Sample records for biosensor flow cell

  1. A hard-soft microfluidic-based biosensor flow cell for SPR imaging application.

    PubMed

    Liu, Changchun; Cui, Dafu; Li, Hui

    2010-09-15

    An ideal microfluidic-based biosensor flow cell should have not only a "soft" interface for high strength sealing with biosensing chips, but also "hard" macro-to-micro interface for tubing connection. Since these properties are exclusive of each other, no one material can provide the advantages of both. In this paper, we explore the application of a SiO(2) thin film, deposited by plasma-enhanced chemical vapor deposition (PECVD) technology, as an intermediate layer for irreversibly adhering polydimethylsiloxane (PDMS) to plastic substrate, and develop a hard-soft, compact, robust microfluidic-based biosensor flow cell for the multi-array immunoassay application of surface plasmon resonance (SPR) imaging. This hard-soft biosensor flow cell consists of one rigid, computer numerically controlled (CNC)-machined poly(methyl methacrylate) (PMMA) base coated with a 200 nm thick SiO(2) thin film, and one soft PDMS microfluidic layer. This novel microfluidic-based biosensor flow cell does not only keep the original advantage of conventional PDMS-based biosensor flow cell such as the intrinsically soft interface, easy-to-fabrication, and low cost, but also has a rigid, robust, easy-to-use interface to tubing connection and can be operated up to 185 kPa in aqueous environments without failure. Its application was successfully demonstrated with two types of experiments by coupling with SPR imaging biosensor: the real-time monitoring of the immunoglobulin G (IgG) interaction, as well as the detection of sulfamethoxazole (SMOZ) and sulfamethazine (SMZ) with the sensitivity of 3.5 and 0.6 ng/mL, respectively. This novel hard-soft microfluidic device is also useful for a variety of other biosensor flow cells. Copyright 2010 Elsevier B.V. All rights reserved.

  2. A flow cytometry-optimized assay using an SOS-green fluorescent protein (SOS-GFP) whole-cell biosensor for the detection of genotoxins in complex environments.

    PubMed

    Norman, Anders; Hansen, Lars Hestbjerg; Sørensen, Søren J

    2006-02-28

    Whole-cell biosensors have become popular tools for detection of ecotoxic compounds in environmental samples. We have developed an assay optimized for flow cytometry with detection of genotoxic compounds in mind. The assay features extended pre-incubation and a cell density of only 10(6)-10(7) cells/mL, and proved far more sensitive than a previously published assay using the same biosensor strain. By applying the SOS-green fluorescent protein (GFP) whole-cell biosensor directly to soil microcosms we were also able to evaluate both the applicability and sensitivity of a biosensor based on SOS-induction in whole soil samples. Soil microcosms were spiked with a dilution-series of crude broth extract from the mitomycin C-producing streptomycete Streptomyces caespitosus. Biosensors extracted from these microcosms after 1 day of incubation at 30 degrees C were easily distinguished from extracts of non-contaminated soil particles when using flow cytometry, and induction of the biosensor by mitomycin C was detectable at concentrations as low as 2.5 ng/g of soil.

  3. Flow Cell Design for Effective Biosensing

    PubMed Central

    Pike, Douglas J.; Kapur, Nikil; Millner, Paul A.; Stewart, Douglas I.

    2013-01-01

    The efficiency of three different biosensor flow cells is reported. All three flow cells featured a central channel that expands in the vicinity of the sensing element to provide the same diameter active region, but the rate of channel expansion and contraction varied between the designs. For each cell the rate at which the analyte concentration in the sensor chamber responds to a change in the influent analyte concentration was determined numerically using a finite element model and experimentally using a flow-fluorescence technique. Reduced flow cell efficiency with increasing flow rates was observed for all three designs and was related to the increased importance of diffusion relative to advection, with efficiency being limited by the development of regions of recirculating flow (eddies). However, the onset of eddy development occurred at higher flow rates for the design with the most gradual channel expansion, producing a considerably more efficient flow cell across the range of flow rates considered in this study. It is recommended that biosensor flow cells be designed to minimize the tendency towards, and be operated under conditions that prevent the development of flow recirculation. PMID:23344373

  4. Detection of Oxytetracycline Production by Streptomyces rimosus in Soil Microcosms by Combining Whole-Cell Biosensors and Flow Cytometry

    PubMed Central

    Hansen, Lars Hestbjerg; Ferrari, Belinda; Sørensen, Anders Hay; Veal, Duncan; Sørensen, Søren Johannes

    2001-01-01

    Combining the high specificity of bacterial biosensors and the resolution power of fluorescence-activated cell sorting (FACS) provided qualitative detection of oxytetracycline production by Streptomyces rimosus in soil microcosms. A plasmid containing a transcriptional fusion between the tetR-regulated Ptet promoter from Tn10 and a FACS-optimized gfp gene was constructed. When harbored by Escherichia coli, this plasmid produces large amounts of green fluorescent protein (GFP) in the presence of tetracycline. This tetracycline biosensor was used to detect the production of oxytetracycline by S. rimosus introduced into sterile soil. The tetracycline-induced GFP-producing biosensors were detected by FACS analysis, enabling the detection of oxytetracycline encounters by single biosensor cells. This approach can be used to study interactions between antibiotic producers and their target organisms in soil. PMID:11133451

  5. Study of endothelial cell apoptosis using fluorescence resonance energy transfer (FRET) biosensor cell line with hemodynamic microfluidic chip system.

    PubMed

    Yu, J Q; Liu, X F; Chin, L K; Liu, A Q; Luo, K Q

    2013-07-21

    To better understand how hyperglycemia induces endothelial cell dysfunction under the diabetic conditions, a hemodynamic microfluidic chip system was developed. The system combines a caspase-3-based fluorescence resonance energy transfer (FRET) biosensor cell line which can detect endothelial cell apoptosis in real-time, post-treatment effect and with a limited cell sample, by using a microfluidic chip which can mimic the physiological pulsatile flow profile in the blood vessel. The caspase-3-based FRET biosensor endothelial cell line (HUVEC-C3) can produce a FRET-based sensor protein capable of probing caspase-3 activation. When the endothelial cells undergo apoptosis, the color of the sensor cells changes from green to blue, thus sensing apoptosis. A double-labeling fluorescent technique (yo pro-1 and propidium iodide) was used to validate the findings revealed by the FRET-based caspase sensor. The results show high rates of apoptosis and necrosis of endothelial cells when high glucose concentration was applied in our hemodynamic microfluidic chip combined with an exhaustive pulsatile flow profile. The two apoptosis detection techniques (fluorescent method and FRET biosensor) are comparable; but FRET biosensor offers more advantages such as real-time observation and a convenient operating process to generate more accurate and reliable data. Furthermore, the activation of the FRET biosensor also confirms the endothelial cell apoptosis induced by the abnormal pulsatile shear stress and high glucose concentration is through caspase-3 pathway. A 12% apoptotic rate (nearly a 4-fold increase compared to the static condition) was observed when the endothelial cells were exposed to a high glucose concentration of 20 mM under 2 h exhaustive pulsatile shear stress of 30 dyne cm(-2) and followed with another 10 h normal pulsatile shear stress of 15 dyne cm(-2). Therefore, the most important finding of this study is to develop a novel endothelial cell apoptosis detection method, which combines the microfluidic chip system and FRET biosensor. This finding may provide new insight into how glucose causes endothelial cell dysfunction, which is the major cause of diabetes-derived complications.

  6. Immune biosensors based on the SPR and TIRE: efficiency of their application for bacteria determination

    NASA Astrophysics Data System (ADS)

    Starodub, N. F.; Ogorodniichuk, J.; Lebedeva, T.; Shpylovyy, P.

    2013-11-01

    In this work we have designed high-specific biosensors for Salmonella typhimurium detection based on the surface plasmon resonance (SPR) and total internal reflection ellipsometry (TIRE). It has been demonstrated high selectivity and sensitivity of analysis. As a registering part for our experiments the Spreeta (USA) and "Plasmonotest" (Ukraine) with flowing cell have been applied among of SPR device. Previous researches confirmed an efficiency of SPR biosensors using for detecting of specific antigen-antibody interactions therefore this type of reactions with some previous preparations of surface binding layer was used as reactive part. It has been defined that in case with Spreeta sensitivity was on the level 103 - 107 cells/ml. Another biosensor based on the SPR has shown the sensitivity within 101 - 106 cells/ml. Maximal sensitivity was on the level of several cells in 10 ml (up to the fact that less than 5 cells) which has been obtained using the biosensor based on TIRE.

  7. Adhesion kinetics of human primary monocytes, dendritic cells, and macrophages: Dynamic cell adhesion measurements with a label-free optical biosensor and their comparison with end-point assays.

    PubMed

    Orgovan, Norbert; Ungai-Salánki, Rita; Lukácsi, Szilvia; Sándor, Noémi; Bajtay, Zsuzsa; Erdei, Anna; Szabó, Bálint; Horvath, Robert

    2016-09-01

    Monocytes, dendritic cells (DCs), and macrophages (MFs) are closely related immune cells that differ in their main functions. These specific functions are, to a considerable degree, determined by the differences in the adhesion behavior of the cells. To study the inherently and essentially dynamic aspects of the adhesion of monocytes, DCs, and MFs, dynamic cell adhesion assays were performed with a high-throughput label-free optical biosensor [Epic BenchTop (BT)] on surfaces coated with either fibrinogen (Fgn) or the biomimetic copolymer PLL-g-PEG-RGD. Cell adhesion profiles typically reached their maximum at ∼60 min after cell seeding, which was followed by a monotonic signal decrease, indicating gradually weakening cell adhesion. According to the biosensor response, cell types could be ordered by increasing adherence as monocytes, MFs, and DCs. Notably, all three cell types induced a larger biosensor signal on Fgn than on PLL-g-PEG-RGD. To interpret this result, the molecular layers were characterized by further exploiting the potentials of the biosensor: by measuring the adsorption signal induced during the surface coating procedure, the authors could estimate the surface density of adsorbed molecules and, thus, the number of binding sites potentially presented for the adhesion receptors. Surfaces coated with PLL-g-PEG-RGD presented less RGD sites, but was less efficient in promoting cell spreading than those coated with Fgn; hence, other binding sites in Fgn played a more decisive role in determining cell adherence. To support the cell adhesion data obtained with the biosensor, cell adherence on Fgn-coated surfaces 30-60 min after cell seeding was measured with three complementary techniques, i.e., with (1) a fluorescence-based classical adherence assay, (2) a shear flow chamber applying hydrodynamic shear stress to wash cells away, and (3) an automated micropipette using vacuum-generated fluid flow to lift cells up. These techniques confirmed the results obtained with the high-temporal-resolution Epic BT, but could only provide end-point data. In contrast, complex, nonmonotonic cell adhesion kinetics measured by the high-throughput optical biosensor is expected to open a window on the hidden background of the immune cell-extracellular matrix interactions.

  8. Biosensoric potential of microbial fuel cells.

    PubMed

    Schneider, György; Kovács, Tamás; Rákhely, Gábor; Czeller, Miklós

    2016-08-01

    Recent progress in microbial fuel cell (MFC) technology has highlighted the potential of these devices to be used as biosensors. The advantages of MFC-based biosensors are that they are phenotypic and can function in either assay- or flow-through formats. These features make them appropriate for contiguous on-line monitoring in laboratories and for in-field applications. The selectivity of an MFC biosensor depends on the applied microorganisms in the anodic compartment where electron transfer (ET) between the artificial surface (anode) and bacterium occurs. This process strongly determines the internal resistance of the sensoric system and thus influences signal outcome and response time. Despite their beneficial characteristics, the number of MFC-based biosensoric applications has been limited until now. The aim of this mini-review is to turn attention to the biosensoric potential of MFCs by summarizing ET mechanisms on which recently established and future sensoric devices are based.

  9. Computational analysis of integrated biosensing and shear flow in a microfluidic vascular model

    NASA Astrophysics Data System (ADS)

    Wong, Jeremy F.; Young, Edmond W. K.; Simmons, Craig A.

    2017-11-01

    Fluid flow and flow-induced shear stress are critical components of the vascular microenvironment commonly studied using microfluidic cell culture models. Microfluidic vascular models mimicking the physiological microenvironment also offer great potential for incorporating on-chip biomolecular detection. In spite of this potential, however, there are few examples of such functionality. Detection of biomolecules released by cells under flow-induced shear stress is a significant challenge due to severe sample dilution caused by the fluid flow used to generate the shear stress, frequently to the extent where the analyte is no longer detectable. In this work, we developed a computational model of a vascular microfluidic cell culture model that integrates physiological shear flow and on-chip monitoring of cell-secreted factors. Applicable to multilayer device configurations, the computational model was applied to a bilayer configuration, which has been used in numerous cell culture applications including vascular models. Guidelines were established that allow cells to be subjected to a wide range of physiological shear stress while ensuring optimal rapid transport of analyte to the biosensor surface and minimized biosensor response times. These guidelines therefore enable the development of microfluidic vascular models that integrate cell-secreted factor detection while addressing flow constraints imposed by physiological shear stress. Ultimately, this work will result in the addition of valuable functionality to microfluidic cell culture models that further fulfill their potential as labs-on-chips.

  10. Microfabricated silicon biosensors for microphysiometry

    NASA Technical Reports Server (NTRS)

    Bousse, L. J.; Libby, J. M.; Parce, J. W.

    1993-01-01

    Microphysiometers are biosensor devices that measure the metabolic rate of living cells by detecting the rate of extracellular acidification caused by a small number of cells. The cells are entrapped in a microvolume chamber, whose bottom surface is a silicon sensor chip. In a further miniaturization step, we have recently fabricated multichannel flow-through chips that will allow greater throughput and multiplicity. Microphysiometer technology can be applied to the detection of microorganisms. We describe the sensitive detection of bacteria and yeast. Further applications of microphysiometry to the characterization of microorganisms can be anticipated.

  11. Biosensor for remote monitoring of airborne toxins

    NASA Astrophysics Data System (ADS)

    Knopf, George K.; Bassi, Amarjeet S.; Singh, Shikha; Macleod, Roslyn

    1999-12-01

    The rapid detection of toxic contaminants released into the air by chemical processing facilities is a high priority for many manufacturers. This paper describes a novel biosensor for the remote monitoring of toxic sites. The proposed biosensor is a measurement system that employs immobilized luminescent Vibrio fisheri bacteria to detect airborne contaminants. The presence of toxic chemicals will lead to a detectable decrease in the intensity of light produced by the bacteria. Both cellular and environmental factors control the bioluminescence of these bacteria. Important design factors are the appropriate cell growth media, environmental toxicity, oxygen and cell concentrations. The luminescent bacteria are immobilized on polyvinyl alcohol (PVA) gels and placed inside a specially constructed, miniature flow cell which houses a transducer, power source, and transmitter to convert the light signal information into radio frequencies that are picked up by a receiver at a remote location. The biosensor prototype is designed to function either as a single unit mounted on an exploratory robot or numerous units spatially distributed throughout a contaminated environment for remote sensing applications.

  12. Label-free measurements on cell apoptosis using a terahertz metamaterial-based biosensor

    NASA Astrophysics Data System (ADS)

    Zhang, Caihong; Liang, Lanju; Ding, Liang; Jin, Biaobing; Hou, Yayi; Li, Chun; Jiang, Ling; Liu, Weiwei; Hu, Wei; Lu, Yanqing; Kang, Lin; Xu, Weiwei; Chen, Jian; Wu, Peiheng

    2016-06-01

    Label-free, real-time, and in-situ measurement on cell apoptosis is highly desirable in cell biology. We propose here a design of terahertz (THz) metamaterial-based biosensor for meeting this requirement. This metamaterial consists of a planar array of five concentric subwavelength gold ring resonators on a 10 μm-thick polyimide substrate, which can sense the change of dielectric environment above the metamaterial. We employ this sensor to an oral cancer cell (SCC4) with and without cisplatin, a chemotherapy drug for cancer treatment, and find a linear relation between cell apoptosis measured by Flow Cytometry and the relative change of resonant frequencies of the metamaterial measured by THz time-domain spectroscopy. This implies that we can determine the cell apoptosis in a label-free manner. We believe that this metamaterial-based biosensor can be developed into a cheap, label-free, real-time, and in-situ detection tool, which is of significant impact on the study of cell biology.

  13. Determination of Zinc, Cadmium and Lead Bioavailability in Contaminated Soils at the Single-Cell Level by a Combination of Whole-Cell Biosensors and Flow Cytometry

    PubMed Central

    Hurdebise, Quentin; Tarayre, Cédric; Fischer, Christophe; Colinet, Gilles; Hiligsmann, Serge; Delvigne, Frank

    2015-01-01

    Zinc, lead and cadmium are metallic trace elements (MTEs) that are widespread in the environment and tend to accumulate in soils because of their low mobility and non-degradability. The purpose of this work is to evaluate the applicability of biosensors as tools able to provide data about the bioavailability of such MTEs in contaminated soils. Here, we tested the genetically-engineered strain Escherichia coli pPZntAgfp as a biosensor applicable to the detection of zinc, lead and cadmium by the biosynthesis of green fluorescent protein (GFP) accumulating inside the cells. Flow cytometry was used to investigate the fluorescence induced by the MTEs. A curvilinear response to zinc between 0 and 25 mg/L and another curvilinear response to cadmium between 0 and 1.5 mg/L were highlighted in liquid media, while lead did not produce exploitable results. The response relating to a Zn2+/Cd2+ ratio of 10 was further investigated. In these conditions, E. coli pPZntAgfp responded to cadmium only. Several contaminated soils with a Zn2+/Cd2+ ratio of 10 were analyzed with the biosensor, and the metallic concentrations were also measured by atomic absorption spectroscopy. Our results showed that E. coli pPZntAgfp could be used as a monitoring tool for contaminated soils being processed. PMID:25894939

  14. A cCPE-based xenon biosensor for magnetic resonance imaging of claudin-expressing cells.

    PubMed

    Piontek, Anna; Witte, Christopher; May Rose, Honor; Eichner, Miriam; Protze, Jonas; Krause, Gerd; Piontek, Jörg; Schröder, Leif

    2017-06-01

    The majority of malignant tumors originate from epithelial cells, and many of them are characterized by an overexpression of claudins (Cldns) and their mislocalization out of tight junctions. We utilized the C-terminal claudin-binding domain of Clostridium perfringens enterotoxin (cCPE), with its high affinity to specific members of the claudin family, as the targeting unit for a claudin-sensitive cancer biosensor. To overcome the poor sensitivity of conventional relaxivity-based magnetic resonance imaging (MRI) contrast agents, we utilized the superior sensitivity of xenon Hyper-CEST biosensors. We labeled cCPE for both xenon MRI and fluorescence detection. As one readout module, we employed a cryptophane (CrA) monoacid and, as the second, a fluorescein molecule. Both were conjugated separately to a biotin molecule via a polyethyleneglycol chemical spacer and later via avidin linked to GST-cCPE. Nontransfected HEK293 cells and HEK293 cells stably expressing Cldn4-FLAG were incubated with the cCPE-based biosensor. Fluorescence-based flow cytometry and xenon MRI demonstrated binding of the biosensor specifically to Cldn4-expressing cells. This study provides proof of concept for the use of cCPE as a carrier for diagnostic contrast agents, a novel approach for potential detection of Cldn3/-4-overexpressing tumors for noninvasive early cancer detection. © 2017 New York Academy of Sciences.

  15. Strand displacement amplification for ultrasensitive detection of human pluripotent stem cells.

    PubMed

    Wu, Wei; Mao, Yiping; Zhao, Shiming; Lu, Xuewen; Liang, Xingguo; Zeng, Lingwen

    2015-06-30

    Human pluripotent stem cells (hPSCs), such as embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), provide a powerful model system for studies of cellular identity and early mammalian development, which hold great promise for regenerative medicine. It is necessary to develop a convenient method to discriminate hPSCs from other cells in clinics and basic research. Herein, a simple and reliable biosensor for stem cell detection was established. In this biosensor system, stage-specific embryonic antigen-3 (SSEA-3) and stage-specific embryonic antigen-4 (SSEA-4) were used to mark human pluripotent stem cells (hPSCs). Antibody specific for SSEA-3 was coated onto magnetic beads for hPSCs enrichment, and antibody specific for SSEA-4 was conjugated with carboxyl-modified tDNA sequence which was used as template for strand displacement amplification (SDA). The amplified single strand DNA (ssDNA) was detected with a lateral flow biosensor (LFB). This biosensor is capable of detecting a minimum of 19 human embryonic stem cells by a strip reader and 100 human embryonic stem cells by the naked eye within 80min. This approach has also shown excellent specificity to distinguish hPSCs from other types of cells, showing that it is promising for specific and handy detection of human pluripotent stem cells. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Modeling microelectrode biosensors: free-flow calibration can substantially underestimate tissue concentrations

    PubMed Central

    Wall, Mark J.

    2016-01-01

    Microelectrode amperometric biosensors are widely used to measure concentrations of analytes in solution and tissue including acetylcholine, adenosine, glucose, and glutamate. A great deal of experimental and modeling effort has been directed at quantifying the response of the biosensors themselves; however, the influence that the macroscopic tissue environment has on biosensor response has not been subjected to the same level of scrutiny. Here we identify an important issue in the way microelectrode biosensors are calibrated that is likely to have led to underestimations of analyte tissue concentrations. Concentration in tissue is typically determined by comparing the biosensor signal to that measured in free-flow calibration conditions. In a free-flow environment the concentration of the analyte at the outer surface of the biosensor can be considered constant. However, in tissue the analyte reaches the biosensor surface by diffusion through the extracellular space. Because the enzymes in the biosensor break down the analyte, a density gradient is set up resulting in a significantly lower concentration of analyte near the biosensor surface. This effect is compounded by the diminished volume fraction (porosity) and reduction in the diffusion coefficient due to obstructions (tortuosity) in tissue. We demonstrate this effect through modeling and experimentally verify our predictions in diffusive environments. NEW & NOTEWORTHY Microelectrode biosensors are typically calibrated in a free-flow environment where the concentrations at the biosensor surface are constant. However, when in tissue, the analyte reaches the biosensor via diffusion and so analyte breakdown by the biosensor results in a concentration gradient and consequently a lower concentration around the biosensor. This effect means that naive free-flow calibration will underestimate tissue concentration. We develop mathematical models to better quantify the discrepancy between the calibration and tissue environment and experimentally verify our key predictions. PMID:27927788

  17. Modeling microelectrode biosensors: free-flow calibration can substantially underestimate tissue concentrations.

    PubMed

    Newton, Adam J H; Wall, Mark J; Richardson, Magnus J E

    2017-03-01

    Microelectrode amperometric biosensors are widely used to measure concentrations of analytes in solution and tissue including acetylcholine, adenosine, glucose, and glutamate. A great deal of experimental and modeling effort has been directed at quantifying the response of the biosensors themselves; however, the influence that the macroscopic tissue environment has on biosensor response has not been subjected to the same level of scrutiny. Here we identify an important issue in the way microelectrode biosensors are calibrated that is likely to have led to underestimations of analyte tissue concentrations. Concentration in tissue is typically determined by comparing the biosensor signal to that measured in free-flow calibration conditions. In a free-flow environment the concentration of the analyte at the outer surface of the biosensor can be considered constant. However, in tissue the analyte reaches the biosensor surface by diffusion through the extracellular space. Because the enzymes in the biosensor break down the analyte, a density gradient is set up resulting in a significantly lower concentration of analyte near the biosensor surface. This effect is compounded by the diminished volume fraction (porosity) and reduction in the diffusion coefficient due to obstructions (tortuosity) in tissue. We demonstrate this effect through modeling and experimentally verify our predictions in diffusive environments. NEW & NOTEWORTHY Microelectrode biosensors are typically calibrated in a free-flow environment where the concentrations at the biosensor surface are constant. However, when in tissue, the analyte reaches the biosensor via diffusion and so analyte breakdown by the biosensor results in a concentration gradient and consequently a lower concentration around the biosensor. This effect means that naive free-flow calibration will underestimate tissue concentration. We develop mathematical models to better quantify the discrepancy between the calibration and tissue environment and experimentally verify our key predictions. Copyright © 2017 the American Physiological Society.

  18. Sensitivity of cell-based biosensors to environmental variables.

    PubMed

    Gilchrist, Kristin H; Giovangrandi, Laurent; Whittington, R Hollis; Kovacs, Gregory T A

    2005-01-15

    Electrically active living cells cultured on extracellular electrode arrays are utilized to detect biologically active agents. Because cells are highly sensitive to environmental conditions, environmental fluctuations can elicit cellular responses that contribute to the noise in a cell-based biosensor system. Therefore, the characterization and control of environmental factors such as temperature, pH, and osmolarity is critical in such a system. The cell-based biosensor platform described here utilizes the measurement of action potentials from cardiac cells cultured on electrode arrays. A recirculating fluid flow system is presented for use in dose-response experiments that regulates temperature within +/-0.2 degrees C, pH to within +/-0.05 units, and allows no significant change in osmolarity. Using this system, the relationship between the sensor output parameters and environmental variation was quantified. Under typical experimental conditions, beat rate varied approximately 10% per degree change in temperature or per 0.1 unit change in pH. Similar relationships were measured for action potential amplitude, duration, and conduction velocity. For the specific flow system used in this work, the measured environmental sensitivity resulted in an overall beat rate variation of +/-4.7% and an overall amplitude variation of +/-3.3%. The magnitude of the noise due to environmental sensitivity has a large impact on the detection capability of the cell-based system. The significant responses to temperature, pH, and osmolarity have important implications for the use of living cells in detection systems and should be considered in the design and evaluation of such systems.

  19. Development and Characterization of a Green Fluorescent Protein-Based Bacterial Biosensor for Bioavailable Toluene and Related Compounds†

    PubMed Central

    Stiner, Lawrence; Halverson, Larry J.

    2002-01-01

    A green fluorescent protein-based Pseudomonas fluorescens strain A506 biosensor was constructed and characterized for its potential to measure benzene, toluene, ethylbenzene, and related compounds in aqueous solutions. The biosensor is based on a plasmid carrying the toluene-benzene utilization (tbu) pathway transcriptional activator TbuT from Ralstonia pickettii PKO1 and a transcriptional fusion of its promoter PtbuA1 with a promoterless gfp gene on a broad-host-range promoter probe vector. TbuT was not limiting, since it was constitutively expressed by being fused to the neomycin phosphotransferase (nptII) promoter. The biosensor cells were readily induced, and fluorescence emission after induction periods of 3 h correlated well with toluene, benzene, ethylbenzene, and trichloroethylene concentrations. Our experiments using flow cytometry show that intermediate levels of gfp expression in response to toluene reflect uniform induction of cells. As the toluene concentration increases, the level of gfp expression per cell increases until saturation kinetics of the TbuT-PtbuA1 system are observed. Each inducer had a unique minimum concentration that was necessary for induction, with Kapp values that ranged from 3.3 ± 1.8 μM for toluene to 35.6 ± 16.6 μM for trichloroethylene (means ± standard errors of the means), and maximal fluorescence response. The fluorescence response was specific for alkyl-substituted benzene derivatives and branched alkenes (di- and trichloroethylene, 2-methyl-2-butene). The biosensor responded in an additive fashion to the presence of multiple inducers and was unaffected by the presence of compounds that were not inducers, such as those present in gasoline. Flow cytometry revealed that, in response to toxic concentrations of gasoline, there was a small uninduced population and another larger fully induced population whose levels of fluorescence corresponded to the amount of effectors present in the sample. These results demonstrate the potential for green fluorescent protein-based bacterial biosensors to measure environmental contaminants. PMID:11916719

  20. Combining Whispering-Gallery Mode Optical Biosensors with Microfluidics for Real-Time Detection of Protein Secretion from Living Cells in Complex Media.

    PubMed

    Chen, Ying-Jen; Schoeler, Ulrike; Huang, Chung-Hsuan Benjamin; Vollmer, Frank

    2018-05-01

    The noninvasive monitoring of protein secretion of cells responding to drug treatment is an effective and essential tool in latest drug development and for cytotoxicity assays. In this work, a surface functionalization method is demonstrated for specific detection of protein released from cells and a platform that integrates highly sensitive optical devices, called whispering-gallery mode biosensors, with precise microfluidics control to achieve label-free and real-time detection. Cell biomarker release is measured in real time and with nanomolar sensitivity. The surface functionalization method allows for antibodies to be immobilized on the surface for specific detection, while the microfluidics system enables detection in a continuous flow with a negligible compromise between sensitivity and flow control over stabilization and mixing. Cytochrome c detection is used to illustrate the merits of the system. Jurkat cells are treated with the toxin staurosporine to trigger cell apoptosis and cytochrome c released into the cell culture medium is monitored via the newly invented optical microfluidic platform. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Reproducible fashion of the HSP70B' promoter-induced cytotoxic response on a live cell-based biosensor by cell cycle synchronization.

    PubMed

    Migita, Satoshi; Wada, Ken-Ichi; Taniguchi, Akiyoshi

    2010-10-15

    Live cell-based sensors potentially provide functional information about the cytotoxic effect of reagents on various signaling cascades. Cells transfected with a reporter vector derived from a cytotoxic response promoter can be used as intelligent cytotoxicity sensors (i.e., sensor cells). We have combined sensor cells and a microfluidic cell culture system that can achieve several laminar flows, resulting in a reliable high-throughput cytotoxicity detection system. These sensor cells can also be applied to single cell arrays. However, it is difficult to detect a cellular response in a single cell array, due to the heterogeneous response of sensor cells. The objective of this study was cell homogenization with cell cycle synchronization to enhance the response of cell-based biosensors. Our previously established stable sensor cells were brought into cell cycle synchronization under serum-starved conditions and we then investigated the cadmium chloride-induced cytotoxic response at the single cell level. The GFP positive rate of synchronized cells was approximately twice as high as that of the control cells, suggesting that cell homogenization is an important step when using cell-based biosensors with microdevices, such as a single cell array. Copyright 2010 Wiley Periodicals, Inc.

  2. Analyzing the biosensor signal in flows: studies with glucose optrodes.

    PubMed

    Kivirand, K; Floren, A; Kagan, M; Avarmaa, T; Rinken, T; Jaaniso, R

    2015-01-01

    Responses of enzymatic bio-optrodes in flow regime were studied and an original model was proposed with the aim of establishing a reliable method for a quick determination of biosensor signal parameters, applicable for biosensor calibration. A dual-optrode glucose biosensor, comprising of a glucose bio-optrode and a reference oxygen optrode, both placed into identical flow channels, was developed and used as a model system. The signal parameters of this biosensor at different substrate concentrations were not dependent on the speed of the probe flow and could be determined from the initial part of the biosensor transient phase signal, providing a valuable tool for rapid analysis. In addition, the model helped to design the biosensor system with reduced impact of enzyme inactivation to the system stability (20% decrease of the enzyme activity lead to only a 1% decrease of the slope of the calibration curve) and hence significantly prolong the effective lifetime of bio-optrodes. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Determination of High-affinity Antibody-antigen Binding Kinetics Using Four Biosensor Platforms.

    PubMed

    Yang, Danlin; Singh, Ajit; Wu, Helen; Kroe-Barrett, Rachel

    2017-04-17

    Label-free optical biosensors are powerful tools in drug discovery for the characterization of biomolecular interactions. In this study, we describe the use of four routinely used biosensor platforms in our laboratory to evaluate the binding affinity and kinetics of ten high-affinity monoclonal antibodies (mAbs) against human proprotein convertase subtilisin kexin type 9 (PCSK9). While both Biacore T100 and ProteOn XPR36 are derived from the well-established Surface Plasmon Resonance (SPR) technology, the former has four flow cells connected by serial flow configuration, whereas the latter presents 36 reaction spots in parallel through an improvised 6 x 6 crisscross microfluidic channel configuration. The IBIS MX96 also operates based on the SPR sensor technology, with an additional imaging feature that provides detection in spatial orientation. This detection technique coupled with the Continuous Flow Microspotter (CFM) expands the throughput significantly by enabling multiplex array printing and detection of 96 reaction sports simultaneously. In contrast, the Octet RED384 is based on the BioLayer Interferometry (BLI) optical principle, with fiber-optic probes acting as the biosensor to detect interference pattern changes upon binding interactions at the tip surface. Unlike the SPR-based platforms, the BLI system does not rely on continuous flow fluidics; instead, the sensor tips collect readings while they are immersed in analyte solutions of a 384-well microplate during orbital agitation. Each of these biosensor platforms has its own advantages and disadvantages. To provide a direct comparison of these instruments' ability to provide quality kinetic data, the described protocols illustrate experiments that use the same assay format and the same high-quality reagents to characterize antibody-antigen kinetics that fit the simple 1:1 molecular interaction model.

  4. In-line pressure-flow module for in vitro modelling of haemodynamics and biosensor validation

    NASA Technical Reports Server (NTRS)

    Koenig, S. C.; Schaub, J. D.; Ewert, D. L.; Swope, R. D.; Convertino, V. A. (Principal Investigator)

    1997-01-01

    An in-line pressure-flow module for in vitro modelling of haemodynamics and biosensor validation has been developed. Studies show that good accuracy can be achieved in the measurement of pressure and of flow, in steady and pulstile flow systems. The model can be used for development, testing and evaluation of cardiovascular-mechanical-electrical anlogue models, cardiovascular prosthetics (i.e. valves, vascular grafts) and pressure and flow biosensors.

  5. Microfluidic biosensing systems. Part I. Development and optimisation of enzymatic chemiluminescent micro-biosensors based on silicon microchips.

    PubMed

    Davidsson, Richard; Genin, Frédéric; Bengtsson, Martin; Laurell, Thomas; Emnéus, Jenny

    2004-10-01

    Chemiluminescent (CL) enzyme-based flow-through microchip biosensors (micro-biosensors) for detection of glucose and ethanol were developed for the purpose of monitoring real-time production and release of glucose and ethanol from microchip immobilised yeast cells. Part I of this study focuses on the development and optimisation of the micro-biosensors in a microfluidic sequential injection analysis (microSIA) system. Glucose oxidase (GOX) or alcohol oxidase (AOX) was co-immobilised with horseradish peroxidase (HRP) on porous silicon flow through microchips. The hydrogen peroxide produced from oxidation of the corresponding analyte (glucose or ethanol) took part in the chemiluminescent (CL) oxidation of luminol catalysed by HRP enhanced by addition of p-iodophenol (PIP). All steps in the microSIA system, including control of syringe pump, multiposition valve (MPV) and data readout, were computer controlled. The influence of flow rate and luminol- and PIP concentration were investigated using a 2(3)-factor experiment using the GOX-HRP sensor. It was found that all estimated single factors and the highest order of interaction were significant. The optimum was found at 250 microM luminol and 150 microM PIP at a flow rate of 18 microl min(-1), the latter as a compromise between signal intensity and analysis time. Using the optimised system settings one sample was processed within 5 min. Two different immobilisation chemistries were investigated for both micro-biosensors based on 3-aminopropyltriethoxsilane (APTS)- or polyethylenimine (PEI) functionalisation followed by glutaraldehyde (GA) activation. GOX-HRP micro-biosensors responded linear in a log-log format within the range 10-1000 microM glucose. Both had an operational stability of at least 8 days, but the PEI-GOX-HRP sensor was more sensitive. The AOX-HRP micro-biosensors responded linear (log-log) in the range between 1 and 10 mM ethanol, but the PEI-AOX-HRP sensor was in general more sensitive. Both sensors had an operational stability of at least 8 h, but with a half-life of 2-3 days.

  6. CFD Modeling of Chamber Filling in a Micro-Biosensor for Protein Detection

    PubMed Central

    Islamov, Meiirbek; Sypabekova, Marzhan; Kanayeva, Damira; Rojas-Solórzano, Luis

    2017-01-01

    Tuberculosis (TB) remains one of the main causes of human death around the globe. The mortality rate for patients infected with active TB goes beyond 50% when not diagnosed. Rapid and accurate diagnostics coupled with further prompt treatment of the disease is the cornerstone for controlling TB outbreaks. To reduce this burden, the existing gap between detection and treatment must be addressed, and dedicated diagnostic tools such as biosensors should be developed. A biosensor is a sensing micro-device that consists of a biological sensing element and a transducer part to produce signals in proportion to quantitative information about the binding event. The micro-biosensor cell considered in this investigation is designed to operate based on aptamers as recognition elements against Mycobacterium tuberculosis secreted protein MPT64, combined in a microfluidic-chamber with inlet and outlet connections. The microfluidic cell is a miniaturized platform with valuable advantages such as low cost of analysis with low reagent consumption, reduced sample volume, and shortened processing time with enhanced analytical capability. The main purpose of this study is to assess the flooding characteristics of the encapsulated microfluidic cell of an existing micro-biosensor using Computational Fluid Dynamics (CFD) techniques. The main challenge in the design of the microfluidic cell lies in the extraction of entrained air bubbles, which may remain after the filling process is completed, dramatically affecting the performance of the sensing element. In this work, a CFD model was developed on the platform ANSYS-CFX using the finite volume method to discretize the domain and solving the Navier–Stokes equations for both air and water in a Eulerian framework. Second-order space discretization scheme and second-order Euler Backward time discretization were used in the numerical treatment of the equations. For a given inlet–outlet diameter and dimensions of an in-house built cell chamber, different inlet liquid flow rates were explored to determine an appropriate flow condition to guarantee an effective venting of the air while filling the chamber. The numerical model depicted free surface waves as promoters of air entrainment that ultimately may explain the significant amount of air content in the chamber observed in preliminary tests after the filling process is completed. Results demonstrated that for the present design, against the intuition, the chamber must be filled with liquid at a modest flow rate to minimize free surface waviness during the flooding stage of the chamber. PMID:28972568

  7. CFD Modeling of Chamber Filling in a Micro-Biosensor for Protein Detection.

    PubMed

    Islamov, Meiirbek; Sypabekova, Marzhan; Kanayeva, Damira; Rojas-Solórzano, Luis

    2017-10-03

    Tuberculosis (TB) remains one of the main causes of human death around the globe. The mortality rate for patients infected with active TB goes beyond 50% when not diagnosed. Rapid and accurate diagnostics coupled with further prompt treatment of the disease is the cornerstone for controlling TB outbreaks. To reduce this burden, the existing gap between detection and treatment must be addressed, and dedicated diagnostic tools such as biosensors should be developed. A biosensor is a sensing micro-device that consists of a biological sensing element and a transducer part to produce signals in proportion to quantitative information about the binding event. The micro-biosensor cell considered in this investigation is designed to operate based on aptamers as recognition elements against Mycobacterium tuberculosis secreted protein MPT64, combined in a microfluidic-chamber with inlet and outlet connections. The microfluidic cell is a miniaturized platform with valuable advantages such as low cost of analysis with low reagent consumption, reduced sample volume, and shortened processing time with enhanced analytical capability. The main purpose of this study is to assess the flooding characteristics of the encapsulated microfluidic cell of an existing micro-biosensor using Computational Fluid Dynamics (CFD) techniques. The main challenge in the design of the microfluidic cell lies in the extraction of entrained air bubbles, which may remain after the filling process is completed, dramatically affecting the performance of the sensing element. In this work, a CFD model was developed on the platform ANSYS-CFX using the finite volume method to discretize the domain and solving the Navier-Stokes equations for both air and water in a Eulerian framework. Second-order space discretization scheme and second-order Euler Backward time discretization were used in the numerical treatment of the equations. For a given inlet-outlet diameter and dimensions of an in-house built cell chamber, different inlet liquid flow rates were explored to determine an appropriate flow condition to guarantee an effective venting of the air while filling the chamber. The numerical model depicted free surface waves as promoters of air entrainment that ultimately may explain the significant amount of air content in the chamber observed in preliminary tests after the filling process is completed. Results demonstrated that for the present design, against the intuition, the chamber must be filled with liquid at a modest flow rate to minimize free surface waviness during the flooding stage of the chamber.

  8. A biosensor assay for the detection of Mycobacterium avium subsp. paratuberculosis in fecal samples

    PubMed Central

    Kumanan, Vijayarani; Nugen, Sam R.; Baeumner, Antje J.

    2009-01-01

    A simple, membrane-strip-based lateral-flow (LF) biosensor assay and a high-throughput microtiter plate assay have been combined with a reverse transcriptase polymerase chain reaction (RT-PCR) for the detection of a small number (ten) of viable Mycobacterium (M.) avium subsp. paratuberculosis (MAP) cells in fecal samples. The assays are based on the identification of the RNA of the IS900 element of MAP. For the assay, RNA was extracted from fecal samples spiked with a known quantity of (101 to 106) MAP cells and amplified using RT-PCR and identified by the LF biosensor and the microtiter plate assay. While the LF biosensor assay requires only 30 min of assay time, the overall process took 10 h for the detection of 10 viable cells. The assays are based on an oligonucleotide sandwich hybridization assay format and use either a membrane flow through system with an immobilized DNA probe that hybridizes with the target sequence or a microtiter plate well. Signal amplification is provided when the target sequence hybridizes to a second DNA probe that has been coupled to liposomes encapsulating the dye, sulforhodamine B. The dye in the liposomes provides a signal that can be read visually, quantified with a hand-held reflectometer, or with a fluorescence reader. Specificity analysis of the assays revealed no cross reactivity with other mycobacteria, such as M. avium complex, M. ulcerans, M. marium, M. kansasii, M. abscessus, M. asiaticum, M. phlei, M. fortuitum, M. scrofulaceum, M. intracellulare, M. smegmatis, and M. bovis. The overall assay for the detection of live MAP organisms is comparatively less expensive and quick, especially in comparison to standard MAP detection using a culture method requiring 6-8 weeks of incubation time, and is significantly less expensive than real-time PCR. PMID:19255522

  9. Biosensors for Cell Analysis.

    PubMed

    Zhou, Qing; Son, Kyungjin; Liu, Ying; Revzin, Alexander

    2015-01-01

    Biosensors first appeared several decades ago to address the need for monitoring physiological parameters such as oxygen or glucose in biological fluids such as blood. More recently, a new wave of biosensors has emerged in order to provide more nuanced and granular information about the composition and function of living cells. Such biosensors exist at the confluence of technology and medicine and often strive to connect cell phenotype or function to physiological or pathophysiological processes. Our review aims to describe some of the key technological aspects of biosensors being developed for cell analysis. The technological aspects covered in our review include biorecognition elements used for biosensor construction, methods for integrating cells with biosensors, approaches to single-cell analysis, and the use of nanostructured biosensors for cell analysis. Our hope is that the spectrum of possibilities for cell analysis described in this review may pique the interest of biomedical scientists and engineers and may spur new collaborations in the area of using biosensors for cell analysis.

  10. High-Speed Lateral Flow Strategy for a Fast Biosensing with an Improved Selectivity and Binding Affinity.

    PubMed

    Cho, Dong Guk; Yoo, Haneul; Lee, Haein; Choi, Yeol Kyo; Lee, Minju; Ahn, Dong June; Hong, Seunghun

    2018-05-10

    We report a high-speed lateral flow strategy for a fast biosensing with an improved selectivity and binding affinity even under harsh conditions. In this strategy, biosensors were fixed at a location away from the center of a round shape disk, and the disk was rotated to create the lateral flow of a target solution on the biosensors during the sensing measurements. Experimental results using the strategy showed high reaction speeds, high binding affinity, and low nonspecific adsorptions of target molecules to biosensors. Furthermore, binding affinity between target molecules and sensing molecules was enhanced even in harsh conditions such as low pH and low ionic strength conditions. These results show that the strategy can improve the performance of conventional biosensors by generating high-speed lateral flows on a biosensor surface. Therefore, our strategy can be utilized as a simple but powerful tool for versatile bio and medical applications.

  11. Aptamer-Nanoparticle Strip Biosensor for Rapid and Sensitive Detection of Cancer Cells

    PubMed Central

    Mao, Xun; Phillips, Joseph A.; Xu, Hui; Tan, Weihong; Zeng, Lingwen; Liu, Guodong

    2009-01-01

    We report an aptamer-nanoparticle strip biosensor (ANSB) for the rapid, specific, sensitive and low-cost detection of circulating cancer cells. Known for their high specificity and affinity, aptamers were first selected from live cells by the cell-SELEX (systematic evolution of ligands by exponential enrichment) process. When next combined with the unique optical properties of gold nanoparticles (Au-NPs), ANSBs were prepared on a lateral flow device. Ramos cells were used as a model target cell to demonstrate proof of principle. Under optimal conditions, the ANSB was capable of detecting a minimum of 4000 Ramos cells without instrumentation (visual judgment) and 800 Ramos cells with a portable strip reader within 15 minutes. Importantly, ANSB has successfully detected Ramos cells in human blood, thus providing a rapid, sensitive and low-cost quantitative tool for the detection of circulating cancer cells. ANSB therefore shows great promise for in-field and point-of-care cancer diagnosis and therapy. PMID:19904989

  12. Rab-NANOPS: FRET biosensors for Rab membrane nanoclustering and prenylation detection in mammalian cells.

    PubMed

    Najumudeen, Arafath Kaja; Guzmán, Camilo; Posada, Itziar M D; Abankwa, Daniel

    2015-01-01

    Rab proteins constitute the largest subfamily of Ras-like small GTPases. They are central to vesicular transport and organelle definition in eukaryotic cells. Unlike their Ras counterparts, they are not a hallmark of cancer. However, a number of diseases, including cancer, show a misregulation of Rab protein activity. As for all membrane-anchored signaling proteins, correct membrane organization is critical for Rabs to operate. In this chapter, we provide a detailed protocol for the use of a flow cytometry-based Fluorescence Resonance Energy Transfer (FRET)-biosensors assay, which allows to detect changes in membrane anchorage, subcellular distribution, and of the nanoscale organization of Rab-GTPases in mammalian cell lines. This assay is high-throughput amenable and can therefore be utilized in chemical-genomic and drug discovery efforts.

  13. A novel thermal biosensor based on enzyme reaction for pesticides measurement.

    PubMed

    Zheng, Yi-Hu; Hua, Tse-Chao; Xu, Fei

    2005-01-01

    A novel thermal biosensor based on enzyme reaction for pesticides detection has been developed. This biosensor is a flow injection analysis system and consists of two channels with enzyme reaction column and identical reference column, which is set for eliminating the unspecific heat. The enzyme reaction takes place in the enzyme reaction column at a constant temperature (40 degrees C) realized by a thermoelectric thermostat. Thermosensor based on the thermoelectric module containing 127 serial BiTe-thermocouples is used to monitor the temperature difference between two effluents from enzyme reaction column and reference column. The ability of this biosensor to detect pesticides is demonstrated by the decreased degree of the hydrolytic heat in two types of thermosensor mode. The hydrolytic reaction is inhibited by 36% at 1 mg/L DDVP and 50% at 10 mg/L DDVP when cell-typed thermosensor is used. The percent inhibition is 30% at 1 mg/L DDVP and 42% at 10 mg/L DDVP in tube-typed thermosensor mode. The detection for real sample shows that this biosensor can be used for detection of organophosphate pesticides residue.

  14. Cryptophane-Folate Biosensor for 129Xe NMR

    DTIC Science & Technology

    2014-12-01

    folate receptor type alpha in relation to cell type, malignancy, and differentiation in ovary, uterus, and cervix . Cancer Epidemiol. Biomarkers Prev. 8...conjugated cryptophane was developed for targeting cryptophane to membrane-bound folate receptors that are overexpressed in many human cancers . The...through a folate receptor-mediated pathway. Flow cytometry revealed 10-fold higher cellular internalization in KB cancer cells overexpressing folate

  15. High-efficient and high-content cytotoxic recording via dynamic and continuous cell-based impedance biosensor technology.

    PubMed

    Hu, Ning; Fang, Jiaru; Zou, Ling; Wan, Hao; Pan, Yuxiang; Su, Kaiqi; Zhang, Xi; Wang, Ping

    2016-10-01

    Cell-based bioassays were effective method to assess the compound toxicity by cell viability, and the traditional label-based methods missed much information of cell growth due to endpoint detection, while the higher throughputs were demanded to obtain dynamic information. Cell-based biosensor methods can dynamically and continuously monitor with cell viability, however, the dynamic information was often ignored or seldom utilized in the toxin and drug assessment. Here, we reported a high-efficient and high-content cytotoxic recording method via dynamic and continuous cell-based impedance biosensor technology. The dynamic cell viability, inhibition ratio and growth rate were derived from the dynamic response curves from the cell-based impedance biosensor. The results showed that the biosensors has the dose-dependent manners to diarrhetic shellfish toxin, okadiac acid based on the analysis of the dynamic cell viability and cell growth status. Moreover, the throughputs of dynamic cytotoxicity were compared between cell-based biosensor methods and label-based endpoint methods. This cell-based impedance biosensor can provide a flexible, cost and label-efficient platform of cell viability assessment in the shellfish toxin screening fields.

  16. Synthetic biology for microbial heavy metal biosensors.

    PubMed

    Kim, Hyun Ju; Jeong, Haeyoung; Lee, Sang Jun

    2018-02-01

    Using recombinant DNA technology, various whole-cell biosensors have been developed for detection of environmental pollutants, including heavy metal ions. Whole-cell biosensors have several advantages: easy and inexpensive cultivation, multiple assays, and no requirement of any special techniques for analysis. In the era of synthetic biology, cutting-edge DNA sequencing and gene synthesis technologies have accelerated the development of cell-based biosensors. Here, we summarize current technological advances in whole-cell heavy metal biosensors, including the synthetic biological components (bioparts), sensing and reporter modules, genetic circuits, and chassis cells. We discuss several opportunities for improvement of synthetic cell-based biosensors. First, new functional modules must be discovered in genome databases, and this knowledge must be used to upgrade specific bioparts through molecular engineering. Second, modules must be assembled into functional biosystems in chassis cells. Third, heterogeneity of individual cells in the microbial population must be eliminated. In the perspectives, the development of whole-cell biosensors is also discussed in the aspects of cultivation methods and synthetic cells.

  17. Development of mediated BOD biosensor system of flow injection mode for shochu distillery wastewater.

    PubMed

    Oota, Shinichi; Hatae, Yuta; Amada, Kei; Koya, Hidekazu; Kawakami, Mitsuyasu

    2010-09-15

    Although microbial biochemical oxygen demand (BOD) sensors utilizing redox mediators have attracted much attention as a rapid BOD measurement method, little attempts have been made to apply the mediated BOD biosensors to the flow injection analysis system. In this work, a mediated BOD sensor system of flow injection mode, constructed by combining an immobilized microbial reactor with an electrochemical flow cell of three electrodes configuration, has been developed to estimate BOD of shochu distillery wastewater (SDW). It was demonstrated consequently that the mediated sensing was realized by employing phosphate buffer containing potassium hexacyanoferrate as the carrier. The output current was found to yield a peak with a sample injection, and to result from reoxidation of reduced mediator at the electrode. By employing the peak area as the sensor response, the effects of flow rate and pH of the carrier on the sensitivity were investigated. The sensor system using a microorganism of high SDW-assimilation capacity showed good performance and proved to be available for estimation of BOD of SDW. Copyright 2010 Elsevier B.V. All rights reserved.

  18. Detection of cortisol in saliva with a flow-filtered, portable surface plasmon resonance biosensor system

    PubMed Central

    Stevens, Richard C.; Soelberg, Scott D.; Near, Steve; Furlong, Clement E.

    2011-01-01

    Saliva provides a useful and non-invasive alternative to blood for many biomedical diagnostic assays. The level of the hormone cortisol in blood and saliva is related to the level of stress. We present here the development of a portable surface plasmon resonance (SPR) biosensor system for detection of cortisol in saliva. Cortisol-specific monoclonal antibodies were used to develop a competition assay with a 6-channel portable SPR biosensor designed in our laboratory. The detection limit of cortisol in laboratory buffers was 0.36 ng/ml (1.0 nM). An in-line filter based on diffusion through a hollow fiber hydrophilic membrane served to separate small molecules from the complex macromolecular matrix of saliva prior to introduction to the sensor surface. The filtering flow cell provided in-line separation of small molecules from salivary mucins and other large molecules with only a 29% reduction of signal compared with direct flow of the same concentration of analyte over the sensor surface. A standard curve for detection of cortisol in saliva was generated with a detection limit of 1.0 ng/ml (3.6 nM), sufficiently sensitive for clinical use. The system will also be useful for a wide range of applications where small molecular weight analytes are found in complex matrices. PMID:18656950

  19. Continuous flow nanoparticle concentration using alternating current-electroosmotic flow.

    PubMed

    Hoettges, Kai F; McDonnell, Martin B; Hughes, Michael P

    2014-02-01

    Achieving real-time detection of environmental pathogens such as viruses and bacterial spores requires detectors with both rapid action and a suitable detection threshold. However, most biosensors have detection limits of an order of magnitude or more above the potential infection threshold, limiting their usefulness. This can be improved through the use of automated sample preparation techniques such as preconcentration. In this paper, we describe the use of AC electroosmosis to concentrate nanoparticles from a continuous flow. Electrodes at an optimized angle across a flow cell, and energized by a 1 kHz signal, were used to push nanoparticles to one side of a flow cell, and to extract the resulting stream with a high particle concentration from that side of the flow cell. A simple model of the behavior of particles in the flow cell has been developed, which shows good agreement with experimental results. The method indicates potential for higher concentration factors through cascading devices. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Renewable Surface Fluorescence Sandwich Immunoassay Biosensor for Rapid Sensitive Botulinum Toxin Detection in an Automated Fluidic Format

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grate, Jay W.; Warner, Marvin G.; Ozanich, Richard M.

    2009-03-05

    A renewable surface biosensor for rapid detection of botulinum toxin is described based on fluidic automation of a fluorescence sandwich immunoassay, using a recombinant fragment of the toxin heavy chain as a structurally valid simulant. Monoclonal antibodies AR4 and RAZ1 bind to separate epitopes of both this fragment and the holotoxin. The AR4 antibody was covalently bound to Sepharose beads and used as the capture antibody. A rotating rod flow cell was used to capture these beads delivered as a suspension by the sequential injection flow system, creating a 3.6 microliter column. After perfusing the bead column with sample andmore » washing away the matrix, the column was perfused with Alexa 647 dye-labeled RAZ1 antibody as the reporter. Optical fibers coupled to the rotating rod flow cell at a 90 degree angle to one another delivered excitation light from a HeNe laser and collected fluorescent emission light for detection. After each measurement, the used sepharose beads are released and replaced with fresh beads. In a rapid screening approach to sample analysis, the toxin simulant was detected to concentrations of 10 pM in less than 20 minutes.« less

  1. Fluorescent carbon nanoparticle-based lateral flow biosensor for ultrasensitive detection of DNA.

    PubMed

    Takalkar, Sunitha; Baryeh, Kwaku; Liu, Guodong

    2017-12-15

    We report a fluorescent carbon nanoparticle (FCN)-based lateral flow biosensor for ultrasensitive detection of DNA. Fluorescent carbon nanoparticle with a diameter of around 15nm was used as a tag to label a detection DNA probe, which was complementary with the part of target DNA. A capture DNA probe was immobilized on the test zone of the lateral flow biosensor. Sandwich-type hybridization reactions among the FCN-labeled DNA probe, target DNA and capture DNA probe were performed on the lateral flow biosensor. In the presence of target DNA, FCNs were captured on the test zone of the biosensor and the fluorescent intensity of the captured FCNs was measured with a portable fluorescent reader. After systematic optimizations of experimental parameters (the components of running buffers, the concentration of detection DNA probe used in the preparation of FCN-DNA conjugates, the amount of FCN-DNA dispensed on the conjugate pad and the dispensing cycles of the capture DNA probes on the test-zone), the biosensor could detect a minimum concentration of 0.4 fM DNA. This study provides a rapid and low-cost approach for DNA detection with high sensitivity, showing great promise for clinical application and biomedical diagnosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. A High-Content Assay for Biosensor Validation and for Examining Stimuli that Affect Biosensor Activity.

    PubMed

    Slattery, Scott D; Hahn, Klaus M

    2014-12-01

    Biosensors are valuable tools used to monitor many different protein behaviors in vivo. Demand for new biosensors is high, but their development and characterization can be difficult. During biosensor design, it is necessary to evaluate the effects of different biosensor structures on specificity, brightness, and fluorescence responses. By co-expressing the biosensor with upstream proteins that either stimulate or inhibit the activity reported by the biosensor, one can determine the difference between the biosensor's maximally activated and inactivated state, and examine response to specific proteins. We describe here a method for biosensor validation in a 96-well plate format using an automated microscope. This protocol produces dose-response curves, enables efficient examination of many parameters, and unlike cell suspension assays, allows visual inspection (e.g., for cell health and biosensor or regulator localization). Optimization of single-chain and dual-chain Rho GTPase biosensors is addressed, but the assay is applicable to any biosensor that can be expressed or otherwise loaded in adherent cells. The assay can also be used for purposes other than biosensor validation, using a well-characterized biosensor as a readout for effects of upstream molecules. Copyright © 2014 John Wiley & Sons, Inc.

  3. A Lateral Flow Biosensor for the Detection of Single Nucleotide Polymorphisms.

    PubMed

    Zeng, Lingwen; Xiao, Zhuo

    2017-01-01

    A lateral flow biosensor (LFB) is introduced for the detection of single nucleotide polymorphisms (SNPs). The assay is composed of two steps: circular strand displacement reaction and lateral flow biosensor detection. In step 1, the nucleotide at SNP site is recognized by T4 DNA ligase and the signal is amplified by strand displacement DNA polymerase, which can be accomplished at a constant temperature. In step 2, the reaction product of step 1 is detected by a lateral flow biosensor, which is a rapid and cost effective tool for nuclei acid detection. Comparing with conventional methods, it requires no complicated machines. It is suitable for the use of point of care diagnostics. Therefore, this simple, cost effective, robust, and promising LFB detection method of SNP has great potential for the detection of genetic diseases, personalized medicine, cancer related mutations, and drug-resistant mutations of infectious agents.

  4. Simultaneous determination of choline and acetylcholine based on a trienzyme chemiluminometric biosensor in a single line flow injection system.

    PubMed

    Kiba, Nobutoshi; Ito, Seiji; Tachibana, Masaki; Tani, Kazue; Koizumi, Hitoshi

    2003-12-01

    A detector for the simultaneous determination of choline (Ch) and acetylcholine (ACh) based on a sensitive trienzyme chemiluminometric biosensor in a single line flow injection (FI) system is described. Immobilized choline oxidase (ChOx), immobilized peroxidase (POx), immobilized acetylcholinesterase, and coimmobilized ChOx/POx were packed, in turn, in a transparent ETFE tube (1 mm i.d., 75 cm) and the tube was placed in front of a photomultipier tube as a flow cell. Two-peak response was obtained by one injection of the sample solution. The first and second peaks were dependent on the concentrations of Ch and ACh, respectively. The influence of some experimental parameters such as flow rate, amounts of immobilized enzymes on the behavior of the sensor was studied in order to optimize the sensitivity, sample throughput and resolution. Calibration curves were linear at 1 - 1000 nM for Ch and 3 - 3000 nM for ACh. The sample throughput was 25/h without carryover. The FI system was applied to the simultaneous determination of Ch and ACh in rabbit brain tissue homogenates.

  5. Simulation of a broadband nano-biosensor based on an onion-like quantum dot-quantum well structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Absalan, H; SalmanOgli, A; Rostami, R

    The fluorescence resonance energy transfer is studied between modified quantum-dots and quantum-wells used as a donor and an acceptor. Because of the unique properties of quantum dots, including diverse surface modification flexibility, bio-compatibility, high quantum yields and wide absorption, their use as nano-biosensors and bio-markers used in diagnosis of cancer is suggested. The fluorescence resonance energy transfer is simulated in a quantum dot-quantum well system, where the energy can flow from donor to acceptor. If the energy transfer can be either turned on or off by a specific interaction, such as interaction with any dyes, a molecular binding event ormore » a cleavage reaction, a sensor can be designed (under assumption that the healthy cells have a known effect or unyielding effect on output parameters while cancerous cells, due to their pandemic optical properties, can impact the fluorescence resonance energy transfer parameters). The developed nano-biosensor can operate in a wide range of wavelengths (310 - 760 nm). (laser applications in biology and medicine)« less

  6. In Vivo Biochemistry: Single-Cell Dynamics of Cyclic Di-GMP in Escherichia coli in Response to Zinc Overload.

    PubMed

    Yeo, Jongchan; Dippel, Andrew B; Wang, Xin C; Hammond, Ming C

    2018-01-09

    Intracellular signaling enzymes drive critical changes in cellular physiology and gene expression, but their endogenous activities in vivo remain highly challenging to study in real time and for individual cells. Here we show that flow cytometry can be performed in complex media to monitor single-cell population distributions and dynamics of cyclic di-GMP signaling, which controls the bacterial colonization program. These in vivo biochemistry experiments are enabled by our second-generation RNA-based fluorescent (RBF) biosensors, which exhibit high fluorescence turn-on in response to cyclic di-GMP. Specifically, we demonstrate that intracellular levels of cyclic di-GMP in Escherichia coli are repressed with excess zinc, but not with other divalent metals. Furthermore, in both flow cytometry and fluorescence microscopy setups, we monitor the dynamic increase in cellular cyclic di-GMP levels upon zinc depletion and show that this response is due to de-repression of the endogenous diguanylate cyclase DgcZ. In the presence of zinc, cells exhibit enhanced cell motility and increased sensitivity to antibiotics due to inhibited biofilm formation. Taken together, these results showcase the application of RBF biosensors in visualizing single-cell dynamic changes in cyclic di-GMP signaling in direct response to environmental cues such as zinc and highlight our ability to assess whether observed phenotypes are related to specific signaling enzymes and pathways.

  7. Design of Flow Systems for Improved Networking and Reduced Noise in Biomolecular Signal Processing in Biocomputing and Biosensing Applications

    PubMed Central

    Verma, Arjun; Fratto, Brian E.; Privman, Vladimir; Katz, Evgeny

    2016-01-01

    We consider flow systems that have been utilized for small-scale biomolecular computing and digital signal processing in binary-operating biosensors. Signal measurement is optimized by designing a flow-reversal cuvette and analyzing the experimental data to theoretically extract the pulse shape, as well as reveal the level of noise it possesses. Noise reduction is then carried out numerically. We conclude that this can be accomplished physically via the addition of properly designed well-mixing flow-reversal cell(s) as an integral part of the flow system. This approach should enable improved networking capabilities and potentially not only digital but analog signal-processing in such systems. Possible applications in complex biocomputing networks and various sense-and-act systems are discussed. PMID:27399702

  8. Multiplexed lateral flow biosensors: Technological advances for radically improving point-of-care diagnoses.

    PubMed

    Li, Jia; Macdonald, Joanne

    2016-09-15

    Lateral flow biosensors are a leading technology in point-of-care diagnostics due to their simplicity, rapidness and low cost. Their primacy in this arena continues through technological breakthroughs such as multiplexing: the detection of more than one biomarker in a single assay. Multiplexing capacity is critical for improving diagnostic efficiency, enhancing the diagnostic precision for specific diseases and reducing diagnostic cost. Here we review, for the first time, the various types and strategies employed for creating multiplexed lateral flow biosensors. These are classified into four main categories in terms of specific application or multiplexing level, namely linear, parameter, spatial and conceptual. We describe the practical applications and implications for each approach and compare their advantages and disadvantages. Importantly, multiplexing is still subject to limitations of the traditional lateral flow biosensor, such as sensitivity and specificity. However, by pushing the limitations of the traditional medium into the multiplex arena, several technological breakthroughs are emerging with novel solutions that further expand the utility of lateral flow biosensing for point-of-care applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. A platform of BRET-FRET hybrid biosensors for optogenetics, chemical screening, and in vivo imaging.

    PubMed

    Komatsu, Naoki; Terai, Kenta; Imanishi, Ayako; Kamioka, Yuji; Sumiyama, Kenta; Jin, Takashi; Okada, Yasushi; Nagai, Takeharu; Matsuda, Michiyuki

    2018-06-12

    Genetically encoded biosensors based on the principle of Förster resonance energy transfer comprise two major classes: biosensors based on fluorescence resonance energy transfer (FRET) and those based on bioluminescence energy transfer (BRET). The FRET biosensors visualize signaling-molecule activity in cells or tissues with high resolution. Meanwhile, due to the low background signal, the BRET biosensors are primarily used in drug screening. Here, we report a protocol to transform intramolecular FRET biosensors to BRET-FRET hybrid biosensors called hyBRET biosensors. The hyBRET biosensors retain all properties of the prototype FRET biosensors and also work as BRET biosensors with dynamic ranges comparable to the prototype FRET biosensors. The hyBRET biosensors are compatible with optogenetics, luminescence microplate reader assays, and non-invasive whole-body imaging of xenograft and transgenic mice. This simple protocol will expand the use of FRET biosensors and enable visualization of the multiscale dynamics of cell signaling in live animals.

  10. Microfabricated Electrochemical Cell-Based Biosensors for Analysis of Living Cells In Vitro

    PubMed Central

    Wang, Jun; Wu, Chengxiong; Hu, Ning; Zhou, Jie; Du, Liping; Wang, Ping

    2012-01-01

    Cellular biochemical parameters can be used to reveal the physiological and functional information of various cells. Due to demonstrated high accuracy and non-invasiveness, electrochemical detection methods have been used for cell-based investigation. When combined with improved biosensor design and advanced measurement systems, the on-line biochemical analysis of living cells in vitro has been applied for biological mechanism study, drug screening and even environmental monitoring. In recent decades, new types of miniaturized electrochemical biosensor are emerging with the development of microfabrication technology. This review aims to give an overview of the microfabricated electrochemical cell-based biosensors, such as microelectrode arrays (MEA), the electric cell-substrate impedance sensing (ECIS) technique, and the light addressable potentiometric sensor (LAPS). The details in their working principles, measurement systems, and applications in cell monitoring are covered. Driven by the need for high throughput and multi-parameter detection proposed by biomedicine, the development trends of electrochemical cell-based biosensors are also introduced, including newly developed integrated biosensors, and the application of nanotechnology and microfluidic technology. PMID:25585708

  11. Measurement of Biologically Available Naphthalene in Gas and Aqueous Phases by Use of a Pseudomonas putida Biosensor

    PubMed Central

    Werlen, Christoph; Jaspers, Marco C. M.; van der Meer, Jan Roelof

    2004-01-01

    Genetically constructed microbial biosensors for measuring organic pollutants are mostly applied in aqueous samples. Unfortunately, the detection limit of most biosensors is insufficient to detect pollutants at low but environmentally relevant concentrations. However, organic pollutants with low levels of water solubility often have significant gas-water partitioning coefficients, which in principle makes it possible to measure such compounds in the gas rather than the aqueous phase. Here we describe the first use of a microbial biosensor for measuring organic pollutants directly in the gas phase. For this purpose, we reconstructed a bioluminescent Pseudomonas putida naphthalene biosensor strain to carry the NAH7 plasmid and a chromosomally inserted gene fusion between the sal promoter and the luxAB genes. Specific calibration studies were performed with suspended and filter-immobilized biosensor cells, in aqueous solution and in the gas phase. Gas phase measurements with filter-immobilized biosensor cells in closed flasks, with a naphthalene-contaminated aqueous phase, showed that the biosensor cells can measure naphthalene effectively. The biosensor cells on the filter responded with increasing light output proportional to the naphthalene concentration added to the water phase, even though only a small proportion of the naphthalene was present in the gas phase. In fact, the biosensor cells could concentrate a larger proportion of naphthalene through the gas phase than in the aqueous suspension, probably due to faster transport of naphthalene to the cells in the gas phase. This led to a 10-fold lower detectable aqueous naphthalene concentration (50 nM instead of 0.5 μM). Thus, the use of bacterial biosensors for measuring organic pollutants in the gas phase is a valid method for increasing the sensitivity of these valuable biological devices. PMID:14711624

  12. Electrochemical magneto-actuated biosensor for CD4 count in AIDS diagnosis and monitoring.

    PubMed

    Carinelli, S; Xufré Ballesteros, C; Martí, M; Alegret, S; Pividori, M I

    2015-12-15

    The counting of CD4(+) T lymphocytes is a clinical parameter used for AIDS diagnosis and follow-up. As this disease is particularly prevalent in developing countries, simple and affordable CD4 cell counting methods are urgently needed in resource-limited settings. This paper describes an electrochemical magneto-actuated biosensor for CD4 count in whole blood. The CD4(+) T lymphocytes were isolated, preconcentrated and labeled from 100 μL of whole blood by immunomagnetic separation with magnetic particles modified with antiCD3 antibodies. The captured cells were labeled with a biotinylated antiCD4 antibody, followed by the reaction with the electrochemical reporter streptavidin-peroxidase conjugate. The limit of detection for the CD4 counting magneto-actuated biosensor in whole blood was as low as 44 cells μL(-1) while the logistic range was found to be from 89 to 912 cells μL(-1), which spans the whole medical interest range for CD4 counts in AIDS patients. The electrochemical detection together with the immunomagnetic separation confers high sensitivity, resulting in a rapid, inexpensive, robust, user-friendly method for CD4 counting. This approach is a promising alternative for the costly standard flow cytometry and suitable as diagnostic tool at decentralized practitioner sites in low resource settings, especially in less developed countries. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Bienzymatic Biosensor for Rapid Detection of Aspartame by Flow Injection Analysis

    PubMed Central

    Radulescu, Maria-Cristina; Bucur, Bogdan; Bucur, Madalina-Petruta; Radu, Gabriel Lucian

    2014-01-01

    A rapid, simple and stable biosensor for aspartame detection was developed. Alcohol oxidase (AOX), carboxyl esterase (CaE) and bovine serum albumin (BSA) were immobilised with glutaraldehyde (GA) onto screen-printed electrodes modified with cobalt-phthalocyanine (CoPC). The biosensor response was fast. The sample throughput using a flow injection analysis (FIA) system was 40 h−1 with an RSD of 2.7%. The detection limits for both batch and FIA measurements were 0.1 μM for methanol and 0.2 μM for aspartame, respectively. The enzymatic biosensor was successfully applied for aspartame determination in different sample matrices/commercial products (liquid and solid samples) without any pre-treatment step prior to measurement. PMID:24412899

  14. Bienzymatic biosensor for rapid detection of aspartame by flow injection analysis.

    PubMed

    Radulescu, Maria-Cristina; Bucur, Bogdan; Bucur, Madalina-Petruta; Radu, Gabriel Lucian

    2014-01-09

    A rapid, simple and stable biosensor for aspartame detection was developed. Alcohol oxidase (AOX), carboxyl esterase (CaE) and bovine serum albumin (BSA) were immobilised with glutaraldehyde (GA) onto screen-printed electrodes modified with cobalt-phthalocyanine (CoPC). The biosensor response was fast. The sample throughput using a flow injection analysis (FIA) system was 40 h⁻¹ with an RSD of 2.7%. The detection limits for both batch and FIA measurements were 0.1 µM for methanol and 0.2 µM for aspartame, respectively. The enzymatic biosensor was successfully applied for aspartame determination in different sample matrices/commercial products (liquid and solid samples) without any pre-treatment step prior to measurement.

  15. Recent Advances in Exosomal Protein Detection Via Liquid Biopsy Biosensors for Cancer Screening, Diagnosis, and Prognosis.

    PubMed

    Liu, Chang; Yang, Yunchen; Wu, Yun

    2018-03-08

    Current cancer diagnostic methods are challenged by low sensitivity, high false positive rate, limited tumor information, uncomfortable or invasive procedures, and high cost. Liquid biopsy that analyzes circulating biomarkers in body fluids represents a promising solution to these challenges. Exosomes are one of the promising cancer biomarkers for liquid biopsy because they are cell-secreted, nano-sized, extracellular vesicles that stably exist in all types of body fluids. Exosomes transfer DNAs, RNAs, proteins, and lipids from parent cells to recipient cells for intercellular communication and play important roles in cancer initiation, progression, and metastasis. Many liquid biopsy biosensors have been developed to offer non- or minimally-invasive, highly sensitive, simple, rapid, and cost-effective cancer diagnostics. This review summarized recent advances of liquid biopsy biosensors with a focus on the detection of exosomal proteins as biomarkers for cancer screening, diagnosis, and prognosis. We reviewed six major types of liquid biopsy biosensors including immunofluorescence biosensor, colorimetric biosensor, surface plasmon resonance (SPR) biosensor, surface-enhanced Raman scattering (SERS) biosensor, electrochemical biosensor, and nuclear magnetic resonance (NMR) biosensor. We shared our perspectives on future improvement of exosome-based liquid biopsy biosensors to accelerate their clinical translation.

