surface, GOD was immobilized on the surface of ZnS-CdS/PGE through crosslinking with chitosan (CT). A pair of well-defined reversible redox peak of GOD was observed at GOD/CT/ZnS-CdS/PGE based on enzyme electrode by direct electron transfer between the protein and electrode. Further, obtained GOD/CT/ZnS-CdS/PGE offers a disposable, low cost, selective and sensitive electrochemical biosensing of glucose in FIA system based on the decrease of the electrocatalytic response of the reduced form of GOD to dissolved oxygen. Under optimum conditions (flow rate, 1.3mL min(-1); transmission tubing length, 10cm; injection volume, 100μL; and constant applied potential, -500mV vs. Ag/AgCl), the proposed method displayed a linear response to glucose in the range of 0.01-1.0mM with detection limit of 3.0µM. The results obtained from this study would provide the basis for further development of the biosensing using PGE based FIA systems. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. An enzyme-free and label-free surface plasmon resonance biosensor for ultrasensitive detection of fusion gene based on DNA self-assembly hydrogel with streptavidin encapsulation.

    PubMed

    Guo, Bin; Wen, Bo; Cheng, Wei; Zhou, Xiaoyan; Duan, Xiaolei; Zhao, Min; Xia, Qianfeng; Ding, Shijia

    2018-07-30

    In this research, an enzyme-free and label-free surface plasmon resonance (SPR) biosensing strategy has been developed for ultrasensitive detection of fusion gene based on the heterogeneous target-triggered DNA self-assembly aptamer-based hydrogel with streptavidin (SA) encapsulation. In the presence of target, the capture probes (Cp) immobilized on the chip surface can capture the PML/RARα, forming a Cp-PML/RARα duplex. After that, the aptamer-based network hydrogel nanostructure is formed on the gold surface via target-triggered self-assembly of X shaped polymers. Subsequently, the SA can be encapsulated into hydrogel by the specific binding of SA aptamer, forming the complex with super molecular weight. Thus, the developed strategy achieves dramatic enhancement of the SPR signal. Using PML/RARα "S" subtype as model analyte, the developed biosensing method can detect target down to 45.22 fM with a wide linear range from 100 fM to 10 nM. Moreover, the high efficiency biosensing method shows excellent practical ability to identify the clinical PCR products of PML/RARα. Thus, this proposed strategy presents a powerful platform for ultrasensitive detection of fusion gene and early diagnosis and monitoring of disease. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. New developments in automated biosensing from remote water quality stations and satellite data retrieval for resources management

    NASA Astrophysics Data System (ADS)

    Morgan, E. L.; Eagleson, K. W.; Hermann, R.; McCollough, N. D.

    1981-05-01

    Maintaining adequate water quality in a multipurpose drainage system becomes increasingly important as demands on resources become greater. Real-time water quality monitoring plays a crucial role in meeting this objective. In addition to remote automated physical monitoring, developments at the end of the 1970's allow simultaneous real-time measurements of fish breathing response to water quality changes. These advantages complement complex in-stream surveys typically carried out to evaluate the environmental quality of a system. Automated biosensing units having remote capabilities are designed to aid in the evaluation of subtle water quality changes contributing to undesirable conditions in a drainage basin. Using microprocessor-based monitors to measure fish breathing rates, the biosensing units are interfaced to a U.S. National Aeronautics and Space Administration (N.A.S.A.) remote data collection platform for National Oceanic and Atmospheric Administration (N.O.A.A.) GOES satellite retrieval and transmission of data. Simultaneously, multiparameter physical information is collected from site-specific locations and recovered in a similar manner. Real-time biological and physical data received at a data processing center are readily available for interpretation by resource managers. Management schemes incorporating real-time monitoring networks into on-going programs to simultaneously retrieve biological and physical data by satellite, radio and telephone cable give added advantages in maintaining water quality for multipurpose needs.

  11. Interactions between avidin and graphene for development of a biosensing platform.

    PubMed

    Macwan, Isaac; Khan, Md Daud Hossain; Aphale, Ashish; Singh, Shrishti; Liu, Juan; Hingorani, Manju; Patra, Prabir

    2017-03-15

    Fundamental understanding of interactions at the interface of biological molecules, such as proteins, and nanomaterials is crucial for developing various biocompatible hybrid materials and biosensing platforms. Biosensors comprising of graphene-based conductive nanomaterials offer the advantage of higher sensitivity and reliable diagnosis mainly due to their superior specific surface area and ballistic conductivity. Furthermore, conductive nanocomposite structures that immobilize proteins can synergize the properties of both transducers and molecular recognition elements improving the performance of the biosensing device. Here we report for the first time, using a combined molecular dynamics simulations and experimental approach, the interactions between avidin and graphene for the development of a sensing platform that can be used for the detection of biological macromolecules such as mismatch repair proteins through biotinylated DNA substrates. We find that the interactive forces between avidin and graphene are mainly hydrophobic, along with some van der Waals, electrostatic and hydrogen bonding interactions. Notably, the structure and function of the avidin molecule are largely preserved after its adsorption on the graphene surface. The MD results agree well with scanning electron microscopy (SEM) and electrochemical impedance spectroscopy (EIS) analysis of avidin immobilized on a graphenated polypyrrole (G-PPy) conductive nanocomposite confirming the adsorption of avidin on graphene nanoplatelets as observed from the Fourier-transform infrared spectroscopy (FTIR). Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Visible light-activated immobilization of biomolecules on polymer substrates for bio-sensing applications

    NASA Astrophysics Data System (ADS)

    Sims, Wesley Daniel

    This dissertation aims to add to the scientific knowledge of physics in the field of optics by investigating the feasibility to develop a novel technique for immobilization of dye- labeled biomolecules on a polymer substrate. The development of this platform could potentially be used for bio sensing of biohazards in food and the environment. The process is facilitated by excitation of a dye-label attached to the biomolecule of interest with visible light of 488 nm wavelength. Biomolecules from an aqueous medium can be attached at any desired spot on the substrate simply by exposing the area to light. The area of the focused laser beam can control the spot-size of immobilized biomolecules. The technique is used to fabricate microarrays of immobilized antibodies (immunomicroarray) having spot-size of the order of 1 micron. This is a significant improvement over the typical commercial microarrays with spot-size in 10-100 micron range. The immobilization technique is characterized by attaching phospholipids, which have been shown to be useful as platforms for bio sensing applications. It can further be developed by attaching common proteins like Avidin as well as other antibodies against toxins and pathogens known for potential bio-terrorism through food and water systems. Absorption of laser-excited dye labeled biomolecules within the polymer appears to be the mechanism for attachment technique.

  13. Surface-enhanced localized surface plasmon resonance biosensing of avian influenza DNA hybridization using subwavelength metallic nanoarrays

    NASA Astrophysics Data System (ADS)

    Kim, Shin Ae; Byun, Kyung Min; Kim, Kyujung; Jang, Sung Min; Ma, Kyungjae; Oh, Youngjin; Kim, Donghyun; Kim, Sung Guk; Shuler, Michael L.; Kim, Sung June

    2010-09-01

    We demonstrated enhanced localized surface plasmon resonance (SPR) biosensing based on subwavelength gold nanoarrays built on a thin gold film. Arrays of nanogratings (1D) and nanoholes (2D) with a period of 200 nm were fabricated by electron-beam lithography and used for the detection of avian influenza DNA hybridization. Experimental results showed that both nanoarrays provided significant sensitivity improvement and, especially, 1D nanogratings exhibited higher SPR signal amplification compared with 2D nanohole arrays. The sensitivity enhancement is associated with changes in surface-limited reaction area and strong interactions between bound molecules and localized plasmon fields. Our approach is expected to improve both the sensitivity and sensing resolution and can be applicable to label-free detection of DNA without amplification by polymerase chain reaction.

  14. Surface-functionalized nanoparticles for biosensing and imaging-guided therapeutics

    NASA Astrophysics Data System (ADS)

    Jiang, Shan; Win, Khin Yin; Liu, Shuhua; Teng, Choon Peng; Zheng, Yuangang; Han, Ming-Yong

    2013-03-01

    In this article, the very recent progress of various functional inorganic nanomaterials is reviewed including their unique properties, surface functionalization strategies, and applications in biosensing and imaging-guided therapeutics. The proper surface functionalization renders them with stability, biocompatibility and functionality in physiological environments, and further enables their targeted use in bioapplications after bioconjugation via selective and specific recognition. The surface-functionalized nanoprobes using the most actively studied nanoparticles (i.e., gold nanoparticles, quantum dots, upconversion nanoparticles, and magnetic nanoparticles) make them an excellent platform for a wide range of bioapplications. With more efforts in recent years, they have been widely developed as labeling probes to detect various biological species such as proteins, nucleic acids and ions, and extensively employed as imaging probes to guide therapeutics such as drug/gene delivery and photothermal/photodynamic therapy.

  15. Biological sensing with surface-enhanced Raman spectroscopy (SERS) using a facile and rapid silver colloid-based synthesis technique

    NASA Astrophysics Data System (ADS)

    Smyth, C.; Mehigan, S.; Rakovich, Y. P.; Bell, S. E. J.; McCabe, E. M.

    2011-03-01

    Optical techniques towards the realisation of sensitive and selective biosensing platforms have received a considerable amount of attention in recent times. Techniques based on interferometry, surface plasmon resonance, field-effect transistors and waveguides have all proved popular, and in particular, spectroscopy offers a large range of options. Raman spectroscopy has always been viewed as an information rich technique in which the vibrational frequencies reveal a lot about the structure of a compound. The issue with Raman spectroscopy has traditionally been that its rather low cross section leads to poor limits-of-detection. In response to this problem, Surface-enhanced Raman Scattering (SERS), which increases sensitivity by bringing the sample in contact with many types of enhanceing substrates, has been developed. Here we discuss a facile and rapid technique for the detection of pterins using colloidal silver suspensions. Pteridine compounds are a family of biochemicals, heterocyclic in structure, and employed in nature as components of colour pigmentation and also as facilitators for many metabolic pathways, particularly those relating to the amino acid hydroxylases. In this work, xanthopterin, isoxanthopterin and 7,8- dihydrobiopterin have been examined whilst absorbed to SERS-active silver colloids. SERS, while far more sensitive than regular Raman spectroscopy, has its own issues relating to the reproducibility of substrates. In order to obtain quantitative data for the pteridine compounds mentioned above, exploratory studies of methods for introducing an internal standard for normalisation of the signals have been carried out.e

  16. Continuous fabrication of nanostructure arrays for flexible surface enhanced Raman scattering substrate

    PubMed Central

    Zhang, Chengpeng; Yi, Peiyun; Peng, Linfa; Lai, Xinmin; Chen, Jie; Huang, Meizhen; Ni, Jun

    2017-01-01

    Surface-enhanced Raman spectroscopy (SERS) has been a powerful tool for applications including single molecule detection, analytical chemistry, electrochemistry, medical diagnostics and bio-sensing. Especially, flexible SERS substrates are highly desirable for daily-life applications, such as real-time and in situ Raman detection of chemical and biological targets, which can be used onto irregular surfaces. However, it is still a major challenge to fabricate the flexible SERS substrate on large-area substrates using a facile and cost-effective technique. The roll-to-roll ultraviolet nanoimprint lithography (R2R UV-NIL) technique provides a solution for the continuous fabrication of flexible SERS substrate due to its high-speed, large-area, high-resolution and high-throughput. In this paper, we presented a facile and cost-effective method to fabricate flexible SERS substrate including the fabrication of polymer nanostructure arrays and the metallization of the polymer nanostructure arrays. The polymer nanostructure arrays were obtained by using R2R UV-NIL technique and anodic aluminum oxide (AAO) mold. The functional SERS substrates were then obtained with Au sputtering on the surface of the polymer nanostructure arrays. The obtained SERS substrates exhibit excellent SERS and flexibility performance. This research can provide a beneficial direction for the continuous production of the flexible SERS substrates. PMID:28051175

  17. Ultra-narrow surface lattice resonances in plasmonic metamaterial arrays for biosensing applications.

    PubMed

    Danilov, Artem; Tselikov, Gleb; Wu, Fan; Kravets, Vasyl G; Ozerov, Igor; Bedu, Frederic; Grigorenko, Alexander N; Kabashin, Andrei V

    2018-05-01

    When excited over a periodic metamaterial lattice of gold nanoparticles (~ 100nm), localized plasmon resonances (LPR) can be coupled by a diffraction wave propagating along the array plane, which leads to a drastic narrowing of plasmon resonance lineshapes (down to a few nm full-width-at-half-maximum) and the generation of singularities of phase of reflected light. These phenomena look very promising for the improvement of performance of plasmonic biosensors, but conditions of implementation of such diffractively coupled plasmonic resonances, also referred to as plasmonic surface lattice resonances (PSLR), are not always compatible with biosensing arrangement implying the placement of the nanoparticles between a glass substrate and a sample medium (air, water). Here, we consider conditions of excitation and properties of PSLR over arrays of glass substrate-supported single and double Au nanoparticles (~ 100-200nm), arranged in a periodic metamaterial lattice, in direct and Attenuated Total Reflection (ATR) geometries, and assess their sensitivities to variations of refractive index (RI) of the adjacent sample dielectric medium. First, we identify medium (PSLR air , PSLR wat for air and water, respectively) and substrate (PSLR sub ) modes corresponding to the coupling of individual plasmon oscillations at medium- and substrate-related diffraction cut-off edges. We show that spectral sensitivity of medium modes to RI variations is determined by the lattice periodicity in both direct and ATR geometries (~ 320nm per RIU change in our case), while substrate mode demonstrates much lower sensitivity. We also show that phase sensitivity of PSLR can exceed 10 5 degrees of phase shift per RIU change and thus outperform the relevant parameter for all other plasmonic sensor counterparts. We finally demonstrate the applicability of surface lattice resonances in plasmonic metamaterial arrays to biosensing using standard streptavidin-biotin affinity model. Combining advantages of nanoscale architectures, including drastic concentration of electric field, possibility of manipulation at the nanoscale etc, and high phase and spectral sensitivities, PSLRs promise the advancement of current state-of-the-art plasmonic biosensing technology toward single molecule label-free detection. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Surface Acoustic Waves (SAW)-Based Biosensing for Quantification of Cell Growth in 2D and 3D Cultures.

    PubMed

    Wang, Tao; Green, Ryan; Nair, Rajesh Ramakrishnan; Howell, Mark; Mohapatra, Subhra; Guldiken, Rasim; Mohapatra, Shyam Sundar

    2015-12-19

    Detection and quantification of cell viability and growth in two-dimensional (2D) and three-dimensional (3D) cell cultures commonly involve harvesting of cells and therefore requires a parallel set-up of several replicates for time-lapse or dose-response studies. Thus, developing a non-invasive and touch-free detection of cell growth in longitudinal studies of 3D tumor spheroid cultures or of stem cell regeneration remains a major unmet need. Since surface acoustic waves (SAWs) permit mass loading-based biosensing and have been touted due to their many advantages including low cost, small size and ease of assembly, we examined the potential of SAW-biosensing to detect and quantify cell growth. Herein, we demonstrate that a shear horizontal-surface acoustic waves (SH-SAW) device comprising two pairs of resonators consisting of interdigital transducers and reflecting fingers can be used to quantify mass loading by the cells in suspension as well as within a 3D cell culture platform. A 3D COMSOL model was built to simulate the mass loading response of increasing concentrations of cells in suspension in the polydimethylsiloxane (PDMS) well in order to predict the characteristics and optimize the design of the SH-SAW biosensor. The simulated relative frequency shift from the two oscillatory circuit systems (one of which functions as control) were found to be concordant to experimental data generated with RAW264.7 macrophage and A549 cancer cells. In addition, results showed that SAW measurements per se did not affect viability of cells. Further, SH-SAW biosensing was applied to A549 cells cultured on a 3D electrospun nanofiber scaffold that generate tumor spheroids (tumoroids) and the results showed the device's ability to detect changes in tumor spheroid growth over the course of eight days. Taken together, these results demonstrate the use of SH-SAW device for detection and quantification of cell growth changes over time in 2D suspension cultures and in 3D cell culture models, which may have potential applications in both longitudinal 3D cell cultures in cancer biology and in regenerative medicine.

  19. Direct patterning of gold nanoparticles using flexographic printing for biosensing applications

    NASA Astrophysics Data System (ADS)

    Benson, Jamie; Fung, Chung Man; Lloyd, Jonathan Stephen; Deganello, Davide; Smith, Nathan Andrew; Teng, Kar Seng

    2015-03-01

    In this paper, we have presented the use of flexographic printing techniques in the selective patterning of gold nanoparticles (AuNPs) onto a substrate. Highly uniform coverage of AuNPs was selectively patterned on the substrate surface, which was subsequently used in the development of a glucose sensor. These AuNPs provide a biocompatible site for the attachment of enzymes and offer high sensitivity in the detection of glucose due to their large surface to volume ratio. The average size of the printed AuNPs is less than 60 nm. Glucose sensing tests were performed using printed carbon-AuNP electrodes functionalized with glucose oxidase (GOx). The results showed a high sensitivity of 5.52 μA mM-1 cm-2 with a detection limit of 26 μM. We have demonstrated the fabrication of AuNP-based biosensors using flexographic printing, which is ideal for low-cost, high-volume production of the devices.

  20. A biosensor system using nickel ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Singh, Prachi; Rathore, Deepshikha

    2016-05-01

    NiFe2O4 ferrite nanoparticles were synthesized by chemical co-precipitation method and the structural characteristics were investigated using X-ray diffraction technique, where single cubic phase formation of nanoparticles was confirmed. The average particle size of NiFe2O4 was found to be 4.9 nm. Nanoscale magnetic materials are an important source of labels for biosensing due to their strong magnetic properties which are not found in biological systems. This property of the material was exploited and the fabrication of the NiFe2O4 nanoparticle based biosensor was done in the form of a capacitor system, with NiFe2O4 as the dielectric material. The biosensor system was tested towards different biological materials with the help of electrochemical workstation and the same was analysed through Cole-Cole plot of NiFe2O4. The performance of the sensor was determined based on its sensitivity, response time and recovery time.

  1. Nano-islands integrated evanescence-based lab-on-a-chip on silica-on-silicon and polydimethylsiloxane hybrid platform for detection of recombinant growth hormone

    PubMed Central

    Ozhikandathil, J.; Packirisamy, M.

    2012-01-01

    Integration of nano-materials in optical microfluidic devices facilitates the realization of miniaturized analytical systems with enhanced sensing abilities for biological and chemical substances. In this work, a novel method of integration of gold nano-islands in a silica-on-silicon-polydimethylsiloxane microfluidic device is reported. The device works based on the nano-enhanced evanescence technique achieved by interacting the evanescent tail of propagating wave with the gold nano-islands integrated on the core of the waveguide resulting in the modification of the propagating UV-visible spectrum. The biosensing ability of the device is investigated by finite-difference time-domain simulation with a simplified model of the device. The performance of the proposed device is demonstrated for the detection of recombinant growth hormone based on antibody-antigen interaction. PMID:24106526

  2. Nanobonding: A key technology for emerging applications in health and environmental sciences

    NASA Astrophysics Data System (ADS)

    Howlader, Matiar M. R.; Deen, M. Jamal; Suga, Tadatomo

    2015-03-01

    In this paper, surface-activation-based nanobonding technology and its applications are described. This bonding technology allows for the integration of electronic, photonic, fluidic and mechanical components into small form-factor systems for emerging sensing and imaging applications in health and environmental sciences. Here, we describe four different nanobonding techniques that have been used for the integration of various substrates — silicon, gallium arsenide, glass, and gold. We use these substrates to create electronic (silicon), photonic (silicon and gallium arsenide), microelectromechanical (glass and silicon), and fluidic (silicon and glass) components for biosensing and bioimaging systems being developed. Our nanobonding technologies provide void-free, strong, and nanometer scale bonding at room temperature or at low temperatures (<200 °C), and do not require chemicals, adhesives, or high external pressure. The interfaces of the nanobonded materials in ultra-high vacuum and in air correspond to covalent bonds, and hydrogen or hydroxyl bonds, respectively.

  3. Application of a Nanostructured Enzymatic Biosensor Based on Fullerene and Gold Nanoparticles to Polyphenol Detection.

    PubMed

    Tortolini, Cristina; Sanzò, Gabriella; Antiochia, Riccarda; Mazzei, Franco; Favero, Gabriele

    2017-01-01

    Electrochemical biosensors provide an attractive means of analyzing the content of a biological sample due to the direct conversion of a biological event to an electronic signal. The signal transduction and the general performance of electrochemical biosensors are often determined by the surface architectures that connect the sensing element to the biological sample at the nanometer scale. The most common surface modification techniques, the various electrochemical transduction mechanisms, and the choice of the recognition receptor molecules all influence the ultimate sensitivity of the sensor. We show herein a novel electrochemical biosensing platform based on the coupling of two different nanostructured materials (gold nanoparticles and fullerenols) displaying interesting electrochemical features. The use of these nanomaterials improved the electrochemical performance of the proposed biosensor.An application of the nanostructured enzyme-based biosensor has been developed for evaluating the detection of polyphenols either in buffer solution or in real wine samples.

  4. Emerging Applications of Porphryins in Photomedicine

    NASA Astrophysics Data System (ADS)

    Huang, Haoyuan; Song, Wentao; Rieffel, James; Lovell, Jonathan

    2015-04-01

    Biomedical applications of porphyrins and related molecules have been extensively pursued in the context of photodynamic therapy (PDT). Recent advances in nanoscale engineering have opened the door for new ways that porphyrins stand to potentially benefit human health. Metalloporphyrins are inherently suitable for many types of medical imaging and therapy. Traditional nanocarriers such as liposomes, dendrimers and silica nanoparticles have been explored for photosensitizer delivery. Concurrently, entirely new classes of porphyrin nanostructures are being developed, such as smart materials that are activated by specific biochemicals encountered at disease sites. Techniques have been developed that improve treatments by combining biomaterials with photosensitizers and functional moieties such as peptides, DNA and antibodies. Compared to simpler structures, these more complex and functional designs can potentially decrease side effects and lead to safer and more efficient phototherapies. This review examines recent research on porphyrin-derived materials in multimodal imaging, drug delivery, bio-sensing, phototherapy and probe design, demonstrating their bright future for biomedical applications.

  5. Gold nanoparticles covalently assembled onto vesicle structures as possible biosensing platform

    PubMed Central

    Barroso, M Fátima; Luna, M Alejandra; Tabares, Juan S Flores; Delerue-Matos, Cristina; Correa, N Mariano

    2016-01-01

    Summary In this contribution a strategy is shown to covalently immobilize gold nanoparticles (AuNPs) onto vesicle bilayers with the aim of using this nanomaterial as platform for the future design of immunosensors. A novel methodology for the self-assembly of AuNPs onto large unilamellar vesicle structures is described. The vesicles were formed with 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and 1-undecanethiol (SH). After, the AuNPs photochemically synthesized in pure glycerol were mixed and anchored onto SH–DOPC vesicles. The data provided by voltammetry, spectrometry and microscopy techniques indicated that the AuNPs were successfully covalently anchored onto the vesicle bilayer and decorated vesicles exhibit a spherical shape with a size of 190 ± 10 nm. The developed procedure is easy, rapid and reproducible to start designing a possible immunosensor by using environmentally friendly procedures. PMID:27335755

  6. In Situ Infrared Ellipsometry for Protein Adsorption Studies on Ultrathin Smart Polymer Brushes in Aqueous Environment

    DOE PAGES

    Kroning, Annika; Furchner, Andreas; Aulich, Dennis; ...