  16. Construction of titanium dioxide nanorod/graphite microfiber hybrid electrodes for a high performance electrochemical glucose biosensor

    NASA Astrophysics Data System (ADS)

    Zhang, Jian; Yu, Xin; Guo, Weibo; Qiu, Jichuan; Mou, Xiaoning; Li, Aixue; Liu, Hong

    2016-04-01

    The demand for a highly sensitive and selective glucose biosensor which can be used for implantable or on-time monitoring is constantly increasing. In this work, TiO2 nanorods were synthesized in situ on the surface of graphite microfibers to yield TiO2 nanorod/graphite microfiber hybrid electrodes. The TiO2 nanorods not only retain the high activity of the immobilized glucose molecule, but also promote the direct electron transfer process on the electrode surface. As a working electrode in an electrochemical glucose biosensor in a flowing system, the microfiber hybrid electrodes exhibit high sensitivity, selectivity and stability. Due to its simplicity, low cost, high stability, and unique morphology, the TiO2 nanorod/graphite microfiber hybrid electrode is expected to be an excellent candidate for an implantable biosensor or for in situ flow monitoring.The demand for a highly sensitive and selective glucose biosensor which can be used for implantable or on-time monitoring is constantly increasing. In this work, TiO2 nanorods were synthesized in situ on the surface of graphite microfibers to yield TiO2 nanorod/graphite microfiber hybrid electrodes. The TiO2 nanorods not only retain the high activity of the immobilized glucose molecule, but also promote the direct electron transfer process on the electrode surface. As a working electrode in an electrochemical glucose biosensor in a flowing system, the microfiber hybrid electrodes exhibit high sensitivity, selectivity and stability. Due to its simplicity, low cost, high stability, and unique morphology, the TiO2 nanorod/graphite microfiber hybrid electrode is expected to be an excellent candidate for an implantable biosensor or for in situ flow monitoring. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr01360k

  17. Live-cell MRI with xenon hyper-CEST biosensors targeted to metabolically labeled cell-surface glycans.

    PubMed

    Witte, Christopher; Martos, Vera; Rose, Honor May; Reinke, Stefan; Klippel, Stefan; Schröder, Leif; Hackenberger, Christian P R

    2015-02-23

    The targeting of metabolically labeled glycans with conventional MRI contrast agents has proved elusive. In this work, which further expands the utility of xenon Hyper-CEST biosensors in cell experiments, we present the first successful molecular imaging of such glycans using MRI. Xenon Hyper-CEST biosensors are a novel class of MRI contrast agents with very high sensitivity. We designed a multimodal biosensor for both fluorescent and xenon MRI detection that is targeted to metabolically labeled sialic acid through bioorthogonal chemistry. Through the use of a state of the art live-cell bioreactor, it was demonstrated that xenon MRI biosensors can be used to image cell-surface glycans at nanomolar concentrations. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Whole cell immobilized amperometric biosensor based on Saccharomyces cerevisiae for selective determination of vitamin B1 (thiamine).

    PubMed

    Akyilmaz, Erol; Yaşa, Ihsan; Dinçkaya, Erhan

    2006-07-01

    A new amperometric whole cell biosensor based on Saccharomyces cerevisiae immobilized in gelatin was developed for selective determination of vitamin B1 (thiamine). The biosensor was constructed by using gelatin and crosslinking agent glutaraldehyde to immobilize S. cerevisiae cells on the Teflon membrane of dissolved oxygen (DO) probe used as the basic electrode system combined with a digital oxygen meter. The cells were induced by vitamin B1 in the culture medium, and the cells used it as a carbon source in the absence of glucose. So, when the vitamin B1 solution is injected into the whole cell biosensor system, an increase in respiration activity of the cells results from the metabolic activity and causes a decrease in the DO concentration of interval surface of DO probe related to vitamin B1 concentration. The response time of the biosensor is 3 min, and the optimal working conditions of the biosensor were carried out as pH 7.0, 50mM Tris-HCl, and 30 degrees C. A linear relationship was obtained between the DO concentration decrease and vitamin B1 concentration between 5.0 x 10(-3) and 10(-1) microM. In the application studies of the biosensor, sensitive determination of vitamin B1 in the vitamin tablets was investigated.

  19. A modular cell-based biosensor using engineered genetic logic circuits to detect and integrate multiple environmental signals

    PubMed Central

    Wang, Baojun; Barahona, Mauricio; Buck, Martin

    2013-01-01

    Cells perceive a wide variety of cellular and environmental signals, which are often processed combinatorially to generate particular phenotypic responses. Here, we employ both single and mixed cell type populations, pre-programmed with engineered modular cell signalling and sensing circuits, as processing units to detect and integrate multiple environmental signals. Based on an engineered modular genetic AND logic gate, we report the construction of a set of scalable synthetic microbe-based biosensors comprising exchangeable sensory, signal processing and actuation modules. These cellular biosensors were engineered using distinct signalling sensory modules to precisely identify various chemical signals, and combinations thereof, with a quantitative fluorescent output. The genetic logic gate used can function as a biological filter and an amplifier to enhance the sensing selectivity and sensitivity of cell-based biosensors. In particular, an Escherichia coli consortium-based biosensor has been constructed that can detect and integrate three environmental signals (arsenic, mercury and copper ion levels) via either its native two-component signal transduction pathways or synthetic signalling sensors derived from other bacteria in combination with a cell-cell communication module. We demonstrate how a modular cell-based biosensor can be engineered predictably using exchangeable synthetic gene circuit modules to sense and integrate multiple-input signals. This study illustrates some of the key practical design principles required for the future application of these biosensors in broad environmental and healthcare areas. PMID:22981411

  20. A general strategy to construct small molecule biosensors in eukaryotes.

    PubMed

    Feng, Justin; Jester, Benjamin W; Tinberg, Christine E; Mandell, Daniel J; Antunes, Mauricio S; Chari, Raj; Morey, Kevin J; Rios, Xavier; Medford, June I; Church, George M; Fields, Stanley; Baker, David

    2015-12-29

    Biosensors for small molecules can be used in applications that range from metabolic engineering to orthogonal control of transcription. Here, we produce biosensors based on a ligand-binding domain (LBD) by using a method that, in principle, can be applied to any target molecule. The LBD is fused to either a fluorescent protein or a transcriptional activator and is destabilized by mutation such that the fusion accumulates only in cells containing the target ligand. We illustrate the power of this method by developing biosensors for digoxin and progesterone. Addition of ligand to yeast, mammalian, or plant cells expressing a biosensor activates transcription with a dynamic range of up to ~100-fold. We use the biosensors to improve the biotransformation of pregnenolone to progesterone in yeast and to regulate CRISPR activity in mammalian cells. This work provides a general methodology to develop biosensors for a broad range of molecules in eukaryotes.

  1. [Receptor elements for biosensors in two ways of methylotrophic yeast immobilization].

    PubMed

    Zaĭtsev, M G; Arliapov, V A; Alferov, V A; Reshetilov, A N

    2012-01-01

    Receptor elements for biosensors based on Hansenula polymorpha NCYC 495 In yeast cells for ethanol assay were developed using two ways of cell immobilization, i.e., physical adsorption on a glass fiber membrane and covalent binding on a modified nitrocellulose membrane. The linear diapason of ethanol assays for a biosensor based on yeast cells adsorbed on glass fiber was 0.05-1.18; for a biosensor based on yeasts immobilized on a nitrocellulose membrane, 0.2-1.53 mM. Receptor elements based on sorbed cells possessed 2.5 times higher long-term stability. The time response was 1.5 times less for cells immobilized using DEAE-dextran and benzochinone. The results of ethyl alcohol assays using biosensors based on cells immobilized via adsorption and covalent binding, as well as using the standard areometric method, had high correlation coefficients (0.998 and 0.997, respectively, for the two ways of immobilization). The results indicate the possibility to consider the described models of receptor elements for biosensors as prototypes for experimental samples for practical use.

  2. Non-invasive determination of glucose directly in raw fruits using a continuous flow system based on microdialysis sampling and amperometric detection at an integrated enzymatic biosensor.

    PubMed

    Vargas, E; Ruiz, M A; Campuzano, S; Reviejo, A J; Pingarrón, J M

    2016-03-31

    A non-destructive, rapid and simple to use sensing method for direct determination of glucose in non-processed fruits is described. The strategy involved on-line microdialysis sampling coupled with a continuous flow system with amperometric detection at an enzymatic biosensor. Apart from direct determination of glucose in fruit juices and blended fruits, this work describes for the first time the successful application of an enzymatic biosensor-based electrochemical approach to the non-invasive determination of glucose in raw fruits. The methodology correlates, through previous calibration set-up, the amperometric signal generated from glucose in non-processed fruits with its content in % (w/w). The comparison of the obtained results using the proposed approach in different fruits with those provided by other method involving the same commercial biosensor as amperometric detector in stirred solutions pointed out that there were no significant differences. Moreover, in comparison with other available methodologies, this microdialysis-coupled continuous flow system amperometric biosensor-based procedure features straightforward sample preparation, low cost, reduced assay time (sampling rate of 7 h(-1)) and ease of automation. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Renewable surface fluorescence sandwich immunoassay biosensor for rapid sensitive botulinum toxin detection in an automated fluidic format.

    PubMed

    Grate, Jay W; Warner, Marvin G; Ozanich, Richard M; Miller, Keith D; Colburn, Heather A; Dockendorff, Brian; Antolick, Kathryn C; Anheier, Norman C; Lind, Michael A; Lou, Jianlong; Marks, James D; Bruckner-Lea, Cynthia J

    2009-05-01

    A renewable surface biosensor for rapid detection of botulinum neurotoxin serotype A is described based on fluidic automation of a fluorescence sandwich immunoassay, using a recombinant protein fragment of the toxin heavy chain ( approximately 50 kDa) as a structurally valid simulant. Monoclonal antibodies AR4 and RAZ1 bind to separate non-overlapping epitopes of the full botulinum holotoxin ( approximately 150 kDa). Both of the targeted epitopes are located on the recombinant fragment. The AR4 antibody was covalently bound to Sepharose beads and used as the capture antibody. A rotating rod flow cell was used to capture these beads delivered as a suspension by a sequential injection flow system, creating a 3.6 microL column. After perfusing the bead column with sample and washing away the matrix, the column was perfused with Alexa 647 dye-labeled RAZ1 antibody as the reporter. Optical fibers coupled to the rotating rod flow cell at a 90 degrees angle to one another delivered excitation light from a HeNe laser (633 nm) using one fiber and collected fluorescent emission light for detection with the other. After each measurement, the used Sepharose beads are released and replaced with fresh beads. In a rapid screening approach to sample analysis, the toxin simulant was detected to concentrations of 10 pM in less than 20 minutes using this system.

  4. A Label-Free Microfluidic Biosensor for Activity Detection of Single Microalgae Cells Based on Chlorophyll Fluorescence

    PubMed Central

    Wang, Junsheng; Sun, Jinyang; Song, Yongxin; Xu, Yongyi; Pan, Xinxiang; Sun, Yeqing; Li, Dongqing

    2013-01-01

    Detection of living microalgae cells is very important for ballast water treatment and analysis. Chlorophyll fluorescence is an indicator of photosynthetic activity and hence the living status of plant cells. In this paper, we developed a novel microfluidic biosensor system that can quickly and accurately detect the viability of single microalgae cells based on chlorophyll fluorescence. The system is composed of a laser diode as an excitation light source, a photodiode detector, a signal analysis circuit, and a microfluidic chip as a microalgae cell transportation platform. To demonstrate the utility of this system, six different living and dead algae samples (Karenia mikimotoi Hansen, Chlorella vulgaris, Nitzschia closterium, Platymonas subcordiformis, Pyramidomonas delicatula and Dunaliella salina) were tested. The developed biosensor can distinguish clearly between the living microalgae cells and the dead microalgae cells. The smallest microalgae cells that can be detected by using this biosensor are 3 μm ones. Even smaller microalgae cells could be detected by increasing the excitation light power. The developed microfluidic biosensor has great potential for in situ ballast water analysis. PMID:24287532

  5. A biosensor generated via high throughput screening quantifies cell edge Src dynamics

    PubMed Central

    Gulyani, Akash; Vitriol, Eric; Allen, Richard; Wu, Jianrong; Gremyachinskiy, Dmitriy; Lewis, Steven; Dewar, Brian; Graves, Lee M.; Kay, Brian K.; Kuhlman, Brian; Elston, Tim; Hahn, Klaus M.

    2011-01-01

    Fluorescent biosensors for living cells currently require laborious optimization and a unique design for each target. They are limited by the availability of naturally occurring ligands with appropriate target specificity. Here we describe a biosensor based on an engineered fibronectin monobody scaffold that can be tailored to bind different targets via high throughput screening. This Src family kinase (SFK) biosensor was made by derivatizing a monobody specific for activated SFK with a bright dye whose fluorescence increases upon target binding. We identified sites for dye attachment and alterations to eliminate vesiculation in living cells, providing a generalizable scaffold for biosensor production. This approach minimizes cell perturbation because it senses endogenous, unmodified target, and because sensitivity is enhanced by direct dye excitation. Automated correlation of cell velocities and SFK activity revealed that SFK are activated specifically during protrusion. Activity correlates with velocity, and peaks 1–2 microns from the leading edge. PMID:21666688

  6. [Acute toxicity analysis performance of CellSense biosensor with E. coli].

    PubMed

    Wang, Xue-Jiang; Wang, Hong; Zhao, Jian-Fu; Xia, Si-Qing; Zhao, Hong-Ning

    2009-04-15

    E. coli microbial electrodes for CellSense biosensor were prepared by polycarbonate membrane immobilization process, and their performance for heavy metals and toxic organic compounds acute toxicity determination were studied. The results showed that when E. coli was in logarithmic and stationary phase, the CellSense biosensor with E. coli showed good performance in heavy metal ions and organic pollutants acute toxicity analysis, when E. coli was in its decline phase, the stability and sensitivity of the CellSense biosensor was poor. The EC50 values of Hg2+, Cu2+, Zn2+, o-chlorophenol (2-CP) and p-nitrophenol (4-NP) detected by CellSense biosensor with E. coli were 0.6, 3.1, 5.8, 180 and 94 microg/mL, respectively. The immobilized E. coli electrodes could still suit for acute toxicity assessment after 2 months storage at 4 degrees C.

  7. Directed Evolution to Engineer Monobody for FRET Biosensor Assembly and Imaging at Live-Cell Surface.

    PubMed

    Limsakul, Praopim; Peng, Qin; Wu, Yiqian; Allen, Molly E; Liang, Jing; Remacle, Albert G; Lopez, Tyler; Ge, Xin; Kay, Brian K; Zhao, Huimin; Strongin, Alex Y; Yang, Xiang-Lei; Lu, Shaoying; Wang, Yingxiao

    2018-04-19

    Monitoring enzymatic activities at the cell surface is challenging due to the poor efficiency of transport and membrane integration of fluorescence resonance energy transfer (FRET)-based biosensors. Therefore, we developed a hybrid biosensor with separate donor and acceptor that assemble in situ. The directed evolution and sequence-function analysis technologies were integrated to engineer a monobody variant (PEbody) that binds to R-phycoerythrin (R-PE) dye. PEbody was used for visualizing the dynamic formation/separation of intercellular junctions. We further fused PEbody with the enhanced CFP and an enzyme-specific peptide at the extracellular surface to create a hybrid FRET biosensor upon R-PE capture for monitoring membrane-type-1 matrix metalloproteinase (MT1-MMP) activities. This biosensor revealed asymmetric distribution of MT1-MMP activities, which were high and low at loose and stable cell-cell contacts, respectively. Therefore, directed evolution and rational design are promising tools to engineer molecular binders and hybrid FRET biosensors for monitoring molecular regulations at the surface of living cells. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Rapid and Sensitive Detection of Protein Biomarker Using a Portable Fluorescence Biosensor based on Quantum Dots and a Lateral Flow Test Strip

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Zhaohui; Wang, Ying; Wang, Jun

    2010-08-15

    A portable fluorescence biosensor with rapid and ultrasensitive response for trace protein has been built up with quantum dots and lateral flow test strip. The superior signal brightness and high photostability of quantum dots are combined with the promising advantages of lateral flow test strip and resulted in high sensitivity, selectivity and speedy for protein detection. Nitrated ceruloplasmin, a significant biomarker for cardiovascular disease, lung cancer and stress response to smoking, was used as model protein to demonstrate the good performances of this proposed Qdot-based lateral flow test strip. Quantitative detection of nitrated ceruloplasmin was realized by recording the fluorescencemore » intensity of quantum dots captured on the test line. Under optimal conditions, this portable fluorescence biosensor displays rapid responses for nitrated ceruloplasmin in wide dynamic range with a detection limit of 0.1ng/mL (S/N=3). Furthermore, the biosensor was successfully utilized for spiked human plasma sample detection with the concentration as low as 1ng/mL. The results demonstrate that the quantum dot-based lateral flow test strip is capable for rapid, sensitive, and quantitative detection of nitrated ceruloplasmin and hold a great promise for point-of-care and in field analysis of other protein biomarkers.« less

  9. A general strategy to construct small molecule biosensors in eukaryotes

    DOE PAGES

    Feng, Justin; Jester, Benjamin W.; Tinberg, Christine E.; ...

    2015-12-29

    Biosensors for small molecules can be used in applications that range from metabolic engineering to orthogonal control of transcription. Here, we produce biosensors based on a ligand-binding domain (LBD) by using a method that, in principle, can be applied to any target molecule. The LBD is fused to either a fluorescent protein or a transcriptional activator and is destabilized by mutation such that the fusion accumulates only in cells containing the target ligand. We illustrate the power of this method by developing biosensors for digoxin and progesterone. Addition of ligand to yeast, mammalian, or plant cells expressing a biosensor activatesmore » transcription with a dynamic range of up to ~100-fold. We use the biosensors to improve the biotransformation of pregnenolone to progesterone in yeast and to regulate CRISPR activity in mammalian cells. As a result, this work provides a general methodology to develop biosensors for a broad range of molecules in eukaryotes.« less

  10. A general strategy to construct small molecule biosensors in eukaryotes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Justin; Jester, Benjamin W.; Tinberg, Christine E.

    Biosensors for small molecules can be used in applications that range from metabolic engineering to orthogonal control of transcription. Here, we produce biosensors based on a ligand-binding domain (LBD) by using a method that, in principle, can be applied to any target molecule. The LBD is fused to either a fluorescent protein or a transcriptional activator and is destabilized by mutation such that the fusion accumulates only in cells containing the target ligand. We illustrate the power of this method by developing biosensors for digoxin and progesterone. Addition of ligand to yeast, mammalian, or plant cells expressing a biosensor activatesmore » transcription with a dynamic range of up to ~100-fold. We use the biosensors to improve the biotransformation of pregnenolone to progesterone in yeast and to regulate CRISPR activity in mammalian cells. As a result, this work provides a general methodology to develop biosensors for a broad range of molecules in eukaryotes.« less

  11. A general strategy to construct small molecule biosensors in eukaryotes

    PubMed Central

    Feng, Justin; Jester, Benjamin W; Tinberg, Christine E; Mandell, Daniel J; Antunes, Mauricio S; Chari, Raj; Morey, Kevin J; Rios, Xavier; Medford, June I; Church, George M; Fields, Stanley; Baker, David

    2015-01-01

    Biosensors for small molecules can be used in applications that range from metabolic engineering to orthogonal control of transcription. Here, we produce biosensors based on a ligand-binding domain (LBD) by using a method that, in principle, can be applied to any target molecule. The LBD is fused to either a fluorescent protein or a transcriptional activator and is destabilized by mutation such that the fusion accumulates only in cells containing the target ligand. We illustrate the power of this method by developing biosensors for digoxin and progesterone. Addition of ligand to yeast, mammalian, or plant cells expressing a biosensor activates transcription with a dynamic range of up to ~100-fold. We use the biosensors to improve the biotransformation of pregnenolone to progesterone in yeast and to regulate CRISPR activity in mammalian cells. This work provides a general methodology to develop biosensors for a broad range of molecules in eukaryotes. DOI: http://dx.doi.org/10.7554/eLife.10606.001 PMID:26714111

  12. Bacterial host and reporter gene optimization for genetically encoded whole cell biosensors.

    PubMed

    Brutesco, Catherine; Prévéral, Sandra; Escoffier, Camille; Descamps, Elodie C T; Prudent, Elsa; Cayron, Julien; Dumas, Louis; Ricquebourg, Manon; Adryanczyk-Perrier, Géraldine; de Groot, Arjan; Garcia, Daniel; Rodrigue, Agnès; Pignol, David; Ginet, Nicolas

    2017-01-01

    Whole-cell biosensors based on reporter genes allow detection of toxic metals in water with high selectivity and sensitivity under laboratory conditions; nevertheless, their transfer to a commercial inline water analyzer requires specific adaptation and optimization to field conditions as well as economical considerations. We focused here on both the influence of the bacterial host and the choice of the reporter gene by following the responses of global toxicity biosensors based on constitutive bacterial promoters as well as arsenite biosensors based on the arsenite-inducible P ars promoter. We observed important variations of the bioluminescence emission levels in five different Escherichia coli strains harboring two different lux-based biosensors, suggesting that the best host strain has to be empirically selected for each new biosensor under construction. We also investigated the bioluminescence reporter gene system transferred into Deinococcus deserti, an environmental, desiccation- and radiation-tolerant bacterium that would reduce the manufacturing costs of bacterial biosensors for commercial water analyzers and open the field of biodetection in radioactive environments. We thus successfully obtained a cell survival biosensor and a metal biosensor able to detect a concentration as low as 100 nM of arsenite in D. deserti. We demonstrated that the arsenite biosensor resisted desiccation and remained functional after 7 days stored in air-dried D. deserti cells. We also report here the use of a new near-infrared (NIR) fluorescent reporter candidate, a bacteriophytochrome from the magnetotactic bacterium Magnetospirillum magneticum AMB-1, which showed a NIR fluorescent signal that remained optimal despite increasing sample turbidity, while in similar conditions, a drastic loss of the lux-based biosensors signal was observed.

  13. Porous Silicon-Based Biosensors: Towards Real-Time Optical Detection of Target Bacteria in the Food Industry

    PubMed Central

    Massad-Ivanir, Naama; Shtenberg, Giorgi; Raz, Nitzan; Gazenbeek, Christel; Budding, Dries; Bos, Martine P.; Segal, Ester

    2016-01-01

    Rapid detection of target bacteria is crucial to provide a safe food supply and to prevent foodborne diseases. Herein, we present an optical biosensor for identification and quantification of Escherichia coli (E. coli, used as a model indicator bacteria species) in complex food industry process water. The biosensor is based on a nanostructured, oxidized porous silicon (PSi) thin film which is functionalized with specific antibodies against E. coli. The biosensors were exposed to water samples collected directly from process lines of fresh-cut produce and their reflectivity spectra were collected in real time. Process water were characterized by complex natural micro-flora (microbial load of >107 cell/mL), in addition to soil particles and plant cell debris. We show that process water spiked with culture-grown E. coli, induces robust and predictable changes in the thin-film optical interference spectrum of the biosensor. The latter is ascribed to highly specific capture of the target cells onto the biosensor surface, as confirmed by real-time polymerase chain reaction (PCR). The biosensors were capable of selectively identifying and quantifying the target cells, while the target cell concentration is orders of magnitude lower than that of other bacterial species, without any pre-enrichment or prior processing steps. PMID:27901131

  14. Porous Silicon-Based Biosensors: Towards Real-Time Optical Detection of Target Bacteria in the Food Industry.

    PubMed

    Massad-Ivanir, Naama; Shtenberg, Giorgi; Raz, Nitzan; Gazenbeek, Christel; Budding, Dries; Bos, Martine P; Segal, Ester

    2016-11-30

    Rapid detection of target bacteria is crucial to provide a safe food supply and to prevent foodborne diseases. Herein, we present an optical biosensor for identification and quantification of Escherichia coli (E. coli, used as a model indicator bacteria species) in complex food industry process water. The biosensor is based on a nanostructured, oxidized porous silicon (PSi) thin film which is functionalized with specific antibodies against E. coli. The biosensors were exposed to water samples collected directly from process lines of fresh-cut produce and their reflectivity spectra were collected in real time. Process water were characterized by complex natural micro-flora (microbial load of >10 7  cell/mL), in addition to soil particles and plant cell debris. We show that process water spiked with culture-grown E. coli, induces robust and predictable changes in the thin-film optical interference spectrum of the biosensor. The latter is ascribed to highly specific capture of the target cells onto the biosensor surface, as confirmed by real-time polymerase chain reaction (PCR). The biosensors were capable of selectively identifying and quantifying the target cells, while the target cell concentration is orders of magnitude lower than that of other bacterial species, without any pre-enrichment or prior processing steps.

  15. Porous Silicon-Based Biosensors: Towards Real-Time Optical Detection of Target Bacteria in the Food Industry

    NASA Astrophysics Data System (ADS)

    Massad-Ivanir, Naama; Shtenberg, Giorgi; Raz, Nitzan; Gazenbeek, Christel; Budding, Dries; Bos, Martine P.; Segal, Ester

    2016-11-01

    Rapid detection of target bacteria is crucial to provide a safe food supply and to prevent foodborne diseases. Herein, we present an optical biosensor for identification and quantification of Escherichia coli (E. coli, used as a model indicator bacteria species) in complex food industry process water. The biosensor is based on a nanostructured, oxidized porous silicon (PSi) thin film which is functionalized with specific antibodies against E. coli. The biosensors were exposed to water samples collected directly from process lines of fresh-cut produce and their reflectivity spectra were collected in real time. Process water were characterized by complex natural micro-flora (microbial load of >107 cell/mL), in addition to soil particles and plant cell debris. We show that process water spiked with culture-grown E. coli, induces robust and predictable changes in the thin-film optical interference spectrum of the biosensor. The latter is ascribed to highly specific capture of the target cells onto the biosensor surface, as confirmed by real-time polymerase chain reaction (PCR). The biosensors were capable of selectively identifying and quantifying the target cells, while the target cell concentration is orders of magnitude lower than that of other bacterial species, without any pre-enrichment or prior processing steps.

  16. A lateral flow biosensor for detection of single nucleotide polymorphism by circular strand displacement reaction.

    PubMed

    Xiao, Zhuo; Lie, Puchang; Fang, Zhiyuan; Yu, Luxin; Chen, Junhua; Liu, Jie; Ge, Chenchen; Zhou, Xuemeng; Zeng, Lingwen

    2012-09-04

    A lateral flow biosensor for detection of single nucleotide polymorphism based on circular strand displacement reaction (CSDPR) has been developed. Taking advantage of high fidelity of T4 DNA ligase, signal amplification by CSDPR, and the optical properties of gold nanoparticles, this assay has reached a detection limit of 0.01 fM.

  17. Biosensors of bacterial cells.

    PubMed

    Burlage, Robert S; Tillmann, Joshua

    2017-07-01

    Biosensors are devices which utilize both an electrical component (transducer) and a biological component to study an environment. They are typically used to examine biological structures, organisms and processes. The field of biosensors has now become so large and varied that the technology can often seem impenetrable. Yet the principles which underlie the technology are uncomplicated, even if the details of the mechanisms are elusive. In this review we confine our analysis to relatively current advancements in biosensors for the detection of whole bacterial cells. This includes biosensors which rely on an added labeled component and biosensors which do not have a labeled component and instead detect the binding event or bound structure on the transducer. Methods to concentrate the bacteria prior to biosensor analysis are also described. The variety of biosensor types and their actual and potential uses are described. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Application of genetically engineered microbial whole-cell biosensors for combined chemosensing.

    PubMed

    He, Wei; Yuan, Sheng; Zhong, Wen-Hui; Siddikee, Md Ashaduzzaman; Dai, Chuan-Chao

    2016-02-01

    The progress of genetically engineered microbial whole-cell biosensors for chemosensing and monitoring has been developed in the last 20 years. Those biosensors respond to target chemicals and produce output signals, which offer a simple and alternative way of assessment approaches. As actual pollution caused by human activities usually contains a combination of different chemical substances, how to employ those biosensors to accurately detect real contaminant samples and evaluate biological effects of the combined chemicals has become a realistic object of environmental researches. In this review, we outlined different types of the recent method of genetically engineered microbial whole-cell biosensors for combined chemical evaluation, epitomized their detection performance, threshold, specificity, and application progress that have been achieved up to now. We also discussed the applicability and limitations of this biosensor technology and analyzed the optimum conditions for their environmental assessment in a combined way.

  19. Early-stage detection of VE-cadherin during endothelial differentiation of human mesenchymal stem cells using SPR biosensor.

    PubMed

    Fathi, Farzaneh; Rezabakhsh, Aysa; Rahbarghazi, Reza; Rashidi, Mohammad-Reza

    2017-10-15

    Surface plasmon resonance (SPR) biosensors are most commonly applied for real-time dynamic analysis and measurement of interactions in bio-molecular studies and cell-surface analysis without the need for labeling processes. Up to present, SPR application in stem cell biology and biomedical sciences was underused. Herein, a very simple and sensitive method was developed to evaluate human mesenchymal stem cells trans-differentiation to endothelial lineage of over a period of 14 days based on VE-cadherin biomarker. The SPR signals increased with the increase of the amount of VE-cadherin expression on the cell surface during cell differentiation process. The method was able to detect ≈27 cells permm 2 . No significant effect was observed on the cell viability during the cell attachment to the surface of immune-reactive biochips and during the SPR analysis. Using this highly sensitive SPR method, it was possible to sense the early stage of endothelial differentiation on day 3 in label-free form, whereas flow cytometry and fluorescent microscopy methods were found unable to detect the cell differentiation at the same time. Therefore, the proposed method can rapidly and accurately detect cell differentiation in live cells and label-free manner without any need of cell breakage and has great potential for both diagnostic and experimental approaches. Copyright © 2017. Published by Elsevier B.V.

  20. Non-invasive screening for Alzheimer's disease by sensing salivary sugar using Drosophila cells expressing gustatory receptor (Gr5a) immobilized on an extended gate ion-sensitive field-effect transistor (EG-ISFET) biosensor.

    PubMed

    Lau, Hui-Chong; Lee, In-Kyu; Ko, Pan-Woo; Lee, Ho-Won; Huh, Jeung-Soo; Cho, Won-Ju; Lim, Jeong-Ok

    2015-01-01

    Body fluids are often used as specimens for medical diagnosis. With the advent of advanced analytical techniques in biotechnology, the diagnostic potential of saliva has been the focus of many studies. We recently reported the presence of excess salivary sugars, in patients with Alzheimer's disease (AD). In the present study, we developed a highly sensitive, cell-based biosensor to detect trehalose levels in patient saliva. The developed biosensor relies on the overexpression of sugar sensitive gustatory receptors (Gr5a) in Drosophila cells to detect the salivary trehalose. The cell-based biosensor was built on the foundation of an improved extended gate ion-sensitive field-effect transistor (EG-ISFET). Using an EG-ISFET, instead of a traditional ion-sensitive field-effect transistor (ISFET), resulted in an increase in the sensitivity and reliability of detection. The biosensor was designed with the gate terminals segregated from the conventional ISFET device. This design allows the construction of an independent reference and sensing region for simultaneous and accurate measurements of samples from controls and patients respectively. To investigate the efficacy of the cell-based biosensor for AD screening, we collected 20 saliva samples from each of the following groups: participants diagnosed with AD, participants diagnosed with Parkinson's disease (PD), and a control group composed of healthy individuals. We then studied the response generated from the interaction of the salivary trehalose of the saliva samples and the Gr5a in the immobilized cells on an EG-ISFET sensor. The cell-based biosensor significantly distinguished salivary sugar, trehalose of the AD group from the PD and control groups. Based on these findings, we propose that salivary trehalose, might be a potential biomarker for AD and could be detected using our cell-based EG-ISFET biosensor. The cell-based EG-ISFET biosensor provides a sensitive and direct approach for salivary sugar detection and may be used in the future as a screening method for AD.

  1. A luminescent hybridoma-based biosensor for rapid detection of V. cholerae upon induction of calcium signaling pathway.

    PubMed

    Zamani, Parichehr; Sajedi, Reza H; Hosseinkhani, Saman; Zeinoddini, Mehdi; Bakhshi, Bita

    2016-05-15

    In this study, a hybridoma based biosensor was developed for rapid, sensitive and selective detection of Vibrio cholerae O1 which converts the antibody-antigen binding to bioluminescence light. After investigation on hybridoma performance, the biosensor was constructed by transfecting specific hybridoma cells with aequorin reporter gene and the bioluminescence activities of stable biosensor were measured. The sensitivity of biosensor was as few as 50 CFU/ml and it showed no responses to other entric bacteria. Moreover, the response time of biosensor was estimated in 7th second which means this method is considerably faster than many available detection assays. In addition, this biosensor was successfully applied to V. cholerae detection in environmental samples with no significant loss in sensitivity, demonstrating our proposed biosensor provides a sensitive and reliable method for detection of V. cholerae in natural samples. The application of whole hybridoma cell directly as a sensing element in biosensor construction which mentioned for the first time in present study suggests that hybridoma cells could provide a valuable tool for future studies in both basic and diagnostic sciences and could be considered as a fast and specific sensing element for detection of other pathogens in different applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Detecting Anastasis In Vivo by CaspaseTracker Biosensor.

    PubMed

    Tang, Ho Man; Fung, Ming Chiu; Tang, Ho Lam

    2018-02-01

    Anastasis (Greek for "rising to life") is a recently discovered cell recovery phenomenon whereby dying cells can reverse late-stage cell death processes that are generally assumed to be intrinsically irreversible. Promoting anastasis could in principle rescue or preserve injured cells that are difficult to replace such as cardiomyocytes or neurons, thereby facilitating tissue recovery. Conversely, suppressing anastasis in cancer cells, undergoing apoptosis after anti-cancer therapies, may ensure cancer cell death and reduce the chances of recurrence. However, these studies have been hampered by the lack of tools for tracking the fate of cells that undergo anastasis in live animals. The challenge is to identify the cells that have reversed the cell death process despite their morphologically normal appearance after recovery. To overcome this difficulty, we have developed Drosophila and mammalian CaspaseTracker biosensor systems that can identify and permanently track the anastatic cells in vitro or in vivo. Here, we present in vivo protocols for the generation and use of the CaspaseTracker dual biosensor system to detect and track anastasis in Drosophila melanogaster after transient exposure to cell death stimuli. While conventional biosensors and protocols can label cells actively undergoing apoptotic cell death, the CaspaseTracker biosensor can permanently label cells that have recovered after caspase activation - a hallmark of late-stage apoptosis, and simultaneously identify active apoptotic processes. This biosensor can also track the recovery of the cells that attempted other forms of cell death that directly or indirectly involved caspase activity. Therefore, this protocol enables us to continuously track the fate of these cells and their progeny, facilitating future studies of the biological functions, molecular mechanisms, physiological and pathological consequences, and therapeutic implications of anastasis. We also discuss the appropriate controls to distinguish cells that undergo anastasis from those that display non-apoptotic caspase activity in vivo.

  3. Theoretical analysis and simulation study of low-power CMOS electrochemical impedance spectroscopy biosensor in 55 nm deeply depleted channel technology for cell-state monitoring

    NASA Astrophysics Data System (ADS)

    Itakura, Keisuke; Kayano, Keisuke; Nakazato, Kazuo; Niitsu, Kiichi

    2018-01-01

    We present an impedance-detection complementary metal oxide semiconductor (CMOS) biosensor circuit for cell-state observation. The proposed biosensor can measure the expected impedance values encountered by a cell-state observation measurement system within a 0.1-200 MHz frequency range. The proposed device is capable of monitoring the intracellular conditions necessary for real-time cell-state observation, and can be fabricated using a 55 nm deeply depleted channel CMOS process. Operation of the biosensor circuit with 0.9 and 1.7 V supply voltages is verified via a simulated program with integrated circuit emphasis (SPICE) simulation. The power consumption is 300 µW. Further, the standby power consumption is 290 µW, indicating that this biosensor is a low-power instrument suitable for use in Internet of Things (IoT) devices.

  4. Coupling bimolecular PARylation biosensors with genetic screens to identify PARylation targets.

    PubMed

    Krastev, Dragomir B; Pettitt, Stephen J; Campbell, James; Song, Feifei; Tanos, Barbara E; Stoynov, Stoyno S; Ashworth, Alan; Lord, Christopher J

    2018-05-22

    Poly (ADP-ribose)ylation is a dynamic protein modification that regulates multiple cellular processes. Here, we describe a system for identifying and characterizing PARylation events that exploits the ability of a PBZ (PAR-binding zinc finger) protein domain to bind PAR with high-affinity. By linking PBZ domains to bimolecular fluorescent complementation biosensors, we developed fluorescent PAR biosensors that allow the detection of temporal and spatial PARylation events in live cells. Exploiting transposon-mediated recombination, we integrate the PAR biosensor en masse into thousands of protein coding genes in living cells. Using these PAR-biosensor "tagged" cells in a genetic screen we carry out a large-scale identification of PARylation targets. This identifies CTIF (CBP80/CBP20-dependent translation initiation factor) as a novel PARylation target of the tankyrase enzymes in the centrosomal region of cells, which plays a role in the distribution of the centrosomal satellites.

  5. Autonomous electrochemical biosensors: A new vision to direct methanol fuel cells.

    PubMed

    Sales, M Goreti F; Brandão, Lúcia

    2017-12-15

    A new approach to biosensing devices is demonstrated aiming an easier and simpler application in routine health care systems. Our methodology considered a new concept for the biosensor transducing event that allows to obtain, simultaneously, an equipment-free, user-friendly, cheap electrical biosensor. The use of the anode triple-phase boundary (TPB) layer of a passive direct methanol fuel cell (DMFC) as biosensor transducer is herein proposed. For that, the ionomer present in the anode catalytic layer of the DMFC is partially replaced by an ionomer with molecular recognition capability working as the biorecognition element of the biosensor. In this approach, fuel cell anode catalysts are modified with a molecularly imprinted polymer (plastic antibody) capable of protein recognition (ferritin is used as model protein), inserted in a suitable membrane electrode assembly (MEA) and tested, as initial proof-of-concept, in a non-passive fuel cell operation environment. The anchoring of the ionomer-based plastic antibody on the catalyst surface follows a simple one-step grafting from approach through radical polymerization. Such modification increases fuel cell performance due to the proton conductivity and macroporosity characteristics of the polymer on the TPB. Finally, the response and selectivity of the bioreceptor inside the fuel cell showed a clear and selective signal from the biosensor. Moreover, such pioneering transducing approach allowed amplification of the electrochemical response and increased biosensor sensitivity by 2 orders of magnitude when compared to a 3-electrodes configuration system. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  6. On-Line Monitoring the Growth of E. coli or HeLa Cells Using an Annular Microelectrode Piezoelectric Biosensor.

    PubMed

    Tong, Feifei; Lian, Yan; Han, Junliang

    2016-12-18

    Biological information is obtained from the interaction between the series detection electrode and the organism or the physical field of biological cultures in the non-mass responsive piezoelectric biosensor. Therefore, electric parameter of the electrode will affect the biosensor signal. The electric field distribution of the microelectrode used in this study was simulated using the COMSOL Multiphysics analytical tool. This process showed that the electric field spatial distribution is affected by the width of the electrode finger or the space between the electrodes. In addition, the characteristic response of the piezoelectric sensor constructed serially with an annular microelectrode was tested and applied for the continuous detection of Escherichia coli culture or HeLa cell culture. Results indicated that the piezoelectric biosensor with an annular microelectrode meets the requirements for the real-time detection of E. coli or HeLa cells in culture. Moreover, this kind of piezoelectric biosensor is more sensitive than the sensor with an interdigital microelectrode. Thus, the piezoelectric biosensor acts as an effective analysis tool for acquiring online cell or microbial culture information.

  7. Engineering Rugged Field Assays to Detect Hazardous Chemicals Using Spore-Based Bacterial Biosensors.

    PubMed

    Wynn, Daniel; Deo, Sapna; Daunert, Sylvia

    2017-01-01

    Bacterial whole cell-based biosensors have been genetically engineered to achieve selective and reliable detection of a wide range of hazardous chemicals. Although whole-cell biosensors demonstrate many advantages for field-based detection of target analytes, there are still some challenges that need to be addressed. Most notably, their often modest shelf life and need for special handling and storage make them challenging to use in situations where access to reagents, instrumentation, and expertise are limited. These problems can be circumvented by developing biosensors in Bacillus spores, which can be engineered to address all of these concerns. In its sporulated state, a whole cell-based biosensor has a remarkably long life span and is exceptionally resistant to environmental insult. When these spores are germinated for use in analytical techniques, they show no loss in performance, even after long periods of storage under harsh conditions. In this chapter, we will discuss the development and use of whole cell-based sensors, their adaptation to spore-based biosensors, their current applications, and future directions in the field. © 2017 Elsevier Inc. All rights reserved.

  8. Hyperspectral imaging for simultaneous measurements of two FRET biosensors in pancreatic β-cells.

    PubMed

    Elliott, Amicia D; Bedard, Noah; Ustione, Alessandro; Baird, Michelle A; Davidson, Michael W; Tkaczyk, Tomasz; Piston, David W

    2017-01-01

    Fluorescent protein (FP) biosensors based on Förster resonance energy transfer (FRET) are commonly used to study molecular processes in living cells. There are FP-FRET biosensors for many cellular molecules, but it remains difficult to perform simultaneous measurements of multiple biosensors. The overlapping emission spectra of the commonly used FPs, including CFP/YFP and GFP/RFP make dual FRET measurements challenging. In addition, a snapshot imaging modality is required for simultaneous imaging. The Image Mapping Spectrometer (IMS) is a snapshot hyperspectral imaging system that collects high resolution spectral data and can be used to overcome these challenges. We have previously demonstrated the IMS's capabilities for simultaneously imaging GFP and CFP/YFP-based biosensors in pancreatic β-cells. Here, we demonstrate a further capability of the IMS to image simultaneously two FRET biosensors with a single excitation band, one for cAMP and the other for Caspase-3. We use these measurements to measure simultaneously cAMP signaling and Caspase-3 activation in pancreatic β-cells during oxidative stress and hyperglycemia, which are essential components in the pathology of diabetes.

  9. In-membrane micro fuel cell

    DOEpatents

    Omosebi, Ayokunle; Besser, Ronald

    2016-09-06

    An in-membrane micro fuel cell comprises an electrically-insulating membrane that is permissive to the flow of cations, such as protons, and a pair of electrodes deposited on channels formed in the membrane. The channels are arranged as conduits for fluids, and define a membrane ridge between the channels. The electrodes are porous and include catalysts for promoting the liberation of a proton and an electron from a chemical species and/or or the recombination of a proton and an electron with a chemical specie. The fuel cell may be provided a biosensor, an electrochemical sensor, a microfluidic device, or other microscale devices fabricated in the fuel cell membrane.

  10. Flow electrochemical biosensors based on enzymatic porous reactor and tubular detector of silver solid amalgam.

    PubMed

    Josypčuk, Bohdan; Barek, Jiří; Josypčuk, Oksana

    2013-05-17

    A flow amperometric enzymatic biosensor for the determination of glucose was constructed. The biosensor consists of a flow reactor based on porous silver solid amalgam (AgSA) and a flow tubular detector based on compact AgSA. The preparation of the sensor and the determination of glucose occurred in three steps. First, a self-assembled monolayer of 11-mercaptoundecanoic acid (MUA) was formed at the porous surface of the reactor. Second, enzyme glucose oxidase (GOx) was covalently immobilized at MUA-layer using N-ethyl-N'-(3-dimethylaminopropyl) carboimide and N-hydroxysuccinimide chemistry. Finally, a decrease of oxygen concentration (directly proportional to the concentration of glucose) during enzymatic reaction was amperometrically measured on the tubular detector under flow injection conditions. The following parameters of glucose determination were optimized with respect to amperometric response: composition of the mobile phase, its concentration, the potential of detection and the flow rate. The calibration curve of glucose was linear in the concentration range of 0.02-0.80 mmol L(-1) with detection limit of 0.01 mmol L(-1). The content of glucose in the sample of honey was determined as 35.5±1.0 mass % (number of the repeated measurements n=7; standard deviation SD=1.2%; relative standard deviation RSD=3.2%) which corresponds well with the declared values. The tested biosensor proved good long-term stability (77% of the current response of glucose was retained after 35 days). Copyright © 2013 Elsevier B.V. All rights reserved.

  11. An optofluidic metasurface for lateral flow-through detection of breast cancer biomarker.

    PubMed

    Wang, Yifei; Ali, Md Azahar; Chow, Edmond K C; Dong, Liang; Lu, Meng

    2018-06-01

    The rapid growth of point-of-care tests demands for biosensors with high sensitivity and small size. This paper demonstrates an optofluidic metasurface that combines silicon-on-insulator (SOI) nanophotonics and nanofluidics to realize a high-performance, lateral flow-through biosensor. The metasurface is made of a periodic array of silicon nanoposts on an SOI substrate, and functionalized with specific receptor molecules. Bonding of a polydimethylsiloxane slab directly onto the surface results in an ultracompact biosensor, where analyte solutions are restricted to flow only in the space between the nanoposts. No flow exists above the nanoposts. This sensor design overcomes the issue with diffusion-limited detection of many other biosensors. The lateral flow-through feature, in conjunction with high-Q resonance modes associated with optical bound states of the metasurface, offers an improved sensitivity to subtle molecule-bonding induced changes in refractive index. The device exhibits a resonance mode around 1550 nm wavelength and provides an index sensitivity of 720 nm/RIU. Biosensing is conducted to detect the epidermal growth factor receptor 2 (ErbB2), a protein biomarker for early-stage breast cancer screening, by monitoring resonance wavelength shifts in response to specific analyte-ligand binding events at the metasurface. The limit of detection of the device is 0.7 ng mL -1 for ErbB2. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. FRET and BRET-based biosensors in live cell compound screens.

    PubMed

    Robinson, Katie Herbst; Yang, Jessica R; Zhang, Jin

    2014-01-01

    Live cell compound screening with genetically encoded fluorescence or bioluminescence-based biosensors offers a potentially powerful approach to identify novel regulators of a signaling event of interest. In particular, compound screening in living cells has the added benefit that the entire signaling network remains intact, and thus the screen is not just against a single molecule of interest but against any molecule within the signaling network that may modulate the distinct signaling event reported by the biosensor in use. Furthermore, only molecules that are cell permeable or act at cell surface receptors will be identified as "hits," thus reducing further optimization of the compound in terms of cell penetration. Here we discuss a detailed protocol for using genetically encoded biosensors in living cells in a 96-well format for the execution of high throughput compound screens and the identification of small molecules which modulate a signaling event of interest.

  13. Rapid detection of Bacillus anthracis using monoclonal antibody functionalized QCM sensor.

    PubMed

    Hao, Rongzhang; Wang, Dianbing; Zhang, Xian'en; Zuo, Guomin; Wei, Hongping; Yang, Ruifu; Zhang, Zhiping; Cheng, Zhenxing; Guo, Yongchao; Cui, Zongqiang; Zhou, Yafeng

    2009-01-01

    Since the anthrax spore bioterrorism attacks in America in 2001, the early detection of Bacillus anthracis spores and vegetative cells has gained significant interest. At present, many polyclonal antibody-based quartz crystal microbalance (QCM) sensors have been developed to detect B. anthracis simulates. To achieve a simultaneous rapid detection of B. anthracis spores and vegetative cells, this paper presents a biosensor that utilizes an anti-B. anthracis monoclonal antibody designated to 8G3 (mAb 8G3, IgG) functionalized QCM sensor. Having compared four kinds of antibody immobilizations on Au surface, an optimized mAb 8G3 was immobilized onto the Au electrode with protein A on a mixed self-assembled monolayer (SAM) of 11-mercaptoundecanoic acid (11-MUA) and 6-mercaptohexan-1-ol (6-MHO) as adhesive layer. The detection of B. anthracis was investigated under three conditions: dip-and-dry, static addition and flow through procedure. The results indicated that the sensor yielded a distinct response to B. anthracis spores or vegetative cells but had no significant response to Bacillus thuringiensis species. The functionalized sensor recognized B. anthracis spores and vegetative cells specifically from its homophylic ones, and the limit of detection (LOD) reached 10(3)CFU or spores/ml of B. anthracis in less than 30 min. Cyclic voltammogram (CV) and scanning electronic microscopy (SEM) were performed to characterize the surface of the sensor in variable steps during the modification and after the detection. The mAb functionalized QCM biosensor will be helpful in the fabrication of a similar biosensor that may be available in anti-bioterrorism in the future.

  14. Microfluidic differential immunocapture biochip for specific leukocyte counting

    PubMed Central

    Hassan, Umer; Watkins, Nicholas N; Reddy, Bobby; Damhorst, Gregory; Bashir, Rashid

    2016-01-01

    Enumerating specific cell types from whole blood can be very useful for research and diagnostic purposes—e.g., for counting of cD4 and cD8 t cells in HIV/aIDs diagnostics. We have developed a biosensor based on a differential immunocapture technology to enumerate specific cells in 30 min using 10 µl of blood. this paper provides a comprehensive stepwise protocol to replicate our biosensor for cD4 and cD8 cell counts. the biochip can also be adapted to enumerate other specific cell types such as somatic cells or cells from tissue or liquid biopsies. capture of other specific cells requires immobilization of their corresponding antibodies within the capture chamber. therefore, this protocol is useful for research into areas surrounding immunocapture-based biosensor development. the biosensor production requires 24 h, a one-time cell capture optimization takes 6–9 h, and the final cell counting experiment in a laboratory environment requires 30 min to complete. PMID:26963632

  15. Amperometric Choline Biosensor Fabricated through Electrostatic Assembly of Bienzyme/Polyelectrolyte Hybrid Layers on Carbon Nanotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jun; Liu, Guodong; Lin, Yuehe

    2006-03-01

    We report a flow injection amperometric choline biosensors based on the electrostatic assembly of an enzyme of choline oxidase (ChO) and a bi-enzyme of ChO and horseradish peroxidase (HRP) onto multi-wall carbon nanotubes (MWCNT) modified glassy carbon (GC) electrodes. These choline biosensors were fabricated by immobilization of enzymes on the negatively charged MWCNT surface through alternatively assembling a cationic polydiallydiimethylammonium chloride (PDDA) layer and an enzyme layer. Using this layer-by-layer assembling approach, bioactive nanocomposite film of a PDDA/ChO/PDDA/HRP/PDDA/CNT (ChO/HRP/CNT) and a PDDA/ChO/PDDA/ CNT (ChO/ CNT) were fabricated on GC surface, respectively. Owning to the electrocatalytic effect of carbon nanotubes, themore » measurement of faradic responses resulting from enzymatic reactions has been realized at low potential with acceptable sensitivity. It is found the ChO/HRP/CNT biosensor is more sensitive than the ChO/CNT one. Experimental parameters affecting the sensitivity of biosensors, e.g. applied potential, flow rate, etc. were optimized and potential interference was examined. The response time for this choline biosensor is fast (less than a few seconds). The linear range of detection for the choline biosensor is from 5 x 10-5 to 5 x 10-3 M and the detection limit is determined to be about 1.0 x 10-5 M.« less

  16. Generation of Affibody ligands binding interleukin-2 receptor alpha/CD25.

    PubMed

    Grönwall, Caroline; Snelders, Eveline; Palm, Anna Jarelöv; Eriksson, Fredrik; Herne, Nina; Ståhl, Stefan

    2008-06-01

    Affibody molecules specific for human IL-2Ralpha, the IL-2 (interleukin-2) receptor alpha subunit, also known as CD25, were selected by phage-display technology from a combinatorial protein library based on the 58-residue Protein A-derived Z domain. The IL-2R system plays a major role in T-cell activation and the regulation of cellular immune responses. Moreover, CD25 has been found to be overexpressed in organ rejections, a number of autoimmune diseases and T-cell malignancies. The phage-display selection using Fc-fused target protein generated 16 unique Affibody molecules targeting CD25. The two most promising binders were characterized in more detail using biosensor analysis and demonstrated strong and selective binding to CD25. Kinetic biosensor analysis revealed that the two monomeric Affibody molecules bound to CD25 with apparent affinities of 130 and 240 nM respectively. The Affibody molecules were, on biosensor analysis, found to compete for the same binding site as the natural ligand IL-2 and the IL-2 blocking monoclonal antibody 2A3. Hence the Affibody molecules were assumed to have an overlapping binding site with IL-2 and antibodies targeting the IL-2 blocking Tac epitope (for example, the monoclonal antibodies Daclizumab and Basiliximab, both of which have been approved for therapeutic use). Furthermore, immunofluorescence microscopy and flow-cytometric analysis of CD25-expressing cells demonstrated that the selected Affibody molecules bound to CD4+ CD25+ PMBCs (peripheral-blood mononuclear cells), the IL-2-dependent cell line NK92 and phytohaemagglutinin-activated PMBCs. The potential use of the CD25-binding Affibody molecules as targeting agents for medical imaging and for therapeutic applications is discussed.

  17. A Novel Cell-Based Hybrid Acoustic Wave Biosensor with Impedimetric Sensing Capabilities

    PubMed Central

    Liu, Fei; Li, Fang; Nordin, Anis Nurashikin; Voiculescu, Ioana

    2013-01-01

    A novel multiparametric biosensor system based on living cells will be presented. The biosensor system includes two biosensing techniques on a single device: resonant frequency measurements and electric cell-substrate impedance sensing (ECIS). The multiparametric sensor system is based on the innovative use of the upper electrode of a quartz crystal microbalance (QCM) resonator as working electrode for the ECIS technique. The QCM acoustic wave sensor consists of a thin AT-cut quartz substrate with two gold electrodes on opposite sides. For integration of the QCM with the ECIS technique a semicircular counter electrode was fabricated near the upper electrode on the same side of the quartz crystal. Bovine aortic endothelial live cells (BAECs) were successfully cultured on this hybrid biosensor. Finite element modeling of the bulk acoustic wave resonator using COMSOL simulations was performed. Simultaneous gravimetric and impedimetric measurements performed over a period of time on the same cell culture were conducted to validate the device's sensitivity. The time necessary for the BAEC cells to attach and form a compact monolayer on the biosensor was 35∼45 minutes for 1.5 × 104 cells/cm2 BAECs; 60 minutes for 2.0 × 104 cells/cm2 BAECs; 70 minutes for 3.0 × 104 cells/cm2 BAECs; and 100 minutes for 5.0 × 104 cells/cm2 BAECs. It was demonstrated that this time is the same for both gravimetric and impedimetric measurements. This hybrid biosensor will be employed in the future for water toxicity detection. PMID:23459387

  18. An ATP sensitive light addressable biosensor for extracellular monitoring of single taste receptor cell.

    PubMed

    Wu, Chunsheng; Du, Liping; Zou, Ling; Zhao, Luhang; Wang, Ping

    2012-12-01

    Adenosine triphosphate (ATP) is considered as the key neurotransmitter in taste buds for taste signal transmission and processing. Measurements of ATP secreted from single taste receptor cell (TRC) with high sensitivity and specificity are essential for investigating mechanisms underlying taste cell-to-cell communications. In this study, we presented an aptamer-based biosensor for the detection of ATP locally secreted from single TRC. ATP sensitive DNA aptamer was used as recognition element and its DNA competitor was served as signal transduction element that was covalently immobilized on the surface of light addressable potentiometric sensor (LAPS). Due to the light addressable capability of LAPS, local ATP secretion from single TRC can be detected by monitoring the working potential shifts of LAPS. The results show this biosensor can detect ATP with high sensitivity and specificity. It is demonstrated this biosensor can effectively detect the local ATP secretion from single TRC responding to tastant mixture. This biosensor could provide a promising new tool for the research of taste cell-to-cell communications as well as for the detection of local ATP secretion from other types of ATP secreting individual cells.

  19. Biosensor Based on Self-Assembling Acetylcholinesterase on Carbon Nanotubes for Flow injection/Amperometric Detection of Organophosphate Pesticides and Nerve Agents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Guodong; Lin, Yuehe

    A highly sensitive flow-injection amperometric biosensor for organophosphate pesticides and nerve agents based on self-assembly of acetylcholinesterase (AChE) on carbon nanotube (CNT)-modified glassy carbon (GC) electrode is described. AChE is immobilized on the negatively-charged CNT surface by alternatively assembling a cationic polydiallyldimethylammonium chloride (PDDA) layer and an AChE layer. Transmission electron microscopy images confirm the formation of layer-by-layer nanostructures on carboxyl functionalized CNTs. The unique sandwich-like structure (PDDA/AChE/PDDA) on the CNT surface formed by self-assembly provides a favorable microenvironment to keep the bioactivity of AChE and to prevent enzyme molecule leakage. The electrocatalytic activity of CNT leads to a greatlymore » improved electrochemical detection of the enzymatically generated thiocholine product, including a low oxidation overvoltage (+150 mV), higher sensitivity, and stability. The developed PDDA/AChE/PDDA/CNT/GC biosensor integrated into a flow injection system was used to monitor organophosphate pesticides and nerve agents, such as paraoxon. The sensor performance, including inhibition time and regeneration conditions, was optimized with respect to operating conditions. Under the optimal conditions, the biosensor was used to measure as low as 0.4 pM paraoxon with a 6-min inhibition time. The biosensor had excellent operational lifetime stability with no decrease in the activity of enzymes for more than 20 repeated measurements over a 1-week period. The developed biosensor system is an ideal tool for online monitoring of organophosphate pesticides and nerve agents.« less

  20. Potentiometric Biosensor for Studying Hydroquinone Cytotoxicity in vitro

    PubMed Central

    Wang, Yanyan; Chen, Qiang; Zeng, Xiangqun

    2009-01-01

    Many processes in living cells have electrochemical characteristics that are suitable for measurement by potentiometric biosensors. Potentiometric biosensors allow non invasive, real-time monitoring of the extracellular environment changes by measuring the potential at cell/sensor interface. This can be used as an indicator for overall cell cytotoxicity. The present work employs a potentiometric sensor array to investigate the cytotoxicity of hydroquinone to cultured mammalian V79 cells. Various electrode substrates (Au, PPy-HQ and PPy-PS) used for cell growth were designed and characterized. The controllable release of hydroquinone from PPy substrates was studied. Our results showed that hydroquinone exposure affected cell proliferation and delayed cell growth and attachment in a dose-dependent manner. Additionally, we have shown that exposure of V79 cells to hydroquinone at low doses (i.e 5μM) for more than 15 hours allows V79 cells to gain enhanced adaptability to survive exposure to high toxic HQ doses afterwards. Compared with traditional methods, the potentiometric biosensor not only provides non-invasive and real time monitoring of the cellular reactions but also is more sensitive for in vitro cytotoxicity study. By real time and non-invasive monitoring of the extracellular potential in vitro, the potentiometric sensor system represents a promising biosensor system for drug discovery. PMID:19926470

  1. Naringenin-responsive riboswitch-based fluorescent biosensor module for Escherichia coli co-cultures.

    PubMed

    Xiu, Yu; Jang, Sungho; Jones, J Andrew; Zill, Nicholas A; Linhardt, Robert J; Yuan, Qipeng; Jung, Gyoo Yeol; Koffas, Mattheos A G

    2017-10-01

    The ability to design and construct combinatorial synthetic metabolic pathways has far exceeded our capacity for efficient screening and selection of the resulting microbial strains. The need for high-throughput rapid screening techniques is of upmost importance for the future of synthetic biology and metabolic engineering. Here we describe the development of an RNA riboswitch-based biosensor module with dual fluorescent reporters, and demonstrate a high-throughput flow cytometry-based screening method for identification of naringenin over producing Escherichia coli strains in co-culture. Our efforts helped identify a number of key operating parameters that affect biosensor performance, including the selection of promoter and linker elements within the sensor-actuator domain, and the effect of host strain, fermentation time, and growth medium on sensor dynamic range. The resulting biosensor demonstrates a high correlation between specific fluorescence of the biosensor strain and naringenin titer produced by the second member of the synthetic co-culture system. This technique represents a novel application for synthetic microbial co-cultures and can be expanded from naringenin to any metabolite if a suitable riboswitch is identified. The co-culture technique presented here can be applied to a variety of target metabolites in combination with the SELEX approach for aptamer design. Due to the compartmentalization of the two genetic constructs responsible for production and detection into separate cells and application as independent modules of a synthetic microbial co-culture we have subsequently reduced the need for re-optimization of the producer module when the biosensor is replaced or removed. Biotechnol. Bioeng. 2017;114: 2235-2244. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  2. Chemiluminescence detection of peroxynitrite with flow injection

    NASA Astrophysics Data System (ADS)

    Kang, Dai; Evmiridis, Nick P.; Vlessidis, Athanasios; Zhou, Yikai

    2001-09-01

    Peroxynitrite is an important derivative made by nitric oxide in vivo. It can make damages in many kinds of tissue and cells. Its research value in heart disease and cancer is a very high. A sensitive, specific method for analysis of peroxynitrite is described. In this method, chemiluminescence reaction between perodynitrite and luminol was used to detect with flow injection system. The assay has a detection limit of 2 by 10-8 mol L-1, and linear range of 5 by 10-8 mol L-1 to 5 by 10-5 mol L-1. The application o f flow injection system offers the possibility to establish biosensor for real-time detection of perodynitrite.

  3. Application of recombinant fluorescent mammalian cells as a toxicity biosensor.

    PubMed

    Kim, E J; Lee, Y; Lee, J E; Gu, M B

    2002-01-01

    With respect to developing a more sensitive biosensor, a recombinant fluorescent Chinese Hamster Ovary cell line was used for the monitoring of various toxicants. Both cell lines, EFC-500 and KFC-A10, were able to detect toxicants sensitively. They were characterized with mitomycin C and gamma-ray as genotoxicants and bisphenol A, nonylphenol, ziram and methyl bromide as possible and known EDCs. When compared to each other, the response of KFC-A10 was generally more informative and sensitive. Compared to typical bacterial biosensor systems, these cell lines offered a sensitivity of 2- to 50-fold greater for the tested chemicals. Based on these results, the use of mammalian cells offers a sensitive biosensor system that is not only fast, cheap and reproducible but also capable of monitoring the endocrine-like characteristics of environmental toxicants.

  4. High-throughput living cell-based optical biosensor for detection of bacterial lipopolysaccharide (LPS) using a red fluorescent protein reporter system.

    PubMed

    Jiang, Hui; Jiang, Donglei; Shao, Jingdong; Sun, Xiulan; Wang, Jiasheng

    2016-11-14

    Due to the high toxicity of bacterial lipopolysaccharide (LPS), resulting in sepsis and septic shock, two major causes of death worldwide, significant effort is directed toward the development of specific trace-level LPS detection systems. Here, we report sensitive, user-friendly, high-throughput LPS detection in a 96-well microplate using a transcriptional biosensor system, based on 293/hTLR4A-MD2-CD14 cells that are transformed by a red fluorescent protein (mCherry) gene under the transcriptional control of an NF-κB response element. The recognition of LPS activates the biosensor cell, TLR4, and the co-receptor-induced NF-κB signaling pathway, which results in the expression of mCherry fluorescent protein. The novel cell-based biosensor detects LPS with specificity at low concentration. The cell-based biosensor was evaluated by testing LPS isolated from 14 bacteria. Of the tested bacteria, 13 isolated Enterobacteraceous LPSs with hexa-acylated structures were found to increase red fluorescence and one penta-acylated LPS from Pseudomonadaceae appeared less potent. The proposed biosensor has potential for use in the LPS detection in foodstuff and biological products, as well as bacteria identification, assisting the control of foodborne diseases.

  5. Norepinephrine is coreleased with serotonin in mouse taste buds.

    PubMed

    Huang, Yijen A; Maruyama, Yutaka; Roper, Stephen D

    2008-12-03

    ATP and serotonin (5-HT) are neurotransmitters secreted from taste bud receptor (type II) and presynaptic (type III) cells, respectively. Norepinephrine (NE) has also been proposed to be a neurotransmitter or paracrine hormone in taste buds. Yet, to date, the specific stimulus for NE release in taste buds is not well understood, and the identity of the taste cells that secrete NE is not known. Chinese hamster ovary cells were transfected with alpha(1A) adrenoceptors and loaded with fura-2 ("biosensors") to detect NE secreted from isolated mouse taste buds and taste cells. Biosensors responded to low concentrations of NE (>or=10 nm) with a reliable fura-2 signal. NE biosensors did not respond to stimulation with KCl or taste compounds. However, we recorded robust responses from NE biosensors when they were positioned against mouse circumvallate taste buds and the taste buds were stimulated with KCl (50 mm) or a mixture of taste compounds (cycloheximide, 10 microm; saccharin, 2 mm; denatonium, 1 mm; SC45647, 100 microm). NE biosensor responses evoked by stimulating taste buds were reversibly blocked by prazosin, an alpha(1A) receptor antagonist. Together, these findings indicate that taste bud cells secrete NE when they are stimulated. We isolated individual taste bud cells to identify the origin of NE release. NE was secreted only from presynaptic (type III) taste cells and not receptor (type II) cells. Stimulus-evoked NE release depended on Ca(2+) in the bathing medium. Using dual biosensors (sensitive to 5-HT and NE), we found all presynaptic cells secrete 5-HT and 33% corelease NE with 5-HT.

  6. Development of a novel microbial sensor with baker's yeast cells for monitoring temperature control during cold food chain.

    PubMed

    Kogure, H; Kawasaki, S; Nakajima, K; Sakai, N; Futase, K; Inatsu, Y; Bari, M L; Isshiki, K; Kawamoto, S

    2005-01-01

    A novel microbial sensor containing a commercial baker's yeast with a high freeze tolerance was developed for visibly detecting inappropriate temperature control of food. When the yeast cells fermented glucose, the resulting gas production triggered the microbial sensor. The biosensor was a simple, small bag containing a solution of yeast cells, yeast extract, glucose, and glycerol sealed up with multilayer transparent film with barriers against oxygen and humidity. Fine adjustment of gas productivity in the biosensor at low temperatures was achieved by changing either or both concentrations of glucose and yeast cells. Moreover, the amount of time that food was exposed to inappropriate temperatures could be deduced by the amount of gas produced in the biosensor. The biosensor was stable without any functional loss for up to 1 week in frozen storage. The biosensor could offer a useful tool for securing food safety by maintaining low-temperature control in every stage from farm to fork, including during transportation, in the store, and at home.

  7. pH-based fiber optic biosensors for use in clinical and biotechnological applications

    NASA Astrophysics Data System (ADS)

    Mueller, Cord; Hitzmann, Bernd; Schubert, Florian; Scheper, Thomas

    1995-05-01

    The development of pH-based fiber optic biosensors and their uses in clinical and biotechnological applications are described. Based on a pH-sensitive optode, different biosensors for urea, penicillin, glucose and creatinine were developed. A multichannel modular fluorimeter was used to measure signals from up to three optodes simultaneously. The pH value and the buffer capacity are critical factors for biosensors based on pH probes and influence the biosensor signal. A flow injection analysis (FIA) system is used to eliminate the latter influences. With this integrated system, samples can be analyzed sequentially by the injection of a defined volume of each sample into a continuously flowing buffer stream that transports the samples to the sensors. The complex signal is transformed and analyzed by a computer system. Characteristic features of the FIA peak give information about the buffer capacity in the solution. With the help of intelligent computing (neural networks) it is possible to recognize these features and relate them to the respective buffer capacity to obtain more accurate values. Various applications of these biosensors are discussed. The pH optode is also used to monitor enzymatic reactions in non aqueous solvents. In this case the production of acetic acid can be detected on line.

  8. Simultaneous and accurate real-time monitoring of glucose and ethanol in alcoholic drinks, must, and biomass by a dual-amperometric biosensor.

    PubMed

    Mentana, Annalisa; Palermo, Carmen; Nardiello, Donatella; Quinto, Maurizio; Centonze, Diego

    2013-01-09

    In this work the optimization and application of a dual-amperometric biosensor for simultaneous monitoring of glucose and ethanol content, as quality markers in drinks and alcoholic fermentation media, are described. The biosensor is based on glucose oxidase (GOD) and alcohol oxidase (AOD) immobilized by co-cross-linking with bovine serum albumin (BSA) and glutaraldehyde (GLU) both onto a dual gold electrode, modified with a permselective overoxidized polypyrrole film (PPYox). Response, rejection of interferents, and stability of the dual biosensor were optimized in terms of PPYox thickness, BSA, and enzyme loading. The biosensor was integrated in a flow injection system coupled with an at-line microdialysis fiber as a sampling tool. Flow rates inside and outside the fiber were optimized in terms of linear responses (0.01-1 and 0.01-1.5 M) and sensitivities (27.6 ± 0.4 and 31.0 ± 0.6 μA·M(-1)·cm(-2)) for glucose and ethanol. Excellent anti-interference characteristics, the total absence of "cross-talk", and good response stability under operational conditions allowed application of the dual biosensor in accurate real-time monitoring (at least 15 samples/h) of alcoholic drinks, white grape must, and woody biomass.

  9. Embedded Disposable Functionalized Electrochemical Biosensor with a 3D-Printed Flow Cell for Detection of Hepatic Oval Cells (HOCs).

    PubMed

    Damiati, Samar; Peacock, Martin; Leonhardt, Stefan; Damiati, Laila; Baghdadi, Mohammed A; Becker, Holger; Kodzius, Rimantas; Schuster, Bernhard

    2018-02-14

    Hepatic oval cells (HOCs) are considered the progeny of the intrahepatic stem cells that are found in a small population in the liver after hepatocyte proliferation is inhibited. Due to their small number, isolation and capture of these cells constitute a challenging task for immunosensor technology. This work describes the development of a 3D-printed continuous flow system and exploits disposable screen-printed electrodes for the rapid detection of HOCs that over-express the OV6 marker on their membrane. Multiwall carbon nanotube (MWCNT) electrodes have a chitosan film that serves as a scaffold for the immobilization of oval cell marker antibodies (anti-OV6-Ab), which enhance the sensitivity of the biomarker and makes the designed sensor specific for oval cells. The developed sensor can be easily embedded into the 3D-printed flow cell to allow cells to be exposed continuously to the functionalized surface. The continuous flow is intended to increase capture of most of the target cells in the specimen. Contact angle measurements were performed to characterize the nature and quality of the modified sensor surface, and electrochemical measurements (cyclic voltammetry (CV) and square wave voltammetry (SWV)) were performed to confirm the efficiency and selectivity of the fabricated sensor to detect HOCs. The proposed method is valuable for capturing rare cells and could provide an effective tool for cancer diagnosis and detection.

  10. Single-cell trapping and selective treatment via co-flow within a microfluidic platform.

    PubMed

    Benavente-Babace, A; Gallego-Pérez, D; Hansford, D J; Arana, S; Pérez-Lorenzo, E; Mujika, M

    2014-11-15

    Lab on a chip (LOC) systems provide interesting and low-cost solutions for key studies and applications in the biomedical field. Along with microfluidics, these microdevices make single-cell manipulation possible with high spatial and temporal resolution. In this work we have designed, fabricated and characterized a versatile and inexpensive microfluidic platform for on-chip selective single-cell trapping and treatment using laminar co-flow. The combination of co-existing laminar flow manipulation and hydrodynamic single-cell trapping for selective treatment offers a cost-effective solution for studying the effect of novel drugs on single-cells. The operation of the whole system is experimentally simple, highly adaptable and requires no specific equipment. As a proof of concept, a cytotoxicity study of ethanol in isolated hepatocytes is presented. The developed microfluidic platform controlled by means of co-flow is an attractive and multipurpose solution for the study of new substances of high interest in cell biology research. In addition, this platform will pave the way for the study of cell behavior under dynamic and controllable fluidic conditions providing information at the individual cell level. Thus, this analysis device could also hold a great potential to easily use the trapped cells as sensing elements expanding its functionalities as a cell-based biosensor with single-cell resolution. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Design architecture of double spiral interdigitated electrode with back gate electrode for biosensor application

    NASA Astrophysics Data System (ADS)

    Fathil, M. F. M.; Arshad, M. K. Md.; Hashim, U.; Ruslinda, A. R.; Gopinath, Subash C. B.; M. Nuzaihan M., N.; Ayub, R. M.; Adzhri, R.; Zaki, M.; Azman, A. H.

    2016-07-01

    This paper presents the preparation method of photolithography chrome mask design used in fabrication process of double spiral interdigitated electrode with back gate biasing based biosensor. By learning the fabrication process flow of the biosensor, the chrome masks are designed through drawing using the AutoCAD software. The overall width and length of the device is optimized at 7.0 mm and 10.0 mm, respectively. Fabrication processes of the biosensor required three chrome masks, which included back gate opening, spiral IDE formation, and passivation area formation. The complete chrome masks design will be sent for chrome mask fabrication and for future use in biosensor fabrication.

  12. Biosensor development.

    PubMed

    Ziegler, C; Göpel, W

    1998-10-01

    Current biosensor developments can be summarised by different trends. For traditional enzymatic biosensors such as glucose sensors, steady improvements of well known basic principles have been made in order to achieve better sensor stability. On the other hand, new affinity sensors such as nucleic acid sensors, transmembrane sensors, and sensors utilising whole cells or even cell networks have become of increasing interest. New ways to miniaturise biosensors and to control their interfaces down to the molecular level have been introduced (the bioelectronics approach). High-throughput screening based on various signal transduction principles has become of increasing importance.

  13. The research of differential reference electrode arrayed flexible IGZO glucose biosensor based on microfluidic framework

    NASA Astrophysics Data System (ADS)

    Chen, Jian-Syun; Chou, Jung-Chuan; Liao, Yi-Hung; Chen, Ruei-Ting; Huang, Min-Siang; Wu, Tong-Yu

    2017-03-01

    This study used a fast, simple, and low-cost method to fabricate arrayed flexible glucose biosensor, and the glucose biosensor was integrated with microfluidic framework for investigating sensing characteristics of glucose biosensor at the dynamic conditions. The indium gallium zinc oxide (IGZO) was adopted as sensing membrane and it was deposited on aluminum electrodes / polyethylene terephthalate (PET) substrate by the radio frequency sputtering system. Then, we utilized screen-printed technology to accomplish miniaturization of glucose biosensor. Finally, the glucose sensing membrane was composed of glucose oxidase (GOx) and nafion, which was dropped on IGZO sensing membrane to complete glucose biosensor. According to the experimental results, we found that optimal sensing characteristics of arrayed flexible IGZO glucose biosensor at the dynamic conditions were better than at the static conditions. The optimal average sensitivity and linearity of the arrayed flexible IGZO glucose biosensor were 7.255 mV/mM and 0.994 at 20 µL/min flow rate, respectively.

  14. A vertically aligned carbon nanotube-based impedance sensing biosensor for rapid and high sensitive detection of cancer cells.