    2015-02-10

    The protein-adsorbing and -repelling properties of various smart nanometer-thin polymer brushes with high potential for biosensing and biomedical applications are studied by in-situ infrared-spectroscopic ellipsometry (IRSE). IRSE as a highly sensitive non-destructive technique allows us to investigate protein adsorption on polymer brushes in aqueous environment in dependence of external stimuli like temperature and pH. These stimuli are, for instance, relevant in switchable mixed brushes containing poly(N-isopropyl acrylamide) and poly(acrylic acid), respectively. We use such brushes as model surfaces for controlling protein adsorption of human serum albumin and human fibrinogen. IRSE can distinguish between polymer-specific vibrational bands, which yield insights intomore » the hydration state of the brushes, and changes in the protein-specific amide bands, which are related to changes of the protein secondary structure.« less

  7. Biofunctionalized Nanostructured Zirconia for Biomedical Application: A Smart Approach for Oral Cancer Detection

    PubMed Central

    Kumar, Suveen; Kumar, Saurabh; Tiwari, Sachchidanand; Srivastava, Saurabh; Srivastava, Manish; Yadav, Birendra Kumar; Kumar, Saroj; Tran, Thien Toan; Dewan, Ajay Kumar; Mulchandani, Ashok; Sharma, Jai Gopal; Maji, Sagar

    2015-01-01

    Results of the studies are reported relating to application of the silanized nanostructured zirconia, electrophoretically deposited onto indium tin oxide (ITO) coated glass for covalent immobilization of the monoclonal antibodies (anti‐CYFRA‐21‐1). This biosensing platform has been utilized for a simple, efficient, noninvasive, and label‐free detection of oral cancer via cyclic voltammetry technique. The results of electrochemical response studies conducted on bovine serum albumin (BSA)/anti‐CYFRA‐21‐1/3‐aminopropyl triethoxy silane (APTES)/ZrO2/ITO immunoelectrode reveal that this immunoelectrode can be used to measure CYFRA‐21‐1 (oral cancer biomarker) concentration in saliva samples, with a high sensitivity of 2.2 mA mL ng−1, a linear detection range of 2–16 ng mL−1, and stability of six weeks. The results of these studies have been validated via enzyme‐linked immunosorbent assay. PMID:27980963

  8. Single-Stranded DNA Aptamers against Pathogens and Toxins: Identification and Biosensing Applications

    PubMed Central

    Hong, Ka Lok

    2015-01-01

    Molecular recognition elements (MREs) can be short sequences of single-stranded DNA, RNA, small peptides, or antibody fragments. They can bind to user-defined targets with high affinity and specificity. There has been an increasing interest in the identification and application of nucleic acid molecular recognition elements, commonly known as aptamers, since they were first described in 1990 by the Gold and Szostak laboratories. A large number of target specific nucleic acids MREs and their applications are currently in the literature. This review first describes the general methodologies used in identifying single-stranded DNA (ssDNA) aptamers. It then summarizes advancements in the identification and biosensing application of ssDNA aptamers specific for bacteria, viruses, their associated molecules, and selected chemical toxins. Lastly, an overview of the basic principles of ssDNA aptamer-based biosensors is discussed. PMID:26199940

  9. Quantification of whispering gallery mode spectrum variability in application to sensing nanobiophotonics

    NASA Astrophysics Data System (ADS)

    Saetchnikov, Anton; Skakun, Victor; Saetchnikov, Vladimir; Tcherniavskaia, Elina; Ostendorf, Andreas

    2017-10-01

    An approach for the automated whispering gallery mode (WGM) signal decomposition and its parameter estimation is discussed. The algorithm is based on the peak picking and can be applied for the preprocessing of the raw signal acquired from the multiplied WGM-based biosensing chips. Quantitative estimations representing physically meaningful parameters of the external disturbing factors on the WGM spectral shape are the output values. Derived parameters can be directly applied to the further deep qualitative and quantitative interpretations of the sensed disturbing factors. The algorithm is tested on both simulated and experimental data taken from the bovine serum albumin biosensing task. The proposed solution is expected to be a useful contribution to the preprocessing phase of the complete data analysis engine and is expected to push the WGM technology toward the real-live sensing nanobiophotonics.

  10. Nitrite Biosensing via Selective Enzymes—A Long but Promising Route

    PubMed Central

    Almeida, M. Gabriela; Serra, Alexandra; Silveira, Celia M.; Moura, Jose J.G.

    2010-01-01

    The last decades have witnessed a steady increase of the social and political awareness for the need of monitoring and controlling environmental and industrial processes. In the case of nitrite ion, due to its potential toxicity for human health, the European Union has recently implemented a number of rules to restrict its level in drinking waters and food products. Although several analytical protocols have been proposed for nitrite quantification, none of them enable a reliable and quick analysis of complex samples. An alternative approach relies on the construction of biosensing devices using stable enzymes, with both high activity and specificity for nitrite. In this paper we review the current state-of-the-art in the field of electrochemical and optical biosensors using nitrite reducing enzymes as biorecognition elements and discuss the opportunities and challenges in this emerging market. PMID:22163541

  11. Nanostructured gold and platinum electrodes on silicon structures for biosensing

    NASA Astrophysics Data System (ADS)

    Ogurtsov, V. I.; Sheehan, M. M.

    2005-01-01

    Gold and platinum metal electrodes on Si/SiO2 having undergone anisotropic potassium hydroxide (KOH) etch treatment are considered. This treatment etches at different rates and directions in the material resulting in creation of numerous pyramid shaped holes in the silicon substrate. This surface is used to make metal electrodes with increased electrode efficiency. The electrodes can serve as the sensors or as the sensor substrates (for surface polymer modification) and because both gold and platinum are inert they have applications for food safety biosensing. Wine, an economically significant food product, was chosen as a matrix, and impedance spectroscopy (EIS) was selected as a method of investigation of electrode behaviour. Based on results of EIS, different complexity equivalent circuits were determined by applying fitting mean square root optimisation of sensor complex impedance measurements.

  12. Surface engineering of nanoparticles in suspension for particle based bio-sensing

    PubMed Central

    Sen, Tapas; Bruce, Ian J.

    2012-01-01

    Surface activation of nanoparticles in suspension using amino organosilane has been carried out via strict control of a particle surface ad-layer of water using a simple but efficient protocol ‘Tri-phasic Reverse Emulsion’ (TPRE). This approach produced thin and ordered layers of particle surface functional groups which allowed the efficient conjugation of biomolecules. When used in bio-sensing applications, the resultant conjugates were highly efficient in the hybrid capture of complementary oligonucleotides and the detection of food borne microorganism. TPRE overcomes a number of fundamental problems associated with the surface modification of particles in aqueous suspension viz. particle aggregation, density and organization of resultant surface functional groups by controlling surface condensation of the aminosilane. The approach has potential for application in areas as diverse as nanomedicine, to food technology and industrial catalysis. PMID:22872809

  13. Unified messaging solution for biosurveillance and disease surveillance.

    PubMed

    Abellera, John P; Srinivasan, Arunkumar; Danos, C Scott; McNabb, Scott; Rhodes, Barry

    2007-10-11

    Biosurveillance and disease surveillance systems serve different purposes. However, the richness and quality of an existing data stream and infrastructure used in biosurveillance may prove beneficial for any state-based electronic disease surveillance system, especially if an electronic laboratory data feed does not exist between a hospital and state-based system. The use of an Enterprise Application Integration(EAI) engine, such as the BioSense Integrator,will be necessary to map heterogeneous messages into standard representations, then validate and route them [1] to a disparate system. This poster illustrates the use of an existing BioSense Integrator in order to create a unified message to support the exchange of electronic lab messages necessary for reportable disease notification. An evaluation of the infrastructure for data messaging will be examined and presented, along with a cost and benefit analysis between hospital and state-based system.

  14. CMOS-Compatible Silicon Nanowire Field-Effect Transistor Biosensor: Technology Development toward Commercialization.

    PubMed

    Tran, Duy Phu; Pham, Thuy Thi Thanh; Wolfrum, Bernhard; Offenhäusser, Andreas; Thierry, Benjamin

    2018-05-11

    Owing to their two-dimensional confinements, silicon nanowires display remarkable optical, magnetic, and electronic properties. Of special interest has been the development of advanced biosensing approaches based on the field effect associated with silicon nanowires (SiNWs). Recent advancements in top-down fabrication technologies have paved the way to large scale production of high density and quality arrays of SiNW field effect transistor (FETs), a critical step towards their integration in real-life biosensing applications. A key requirement toward the fulfilment of SiNW FETs' promises in the bioanalytical field is their efficient integration within functional devices. Aiming to provide a comprehensive roadmap for the development of SiNW FET based sensing platforms, we critically review and discuss the key design and fabrication aspects relevant to their development and integration within complementary metal-oxide-semiconductor (CMOS) technology.

  15. Ferrocene-functionalized graphene electrode for biosensing applications.

    PubMed

    Rabti, Amal; Mayorga-Martinez, Carmen C; Baptista-Pires, Luis; Raouafi, Noureddine; Merkoçi, Arben

    2016-07-05

    A novel ferrocene-functionalized reduced graphene oxide (rGO)-based electrode is proposed. It was fabricated by the drop casting of ferrocene-functionalized graphene onto polyester substrate as the working electrode integrated within screen-printed reference and counter electrodes. The ferrocene-functionalized rGO has been fully characterized using FTIR, XPS, contact angle measurements, SEM and TEM microscopy, and cyclic voltammetry. The XPS and EDX analysis showed the presence of Fe element related to the introduced ferrocene groups, which is confirmed by a clear CV signal at ca. 0.25 V vs. Ag/AgCl (0.1 KCl). Mediated redox catalysis of H2O2 and bio-functionalization with glucose oxidase for glucose detection were achieved by the bioelectrode providing a proof for potential biosensing applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Superior long-term stability of a glucose biosensor based on inserted barrel plating gold electrodes.

    PubMed

    Hsu, Cheng-Teng; Hsiao, Hung-Chan; Fang, Mei-Yen; Zen, Jyh-Myng

    2009-10-15

    Disposable one shot usage blood glucose strips are routinely used in the diagnosis and management of diabetes mellitus and their performance can vary greatly. In this paper we critically evaluated the long-term stability of glucose strips made of barrel plating gold electrodes. Compared to other glucose biosensing platforms of vapor deposited palladium and screen printed carbon electrodes, the proposed glucose biosensor was found to show the best stability among the three biosensing platforms in thermal acceleration experiments at 40 degrees C for 6 months with an average bias of 3.4% at glucose concentrations of 5-20 mM. The precision test of this barrel plating gold glucose biosensor also showed the best performance (coefficients of variation in the range of 1.4-2.4%) in thermal acceleration experiments at 40 degrees C, 50 degrees C and 70 degrees C for 27 days. Error grid analysis revealed that all measurements fell in zone A and zone B. Regression analysis showed no significant difference between the proposed biosensor and the reference method at 99% confidence level. The amperometric glucose biosensor fabricated by inserting two barrel plating gold electrodes onto an injection-molding plastic base followed by immobilizing with a bio-reagent layer and membrane was very impressive with a long-term stability up to 2.5 years at 25 degrees C. Overall, these results indicated that the glucose oxidase/barrel plating gold biosensing platform is ideal for long-term accurate glycemic control.

  17. A universal and label-free impedimetric biosensing platform for discrimination of single nucleotide substitutions in long nucleic acid strands.

    PubMed

    Mills, Dawn M; Martin, Christopher P; Armas, Stephanie M; Calvo-Marzal, Percy; Kolpashchikov, Dmitry M; Chumbimuni-Torres, Karin Y

    2018-06-30

    We report a label-free universal biosensing platform for highly selective detection of long nucleic acid strands. The sensor consists of an electrode-immobilized universal stem-loop (USL) probe and two adaptor strands that form a 4J structure in the presence of a specific DNA/RNA analyte. The sensor was characterized by electrochemical impedance spectroscopy (EIS) using K 3 [Fe(CN) 6 ]/K 4 [Fe(CN) 6 ] redox couple in solution. An increase in charge transfer resistance (R CT ) was observed upon 4J structure formation, the value of which depends on the analyte length. Cyclic voltammetry (CV) was used to further characterize the sensor and monitor the electrochemical reaction in conjunction with thickness measurements of the mixed DNA monolayer obtained using spectroscopic ellipsometry. In addition, the electron transfer was calculated at the electrode/electrolyte interface using a rotating disk electrode. Limits of detection in the femtomolar range were achieved for nucleic acid targets of different lengths (22 nt, 60 nt, 200 nt). The sensor produced only a background signal in the presence of single base mismatched analytes, even in hundred times excess in concentration. This label-free and highly selective biosensing platform is versatile and can be used for universal detection of nucleic acids of varied lengths which could revolutionize point of care diagnostics for applications such as bacterial or cancer screening. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Synthesis and functionalization of monodisperse near-ultraviolet and visible excitable multifunctional Eu(3+), Bi(3+):REVO4 nanophosphors for bioimaging and biosensing applications.

    PubMed

    Escudero, Alberto; Carrillo-Carrión, Carolina; Zyuzin, Mikhail V; Ashraf, Sumaira; Hartmann, Raimo; Núñez, Nuria O; Ocaña, Manuel; Parak, Wolfgang J

    2016-06-16

    Near-ultraviolet and visible excitable Eu- and Bi-doped NPs based on rare earth vanadates (REVO4, RE = Y, Gd) have been synthesized by a facile route from appropriate RE precursors, europium and bismuth nitrate, and sodium orthovanadate, by homogeneous precipitation in an ethylene glycol/water mixture at 120 °C. The NPs can be functionalized either by a one-pot synthesis with polyacrylic acid (PAA) or by a Layer-by-Layer approach with poly(allylamine hydrochloride) (PAH) and PAA. In the first case, the particle size can also be tuned by adjusting the amount of PAA. The Eu- Bi-doped REVO4 based nanophosphors show the typical red luminescence of Eu(iii), which can be excited through an energy transfer process from the vanadate anions, resulting in a much higher luminescence intensity in comparison to the direct excitation of the europium cations. The incorporation of Bi into the REVO4 structure shifts the original absorption band of the vanadate anions towards longer wavelengths, giving rise to nanophosphors with an excitation maximum at 342 nm, which can also be excited in the visible range. The suitability of such nanophosphors for bioimaging and biosensing applications, as well as their colloidal stability in different buffer media of biological interest, their cytotoxicity, their degradability at low pH, and their uptake by HeLa cells have been evaluated. Their suitability for bioimaging and biosensing applications is also demonstrated.

  19. A Powerful Molecular Engineering Tool Provided Efficient Chlamydomonas Mutants as Bio-Sensing Elements for Herbicides Detection

    PubMed Central

    Lambreva, Maya D.; Giardi, Maria Teresa; Rambaldi, Irene; Antonacci, Amina; Pastorelli, Sandro; Bertalan, Ivo; Husu, Ivan; Johanningmeier, Udo; Rea, Giuseppina

    2013-01-01

    This study was prompted by increasing concerns about ecological damage and human health threats derived by persistent contamination of water and soil with herbicides, and emerging of bio-sensing technology as powerful, fast and efficient tool for the identification of such hazards. This work is aimed at overcoming principal limitations negatively affecting the whole-cell-based biosensors performance due to inadequate stability and sensitivity of the bio-recognition element. The novel bio-sensing elements for the detection of herbicides were generated exploiting the power of molecular engineering in order to improve the performance of photosynthetic complexes. The new phenotypes were produced by an in vitro directed evolution strategy targeted at the photosystem II (PSII) D1 protein of Chlamydomonas reinhardtii, using exposures to radical-generating ionizing radiation as selection pressure. These tools proved successful to identify D1 mutations conferring enhanced stability, tolerance to free-radical-associated stress and competence for herbicide perception. Long-term stability tests of PSII performance revealed the mutants capability to deal with oxidative stress-related conditions. Furthermore, dose-response experiments indicated the strains having increased sensitivity or resistance to triazine and urea type herbicides with I50 values ranging from 6×10−8 M to 2×10−6 M. Besides stressing the relevance of several amino acids for PSII photochemistry and herbicide sensing, the possibility to improve the specificity of whole-cell-based biosensors, via coupling herbicide-sensitive with herbicide-resistant strains, was verified. PMID:23613953

  20. Interconnecting wearable devices with nano-biosensing implants through optical wireless communications

    NASA Astrophysics Data System (ADS)

    Johari, Pedram; Pandey, Honey; Jornet, Josep M.

    2018-02-01

    Major advancements in the fields of electronics, photonics and wireless communication have enabled the development of compact wearable devices, with applications in diverse domains such as fitness, wellness and medicine. In parallel, nanotechnology is enabling the development of miniature sensors that can detect events at the nanoscale with unprecedented accuracy. On this matter, in vivo implantable Surface Plasmon Resonance (SPR) nanosensors have been proposed to analyze circulating biomarkers in body fluids for the early diagnosis of a myriad of diseases, ranging from cardiovascular disorders to different types of cancer. In light of these results, in this paper, an architecture is proposed to bridge the gap between these two apparently disjoint paradigms, namely, the commercial wearable devices and the advanced nano-biosensing technologies. More specifically, this paper thoroughly assesses the feasibility of the wireless optical intercommunications of an SPR-based nanoplasmonic biochip -implanted subcutaneously in the wrist-, with a nanophotonic wearable smart band which is integrated by an array of nano-lasers and photon-detectors for distributed excitation and measurement of the nanoplasmonic biochip. This is done through a link budget analysis which captures the peculiarities of the intra-body optical channel at (sub) cellular level, the strength of the SPR nanosensor reflection, as well as the capabilities of the nanolasers (emission power, spectrum) and the nano photon-detectors (sensitivity and noise equivalent power). The proposed analysis guides the development of practical communication designs between the wearable devices and nano-biosensing implants, which paves the way through early-stage diagnosis of severe diseases.

  1. Leakage and slow allostery limit performance of single drug-sensing aptazyme molecules based on the hammerhead ribozyme

    PubMed Central

    de Silva, Chamaree; Walter, Nils G.

    2009-01-01

    Engineered “aptazymes” fuse in vitro selected aptamers with ribozymes to create allosteric enzymes as biosensing components and artificial gene regulatory switches through ligand-induced conformational rearrangement and activation. By contrast, activating ligand is employed as an enzymatic cofactor in the only known natural aptazyme, the glmS ribozyme, which is devoid of any detectable conformational rearrangements. To better understand this difference in biosensing strategy, we monitored by single molecule fluorescence resonance energy transfer (FRET) and 2-aminopurine (AP) fluorescence the global conformational dynamics and local base (un)stacking, respectively, of a prototypical drug-sensing aptazyme, built from a theophylline aptamer and the hammerhead ribozyme. Single molecule FRET reveals that a catalytically active state with distal Stems I and III of the hammerhead ribozyme is accessed both in the theophylline-bound and, if less frequently, in the ligand-free state. The resultant residual activity (leakage) in the absence of theophylline contributes to a limited dynamic range of the aptazyme. In addition, site-specific AP labeling shows that rapid local theophylline binding to the aptamer domain leads to only slow allosteric signal transduction into the ribozyme core. Our findings allow us to rationalize the suboptimal biosensing performance of the engineered compared to the natural aptazyme and to suggest improvement strategies. Our single molecule FRET approach also monitors in real time the previously elusive equilibrium docking dynamics of the hammerhead ribozyme between several inactive conformations and the active, long-lived, Y-shaped conformer. PMID:19029309

  2. Highly stable piezo-immunoglobulin-biosensing of a SiO2/ZnO nanogenerator as a self-powered/active biosensor arising from the field effect influenced piezoelectric screening effect.

    PubMed

    Zhao, Yayu; Fu, Yongming; Wang, Penglei; Xing, Lili; Xue, Xinyu

    2015-02-07

    Highly stable piezo-immunoglobulin-biosensing has been realized from a SiO2/ZnO nanowire (NW) nanogenerator (NG) as a self-powered/active biosensor. The piezoelectric output generated by the SiO2/ZnO NW NG can act not only as a power source for driving the device, but also as a sensing signal for detecting immunoglobulin G (IgG). The stability of the device is very high, and the relative standard deviation (RSD) ranges from 1.20% to 4.20%. The limit of detection (LOD) of IgG on the device can reach 5.7 ng mL(-1). The response of the device is in a linear relationship with IgG concentration. The biosensing performance of SiO2/ZnO NWs is much higher than that of bare ZnO NWs. A SiO2 layer uniformly coated on the surface of the ZnO NW acts as the gate insulation layer, which increases mechanical robustness and protects it from the electrical leakages and short circuits. The IgG biomolecules modified on the surface of the SiO2/ZnO NW act as a gate potential, and the field effect can influence the surface electron density of ZnO NWs, which varies the screening effect of free-carriers on the piezoelectric output. The present results demonstrate a feasible approach for a highly stable self-powered/active biosensor.

  3. Ultrasensitive quantum dots-based DNA detection and hybridization kinetics analysis with evanescent wave biosensing platform.

    PubMed

    Long, Feng; Wu, Shuxu; He, Miao; Tong, Tiezheng; Shi, Hanchang

    2011-01-15

    Ultrasensitive DNA detection was achieved using a new biosensing platform based on quantum dots (QDs) and total internal reflection fluorescence, which featured an exceptional detection limit of 3.2 amol of bound target DNA. The reusable sensor surface was produced by covalently immobilizing streptavidin onto a self-assembled alkanethiol monolayer of fiber optic probe through a heterobifunctional reagent. Streptavidin served as a versatile binding element for biotinylated single-strand DNA (ssDNA). The ssDNA-coated fiber probe was evaluated as a nucleic acid biosensor through a DNA-DNA hybridization assay for a 30-mer ssDNA, which were the segments of the uidA gene of Escherichia coli and labeled by QDs using avidin-biotin interaction. Several negative control tests revealed the absence of significant non-specific binding. It also showed that bound target DNA could easily be eluted from the sensor surface using SDS solution (pH 1.9) without any significant loss of performance after more than 30 assay cycles. A quantitative measurement of DNA binding kinetics was achieved with high accuracy, indicating an association rate of 1.38×10(6) M(-1) s(-1) and a dissociation rate of 4.67×10(-3) s(-1). The proposed biosensing platform provides a simple, cheap, fast, and robust solution for many potential applications including clinical diagnosis, pathology, and genetics. Copyright © 2010 Elsevier B.V. All rights reserved.

  4. Using Lanthanide Nanoparticles as Isotopic Tags for Biomarker Detection by Mass Cytometry

    NASA Astrophysics Data System (ADS)

    Cao, Pengpeng

    The development of robust, versatile, and high-throughput biosensing techniques has widespread implications for early disease detection and accurate diagnosis. An innovative technology, mass cytometry, has been developed to use isotopically-labelled antibodies to simultaneously study multiple parameters of single cells. The current detection sensitivity of mass cytometry is limited by the number of copies of a given isotope that can be attached to a given antibody. This thesis describes research on the synthesis, characterization, and bioconjugation of a new class of nanoparticle-based labelling agents to be employed for the detection of low-abundance biomarkers by mass cytometry. Hydrophobic lanthanide nanoparticles (Ln NPs) have been prepared by the Winnik group. To render the NPs water-soluble for biological applications, we coated the NP surface with a first generation of multidentate poly(ethylene glycol) (PEG)-based ligands via ligand exchange. We measured the size, morphology, and polydispersity of these hydrophilic NPs by transmission electron microscopy (TEM) and dynamic light scattering (DLS). The colloidal stability of the NPs was determined at various pH and in phosphate buffered saline (PBS) solutions. Tetradentate-PEG-coated NPs (Tetra-NPs) exhibited the best stability at pH 3 to 9, and in PBS. However, when cells were treated with Tetra-NPs in preliminary in vitro studies, significant undesirable non-specific binding (NSB) was observed. In order to tackle the NSB issue presented in the Tetra-NPs, we prepared a second generation of polymer-based ligands using ring-opening metathesis polymerization (ROMP). A small library of ROMP polymers was synthesized, characterized, and used to stabilize NPs in aqueous solutions. The ROMP-NPs were found to have significantly reduced NSB to cells by inductively coupled plasma-mass spectrometry (ICP-MS). To further modify the NPs, amine groups were introduced as functional handles to both the tetradentate-PEG and ROMP polymer ligands. These amine groups on the NP surface were used to conjugate to the antibodies via maleimide-thiol chemistry. The antigen-recognizing abilities of the antibody-NP conjugates were assessed using two cell lines (CD34-positive KG1a and CD34-negative HL60 cells) by ICP-MS and mass cytometry. It is hoped that the lessons learned from these studies will ultimately support the development of a new biosensing technique for early disease detection.