    PubMed

    Abdolahad, Mohammad; Taghinejad, Mohammad; Taghinejad, Hossein; Janmaleki, Mohsen; Mohajerzadeh, Shams

    2012-03-21

    A novel vertically aligned carbon nanotube based electrical cell impedance sensing biosensor (CNT-ECIS) was demonstrated for the first time as a more rapid, sensitive and specific device for the detection of cancer cells. This biosensor is based on the fast entrapment of cancer cells on vertically aligned carbon nanotube arrays and leads to mechanical and electrical interactions between CNT tips and entrapped cell membranes, changing the impedance of the biosensor. CNT-ECIS was fabricated through a photolithography process on Ni/SiO(2)/Si layers. Carbon nanotube arrays have been grown on 9 nm thick patterned Ni microelectrodes by DC-PECVD. SW48 colon cancer cells were passed over the surface of CNT covered electrodes to be specifically entrapped on elastic nanotube beams. CNT arrays act as both adhesive and conductive agents and impedance changes occurred as fast as 30 s (for whole entrapment and signaling processes). CNT-ECIS detected the cancer cells with the concentration as low as 4000 cells cm(-2) on its surface and a sensitivity of 1.7 × 10(-3)Ω cm(2). Time and cell efficiency factor (TEF and CEF) parameters were defined which describe the sensor's rapidness and resolution, respectively. TEF and CEF of CNT-ECIS were much higher than other cell based electrical biosensors which are compared in this paper.

  15. Whole‐cell Escherichia coli lactate biosensor for monitoring mammalian cell cultures during biopharmaceutical production

    PubMed Central

    Goers, Lisa; Ainsworth, Catherine; Goey, Cher Hui; Kontoravdi, Cleo; Freemont, Paul S.

    2017-01-01

    ABSTRACT Many high‐value added recombinant proteins, such as therapeutic glycoproteins, are produced using mammalian cell cultures. In order to optimize the productivity of these cultures it is important to monitor cellular metabolism, for example the utilization of nutrients and the accumulation of metabolic waste products. One metabolic waste product of interest is lactic acid (lactate), overaccumulation of which can decrease cellular growth and protein production. Current methods for the detection of lactate are limited in terms of cost, sensitivity, and robustness. Therefore, we developed a whole‐cell Escherichia coli lactate biosensor based on the lldPRD operon and successfully used it to monitor lactate concentration in mammalian cell cultures. Using real samples and analytical validation we demonstrate that our biosensor can be used for absolute quantification of metabolites in complex samples with high accuracy, sensitivity, and robustness. Importantly, our whole‐cell biosensor was able to detect lactate at concentrations more than two orders of magnitude lower than the industry standard method, making it useful for monitoring lactate concentrations in early phase culture. Given the importance of lactate in a variety of both industrial and clinical contexts we anticipate that our whole‐cell biosensor can be used to address a range of interesting biological questions. It also serves as a blueprint for how to capitalize on the wealth of genetic operons for metabolite sensing available in nature for the development of other whole‐cell biosensors. Biotechnol. Bioeng. 2017;114: 1290–1300. © 2017 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc. PMID:28112405

  16. A low cost surface plasmon resonance biosensor using a laser line generator

    NASA Astrophysics Data System (ADS)

    Chen, Ruipeng; Wang, Manping; Wang, Shun; Liang, Hao; Hu, Xinran; Sun, Xiaohui; Zhu, Juanhua; Ma, Liuzheng; Jiang, Min; Hu, Jiandong; Li, Jianwei

    2015-08-01

    Due to the instrument designed by using a common surface plasmon resonance biosensor is extremely expensive, we established a portable and cost-effective surface plasmon resonance biosensing system. It is mainly composed of laser line generator, P-polarizer, customized prism, microfluidic cell, and line Charge Coupled Device (CCD) array. Microprocessor PIC24FJ128GA006 with embedded A/D converter, communication interface circuit and photoelectric signal amplifier circuit are used to obtain the weak signals from the biosensing system. Moreover, the line CCD module is checked and optimized on the number of pixels, pixels dimension, output amplifier and the timing diagram. The micro-flow cell is made of stainless steel with a high thermal conductivity, and the microprocessor based Proportional-Integral-Derivative (PID) temperature-controlled algorithm was designed to keep the constant temperature (25 °C) of the sample solutions. Correspondingly, the data algorithms designed especially to this biosensing system including amplitude-limiting filtering algorithm, data normalization and curve plotting were programmed efficiently. To validate the performance of the biosensor, ethanol solution samples at the concentrations of 5%, 7.5%, 10%, 12.5% and 15% in volumetric fractions were used, respectively. The fitting equation ΔRU = - 752987.265 + 570237.348 × RI with the R-Square of 0.97344 was established by delta response units (ΔRUs) to refractive indexes (RI). The maximum relative standard deviation (RSD) of 4.8% was obtained.

  17. Papers Based Electrochemical Biosensors: From Test Strips to Paper-Based Microfluidics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Bingwen; Du, Dan; Hua, Xin

    2014-05-08

    Papers based biosensors such as lateral flow test strips and paper-based microfluidic devices (or paperfluidics) are inexpensive, rapid, flexible, and easy-to-use analytical tools. An apparent trend in their detection is to interpret sensing results from qualitative assessment to quantitative determination. Electrochemical detection plays an important role in quantification. This review focuses on electrochemical (EC) detection enabled biosensors. The first part provides detailed examples in paper test strips. The second part gives an overview of paperfluidics engaging EC detections. The outlook and recommendation of future directions of EC enabled biosensors are discussed in the end.

  18. Evaluation of a novel label-free photonic-crystal biosensor imaging system for the detection of prostate cancer cells

    NASA Astrophysics Data System (ADS)

    DeLuna, Frank; Ding, XiaoFie; Sun, Lu-Zhe; Ye, Jing Yong

    2017-02-01

    Biomarker screening for prostate-specific antigen (PSA) is the current clinical standard for detection of prostate cancer. However this method has shown many limitations, mainly in its specificity, which can lead to a high false positive rate. Thus, there is a growing need in developing a more specific detection system for prostate cancer. Using a Photonic- Crystal-based biosensor in a Total-Internal-Reflection (PC-TIR) configuration, we demonstrate the use of refractive index (RI) to accomplish label-free detection of prostate cancer cells against non-cancerous prostate epithelial cells. The PC-TIR biosensor possesses an open microcavity, which in contrast to traditional closed microcavities, allows for easier access of analyte molecules or cells to interact with its sensing surface. In this study, an imaging system was designed using the PC-TIR biosensor to quantify cell RI as the contrast parameter for prostate cancer detection. Non-cancerous BPH-1 prostate epithelial cells and prostate cancer PC-3 cells were placed on a single biosensor and measured concurrently. Recorded image data was then analyzed through a home-built MatLab program. Results demonstrate that RI is a suitable variable for differentiation between prostate cancer cells and non-cancerous prostate epithelial cells. Our study shows clinical potential in utilizing RI test for the detection of prostate cancer.

  19. Optical biosensors.

    PubMed

    Damborský, Pavel; Švitel, Juraj; Katrlík, Jaroslav

    2016-06-30

    Optical biosensors represent the most common type of biosensor. Here we provide a brief classification, a description of underlying principles of operation and their bioanalytical applications. The main focus is placed on the most widely used optical biosensors which are surface plasmon resonance (SPR)-based biosensors including SPR imaging and localized SPR. In addition, other optical biosensor systems are described, such as evanescent wave fluorescence and bioluminescent optical fibre biosensors, as well as interferometric, ellipsometric and reflectometric interference spectroscopy and surface-enhanced Raman scattering biosensors. The optical biosensors discussed here allow the sensitive and selective detection of a wide range of analytes including viruses, toxins, drugs, antibodies, tumour biomarkers and tumour cells. © 2016 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  20. Monitoring Phosphatidic Acid Signaling in Breast Cancer Cells Using Genetically Encoded Biosensors.

    PubMed

    Lu, Maryia; Tay, Li Wei Rachel; He, Jingquan; Du, Guangwei

    2016-01-01

    Phospholipids are important signaling molecules that regulate cell proliferation, death, migration, and metabolism. Many phospholipid signaling cascades are altered in breast cancer. To understand the functions of phospholipid signaling molecules, genetically encoded phospholipid biosensors have been developed to monitor their spatiotemporal dynamics. Compared to other phospholipids, much less is known about the subcellular production and cellular functions of phosphatidic acid (PA), partially due to the lack of a specific and sensitive PA biosensor in the past. This chapter describes the use of a newly developed PA biosensor, PASS, in two applications: regular fluorescent microscopy and fluorescence lifetime imaging microscopy-Förster/fluorescence resonance energy transfer (FLIM-FRET). These protocols can be also used with other phospholipid biosensors.

  1. Macro-/Nano- Materials Based Ultrasensitive Lateral Flow Nucleic Acid Biosensors

    NASA Astrophysics Data System (ADS)

    Takalkar, Sunitha

    Ultrasensitive detection of nucleic acids plays a very important role in the field of molecular diagnosis for the detection of various diseases. Lateral flow biosensors (LFB) are convenient, easy-to-use, patient friendly forms of detection methods offering rapid and convenient clinical testing in close proximity to the patients thus drawing a lot of attention in different areas of research over the years. In comparison with the traditional immunoassays, the nucleic acid based lateral flow biosensors (NABLFB) has several advantages in terms of stability and interference capabilities. NABLFB utilizes nucleic acid probes as the bio-recognition element. The target analyte typically is the oligonucleotide like the DNA, mRNA, miRNA which are among the nucleic acid secretions by the tumor cells when it comes to detection of cancer. Traditionally gold nanoparticles (GNPs) have been used as labels for conjugating with the detection probes for the qualitative and semi quantitative analysis, the application of GNP-based LFB is limited by its low sensitivity. This dissertation describes the use of different nanomaterials and advanced detection technologies to enhance the sensitivities of the LFB based methods. Silica Nanorods decorated with GNP were synthesized and employed as labels for ultrasensitive detection of miRNA on the LFB. Owing to the biocompatibility and convenience in surface modification of SiNRs, they acted as good carriers to load numerous GNPs. The sensitivity of the GNP-SiNR-based LFSB was enhanced six times compared to the previous GNP-based LFSB. A fluorescent carbon nanoparticle (FCN) was first used as a tag to develop a lateral flow nucleic acid biosensor for ultrasensitive and quantitative detection of nucleic acid samples. Under optimal conditions, the FCN-based LFNAB was capable of detecting minimum 0.4 fM target DNA without complex operations and additional signal amplification. The carbon nanotube was used as a label and carrier of numerous enzyme and DNA molecules simultaneously thus resulting in the enormous amplification of the colorimetric signal. This CNT-enzyme label thus aided the ultra-sensitive detection of pancreatic cancer (PC) biomarker miRNA 210 and PC biomarker panel (miRNA 16, miRNA 21 and miRNA 196a). All these LFBs were also applied in the field of real sample detection.

  2. Conformal mapping in optical biosensor applications.

    PubMed

    Zumbrum, Matthew E; Edwards, David A

    2015-09-01

    Optical biosensors are devices used to investigate surface-volume reaction kinetics. Current mathematical models for reaction dynamics rely on the assumption of unidirectional flow within these devices. However, new devices, such as the Flexchip, include a geometry that introduces two-dimensional flow, complicating the depletion of the volume reactant. To account for this, a previous mathematical model is extended to include two-dimensional flow, and the Schwarz-Christoffel mapping is used to relate the physical device geometry to that for a device with unidirectional flow. Mappings for several Flexchip dimensions are considered, and the ligand depletion effect is investigated for one of these mappings. Estimated rate constants are produced for simulated data to quantify the inclusion of two-dimensional flow in the mathematical model.

  3. Paper electrodes for bioelectrochemistry: Biosensors and biofuel cells.

    PubMed

    Desmet, Cloé; Marquette, Christophe A; Blum, Loïc J; Doumèche, Bastien

    2016-02-15

    Paper-based analytical devices (PAD) emerge in the scientific community since 2007 as low-cost, wearable and disposable devices for point-of-care diagnostic due to the widespread availability, long-time knowledge and easy manufacturing of cellulose. Rapidly, electrodes were introduced in PAD for electrochemical measurements. Together with biological components, a new generation of electrochemical biosensors was born. This review aims to take an inventory of existing electrochemical paper-based biosensors and biofuel cells and to identify, at the light of newly acquired data, suitable methodologies and crucial parameters in this field. Paper selection, electrode material, hydrophobization of cellulose, dedicated electrochemical devices and electrode configuration in biosensors and biofuel cells will be discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Nanostructured Tip-Shaped Biosensors: Application of Six Sigma Approach for Enhanced Manufacturing.

    PubMed

    Kahng, Seong-Joong; Kim, Jong-Hoon; Chung, Jae-Hyun

    2016-12-23

    Nanostructured tip-shaped biosensors have drawn attention for biomolecule detection as they are promising for highly sensitive and specific detection of a target analyte. Using a nanostructured tip, the sensitivity is increased to identify individual molecules because of the high aspect ratio structure. Various detection methods, such as electrochemistry, fluorescence microcopy, and Raman spectroscopy, have been attempted to enhance the sensitivity and the specificity. Due to the confined path of electrons, electrochemical measurement using a nanotip enables the detection of single molecules. When an electric field is combined with capillary action and fluid flow, target molecules can be effectively concentrated onto a nanotip surface for detection. To enhance the concentration efficacy, a dendritic nanotip rather than a single tip could be used to detect target analytes, such as nanoparticles, cells, and DNA. However, reproducible fabrication with relation to specific detection remains a challenge due to the instability of a manufacturing method, resulting in inconsistent shape. In this paper, nanostructured biosensors are reviewed with our experimental results using dendritic nanotips for sequence specific detection of DNA. By the aid of the Six Sigma approach, the fabrication yield of dendritic nanotips increases from 20.0% to 86.6%. Using the nanotips, DNA is concentrated and detected in a sequence specific way with the detection limit equivalent to 1000 CFU/mL. The pros and cons of a nanotip biosensor are evaluated in conjunction with future prospects.

  5. Biosensor of endotoxin and sepsis

    NASA Astrophysics Data System (ADS)

    Shao, Yang; Wang, Xiang; Wu, Xi; Gao, Wei; He, Qing-hua; Cai, Shaoxi

    2001-09-01

    To investigate the relation between biosensor of endotoxin and endotoxin of plasma in sepsis. Method: biosensor of endotoxin was designed with technology of quartz crystal microbalance bioaffinity sensor ligand of endotoxin were immobilized by protein A conjugate. When a sample soliton of plasma containing endotoxin 0.01, 0.03, 0.06, 0.1, 0.5, 1.0Eu, treated with perchloric acid and injected into slot of quartz crystal surface respectively, the ligand was released from the surface of quartz crystal to form a more stable complex with endotoxin in solution. The endotoxin concentration corresponded to the weight change on the crystal surface, and caused change of frequency that occurred when desorbed. The result was biosensor of endotoxin might detect endotoxin of plasma in sepsis, measurements range between 0.05Eu and 0.5Eu in the stop flow mode, measurement range between 0.1Eu and 1Eu in the flow mode. The sensor of endotoxin could detect the endotoxin of plasm rapidly, and use for detection sepsis in clinically.

  6. Small Microbial Three-Electrode Cell Based Biosensor for Online Detection of Acute Water Toxicity.

    PubMed

    Yu, Dengbin; Zhai, Junfeng; Liu, Changyu; Zhang, Xueping; Bai, Lu; Wang, Yizhe; Dong, Shaojun

    2017-11-22

    The monitoring of toxicity of water is very important to estimate the safety of drinking water and the level of water pollution. Herein, a small microbial three-electrode cell (M3C) biosensor filled with polystyrene particles was proposed for online monitoring of the acute water toxicity. The peak current of the biosensor related with the performance of the bioanode was regarded as the toxicity indicator, and thus the acute water toxicity could be determined in terms of inhibition ratio by comparing the peak current obtained with water sample to that obtained with nontoxic standard water. The incorporation of polystyrene particles in the electrochemical cell not only reduced the volume of the samples used, but also improved the sensitivity of the biosensor. Experimental conditions including washing time with PBS and the concentration of sodium acetate solution were optimized. The stability of the M3C biosensor under optimal conditions was also investigated. The M3C biosensor was further examined by formaldehyde at the concentration of 0.01%, 0.03%, and 0.05% (v/v), and the corresponding inhibition ratios were 14.6%, 21.6%, and 36.4%, respectively. This work provides a new insight into the development of an online toxicity detector based on M3C biosensor.

  7. Defining an additivity framework for mixture research in inducible whole-cell biosensors

    NASA Astrophysics Data System (ADS)

    Martin-Betancor, K.; Ritz, C.; Fernández-Piñas, F.; Leganés, F.; Rodea-Palomares, I.

    2015-11-01

    A novel additivity framework for mixture effect modelling in the context of whole cell inducible biosensors has been mathematically developed and implemented in R. The proposed method is a multivariate extension of the effective dose (EDp) concept. Specifically, the extension accounts for differential maximal effects among analytes and response inhibition beyond the maximum permissive concentrations. This allows a multivariate extension of Loewe additivity, enabling direct application in a biphasic dose-response framework. The proposed additivity definition was validated, and its applicability illustrated by studying the response of the cyanobacterial biosensor Synechococcus elongatus PCC 7942 pBG2120 to binary mixtures of Zn, Cu, Cd, Ag, Co and Hg. The novel method allowed by the first time to model complete dose-response profiles of an inducible whole cell biosensor to mixtures. In addition, the approach also allowed identification and quantification of departures from additivity (interactions) among analytes. The biosensor was found to respond in a near additive way to heavy metal mixtures except when Hg, Co and Ag were present, in which case strong interactions occurred. The method is a useful contribution for the whole cell biosensors discipline and related areas allowing to perform appropriate assessment of mixture effects in non-monotonic dose-response frameworks

  8. Determination of glucose in human stomach cancer cell extracts and single cells by capillary electrophoresis with a micro-biosensor.

    PubMed

    Wang, Xiaolei; Ma, Yanfang; Zhao, Man; Zhou, Minfeng; Xiao, Yan; Sun, Zifei; Tong, Lili

    2016-10-21

    Bioactive species in cells can provide information about signal transduction, cell function, and the effects of disease treatment. In this article, a novel micro-biosensor was fabricated to detect glucose in individual human stomach cancer cells (MGC80-3 cells) with capillary electrophoresis (CE). We fabricated the micro-biosensors by immobilizing a single-walled carbon nanotube-glucose oxidase (GOx)-glutaraldehyde (GA) bio-composite at the palladium nanoparticle (PdNPs) modified Pt electrode. The linear concentration of glucose ranged from 2.0μM to 1.0mM, with a detection limit of 0.5μM. Using this method, the mean amount of glucose in MGC80-3 cell extracts and in single cells was 20.0 fmol and 20±6 fmol (n=10), respectively. The micro-biosensor exhibited high sensitivity, stability, and a long operating life, which are likely due to the biocompatible environment provided by BSA and GA, and the adsorption and faster electron transfer of SWNTs and PdNPs to GOx. Copyright © 2016. Published by Elsevier B.V.

  9. Application of a unique server-based oligonucleotide probe selection tool toward a novel biosensor for the detection of Streptococcus pyogenes.

    PubMed

    Nugen, Sam R; Leonard, Barbara; Baeumner, Antje J

    2007-05-15

    We developed a software program for the rapid selection of detection probes to be used in nucleic acid-based assays. In comparison to commercially available software packages, our program allows the addition of oligotags as required by nucleic acid sequence-based amplification (NASBA) as well as automatic BLAST searches for all probe/primer pairs. We then demonstrated the usefulness of the program by designing a novel lateral flow biosensor for Streptococcus pyogenes that does not rely on amplification methods such as the polymerase chain reaction (PCR) or NASBA to obtain low limits of detection, but instead uses multiple reporter and capture probes per target sequence and an instantaneous amplification via dye-encapsulating liposomes. These assays will decrease the detection time to just a 20 min hybridization reaction and avoid costly enzymatic gene amplification reactions. The lateral flow assay was developed quantifying the 16S rRNA from S. pyogenes by designing reporter and capture probes that specifically hybridize with the RNA and form a sandwich. DNA reporter probes were tagged with dye-encapsulating liposomes, biotinylated DNA oligonucleotides were used as capture probes. From the initial number of capture and reporter probes chosen, a combination of two capture and three reporter probes were found to provide optimal signal generation and significant enhancement over single capture/reporter probe combinations. The selectivity of the biosensor was proven by analyzing organisms closely related to S. pyogenes, such as other Streptococcus and Enterococcus species. All probes had been selected by the software program within minutes and no iterative optimization and re-design of the oligonucleotides was required which enabled a very rapid biosensor prototyping. While the sensitivity obtained with the biosensor was only 135 ng, future experiments will decrease this significantly by the addition of more reporter and capture probes for either the same rRNA or a different nucleic acid target molecule. This will lead to the possibility of detecting S. pyogenes with a rugged assay that does not require a cell culturing or gene amplification step and will therefore enable rapid, specific and sensitive onsite testing.

  10. Implementation of a new integrated d-lactic acid biosensor in a semiautomatic FIA system for the simultaneous determination of lactic acid enantiomers. Application to the analysis of beer samples.

    PubMed

    Vargas, E; Ruiz, M A; Campuzano, S; González de Rivera, G; López-Colino, F; Reviejo, A J; Pingarrón, J M

    2016-05-15

    An integrated amperometric d-lactic acid biosensor involving a gold film deposited by sputtering on a stainless steel disk electrode where the enzymes D-lactic acid dehydrogenase (DLDH) and diaphorase (DP) as well as the redox mediator tetrathiafulvalene (TTF) are coimmobilized by using a dialysis membrane, is reported in this work. Amperometry in stirred solutions at a detection potential of +0.15 V (vs Ag/AgCl reference electrode) provided a linear calibration plot for D-lactic acid over the 1.0×10(-4) to 3.8×10(-3) g L(-1) concentration range, with a limit of detection of 3.1×10(-5) g L(-1). The usefulness of the biosensor was demonstrated by determining D-lactic acid in beer samples with good results. Additionally, the biosensor was implemented together with a commercial L-lactic amperometric biosensor in a semiautomatic flow-injection analysis (FIA) system able to perform a rapid and simple stereo-specific determination of D- and D-lactic without a previous separation step. The operational characteristics of the biosensors under flow conditions were evaluated and its applicability was demonstrated through the simultaneous determination of both enantiomers in beer samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. A protein folding molecular imaging biosensor monitors the effects of drugs that restore mutant p53 structure and its downstream function in glioblastoma cells

    PubMed Central

    Paulmurugan, Ramasamy; Afjei, Rayhaneh; Sekar, Thillai V.; Babikir, Husam A.; Massoud, Tarik F.

    2018-01-01

    Misfolding mutations in the DNA-binding domain of p53 alter its conformation, affecting the efficiency with which it binds to chromatin to regulate target gene expression and cell cycle checkpoint functions in many cancers, including glioblastoma. Small molecule drugs that recover misfolded p53 structure and function may improve chemotherapy by activating p53-mediated senescence. We constructed and optimized a split Renilla luciferase (RLUC) complementation molecular biosensor (NRLUC-p53-CRLUC) to determine small molecule-meditated folding changes in p53 protein. After initial evaluation of the biosensor in three different cells lines, we engineered endogenously p53P98L mutant (i.e. not affecting the DNA-binding domain) Ln229 glioblastoma cells, to express the biosensor containing one of four different p53 proteins: p53wt, p53Y220C, p53G245S and p53R282W. We evaluated the consequent phenotypic changes in these four variant cells as well as the parental cells after exposure to PhiKan083 and SCH529074, drugs previously reported to activate mutant p53 folding. Specifically, we measured induced RLUC complementation and consequent therapeutic response. Upon stable transduction with the p53 biosensors, we demonstrated that these originally p53P98L Ln229 cells had acquired p53 cellular phenotypes representative of each p53 protein expressed within the biosensor fusion protein. In these engineered variants we found a differential drug response when treated with doxorubicin and temozolomide, either independently or in combination with PhiKan083 or SCH529074. We thus developed a molecular imaging complementation biosensor that mimics endogenous p53 function for use in future applications to screen novel or repurposed drugs that counter the effects of misfolding mutations responsible for oncogenic structural changes in p53. PMID:29765555

  12. Recent Advances in Bioprinting and Applications for Biosensing

    PubMed Central

    Dias, Andrew D.; Kingsley, David M.; Corr, David T.

    2014-01-01

    Future biosensing applications will require high performance, including real-time monitoring of physiological events, incorporation of biosensors into feedback-based devices, detection of toxins, and advanced diagnostics. Such functionality will necessitate biosensors with increased sensitivity, specificity, and throughput, as well as the ability to simultaneously detect multiple analytes. While these demands have yet to be fully realized, recent advances in biofabrication may allow sensors to achieve the high spatial sensitivity required, and bring us closer to achieving devices with these capabilities. To this end, we review recent advances in biofabrication techniques that may enable cutting-edge biosensors. In particular, we focus on bioprinting techniques (e.g., microcontact printing, inkjet printing, and laser direct-write) that may prove pivotal to biosensor fabrication and scaling. Recent biosensors have employed these fabrication techniques with success, and further development may enable higher performance, including multiplexing multiple analytes or cell types within a single biosensor. We also review recent advances in 3D bioprinting, and explore their potential to create biosensors with live cells encapsulated in 3D microenvironments. Such advances in biofabrication will expand biosensor utility and availability, with impact realized in many interdisciplinary fields, as well as in the clinic. PMID:25587413

  13. Fabrication and Evaluation of a Micro(Bio)Sensor Array Chip for Multiple Parallel Measurements of Important Cell Biomarkers

    PubMed Central

    Pemberton, Roy M.; Cox, Timothy; Tuffin, Rachel; Drago, Guido A.; Griffiths, John; Pittson, Robin; Johnson, Graham; Xu, Jinsheng; Sage, Ian C.; Davies, Rhodri; Jackson, Simon K.; Kenna, Gerry; Luxton, Richard; Hart, John P.

    2014-01-01

    This report describes the design and development of an integrated electrochemical cell culture monitoring system, based on enzyme-biosensors and chemical sensors, for monitoring indicators of mammalian cell metabolic status. MEMS technology was used to fabricate a microwell-format silicon platform including a thermometer, onto which chemical sensors (pH, O2) and screen-printed biosensors (glucose, lactate), were grafted/deposited. Microwells were formed over the fabricated sensors to give 5-well sensor strips which were interfaced with a multipotentiostat via a bespoke connector box interface. The operation of each sensor/biosensor type was examined individually, and examples of operating devices in five microwells in parallel, in either potentiometric (pH sensing) or amperometric (glucose biosensing) mode are shown. The performance characteristics of the sensors/biosensors indicate that the system could readily be applied to cell culture/toxicity studies. PMID:25360580

  14. Wearable Sensor System Powered by a Biofuel Cell for Detection of Lactate Levels in Sweat (Postprint)

    DTIC Science & Technology

    2016-05-04

    attractive for development of sensing technology for the monitoring of human performance. Amperometric biosensors are known to be inexpensive, repro...biofuel cells for self-powered biosensors was first discussed in 2001 and has gained momentum in recent years.32–34 Information technology has...lactate biosensor ,35,36 a glucose oxidase BFC power source, an energy har- vester and a micropotentiostat. The following sections describe the development

  15. Embedded Disposable Functionalized Electrochemical Biosensor with a 3D-Printed Flow Cell for Detection of Hepatic Oval Cells (HOCs)

    PubMed Central

    Peacock, Martin; Leonhardt, Stefan; Damiati, Laila; Baghdadi, Mohammed A.; Schuster, Bernhard

    2018-01-01

    Hepatic oval cells (HOCs) are considered the progeny of the intrahepatic stem cells that are found in a small population in the liver after hepatocyte proliferation is inhibited. Due to their small number, isolation and capture of these cells constitute a challenging task for immunosensor technology. This work describes the development of a 3D-printed continuous flow system and exploits disposable screen-printed electrodes for the rapid detection of HOCs that over-express the OV6 marker on their membrane. Multiwall carbon nanotube (MWCNT) electrodes have a chitosan film that serves as a scaffold for the immobilization of oval cell marker antibodies (anti-OV6-Ab), which enhance the sensitivity of the biomarker and makes the designed sensor specific for oval cells. The developed sensor can be easily embedded into the 3D-printed flow cell to allow cells to be exposed continuously to the functionalized surface. The continuous flow is intended to increase capture of most of the target cells in the specimen. Contact angle measurements were performed to characterize the nature and quality of the modified sensor surface, and electrochemical measurements (cyclic voltammetry (CV) and square wave voltammetry (SWV)) were performed to confirm the efficiency and selectivity of the fabricated sensor to detect HOCs. The proposed method is valuable for capturing rare cells and could provide an effective tool for cancer diagnosis and detection. PMID:29443890

  16. Homo-FRET Based Biosensors and Their Application to Multiplexed Imaging of Signalling Events in Live Cells

    PubMed Central

    Warren, Sean C.; Margineanu, Anca; Katan, Matilda; Dunsby, Chris; French, Paul M. W.

    2015-01-01

    Multiplexed imaging of Förster Resonance Energy Transfer (FRET)-based biosensors potentially presents a powerful approach to monitoring the spatio-temporal correlation of signalling pathways within a single live cell. Here, we discuss the potential of homo-FRET based biosensors to facilitate multiplexed imaging. We demonstrate that the homo-FRET between pleckstrin homology domains of Akt (Akt-PH) labelled with mCherry may be used to monitor 3′-phosphoinositide accumulation in live cells and show how global analysis of time resolved fluorescence anisotropy measurements can be used to quantify this accumulation. We further present multiplexed imaging readouts of calcium concentration, using fluorescence lifetime measurements of TN-L15-a CFP/YFP based hetero-FRET calcium biosensor-with 3′-phosphoinositide accumulation. PMID:26133241

  17. Biosensor-based engineering of biosynthetic pathways

    DOE PAGES

    Rogers, Jameson K.; Taylor, Noah D.; Church, George M.

    2016-03-18

    Biosynthetic pathways provide an enzymatic route from inexpensive renewable resources to valuable metabolic products such as pharmaceuticals and plastics. However, designing these pathways is challenging due to the complexities of biology. Advances in the design and construction of genetic variants has enabled billions of cells, each possessing a slightly different metabolic design, to be rapidly generated. However, our ability to measure the quality of these designs lags by several orders of magnitude. Recent research has enabled cells to report their own success in chemical production through the use of genetically encoded biosensors. A new engineering discipline is emerging around themore » creation and application of biosensors. Biosensors, implemented in selections and screens to identify productive cells, are paving the way for a new era of biotechnological progress.« less

  18. Design Architecture of field-effect transistor with back gate electrode for biosensor application

    NASA Astrophysics Data System (ADS)

    Fathil, M. F. M.; Arshad, M. K. Md.; Hashim, U.; Ruslinda, A. R.; Gopinath, Subash C. B.; M. Nuzaihan M., N.; Ayub, R. M.; Adzhri, R.; Zaki, M.; Azman, A. H.

    2016-07-01

    This paper presents the preparation method of photolithography chrome mask design used in fabrication process of field-effect transistor with back gate biasing based biosensor. Initially, the chrome masks are designed by studying the process flow of the biosensor fabrication, followed by drawing of the actual chrome mask using the AutoCAD software. The overall width and length of the device is optimized at 16 mm and 16 mm, respectively. Fabrication processes of the biosensor required five chrome masks, which included source and drain formation mask, the back gate area formation mask, electrode formation mask, front gate area formation mask, and passivation area formation mask. The complete chrome masks design will be sent for chrome mask fabrication and for future use in biosensor fabrication.

  19. Capacitive Biosensors and Molecularly Imprinted Electrodes.

    PubMed

    Ertürk, Gizem; Mattiasson, Bo

    2017-02-17

    Capacitive biosensors belong to the group of affinity biosensors that operate by registering direct binding between the sensor surface and the target molecule. This type of biosensors measures the changes in dielectric properties and/or thickness of the dielectric layer at the electrolyte/electrode interface. Capacitive biosensors have so far been successfully used for detection of proteins, nucleotides, heavy metals, saccharides, small organic molecules and microbial cells. In recent years, the microcontact imprinting method has been used to create very sensitive and selective biorecognition cavities on surfaces of capacitive electrodes. This chapter summarizes the principle and different applications of capacitive biosensors with an emphasis on microcontact imprinting method with its recent capacitive biosensor applications.

  20. Targeted Molecular Imaging of Cancer Cells Using MS2-Based 129 Xe NMR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeong, Keunhong; Netirojjanakul, Chawita; Munch, Henrik K.

    Targeted, selective, and highly sensitive 129Xe NMR nanoscale biosensors have been synthesized using a spherical MS2 viral capsid, Cryptophane A molecules, and DNA aptamers. The biosensors showed strong binding specificity toward targeted lymphoma cells (Ramos line). Hyperpolarized 129Xe NMR signal contrast and hyper-CEST 129Xe MRI image contrast indicated its promise as highly sensitive hyperpolarized 129Xe NMR nanoscale biosensor for future applications in cancer detection in vivo.

  1. Developing Highly Sensitive Micro-Biosensors for in-situ Monitoring Mercury and Chromium(IV) Contaminants by Genetically-evolving and Computer-designing Metal-binding Proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Qinghong; Fang, Xiangdong; Goddard, William

    2013-10-17

    Mercury has been well known as an environmental pollutant to the environment and to cause serious effects on human health for several decades. To effectively control mercury pollution and reduce mercury damages, the sensitive determination of mercury is essential. Currently, many different types of sensor-based assays have been developed, while the whole-cell biosensor has been gaining increasingly attentions due to its easy reproducibility and the possibility to greatly reduce the cost. However, significant improvements on the specificity, sensitivity, stability and simplicity of the whole-cell biosensor are still needed prior to its eventual commercialization. Sponsored by US Department of Energy undermore » the contract agreement DE-FG02-07ER64410, we applied the special synthetic biology and directed evolution strategies to improve the effectiveness and performance of whole-cell biosensors. We have constructed different whole-cell biosensors for the mercuric ion and methylmercury detection with metalloregulator MerR, fluorescent protein mCherry and organomercurial lyase MerB. By introducing the mercuric transporter MerT, we were able to increase the detection sensitivity of whole-cell biosensors by at least one fold. By introducing the bio-amplification genetic circuit based on the gene cascade expression system of PRM-cI from bacteriophage l and Pm-XylS2 from Pseudomonas putida, we have increased the detection sensitivity of whole-cell biosensors by 1~2 folds in our tested conditions. With the directed evolution of MerR and subsequent high-throughput screening via color assay and microplate screening, we have dramatically increased the detection sensitivity by up to 10 folds at low concentration of mercury (II) of 1-10nM. Structural modeling and computational analysis of the mutated MerR showed that many mutations could cause the change of a loop to helix, which could be responsible for the increased mercury sensitivity.« less

  2. Nanopillar based electrochemical biosensor for monitoring microfluidic based cell culture

    NASA Astrophysics Data System (ADS)

    Gangadharan, Rajan

    In-vitro assays using cultured cells have been widely performed for studying many aspects of cell biology and cell physiology. These assays also form the basis of cell based sensing. Presently, analysis procedures on cell cultures are done using techniques that are not integrated with the cell culture system. This approach makes continuous and real-time in-vitro measurements difficult. It is well known that the availability of continuous online measurements for extended periods of time will help provide a better understanding and will give better insight into cell physiological events. With this motivation we developed a highly sensitive, selective and stable microfluidic electrochemical glucose biosensor to make continuous glucose measurements in cell culture media. The performance of the microfluidic biosensor was enhanced by adding 3D nanopillars to the electrode surfaces. The microfluidic glucose biosensor consisted of three electrodes---Enzyme electrode, Working electrode, and Counter electrode. All these electrodes were enhanced with nanopillars and were optimized in their respective own ways to obtain an effective and stable biosensing device in cell culture media. For example, the 'Enzyme electrode' was optimized for enzyme immobilization via either a polypyrrole-based or a self-assembled-monolayer-based immobilization method, and the 'Working electrode' was modified with Prussian Blue or electropolymerized Neutral Red to reduce the working potential and also the interference from other interacting electro-active species. The complete microfluidic biosensor was tested for its ability to monitor glucose concentration changes in cell culture media. The significance of this work is multifold. First, the developed device may find applications in continuous and real-time measurements of glucose concentrations in in-vitro cell cultures. Second, the development of a microfluidic biosensor will bring technical know-how toward constructing continuous glucose monitoring devices. Third, the methods used to develop 3D electrodes incorporated with nanopillars can be used for other applications such as neural probes, fuel cells, solar cells etc., and finally, the knowledge obtained from the immobilization of enzymes onto nanostructures sheds some new insight into nanomaterial/biomolecule interactions.

  3. Recent progress on the development of biofuel cells for self-powered electrochemical biosensing and logic biosensing: A review

    DOE PAGES

    Zhou, Ming

    2015-06-12

    Biofuel cells (BFCs) based on enzymes and microorganisms have been recently received considerable attention because they are recognized as an attractive type of energy conversion technology. In addition to the research activities related to the application of BFCs as power source, we have witnessed recently a growing interest in using BFCs for self-powered electrochemical biosensing and electrochemical logic biosensing applications. Compared with traditional biosensors, one of the most significant advantages of the BFCs-based self-powered electrochemical biosensors and logic biosensors is their ability to detect targets integrated with chemical-to-electrochemical energy transformation, thus obviating the requirement of external power sources. Following mymore » previous review (Electroanalysis 2012, 24, 197-209), the present review summarizes, discusses and updates the most recent progress and latest advances on the design and construction of BFCs-based self-powered electrochemical biosensors and logic biosensors. In addition to the traditional approaches based on substrate effect, inhibition effect, blocking effect and gene regulation effect for BFCs-based self-powered electrochemical biosensors and logic biosensors design, some new principles including enzyme effect, co-stabilization effect, competition effect and hybrid effect are summarized and discussed by me in details. The outlook and recommendation of future directions of BFCs-based self-powered electrochemical biosensors and logic biosensors are discussed in the end.« less

  4. Development of biosensors and their application in metabolic engineering.

    PubMed

    Zhang, Jie; Jensen, Michael K; Keasling, Jay D

    2015-10-01

    In a sustainable bioeconomy, many commodities and high value chemicals, including pharmaceuticals, will be manufactured using microbial cell factories from renewable feedstocks. These cell factories can be efficiently generated by constructing libraries of diversified genomes followed by screening for the desired phenotypes. However, methods available for microbial genome diversification far exceed our ability to screen and select for those variants with optimal performance. Genetically encoded biosensors have shown the potential to address this gap, given their ability to respond to small molecule binding and ease of implementation with high-throughput analysis. Here we describe recent progress in biosensor development and their applications in a metabolic engineering context. We also highlight examples of how biosensors can be integrated with synthetic circuits to exert feedback regulation on the metabolism for improved performance of cell factories. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Simulation and fabrication of a new novel 3D injectable biosensor for high throughput genomics and proteomics in a lab-on-a-chip device.

    PubMed

    Esfandyarpour, Rahim; Esfandyarpour, Hesaam; Harris, James S; Davis, Ronald W

    2013-11-22

    Biosensors are used for the detection of biochemical molecules such as proteins and nucleic acids. Traditional techniques, such as enzyme-linked immuno-sorbent assay (ELISA), are sensitive but require several hours to yield a result and usually require the attachment of a fluorophore molecule to the target molecule. Micromachined biosensors that employ electrical detection are now being developed. Here we describe one such device, which is ultrasensitive, real-time, label free and localized. It is called the nanoneedle biosensor and shows promise to overcome some of the current limitations of biosensors. The key element of this device is a 10 nm wide annular gap at the end of the needle, which is the sensitive part of the sensor. The total diameter of the sensor is about 100 nm. Any change in the population of molecules in this gap results in a change of impedance across the gap. Single molecule detection should be possible because the sensory part of the sensor is in the range of bio-molecules of interest. To increase throughput we can flow the solution containing the target molecules over an array of such structures, each with its own integrated read-out circuitry to allow 'real-time' detection (i.e. several minutes) of label free molecules without sacrificing sensitivity. To fabricate the arrays we used electron beam lithography together with associated pattern transfer techniques. Preliminary measurements on individual needle structures in water are consistent with the design. Since the proposed sensor has a rigid nano-structure, this technology, once fully developed, could ultimately be used to directly monitor protein quantities within a single living cell, an application that would have significant utility for drug screening and studying various intracellular signaling pathways.

  6. Simulation and fabrication of a new novel 3D injectable biosensor for high throughput genomics and proteomics in a lab-on-a-chip device

    NASA Astrophysics Data System (ADS)

    Esfandyarpour, Rahim; Esfandyarpour, Hesaam; Harris, James S.; Davis, Ronald W.

    2013-11-01

    Biosensors are used for the detection of biochemical molecules such as proteins and nucleic acids. Traditional techniques, such as enzyme-linked immuno-sorbent assay (ELISA), are sensitive but require several hours to yield a result and usually require the attachment of a fluorophore molecule to the target molecule. Micromachined biosensors that employ electrical detection are now being developed. Here we describe one such device, which is ultrasensitive, real-time, label free and localized. It is called the nanoneedle biosensor and shows promise to overcome some of the current limitations of biosensors. The key element of this device is a 10 nm wide annular gap at the end of the needle, which is the sensitive part of the sensor. The total diameter of the sensor is about 100 nm. Any change in the population of molecules in this gap results in a change of impedance across the gap. Single molecule detection should be possible because the sensory part of the sensor is in the range of bio-molecules of interest. To increase throughput we can flow the solution containing the target molecules over an array of such structures, each with its own integrated read-out circuitry to allow ‘real-time’ detection (i.e. several minutes) of label free molecules without sacrificing sensitivity. To fabricate the arrays we used electron beam lithography together with associated pattern transfer techniques. Preliminary measurements on individual needle structures in water are consistent with the design. Since the proposed sensor has a rigid nano-structure, this technology, once fully developed, could ultimately be used to directly monitor protein quantities within a single living cell, an application that would have significant utility for drug screening and studying various intracellular signaling pathways.

  7. Dual functional extracellular recording using a light-addressable potentiometric sensor for bitter signal transduction.

    PubMed

    Du, Liping; Wang, Jian; Chen, Wei; Zhao, Luhang; Wu, Chunsheng; Wang, Ping

    2018-08-31

    This paper presents a dual functional extracellular recording biosensor based on a light-addressable potentiometric sensor (LAPS). The design and fabrication of this biosensor make it possible to record both extracellular membrane potential changes and ATP release from a single taste bud cell for the first time. For detecting ATP release, LAPS chip was functionalized with ATP-sensitive DNA aptamer by covalent immobilization. Taste bud cells isolated from rat were cultured on LAPS surface. When the desired single taste bud cell was illuminated by modulated light, ATP release from single taste bud cells can be measured by recording the shifts of bias voltage-photocurrent curves (I-V curves) when the LAPS chip is working in discrete mode. On the other hand, extracellular membrane potential changes can be monitored by recording the fluctuation of LAPS photocurrent when the LAPS chip is working in continuous mode. The results show this biosensor can effectively record the enhancive effect of the bitter substance and inhibitory effect of the carbenoxolone (CBX) on the extracellular membrane potential changes and ATP release of single taste bud cells. In addition, the inhibitory effect of CBX also confirms LAPS extracellular recordings are originated from bitter signal transduction. It is proved this biosensor is suitable for extracellular recording of ATP release and membrane potential changes of single taste bud cells. It is suggested this biosensor could be applied to investigating taste signal transduction at the single-cell level as well as applied to other types of cells which have similar functions to taste bud cells. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. A thermal biosensor based on enzyme reaction.

    PubMed

    Zheng, Yi-Hua; Hua, Tse-Chao; Xu, Fei

    2005-01-01

    Application of the thermal biosensor as analytical tool is promising due to advantages as universal, simplicity and quick response. A novel thermal biosensor based on enzyme reaction has been developed. This biosensor is a flow injection analysis system and consists of two channels with enzyme reaction column and reference column. The reference column, which is set for eliminating the unspecific heat, is inactived on special enzyme reaction of the ingredient to be detected. The special enzyme reaction takes places in the enzyme reaction column at a constant temperature realizing by a thermoelectric thermostat. Thermal sensor based on the thermoelectric module containing 127 serial BiTe-thermocouples is used to monitor the temperature difference between two streams from the enzyme reaction column and the reference column. The analytical example for dichlorvos shows that this biosensor can be used as analytical tool in medicine and biology.

  9. Design of nanostructured-based glucose biosensors

    NASA Astrophysics Data System (ADS)

    Komirisetty, Archana; Williams, Frances; Pradhan, Aswini; Konda, Rajini B.; Dondapati, Hareesh; Samantaray, Diptirani

    2012-04-01

    This paper presents the design of glucose sensors that will be integrated with advanced nano-materials, bio-coatings and electronics to create novel devices that are highly sensitive, inexpensive, accurate, and reliable. In the work presented, a glucose biosensor and its fabrication process flow have been designed. The device is based on electrochemical sensing using a working electrode with bio-functionalized zinc oxide (ZnO) nano-rods. Among all metal oxide nanostructures, ZnO nano-materials play a significant role as a sensing element in biosensors due to their properties such as high isoelectric point (IEP), fast electron transfer, non-toxicity, biocompatibility, and chemical stability which are very crucial parameters to achieve high sensitivity. Amperometric enzyme electrodes based on glucose oxidase (GOx) are used due to their stability and high selectivity to glucose. The device also consists of silicon dioxide and titanium layers as well as platinum working and counter electrodes and a silver/silver chloride reference electrode. Currently, the biosensors are being fabricated using the process flow developed. Once completed, the sensors will be bio-functionalized and tested to characterize their performance, including their sensitivity and stability.

  10. Versatile graphene biosensors for enhancing human cell therapy.

    PubMed

    Vlăsceanu, George M; Amărandi, Roxana-Maria; Ioniță, Mariana; Tite, Teddy; Iovu, Horia; Pilan, Luisa; Burns, Jorge S

    2018-05-01

    Technological advances in engineering and cell biology stimulate novel approaches for medical treatment, in particular cell-based therapy. The first cell-based gene therapy against cancer was recently approved by the US Food and Drug Administration. Progress in cancer diagnosis includes a blood test detecting five cancer types. Numerous stem cell phase I/II clinical trials showing safety and efficacy will soon pursue qualifying criteria for advanced therapy medicinal products (ATMP), aspiring to join the first stem-cell therapy approved by the European Medicines Agency. Cell based therapy requires extensive preclinical characterisation of biomarkers indicating mechanisms of action crucial to the desired therapeutic effect. Quantitative analyses monitoring critical functions for the manufacture of optimal cell and tissue-based clinical products include successful potency assays for implementation. The challenge to achieve high quality measurement is increasingly met by progress in biosensor design. We adopt a cell therapy perspective to highlight recent examples of graphene-enhanced biointerfaces for measurement of biomarkers relevant to cancer treatment, diagnosis and tissue regeneration. Graphene based biosensor design problems can thwart their use for health care transformative point of care testing and real-time applications. We discuss concerns to be addressed and emerging solutions for establishing clinical grade biosensors to accelerate human cell therapy. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Solution to the problem of interferences in electrochemical sensors using the fill-and-flow channel biosensor.

    PubMed

    Zhao, Min; Hibbert, D Brynn; Gooding, J Justin

    2003-02-01

    A generic fill-and-flow channel biosensor with upstream electrodes to determine the extent of interferences in the sample is described. A pair of upstream electrodes poised at a suitable potential allows both the calculation of the extent of removal of interfering agents and the effect of interfering agents at the detector electrode. A model was developed and tested that predicts the concentrations of all species throughout the channel and, hence, the current at each electrode due to each species. This enables correction of the detector electrode current and a more accurate determination of the analyte concentration. The concept was applied to a biosensor for the determination of glucose in the presence of ascorbic acid, acetamidophenol, and uric acid, as well as glucose in wine samples containing polyphenolic interfering agents.

  12. Nanostructured Tip-Shaped Biosensors: Application of Six Sigma Approach for Enhanced Manufacturing

    PubMed Central

    Kahng, Seong-Joong; Kim, Jong-Hoon; Chung, Jae-Hyun

    2016-01-01

    Nanostructured tip-shaped biosensors have drawn attention for biomolecule detection as they are promising for highly sensitive and specific detection of a target analyte. Using a nanostructured tip, the sensitivity is increased to identify individual molecules because of the high aspect ratio structure. Various detection methods, such as electrochemistry, fluorescence microcopy, and Raman spectroscopy, have been attempted to enhance the sensitivity and the specificity. Due to the confined path of electrons, electrochemical measurement using a nanotip enables the detection of single molecules. When an electric field is combined with capillary action and fluid flow, target molecules can be effectively concentrated onto a nanotip surface for detection. To enhance the concentration efficacy, a dendritic nanotip rather than a single tip could be used to detect target analytes, such as nanoparticles, cells, and DNA. However, reproducible fabrication with relation to specific detection remains a challenge due to the instability of a manufacturing method, resulting in inconsistent shape. In this paper, nanostructured biosensors are reviewed with our experimental results using dendritic nanotips for sequence specific detection of DNA. By the aid of the Six Sigma approach, the fabrication yield of dendritic nanotips increases from 20.0% to 86.6%. Using the nanotips, DNA is concentrated and detected in a sequence specific way with the detection limit equivalent to 1000 CFU/mL. The pros and cons of a nanotip biosensor are evaluated in conjunction with future prospects. PMID:28025540

  13. Surface desensitization of polarimetric waveguide interferometers

    NASA Astrophysics Data System (ADS)

    Worth, Colin

    Non-specific binding of small molecules to the surface of waveguide biosensors presents a major obstacle to surface-sensing techniques that attempt to detect very low concentrations (<1 g/mm2) of large (500 nm to 3 mum) biological objects. Interferometric waveguide biosensors use the interaction of an evanescent light field outside of the guiding layer with a biological sample to detect a particular type of cell or bacteria at some distance from the sensor surface. In such experiments, binding of small proteins close to the surface can be a significant source of noise. It is possible to significantly improve the signal-to-noise ratio by varying the properties of the biosensor, in order to reduce or eliminate the biosensor's response to a thin protein layer at the waveguide surface, without significantly reducing the response to larger target particles. In many biosensing applications, specifically bound particles, such as bacteria, are much larger than non-specifically bound particles such as proteins. In addition, due to laminar flow conditions at the sensor surface, the latter smaller particles tend to accumulate on the sensor surface. By varying the waveguide parameters, it is possible to vary the sensitivity of the detector response as a function of sample distance from the detector, by changing the properties of the TE0 and TM0 guided modes. This results in a signal reduction of more than 85%, for thin (30 nm or less) layers adjacent to the waveguide surface.

  14. Method for detection of a few pathogenic bacteria and determination of live versus dead cells

    NASA Astrophysics Data System (ADS)

    Horikawa, Shin; Chen, I.-Hsuan; Du, Songtao; Liu, Yuzhe; Wikle, Howard C.; Suh, Sang-Jin; Barbaree, James M.; Chin, Bryan A.

    2016-05-01

    This paper presents a method for detection of a few pathogenic bacteria and determination of live versus dead cells. The method combines wireless phage-coated magnetoelastic (ME) biosensors and a surface-scanning dectector, enabling real-time monitoring of the growth of specific bacteria in a nutrient broth. The ME biosensor used in this investigation is composed of a strip-shaped ME resonator upon which an engineered bacteriophage is coated to capture a pathogen of interest. E2 phage with high binding affinity for Salmonella Typhimurium was used as a model study. The specificity of E2 phage has been reported to be 1 in 105 background bacteria. The phage-coated ME biosensors were first exposed to a low-concentration Salmonella suspension to capture roughly 300 cells on the sensor surface. When the growth of Salmonella in the broth occurs, the mass of the biosensor increases, which results in a decrease in the biosensor's resonant frequency. Monitoring of this mass- induced resonant frequency change allows for real-time detection of the presence of Salmonella. Detection of a few bacteria is also possible by growing them to a sufficient number. The surface-scanning detector was used to measure resonant frequency changes of 25 biosensors sequentially in an automated manner as a function of time. This methodology offers direct, real-time detection, quantification, and viability determination of specific bacteria. The rate of the sensor's resonant frequency change was found to be largely dependent on the number of initially bound cells and the efficiency of cell growth.

  15. New biosensor for detection of copper ions in water based on immobilized genetically modified yeast cells.

    PubMed

    Vopálenská, Irena; Váchová, Libuše; Palková, Zdena

    2015-10-15

    Contamination of water by heavy metals represents a potential risk for both aquatic and terrestrial organisms, including humans. Heavy metals in water resources can come from various industrial activities, and drinking water can be ex-post contaminated by heavy metals such as Cu(2+) from house fittings (e.g., water reservoirs) and pipes. Here, we present a new copper biosensor capable of detecting copper ions at concentrations of 1-100 μM. This biosensor is based on cells of a specifically modified Saccharomyces cerevisiae strain immobilized in alginate beads. Depending on the concentration of copper, the biosensor beads change color from white, when copper is present in concentrations below the detection limit, to pink or red based on the increase in copper concentration. The biosensor was successfully tested in the determination of copper concentrations in real samples of water contaminated with copper ions. In contrast to analytical methods or other biosensors based on fluorescent proteins, the newly designed biosensor does not require specific equipment and allows the quick detection of copper in many parallel samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. SH2 Domain-Based FRET Biosensor for Measuring BCR-ABL Activity in Living CML Cells.

    PubMed

    Fujioka, Mari; Asano, Yumi; Nakada, Shigeyuki; Ohba, Yusuke

    2017-01-01

    Fluorescent proteins (FPs) displaying distinct spectra have shed their light on a wide range of biological functions. Moreover, sophisticated biosensors engineered to contain single or multiple FPs, including Förster resonance energy transfer (FRET)-based biosensors, spatiotemporally reveal the molecular mechanisms underlying a variety of pathophysiological processes. However, their usefulness for applied life sciences has yet to be fully explored. Recently, our research group has begun to expand the potential of FPs from basic biological research to the clinic. Here, we describe a method to evaluate the responsiveness of leukemia cells from patients to tyrosine kinase inhibitors using a biosensor based on FP technology and the principle of FRET. Upon phosphorylation of the tyrosine residue of the biosensor, binding of the SH2 domain to phosphotyrosine induces conformational change of the biosensor and brings the donor and acceptor FPs into close proximity. Therefore, kinase activity and response to kinase inhibitors can be monitored by an increase and a decrease in FRET efficiency, respectively. As in basic research, this biosensor resolves hitherto arduous tasks and may provide innovative technological advances in clinical laboratory examinations. State-of-the-art detection devices that enable such innovation are also introduced.

  17. Utility of Ochrobactrum anthropi YC152 in a Microbial Fuel Cell as an Early Warning Device for Hexavalent Chromium Determination.

    PubMed

    Wang, Guey-Horng; Cheng, Chiu-Yu; Liu, Man-Hai; Chen, Tzu-Yu; Hsieh, Min-Chi; Chung, Ying-Chien

    2016-08-16

    Fast hexavalent chromium (Cr(VI)) determination is important for environmental risk and health-related considerations. We used a microbial fuel cell-based biosensor inoculated with a facultatively anaerobic, Cr(VI)-reducing, and exoelectrogenic Ochrobactrum anthropi YC152 to determine the Cr(VI) concentration in water. The results indicated that O. anthropi YC152 exhibited high adaptability to pH, temperature, salinity, and water quality under anaerobic conditions. The stable performance of the microbial fuel cell (MFC)-based biosensor indicated its potential as a reliable biosensor system. The MFC voltage decreased as the Cr(VI) concentration in the MFC increased. Two satisfactory linear relationships were observed between the Cr(VI) concentration and voltage output for various Cr(VI) concentration ranges (0.0125-0.3 mg/L and 0.3-5 mg/L). The MFC biosensor is a simple device that can accurately measure Cr(VI) concentrations in drinking water, groundwater, and electroplating wastewater in 45 min with low deviations (<10%). The use of the biosensor can help in preventing the violation of effluent regulations and the maximum allowable concentration of Cr(VI) in water. Thus, the developed MFC biosensor has potential as an early warning detection device for Cr(VI) determination even if O. anthropi YC152 is a possible opportunistic pathogen.

  18. Bright monomeric near-infrared fluorescent proteins as tags and biosensors for multiscale imaging

    PubMed Central

    Shcherbakova, Daria M.; Baloban, Mikhail; Emelyanov, Alexander V.; Brenowitz, Michael; Guo, Peng; Verkhusha, Vladislav V.

    2016-01-01

    Monomeric near-infrared (NIR) fluorescent proteins (FPs) are in high demand as protein tags and components of biosensors for deep-tissue imaging and multicolour microscopy. We report three bright and spectrally distinct monomeric NIR FPs, termed miRFPs, engineered from bacterial phytochrome, which can be used as easily as GFP-like FPs. miRFPs are 2–5-fold brighter in mammalian cells than other monomeric NIR FPs and perform well in protein fusions, allowing multicolour structured illumination microscopy. miRFPs enable development of several types of NIR biosensors, such as for protein–protein interactions, RNA detection, signalling cascades and cell fate. We demonstrate this by engineering the monomeric fluorescence complementation reporters, the IκBα reporter for NF-κB pathway and the cell cycle biosensor for detection of proliferation status of cells in culture and in animals. miRFPs allow non-invasive visualization and detection of biological processes at different scales, from super-resolution microscopy to in vivo imaging, using the same probes. PMID:27539380

  19. Redesigning of Microbial Cell Surface and Its Application to Whole-Cell Biocatalysis and Biosensors.

    PubMed

    Han, Lei; Zhao, Yukun; Cui, Shan; Liang, Bo

    2018-06-01

    Microbial cell surface display technology can redesign cell surfaces with functional proteins and peptides to endow cells some unique features. Foreign peptides or proteins are transported out of cells and immobilized on cell surface by fusing with anchoring proteins, which is an effective solution to avoid substance transfer limitation, enzyme purification, and enzyme instability. As the most frequently used prokaryotic and eukaryotic protein surface display system, bacterial and yeast surface display systems have been widely applied in vaccine, biocatalysis, biosensor, bioadsorption, and polypeptide library screening. In this review of bacterial and yeast surface display systems, different cell surface display mechanisms and their applications in biocatalysis as well as biosensors are described with their strengths and shortcomings. In addition to single enzyme display systems, multi-enzyme co-display systems are presented here. Finally, future developments based on our and other previous reports are discussed.

  20. Functional nucleic acids as in vivo metabolite and ion biosensors.

    PubMed

    Alsaafin, Alaa; McKeague, Maureen

    2017-08-15

    Characterizing the role of metabolites, metals, and proteins is required to understand normal cell function, and ultimately, elucidate the mechanism of disease. Metabolite concentration and transformation results collected from cell lysates or fixed-cells conceal important dynamic information and differences between individual cells that often have profound functional consequences. Functional nucleic acid-based biosensors are emerging tools that are capable of monitoring ions and metabolites in cell populations or whole animals. Functional nucleic acids (FNAs) are a class of biomolecules that can exhibit either ligand binding or enzymatic activity. Unlike their protein analogues or the use of instrument-based analysis, FNA-based biosensors are capable of entering cells without disruption to the cellular environment and can report on the concentration, dynamics, and spatial localization of molecules in cells. Here, we review the types of FNAs that have been used as in vivo biosensors, and how FNAs can be coupled to transduction systems and delivered inside cells. We also provide examples from the literature that demonstrate their impact in practical applications. Finally, we comment on the critical limitations that need to be addressed to enable their use for single-cell dynamic tracking of metabolites and ions in vivo. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  1. Development and characterization of a whole-cell bioluminescent sensor for bioavailable middle-chain alkanes in contaminated groundwater samples.

    PubMed Central

    Sticher, P; Jaspers, M C; Stemmler, K; Harms, H; Zehnder, A J; van der Meer, J R

    1997-01-01

    A microbial whole-cell biosensor was developed, and its potential to measure water-dissolved concentrations of middle-chain-length alkanes and some related compounds by bioluminescence was characterized. The biosensor strain Escherichia coli DH5 alpha(pGEc74, pJAMA7) carried the regulatory gene alkS from Pseudomonas oleovorans and a transcriptional fusion of PalkB from the same strain with the promoterless luciferase luxAB genes from Vibrio harveyi on two separately introduced plasmids. In standardized assays, the biosensor cells were readily inducible with octane, a typical inducer of the alk system. Light emission after induction periods of more than 15 min correlated well with octane concentration. In well-defined aqueous samples, there was a linear relationship between light output and octane concentrations between 24 and 100 nM. The biosensor responded to middle-chain-length alkanes but not to alicyclic or aromatic compounds. In order to test its applicability for analyzing environmentally relevant samples, the biosensor was used to detect the bioavailable concentration of alkanes in heating oil-contaminated groundwater samples. By the extrapolation of calibrated light output data to low octane concentrations with a hyperbolic function, a total inducer concentration of about 3 nM in octane equivalents was estimated. The whole-cell biosensor tended to underestimate the alkane concentration in the groundwater samples by about 25%, possibly because of the presence of unknown inhibitors. This was corrected for by spiking the samples with a known amount of an octane standard. Biosensor measurements of alkane concentrations were further verified by comparing them with the results of chemical analyses. PMID:9327569

  2. Optical biosensor optimized for continuous in-line glucose monitoring in animal cell culture.

    PubMed

    Tric, Mircea; Lederle, Mario; Neuner, Lisa; Dolgowjasow, Igor; Wiedemann, Philipp; Wölfl, Stefan; Werner, Tobias

    2017-09-01

    Biosensors for continuous glucose monitoring in bioreactors could provide a valuable tool for optimizing culture conditions in biotechnological applications. We have developed an optical biosensor for long-term continuous glucose monitoring and demonstrated a tight glucose level control during cell culture in disposable bioreactors. The in-line sensor is based on a commercially available oxygen sensor that is coated with cross-linked glucose oxidase (GOD). The dynamic range of the sensor was tuned by a hydrophilic perforated diffusion membrane with an optimized permeability for glucose and oxygen. The biosensor was thoroughly characterized by experimental data and numerical simulations, which enabled insights into the internal concentration profile of the deactivating by-product hydrogen peroxide. The simulations were carried out with a one-dimensional biosensor model and revealed that, in addition to the internal hydrogen peroxide concentration, the turnover rate of the enzyme GOD plays a crucial role for biosensor stability. In the light of this finding, the glucose sensor was optimized to reach a long functional stability (>52 days) under continuous glucose monitoring conditions with a dynamic range of 0-20 mM and a response time of t 90  ≤ 10 min. In addition, we demonstrated that the sensor was sterilizable with beta and UV irradiation and only subjected to minor cross sensitivity to oxygen, when an oxygen reference sensor was applied. Graphical abstract Measuring setup of a glucose biosensor in a shake flask for continuous glucose monitoring in mammalian cell culture.

  3. Electrochemical lactate biosensor based upon chitosan/carbon nanotubes modified screen-printed graphite electrodes for the determination of lactate in embryonic cell cultures.

    PubMed

    Hernández-Ibáñez, Naiara; García-Cruz, Leticia; Montiel, Vicente; Foster, Christopher W; Banks, Craig E; Iniesta, Jesús

    2016-03-15

    l-lactate is an essential metabolite present in embryonic cell culture. Changes of this important metabolite during the growth of human embryo reflect the quality and viability of the embryo. In this study, we report a sensitive, stable, and easily manufactured electrochemical biosensor for the detection of lactate within embryonic cell cultures media. Screen-printed disposable electrodes are used as electrochemical sensing platforms for the miniaturization of the lactate biosensor. Chitosan/multi walled carbon nanotubes composite have been employed for the enzymatic immobilization of the lactate oxidase enzyme. This novel electrochemical lactate biosensor analytical efficacy is explored towards the sensing of lactate in model (buffer) solutions and is found to exhibit a linear response towards lactate over the concentration range of 30.4 and 243.9 µM in phosphate buffer solution, with a corresponding limit of detection (based on 3-sigma) of 22.6 µM and exhibits a sensitivity of 3417 ± 131 µAM(-1) according to the reproducibility study. These novel electrochemical lactate biosensors exhibit a high reproducibility, with a relative standard deviation of less than 3.8% and an enzymatic response over 82% after 5 months stored at 4 °C. Furthermore, high performance liquid chromatography technique has been utilized to independently validate the electrochemical lactate biosensor for the determination of lactate in a commercial embryonic cell culture medium providing excellent agreement between the two analytical protocols. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. The spatiotemporal pattern of Src activation at lipid rafts revealed by diffusion-corrected FRET imaging.

    PubMed

    Lu, Shaoying; Ouyang, Mingxing; Seong, Jihye; Zhang, Jin; Chien, Shu; Wang, Yingxiao

    2008-07-25

    Genetically encoded biosensors based on fluorescence resonance energy transfer (FRET) have been widely applied to visualize the molecular activity in live cells with high spatiotemporal resolution. However, the rapid diffusion of biosensor proteins hinders a precise reconstruction of the actual molecular activation map. Based on fluorescence recovery after photobleaching (FRAP) experiments, we have developed a finite element (FE) method to analyze, simulate, and subtract the diffusion effect of mobile biosensors. This method has been applied to analyze the mobility of Src FRET biosensors engineered to reside at different subcompartments in live cells. The results indicate that the Src biosensor located in the cytoplasm moves 4-8 folds faster (0.93+/-0.06 microm(2)/sec) than those anchored on different compartments in plasma membrane (at lipid raft: 0.11+/-0.01 microm(2)/sec and outside: 0.18+/-0.02 microm(2)/sec). The mobility of biosensor at lipid rafts is slower than that outside of lipid rafts and is dominated by two-dimensional diffusion. When this diffusion effect was subtracted from the FRET ratio images, high Src activity at lipid rafts was observed at clustered regions proximal to the cell periphery, which remained relatively stationary upon epidermal growth factor (EGF) stimulation. This result suggests that EGF induced a Src activation at lipid rafts with well-coordinated spatiotemporal patterns. Our FE-based method also provides an integrated platform of image analysis for studying molecular mobility and reconstructing the spatiotemporal activation maps of signaling molecules in live cells.

  5. Functionalized nanopipettes: toward label-free, single cell biosensors.

    PubMed

    Actis, Paolo; Mak, Andy C; Pourmand, Nader

    2010-08-01

    Nanopipette technology has been proven to be a label-free biosensor capable of identifying DNA and proteins. The nanopipette can include specific recognition elements for analyte discrimination based on size, shape, and charge density. The fully electrical read-out and the ease and low-cost fabrication are unique features that give this technology an enormous potential. Unlike other biosensing platforms, nanopipettes can be precisely manipulated with submicron accuracy and used to study single cell dynamics. This review is focused on creative applications of nanopipette technology for biosensing. We highlight the potential of this technology with a particular attention to integration of this biosensor with single cell manipulation platforms.

  6. Functionalized nanopipettes: toward label-free, single cell biosensors

    PubMed Central

    Actis, Paolo; Mak, Andy C.

    2010-01-01

    Nanopipette technology has been proven to be a label-free biosensor capable of identifying DNA and proteins. The nanopipette can include specific recognition elements for analyte discrimination based on size, shape, and charge density. The fully electrical read-out and the ease and low-cost fabrication are unique features that give this technology an enormous potential. Unlike other biosensing platforms, nanopipettes can be precisely manipulated with submicron accuracy and used to study single cell dynamics. This review is focused on creative applications of nanopipette technology for biosensing. We highlight the potential of this technology with a particular attention to integration of this biosensor with single cell manipulation platforms. PMID:20730113

  7. Monitoring thioredoxin redox with a genetically encoded red fluorescent biosensor.

    PubMed

    Fan, Yichong; Makar, Merna; Wang, Michael X; Ai, Hui-Wang

    2017-09-01

    Thioredoxin (Trx) is one of the two major thiol antioxidants, playing essential roles in redox homeostasis and signaling. Despite its importance, there is a lack of methods for monitoring Trx redox dynamics in live cells, hindering a better understanding of physiological and pathological roles of the Trx redox system. In this work, we developed the first genetically encoded fluorescent biosensor for Trx redox by engineering a redox relay between the active-site cysteines of human Trx1 and rxRFP1, a redox-sensitive red fluorescent protein. We used the resultant biosensor-TrxRFP1-to selectively monitor perturbations of Trx redox in various mammalian cell lines. We subcellularly localized TrxRFP1 to image compartmentalized Trx redox changes. We further combined TrxRFP1 with a green fluorescent Grx1-roGFP2 biosensor to simultaneously monitor Trx and glutathione redox dynamics in live cells in response to chemical and physiologically relevant stimuli.

  8. Fast and accurate detection of cancer cell using a versatile three-channel plasmonic sensor

    NASA Astrophysics Data System (ADS)

    Hoseinian, M.; Ahmadi, A. R.; Bolorizadeh, M. A.

    2016-09-01

    Surface Plasmon Resonance (SPR) optical fiber sensors can be used as cost-effective small sized biosensors that are relatively simple to operate. Additionally, these instruments are label-free, hence rendering them highly sensitive to biological measurements. In this study, a three-channel microstructure optical fiber plasmonic-based portable biosensor is designed and analyzed using Finite Element Method. The proposed system is capable of determining changes in sample's refractive index with precision of order one thousandth. The biosensor measures three absorption resonance wavelengths of the analytes simultaneously. This property is one of the main advantages of the proposed biosensor since it reduces the error in the measured wavelength and enhances the accuracy of the results up to 10-5 m/RIU by reducing noise. In this paper, Jurkat cell, an indicator cell for leukemia cancer, is considered as the analyte; and its absorption resonance wavelengths as well as sensitivity in each channel are determined.

  9. Zooming In on Plant Hormone Analysis: Tissue- and Cell-Specific Approaches.

    PubMed

    Novák, Ondřej; Napier, Richard; Ljung, Karin

    2017-04-28

    Plant hormones are a group of naturally occurring, low-abundance organic compounds that influence physiological processes in plants. Our knowledge of the distribution profiles of phytohormones in plant organs, tissues, and cells is still incomplete, but advances in mass spectrometry have enabled significant progress in tissue- and cell-type-specific analyses of phytohormones over the last decade. Mass spectrometry is able to simultaneously identify and quantify hormones and their related substances. Biosensors, on the other hand, offer continuous monitoring; can visualize local distributions and real-time quantification; and, in the case of genetically encoded biosensors, are noninvasive. Thus, biosensors offer additional, complementary technologies for determining temporal and spatial changes in phytohormone concentrations. In this review, we focus on recent advances in mass spectrometry-based quantification, describe monitoring systems based on biosensors, and discuss validations of the various methods before looking ahead at future developments for both approaches.

  10. Nano-particle enhanced impedimetric biosensor for detedtion of foodborne pathogens

    NASA Astrophysics Data System (ADS)

    Kim, G.; Om, A. S.; Mun, J. H.

    2007-03-01

    Recent outbreaks of foodborne illness have been increased the need for rapid and sensitive methods for detection of these pathogens. Conventional methods for pathogens detection and identification involve prolonged multiple enrichment steps. Even though some immunological rapid assays are available, these assays still need enrichment steps result in delayed detection. Biosensors have shown great potential for rapid detection of foodborne pathogens. They are capable of direct monitoring the antigen-antibody reactions in real time. Among the biosensors, impedimetric biosensors have been widely adapted as an analysis tool for the study of various biological binding reactions because of their high sensitivity and reagentless operation. In this study a nanoparticle-enhanced impedimetric biosensor for Salmonella enteritidis detection was developed which detected impedance changes caused by the attachment of the cells to the anti-Salmonella antibodies immobilized on interdigitated gold electrodes. Successive immobilization of neutravidin followed by anti-Salmonella antibodies was performed to the sensing area to create a biological detection surface. To enhance the impedance responses generated by antigen-antibody reactions, anti-Salmonella antibody conjugated nanoparticles were introduced on the sensing area. Using a portable impedance analyzer, the impedance across the interdigital electrodes was measured after the series of antigen-antibody bindings. Bacteria cells present in solution attached to capture antibodies and became tethered to the sensor surface. Attached bacteria cells changed the dielectric constant of the media between the electrodes thereby causing a change in measured impedance. Optimum input frequency was determined by analyzing frequency characteristics of the biosensor over ranges of applied frequencies from 10 Hz to 400 Hz. At 100 Hz of input frequency, the biosensor was most sensitive to the changes of the bacteria concentration and this frequency was used for the detection experiments. The biosensor was able to detect 106 CFU/mL in phosphate buffered saline (PBS) with a detection time of 3 minutes. Additional use of nanoparticles significantly enhanced the detection performance. By using the nanoparticles the biosensor could detect 104 CFU/mL of Salmonella enteritidis in PBS and 105 CFU/mL of cells in milk.

  11. Fiber Optic Surface Plasmon Resonance-Based Biosensor Technique: Fabrication, Advancement, and Application.

    PubMed

    Liang, Gaoling; Luo, Zewei; Liu, Kunping; Wang, Yimin; Dai, Jianxiong; Duan, Yixiang

    2016-05-03

    Fiber optic-based biosensors with surface plasmon resonance (SPR) technology are advanced label-free optical biosensing methods. They have brought tremendous progress in the sensing of various chemical and biological species. This review summarizes four sensing configurations (prism, grating, waveguide, and fiber optic) with two ways, attenuated total reflection (ATR) and diffraction, to excite the surface plasmons. Meanwhile, the designs of different probes (U-bent, tapered, and other probes) are also described. Finally, four major types of biosensors, immunosensor, DNA biosensor, enzyme biosensor, and living cell biosensor, are discussed in detail for their sensing principles and applications. Future prospects of fiber optic-based SPR sensor technology are discussed.

  12. Electronic Biosensors Based on III-Nitride Semiconductors.

    PubMed

    Kirste, Ronny; Rohrbaugh, Nathaniel; Bryan, Isaac; Bryan, Zachary; Collazo, Ramon; Ivanisevic, Albena

    2015-01-01

    We review recent advances of AlGaN/GaN high-electron-mobility transistor (HEMT)-based electronic biosensors. We discuss properties and fabrication of III-nitride-based biosensors. Because of their superior biocompatibility and aqueous stability, GaN-based devices are ready to be implemented as next-generation biosensors. We review surface properties, cleaning, and passivation as well as different pathways toward functionalization, and critically analyze III-nitride-based biosensors demonstrated in the literature, including those detecting DNA, bacteria, cancer antibodies, and toxins. We also discuss the high potential of these biosensors for monitoring living cardiac, fibroblast, and nerve cells. Finally, we report on current developments of covalent chemical functionalization of III-nitride devices. Our review concludes with a short outlook on future challenges and projected implementation directions of GaN-based HEMT biosensors.

  13. Impedance spectroscopy assisted by magnetic nanoparticles as a potential biosensor principle for breast cancer cells in suspension.

    PubMed

    Silva, Jesús G; Cárdenas, Rey A; Quiróz, Alan R; Sánchez, Virginia; Lozano, Lucila M; Pérez, Nadia M; López, Jaime; Villanueva, Cleva; González, César A

    2014-06-01

    Breast cancer (BC) is the leading cause of cancer death in women worldwide, with a higher mortality reported in undeveloped countries. Ideal adjuvant therapeutic strategies require the continuous monitoring of patients by regular blood tests to detect circulating cancer cells, in order to determine whether additional treatment is necessary to prevent cancer dissemination. This circumstance requires a non-complex design of tumor cell biosensor in whole blood with feasibility for use in poor regions. In this work we have evaluated an inexpensive and simple technique of relative bioimpedance measurement, assisted by magnetic nanoparticles, as a potential biosensor of BC cells in suspension. Measurements represent the relative impedance changes caused by the magnetic holding of an interphase of tumor cells versus a homogenous condition in the frequency range of 10-100 kHz. The results indicate that use of a magnet to separate tumor cells in suspension, coupled to magnetic nanoparticles, is a feasible technique to fix an interphase of tumor cells in close proximity to gold electrodes. Relative impedance changes were shown to have potential value as a biosensor method for BC cells in whole blood, at frequencies around 20 kHz. Additional studies are warranted with respect to electrode design and sensitivity at micro-scale levels, according to the proposed technique.

  14. A novel biosensor selective for organoarsenicals.

    PubMed

    Chen, Jian; Zhu, Yong-Guan; Rosen, Barry P

    2012-10-01

    Organoarsenicals used as herbicides and growth promoters for farm animals are degraded to inorganic arsenic. Available bacterial whole-cell biosensors detect only inorganic arsenic. We report a biosensor selective for the trivalent organoarsenicals methylarsenite and phenylarsenite over inorganic arsenite. This sensor may be useful for detecting degradation of arsenic-containing herbicides and growth promoters.

  15. Comparative analysis of microbial fuel cell based biosensors developed with a mixed culture and Shewanella loihica PV-4 and underlying biological mechanism.

    PubMed

    Yi, Yue; Xie, Beizhen; Zhao, Ting; Liu, Hong

    2018-06-13

    Microbial fuel cell based biosensors (MFC-biosensors) utilize anode biofilms as biological recognition elements to monitor biochemical oxygen demand (BOD) and biotoxicity. However, the relatively poor sensitivity constrains the application of MFC-biosensors. To address this limitation, this study provided a systematic comparison of sensitivity between the MFC-biosensors constructed with two inocula. Higher biomass density and viability were both observed in the anode biofilm of the mixed culture MFC, which resulted in better sensitivity for BOD assessment. Compared with using mixed culture as inoculum, the anode biofilm developed with Shewanella loihica PV-4 presented lower content of extracellular polymeric substances and poorer ability to secrete protein under toxic shocks. Moreover, the looser structure in the S. loihica PV-4 biofilm further facilitated its susceptibilities to toxic agents. Therefore, the MFC-biosensor with a pure culture of S. loihica PV-4 delivered higher sensitivity for biotoxicity monitoring. This study proposed a new perspective to enhance sensor performance. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. A New Genetically Encoded Single-Chain Biosensor for Cdc42 Based on FRET, Useful for Live-Cell Imaging

    PubMed Central

    Cox, Dianne; Hodgson, Louis

    2014-01-01

    Cdc42 is critical in a myriad of cellular morphogenic processes, requiring precisely regulated activation dynamics to affect specific cellular events. To facilitate direct observations of Cdc42 activation in live cells, we developed and validated a new biosensor of Cdc42 activation. The biosensor is genetically encoded, of single-chain design and capable of correctly localizing to membrane compartments as well as interacting with its upstream regulators including the guanine nucleotide dissociation inhibitor. We characterized this new biosensor in motile mouse embryonic fibroblasts and observed robust activation dynamics at leading edge protrusions, similar to those previously observed for endogenous Cdc42 using the organic dye-based biosensor system. We then extended our validations and observations of Cdc42 activity to macrophages, and show that this new biosensor is able to detect differential activation patterns during phagocytosis and cytokine stimulation. Furthermore, we observe for the first time, a highly transient and localized activation of Cdc42 during podosome formation in macrophages, which was previously hypothesized but never directly visualized. PMID:24798463

  17. A new genetically encoded single-chain biosensor for Cdc42 based on FRET, useful for live-cell imaging.

    PubMed

    Hanna, Samer; Miskolci, Veronika; Cox, Dianne; Hodgson, Louis

    2014-01-01

    Cdc42 is critical in a myriad of cellular morphogenic processes, requiring precisely regulated activation dynamics to affect specific cellular events. To facilitate direct observations of Cdc42 activation in live cells, we developed and validated a new biosensor of Cdc42 activation. The biosensor is genetically encoded, of single-chain design and capable of correctly localizing to membrane compartments as well as interacting with its upstream regulators including the guanine nucleotide dissociation inhibitor. We characterized this new biosensor in motile mouse embryonic fibroblasts and observed robust activation dynamics at leading edge protrusions, similar to those previously observed for endogenous Cdc42 using the organic dye-based biosensor system. We then extended our validations and observations of Cdc42 activity to macrophages, and show that this new biosensor is able to detect differential activation patterns during phagocytosis and cytokine stimulation. Furthermore, we observe for the first time, a highly transient and localized activation of Cdc42 during podosome formation in macrophages, which was previously hypothesized but never directly visualized.

  18. Human Neural Cell-Based Biosensor

    DTIC Science & Technology

    2010-06-11

    stabilizer valproic acid, regulates neurite outgrowth through JNK and the substrate paxillin in N1E - 115 neuroblastoma cells. Exp Cell Res, 313 (9): p...developed methods for directed dopaminergic differentiation using defined medium conditions – all towards the goal of accelerating neuronal... differentiation for biosensor development. Moreover, we have begun an exploration of fluorescence-based assays as a new direction for ‘sensor element’ development

  19. Application of a Bacillus subtilis Whole-Cell Biosensor (PliaI-lux) for the Identification of Cell Wall Active Antibacterial Compounds.

    PubMed

    Kobras, Carolin Martina; Mascher, Thorsten; Gebhard, Susanne

    2017-01-01

    Whole-cell biosensors, based on the visualization of a reporter strain's response to a particular stimulus, are a robust and cost-effective means to monitor defined environmental conditions or the presence of chemical compounds. One specific field in which such biosensors are frequently applied is drug discovery, i.e., the screening of large numbers of bacterial or fungal strains for the production of antimicrobial compounds. We here describe the application of a luminescence-based Bacillus subtilis biosensor for the discovery of cell wall active substances. The system is based on the well-characterized promoter P liaI , which is induced in response to a wide range of conditions that cause cell envelope stress, particularly antibiotics that interfere with the membrane-anchored steps of cell wall biosynthesis. A simple "spot-on-lawn" assay, where colonies of potential producer strains are grown directly on a lawn of the reporter strain, allows for quantitative and time-resolved detection of antimicrobial compounds. Due to the very low technical demands of this procedure, we expect it to be easily applicable to a large variety of candidate producer strains and growth conditions.

  20. Biosensor-based real-time monitoring of paracetamol photocatalytic degradation.

    PubMed

    Calas-Blanchard, Carole; Istamboulié, Georges; Bontoux, Margot; Plantard, Gaël; Goetz, Vincent; Noguer, Thierry

    2015-07-01

    This paper presents for the first time the integration of a biosensor for the on-line, real-time monitoring of a photocatalytic degradation process. Paracetamol was used as a model molecule due to its wide use and occurrence in environmental waters. The biosensor was developed based on tyrosinase immobilization in a polyvinylalcohol photocrosslinkable polymer. It was inserted in a computer-controlled flow system installed besides a photocatalytic reactor including titanium dioxide (TiO2) as photocatalyst. It was shown that the biosensor was able to accurately monitor the paracetamol degradation with time. Compared with conventional HPLC analysis, the described device provides a real-time information on the reaction advancement, allowing a better control of the photodegradation process. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. A novel and simple cell-based electrochemical biosensor for evaluating the antioxidant capacity of Lactobacillus plantarum strains isolated from Chinese dry-cured ham.

    PubMed

    Ge, Qingfeng; Ge, Panwei; Jiang, Donglei; Du, Nan; Chen, Jiahui; Yuan, Limin; Yu, Hai; Xu, Xin; Wu, Mangang; Zhang, Wangang; Zhou, Guanghong

    2018-01-15

    The analysis of antioxidants in foodstuffs has become an active area of research, leading to the recent development of numerous methods for assessing antioxidant capacity. Here we described the fabrication and validation of a novel and simple cell-based electrochemical biosensor for this purpose. The biosensor is used to assess the antioxidant capacity of cell-free extracts from Lactobacillus plantarum strains isolated from Chinese dry-cured ham. The biosensor relies on the determination of cellular reactive oxygen species (ROS) (the flux of H 2 O 2 released from RAW 264.7 macrophage cells) to indirectly assess changes in intracellular oxidative stress level as influenced by L. plantarum strains. A one-step acidified manganese dioxide (a-MnO 2 ) modified gold electrode (GE) was used to immobilize RAW 264.7 macrophage cells, which were then encapsulated in a 3D cell culture system consisting of alginate/ graphene oxide (NaAlg/GO). The biosensor exhibited a rapid and sensitive response for the detection of H 2 O 2 released from RAW264.7 cells. The detection limit was 0.02μM with a linear response from 0.05μM to 0.85μM and the biosensor was shown to have good stability and outstanding repeatability. This technique was then used for evaluating the antioxidant ability of extracts from L. plantarum NJAU-01. According to the electrochemical investigations and assays of SEM, TEM, and ROS, these cell-free extracts effectively reduced the oxidative stress levels in RAW264.7 cells under external stimulation. Extracts from L. plantarum strains at a dose of 10 10 CFU/mL showed the highest antioxidant activities with a relative antioxidant capacity (RAC) rate of 88.94%. Hence, this work provides a simple and efficient electrochemical biosensing platform based on RAW264.7 cells for fast, sensitive and quantitative assessment of antioxidant capacity of L. plantarum strains. The method demonstrates its potential for rapid screening for evaluating antioxidant properties of samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Insights into the HyPer biosensor as molecular tool for monitoring cellular antioxidant capacity.

    PubMed

    Hernández, Helen; Parra, Alejandra; Tobar, Nicolas; Molina, Jessica; Kallens, Violeta; Hidalgo, Miltha; Varela, Diego; Martínez, Jorge; Porras, Omar

    2018-06-01

    Aerobic metabolism brings inexorably the production of reactive oxygen species (ROS), which are counterbalanced by intrinsic antioxidant defenses avoiding deleterious intracellular effects. Redox balance is the resultant of metabolic functioning under environmental inputs (i.e. diet, pollution) and the activity of intrinsic antioxidant machinery. Monitoring of intracellular hydrogen peroxide has been successfully achieved by redox biosensor advent; however, to track the intrinsic disulfide bond reduction capacity represents a fundamental piece to understand better how redox homeostasis is maintained in living cells. In the present work, we compared the informative value of steady-state measurements and the kinetics of HyPer, a H 2 O 2 -sensitive fluorescent biosensor, targeted at the cytosol, mitochondrion and endoplasmic reticulum. From this set of data, biosensor signal recovery from an oxidized state raised as a suitable parameter to discriminate reducing capacity of a close environment. Biosensor recovery was pH-independent, condition demonstrated by experiments on pH-clamped cells, and sensitive to pharmacological perturbations of enzymatic disulfide reduction. Also, ten human cell lines were characterized according their H 2 O 2 -pulse responses, including their capacity to reduce disulfide bonds evaluated in terms of their migratory capacity. Finally, cellular migration experiments were conducted to study whether migratory efficiency was associated with the disulfide reduction activity. The migration efficiency of each cell type correlates with the rate of signal recovery measured from the oxidized biosensor. In addition, HyPer-expressing cells treated with N-acetyl-cysteine had accelerated recovery rates and major migratory capacities, both reversible effects upon treatment removal. Our data demonstrate that the HyPer signal recovery offers a novel methodological tool to track the cellular impact of redox active biomolecules. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  3. Multienzyme decorated polysaccharide amplified electrogenerated chemiluminescence biosensor for cytosensing and cell surface carbohydrate profiling.

    PubMed

    Zhang, Ling; Wang, Yangzhong; Tian, Qianqian; Liu, Yang; Li, Jinghong

    2017-03-15

    A novel ECL biosensor for cytosensing and cell surface carbohydrate expression evaluation was developed, by the integration of the peptide modified interface for highly specific carbohydrate recognition and sodium alginate loaded glucose oxidase as the signal probe with high signal amplification efficiency. A cysteine-terminated peptide self-assembled on the electrode through Au-S bond to construct a functional interface for cell capture, with decent biocompatibility and high affinity for the human breast cancer cell MCF-7. Concanavalin A lectin modified gold nanoparticles specifically recognized the cell surface carbohydrates and were absorbed on the electrode, followed by the immobilization of multiple glucose oxidase conjugated sodium alginate, which could remarkably increase the sensitivity of the biosensor with enhanced catalysis. The as-proposed ECL cytosensor was successfully applied for the detection of the MCF-7 tumor cells, whose glycans on the cell membranes are over-expressed. A low detection limit of 150cellsmL -1 was obtained, with a wide dynamic linear range from 5.0×10 2 to 5.0×10 5 cellsmL -1 . Due to the excellent sensitivity, stability and biocompatibility, the ECL biosensor would be promising in reliable diagnostics of glycan relevant biomarkers for cancer and other diseases. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Utility of Ochrobactrum anthropi YC152 in a Microbial Fuel Cell as an Early Warning Device for Hexavalent Chromium Determination

    PubMed Central

    Wang, Guey-Horng; Cheng, Chiu-Yu; Liu, Man-Hai; Chen, Tzu-Yu; Hsieh, Min-Chi; Chung, Ying-Chien

    2016-01-01

    Fast hexavalent chromium (Cr(VI)) determination is important for environmental risk and health-related considerations. We used a microbial fuel cell-based biosensor inoculated with a facultatively anaerobic, Cr(VI)-reducing, and exoelectrogenic Ochrobactrum anthropi YC152 to determine the Cr(VI) concentration in water. The results indicated that O. anthropi YC152 exhibited high adaptability to pH, temperature, salinity, and water quality under anaerobic conditions. The stable performance of the microbial fuel cell (MFC)-based biosensor indicated its potential as a reliable biosensor system. The MFC voltage decreased as the Cr(VI) concentration in the MFC increased. Two satisfactory linear relationships were observed between the Cr(VI) concentration and voltage output for various Cr(VI) concentration ranges (0.0125–0.3 mg/L and 0.3–5 mg/L). The MFC biosensor is a simple device that can accurately measure Cr(VI) concentrations in drinking water, groundwater, and electroplating wastewater in 45 min with low deviations (<10%). The use of the biosensor can help in preventing the violation of effluent regulations and the maximum allowable concentration of Cr(VI) in water. Thus, the developed MFC biosensor has potential as an early warning detection device for Cr(VI) determination even if O. anthropi YC152 is a possible opportunistic pathogen. PMID:27537887

  5. Microbial Fuels Cell-Based Biosensor for Toxicity Detection: A Review

    PubMed Central

    Zhou, Tuoyu; Han, Huawen; Liu, Pu; Xiong, Jian; Tian, Fake; Li, Xiangkai

    2017-01-01

    With the unprecedented deterioration of environmental quality, rapid recognition of toxic compounds is paramount for performing in situ real-time monitoring. Although several analytical techniques based on electrochemistry or biosensors have been developed for the detection of toxic compounds, most of them are time-consuming, inaccurate, or cumbersome for practical applications. More recently, microbial fuel cell (MFC)-based biosensors have drawn increasing interest due to their sustainability and cost-effectiveness, with applications ranging from the monitoring of anaerobic digestion process parameters (VFA) to water quality detection (e.g., COD, BOD). When a MFC runs under correct conditions, the voltage generated is correlated with the amount of a given substrate. Based on this linear relationship, several studies have demonstrated that MFC-based biosensors could detect heavy metals such as copper, chromium, or zinc, as well as organic compounds, including p-nitrophenol (PNP), formaldehyde and levofloxacin. Both bacterial consortia and single strains can be used to develop MFC-based biosensors. Biosensors with single strains show several advantages over systems integrating bacterial consortia, such as selectivity and stability. One of the limitations of such sensors is that the detection range usually exceeds the actual pollution level. Therefore, improving their sensitivity is the most important for widespread application. Nonetheless, MFC-based biosensors represent a promising approach towards single pollutant detection. PMID:28956857

  6. Microbial Fuels Cell-Based Biosensor for Toxicity Detection: A Review.

    PubMed

    Zhou, Tuoyu; Han, Huawen; Liu, Pu; Xiong, Jian; Tian, Fake; Li, Xiangkai

    2017-09-28

    With the unprecedented deterioration of environmental quality, rapid recognition of toxic compounds is paramount for performing in situ real-time monitoring. Although several analytical techniques based on electrochemistry or biosensors have been developed for the detection of toxic compounds, most of them are time-consuming, inaccurate, or cumbersome for practical applications. More recently, microbial fuel cell (MFC)-based biosensors have drawn increasing interest due to their sustainability and cost-effectiveness, with applications ranging from the monitoring of anaerobic digestion process parameters (VFA) to water quality detection (e.g., COD, BOD). When a MFC runs under correct conditions, the voltage generated is correlated with the amount of a given substrate. Based on this linear relationship, several studies have demonstrated that MFC-based biosensors could detect heavy metals such as copper, chromium, or zinc, as well as organic compounds, including p -nitrophenol (PNP), formaldehyde and levofloxacin. Both bacterial consortia and single strains can be used to develop MFC-based biosensors. Biosensors with single strains show several advantages over systems integrating bacterial consortia, such as selectivity and stability. One of the limitations of such sensors is that the detection range usually exceeds the actual pollution level. Therefore, improving their sensitivity is the most important for widespread application. Nonetheless, MFC-based biosensors represent a promising approach towards single pollutant detection.

  7. Advances in Microfluidic Platforms for Analyzing and Regulating Human Pluripotent Stem Cells

    PubMed Central

    Qian, Tongcheng; Shusta, Eric V.; Palecek, Sean P.

    2015-01-01

    Microfluidic devices employ submillimeter length scale control of flow to achieve high-resolution spatial and temporal control over the microenvironment, providing powerful tools to elucidate mechanisms of human pluripotent stem cell (hPSC) regulation and to elicit desired hPSC fates. In addition, microfluidics allow control of paracrine and juxtracrine signaling, thereby enabling fabrication of microphysiological systems comprised of multiple cell types organized into organs-on-a-chip. Microfluidic cell culture systems can also be integrated with actuators and sensors, permitting construction of high-density arrays of cell-based biosensors for screening applications. This review describes recent advances in using microfluidics to understand mechanisms by which the microenvironment regulates hPSC fates and applications of microfluidics to realize the potential of hPSCs for in vitro modeling and screening applications. PMID:26313850

  8. Genetically engineered microbial biosensors for in situ monitoring of environmental pollution.

    PubMed

    Shin, Hae Ja

    2011-02-01

    Microbial biosensors are compact, portable, cost effective, and simple to use, making them seem eminently suitable for the in situ monitoring of environmental pollution. One promising approach for such applications is the fusion of reporter genes with regulatory genes that are dose-dependently responsive to the target chemicals or physiological signals. Their biosensor capabilities, such as target range and sensitivity, could be improved by modification of regulatory genes. Recent uses of such genetically engineered microbial biosensors include the development of portable biosensor kits and high-throughput cell arrays on chips, optic fibers, or other platforms for on-site and on-line monitoring of environmental pollution. This mini-review discusses recent advances in microbial biosensors and their future prospects, with a focus on the development and application of genetically modified microbial biosensors for in situ environmental monitoring.

  9. On the challenges of detecting whole Staphylococcus aureus cells with biosensors.

    PubMed

    Templier, V; Roupioz, Y

    2017-11-01

    Due to the increasing number of nosocomial infections and multidrug-resistant bacterial strains, Staphylococcus aureus is now a major worldwide concern. Rapid detection and characterization of this bacterium has become an important issue for biomedical applications. Biosensors are increasingly appearing as low-cost, easy-to-operate and fast alternatives for rapid detection. In this review, we will introduce the main characteristics of S. aureus and will focus on the interest of biosensors for a faster detection of whole S. aureus cells. In particular, we will review the most promising strategies in the choice of ligand for the design of selective and efficient biosensors. Their specific characteristics as well as their advantages and/or disadvantages will also be commented. © 2017 The Society for Applied Microbiology.

  10. Microbial fuel cell-based biosensor for toxic carbon monoxide monitoring.

    PubMed

    Zhou, Shaofeng; Huang, Shaobin; Li, Yi; Zhao, Nannan; Li, Han; Angelidaki, Irini; Zhang, Yifeng

    2018-08-15

    This study presents an innovative microbial fuel cell-based biosensor for carbon monoxide (CO) monitoring. The hypothesis for the function of the biosensor is that CO inhibits bacterial activity in the anode and thereby reduces electricity production. A mature electrochemically active biofilm on the anode was exposed to CO gas at varied concentrations. A proportional linear relationship (R 2 = 0.987) between CO concentration and voltage drop (0.8 to 24 mV) in the range of 10% and 70% of CO concentration was observed. Notably, no further decrease of voltage output was observed by with further increasing CO concentration over 70%. Besides, the response time of the biosensor was 1 h. The compact design and simple operation of the biosensor makes it easy to be integrated in existing CO-based industrial facilities either as a forewarning sensor for CO toxicity or even as an individual on-line monitoring device. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Engineering prokaryotic transcriptional activators as metabolite biosensors in yeast.

    PubMed

    Skjoedt, Mette L; Snoek, Tim; Kildegaard, Kanchana R; Arsovska, Dushica; Eichenberger, Michael; Goedecke, Tobias J; Rajkumar, Arun S; Zhang, Jie; Kristensen, Mette; Lehka, Beata J; Siedler, Solvej; Borodina, Irina; Jensen, Michael K; Keasling, Jay D

    2016-11-01

    Whole-cell biocatalysts have proven a tractable path toward sustainable production of bulk and fine chemicals. Yet the screening of libraries of cellular designs to identify best-performing biocatalysts is most often a low-throughput endeavor. For this reason, the development of biosensors enabling real-time monitoring of production has attracted attention. Here we applied systematic engineering of multiple parameters to search for a general biosensor design in the budding yeast Saccharomyces cerevisiae based on small-molecule binding transcriptional activators from the prokaryote superfamily of LysR-type transcriptional regulators (LTTRs). We identified a design supporting LTTR-dependent activation of reporter gene expression in the presence of cognate small-molecule inducers. As proof of principle, we applied the biosensors for in vivo screening of cells producing naringenin or cis,cis-muconic acid at different levels, and found that reporter gene output correlated with production. The transplantation of prokaryotic transcriptional activators into the eukaryotic chassis illustrates the potential of a hitherto untapped biosensor resource useful for biotechnological applications.

  12. Establishment of Genetically Encoded Biosensors for Cytosolic Boric Acid in Plant Cells.

    PubMed

    Fukuda, Makiha; Wakuta, Shinji; Kamiyo, Jio; Fujiwara, Toru; Takano, Junpei

    2018-06-08

    Boron (B) is an essential micronutrient for plants. To maintain B concentration in tissues at appropriate levels, plants use boric acid channels belonging to the NIP subfamily of aquaporins and BOR borate exporters. To regulate B transport, these transporters exhibit different cell-type specific expression, polar localization, and B-dependent post-transcriptional regulation. Here, we describe the development of genetically encoded biosensors for cytosolic boric acid to visualize the spatial distribution and temporal dynamics of B in plant tissues. The biosensors were designed based on the function of the NIP5;1 5'-untranslated region (UTR), which promotes mRNA degradation in response to an elevated cytosolic boric acid concentration. The signal intensities of the biosensor coupled with Venus fluorescent protein and a nuclear localization signal (uNIP5;1-Venus) showed a negative correlation with intracellular B concentrations in cultured tobacco BY-2 cells. When expressed in Arabidopsis thaliana, uNIP5;1-Venus enabled quantification of the B distribution in roots at single-cell resolution. In mature roots, cytosolic B levels in stele were maintained under low-B supply, while those in epidermal, cortical, and endodermal cells were influenced by external B concentrations. Another biosensor coupled with a luciferase protein fused to a destabilization PEST sequence (uNIP5;1-Luc) was used to visualize changes in cytosolic boric acid concentrations. Thus, uNIP5;1-Venus/Luc enables visualization of B transport in various plant cells/tissues. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  13. Iron specificity of a biosensor based on fluorescent pyoverdin immobilized in sol-gel glass

    PubMed Central

    2011-01-01

    Two current technologies used in biosensor development are very promising: 1. The sol-gel process of making microporous glass at room temperature, and 2. Using a fluorescent compound that undergoes fluorescence quenching in response to a specific analyte. These technologies have been combined to produce an iron biosensor. To optimize the iron (II or III) specificity of an iron biosensor, pyoverdin (a fluorescent siderophore produced by Pseudomonas spp.) was immobilized in 3 formulations of porous sol-gel glass. The formulations, A, B, and C, varied in the amount of water added, resulting in respective R values (molar ratio of water:silicon) of 5.6, 8.2, and 10.8. Pyoverdin-doped sol-gel pellets were placed in a flow cell in a fluorometer and the fluorescence quenching was measured as pellets were exposed to 0.28 - 0.56 mM iron (II or III). After 10 minutes of exposure to iron, ferrous ion caused a small fluorescence quenching (89 - 97% of the initial fluorescence, over the range of iron tested) while ferric ion caused much greater quenching (65 - 88%). The most specific and linear response was observed for pyoverdin immobilized in sol-gel C. In contrast, a solution of pyoverdin (3.0 μM) exposed to iron (II or III) for 10 minutes showed an increase in fluorescence (101 - 114%) at low ferrous concentrations (0.45 - 2.18 μM) while exposure to all ferric ion concentrations (0.45 - 3.03 μM) caused quenching. In summary, the iron specificity of pyoverdin was improved by immobilizing it in sol-gel glass C. PMID:21554740

  14. Encapsulated Optically Responsive Cell Systems: Toward Smart Implants in Biomedicine.

    PubMed

    Boss, Christophe; Bouche, Nicolas; De Marchi, Umberto

    2018-04-01

    Managing increasingly prevalent chronic diseases will require close continuous monitoring of patients. Cell-based biosensors may be used for implantable diagnostic systems to monitor health status. Cells are indeed natural sensors in the body. Functional cellular systems can be maintained in the body for long-term implantation using cell encapsulation technology. By taking advantage of recent progress in miniaturized optoelectronic systems, the genetic engineering of optically responsive cells may be combined with cell encapsulation to generate smart implantable cell-based sensing systems. In biomedical research, cell-based biosensors may be used to study cell signaling, therapeutic effects, and dosing of bioactive molecules in preclinical models. Today, a wide variety of genetically encoded fluorescent sensors have been developed for real-time imaging of living cells. Here, recent developments in genetically encoded sensors, cell encapsulation, and ultrasmall optical systems are highlighted. The integration of these components in a new generation of biosensors is creating innovative smart in vivo cell-based systems, bringing novel perspectives for biomedical research and ultimately allowing unique health monitoring applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Fabrication of a sensing module using micromachined biosensors.

    PubMed

    Suzuki, H; Arakawa, H; Karube, I

    2001-12-01

    Micromachining is a powerful tool in constructing micro biosensors and micro systems which incorporate them. A sensing module for blood components was fabricated using the technology. The analytes include glucose, urea, uric acid, creatine, and creatinine. Transducers used to construct the corresponding sensors were a Severinghaus-type carbon dioxide electrode for the urea sensor and a Clark-type oxygen electrode for the other analytes. In these electrodes, detecting electrode patterns were formed on a glass substrate by photolithography and the micro container for the internal electrolyte solution was formed on a silicon substrate by anisotropic etching. A through-hole was formed in the sensitive area, where a silicone gas-permeable membrane was formed and an enzyme was immobilized. The sensors were characterized in terms of pH and temperature dependence and calibration curves along with detection limits. Furthermore, the sensors were incorporated in an acrylate flow cell. Simultaneous operation of these sensors was successfully conducted and distinct and stable responses were observed for respective sensors.

  16. Development of cost-effective plasmonic biosensor using partially embedded gold nanoparticles for detection of immunoglobulin proteins

    NASA Astrophysics Data System (ADS)

    Kumari, Sudha; Moirangthem, Rakesh S.

    2018-02-01

    This work illustrates a label-free sensing of biomolecules using a simple capillary sensor. Here, capillary biosensor was prepared by decorating inner walls of a glass capillary with gold nanoparticles that was employed to investigate the biomolecular interactions. As a demonstration, rabbit immunoglobulin G (IgG) and anti-rabbit IgG (anti-IgG) proteins were chosen as a model system to monitor the receptor-analyte interactions. A surface binding sensitivity of 409 pg mm-2 was able to achieve towards the detection of 10 nM concentration of anti-rabbit IgG. The presented plasmonic sensor provides multiple advantages over conventional LSPR sensor by lifting requirement of the flow cell, prolonged sample preparation, complicated measurement setup etc that may enable its usage in rapid diagnostic testing. We believed that our proposed plasmonic capillary sensor could represent a potential candidate for developing cost-effective, label-free and high sensitivity sensing device for detection of biological molecules at low concentration.

  17. Commercialisation of CMOS integrated circuit technology in multi-electrode arrays for neuroscience and cell-based biosensors.

    PubMed

    Graham, Anthony H D; Robbins, Jon; Bowen, Chris R; Taylor, John

    2011-01-01

    The adaptation of standard integrated circuit (IC) technology as a transducer in cell-based biosensors in drug discovery pharmacology, neural interface systems and electrophysiology requires electrodes that are electrochemically stable, biocompatible and affordable. Unfortunately, the ubiquitous Complementary Metal Oxide Semiconductor (CMOS) IC technology does not meet the first of these requirements. For devices intended only for research, modification of CMOS by post-processing using cleanroom facilities has been achieved. However, to enable adoption of CMOS as a basis for commercial biosensors, the economies of scale of CMOS fabrication must be maintained by using only low-cost post-processing techniques. This review highlights the methodologies employed in cell-based biosensor design where CMOS-based integrated circuits (ICs) form an integral part of the transducer system. Particular emphasis will be placed on the application of multi-electrode arrays for in vitro neuroscience applications. Identifying suitable IC packaging methods presents further significant challenges when considering specific applications. The various challenges and difficulties are reviewed and some potential solutions are presented.

  18. A microfabricated bio-sensor for erythrocytes deformability and volume distributions analysis

    NASA Astrophysics Data System (ADS)

    Bransky, Avishay; Korin, Natanel; Nemirovski, Yael; Dinnar, Uri

    2007-12-01

    The deformability of erythrocytes is of great importance for oxygen delivery in the microcirculation. Reduced RBC deformability is associated with several types of hemolytic anaemias, malaria, sepsis and diabetes. Aging of erythrocytes is also associated with loss of deformability as well as reduction in cell volume. An automated rheoscope has been developed, utilizing a microfabricated glass flow cell, high speed camera and advanced image-processing software. RBCs suspended in a high viscosity medium were filmed flowing through a microchannel. The system produces valuable data such as velocity profiles of RBCs, spatial distribution within the microchannel, cell volume and deformation index (DI) curves. The variation of DI across the channel height, due to change in shear stress, was measured for the first time. Such DI curves were obtained for normal and Thalassemia RBCs and their diagnostic potential was demonstrated. The spatial distribution and velocity of RBCs and rigid microspheres were measured. Both RBC and rigid spheres showed enhanced inward lateral migration, however the RBCs form a depletion region at the center of flow. The volume and surface area of the flowing cells have been estimated based on a fluid mechanics model and experimental results and fell within the normal range. Hence, the system developed, provides means for examining the behavior of individual RBCs in microchannels, and may serve as a microfabricated diagnostic device for deformability and volume measurements.

  19. Molecular signaling in live cells studied by FRET

    NASA Astrophysics Data System (ADS)

    Chien, Shu; Wang, Yingxiao

    2011-11-01

    Genetically encoded biosensors based on fluorescence resonance energy transfer (FRET) enables visualization of signaling events in live cells with high spatiotemporal resolution. We have used FRET to assess temporal and spatial characteristics for signaling molecules, including tyrosine kinases Src and FAK, small GTPase Rac, calcium, and a membrane-bound matrix metalloproteinase MT1-MMP. Activations of Src and Rac by platelet derived growth factor (PDGF) led to distinct subcellular patterns during cell migration on micropatterned surface, and these two enzymes interact with each other to form a feedback loop with differential regulations at different subcellular locations. We have developed FRET biosensors to monitor FAK activities at rafts vs. non-raft regions of plasma membrane in live cells. In response to cell adhesion on matrix proteins or stimulation by PDGF, the raft-targeting FAK biosensor showed a stronger FRET response than that at non-rafts. The FAK activation at rafts induced by PDGF is mediated by Src. In contrast, the FAK activation at rafts induced by adhesion is independent of Src activity, but rather is essential for Src activation. Thus, Src is upstream to FAK in response to chemical stimulation (PDGF), but FAK is upstream to Src in response to mechanical stimulation (adhesion). A novel biosensor has been developed to dynamically visualize the activity of membrane type-1-matrix metalloproteinase (MT1-MMP), which proteolytically remodels the extracellular matrix. Epidermal growth factor (EGF) directed active MT1-MMP to the leading edge of migrating live cancer cells with local accumulation of EGF receptor via a process dependent on an intact cytoskeletal network. In summary, FRET-based biosensors enable the elucidation of molecular processes and hierarchies underlying spatiotemporal regulation of biological and pathological processes, thus advancing our knowledge on how cells perceive mechanical/chemical cues in space and time to coordinate molecular/cellular functions.

  20. Molecular signaling in live cells studied by FRET

    NASA Astrophysics Data System (ADS)

    Chien, Shu; Wang, Yingxiao

    2012-03-01

    Genetically encoded biosensors based on fluorescence resonance energy transfer (FRET) enables visualization of signaling events in live cells with high spatiotemporal resolution. We have used FRET to assess temporal and spatial characteristics for signaling molecules, including tyrosine kinases Src and FAK, small GTPase Rac, calcium, and a membrane-bound matrix metalloproteinase MT1-MMP. Activations of Src and Rac by platelet derived growth factor (PDGF) led to distinct subcellular patterns during cell migration on micropatterned surface, and these two enzymes interact with each other to form a feedback loop with differential regulations at different subcellular locations. We have developed FRET biosensors to monitor FAK activities at rafts vs. non-raft regions of plasma membrane in live cells. In response to cell adhesion on matrix proteins or stimulation by PDGF, the raft-targeting FAK biosensor showed a stronger FRET response than that at non-rafts. The FAK activation at rafts induced by PDGF is mediated by Src. In contrast, the FAK activation at rafts induced by adhesion is independent of Src activity, but rather is essential for Src activation. Thus, Src is upstream to FAK in response to chemical stimulation (PDGF), but FAK is upstream to Src in response to mechanical stimulation (adhesion). A novel biosensor has been developed to dynamically visualize the activity of membrane type-1-matrix metalloproteinase (MT1-MMP), which proteolytically remodels the extracellular matrix. Epidermal growth factor (EGF) directed active MT1-MMP to the leading edge of migrating live cancer cells with local accumulation of EGF receptor via a process dependent on an intact cytoskeletal network. In summary, FRET-based biosensors enable the elucidation of molecular processes and hierarchies underlying spatiotemporal regulation of biological and pathological processes, thus advancing our knowledge on how cells perceive mechanical/chemical cues in space and time to coordinate molecular/cellular functions.

  1. Development of Pt-Au-Graphene-Carbon Nanotube Composite for Fuel Cells and Biosensors Applications

    DTIC Science & Technology

    2011-02-11

    1 Project Title:- Development of Pt-Au- Graphene -Carbon nanotube composites for fuel cells and biosensors applications Objectives:- This...project addresses the architectures needed for the processing of Pt-Au- graphene -carbon nanotube (Pt-Au/f-G/f-CNT) nanocomposites and aims at the...cells:- Graphene and nitrogen doped graphene as catalyst support materials:- Graphene and nitrogen doped graphene have been used as a catalyst

  2. The spatio-temporal dynamics of PKA activity profile during mitosis and its correlation to chromosome segregation.

    PubMed

    Vandame, Pauline; Spriet, Corentin; Trinel, Dave; Gelaude, Armance; Caillau, Katia; Bompard, Coralie; Biondi, Emanuele; Bodart, Jean-François

    2014-01-01

    The cyclic adenosine monophosphate dependent kinase protein (PKA) controls a variety of cellular processes including cell cycle regulation. Here, we took advantages of genetically encoded FRET-based biosensors, using an AKAR-derived biosensor to characterize PKA activity during mitosis in living HeLa cells using a single-cell approach. We measured PKA activity changes during mitosis. HeLa cells exhibit a substantial increase during mitosis, which ends with telophase. An AKAREV T>A inactive form of the biosensor and H89 inhibitor were used to ascertain for the specificity of the PKA activity measured. On a spatial point of view, high levels of activity near to chromosomal plate during metaphase and anaphase were detected. By using the PKA inhibitor H89, we assessed the role of PKA in the maintenance of a proper division phenotype. While this treatment in our hands did not impaired cell cycle progression in a drastic manner, inhibition of PKA leads to a dramatic increase in chromososme misalignement on the spindle during metaphase that could result in aneuploidies. Our study emphasizes the insights that can be gained with genetically encoded FRET-based biosensors, which enable to overcome the shortcomings of classical methologies and unveil in vivo PKA spatiotemporal profiles in HeLa cells.

  3. Advances in nano-scaled biosensors for biomedical applications.

    PubMed

    Wang, Jianling; Chen, Guihua; Jiang, Hui; Li, Zhiyong; Wang, Xuemei

    2013-08-21

    Recently, a growing amount of attention has been focused on the utility of biosensors for biomedical applications. Combined with nanomaterials and nanostructures, nano-scaled biosensors are installed for biomedical applications, such as pathogenic bacteria monitoring, virus recognition, disease biomarker detection, among others. These nano-biosensors offer a number of advantages and in many respects are ideally suited to biomedical applications, which could be made as extremely flexible devices, allowing biomedical analysis with speediness, excellent selectivity and high sensitivity. This minireview discusses the literature published in the latest years on the advances in biomedical applications of nano-scaled biosensors for disease bio-marking and detection, especially in bio-imaging and the diagnosis of pathological cells and viruses, monitoring pathogenic bacteria, thus providing insight into the future prospects of biosensors in relevant clinical applications.

  4. Engineering the bioelectrochemical interface using functional nanomaterials and microchip technique toward sensitive and portable electrochemical biosensors.

    PubMed

    Jia, Xiaofang; Dong, Shaojun; Wang, Erkang

    2016-02-15

    Electrochemical biosensors have played active roles at the forefront of bioanalysis because they have the potential to achieve sensitive, specific and low-cost detection of biomolecules and many others. Engineering the electrochemical sensing interface with functional nanomaterials leads to novel electrochemical biosensors with improved performances in terms of sensitivity, selectivity, stability and simplicity. Functional nanomaterials possess good conductivity, catalytic activity, biocompatibility and high surface area. Coupled with bio-recognition elements, these features can amplify signal transduction and biorecognition events, resulting in highly sensitive biosensing. Additionally, microfluidic electrochemical biosensors have attracted considerable attention on account of their miniature, portable and low-cost systems as well as high fabrication throughput and ease of scaleup. For example, electrochemical enzymetic biosensors and aptamer biosensors (aptasensors) based on the integrated microchip can be used for portable point-of-care diagnostics and environmental monitoring. This review is a summary of our recent progress in the field of electrochemical biosensors, including aptasensors, cytosensors, enzymatic biosensors and self-powered biosensors based on biofuel cells. We presented the advantages that functional nanomaterials and microfluidic chip technology bring to the electrochemical biosensors, together with future prospects and possible challenges. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. A comparative study of in-flow and micro-patterning biofunctionalization protocols for nanophotonic silicon-based biosensors.

    PubMed

    González-Guerrero, Ana Belén; Alvarez, Mar; García Castaño, Andrés; Domínguez, Carlos; Lechuga, Laura M

    2013-03-01

    Reliable immobilization of bioreceptors over any sensor surface is the most crucial step for achieving high performance, selective and sensitive biosensor devices able to analyze human samples without the need of previous processing. With this aim, we have implemented an optimized scheme to covalently biofunctionalize the sensor area of a novel nanophotonic interferometric biosensor. The proposed method is based on the ex-situ silanization of the silicon nitride transducer surface by the use of a carboxyl water soluble silane, the carboxyethylsilanetriol sodium salt (CTES). The use of an organosilane stable in water entails advantages in comparison with usual trialkoxysilanes such as avoiding the generation of organic waste and leading to the assembly of compact monolayers due to the high dielectric constant of water. Additionally, cross-linking is prevented when the conditions (e.g. immersion time, concentration of silane) are optimized. This covalent strategy is followed by the bioreceptor linkage on the sensor area surface using two different approaches: an in-flow patterning and a microcontact printing using a biodeposition system. The performance of the different bioreceptor layers assembled is compared by the real-time and label-free immunosensing of the proteins BSA/mAb BSA, employed as a model molecular pair. Although the results demonstrated that both strategies provide the biosensor with a stable biological interface, the performance of the bioreceptor layer assembled by microcontact printing slightly improves the biosensing capabilities of the photonic biosensor. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. A bio-inspired design of live cell biosensors

    NASA Astrophysics Data System (ADS)

    Marcek Chorvatova, A.; Teplicky, T.; Pavlinska, Z.; Kronekova, Z.; Trelova, D.; Razga, F.; Nemethova, V.; Uhelska, L.; Lacik, I.; Chorvat, D.

    2018-02-01

    The last decade has witnessed a rapid growth of nanoscale-oriented biosensors that becomes one of the most promising and rapidly growing areas of modern research. Despite significant advancements in conception of such biosensors, most are based at evaluation of molecular, or protein interactions. It is however becoming increasingly evident that functionality of a living system does not reside in genome or in individual proteins, as no real biological functionality is expressed at these levels. Instead, to comprehend the true functioning of a biological system, it is essential to understand the integrative physiological behavior of the complex molecular interactions in their natural environment and precise spatio-temporal topology. In this contribution we therefore present a new concept for creation of biosensors, bio-inspired from true functioning of living cells, while monitoring their endogenous fluorescence, or autofluorescence.

  7. A functional glycoprotein competitive recognition and signal amplification strategy for carbohydrate-protein interaction profiling and cell surface carbohydrate expression evaluation

    NASA Astrophysics Data System (ADS)

    Wang, Yangzhong; Chen, Zhuhai; Liu, Yang; Li, Jinghong

    2013-07-01

    A simple and sensitive carbohydrate biosensor has been suggested as a potential tool for accurate analysis of cell surface carbohydrate expression as well as carbohydrate-based therapeutics for a variety of diseases and infections. In this work, a sensitive biosensor for carbohydrate-lectin profiling and in situ cell surface carbohydrate expression was designed by taking advantage of a functional glycoprotein of glucose oxidase acting as both a multivalent recognition unit and a signal amplification probe. Combining the gold nanoparticle catalyzed luminol electrogenerated chemiluminescence and nanocarrier for active biomolecules, the number of cell surface carbohydrate groups could be conveniently read out. The apparent dissociation constant between GOx@Au probes and Con A was detected to be 1.64 nM and was approximately 5 orders of magnitude smaller than that of mannose and Con A, which would arise from the multivalent effect between the probe and Con A. Both glycoproteins and gold nanoparticles contribute to the high affinity between carbohydrates and lectin. The as-proposed biosensor exhibits excellent analytical performance towards the cytosensing of K562 cells with a detection limit of 18 cells, and the mannose moieties on a single K562 cell were determined to be 1.8 × 1010. The biosensor can also act as a useful tool for antibacterial drug screening and mechanism investigation. This strategy integrates the excellent biocompatibility and multivalent recognition of glycoproteins as well as the significant enzymatic catalysis and gold nanoparticle signal amplification, and avoids the cell pretreatment and labelling process. This would contribute to the glycomic analysis and the understanding of complex native glycan-related biological processes.A simple and sensitive carbohydrate biosensor has been suggested as a potential tool for accurate analysis of cell surface carbohydrate expression as well as carbohydrate-based therapeutics for a variety of diseases and infections. In this work, a sensitive biosensor for carbohydrate-lectin profiling and in situ cell surface carbohydrate expression was designed by taking advantage of a functional glycoprotein of glucose oxidase acting as both a multivalent recognition unit and a signal amplification probe. Combining the gold nanoparticle catalyzed luminol electrogenerated chemiluminescence and nanocarrier for active biomolecules, the number of cell surface carbohydrate groups could be conveniently read out. The apparent dissociation constant between GOx@Au probes and Con A was detected to be 1.64 nM and was approximately 5 orders of magnitude smaller than that of mannose and Con A, which would arise from the multivalent effect between the probe and Con A. Both glycoproteins and gold nanoparticles contribute to the high affinity between carbohydrates and lectin. The as-proposed biosensor exhibits excellent analytical performance towards the cytosensing of K562 cells with a detection limit of 18 cells, and the mannose moieties on a single K562 cell were determined to be 1.8 × 1010. The biosensor can also act as a useful tool for antibacterial drug screening and mechanism investigation. This strategy integrates the excellent biocompatibility and multivalent recognition of glycoproteins as well as the significant enzymatic catalysis and gold nanoparticle signal amplification, and avoids the cell pretreatment and labelling process. This would contribute to the glycomic analysis and the understanding of complex native glycan-related biological processes. Electronic supplementary information (ESI) available: Experimental details; characterization of probes; the influence of electrolyte pH; probe concentration and glucose concentration on the electrode ECL effect. See DOI: 10.1039/c3nr01598j

  8. Sensitive-cell-based fish chromatophore biosensor

    NASA Astrophysics Data System (ADS)

    Plant, Thomas K.; Chaplen, Frank W.; Jovanovic, Goran; Kolodziej, Wojtek; Trempy, Janine E.; Willard, Corwin; Liburdy, James A.; Pence, Deborah V.; Paul, Brian K.

    2004-07-01

    A sensitive biosensor (cytosensor) has been developed based on color changes in the toxin-sensitive colored living cells of fish. These chromatophores are highly sensitive to the presence of many known and unknown toxins produced by microbial pathogens and undergo visible color changes in a dose-dependent manner. The chromatophores are immobilized and maintained in a viable state while potential pathogens multiply and fish cell-microbe interactions are monitored. Low power LED lighting is used to illuminate the chromatophores which are magnified using standard optical lenses and imaged onto a CCD array. Reaction to toxins is detected by observing changes is the total area of color in the cells. These fish chromatophores are quite sensitive to cholera toxin, Staphococcus alpha toxin, and Bordatella pertussis toxin. Numerous other toxic chemical and biological agents besides bacterial toxins also cause readily detectable color effects in chromatophores. The ability of the chromatophore cell-based biosensor to distinguish between different bacterial pathogens was examined. Toxin producing strains of Salmonella enteritis, Vibrio parahaemolyticus, and Bacillus cereus induced movement of pigmented organelles in the chromatophore cells and this movement was measured by changes in the optical density over time. Each bacterial pathogen elicited this measurable response in a distinctive and signature fashion. These results suggest a chromatophore cell-based biosensor assay may be applicable for the detection and identification of virulence activities associated with certain air-, food-, and water-borne bacterial pathogens.

  9. REVIEW ARTICLE: Environmental applications of analytical biosensors

    NASA Astrophysics Data System (ADS)

    Marco, María-Pilar; Barceló, Damià

    1996-11-01

    A review of the fundamental aspects and environmental applications of biosensors is presented. The bases of different transducer principles such as electrochemical, optical and piezoelectric are discussed. Various examples are given of the applications of such principles to develop immunosensor devices to determine common environmental contaminants. Attention is also paid to catalytic biosensors, using enzymes as sensing elements. Biosensor devices based on the use of cholinesterase and various oxidase enzymes such as tyrosinase, laccase, peroxidase and aldehyde dehydrogenase are reported. Some examples are given of the applications of other biomolecules such as whole cells, DNA or proteins, to determine pollution. Validation studies are presented comparing biosensors with chromatographic techniques to determine organophosphorus pesticides and phenolic compounds in environmental samples.

  10. Electrochemical approach for monitoring the effect of anti tubulin drugs on breast cancer cells based on silicon nanograss electrodes.

    PubMed

    Zanganeh, Somayeh; Khosravi, Safoora; Namdar, Naser; Amiri, Morteza Hassanpour; Gharooni, Milad; Abdolahad, Mohammad

    2016-09-28

    One of the most interested molecular research in the field of cancer detection is the mechanism of drug effect on cancer cells. Translating molecular evidence into electrochemical profiles would open new opportunities in cancer research. In this manner, applying nanostructures with anomalous physical and chemical properties as well as biocompatibility would be a suitable choice for the cell based electrochemical sensing. Silicon based nanostructure are the most interested nanomaterials used in electrochemical biosensors because of their compatibility with electronic fabrication process and well engineering in size and electrical properties. Here we apply silicon nanograss (SiNG) probing electrodes produced by reactive ion etching (RIE) on silicon wafer to electrochemically diagnose the effect of anticancer drugs on breast tumor cells. Paclitaxel (PTX) and mebendazole (MBZ) drugs have been used as polymerizing and depolymerizing agents of microtubules. PTX would perturb the anodic/cathodic responses of the cell-covered biosensor by binding phosphate groups to deformed proteins due to extracellular signal-regulated kinase (ERK(1/2)) pathway. MBZ induces accumulation of Cytochrome C in cytoplasm. Reduction of the mentioned agents in cytosol would change the ionic state of the cells monitored by silicon nanograss working electrodes (SiNGWEs). By extending the contacts with cancer cells, SiNGWEs can detect minor signal transduction and bio recognition events, resulting in precise biosensing. Effects of MBZ and PTX drugs, (with the concentrations of 2 nM and 0.1 nM, respectively) on electrochemical activity of MCF-7 cells are successfully recorded which are corroborated by confocal and flow cytometry assays. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Biosensors for Whole-Cell Bacterial Detection

    PubMed Central

    Rushworth, Jo V.; Hirst, Natalie A.; Millner, Paul A.

    2014-01-01

    SUMMARY Bacterial pathogens are important targets for detection and identification in medicine, food safety, public health, and security. Bacterial infection is a common cause of morbidity and mortality worldwide. In spite of the availability of antibiotics, these infections are often misdiagnosed or there is an unacceptable delay in diagnosis. Current methods of bacterial detection rely upon laboratory-based techniques such as cell culture, microscopic analysis, and biochemical assays. These procedures are time-consuming and costly and require specialist equipment and trained users. Portable stand-alone biosensors can facilitate rapid detection and diagnosis at the point of care. Biosensors will be particularly useful where a clear diagnosis informs treatment, in critical illness (e.g., meningitis) or to prevent further disease spread (e.g., in case of food-borne pathogens or sexually transmitted diseases). Detection of bacteria is also becoming increasingly important in antibioterrorism measures (e.g., anthrax detection). In this review, we discuss recent progress in the use of biosensors for the detection of whole bacterial cells for sensitive and earlier identification of bacteria without the need for sample processing. There is a particular focus on electrochemical biosensors, especially impedance-based systems, as these present key advantages in terms of ease of miniaturization, lack of reagents, sensitivity, and low cost. PMID:24982325

  12. Portable microsystem integrates multifunctional dielectrophoresis manipulations and a surface stress biosensor to detect red blood cells for hemolytic anemia.

    PubMed

    Sang, Shengbo; Feng, Qiliang; Jian, Aoqun; Li, Huiming; Ji, Jianlong; Duan, Qianqian; Zhang, Wendong; Wang, Tao

    2016-09-20

    Hemolytic anemia intensity has been suggested as a vital factor for the growth of certain clinical complications of sickle cell disease. However, there is no effective and rapid diagnostic method. As a powerful platform for bio-particles testing, biosensors integrated with microfluidics offer great potential for a new generation of portable point of care systems. In this paper, we describe a novel portable microsystem consisting of a multifunctional dielectrophoresis manipulations (MDM) device and a surface stress biosensor to separate and detect red blood cells (RBCs) for diagnosis of hemolytic anemia. The peripheral circuit to power the interdigitated electrode array of the MDM device and the surface stress biosensor test platform were integrated into a portable signal system. The MDM includes a preparing region, a focusing region, and a sorting region. Simulation and experimental results show the RBCs trajectories when they are subjected to the positive DEP force, allowing the successful sorting of living/dead RBCs. Separated RBCs are then transported to the biosensor and the capacitance values resulting from the variation of surface stress were measured. The diagnosis of hemolytic anemia can be realized by detecting RBCs and the portable microsystem provides the assessment to the hemolytic anemia patient.

  13. Real Time Detection of Protein Trafficking with High Throughput Flow Cytometry (HTFC) and Fluorogen Activating Protein (FAP) Base Biosensor

    PubMed Central

    Wu, Yang; Tapia, Phillip H.; Jarvik, Jonathan; Waggoner, Alan S.; Sklar, Larry A.

    2014-01-01

    We combined fluorogen activating protein (FAP) technology with high-throughput flow cytometry to detect real-time protein trafficking to and from the plasma membrane in living cells. The hybrid platform allows drug discovery for trafficking receptors, such as G-protein coupled receptors, receptor tyrosine kinases and ion channels, that were previously not suitable for high throughput screening by flow cytometry.. The system has been validated using the β2-adrenergic receptor (β2AR) system and extended to other GPCRs. When a chemical library containing ~1,200 off-patent drugs was screened against cells expressing FAP tagged β2AR, all known β2AR active ligands in the library were successfully identified, together with a few compounds that were later confirmed to regulate receptor internalization in a non-traditional manner. The unexpected discovery of new ligands by this approach indicates the potential of using this protocol for GPCR de-orphanization. In addition, screens of multiplexed targets promise improved efficiency with minor protocol modification. PMID:24510772

  14. Development of a Fish Cell Biosensor System for Genotoxicity Detection Based on DNA Damage-Induced Trans-Activation of p21 Gene Expression

    PubMed Central

    Geng, Deyu; Zhang, Zhixia; Guo, Huarong

    2012-01-01

    p21CIP1/WAF1 is a p53-target gene in response to cellular DNA damage. Here we report the development of a fish cell biosensor system for high throughput genotoxicity detection of new drugs, by stably integrating two reporter plasmids of pGL3-p21-luc (human p21 promoter linked to firefly luciferase) and pRL-CMV-luc (CMV promoter linked to Renilla luciferase) into marine flatfish flounder gill (FG) cells, referred to as p21FGLuc. Initial validation of this genotoxicity biosensor system showed that p21FGLuc cells had a wild-type p53 signaling pathway and responded positively to the challenge of both directly acting genotoxic agents (bleomycin and mitomycin C) and indirectly acting genotoxic agents (cyclophosphamide with metabolic activation), but negatively to cyclophosphamide without metabolic activation and the non-genotoxic agents ethanol and D-mannitol, thus confirming a high specificity and sensitivity, fast and stable response to genotoxic agents for this easily maintained fish cell biosensor system. This system was especially useful in the genotoxicity detection of Di(2-ethylhexyl) phthalate (DEHP), a rodent carcinogen, but negatively reported in most non-mammalian in vitro mutation assays, by providing a strong indication of genotoxicity for DEHP. A limitation for this biosensor system was that it might give false positive results in response to sodium butyrate and any other agents, which can trans-activate the p21 gene in a p53-independent manner. PMID:25585933

  15. Biosensor for on-line fluorescent detection of trifluoroperazine based on genetically modified calmodulin.

    PubMed

    González-Andrade, Martin; Benito-Peña, Elena; Mata, Rachel; Moreno-Bondi, Maria C

    2012-04-01

    This paper describes the development of a novel on-line biosensor based on a fluorescently labeled human calmodulin (CaM), hCaM M124C-mBBr, immobilized on controlled-pore glass (CPG), for the analysis of trifluoroperazine (TFP); a phenothiazine drug in human urine samples. The device was automated by packing hCaM M124C-mBBr-CPG in a continuous-flow microcell connected to a monitoring system, composed of a bifurcated optical fiber coupled to a spectrofluorometer. Operating parameters of the on-line biosensor (flow rate, sample injection volume, and carrier solution and buffer pH) were studied and optimized. Under the optimal conditions, the biosensor provides a detection and a quantification limit of 0.24 and 0.52 μg mL(-1), respectively, and a dynamic range from 0.52 to 61.05 μg mL(-1) TFP (n = 5, correlation coefficient 0.998). The response time (t(100)) was shorter than 42 s (recovery time <4.5 min) and reproducibility and repeatability of the TFP measurements, within the linear response range, were lower than 1.4 and 2.7%, respectively. The device was successfully applied to the analysis of TFP in spiked human urine samples with recoveries ranging between 97 and 101% and with RSDs lower than 5.9%.

  16. Knowledge-based design of a biosensor to quantify localized ERK activation in living cells

    PubMed Central

    Kummer, Lutz; Hsu, Chia-Wen; Dagliyan, Onur; MacNevin, Christopher; Kaufholz, Melanie; Zimmermann, Bastian; Dokholyan, Nikolay V.; Hahn, Klaus M.; Plückthun, Andreas

    2014-01-01

    Summary Investigation of protein activation in living cells is fundamental to understand how proteins are influenced by the full complement of upstream regulators they experience. We describe here the generation of a biosensor based on the Designed Ankyrin Repeat Protein (DARPin) binding scaffold suited for intracellular applications. Combining selection and evolution from libraries, knowledge-based design and efficient and rapid testing of conjugate candidates, we created an ERK activity biosensor by derivatizing a DARPin specific for phosphorylated ERK (pERK) with a solvatochromic merocyanine dye (mero87), whose fluorescence increases upon pERK binding. The biosensor specifically responded to pERK2, recognized by its conformation, but not to non-phosphorylated ERK2 or other closely related mitogen-activated kinases tested. Activated endogenous ERK was visualized in mouse embryo fibroblasts incubated in 2% serum, revealing greater activation in the nucleus, perinuclear regions, and especially the nucleoli. Activity was greatly reduced by the MEK1/2 inhibitor U0126. The DARPin-based biosensor will serve as useful tool for studying biological functions of ERK in vitro and in vivo. PMID:23790495

  17. A FRET Biosensor for ROCK Based on a Consensus Substrate Sequence Identified by KISS Technology.

    PubMed

    Li, Chunjie; Imanishi, Ayako; Komatsu, Naoki; Terai, Kenta; Amano, Mutsuki; Kaibuchi, Kozo; Matsuda, Michiyuki

    2017-01-11

    Genetically-encoded biosensors based on Förster/fluorescence resonance energy transfer (FRET) are versatile tools for studying the spatio-temporal regulation of signaling molecules within not only the cells but also tissues. Perhaps the hardest task in the development of a FRET biosensor for protein kinases is to identify the kinase-specific substrate peptide to be used in the FRET biosensor. To solve this problem, we took advantage of kinase-interacting substrate screening (KISS) technology, which deduces a consensus substrate sequence for the protein kinase of interest. Here, we show that a consensus substrate sequence for ROCK identified by KISS yielded a FRET biosensor for ROCK, named Eevee-ROCK, with high sensitivity and specificity. By treating HeLa cells with inhibitors or siRNAs against ROCK, we show that a substantial part of the basal FRET signal of Eevee-ROCK was derived from the activities of ROCK1 and ROCK2. Eevee-ROCK readily detected ROCK activation by epidermal growth factor, lysophosphatidic acid, and serum. When cells stably-expressing Eevee-ROCK were time-lapse imaged for three days, ROCK activity was found to increase after the completion of cytokinesis, concomitant with the spreading of cells. Eevee-ROCK also revealed a gradual increase in ROCK activity during apoptosis. Thus, Eevee-ROCK, which was developed from a substrate sequence predicted by the KISS technology, will pave the way to a better understanding of the function of ROCK in a physiological context.

  18. Co-immobilization of glucoamylase and glucose oxidase for electrochemical sequential enzyme electrode for starch biosensor and biofuel cell.

    PubMed

    Lang, Qiaolin; Yin, Long; Shi, Jianguo; Li, Liang; Xia, Lin; Liu, Aihua

    2014-01-15

    A novel electrochemical sequential biosensor was constructed by co-immobilizing glucoamylase (GA) and glucose oxidase (GOD) on the multi-walled carbon nanotubes (MWNTs)-modified glassy carbon electrode (GCE) by chemical crosslinking method, where glutaraldehyde and bovine serum albumin was used as crosslinking and blocking agent, respectively. The proposed biosensor (GA/GOD/MWNTs/GCE) is capable of determining starch without using extra sensors such as Clark-type oxygen sensor or H2O2 sensor. The current linearly decreased with the increasing concentration of starch ranging from 0.005% to 0.7% (w/w) with the limit of detection of 0.003% (w/w) starch. The as-fabricated sequential biosensor can be applicable to the detection of the content of starch in real samples, which are in good accordance with traditional Fehling's titration. Finally, a stable starch/O2 biofuel cell was assembled using the GA/GOD/MWNTs/GCE as bioanode and laccase/MWNTs/GCE as biocathode, which exhibited open circuit voltage of ca. 0.53 V and the maximum power density of 8.15 μW cm(-2) at 0.31 V, comparable with the other glucose/O2 based biofuel cells reported recently. Therefore, the proposed biosensor exhibited attractive features such as good stability in weak acidic buffer, good operational stability, wide linear range and capable of determination of starch in real samples as well as optimal bioanode for the biofuel cell. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Future Perspective of Single-Molecule FRET Biosensors and Intravital FRET Microscopy.

    PubMed

    Hirata, Eishu; Kiyokawa, Etsuko

    2016-09-20

    Förster (or fluorescence) resonance energy transfer (FRET) is a nonradiative energy transfer process between two fluorophores located in close proximity to each other. To date, a variety of biosensors based on the principle of FRET have been developed to monitor the activity of kinases, proteases, GTPases or lipid concentration in living cells. In addition, generation of biosensors that can monitor physical stresses such as mechanical power, heat, or electric/magnetic fields is also expected based on recent discoveries on the effects of these stressors on cell behavior. These biosensors can now be stably expressed in cells and mice by transposon technologies. In addition, two-photon excitation microscopy can be used to detect the activities or concentrations of bioactive molecules in vivo. In the future, more sophisticated techniques for image acquisition and quantitative analysis will be needed to obtain more precise FRET signals in spatiotemporal dimensions. Improvement of tissue/organ position fixation methods for mouse imaging is the first step toward effective image acquisition. Progress in the development of fluorescent proteins that can be excited with longer wavelength should be applied to FRET biosensors to obtain deeper structures. The development of computational programs that can separately quantify signals from single cells embedded in complicated three-dimensional environments is also expected. Along with the progress in these methodologies, two-photon excitation intravital FRET microscopy will be a powerful and valuable tool for the comprehensive understanding of biomedical phenomena. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  20. Design and application of a lactulose biosensor.

    PubMed

    Wu, Jieyuan; Jiang, Peixia; Chen, Wei; Xiong, Dandan; Huang, Linglan; Jia, Junying; Chen, Yuanyuan; Jin, Jian-Ming; Tang, Shuang-Yan

    2017-04-07

    In this study the repressor of Escherichia coli lac operon, LacI, has been engineered for altered effector specificity. A LacI saturation mutagenesis library was subjected to Fluorescence Activated Cell Sorting (FACS) dual screening. Mutant LacI-L5 was selected and it is specifically induced by lactulose but not by other disaccharides tested (lactose, epilactose, maltose, sucrose, cellobiose and melibiose). LacI-L5 has been successfully used to construct a whole-cell lactulose biosensor which was then applied in directed evolution of cellobiose 2-epimerase (C2E) for elevated lactulose production. The mutant C2E enzyme with ~32-fold enhanced expression level was selected, demonstrating the high efficiency of the lactulose biosensor. LacI-L5 can also be used as a novel regulatory tool. This work explores the potential of engineering LacI for customized molecular biosensors which can be applied in practice.

  1. Photonic crystals: emerging biosensors and their promise for point-of-care applications.

    PubMed

    Inan, Hakan; Poyraz, Muhammet; Inci, Fatih; Lifson, Mark A; Baday, Murat; Cunningham, Brian T; Demirci, Utkan

    2017-01-23

    Biosensors are extensively employed for diagnosing a broad array of diseases and disorders in clinical settings worldwide. The implementation of biosensors at the point-of-care (POC), such as at primary clinics or the bedside, faces impediments because they may require highly trained personnel, have long assay times, large sizes, and high instrumental cost. Thus, there exists a need to develop inexpensive, reliable, user-friendly, and compact biosensing systems at the POC. Biosensors incorporated with photonic crystal (PC) structures hold promise to address many of the aforementioned challenges facing the development of new POC diagnostics. Currently, PC-based biosensors have been employed for detecting a variety of biotargets, such as cells, pathogens, proteins, antibodies, and nucleic acids, with high efficiency and selectivity. In this review, we provide a broad overview of PCs by explaining their structures, fabrication techniques, and sensing principles. Furthermore, we discuss recent applications of PC-based biosensors incorporated with emerging technologies, including telemedicine, flexible and wearable sensing, smart materials and metamaterials. Finally, we discuss current challenges associated with existing biosensors, and provide an outlook for PC-based biosensors and their promise at the POC.

  2. Photonic crystal biosensor microplates with integrated fluid networks for high throughput applications in drug discovery

    NASA Astrophysics Data System (ADS)

    Choi, Charles J.; Chan, Leo L.; Pineda, Maria F.; Cunningham, Brian T.

    2007-09-01

    Assays used in pharmaceutical research require a system that can not only detect biochemical interactions with high sensitivity, but that can also perform many measurements in parallel while consuming low volumes of reagents. While nearly all label-free biosensor transducers to date have been interfaced with a flow channel, the liquid handling system is typically aligned and bonded to the transducer for supplying analytes to only a few sensors in parallel. In this presentation, we describe a fabrication approach for photonic crystal biosensors that utilizes nanoreplica molding to produce a network of sensors that are automatically self-aligned with a microfluidic network in a single process step. The sensor/fluid network is inexpensively produced on large surface areas upon flexible plastic substrates, allowing the device to be incorporated into standard format 96-well microplates. A simple flow scheme using hydrostatic pressure applied through a single control point enables immobilization of capture ligands upon a large number of sensors with 220 nL of reagent, and subsequent exposure of the sensors to test samples. A high resolution imaging detection instrument is capable of monitoring the binding within parallel channels at rates compatible with determining kinetic binding constants between the immobilized ligands and the analytes. The first implementation of this system is capable of monitoring the kinetic interactions of 11 flow channels at once, and a total of 88 channels within an integrated biosensor microplate in rapid succession. The system was initially tested to characterize the interaction between sets of proteins with known binding behavior.

  3. Mammalian Cell-Based Sensor System

    NASA Astrophysics Data System (ADS)

    Banerjee, Pratik; Franz, Briana; Bhunia, Arun K.

    Use of living cells or cellular components in biosensors is receiving increased attention and opens a whole new area of functional diagnostics. The term "mammalian cell-based biosensor" is designated to biosensors utilizing mammalian cells as the biorecognition element. Cell-based assays, such as high-throughput screening (HTS) or cytotoxicity testing, have already emerged as dependable and promising approaches to measure the functionality or toxicity of a compound (in case of HTS); or to probe the presence of pathogenic or toxigenic entities in clinical, environmental, or food samples. External stimuli or changes in cellular microenvironment sometimes perturb the "normal" physiological activities of mammalian cells, thus allowing CBBs to screen, monitor, and measure the analyte-induced changes. The advantage of CBBs is that they can report the presence or absence of active components, such as live pathogens or active toxins. In some cases, mammalian cells or plasma membranes are used as electrical capacitors and cell-cell and cell-substrate contact is measured via conductivity or electrical impedance. In addition, cytopathogenicity or cytotoxicity induced by pathogens or toxins resulting in apoptosis or necrosis could be measured via optical devices using fluorescence or luminescence. This chapter focuses mainly on the type and applications of different mammalian cell-based sensor systems.

  4. Commercialisation of CMOS Integrated Circuit Technology in Multi-Electrode Arrays for Neuroscience and Cell-Based Biosensors

    PubMed Central

    Graham, Anthony H. D.; Robbins, Jon; Bowen, Chris R.; Taylor, John

    2011-01-01

    The adaptation of standard integrated circuit (IC) technology as a transducer in cell-based biosensors in drug discovery pharmacology, neural interface systems and electrophysiology requires electrodes that are electrochemically stable, biocompatible and affordable. Unfortunately, the ubiquitous Complementary Metal Oxide Semiconductor (CMOS) IC technology does not meet the first of these requirements. For devices intended only for research, modification of CMOS by post-processing using cleanroom facilities has been achieved. However, to enable adoption of CMOS as a basis for commercial biosensors, the economies of scale of CMOS fabrication must be maintained by using only low-cost post-processing techniques. This review highlights the methodologies employed in cell-based biosensor design where CMOS-based integrated circuits (ICs) form an integral part of the transducer system. Particular emphasis will be placed on the application of multi-electrode arrays for in vitro neuroscience applications. Identifying suitable IC packaging methods presents further significant challenges when considering specific applications. The various challenges and difficulties are reviewed and some potential solutions are presented. PMID:22163884

  5. Nanomaterials-based biosensors for detection of microorganisms and microbial toxins.

    PubMed

    Sutarlie, Laura; Ow, Sian Yang; Su, Xiaodi

    2017-04-01

    Detection of microorganisms and microbial toxins is important for health and safety. Due to their unique physical and chemical properties, nanomaterials have been extensively used to develop biosensors for rapid detection of microorganisms with microbial cells and toxins as target analytes. In this paper, the design principles of nanomaterials-based biosensors for four selected analyte categories (bacteria cells, toxins, mycotoxins, and protozoa cells), closely associated with the target analytes' properties is reviewed. Five signal transducing methods that are less equipment intensive (colorimetric, fluorimetric, surface enhanced Raman scattering, electrochemical, and magnetic relaxometry methods) is described and compared for their sensory performance (in term oflimit of detection, dynamic range, and response time) for all analyte categories. In the end, the suitability of these five sensing principles for on-site or field applications is discussed. With a comprehensive coverage of nanomaterials, design principles, sensing principles, and assessment on the sensory performance and suitability for on-site application, this review offers valuable insight and perspective for designing suitable nanomaterials-based microorganism biosensors for a given application. Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Recent Developments in Enzyme, DNA and Immuno-Based Biosensors.

    PubMed

    Asal, Melis; Özen, Özlem; Şahinler, Mert; Polatoğlu, İlker

    2018-06-13

    Novel sensitive, rapid and economical biosensors are being developed in a wide range of medical environmental and food applications. In this paper, we review some of the main advances in the field over the past few years by discussing recent studies from literature. A biosensor, which is defined as an analytical device consisting of a biomolecule, a transducer and an output system, can be categorized according to the type of the incorporated biomolecule. The biomolecules can be enzymes, antibodies, ssDNA, organelles, cells etc. The main biosensor categories classified according to the biomolecules are enzymatic biosensors, immunosensors and DNA-based biosensors. These sensors can measure analytes produced or reduced during reactions at lower costs compared to the conventional detection techniques. Numerous types of biosensor studies conducted over the last decade have been explored here to reveal their key applications in medical, environmental and food industries which provide comprehensive perspective to the readers. Overviews of the working principles and applications of the reviewed sensors are also summarized.

  7. Microbial Fuel Cell Inoculated with Ochrobactrum Tritici KCC210 for Chromium (VI) Measurement in Electroplating Wastewater

    NASA Astrophysics Data System (ADS)

    Kuo, Jongtar; Kuo, Juiling; Cheng, Chiuyu; Chung, Yingchien

    2018-01-01

    Many methods/techniques have been developed for Cr(VI) measurement, but they are often conducted offsite or/and cannot provide real-time for Cr(VI) monitoring. A microbial fuel cell (MFC) is a self-sustaining device and has great potential as a biosensor for in situ Cr(VI) measurement, especially for wastewater generated from different electroplating units. In this study, Ochrobactrum tritici KCC210, a facultatively anaerobic, Cr(VI)-reducing, and exoelectrogenic bacterium, was isolated and inoculated into the MFC to evaluate its feasibility as a Cr(VI) biosensor. The results indicated that O. tritici KCC210 exhibited high adaptability to pH, and temperature under anaerobic conditions. The maximum power density of the MFC biosensor was 17.5±0.9 mW/m2 at 2,000 Ω. A good linear relationship was observed between the Cr(VI) concentration (10-80 mg/L) and voltage output. The stable performance of the MFC biosensor indicated its potential as a reliable biosensor system. Moreover, the developed MFC biosensor is a simple device that can accurately measure Cr(VI) concentrations in the actual electroplating wastewater generated from different electroplating units within 15 min with low deviations (-1.8% to 7.8%) in comparison with the values determined using standard method. Thus, the MFC biosensor can measure Cr(VI) concentrations in situ in the effluents and has potential as an early warning detection device.