  5. Paper-based analytical devices for clinical diagnosis: recent advances in the fabrication techniques and sensing mechanisms

    PubMed Central

    Sher, Mazhar; Zhuang, Rachel; Demirci, Utkan; Asghar, Waseem

    2017-01-01

    Introduction There is a significant interest in developing inexpensive portable biosensing platforms for various applications including disease diagnostics, environmental monitoring, food safety, and water testing at the point-of-care (POC) settings. Current diagnostic assays available in the developed world require sophisticated laboratory infrastructure and expensive reagents. Hence, they are not suitable for resource-constrained settings with limited financial resources, basic health infrastructure, and few trained technicians. Cellulose and flexible transparency paper-based analytical devices have demonstrated enormous potential for developing robust, inexpensive and portable devices for disease diagnostics. These devices offer promising solutions to disease management in resource-constrained settings where the vast majority of the population cannot afford expensive and highly sophisticated treatment options. Areas covered In this review, the authors describe currently developed cellulose and flexible transparency paper-based microfluidic devices, device fabrication techniques, and sensing technologies that are integrated with these devices. The authors also discuss the limitations and challenges associated with these devices and their potential in clinical settings. Expert commentary In recent years, cellulose and flexible transparency paper-based microfluidic devices have demonstrated the potential to become future healthcare options despite a few limitations such as low sensitivity and reproducibility. PMID:28103450

  6. Paper-based analytical devices for clinical diagnosis: recent advances in the fabrication techniques and sensing mechanisms.

    PubMed

    Sher, Mazhar; Zhuang, Rachel; Demirci, Utkan; Asghar, Waseem

    2017-04-01

    There is a significant interest in developing inexpensive portable biosensing platforms for various applications including disease diagnostics, environmental monitoring, food safety, and water testing at the point-of-care (POC) settings. Current diagnostic assays available in the developed world require sophisticated laboratory infrastructure and expensive reagents. Hence, they are not suitable for resource-constrained settings with limited financial resources, basic health infrastructure, and few trained technicians. Cellulose and flexible transparency paper-based analytical devices have demonstrated enormous potential for developing robust, inexpensive and portable devices for disease diagnostics. These devices offer promising solutions to disease management in resource-constrained settings where the vast majority of the population cannot afford expensive and highly sophisticated treatment options. Areas covered: In this review, the authors describe currently developed cellulose and flexible transparency paper-based microfluidic devices, device fabrication techniques, and sensing technologies that are integrated with these devices. The authors also discuss the limitations and challenges associated with these devices and their potential in clinical settings. Expert commentary: In recent years, cellulose and flexible transparency paper-based microfluidic devices have demonstrated the potential to become future healthcare options despite a few limitations such as low sensitivity and reproducibility.

  7. Parallel mapping of optical near-field interactions by molecular motor-driven quantum dots.

    PubMed

    Groß, Heiko; Heil, Hannah S; Ehrig, Jens; Schwarz, Friedrich W; Hecht, Bert; Diez, Stefan

    2018-04-30

    In the vicinity of metallic nanostructures, absorption and emission rates of optical emitters can be modulated by several orders of magnitude 1,2 . Control of such near-field light-matter interaction is essential for applications in biosensing 3 , light harvesting 4 and quantum communication 5,6 and requires precise mapping of optical near-field interactions, for which single-emitter probes are promising candidates 7-11 . However, currently available techniques are limited in terms of throughput, resolution and/or non-invasiveness. Here, we present an approach for the parallel mapping of optical near-field interactions with a resolution of <5 nm using surface-bound motor proteins to transport microtubules carrying single emitters (quantum dots). The deterministic motion of the quantum dots allows for the interpolation of their tracked positions, resulting in an increased spatial resolution and a suppression of localization artefacts. We apply this method to map the near-field distribution of nanoslits engraved into gold layers and find an excellent agreement with finite-difference time-domain simulations. Our technique can be readily applied to a variety of surfaces for scalable, nanometre-resolved and artefact-free near-field mapping using conventional wide-field microscopes.

  8. Invited Article: Terahertz microfluidic chips sensitivity-enhanced with a few arrays of meta-atoms

    NASA Astrophysics Data System (ADS)

    Serita, Kazunori; Matsuda, Eiki; Okada, Kosuke; Murakami, Hironaru; Kawayama, Iwao; Tonouchi, Masayoshi

    2018-05-01

    We present a nonlinear optical crystal (NLOC)-based terahertz (THz) microfluidic chip with a few arrays of split ring resonators (SRRs) for ultra-trace and quantitative measurements of liquid solutions. The proposed chip operates on the basis of near-field coupling between the SRRs and a local emission of point like THz source that is generated in the process of optical rectification in NLOCs on a sub-wavelength scale. The liquid solutions flowing inside the microchannel modify the resonance frequency and peak attenuation in the THz transmission spectra. In contrast to conventional bio-sensing with far/near-field THz waves, our technique can be expected to compactify the chip design as well as realize high sensitive near-field measurement of liquid solutions without any high-power optical/THz source, near-field probes, and prisms. Using this chip, we have succeeded in observing the 31.8 fmol of ion concentration in actual amount of 318 pl water solutions from the shift of the resonance frequency. The technique opens the door to microanalysis of biological samples with THz waves and accelerates development of THz lab-on-chip devices.

  9. Magnetic immunoassay platform based on the planar frequency mixing magnetic technique.

    PubMed

    Kim, Chang-Beom; Lim, Eul-Gyoon; Shin, Sung Woong; Krause, Hans Joachim; Hong, Hyobong

    2016-09-15

    We represent the experimental results of our planar-frequency mixing magnetic detection (p-FMMD) technique to obtain 2D superparamagnetic images for magnetic immunoassay purpose. The imaging of magnetic beads is based on the nonlinear magnetic characteristics inherent in superparamagnetic materials. The p-FMMD records the sum-frequency components originating from both a high and a low frequency magnetic field incident on the magnetically nonlinear nanoparticles. In this study, we apply the p-FMMD technique to 2D scanning imaging of superparamagnetic iron oxide nanoparticles (SPIONs) in a microfluidic platform. Our p-FMMD system enables to acquire planar images of SPIONs filled in a microchannel as narrow as 30µm in width. The minimum detectable amount is ~1.0×10(8) beads of 100nm size. The system shows a spatial resolution enabling to distinguish between two distinct channels even 2mm apart from each other. Our p-FMMD system as a magnetic immunoassaying system has permitted the detection of amyloid beta 42 (Aβ42), a promising biomarker of Alzheimer's disease, at the minimum concentration of 23.8pg/ml. This may enable the identification of the Aβ42 levels for the early-stage of Alzheimer's disease with the assistance of the MPI using p-FMMD technique. The results show that the deployment of the p-FMMD can be an alternative to conventional biosensing analytical methods, and can be used as a fast and portable screening method. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Engineering Persistent Luminescence Nanoparticles for Biological Applications: From Biosensing/Bioimaging to Theranostics.

    PubMed

    Sun, Shao-Kai; Wang, He-Fang; Yan, Xiu-Ping

    2018-05-15

    Persistent luminescence nanoparticles (PLNPs) are unique optical materials emitting long-lasting luminescence after ceasing excitation. Such a unique optical feature allows luminescence detection without constant external illumination to avoid the interferences of autofluorescence and scattering light from biological fluids and tissues. Besides, near-infrared (NIR) PLNPs have advantages of deep penetration and the reactivation of the persistent luminescence (PL) by red or NIR light. These features make the application of NIR-emitting PLNPs in long-term bioimaging no longer limited by the lifetime of PL. To take full advantage of PLNPs for biological applications, the versatile strategies for bridging PLNPs and biological system become increasingly significant for the design of PLNPs-based nanoprobes. In this Account, we summarize our systematic achievements in the biological applications of PLNPs from biosensing/bioimaging to theranostics with emphasizing the engineering strategies for fabricating specific PLNPs-based nanoprobes. We take surface engineering and manipulating energy transfer as the major principles to design various PLNPs-based nanoprobes based on the nature of interactions between nanoprobes and targets. We have developed target-induced formation or interruption of fluorescence resonance energy transfer systems for autofluorescence-free biosensing and imaging of cancer biomarkers. We have decorated single or dual targeting ligands on PLNPs for tumor-targeted imaging, and integrated other modal imaging agents into PLNPs for multimodal imaging. We have also employed specific functionalization for various biomedical applications including chemotherapy, photodynamic therapy, photothermal therapy, stem cells tracking and PL imaging-guided gene therapy. Besides, we have modified PLNPs with multiple functional units to achieve challenging metastatic tumor theranostics. The proposed design principle and comprehensive strategies show great potential in guiding the design of PLNPs nanoprobes and promoting further development of PLNPs in the fields of biological science and medicine. We conclude this Account by outlining the future directions to further promote the practical application of PLNPs. The novel protocols for the synthesis of small-size, monodisperse, and water-soluble PLNPs with high NIR PL intensity and superlong afterglow are the vibrant directions for the biomedical applications of PLNPs. In-depth theories and evidence on luminescence mechanism of PLNPs are highly desired for further improvement of their luminescence performance. Furthermore, other irradiations without tissue penetrating depth limit, such as X-ray, are encouraged for use in energy storage and re-excitation of PLNPs, enabling imaging in deep tissue in vivo and integrating other X-ray sensitized theranostic techniques such as computed tomography imaging and radiotherapy. Last but not least, PLNPs-based nanoprobes and the brand new hybrids of PLNPs with other nanomaterials show a bright prospect for accurate diagnosis and efficient treatment of diseases besides tumors.

  11. Self-assembled NiFe2O4/carbon nanotubes sponge for enhanced glucose biosensing application

    NASA Astrophysics Data System (ADS)

    Li, Yingchun; Zhao, Minggang; Chen, Jing; Fan, Sisi; Liang, Jingjing; Ding, Longjiang; Chen, Shougang

    2016-01-01

    In this work, self-assembled NiFe2O4/carbon nanotubes (CNTs) sponge was prepared by ice-templating method. The device synergized the advantageous features of both the 3D porous nanostructure and the catalytic properties of CNTs with GOx and NiFe2O4 nanoparticles. The porous network construction of the NiFe2O4/CNTs sheets offered enlarged specific surface for GOx immobilization and opened channels for facilitating the electrons transport and reactants diffusion. With the help of the abnormal-valence elements Ni and Fe, double catalysis has happened and the enhanced glucose biosensing performance has been achieved. The fabricated glucose biosensor exhibited two large linear ranges (0-3.0 and 3.2-12.4 mM) and distinct sensitivities (84.1 and 24.6 μA mM-1 cm-2).

  12. One Binder to Bind Them All.

    PubMed

    Hayden, Oliver

    2016-10-10

    High quality binders, such as antibodies, are of critical importance for chemical sensing applications. With synthetic alternatives, such as molecularly imprinted polymers (MIPs), less sensor development time and higher stability of the binder can be achieved. In this feature paper, I will discuss the impact of synthetic binders from an industrial perspective and I will challenge the molecular imprinting community on the next step to leapfrog the current status quo of MIPs for (bio)sensing. Equally important, but often neglected as an effective chemical sensor, is a good match of transducer and MIP coating for a respective application. To demonstrate an application-driven development, a biosensing use case with surface-imprinted layers on piezoacoustic sensors is reported. Depending on the electrode pattern for the transducer, the strong mechanical coupling of the analyte with the MIP layer coated device allows the adoption of the sensitivity from cell mass to cell viability with complete reversibility.

  13. Density Functional Theory (DFT) Study of Molecularly Imprinted Polymer (MIP) Methacrylic Acid (MAA) with D-Glucose

    NASA Astrophysics Data System (ADS)

    Wungu, T. D. K.; Marsha, S. E.; Widayani; Suprijadi

    2017-07-01

    In order to find an alternative biosensor material which enables to detect the glucose level, therefore in this study, the interaction between Methacrylic Acid (MAA) based Molecularly Imprinted Polymer (MIP) with D-Glucose is investigated using the Density Functional Theory (DFT). The aim of this study is to determine whether a molecule of the MAA can be functioned as a bio-sensing of glucose. In this calculation, the Gaussian 09 with B3LYP and 631+G(d) basis sets is used to calculate all electronic properties. It is found that the interaction between a molecule of MAA and a molecule of D-Glucose was observed through the shortened distance between the two molecules. The binding energy of MAA/D-glucose and the Mulliken population analysis are investigated for checking possible interaction. From analysis, the MAA based MIP can be used as a bio-sensing material.

  14. Self-assembled dye-doped polymer microspheres as whispering gallery mode lasers

    NASA Astrophysics Data System (ADS)

    Chen, Xiaogang; Sun, Hongyi; Yang, Hongqin; Wu, Xiang; Xie, Shusen

    2016-10-01

    Microlasers based on high-Q whispering-gallery-mode (WGM) resonances are promising low-threshold laser sources for bio-sensing and imaging applications. In this talk, we demonstrate a cost effective approach to obtain size-controllable polymer microspheres, which can be served as good WGM microcavities. By injecting SU-8 solution into low-refractiveindex UV polymer, self-assembled spherical droplet with smooth surface can be created inside the elastic medium and then solidified by UV exposure. The size of the microspheres can be tuned from several to hundreds of microns. WGM Lasing has been achieved by optically pumping the dye-doped microspheres with ns lasers. Experimental results show that the microsphere lasers have high quality factors and low lasing thresholds. The self-assembled dye-doped polymer microspheres would provide an excellent platform for the micro-laser sources in on-chip biosensing and imaging systems.

  15. CMOS-Compatible Silicon Nanowire Field-Effect Transistor Biosensor: Technology Development toward Commercialization

    PubMed Central

    Wolfrum, Bernhard; Thierry, Benjamin

    2018-01-01

    Owing to their two-dimensional confinements, silicon nanowires display remarkable optical, magnetic, and electronic properties. Of special interest has been the development of advanced biosensing approaches based on the field effect associated with silicon nanowires (SiNWs). Recent advancements in top-down fabrication technologies have paved the way to large scale production of high density and quality arrays of SiNW field effect transistor (FETs), a critical step towards their integration in real-life biosensing applications. A key requirement toward the fulfilment of SiNW FETs’ promises in the bioanalytical field is their efficient integration within functional devices. Aiming to provide a comprehensive roadmap for the development of SiNW FET based sensing platforms, we critically review and discuss the key design and fabrication aspects relevant to their development and integration within complementary metal-oxide-semiconductor (CMOS) technology. PMID:29751688

  16. Photocatalytically Renewable Micro-electrochemical Sensor for Real-Time Monitoring of Cells.

    PubMed

    Xu, Jia-Quan; Liu, Yan-Ling; Wang, Qian; Duo, Huan-Huan; Zhang, Xin-Wei; Li, Yu-Tao; Huang, Wei-Hua

    2015-11-23

    Electrode fouling and passivation is a substantial and inevitable limitation in electrochemical biosensing, and it is a great challenge to efficiently remove the contaminant without changing the surface structure and electrochemical performance. Herein, we propose a versatile and efficient strategy based on photocatalytic cleaning to construct renewable electrochemical sensors for cell analysis. This kind of sensor was fabricated by controllable assembly of reduced graphene oxide (RGO) and TiO2 to form a sandwiching RGO@TiO2 structure, followed by deposition of Au nanoparticles (NPs) onto the RGO shell. The Au NPs-RGO composite shell provides high electrochemical performance. Meanwhile, the encapsulated TiO2 ensures an excellent photocatalytic cleaning property. Application of this renewable microsensor for detection of nitric oxide (NO) release from cells demonstrates the great potential of this strategy in electrode regeneration and biosensing. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Development of a surface plasmon resonance and nanomechanical biosensing hybrid platform for multiparametric reading

    NASA Astrophysics Data System (ADS)

    Alvarez, Mar; Fariña, David; Escuela, Alfonso M.; Sendra, Jose Ramón; Lechuga, Laura M.

    2013-01-01

    We have developed a hybrid platform that combines two well-known biosensing technologies based on quite different transducer principles: surface plasmon resonance and nanomechanical sensing. The new system allows the simultaneous and real-time detection of two independent parameters, refractive index change (Δn), and surface stress change (Δσ) when a biomolecular interaction takes place. Both parameters have a direct relation with the mass coverage of the sensor surface. The core of the platform is a common fluid cell, where the solution arrives to both sensor areas at the same time and under the same conditions (temperature, velocity, diffusion, etc.).The main objective of this integration is to achieve a better understanding of the physical behaviour of the transducers during sensing, increasing the information obtained in real time in one single experiment. The potential of the hybrid platform is demonstrated by the detection of DNA hybridization.

  18. High-Speed Lateral Flow Strategy for a Fast Biosensing with an Improved Selectivity and Binding Affinity.

    PubMed

    Cho, Dong Guk; Yoo, Haneul; Lee, Haein; Choi, Yeol Kyo; Lee, Minju; Ahn, Dong June; Hong, Seunghun

    2018-05-10

    We report a high-speed lateral flow strategy for a fast biosensing with an improved selectivity and binding affinity even under harsh conditions. In this strategy, biosensors were fixed at a location away from the center of a round shape disk, and the disk was rotated to create the lateral flow of a target solution on the biosensors during the sensing measurements. Experimental results using the strategy showed high reaction speeds, high binding affinity, and low nonspecific adsorptions of target molecules to biosensors. Furthermore, binding affinity between target molecules and sensing molecules was enhanced even in harsh conditions such as low pH and low ionic strength conditions. These results show that the strategy can improve the performance of conventional biosensors by generating high-speed lateral flows on a biosensor surface. Therefore, our strategy can be utilized as a simple but powerful tool for versatile bio and medical applications.

  19. Discrete wavelength selection for the optical readout of a metamaterial biosensing system for glucose concentration estimation via a support vector regression model.

    PubMed

    Teutsch, T; Mesch, M; Giessen, H; Tarin, C

    2015-01-01

    In this contribution, a method to select discrete wavelengths that allow an accurate estimation of the glucose concentration in a biosensing system based on metamaterials is presented. The sensing concept is adapted to the particular application of ophthalmic glucose sensing by covering the metamaterial with a glucose-sensitive hydrogel and the sensor readout is performed optically. Due to the fact that in a mobile context a spectrometer is not suitable, few discrete wavelengths must be selected to estimate the glucose concentration. The developed selection methods are based on nonlinear support vector regression (SVR) models. Two selection methods are compared and it is shown that wavelengths selected by a sequential forward feature selection algorithm achieves an estimation improvement. The presented method can be easily applied to different metamaterial layouts and hydrogel configurations.

  20. Ultrasensitive electrochemical cocaine biosensor based on reversible DNA nanostructure.

    PubMed

    Sheng, Qinglin; Liu, Ruixiao; Zhang, Sai; Zheng, Jianbin

    2014-01-15

    We proposed an ultrasensitive electrochemical cocaine biosensor based on the three-dimensional (3D) DNA structure conversion of nanostructure from Triangular Pyramid Frustum (TPFDNA) to Equilateral Triangle (ETDNA). The presence of cocaine triggered the aptamer-composed DNA nanostructure change from "Close" to "Open", leading to obvious faradaic impedance changes. The unique properties with excellent stability and specific rigid structure of the 3D DNA nanostructure made the biosensing functions stable, sensitive, and regenerable. The Faradaic impedance responses were linearly related to cocaine concentration between 1.0 nM and 2.0 μM with a correlation coefficient of 0.993. The limit of detection was calculated to be 0.21 nM following IUPAC recommendations (3Sb/b). It is expected that the distinctive features of DNA nanostructure would make it potentially advantageous for a broad range of biosensing, bionanoelectronics, and therapeutic applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Synthesis, functionalization, and applications of metal-organic frameworks in biomedicine.

    PubMed

    Chen, Wei; Wu, Chunsheng

    2018-02-13

    Metal-organic frameworks (MOFs), also known as coordination polymers, have attracted extensive research interest in the past few decades due to their unique physical structures and potentially vast applications. In this review, we outline the recent progress in the synthesis, functionalization and applications of MOFs in biomedicine, mainly focusing on two promising, yet challenging areas, i.e., drug delivery and biosensing applications. A major challenge is the proper functionalization of MOFs with demanding properties suitable for biomedical applications. Extensive studies on MOFs in biomedicine have led to substantial progress in the control of key properties of MOFs such as toxicity, size and shape, and biological stability. Due to their flexible composition, pore size and easy functionalization properties, MOFs can be utilized as key components for the development of various functional systems, and their applications in drug delivery and biosensing are reviewed. Future trends and perspectives in these research areas are also outlined.

  2. Conditions of excitation and sensitivity of diffractively-coupled surface lattice resonances over plasmonic nanoparticle arrays in ATR geometry

    NASA Astrophysics Data System (ADS)

    Danilov, Artem; Tselikov, Gleb; Wu, Fan; Kravets, Vasyl G.; Ozerov, Igor; Bedu, Frederic; Grigorenko, Alexander N.; Kabashin, Andrei V.

    2018-02-01

    We investigate conditions of excitation and properties of Plasmonic Surface Lattice Resonances (PSLR) over glass substrate-supported Au nanoparticle dimers ( 100-200 nm) arranged in a periodic metamaterial lattice, in Attenuated Total Reflection (ATR) optical excitation geometry, and assess their sensitivities to variations of refractive index (RI) of the adjacent sample dielectric medium. We show that spectral sensitivity of PSLR to RI variations is determined by the lattice periodicity ( 320 nm per RIU change in our case), while ultranarrow resonance lineshapes (down to a few nm full-widthat-half-maximum) provide very high figure-of-merit values evidencing the possibility of ultrasensitive biosensing measurements. Combining advantages of nanoscale architectures, including a strong concentration of electric field, the possibility of manipulation at the nanoscale etc, and high phase and spectral sensitivities, PSLRs promise a drastic advancement of current state-of-the-art plasmonic biosensing technology.

  3. Current trends in electrochemical sensing and biosensing of DNA methylation.

    PubMed

    Krejcova, Ludmila; Richtera, Lukas; Hynek, David; Labuda, Jan; Adam, Vojtech

    2017-11-15

    DNA methylation plays an important role in physiological and pathological processes. Several genetic diseases and most malignancies tend to be associated with aberrant DNA methylation. Among other analytical methods, electrochemical approaches have been successfully employed for characterisation of DNA methylation patterns that are essential for the diagnosis and treatment of particular diseases. This article discusses current trends in the electrochemical sensing and biosensing of DNA methylation. Particularly, it provides an overview of applied electrode materials, electrode modifications and biorecognition elements applications with an emphasis on strategies that form the core DNA methylation detection approaches. The three main strategies as (i) bisulfite treatment, (ii) cleavage by restriction endonucleases, and (iii) immuno/affinity reaction were described in greater detail. Additionally, the availability of the reviewed platforms for early cancer diagnosis and the approval of methylation inhibitors for anticancer therapy were discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Development of a surface plasmon resonance and nanomechanical biosensing hybrid platform for multiparametric reading.

    PubMed

    Alvarez, Mar; Fariña, David; Escuela, Alfonso M; Sendra, Jose Ramón; Lechuga, Laura M

    2013-01-01

    We have developed a hybrid platform that combines two well-known biosensing technologies based on quite different transducer principles: surface plasmon resonance and nanomechanical sensing. The new system allows the simultaneous and real-time detection of two independent parameters, refractive index change (Δn), and surface stress change (Δσ) when a biomolecular interaction takes place. Both parameters have a direct relation with the mass coverage of the sensor surface. The core of the platform is a common fluid cell, where the solution arrives to both sensor areas at the same time and under the same conditions (temperature, velocity, diffusion, etc.).The main objective of this integration is to achieve a better understanding of the physical behaviour of the transducers during sensing, increasing the information obtained in real time in one single experiment. The potential of the hybrid platform is demonstrated by the detection of DNA hybridization.

  5. Porous silicon platform for optical detection of functionalized magnetic particles biosensing.

    PubMed

    Ko, Pil Ju; Ishikawa, Ryousuke; Sohn, Honglae; Sandhu, Adarsh

    2013-04-01

    The physical properties of porous materials are being exploited for a wide range of applications including optical biosensors, waveguides, gas sensors, micro capacitors, and solar cells. Here, we review the fast, easy and inexpensive electrochemical anodization based fabrication porous silicon (PSi) for optical biosensing using functionalized magnetic particles. Combining magnetically labeled biomolecules with PSi offers a rapid and one-step immunoassay and real-time detection by magnetic manipulation of superparamagnetic beads (SPBs) functionalized with target molecules onto corresponding probe molecules immobilized inside nano-pores of PSi. We first give an introduction to electrochemical and chemical etching procedures used to fabricate a wide range of PSi structures. Next, we describe the basic properties of PSi and underlying optical scattering mechanisms that govern their unique optical properties. Finally, we give examples of our experiments that demonstrate the potential of combining PSi and magnetic beads for real-time point of care diagnostics.