  8. Biosensor Architectures for High-Fidelity Reporting of Cellular Signaling

    PubMed Central

    Dushek, Omer; Lellouch, Annemarie C.; Vaux, David J.; Shahrezaei, Vahid

    2014-01-01

    Understanding mechanisms of information processing in cellular signaling networks requires quantitative measurements of protein activities in living cells. Biosensors are molecular probes that have been developed to directly track the activity of specific signaling proteins and their use is revolutionizing our understanding of signal transduction. The use of biosensors relies on the assumption that their activity is linearly proportional to the activity of the signaling protein they have been engineered to track. We use mechanistic mathematical models of common biosensor architectures (single-chain FRET-based biosensors), which include both intramolecular and intermolecular reactions, to study the validity of the linearity assumption. As a result of the classic mechanism of zero-order ultrasensitivity, we find that biosensor activity can be highly nonlinear so that small changes in signaling protein activity can give rise to large changes in biosensor activity and vice versa. This nonlinearity is abolished in architectures that favor the formation of biosensor oligomers, but oligomeric biosensors produce complicated FRET states. Based on this finding, we show that high-fidelity reporting is possible when a single-chain intermolecular biosensor is used that cannot undergo intramolecular reactions and is restricted to forming dimers. We provide phase diagrams that compare various trade-offs, including observer effects, which further highlight the utility of biosensor architectures that favor intermolecular over intramolecular binding. We discuss challenges in calibrating and constructing biosensors and highlight the utility of mathematical models in designing novel probes for cellular signaling. PMID:25099816

  9. A photoelectrochemical biosensor for fibroblast-like synoviocyte cell using visible light-activated NCQDs sensitized-ZnO/CH3NH3PbI3 heterojunction.

    PubMed

    Pang, Xuehui; Zhang, Yong; Pan, Jihong; Zhao, Yanxia; Chen, Yao; Ren, Xiang; Ma, Hongmin; Wei, Qin; Du, Bin

    2016-03-15

    Based on ZnO nanorods (NRs)/CH3NH3PbI3/nitrogen-doped carbon quantum dots (NCQDs) nanocomposites, the highly sensitive detection of fibroblast-like synoviocyte (FLS) cell was realized by a photoelectrochemical (PEC) biosensor. ZnO/CH3NH3PbI3/NCQDs nanocomposites were exploited as the photo-to-electron generator to produce the signal. CH3NH3PbI3 was spin-coated on ZnO surface after ZnO NRs grew on ITO electrode then by dropping on the modified electrode, NCQDs were diffused and adhered to the surface of ZnO and CH3NH3PbI3. In the presence of EDC/NHS, the combination of CH3NH3PbI3 and NCQDs was achieved by the carboxyl groups (-COOH) and amino groups (-NH2) in the preparation process. Furthermore, the capture probe of FLS cell, CD95 antibody, can be anchored by -COOH and -NH2 groups through EDC/NHS. The specific recognition between the antibody capture probes and cell targets gained high-sensitive detection for FLS cell for the first time. The developed biosensor showed a wide linear range from 1.0 × 10(4)cell/mL to 10 cell/mL and a low detection limit of 2 cell/mL. This kind of biosensor would provide a novel detection strategy for FLS cell. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Mast cell-based electrochemical biosensor for quantification of the major shrimp allergen Pen a 1 (tropomyosin).

    PubMed

    Jiang, Donglei; Ji, Jian; An, Lu; Sun, Xiulan; Zhang, Yinzhi; Zhang, Genyi; Tang, Lili

    2013-12-15

    A novel cell-based electrochemical biosensor was developed to quantify major shrimp allergen Pen a 1 (tropomyosin) and to assess its immunoglobulin E (IgE)-mediated hypersensitivity. Rat basophilic leukemia (RBL-2H3) mast cells, encapsulated in type I collagen, were immobilized on a self-assembled l-cysteine/gold nanoparticle (AuNPsCys)-modified gold electrode to monitor IgE-mediated mast cell sensitization and activation. The exposure of dinitrophenol-bovine serum albumin (DNP-BSA), as a model antigen that stimulates mast cells, induced a robust and long-lasting electrochemical impedance signal in a dose-dependent manner which efficiently measured degranulation of anti-DNP IgE-stimulated mast cells. Then this mast cell-based biosensor was applied into quantification for the shrimp allergen with anti-shrimp tropomyosin IgE-sensitization. The electrochemical impedance spectroscopy (EIS) results showed that the impedance value (Ret) increased with the concentration of purified shrimp allergen Pen a 1 (tropomyosin) in range of 0.5-0.25 μg mL(-1) with the detection limit as 0.15 μg mL(-1), and the electrochemical result was confirmed by β-hexosaminidase assay and scanning electron microscopic morphological (SEM) analysis. Thus, a simple, label-free, and sensitive method for the determination of shrimp allergens was proposed and demonstrated here, implying a highly versatile biosensor for food allergen detection and prediction. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. A silicon-based peptide biosensor for label-free detection of cancer cells

    NASA Astrophysics Data System (ADS)

    Martucci, Nicola M.; Rea, Ilaria; Ruggiero, Immacolata; Terracciano, Monica; De Stefano, Luca; Migliaccio, Nunzia; Dardano, Principia; Arcari, Paolo; Rendina, Ivo; Lamberti, Annalisa

    2015-05-01

    Sensitive and accurate detection of cancer cells plays a crucial role in diagnosis of cancer and minimal residual disease, so being one of the most hopeful approaches to reduce cancer death rates. In this paper, a strategy for highly selective and sensitive detection of lymphoma cells on planar silicon-based biosensor has been evaluated. In this setting an Idiotype peptide, able to specifically bind the B-cell receptor (BCR) of A20 cells in mice engrafted with A20 lymphoma, has been covalently linked to the sensor active surface and used as molecular probe. The biochip here presented showed a coverage efficiency of 85% with a detection efficiency of 8.5×10-3 cells/μm2. The results obtained suggested an efficient way for specific label-free cell detection by using a silicon-based peptide biosensor. In addition, the present recognition strategy, besides being useful for the development of sensing devices capable of monitoring minimal residual disease, could be used to find and characterize new specific receptor-ligand interactions through the screening of a recombinant phage library.

  12. A new respirometric endpoint-based biosensor to assess the relative toxicity of chemicals on immobilized human cells.

    PubMed

    Dragone, Roberto; Frazzoli, Chiara; Grappelli, Claudio; Campanella, Luigi

    2009-01-01

    Several functional and biochemical parameters have been proposed as biomarkers of effect of environmental pollutants. A rapid biosensor working with immobilized human U-937 cells was developed and applied to environmentally relevant chemicals with different structures and toxicological pathways, i.e. benzalkonium chloride, clofibric acid, diclofenac, mercury nitrate, ofloxacin, and sodium dodecyl sulphate. Respiration of cells was relied upon as a comprehensive biochemical effect for screening purposes. Analytical parameter (DeltappmO(2)) and toxicological index (respiratory inhibition, delta%) measured after 1h of exposure were utilized for dose-response relationship study. Results (toxicity rating scales based on delta(50)% and steepness) were compared with those obtained by the same approach previously optimized on Saccharomyces cerevisiae. The toxicity rating scale obtained by the biomarker based on human mitochondrial and cell metabolic activities compared well with previous scale obtained on yeast cells and with available in-vivo acute toxicity indexes; respiration was confirmed as toxicological endpoint reliably measurable by the biosensor.

  13. Real-time and label-free analysis of binding thermodynamics of carbohydrate-protein interactions on unfixed cancer cell surfaces using a QCM biosensor

    PubMed Central

    Li, Xueming; Song, Siyu; Shuai, Qi; Pei, Yihan; Aastrup, Teodor; Pei, Yuxin; Pei, Zhichao

    2015-01-01

    A novel approach to the study of binding thermodynamics and kinetics of carbohydrate-protein interactions on unfixed cancer cell surfaces using a quartz crystal microbalance (QCM) biosensor was developed, in which binding events take place at the cell surface, more closely mimicking a biologically relevant environment. In this study, colon adenocarcinoma cells (KM-12) and ovary adenocarcinoma cells (SKOV-3) grew on the optimized polystyrene-coated biosensor chip without fixation. The association and dissociation between the cell surface carbohydrates and a range of lectins, including WGA, Con A, UEA-I, GS-II, PNA and SBA, were monitored in real time and without label for evaluation of cell surface glycosylation. Furthermore, the thermodynamic and kinetic parameters of the interaction between lectins and cell surface glycan were studied, providing detailed information about the interactions, such as the association rate constant, dissociation rate constant, affinity constant, as well as the changes of entropy, enthalpy and Gibbs free energy. This application provides an insight into the cell surface glycosylation and the complex molecular recognition on the intact cell surface, which may have impacts on disease diagnosis and drug discovery. PMID:26369583

  14. An integrated bienzyme glucose oxidase-fructose dehydrogenase-tetrathiafulvalene-3-mercaptopropionic acid-gold electrode for the simultaneous determination of glucose and fructose.

    PubMed

    Campuzano, Susana; Loaiza, Oscar A; Pedrero, María; de Villena, F Javier Manuel; Pingarrón, José M

    2004-06-01

    A bienzyme biosensor for the simultaneous determination of glucose and fructose was developed by coimmobilising glucose oxidase (GOD), fructose dehydrogenase (FDH), and the mediator, tetrathiafulvalene (TTF), by cross-linking with glutaraldehyde atop a 3-mercaptopropionic acid (MPA) self-assembled monolayer (SAM) on a gold disk electrode (AuE). The performance of this bienzyme electrode under batch and flow injection (FI) conditions, as well as an amperometric detection in high-performance liquid chromatography (HPLC), are reported. The order of enzyme immobilisation atop the MPA-SAM affected the biosensor amperometric response in terms of sensitivity, with the immobilisation order GOD, FDH, TTF being selected. Similar analytical characteristics to those obtained with single GOD or FDH SAM-based biosensors for glucose and fructose were achieved with the bienzyme electrode, indicating that no noticeable changes in the biosensor responses to the analytes occurred as a consequence of the coimmobilisation of both enzymes on the same MPA-AuE. The suitability of the bienzyme biosensor for the analysis of real samples under flow injection conditions was tested by determining glucose in two certified serum samples. The simultaneous determination of glucose and fructose in the same sample cannot be performed without a separation step because at the detection potential used (+0.10 V), both sugars show amperometric response. Consequently, HPLC with amperometric detection at the TTF-FDH-GOD-MPA-AuE was accomplished. Glucose and fructose were simultaneously determined in honey, cola softdrink, and commercial apple juice, and the results were compared with those obtained by using other reference methods.

  15. Microbial Biosensor for the Detection of Protease-Virulent Factors from Pathogens

    DTIC Science & Technology

    2017-04-28

    cleavage in the extracellular space. The cleavage of TCS receptor protein would abolish the kinase activity responsible for the phosphorylation of the...cytoplasmic response regulator, AgrA, which functions as a transcriptional activator . As the cell-based protease biosensor response requires over...to AIP; AgrC is a AIP receptor that phosphorylates AgrA, an activator for P2 and P3. Protein-based protease biosensor construction To facilitate

  16. Strategic Research to Enable NASA's Exploration Missions Conference and Workshop: Presentations. Volume 1

    NASA Technical Reports Server (NTRS)

    Nahra, Henry (Compiler)

    2004-01-01

    Topic presentations are included on the following: biosensors to monitor the health of astronauts, microgravity effects on flammability, fire prevention and suppression, life support topics, waste management topics, heat transfer; gas flow and liquids flow, and combustion studies.

  17. [Detection of toxic substances in microbial fuel cells].

    PubMed

    Wang, Jiefu; Niu, Hao; Wu, Wenguo

    2017-05-25

    Microbial fuel cells (MFCs) is a highly promising bioelectrochemical technology and uses microorganisms as catalyst to convert chemical energy directly to electrical energy. Microorganisms in the anodic chamber of MFC oxidize the substrate and generate electrons. The electrons are absorbed by the anode and transported through an external circuit to the cathode for corresponding reduction. The flow of electrons is measured as current. This current is a linear measure of the activity of microorganisms. If a toxic event occurs, microbial activity will change, most likely decrease. Hence, fewer electrons are transported and current decreases as well. In this way, a microbial fuel cell-based biosensor provides a direct measure to detect toxicity for samples. This paper introduces the detection of antibiotics, heavy metals, organic pollutants and acid in MFCs. The existing problems and future application of MFCs are also analyzed.

  18. Generation of an immortalized mesenchymal stem cell line producing a secreted biosensor protein for glucose monitoring

    PubMed Central

    Weisman, Itamar; Romano, Jacob; Ivics, Zoltán; Izsvák, Zsuzsanna; Barkai, Uriel

    2017-01-01

    Diabetes is a chronic disease characterized by high levels of blood glucose. Diabetic patients should normalize these levels in order to avoid short and long term clinical complications. Presently, blood glucose monitoring is dependent on frequent finger pricking and enzyme based systems that analyze the drawn blood. Continuous blood glucose monitors are already on market but suffer from technical problems, inaccuracy and short operation time. A novel approach for continuous glucose monitoring is the development of implantable cell-based biosensors that emit light signals corresponding to glucose concentrations. Such devices use genetically modified cells expressing chimeric genes with glucose binding properties. MSCs are good candidates as carrier cells, as they can be genetically engineered and expanded into large numbers. They also possess immunomodulatory properties that, by reducing local inflammation, may assist long operation time. Here, we generated a novel immortalized human MSC line co-expressing hTERT and a secreted glucose biosensor transgene using the Sleeping Beauty transposon technology. Genetically modified hMSCs retained their mesenchymal characteristics. Stable transgene expression was validated biochemically. Increased activity of hTERT was accompanied by elevated and constant level of stem cell pluripotency markers and subsequently, by MSC immortalization. Furthermore, these cells efficiently suppressed PBMC proliferation in MLR transwell assays, indicating that they possess immunomodulatory properties. Finally, biosensor protein produced by MSCs was used to quantify glucose in cell-free assays. Our results indicate that our immortalized MSCs are suitable for measuring glucose concentrations in a physiological range. Thus, they are appropriate for incorporation into a cell-based, immune-privileged, glucose-monitoring medical device. PMID:28949988

  19. Generation of an immortalized mesenchymal stem cell line producing a secreted biosensor protein for glucose monitoring.

    PubMed

    Siska, Evangelia K; Weisman, Itamar; Romano, Jacob; Ivics, Zoltán; Izsvák, Zsuzsanna; Barkai, Uriel; Petrakis, Spyros; Koliakos, George

    2017-01-01

    Diabetes is a chronic disease characterized by high levels of blood glucose. Diabetic patients should normalize these levels in order to avoid short and long term clinical complications. Presently, blood glucose monitoring is dependent on frequent finger pricking and enzyme based systems that analyze the drawn blood. Continuous blood glucose monitors are already on market but suffer from technical problems, inaccuracy and short operation time. A novel approach for continuous glucose monitoring is the development of implantable cell-based biosensors that emit light signals corresponding to glucose concentrations. Such devices use genetically modified cells expressing chimeric genes with glucose binding properties. MSCs are good candidates as carrier cells, as they can be genetically engineered and expanded into large numbers. They also possess immunomodulatory properties that, by reducing local inflammation, may assist long operation time. Here, we generated a novel immortalized human MSC line co-expressing hTERT and a secreted glucose biosensor transgene using the Sleeping Beauty transposon technology. Genetically modified hMSCs retained their mesenchymal characteristics. Stable transgene expression was validated biochemically. Increased activity of hTERT was accompanied by elevated and constant level of stem cell pluripotency markers and subsequently, by MSC immortalization. Furthermore, these cells efficiently suppressed PBMC proliferation in MLR transwell assays, indicating that they possess immunomodulatory properties. Finally, biosensor protein produced by MSCs was used to quantify glucose in cell-free assays. Our results indicate that our immortalized MSCs are suitable for measuring glucose concentrations in a physiological range. Thus, they are appropriate for incorporation into a cell-based, immune-privileged, glucose-monitoring medical device.

  20. On-site detection of stacked genetically modified soybean based on event-specific TM-LAMP and a DNAzyme-lateral flow biosensor.

    PubMed

    Cheng, Nan; Shang, Ying; Xu, Yuancong; Zhang, Li; Luo, Yunbo; Huang, Kunlun; Xu, Wentao

    2017-05-15

    Stacked genetically modified organisms (GMO) are becoming popular for their enhanced production efficiency and improved functional properties, and on-site detection of stacked GMO is an urgent challenge to be solved. In this study, we developed a cascade system combining event-specific tag-labeled multiplex LAMP with a DNAzyme-lateral flow biosensor for reliable detection of stacked events (DP305423× GTS 40-3-2). Three primer sets, both event-specific and soybean species-specific, were newly designed for the tag-labeled multiplex LAMP system. A trident-like lateral flow biosensor displayed amplified products simultaneously without cross contamination, and DNAzyme enhancement improved the sensitivity effectively. After optimization, the limit of detection was approximately 0.1% (w/w) for stacked GM soybean, which is sensitive enough to detect genetically modified content up to a threshold value established by several countries for regulatory compliance. The entire detection process could be shortened to 120min without any large-scale instrumentation. This method may be useful for the in-field detection of DP305423× GTS 40-3-2 soybean on a single kernel basis and on-site screening tests of stacked GM soybean lines and individual parent GM soybean lines in highly processed foods. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. A miniaturized electrochemical toxicity biosensor based on graphene oxide quantum dots/carboxylated carbon nanotubes for assessment of priority pollutants.

    PubMed

    Zhu, Xiaolin; Wu, Guanlan; Lu, Nan; Yuan, Xing; Li, Baikun

    2017-02-15

    The study presented a sensitive and miniaturized cell-based electrochemical biosensor to assess the toxicity of priority pollutants in the aquatic environment. Human hepatoma (HepG2) cells were used as the biological recognition agent to measure the changes of electrochemical signals and reflect the cell viability. The graphene oxide quantum dots/carboxylated carbon nanotubes hybrid was developed in a facile and green way. Based on the hybrid composite modified pencil graphite electrode, the cell culture and detection vessel was miniaturized to a 96-well plate instead of the traditional culture dish. In addition, three sensitive electrochemical signals attributed to guanine/xanthine, adenine, and hypoxanthine were detected simultaneously. The biosensor was used to evaluate the toxicity of six priority pollutants, including Cd, Hg, Pb, 2,4-dinitrophenol, 2,4,6-trichlorophenol, and pentachlorophenol. The 24h IC 50 values obtained by the electrochemical biosensor were lower than those of conventional MTT assay, suggesting the enhanced sensitivity of the electrochemical assay towards heavy metals and phenols. This platform enables the label-free and sensitive detection of cell physiological status with multi-parameters and constitutes a promising approach for toxicity detection of pollutants. It makes possible for automatical and high-throughput analysis on nucleotide catabolism, which may be critical for life science and toxicology. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Biosensors for brain trauma and dual laser doppler flowmetry: enoxaparin simultaneously reduces stroke-induced dopamine and blood flow while enhancing serotonin and blood flow in motor neurons of brain, in vivo.

    PubMed

    Broderick, Patricia A; Kolodny, Edwin H

    2011-01-01

    Neuromolecular Imaging (NMI) based on adsorptive electrochemistry, combined with Dual Laser Doppler Flowmetry (LDF) is presented herein to investigate the brain neurochemistry affected by enoxaparin (Lovenox(®)), an antiplatelet/antithrombotic medication for stroke victims. NMI with miniature biosensors enables neurotransmitter and neuropeptide (NT) imaging; each NT is imaged with a response time in milliseconds. A semiderivative electronic reduction circuit images several NT's selectively and separately within a response time of minutes. Spatial resolution of NMI biosensors is in the range of nanomicrons and electrochemically-induced current ranges are in pico- and nano-amperes. Simultaneously with NMI, the LDF technology presented herein operates on line by illuminating the living brain, in this example, in dorso-striatal neuroanatomic substrates via a laser sensor with low power laser light containing optical fiber light guides. NMI biotechnology with BRODERICK PROBE(®) biosensors has a distinct advantage over conventional electrochemical methodologies both in novelty of biosensor formulations and on-line imaging capabilities in the biosensor field. NMI with unique biocompatible biosensors precisely images NT in the body, blood and brain of animals and humans using characteristic experimentally derived half-wave potentials driven by oxidative electron transfer. Enoxaparin is a first line clinical treatment prescribed to halt the progression of acute ischemic stroke (AIS). In the present studies, BRODERICK PROBE(®) laurate biosensors and LDF laser sensors are placed in dorsal striatum (DStr) dopaminergic motor neurons in basal ganglia of brain in living animals; basal ganglia influence movement disorders such as those correlated with AIS. The purpose of these studies is to understand what is happening in brain neurochemistry and cerebral blood perfusion after causal AIS by middle cerebral artery occlusion in vivo as well as to understand consequent enoxaparin and reperfusion effects actually while enoxaparin is inhibiting blood clots to alleviate AIS symptomatology. This research is directly correlated with the medical and clinical needs of stroke victims. The data are clinically relevant, not only to movement dysfunction but also to the depressive mood that stroke patients often endure. These are the first studies to image brain neurotransmitters while any stroke medications, such as anti-platelet/anti-thrombotic and/or anti-glycoprotein are working in organ systems to alleviate the debilitating consequences of brain trauma and stroke/brain attacks.

  3. Biosensors for Brain Trauma and Dual Laser Doppler Flowmetry: Enoxaparin Simultaneously Reduces Stroke-Induced Dopamine and Blood Flow while Enhancing Serotonin and Blood Flow in Motor Neurons of Brain, In Vivo

    PubMed Central

    Broderick, Patricia A.; Kolodny, Edwin H.

    2011-01-01

    Neuromolecular Imaging (NMI) based on adsorptive electrochemistry, combined with Dual Laser Doppler Flowmetry (LDF) is presented herein to investigate the brain neurochemistry affected by enoxaparin (Lovenox®), an antiplatelet/antithrombotic medication for stroke victims. NMI with miniature biosensors enables neurotransmitter and neuropeptide (NT) imaging; each NT is imaged with a response time in milliseconds. A semiderivative electronic reduction circuit images several NT’s selectively and separately within a response time of minutes. Spatial resolution of NMI biosensors is in the range of nanomicrons and electrochemically-induced current ranges are in pico- and nano-amperes. Simultaneously with NMI, the LDF technology presented herein operates on line by illuminating the living brain, in this example, in dorso-striatal neuroanatomic substrates via a laser sensor with low power laser light containing optical fiber light guides. NMI biotechnology with BRODERICK PROBE® biosensors has a distinct advantage over conventional electrochemical methodologies both in novelty of biosensor formulations and on-line imaging capabilities in the biosensor field. NMI with unique biocompatible biosensors precisely images NT in the body, blood and brain of animals and humans using characteristic experimentally derived half-wave potentials driven by oxidative electron transfer. Enoxaparin is a first line clinical treatment prescribed to halt the progression of acute ischemic stroke (AIS). In the present studies, BRODERICK PROBE® laurate biosensors and LDF laser sensors are placed in dorsal striatum (DStr) dopaminergic motor neurons in basal ganglia of brain in living animals; basal ganglia influence movement disorders such as those correlated with AIS. The purpose of these studies is to understand what is happening in brain neurochemistry and cerebral blood perfusion after causal AIS by middle cerebral artery occlusion in vivo as well as to understand consequent enoxaparin and reperfusion effects actually while enoxaparin is inhibiting blood clots to alleviate AIS symptomatology. This research is directly correlated with the medical and clinical needs of stroke victims. The data are clinically relevant, not only to movement dysfunction but also to the depressive mood that stroke patients often endure. These are the first studies to image brain neurotransmitters while any stroke medications, such as anti-platelet/anti-thrombotic and/or anti-glycoprotein are working in organ systems to alleviate the debilitating consequences of brain trauma and stroke/brain attacks. PMID:22346571

  4. Bioelectrochemical interface engineering: toward the fabrication of electrochemical biosensors, biofuel cells, and self-powered logic biosensors.

    PubMed

    Zhou, Ming; Dong, Shaojun

    2011-11-15

    Over the past decade, researchers have devoted considerable attention to the integration of living organisms with electronic elements to yield bioelectronic devices. Not only is the integration of DNA, enzymes, or whole cells with electronics of scientific interest, but it has many versatile potential applications. Researchers are using these ideas to fabricate biosensors for analytical applications and to assemble biofuel cells (BFCs) and biomolecule-based devices. Other research efforts include the development of biocomputing systems for information processing. In this Account, we focus on our recent progress in engineering at the bioelectrochemical interface (BECI) for the rational design and construction of important bioelectronic devices, ranging from electrochemical (EC-) biosensors to BFCs, and self-powered logic biosensors. Hydrogels and sol-gels provide attractive materials for the immobilization of enzymes because they make EC-enzyme biosensors stable and even functional in extreme environments. We use a layer-by-layer (LBL) self-assembly technique to fabricate multicomponent thin films on the BECI at the nanometer scale. Additionally, we demonstrate how carbon nanomaterials have paved the way for new and improved EC-enzyme biosensors. In addition to the widely reported BECI-based electrochemical impedance spectroscopy (EIS)-type aptasensors, we integrate the LBL technique with our previously developed "solid-state probe" technique for redox probes immobilization on electrode surfaces to design and fabricate BECI-based differential pulse voltammetry (DPV)-type aptasensors. BFCs can directly harvest energy from ambient biofuels as green energy sources, which could lead to their application as simple, flexible, and portable power sources. Porous materials provide favorable microenvironments for enzyme immobilization, which can enhance BFC power output. Furthermore, by introducing aptamer-based logic systems to BFCs, such systems could be applied as self-powered and intelligent aptasensors for the logic detection. We have developed biocomputing keypad lock security systems which can be also used for intelligent medical diagnostics. BECI engineering provides a simple but effective approach toward the design and fabrication of EC-biosensors, BFCs, and self-powered logic biosensors, which will make essential contributions in the development of creative and practical bioelectronic devices. The exploration of novel interface engineering applications and the creation of new fabrication concepts or methods merit further attention.

  5. An optical microplate biosensor for the detection of methyl parathion pesticide using a biohybrid of Sphingomonas sp. cells-silica nanoparticles.

    PubMed

    Mishra, Archana; Kumar, Jitendra; Melo, Jose Savio

    2017-01-15

    The previously developed Sphingomonas sp. based optical microplate biosensor for methyl parathion (MP) was good as it detected multiple samples but had poor stability and low sensitivity. The present study aims to overcome these limitations. Silica nanoparticles (Si NP) were thus functionalized with polyethyleneimine (PEI) and the functionalized silica nanoparticles ( f Si NP) were then integrated with Sphingomonas sp. cells. The process was optimized for hydrolysis of MP into p-nitrophenol (PNP). Integration of f Si NP with cells was confirmed by FT-IR analysis. Biohybrid of Sphingomonas sp.- f Si NP was immobilized on the wells of microplate and associated directly with the optical transducer of microplate reader. Immobilized biohybrid of Sphingomonas sp.- f Si NP was characterized using SEM. A detection range of 0.1-1ppm MP was achieved from the linear range of calibration plot. After integration with f Si NP the storage stability of biohybrid was enhanced ten times from 18 to 180 days. This study proves that after interaction of cells with f Si NP, improved the sensitivity and stability of the biosensor. Spiked samples were also analyzed and correlated using this biohybrid based biosensor. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Highly Sensitive Electrochemical Biosensor for Evaluation of Oxidative Stress Based on the Nanointerface of Graphene Nanocomposites Blended with Gold, Fe3O4, and Platinum Nanoparticles.

    PubMed

    Wang, Le; Zhang, Yuanyuan; Cheng, Chuansheng; Liu, Xiaoli; Jiang, Hui; Wang, Xuemei

    2015-08-26

    High levels of H2O2 pertain to high oxidative stress and are associated with cancer, autoimmune, and neurodegenerative disease, and other related diseases. In this study, a sensitive H2O2 biosensor for evaluation of oxidative stress was fabricated on the basis of the reduced graphene oxide (RGO) nanocomposites decorated with Au, Fe3O4, and Pt nanoparticles (RGO/AuFe3O4/Pt) modified glassy carbon electrode (GCE) and used to detect the released H2O2 from cancer cells and assess the oxidative stress elicited from H2O2 in living cells. Electrochemical behavior of RGO/AuFe3O4/Pt nanocomposites exhibits excellent catalytic activity toward the relevant reduction with high selection and sensitivity, low overpotential of 0 V, low detection limit of ∼0.1 μM, large linear range from 0.5 μM to 11.5 mM, and outstanding reproducibility. The as-prepared biosensor was applied in the measurement of efflux of H2O2 from living cells including healthy normal cells and tumor cells under the external stimulation. The results display that this new nanocomposites-based biosensor is a promising candidate of nonenzymatic H2O2 sensor which has the possibility of application in clinical diagnostics to assess oxidative stress of different kinds of living cells.

  7. Yeast surface displaying glucose oxidase as whole-cell biocatalyst: construction, characterization, and its electrochemical glucose sensing application.

    PubMed

    Wang, Hongwei; Lang, Qiaolin; Li, Liang; Liang, Bo; Tang, Xiangjiang; Kong, Lingrang; Mascini, Marco; Liu, Aihua

    2013-06-18

    The display of glucose oxidase (GOx) on yeast cell surface using a-agglutinin as an anchor motif was successfully developed. Both the immunochemical analysis and enzymatic assay showed that active GOx was efficiently expressed and translocated on the cell surface. Compared with conventional GOx, the yeast cell surface that displayed GOx (GOx-yeast) demonstrated excellent enzyme properties, such as good stability within a wide pH range (pH 3.5-11.5), good thermostability (retaining over 94.8% enzyme activity at 52 °C and 84.2% enzyme activity at 56 °C), and high d-glucose specificity. In addition, direct electrochemistry was achieved at a GOx-yeast/multiwalled-carbon-nanotube modified electrode, suggesting that the host cell of yeast did not have any adverse effect on the electrocatalytic property of the recombinant GOx. Thus, a novel electrochemical glucose biosensor based on this GOx-yeast was developed. The as-prepared biosensor was linear with the concentration of d-glucose within the range of 0.1-14 mM and a low detection limit of 0.05 mM (signal-to-noise ratio of S/N = 3). Moreover, the as-prepared biosensor is stable, specific, reproducible, simple, and cost-effective, which can be applicable for real sample detection. The proposed strategy to construct robust GOx-yeast may be applied to explore other oxidase-displaying-system-based whole-cell biocatalysts, which can find broad potential application in biosensors, bioenergy, and industrial catalysis.

  8. Live-cell imaging of phosphatidic acid dynamics in pollen tubes visualized by Spo20p-derived biosensor.

    PubMed

    Potocký, Martin; Pleskot, Roman; Pejchar, Přemysl; Vitale, Nicolas; Kost, Benedikt; Zárský, Viktor

    2014-07-01

    Although phosphatidic acid (PA) is structurally the simplest membrane phospholipid, it has been implicated in the regulation of many cellular events, including cytoskeletal dynamics, membrane trafficking and stress responses. Plant PA shows rapid turnover but the information about its spatio-temporal distribution in plant cells is missing. Here we demonstrate the use of a lipid biosensor that enables us to monitor PA dynamics in plant cells. The biosensor consists of a PA-binding domain of yeast SNARE Spo20p fused to fluorescent proteins. Live-cell imaging of PA dynamics in transiently transformed tobacco (Nicotiana tabacum) pollen tubes was performed using confocal laser scanning microscopy. In growing pollen tubes, PA shows distinct annulus-like fluorescence pattern in the plasma membrane behind the extreme tip. Coexpression studies with markers for other plasmalemma signaling lipids phosphatidylinositol 4,5-bisphosphate and diacylglycerol revealed limited colocalization at the shoulders of the apex. PA distribution and concentrations show distinct responses to various lipid signaling inhibitors. Fluorescence recovery after photobleaching (FRAP) analysis suggests high PA turnover in the plasma membrane. Our data show that a biosensor based on the Spo20p-PA binding domain is suitable for live-cell imaging of PA also in plant cells. In tobacco pollen tubes, distinct subapical PA maximum corroborates its involvement in the regulation of endocytosis and actin dynamics. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  9. Quantitative analysis of recombination between YFP and CFP genes of FRET biosensors introduced by lentiviral or retroviral gene transfer

    PubMed Central

    Komatsubara, Akira T.; Matsuda, Michiyuki; Aoki, Kazuhiro

    2015-01-01

    Biosensors based on the principle of Förster (or fluorescence) resonance energy transfer (FRET) have been developed to visualize spatio-temporal dynamics of signalling molecules in living cells. Many of them adopt a backbone of intramolecular FRET biosensor with a cyan fluorescent protein (CFP) and yellow fluorescent protein (YFP) as donor and acceptor, respectively. However, there remains the difficulty of establishing cells stably expressing FRET biosensors with a YFP and CFP pair by lentiviral or retroviral gene transfer, due to the high incidence of recombination between YFP and CFP genes. To address this, we examined the effects of codon-diversification of YFP on the recombination of FRET biosensors introduced by lentivirus or retrovirus. The YFP gene that was fully codon-optimized to E.coli evaded the recombination in lentiviral or retroviral gene transfer, but the partially codon-diversified YFP did not. Further, the length of spacer between YFP and CFP genes clearly affected recombination efficiency, suggesting that the intramolecular template switching occurred in the reverse-transcription process. The simple mathematical model reproduced the experimental data sufficiently, yielding a recombination rate of 0.002–0.005 per base. Together, these results show that the codon-diversified YFP is a useful tool for expressing FRET biosensors by lentiviral or retroviral gene transfer. PMID:26290434

  10. Decoding spatial and temporal features of neuronal cAMP/PKA signaling with FRET biosensors.

    PubMed

    Castro, Liliana R V; Guiot, Elvire; Polito, Marina; Paupardin-Tritsch, Daniéle; Vincent, Pierre

    2014-02-01

    Cyclic adenosine monophosphate (cAMP) and the cyclic-AMP-dependent protein kinase (PKA) regulate a plethora of cellular functions in virtually all eukaryotic cells. In neurons, the cAMP/PKA signaling cascade controls a number of biological properties such as axonal growth, pathfinding, efficacy of synaptic transmission, regulation of excitability, or long term changes. Genetically encoded optical biosensors for cAMP or PKA are considerably improving our understanding of these processes by providing a real-time measurement in living neurons. In this review, we describe the recent progress made in the creation of biosensors for cAMP or PKA activity. These biosensors revealed profound differences in the amplitude of the cAMP signal evoked by neuromodulators between various neuronal preparations. These responses can be resolved at the level of individual neurons, also revealing differences related to the neuronal type. At the sub-cellular level, biosensors reported different signal dynamics in domains like dendrites, cell body, nucleus, and axon. Combining this imaging approach with pharmacology or genetic models points at phosphodiesterases and phosphatases as critical regulatory proteins. Biosensor imaging will certainly emerge as a forefront tool to decipher the subtle mechanics of intracellular signaling. This will certainly help us to understand the mechanism of action of current drugs and foster the development of novel molecules for neuropsychiatric diseases. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. [Physiopathology of cAMP/PKA signaling in neurons].

    PubMed

    Castro, Liliana; Yapo, Cedric; Vincent, Pierre

    2016-01-01

    Cyclic adenosine monophosphate (cAMP) and the cyclic-AMP dependent protein kinase (PKA) regulate a plethora of cellular functions in virtually all eukaryotic cells. In neurons, the cAMP/PKA signaling cascade controls a number of biological properties such as axonal growth, synaptic transmission, regulation of excitability or long term changes in the nucleus. Genetically-encoded optical biosensors for cAMP or PKA considerably improved our understanding of these processes by providing a real-time measurement in living neurons. In this review, we describe the recent progresses made in the creation of biosensors for cAMP or PKA activity. These biosensors revealed profound differences in the amplitude of the cAMP signal evoked by neuromodulators between various neuronal preparations. These responses can be resolved at the level of individual neurons, also revealing differences related to the neuronal type. At the subcellular level, biosensors reported different signal dynamics in domains like dendrites, cell body, nucleus and axon. Combining this imaging approach with pharmacology or genetical models points at phosphodiesterases and phosphatases as critical regulatory proteins. Biosensor imaging will certainly help understand the mechanism of action of current drugs as well as help in devising novel therapeutic strategies for neuropsychiatric diseases. © Société de Biologie, 2017.

  12. Effects of Operating Parameters on Measurements of Biochemical Oxygen Demand Using a Mediatorless Microbial Fuel Cell Biosensor.

    PubMed

    Hsieh, Min-Chi; Cheng, Chiu-Yu; Liu, Man-Hai; Chung, Ying-Chien

    2015-12-28

    The conventional Biochemical Oxygen Demand (BOD) method takes five days to analyze samples. A microbial fuel cell (MFC) may be an alternate tool for rapid BOD determination in water. However, a MFC biosensor for continuous BOD measurements of water samples is still unavailable. In this study, a MFC biosensor inoculated with known mixed cultures was used to determine the BOD concentration. Effects of important parameters on establishing a calibration curve between the BOD concentration and output signal from the MFC were evaluated. The results indicate monosaccharides were good fuel, and methionine, phenylalanine, and ethanol were poor fuels for electricity generation by the MFC. Ions in the influent did not significantly affect the MFC performance. CN(-) in the influent could alleviate the effect of antagonistic electron acceptors on the MFC performance. The regression equation for BOD concentration and current density of the biosensor was y = 0.0145x + 0.3317. It was adopted to measure accurately and continuously the BOD concentration in actual water samples at an acceptable error margin. These results clearly show the developed MFC biosensor has great potential as an alternative BOD sensing device for online measurements of wastewater BOD.

  13. Optimization of silicon oxynitrides by plasma-enhanced chemical vapor deposition for an interferometric biosensor

    NASA Astrophysics Data System (ADS)

    Choo, Sung Joong; Lee, Byung-Chul; Lee, Sang-Myung; Park, Jung Ho; Shin, Hyun-Joon

    2009-09-01

    In this paper, silicon oxynitride layers deposited with different plasma-enhanced chemical vapor deposition (PECVD) conditions were fabricated and optimized, in order to make an interferometric sensor for detecting biochemical reactions. For the optimization of PECVD silicon oxynitride layers, the influence of the N2O/SiH4 gas flow ratio was investigated. RF power in the PEVCD process was also adjusted under the optimized N2O/SiH4 gas flow ratio. The optimized silicon oxynitride layer was deposited with 15 W in chamber under 25/150 sccm of N2O/SiH4 gas flow rates. The clad layer was deposited with 20 W in chamber under 400/150 sccm of N2O/SiH4 gas flow condition. An integrated Mach-Zehnder interferometric biosensor based on optical waveguide technology was fabricated under the optimized PECVD conditions. The adsorption reaction between bovine serum albumin (BSA) and the silicon oxynitride surface was performed and verified with this device.

  14. An acetone bio-sniffer (gas phase biosensor) enabling assessment of lipid metabolism from exhaled breath.

    PubMed

    Ye, Ming; Chien, Po-Jen; Toma, Koji; Arakawa, Takahiro; Mitsubayashi, Kohji

    2015-11-15

    Several volatile organic compounds (VOCs) are released from human breath or skin. Like chemical substances in blood or urine, some of these vapors can provide valuable information regarding the state of the human body. A highly sensitive acetone biochemical gas sensor (bio-sniffer) was developed and used to measure exhaled breath acetone concentration, and assess lipid metabolism based on breath acetone analysis. A fiber-optic biochemical gas sensing system was constructed by attaching a flow-cell with nicotinamide adenine dinucleotide (NADH)-dependent secondary alcohol dehydrogenase (S-ADH) immobilized membrane onto a fiber-optic NADH measurement system. The NADH measurement system utilizes an ultraviolet-light emitting diode with peak emission of 335 nm as an excitation light source. NADH is consumed by the enzymatic reaction of S-ADH, and the consumption is proportional to the concentration of acetone vapor. Phosphate buffer which contained NADH was circulated into the flow-cell to rinse products and the excessive substrates from the optode. The change of fluorescent emitted from NADH is analyzed by the PMT. Hence, fluorescence intensity decreased as the acetone concentration increased. The relationship between fluorescence intensity and acetone concentration was identified from 20 ppb to 5300 ppb. This interval included the concentration of acetone vapor in the breath of healthy people and those suffering from disorders of carbohydrate metabolism. Finally, the acetone bio-sniffer was used to measure breath acetone during an exercise stress test on an ergometer after a period of fasting. The concentration of acetone in breath was shown to significantly increase after exercise. This biosensor allows rapid, highly sensitive and selective measurement of lipid metabolism. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Identification of Salmonella Typhimurium-specific DNA aptamers developed using whole-cell SELEX and FACS analysis.

    PubMed

    Moon, Jihea; Kim, Giyoung; Lee, Sangdae; Park, Saetbyeol

    2013-11-01

    Conventional methods for detection of infective organisms, such as Salmonella, are complicated and require multiple steps, and the need for rapid detection has increased. Biosensors show great potential for rapid detection of pathogens. In turn, aptamers have great potential for biosensor assay development, given their small size, ease of synthesis and labeling, lack of immunogenicity, a lower cost of production than antibodies, and high target specificity. In this study, ssDNA aptamers specific to Salmonella Typhimurium were obtained by a whole bacterium-based systematic evolution of ligands by exponential enrichment (SELEX) procedure and applied to probing S. Typhimurium. After 10 rounds of selection with S. Typhimurium as the target and Salmonella Enteritidis, Escherichia coli and Staphylococcus aureus as counter targets, the highly enriched oligonucleic acid pool was sorted using flow cytometry. In total, 12 aptamer candidates from different families were sequenced and grouped. Fluorescent analysis demonstrated that aptamer C4 had particularly high binding affinity and selectivity; this aptamer was then further characterized. © 2013 Elsevier B.V. All rights reserved.

  16. Substrate specificity and interferences of a direct-electron-transfer-based glucose biosensor.

    PubMed

    Felice, Alfons K G; Sygmund, Christoph; Harreither, Wolfgang; Kittl, Roman; Gorton, Lo; Ludwig, Roland

    2013-05-01

    Electrochemical sensors for glucose monitoring employ different signal transduction strategies for electron transfer from the biorecognition element to the electrode surface. We present a biosensor that employs direct electron transfer and evaluate its response to various interfering substances known to affect glucose biosensors. The enzyme cellobiose dehydrogenase (CDH) was adsorbed on the surface of a carbon working electrode and covalently bound by cross linking. The response of CDH-modified electrodes to glucose and possible interfering compounds was measured by flow-injection analysis, linear sweep, and chronoamperometry. Chronoamperometry showed initial swelling/wetting of the electrode. After stabilization, the signal was stable and a sensitivity of 0.21 µA mM-1 cm-2 was obtained. To investigate the influence of the interfering substances on the biorecognition element, the simplest possible sensor architecture was used. The biosensor showed little (<5% signal deviation) or no response to various reported electroactive or otherwise interfering substances. Direct electron transfer from the biorecognition element to the electrode is a new principle applied to glucose biosensors, which can be operated at a low polarization potential of -100 mV versus silver/silver chloride. The reduction of interferences by electrochemically active substances is an attractive feature of this promising technology for the development of continuous glucose biosensors. © 2013 Diabetes Technology Society.

  17. A screen-printed microband glucose biosensor system for real-time monitoring of toxicity in cell culture.

    PubMed

    Pemberton, R M; Xu, J; Pittson, R; Drago, G A; Griffiths, J; Jackson, S K; Hart, J P

    2011-01-15

    Microband biosensors, screen-printed from a water-based carbon ink containing cobalt phthalocyanine redox mediator and glucose oxidase (GOD) enzyme, were used to monitor glucose levels continuously in buffer and culture medium. Five biosensors were operated amperometrically (E(app) of +0.4V), in a 12-well tissue culture plate system at 37°C, using a multipotentiostat. After 24 h, a linear calibration plot was obtained from steady-state current responses for glucose concentrations up to 10 mM (dynamic range 30 mM). Within the linear region, a correlation coefficient (R(2)) of 0.981 was obtained between biosensor and spectrophotometric assays. Over 24 h, an estimated 0.15% (89 nmol) of the starting glucose concentration (24 mM) was consumed by the microbiosensor. The sensitivity of the biosensor response in full culture medium was stable between pHs 7.3 and 8.4. Amperometric responses for HepG2 monolayer cultures decreased with time in inverse proportionality to cell number (for 0 to 10(6) cell/ml), as glucose was being metabolised. HepG2 3D cultures (spheroids) were also shown to metabolise glucose, at a rate which was independent of spheroid age (between 6 and 15 days). Spheroids were used to assay the effect of a typical hepatotoxin, paracetamol. At 1 mM paracetamol, glucose uptake was inhibited by 95% after 6 h in culture; at 500 μM, around 15% inhibition was observed after 16 h. This microband biosensor culture system could form the basis for an in vitro toxicity testing system. Copyright © 2010 Elsevier B.V. All rights reserved.

  18. Flow-injection amperometric determination of glucose using a biosensor based on immobilization of glucose oxidase onto Au seeds decorated on core Fe₃O₄ nanoparticles.

    PubMed

    Samphao, Anchalee; Butmee, Preeyanut; Jitcharoen, Juthamas; Švorc, Ľubomír; Raber, Georg; Kalcher, Kurt

    2015-09-01

    An amperometric biosensor based on chemisorption of glucose oxidase (GOx) on Au seeds decorated on magnetic core Fe3O4 nanoparticles (Fe3O4@Au) and their immobilization on screen-printed carbon electrode bulk-modified with manganese oxide (SPCE{MnO2}) was designed for the determination of glucose. The Fe3O4@Au/GOx modified SPCE{MnO2} was used in a flow-injection analysis (FIA) arrangement. The experimental conditions were investigated in amperometric mode with the following optimized parameters: flow rate 1.7 mL min(-1), applied potential +0.38 V, phosphate buffer solution (PBS; 0.1 mol L(-1), pH 7.0) as carrier and 3.89 unit mm(-2) enzyme glucose oxidase loading on the active surface of the SPCE. The designed biosensor in FIA arrangement yielded a linear dynamic range for glucose from 0.2 to 9.0 mmol L(-1) with a sensitivity of 2.52 µA mM(-1) cm(-2), a detection limit of 0.1 mmol L(-1) and a quantification limit of 0.3 mmol L(-1). Moreover, a good repeatability of 2.8% (number of measurements n=10) and a sufficient reproducibility of 4.0% (number of sensors n=3) were achieved. It was found that the studied system Fe3O4@Au facilitated not only a simpler enzyme immobilization but also provided wider linear range. The practical application of the proposed biosensor for FIA quantification of glucose was tested in glucose sirup samples, honeys and energy drinks with the results in good accordance with those obtained by an optical glucose meter and with the contents declared by the producers. Copyright © 2015. Published by Elsevier B.V.

  19. Theoretical and experimental analysis of analyte transport in a fiber-optic, protein C immuno-biosensor.

    PubMed

    Tang, Liang; Kwon, Hyun J; Kang, Kyung A

    2004-12-30

    Protein C (PC) is an important anticoagulant in human blood plasma, and early diagnosis of PC deficiency is critical for preventing dangerous thromboembolic complications. A fiber-optic PC immuno-biosensor has been under development in our research group for real-time PC-deficiency diagnosis. The sensor has demonstrated a good sensitivity and specificity for quantifying PC in buffered solutions. However, for plasma samples, with a limited sample reaction time, the sensor produced only 30% of the signal intensity of PC in buffer. The high plasma viscosity (1.9 cP) was speculated as the major reason for signal intensity reduction. In this investigation, the sensing performance of the fiber-optic PC biosensor is systematically characterized in terms of physical and chemical properties of the sample media. Theoretical and experimental analyses indicate that the reduced diffusion rate of PC molecules in viscous samples caused the sensing system to be more mass-transfer-limited. Convective flow of sample/reagent solutions during immunoreactions can increase the rate of the analyte mass transport from the bulk solution to the sensor surface, with reaction kinetics changing from mass-transfer-limited to reaction-limited as flow velocity increases. It was shown that PC sensor performance was significantly improved for plasma samples with convection. The effect of the flow velocity and incubation times for samples and reagents on the sensor performance was also systematically analyzed to optimize the assay protocol for PC sensing. Currently, a 6-cm-long immuno-biosensor is capable of quantifying PC in plasma (1 mL) in the heterozygous PC deficiency range (0.5 to 2.5 microg/mL) within 5 minutes, at an average signal-to-noise ratio of 50. 2004 Wiley Periodicals, Inc.

  20. The Electrophysiological Biosensor for Batch-Measurement of Cell Signals

    NASA Astrophysics Data System (ADS)

    Suzuki, Kengo; Tanabe, Masato; Ezaki, Takahiro; Konishi, Satoshi; Oka, Hiroaki; Ozaki, Nobuhiko

    This paper presents the development of electrophysiological biosensor. The developed sensor allows a batch-measurement by detecting all signals from a large number of cells together. The developed sensor employs the same measurement principle as the patch-clamp technique. A single cell is sucked and clamped in a micro hole with detecting electrode. Detecting electrodes in arrayed micro holes are connected together for the batch-measurement of signals a large number of cell signals. Furthermore, an array of sensors for batch-measurement is designed to improve measurement-throughput to satisfy requirements for the drug screening application.

  1. Multiple Cross Displacement Amplification Combined with Gold Nanoparticle-Based Lateral Flow Biosensor for Detection of Vibrio parahaemolyticus

    PubMed Central

    Wang, Yi; Li, Hui; Li, Dongxun; Li, Kewei; Wang, Yan; Xu, Jianguo; Ye, Changyun

    2016-01-01

    Vibrio parahaemolyticus (V. parahaemolyticus) is a marine seafood-borne pathogen causing severe illnesses in humans and aquatic animals. In the present study, multiple cross displacement amplification was combined with a lateral flow biosensor (MCDA-LFB) to detect the toxR gene of V. parahaemolyticus in DNA extracts from pure cultures and spiked oyster homogenates. Amplification was carried out at a constant temperature (62°C) for only 30 min, and amplification products were directly applied to the biosensor. The entire process, including oyster homogenate processing (30 min), isothermal amplification (30 min) and results indicating (∼2 min), could be completed within 65 min. Amplification product was detectable from as little as 10 fg of pure V. parahaemolyticus DNA and from approximately 4.2 × 102 CFU in 1 mL of oyster homogenate. No cross-reaction with other Vibrio species and with non-Vibrio species was observed. Therefore, the MCDA-LFB method established in the current report is suitable for the rapid screening of V. parahaemolyticus in clinical, food, and environmental samples. PMID:28066368

  2. In Vivo Imaging of Diacylglycerol at the Cytoplasmic Leaflet of Plant Membranes.

    PubMed

    Vermeer, Joop E M; van Wijk, Ringo; Goedhart, Joachim; Geldner, Niko; Chory, Joanne; Gadella, Theodorus W J; Munnik, Teun

    2017-07-01

    Diacylglycerol (DAG) is an important intermediate in lipid biosynthesis and plays key roles in cell signaling, either as a second messenger itself or as a precursor of phosphatidic acid. Methods to identify distinct DAG pools have proven difficult because biochemical fractionation affects the pools, and concentrations are limiting. Here, we validate the use of a genetically encoded DAG biosensor in living plant cells. The sensor is composed of a fusion between yellow fluorescent protein and the C1a domain of protein kinase C (YFP-C1aPKC) that specifically binds DAG, and was stably expressed in suspension-cultured tobacco BY-2 cells and whole Arabidopsis thaliana plants. Confocal imaging revealed that the majority of the YFP-C1aPKC fluorescence did not locate to membranes but was present in the cytosol and nucleus. Treatment with short-chain DAG or PMA (phorbol-12-myristate-13-acetate), a phorbol ester that binds the C1a domain of PKC, caused the recruitment of the biosensor to the plasma membrane. These results indicate that the biosensor works and that the basal DAG concentration in the cytoplasmic leaflet of membranes (i.e. accessible to the biosensor) is in general too low, and confirms that the known pools in plastids, the endoplasmic reticulum and mitochondria are located at the luminal face of these compartments (i.e. inaccessible to the biosensor). Nevertheless, detailed further analysis of different cells and tissues discovered four novel DAG pools, namely at: (i) the trans-Golgi network; (ii) the cell plate during cytokinesis; (iii) the plasma membrane of root epidermal cells in the transition zone, and (iv) the apex of growing root hairs. The results provide new insights into the spatiotemporal dynamics of DAG in plants and offer a new tool to monitor this in vivo. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  3. Monitoring Mitochondrial Pyruvate Carrier Activity in Real Time Using a BRET-Based Biosensor: Investigation of the Warburg Effect.

    PubMed

    Compan, Vincent; Pierredon, Sandra; Vanderperre, Benoît; Krznar, Petra; Marchiq, Ibtissam; Zamboni, Nicola; Pouyssegur, Jacques; Martinou, Jean-Claude

    2015-08-06

    The transport of pyruvate into mitochondria requires a specific carrier, the mitochondrial pyruvate carrier (MPC). The MPC represents a central node of carbon metabolism, and its activity is likely to play a key role in bioenergetics. Until now, investigation of the MPC activity has been limited. However, the recent molecular identification of the components of the carrier has allowed us to engineer a genetically encoded biosensor and to monitor the activity of the MPC in real time in a cell population or in a single cell. We report that the MPC activity is low in cancer cells, which mainly rely on glycolysis to generate ATP, a characteristic known as the Warburg effect. We show that this low activity can be reversed by increasing the concentration of cytosolic pyruvate, thus increasing oxidative phosphorylation. This biosensor represents a unique tool to investigate carbon metabolism and bioenergetics in various cell types. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Novel Biosensor of Membrane Protein Proximity Based on Fluorogen Activated Proteins.

    PubMed

    Vasilev, Kalin V; Gallo, Eugenio; Shank, Nathaniel; Jarvik, Jonathan W

    2016-01-01

    We describe a novel biosensor system for reporting proximity between cell surface proteins in live cultured cells. The biosensor takes advantage of recently developed fluorogen-activating proteins (FAPs) that display fluorescence only when bound to otherwise-nonfluorescent fluorogen molecules. To demonstrate feasibility for the approach, two recombinant rapamycin-binding proteins were expressed as single-pass plasma membrane proteins in HeLa cells; one of the proteins (scAvd- FRB) carried an extracellular avidin tag; the other (HL1-TO1-FKBP) carried an extracellular FAP. Cells were incubated with a membrane-impermeable bivalent ligand (biotin-PEG2000-DIR) consisting of biotin joined to a dimethyl-indole red (DIR) fluorogen by a polyethylene glycol linker, thus tethering the fluorogen to the scAvd-FRB fusion protein. Addition of rapamycin, which promotes FKBP-FRB dimerization and thereby brings the FAP in close proximity to the tethered fluorogen, led to a significant increase in DIR fluorescence. We call the new proximity assay TEFLA, for tethered fluorogen assay.

  5. Exploiting NanoLuc luciferase for smartphone-based bioluminescence cell biosensor for (anti)-inflammatory activity and toxicity.

    PubMed

    Cevenini, Luca; Calabretta, Maria Maddalena; Lopreside, Antonia; Tarantino, Giuseppe; Tassoni, Annalisa; Ferri, Maura; Roda, Aldo; Michelini, Elisa

    2016-12-01

    The availability of smartphones with high-performance digital image sensors and processing power has completely reshaped the landscape of point-of-need analysis. Thanks to the high maturity level of reporter gene technology and the availability of several bioluminescent proteins with improved features, we were able to develop a bioluminescence smartphone-based biosensing platform exploiting the highly sensitive NanoLuc luciferase as reporter. A 3D-printed smartphone-integrated cell biosensor based on genetically engineered Hek293T cells was developed. Quantitative assessment of (anti)-inflammatory activity and toxicity of liquid samples was performed with a simple and rapid add-and-measure procedure. White grape pomace extracts, known to contain several bioactive compounds, were analyzed, confirming the suitability of the smartphone biosensing platform for analysis of untreated complex biological matrices. Such approach could meet the needs of small medium enterprises lacking fully equipped laboratories for first-level safety tests and rapid screening of new bioactive products. Graphical abstract Smartphone-based bioluminescence cell biosensor.

  6. Advantages and application of label-free detection assays in drug screening.

    PubMed

    Cunningham, Brian T; Laing, Lance G

    2008-08-01

    Adoption is accelerating for a new family of label-free optical biosensors incorporated into standard format microplates owing to their ability to enable highly sensitive detection of small molecules, proteins and cells for high-throughput drug discovery applications. Label-free approaches are displacing other detection technologies owing to their ability to provide simple assay procedures for hit finding/validation, accessing difficult target classes, screening the interaction of cells with drugs and analyzing the affinity of small molecule inhibitors to target proteins. This review describes several new drug discovery applications that are under development for microplate-based photonic crystal optical biosensors and the key issues that will drive adoption of the technology. Microplate-based optical biosensors are enabling a variety of cell-based assays, inhibition assays, protein-protein binding assays and protein-small molecule binding assays to be performed with high-throughput and high sensitivity.

  7. Microbial fuel cells for biosensor applications.

    PubMed

    Yang, Huijia; Zhou, Minghua; Liu, Mengmeng; Yang, Weilu; Gu, Tingyue

    2015-12-01

    Microbial fuel cells (MFCs) face major hurdles for real-world applications as power generators with the exception of powering small sensor devices. Despite tremendous improvements made in the last two decades, MFCs are still too expensive to build and operate and their power output is still too small. In view of this, in recently years, intensive researches have been carried out to expand the applications into other areas such as acid and alkali production, bioremediation of aquatic sediments, desalination and biosensors. Unlike power applications, MFC sensors have the immediate prospect to be practical. This review covers the latest developments in various proposed biosensor applications using MFCs including monitoring microbial activity, testing biochemical oxygen demand, detection of toxicants and detection of microbial biofilms that cause biocorrosion.

  8. Toxicity assessment using different bioassays and microbial biosensors.

    PubMed

    Hassan, Sedky H A; Van Ginkel, Steven W; Hussein, Mohamed A M; Abskharon, Romany; Oh, Sang-Eun

    2016-01-01

    Toxicity assessment of water streams, wastewater, and contaminated sediments, is a very important part of environmental pollution monitoring. Evaluation of biological effects using a rapid, sensitive and cost effective method can indicate specific information on ecotoxicity assessment. Recently, different biological assays for toxicity assessment based on higher and lower organisms such as fish, invertebrates, plants and algal cells, and microbial bioassays have been used. This review focuses on microbial biosensors as an analytical device for environmental, food, and biomedical applications. Different techniques which are commonly used in microbial biosensing include amperometry, potentiometry, conductometry, voltammetry, microbial fuel cells, fluorescence, bioluminescence, and colorimetry. Examples of the use of different microbial biosensors in assessing a variety of environments are summarized. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Optical fiber-based biosensors.

    PubMed

    Monk, David J; Walt, David R

    2004-08-01

    This review outlines optical fiber-based biosensor research from January 2001 through September 2003 and was written to complement the previous review in this journal by Marazuela and Moreno-Bondi. Optical fiber-based biosensors combine the use of a biological recognition element with an optical fiber or optical fiber bundle. They are classified by the nature of the biological recognition element used for sensing: enzyme, antibody/antigen (immunoassay), nucleic acid, whole cell, and biomimetic, and may be used for a variety of analytes ranging from metals and chemicals to physiological materials.

  10. Recent Advances in Application of Biosensors in Tissue Engineering

    PubMed Central

    Paul, Arghya; Lee, Yong-kyu; Jaffa, Ayad A.

    2014-01-01

    Biosensors research is a fast growing field in which tens of thousands of papers have been published over the years, and the industry is now worth billions of dollars. The biosensor products have found their applications in numerous industries including food and beverages, agricultural, environmental, medical diagnostics, and pharmaceutical industries and many more. Even though numerous biosensors have been developed for detection of proteins, peptides, enzymes, and numerous other biomolecules for diverse applications, their applications in tissue engineering have remained limited. In recent years, there has been a growing interest in application of novel biosensors in cell culture and tissue engineering, for example, real-time detection of small molecules such as glucose, lactose, and H2O2 as well as serum proteins of large molecular size, such as albumin and alpha-fetoprotein, and inflammatory cytokines, such as IFN-g and TNF-α. In this review, we provide an overview of the recent advancements in biosensors for tissue engineering applications. PMID:25165697

  11. Recent advances in application of biosensors in tissue engineering.

    PubMed

    Hasan, Anwarul; Nurunnabi, Md; Morshed, Mahboob; Paul, Arghya; Polini, Alessandro; Kuila, Tapas; Al Hariri, Moustafa; Lee, Yong-kyu; Jaffa, Ayad A

    2014-01-01

    Biosensors research is a fast growing field in which tens of thousands of papers have been published over the years, and the industry is now worth billions of dollars. The biosensor products have found their applications in numerous industries including food and beverages, agricultural, environmental, medical diagnostics, and pharmaceutical industries and many more. Even though numerous biosensors have been developed for detection of proteins, peptides, enzymes, and numerous other biomolecules for diverse applications, their applications in tissue engineering have remained limited. In recent years, there has been a growing interest in application of novel biosensors in cell culture and tissue engineering, for example, real-time detection of small molecules such as glucose, lactose, and H2O2 as well as serum proteins of large molecular size, such as albumin and alpha-fetoprotein, and inflammatory cytokines, such as IFN-g and TNF-α. In this review, we provide an overview of the recent advancements in biosensors for tissue engineering applications.

  12. Investigating the effect of design parameters on the response time of a highly sensitive microbial hydrogen sulfide biosensor based on oxygen consumption.

    PubMed

    Vosoughi, Amin; Yazdian, Fatemeh; Amoabediny, Ghassem; Hakim, Maziar

    2015-08-15

    A novel hydrogen sulfide microbial biosensor was developed based on investigating the influence of four design parameters: cell concentration, immobilization bed type, hydrogen sulfide concentration, and geometrical shape of the biosensor. Thiobacillus thioparus was used as the recognition element and it was immobilized on sodium alginate as well as agarose bed. The results were optimized by the application of statistical optimization software based on response time of the system. Oxygen reduction was considered as the detection sign. Sodium alginate solution with a concentration of 2.3% (w/v) and optical density of 10 at 605 nm was found as the optimum conditions for immobilization with response time of 72s . Optimum response time of immobilized T. thioparus on agarose was also found equal to 120 s at agarose concentration of 1.2% (w/v) and optical density of 10.83. Performance of the biosensor in different temperatures, pH and agitation speeds was also analyzed. The designed biosensor could detect concentrations of hydrogen sulfide as low as 0.5 ppm. T. thioparus could retain 99% of the original activity in both systems, after ten days passing the fabrication. A fractal analysis was also done theoretically to investigate the diffusion of oxygen in immobilized cells which showed a satisfactory value of oxygen take up by the immobilized cells. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Microbially derived biosensors for diagnosis, monitoring and epidemiology.

    PubMed

    Chang, Hung-Ju; Voyvodic, Peter L; Zúñiga, Ana; Bonnet, Jérôme

    2017-09-01

    Living cells have evolved to detect and process various signals and can self-replicate, presenting an attractive platform for engineering scalable and affordable biosensing devices. Microbes are perfect candidates: they are inexpensive and easy to manipulate and store. Recent advances in synthetic biology promise to streamline the engineering of microbial biosensors with unprecedented capabilities. Here we review the applications of microbially-derived biosensors with a focus on environmental monitoring and healthcare applications. We also identify critical challenges that need to be addressed in order to translate the potential of synthetic microbial biosensors into large-scale, real-world applications. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  14. Nanoengineered optical urea biosensor for estimating hemodialysis parameters in spent dialysate.

    PubMed

    Swati, M; Hase, N K; Srivastava, Rohit

    2010-08-31

    An optical biosensing scheme based on urease encapsulated calcium alginate microspheres which are coated with polyelectrolyte nanofilms predominantly composed of cresol red (CR) dye is demonstrated in this paper. The dye molecules within the nanofilms are deposited via the layer-by-layer (LbL) self-assembly technique on the microspheres and used as the optical transducer. A flow through cell constructed using a cuvette attached to a fiber optic spectrometer was used to determine the response of the biosensor to standard urea solutions of different concentrations. The change in pH and the absorbance ratio was monitored with time and these results were used for measurements of urea concentrations in the spent dialysate fluid. The biological parameters controlling hemodialysis such as dialyzer clearance or Kt/V and percent removed urea (PRU) have also been reported. The results demonstrate that the urea biosensor is pH reversible with a sensitivity of 0.09 pH units/min and is able to detect a change of 0.005 ratio units in urea concentration ranging 0.1-60 mg dL(-1). The response time of the sensor was calculated as 8 min while the detection range of urea covered the levels that are present in the spent dialysate fluid. The results obtained in the analysis of biological samples were in good agreement with those obtained by a reference method, showing no significant differences at a confidence level of 95%. 2010 Elsevier B.V. All rights reserved.

  15. Immobilization free electrochemical biosensor for folate receptor in cancer cells based on terminal protection.

    PubMed

    Ni, Jiancong; Wang, Qingxiang; Yang, Weiqiang; Zhao, Mengmeng; Zhang, Ying; Guo, Longhua; Qiu, Bin; Lin, Zhenyu; Yang, Huang-Hao

    2016-12-15

    The determination of folate receptor (FR) that over expressed in vast quantity of cancerous cells frequently is significant for the clinical diagnosis and treatment of cancers. Many DNA-based electrochemical biosensors have been developed for FR detection with high selectivity and sensitivity, but most of them need complicated immobilization of DNA on the electrode surface firstly, which is tedious and therefore results in the poor reproducibility. In this study, a simple, sensitive, and selective electrochemical FR biosensor in cancer cells has been proposed, which combines the advantages of the convenient immobilization-free homogeneous indium tin oxide (ITO)-based electrochemical detection strategy and the high selectivity of the terminal protection of small molecule linked DNA. The small molecule of folic acid (FA) and an electroactive molecule of ferrocence (Fc) were tethered to 3'- and 5'-end of an arbitrary single-stranded DNA (ssDNA), respectively, forming the FA-ssDNA-Fc complex. In the absence of the target FR, the FA-ssDNA-Fc was degraded by exonuclease I (Exo I) from 3'-end and produced a free Fc, diffusing freely to the ITO electrode surface and resulting in strong electrochemical signal. When the target FR was present, the FA-ssDNA-Fc was bound to FR through specific interaction with FA anchored at the 3'-end, effectively protecting the ssDNA strand from hydrolysis by Exo I. The FR-FA-ssDNA-Fc could not diffuse easily to the negatively charged ITO electrode surface due to the electrostatic repulsion between the DNA strand and the negatively charged ITO electrode, so electrochemical signal reduced. The decreased electrochemical signal has a linear relationship with the logarithm of FR concentration in range of 10fM to 10nM with a detection limit of 3.8fM (S/N=3). The proposed biosensor has been applied to detect FR in HeLa cancer cells, and the decreased electrochemical signal has a linear relationship with the logarithm of cell concentration ranging from 100-10000cell/mL. Compared with the traditional heterogeneous electrochemical FR biosensors, the proposed biosensor owns the merits of the simplicity and high specificity, presenting the great potential application in the area of early diagnosis of cancers. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Label-free optical biosensor for real-time monitoring the cytotoxicity of xenobiotics: A proof of principle study on glyphosate.

    PubMed

    Farkas, Eniko; Szekacs, Andras; Kovacs, Boglarka; Olah, Marianna; Horvath, Robert; Szekacs, Inna

    2018-06-05

    Rapid and inexpensive biosensor technologies allowing real-time analysis of biomolecular and cellular events have become the basis of next-generation cell-based screening techniques. Our work opens up novel opportunities in the application of the high-throughput label-free Epic BenchTop optical biosensor in cell toxicity studies. The Epic technology records integrated cellular responses about changes in cell morphology and dynamic mass redistribution of cellular contents at the 100-150 nm layer above the sensor surface. The aim of the present study was to apply this novel technology to identify the effect of the herbicide Roundup Classic, its co-formulant polyethoxylated tallow amine (POEA), and its active ingredient glyphosate, on MC3T3-E1 cells adhered on the biosensor surface. The half maximal inhibitory concentrations of Roundup Classic, POEA and glyphosate upon 1 h of exposure were found to be 0.024%, 0.021% and 0.163% in serum-containing medium and 0.028%, 0.019% and 0.538% in serum-free conditions, respectively (at concentrations equivalent to the diluted Roundup solution). These results showed a good correlation with parallel end-point assays, demonstrating the outstanding utility of the Epic technique in cytotoxicity screening, allowing not only high-throughput, real-time detection, but also reduced assay run time and cytotoxicity assessment at end-points far before cell death would occur. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. A portable bioluminescence engineered cell-based biosensor for on-site applications.

    PubMed

    Roda, Aldo; Cevenini, Luca; Michelini, Elisa; Branchini, Bruce R

    2011-04-15

    We have developed a portable biosensing device based on genetically engineered bioluminescent (BL) cells. Cells were immobilized on a 4 × 3 multiwell cartridge using a new biocompatible matrix that preserved their vitality. Using a fiber optic taper, the cartridge was placed in direct contact with a cooled CCD sensor to image and quantify the BL signals. Yeast and bacterial cells were engineered to express recognition elements, whose interaction with the analyte led to luciferase expression, via reporter gene technology. Three different biosensors were developed. The first detects androgenic compounds using yeast cells carrying a green-emitting P. pyralis luciferase regulated by the human androgen receptor and a red mutant of the same species as internal vitality control. The second biosensor detects two classes of compounds (androgens and estrogens) using yeast strains engineered to express green-or red-emitting mutant firefly luciferases in response to androgens or estrogens, respectively. The third biosensor detects lactose analogue isopropyl β-d-1-thiogalactopyranoside using two E. coli strains. One strain exploits the lac operon as recognition element for the expression of P. pyralis luciferase. The other strain serves as a vitality control expressing Gaussia princeps luciferase, which requires a different luciferin substrate. The immobilized cells were stable for up to 1 month. The analytes could be detected at nanomolar levels with good precision and accuracy when the specific signal was corrected using the internal vitality control. This portable device can be used for on-site multiplexed bioassays for different compound classes. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. A novel electrochemical biosensor based on polyadenine modified aptamer for label-free and ultrasensitive detection of human breast cancer cells.

    PubMed

    Wang, Kun; He, Meng-Qi; Zhai, Fu-Heng; He, Rong-Huan; Yu, Yong-Liang

    2017-05-01

    Simple, rapid, sensitive, and specific detection of cancer cells plays a pivotal role in the diagnosis and prognosis of cancer. A sandwich electrochemical biosensor was developed based on polyadenine (polydA)-aptamer modified gold electrode (GE) and polydA-aptamer functionalized gold nanoparticles/graphene oxide (AuNPs/GO) hybrid for the label-free and selective detection of breast cancer cells (MCF-7) via a differential pulse voltammetry (DPV) technique. Due to the intrinsic affinity between multiple consecutive adenines of polydA sequences and gold, polydA modified aptamer instead of thiol terminated aptamer was immobilized on the surface of GE and AuNPs/GO. The label-free MCF-7 cells could be recognized by polydA-aptamer and self-assembled onto the surface of GE. The polydA-aptamer functionalized AuNPs/GO hybrid could further bind to MCF-7 cells to form a sandwich sensing system. Characterization of the surface modified GE was carried out by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) using Fe(CN) 6 3-/4- as a redox probe. Under the optimized experimental conditions, a detection limit of 8 cellsmL -1 (3σ/slope) was obtained for MCF-7 cells by the present electrochemical biosensor, along with a linear range of 10-10 5 cellsmL -1 . By virtue of excellent sensitivity, specificity and repeatability, the present electrochemical biosensor provides a potential application in point-of-care cancer diagnosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Forchlorfenuron detection based on its inhibitory effect towards catalase immobilized on boron nitride substrate.

    PubMed

    Xu, Qin; Cai, Lijuan; Zhao, Huijie; Tang, Jiaqian; Shen, Yuanyuan; Hu, Xiaoya; Zeng, Haibo

    2015-01-15

    An enzymatic procedure based on a catalase biosensor for the detection of forchlorfenuron (CPPU) has been reported in this work. Catalase was immobilized on boron nitride (BN) sheets dispersed in chitosan by adsorption. The immobilized catalase exhibited direct electron transfer character and excellent electrocatalytic activity towards H2O2 reduction. After introducing CPPU into the H2O2 containing phosphate buffer solution, the catalase-catalyzed H2O2 reduction current decreased. By measuring the current decrease, CPPU can be determined in the range of 0.5-10.0 µM with the detection limit of 0.07 μM. The non-competitive inhibition behavior of CPPU towards catalase was verified by the Lineweaver-Burk plots. Long stability character has been ascribed to this biosensor. Possible use of this biosensor in flow systems is illustrated. The proposed biosensor has been successfully applied to CPPU determination in fruits samples with satisfactory results. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Microfluidic-integrated biosensors: prospects for point-of-care diagnostics.

    PubMed

    Kumar, Suveen; Kumar, Saurabh; Ali, Md Azahar; Anand, Pinki; Agrawal, Ved Varun; John, Renu; Maji, Sagar; Malhotra, Bansi D

    2013-11-01

    There is a growing demand to integrate biosensors with microfluidics to provide miniaturized platforms with many favorable properties, such as reduced sample volume, decreased processing time, low cost analysis and low reagent consumption. These microfluidics-integrated biosensors would also have numerous advantages such as laminar flow, minimal handling of hazardous materials, multiple sample detection in parallel, portability and versatility in design. Microfluidics involves the science and technology of manipulation of fluids at the micro- to nano-liter level. It is predicted that combining biosensors with microfluidic chips will yield enhanced analytical capability, and widen the possibilities for applications in clinical diagnostics. The recent developments in microfluidics have helped researchers working in industries and educational institutes to adopt some of these platforms for point-of-care (POC) diagnostics. This review focuses on the latest advancements in the fields of microfluidic biosensing technologies, and on the challenges and possible solutions for translation of this technology for POC diagnostic applications. We also discuss the fabrication techniques required for developing microfluidic-integrated biosensors, recently reported biomarkers, and the prospects of POC diagnostics in the medical industry. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Assessing activity of Hepatitis A virus 3C protease using a cyclized luciferase-based biosensor.

    PubMed

    Zhou, Junwei; Wang, Dang; Xi, Yongqiang; Zhu, Xinyu; Yang, Yuting; Lv, Mengting; Luo, Chuanzhen; Chen, Jiyao; Ye, Xu; Fang, Liurong; Xiao, Shaobo

    2017-07-08

    Hepatitis A is an acute infection caused by Hepatitis A virus (HAV), which is widely distributed throughout the world. The HAV 3C cysteine protease (3C pro ), an important nonstructural protein, is responsible for most cleavage within the viral polyprotein and is critical for the processes of viral replication. Our group has previously demonstrated that HAV 3C pro cleaves human NF-κB essential modulator (NEMO), a kinase required in interferon signaling. Based on this finding, we generated four luciferase-based biosensors containing the NEMO sequence (PVLKAQ↓ADIYKA) that is cleaved by HAV 3C pro and/or the Nostoc punctiforme DnaE intein, to monitor the activity of HAV 3C pro in human embryonic kidney cells (HEK-293T). Western blotting showed that HAV 3C pro recognized and cleaved the NEMO cleavage sequence incorporated in the four biosensors, whereas only one cyclized luciferase-based biosensor (233-DnaE-HAV, 233DH) showed a measurable and reliable increase in firefly luciferase activity, with very low background, in the presence of HAV 3C pro . With this biosensor (233DH), we monitored HAV 3C pro activity in HEK-293T cells, and tested it against a catalytically deficient mutant HAV 3C pro and other virus-encoded proteases. The results showed that the activity of this luciferase biosensor is specifically dependent on HAV 3C pro . Collectively, our data demonstrate that the luciferase biosensor developed here might provide a rapid, sensitive, and efficient evaluation of HAV 3C pro activity, and should extend our better understanding of the biological relevance of HAV 3C pro . Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Phase sensitive spectral domain interferometry for label free biomolecular interaction analysis and biosensing applications

    NASA Astrophysics Data System (ADS)

    Chirvi, Sajal

    Biomolecular interaction analysis (BIA) plays vital role in wide variety of fields, which include biomedical research, pharmaceutical industry, medical diagnostics, and biotechnology industry. Study and quantification of interactions between natural biomolecules (proteins, enzymes, DNA) and artificially synthesized molecules (drugs) is routinely done using various labeled and label-free BIA techniques. Labeled BIA (Chemiluminescence, Fluorescence, Radioactive) techniques suffer from steric hindrance of labels on interaction site, difficulty of attaching labels to molecules, higher cost and time of assay development. Label free techniques with real time detection capabilities have demonstrated advantages over traditional labeled techniques. The gold standard for label free BIA is surface Plasmon resonance (SPR) that detects and quantifies the changes in refractive index of the ligand-analyte complex molecule with high sensitivity. Although SPR is a highly sensitive BIA technique, it requires custom-made sensor chips and is not well suited for highly multiplexed BIA required in high throughput applications. Moreover implementation of SPR on various biosensing platforms is limited. In this research work spectral domain phase sensitive interferometry (SD-PSI) has been developed for label-free BIA and biosensing applications to address limitations of SPR and other label free techniques. One distinct advantage of SD-PSI compared to other label-free techniques is that it does not require use of custom fabricated biosensor substrates. Laboratory grade, off-the-shelf glass or plastic substrates of suitable thickness with proper surface functionalization are used as biosensor chips. SD-PSI is tested on four separate BIA and biosensing platforms, which include multi-well plate, flow cell, fiber probe with integrated optics and fiber tip biosensor. Sensitivity of 33 ng/ml for anti-IgG is achieved using multi-well platform. Principle of coherence multiplexing for multi-channel label-free biosensing applications is introduced. Simultaneous interrogation of multiple biosensors is achievable with a single spectral domain phase sensitive interferometer by coding the individual sensograms in coherence-multiplexed channels. Experimental results demonstrating multiplexed quantitative biomolecular interaction analysis of antibodies binding to antigen coated functionalized biosensor chip surfaces on different platforms are presented.

  3. A novel self-powered and sensitive label-free DNA biosensor in microbial fuel cell.

    PubMed

    Asghary, Maryam; Raoof, Jahan Bakhsh; Rahimnejad, Mostafa; Ojani, Reza

    2016-08-15

    In this work, a novel self-powered, sensitive, low-cost, and label-free DNA biosensor is reported by applying a two-chambered microbial fuel cell (MFC) as a power supply. A graphite electrode and an Au nanoparticles modified graphite electrode (AuNP/graphite electrode) were used as anode and cathode in the MFC system, respectively. The active biocatalyst in the anodic chamber was a mixed culture of microorganisms. The sensing element of the biosensor was fabricated by the well-known Au-thiol binding the ssDNA probe on the surface of an AuNP/graphite cathode. Electrons produced by microorganisms were transported from the anode to the cathode through an external circuit, which could be detected by the terminal multi-meter detector. The difference between power densities of the ssDNA probe modified cathode in the absence and presence of complementary sequence served as the detection signal of the DNA hybridization with detection limit of 3.1nM. Thereafter, this biosensor was employed for diagnosis and determination of complementary sequence in a human serum sample. The hybridization specificity studies further revealed that the developed DNA biosensor could distinguish fully complementary sequences from one-base mismatched and non-complementary sequences. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Kinetics of antigen binding to arrays of antibodies in different sized spots

    NASA Technical Reports Server (NTRS)

    Sapsford, K. E.; Liron, Z.; Shubin, Y. S.; Ligler, F. S.

    2001-01-01

    A fluorescence-based array biosensor has been developed which can measure the binding kinetics of an antigen to an immobilized antibody in real time. A patterned array of antibodies immobilized on the surface of a planar waveguide was used to capture a Cy5-labeled antigen present in a solution that was continuously flowed over the surface. The CCD image of the waveguide was monitored continuously for 25 min. The resulting exponential rise in fluorescence signal was determined by image analysis software and fitted to a reaction-limited kinetics model, giving a kf of 3.6 x 10(5) M(-1) s(-1). Different spot sizes were then patterned on the surface of the waveguide using either a PDMS flow cell or laser exposure, producing width sizes ranging from 80 to 1145 microm. It was demonstrated that under flow conditions, the reduction of spot size did not alter the association rate of the antigen with immobilized antibody; however, as the spot width decreased to < 200 nm, the signal intensity also decreased.

  5. Fabrication of mediator-free hybrid nano-interfaced electrochemical biosensor for monitoring cancer cell proliferation.

    PubMed

    Madhurantakam, Sasya; Jayanth Babu, K; Balaguru Rayappan, John Bosco; Krishnan, Uma Maheswari

    2017-01-15

    Glucose, a chief energy source in cellular metabolism, has a significant role in cell proliferation. Cancer cells utilize more glucose than normal cells to meet the energy demand arising due to their uncontrolled proliferation. The present work reports the development of a nano-interfaced amperometric biosensor for rapid and accurate monitoring of glucose utilization by cancer cells. A hybrid nano-interface comprising a blend of carbon nanotubes (CNTs) and graphene (GR) was employed to enhance the surface area of the working electrode and favour direct electron transfer. Glucose oxidase (GOx) immobilized on the interface serves as the sensing element due to its high selectivity and sensitivity towards glucose. Utilization of glucose was monitored at pre-determined time intervals in MiaPaCa-2 cancer cells. The results obtained from the amperometric technique were compared with the values obtained from a commercial glucometer. Alamar blue assay was performed to check the proliferation rate of the cells. A good correlation was obtained between the proliferation rate and glucose utilization. The designed biosensor was found to be unaffected by the presence of potential interferents and hence may serve as a novel in vitro tool to rapidly quantify the proliferation rates of cancer cells in response to different treatment strategies. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. 1-D grating based SPR biosensor for the detection of lung cancer biomarkers using Vroman effect

    NASA Astrophysics Data System (ADS)

    Teotia, Pradeep Kumar; Kaler, R. S.

    2018-01-01

    Grating based surface plasmon resonance waveguide biosensor have been reported for the detection of lung cancer biomarkers using Vroman effect. The proposed grating based multilayered biosensor is designed with high detection accuracy for Epidermal growth factor receptor (EGFR) and also analysed to show high detection accuracy with acceptable sensitivity for both cancer biomarkers. The introduction of periodic grating with multilayer metals generates a good resonance that make it possible for early detection of cancerous cells. Using finite difference time domain method, it is observed wavelength of biosensor get red-shifted on variations of the refractive index due to the presence of both the cancerous bio-markers. The reported detection accuracy and sensitivity of proposed biosensor is quite acceptable for both lung cancer biomarkers i.e. Carcinoembryonic antigen (CEA) and Epidermal growth factor receptor (EGFR) which further offer us label free early detection of lung cancer using these biomarkers.

  7. Application of the SSB biosensor to study in vitro transcription.

    PubMed

    Cook, Alexander; Hari-Gupta, Yukti; Toseland, Christopher P

    2018-02-12

    Gene expression, catalysed by RNA polymerases (RNAP), is one of the most fundamental processes in living cells. The majority of methods to quantify mRNA are based upon purification of the nucleic acid which leads to experimental inaccuracies and loss of product, or use of high cost dyes and sensitive spectrophotometers. Here, we describe the use of a fluorescent biosensor based upon the single stranded binding (SSB) protein. In this study, the SSB biosensor showed similar binding properties to mRNA, to that of its native substrate, single-stranded DNA (ssDNA). We found the biosensor to be reproducible with no associated loss of product through purification, or the requirement for expensive dyes. Therefore, we propose that the SSB biosensor is a useful tool for comparative measurement of mRNA yield following in vitro transcription. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Semi-autonomous inline water analyzer: design of a common light detector for bacterial, phage, and immunological biosensors.

    PubMed

    Descamps, Elodie C T; Meunier, Damien; Brutesco, Catherine; Prévéral, Sandra; Franche, Nathalie; Bazin, Ingrid; Miclot, Bertrand; Larosa, Philippe; Escoffier, Camille; Fantino, Jean-Raphael; Garcia, Daniel; Ansaldi, Mireille; Rodrigue, Agnès; Pignol, David; Cholat, Pierre; Ginet, Nicolas

    2017-01-01

    The use of biosensors as sensitive and rapid alert systems is a promising perspective to monitor accidental or intentional environmental pollution, but their implementation in the field is limited by the lack of adapted inline water monitoring devices. We describe here the design and initial qualification of an analyzer prototype able to accommodate three types of biosensors based on entirely different methodologies (immunological, whole-cell, and bacteriophage biosensors), but whose responses rely on the emission of light. We developed a custom light detector and a reaction chamber compatible with the specificities of the three systems and resulting in statutory detection limits. The water analyzer prototype resulting from the COMBITOX project can be situated at level 4 on the Technology Readiness Level (TRL) scale and this technical advance paves the way to the use of biosensors on-site.

  9. Simultaneous topographic and amperometric membrane mapping using an AFM probe integrated biosensor.

    PubMed

    Stanca, Sarmiza Elena; Csaki, Andrea; Urban, Matthias; Nietzsche, Sandor; Biskup, Christoph; Fritzsche, Wolfgang

    2011-02-15

    The investigation of the plasma membrane with intercorrelated multiparameter techniques is a prerequisite for understanding its function. Presented here, is a simultaneous electrochemical and topographic study of the cell membrane using a miniaturized amperometric enzymatic biosensor. The fabrication of this biosensor is also reported. The biosensor combines a scanning force microscopy (AFM) gold-coated cantilever and an enzymatic transducer layer of peroxidases (PODs). When these enzymes are brought in contact with the substrate, the specific redox reaction produces an electric current. The intensity of this current is detected simultaneously with the surface imaging. For sensor characterization, hydroquinone-2-carboxylic acid (HQ) is selected as an intrinsic source of H(2)O(2). HQ has been electrochemically regenerated by the reduction of antraquinone-2-carboxylic acid (AQ). The biosensor reaches the steady state value of the current intensity in 1 ± 0.2s. Copyright © 2010 Elsevier B.V. All rights reserved.

  10. Genomic and Phenotypic Characterization of Yeast Biosensor for Deep-space Radiation

    NASA Technical Reports Server (NTRS)

    Marina, Diana B.; Santa Maria, Sergio; Bhattacharya, Sharmila

    2016-01-01

    The BioSentinel mission was selected to launch as a secondary payload onboard NASA Exploration Mission 1 (EM-1) in 2018. In BioSentinel, the budding yeast Saccharomyces cerevisiae will be used as a biosensor to measure the long-term impact of deep-space radiation to living organisms. In the 4U-payload, desiccated yeast cells from different strains will be stored inside microfluidic cards equipped with 3-color LED optical detection system to monitor cell growth and metabolic activity. At different times throughout the 12-month mission, these cards will be filled with liquid yeast growth media to rehydrate and grow the desiccated cells. The growth and metabolic rates of wild-type and radiation-sensitive strains in deep-space radiation environment will be compared to the rates measured in the ground- and microgravity-control units. These rates will also be correlated with measurements obtained from onboard physical dosimeters. In our preliminary long-term desiccation study, we found that air-drying yeast cells in 10% trehalose is the best method of cell preservation in order to survive the entire 18-month mission duration (6-month pre-launch plus 12-month full-mission periods). However, our study also revealed that desiccated yeast cells have decreasing viability over time when stored in payload-like environment. This suggests that the yeast biosensor will have different population of cells at different time points during the long-term mission. In this study, we are characterizing genomic and phenotypic changes in our yeast biosensor due to long-term storage and desiccation. For each yeast strain that will be part of the biosensor, several clones were reisolated after long-term storage by desiccation. These clones were compared to their respective original isolate in terms of genomic composition, desiccation tolerance and radiation sensitivity. Interestingly, clones from a radiation-sensitive mutant have better desiccation tolerance compared to their original isolate without losing radiation sensitivity. We employed Next-Generation Sequencing technology to better understand this phenotypic variation. Current effort is focusing on the analysis of high-throughput sequencing data to look for genomic changes in these reisolated clones compared to their original isolate.

  11. Acoustic and hybrid 3D-printed electrochemical biosensors for the real-time immunodetection of liver cancer cells (HepG2).

    PubMed

    Damiati, Samar; Küpcü, Seta; Peacock, Martin; Eilenberger, Christoph; Zamzami, Mazin; Qadri, Ishtiaq; Choudhry, Hani; Sleytr, Uwe B; Schuster, Bernhard

    2017-08-15

    This study presents an efficient acoustic and hybrid three-dimensional (3D)-printed electrochemical biosensors for the detection of liver cancer cells. The biosensors function by recognizing the highly expressed tumor marker CD133, which is located on the surface of liver cancer cells. Detection was achieved by recrystallizing a recombinant S-layer fusion protein (rSbpA/ZZ) on the surface of the sensors. The fused ZZ-domain enables immobilization of the anti-CD133 antibody in a defined manner. These highly accessible anti-CD133 antibodies were employed as a sensing layer, thereby enabling the efficient detection of liver cancer cells (HepG2). The recognition of HepG2 cells was investigated in situ using a quartz crystal microbalance with dissipation monitoring (QCM-D), which enabled the label-free, real-time detection of living cells on the modified sensor surface under controlled conditions. Furthermore, the hybrid 3D additive printing strategy for biosensors facilitates both rapid development and small-scale manufacturing. The hybrid strategy of combining 3D-printed parts and more traditionally fabricated parts enables the use of optimal materials: a ceramic substrate with noble metals for the sensing element and 3D-printed capillary channels to guide and constrain the clinical sample. Cyclic voltammetry (CV) measurements confirmed the efficiency of the fabricated sensors. Most importantly, these sensors offer low-cost and disposable detection platforms for real-world applications. Thus, as demonstrated in this study, both fabricated acoustic and electrochemical sensing platforms can detect cancer cells and therefore may have further potential in other clinical applications and drug-screening studies. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Progress in chemical luminescence-based biosensors: A critical review.

    PubMed

    Roda, Aldo; Mirasoli, Mara; Michelini, Elisa; Di Fusco, Massimo; Zangheri, Martina; Cevenini, Luca; Roda, Barbara; Simoni, Patrizia

    2016-02-15

    Biosensors are a very active research field. They have the potential to lead to low-cost, rapid, sensitive, reproducible, and miniaturized bioanalytical devices, which exploit the high binding avidity and selectivity of biospecific binding molecules together with highly sensitive detection principles. Of the optical biosensors, those based on chemical luminescence detection (including chemiluminescence, bioluminescence, electrogenerated chemiluminescence, and thermochemiluminescence) are particularly attractive, due to their high-to-signal ratio and the simplicity of the required measurement equipment. Several biosensors based on chemical luminescence have been described for quantitative, and in some cases multiplex, analysis of organic molecules (such as hormones, drugs, pollutants), proteins, and nucleic acids. These exploit a variety of miniaturized analytical formats, such as microfluidics, microarrays, paper-based analytical devices, and whole-cell biosensors. Nevertheless, despite the high analytical performances described in the literature, the field of chemical luminescence biosensors has yet to demonstrate commercial success. This review presents the main recent advances in the field and discusses the approaches, challenges, and open issues, with the aim of stimulating a broader interest in developing chemical luminescence biosensors and improving their commercial exploitation. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Integrated electrochemical gluconic acid biosensor based on self-assembled monolayer-modified gold electrodes. Application to the analysis of gluconic acid in musts and wines.

    PubMed

    Campuzano, S; Gamella, M; Serra, B; Reviejo, A J; Pingarrón, J M

    2007-03-21

    An integrated amperometric gluconic acid biosensor constructed using a gold electrode (AuE) modified with a self-assembled monolayer (SAM) of 3-mercaptopropionic acid (MPA) on which gluconate dehydrogenase (GADH, 0.84 U) and the mediator tetrathiafulvalene (TTF, 1.5 micromol) were coimmobilized by covering the electrode surface with a dialysis membrane is reported. The working conditions selected were Eapp=+0.15 V and 25+/-1 degrees C. The useful lifetime of one single TTF-GADH-MPA-AuE was surprisingly long. After 53 days of continuous use, the biosensor exhibited 86% of the original sensitivity. A linear calibration plot was obtained for gluconic acid over the 6.0x10(-7) to 2.0x10(-5) M concentration range, with a limit of detection of 1.9x10(-7) M. The effect of potential interferents (glucose, fructose, galactose, arabinose, and tartaric, citric, malic, ascorbic, gallic, and caffeic acids) on the biosensor response was evaluated. The behavior of the biosensor in a flow-injection system in connection with amperometric detection was tested. The analytical usefulness of the biosensor was evaluated by determining gluconic acid in wine and must samples, and the results obtained were validated by comparison with those provided by using a commercial enzyme test kit.

  14. Label-free silicon nanodots featured ratiometric fluorescent aptasensor for lysosomal imaging and pH measurement.

    PubMed

    Zhang, Yanan; Guo, Shan; Cheng, Shibo; Ji, Xinghu; He, Zhike

    2017-08-15

    The homeostasis of lysosomal pH is crucial in cell physiology. Developing small fluorescent nanosensors for lysosome imaging and ratiometric measurement of pH is highly demanded yet challenging. Herein, a pH-sensitive fluorescein tagged aptamer AS1411 has been utilized to covalently modify the label-free fluorescent silicon nanodots via a crosslinker for construction of a ratiometric pH biosensor. The established aptasensor exhibits the advantages of ultrasmall size, hypotoxicity, excellent pH reversibility and good photostability, which favors its application in an intracellular environment. Using human breast MCF-7 cancer cells and MCF-10A normal cells as the model, this aptasensor shows cell specificity for cancer cells and displays a wide pH response range of 4.5-8.0 in living cells. The results demonstrate that the pH of MCF-7 cells is 5.1, which is the expected value for acidic organelles. Lysosome imaging and accurate measurement of pH in MCF-7 cells have been successfully conducted based on this nanosensor via fluorescent microscopy and flow cytometry. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Metabolic oxygen consumption measurement with a single-cell biosensor after particle microbeam irradiation

    PubMed Central

    Zhang, Bo; Messerli, Mark; Randers-Pehrson, Gerhard; Hei, Tom K.; Brenner, David J.

    2015-01-01

    A noninvasive, self-referencing biosensor/probe system has been integrated into the Columbia University Radiological Research Accelerator Facility Microbeam II end station. A single-cell oxygen consumption measurement has been conducted with this type of oxygen probe in 37°C Krebs–Ringer Bicarbonate buffer immediately before and after a single-cell microbeam irradiation. It is the first such measurement made for a microbeam irradiation, and a six fold increment of oxygen flux induced during a 15-s period of time has been observed following radiation exposure. The experimental procedure and the results are discussed. PMID:25335641

  16. Rapid, portable detection of endocrine disrupting chemicals through ligand-nuclear hormone receptor interactions.

    PubMed

    Hunt, J Porter; Schinn, Song-Min; Jones, Matthew D; Bundy, Bradley C

    2017-12-04

    Endocrine disrupting chemicals (EDC) are structurally diverse compounds that can interact with nuclear hormone receptors, posing significant risk to human and ecological health. Unfortunately, many conventional biosensors have been too structure-specific, labor-intensive or laboratory-oriented to detect broad ranges of EDC effectively. Recently, several technological advances are providing more rapid, portable, and affordable detection of endocrine-disrupting activity through ligand-nuclear hormone receptor interactions. Here, we overview these recent advances applied to EDC biosensors - including cell lyophilization, cell immobilization, cell-free systems, smartphone-based signal detection, and improved competitive binding assays.

  17. The development of graphene-based devices for cell biology research

    NASA Astrophysics Data System (ADS)

    Yan, Zhi-Qin; Zhang, Wei

    2014-06-01

    Graphene has emerged as a new carbon nanoform with great potential in many applications due to its exceptional physical and chemical properties. Especially, graphene and its derivatives are also gaining a lot of interest in the biomedical field as new components for biosensors, tissue engineering, and drug delivery. This review presents unique properties of graphene, the bio-effects of graphene and its derivatives, especially their interactions with cells and the development of graphene-based biosensors and nanomedicines for cancer diagnosis and treatment.

  18. Nomad Biosensors: A New Multiplexed Technology for the Screening of GPCR Ligands.

    PubMed

    Mella, Rosa M; Kortazar, Danel; Roura-Ferrer, Meritxell; Salado, Clarisa; Valcárcel, María; Castilla, Amaia; Villacé, Patricia

    2018-06-01

    Nomad Technology (Innoprot [Innovative Technologies in Biological Systems], Derio, Spain), a novel tool for multiplexing high-throughput cell-based G protein-coupled receptor (GPCR) assays, is described in this work. This new technology comprises a family of fluorescent biosensors called Nomad Biosensors that allow for the measurement of responses mediated by G proteins through their interactions with second-messenger transduction proteins. GPCRs are one of the largest protein families of receptors in eukaryotes, and their signaling mediates important physiological processes within cells. Thus, GPCRs are associated with a wide variety of diseases, and considered major targets in therapeutic research. Nomad constitutes a novel tool for unraveling the mechanism of GPCR signal transduction by simultaneously tracing different pathways. GPCR activation changes the structural folding of the biosensor and promotes its vesicularization, as well as an increase in the fluorescence intensity. Based on this technology, the MPX Nomad cellular model was developed to discriminate between the Ca 2+ -mediated pathway and the cyclic adenosine monophosphate (cAMP)-mediated pathway. To validate this model, endothelin receptor B (ET B R) was coexpressed into the MPX Nomad cell line and assessed with a specific agonist, an antagonist, and a chemical library of compounds. Nomad Technology optimizes the identification of novel GPCR ligands and enables the testing of large numbers of compounds.

  19. Amine oxidase-based biosensors for spermine and spermidine determination.

    PubMed

    Boffi, Alberto; Favero, Gabriele; Federico, Rodolfo; Macone, Alberto; Antiochia, Riccarda; Tortolini, Cristina; Sanzó, Gabriella; Mazzei, Franco

    2015-02-01

    The present work describes the development and optimization of electrochemical biosensors for specific determination of the biogenic polyamine spermine (Spm) and spermidine (Spmd) whose assessment represents a novel important analytical tool in food analysis and human diagnostics. These biosensors have been prepared using novel engineered enzymes: polyamine oxidase (PAO) endowed with selectivity towards Spm and Spmd and spermine oxidase (SMO) characterized by strict specificity towards Spm. The current design entails biosensors in which the enzymes were entrapped in poly(vinyl alcohol) bearing styrylpyridinium groups (PVA-SbQ), a photocrosslinkable gel, onto an electrode surface. Screen-printed electrodes (SPEs) were used as electrochemical transducers for enzymatically produced hydrogen peroxide, operating at different potential vs Ag/AgCl according to the material of the working electrode (WE): +700 mV for graphite (GP) or -100 mV for Prussian blue (PB)-modified SPE, respectively. Biosensor performances were evaluated by means of flow injection amperometric (FIA) measurements. The modified electrodes showed good sensitivity, long-term stability and reproducibility. Under optimal conditions, the PAO biosensor showed a linear range 0.003-0.3 mM for Spm and 0.01-0.4 mM for Spmd, while with the SMO biosensor, a linear range of 0.004-0.5 mM for Spm has been obtained. The main kinetic parameters apparent Michaelis constant (K M), turnover number (K cat) and steady-state current (I max) were determined. The proposed device was then applied to the determination of biogenic amines in blood samples. The results obtained were in good agreement with those obtained with the GC-MS reference method.

  20. A heparin-functionalized carbon nanotube-based affinity biosensor for dengue virus.

    PubMed

    Wasik, Daniel; Mulchandani, Ashok; Yates, Marylynn V

    2017-05-15

    Dengue virus is an arthropod-borne virus transmitted primarily by Aedes mosquitos and is major cause of disease in tropical and subtropical regions. Colloquially known as Dengue Fever, infection can cause hemorrhagic disorders and death in humans and non-human primates. We report a novel electronic biosensor based on a single-walled carbon nanotube network chemiresistive transducer that is functionalized with heparin for low-cost, label-free, ultra-sensitive, and rapid detection of whole dengue virus (DENV). Heparin, an analog of the heparan sulfate proteoglycans that are receptors for dengue virus during infection of Vero cells and hepatocytes, was used for the first time in a biosensor as a biorecognition element instead of traditional antibody. Detection of DENV in viral culture supernatant has similar sensitivity as the corresponding viral titer in phosphate buffer despite the presence of growth media and Vero cell lysate. The biosensor demonstrated sensitivity within the clinically relevant range for humans and infected Aedes aegypti. It has potential application in clinical diagnosis and can improve point-of-care diagnostics of dengue infection. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Application of a luminescent bacterial biosensor for the detection of tetracyclines in routine analysis of poultry muscle samples.

    PubMed

    Pikkemaat, M G; Rapallini, M L B A; Karp, M T; Elferink, J W A

    2010-08-01

    Tetracyclines are extensively used in veterinary medicine. For the detection of tetracycline residues in animal products, a broad array of methods is available. Luminescent bacterial biosensors represent an attractive inexpensive, simple and fast method for screening large numbers of samples. A previously developed cell-biosensor method was subjected to an evaluation study using over 300 routine poultry samples and the results were compared with a microbial inhibition test. The cell-biosensor assay yielded many more suspect samples, 10.2% versus 2% with the inhibition test, which all could be confirmed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Only one sample contained a concentration above the maximum residue limit (MRL) of 100 microg kg(-1), while residue levels in most of the suspect samples were very low (<10 microg kg(-1)). The method appeared to be specific and robust. Using an experimental set-up comprising the analysis of a series of three sample dilutions allowed an appropriate cut-off for confirmatory analysis, limiting the number of samples and requiring further analysis to a minimum.

  2. Evaluation of the antioxidants activities of four Slovene medicinal plant species by traditional and novel biosensory assays.

    PubMed

    Kintzios, Spiridon; Papageorgiou, Katerina; Yiakoumettis, Iakovos; Baricevic, Dea; Kusar, Anita

    2010-11-02

    We investigated the antioxidant activity of methanolic and water extracts of Slovene accessions of four medicinal plant species (Salvia officinalis, Achillea millefolium, Origanum vulgare subsp. vulgare and Gentiana lutea). Their free radical-scavenging activity against the DPPH. free radical was studied with a spectrophotometric assay, while their biological activity with the help of a laboratory-made biosensor based on immobilized fibroblast cells (assay duration: 3 min). The observed antioxidant activity of the extracts from the four investigated medicinal plant species was dependent on both the solvent used for extraction and the assay method (conventional or biosensor-based). Independently from the assay method and the solvent used for extraction, the lowest scavenging activity was observed in root extracts of G. lutea. Treatment of the immobilized cells with the plant extracts resulted in an increase of the cell membrane potential (membrane hyperpolarization), possibly due to the reduction of membrane damage due to oxidation. The novel cell biosensor could be utilized as a rapid, high throughput tool for screening the antioxidant properties of plant-derived compounds. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  3. The ML1Nx2 Phosphatidylinositol 3,5-Bisphosphate Probe Shows Poor Selectivity in Cells.

    PubMed

    Hammond, Gerald R V; Takasuga, Shunsuke; Sasaki, Takehiko; Balla, Tamas

    2015-01-01

    Phosphatidylinositol (3,5)-bisphosphate (PtdIns(3,5)P2) is a quantitatively minor phospholipid in eukaryotic cells that plays a fundamental role in regulating endocytic membrane traffic. Despite its clear importance for cellular function and organism physiology, mechanistic details of its biology have so far not been fully elucidated. In part, this is due to a lack of experimental tools that specifically probe for PtdIns(3,5)P2 in cells to unambiguously identify its dynamics and site(s) of action. In this study, we have evaluated a recently reported PtdIns(3,5)P2 biosensor, GFP-ML1Nx2, for its veracity as such a probe. We report that, in live cells, the localization of this biosensor to sub-cellular compartments is largely independent of PtdIns(3,5)P2, as assessed after pharmacological, chemical genetic or genomic interventions that block the lipid's synthesis. We therefore conclude that it is unwise to interpret the localization of ML1Nx2 as a true and unbiased biosensor for PtdIns(3,5)P2.

  4. Guide to red fluorescent proteins and biosensors for flow cytometry.

    PubMed

    Piatkevich, Kiryl D; Verkhusha, Vladislav V

    2011-01-01

    Since the discovery of the first red fluorescent protein (RFP), named DsRed, 12 years ago, a wide pallet of red-shifted fluorescent proteins has been cloned and biotechnologically developed into monomeric fluorescent probes for optical microscopy. Several new types of monomeric RFPs that change the emission wavelength either with time, called fluorescent timers, or after a brief irradiation with violet light, known as photoactivatable proteins, have been also engineered. Moreover, RFPs with a large Stokes shift of fluorescence emission have been recently designed. Because of their distinctive excitation and fluorescence detection conditions developed specifically for microscopy, these fluorescent probes can be suboptimal for flow cytometry. Here, we have selected and summarized the advanced orange, red, and far-red fluorescent proteins with the properties specifically required for the flow cytometry applications. Their effective brightness was calculated for the laser sources available for the commercial flow cytometers and sorters. Compatibility of the fluorescent proteins of different colors in a multiparameter flow cytometry was determined. Novel FRET pairs, utilizing RFPs, RFP-based intracellular biosensors, and their application to a high-throughput screening, are also discussed. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Bulk-modified modified screen-printing carbon electrodes with both lactate oxidase (LOD) and horseradish peroxide (HRP) for the determination of L-lactate in flow injection analysis mode.

    PubMed

    Ghamouss, Fouad; Ledru, Sophie; Ruillé, Nadine; Lantier, Françoise; Boujtita, Mohammed

    2006-06-16

    A screen-printed carbon electrode modified with both HRP and LOD (SPCE-HRP/LOD) has been developed for the determination of L-lactate concentration in real samples. The resulting SPCE-HRP/LOD was prepared in a one-step procedure, and was then optimised as an amperometric biosensor operating at [0, -100]mV versus Ag/AgCl for L-lactate determination in flow injection mode. A significant improvement in the reproducibility (coefficient variation of about 10%) of the preparation of the biosensors was obtained when graphite powder was modified with LOD in the presence of HRP previously oxidised by periodate ion (IO4-). Optimisation studies were performed by examining the effects of LOD loading, periodation step and rate of the binder on analytical performances of SPCE-HRP/LOD. The sensitivity of the optimised SPCE-HRP/LOD to L-lactate was 0.84 nAL micromol(-1) in a detection range between 10 and 180 microMol. The possibility of using the developed biosensor to determine L-lactate concentrations in various dairy products was also evaluated.

  6. Positioning of the sensor cell on the sensing area using cell trapping pattern in incubation type planar patch clamp biosensor.

    PubMed

    Wang, Zhi-Hong; Takada, Noriko; Uno, Hidetaka; Ishizuka, Toru; Yawo, Hiromu; Urisu, Tsuneo

    2012-08-01

    Positioning the sensor cell on the micropore of the sensor chip and keeping it there during incubation are problematic tasks for incubation type planar patch clamp biosensors. To solve these problems, we formed on the Si sensor chip's surface a cell trapping pattern consisting of a lattice pattern with a round area 5 μm deep and with the micropore at the center of the round area. The surface of the sensor chip was coated with extra cellular matrix collagen IV, and HEK293 cells on which a chimera molecule of channel-rhodopsin-wide-receiver (ChR-WR) was expressed, were then seeded. We examined the effects of this cell trapping pattern on the biosensor's operation. In the case of a flat sensor chip without a cell trapping pattern, it took several days before the sensor cell covered the micropore and formed an almost confluent state. As a result, multi-cell layers easily formed and made channel current measurements impossible. On the other hand, the sensor chip with cell trapping pattern easily trapped cells in the round area, and formed the colony consisted of the cell monolayer covering the micropore. A laser (473 nm wavelength) induced channel current was observed from the whole cell arrangement formed using the nystatin perforation technique. The observed channel current characteristics matched measurements made by using a pipette patch clamp. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Steady-State Acceptor Fluorescence Anisotropy Imaging under Evanescent Excitation for Visualisation of FRET at the Plasma Membrane

    PubMed Central

    Devauges, Viviane; Matthews, Daniel R.; Aluko, Justin; Nedbal, Jakub; Levitt, James A.; Poland, Simon P.; Coban, Oana; Weitsman, Gregory; Monypenny, James; Ng, Tony; Ameer-Beg, Simon M.

    2014-01-01

    We present a novel imaging system combining total internal reflection fluorescence (TIRF) microscopy with measurement of steady-state acceptor fluorescence anisotropy in order to perform live cell Förster Resonance Energy Transfer (FRET) imaging at the plasma membrane. We compare directly the imaging performance of fluorescence anisotropy resolved TIRF with epifluorescence illumination. The use of high numerical aperture objective for TIRF required correction for induced depolarization factors. This arrangement enabled visualisation of conformational changes of a Raichu-Cdc42 FRET biosensor by measurement of intramolecular FRET between eGFP and mRFP1. Higher activity of the probe was found at the cell plasma membrane compared to intracellularly. Imaging fluorescence anisotropy in TIRF allowed clear differentiation of the Raichu-Cdc42 biosensor from negative control mutants. Finally, inhibition of Cdc42 was imaged dynamically in live cells, where we show temporal changes of the activity of the Raichu-Cdc42 biosensor. PMID:25360776

  8. Recent advances in material science for developing enzyme electrodes.

    PubMed

    Sarma, Anil Kumar; Vatsyayan, Preety; Goswami, Pranab; Minteer, Shelley D

    2009-04-15

    The enzyme-modified electrode is the fundamental component of amperometric biosensors and biofuel cells. The selection of appropriate combinations of materials, such as: enzyme, electron transport mediator, binding and encapsulation materials, conductive support matrix and solid support, for construction of enzyme-modified electrodes governs the efficiency of the electrodes in terms of electron transfer kinetics, mass transport, stability, and reproducibility. This review investigates the varieties of materials that can be used for these purposes. Recent innovation in conductive electro-active polymers, functionalized polymers, biocompatible composite materials, composites of transition metal-based complexes and organometallic compounds, sol-gel and hydro-gel materials, nanomaterials, other nano-metal composites, and nano-metal oxides are reviewed and discussed here. In addition, the critical issues related to the construction of enzyme electrodes and their application for biosensor and biofuel cell applications are also highlighted in this article. Effort has been made to cover the recent literature on the advancement of materials sciences to develop enzyme electrodes and their potential applications for the construction of biosensors and biofuel cells.

  9. Detection of esophageal cancer cell by photoelectrochemical Cu2O/ZnO biosensor (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Hsu, Chao-Hsin; Chu, Cheng-Hsun; Chen, Weichung; Wu, I.-Chen; Wu, Ming Tsang; Kuo, Chie-Tong; Tsiang, Raymond Chien-Chao; Wang, Hsiang-Chen

    2016-03-01

    We have demonstrated a Cu2O/ZnO nanorods (NRs) array p-n heterostructures photoelectrochemical biosensor. The electrodeposition of Cu2O at pH 12 acquired the preferably (111) lattice planes, resulting in the largest interfacial electric field between Cu2O and ZnO, which finally led to the highest separation efficiency of photogenerated charge carriers. High verticality ZnO nanorods by seed layer and thermal annealing assist the hydrothermal growth. The optimized Cu2O/ZnO NRs array p-n heterostructures exhibited enhanced PEC performance, such as elevated photocurrent and photoconversion efficiency, as well as excellent sensing performance for the sensitive detection of four strains of different races and different degree of cancer cell which made the device self-powered. We got spectral response characteristics and operating wavelength range of biosensor, and to verify the biological characteristics of cancer cells wafer react with different stages of cancer characterized by a cancer measured reaction experiment.

  10. Direct Electron Transfer of Dehydrogenases for Development of 3rd Generation Biosensors and Enzymatic Fuel Cells.

    PubMed

    Bollella, Paolo; Gorton, Lo; Antiochia, Riccarda

    2018-04-24

    Dehydrogenase based bioelectrocatalysis has been increasingly exploited in recent years in order to develop new bioelectrochemical devices, such as biosensors and biofuel cells, with improved performances. In some cases, dehydrogeases are able to directly exchange electrons with an appropriately designed electrode surface, without the need for an added redox mediator, allowing bioelectrocatalysis based on a direct electron transfer process. In this review we briefly describe the electron transfer mechanism of dehydrogenase enzymes and some of the characteristics required for bioelectrocatalysis reactions via a direct electron transfer mechanism. Special attention is given to cellobiose dehydrogenase and fructose dehydrogenase, which showed efficient direct electron transfer reactions. An overview of the most recent biosensors and biofuel cells based on the two dehydrogenases will be presented. The various strategies to prepare modified electrodes in order to improve the electron transfer properties of the device will be carefully investigated and all analytical parameters will be presented, discussed and compared.

  11. A ratiometric electrochemical biosensor for the exosomal microRNAs detection based on bipedal DNA walkers propelled by locked nucleic acid modified toehold mediate strand displacement reaction.

    PubMed

    Zhang, Jing; Wang, Liang-Liang; Hou, Mei-Feng; Xia, Yao-Kun; He, Wen-Hui; Yan, An; Weng, Yun-Ping; Zeng, Lu-Peng; Chen, Jing-Hua

    2018-04-15

    Sensitive and selective detection of microRNAs (miRNAs) in cancer cells derived exosomes have attracted rapidly growing interest owing to their potential in diagnostic and prognostic applications. Here, we design a ratiometric electrochemical biosensor based on bipedal DNA walkers for the attomolar detection of exosomal miR-21. In the presence of miR-21, DNA walkers are activated to walk continuously along DNA tracks, resulting in conformational changes as well as considerable increases of the signal ratio produced by target-respond and target-independent reporters. With the signal cascade amplification of DNA walkers, the biosensor exhibits ultrahigh sensitivity with the limit of detection (LOD) down to 67 aM. Furthermore, owing to the background-correcting function of target-independent reporters termed as reference reporters, the biosensor is robust and stable enough to be applied in the detection of exosomal miR-21 extracted from breast cancer cell lines and serums. In addition, because locked nucleic acid (LNA) modified toehold mediate strand displacement reaction (TMSDR) has extraordinary discriminative ability, the biosensor displays excellent selectivity even against the single-base-mismatched target. It is worth mentioning that our sensor is regenerative and stable for at least 5 cycles without diminution in sensitivity. In brief, the high sensitivity, selectivity and reproducibility, together with cheap, make the proposed biosensor a promising approach for exosomal miRNAs detection, in conjunction with early point-of-care testing (POCT) of cancer. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Future of biosensors: a personal view.

    PubMed

    Scheller, Frieder W; Yarman, Aysu; Bachmann, Till; Hirsch, Thomas; Kubick, Stefan; Renneberg, Reinhard; Schumacher, Soeren; Wollenberger, Ulla; Teller, Carsten; Bier, Frank F

    2014-01-01

    Biosensors representing the technological counterpart of living senses have found routine application in amperometric enzyme electrodes for decentralized blood glucose measurement, interaction analysis by surface plasmon resonance in drug development, and to some extent DNA chips for expression analysis and enzyme polymorphisms. These technologies have already reached a highly advanced level and need minor improvement at most. The dream of the "100-dollar" personal genome may come true in the next few years provided that the technological hurdles of nanopore technology or of polymerase-based single molecule sequencing can be overcome. Tailor-made recognition elements for biosensors including membrane-bound enzymes and receptors will be prepared by cell-free protein synthesis. As alternatives for biological recognition elements, molecularly imprinted polymers (MIPs) have been created. They have the potential to substitute antibodies in biosensors and biochips for the measurement of low-molecular-weight substances, proteins, viruses, and living cells. They are more stable than proteins and can be produced in large amounts by chemical synthesis. Integration of nanomaterials, especially of graphene, could lead to new miniaturized biosensors with high sensitivity and ultrafast response. In the future individual therapy will include genetic profiling of isoenzymes and polymorphic forms of drug-metabolizing enzymes especially of the cytochrome P450 family. For defining the pharmacokinetics including the clearance of a given genotype enzyme electrodes will be a useful tool. For decentralized online patient control or the integration into everyday "consumables" such as drinking water, foods, hygienic articles, clothing, or for control of air conditioners in buildings and cars and swimming pools, a new generation of "autonomous" biosensors will emerge.

  13. Improved genetically-encoded, FlincG-type fluorescent biosensors for neural cGMP imaging

    PubMed Central

    Bhargava, Yogesh; Hampden-Smith, Kathryn; Chachlaki, Konstantina; Wood, Katherine C.; Vernon, Jeffrey; Allerston, Charles K.; Batchelor, Andrew M.; Garthwaite, John

    2013-01-01

    Genetically-encoded biosensors are powerful tools for understanding cellular signal transduction mechanisms. In aiming to investigate cGMP signaling in neurones using the EGFP-based fluorescent biosensor, FlincG (fluorescent indicator for cGMP), we encountered weak or non-existent fluorescence after attempted transfection with plasmid DNA, even in HEK293T cells. Adenoviral infection of HEK293T cells with FlincG, however, had previously proved successful. Both constructs were found to harbor a mutation in the EGFP domain and had a tail of 17 amino acids at the C-terminus that differed from the published sequence. These discrepancies were systematically examined, together with mutations found beneficial for the related GCaMP family of Ca2+ biosensors, in a HEK293T cell line stably expressing both nitric oxide (NO)-activated guanylyl cyclase and phosphodiesterase-5. Restoring the mutated amino acid improved basal fluorescence whereas additional restoration of the correct C-terminal tail resulted in poor cGMP sensing as assessed by superfusion of either 8-bromo-cGMP or NO. Ultimately, two improved FlincGs were identified: one (FlincG2) had the divergent tail and gave moderate basal fluorescence and cGMP response amplitude and the other (FlincG3) had the correct tail, a GCaMP-like mutation in the EGFP region and an N-terminal tag, and was superior in both respects. All variants tested were strongly influenced by pH over the physiological range, in common with other EGFP-based biosensors. Purified FlincG3 protein exhibited a lower cGMP affinity (0.89 μM) than reported for the original FlincG (0.17 μM) but retained rapid kinetics and a 230-fold selectivity over cAMP. Successful expression of FlincG2 or FlincG3 in differentiated N1E-115 neuroblastoma cells and in primary cultures of hippocampal and dorsal root ganglion cells commends them for real-time imaging of cGMP dynamics in neural (and other) cells, and in their subcellular specializations. PMID:24068983

  14. Electrospin-coating of nitrocellulose membrane enhances sensitivity in nucleic acid-based lateral flow assay.

    PubMed

    Yew, Chee-Hong Takahiro; Azari, Pedram; Choi, Jane Ru; Li, Fei; Pingguan-Murphy, Belinda

    2018-06-07

    Point-of-care biosensors are important tools developed to aid medical diagnosis and testing, food safety and environmental monitoring. Paper-based biosensors, especially nucleic acid-based lateral flow assays (LFA), are affordable, simple to produce and easy to use in remote settings. However, the sensitivity of such assays to infectious diseases has always been a restrictive challenge. Here, we have successfully electrospun polycaprolactone (PCL) on nitrocellulose (NC) membrane to form a hydrophobic coating to reduce the flow rate and increase the interaction rate between the targets and gold nanoparticles-detecting probes conjugates, resulting in the binding of more complexes to the capture probes. With this approach, the sensitivity of the PCL electrospin-coated test strip has been increased by approximately ten-fold as compared to the unmodified test strip. As a proof of concept, this approach holds great potential for sensitive detection of targets at point-of-care testing. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Rapid and label-free bioanalytical method of alpha fetoprotein detection using LSPR chip

    NASA Astrophysics Data System (ADS)

    Kim, Dongjoo; Kim, Jinwoon; Kwak, Cheol Hwan; Heo, Nam Su; Oh, Seo Yeong; Lee, Hoomin; Lee, Go-Woon; Vilian, A. T. Ezhil; Han, Young-Kyu; Kim, Woo-Sik; Kim, Gi-bum; Kwon, Soonjo; Huh, Yun Suk

    2017-07-01

    Alpha fetoprotein (AFP) is a cancer marker, particularly for hepatocellular carcinoma. Normal levels of AFP are less than 20 ng/mL; however, its levels can reach more than 400 ng/mL in patients with HCC. Enzyme linked immunosorbent assay (ELISA) and radioimmunoassay (RIA) have been employed for clinical diagnosis of AFP; however, these methods are time consuming and labor intensive. In this study, we developed a localized surface plasmon resonance (LSPR) based biosensor for simple and rapid detection of AFP. This biosensor consists of a UV-Vis spectrometer, a cuvette cell, and a biosensor chip nanopatterned with gold nanoparticles (AuNPs). In our LSPR biosensor, binding of AFP to the surface of the sensor chip led to an increasing magnitude of the LSPR signals, which was measured by an ultraviolet-visible (UV-Vis) spectrometer. Our LSPR biosensor showed sufficient detectability of AFP at concentrations of 1 ng/mL to 1 μg/mL. Moreover, the overall procedure for detection of AFP was completed within 20 min. This biosensor could also be utilized for a point of care test (POCT) by employing a portable UV-Vis spectrometer. Owing to the simplicity and rapidity of the detection process, our LSPR biosensor is expected to replace traditional diagnostic methods for the early detection of diseases.

  16. Development of novel metabolite-responsive transcription factors via transposon-mediated protein fusion.

    PubMed

    Younger, Andrew K D; Su, Peter Y; Shepard, Andrea J; Udani, Shreya V; Cybulski, Thaddeus R; Tyo, Keith E J; Leonard, Joshua N

    2018-02-01

    Naturally evolved metabolite-responsive biosensors enable applications in metabolic engineering, ranging from screening large genetic libraries to dynamically regulating biosynthetic pathways. However, there are many metabolites for which a natural biosensor does not exist. To address this need, we developed a general method for converting metabolite-binding proteins into metabolite-responsive transcription factors-Biosensor Engineering by Random Domain Insertion (BERDI). This approach takes advantage of an in vitro transposon insertion reaction to generate all possible insertions of a DNA-binding domain into a metabolite-binding protein, followed by fluorescence activated cell sorting to isolate functional biosensors. To develop and evaluate the BERDI method, we generated a library of candidate biosensors in which a zinc finger DNA-binding domain was inserted into maltose binding protein, which served as a model well-studied metabolite-binding protein. Library diversity was characterized by several methods, a selection scheme was deployed, and ultimately several distinct and functional maltose-responsive transcriptional biosensors were identified. We hypothesize that the BERDI method comprises a generalizable strategy that may ultimately be applied to convert a wide range of metabolite-binding proteins into novel biosensors for applications in metabolic engineering and synthetic biology. © The Author(s) 2018. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  17. Towards a subcutaneous optical biosensor based on thermally hydrocarbonised porous silicon.

    PubMed

    Tong, Wing Yin; Sweetman, Martin J; Marzouk, Ezzat R; Fraser, Cara; Kuchel, Tim; Voelcker, Nicolas H

    2016-01-01

    Advanced biosensors in future medicine hinge on the evolvement of biomaterials. Porous silicon (pSi), a generally biodegradable and biocompatible material that can be fabricated to include environment-responsive optical characteristics, is an excellent candidate for in vivo biosensors. However, the feasibility of using this material as a subcutaneously implanted optical biosensor has never been demonstrated. Here, we investigated the stability and biocompatibility of a thermally-hydrocarbonised (THC) pSi optical rugate filter, and demonstrated its optical functionality in vitro and in vivo. We first compared pSi films with different surface chemistries and observed that the material was cytotoxic despite the outstanding stability of the THC pSi films. We then showed that the cytotoxicity correlates with reactive oxygen species levels, which could be mitigated by pre-incubation of THC pSi (PITHC pSi). PITHC pSi facilitates normal cellular phenotypes and is biocompatible in vivo. Importantly, the material also possesses optical properties capable of responding to microenvironmental changes that are readable non-invasively in cell culture and subcutaneous settings. Collectively, we demonstrate, for the first time, that PITHC pSi rugate filters are both biocompatible and optically functional for lab-on-a-chip and subcutaneous biosensing scenarios. We believe that this study will deepen our understanding of cell-pSi interactions and foster the development of implantable biosensors. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Bioelectrochemical biosensor for water toxicity detection: generation of dual signals for electrochemical assay confirmation.

    PubMed

    Yang, Yuan; Wang, Yan-Zhai; Fang, Zhen; Yu, Yang-Yang; Yong, Yang-Chun

    2018-02-01

    Toxicity assessment of water is of great important to the safety of human health and to social security because of more and more toxic compounds that are spilled into the aquatic environment. Therefore, the development of fast and reliable toxicity assessment methods is of great interest and attracts much attention. In this study, by using the electrochemical activity of Shewanella oneidensis MR-1 cells as the toxicity indicator, 3,5-dichlorophenol (DCP) as the model toxic compound, a new biosensor for water toxicity assessment was developed. Strikingly, the presence of DCP in the water significantly inhibited the maximum current output of the S. oneidensis MR-1 in a three-electrode system and also retarded the current evolution by the cells. Under the optimized conditions, the maximum current output of the biosensor was proportional to the concentration of DCP up to 30 mg/L. The half maximal inhibitory concentration of DCP determined by this biosensor is about 14.5 mg/L. Furthermore, simultaneous monitoring of the retarded time (Δt) for current generation allowed the identification of another biosensor signal in response to DCP which could be employed to verify the electrochemical result by dual confirmation. Thus, the present study has provided a reliable and promising approach for water quality assessment and risk warning of water toxicity.

  19. Fluorescent sensors of protein kinases: from basics to biomedical applications.

    PubMed

    Nhu Ngoc Van, Thi; Morris, May C

    2013-01-01

    Protein kinases constitute a major class of enzymes underlying essentially all biological processes. These enzymes present similar structural folds, yet their mechanism of action and of regulation vary largely, as well as their substrate specificity and their subcellular localization. Classical approaches to study the function/activity of protein kinases rely on radioactive endpoint assays, which do not allow for characterization of their dynamic activity in their native environment. The development of fluorescent biosensors has provided a whole new avenue for studying protein kinase behavior and regulation in living cells in real time with high spatial and temporal resolution. Two major classes of biosensors have been developed: genetically encoded single-chain fluorescence resonance energy transfer biosensors and peptide/protein biosensors coupled to small synthetic fluorophores which are sensitive to changes in their environment. In this review, we discuss the developments in fluorescent biosensor technology related to protein kinase sensing and the different strategies employed to monitor protein kinase activity, conformation, or relative abundance, as well as kinase regulation and subcellular dynamics in living cells. Moreover, we discuss their application in biomedical settings, for diagnostics and therapeutics, to image disease progression and monitor response to therapeutics, in drug discovery programs, for high-throughput screening assays, for postscreen characterization of drug candidates, and for clinical evaluation of novel drugs. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Electrochemical processes and mechanistic aspects of field-effect sensors for biomolecules

    PubMed Central

    Huang, Weiguo; Diallo, Abdou Karim; Dailey, Jennifer L.; Besar, Kalpana

    2017-01-01

    Electronic biosensing is a leading technology for determining concentrations of biomolecules. In some cases, the presence of an analyte molecule induces a measured change in current flow, while in other cases, a new potential difference is established. In the particular case of a field effect biosensor, the potential difference is monitored as a change in conductance elsewhere in the device, such as across a film of an underlying semiconductor. Often, the mechanisms that lead to these responses are not specifically determined. Because improved understanding of these mechanisms will lead to improved performance, it is important to highlight those studies where various mechanistic possibilities are investigated. This review explores a range of possible mechanistic contributions to field-effect biosensor signals. First, we define the field-effect biosensor and the chemical interactions that lead to the field effect, followed by a section on theoretical and mechanistic background. We then discuss materials used in field-effect biosensors and approaches to improving signals from field-effect biosensors. We specifically cover the biomolecule interactions that produce local electric fields, structures and processes at interfaces between bioanalyte solutions and electronic materials, semiconductors used in biochemical sensors, dielectric layers used in top-gated sensors, and mechanisms for converting the surface voltage change to higher signal/noise outputs in circuits. PMID:29238595

  1. Post-Translational Modification of Bionanoparticles as a Modular Platform for Biosensor Assembly.

    PubMed

    Sun, Qing; Chen, Qi; Blackstock, Daniel; Chen, Wilfred

    2015-08-25

    Context driven biosensor assembly with modular targeting and detection moieties is gaining significant attentions. Although protein-based nanoparticles have emerged as an excellent platform for biosensor assembly, current strategies of decorating bionanoparticles with targeting and detection moieties often suffer from unfavorable spacing and orientation as well as bionanoparticle aggregation. Herein, we report a highly modular post-translational modification approach for biosensor assembly based on sortase A-mediated ligation. This approach enables the simultaneous modifications of the Bacillus stearothermophilus E2 nanoparticles with different functional moieties for antibody, enzyme, DNA aptamer, and dye decoration. The resulting easy-purification platform offers a high degree of targeting and detection modularity with signal amplification. This flexibility is demonstrated for the detection of both immobilized antigens and cancer cells.

  2. In situ targeting TEM8 via immune response and polypeptide recognition by wavelength-modulated surface plasmon resonance biosensor

    PubMed Central

    Wang, Yimin; Luo, Zewei; Liu, Kunping; Wang, Jie; Duan, Yixiang

    2016-01-01

    There is an increasing interest in real-time and in situ monitoring of living cell activities in life science and medicine. This paper reports a whole cell sensing protocol over the interface of Au film coupled in a wavelength-modulated surface plasmon resonance (WMSPR) biosensor. With dual parabolic mirrors integrated in the sensor, the compact and miniaturized instrument shows satisfactory refractive index sensitivity (2220 nm/RIU) and a high resolution of resonance wavelength shift of 0.3 nm to liquid samples. The affinity interactions between the biomarker of human tumor endothelial marker 8 (TEM8) and antibody (Ab) or specific polypeptide (PEP) were firstly introduced to WMSPR biosensor analysis. Both the interaction events of Ab-cell and PEP-cell over the Au film interface can be recognized by the sensor and the balance time of interactions is about 20 min. The concentration range of Ab for quantitative monitoring of the TEM8 expression on human colon carcinoma SW620 cells was investigated. The present low-cost and time-saving method provides a time resolution of binding specificity between Ab/PEP and TEM8 for real-time analysis of antigen on living tumor cell surface. PMID:26822761

  3. Silicon nanowire based biosensing platform for electrochemical sensing of Mebendazole drug activity on breast cancer cells.

    PubMed

    Shashaani, Hani; Faramarzpour, Mahsa; Hassanpour, Morteza; Namdar, Nasser; Alikhani, Alireza; Abdolahad, Mohammad

    2016-11-15

    Electrochemical approaches have played crucial roles in bio sensing because of their Potential in achieving sensitive, specific and low-cost detection of biomolecules and other bio evidences. Engineering the electrochemical sensing interface with nanomaterials tends to new generations of label-free biosensors with improved performances in terms of sensitive area and response signals. Here we applied Silicon Nanowire (SiNW) array electrodes (in an integrated architecture of working, counter and reference electrodes) grown by low pressure chemical vapor deposition (LPCVD) system with VLS procedure to electrochemically diagnose the presence of breast cancer cells as well as their response to anticancer drugs. Mebendazole (MBZ), has been used as antitubulin drug. It perturbs the anodic/cathodic response of the cell covered biosensor by releasing Cytochrome C in cytoplasm. Reduction of cytochrome C would change the ionic state of the cells monitored by SiNW biosensor. By applying well direct bioelectrical contacts with cancer cells, SiNWs can detect minor signal transduction and bio recognition events, resulting in precise biosensing. Our device detected the trace of MBZ drugs (with the concentration of 2nM) on electrochemical activity MCF-7 cells. Also, experimented biological analysis such as confocal and Flowcytometry assays confirmed the electrochemical results. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Label-free electrochemiluminescence biosensor for ultrasensitive detection of telomerase activity in HeLa cells based on extension reaction and intercalation of Ru(phen)3 (2.).

    PubMed

    Lin, Yue; Yang, Linlin; Yue, Guiyin; Chen, Lifen; Qiu, Bin; Guo, Longhua; Lin, Zhenyu; Chen, Guonan

    2016-10-01

    Telomerase is one of the most common markers of human malignant tumors, such as uterine, stomach, esophageal, breast, colorectal, laryngeal squamous cell, thyroid, bladder, and so on. It is necessary to develop some sensitive but convenient detection methods for telomerase activity determination. In this study, a label-free and ultrasensitive electrochemiluminescence (ECL) biosensor has been fabricated to detect the activity of telomerase extracted from HeLa cells. Thiolated telomerase substrate (TS) primer was immobilized on the gold electrode surface through gold-sulfur (Au-S) interaction and then elongated by telomerase specifically. Then, it was hybridized with complementary DNA to form double-stranded DNA (dsDNA) fragments on the electrode surface, and Ru(phen)3 (2+) has been intercalated into the dsDNA grooves to act as the ECL probe. The enhanced ECL intensity has a linear relationship with the number of HeLa cells in the range of 5∼5000 and with a detection limit of 2 HeLa cells. The proposed ECL biosensor has high specificity to telomerase in the presence of common interferents. The relative standard deviations (RSDs) were <5 % at 100 HeLa cells. The proposed method provides a convenient approach for telomerase-related cancer screening or diagnosis.

  5. Guiding pancreatic beta cells to target electrodes in a whole-cell biosensor for diabetes.

    PubMed

    Pedraza, Eileen; Karajić, Aleksandar; Raoux, Matthieu; Perrier, Romain; Pirog, Antoine; Lebreton, Fanny; Arbault, Stéphane; Gaitan, Julien; Renaud, Sylvie; Kuhn, Alexander; Lang, Jochen

    2015-10-07

    We are developing a cell-based bioelectronic glucose sensor that exploits the multi-parametric sensing ability of pancreatic islet cells for the treatment of diabetes. These cells sense changes in the concentration of glucose and physiological hormones and immediately react by generating electrical signals. In our sensor, signals from multiple cells are recorded as field potentials by a micro-electrode array (MEA). Thus, cell response to various factors can be assessed rapidly and with high throughput. However, signal quality and consequently overall sensor performance rely critically on close cell-electrode proximity. Therefore, we present here a non-invasive method of further exploiting the electrical properties of these cells to guide them towards multiple micro-electrodes via electrophoresis. Parameters were optimized by measuring the cell's zeta potential and modeling the electric field distribution. Clonal and primary mouse or human β-cells migrated directly to target electrodes during the application of a 1 V potential between MEA electrodes for 3 minutes. The morphology, insulin secretion, and electrophysiological characteristics were not altered compared to controls. Thus, cell manipulation on standard MEAs was achieved without introducing any external components and while maintaining the performance of the biosensor. Since the analysis of the cells' electrical activity was performed in real time via on-chip recording and processing, this work demonstrates that our biosensor is operational from the first step of electrically guiding cells to the final step of automatic recognition. Our favorable results with pancreatic islets, which are highly sensitive and fragile cells, are encouraging for the extension of this technique to other cell types and microarray devices.

  6. Nanomaterial-Based Biosensors for Detection of Pesticides and Explosives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jun; Lin, Yuehe

    2009-01-01

    In this chapter, we describe nanomaterial-based biosensors for detecting OP pesticides and explosives. CNTs and functionalized silica nanoparticles have been chosen for this study. The biosensors were combined with the flow-injection system, providing great advantages for onsite, real-time, and continuous detection of environmental pollutants such as OPs and TNT. The sensors take advantage of the electrocatalytic properties of CNTs, which makes it feasible to achieve a sensitive electrochemical detection of the products from enzymatic reactions at low potential. This approach uses a large aspect ratio of silica nanoparticles, which can be used as a carrier for loading a large amountmore » of electroactive species, such as poly(guanine), for amplified detection of explosives. These methods offer a new environmental monitoring tool for rapid, inexpensive, and highly sensitive detection of OPs or TNT compounds.« less

  7. Photosensitive biosensor array system using optical addressing without an addressing circuit on array biochips

    NASA Astrophysics Data System (ADS)

    Ahn, Chang-Geun; Ah, Chil Seong; Kim, Tae-Youb; Park, Chan Woo; Yang, Jong-Heon; Kim, Ansoon; Sung, Gun Yong

    2010-09-01

    This paper introduces a photosensitive biosensor array system with a simple photodiode array that detects photocurrent changes caused by reactions between probe and target molecules. Using optical addressing, the addressing circuit on the array chip is removed for low-cost application, and real cell addressing is achieved using an externally located computer-controllable light-emitting diode array module. The fabricated biosensor array chip shows a good dynamic range of 1-100 ng/mL under prostate-specific antigen detection, with an on-chip resolution of roughly 1 ng/mL.

  8. Self-Powered Forward Error-Correcting Biosensor Based on Integration of Paper-Based Microfluidics and Self-Assembled Quick Response Codes.

    PubMed

    Yuan, Mingquan; Liu, Keng-Ku; Singamaneni, Srikanth; Chakrabartty, Shantanu

    2016-10-01

    This paper extends our previous work on silver-enhancement based self-assembling structures for designing reliable, self-powered biosensors with forward error correcting (FEC) capability. At the core of the proposed approach is the integration of paper-based microfluidics with quick response (QR) codes that can be optically scanned using a smart-phone. The scanned information is first decoded to obtain the location of a web-server which further processes the self-assembled QR image to determine the concentration of target analytes. The integration substrate for the proposed FEC biosensor is polyethylene and the patterning of the QR code on the substrate has been achieved using a combination of low-cost ink-jet printing and a regular ballpoint dispensing pen. A paper-based microfluidics channel has been integrated underneath the substrate for acquiring, mixing and flowing the sample to areas on the substrate where different parts of the code can self-assemble in presence of immobilized gold nanorods. In this paper we demonstrate the proof-of-concept detection using prototypes of QR encoded FEC biosensors.

  9. An effective established biosensor of bifunctional probes-labeled AuNPs combined with LAMP for detection of fish pathogen Streptococcus iniae.

    PubMed

    Zhou, Ya; Xiao, Jingfan; Ma, Xin; Wang, Qiyao; Zhang, Yuanxing

    2018-06-01

    In purpose of valid Streptococcus iniae detection, we established a colorimetric biosensor using gold nanoparticles (AuNPs) labeled with dual functional probes and along with loop-mediated isothermal amplification (LAMP) assay (LAMP-AuNPs). Based on the characteristics of self-aggregation and bio-conjugation with ligands, AuNPs were chosen for observable color change in tandem with LAMP amplification method to reach high sensitivity and easy operation. Meanwhile, the improvement of dual probes that could fully utilize the LAMP product gave the biosensor a stable result exhibition. LAMP-AuNPs targeting gene ftsB, one of the ATP transporter-related genes, turned out favorable specificity in cross reaction among other fish pathogens. The detect limit of 10 2 CFU revealed a better sensitivity compared with polymerase chain reaction (PCR) method and AuNPs lateral flow test strip (LFTS). It was also proved to be effective by zebrafish infection model trials with less than 2-h time consumption and nearly no devices which make it a convenient biosensor for point-to-care S. iniae detection.

  10. Ratiometric Array of Conjugated Polymers-Fluorescent Protein Provides a Robust Mammalian Cell Sensor.

    PubMed

    Rana, Subinoy; Elci, S Gokhan; Mout, Rubul; Singla, Arvind K; Yazdani, Mahdieh; Bender, Markus; Bajaj, Avinash; Saha, Krishnendu; Bunz, Uwe H F; Jirik, Frank R; Rotello, Vincent M

    2016-04-06

    Supramolecular complexes of a family of positively charged conjugated polymers (CPs) and green fluorescent protein (GFP) create a fluorescence resonance energy transfer (FRET)-based ratiometric biosensor array. Selective multivalent interactions of the CPs with mammalian cell surfaces caused differential change in FRET signals, providing a fingerprint signature for each cell type. The resulting fluorescence signatures allowed the identification of 16 different cell types and discrimination between healthy, cancerous, and metastatic cells, with the same genetic background. While the CP-GFP sensor array completely differentiated between the cell types, only partial classification was achieved for the CPs alone, validating the effectiveness of the ratiometric sensor. The utility of the biosensor was further demonstrated in the detection of blinded unknown samples, where 121 of 128 samples were correctly identified. Notably, this selectivity-based sensor stratified diverse cell types in minutes, using only 2000 cells, without requiring specific biomarkers or cell labeling.

  11. The blocking reagent optimization for the magnetoelastic biosensor

    NASA Astrophysics Data System (ADS)

    Hu, Jiajia; Chai, Yating; Horikawa, Shin; Wikle, Howard C.; Wang, Feng'en; Du, Songtao; Chin, Bryan A.; Hu, Jing

    2015-06-01

    The wireless phage-based magnetoelastic (ME) biosensor has proven to be promising for real-time detection of pathogenic bacteria on fresh produces. The ME biosensor consists of a freestanding ME resonator as the signal transducer and filamentous phage as the biomolecular-recognition element, which can specifically bind to a pathogen of interest. Due to the Joule magnetostriction effect, the biosensors can be placed into mechanical resonance when subjected to a time-varying magnetic field alternating at the sensor's resonant frequency. Upon the attachment of the target pathogen, the mass of the biosensor increases, thereby decreasing its resonant frequency. This paper presents an investigation of blocking reagents immobilization for detecting Salmonella Typhimurium on fresh food surfaces. Three different blocking reagents (BSA, SuperBlock blocking buffer, and blocker BLOTTO) were used and compared. The optical microscope was used for bacterial cells binding observation. Student t-test was used to statistically analysis the experiment results. The results shows that SuperBlock blocking buffer and blocker BLOTTO have much better blocking performance than usually used BSA.

  12. Next-generation RNA-based fluorescent biosensors enable anaerobic detection of cyclic di-GMP

    PubMed Central

    Wang, Xin C.; Wilson, Stephen C.; Hammond, Ming C.

    2016-01-01

    Bacteria occupy a diverse set of environmental niches with differing oxygen availability. Anaerobic environments such as mammalian digestive tracts and industrial reactors harbor an abundance of both obligate and facultative anaerobes, many of which play significant roles in human health and biomanufacturing. Studying bacterial function under partial or fully anaerobic conditions, however, is challenging given the paucity of suitable live-cell imaging tools. Here, we introduce a series of RNA-based fluorescent biosensors that respond selectively to cyclic di-GMP, an intracellular bacterial second messenger that controls cellular motility and biofilm formation. We demonstrate the utility of these biosensors in vivo under both aerobic and anaerobic conditions, and we show that biosensor expression does not interfere with the native motility phenotype. Together, our results attest to the effectiveness and versatility of RNA-based fluorescent biosensors, priming further development and application of these and other analogous sensors to study host–microbial and microbial–microbial interactions through small molecule signals. PMID:27382070

  13. Detection of miRNA using a double-strand displacement biosensor with a self-complementary fluorescent reporter.

    PubMed

    Larkey, Nicholas E; Almlie, C Kyle; Tran, Victoria; Egan, Marianne; Burrows, Sean M

    2014-02-04

    Design of rapid, selective, and sensitive DNA and ribonucleic acid (RNA) biosensors capable of minimizing false positives from nuclease degradation is crucial for translational research and clinical diagnostics. We present proof-of-principle studies of an innovative micro-ribonucleic acid (miRNA) reporter-probe biosensor that displaces a self-complementary reporter, while target miRNA binds to the probe. The freed reporter folds into a hairpin structure to induce a decrease in the fluorescent signal. The self-complementarity of the reporter facilitates the reduction of false positives from nuclease degradation. Nanomolar limits of detection and quantitation were capable with this proof-of-principle design. Detection of miRNA occurs within 10 min and does not require any additional hybridization, labeling, or rinsing steps. The potential for medical applications of the reporter-probe biosensor is demonstrated by selective detection of a cancer regulating microRNA, Lethal-7 (Let-7a). Mechanisms for transporting the biosensor across the cell membrane will be the focus of future work.

  14. Enabling systematic interrogation of protein-protein interactions in live cells with a versatile ultra-high-throughput biosensor platform | Office of Cancer Genomics

    Cancer.gov

    The vast datasets generated by next generation gene sequencing and expression profiling have transformed biological and translational research. However, technologies to produce large-scale functional genomics datasets, such as high-throughput detection of protein-protein interactions (PPIs), are still in early development. While a number of powerful technologies have been employed to detect PPIs, a singular PPI biosensor platform featured with both high sensitivity and robustness in a mammalian cell environment remains to be established.

  15. A Novel Early Warning System Based on a Sediment Microbial Fuel Cell for In Situ and Real Time Hexavalent Chromium Detection in Industrial Wastewater.

    PubMed

    Zhao, Shuai; Liu, Pu; Niu, Yongyan; Chen, Zhengjun; Khan, Aman; Zhang, Pengyun; Li, Xiangkai

    2018-02-22

    Hexavalent chromium (Cr(VI)) is a well-known toxic heavy metal in industrial wastewater, but in situ and real time monitoring cannot be achieved by current methods used during industrial wastewater treatment processes. In this study, a Sediment Microbial Fuel Cell (SMFC) was used as a biosensor for in situ real-time monitoring of Cr(VI), which was the organic substrate is oxidized in the anode and Cr(VI) is reduced at the cathode simultaneously. The pH 6.4 and temperature 25 °C were optimal conditions for the operation. Under the optimal conditions, linearity (R² = 0.9935) of the generated voltage was observed in the Cr(VI) concentration range from 0.2 to 0.7 mg/L. The system showed high specificity for Cr(VI), as other co-existing ions such as Cu 2+ , Zn 2+ , and Pb 2+ did not interfere with Cr(VI) detection. In addition, when the sediment MFC-based biosensor was applied for measuring Cr(VI) in actual wastewater samples, a low deviation (<8%) was obtained, which indicated its potential as a reliable biosensor device. MiSeq sequencing results showed that electrochemically active bacteria ( Geobacter and Pseudomonas ) were enriched at least two-fold on the biofilm of the anode in the biosensor as compared to the SMFC without Cr(VI). Cyclic voltammetry curves indicated that a pair of oxidation/reduction peaks appeared at -111 mV and 581 mV, respectively. These results demonstrated that the proposed sediment microbial fuel cell-based biosensor can be applied as an early warning device for real time in situ detection of Cr(VI) in industrial wastewaters.

  16. A Novel Early Warning System Based on a Sediment Microbial Fuel Cell for In Situ and Real Time Hexavalent Chromium Detection in Industrial Wastewater

    PubMed Central

    Zhao, Shuai; Liu, Pu; Niu, Yongyan; Chen, Zhengjun; Khan, Aman; Zhang, Pengyun; Li, Xiangkai

    2018-01-01

    Hexavalent chromium (Cr(VI)) is a well-known toxic heavy metal in industrial wastewater, but in situ and real time monitoring cannot be achieved by current methods used during industrial wastewater treatment processes. In this study, a Sediment Microbial Fuel Cell (SMFC) was used as a biosensor for in situ real-time monitoring of Cr(VI), which was the organic substrate is oxidized in the anode and Cr(VI) is reduced at the cathode simultaneously. The pH 6.4 and temperature 25 °C were optimal conditions for the operation. Under the optimal conditions, linearity (R2 = 0.9935) of the generated voltage was observed in the Cr(VI) concentration range from 0.2 to 0.7 mg/L. The system showed high specificity for Cr(VI), as other co-existing ions such as Cu2+, Zn2+, and Pb2+ did not interfere with Cr(VI) detection. In addition, when the sediment MFC-based biosensor was applied for measuring Cr(VI) in actual wastewater samples, a low deviation (<8%) was obtained, which indicated its potential as a reliable biosensor device. MiSeq sequencing results showed that electrochemically active bacteria (Geobacter and Pseudomonas) were enriched at least two-fold on the biofilm of the anode in the biosensor as compared to the SMFC without Cr(VI). Cyclic voltammetry curves indicated that a pair of oxidation/reduction peaks appeared at −111 mV and 581 mV, respectively. These results demonstrated that the proposed sediment microbial fuel cell-based biosensor can be applied as an early warning device for real time in situ detection of Cr(VI) in industrial wastewaters. PMID:29470394

  17. On-line removal of redox-active interferents by a porous electrode before amperometric blood glucose determination.

    PubMed

    Deng, Chunyan; Peng, Yong; Su, Lei; Liu, You-Nian; Zhou, Feimeng

    2012-03-16

    A porous reticulated vitreous carbon (RVC) electrode and a disk electrode coupled in tandem in an electrochemical flow cell has been used for electrolytic removal of interferents before amperometric glucose detection. The electrolytic efficiency at the upstream RVC electrode is 100% at a flow rate of 0.1 mL min(-1) or lower. Potential interferents such as acetaminophen, ascorbic acid, and uric acid can be completely eliminated by electrolysis at the RVC electrode. A mixed monolayer comprising glucose oxidase (GOD) and ferrocenyl-1-undecanethiol preformed at the downstream gold disk electrode was used as a mediator-based amperometric glucose sensor. The dependence of the amperometric current on the glucose concentration exhibits good linearity across over three orders of magnitude. The glucose measurements were also found to be reproducible (RSD<3.5%) and accurate. Unlike the chemiluminescence method, this device obviates the use of carcinogenic substrates and the glucose sensor performance is independent of the oxygen present in sample. On the basis that the RVC electrode requires minimal cleanup and the GOD-modified electrode remains stable for a week, the electrochemical flow cell should be amenable for automated on-line removal of redox interferents for other types of enzyme-based biosensors. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Toward a solid-phase nucleic acid hybridization assay within microfluidic channels using immobilized quantum dots as donors in fluorescence resonance energy transfer.