  6. Nanomechanics for specific biological detection

    NASA Astrophysics Data System (ADS)

    Alvarez, Mar; Carrascosa, Laura G.; Tamayo, Javier; Calle, Ana; Lechuga, Laura M.

    2003-04-01

    Nanomechanical biosensors have emerged as a promising platform for specific biological. Among the advantages are direct detection without need of labelling with fluorescent or radioactive molecules, very high sensitivity, reduced sensor area, and suitability for integration using silicon technology. Here we have studied the immobilization of oligonucleotide monolayers by monitoring the microcantilever bending. Oligonucleotides were derivatized with thiol molecules for self-assembly on the gold-coated side of a microcantilever. The geometry of the binding and the surface density were studied by mixing derivatized oligonucleotides with spacer self-assembled monolayers and by controlling the oligonucleotide functional group form. These results are compared with fluoresencent and chemiluminescence techniques. Furthermore, we present the first results of direct pesticide detection with microcantilever-based biosensors. Herbicide DDT was detected by performing competitive assays, in which the cantilever was coated with a synthetic DDT hapten, and it was exposured to different rations between the monoclonal antibody and the DDT. A new technique is presented for the detection of the nanomechanical response for biosensing applications, in which the resonant frequency is measured with about two orders of magnitude higher sensitivity. The low quality factor of the microcantilever in liquid is increased up by using an active feedback control, in which the cantilever oscillation is amplified and delayed and it is used as a driving force. The technique has been applied for the detection of ethanol, proteins, and pathogens.

  7. A fluorescence resonance energy transfer quantum dot explosive nanosensor (Invited Paper)

    NASA Astrophysics Data System (ADS)

    Medintz, Igor L.; Goldman, Ellen R.; Clapp, Aaron R.; Uyeda, H. T.; Lassman, Michael E.; Hayhurst, Andrew; Mattoussi, Hedi

    2005-04-01

    Quantum dots (QDs) are a versatile synthetic photoluminescent nanomaterial whose chemical and photo-physical properties suggest that they may be superior to conventional organic fluorophores for a variety of biosensing applications. We have previously investigated QD-fluorescence resonance energy transfer (FRET) interactions by using the E. coli bacterial periplasmic binding protein - maltose binding protein (MBP) which was site-specifically dye-labeled and self assembled onto the QD surface and allowed us to monitor FRET between the QD donor and the acceptor dye. FRET efficiency increased as a function of the number of dye-acceptor moieties arrayed around the QD donor. We used this system to further demonstrate a prototype FRET based biosensor that functioned in the chemical/nutrient sensing of maltose. There are a number of potential benefits to using this type of QD-FRET based biosensing strategy. The protein attached to the QDs surface functions as a biosensing and biorecognition element in this configuration while the QD acts as both nanoscaffold and FRET energy donor. In this report, we show that the sensor design can be extended to target a completely unrelated analyte, namely the explosive TNT. The sensor consists of anti-TNT antibody fragments self-assembled onto the QD surface with a dye-labeled analog of TNT (TNB coupled to AlexaFluor 555 dye) prebound in the fragment binding site. The close proximity of dye to QD establishes a baseline level of FRET and addition of TNT displaces the TNB-dye analog, recovering QD photoluminescence in a concentration dependent manner. Potential benefits of this QD sensing strategy are discussed.

  8. Polymeric bionanocomposite cast thin films with in situ laccase-catalyzed polymerization of dopamine for biosensing and biofuel cell applications.

    PubMed

    Tan, Yueming; Deng, Wenfang; Li, Yunyong; Huang, Zhao; Meng, Yue; Xie, Qingji; Ma, Ming; Yao, Shouzhuo

    2010-04-22

    We report here on the facile preparation of polymer-enzyme-multiwalled carbon nanotubes (MWCNTs) cast films accompanying in situ laccase (Lac)-catalyzed polymerization for electrochemical biosensing and biofuel cell applications. Lac-catalyzed polymerization of dopamine (DA) as a new substrate was examined in detail by UV-vis spectroscopy, cyclic voltammetry, quartz crystal microbalance, and scanning electron microscopy. Casting the aqueous mixture of DA, Lac and MWCNTs on a glassy carbon electrode (GCE) yielded a robust polydopamine (PDA)-Lac-MWCNTs/GCE that can sense hydroquinone with 643 microA mM(-1) cm(-2) sensitivity and 20-nM detection limit (S/N = 3). The DA substrate yielded the best biosensing performance, as compared with aniline, o-phenylenediamine, or o-aminophenol as the substrate for similar Lac-catalyzed polymerization. Casting the aqueous mixture of DA, glucose oxidase (GOx), Lac, and MWCNTs on a Pt electrode yielded a robust PDA-GOx-Lac-MWCNTs/Pt electrode that exhibits glucose-detection sensitivity of 68.6 microA mM(-1) cm(-2). In addition, 2,2'-azinobis (3-ethylbenzothiazoline-6-sulfonate) diammonium salt (ABTS) was also coimmobilized to yield a PDA-Lac-MWCNTs-ABTS/GCE that can effectively catalyze the reduction of O(2), and it was successfully used as the biocathode of a membraneless glucose/O(2) biofuel cell (BFC) in pH 5.0 Britton-Robinson buffer. The proposed biomacromolecule-immobilization platform based on enzyme-catalyzed polymerization may be useful for preparing many other multifunctional polymeric bionanocomposites for wide applications.

  9. Design, characterization and applications of new ionic liquid matrices for multifunctional analysis of biomolecules: a novel strategy for pathogenic bacteria biosensing.

    PubMed

    Abdelhamid, Hani Nasser; Khan, M Shahnawaz; Wu, Hui-Fen

    2014-05-01

    The design, preparation and performance for novel UV-light absorbing (room-temperature) ionic liquid matrices (UV-RTILMs) for matrix assisted laser desorption/ionization mass spectrometry (MALDI-MS) were reported. A series of UV-RTILMs was prepared by ultrasonication of equimolar of acid (mefenamic acid) and bases (aniline (ANI), pyridine (Pyr), dimethyl aniline (DMANI) and 2-methyl picoline (2-P)). The UV-RTILMs have not only significant absorbance at the desired wavelength (337 nm of the N2 Laser), but also have available protons that can easily undergo proton transfer reactions to ionize the target molecules. The novel UV-RTILMs have the ability to ionize different and wide classes of compounds such as drugs, carbohydrate, and amino acids. The new UV-RTILMs series have been successfully and selectively applied for biosensing the lysates of pathogenic bacteria in the presence of the cell macromolecules. A new strategy for biosensing pathogens was presented via sensing the pathogens lysate in the cell suspension. The new materials can effectively detect the bacterial toxins without separation or any pretreatment. They offered excellent ionization of labile oligosaccharides with protonated peaks. They could significantly enhance the analyte signals, produce homogeneous spotting, reducing spot-to-spot variation, excellent vacuum stability, higher ion peak intensity, and wide application possibility. The physical parameters such as molar refractivity, molar volume, parachor, surface tension, density and polarizability were calculated and tabulated. The new UV-RTILMs could offer excellent reproducibility and great repeatability and they are promising matrices for wide applications on MALDI-MS. Copyright © 2014. Published by Elsevier B.V.

  10. Application of 2D Non-Graphene Materials and 2D Oxide Nanostructures for Biosensing Technology

    PubMed Central

    Shavanova, Kateryna; Bakakina, Yulia; Burkova, Inna; Shtepliuk, Ivan; Viter, Roman; Ubelis, Arnolds; Beni, Valerio; Starodub, Nickolaj; Yakimova, Rositsa; Khranovskyy, Volodymyr

    2016-01-01

    The discovery of graphene and its unique properties has inspired researchers to try to invent other two-dimensional (2D) materials. After considerable research effort, a distinct “beyond graphene” domain has been established, comprising the library of non-graphene 2D materials. It is significant that some 2D non-graphene materials possess solid advantages over their predecessor, such as having a direct band gap, and therefore are highly promising for a number of applications. These applications are not limited to nano- and opto-electronics, but have a strong potential in biosensing technologies, as one example. However, since most of the 2D non-graphene materials have been newly discovered, most of the research efforts are concentrated on material synthesis and the investigation of the properties of the material. Applications of 2D non-graphene materials are still at the embryonic stage, and the integration of 2D non-graphene materials into devices is scarcely reported. However, in recent years, numerous reports have blossomed about 2D material-based biosensors, evidencing the growing potential of 2D non-graphene materials for biosensing applications. This review highlights the recent progress in research on the potential of using 2D non-graphene materials and similar oxide nanostructures for different types of biosensors (optical and electrochemical). A wide range of biological targets, such as glucose, dopamine, cortisol, DNA, IgG, bisphenol, ascorbic acid, cytochrome and estradiol, has been reported to be successfully detected by biosensors with transducers made of 2D non-graphene materials. PMID:26861346

  11. Multi-resonant plasmonic nanodome arrays for label-free biosensing applications

    NASA Astrophysics Data System (ADS)

    Choi, Charles J.; Semancik, Steve

    2013-08-01

    The characteristics and utility of plasmonic nanodome arrays capable of supporting multiple resonance modes are described. A low-cost, large-area replica molding process is used to produce, on flexible plastic substrates, two-dimensional periodic arrays of cylinders that are subsequently coated with SiO2 and Ag thin films to form dome-shaped structures, with 14 nm spacing between the features, in a precise and reproducible fashion. Three distinct optical resonance modes, a grating diffraction mode and two localized surface plasmon resonance (LSPR) modes, are observed experimentally and confirmed by finite-difference-time-domain (FDTD) modeling which is used to calculate the electromagnetic field distribution of each resonance around the nanodome array structure. Each optical mode is characterized by measuring sensitivity to bulk refractive index changes and to surface effects, which are examined using stacked polyelectrolyte layers. The utility of the plasmonic nanodome array as a functional interface for biosensing applications is demonstrated by performing a bioassay to measure the binding affinity constant between protein A and human immunoglobulin G (IgG) as a model system. The nanoreplica molding process presented in this work allows for simple, inexpensive, high-throughput fabrication of nanoscale plasmonic structures over a large surface area (120 × 120 mm2) without the requirement for high resolution lithography or additional processes such as etching or liftoff. The availability of multiple resonant modes, each with different optical properties, allows the nanodome array surface to address a wide range of biosensing problems with various target analytes of different sizes and configurations.

  12. Application of 2D Non-Graphene Materials and 2D Oxide Nanostructures for Biosensing Technology.

    PubMed

    Shavanova, Kateryna; Bakakina, Yulia; Burkova, Inna; Shtepliuk, Ivan; Viter, Roman; Ubelis, Arnolds; Beni, Valerio; Starodub, Nickolaj; Yakimova, Rositsa; Khranovskyy, Volodymyr

    2016-02-06

    The discovery of graphene and its unique properties has inspired researchers to try to invent other two-dimensional (2D) materials. After considerable research effort, a distinct "beyond graphene" domain has been established, comprising the library of non-graphene 2D materials. It is significant that some 2D non-graphene materials possess solid advantages over their predecessor, such as having a direct band gap, and therefore are highly promising for a number of applications. These applications are not limited to nano- and opto-electronics, but have a strong potential in biosensing technologies, as one example. However, since most of the 2D non-graphene materials have been newly discovered, most of the research efforts are concentrated on material synthesis and the investigation of the properties of the material. Applications of 2D non-graphene materials are still at the embryonic stage, and the integration of 2D non-graphene materials into devices is scarcely reported. However, in recent years, numerous reports have blossomed about 2D material-based biosensors, evidencing the growing potential of 2D non-graphene materials for biosensing applications. This review highlights the recent progress in research on the potential of using 2D non-graphene materials and similar oxide nanostructures for different types of biosensors (optical and electrochemical). A wide range of biological targets, such as glucose, dopamine, cortisol, DNA, IgG, bisphenol, ascorbic acid, cytochrome and estradiol, has been reported to be successfully detected by biosensors with transducers made of 2D non-graphene materials.

  13. Exploiting multi-function Metal-Organic Framework nanocomposite Ag@Zn-TSA as highly efficient immobilization matrixes for sensitive electrochemical biosensing.

    PubMed

    Dong, Sheying; Zhang, Dandan; Suo, Gaochao; Wei, Wenbo; Huang, Tinglin

    2016-08-31

    A novel multi-function Metal-Organic Framework composite Ag@Zn-TSA (zinc thiosalicylate, Zn(C7H4O2S), Zn-TSA) was synthesized as highly efficient immobilization matrixes of myoglobin (Mb)/glucose oxidase (GOx) for electrochemical biosensing. The electrochemical biosensors based on Ag@Zn-TSA composite and ionic liquid (IL) modified carbon paste electrode (CPE) were fabricated successfully. Furthermore, the properties of the sensors were discussed by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and amperometric current-time curve, respectively. The results showed the proposed biosensors had wide linear response to hydrogen peroxide (H2O2) in the range of 0.3-20,000 μM, to nitrite (NO2(-)) for 1.3 μM-1660 μM and 2262 μM-1,33,000 μM, to glucose for 2.0-1022 μM, with a low detection limit of 0.08 μM for H2O2, 0.5 μM for NO2(-), 0.8 μM for glucose. The values of the apparent heterogeneous electron transfer rate constant (ks) for Mb and GOx were estimated as 2.05 s(-1) and 2.45 s(-1), respectively. Thus, Ag@Zn-TSA was a kind of ideal material as highly efficient immobilization matrixes for sensitive electrochemical biosensing. In addition, this work indicated that MOF nanocomposite had a great potential for constructing wide range of sensing interface. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. 3D metal-organic framework as highly efficient biosensing platform for ultrasensitive and rapid detection of bisphenol A.

    PubMed

    Wang, Xue; Lu, Xianbo; Wu, Lidong; Chen, Jiping

    2015-03-15

    As is well known, bisphenol A (BPA), usually exists in daily plastic products, is one of the most important endocrine disrupting chemicals. In this work, copper-centered metal-organic framework (Cu-MOF) was synthesized, which was characterized by SEM, TEM, XRD, FTIR and electrochemical method. The resultant Cu-MOF was explored as a robust electrochemical biosensing platform by choosing tyrosinase (Tyr) as a model enzyme for ultrasensitive and rapid detection of BPA. The Cu-MOF provided a 3D structure with a large specific surface area, which was beneficial for enzyme and BPA absorption, and thus improved the sensitivity of the biosensor. Furthermore, Cu-MOF as a novel sorbent could increase the available BPA concentration to react with tyrosinase through π-π stacking interactions between BPA and Cu-MOF. The Tyr biosensor exhibited a high sensitivity of 0.2242A M(-1) for BPA, a wide linear range from 5.0×10(-8) to 3.0×10-6moll(-1), and a low detection limit of 13nmoll(-1). The response time for detection of BPA is less than 11s. The proposed method was successfully applied to rapid and selective detection of BPA in plastic products with satisfactory results. The recoveries are in the range of 94.0-101.6% for practical applications. With those remarkable advantages, MOFs-based 3D structures show great prospect as robust biosensing platform for ultrasensitive and rapid detection of BPA. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.

  15. SCREEN-PRINTED TYROSINASE-CONTAINING ELECTRODES FOR THE BIOSENSING OF ENZYME INHIBITORS

    EPA Science Inventory

    Disposal amperometric inhibition biosensors have been microfabricated by screen printing a tyrosinase-containing carbon ink. The decrease in the substrate (catechol) steady-state current, caused by the addition of various pesticides and herbicides, offers convenient quantitation ...

  16. Photonics Research and Technology Insertion

    DTIC Science & Technology

    2015-06-05

    Alp Artar, Ahmet Ali Yanik, Hatice Altug. Fabry –Pe?rot nanocavities in multilayered plasmonic crystals for enhanced biosensing, Applied Physics...involved collaborative research with the US Army Medical Research Institute of Infectious Diseases (USAMRIID). The output of these programs has resulted

  17. SERS substrates for in-situ biosensing (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Venugopalan, Priyamvada; Quilis, Nestor; Jakub, Dostalek; Wolfgang, Knoll

    2017-06-01

    Abstract: Recent years have seen a rapid progress in the field of surface-enhanced Raman spectroscopy (SERS) which is attributed to the thriving field of plasmonics [1]. SERS is a susceptible technique that can address basic scientific questions and technological problems. In both cases, it is highly dependent upon the plasmonic substrate, where excitation of the localized surface plasmon resonance enhances the vibrational scattering signal of the analyte molecules adsorbed on to the surface [2]. In this work, using finite difference time domain (FDTD) method we investigate the optical properties of plasmonic nanostructures with tuned plasmonic resonances as a function of dielectric environment and geometric parameters. An optimized geometry will be discussed based on the plasmonic resonant position and the SERS intensity. These SERS substrates will be employed for the detection of changes in conformation caused by interactions between an aptamer and analyte molecules. This will be done by using a microfluidic channel designed within the configuration of the lab-on-a-chip concept based on the intensity changes of the SERS signal. More efficient and reproducible results are obtained for such a quantitative measurement of analytes at low concentration levels. We will also demonstrate that the plasmonic substrates fabricated by top down approach such as e-beam lithography (EBL) and laser interference lithography (LIL) are highly reproducible, robust and can result in high electric field enhancement. Our results demonstrate the potential to use SERS substrates for highly sensitive detection schemes opening up the window for a wide range of applications including biomedical diagnostics, forensic investigation etc. Acknowledgement: This work was supported by the Austrian Science Fund (FWF), project NANOBIOSENSOR (I 2647). References: [1] J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao and R. P. V. Duyne., " Biosensing with plasmonic nanosensors," Nature materials, 308(7), 2008. [2] T. Y. Jeon1, D. J. Kim, S. Park, S. Kim and D. Kim., "Nanostructured plasmonic substrates for use as SERS sensors," Nanocovergence, 3(18), 2016.

  18. An innate immune system-mimicking, real-time biosensing of infectious bacteria.

    PubMed

    Seo, Sung-Min; Jeon, Jin-Woo; Kim, Tae-Yong; Paek, Se-Hwan

    2015-09-07

    An animal cell-based biosensor was investigated to monitor bacterial contamination in an unattended manner by mimicking the innate immune response. The cells (RAW 264.7 cell line) were first attached onto the solid surfaces of a 96-well microtiter plate and co-incubated in the culture medium with a sample that might contain bacterial contaminants. As Toll-like receptors were present on the cell membrane surfaces, they acted as a sentinel by binding to pathogen-associated molecular patterns (PAMPs) of any contaminant. Such biological recognition initiates signal transmission along various pathways to produce different proinflammatory mediators, one of which, tumor necrosis factor-α (TNF-α) was measured using an immunosensor. To demonstrate automated bacterium monitoring, a capture antibody specific for TNF-α was immobilized on an optical fiber sensor tip and then used to measure complex formation in a label-free sensor system (e.g., Octet Red). The sensor response time depended significantly on the degree of agitation of the culture medium, controlling the biological recognition and further autocrine/paracrine signaling by cytokines. The response, particularly under non-agitated conditions, was also influenced by the medium volume, revealing a local gradient change of the cytokine concentration and also acidity, caused by bacterial growth near the bottom surfaces. A biosensor system retaining 50 μL medium and not employing agitation could be used for the early detection of bacterial contamination. This novel biosensing model was applied to the real-time monitoring of different bacteria, Shigella sonnei, Staphylococcus aureus, and Listeria monocytogenes. They (<100 CFU mL(-1)) could be detected automatically within the working time. Such analysis was carried out without any manual handling regardless of the bacterial species, suggesting the concept of non-targeted bacterial real-time monitoring. This technique was further applied to real sample testing (e.g., with milk) to exemplify, for example, the food quality control process without using any additional sample pretreatment such as magnetic concentration.

  19. Functional surface engineering of C-dots for fluorescent biosensing and in vivo bioimaging.

    PubMed

    Ding, Changqin; Zhu, Anwei; Tian, Yang

    2014-01-21

    Nanoparticles are promising scaffolds for applications such as imaging, chemical sensors and biosensors, diagnostics, drug delivery, catalysis, energy, photonics, medicine, and more. Surface functionalization of nanoparticles introduces an additional dimension in controlling nanoparticle interfacial properties and provides an effective bridge to connect nanoparticles to biological systems. With fascinating photoluminescence properties, carbon dots (C-dots), carbon-containing nanoparticles that are attracting considerable attention as a new type of quantum dot, are becoming both an important class of imaging probes and a versatile platform for engineering multifunctional nanosensors. In order to transfer C-dots from proof-of-concept studies toward real world applications such as in vivo bioimaging and biosensing, careful design and engineering of C-dot probes is becoming increasingly important. A comprehensive knowledge of how C-dot surfaces with various properties behave is essential for engineering C-dots with useful imaging properties such as high quantum yield, stability, and low toxicity, and with desirable biosensing properties such as high selectivity, sensitivity, and accuracy. Several reviews in recent years have reported preparation methods and properties of C-dots and described their application in biosensors, catalysis, photovoltatic cells, and more. However, no one has yet systematically summarized the surface engineering of C-dots, nor the use of C-dots as fluorescent nanosensors or probes for in vivo imaging in cells, tissues, and living organisms. In this Account, we discuss the major design principles and criteria for engineering the surface functionality of C-dots for biological applications. These criteria include brightness, long-term stability, and good biocompatibility. We review recent developments in designing C-dot surfaces with various functionalities for use as nanosensors or as fluorescent probes with fascinating analytical performance, and we emphasize applications in bioimaging and biosensing in live cells, tissues, and animals. In addition, we highlight our work on the design and synthesis of a C-dot ratiometric biosensor for intracellular Cu(2+) detection, and a twophoton fluorescent probe for pH measurement in live cells and tissues. We conclude this Account by outlining future directions in engineering the functional surface of C-dots for a variety of in vivo imaging applications, including dots with combined targeting, imaging and therapeutic-delivery capabilities, or high-resolution multiplexed vascular imaging. With each application C-dots should open new horizons of multiplexed quantitative detection, high-resolution fluorescence imaging, and long-term, real-time monitoring of their target.

  20. Synthesis and functionalization of monodisperse near-ultraviolet and visible excitable multifunctional Eu3+, Bi3+:REVO4 nanophosphors for bioimaging and biosensing applications

    NASA Astrophysics Data System (ADS)

    Escudero, Alberto; Carrillo-Carrión, Carolina; Zyuzin, Mikhail V.; Ashraf, Sumaira; Hartmann, Raimo; Núñez, Nuria O.; Ocaña, Manuel; Parak, Wolfgang J.

    2016-06-01

    Near-ultraviolet and visible excitable Eu- and Bi-doped NPs based on rare earth vanadates (REVO4, RE = Y, Gd) have been synthesized by a facile route from appropriate RE precursors, europium and bismuth nitrate, and sodium orthovanadate, by homogeneous precipitation in an ethylene glycol/water mixture at 120 °C. The NPs can be functionalized either by a one-pot synthesis with polyacrylic acid (PAA) or by a Layer-by-Layer approach with poly(allylamine hydrochloride) (PAH) and PAA. In the first case, the particle size can also be tuned by adjusting the amount of PAA. The Eu- Bi-doped REVO4 based nanophosphors show the typical red luminescence of Eu(iii), which can be excited through an energy transfer process from the vanadate anions, resulting in a much higher luminescence intensity in comparison to the direct excitation of the europium cations. The incorporation of Bi into the REVO4 structure shifts the original absorption band of the vanadate anions towards longer wavelengths, giving rise to nanophosphors with an excitation maximum at 342 nm, which can also be excited in the visible range. The suitability of such nanophosphors for bioimaging and biosensing applications, as well as their colloidal stability in different buffer media of biological interest, their cytotoxicity, their degradability at low pH, and their uptake by HeLa cells have been evaluated. Their suitability for bioimaging and biosensing applications is also demonstrated.Near-ultraviolet and visible excitable Eu- and Bi-doped NPs based on rare earth vanadates (REVO4, RE = Y, Gd) have been synthesized by a facile route from appropriate RE precursors, europium and bismuth nitrate, and sodium orthovanadate, by homogeneous precipitation in an ethylene glycol/water mixture at 120 °C. The NPs can be functionalized either by a one-pot synthesis with polyacrylic acid (PAA) or by a Layer-by-Layer approach with poly(allylamine hydrochloride) (PAH) and PAA. In the first case, the particle size can also be tuned by adjusting the amount of PAA. The Eu- Bi-doped REVO4 based nanophosphors show the typical red luminescence of Eu(iii), which can be excited through an energy transfer process from the vanadate anions, resulting in a much higher luminescence intensity in comparison to the direct excitation of the europium cations. The incorporation of Bi into the REVO4 structure shifts the original absorption band of the vanadate anions towards longer wavelengths, giving rise to nanophosphors with an excitation maximum at 342 nm, which can also be excited in the visible range. The suitability of such nanophosphors for bioimaging and biosensing applications, as well as their colloidal stability in different buffer media of biological interest, their cytotoxicity, their degradability at low pH, and their uptake by HeLa cells have been evaluated. Their suitability for bioimaging and biosensing applications is also demonstrated. Electronic supplementary information (ESI) available: Additional details of experiments and results (NP characterization, NPs' uptake and imaging). See DOI: 10.1039/c6nr03369e

  1. Combining biophysical methods for the analysis of protein complex stoichiometry and affinity in SEDPHAT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Huaying, E-mail: zhaoh3@mail.nih.gov; Schuck, Peter, E-mail: zhaoh3@mail.nih.gov

    2015-01-01

    Global multi-method analysis for protein interactions (GMMA) can increase the precision and complexity of binding studies for the determination of the stoichiometry, affinity and cooperativity of multi-site interactions. The principles and recent developments of biophysical solution methods implemented for GMMA in the software SEDPHAT are reviewed, their complementarity in GMMA is described and a new GMMA simulation tool set in SEDPHAT is presented. Reversible macromolecular interactions are ubiquitous in signal transduction pathways, often forming dynamic multi-protein complexes with three or more components. Multivalent binding and cooperativity in these complexes are often key motifs of their biological mechanisms. Traditional solution biophysicalmore » techniques for characterizing the binding and cooperativity are very limited in the number of states that can be resolved. A global multi-method analysis (GMMA) approach has recently been introduced that can leverage the strengths and the different observables of different techniques to improve the accuracy of the resulting binding parameters and to facilitate the study of multi-component systems and multi-site interactions. Here, GMMA is described in the software SEDPHAT for the analysis of data from isothermal titration calorimetry, surface plasmon resonance or other biosensing, analytical ultracentrifugation, fluorescence anisotropy and various other spectroscopic and thermodynamic techniques. The basic principles of these techniques are reviewed and recent advances in view of their particular strengths in the context of GMMA are described. Furthermore, a new feature in SEDPHAT is introduced for the simulation of multi-method data. In combination with specific statistical tools for GMMA in SEDPHAT, simulations can be a valuable step in the experimental design.« less

  2. 2D transition metal carbide MXene as a robust biosensing platform for enzyme immobilization and ultrasensitive detection of phenol.

    PubMed

    Wu, Lingxia; Lu, Xianbo; Dhanjai; Wu, Zhong-Shuai; Dong, Yanfeng; Wang, Xiaohui; Zheng, Shuanghao; Chen, Jiping

    2018-06-01

    MXene-Ti 3 C 2 , as a new class of two-dimensional (2D) transition metal carbides (or nitrides), has been synthesized by exfoliating pristine Ti 3 AlC 2 phases with hydrofluoric acid. The SEM and XRD images show that the resultant MXene possesses a graphene-like 2D nanostructure. and the surface of MXene has been partially terminated with -OH, thus providing a favorable microenvironment for enzyme immobilization and retaining their bioactivity and stability. Considering the unique metallic conductivity, biocompatibility and good dispersion in aqueous phase, the as-prepared MXene was explored as a new matrix to immobilize tyrosinase (a model enzyme) for fabricating a mediator-free biosensor for ultrasensitive and rapid detection of phenol. The varying electrochemical measurements were used to investigate the electrochemical performance of MXene-based tyrosinase biosensors. The results revealed that the direct electron transfer between tyrosinase and electrode could be easily achieved via a surface-controlled electrochemical process. The fabricated MXene-based tyrosinase biosensors exhibited good analytical performance over a wide linear range from 0.05 to 15.5 μmol L -1 , with a low detection limit of 12 nmol L -1 and a sensitivity of 414.4 mA M -1 . The proposed biosensing approach also demonstrated good repeatability, reproducibility, long-term stability and high recovery for phenol detection in real water samples. With those excellent performances, MXene with graphene-like structure is proved to be a robust and versatile electrochemical biosensing platform for enzyme-based biosensors and biocatalysis, and has wide potential applications in biomedical detection and environmental analysis. Copyright © 2018. Published by Elsevier B.V.

  3. Poly(thymine)-Templated Copper Nanoparticles as a Fluorescent Indicator for Hydrogen Peroxide and Oxidase-Based Biosensing.

    PubMed

    Mao, Zhengui; Qing, Zhihe; Qing, Taiping; Xu, Fengzhou; Wen, Li; He, Xiaoxiao; He, Dinggeng; Shi, Hui; Wang, Kemin

    2015-07-21

    Biomineralized fluorescent metal nanoparticles have attracted considerable interest in many fields by virtue of their excellent properties in synthesis and application. Poly(thymine)-templated fluorescent copper nanoparticles (T-CuNPs) as a promising nanomaterial has been exploited by us recently and displays great potential for signal transducing in biochemical analysis. However, the application of T-CuNPs is rare and still at an early stage. Here, a new fluorescent analytical strategy has been developed for H2O2 and oxidase-based biosensing by exploiting T-CuNPs as an effective signal indicator. The mechanism is mainly based on the poly(thymine) length-dependent formation of T-CuNPs and the probe's oxidative cleavage. In this assay, the probe T40 can effectively template the formation of T-CuNPs by a fast in situ manner in the absence of H2O2, with high fluorescent signal, while the probe is cleaved into short-oligonucleotide fragments by hydroxyl radical (·OH) which is formed from the Fenton reaction in the presence of H2O2, leading to the decline of fluorescence intensity. By taking advantage of H2O2 as a mediator, this strategy is further exploited for oxidase-based biosensing. As the proof-of-concept, glucose in human serum has been chosen as the model system and has been detected, and its practical applicability has been investigated by assay of real clinical blood samples. Results demonstrate that the proposed strategy has not only good detection capability but also eminent detection performance, such as simplicity and low-cost, holding great potential for constructing effective sensors for biochemical and clinical applications.

  4. Cylindrical optical resonators: fundamental properties and bio-sensing characteristics

    NASA Astrophysics Data System (ADS)

    Khozeymeh, Foroogh; Razaghi, Mohammad

    2018-04-01

    In this paper, detailed theoretical analysis of cylindrical resonators is demonstrated. As illustrated, these kinds of resonators can be used as optical bio-sensing devices. The proposed structure is analyzed using an analytical method based on Lam's approximation. This method is systematic and has simplified the tedious process of whispering-gallery mode (WGM) wavelength analysis in optical cylindrical biosensors. By this method, analysis of higher radial orders of high angular momentum WGMs has been possible. Using closed-form analytical equations, resonance wavelengths of higher radial and angular order WGMs of TE and TM polarization waves are calculated. It is shown that high angular momentum WGMs are more appropriate for bio-sensing applications. Some of the calculations are done using a numerical non-linear Newton method. A perfect match of 99.84% between the analytical and the numerical methods has been achieved. In order to verify the validity of the calculations, Meep simulations based on the finite difference time domain (FDTD) method are performed. In this case, a match of 96.70% between the analytical and FDTD results has been obtained. The analytical predictions are in good agreement with other experimental work (99.99% match). These results validate the proposed analytical modelling for the fast design of optical cylindrical biosensors. It is shown that by extending the proposed two-layer resonator structure analyzing scheme, it is possible to study a three-layer cylindrical resonator structure as well. Moreover, by this method, fast sensitivity optimization in cylindrical resonator-based biosensors has been possible. Sensitivity of the WGM resonances is analyzed as a function of the structural parameters of the cylindrical resonators. Based on the results, fourth radial order WGMs, with a resonator radius of 50 μm, display the most bulk refractive index sensitivity of 41.50 (nm/RIU).

  5. Nanostructuring of Biosensing Electrodes with Nanodiamonds for Antibody Immobilization

    PubMed Central

    2015-01-01

    While chemical vapor deposition of diamond films is currently cost prohibitive for biosensor construction, in this paper, we show that sonication-assisted nanostructuring of biosensing electrodes with nanodiamonds (NDs) allows harnessing the hydrolytic stability of the diamond biofunctionalization chemistry for real-time continuous sensing, while improving the detector sensitivity and stability. We find that the higher surface coverages were important for improved bacterial capture and can be achieved through proper choice of solvent, ND concentration, and seeding time. A mixture of methanol and dimethyl sulfoxide provides the highest surface coverage (33.6 ± 3.4%) for the NDs with positive zeta-potential, compared to dilutions of dimethyl sulfoxide with acetone, ethanol, isopropyl alcohol, or water. Through impedance spectroscopy of ND-seeded interdigitated electrodes (IDEs), we found that the ND seeds serve as electrically conductive islands only a few nanometers apart. Also we show that the seeded NDs are amply hydrogenated to be decorated with antibodies using the UV-alkene chemistry, and higher bacterial captures can be obtained compared to our previously reported work with diamond films. When sensing bacteria from 106 cfu/mL E. coliO157:H7, the resistance to charge transfer at the IDEs decreased by ∼38.8%, which is nearly 1.5 times better than that reported previously using redox probes. Further in the case of 108 cfu/mL E. coliO157:H7, the charge transfer resistance changed by ∼46%, which is similar to the magnitude of improvement reported using magnetic nanoparticle-based sample enrichment prior to impedance detection. Thus ND seeding allows impedance biosensing in low conductivity solutions with competitive sensitivity. PMID:24397797

  6. Incorporating a hybrid urease-carbon nanotubes sensitive nanofilm on capacitive field-effect sensors for urea detection.

    PubMed

    Siqueira, José R; Molinnus, Denise; Beging, Stefan; Schöning, Michael J

    2014-06-03

    The ideal combination among biomolecules and nanomaterials is the key for reaching biosensing units with high sensitivity. The challenge, however, is to find out a stable and sensitive film architecture that can be incorporated on the sensor's surface. In this paper, we report on the benefits of incorporating a layer-by-layer (LbL) nanofilm of polyamidoamine (PAMAM) dendrimer and carbon nanotubes (CNTs) on capacitive electrolyte-insulator-semiconductor (EIS) field-effect sensors for detecting urea. Three sensor arrangements were studied in order to investigate the adequate film architecture, involving the LbL film with the enzyme urease: (i) urease immobilized directly onto a bare EIS [EIS-urease] sensor; (ii) urease atop the LbL film over the EIS [EIS-(PAMAM/CNT)-urease] sensor; and (iii) urease sandwiched between the LbL film and another CNT layer [EIS-(PAMAM/CNT)-urease-CNT]. The surface morphology of all three urea-based EIS biosensors was investigated by atomic force microscopy (AFM), while the biosensing abilities were studied by means of capacitance-voltage (C/V) and dynamic constant-capacitance (ConCap) measureaments at urea concentrations ranging from 0.1 mM to 100 mM. The EIS-urease and EIS-(PAMAM/CNT)-urease sensors showed similar sensitivity (~18 mV/decade) and a nonregular signal behavior as the urea concentration increased. On the other hand, the EIS-(PAMAM/CNT)-urease-CNT sensor exhibited a superior output signal performance and higher sensitivity of about 33 mV/decade. The presence of the additional CNT layer was decisive to achieve a urea based EIS sensor with enhanced properties. Such sensitive architecture demonstrates that the incorporation of an adequate hybrid enzyme-nanofilm as sensing unit opens new prospects for biosensing applications using the field-effect sensor platform.

  7. A lanthanide complex with dual biosensing properties: CEST (chemical exchange saturation transfer) and BIRDS (biosensor imaging of redundant deviation in shifts) with europium DOTA-tetraglycinate.

    PubMed

    Coman, Daniel; Kiefer, Garry E; Rothman, Douglas L; Sherry, A Dean; Hyder, Fahmeed

    2011-12-01

    Responsive contrast agents (RCAs) composed of lanthanide(III) ion (Ln3R) complexes with a variety of1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetate (DOTA4S) derivatives have shown great potential as molecular imaging agents for MR. A variety of LnDOTA–tetraamide complexes have been demonstrated as RCAs for molecular imaging using chemical exchange saturation transfer (CEST). The CEST method detects proton exchange between bulk water and any exchangeable sites on the ligand itself or an inner sphere of bound water that is shifted by a paramagnetic Ln3R ion bound in the core of the macrocycle. It has also been shown that molecular imaging is possible when the RCA itself is observed (i.e. not its effect on bulk water) using a method called biosensor imaging of redundant deviation in shifts (BIRDS). The BIRDS method utilizes redundant information stored in the nonexchangeable proton resonances emanating from the paramagnetic RCA for ambient factors such as temperature and/or pH.Thus, CEST and BIRDS rely on exchangeable and nonexchangeable protons, respectively, for biosensing. We posited that it would be feasible to combine these two biosensing features into the same RCA (i.e. dual CEST and BIRDS properties). A complex between europium(III) ion (Eu3R) and DOTA–tetraglycinate [DOTA–(gly)S4] was used to demonstrate that its CEST characteristics are preserved, while its BIRDS properties are also detectable. The in vitro temperature sensitivity of EuDOTA–(gly)S4 was used to show that qualitative MR contrast with CEST can be calibrated using quantitative MR mapping with BIRDS, thereby enabling quantitative molecular imaging at high spatial resolution.

  8. Examining Rhodium Catalyst complexes for Use with Conducting Polymers Designed for Fuel Cells in Preparing Biosensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carpio, M.M.; Kerr, J.B.

    2005-01-01

    Biosensing devices are important because they can detect, record, and transmit information regarding the presence of, or physiological changes in, different chemical or biological materials in the environment. The goal of this research is to prepare a biosensing device that is effective, quick, and low cost. This is done by examining which chemicals will work best when placed in a biosensor. The first study involved experimenting on a rhodium catalyst complexed with ligands such as bipyridine and imidazole. The rhodium catalyst is important because it is reduced from RhIII to RhI, forms a hydride by reaction with water and releasesmore » the hydride to react with nicotinamide adenine dinucleotide (NAD+) to selectively produce 1,4-NADH, the reduced form of NAD+. The second study looked at different types of ketones and enzymes for the enzyme-substrate reaction converting a ketone into an alcohol. Preliminary results showed that the rhodium complexed with bipyridine was able to carry out all the reactions, while the rhodium complexed with imidazole was not able to produce and release hydrides. In addition, the most effective ketone to use is benzylacetone with the enzyme alcohol dehydrogenase from baker’s yeast. Future work includes experimenting with bis-imidazole, which mimics the structure of bipyridine to see if it has the capability to reduce and if the reduction rate is comparable to the bipyridine complex. Once all testing is completed, the fastest catalysts will be combined with polymer membranes designed for fuel cells to prepare biosensing devices that can be used in a variety of applications including ones in the medical and environmental fields.« less

  9. Nanomaterials-based enzyme electrochemical biosensors operating through inhibition for biosensing applications.

    PubMed

    Kurbanoglu, Sevinc; Ozkan, Sibel A; Merkoçi, Arben

    2017-03-15

    In recent years great progress has been made in applying nanomaterials to design novel biosensors. Use of nanomaterials offers to biosensing platforms exceptional optical, electronic and magnetic properties. Nanomaterials can increase the surface of the transducing area of the sensors that in turn bring an increase in catalytic behaviors. They have large surface-to-volume ratio, controlled morphology and structure that also favor miniaturization, an interesting advantage when the sample volume is a critical issue. Biosensors have great potential for achieving detect-to-protect devices: devices that can be used in detections of pollutants and other treating compounds/analytes (drugs) protecting citizens' life. After a long term focused scientific and financial efforts/supports biosensors are expected now to fulfill their promise such as being able to perform sampling and analysis of complex samples with interest for clinical or environment fields. Among all types of biosensors, enzymatic biosensors, the most explored biosensing devices, have an interesting property, the inherent inhibition phenomena given the enzyme-substrate complex formation. The exploration of such phenomena is making remarkably important their application as research and applied tools in diagnostics. Different inhibition biosensor systems based on nanomaterials modification has been proposed and applied. The role of nanomaterials in inhibition-based biosensors for the analyses of different groups of drugs as well as contaminants such as pesticides, phenolic compounds and others, are discussed in this review. This deep analysis of inhibition-based biosensors that employ nanomaterials will serve researchers as a guideline for further improvements and approaching of these devices to real sample applications so as to reach society needs and such biosensor market demands. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Optical biosensing of nitrite ions using cytochrome cd1 nitrite reductase encapsulated in a sol-gel matrix.

    PubMed

    Ferretti, S; Lee, S K; MacCraith, B D; Oliva, A G; Richardson, D J; Russell, D A; Sapsford, K E; Vidal, M

    2000-11-01

    Nitrite is an important human health and environmental analyte. As such, the European Union (EU) has imposed a limit for nitrite in potable water of 0.1 mg l-1 (2.18 microM). In order to develop an optical biosensing system for the determination of nitrite ions in environmental waters, cytochrome cd1 nitrite reductase has been extracted and purified from the bacterium Paracoccus pantotrophus. The protein has been spectroscopically characterised in solution and important kinetic parameters of nitrite reduction of the cytochrome cd1 enzyme, i.e., Km, Vmax and kcat have been determined. The influence of pH on the activity of the cytochrome cd1 has been investigated and the results suggest that this enzyme can be used for the determination of nitrite in the pH range 6-9. Biosensing experiments with the cytochrome cd1 in solution suggested that the decrease in intensity of the absorption band associated with the d1 haem (which is the nitrite binding site), at 460 nm, with increasing nitrite concentrations would enable the measurement of this analyte with the optimum limit of detection. The cytochrome cd1 has been encapsulated in a bulk sol-gel monolith with no structural changes observed and retention of enzymatic activity. The detection of nitrite ions in the range 0.075-1.250 microM was achieved, with a limit of detection of 0.075 microM. In order to increase the speed of response, a sol-gel sandwich thin film structure was formulated with the cytochrome cd1. This structure enabled the determination of nitrite concentrations within ca. 5 min. The sol-gel sandwich entrapped cytochrome cd1 enzyme was found to be stable for several months when the films were stored at 4 degrees C.

  11. Smaller to larger biomolecule detection using a lab-built surface plasmon resonance based instrument

    NASA Astrophysics Data System (ADS)

    Lukose, J.; Kulal, V.; Chidangil, S.; Sinha, R. K.

    2016-10-01

    We have developed a low-cost surface plasmon resonance (SPR) instrument based on the Kretschmann configuration for biosensing applications. The fabricated instrument is capable of operating in both angular and intensity interrogation schemes. The proposed sensor has proved enormously versatile by detecting a range of analytes with low to high molecular weights. The refractive index based sensor has been used for detecting the variation in the concentration of the aqueous solution of glucose and glycerine. Real time immobilization of protein molecules, bovine serum albumin on a gold (Au) film surface, has also been detected using the SPR imaging technique. Alkanethiol functionalization of the Au surface was performed, and bovine serum albumin was immobilized onto the carboxyl functionalized surface using amine reactive cross linker chemistry. In future, the present approach can also be utilized for the selective detection of a wide range of target biomolecules with the help of specific capture probes, as well as for monitoring protein-drug interactions.

  12. Hierarchical zwitterionic modification of a SERS substrate enables real-time drug monitoring in blood plasma

    NASA Astrophysics Data System (ADS)

    Sun, Fang; Hung, Hsiang-Chieh; Sinclair, Andrew; Zhang, Peng; Bai, Tao; Galvan, Daniel David; Jain, Priyesh; Li, Bowen; Jiang, Shaoyi; Yu, Qiuming

    2016-11-01

    Surface-enhanced Raman spectroscopy (SERS) is an ultrasensitive analytical technique with molecular specificity, making it an ideal candidate for therapeutic drug monitoring (TDM). However, in critical diagnostic media including blood, nonspecific protein adsorption coupled with weak surface affinities and small Raman activities of many analytes hinder the TDM application of SERS. Here we report a hierarchical surface modification strategy, first by coating a gold surface with a self-assembled monolayer (SAM) designed to attract or probe for analytes and then by grafting a non-fouling zwitterionic polymer brush layer to effectively repel protein fouling. We demonstrate how this modification can enable TDM applications by quantitatively and dynamically measuring the concentrations of several analytes--including an anticancer drug (doxorubicin), several TDM-requiring antidepressant and anti-seizure drugs, fructose and blood pH--in undiluted plasma. This hierarchical surface chemistry is widely applicable to many analytes and provides a generalized platform for SERS-based biosensing in complex real-world media.

  13. Grating-Coupled Surface Plasmon Resonance (GC-SPR) Optimization for Phase-Interrogation Biosensing in a Microfluidic Chamber.

    PubMed

    Rossi, Stefano; Gazzola, Enrico; Capaldo, Pietro; Borile, Giulia; Romanato, Filippo

    2018-05-18

    Surface Plasmon Resonance (SPR)-based sensors have the advantage of being label-free, enzyme-free and real-time. However, their spreading in multidisciplinary research is still mostly limited to prism-coupled devices. Plasmonic gratings, combined with a simple and cost-effective instrumentation, have been poorly developed compared to prism-coupled system mainly due to their lower sensitivity. Here we describe the optimization and signal enhancement of a sensing platform based on phase-interrogation method, which entails the exploitation of a nanostructured sensor. This technique is particularly suitable for integration of the plasmonic sensor in a lab-on-a-chip platform and can be used in a microfluidic chamber to ease the sensing procedures and limit the injected volume. The careful optimization of most suitable experimental parameters by numerical simulations leads to a 30⁻50% enhancement of SPR response, opening new possibilities for applications in the biomedical research field while maintaining the ease and versatility of the configuration.

  14. Extreme sensitivity biosensing platform based on hyperbolic metamaterials

    NASA Astrophysics Data System (ADS)

    Sreekanth, Kandammathe Valiyaveedu; Alapan, Yunus; Elkabbash, Mohamed; Ilker, Efe; Hinczewski, Michael; Gurkan, Umut A.; de Luca, Antonio; Strangi, Giuseppe

    2016-06-01

    Optical sensor technology offers significant opportunities in the field of medical research and clinical diagnostics, particularly for the detection of small numbers of molecules in highly diluted solutions. Several methods have been developed for this purpose, including label-free plasmonic biosensors based on metamaterials. However, the detection of lower-molecular-weight (<500 Da) biomolecules in highly diluted solutions is still a challenging issue owing to their lower polarizability. In this context, we have developed a miniaturized plasmonic biosensor platform based on a hyperbolic metamaterial that can support highly confined bulk plasmon guided modes over a broad wavelength range from visible to near infrared. By exciting these modes using a grating-coupling technique, we achieved different extreme sensitivity modes with a maximum of 30,000 nm per refractive index unit (RIU) and a record figure of merit (FOM) of 590. We report the ability of the metamaterial platform to detect ultralow-molecular-weight (244 Da) biomolecules at picomolar concentrations using a standard affinity model streptavidin-biotin.

  15. Grating-Coupled Surface Plasmon Resonance (GC-SPR) Optimization for Phase-Interrogation Biosensing in a Microfluidic Chamber

    PubMed Central

    Rossi, Stefano; Gazzola, Enrico; Capaldo, Pietro; Borile, Giulia; Romanato, Filippo

    2018-01-01

    Surface Plasmon Resonance (SPR)-based sensors have the advantage of being label-free, enzyme-free and real-time. However, their spreading in multidisciplinary research is still mostly limited to prism-coupled devices. Plasmonic gratings, combined with a simple and cost-effective instrumentation, have been poorly developed compared to prism-coupled system mainly due to their lower sensitivity. Here we describe the optimization and signal enhancement of a sensing platform based on phase-interrogation method, which entails the exploitation of a nanostructured sensor. This technique is particularly suitable for integration of the plasmonic sensor in a lab-on-a-chip platform and can be used in a microfluidic chamber to ease the sensing procedures and limit the injected volume. The careful optimization of most suitable experimental parameters by numerical simulations leads to a 30–50% enhancement of SPR response, opening new possibilities for applications in the biomedical research field while maintaining the ease and versatility of the configuration. PMID:29783711

  16. Enzymatic and non-enzymatic electrochemical glucose sensor based on carbon nano-onions

    NASA Astrophysics Data System (ADS)

    Mohapatra, Jeotikanta; Ananthoju, Balakrishna; Nair, Vishnu; Mitra, Arijit; Bahadur, D.; Medhekar, N. V.; Aslam, M.