    PubMed

    Chen, Lu; Algar, W Russ; Tavares, Anthony J; Krull, Ulrich J

    2011-01-01

    The optical properties and surface area of quantum dots (QDs) have made them an attractive platform for the development of nucleic acid biosensors based on fluorescence resonance energy transfer (FRET). Solid-phase assays based on FRET using mixtures of immobilized QD-oligonucleotide conjugates (QD biosensors) have been developed. The typical challenges associated with solid-phase detection strategies include non-specific adsorption, slow kinetics of hybridization, and sample manipulation. The new work herein has considered the immobilization of QD biosensors onto the surfaces of microfluidic channels in order to address these challenges. Microfluidic flow can be used to dynamically control stringency by adjustment of the potential in an electrokinetic-based microfluidics environment. The shearing force, Joule heating, and the competition between electroosmotic and electrophoretic mobilities allow the optimization of hybridization conditions, convective delivery of target to the channel surface to speed hybridization, amelioration of adsorption, and regeneration of the sensing surface. Microfluidic flow can also be used to deliver (for immobilization) and remove QD biosensors. QDs that were conjugated with two different oligonucleotide sequences were used to demonstrate feasibility. One oligonucleotide sequence on the QD was available as a linker for immobilization via hybridization with complementary oligonucleotides located on a glass surface within a microfluidic channel. A second oligonucleotide sequence on the QD served as a probe to transduce hybridization with target nucleic acid in a sample solution. A Cy3 label on the target was excited by FRET using green-emitting CdSe/ZnS QD donors and provided an analytical signal to explore this detection strategy. The immobilized QDs could be removed under denaturing conditions by disrupting the duplex that was used as the surface linker and thus allowed a new layer of QD biosensors to be re-coated within the channel for re-use of the microfluidic chip.

  19. Label-free in vitro prostate cancer cell detection via photonic-crystal biosensor

    NASA Astrophysics Data System (ADS)

    DeLuna, Frank; Ding, XiaoFei; Sagredo, Ismael; Bustamante, Gilbert; Sun, Lu-Zhe; Ye, Jing Yong

    2018-02-01

    Prostate-specific antigen (PSA) biomarker assays are the current clinical method for mass screening of prostate cancer. However, high false-positive rates are often reported due to PSA's low specificity, leading to an urgent need for the development of a more specific detection system independent of PSA levels. In our previous research, we demonstrated the feasibility of using cellular refractive indices (RI) as a unique contrast parameter to accomplish label-free detection of prostate cancer cells via variance testing, but were unable to determine if a specific cell was cancerous or noncancerous. In this paper, we report the use of our Photonic-Crystal biosensor in a Total-Internal-Reflection (PC-TIR) configuration to construct a label-free imaging system, which allows for the detection of individual prostate cancer cells utilizing cellular RI as the only contrast parameter. Noncancerous prostate (BPH-1) cells and prostate cancer (PC-3) cells were mixed at varied ratios and measured concurrently. Additionally, we isolated and induced PC-3 cells to undergo epithelial-mesenchymal transition (EMT) by exposing these cells to soluble factors such as TGF-β1. The biophysical characteristics of the cellular RI were quantified extensively in comparison to non-induced PC-3 cells as well as BPH-1 cells. EMT is a crucial mechanism for the invasion and metastasis of epithelial tumors characterized by the loss of cell-cell adhesion and increased cell mobility. Our study shows promising clinical potential in utilizing the PC-TIR biosensor imaging system to not only detect prostate cancer cells, but also evaluate prostate cancer progression.

  20. A Biosensor of S100A4 Metastasis Factor Activation: Inhibitor Screening and Cellular Activation Dynamics†

    PubMed Central

    Garrett, Sarah C.; Hodgson, Louis; Rybin, Andrew; Toutchkine, Alexei; Hahn, Klaus M.; Lawrence, David S.; Bresnick, Anne R.

    2011-01-01

    S100A4, a member of the S100 family of Ca2+-binding proteins, displays elevated expression in malignant human tumors compared with benign tumors, and increased expression correlates strongly with poor patient survival. S100A4 has a direct role in metastatic progression, likely due to the modulation of actomyosin cytoskeletal dynamics, which results in increased cellular motility. We developed a fluorescent biosensor (Mero-S100A4) that reports on the Ca2+-bound, activated form of S100A4. Direct attachment of a novel solvatochromatic reporter dye to S100A4 results in a sensor that, upon activation, undergoes a 3-fold enhancement in fluorescence, thus providing a sensitive assay for use in vitro and in vivo. In cells, localized activation of S100A4 at the cell periphery is observed during random migration and following stimulation with lysophosphatidic acid, a known activator of cell motility and proliferation. Additionally, a screen against a library of FDA-approved drugs with the biosensor identified an array of phenothiazines as inhibitors of myosin-II associated S100A4 function. These data demonstrate the utility of the new biosensor both for drug discovery and for probing the cellular dynamics controlled by the S100A4 metastasis factor. PMID:18154362

  1. Amperometric L-glutamate biosensor based on bacterial cell-surface displayed glutamate dehydrogenase.

    PubMed

    Liang, Bo; Zhang, Shu; Lang, Qiaolin; Song, Jianxia; Han, Lihui; Liu, Aihua

    2015-07-16

    A novel L-glutamate biosensor was fabricated using bacteria surface-displayed glutamate dehydrogenase (Gldh-bacteria). Here the cofactor NADP(+)-specific dependent Gldh was expressed on the surface of Escherichia coli using N-terminal region of ice nucleation protein (INP) as the anchoring motif. The cell fractionation assay and SDS-PAGE analysis indicated that the majority of INP-Gldh fusion proteins were located on the surface of cells. The biosensor was fabricated by successively casting polyethyleneimine (PEI)-dispersed multi-walled carbon nanotubes (MWNTs), Gldh-bacteria and Nafion onto the glassy carbon electrode (Nafion/Gldh-bacteria/PEI-MWNTs/GCE). The MWNTs could not only significantly lower the oxidation overpotential towards NAPDH, which was the product of NADP(+) involving in the oxidation of glutamate by Gldh, but also enhanced the current response. Under the optimized experimental conditions, the current-time curve of the Nafion/Gldh-bacteria/PEI-MWNTs/GCE was performed at +0.52 V (vs. SCE) by amperometry varying glutamate concentration. The current response was linear with glutamate concentration in two ranges (10 μM-1 mM and 2-10 mM). The low limit of detection was estimated to be 2 μM glutamate (S/N=3). Moreover, the proposed biosensor is stable, specific, reproducible and simple, which can be applied to real samples detection. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Three-Dimensional Cell Culture Systems and Their Applications in Drug Discovery and Cell-Based Biosensors

    PubMed Central

    Edmondson, Rasheena; Broglie, Jessica Jenkins; Adcock, Audrey F.

    2014-01-01

    Abstract Three-dimensional (3D) cell culture systems have gained increasing interest in drug discovery and tissue engineering due to their evident advantages in providing more physiologically relevant information and more predictive data for in vivo tests. In this review, we discuss the characteristics of 3D cell culture systems in comparison to the two-dimensional (2D) monolayer culture, focusing on cell growth conditions, cell proliferation, population, and gene and protein expression profiles. The innovations and development in 3D culture systems for drug discovery over the past 5 years are also reviewed in the article, emphasizing the cellular response to different classes of anticancer drugs, focusing particularly on similarities and differences between 3D and 2D models across the field. The progression and advancement in the application of 3D cell cultures in cell-based biosensors is another focal point of this review. PMID:24831787

  3. Building Better Biosensors for Exploration into Deep-Space, Using Humanized Yeast

    NASA Technical Reports Server (NTRS)

    Liddell, Lauren; Santa Maria, Sergio; Tieze, Sofia; Bhattacharya, Sharmila

    2017-01-01

    1.BioSentinel is 1 of 13 secondary payloads hitching a ride beyond Low Earth Orbit on Exploration Mission 1 (EM-1), set to launch from NASAs Space Launch System in 2019. EM-1 is our first opportunity to investigate the effects of the deep space environment on a eukaryotic biological system, the budding yeast S. cerevisiae. Though separated by a billion years of evolution we share hundreds of genes important for basic cell function, including responses to DNA damage. Thus, yeast is an ideal biosensor for detecting typesextent of damage induced by deep-space radiation.We will fly desiccated cells, then rehydrate to wake them up when the automated payload is ready to initiate the experiment. Rehydration solution contains SC (Synthetic Complete) media and alamarBlue, an indicator for changes in growth and metabolism. Telemetry of LED readings will then allow us to detect how cells respond throughout the mission. The desiccation-rehydration process can be extremely damaging to cells, and can severely diminish our ability to accurately measure and model cellular responses to deep-space radiation. The aim of this study is to develop a better biosensor: yeast strains that are more resistant to desiccation stress. We will over-express known cellular protectants, including hydrophilin Sip18, the protein disaggregase Hsp104, and thioredoxin Trx2, a responder to oxidative stress, then measure cell viability after desiccation to determine which factors improve stress tolerance. Over-expression of SIP18 in wine yeast starter cultures was previously reported to increase viability following desiccation stress by up to 70. Thus, we expect similar improvements in our space-yeast strains. By designing better yeast biosensors we can better prepare for and mitigate the potential dangers of deep-space radiation for future missions.This work is funded by NASAs AES program.

  4. Identification of Novel Desiccation-Tolerant S. cerevisiae Strains for Deep Space Biosensors

    NASA Technical Reports Server (NTRS)

    Tieze, Sofia Massaro; Santa Maria, Sergio R.; Liddell, Lauren C.; Bhattacharya, Sharmila

    2017-01-01

    NASA's BioSentinel mission, a secondary payload that will fly on the Space Launch System's first Exploration Mission (EM-1), utilizes the budding yeast S. cerevisiae to study the biological response to the deep space radiation environment. Yeast samples are desiccated prior to launch to suspend growth and metabolism while the spacecraft travels to its target heliocentric orbit beyond Low Earth Orbit. Each sample is then rehydrated at the desired time points to reactivate the cells. A major risk in this mission is the loss of cell viability that occurs in the recovery period following the desiccation and rehydration process. Cell survival is essential for the detection of the biological response to features in the deep space environment, including ionizing radiation. The aim of this study is to mitigate viable cell loss in future biosensors by identifying mutations and genes that confer tolerance to desiccation stress in rad51, a radiation-sensitive yeast strain. We initiated a screen for desiccation-tolerance after rehydrating cells that were desiccated for three years, and selected various clones exhibiting robust growth. To verify retention of radiation sensitivity in the isolated clones - a crucial feature for a successful biosensor - we exposed them to ionizing radiation. Finally, to elucidate the genetic and molecular bases for observed desiccation-tolerance, we will perform whole-genome sequencing of those rad51 clones that exhibit both robust growth and radiation sensitivity following desiccation. The identification and characterization of desiccation-tolerant strains will allow us to engineer a biological model that will be resilient in face of the challenges of the deep space environment, and will thus ensure the experimental success of future biosensor missions.

  5. A self-referencing biosensor for real-time monitoring of physiological ATP transport in plant systems.

    PubMed

    Vanegas, Diana C; Clark, Greg; Cannon, Ashley E; Roux, Stanley; Chaturvedi, Prachee; McLamore, Eric S

    2015-12-15

    The objective of this study was to develop a self-referencing electrochemical biosensor for the direct measurement of ATP flux into the extracellular matrix by living cells/organisms. The working mechanism of the developed biosensor is based on the activity of glycerol kinase and glycerol-3-phosphate oxidase. A stratified bi-enzyme nanocomposite was created using a protein-templated silica sol gel encapsulation technique on top of graphene-modified platinum electrodes. The biosensor exhibited excellent electrochemical performance with a sensitivity of 2.4±1.8 nA/µM, a response time of 20±13 s and a lower detection limit of 1.3±0.7 nM. The self-referencing biosensor was used to measure exogenous ATP efflux by (i) germinating Ceratopteris spores and (ii) growing Zea mays L. roots. This manuscript demonstrates the first development of a non-invasive ATP micro-biosensor for the direct measurement of eATP transport in living tissues. Before this work, assays of eATP have not been able to record the temporally transient movement of ATP at physiological levels (nM and sub-nM). The method demonstrated here accurately measured [eATP] flux in the immediate vicinity of plant cells. Although these proof of concept experiments focus on plant tissues, the technique developed herein is applicable to any living tissue, where nanomolar concentrations of ATP play a critical role in signaling and development. This tool will be invaluable for conducting hypothesis-driven life science research aimed at understanding the role of ATP in the extracellular environment. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Development of surface plasmon resonance (SPR) biosensors for use in the diagnostics of malignant and infectious diseases

    NASA Astrophysics Data System (ADS)

    Firdous, S.; Anwar, S.; Rafya, R.

    2018-06-01

    Surface plasmon resonance (SPR) has become an important optical biosensing technology due to its real-time, label-free, and noninvasive nature. These techniques allow for rapid and ultra-sensitive detection of biological analytes, with applications in medical diagnostics, environmental monitoring, and agriculture. SPR is widely used in the detection of biomolecular interactions, and improvements are required for both sensitivity and in vivo uses for practical applications. In this study, we developed an SPR biosensor to provide a highly sensitive and specific approach to early-stage detection of viral and malignant diseases, such as cancer tumors, for which biomarker detection is very important. A cancer cell line (HeLa cells) with biomarker Rodamine 6G was experimentally analyzed in vitro with our constructed SPR biosensor. It was observed that the biosensor can offer a potentially powerful solution for tumor screening with dominant angular shift. The angular shift for both regents is dominant with a time curve at a wavelength of 632.8 nm of a He–Ne laser. We have successfully captured and detected a biomarker in vitro for cancer diagnostics using the developed instrument.

  7. Design, Optimization and Application of Small Molecule Biosensor in Metabolic Engineering.

    PubMed

    Liu, Yang; Liu, Ye; Wang, Meng

    2017-01-01

    The development of synthetic biology and metabolic engineering has painted a great future for the bio-based economy, including fuels, chemicals, and drugs produced from renewable feedstocks. With the rapid advance of genome-scale modeling, pathway assembling and genome engineering/editing, our ability to design and generate microbial cell factories with various phenotype becomes almost limitless. However, our lack of ability to measure and exert precise control over metabolite concentration related phenotypes becomes a bottleneck in metabolic engineering. Genetically encoded small molecule biosensors, which provide the means to couple metabolite concentration to measurable or actionable outputs, are highly promising solutions to the bottleneck. Here we review recent advances in the design, optimization and application of small molecule biosensor in metabolic engineering, with particular focus on optimization strategies for transcription factor (TF) based biosensors.

  8. Design, Optimization and Application of Small Molecule Biosensor in Metabolic Engineering

    PubMed Central

    Liu, Yang; Liu, Ye; Wang, Meng

    2017-01-01

    The development of synthetic biology and metabolic engineering has painted a great future for the bio-based economy, including fuels, chemicals, and drugs produced from renewable feedstocks. With the rapid advance of genome-scale modeling, pathway assembling and genome engineering/editing, our ability to design and generate microbial cell factories with various phenotype becomes almost limitless. However, our lack of ability to measure and exert precise control over metabolite concentration related phenotypes becomes a bottleneck in metabolic engineering. Genetically encoded small molecule biosensors, which provide the means to couple metabolite concentration to measurable or actionable outputs, are highly promising solutions to the bottleneck. Here we review recent advances in the design, optimization and application of small molecule biosensor in metabolic engineering, with particular focus on optimization strategies for transcription factor (TF) based biosensors. PMID:29089935

  9. Progress in the biosensing techniques for trace-level heavy metals.

    PubMed

    Mehta, Jyotsana; Bhardwaj, Sanjeev K; Bhardwaj, Neha; Paul, A K; Kumar, Pawan; Kim, Ki-Hyun; Deep, Akash

    2016-01-01

    Diverse classes of sensors have been developed over the past few decades for on-site detections of heavy metals. Most of these sensor systems have exploited optical, electrochemical, piezoelectric, ion-selective (electrode), and electrochemical measurement techniques. As such, numerous efforts have been made to explore the role of biosensors in the detection of heavy metals based on well-known interactions between heavy metals and biomolecules (e.g. proteins, peptides, enzymes, antibodies, whole cells, and nucleic acids). In this review, we cover the recent progress made on different types of biosensors for the detection of heavy metals. Our major focus was examining the use of biomolecules for constructing these biosensors. The discussion is extended further to cover the biosensors' performance along with challenges and opportunities for practical utilization. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Advances in arsenic biosensor development--a comprehensive review.

    PubMed

    Kaur, Hardeep; Kumar, Rabindra; Babu, J Nagendra; Mittal, Sunil

    2015-01-15

    Biosensors are analytical devices having high sensitivity, portability, small sample requirement and ease of use for qualitative and quantitative monitoring of various analytes of human importance. Arsenic (As), owing to its widespread presence in nature and high toxicity to living creatures, requires frequent determination in water, soil, agricultural and food samples. The present review is an effort to highlight the various advancements made so far in the development of arsenic biosensors based either on recombinant whole cells or on certain arsenic-binding oligonucleotides or proteins. The role of futuristic approaches like surface plasmon resonance (SPR) and aptamer technology has also been discussed. The biomethods employed and their general mechanisms, advantages and limitations in relevance to arsenic biosensors developed so far are intended to be discussed in this review. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Graphene-interfaced electrical biosensor for label-free and sensitive detection of foodborne pathogenic E. coli O157:H7.

    PubMed

    Pandey, Ashish; Gurbuz, Yasar; Ozguz, Volkan; Niazi, Javed H; Qureshi, Anjum

    2017-05-15

    E. coli O157:H7 is an enterohemorrhagic bacteria responsible for serious foodborne outbreaks that causes diarrhoea, fever and vomiting in humans. Recent foodborne E. coli outbreaks has left a serious concern to public health. Therefore, there is an increasing demand for a simple, rapid and sensitive method for pathogen detection in contaminated foods. In this study, we developed a label-free electrical biosensor interfaced with graphene for sensitive detection of pathogenic bacteria. This biosensor was fabricated by interfacing graphene with interdigitated microelectrodes of capacitors that were biofunctionalized with E. coli O157:H7 specific antibodies for sensitive pathogenic bacteria detection. Here, graphene nanostructures on the sensor surface provided superior chemical properties such as high carrier mobility and biocompatibility with antibodies and bacteria. The sensors transduced the signal based on changes in dielectric properties (capacitance) through (i) polarization of captured cell-surface charges, (ii) cells' internal bioactivity, (iii) cell-wall's electronegativity or dipole moment and their relaxation and (iv) charge carrier mobility of graphene that modulated the electrical properties once the pathogenic E. coli O157:H7 captured on the sensor surface. Sensitive capacitance changes thus observed with graphene based capacitors were specific to E. coli O157:H7 strain with a sensitivity as low as 10-100 cells/ml. The proposed graphene based electrical biosensor provided advantages of speed, sensitivity, specificity and in-situ bacterial detection with no chemical mediators, represents a versatile approach for detection of a wide variety of other pathogens. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Development of an amperometric biosensor based on acetylcholine esterase covalently bound to a new support material.

    PubMed

    Khayyami, M; Pérez Pita, M T; Peña Garcia, N; Johansson, G; Danielsson, B; Larsson, P O

    1998-01-01

    A new type of amperometric biosensor based on immobilised acetylcholine esterase was designed and constructed. The enzyme was immobilised on a flow-through working electrode, which was prepared from reticulated vitreous carbon (RVC) or from a composite material consisting of RVC and superporous agarose. The sensor was operated in FIA mode using acetylthiocholine as a substrate. The sensor responded to inhibitors such as paraoxon-10(-9) mol was detected by the sensor in a non-optimised configuration. The practical lifetime of the sensor was at least 1 month.

  13. A low cost color-based bacterial biosensor for measuring arsenic in groundwater.

    PubMed

    Huang, Chi-Wei; Wei, Chia-Cheng; Liao, Vivian Hsiu-Chuan

    2015-12-01

    Using arsenic (As) contaminated groundwater for drinking or irrigation has caused major health problems for humans around the world, raising a need to monitor As level efficiently and economically. This study developed a color-based bacterial biosensor which is easy-to-use and inexpensive for measuring As and could be complementary to current As detecting techniques. The arsR-lacZ recombinant gene cassette in nonpathogenic strain Escherichia coli DH5α was used in the color-based biosensor which could be observed by eyes or measured by spectrometer. The developed bacterial biosensor demonstrates a quantitative range from 10 to 500μgL(-1) of As in 3-h reaction time. Furthermore, the biosensor was able to successfully detect and estimate As concentration in groundwater sample by measuring optical density at 595nm (OD595). Among different storage methods used in this study, biosensor in liquid at 4°C showed the longest shelf life about 9d, and liquid storage at RT and cell pellet could also be stored for about 3-5d. In conclusion, this study showed that the As biosensor with reliable color signal and economical preservation methods is useful for rapid screening of As pollutant, providing the potential for large scale screening and better management strategies for environmental quality control. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Determination of total creatine kinase activity in blood serum using an amperometric biosensor based on glucose oxidase and hexokinase.

    PubMed

    Kucherenko, I S; Soldatkin, O O; Lagarde, F; Jaffrezic-Renault, N; Dzyadevych, S V; Soldatkin, A P

    2015-11-01

    Creatine kinase (CK: adenosine-5-triphosphate-creatine phosphotransferase) is an important enzyme of muscle cells; the presence of a large amount of the enzyme in blood serum is a biomarker of muscular injuries, such as acute myocardial infarction. This work describes a bi-enzyme (glucose oxidase and hexokinase based) biosensor for rapid and convenient determination of CK activity by measuring the rate of ATP production by this enzyme. Simultaneously the biosensor determines glucose concentration in the sample. Platinum disk electrodes were used as amperometric transducers. Glucose oxidase and hexokinase were co-immobilized via cross-linking with BSA by glutaraldehyde and served as a biorecognition element of the biosensor. The biosensor work at different concentrations of CK substrates (ADP and creatine phosphate) was investigated; optimal concentration of ADP was 1mM, and creatine phosphate - 10 mM. The reproducibility of the biosensor responses to glucose, ATP and CK during a day was tested (relative standard deviation of 15 responses to glucose was 2%, to ATP - 6%, to CK - 7-18% depending on concentration of the CK). Total time of CK analysis was 10 min. The measurements of creatine kinase in blood serum samples were carried out (at 20-fold sample dilution). Twentyfold dilution of serum samples was chosen as optimal for CK determination. The biosensor could distinguish healthy and ill people and evaluate the level of CK increase. Thus, the biosensor can be used as a test-system for CK analysis in blood serum or serve as a component of multibiosensors for determination of important blood substances. Determination of activity of other kinases by the developed biosensor is also possible for research purposes. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Capacitive sensing of N-formylamphetamine based on immobilized molecular imprinted polymers.

    PubMed

    Graniczkowska, Kinga; Pütz, Michael; Hauser, Frank M; De Saeger, Sarah; Beloglazova, Natalia V

    2017-06-15

    A highly sensitive, capacitive biosensor was developed to monitor trace amounts of an amphetamine precursor in aqueous samples. The sensing element is a gold electrode with molecular imprinted polymers (MIPs) immobilized on its surface. A continuous-flow system with timed injections was used to simulate flowing waterways, such as sewers, springs, rivers, etc., ensuring wide applicability of the developed product. MIPs, implemented as a recognition element due to their stability under harsh environmental conditions, were synthesized using thermo- and UV-initiated polymerization techniques. The obtained particles were compared against commercially available MIPs according to specificity and selectivity metrics; commercial MIPs were characterized by quite broad cross-reactivity to other structurally related amphetamine-type stimulants. After the best batch of MIPs was chosen, different strategies for immobilizing them on the gold electrode's surface were evaluated, and their stability was also verified. The complete, developed system was validated through analysis of spiked samples. The limit of detection (LOD) for N-formyl amphetamine was determined to be 10μM in this capacitive biosensor system. The obtained results indicate future possible applications of this MIPs-based capacitive biosensor for environmental and forensic analysis. To the best of our knowledge there are no existing MIPs-based sensors toward amphetamine-type stimulants (ATS). Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Gold nanocage-based lateral flow immunoassay for immunoglobulin G

    PubMed Central

    Yang, Yunhui; Ozsoz, Mehmet

    2017-01-01

    The authors describe a gold nanocage-based lateral flow strip biosensor (LFSB) for low-cost and sensitive detection of IgG. This protein was used as a model analyte to demonstrate the proof-of-concept. The method combines the unique optical properties of gold nanocages (GNCs) with highly efficient chromatographic separation. A sandwich-type of immunoreactions occurs on the GNC-based LFSB which has the attractive features of avoiding multiple incubation, separation, and washing steps. The captured GNCs on the purple test zone and control zone of the biosensor are producing characteristic purple bands, and this enables IgG even to be visually detected. Quantitatation was accomplished by reading the intensities of the bands with a portable strip reader. The LFSB fabrication and assay parameters were optimized. The biosensor displays a linear response in the 0.5 to 50 ng·mL−1 IgG concentration range, and it has a 15 min assay time. The detection limit is 0.1 ng·mL−1 of IgG, which is 2.5 times lower than that when using a gold nanoparticle-based LFSB. In our perception, this assay has a wide potential for the detection of other proteins and species for which respective antibodies are available. PMID:29187761

  17. Organic Electrochemical Transistors for the Detection of Cell Surface Glycans.

    PubMed

    Chen, Lizhen; Fu, Ying; Wang, Naixiang; Yang, Anneng; Li, Yuanzhe; Wu, Jie; Ju, Huangxian; Yan, Feng

    2018-05-23

    Cell surface glycans play critical roles in diverse biological processes, such as cell-cell communication, immunity, infection, development, and differentiation. Their expressions are closely related to cancer growth and metastasis. This work demonstrates an organic electrochemical transistor (OECT)-based biosensor for the detection of glycan expression on living cancer cells. Herein, mannose on human breast cancer cells (MCF-7) as the target glycan model, poly dimethyl diallyl ammonium chloride-multiwall carbon nanotubes (PDDA-MWCNTs) as the loading interface, concanavalin A (Con A) with active mannose binding sites, aptamer and horseradish peroxidase co-immobilized gold nanoparticles (HRP-aptamer-Au NPs) as specific nanoprobes are used to fabricate the OECT biosensor. In this strategy, PDDA-MWCNT interfaces can enhance the loading of Con A, and the target cells can be captured through Con A via active mannose binding sites. Thus, the expression of cell surface can be reflected by the amount of cells captured on the gate. Specific nanoprobes are introduced to the captured cells to produce an OECT signal because of the reduction of hydrogen peroxide catalyzed by HRP conjugated on Au nanoparticles, while the aptamer on nanoprobes can selectively recognize the MCF-7 cells. It is reasonable that more target cells are captured on the gate electrode, more HRP-nanoprobes are loaded thus a larger signal response. The device shows an obvious response to MCF-7 cells down to 10 cells/μL and can be used to selectively monitor the change of mannose expression on cell surfaces upon a treatment with the N-glycan inhibitor. The OECT-based biosensor is promising for the analysis of glycan expressions on the surfaces of different types of cells.

  18. The Application of Whole Cell-Based Biosensors for Use in Environmental Analysis and in Medical Diagnostics

    PubMed Central

    Gui, Qingyuan; Lawson, Tom; Shan, Suyan; Yan, Lu; Liu, Yong

    2017-01-01

    Various whole cell-based biosensors have been reported in the literature for the last 20 years and these reports have shown great potential for their use in the areas of pollution detection in environmental and in biomedical diagnostics. Unlike other reviews of this growing field, this mini-review argues that: (1) the selection of reporter genes and their regulatory proteins are directly linked to the performance of celllular biosensors; (2) broad enhancements in microelectronics and information technologies have also led to improvements in the performance of these sensors; (3) their future potential is most apparent in their use in the areas of medical diagnostics and in environmental monitoring; and (4) currently the most promising work is focused on the better integration of cellular sensors with nano and micro scaled integrated chips. With better integration it may become practical to see these cells used as (5) real-time portable devices for diagnostics at the bedside and for remote environmental toxin detection and this in situ application will make the technology commonplace and thus as unremarkable as other ubiquitous technologies. PMID:28703749

  19. FET-biosensor for cardiac troponin biomarker

    NASA Astrophysics Data System (ADS)

    Arshad, Mohd Khairuddin Md; Faris Mohamad Fathil, Mohamad; Hashim, Uda

    2017-11-01

    Acute myocardial infarction or myocardial infarction (MI) is a major health problem, due to diminished flow of blood to the heart, leads to higher rates of mortality and morbidity. The most specific markers for cardiac injury are cardiac troponin I (cTnI) and cardiac troponin T (cTnT) which have been considered as `gold standard'. Due to higher specificity, determination of the level of cardiac troponins became a predominant indicator for MI. Currently, field-effect transistor (FET)-based biosensors have been main interest to be implemented in portable sensors with the ultimate application in point-of-care testing (POCT). In this paper, we review on the FET-based biosensor based on its principle of operation, integration with nanomaterial, surface functionalization as well as immobilization, and the introduction of additional gate (for ambipolar conduction) on the device architecture for the detection of cardiac troponin I (cTnI) biomarker.

  20. A theoretical study on tunneling based biosensor having a redox-active monolayer using physics based simulation

    NASA Astrophysics Data System (ADS)

    Kim, Kyoung Yeon; Lee, Won Cheol; Yun, Jun Yeon; Lee, Youngeun; Choi, Seoungwook; Jin, Seonghoon; Park, Young June

    2018-01-01

    We developed a numerical simulator to model the operation of a tunneling based biosensor which has a redox-active monolayer. The simulator takes a realistic device structure as a simulation domain, and it employs the drift-diffusion equation for ion transport, the non-equilibrium Green's function formalism for electron tunneling, and the Ramo-Shockley theorem for accurate calculation of non-faradaic current. We also accounted for the buffer reaction and the immobilized peptide layer. For efficient transient simulation, the implicit time integration scheme is employed where the solution at each time step is obtained from the coupled Newton-Raphson method. As an application, we studied the operation of a recently fabricated reference-electrode free biosensor in various bias conditions and confirmed the effect of buffer reaction and the current flowing mechanism. Using the simulator, we also found a strategy to maximize the sensitivity of the tunneling based sensor.

  1. A novel biosensor for p-nitrophenol based on an aerobic anode microbial fuel cell.

    PubMed

    Chen, Zhengjun; Niu, Yongyan; Zhao, Shuai; Khan, Aman; Ling, Zhenmin; Chen, Yong; Liu, Pu; Li, Xiangkai

    2016-11-15

    P-nitrophenol is one of the most common contaminants in chemical industrial wastewater, and in situ real-time monitoring of PNP cannot be achieved by conventional analytical techniques. Here, a two-chamber microbial fuel cell with an aerobic anode chamber was tested as a biosensor for in situ real-time monitoring of PNP. Pseudomonas monteilii LZU-3, which was used as the biological recognition element, can form a biofilm on the anode electrode using PNP as a sole substrate. The optimal operation parameters of the biosensor were as follows: external resistance 1000Ω, pH 7.8, temperature 30°C, and maximum PNP concentration 50mgL(-1). Under these conditions, the maximum voltages showed a linear relationship with PNP concentrations ranging from 15±5 to 44±4.5mgL(-1). Furthermore, we developed a novel portable device for in situ real-time monitoring of PNP. When the device was applied to measure PNP in wastewater containing various additional aromatic compounds and metal ions, the performance of the biosensor was not affected and the correlation between the maximum voltages and the PNP concentrations ranging from 9±4mgL(-1) to 36 ± 5mgL(-1) was conserved. The results demonstrated that the MFC biosensor provides a rapid and cost-efficient analytical method for real-time monitoring of toxic and recalcitrant pollutants in environmental samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Resonant nanopillars as label-free optical biosensors

    NASA Astrophysics Data System (ADS)

    López-Hernandez, Ana; Casquel, Rafael; Holgado, Miguel; Cornago, Iñaki; Fernández, Fátima; Ciaurriz, Paula; Sanza, Francisco J.; Santamaría, Beatriz; Maigler, Maria V.; Laguna, María. Fe

    2018-02-01

    In recent works it has been demonstrated the suitability of using resonant nanopillars (R-NPs) as biochemical. In this work it has been shown the capability of the R-NPs to behave as label-free multiplexed biological sensors. Each R-NP is formed by silicon oxide (SiO2) and silicon nitride (Si3N4) Bragg reflectors and a central cavity of SiO2, and they are grouped into eight arrays called BICELLs, which are distributed on a single chip of quartz substrate for multiplexing measurements. For the biological sensing assessment it was developed an immunoassay on the eight single BICELLs. The biofunctionalization process was performed by a silanization protocol based on 3-aminopropyltrymethoxysilane (APTMS) and glutaradheyde (GA) as a linker between APTMS and the IgG which acted as biorreceptor for the anti-IgG recognition. In this work, there were compared two forms of immobilization: on one hand by incubating the R-NPs under static drop of 50 μg/mL and on the second hand by introducing the sensing chip in a flow cell with a continuous flow of the same concentration of IgG. The eight arrays of R-NPs or BICELLs were independently optically interrogated by a bundle of fiber connected to a spectrometer. The multiplexing analysis showed reproducibility among the BICELLs, suggesting the potentially of using R-NPs for multiplexed biosensors. Performance in the immobilization process apparently does not have a signification effect. However the election of one method or another should be a commitment between time and resources.

  3. Modifying Expression Modes of Human Neurotensin Receptor Type 1 Alters Sensing Capabilities for Agonists in Yeast Signaling Biosensor.

    PubMed

    Hashi, Hiroki; Nakamura, Yasuyuki; Ishii, Jun; Kondo, Akihiko

    2018-04-01

    Neurotensin receptor type 1 (NTSR1), a member of the G-protein-coupled receptor (GPCR) family, is naturally activated by binding of a neurotensin peptide, leading to a variety of physiological effects. The budding yeast Saccharomyces cerevisiae is a proven host organism for assaying the agonistic activation of human GPCRs. Previous studies showed that yeast cells can functionally express human NTSR1 receptor, permitting the detection of neurotensin-promoted signaling using a ZsGreen fluorescent reporter gene. However, the fluorescence intensity (sensitivity) of NTSR1-expressing yeast cells is low compared to that of yeast cells expressing other human GPCRs (e.g., human somatostatin receptors). The present study sought to increase the sensitivity of the NTSR1-expressing yeast for use as a fluorescent biosensor, including modification of the expression of human NTSR1 in yeast. Changes in the transcription, translation, and transport of the receptor are attempted by altering the promoter, consensus Kozak-like sequence, and secretion signal sequences of the NTSR1-encoding gene. The resulting yeast cells exhibited increased sensitivity to exogenously added peptide. The cells are further engineered by using cell-surface display technology to ensure that the agonistic peptides are secreted and tethered to the yeast cell wall, yielding cells with enhanced NTSR1 activation. This yeast biosensor holds promise for the identification of agonists to treat NTSR1-related diseases. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Repetitive Immunosensor with a Fiber-Optic Device and Antibody-Coated Magnetic Beads for Semi-Continuous Monitoring of Escherichia coli O157:H7

    PubMed Central

    Taniguchi, Midori; Saito, Hirokazu; Mitsubayashi, Kohji

    2017-01-01

    A rapid and reproducible fiber-optic immunosensor for Escherichia coli O157:H7 (E. coli O157:H7) was described. The biosensor consisted of a flow cell, an optical fiber with a thin Ni layer, and a PC linked fluorometer. First, the samples with E. coli O157:H7 were incubated with magnetic beads coated with anti-E. coli O157:H7 antibodies and anti-E. coli O157:H7 antibodies labeled cyanine 5 (Cy5) to make sandwich complexes. Then the Cy5-(E. coli O157:H7)-beads were injected into a flow cell and pulled to the magnetized Ni layer on the optical fiber set in the flow cell. An excitation light (λ = 635 nm) was used to illuminate the optical fiber, and the Cy5 florescent molecules facing the optical fiber were exposed to an evanescent wave from the optical fiber. The 670 nm fluorescent light was measured using a photodiode. Finally, the magnetic intensity of the Ni layer was removed and the Cy5-E. coli O157:H7-beads were washed out for the next immunoassay. E. coli O157:H7, diluted with phosphate buffer (PB), was measured from 1 × 105 to 1 × 107 cells/mL. The total time required for an assay was less than 15 min (except for the pretreatment process) and repeating immunoassay on one optical fiber was made possible. PMID:28925937

  5. Repetitive Immunosensor with a Fiber-Optic Device and Antibody-Coated Magnetic Beads for Semi-Continuous Monitoring of Escherichia coli O157:H7.

    PubMed

    Taniguchi, Midori; Saito, Hirokazu; Mitsubayashi, Kohji

    2017-09-19

    A rapid and reproducible fiber-optic immunosensor for Escherichia coli O157:H7 ( E. coli O157:H7) was described. The biosensor consisted of a flow cell, an optical fiber with a thin Ni layer, and a PC linked fluorometer. First, the samples with E. coli O157:H7 were incubated with magnetic beads coated with anti- E. coli O157:H7 antibodies and anti- E. coli O157:H7 antibodies labeled cyanine 5 (Cy5) to make sandwich complexes. Then the Cy5-( E. coli O157:H7)-beads were injected into a flow cell and pulled to the magnetized Ni layer on the optical fiber set in the flow cell. An excitation light (λ = 635 nm) was used to illuminate the optical fiber, and the Cy5 florescent molecules facing the optical fiber were exposed to an evanescent wave from the optical fiber. The 670 nm fluorescent light was measured using a photodiode. Finally, the magnetic intensity of the Ni layer was removed and the Cy5- E. coli O157:H7-beads were washed out for the next immunoassay. E. coli O157:H7, diluted with phosphate buffer (PB), was measured from 1 × 10⁵ to 1 × 10⁷ cells/mL. The total time required for an assay was less than 15 min (except for the pretreatment process) and repeating immunoassay on one optical fiber was made possible.

  6. Ultra-high-throughput screening method for the directed evolution of glucose oxidase.

    PubMed

    Ostafe, Raluca; Prodanovic, Radivoje; Nazor, Jovana; Fischer, Rainer

    2014-03-20

    Glucose oxidase (GOx) is used in many industrial processes that could benefit from improved versions of the enzyme. Some improvements like higher activity under physiological conditions and thermal stability could be useful for GOx applications in biosensors and biofuel cells. Directed evolution is one of the currently available methods to engineer improved GOx variants. Here, we describe an ultra-high-throughput screening system for sorting the best enzyme variants generated by directed evolution that incorporates several methodological refinements: flow cytometry, in vitro compartmentalization, yeast surface display, fluorescent labeling of the expressed enzyme, delivery of glucose substrate to the reaction mixture through the oil phase, and covalent labeling of the cells with fluorescein-tyramide. The method enables quantitative screening of gene libraries to identify clones with improved activity and it also allows cells to be selected based not only on the overall activity but also on the specific activity of the enzyme. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. An integrated paper-based sample-to-answer biosensor for nucleic acid testing at the point of care.

    PubMed

    Choi, Jane Ru; Hu, Jie; Tang, Ruihua; Gong, Yan; Feng, Shangsheng; Ren, Hui; Wen, Ting; Li, XiuJun; Wan Abas, Wan Abu Bakar; Pingguan-Murphy, Belinda; Xu, Feng

    2016-02-07

    With advances in point-of-care testing (POCT), lateral flow assays (LFAs) have been explored for nucleic acid detection. However, biological samples generally contain complex compositions and low amounts of target nucleic acids, and currently require laborious off-chip nucleic acid extraction and amplification processes (e.g., tube-based extraction and polymerase chain reaction (PCR)) prior to detection. To the best of our knowledge, even though the integration of DNA extraction and amplification into a paper-based biosensor has been reported, a combination of LFA with the aforementioned steps for simple colorimetric readout has not yet been demonstrated. Here, we demonstrate for the first time an integrated paper-based biosensor incorporating nucleic acid extraction, amplification and visual detection or quantification using a smartphone. A handheld battery-powered heating device was specially developed for nucleic acid amplification in POC settings, which is coupled with this simple assay for rapid target detection. The biosensor can successfully detect Escherichia coli (as a model analyte) in spiked drinking water, milk, blood, and spinach with a detection limit of as low as 10-1000 CFU mL(-1), and Streptococcus pneumonia in clinical blood samples, highlighting its potential use in medical diagnostics, food safety analysis and environmental monitoring. As compared to the lengthy conventional assay, which requires more than 5 hours for the entire sample-to-answer process, it takes about 1 hour for our integrated biosensor. The integrated biosensor holds great potential for detection of various target analytes for wide applications in the near future.

  8. Electrochemical Quartz Crystal Nanobalance (EQCN) Based Biosensor for Sensitive Detection of Antibiotic Residues in Milk.

    PubMed

    Bhand, Sunil; Mishra, Geetesh K

    2017-01-01

    An electrochemical quartz crystal nanobalance (EQCN), which provides real-time analysis of dynamic surface events, is a valuable tool for analyzing biomolecular interactions. EQCN biosensors are based on mass-sensitive measurements that can detect small mass changes caused by chemical binding to small piezoelectric crystals. Among the various biosensors, the piezoelectric biosensor is considered one of the most sensitive analytical techniques, capable of detecting antigens at picogram levels. EQCN is an effective monitoring technique for regulation of the antibiotics below the maximum residual limit (MRL). The analysis of antibiotic residues requires high sensitivity, rapidity, reliability and cost effectiveness. For analytical purposes the general approach is to take advantage of the piezoelectric effect by immobilizing a biosensing layer on top of the piezoelectric crystal. The sensing layer usually comprises a biological material such as an antibody, enzymes, or aptamers having high specificity and selectivity for the target molecule to be detected. The biosensing layer is usually functionalized using surface chemistry modifications. When these bio-functionalized quartz crystals are exposed to a particular substance of interest (e.g., a substrate, inhibitor, antigen or protein), binding interaction occurs. This causes a frequency or mass change that can be used to determine the amount of material interacted or bound. EQCN biosensors can easily be automated by using a flow injection analysis (FIA) setup coupled through automated pumps and injection valves. Such FIA-EQCN biosensors have great potential for the detection of different analytes such as antibiotic residues in various matrices such as water, waste water, and milk.

  9. A multiple reaction monitoring (MRM) method to detect Bcr-Abl kinase activity in CML using a peptide biosensor.

    PubMed

    Yang, Tzu-Yi; Eissler, Christie L; Hall, Mark C; Parker, Laurie L

    2013-01-01

    The protein kinase Bcr-Abl plays a major role in the pathogenesis of chronic myelogenous leukemia (CML), and is the target of the breakthrough drug imatinib (Gleevec™). While most patients respond well to imatinib, approximately 30% never achieve remission or develop resistance within 1-5 years of starting imatinib treatment. Evidence from clinical studies suggests that achieving at least 50% inhibition of a patient's Bcr-Abl kinase activity (relative to their level at diagnosis) is associated with improved patient outcomes, including reduced occurrence of resistance and longer maintenance of remission. Accordingly, sensitive assays for detecting Bcr-Abl kinase activity compatible with small amounts of patient material are desirable as potential companion diagnostics for imatinib. Here we report the detection of Bcr-Abl activity and inhibition by imatinib in the human CML cell line K562 using a cell-penetrating peptide biosensor and multiple reaction monitoring (MRM) on a triple quadrupole mass spectrometer. MRM enabled reproducible, selective detection of the peptide biosensor at fmol levels from aliquots of cell lysate equivalent to ~15,000 cells. This degree of sensitivity will facilitate the miniaturization of the entire assay procedure down to cell numbers approaching 15,000, making it practical for translational applications in patient cells in which the limited amount of available patient material often presents a major challenge.

  10. A Multiple Reaction Monitoring (MRM) Method to Detect Bcr-Abl Kinase Activity in CML Using a Peptide Biosensor

    PubMed Central

    Yang, Tzu-Yi; Eissler, Christie L.; Hall, Mark C.; Parker, Laurie L.

    2013-01-01

    The protein kinase Bcr-Abl plays a major role in the pathogenesis of chronic myelogenous leukemia (CML), and is the target of the breakthrough drug imatinib (Gleevec™). While most patients respond well to imatinib, approximately 30% never achieve remission or develop resistance within 1–5 years of starting imatinib treatment. Evidence from clinical studies suggests that achieving at least 50% inhibition of a patient’s Bcr-Abl kinase activity (relative to their level at diagnosis) is associated with improved patient outcomes, including reduced occurrence of resistance and longer maintenance of remission. Accordingly, sensitive assays for detecting Bcr-Abl kinase activity compatible with small amounts of patient material are desirable as potential companion diagnostics for imatinib. Here we report the detection of Bcr-Abl activity and inhibition by imatinib in the human CML cell line K562 using a cell-penetrating peptide biosensor and multiple reaction monitoring (MRM) on a triple quadrupole mass spectrometer. MRM enabled reproducible, selective detection of the peptide biosensor at fmol levels from aliquots of cell lysate equivalent to ∼15,000 cells. This degree of sensitivity will facilitate the miniaturization of the entire assay procedure down to cell numbers approaching 15,000, making it practical for translational applications in patient cells in which the limited amount of available patient material often presents a major challenge. PMID:23437189

  11. Nano-biosensor for highly sensitive detection of HER2 positive breast cancer.

    PubMed

    Salahandish, Razieh; Ghaffarinejad, Ali; Naghib, Seyed Morteza; Majidzadeh-A, Keivan; Zargartalebi, Hossein; Sanati-Nezhad, Amir

    2018-05-25

    Nanocomposite materials have provided a wide range of conductivity, sensitivity, selectivity and linear response for electrochemical biosensors. However, the detection of rare cells at single cell level requires a new class of nanocomposite-coated electrodes with exceptional sensitivity and specificity. We recently developed a construct of gold nanoparticle-grafted functionalized graphene and nanostructured polyaniline (PANI) for high-performance biosensing within a very wide linear response and selective performance. Further, replacing the expensive gold nanoparticles with low-cost silver nanoparticles as well as optimizing the nanocomposite synthesis and functionalization protocols on the electrode surface in this work enabled us to develop ultrasensitive nanocomposites for label-free detection of breast cancer cells. The sensor presented a fast response time of 30 min within a dynamic range of 10 - 5 × 10 6 cells mL -1 and with a detection limit of 2 cells mL -1 for the detection of SK-BR3 breast cancer cell. The nano-biosensor, for the first time, demonstrated a high efficiency of > 90% for the label-free detection of cancer cells in whole blood sample without any need for sample preparation and cell staining. The results demonstrated that the optimized nanocomposite developed in this work is a promising nanomaterial for electrochemical biosensing and with the potential applications in electro-catalysis and super-capacitances. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Flexible plastic, paper and textile lab-on-a chip platforms for electrochemical biosensing.

    PubMed

    Economou, Anastasios; Kokkinos, Christos; Prodromidis, Mamas

    2018-06-26

    Flexible biosensors represent an increasingly important and rapidly developing field of research. Flexible materials offer several advantages as supports of biosensing platforms in terms of flexibility, weight, conformability, portability, cost, disposability and scope for integration. On the other hand, electrochemical detection is perfectly suited to flexible biosensing devices. The present paper reviews the field of integrated electrochemical bionsensors fabricated on flexible materials (plastic, paper and textiles) which are used as functional base substrates. The vast majority of electrochemical flexible lab-on-a-chip (LOC) biosensing devices are based on plastic supports in a single or layered configuration. Among these, wearable devices are perhaps the ones that most vividly demonstrate the utility of the concept of flexible biosensors while diagnostic cards represent the state-of-the art in terms of integration and functionality. Another important type of flexible biosensors utilize paper as a functional support material enabling the fabrication of low-cost and disposable paper-based devices operating on the lateral flow, drop-casting or folding (origami) principles. Finally, textile-based biosensors are beginning to emerge enabling real-time measurements in the working environment or in wound care applications. This review is timely due to the significant advances that have taken place over the last few years in the area of LOC biosensors and aims to direct the readers to emerging trends in this field.

  13. Nanoscale Magnetism in Next Generation Magnetic Nanoparticles

    DTIC Science & Technology

    2018-03-17

    as dextran coated SPIONs were studied. From the measured T1 and T2 relaxation times, a new method called Quantitative Ultra- Short Time-to-Echo...angiograms with high clarity and definition, and enabled quantitative MRI in biological samples. At UCL, the work included (i) fabricating multi-element...distribution unlimited. I. Introduction Compared to flat biosensor devices, 3D engineered biosensors achievemore intimate and conformal interfaces with cells

  14. A Guide to Fluorescent Protein FRET Pairs

    PubMed Central

    Bajar, Bryce T.; Wang, Emily S.; Zhang, Shu; Lin, Michael Z.; Chu, Jun

    2016-01-01

    Förster or fluorescence resonance energy transfer (FRET) technology and genetically encoded FRET biosensors provide a powerful tool for visualizing signaling molecules in live cells with high spatiotemporal resolution. Fluorescent proteins (FPs) are most commonly used as both donor and acceptor fluorophores in FRET biosensors, especially since FPs are genetically encodable and live-cell compatible. In this review, we will provide an overview of methods to measure FRET changes in biological contexts, discuss the palette of FP FRET pairs developed and their relative strengths and weaknesses, and note important factors to consider when using FPs for FRET studies. PMID:27649177

  15. BioSentinel: Developing a Space Radiation Biosensor

    NASA Technical Reports Server (NTRS)

    Santa Maria, Sergio R.

    2015-01-01

    BioSentinel is an autonomous fully self-contained science mission that will conduct the first study of the biological response to space radiation outside low Earth orbit (LEO) in over 40 years. The 4-unit (4U) BioSentinel biosensor system, is housed within a 6-Unit (6U) spacecraft, and uses yeast cells in multiple independent microfluidic cards to detect and measure DNA damage that occurs in response to ambient space radiation. Cell growth and metabolic activity will be measured using a 3-color LED detection system and a metabolic indicator dye with a dedicated thermal control system per fluidic card.

  16. How to design cell-based biosensors using the sol-gel process.

    PubMed

    Depagne, Christophe; Roux, Cécile; Coradin, Thibaud

    2011-05-01

    Inorganic gels formed using the sol-gel process are promising hosts for the encapsulation of living organisms and the design of cell-based biosensors. However, the possibility to use the biological activity of entrapped cells as a biological signal requires a good understanding and careful control of the chemical and physical conditions in which the organisms are placed before, during, and after gel formation, and their impact on cell viability. Moreover, it is important to examine the possible transduction methods that are compatible with sol-gel encapsulated cells. Through an updated presentation of the current knowledge in this field and based on selected examples, this review shows how it has been possible to convert a chemical technology initially developed for the glass industry into a biotechnological tool, with current limitations and promising specificities.

  17. Assessment of analytical methods to determine pyrethroids content of bednets.

    PubMed

    Castellarnau, Marc; Ramón-Azcón, Javier; Gonzalez-Quinteiro, Yolanda; López, Jordi F; Grimalt, Joan O; Marco, María-Pilar; Nieuwenhuijsen, Mark; Picado, Albert

    2017-01-01

    To present and evaluate simple, cost-effective tests to determine the amount of insecticide on treated materials. We developed and evaluated a competitive immunoassay on two different platforms: a label-free impedimetric biosensor (EIS biosensor) and a lateral flow. Both approaches were validated by gas chromatography (GC) and ELISA, gold standards for analytical methods and immunoassays, respectively. Finally, commercially available pyrethroid-treated ITN samples were analysed. Different extraction methods were evaluated. Insecticide extraction by direct infusion of the ITN samples with dichloromethane and dioxane showed recovery efficiencies around 100% for insecticide-coated bednets, and >70% for insecticide-incorporated bednets. These results were comparable to those obtained with standard sonication methods. The competitive immunoassay characterisation with ELISA presented a dynamic range between 12 nm and 1.5 μm (coefficient of variation (CV) below 5%), with an IC 50 at 138 nm, and a limit of detection (LOD) of 3.2 nm. EIS biosensor had a linear range between 1.7 nm and 61 nm (CV around 14%), with an IC 50 at 10.4 nm, and a LOD of 0.6 nm. Finally, the lateral flow approach showed a dynamic range between 150 nm and 1.5 μm, an IC 50 at 505 nm and a LOD of 67 nm. ELISA can replace chromatography as an accurate laboratory technique to determine insecticide concentration in bednets. The lateral flow approach developed can be used to estimate ITN insecticide concentration in the field. This new technology, coupled to the new extraction methods, should provide reliable guidelines for ITN use and replacement in the field. © 2016 John Wiley & Sons Ltd.

  18. Detection of Osteogenic Differentiation by Differential Mineralized Matrix Production in Mesenchymal Stromal Cells by Raman Spectroscopy

    PubMed Central

    Chen, He-Guei; Chiang, Hui-Hua Kenny; Lee, Oscar Kuang-Sheng

    2013-01-01

    Mesenchymal stromal cells (MSCs) hold great potential in skeletal tissue engineering and regenerative medicine. However, conventional methods that are used in molecular biology to evaluate osteogenic differentiation of MSCs require a relatively large amount of cells. Cell lysis and cell fixation are also required and all these steps are time-consuming. Therefore, it is imperative to develop a facile technique which can provide real-time information with high sensitivity and selectivity to detect the osteogenic maturation of MSCs. In this study, we use Raman spectroscopy as a biosensor to monitor the production of mineralized matrices during osteogenic induction of MSCs. In summary, Raman spectroscopy is an excellent biosensor to detect the extent of maturation level during MSCs-osteoblast differentiation with a non-disruptive, real-time and label free manner. We expect that this study will promote further investigation of stem cell research and clinical applications. PMID:23734254

  19. Electrochemical Glucose Biosensor Based on Glucose Oxidase Displayed on Yeast Surface.

    PubMed

    Wang, Hongwei; Lang, Qiaolin; Liang, Bo; Liu, Aihua

    2015-01-01

    The conventional enzyme-based biosensor requires chemical or physical immobilization of purified enzymes on electrode surface, which often results in loss of enzyme activity and/or fractions immobilized over time. It is also costly. A major advantage of yeast surface display is that it enables the direct utilization of whole cell catalysts with eukaryote-produced proteins being displayed on the cell surface, providing an economic alternative to traditional production of purified enzymes. Herein, we describe the details of the display of glucose oxidase (GOx) on yeast cell surface and its application in the development of electrochemical glucose sensor. In order to achieve a direct electrochemistry of GOx, the entire cell catalyst (yeast-GOx) was immobilized together with multiwalled carbon nanotubes on the electrode, which allowed sensitive and selective glucose detection.

  20. Nutrigenomics, beta-cell function and type 2 diabetes.

    PubMed

    Nino-Fong, R; Collins, Tm; Chan, Cb

    2007-03-01

    The present investigation was designed to investigate the accuracy and precision of lactate measurement obtained with contemporary biosensors (Chiron Diagnostics, Nova Biomedical) and standard enzymatic photometric procedures (Sigma Diagnostics, Abbott Laboratories, Analyticon). Measurements were performed in vitro before and after the stepwise addition of 1 molar sodium lactate solution to samples of fresh frozen plasma to systematically achieve lactate concentrations of up to 20 mmol/l. Precision of the methods investigated varied between 1% and 7%, accuracy ranged between 2% and -33% with the variability being lowest in the Sigma photometric procedure (6%) and more than 13% in both biosensor methods. Biosensors for lactate measurement provide adequate accuracy in mean with the limitation of highly variable results. A true lactate value of 6 mmol/l was found to be presented between 4.4 and 7.6 mmol/l or even with higher difference. Biosensors and standard enzymatic photometric procedures are only limited comparable because the differences between paired determinations presented to be several mmol. The advantage of biosensors is the complete lack of preanalytical sample preparation which appeared to be the major limitation of standard photometry methods.

  1. Conformational Profiling of the AT1 Angiotensin II Receptor Reflects Biased Agonism, G Protein Coupling, and Cellular Context.

    PubMed

    Devost, Dominic; Sleno, Rory; Pétrin, Darlaine; Zhang, Alice; Shinjo, Yuji; Okde, Rakan; Aoki, Junken; Inoue, Asuka; Hébert, Terence E

    2017-03-31

    Here, we report the design and use of G protein-coupled receptor-based biosensors to monitor ligand-mediated conformational changes in receptors in intact cells. These biosensors use bioluminescence resonance energy transfer with Renilla luciferase (RlucII) as an energy donor, placed at the distal end of the receptor C-tail, and the small fluorescent molecule FlAsH as an energy acceptor, its binding site inserted at different positions throughout the intracellular loops and C-terminal tail of the angiotensin II type I receptor. We verified that the modifications did not compromise receptor localization or function before proceeding further. Our biosensors were able to capture effects of both canonical and biased ligands, even to the extent of discriminating between different biased ligands. Using a combination of G protein inhibitors and HEK 293 cell lines that were CRISPR/Cas9-engineered to delete Gα q , Gα 11 , Gα 12 , and Gα 13 or β-arrestins, we showed that Gα q and Gα 11 are required for functional responses in conformational sensors in ICL3 but not ICL2. Loss of β-arrestin did not alter biased ligand effects on ICL2P2. We also demonstrate that such biosensors are portable between different cell types and yield context-dependent readouts of G protein-coupled receptor conformation. Our study provides mechanistic insights into signaling events that depend on either G proteins or β-arrestin. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. IGZO thin film transistor biosensors functionalized with ZnO nanorods and antibodies.

    PubMed

    Shen, Yi-Chun; Yang, Chun-Hsu; Chen, Shu-Wen; Wu, Shou-Hao; Yang, Tsung-Lin; Huang, Jian-Jang

    2014-04-15

    We demonstrate a biosensor structure consisting of an IGZO (Indium-Gallium-Zinc-Oxide) TFT (thin film transistor) and an extended sensing pad. The TFT acts as the sensing and readout device, while the sensing pad ensures the isolation of biological solution from the transistor channel layer, and meanwhile increases the sensing area. The biosensor is functionalized by first applying ZnO nanorods to increase the surface area for attracting electrical charges of EGFR (epidermal growth factor receptor) antibodies. The device is able to selectively detect 36.2 fM of EGFR in the total protein solution of 0.1 ng/ml extracted from squamous cell carcinoma (SCC). Furthermore, the conjugation duration of the functionalized device with EGFR can be limited to 3 min, implying that the biosensor has the advantage for real-time detection. © 2013 Elsevier B.V. All rights reserved.

  3. Biosensor for the detection of Listeria monocytogenes: emerging trends.

    PubMed

    Soni, Dharmendra Kumar; Ahmad, Rafiq; Dubey, Suresh Kumar

    2018-05-23

    The early detection of Listeria monocytogenes (L. monocytogenes) and understanding the disease burden is of paramount interest. The failure to detect pathogenic bacteria in the food industry may have terrible consequences, and poses deleterious effects on human health. Therefore, integration of methods to detect and trace the route of pathogens along the entire food supply network might facilitate elucidation of the main contamination sources. Recent research interest has been oriented towards the development of rapid and affordable pathogen detection tools/techniques. An innovative and new approach like biosensors has been quite promising in revealing the foodborne pathogens. In spite of the existing knowledge, advanced research is still needed to substantiate the expeditious nature and sensitivity of biosensors for rapid and in situ analysis of foodborne pathogens. This review summarizes recent developments in optical, piezoelectric, cell-based, and electrochemical biosensors for Listeria sp. detection in clinical diagnostics, food analysis, and environmental monitoring, and also lists their drawbacks and advantages.

  4. Thin Hydrogel Films for Optical Biosensor Applications

    PubMed Central

    Mateescu, Anca; Wang, Yi; Dostalek, Jakub; Jonas, Ulrich

    2012-01-01

    Hydrogel materials consisting of water-swollen polymer networks exhibit a large number of specific properties highly attractive for a variety of optical biosensor applications. This properties profile embraces the aqueous swelling medium as the basis of biocompatibility, non-fouling behavior, and being not cell toxic, while providing high optical quality and transparency. The present review focuses on some of the most interesting aspects of surface-attached hydrogel films as active binding matrices in optical biosensors based on surface plasmon resonance and optical waveguide mode spectroscopy. In particular, the chemical nature, specific properties, and applications of such hydrogel surface architectures for highly sensitive affinity biosensors based on evanescent wave optics are discussed. The specific class of responsive hydrogel systems, which can change their physical state in response to externally applied stimuli, have found large interest as sophisticated materials that provide a complex behavior to hydrogel-based sensing devices. PMID:24957962

  5. Electrochemical and AFM Characterization of G-Quadruplex Electrochemical Biosensors and Applications

    PubMed Central

    2018-01-01

    Guanine-rich DNA sequences are able to form G-quadruplexes, being involved in important biological processes and representing smart self-assembling nanomaterials that are increasingly used in DNA nanotechnology and biosensor technology. G-quadruplex electrochemical biosensors have received particular attention, since the electrochemical response is particularly sensitive to the DNA structural changes from single-stranded, double-stranded, or hairpin into a G-quadruplex configuration. Furthermore, the development of an increased number of G-quadruplex aptamers that combine the G-quadruplex stiffness and self-assembling versatility with the aptamer high specificity of binding to a variety of molecular targets allowed the construction of biosensors with increased selectivity and sensitivity. This review discusses the recent advances on the electrochemical characterization, design, and applications of G-quadruplex electrochemical biosensors in the evaluation of metal ions, G-quadruplex ligands, and other small organic molecules, proteins, and cells. The electrochemical and atomic force microscopy characterization of G-quadruplexes is presented. The incubation time and cations concentration dependence in controlling the G-quadruplex folding, stability, and nanostructures formation at carbon electrodes are discussed. Different G-quadruplex electrochemical biosensors design strategies, based on the DNA folding into a G-quadruplex, the use of G-quadruplex aptamers, or the use of hemin/G-quadruplex DNAzymes, are revisited. PMID:29666699

  6. Rapid and sensitive Nitrosomonas europaea biosensor assay for quantification of bioavailable ammonium sensu strictu in soil.

    PubMed

    Nguyen, Minh Dong; Risgaard-Petersen, Nils; Sørensen, Jan; Brandt, Kristian K

    2011-02-01

    Knowledge on bioavailable ammonium sensu strictu (i.e., immediately available for cellular uptake) in soil is required to understand nutrient uptake processes in microorganisms and thus of vital importance for plant production. We here present a novel ammonium biosensor approach based on the lithoautotrophic ammonia-oxidizing bacterium Nitrosomonas europaea transformed with a luxAB sensor plasmid. Bioluminescence-based ammonium detection was achieved within 10 min with a quantification limit in liquid samples of ∼20 μM and a linear response range up to 400 μM. Biosensor and conventional chemical quantification of ammonium in soil solutions agreed well across a range of sample and assay conditions. The biosensor was subsequently applied for a solid phase-contact assay allowing for direct interaction of biosensor cells with soil particle-associated (i.e., exchangeable plus fixed) ammonium. The assay successfully quantified bioavailable ammonium even in unfertilized soil and demonstrated markedly higher ratios of bioavailable ammonium to water- or 2 M KCl-exchangeable ammonium in anoxic soil than in corresponding oxic soil. Particle-associated ammonium contributed by at least 74% and 93% of the total bioavailable pool in oxic and anoxic soil, respectively. The N. europaea biosensor should have broad relevance for environmental monitoring of bioavailable ammonium and processes depending on ammonium bioavailability.

  7. Impedance biosensor based on interdigitated electrode array for detection of E.coli O157:H7 in food products

    NASA Astrophysics Data System (ADS)

    Ghosh Dastider, Shibajyoti; Barizuddin, Syed; Dweik, Majed; Almasri, Mahmoud F.

    2012-05-01

    An impedance biosensor was designed, fabricated and tested for detection of viable Escherichia coli O157:H7 in food samples. This device consists of interdigitated microelectrode array (IDEA) fabricated using thin layer of sputtered gold, embedded under a polydimethylsiloxane (PDMS) microchannel. The array of electrodes is designed to detect viable EColi in different food products. The active surface area of the detection array was modified using goat anti-E.coli polyclonal IgG antibody. Contaminated food samples were tested by infusing the supernatant containing bacteria over the IDEA's, through the microchannel. Antibody-antigen binding on the electrodes results in impedance change. Four serial concentrations of E.coli contaminated food samples (3x102 CFUmL-1 to 3x105 CFUmL-1) were tested. The biosensor successfully detected the E.coli samples, with the lower detection limit being 3x103 CFUmL-1 (up to 3cells/μl). Comparing the test results with an IDEA impedance biosensor without microchannel (published elsewhere) indicates that this biosensor have two order of magnitude times higher sensitivity. The proposed biosensor provides qualitative and quantitative detection, and potentially could be used for detection of other type of bacteria by immobilizing the specific type of antibody.

  8. Combination of electrochemical biosensor and textile threads: A microfluidic device for phenol determination in tap water.

    PubMed

    Caetano, F R; Carneiro, E A; Agustini, D; Figueiredo-Filho, L C S; Banks, C E; Bergamini, M F; Marcolino-Junior, L H

    2018-01-15

    Microfluidic devices constructed using low cost materials presents as alternative for conventional flow analysis systems because they provide advantages as low consumption of reagents and samples, high speed of analysis, possibility of portability and the easiness of construction and maintenance. Herein, is described for the first time the use of an electrochemical biosensor for phenol detection combined with a very simple and efficient microfluidic device based on commercial textile threads. Taking advantages of capillary phenomena and gravity forces, the solution transportation is promoted without any external forces or injection pump. Screen printed electrodes were modified with carbon nanotubes/gold nanoparticles followed by covalent binding of tyrosinase. After the biosensor electrochemical characterization by cyclic voltammetry technique, the optimization of relevant parameters such as pH, potential of detection and linear range for the biosensor performance was carried out; the system was evaluated for analytical phenol detection presenting limit of detection and limit of quantification 2.94nmolL -1 and 8.92nmolL -1 respectively. The proposed system was applied on phenol addition and recovery studies in drinking water, obtaining recoveries rates between 90% and 110%. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Laccase-based biosensor for the determination of polyphenol index in wine.

    PubMed

    Di Fusco, Massimo; Tortolini, Cristina; Deriu, Daniela; Mazzei, Franco

    2010-04-15

    In this work we have developed and characterized the use of Laccases from Trametes versicolor (TvL) and Trametes hirsuta (ThL) as biocatalytic components of electrochemical biosensors for the determination of polyphenol index in wines. Polyazetidine prepolimer (PAP) was used as immobilizing agent, multi-walled and single-walled carbon nanotubes screen-printed electrodes as sensors (MWCNTs-SPE and SWCNTs-SPE) and gallic acid as standard substrate. The amperometric measurements were carried out by using a flow system at a fixed potential of -100 mV vs. silver/silver chloride electrode in Britton-Robinson buffer 0.1 mol L(-1), pH 5. The results were compared with those obtained with the Folin-Ciocalteau reference method. The results obtained in the analysis of twelve Italian wines put in evidence the better suitability of ThL-MWCNTs-based biosensor in the determination of the polyphenol index in wines. This biosensor shows fast and reliable amperometric responses to gallic acid with a linear range 0.1-18.0 mg L(-1) (r(2)=0.999). The influence of the interferences on both spectrophotometric and electrochemical measurements have been carefully evaluated. (c) 2009 Elsevier B.V. All rights reserved.

  10. Application of a genetically encoded biosensor for live cell imaging of L-valine production in pyruvate dehydrogenase complex-deficient Corynebacterium glutamicum strains.

    PubMed

    Mustafi, Nurije; Grünberger, Alexander; Mahr, Regina; Helfrich, Stefan; Nöh, Katharina; Blombach, Bastian; Kohlheyer, Dietrich; Frunzke, Julia

    2014-01-01

    The majority of biotechnologically relevant metabolites do not impart a conspicuous phenotype to the producing cell. Consequently, the analysis of microbial metabolite production is still dominated by bulk techniques, which may obscure significant variation at the single-cell level. In this study, we have applied the recently developed Lrp-biosensor for monitoring of amino acid production in single cells of gradually engineered L-valine producing Corynebacterium glutamicum strains based on the pyruvate dehydrogenase complex-deficient (PDHC) strain C. glutamicum ΔaceE. Online monitoring of the sensor output (eYFP fluorescence) during batch cultivation proved the sensor's suitability for visualizing different production levels. In the following, we conducted live cell imaging studies on C. glutamicum sensor strains using microfluidic chip devices. As expected, the sensor output was higher in microcolonies of high-yield producers in comparison to the basic strain C. glutamicum ΔaceE. Microfluidic cultivation in minimal medium revealed a typical Gaussian distribution of single cell fluorescence during the production phase. Remarkably, low amounts of complex nutrients completely changed the observed phenotypic pattern of all strains, resulting in a phenotypic split of the population. Whereas some cells stopped growing and initiated L-valine production, others continued to grow or showed a delayed transition to production. Depending on the cultivation conditions, a considerable fraction of non-fluorescent cells was observed, suggesting a loss of metabolic activity. These studies demonstrate that genetically encoded biosensors are a valuable tool for monitoring single cell productivity and to study the phenotypic pattern of microbial production strains.

  11. Application of a Genetically Encoded Biosensor for Live Cell Imaging of L-Valine Production in Pyruvate Dehydrogenase Complex-Deficient Corynebacterium glutamicum Strains

    PubMed Central

    Mahr, Regina; Helfrich, Stefan; Nöh, Katharina; Blombach, Bastian; Kohlheyer, Dietrich; Frunzke, Julia

    2014-01-01

    The majority of biotechnologically relevant metabolites do not impart a conspicuous phenotype to the producing cell. Consequently, the analysis of microbial metabolite production is still dominated by bulk techniques, which may obscure significant variation at the single-cell level. In this study, we have applied the recently developed Lrp-biosensor for monitoring of amino acid production in single cells of gradually engineered L-valine producing Corynebacterium glutamicum strains based on the pyruvate dehydrogenase complex-deficient (PDHC) strain C. glutamicum ΔaceE. Online monitoring of the sensor output (eYFP fluorescence) during batch cultivation proved the sensor's suitability for visualizing different production levels. In the following, we conducted live cell imaging studies on C. glutamicum sensor strains using microfluidic chip devices. As expected, the sensor output was higher in microcolonies of high-yield producers in comparison to the basic strain C. glutamicum ΔaceE. Microfluidic cultivation in minimal medium revealed a typical Gaussian distribution of single cell fluorescence during the production phase. Remarkably, low amounts of complex nutrients completely changed the observed phenotypic pattern of all strains, resulting in a phenotypic split of the population. Whereas some cells stopped growing and initiated L-valine production, others continued to grow or showed a delayed transition to production. Depending on the cultivation conditions, a considerable fraction of non-fluorescent cells was observed, suggesting a loss of metabolic activity. These studies demonstrate that genetically encoded biosensors are a valuable tool for monitoring single cell productivity and to study the phenotypic pattern of microbial production strains. PMID:24465669

  12. Bacteria Inside Semiconductors as Potential Sensor Elements: Biochip Progress

    PubMed Central

    Sah, Vasu R.; Baier, Robert E.

    2014-01-01

    It was discovered at the beginning of this Century that living bacteria—and specifically the extremophile Pseudomonas syzgii—could be captured inside growing crystals of pure water-corroding semiconductors—specifically germanium—and thereby initiated pursuit of truly functional “biochip-based” biosensors. This observation was first made at the inside ultraviolet-illuminated walls of ultrapure water-flowing semiconductor fabrication facilities (fabs) and has since been, not as perfectly, replicated in simpler flow cell systems for chip manufacture, described here. Recognizing the potential importance of these adducts as optical switches, for example, or probes of metabolic events, the influences of the fabs and their components on the crystal nucleation and growth phenomena now identified are reviewed and discussed with regard to further research needs. For example, optical beams of current photonic circuits can be more easily modulated by integral embedded cells into electrical signals on semiconductors. Such research responds to a recently published Grand Challenge in ceramic science, designing and synthesizing oxide electronics, surfaces, interfaces and nanoscale structures that can be tuned by biological stimuli, to reveal phenomena not otherwise possible with conventional semiconductor electronics. This short review addresses only the fabrication facilities' features at the time of first production of these potential biochips. PMID:24961215

  13. Bacteria inside semiconductors as potential sensor elements: biochip progress.

    PubMed

    Sah, Vasu R; Baier, Robert E

    2014-06-24

    It was discovered at the beginning of this Century that living bacteria-and specifically the extremophile Pseudomonas syzgii-could be captured inside growing crystals of pure water-corroding semiconductors-specifically germanium-and thereby initiated pursuit of truly functional "biochip-based" biosensors. This observation was first made at the inside ultraviolet-illuminated walls of ultrapure water-flowing semiconductor fabrication facilities (fabs) and has since been, not as perfectly, replicated in simpler flow cell systems for chip manufacture, described here. Recognizing the potential importance of these adducts as optical switches, for example, or probes of metabolic events, the influences of the fabs and their components on the crystal nucleation and growth phenomena now identified are reviewed and discussed with regard to further research needs. For example, optical beams of current photonic circuits can be more easily modulated by integral embedded cells into electrical signals on semiconductors. Such research responds to a recently published Grand Challenge in ceramic science, designing and synthesizing oxide electronics, surfaces, interfaces and nanoscale structures that can be tuned by biological stimuli, to reveal phenomena not otherwise possible with conventional semiconductor electronics. This short review addresses only the fabrication facilities' features at the time of first production of these potential biochips.