    2018-06-01

    A high sensitive glucose sensing characteristic has been realized in carbon nano-onions (CNOs). The CNOs of mean size 30 nm were synthesized by an energy-efficient, simple and inexpensive combustion technique. These as-synthesized CNOs could be employed as an electrochemical sensor by covalently immobilizing the glucose oxidase enzyme on them via carbodiimide chemistry. The sensitivity achieved by such a sensor is 26.5 μA mM-1 cm-2 with a linear response in the range of 1-10 mM glucose. Further to improve the catalytic activity of the CNOs and also to make them enzyme free, platinum nanoparticles of average size 2.5 nm are decorated on CNOs. This sensor fabricated using Pt-decorated CNOs (Pt@CNOs) nanostructure has shown an enhanced sensitivity of 21.6 μA mM-1 cm-2 with an extended linear response in the range of 2-28 mM glucose. Through these attempts we demonstrate CNOs as a versatile biosensing platform.

  17. A biosensor system using nickel ferrite nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Prachi, E-mail: prachi.singh@st.niituniversity.in; Rathore, Deepshikha, E-mail: deep.nano@gmail.com

    2016-05-06

    NiFe{sub 2}O{sub 4} ferrite nanoparticles were synthesized by chemical co-precipitation method and the structural characteristics were investigated using X-ray diffraction technique, where single cubic phase formation of nanoparticles was confirmed. The average particle size of NiFe{sub 2}O{sub 4} was found to be 4.9 nm. Nanoscale magnetic materials are an important source of labels for biosensing due to their strong magnetic properties which are not found in biological systems. This property of the material was exploited and the fabrication of the NiFe{sub 2}O{sub 4} nanoparticle based biosensor was done in the form of a capacitor system, with NiFe{sub 2}O{sub 4} as themore » dielectric material. The biosensor system was tested towards different biological materials with the help of electrochemical workstation and the same was analysed through Cole-Cole plot of NiFe{sub 2}O{sub 4}. The performance of the sensor was determined based on its sensitivity, response time and recovery time.« less

  18. Polymeric 3D Printed Functional Microcantilevers for Biosensing Applications.

    PubMed

    Stassi, Stefano; Fantino, Erika; Calmo, Roberta; Chiappone, Annalisa; Gillono, Matteo; Scaiola, Davide; Pirri, Candido Fabrizio; Ricciardi, Carlo; Chiadò, Alessandro; Roppolo, Ignazio

    2017-06-07

    In this study, we show for the first time the production of mass-sensitive polymeric biosensors by 3D printing technology with intrinsic functionalities. We also demonstrate the feasibility of mass-sensitive biosensors in the form of microcantilever in a one-step printing process, using acrylic acid as functional comonomer for introducing a controlled amount of functional groups that can covalently immobilize the biomolecules onto the polymer. The effectiveness of the application of 3D printed microcantilevers as biosensors is then demonstrated with their implementation in a standard immunoassay protocol. This study shows how 3D microfabrication techniques, material characterization, and biosensor development could be combined to obtain an engineered polymeric microcantilever with intrinsic functionalities. The possibility of tuning the composition of the starting photocurable resin with the addition of functional agents, and consequently controlling the functionalities of the 3D printed devices, paves the way to a new class of mass-sensing microelectromechanical system devices with intrinsic properties.

  19. Silicon photonic resonator for label-free bio-sensing application

    NASA Astrophysics Data System (ADS)

    Udomsom, Suruk; Mankong, Ukrit; Theera-Umpon, Nipon; Ittipratheep, Nattapol; Umezawa, Toshimasa; Matsumoto, Atsushi; Yamamoto, Naokatsu

    2018-03-01

    In medical diagnostics there is an increasing demand for biosensors that can specifically detect biological analytes in a fluid. Especially label-free sensing, consistings of a transducer with biorecognition molecules immobilized on its surface without relying on fluorescent dye. In this paper we study the design and fabrication of a silicon nanowire photonic ring resonator and its feasibility as a biosensor. We have simulated and fabricated racetrack ring resonators which have a few tenths of micrometer gap, up to 0.5 μm between the input / output waveguides and the resonators. It is found that the devices can be designed with large Q factors. Sensitivity to biomaterial detection has been simulated for antibody (goat anti-mouse IgG) - antigen (mouse IgG) using 3-dimensional Finite Difference Time Domain technique. The simulated results show that the ring resonator has a response 15 nm resonance shift per refractive index unit. Antibody coating method is also discussed in this paper which can be applied to other antibody-antigen types.

  20. Solvents effect on photoluminescence of nitrogen incorporated graphene oxide using light emitting diode as an excitation source

    NASA Astrophysics Data System (ADS)

    Kumara, K.; Shetty, T. C. S.; Patil, P. S.; Dharmaprakash, S. M.

    2018-05-01

    The present study investigates linear and third order nonlinear optical (TNLO) properties of nitrogen incorporated graphene oxide (NGO). A simple pyrolysis method is followed to obtain NGO powder which is soluble in polar aprotic and protic solvents. The normalized emission intensity of NGO for aprotic solvents shows better than polar protic solvents. The surface morphology and element analysis of NGO displayed a leaf like morphology and the elemental compositions of carbon, nitrogen and oxygen in NGO respectively. TNLO property of NGO is investigated by employing z-scan technique in which a continuous wave of wavelength 632.8 nm from He-Ne source was used. This investigation reveals the reverse saturation behaviour and negative nonlinear refractive (NLR) index in NGO. Negative NLR index sign arises mainly from local heating of solvents during continuous interactions of NGO with laser beam. The photoluminescence and TNLO data recorded for NGO revealed its potentiality for bio-sensing, bio-imaging and optoelectronic applications.

  1. APPLICATIONS OF BIOTECHNOLOGY IN DEVELOPMENT OF BIOMATERIALS: NANOTECHNOLOGY AND BIOFILMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brigmon, R.; Berry, T.; Narayan, R.

    2010-11-29

    Biotechnology is the application of biological techniques to develop new tools and products for medicine and industry. Due to various properties including chemical stability, biocompatibility, and specific activity, e.g. antimicrobial properties, many new and novel materials are being investigated for use in biosensing, drug delivery, hemodialysis, and other medical applications. Many of these materials are less than 100 nanometers in size. Nanotechnology is the engineering discipline encompassing designing, producing, testing, and using structures and devices less than 100 nanometers. One of the challenges associated with biomaterials is microbial contamination that can lead to infections. In recent work we have examinedmore » the functionalization of nanoporous biomaterials and antimicrobial activities of nanocrystalline diamond materials. In vitro testing has revealed little antimicrobial activity against Pseudomonas fluorescens bacteria and associated biofilm formation that enhances recalcitrance to antimicrobial agents including disinfectants and antibiotics. Laser scanning confocal microscopy studies further demonstrated properties and characteristics of the material with regard to biofilm formation.« less

  2. Application of a Portable Multi-Analyte Biosensor for Organic Acid Determination in Silage.

    PubMed

    Pilas, Johanna; Yazici, Yasemen; Selmer, Thorsten; Keusgen, Michael; Schöning, Michael J

    2018-05-08

    Multi-analyte biosensors may offer the opportunity to perform cost-effective and rapid analysis with reduced sample volume, as compared to electrochemical biosensing of each analyte individually. This work describes the development of an enzyme-based biosensor system for multi-parametric determination of four different organic acids. The biosensor array comprises five working electrodes for simultaneous sensing of ethanol, formate, d-lactate, and l-lactate, and an integrated counter electrode. Storage stability of the biosensor was evaluated under different conditions (stored at +4 °C in buffer solution and dry at −21 °C, +4 °C, and room temperature) over a period of 140 days. After repeated and regular application, the individual sensing electrodes exhibited the best stability when stored at −21 °C. Furthermore, measurements in silage samples (maize and sugarcane silage) were conducted with the portable biosensor system. Comparison with a conventional photometric technique demonstrated successful employment for rapid monitoring of complex media.

  3. Application of a Portable Multi-Analyte Biosensor for Organic Acid Determination in Silage

    PubMed Central

    Pilas, Johanna; Yazici, Yasemen; Selmer, Thorsten; Keusgen, Michael

    2018-01-01

    Multi-analyte biosensors may offer the opportunity to perform cost-effective and rapid analysis with reduced sample volume, as compared to electrochemical biosensing of each analyte individually. This work describes the development of an enzyme-based biosensor system for multi-parametric determination of four different organic acids. The biosensor array comprises five working electrodes for simultaneous sensing of ethanol, formate, d-lactate, and l-lactate, and an integrated counter electrode. Storage stability of the biosensor was evaluated under different conditions (stored at +4 °C in buffer solution and dry at −21 °C, +4 °C, and room temperature) over a period of 140 days. After repeated and regular application, the individual sensing electrodes exhibited the best stability when stored at −21 °C. Furthermore, measurements in silage samples (maize and sugarcane silage) were conducted with the portable biosensor system. Comparison with a conventional photometric technique demonstrated successful employment for rapid monitoring of complex media. PMID:29738487

  4. Magneto-reactance based detection of MnO nanoparticle-embedded Lewis lung carcinoma cells

    NASA Astrophysics Data System (ADS)

    Devkota, J.; Howell, M.; Mukherjee, P.; Srikanth, H.; Mohapatra, S.; Phan, M. H.

    2015-05-01

    We demonstrate the capacity of detecting magnetically weak manganese oxide (MnO) nanoparticles and the Lewis lung carcinoma (LLC) cancer cells that have taken up these nanoparticles using a novel biosensor based on the magneto-reactance (MX) effect of a soft ferromagnetic amorphous ribbon with a microhole-patterned surface. While the magnetic moment of the MnO nanoparticles is relatively small, and a magneto-impedance based sensor fails to detect them in solution (0.05 mg/ml manganese oxide lipid micellar nanoparticles) and inside cells at low concentrations (8.25 × 104 cells/ml), the detection of these nanoparticles and the LLC cells containing them is achieved with the MX-based sensor, which, respectively, reaches the detection sensitivity of ˜3.6% and 2.8% as compared to the blank cells. Since the MnO nanoparticles are a promising contrast agent for magnetic resonance imaging (MRI) of lung cells, the MX-based biosensing technique can be developed as a pre-detection method for MRI of lung cancer cells.

  5. Biosensing with Paper-Based Miniaturized Printed Electrodes-A Modern Trend.

    PubMed

    Silveira, Célia M; Monteiro, Tiago; Almeida, Maria Gabriela

    2016-09-28

    From the bench-mark work on microfluidics from the Whitesides's group in 2007, paper technology has experienced significant growth, particularly regarding applications in biomedical research and clinical diagnostics. Besides the structural properties supporting microfluidics, other advantageous features of paper materials, including their versatility, disposability and low cost, show off the great potential for the development of advanced and eco-friendly analytical tools. Consequently, paper was quickly employed in the field of electrochemical sensors, being an ideal material for producing custom, tailored and miniaturized devices. Stencil-, inkjet-, or screen-printing are the preferential techniques for electrode manufacturing. Not surprisingly, we witnessed a rapid increase in the number of publications on paper based screen-printed sensors at the turn of the past decade. Among the sensing strategies, various biosensors, coupling electrochemical detectors with biomolecules, have been proposed. This work provides a critical review and a discussion on the future progress of paper technology in the context of miniaturized printed electrochemical biosensors.

  6. Hierarchical zwitterionic modification of a SERS substrate enables real-time drug monitoring in blood plasma

    PubMed Central

    Sun, Fang; Hung, Hsiang-Chieh; Sinclair, Andrew; Zhang, Peng; Bai, Tao; Galvan, Daniel David; Jain, Priyesh; Li, Bowen; Jiang, Shaoyi; Yu, Qiuming

    2016-01-01

    Surface-enhanced Raman spectroscopy (SERS) is an ultrasensitive analytical technique with molecular specificity, making it an ideal candidate for therapeutic drug monitoring (TDM). However, in critical diagnostic media including blood, nonspecific protein adsorption coupled with weak surface affinities and small Raman activities of many analytes hinder the TDM application of SERS. Here we report a hierarchical surface modification strategy, first by coating a gold surface with a self-assembled monolayer (SAM) designed to attract or probe for analytes and then by grafting a non-fouling zwitterionic polymer brush layer to effectively repel protein fouling. We demonstrate how this modification can enable TDM applications by quantitatively and dynamically measuring the concentrations of several analytes—including an anticancer drug (doxorubicin), several TDM-requiring antidepressant and anti-seizure drugs, fructose and blood pH—in undiluted plasma. This hierarchical surface chemistry is widely applicable to many analytes and provides a generalized platform for SERS-based biosensing in complex real-world media. PMID:27834380

  7. Biosensing with Paper-Based Miniaturized Printed Electrodes–A Modern Trend

    PubMed Central

    Silveira, Célia M.; Monteiro, Tiago; Almeida, Maria Gabriela

    2016-01-01

    From the bench-mark work on microfluidics from the Whitesides’s group in 2007, paper technology has experienced significant growth, particularly regarding applications in biomedical research and clinical diagnostics. Besides the structural properties supporting microfluidics, other advantageous features of paper materials, including their versatility, disposability and low cost, show off the great potential for the development of advanced and eco-friendly analytical tools. Consequently, paper was quickly employed in the field of electrochemical sensors, being an ideal material for producing custom, tailored and miniaturized devices. Stencil-, inkjet-, or screen-printing are the preferential techniques for electrode manufacturing. Not surprisingly, we witnessed a rapid increase in the number of publications on paper based screen-printed sensors at the turn of the past decade. Among the sensing strategies, various biosensors, coupling electrochemical detectors with biomolecules, have been proposed. This work provides a critical review and a discussion on the future progress of paper technology in the context of miniaturized printed electrochemical biosensors. PMID:27690119

  8. Magnetic hybrid magnetite/metal organic framework nanoparticles: facile preparation, post-synthetic biofunctionalization and tracking in vivo with magnetic methods

    NASA Astrophysics Data System (ADS)

    Tregubov, A. A.; Sokolov, I. L.; Babenyshev, A. V.; Nikitin, P. I.; Cherkasov, V. R.; Nikitin, M. P.

    2018-03-01

    Multifunctional hybrid nanocomposites remain to be of great interest in biomedicine as a universal tool in a number of applications. As a promising example, the nanoparticles with magnetic core and porous shell have a potential as theranostic agents combining both the diagnostics probe and drug delivery vehicle properties. However, reported methods of the nanostructure preparation are complex and include tedious time-consuming growth of porous shell by means of layer by layer assembly technique. In this study, we develop new way of fabrication of the superparamagnetic magnetite core @ porous metal organic framework shell nanoparticles and demonstrate their application both as a multimodal (MRI contrasting, magnetometric and optical labeling) and multifunctional (in vivo bioimaging, biotargeting by coupled receptors, lateral flow assay) agents. The easiness of fabrication, controllable bioconjugation properties and low level of non-specific binding indicate high potential of the nanoparticles to be employed as multifunctional agents in theranostics, advanced biosensing and bioimaging.

  9. A glucose biosensor based on direct electrochemistry of glucose oxidase immobilized on nitrogen-doped carbon nanotubes.

    PubMed

    Deng, Shengyuan; Jian, Guoqiang; Lei, Jianping; Hu, Zheng; Ju, Huangxian

    2009-10-15

    A novel biosensor for glucose was prepared by immobilizing glucose oxidase (GOx) on nitrogen-doped carbon nanotubes (CNx-MWNTs) modified electrode. The CNx-MWNTs membrane showed an excellent electrocatalytic activity toward the reduction of O(2) due to its diatomic side-on adsorption on CNx-MWNTs. The nitrogen doping accelerated the electron transfer from electrode surface to the immobilized GOx, leading to the direct electrochemistry of GOx. The biofunctional surface showed good biocompatibility, excellent electron-conductive network and large surface-to-volume ratio, which were characterized by scanning electron microscopy, contact angle and electrochemical impedance technique. The direct electron transfer of immobilized GOx led to stable amperometric biosensing for glucose with a linear range from 0.02 to 1.02 mM and a detection limit of 0.01 mM (S/N=3). These results indicated that CNx-MWNTs are good candidate material for construction of the third-generation enzyme biosensors based on the direct electrochemistry of immobilized enzymes.

  10. A three-step model for protein-gold nanoparticle adsorption

    USDA-ARS?s Scientific Manuscript database

    Gold nanoparticles (AuNPs) are an attractive delivery vector in biomedicine because of their low toxicity and unique electronic and chemical properties. AuNP bioconjugates can be used in many applications, including nanomaterials, biosensing, and drug delivery. While the phenomenon of spontaneous pr...

  11. Droplet-based biosensing for lab-on-a-chip, open microfluidics platforms

    USDA-ARS?s Scientific Manuscript database

    Low cost, portable sensors can transform health care by bringing easily available diagnostic devices to low and middle income population, particularly in developing countries. Sample preparation, analyte handling and labeling are primary cost concerns for traditional lab-based diagnostic systems. La...

  12. Infiltrated photonic crystal cavity as a highly sensitive platform for glucose concentration detection

    NASA Astrophysics Data System (ADS)

    Arafa, Safia; Bouchemat, Mohamed; Bouchemat, Touraya; Benmerkhi, Ahlem; Hocini, Abdesselam

    2017-02-01

    A Bio-sensing platform based on an infiltrated photonic crystal ring shaped holes cavity-coupled waveguide system is proposed for glucose concentration detection. Considering silicon-on-insulator (SOI) technology, it has been demonstrated that the ring shaped holes configuration provides an excellent optical confinement within the cavity region, which further enhances the light-matter interactions at the precise location of the analyte medium. Thus, the sensitivity and the quality factor (Q) can be significantly improved. The transmission characteristics of light in the biosensor under different refractive indices that correspond to the change in the analyte glucose concentration are analyzed by performing finite-difference time-domain (FDTD) simulations. Accordingly, an improved sensitivity of 462 nm/RIU and a Q factor as high as 1.11х105 have been achieved, resulting in a detection limit of 3.03х10-6 RIU. Such combination of attributes makes the designed structure a promising element for performing label-free biosensing in medical diagnosis and environmental monitoring.

  13. Biosensing Using Microring Resonator Interferograms

    PubMed Central

    Hsu, Shih-Hsiang; Yang, Yung-Chia; Su, Yu-Hou; Wang, Sheng-Min; Huang, Shih-An; Lin, Ching-Yu

    2014-01-01

    Optical low-coherence interferometry (OLCI) takes advantage of the variation in refractive index in silicon-wire microring resonator (MRR) effective lengths to perform glucose biosensing using MRR interferograms. The MRR quality factor (Q), proportional to the effective length, could be improved using the silicon-wire propagation loss and coupling ratio from the MRR coupler. Our study showed that multimode interference (MMI) performed well in broad band response, but the splitting ratio drifted to 75/25 due to the stress issue. The glucose sensing sensitivity demonstrated 0.00279 meter per refractive-index-unit (RIU) with a Q factor of ∼30,000 under transverse electric polarization. The 1,310 nm DFB laser was built in the OLCI system as the optical ruler achieving 655 nm characterization accuracy. The lowest sensing limitation was therefore 2 × 10−4 RIU. Moreover, the MRR effective length from the glucose sensitivity could be utilized to experimentally demonstrate the silicon wire effective refractive index with a width of 0.45 μm and height of 0.26 μm. PMID:24434876

  14. Smartphone-based portable biosensing system using impedance measurement with printed electrodes for 2,4,6-trinitrotoluene (TNT) detection.

    PubMed

    Zhang, Diming; Jiang, Jing; Chen, Junye; Zhang, Qian; Lu, Yanli; Yao, Yao; Li, Shuang; Logan Liu, Gang; Liu, Qingjun

    2015-08-15

    Rapid, sensitive, selective and portable detection of 2,4,6-trinitrotoluene (TNT) is in high demand for public safety and environmental monitoring. In this study, we reported a smartphone-based system using impedance monitoring for TNT detection. The screen-printed electrodes modified with TNT-specific peptides were used as disposable a biosensor to produce impedance responses to TNT. The responses could be monitored by a hand-held device and send out to smartphone through Bluetooth. Then, the smartphone was used to display TNT responses in real time and report concentration finally. In the measurement, the system was demonstrated to detect TNT at concentration as low as 10(-6) M and distinguish TNT versus different chemicals in high specificity. Thus, the smartphone-based biosensing platform provided a convenient and efficient approach to design portable instruments for chemical detections such as TNT recognition. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Non-Invasive Breast Cancer Diagnosis through Electrochemical Biosensing at Different Molecular Levels

    PubMed Central

    Campuzano, Susana

    2017-01-01

    The rapid and accurate determination of specific circulating biomarkers at different molecular levels with non- or minimally invasive methods constitutes a major challenge to improve the breast cancer outcomes and life quality of patients. In this field, electrochemical biosensors have demonstrated to be promising alternatives against more complex conventional strategies to perform fast, accurate and on-site determination of circulating biomarkers at low concentrations in minimally treated body fluids. In this article, after discussing briefly the relevance and current challenges associated with the determination of breast cancer circulating biomarkers, an updated overview of the electrochemical affinity biosensing strategies emerged in the last 5 years for this purpose is provided highlighting the great potentiality of these methodologies. After critically discussing the most interesting features of the electrochemical strategies reported so far for the single or multiplexed determination of such biomarkers with demonstrated applicability in liquid biopsy analysis, existing challenges still to be addressed and future directions in this field will be pointed out. PMID:28858236

  16. The Effect of Aptamer Concetration towards Reduced Graphene Oxide-Field Effect Transistor Surface Channel for Biosensor Application

    NASA Astrophysics Data System (ADS)

    Syafiq Zainol Abidin, Azrul; Rahim, Ruslinda Abdul; Huan, Chow Yong; Maidin, Nur Nasyifa Mohd; Atiqah Ahmad, Nurul; Hashwan, Saeed S. Ba; Faudzi, Fatin Nabilah Mohd; Hong, Voon Chun

    2018-03-01

    Aptamer are artificially produce bioreceptor that has been developed to bind with various target biomolecules such as ion, cells, protein and small molecules. In this research, an aptamer concentration of 0.5 nM, 1 nM, 5 nM, 10 nM, and 50 nM were immobilized on reduced graphene oxide (rGO) integrated with field effect transistor (FET) respectively to study the effect of aptamer concentration toward rGO surface for stable biosensing platform. The 0.5 nM concentration of aptamer shows the highest current result of 84.3 µA at 1 V applied through the source and drain. After immobilized with aminated aptamer, the conductivity shows significant reduction due to the formation of amide bond on rGO surface between aminated aptamer and carboxyl group on rGO. The electrical performance of FET integrated with rGO shows stable electrical performance suitable to be used in the biosensing application.

  17. Principles and applications of photoelectrochemical sensing strategies based on biofunctionalized nanostructures.

    PubMed

    Zang, Yang; Lei, Jianping; Ju, Huangxian

    2017-10-15

    Photoelectrochemical (PEC) biosensing is a popular research hotspot that has attracted substantial attention from chemists and biologists due to its low cost and desirable sensitivity. The PEC biosensing mainly refers to the influence of the interaction between recognition element and analyte on photocurrent signal, which involves the charge and energy transfer of PEC reaction between electron donor/acceptor and photoactive material upon light irradiation. Understanding the fundamentals of PEC strategy benefits the development of next-generation PEC sensors. However, the research on detection mechanism of PEC sensors is in the initial stage and need to be further exploited. Thus, with a particular focus on the signal transduction formats, this review highlights the novel concept on PEC sensing strategies, and categorizes the recent illustrative examples into three signaling principles: reactant determinant, electron transfer and energy transfer, providing the comprehensive design guidelines for researchers to develop more advanced PEC sensors. The prospects and challenges for future work are also included. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. LUSH-based SPR sensor for the detection of alcohols and pheromone

    NASA Astrophysics Data System (ADS)

    Lau, Hui-Chong; Lee, Yeon-Kyung; Kwon, Jae-Young; Sohn, Young-Soo; Lim, Jeong Ok

    2013-05-01

    Protein is a widely used sensing substrate in the biosensing technology. In the study conducted here, we used odorant binding protein, LUSH from Drosophila as a biosensing substrate in a miniaturized surface plasmon resonance (SPR) sensor. LUSH contains the specific alcohols binding sites, which mediates the detection of alcohols and pheromone. We first modified the surface of the gold sensor chip using the self assembled monolayer in the chloroform solution. The saturated concentration was determined prior to the detection of alcohols and pheromone at various concentrations. The results showed that the LUSH was saturated at 1000 μg/ml on the gold sensor chip. The detection response of LUSH was significant at higher concentration of alcohols. LUSH detected ethanol at concentration >=50% propanol was detected at >=25% whereas pheromone was detected at >=1.25 μg/μl. The results provide some fundamental information on the potential use of LUSH-based SPR as a simple and easy protein-based sensor in the near future.

  19. Real-time bio-sensors for enhanced C2ISR operator performance

    NASA Astrophysics Data System (ADS)

    Miller, James C.

    2005-05-01

    The objectives of two Air Force Small Business research topics were to develop a real-time, unobtrusive, biological sensing and monitoring technology for evaluating cognitive readiness in command and control environments (i.e., console operators). We sought an individualized status monitoring system for command and control operators and teams. The system was to consist of a collection of bio-sensing technologies and processing and feedback algorithms that could eventually guide the effective incorporation of fatigue-adaptive workload interventions into weapon systems to mitigate episodes of cognitive overload and lapses in operator attention that often result in missed signals and catastrophic failures. Contractors set about determining what electro-physiological and other indicators of compromised operator states are most amenable for unobtrusive monitoring of psychophysiological and warfighter performance data. They proposed multi-sensor platforms of bio-sensing technologies for development. The sensors will be continuously-wearable or off-body and will not require complicated or uncomfortable preparation. A general overview of the proposed approaches and of progress toward the objective is presented.

  20. Carbohydrate hydrogels with stabilized phage particles for bacterial biosensing: bacterium diffusion studies.

    PubMed

    Balcão, Victor M; Barreira, Sérgio V P; Nunes, Thiago M; Chaud, Marco V; Tubino, Matthieu; Vila, Marta M D C

    2014-02-01

    Bacteriophage particles have been reported as potentially useful in the development of diagnosis tools for pathogenic bacteria as they specifically recognize and lyse bacterial isolates thus confirming the presence of viable cells. One of the most representative microorganisms associated with health care services is the bacterium Pseudomonas aeruginosa, which alone is responsible for nearly 15% of all nosocomial infections. In this context, structural and functional stabilization of phage particles within biopolymeric hydrogels, aiming at producing cheap (chromogenic) bacterial biosensing devices, has been the goal of a previous research effort. For this, a detailed knowledge of the bacterial diffusion profile into the hydrogel core, where the phage particles lie, is of utmost importance. In the present research effort, the bacterial diffusion process into the biopolymeric hydrogel core was mathematically described and the theoretical simulations duly compared with experimental results, allowing determination of the effective diffusion coefficients of P. aeruginosa in the agar and calcium alginate hydrogels tested.

  1. Exploiting NanoLuc luciferase for smartphone-based bioluminescence cell biosensor for (anti)-inflammatory activity and toxicity.

    PubMed

    Cevenini, Luca; Calabretta, Maria Maddalena; Lopreside, Antonia; Tarantino, Giuseppe; Tassoni, Annalisa; Ferri, Maura; Roda, Aldo; Michelini, Elisa

    2016-12-01

    The availability of smartphones with high-performance digital image sensors and processing power has completely reshaped the landscape of point-of-need analysis. Thanks to the high maturity level of reporter gene technology and the availability of several bioluminescent proteins with improved features, we were able to develop a bioluminescence smartphone-based biosensing platform exploiting the highly sensitive NanoLuc luciferase as reporter. A 3D-printed smartphone-integrated cell biosensor based on genetically engineered Hek293T cells was developed. Quantitative assessment of (anti)-inflammatory activity and toxicity of liquid samples was performed with a simple and rapid add-and-measure procedure. White grape pomace extracts, known to contain several bioactive compounds, were analyzed, confirming the suitability of the smartphone biosensing platform for analysis of untreated complex biological matrices. Such approach could meet the needs of small medium enterprises lacking fully equipped laboratories for first-level safety tests and rapid screening of new bioactive products. Graphical abstract Smartphone-based bioluminescence cell biosensor.

  2. Metal-organic frameworks as biosensors for luminescence-based detection and imaging

    PubMed Central

    Miller, Sophie E.; Teplensky, Michelle H.; Moghadam, Peyman Z.; Fairen-Jimenez, David

    2016-01-01

    Metal-organic frameworks (MOFs), formed by the self-assembly of metal centres or clusters and organic linkers, possess many key structural and chemical features that have enabled them to be used in sensing platforms for a variety of environmentally, chemically and biomedically relevant compounds. In particular, their high porosity, large surface area, tuneable chemical composition, high degree of crystallinity, and potential for post-synthetic modification for molecular recognition make MOFs promising candidates for biosensing applications. In this review, we separate our discussion of MOF biosensors into two categories: quantitative sensing, focusing specifically on luminescence-based sensors for the direct measurement of a specific analyte, and qualitative sensing, where we describe MOFs used for fluorescence microscopy and as magnetic resonance imaging contrast agents. We highlight several key publications in each of these areas, concluding that MOFs present an exciting, versatile new platform for biosensing applications and imaging, and we expect to see their usage grow as the field progresses. PMID:27499847

  3. Whispering gallery mode resonators for rapid label-free biosensing in small volume droplets.

    PubMed

    Wildgen, Sarah M; Dunn, Robert C

    2015-03-23

    Rapid biosensing requires fast mass transport of the analyte to the surface of the sensing element. To optimize analysis times, both mass transport in solution and the geometry and size of the sensing element need to be considered. Small dielectric spheres, tens of microns in diameter, can act as label-free biosensors using whispering gallery mode (WGM) resonances. WGM resonances are sensitive to the effective refractive index, which changes upon analyte binding to recognition sites on functionalized resonators. The spherical geometry and tens of microns diameter of these resonators provides an efficient target for sensing while their compact size enables detection in limited volumes. Here, we explore conditions leading to rapid analyte detection using WGM resonators as label-free sensors in 10 μL sample droplets. Droplet evaporation leads to potentially useful convective mixing, but also limits the time over which analysis can be completed. We show that active droplet mixing combined with initial binding rate measurements is required for accurate nanomolar protein quantification within the first minute following injection.

  4. Phase singularities in 3D plasmonic crystal metamaterials for ultra-sensitive biosensing

    NASA Astrophysics Data System (ADS)

    Danilov, Artem; Aristov, Andrey I.; Manousidaki, Maria; Terzaki, Konstantina; Fotakis, Costas; Farsari, Maria; Kabashin, Andrei V.

    2017-02-01

    Plasmonic biosensors form the core label-free technology for studies of biomolecular interactions, but they still need a drastic improvement of sensitivity and novel nano-architectural implementations to match modern trends of nanobiotechnology. Here, we consider the generation of resonances in light reflected from 3D woodpile plasmonic crystal metamaterials fabricated by Direct Laser Writing by Multi-Photon Polymerization, followed by silver electroless plating. We show that the generation of these resonances is accompanied by the appearance of singularities of phase of reflected light and examine the response of phase characteristics to refractive index variations inside the metamaterial matrix. The recorded phase sensitivity (3*104 deg. of phase shift per RIU change) outperforms most plasmonic counterparts and is attributed to particular conditions of plasmon excitation in 3D plasmonic crystal geometry. Combined with a large surface for biomolecular immobilizations offered by the 3D woodpile matrix, the proposed sensor architecture promises a new important landmark in the advancement of plasmonic biosensing technology.

  5. Photonics-on-a-chip: recent advances in integrated waveguides as enabling detection elements for real-world, lab-on-a-chip biosensing applications.

    PubMed

    Washburn, Adam L; Bailey, Ryan C

    2011-01-21

    By leveraging advances in semiconductor microfabrication technologies, chip-integrated optical biosensors are poised to make an impact as scalable and multiplexable bioanalytical measurement tools for lab-on-a-chip applications. In particular, waveguide-based optical sensing technology appears to be exceptionally amenable to chip integration and miniaturization, and, as a result, the recent literature is replete with examples of chip-integrated waveguide sensing platforms developed to address a wide range of contemporary analytical challenges. As an overview of the most recent advances within this dynamic field, this review highlights work from the last 2-3 years in the areas of grating-coupled, interferometric, photonic crystal, and microresonator waveguide sensors. With a focus towards device integration, particular emphasis is placed on demonstrations of biosensing using these technologies within microfluidically controlled environments. In addition, examples of multiplexed detection and sensing within complex matrices--important features for real-world applicability--are given special attention.

  6. Stable Carboxylate-Terminated Gold Surfaces Produced by Spontaneous Grafting of an Alkyl Tin Compound.

    PubMed

    Ortiz, Mayreli; Mehdi, Ahmed; Methivier, Christophe; Thorimbert, Serge; Hasenknopf, Bernold; O'Sullivan, Ciara K

    2018-05-21

    Self-assembled monolayers formed by chemisorption of thiolated molecules on gold surfaces are widely applied for biosensing. Moreover, and due to the low stability of thiol-gold chemistry, contributions to the functionalisation of gold substrates with linkers that provide a more stable platform for the immobilisation of electroactive or biological molecules are highly appreciated. In the work reported here, we demonstrate that a carboxylated organotin compound can be successfully grafted onto gold substrates to form a highly stable organic layer with reactivity for subsequent binding to an aminated molecule. A battery of techniques was used to characterise the surface chemistry. The grafted layer was used to anchor aminoferrocene and subjected to both thermostability tests and long term stability studies over the period of one year, demonstrating thermostability up to 90 oC and storage stability for at least 12 months when stored at 4 oC protected from light. The stable surface tethering of molecules on gold substrates can be exploited in a plethora of applications including molecular techniques such as solid-phase amplification and solid-phase melting curve analysis that require elevated temperature stability, as well as biosensors, which require long-term storage stability. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Broadband Fluorescence Enhancement with Self-Assembled Silver Nanoparticle Optical Antennas.

    PubMed

    Vietz, Carolin; Kaminska, Izabela; Sanz Paz, Maria; Tinnefeld, Philip; Acuna, Guillermo P

    2017-05-23

    Plasmonic structures are known to affect the fluorescence properties of dyes placed in close proximity. This effect has been exploited in combination with single-molecule techniques for several applications in the field of biosensing. Among these plasmonic structures, top-down zero-mode waveguides stand out due to their broadband capabilities. In contrast, optical antennas based on gold nanostructures exhibit fluorescence enhancement on a narrow fraction of the visible spectrum typically restricted to the red to near-infrared region. In this contribution, we exploit the DNA origami technique to self-assemble optical antennas based on large (80 nm) silver nanoparticles. We have studied the performance of these antennas with far- and near-field simulations and characterized them experimentally with single-molecule fluorescence measurements. We demonstrate that silver-based optical antennas can yield a fluorescence enhancement of more than 2 orders of magnitude throughout the visible spectral range for high intrinsic quantum yield dyes. Additionally, a comparison between the performance of gold and silver-based antennas is included. The results indicate that silver-based antennas strongly outperform their gold counterparts in the blue and green ranges and exhibit marginal differences in the red range. These characteristics render silver-based optical antennas ready for applications involving several fluorescently labeled species across the visible spectrum.

  8. An automated optofluidic biosensor platform combining interferometric sensors and injection moulded microfluidics.

    PubMed

    Szydzik, C; Gavela, A F; Herranz, S; Roccisano, J; Knoerzer, M; Thurgood, P; Khoshmanesh, K; Mitchell, A; Lechuga, L M

    2017-08-08

    A primary limitation preventing practical implementation of photonic biosensors within point-of-care platforms is their integration with fluidic automation subsystems. For most diagnostic applications, photonic biosensors require complex fluid handling protocols; this is especially prominent in the case of competitive immunoassays, commonly used for detection of low-concentration, low-molecular weight biomarkers. For this reason, complex automated microfluidic systems are needed to realise the full point-of-care potential of photonic biosensors. To fulfil this requirement, we propose an on-chip valve-based microfluidic automation module, capable of automating such complex fluid handling. This module is realised through application of a PDMS injection moulding fabrication technique, recently described in our previous work, which enables practical fabrication of normally closed pneumatically actuated elastomeric valves. In this work, these valves are configured to achieve multiplexed reagent addressing for an on-chip diaphragm pump, providing the sample and reagent processing capabilities required for automation of cyclic competitive immunoassays. Application of this technique simplifies fabrication and introduces the potential for mass production, bringing point-of-care integration of complex automated microfluidics into the realm of practicality. This module is integrated with a highly sensitive, label-free bimodal waveguide photonic biosensor, and is demonstrated in the context of a proof-of-concept biosensing assay, detecting the low-molecular weight antibiotic tetracycline.

  9. A novel electrochemical immunosensor based on ITO modified by carboxyl-ended silane agent for ultrasensitive detection of MAGE-1 in human serum.

    PubMed

    Gündoğdu, Aslı; Aydın, Elif Burcu; Sezgintürk, Mustafa Kemal

    2017-11-15

    A new, low-cost electrochemical immunosensor was developed for rapid detection of Melanoma-associated antigen 1 (MAGE-1), a cancer biomarker. The fabrication procedure of immunosensor was based on the covalent immobilization of anti-MAGE-1, biorecognition molecule, on ITO electrode by carboxyethylsilanetriol (CTES) monolayer. The biosensing MAGE-1 antigen was monitored by using electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) technique. Apart from these techniques, single frequency impedance (SFI) was used for investigation of antibody-antigen interactions. Scanning electron microscopy (SEM), fourier transform infrared spectroscopy (FTIR), atomic force microscopy (AFM) were utilized for characterization of the proposed biosensor. To fabricate highly sensitive, good stability immunosensor, some parameters were optimized. Under optimal conditions, the developed electrochemical immunosensor for MAGE-1 exhibited a dynamic range of 4 fg/mL and 200 fg/mL with a low detection limit of 1.30 fg/mL. It had acceptable repeatability (5.05%, n = 20) and good storage stability (3.58% loss after 10 weeks). Moreover, this electrochemical immunosensor has been successfully applied to the determination of MAGE-1 in human serum samples. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Molecular sensing with magnetic nanoparticles using magnetic spectroscopy of nanoparticle Brownian motion.

    PubMed

    Zhang, Xiaojuan; Reeves, Daniel B; Perreard, Irina M; Kett, Warren C; Griswold, Karl E; Gimi, Barjor; Weaver, John B

    2013-12-15

    Functionalized magnetic nanoparticles (mNPs) have shown promise in biosensing and other biomedical applications. Here we use functionalized mNPs to develop a highly sensitive, versatile sensing strategy required in practical biological assays and potentially in vivo analysis. We demonstrate a new sensing scheme based on magnetic spectroscopy of nanoparticle Brownian motion (MSB) to quantitatively detect molecular targets. MSB uses the harmonics of oscillating mNPs as a metric for the freedom of rotational motion, thus reflecting the bound state of the mNP. The harmonics can be detected in vivo from nanogram quantities of iron within 5s. Using a streptavidin-biotin binding system, we show that the detection limit of the current MSB technique is lower than 150 pM (0.075 pmole), which is much more sensitive than previously reported techniques based on mNP detection. Using mNPs conjugated with two anti-thrombin DNA aptamers, we show that thrombin can be detected with high sensitivity (4 nM or 2 pmole). A DNA-DNA interaction was also investigated. The results demonstrated that sequence selective DNA detection can be achieved with 100 pM (0.05 pmole) sensitivity. The results of using MSB to sense these interactions, show that the MSB based sensing technique can achieve rapid measurement (within 10s), and is suitable for detecting and quantifying a wide range of biomarkers or analytes. It has the potential to be applied in variety of biomedical applications or diagnostic analyses. © 2013 Elsevier B.V. All rights reserved.

  11. SERS-based inverse molecular sentinel (iMS) nanoprobes for multiplexed detection of microRNA cancer biomarkers in biological samples

    NASA Astrophysics Data System (ADS)

    Crawford, Bridget M.; Wang, Hsin-Neng; Fales, Andrew M.; Bowie, Michelle L.; Seewaldt, Victoria L.; Vo-Dinh, Tuan

    2017-02-01

    The development of sensitive and selective biosensing techniques is of great interest for clinical diagnostics. Here, we describe the development and application of a surface enhanced Raman scattering (SERS) sensing technology, referred to as "inverse Molecular Sentinel (iMS)" nanoprobes, for the detection of nucleic acid biomarkers in biological samples. This iMS nanoprobe involves the use of plasmonic-active nanostars as the sensing platform for a homogenous assay for multiplexed detection of nucleic acid biomarkers, including DNA, RNA and microRNA (miRNA). The "OFF-to-ON" signal switch is based on a non-enzymatic strand-displacement process and the conformational change of stem-loop (hairpin) oligonucleotide probes upon target binding. Here, we demonstrate the development of iMS nanoprobes for the detection of DNA sequences as well as a modified design of the nanoprobe for the detection of short (22-nt) microRNA sequences. The application of iMS nanoprobes to detect miRNAs in real biological samples was performed with total small RNA extracted from breast cancer cell lines. The multiplex capability of the iMS technique was demonstrated using a mixture of the two differently labeled nanoprobes to detect miR-21 and miR-34a miRNA biomarkers for breast cancer. The results of this study demonstrate the feasibility of applying the iMS technique for multiplexed detection of nucleic acid biomarkers, including short miRNAs molecules.

  12. Label-free biosensing of Salmonella enterica serovars at single-cell level

    USDA-ARS?s Scientific Manuscript database

    Nanotechnology has greatly facilitated the development of label-free biosensors. The atomic force microscopy (AFM) has been used to study the molecular mechanism of the reactions for protein and aptamers. The surface plasmon resonance (SPR) have been used in fast detection of various pathogenic bact...

  13. Transcriptional regulatory proteins as biosensing tools.

    PubMed

    Turner, Kendrick; Joel, Smita; Feliciano, Jessika; Feltus, Agatha; Pasini, Patrizia; Wynn, Daniel; Dau, Peter; Dikici, Emre; Deo, Sapna K; Daunert, Sylvia

    2017-06-22

    We have developed sensing systems employing different classes of transcriptional regulatory proteins genetically and chemically modified to incorporate a fluorescent reporter molecule for detection of arsenic, hydroxylated polychlorinated biphenyls (OH-PCBs), and cyclic AMP (cAMP). These are the first examples of optical sensing systems based on transcriptional regulatory proteins.

  14. Ecopedagogy: A Movement between Critical Dialogue and Complexity: Proposal for a Categories System

    ERIC Educational Resources Information Center

    Norat, María de los Ángeles Vilches; Herrería, Alfonso Fernández; Rodríguez, Francisco Miguel Martínez

    2016-01-01

    This qualitative research has been undertaken with the purpose of developing an integrated system of categories based on ecopedagogy. Founded on the critical pedagogy of Paulo Freire, this movement moves towards complex thinking and holism. Its theoretical bases are set on principles of sustainability, biosensibility, ethics of care and global…

  15. Inside-out Core–shell Architecture: Controllable Fabrication of Cu2O@Cu with High Activity for the Sonogashira Coupling Reaction

    EPA Science Inventory

    As low-cost and versatile materials, Cu and its oxides have attracted great interest due to their excellent performance in the field of catalysis, superconductivity, photovoltaics, magnetic storage, electrochemistry, and biosensing. It is well known that morphology has an import...

  16. Design considerations on ultra-low-power wireless transmitters for wearable medical devices.

    PubMed

    Manstretta, Danilo

    2010-01-01

    A wireless transmitter for wearable bio-sensing applications must fulfill very specialized requirements. It has been estimated that for truly wearable systems it must operate with an average power consumption of less than 140 microW. The alternatives, pitfalls, and realistic performance of robust, low power signal transmission will be addressed.

  17. Video Games for Neuro-Cognitive Optimization.

    PubMed

    Mishra, Jyoti; Anguera, Joaquin A; Gazzaley, Adam

    2016-04-20

    Sophisticated video games that integrate engaging cognitive training with real-time biosensing and neurostimulation have the potential to optimize cognitive performance in health and disease. We argue that technology development must be paired with rigorous scientific validation and discuss academic and industry opportunities in this field. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Aptamer-mediated 'turn-off/turn-on' nanozyme activity of gold nanoparticles for kanamycin detection.

    PubMed

    Sharma, Tarun Kumar; Ramanathan, Rajesh; Weerathunge, Pabudi; Mohammadtaheri, Mahsa; Daima, Hemant Kumar; Shukla, Ravi; Bansal, Vipul

    2014-12-28

    A new ultrafast and highly sensitive 'turn-off/turn-on' biosensing approach that combines the intrinsic peroxidase-like activity of gold nanoparticles (GNPs) with the high affinity and specificity of a ssDNA aptamer is presented for the efficient detection of a model small molecule kanamycin.

  19. Shewanella oneidensis in a lactate-fed pure-culture and a glucose-fed co-culture with Lactococcus lactis with an electrode as electron acceptor

    USDA-ARS?s Scientific Manuscript database

    Bioelectrochemical systems (BESs) employing mixed microbial communities as biocatalysts are gaining importance as potential renewable energy, bioremediation, or biosensing devices. While we are beginning to understand how individual microbial species interact with an electrode as electron donor, li...

  20. Diamond nanostructures for drug delivery, bioimaging, and biosensing.

    PubMed

    Chen, Xianfeng; Zhang, Wenjun

    2017-02-06

    Diamond features an attractive combination of outstanding mechanical, optical, thermal and electrical properties; tunable surface characteristics; and unprecedented biocompatibility. Additionally, diamond can possess unique nitrogen-vacancy emission centers that are highly photostable and extremely sensitive to magnetic fields, temperatures, ion concentrations, and spin densities. With these inherent merits, diamond in various nanoscale configurations has demonstrated a variety of distinctive applications in a broad range of fields. In particular, research on diamond nanoparticles (0-dimensional structures) and arrays of diamond nanoneedles/nanowires (1-dimensional structures) has witnessed important and exciting progress in recent years. Here, we systematically review the superior properties of diamond nanomaterials and the nitrogen-vacancy centers they contain as well as their uses in biomedical applications, including biosensing, bioimaging and drug delivery. Moreover, systematic studies of the biocompatibility and toxicity of diamond nanostructures, which constitute an important issue for the biomedical applications of diamond that has not yet been thoroughly addressed in previous reviews, are also discussed. Finally, we present our insights into the key issues concerning these diamond nanomaterials and their future development for applications.

  1. Bienzyme bionanomultilayer electrode for glucose biosensing based on functional carbon nanotubes and sugar-lectin biospecific interaction.

    PubMed

    Chen, Huan; Xi, Fengna; Gao, Xia; Chen, Zhichun; Lin, Xianfu

    2010-08-01

    Bienzyme bionanomultilayer electrode for glucose biosensing was constructed based on functional carbon nanotubes and sugar-lectin biospecific interaction through layer-by-layer (LBL) assembly. After being functionalized by wrapping with polyelectrolyte, multiwalled carbon nanotubes (MCNTs) were water soluble and positively charged. MCNT-bienzyme bionanomultilayer electrode was then fabricated by LBL assembly of horseradish peroxidase (HRP) and glucose oxidase (GOD) on functional MCNT modified electrode. The attachment of the MCNT-bienzyme bionanomultilayer with the underlying electrode and each layer in the bionanomultilayer was based on reliably electrostatic or sugar-lectin biospecific interaction. The developed bienzyme biosensor exhibited fast amperometric response for the determination of glucose. The linear response of the developed biosensor for the determination of glucose ranged from 2.0 x 10(-6) to 1.7 x 10(-4) M with a detection limit of 2.5 x 10(-7) M. The biosensor can be used directly to determine glucose in serum. The construction of the bienzyme biosensor showed potential for the preparation of MCNT-enzyme nanocomposite with controllability and high performance. Copyright 2010 Elsevier Inc. All rights reserved.

  2. Boron-doped diamond nano/microelectrodes for biosensing and in vitro measurements.

    PubMed

    Dong, Hua; Wang, Shihua; Galligan, James J; Swain, Greg M

    2011-01-01

    Since the fabrication of the first diamond electrode in the mid 1980s, repid progress has been made on the development and application of this new type of electrode material. Boron-doped diamond (BDD) electrodes exhibit outstanding properties compared to oxygen-containing sp2 carbon electrodes. These properties make BDD electrodes an ideal choice for use in complex samples. In recent years, BDD microelectrodes have been applied to in vitro measurements of biological molecules in tissues and cells. This review will summarize recent progress in the development and applications of BDD electrodes in bio-sensing and in vitro measurements of biomolecules. In the first section, the methods for BDD diamond film deposition and BDD microelectrodes preparation are described. This is followed by a description and discussion of several approaches for characterization of the BDD electrode surface structure, morphology, and electrochemical activity. Further, application of BDD microelectrodes for use in the in vitro analysis of norepinephrine (NE), serotonin (5-HT), nitric oxide (NO), histamine, and adenosine from tissues are summarized and finally some of the remaining challenges are discussed.

  3. Disordered array of Au covered Silicon nanowires for SERS biosensing combined with electrochemical detection

    NASA Astrophysics Data System (ADS)

    Convertino, Annalisa; Mussi, Valentina; Maiolo, Luca

    2016-04-01

    We report on highly disordered array of Au coated silicon nanowires (Au/SiNWs) as surface enhanced Raman scattering (SERS) probe combined with electrochemical detection for biosensing applications. SiNWs, few microns long, were grown by plasma enhanced chemical vapor deposition on common microscope slides and covered by Au evaporated film, 150 nm thick. The capability of the resulting composite structure to act as SERS biosensor was studied via the biotin-avidin interaction: the Raman signal obtained from this structure allowed to follow each surface modification step as well as to detect efficiently avidin molecules over a broad range of concentrations from micromolar down to the nanomolar values. The metallic coverage wrapping SiNWs was exploited also to obtain a dual detection of the same bioanalyte by electrochemical impedance spectroscopy (EIS). Indeed, the SERS signal and impedance modifications induced by the biomolecule perturbations on the metalized surface of the NWs were monitored on the very same three-electrode device with the Au/SiNWs acting as both working electrode and SERS probe.

  4. Signal Amplification Technologies for the Detection of Nucleic Acids: from Cell-Free Analysis to Live-Cell Imaging.

    PubMed

    Fozooni, Tahereh; Ravan, Hadi; Sasan, Hosseinali

    2017-12-01

    Due to their unique properties, such as programmability, ligand-binding capability, and flexibility, nucleic acids can serve as analytes and/or recognition elements for biosensing. To improve the sensitivity of nucleic acid-based biosensing and hence the detection of a few copies of target molecule, different modern amplification methodologies, namely target-and-signal-based amplification strategies, have already been developed. These recent signal amplification technologies, which are capable of amplifying the signal intensity without changing the targets' copy number, have resulted in fast, reliable, and sensitive methods for nucleic acid detection. Working in cell-free settings, researchers have been able to optimize a variety of complex and quantitative methods suitable for deploying in live-cell conditions. In this study, a comprehensive review of the signal amplification technologies for the detection of nucleic acids is provided. We classify the signal amplification methodologies into enzymatic and non-enzymatic strategies with a primary focus on the methods that enable us to shift away from in vitro detecting to in vivo imaging. Finally, the future challenges and limitations of detection for cellular conditions are discussed.

  5. Nucleic acid-based electrochemical nanobiosensors.

    PubMed

    Abi, Alireza; Mohammadpour, Zahra; Zuo, Xiaolei; Safavi, Afsaneh

    2018-04-15

    The detection of biomarkers using sensitive and selective analytical devices is critically important for the early stage diagnosis and treatment of diseases. The synergy between the high specificity of nucleic acid recognition units and the great sensitivity of electrochemical signal transductions has already shown promise for the development of efficient biosensing platforms. Yet nucleic-acid based electrochemical biosensors often rely on target amplification strategies (e.g., polymerase chain reactions) to detect analytes at clinically relevant concentration ranges. The complexity and time-consuming nature of these amplification methods impede moving nucleic acid-based electrochemical biosensors from laboratory-based to point-of-care test settings. Fortunately, advancements in nanotechnology have provided growing evidence that the recruitment of nanoscaled materials and structures can enhance the biosensing performance (particularly in terms of sensitivity and response time) to the level suitable for use in point-of-care diagnostic tools. This Review highlights the significant progress in the field of nucleic acid-based electrochemical nanobiosensing with the focus on the works published during the last five years. Copyright © 2017. Published by Elsevier B.V.

  6. Gold Nanoparticles Deposited Polyaniline-TiO2 Nanotube for Surface Plasmon Resonance Enhanced Photoelectrochemical Biosensing.

    PubMed

    Zhu, Jie; Huo, Xiaohe; Liu, Xiaoqiang; Ju, Huangxian

    2016-01-13

    A novel ternary composite composed of TiO2 nanotubes (TiONTs), polyaniline (PANI), and gold nanoparticles (GNPs) was prepared for photoelectrochemical (PEC) biosensing. PANI was initially coated on TiONTs with an oxidative polymerization method, and 12-phosphotungstic acid was then used as a highly localized photoactive reducing agent to deposit GNPs on TiONT-PANI. The morphology and composition of the composite were characterized by various spectroscopic and microscopic methods. Electrochemical impedance spectroscopy was also conducted to demonstrate the excellent electrical conductivity of the composite. A PEC biosensor was fabricated by immobilizing a mixture of lactate dehydrogenase and the composite onto ITO electrodes, which regenerated nicotinamide adenine dinucleotide (NAD(+)) to complete the enzymatic cycle and led to an improved method for PEC detection of lactate. Because of the surface plasmon resonance enhanced effect of GNPs, the electrochromic performance of PANI, and excellent conductivity and biocompatibility of the composite, this method showed a dynamic range of 0.5-210 μM, sensitivity of 0.0401 μA μM(-1), and a detection limit of 0.15 μM.

  7. Hybrid hydrogels containing vertically aligned carbon nanotubes with anisotropic electrical conductivity for muscle myofiber fabrication.

    PubMed

    Ahadian, Samad; Ramón-Azcón, Javier; Estili, Mehdi; Liang, Xiaobin; Ostrovidov, Serge; Shiku, Hitoshi; Ramalingam, Murugan; Nakajima, Ken; Sakka, Yoshio; Bae, Hojae; Matsue, Tomokazu; Khademhosseini, Ali

    2014-03-19

    Biological scaffolds with tunable electrical and mechanical properties are of great interest in many different fields, such as regenerative medicine, biorobotics, and biosensing. In this study, dielectrophoresis (DEP) was used to vertically align carbon nanotubes (CNTs) within methacrylated gelatin (GelMA) hydrogels in a robust, simple, and rapid manner. GelMA-aligned CNT hydrogels showed anisotropic electrical conductivity and superior mechanical properties compared with pristine GelMA hydrogels and GelMA hydrogels containing randomly distributed CNTs. Skeletal muscle cells grown on vertically aligned CNTs in GelMA hydrogels yielded a higher number of functional myofibers than cells that were cultured on hydrogels with randomly distributed CNTs and horizontally aligned CNTs, as confirmed by the expression of myogenic genes and proteins. In addition, the myogenic gene and protein expression increased more profoundly after applying electrical stimulation along the direction of the aligned CNTs due to the anisotropic conductivity of the hybrid GelMA-vertically aligned CNT hydrogels. We believe that platform could attract great attention in other biomedical applications, such as biosensing, bioelectronics, and creating functional biomedical devices.

  8. Hybrid hydrogels containing vertically aligned carbon nanotubes with anisotropic electrical conductivity for muscle myofiber fabrication

    PubMed Central

    Ahadian, Samad; Ramón-Azcón, Javier; Estili, Mehdi; Liang, Xiaobin; Ostrovidov, Serge; Shiku, Hitoshi; Ramalingam, Murugan; Nakajima, Ken; Sakka, Yoshio; Bae, Hojae; Matsue, Tomokazu; Khademhosseini, Ali

    2014-01-01

    Biological scaffolds with tunable electrical and mechanical properties are of great interest in many different fields, such as regenerative medicine, biorobotics, and biosensing. In this study, dielectrophoresis (DEP) was used to vertically align carbon nanotubes (CNTs) within methacrylated gelatin (GelMA) hydrogels in a robust, simple, and rapid manner. GelMA-aligned CNT hydrogels showed anisotropic electrical conductivity and superior mechanical properties compared with pristine GelMA hydrogels and GelMA hydrogels containing randomly distributed CNTs. Skeletal muscle cells grown on vertically aligned CNTs in GelMA hydrogels yielded a higher number of functional myofibers than cells that were cultured on hydrogels with randomly distributed CNTs and horizontally aligned CNTs, as confirmed by the expression of myogenic genes and proteins. In addition, the myogenic gene and protein expression increased more profoundly after applying electrical stimulation along the direction of the aligned CNTs due to the anisotropic conductivity of the hybrid GelMA-vertically aligned CNT hydrogels. We believe that platform could attract great attention in other biomedical applications, such as biosensing, bioelectronics, and creating functional biomedical devices. PMID:24642903

  9. Electronic desalting for controlling the ionic environment in droplet-based biosensing platforms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swaminathan, Vikhram Vilasur; Dak, Piyush; Alam, Muhammad A., E-mail: rbashir@illinois.edu, E-mail: alam@purdue.edu

    2015-02-02

    The ability to control the ionic environment in saline waters and aqueous electrolytes is useful for desalination as well as electronic biosensing. We demonstrate a method of electronic desalting at micro-scale through on-chip micro electrodes. We show that, while desalting is limited in bulk solutions with unlimited availability of salts, significant desalting of ≥1 mM solutions can be achieved in sub-nanoliter volume droplets with diameters of ∼250 μm. Within these droplets, by using platinum-black microelectrodes and electrochemical surface treatments, we can enhance the electrode surface area to achieve >99% and 41% salt removal in 1 mM and 10 mM salt concentrations, respectively. Through self-consistentmore » simulations and experimental measurements, we demonstrate that conventional double-layer theory over-predicts the desalting capacity and, hence, cannot be used to model systems that are mass limited or undergoing significant salt removal from the bulk. Our results will provide a better understanding of capacitive desalination, as well as a method for salt manipulation in high-throughput droplet-based microfluidic sensing platforms.« less

  10. Functionalized graphene oxide for clinical glucose biosensing in urine and serum samples

    PubMed Central

    Veerapandian, Murugan; Seo, Yeong-Tai; Shin, Hyunkyung; Yun, Kyusik; Lee, Min-Ho

    2012-01-01

    A novel clinical glucose biosensor fabricated using functionalized metalloid-polymer (silver-silica coated with polyethylene glycol) hybrid nanoparticles on the surface of a graphene oxide nanosheet is reported. The cyclic voltammetric response of glucose oxidase modification on the surface of a functionalized graphene oxide electrode showed a surface-confined reaction and an effective redox potential near zero volts, with a wide linearity of 0.1–20 mM and a sensitivity of 7.66 μA mM−1 cm−2. The functionalized graphene oxide electrode showed a better electrocatalytic response toward oxidation of H2O2 and reduction of oxygen. The practical applicability of the functionalized graphene oxide electrode was demonstrated by measuring the peak current against multiple urine and serum samples from diabetic patients. This new hybrid nanoarchitecture combining a three-dimensional metalloid-polymer hybrid and two-dimensional graphene oxide provided a thin solid laminate on the electrode surface. The easy fabrication process and retention of bioactive immobilized enzymes on the functionalized graphene oxide electrode could potentially be extended to detection of other biomolecules, and have broad applications in electrochemical biosensing. PMID:23269871

  11. Functionalized graphene oxide for clinical glucose biosensing in urine and serum samples.

    PubMed

    Veerapandian, Murugan; Seo, Yeong-Tai; Shin, Hyunkyung; Yun, Kyusik; Lee, Min-Ho

    2012-01-01

    A novel clinical glucose biosensor fabricated using functionalized metalloid-polymer (silver-silica coated with polyethylene glycol) hybrid nanoparticles on the surface of a graphene oxide nanosheet is reported. The cyclic voltammetric response of glucose oxidase modification on the surface of a functionalized graphene oxide electrode showed a surface-confined reaction and an effective redox potential near zero volts, with a wide linearity of 0.1-20 mM and a sensitivity of 7.66 μA mM(-1) cm(-2). The functionalized graphene oxide electrode showed a better electrocatalytic response toward oxidation of H(2)O(2) and reduction of oxygen. The practical applicability of the functionalized graphene oxide electrode was demonstrated by measuring the peak current against multiple urine and serum samples from diabetic patients. This new hybrid nanoarchitecture combining a three-dimensional metalloid-polymer hybrid and two-dimensional graphene oxide provided a thin solid laminate on the electrode surface. The easy fabrication process and retention of bioactive immobilized enzymes on the functionalized graphene oxide electrode could potentially be extended to detection of other biomolecules, and have broad applications in electrochemical biosensing.

  12. Carbon-based hybrid nanogels: a synergistic nanoplatform for combined biosensing, bioimaging, and responsive drug delivery.

    PubMed

    Wang, Hui; Chen, Qianwang; Zhou, Shuiqin

    2018-06-05

    Nanosized crosslinked polymer networks, named as nanogels, are playing an increasingly important role in a diverse range of applications by virtue of their porous structures, large surface area, good biocompatibility and responsiveness to internal and/or external chemico-physical stimuli. Recently, a variety of carbon nanomaterials, such as carbon quantum dots, graphene/graphene oxide nanosheets, fullerenes, carbon nanotubes, and nanodiamonds, have been embedded into responsive polymer nanogels, in order to integrate the unique electro-optical properties of carbon nanomaterials with the merits of nanogels into a single hybrid nanogel system for improvement of their applications in nanomedicine. A vast number of studies have been pursued to explore the applications of carbon-based hybrid nanogels in biomedical areas for biosensing, bioimaging, and smart drug carriers with combinatorial therapies and/or theranostic ability. New synthetic methods and structures have been developed to prepare carbon-based hybrid nanogels with versatile properties and functions. In this review, we summarize the latest developments and applications and address the future perspectives of these carbon-based hybrid nanogels in the biomedical field.

  13. Diagnostics Strategies with Electrochemical Affinity Biosensors Using Carbon Nanomaterials as Electrode Modifiers

    PubMed Central

    Campuzano, Susana; Yáñez-Sedeño, Paloma; Pingarrón, José M.

    2016-01-01

    Early diagnosis is often the key to successful patient treatment and survival. The identification of various disease signaling biomarkers which reliably reflect normal and disease states in humans in biological fluids explain the burgeoning research field in developing new methodologies able to determine the target biomarkers in complex biological samples with the required sensitivity and selectivity and in a simple and rapid way. The unique advantages offered by electrochemical sensors together with the availability of high affinity and specific bioreceptors and their great capabilities in terms of sensitivity and stability imparted by nanostructuring the electrode surface with different carbon nanomaterials have led to the development of new electrochemical biosensing strategies that have flourished as interesting alternatives to conventional methodologies for clinical diagnostics. This paper briefly reviews the advantages of using carbon nanostructures and their hybrid nanocomposites as electrode modifiers to construct efficient electrochemical sensing platforms for diagnosis. The review provides an updated overview of some selected examples involving attractive amplification and biosensing approaches which have been applied to the determination of relevant genetic and protein diagnostics biomarkers. PMID:28035946

  14. Flexible regulation of DNA displacement reaction through nucleic acid-recognition enzyme and its application in keypad lock system and biosensing.

    PubMed

    Li, Chao; Shi, Liu; Tao, Yaqin; Mao, Xiaoxia; Xiang, Yang; Li, Genxi

    2017-08-30

    Toehold-mediated DNA strand displacement reaction (SDR) plays pivotal roles for the construction of diverse dynamic DNA nanodevices. To date, many elements have been introduced into SDR system to achieve controllable activation and fine regulation. However, as the most relevant stimuli for nucleic acid involved reaction, nucleic acid-recognizing enzymes (NAEs) have received nearly no attention so far despite SDR often takes place in NAEs-enriched environment (i.e., biological fluids). Herein, we report a set of NAEs-controlled SDR strategies, which take full advantage of NAEs' properties. In this study, three different kinds of enzymes belonging to several classes (i.e., exonuclease, endonuclease and polymerase) have been used to activate or inhibit SDR, and more importantly, some mechanisms behind these strategies on how NAEs affect SDR have also been revealed. The exploration to use NAEs as possible cues to operate SDR will expand the available toolbox to build novel stimuli-fueled DNA nanodevices and could open the door to many applications including enzyme-triggered biocomputing and biosensing.

  15. Coupled chemical reactions in dynamic nanometric confinement: VII. Biosensors based on swift heavy ion tracks with membranes

    NASA Astrophysics Data System (ADS)

    Fink, D.; Muñoz H., G.; Garcia-Arrelano, H.; Alfonta, L.; Vacik, J.; Kiv, A.; Hnatowicz, V.

    2017-02-01

    In previous papers it was shown that the coupling of the two chemical reactions: {NaOH etchant - PET polymer} and {NaOH etchant - AgNO3 solution} within the dynamic confinement of etched swift heavy ion tracks eventually leads to the formation of tiny Ag2O membranes within these nanopores, thus separating the latter ones into two adjacent segments. It is shown here that the deposition of enzymes in these two segments transforms these structures into biosensors. In our earlier developed sensors with transparent etched ion tracks, we frequently used glucose oxidase as enzyme and glucose as analyte. In these cases, the enzymatic reaction within the tracks leads to a change in the pH value of the confined solution and hence also in the track conductivity, so these structures can be used for biosensing. When applying, for easy comparison, the same enzyme/analyte combination to the segmented sensor arrangement presented here, we find a striking improvement in detection sensitivity which points at a different biosensing mechanism due to intrinsic polarisation effects across the newly inserted membranes.

  16. Improvement in glucose biosensing response of electrochemically grown polypyrrole nanotubes by incorporating crosslinked glucose oxidase.

    PubMed

    Palod, Pragya Agar; Singh, Vipul

    2015-10-01

    In this paper a novel enzymatic glucose biosensor has been reported in which platinum coated alumina membranes (Anodisc™s) have been employed as templates for the growth of polypyrrole (PPy) nanotube arrays using electrochemical polymerization. The PPy nanotube arrays were grown on Anodisc™s of pore diameter 100 nm using potentiostatic electropolymerization. In order to optimize the polymerization time, immobilization of glucose oxidase (GOx) was first performed using physical adsorption followed by measuring its biosensing response which was examined amperometrically for increasing concentrations of glucose. In order to further improve the sensing performance of the biosensor fabricated for optimum polymerization duration, enzyme immobilization was carried out using cross-linking with glutaraldehyde and bovine serum albumin (BSA). Approximately six fold enhancement in the sensitivity was observed in the fabricated electrodes. The biosensors also showed a wide range of linear operation (0.2-13 mM), limit of detection of 50 μM glucose concentration, excellent selectivity for glucose, notable reliability for real sample detection and substantially improved shelf life. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Hybrid hydrogels containing vertically aligned carbon nanotubes with anisotropic electrical conductivity for muscle myofiber fabrication

    NASA Astrophysics Data System (ADS)

    Ahadian, Samad; Ramón-Azcón, Javier; Estili, Mehdi; Liang, Xiaobin; Ostrovidov, Serge; Shiku, Hitoshi; Ramalingam, Murugan; Nakajima, Ken; Sakka, Yoshio; Bae, Hojae; Matsue, Tomokazu; Khademhosseini, Ali

    2014-03-01

    Biological scaffolds with tunable electrical and mechanical properties are of great interest in many different fields, such as regenerative medicine, biorobotics, and biosensing. In this study, dielectrophoresis (DEP) was used to vertically align carbon nanotubes (CNTs) within methacrylated gelatin (GelMA) hydrogels in a robust, simple, and rapid manner. GelMA-aligned CNT hydrogels showed anisotropic electrical conductivity and superior mechanical properties compared with pristine GelMA hydrogels and GelMA hydrogels containing randomly distributed CNTs. Skeletal muscle cells grown on vertically aligned CNTs in GelMA hydrogels yielded a higher number of functional myofibers than cells that were cultured on hydrogels with randomly distributed CNTs and horizontally aligned CNTs, as confirmed by the expression of myogenic genes and proteins. In addition, the myogenic gene and protein expression increased more profoundly after applying electrical stimulation along the direction of the aligned CNTs due to the anisotropic conductivity of the hybrid GelMA-vertically aligned CNT hydrogels. We believe that platform could attract great attention in other biomedical applications, such as biosensing, bioelectronics, and creating functional biomedical devices.

  18. Advanced biosensors for monitoring astronauts' health during long-duration space missions.

    PubMed

    Roda, Aldo; Mirasoli, Mara; Guardigli, Massimo; Zangheri, Martina; Caliceti, Cristiana; Calabria, Donato; Simoni, Patrizia

    2018-07-15

    Long-duration space missions pose important health concerns for astronauts, especially regarding the adverse effects of microgravity and exposure to high-energy cosmic rays. The long-term maintenance of crew health and performance mainly relies on prevention, early diagnoses, condition management, and medical interventions in situ. In-flight biosensor diagnostic devices and medical procedures must use few resources and operate in a microgravity environment, which complicates the collection and management of biological samples. Moreover, the biosensors must be certified for in-flight operation according to strict design and safety regulations. Herein, we report on the state of the art and recent advances in biosensing diagnostic instrumentation for monitoring astronauts' health during long-duration space missions, including portable and wearable biosensors. We discuss perspectives on new-format biosensors in autonomous space clinics. We also describe our own work in developing biosensing devices for non-invasively diagnosing space-related diseases, and how they are used in long-duration missions. Finally, we discuss the benefits of space exploration for Earth-based medicine. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Biosensing by WGM Microspherical Resonators

    PubMed Central

    Righini, Giancarlo C.; Soria, Silvia

    2016-01-01

    Whispering gallery mode (WGM) microresonators, thanks to their unique properties, have allowed researchers to achieve important results in both fundamental research and engineering applications. Among the various geometries, microspheres are the simplest 3D WGM resonators; the total optical loss in such resonators can be extremely low, and the resulting extraordinarily high Q values of 108–109 lead to high energy density, narrow resonant-wavelength lines and a lengthy cavity ringdown. They can also be coated in order to better control their properties or to increase their functionality. Their very high sensitivity to changes in the surrounding medium has been exploited for several sensing applications: protein adsorption, trace gas detection, impurity detection in liquids, structural health monitoring of composite materials, detection of electric fields, pressure sensing, and so on. In the present paper, after a general introduction to WGM resonators, attention is focused on spherical microresonators, either in bulk or in bubble format, to their fabrication, characterization and functionalization. The state of the art in the area of biosensing is presented, and the perspectives of further developments are discussed. PMID:27322282

  20. Boron-doped diamond nano/microelectrodes for bio-sensing and in vitro measurements

    PubMed Central

    Dong, Hua; Wang, Shihua; Galligan, James J.; Swain, Greg M.

    2015-01-01

    Since the fabrication of the first diamond electrode in the mid 1980s, repid progress has been made on the development and application of this new type of electrode material. Boron-doped diamond (BDD) electrodes exhibit outstanding properties compared to oxygen-containing sp2 carbon electrodes. These properties make BDD electrodes an ideal choice for use in complex samples. In recent years, BDD microelectrodes have been applied to in vitro and in vivo measurements of biological molecules in animals, tissues and cells. This review will summarize recent progress in the development and applications of BDD electrodes in bio-sensing and in vitro measurements of biomolecules. In the first section, the methods for BDD nanocrystalline diamond film deposition and BDD microelectrodes preparation are described. This is followed by a description and discussion of several approaches for characterization of the BDD electrode surface structure, morphology, and electrochemical activity. Further, application of BDD microelectrodes for use in the in vitro analysis of norepinephrine (NE), serotonin (5-HT), nitric oxide (NO), histamine, and adenosine from tissues are summarized and finally some of the remaining challenges are discussed. PMID:21196394

Top