  14. Building a minimal and generalizable model of transcription factor-based biosensors: Showcasing flavonoids.

    PubMed

    Trabelsi, Heykel; Koch, Mathilde; Faulon, Jean-Loup

    2018-05-07

    Progress in synthetic biology tools has transformed the way we engineer living cells. Applications of circuit design have reached a new level, offering solutions for metabolic engineering challenges that include developing screening approaches for libraries of pathway variants. The use of transcription-factor-based biosensors for screening has shown promising results, but the quantitative relationship between the sensors and the sensed molecules still needs more rational understanding. Herein, we have successfully developed a novel biosensor to detect pinocembrin based on a transcriptional regulator. The FdeR transcription factor (TF), known to respond to naringenin, was combined with a fluorescent reporter protein. By varying the copy number of its plasmid and the concentration of the biosensor TF through a combinatorial library, different responses have been recorded and modeled. The fitted model provides a tool to understand the impact of these parameters on the biosensor behavior in terms of dose-response and time curves and offers guidelines to build constructs oriented to increased sensitivity and or ability of linear detection at higher titers. Our model, the first to explicitly take into account the impact of plasmid copy number on biosensor sensitivity using Hill-based formalism, is able to explain uncharacterized systems without extensive knowledge of the properties of the TF. Moreover, it can be used to model the response of the biosensor to different compounds (here naringenin and pinocembrin) with minimal parameter refitting. © 2018 Wiley Periodicals, Inc.

  15. Gas Replacements for GFP to Track Microbial Dynamics in Soils and Sediments

    NASA Astrophysics Data System (ADS)

    Cheng, Hsiao-Ying; Silberg, Jonathan; Masiello, Caroline

    2016-04-01

    Metagenomic analyses offer unprecedented views of soil microbial communities, and additionally provide a host of testable hypotheses about the biological mechanisms driving global biogeochemical fluxes. Outside the biogeosciences, hypotheses generated by metagenomics are often tested using biosensors, microbes programmed to respond in a detectable way to either changes in their metabolism or changes in the environment. A very large number of microbial behaviors can be monitored using biosensors, but these sensors typically report in ways that are undetectable in soils, e.g. by releasing green fluorescent protein (GFP). We are building a new class of biosensors that report by releasing easily-detected gases. We will provide an overview of the potential uses of gas-reporting biosensors in geobiology, and will report the current development these sensors. One goal in the development of these sensors is to make tractable the testing of gene expression hypotheses derived from metagenomics data. Examples of processes that could be tracked non-invasively with gas sensors include coordination of biofilm formation, nitrification, rhizobial infection of plant roots, and at least some forms of methanogenesis, all of which are managed by the easily-engineered acyl homoserine lactone cell-cell communication system. Another relatively simple process to track with gas sensors is horizontal gene transfer. We will report on the progress of these proof-of-concept examples.

  16. Development of a Novel Method for in vivo Determination of Activation Energy of Glucose Transport Across S. cerevisiae Cellular Membranes. A Biosensor-like Approach.

    PubMed

    Kormes, Diego J; Cortón, Eduardo

    2009-01-01

    Whereas biosensors have been usually proposed as analytical tools, used to investigate the surrounding media pursuing an analytical answer, we have used a biosensor-like device to characterize the microbial cells immobilized on it. We have studied the kinetics of transport and degradation of glucose at different concentrations and temperatures. When glucose concentrations of 15 and 1.5 mM were assayed, calculated activation energies were 25.2 and 18.4 kcal mol(-1), respectively, in good agreement with previously published data. The opportunity and convenience of using Arrhenius plots to estimate the activation energy in metabolic-related processes is also discussed.

  17. Glycoprofiling of cancer biomarkers: Label-free electrochemical lectin-based biosensors

    PubMed Central

    Pihíková, Dominika; Kasák, Peter

    2016-01-01

    Glycosylation of biomolecules is one of the most prevalent post- and co-translational modification in a human body, with more than half of all human proteins being glycosylated. Malignant transformation of cells influences glycosylation machinery resulting in subtle changes of the glycosylation pattern within the cell populations as a result of cancer. Thus, an altered terminal glycan motif on glycoproteins could provide a warning signal about disease development and progression and could be applied as a reliable biomarker in cancer diagnostics. Among all highly effective glycoprofiling tools, label-free electrochemical impedance spectroscopy (EIS)-based biosensors have emerged as especially suitable tool for point-of-care early-stage cancer detection. Herein, we highlight the current challenges in glycoprofiling of various cancer biomarkers by ultrasensitive impedimetric-based biosensors with low sample consumption, low cost fabrication and simple miniaturization. Additionally, this review provides a short introduction to the field of glycomics and lectinomics and gives a brief overview of glycan alterations in different types of cancer. PMID:27275016

  18. IN VITRO EVALUATION OF BIOLOGICAL ACTIVITY OF CINNAMIC, CAFFEIC, FERULIC AND CHLOROGENIC ACIDS WITH USE OF ESCHERICHIA COLI K-12 RECA::GFP BIOSENSOR STRAIN.

    PubMed

    Matejczyk, Marzena; Swislocka, Renata; Kalinowska, Monika; Widerskp, Grzegorz; Lewandowsk, Wlodzimierz; Jablonska-Trypuo, Agata; Rosochacki, Stanislaw Jozef

    2017-05-01

    Cinnamic acid and its derivatives are important and promising compounds in cancer therapy, because of its broad spectrum of anicancer and antioxidative ability, and with high potential for development into new generation drugs. The aim of this study was to compare the cyto- and genotoxic effects of cinnamic acid and its derivatives with the use of4Escherichia coli K-12 recA::gfp microbial biosensor strain with plasmid fusion of recA promoter and gfp gene as reporter. Obtained results indicate that recA::gfpmut2 genetic system was a sensitive biosensor to the most chemicals tested in our experiments. The cinnamic acid and its derivatives modulated the reactivity of wcA promoter in relation to control sample and significantly inhibited bacteria cells growth. In the light of our results only chlorogenic and ferulic acids at higher concentrations demonstrated cyto and genotoxic activity toward to E. coli K-12 mcA::gfp cells.

  19. Recent Trends in Rapid Environmental Monitoring of Pathogens and Toxicants: Potential of Nanoparticle-Based Biosensor and Applications

    PubMed Central

    Koedrith, Preeyaporn; Thasiphu, Thalisa; Weon, Jong-Il; Boonprasert, Rattana; Tuitemwong, Kooranee; Tuitemwong, Pravate

    2015-01-01

    Of global concern, environmental pollution adversely affects human health and socioeconomic development. The presence of environmental contaminants, especially bacterial, viral, and parasitic pathogens and their toxins as well as chemical substances, poses serious public health concerns. Nanoparticle-based biosensors are considered as potential tools for rapid, specific, and highly sensitive detection of the analyte of interest (both biotic and abiotic contaminants). In particular, there are several limitations of conventional detection methods for water-borne pathogens due to low concentrations and interference with various enzymatic inhibitors in the environmental samples. The increase of cells to detection levels requires long incubation time. This review describes current state of biosensor nanotechnology, the advantage over conventional detection methods, and the challenges due to testing of environmental samples. The major approach is to use nanoparticles as signal reporter to increase output rather than spending time to increase cell concentrations. Trends in future development of novel detection devices and their advantages over other environmental monitoring methodologies are also discussed. PMID:25884032

  20. A Perspective on Studying G-Protein–Coupled Receptor Signaling with Resonance Energy Transfer Biosensors in Living Organisms

    PubMed Central

    van Unen, Jakobus; Woolard, Jeanette; Rinken, Ago; Hoffmann, Carsten; Hill, Stephen J.; Goedhart, Joachim; Bruchas, Michael R.; Bouvier, Michel

    2015-01-01

    The last frontier for a complete understanding of G-protein–coupled receptor (GPCR) biology is to be able to assess GPCR activity, interactions, and signaling in vivo, in real time within biologically intact systems. This includes the ability to detect GPCR activity, trafficking, dimerization, protein-protein interactions, second messenger production, and downstream signaling events with high spatial resolution and fast kinetic readouts. Resonance energy transfer (RET)–based biosensors allow for all of these possibilities in vitro and in cell-based assays, but moving RET into intact animals has proven difficult. Here, we provide perspectives on the optimization of biosensor design, of signal detection in living organisms, and the multidisciplinary development of in vitro and cell-based assays that more appropriately reflect the physiologic situation. In short, further development of RET-based probes, optical microscopy techniques, and mouse genome editing hold great potential over the next decade to bring real-time in vivo GPCR imaging to the forefront of pharmacology. PMID:25972446

  1. G-Protein Coupled Receptors: Surface Display and Biosensor Technology

    NASA Astrophysics Data System (ADS)

    McMurchie, Edward; Leifert, Wayne

    Signal transduction by G-protein coupled receptors (GPCRs) underpins a multitude of physiological processes. Ligand recognition by the receptor leads to the activation of a generic molecular switch involving heterotrimeric G-proteins and guanine nucleotides. With growing interest and commercial investment in GPCRs in areas such as drug targets, orphan receptors, high-throughput screening of drugs and biosensors, greater attention will focus on assay development to allow for miniaturization, ultrahigh-throughput and, eventually, microarray/biochip assay formats that will require nanotechnology-based approaches. Stable, robust, cell-free signaling assemblies comprising receptor and appropriate molecular switching components will form the basis of future GPCR/G-protein platforms, which should be able to be adapted to such applications as microarrays and biosensors. This chapter focuses on cell-free GPCR assay nanotechnologies and describes some molecular biological approaches for the construction of more sophisticated, surface-immobilized, homogeneous, functional GPCR sensors. The latter points should greatly extend the range of applications to which technologies based on GPCRs could be applied.

  2. Designing a highly active soluble PQQ-glucose dehydrogenase for efficient glucose biosensors and biofuel cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Durand, Fabien; Stines-Chaumeil, Claire; Flexer, Victoria

    2010-11-26

    Research highlights: {yields} A new mutant of PQQ-GDH designed for glucose biosensors application. {yields} First mutant of PQQ-GDH with higher activity for D-glucose than the Wild type. {yields} Position N428 is a key point to increase the enzyme activity. {yields} Molecular modeling shows that the N428 C mutant displays a better interaction for PQQ than the WT. -- Abstract: We report for the first time a soluble PQQ-glucose dehydrogenase that is twice more active than the wild type for glucose oxidation and was obtained by combining site directed mutagenesis, modelling and steady-state kinetics. The observed enhancement is attributed to amore » better interaction between the cofactor and the enzyme leading to a better electron transfer. Electrochemical experiments also demonstrate the superiority of the new mutant for glucose oxidation and make it a promising enzyme for the development of high-performance glucose biosensors and biofuel cells.« less

  3. A novel FbFP-based biosensor toolbox for sensitive in vivo determination of intracellular pH.

    PubMed

    Rupprecht, Christian; Wingen, Marcus; Potzkei, Janko; Gensch, Thomas; Jaeger, Karl-Erich; Drepper, Thomas

    2017-09-20

    The intracellular pH is an important modulator of various bio(techno)logical processes such as enzymatic conversion of metabolites or transport across the cell membrane. Changes of intracellular pH due to altered proton distribution can thus cause dysfunction of cellular processes. Consequently, accurate monitoring of intracellular pH allows elucidating the pH-dependency of (patho)physiological and biotechnological processes. In this context, genetically encoded biosensors represent a powerful tool to determine intracellular pH values non-invasively and with high spatiotemporal resolution. We have constructed a toolbox of novel genetically encoded FRET-based pH biosensors (named Fluorescence Biosensors for pH or FluBpH) that utilizes the FMN-binding fluorescent protein EcFbFP as donor domain. In contrast to many fluorescent proteins of the GFP family, EcFbFP exhibits a remarkable tolerance towards acidic pH (pK a ∼3.2). To cover the broad range of physiologically relevant pH values, three EYFP variants exhibiting pK a values of 5.7, 6.1 and 7.5 were used as pH-sensing FRET acceptor domains. The resulting biosensors FluBpH 5.7, FluBpH 6.1 and FluBpH 7.5 were calibrated in vitro and in vivo to accurately evaluate their pH indicator properties. To demonstrate the in vivo applicability of FluBpH, changes of intracellular pH were ratiometrically measured in E. coli cells during acid stress. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. High-throughput and multiplexed regeneration buffer scouting for affinity-based interactions.

    PubMed

    Geuijen, Karin P M; Schasfoort, Richard B; Wijffels, Rene H; Eppink, Michel H M

    2014-06-01

    Affinity-based analyses on biosensors depend partly on regeneration between measurements. Regeneration is performed with a buffer that efficiently breaks all interactions between ligand and analyte while maintaining the active binding site of the ligand. We demonstrated a regeneration buffer scouting using the combination of a continuous flow microspotter with a surface plasmon resonance imaging platform to simultaneously test 48 different regeneration buffers on a single biosensor. Optimal regeneration conditions are found within hours and consume little amounts of buffers, analyte, and ligand. This workflow can be applied to any ligand that is coupled through amine, thiol, or streptavidin immobilization. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Escherichia coli biosensors for environmental, food industry and biological warfare agent detection

    NASA Astrophysics Data System (ADS)

    Allil, R. C. S. B.; Werneck, M. M.; da Silva-Neto, J. L.; Miguel, M. A. L.; Rodrigues, D. M. C.; Wandermur, G. L.; Rambauske, D. C.

    2013-06-01

    This work has the objective to research and develop a plastic optical fiber biosensor based taper and mPOF LPG techniques to detect Escherichia coli by measurements of index of refraction. Generally, cell detection is crucial in microbiological analysis of clinical, food, water or environmental samples. However, methods current employed are time consuming, taking at least 72 hours in order to produce reliable responses as they depend on sample collection and cell culture in controlled conditions. The delay in obtaining the results of the analysis can result in contamination of a great number of consumers. Plastic Optical Fiber (POF) biosensors consist in a viable alternative for rapid and inexpensive scheme for cells detection. A study the sensitivity of these sensors for microbiological detection, fiber Tapers and Long Period Grating (LPG) both in poly-methyl-methacrylate (PMMA) were realized as possible candidates to take part of a biosensor system to detect Escherichia coli in water samples. In this work we adopted the immunocapture technique, which consists of quantifying bacteria in a liquid sample, attract-ing and fixing the bacteria on the surface of the polymer optical fiber, by the antigen-antibody reaction. The results were obtained by optical setup that consists in a side of the fiber a LED coupled to a photodetector through a POF with the taper in the middle of it. On the other side of the POF a photodetector receives this light producting a photocurrent. The output voltage is fed into the microcontroller A/D input port and its output data is sent via USB to a LabView software running in a microcomputer. The results showed the possibility of the POF in biosensor application capable to detect E. coli for environmental and food industry and for detecting and identifying biological-warfare agents using a very rapid response sensor, applicable to field detection prototypes.

  6. Electrochemical estimation of the polyphenol index in wines using a laccase biosensor.

    PubMed

    Gamella, M; Campuzano, S; Reviejo, A J; Pingarrón, J M

    2006-10-18

    The use of a laccase biosensor, under both batch and flow injection (FI) conditions, for a rapid and reliable amperometric estimation of the total content of polyphenolic compounds in wines is reported. The enzyme was immobilized by cross-linking with glutaraldehyde onto a glassy carbon electrode. Caffeic acid and gallic acid were selected as standard compounds to carry out such estimation. Experimental variables such as the enzyme loading, the applied potential, and the pH value were optimized, and different aspects regarding the operational stability of the laccase biosensor were evaluated. Using batch amperometry at -200 mV, the detection limits obtained were 2.6 x 10(-3) and 7.2 x 10(-4) mg L(-1) gallic acid and caffeic acid, respectively, which compares advantageously with previous biosensor designs. An extremely simple sample treatment consisting only of an appropriate dilution of wine sample with the supporting electrolyte solution (0.1 mol L(-1) citrate buffer of pH 5.0) was needed for the amperometric analysis of red, rosé, and white wines. Good correlations were found when the polyphenol indices obtained with the biosensor (in both the batch and FI modes) for different wine samples were plotted versus the results achieved with the classic Folin-Ciocalteu method. Application of the calibration transfer chemometric model (multiplicative fitting) allowed that the confidence intervals (for a significance level of 0.05) for the slope and intercept values of the amperometric index versus Folin-Ciocalteu index plots (r = 0.997) included the unit and zero values, respectively. This indicates that the laccase biosensor can be successfully used for the estimation of the polyphenol index in wines when compared with the Folin-Ciocalteu reference method.

  7. Reporter Proteins in Whole-Cell Optical Bioreporter Detection Systems, Biosensor Integrations, and Biosensing Applications

    PubMed Central

    Close, Dan M.; Ripp, Steven; Sayler, Gary S.

    2009-01-01

    Whole-cell, genetically modified bioreporters are designed to emit detectable signals in response to a target analyte or related group of analytes. When integrated with a transducer capable of measuring those signals, a biosensor results that acts as a self-contained analytical system useful in basic and applied environmental, medical, pharmacological, and agricultural sciences. Historically, these devices have focused on signaling proteins such as green fluorescent protein, aequorin, firefly luciferase, and/or bacterial luciferase. The biochemistry and genetic development of these sensor systems as well as the advantages, challenges, and common applications of each one will be discussed. PMID:22291559

  8. Strategies for "wiring" redox-active proteins to electrodes and applications in biosensors, biofuel cells, and nanotechnology.

    PubMed

    Nöll, Tanja; Nöll, Gilbert

    2011-07-01

    In this tutorial review the basic approaches to establish electrochemical communication between redox-active proteins and electrodes are elucidated and examples for applications in electrochemical biosensors, biofuel cells and nanotechnology are presented. The early stage of protein electrochemistry is described giving a short overview over electron transfer (ET) between electrodes and proteins, followed by a brief introduction into experimental procedures for studying proteins at electrodes and possible applications arising thereof. The article starts with discussing the electrochemistry of cytochrome c, the first redox-active protein, for which direct reversible ET was obtained, under diffusion controlled conditions and after adsorption to electrodes. Next, examples for the electrochemical study of redox enzymes adsorbed on electrodes and modes of immobilization are discussed. Shortly the experimental approach for investigating redox-active proteins adsorbed on electrodes is outlined. Possible applications of redox enzymes in electrochemical biosensors and biofuel cells working by direct ET (DET) and mediated ET (MET) are presented. Furthermore, the reconstitution of redox active proteins at electrodes using molecular wire-like units in order to "wire" the proteins to the electrode surface and possible applications in nanotechnology are discussed.

  9. A Green Microbial Fuel Cell-Based Biosensor for In Situ Chromium (VI) Measurement in Electroplating Wastewater.

    PubMed

    Wu, Li-Chun; Tsai, Teh-Hua; Liu, Man-Hai; Kuo, Jui-Ling; Chang, Yung-Chu; Chung, Ying-Chien

    2017-10-27

    The extensive use of Cr(VI) in many industries and the disposal of Cr(VI)-containing wastes have resulted in Cr(VI)-induced environmental contamination. Cr(VI) compounds are associated with increased cancer risks; hence, the detection of toxic Cr(VI) compounds is crucial. Various methods have been developed for Cr(VI) measurement, but they are often conducted offsite and cannot provide real-time toxicity monitoring. A microbial fuel cell (MFC) is an eco-friendly and self-sustaining device that has great potential as a biosensor for in situ Cr(VI) measurement, especially for wastewater generated from different electroplating units. In this study, Exiguobacterium aestuarii YC211, a facultatively anaerobic, Cr(VI)-reducing, salt-tolerant, and exoelectrogenic bacterium, was isolated and inoculated into an MFC to evaluate its feasibility as a Cr(VI) biosensor. The Cr(VI) removal efficiency of E. aestuarii YC211 was not affected by the surrounding environment (pH 5-9, 20-35 °C, coexisting ions, and salinity of 0-15 g/L). The maximum power density of the MFC biosensor was 98.3 ± 1.5 mW/m² at 1500 Ω. A good linear relationship ( r ² = 0.997) was observed between the Cr(VI) concentration (2.5-60 mg/L) and the voltage output. The developed MFC biosensor is a simple device that can accurately measure Cr(VI) concentrations in the actual electroplating wastewater that is generated from different electroplating units within 30 min with low deviations (-6.1% to 2.2%). After treating the actual electroplating wastewater with the MFC, the predominant family in the biofilm was found to be Bacillaceae (95.3%) and was further identified as the originally inoculated E. aestuarii YC211 by next generation sequencing (NGS). Thus, the MFC biosensor can measure Cr(VI) concentrations in situ in the effluents from different electroplating units, and it can potentially help in preventing the violation of effluent regulations.

  10. A Green Microbial Fuel Cell-Based Biosensor for In Situ Chromium (VI) Measurement in Electroplating Wastewater

    PubMed Central

    Wu, Li-Chun; Tsai, Teh-Hua; Liu, Man-Hai; Kuo, Jui-Ling; Chang, Yung-Chu

    2017-01-01

    The extensive use of Cr(VI) in many industries and the disposal of Cr(VI)-containing wastes have resulted in Cr(VI)-induced environmental contamination. Cr(VI) compounds are associated with increased cancer risks; hence, the detection of toxic Cr(VI) compounds is crucial. Various methods have been developed for Cr(VI) measurement, but they are often conducted offsite and cannot provide real-time toxicity monitoring. A microbial fuel cell (MFC) is an eco-friendly and self-sustaining device that has great potential as a biosensor for in situ Cr(VI) measurement, especially for wastewater generated from different electroplating units. In this study, Exiguobacterium aestuarii YC211, a facultatively anaerobic, Cr(VI)-reducing, salt-tolerant, and exoelectrogenic bacterium, was isolated and inoculated into an MFC to evaluate its feasibility as a Cr(VI) biosensor. The Cr(VI) removal efficiency of E. aestuarii YC211 was not affected by the surrounding environment (pH 5–9, 20–35 °C, coexisting ions, and salinity of 0–15 g/L). The maximum power density of the MFC biosensor was 98.3 ± 1.5 mW/m2 at 1500 Ω. A good linear relationship (r2 = 0.997) was observed between the Cr(VI) concentration (2.5–60 mg/L) and the voltage output. The developed MFC biosensor is a simple device that can accurately measure Cr(VI) concentrations in the actual electroplating wastewater that is generated from different electroplating units within 30 min with low deviations (−6.1% to 2.2%). After treating the actual electroplating wastewater with the MFC, the predominant family in the biofilm was found to be Bacillaceae (95.3%) and was further identified as the originally inoculated E. aestuarii YC211 by next generation sequencing (NGS). Thus, the MFC biosensor can measure Cr(VI) concentrations in situ in the effluents from different electroplating units, and it can potentially help in preventing the violation of effluent regulations. PMID:29076985

  11. Microfluidic resonant waveguide grating biosensor system for whole cell sensing

    NASA Astrophysics Data System (ADS)

    Zaytseva, Natalya; Miller, William; Goral, Vasily; Hepburn, Jerry; Fang, Ye

    2011-04-01

    We report on a fluidic resonant waveguide grating (RWG) biosensor system that enables medium throughput measurements of cellular responses under microfluidics in a 32-well format. Dynamic mass redistribution assays under microfluidics differentiate the cross-desensitization process between the β2-adrenoceptor agonist epinephrine and the adenylate cyclase activator forskolin mediated signaling. This system opens new possibility to study cellular processes that are otherwise difficult to achieve using conventional RWG configurations.

  12. Biosensor studies of collagen and laminin binding with immobilized Escherichia coli O157:H7 and inhibition with naturally occurring food additives

    NASA Astrophysics Data System (ADS)

    Medina, Marjorie B.

    1999-01-01

    Escherichia coli O157:H7 outbreaks were mostly due to consumption of undercooked contaminated beef which resulted in severe illness and several fatalities. Recalls of contaminated meat are costly for the meat industry. Our research attempts to understand the mechanisms of bacterial adhesion on animal carcass in order to eliminate or reduce pathogens in foods. We have reported the interactions of immobilized E. coli O157:H7 cells with extracellular matrix (ECM) components using a surface plasmon resonance biosensor (BIAcore). These studies showed that immobilized bacterial cells allowed the study of real-time binding interactions of bacterial surface with the ECM compounds, collagen I, laminin and fibronectin. Collagen I and laminin bound to the E. coli sensor surface with dissociation and association rates ranging from 106 to 109. Binding of collagen I and laminin mixture resulted in synergistic binding signals. An inhibition model was derived using collagen-laminin as the ligand which binds with E. coli sensor. A select group of naturally occurring food additives was evaluated by determining their effectivity in inhibiting the collagen-laminin binding to the bacterial sensor. Bound collagen-laminin was detached from the E. coli sensor surface with the aid of an organic acid. The biosensor results were verified with cell aggregation assays which were observed with optical and electron microscopes. These biosensor studies provided understanding of bacterial adhesion to connective tissue macromolecules. It also provided a model system for the rapid assessment of potential inhibitors that can be used in carcass treatment to inhibit or reduce bacterial contamination.

  13. Biosensors for Real-Time Monitoring of Radiation-Induced Biologic Effects in Space

    NASA Technical Reports Server (NTRS)

    Baker, James R.; Balogh, Lajos; Majoros, Istvan; Keszler, Balazs; Myc, Andrzej; Kukowska-Latallo, Jolanta; Norris, Theodore; delaiglesia, Felix; Beeson, Nicholas W. (Compiler)

    2002-01-01

    This work seeks to develop cellular biosensors based on dendritic polymers. Nanoscale polymer structures less than 20 nm in diameter will be used as the basis of the biosensors. The structures will be designed to target into specific cells of an astronaut and be able to monitor health issues such as exposure to radiation. Multiple components can be assembled on the polymers including target directors, analytical devices (such as molecular probes), and reporting agents. The reporting will be accomplished through fluorescence signal monitoring, with the use of multispectral analysis for signal interpretation. These nanosensors could facilitate the success and increase the safety of extended space flight. The design and assembly of these devices has been pioneered at the Center for Biologic Nanotechnology in the University of Michigan. This period, synthesis of the test-bed biosensors continued. Studies were performed on the candidate fluorescent dyes to determine which might be suitable for the biosensor under development. Development continued on producing an artificial capillary bed as a tool for the use in the production of the fluorescence signal monitor. Work was also done on the in vitro multispectral analysis system, which uses the robotic microscope.

  14. Development of an acoustic wave based biosensor for vapor phase detection of small molecules

    NASA Astrophysics Data System (ADS)

    Stubbs, Desmond

    For centuries scientific ingenuity and innovation have been influenced by Mother Nature's perfect design. One of her more elusive designs is that of the sensory olfactory system, an array of highly sensitive receptors responsible for chemical vapor recognition. In the animal kingdom this ability is magnified among canines where ppt (parts per trillion) sensitivity values have been reported. Today, detection dogs are considered an essential part of the US drug and explosives detection schemes. However, growing concerns about their susceptibility to extraneous odors have inspired the development of highly sensitive analytical detection tools or biosensors known as "electronic noses". In general, biosensors are distinguished from chemical sensors in that they use an entity of biological origin (e.g. antibody, cell, enzyme) immobilized onto a surface as the chemically-sensitive film on the device. The colloquial view is that the term "biosensors" refers to devices which detect the presence of entities of biological origin, such as proteins or single-stranded DNA and that this detection must take place in a liquid. Our biosensor utilizes biomolecules, specifically IgG monoclonal antibodies, to achieve molecular recognition of relatively small molecules in the vapor phase.

  15. Convection, diffusion and reaction in a surface-based biosensor: modeling of cooperativity and binding site competition on the surface and in the hydrogel.

    PubMed

    Lebedev, Konstantin; Mafé, Salvador; Stroeve, Pieter

    2006-04-15

    We study theoretically the transport and kinetic processes underlying the operation of a biosensor (particularly the surface plasmon sensor "Biacore") used to study the surface binding kinetics of biomolecules in solution to immobilized receptors. Unlike previous studies, we concentrate mainly on the modeling of system-specific phenomena rather than on the influence of mass transport limitations on the intrinsic kinetic rate constants determined from binding data. In the first problem, the case of two-site binding where each receptor unit on the surface can accommodate two analyte molecules on two different sites is considered. One analyte molecule always binds first to a specific site. Subsequently, the second analyte molecule can bind to the adjacent unoccupied site. In the second problem, two different analytes compete for one binding site on the same surface receptor. Finally, the third problem considers the case of positive cooperativity among bound molecules in the hydrogel using a simple mean-field approach. The transport in both the flow channel and the hydrogel phases of the biosensor is taken into account in this case (with few exceptions, most previous studies assume a simpler model in which the hydrogel is treated as a planar surface with the receptors). We consider simultaneously diffusion and convection through the flow channel together with diffusion and cooperativity binding on the surface and in the hydrogel. In each case, typical results for the concentration contours of the free and bound molecules in the flow channel and hydrogel regions are presented together with the time-dependent association/dissociation curves and reaction rates. For binding site competition, the analysis predicts overshoot phenomena.

  16. Label-Free Optofluidic Nanobiosensor Enables Real-Time Analysis of Single-Cell Cytokine Secretion.

    PubMed

    Li, Xiaokang; Soler, Maria; Szydzik, Crispin; Khoshmanesh, Khashayar; Schmidt, Julien; Coukos, George; Mitchell, Arnan; Altug, Hatice

    2018-06-01

    Single-cell analysis of cytokine secretion is essential to understand the heterogeneity of cellular functionalities and develop novel therapies for multiple diseases. Unraveling the dynamic secretion process at single-cell resolution reveals the real-time functional status of individual cells. Fluorescent and colorimetric-based methodologies require tedious molecular labeling that brings inevitable interferences with cell integrity and compromises the temporal resolution. An innovative label-free optofluidic nanoplasmonic biosensor is introduced for single-cell analysis in real time. The nanobiosensor incorporates a novel design of a multifunctional microfluidic system with small volume microchamber and regulation channels for reliable monitoring of cytokine secretion from individual cells for hours. Different interleukin-2 secretion profiles are detected and distinguished from single lymphoma cells. The sensor configuration combined with optical spectroscopic imaging further allows us to determine the spatial single-cell secretion fingerprints in real time. This new biosensor system is anticipated to be a powerful tool to characterize single-cell signaling for basic and clinical research. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Caco-2 cell-based electrochemical biosensor for evaluating the antioxidant capacity of Asp-Leu-Glu-Glu isolated from dry-cured Xuanwei ham.

    PubMed

    Xing, Lujuan; Ge, Qingfeng; Jiang, Donglei; Gao, Xiaoge; Liu, Rui; Cao, Songmin; Zhuang, Xinbo; Zhou, Guanghong; Zhang, Wangang

    2018-05-15

    A cell-based electrochemical biosensor was developed to determine the antioxidant activity of Asp-Leu-Glu-Glu (DLEE) isolated from dry-cured Chinese Xuanwei ham. A platinized gold electrode (Pt NPs/GE) covered with silver nanowires (Ag NWs) was fabricated to detect H 2 O 2 using redox signaling via cyclic voltammetry (CV), differential pulse voltammetry (DPV), and electrochemical impedance spectroscopy (EIS). Under optimal condition, the detection limit of the modified electrode was 0.12μM with a linear relationship from 0.2 to 2μM, which showed relatively outstanding catalytic effects towards the reduction of H 2 O 2 . Furthermore, the generation of reactive oxygen species (ROS) in the cell can be used to indirectly assess changes in intercellular oxidative stress by detecting variations in electrochemical signals. A 3D cell culture of alginate/graphene oxide (NaAlg/GO) was used to encapsulate and immobilize Caco-2 cells. Based on ROS generation and electrochemical results, we found that DLEE could effectively reduce oxidative stress level in Caco-2 cells under external stimulation. DLEE showed high antioxidant activity with a relative antioxidant capacity (RAC) rate of 88.17% at 1.5mg/mL. Finally, an efficient electrochemical biosensor was established using the active 3D Caco-2 cell platform. This system is sensitive and simple to operate with the property to evaluate the antioxidant activity of peptides by the detection of H 2 O 2 in cell membrane. In summary, this work describes a new method for assessing antioxidant capacity of peptide DLEE using cell-based electrochemical signaling with a rapid screening pattern. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Modified surface of titanium dioxide nanoparticles-based biosensor for DNA detection

    NASA Astrophysics Data System (ADS)

    Nadzirah, Sh.; Hashim, U.; Rusop, M.

    2018-05-01

    A new technique was used to develop a simple and selective picoammeter DNA biosensor for identification of E. coli O157:H7. This biosensor was fabricated from titanium dioxide nanoparticles that was synthesized by sol-gel method and spin-coated on silicon dioxide substrate via spinner. 3-Aminopropyl triethoxy silane (APTES) was used to modify the surface of TiO2. Simple surface modification approach has been applied; which is single dropping of APTES onto the TiO2 nanoparticles surface. Carboxyl modified probe DNA has been bind onto the surface of APTES/TiO2 without any amplifier element. Electrical signal has been used as the indicator to differentiate each step (surface modification of TiO2 and probe DNA immobilization). The I-V measurements indicate extremely low current (pico-ampere) flow through the device which is 2.8138E-10 A for pure TiO2 nanoparticles, 2.8124E-10 A after APTES modification and 3.5949E-10 A after probe DNA immobilization.

  19. The Need and Potential of Biosensors to Detect Dioxins and Dioxin-Like Polychlorinated Biphenyls along the Milk, Eggs and Meat Food Chain

    PubMed Central

    Chobtang, Jeerasak; de Boer, Imke J. M.; Hoogenboom, Ron L. A. P.; Haasnoot, Willem; Kijlstra, Aize; Meerburg, Bastiaan G.

    2011-01-01

    Dioxins and dioxin-like polychlorinated biphenyls (DL-PCBs) are hazardous toxic, ubiquitous and persistent chemical compounds, which can enter the food chain and accumulate up to higher trophic levels. Their determination requires sophisticated methods, expensive facilities and instruments, well-trained personnel and expensive chemical reagents. Ideally, real-time monitoring using rapid detection methods should be applied to detect possible contamination along the food chain in order to prevent human exposure. Sensor technology may be promising in this respect. This review gives the state of the art for detecting possible contamination with dioxins and DL-PCBs along the food chain of animal-source foods. The main detection methods applied (i.e., high resolution gas-chromatography combined with high resolution mass-spectrometry (HRGC/HRMS) and the chemical activated luciferase gene expression method (CALUX bioassay)), each have their limitations. Biosensors for detecting dioxins and related compounds, although still under development, show potential to overcome these limitations. Immunosensors and biomimetic-based biosensors potentially offer increased selectivity and sensitivity for dioxin and DL-PCB detection, while whole cell-based biosensors present interpretable biological results. The main shortcoming of current biosensors, however, is their detection level: this may be insufficient as limits for dioxins and DL-PCBs for food and feedstuffs are in pg per gram level. In addition, these contaminants are normally present in fat, a difficult matrix for biosensor detection. Therefore, simple and efficient extraction and clean-up procedures are required which may enable biosensors to detect dioxins and DL-PCBs contamination along the food chain. PMID:22247688

  20. The need and potential of biosensors to detect dioxins and dioxin-like polychlorinated biphenyls along the milk, eggs and meat food chain.

    PubMed

    Chobtang, Jeerasak; de Boer, Imke J M; Hoogenboom, Ron L A P; Haasnoot, Willem; Kijlstra, Aize; Meerburg, Bastiaan G

    2011-01-01

    Dioxins and dioxin-like polychlorinated biphenyls (DL-PCBs) are hazardous toxic, ubiquitous and persistent chemical compounds, which can enter the food chain and accumulate up to higher trophic levels. Their determination requires sophisticated methods, expensive facilities and instruments, well-trained personnel and expensive chemical reagents. Ideally, real-time monitoring using rapid detection methods should be applied to detect possible contamination along the food chain in order to prevent human exposure. Sensor technology may be promising in this respect. This review gives the state of the art for detecting possible contamination with dioxins and DL-PCBs along the food chain of animal-source foods. The main detection methods applied (i.e., high resolution gas-chromatography combined with high resolution mass-spectrometry (HRGC/HRMS) and the chemical activated luciferase gene expression method (CALUX bioassay)), each have their limitations. Biosensors for detecting dioxins and related compounds, although still under development, show potential to overcome these limitations. Immunosensors and biomimetic-based biosensors potentially offer increased selectivity and sensitivity for dioxin and DL-PCB detection, while whole cell-based biosensors present interpretable biological results. The main shortcoming of current biosensors, however, is their detection level: this may be insufficient as limits for dioxins and DL-PCBs for food and feedstuffs are in pg per gram level. In addition, these contaminants are normally present in fat, a difficult matrix for biosensor detection. Therefore, simple and efficient extraction and clean-up procedures are required which may enable biosensors to detect dioxins and DL-PCBs contamination along the food chain.

  1. Development of a Novel Method for in vivo Determination of Activation Energy of Glucose Transport Across S. cerevisiae Cellular Membranes. A Biosensor-like Approach

    PubMed Central

    Kormes, Diego J.; Cortón, Eduardo

    2009-01-01

    Whereas biosensors have been usually proposed as analytical tools, used to investigate the surrounding media pursuing an analytical answer, we have used a biosensor-like device to characterize the microbial cells immobilized on it. We have studied the kinetics of transport and degradation of glucose at different concentrations and temperatures. When glucose concentrations of 15 and 1.5 mM were assayed, calculated activation energies were 25.2 and 18.4 kcal mol−1, respectively, in good agreement with previously published data. The opportunity and convenience of using Arrhenius plots to estimate the activation energy in metabolic-related processes is also discussed. PMID:22573975

  2. Simulation of Graphene Field-Effect Transistor Biosensors for Bacterial Detection.

    PubMed

    Wu, Guangfu; Meyyappan, Meyya; Lai, King Wai Chiu

    2018-05-25

    Foodborne illness is correlated with the existence of infectious pathogens such as bacteria in food and drinking water. Probe-modified graphene field effect transistors (G-FETs) have been shown to be suitable for Escherichia coli ( E. coli ) detection. Here, the G-FETs for bacterial detection are modeled and simulated with COMSOL Multiphysics to understand the operation of the biosensors. The motion of E. coli cells in electrolyte and the surface charge of graphene induced by E. coli are systematically investigated. The comparison between the simulation and experimental data proves the sensing probe size to be a key parameter affecting the surface charge of graphene induced by bacteria. Finally, the relationship among the change in source-drain current (∆ I ds ), graphene-bacteria distance and bacterial concentration is established. The shorter graphene-bacteria distance and higher bacterial concentration give rise to better sensing performance (larger ∆ I ds ) of the G-FETs biosensors. The simulation here could serve as a guideline for the design and optimization of G-FET biosensors for various applications.

  3. Metal-coated microfluidic channels: An approach to eliminate streaming potential effects in nano biosensors.

    PubMed

    Lee, Jieun; Wipf, Mathias; Mu, Luye; Adams, Chris; Hannant, Jennifer; Reed, Mark A

    2017-01-15

    We report a method to suppress streaming potential using an Ag-coated microfluidic channel on a p-type silicon nanowire (SiNW) array measured by a multiplexed electrical readout. The metal layer sets a constant electrical potential along the microfluidic channel for a given reference electrode voltage regardless of the flow velocity. Without the Ag layer, the magnitude and sign of the surface potential change on the SiNW depends on the flow velocity, width of the microfluidic channel and the device's location inside the microfluidic channel with respect to the reference electrode. Noise analysis of the SiNW array with and without the Ag coating in the fluidic channel shows that noise frequency peaks, resulting from the operation of a piezoelectric micropump, are eliminated using the Ag layer with two reference electrodes located at inlet and outlet. This strategy presents a simple platform to eliminate the streaming potential and can become a powerful tool for nanoscale potentiometric biosensors. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Real-time analysis of the carbohydrates on cell surfaces using a QCM biosensor: a lectin-based approach.

    PubMed

    Pei, Zhichao; Saint-Guirons, Julien; Käck, Camilla; Ingemarsson, Björn; Aastrup, Teodor

    2012-05-15

    A novel approach to the study of molecular interactions on the surface of mammalian cells using a QCM biosensor was developed. For this study, an epidermoid carcinoma cell line (A-431) and a breast adenocarcinoma cell line (MDA-MB-468) were immobilized onto polystyrene-coated quartz crystals. The binding and dissociation between the lectin Con A and the cells as well as the inhibition of the binding by monosaccharides were monitored in real time and provided an insight into the complex avidic recognition of cell glycoconjugates. The real-time lectin screening of a range of lectins, including Con A, DBA, PNA and UEA-I, enabled the accurate study of the glycosylation changes between cells, such as changes associated with cancer progression and development. Furthermore, the kinetic parameters of the interaction of Con A with MDA-MB-468 cells were studied. This application provides investigators in the field of glycobiology with a novel tool to study cell surface glycosylation and may also have impacts on drug discovery. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Rapid Determination of the Chemical Oxygen Demand of Water Using a Thermal Biosensor

    PubMed Central

    Yao, Na; Wang, Jinqi; Zhou, Yikai

    2014-01-01

    In this paper we describe a thermal biosensor with a flow injection analysis system for the determination of the chemical oxygen demand (COD) of water samples. Glucose solutions of different concentrations and actual water samples were tested, and their COD values were determined by measuring the heat generated when the samples passed through a column containing periodic acid. The biosensor exhibited a large linear range (5 to 3000 mg/L) and a low detection limit (1.84 mg/L). It could tolerate the presence of chloride ions in concentrations of 0.015 M without requiring a masking agent. The sensor was successfully used for detecting the COD values of actual samples. The COD values of water samples from various sources were correlated with those obtained by the standard dichromate method; the linear regression coefficient was found to be 0.996. The sensor is environmentally friendly, economical, and highly stable, and exhibits good reproducibility and accuracy. In addition, its response time is short, and there is no danger of hazardous emissions or external contamination. Finally, the samples to be tested do not have to be pretreated. These results suggest that the biosensor is suitable for the continuous monitoring of the COD values of actual wastewater samples. PMID:24915178

  6. Biosensor and chemical sensor probes for calcium and other metal ions

    DOEpatents

    Vo-Dinh, Tuan; Viallet, Pierre

    1996-01-01

    The present invention relates to chemical sensor and biosensor probes for measuring low concentration of metals and metal ions in complex samples such as biological fluids, living cells, and environmental samples. More particularly the present invention relates to a gel-based Indo-1 and Fura-2 chemical sensor probes for the measurement of low concentrations of calcium, cadmium, magnesium and the like. Also disclosed is a detector device using the sensors of the present invention.

  7. Reduced graphene oxide decorated with gold nanoparticle as signal amplification element on ultra-sensitive electrochemiluminescence determination of caspase-3 activity and apoptosis using peptide based biosensor

    PubMed Central

    Khalilzadeh, Balal; Shadjou, Nasrin; Afsharan, Hadi; Eskandani, Morteza; Nozad Charoudeh, Hojjatollah; Rashidi, Mohammad-Reza

    2016-01-01

    Introduction:Growing demands for ultrasensitive biosensing have led to the development of numerous signal amplification strategies. In this report, a novel electrochemiluminescence (ECL) method was developed for the detection and determination of caspase-3 activity based on reduced graphene oxide sheets decorated by gold nanoparticles as signal amplification element and horseradish peroxidase enzyme (HRP) as ECL intensity enhancing agent. Methods: The ECL intensity of the luminol was improved by using the streptavidin coated magnetic beads and HRP in the presence of hydrogen peroxide. The cleavage behavior of caspase-3 was characterized by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) techniques using biotinylated peptide (DEVD containing peptide) which was coated on reduced graphene oxide decorated with gold nanoparticle. The surface modification of graphene oxide was successfully confirmed by FTIR, UV-vis and x-ray spectroscopy. Results: ECL based biosensor showed that the linear dynamic range (LDR) and the lower limit of quantification (LLOQ) were 0.5-100 and 0.5 femtomolar (fM), respectively. Finally, the performance of the engineered peptide based biosensor was validated in the A549 cell line as real samples. Conclusion: The prepared peptide based biosensor could be considered as an excellent candidate for early detection of apoptosis, cell turnover, and cancer related diseases. PMID:27853677

  8. Continuous sensing of tumor-targeted molecular probes with a vertical cavity surface emitting laser-based biosensor

    NASA Astrophysics Data System (ADS)

    Parashurama, Natesh; O'Sullivan, Thomas D.; De La Zerda, Adam; El Kalassi, Pascale; Cho, Seongjae; Liu, Hongguang; Teed, Robert; Levy, Hart; Rosenberg, Jarrett; Cheng, Zhen; Levi, Ofer; Harris, James S.; Gambhir, Sanjiv S.

    2012-11-01

    Molecular optical imaging is a widespread technique for interrogating molecular events in living subjects. However, current approaches preclude long-term, continuous measurements in awake, mobile subjects, a strategy crucial in several medical conditions. Consequently, we designed a novel, lightweight miniature biosensor for in vivo continuous optical sensing. The biosensor contains an enclosed vertical-cavity surface-emitting semiconductor laser and an adjacent pair of near-infrared optically filtered detectors. We employed two sensors (dual sensing) to simultaneously interrogate normal and diseased tumor sites. Having established the sensors are precise with phantom and in vivo studies, we performed dual, continuous sensing in tumor (human glioblastoma cells) bearing mice using the targeted molecular probe cRGD-Cy5.5, which targets αVβ3 cell surface integrins in both tumor neovasculature and tumor. The sensors capture the dynamic time-activity curve of the targeted molecular probe. The average tumor to background ratio after signal calibration for cRGD-Cy5.5 injection is approximately 2.43±0.95 at 1 h and 3.64±1.38 at 2 h (N=5 mice), consistent with data obtained with a cooled charge coupled device camera. We conclude that our novel, portable, precise biosensor can be used to evaluate both kinetics and steady state levels of molecular probes in various disease applications.

  9. Continuous sensing of tumor-targeted molecular probes with a vertical cavity surface emitting laser-based biosensor

    PubMed Central

    Parashurama, Natesh; O’Sullivan, Thomas D.; De La Zerda, Adam; El Kalassi, Pascale; Cho, Seongjae; Liu, Hongguang; Teed, Robert; Levy, Hart; Rosenberg, Jarrett; Cheng, Zhen; Levi, Ofer; Harris, James S.

    2012-01-01

    Abstract. Molecular optical imaging is a widespread technique for interrogating molecular events in living subjects. However, current approaches preclude long-term, continuous measurements in awake, mobile subjects, a strategy crucial in several medical conditions. Consequently, we designed a novel, lightweight miniature biosensor for in vivo continuous optical sensing. The biosensor contains an enclosed vertical-cavity surface-emitting semiconductor laser and an adjacent pair of near-infrared optically filtered detectors. We employed two sensors (dual sensing) to simultaneously interrogate normal and diseased tumor sites. Having established the sensors are precise with phantom and in vivo studies, we performed dual, continuous sensing in tumor (human glioblastoma cells) bearing mice using the targeted molecular probe cRGD-Cy5.5, which targets αVβ3 cell surface integrins in both tumor neovasculature and tumor. The sensors capture the dynamic time-activity curve of the targeted molecular probe. The average tumor to background ratio after signal calibration for cRGD-Cy5.5 injection is approximately 2.43±0.95 at 1 h and 3.64±1.38 at 2 h (N=5 mice), consistent with data obtained with a cooled charge coupled device camera. We conclude that our novel, portable, precise biosensor can be used to evaluate both kinetics and steady state levels of molecular probes in various disease applications. PMID:23123976

  10. Optical biosensor for environmental on-line monitoring of naphthalene and salicylate bioavailability with an immobilized bioluminescent catabolic reporter bacterium.

    PubMed Central

    Heitzer, A; Malachowsky, K; Thonnard, J E; Bienkowski, P R; White, D C; Sayler, G S

    1994-01-01

    An optical whole-cell biosensor based on a genetically engineered bioluminescent catabolic reporter bacterium was developed for continuous on-line monitoring of naphthalene and salicylate bioavailability and microbial catabolic activity potential in waste streams. The bioluminescent reporter bacterium, Pseudomonas fluorescens HK44, carries a transcriptional nahG-luxCDABE fusion for naphthalene and salicylate catabolism. Exposure to either compound resulted in inducible bioluminescence. The reporter culture was immobilized onto the surface of an optical light guide by using strontium alginate. This biosensor probe was then inserted into a measurement cell which simultaneously received the waste stream solution and a maintenance medium. Exposure under defined conditions to both naphthalene and salicylate resulted in a rapid increase in bioluminescence. The magnitude of the response and the response time were concentration dependent. Good reproducibility of the response was observed during repetitive perturbations with either naphthalene or salicylate. Exposure to other compounds, such as glucose and complex nutrient medium or toluene, resulted in either minor bioluminescence increases after significantly longer response times compared with naphthalene or no response, respectively. The environmental utility of the biosensor was tested by using real pollutant mixtures. A specific bioluminescence response was obtained after exposure to either an aqueous solution saturated with JP-4 jet fuel or an aqueous leachate from a manufactured-gas plant soil, since naphthalene was present in both pollutant mixtures. PMID:8017932

  11. Dependence of cancer cell adhesion kinetics on integrin ligand surface density measured by a high-throughput label-free resonant waveguide grating biosensor.

    PubMed

    Orgovan, Norbert; Peter, Beatrix; Bősze, Szilvia; Ramsden, Jeremy J; Szabó, Bálint; Horvath, Robert

    2014-02-07

    A novel high-throughput label-free resonant waveguide grating (RWG) imager biosensor, the Epic® BenchTop (BT), was utilized to determine the dependence of cell spreading kinetics on the average surface density (v(RGD)) of integrin ligand RGD-motifs. v(RGD) was tuned over four orders of magnitude by co-adsorbing the biologically inactive PLL-g-PEG and the RGD-functionalized PLL-g-PEG-RGD synthetic copolymers from their mixed solutions onto the sensor surface. Using highly adherent human cervical tumor (HeLa) cells as a model system, cell adhesion kinetic data of unprecedented quality were obtained. Spreading kinetics were fitted with the logistic equation to obtain the spreading rate constant (r) and the maximum biosensor response (Δλmax), which is assumed to be directly proportional to the maximum spread contact area (Amax). r was found to be independent of the surface density of integrin ligands. In contrast, Δλmax increased with increasing RGD surface density until saturation at high densities. Interpreting the latter behavior with a simple kinetic mass action model, a 2D dissociation constant of 1753 ± 243 μm(-2) (corresponding to a 3D dissociation constant of ~30 μM) was obtained for the binding between RGD-specific integrins embedded in the cell membrane and PLL-g-PEG-RGD. All of these results were obtained completely noninvasively without using any labels.

  12. A Terrestrial Single Chamber Microbial Fuel Cell-based Biosensor for Biochemical Oxygen Demand of Synthetic Rice Washed Wastewater

    PubMed Central

    Logroño, Washington; Guambo, Alex; Pérez, Mario; Kadier, Abudukeremu; Recalde, Celso

    2016-01-01

    Microbial fuel cells represent an innovative technology which allow simultaneous waste treatment, electricity production, and environmental monitoring. This study provides a preliminary investigation of the use of terrestrial Single chamber Microbial Fuel Cells (SMFCs) as biosensors. Three cells were created using Andean soil, each one for monitoring a BOD concentration of synthetic washed rice wastewater (SRWW) of 10, 100, and 200 mg/L for SMFC1, SMFC2 and SMFC3, respectively. The results showed transient, exponential, and steady stages in the SMFCs. The maximum open circuit voltage (OCV) peaks were reached during the elapsed time of the transient stages, according to the tested BOD concentrations. A good linearity between OCV and time was observed in the increasing stage. The average OCV in this stage increased independently of the tested concentrations. SMFC1 required less time than SMFC2 to reach the steady stage, suggesting the BOD concentration is an influencing factor in SMFCs, and SMFC3 did not reach it. The OCV ratios were between 40.6–58.8 mV and 18.2–32.9 mV for SMFC1 and SMFC2. The reproducibility of the SMFCs was observed in four and three cycles for SMFC1 and SMFC2, respectively. The presented SMFCs had a good response and reproducibility as biosensor devices, and could be an alternative for environmental monitoring. PMID:26784197

  13. ADMET biosensors: up-to-date issues and strategies.

    PubMed

    Fang, Yan; Offenhaeusser, Andrease

    2004-12-01

    This insight review introduces the new concepts, theories, technology, instruments, frontier issues, and key strategies of ADMET (absorption, distribution, metabolism, elimination, and toxicity) biosensors, from the fermi to the quantum levels. Information about ADMET, originating from one author's invention, a patented pharmacotherapy for rescuing cardio-cerebral vascular stunning and regulating vascular endothelial growth-factor signaling at the post-genomic level, can be detected by a new generation of ADMET biosensor. This is a single-cell/single-molecule field-effect transistor (FET) hybrid system, where single molecules or single cells are assembled at the FET surface in a high density array manner via complementary metal-oxide-semiconductor (CMOS)-compatible technologies. Within a given nanometer distance, ADMET-mediated oxidation-reduction (redox) potentials, electrochemistry responses, and electron transfer processes can be simultaneously and directly probed by the gates of field-effect transistor arrays. The nanometer details of the functional coupling principles and characterization technologies of DNA single-molecule/single-cell FETs, as well as the design of lab-on-a-chip instruments, are indicated. Four frontier issues and key strategies are elucidated in detail. This can lead to innovative technology for high-throughout screening of labs-on-chips to resolve the pharmaceutical industry's current bottleneck via novel, FET-based drug discovery and single-molecule/single-cell screening methods, which can bring about a pharmaceutical industry revolution in the 21st century.

  14. A Terrestrial Single Chamber Microbial Fuel Cell-based Biosensor for Biochemical Oxygen Demand of Synthetic Rice Washed Wastewater.

    PubMed

    Logroño, Washington; Guambo, Alex; Pérez, Mario; Kadier, Abudukeremu; Recalde, Celso

    2016-01-15

    Microbial fuel cells represent an innovative technology which allow simultaneous waste treatment, electricity production, and environmental monitoring. This study provides a preliminary investigation of the use of terrestrial Single chamber Microbial Fuel Cells (SMFCs) as biosensors. Three cells were created using Andean soil, each one for monitoring a BOD concentration of synthetic washed rice wastewater (SRWW) of 10, 100, and 200 mg/L for SMFC1, SMFC2 and SMFC3, respectively. The results showed transient, exponential, and steady stages in the SMFCs. The maximum open circuit voltage (OCV) peaks were reached during the elapsed time of the transient stages, according to the tested BOD concentrations. A good linearity between OCV and time was observed in the increasing stage. The average OCV in this stage increased independently of the tested concentrations. SMFC1 required less time than SMFC2 to reach the steady stage, suggesting the BOD concentration is an influencing factor in SMFCs, and SMFC3 did not reach it. The OCV ratios were between 40.6-58.8 mV and 18.2-32.9 mV for SMFC1 and SMFC2. The reproducibility of the SMFCs was observed in four and three cycles for SMFC1 and SMFC2, respectively. The presented SMFCs had a good response and reproducibility as biosensor devices, and could be an alternative for environmental monitoring.

  15. Imaging in real-time with FRET the redox response of tumorigenic cells to glutathione perturbations in a microscale flow†

    PubMed Central

    Lin, Chunchen; Kolossov, Vladimir L.; Tsvid, Gene; Trump, Lisa; Henry, Jennifer Jo; Henderson, Jerrod L.; Rund, Laurie A.; Kenis, Paul J.A.; Schook, Lawrence B.; Gaskins, H. Rex; Timp, Gregory

    2012-01-01

    Despite the potential benefits of selective redox-modulating strategies for cancer therapy, an efficacious methodology for testing therapies remains elusive because of the difficulty in measuring intracellular redox potentials over time. In this report, we have incorporated a new FRET-based biosensor to follow in real time redox-sensitive processes in cells transformed to be tumorigenic and cultured in a microfluidic channel. A microfluidic network was used to control micro-scale flow near the cells and at the same time deliver drugs exogenously. Subsequently, the response of a redox homeostasis circuit was tested, namely reduced glutathione (GSH)/oxidized glutathione(GSSG), to diamide, a thiol oxidant, and two drugs used for cancer therapies: BSO (l-buthionine-[SR]-sulfoximine) and BCNU (carmustine). The main outcome from these experiments is a comparison of the temporal depletion and recovery of GSH in single living cells in real-time. These data demonstrate that mammalian cells are capable of restoring a reduced intracellular redox environment in minutes after an acute oxidative insult is removed. This recovery is significantly delayed by (i) the inhibition of GSH biosynthesis by BSO; (ii) the inactivation of glutathione reductase by BCNU; and (iii) in tumorigenic cells relative to an isogenic non-tumorigenic control cell line. PMID:21183971

  16. Lentiviral Vectors Bearing the Cardiac Promoter of the Na+-Ca2+ Exchanger Report Cardiogenic Differentiation in Stem Cells

    PubMed Central

    Barth, Andreas S; Kizana, Eddy; Smith, Rachel R; Terrovitis, John; Dong, Peihong; Leppo, Michelle K; Zhang, Yiqiang; Miake, Junichiro; Olson, Eric N; Schneider, Jay W; Abraham, M Roselle; Marbán, Eduardo

    2009-01-01

    Cardiosphere-derived resident cardiac stem cells (CDCs) are readily isolated from adult hearts and confer functional benefit in animal models of heart failure. To study cardiogenic differentiation in CDCs, we developed a method to genetically label and selectively enrich for cells that have acquired a cardiac phenotype. Lentiviral vectors achieved significantly higher transduction efficiencies in CDCs than any of the nine adeno-associated viral (AAV) serotypes tested. To define the most suitable vector system for reporting cardiogenic differentiation, we compared the cell specificity of five commonly-used cardiac-specific promoters in the context of lentiviral vectors. The promoter of the cardiac sodium-calcium exchanger (NCX1) conveyed the highest degree of cardiac specificity, as assessed by transducing seven cell types with each vector and measuring fluorescence intensity by flow cytometry. NCX1-GFP-positive CDC subpopulations, demonstrating prolonged expression of a variety of cardiac markers, could be isolated and expanded in vitro. Finally, we used chemical biology to validate that lentiviral vectors bearing the cardiac NCX1-promoter can serve as a highly accurate biosensor of cardiogenic small molecules in stem cells. The ability to accurately report cardiac fate and selectively enrich for cardiomyocytes and their precursors has important implications for drug discovery and the development of cell-based therapies. PMID:18388932

  17. Design and validation of a low cost surface plasmon resonance bioanalyzer using microprocessors and a touch-screen monitor.

    PubMed

    Hu, Jiandong; Hu, Jingfang; Luo, Fukun; Li, Wei; Jiang, Guoliang; Li, Zhengfeng; Zhang, Runna

    2009-03-15

    An economical and high-performance bioanalyzer, with no use of laptop computer, based on the use of TSPR1k23 biosensors was systematically designed, and validated experimentally for its high performance. The analyzer is composed of a micro-flow cell, a thermoelectric cooler (TEC), a clamp, a touch-screen monitor, and an electronic control unit (ECU) incorporated with photoelectric conversion device. The micro-flow cell is made of stainless steel with high thermal conductivity, and the micro-flow system is based on PID temperature-controlled algorithm to keep the constant temperature (25 degrees C) of the liquid sample via thermal exchange with the clamp. With a peristaltic pump implemented by an injection loop flow system, the bioanalyzer allows the core sensor to be completely exposed to samples. The touch-screen monitor displays the normalized response signal values updated every 0.25s, with a typical noise level less than 5RU (response unit) within 2h. The bioanalyzer was validated using hepatitis B surface antigen (HBsAg) as an example. Anti-HBsAg monoclonal antibody is adhered to the surface of the sensor chip by a bifunctional cross-linker with the technology of self-assembly. The duration of the HBsAg measurement only lasts 5min with a dilution factor ranging from 200 to 1200, optimized with a R-squared value 0.998. The results suggested that the bioanalyzer has higher selectivity, lower cost, expanded detection limit, and shorter measuring time as compared with the HBsAg ELISA kit, especially for low concentrations of analyte.

  18. Increasing cell-device adherence using cultured insect cells for receptor-based biosensors

    NASA Astrophysics Data System (ADS)

    Terutsuki, Daigo; Mitsuno, Hidefumi; Sakurai, Takeshi; Okamoto, Yuki; Tixier-Mita, Agnès; Toshiyoshi, Hiroshi; Mita, Yoshio; Kanzaki, Ryohei

    2018-03-01

    Field-effect transistor (FET)-based biosensors have a wide range of applications, and a bio-FET odorant sensor, based on insect (Sf21) cells expressing insect odorant receptors (ORs) with sensitivity and selectivity, has emerged. To fully realize the practical application of bio-FET odorant sensors, knowledge of the cell-device interface for efficient signal transfer, and a reliable and low-cost measurement system using the commercial complementary metal-oxide semiconductor (CMOS) foundry process, will be indispensable. However, the interfaces between Sf21 cells and sensor devices are largely unknown, and electrode materials used in the commercial CMOS foundry process are generally limited to aluminium, which is reportedly toxic to cells. In this study, we investigated Sf21 cell-device interfaces by developing cross-sectional specimens. Calcium imaging of Sf21 cells expressing insect ORs was used to verify the functions of Sf21 cells as odorant sensor elements on the electrode materials. We found that the cell-device interface was approximately 10 nm wide on average, suggesting that the adhesion mechanism of Sf21 cells may differ from that of other cells. These results will help to construct accurate signal detection from expressed insect ORs using FETs.

  19. Nanoparticle-delivered biosensor for reactive oxygen species in diabetes.

    PubMed

    Prow, Tarl W; Bhutto, Imran; Grebe, Rhonda; Uno, Koichi; Merges, Carol; McLeod, D Scott; Lutty, Gerard A

    2008-02-01

    The cell's own antioxidant response element (ARE) can be used to evaluate the complications of diabetes mellitus. The hypothesis that a synthetic ARE could be used as a genetic switch, or biosensor, to turn on and off therapeutic genes is tested herein. Mitochondrial oxidative stress (MOS) has been hypothesized as one of the earliest insults in diabetes. Fluorescent probes used to monitor MOS revealed that the addition of glucose at physiological levels to cultures of endothelial cells was able to induce MOS above normal levels and in a dose-dependant manner. Additional data showed that increased glucose levels activated the ARE-GFP in a dose-dependant manner. These data support the hypothesis that the induction of MOS is more sensitive to hyperglycemia than the induction of the ARE. Delivery of an ARE-GFP construct with nanoparticles to the eye was successful using sub-retinal injection. This ARE-GFP/nanoparticle construct was functional and reported the activation of the ARE in diabetic rat retinal pigment epithelium (RPE). These data support the use of nanoparticle-delivered biosensors for monitoring the oxidative status of tissues in vivo.

  20. A Perspective on Studying G-Protein-Coupled Receptor Signaling with Resonance Energy Transfer Biosensors in Living Organisms.

    PubMed

    van Unen, Jakobus; Woolard, Jeanette; Rinken, Ago; Hoffmann, Carsten; Hill, Stephen J; Goedhart, Joachim; Bruchas, Michael R; Bouvier, Michel; Adjobo-Hermans, Merel J W

    2015-09-01

    The last frontier for a complete understanding of G-protein-coupled receptor (GPCR) biology is to be able to assess GPCR activity, interactions, and signaling in vivo, in real time within biologically intact systems. This includes the ability to detect GPCR activity, trafficking, dimerization, protein-protein interactions, second messenger production, and downstream signaling events with high spatial resolution and fast kinetic readouts. Resonance energy transfer (RET)-based biosensors allow for all of these possibilities in vitro and in cell-based assays, but moving RET into intact animals has proven difficult. Here, we provide perspectives on the optimization of biosensor design, of signal detection in living organisms, and the multidisciplinary development of in vitro and cell-based assays that more appropriately reflect the physiologic situation. In short, further development of RET-based probes, optical microscopy techniques, and mouse genome editing hold great potential over the next decade to bring real-time in vivo GPCR imaging to the forefront of pharmacology. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  1. Biosensor-driven adaptive laboratory evolution of l-valine production in Corynebacterium glutamicum.

    PubMed

    Mahr, Regina; Gätgens, Cornelia; Gätgens, Jochem; Polen, Tino; Kalinowski, Jörn; Frunzke, Julia

    2015-11-01

    Adaptive laboratory evolution has proven a valuable strategy for metabolic engineering. Here, we established an experimental evolution approach for improving microbial metabolite production by imposing an artificial selective pressure on the fluorescent output of a biosensor using fluorescence-activated cell sorting. Cells showing the highest fluorescent output were iteratively isolated and (re-)cultivated. The L-valine producer Corynebacterium glutamicum ΔaceE was equipped with an L-valine-responsive sensor based on the transcriptional regulator Lrp of C. glutamicum. Evolved strains featured a significantly higher growth rate, increased L-valine titers (~25%) and a 3-4-fold reduction of by-product formation. Genome sequencing resulted in the identification of a loss-of-function mutation (UreD-E188*) in the gene ureD (urease accessory protein), which was shown to increase L-valine production by up to 100%. Furthermore, decreased L-alanine formation was attributed to a mutation in the global regulator GlxR. These results emphasize biosensor-driven evolution as a straightforward approach to improve growth and productivity of microbial production strains. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  2. Electrochemical Biosensor for Rapid and Sensitive Detection of Magnetically Extracted Bacterial Pathogens

    PubMed Central

    Setterington, Emma B.; Alocilja, Evangelyn C.

    2012-01-01

    Biological defense and security applications demand rapid, sensitive detection of bacterial pathogens. This work presents a novel qualitative electrochemical detection technique which is applied to two representative bacterial pathogens, Bacillus cereus (as a surrogate for B. anthracis) and Escherichia coli O157:H7, resulting in detection limits of 40 CFU/mL and 6 CFU/mL, respectively, from pure culture. Cyclic voltammetry is combined with immunomagnetic separation in a rapid method requiring approximately 1 h for presumptive positive/negative results. An immunofunctionalized magnetic/polyaniline core/shell nano-particle (c/sNP) is employed to extract target cells from the sample solution and magnetically position them on a screen-printed carbon electrode (SPCE) sensor. The presence of target cells significantly inhibits current flow between the electrically active c/sNPs and SPCE. This method has the potential to be adapted for a wide variety of target organisms and sample matrices, and to become a fully portable system for routine monitoring or emergency detection of bacterial pathogens. PMID:25585629

  3. Suitability of Macrolampis firefly and Pyrearinus click beetle luciferases for bacterial light off toxicity biosensor.

    PubMed

    Gabriel, Gabriele V M; Lopes, P S; Viviani, V R

    2014-01-15

    Bioluminescence is widely used in biosensors. For water toxicity analysis, the naturally bioluminescent bacteria Vibrio fischeri have been used extensively. We investigated the suitability of two new beetle luciferases for Escherichia coli light off biosensors: Macrolampis firefly and Pyrearinus termitilluminans click beetle luciferases. The bioluminescence detection assay using this system is very sensitive, being comparable or superior to V. fischeri. The luciferase of P. termitilluminans produces a strong and sustained bioluminescence that is useful for less sensitive and inexpensive assays that require integration of the emission, whereas Macrolampis luciferase displays a flash-like luminescence that is useful for fast and more sensitive assays. The effect of heavy metals and sanitizing agents was analyzed. Zinc, copper, 1-propanol, and iodide had inhibitory effects on bioluminescence and growth assays; however, in these cases the bioluminescence was not a very reliable indicator of cell growth and metabolic activity because these agents also inhibited the luciferase. On the other hand, mercury and silver strongly affected cell bioluminescence and growth but not the luciferase activity, indicating that bioluminescence was a reliable indicator of cell growth and metabolic activity in this case. Finally, bioluminescent E. coli immobilized in agarose matrix gave a more stable format for environmental assays. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Carbohydrate-based electrochemical biosensor for detection of a cancer biomarker in human plasma.

    PubMed

    Devillers, Marion; Ahmad, Lama; Korri-Youssoufi, Hafsa; Salmon, Laurent

    2017-10-15

    Autocrine motility factor (AMF) is a tumor-secreted cytokine that stimulates tumor cell motility in vitro and metastasis in vivo. AMF could be detected in serum or urine of cancer patients with worse prognosis. Reported as a cancer biomarker, AMF secretion into body fluids might be closely related to metastases formation. In this study, a sensitive and specific carbohydrate-based electrochemical biosensor was designed for the detection and quantification of a protein model of AMF, namely phosphoglucose isomerase from rabbit muscle (RmPGI). Indeed, RmPGI displays high homology with AMF and has been shown to have AMF activity. The biosensor was constructed by covalent binding of the enzyme substrate d-fructose 6-phosphate (F6P). Immobilization was achieved on a gold surface electrode following a bottom-up approach through an aminated surface obtained by electrochemical patterning of ethylene diamine and terminal amine polyethylene glycol chain to prevent non-specific interactions. Carbohydrate-protein interactions were quantified in a range of 10 fM to 100nM. Complex formation was analyzed through monitoring of the redox couple Fe 2+ /Fe 3+ by electrochemical impedance spectroscopy and square wave voltammetry. The F6P-biosensor demonstrates a detection limit of 6.6 fM and high selectivity when compared to other non-specific glycolytic proteins such as d-glucose-6-phosphate dehydrogenase. Detection of protein in spiked plasma was demonstrated and accuracy of 95% is obtained compared to result obtained in PBS (phosphate buffered saline). F6P-biosensor is a very promising proof of concept required for the design of a carbohydrate-based electrochemical biosensor using the enzyme substrate as bioreceptor. Such biosensor could be generalized to detect other protein biomarkers of interest. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Development of a biosensor for caffeine.

    PubMed

    Babu, V R Sarath; Patra, S; Karanth, N G; Kumar, M A; Thakur, M S

    2007-01-23

    We have utilized a microbe, which can degrade caffeine to develop an Amperometric biosensor for determination of caffeine in solutions. Whole cells of Pseudomonas alcaligenes MTCC 5264 having the capability to degrade caffeine were immobilized on a cellophane membrane with a molecular weight cut off (MWCO) of 3000-6000 by covalent crosslinking method using glutaraledhyde as the bifunctional crosslinking agent and gelatin as the protein based stabilizing agent (PBSA). The biosensor system was able to detect caffeine in solution over a concentration range of 0.1 to 1 mg mL(-1). With read-times as short as 3 min, this caffeine biosensor acts as a rapid analysis system for caffeine in solutions. Interestingly, successful isolation and immobilization of caffeine degrading bacteria for the analysis of caffeine described here was enabled by a novel selection strategy that incorporated isolation of caffeine degrading bacteria capable of utilizing caffeine as the sole source of carbon and nitrogen from soils and induction of caffeine degrading capacity in bacteria for the development of the biosensor. This biosensor is highly specific for caffeine and response to interfering compounds such as theophylline, theobromine, paraxanthine, other methyl xanthines and sugars was found to be negligible. Although a few biosensing methods for caffeine are reported, they have limitations in application for commercial samples. The development and application of new caffeine detection methods remains an active area of investigation, particularly in food and clinical chemistry. The optimum pH and temperature of measurement were 6.8 and 30+/-2 degrees C, respectively. Interference in analysis of caffeine due to different substrates was observed but was not considerable. Caffeine content of commercial samples of instant tea and coffee was analyzed by the biosensor and the results compared well with HPLC analysis.

  6. Analysis of telomerase activity based on a spired DNA tetrahedron TS primer.

    PubMed

    Li, Yan; Wen, Yanli; Wang, Lele; Liang, Wen; Xu, Li; Ren, Shuzhen; Zou, Ziying; Zuo, Xiaolei; Fan, Chunhai; Huang, Qing; Liu, Gang; Jia, Nengqin

    2015-05-15

    The development of sensitive telomerase biosensors is hindered by the restricted accessibility of telomere strand (TS) primer and the limited enzyme reaction space, which is mainly confined by the vertical distance. In this work, we designed an electrochemical telomerase biosensor based on a spired DNA tetrahedron TS primer (STTS). By adding a rigid dsDNA spire onto the top of the DNA tetrahedron, we successfully regulated the distance between the TS primer and the surface, and thus greatly facilitated the telomerase elongation on surface. The signal-to-noise ratio was 2 times higher than TSP without the spire structure. The limit of detection was calculated to be lower than 10 HeLa cells, which is at least 2 magnitudes lower than other surface extension-based electrochemical telomerase sensors without amplification. The practicability of STTS sensor was also demonstrated by analysing various other cell lines including cancer cells, stem cells of high telomerase activity and somatic cells of low telomerase activity. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Biosensor Technology Reveals the Disruption of the Endothelial Barrier Function and the Subsequent Death of Blood Brain Barrier Endothelial Cells to Sodium Azide and Its Gaseous Products.

    PubMed

    Kho, Dan T; Johnson, Rebecca H; O'Carroll, Simon J; Angel, Catherine E; Graham, E Scott

    2017-09-21

    Herein we demonstrate the sensitive nature of human blood-brain barrier (BBB) endothelial cells to sodium azide and its gaseous product. Sodium azide is known to be acutely cytotoxic at low millimolar concentrations, hence its use as a biological preservative (e.g., in antibodies). Loss of barrier integrity was noticed in experiments using Electric Cell-substrate Impedance Sensing (ECIS) biosensor technology, to measure endothelial barrier integrity continuously in real-time. Initially the effect of sodium azide was observed as an artefact where it was present in antibodies being employed in neutralisation experiments. This was confirmed where antibody clones that were azide-free did not mediate loss of barrier function. A delayed loss of barrier function in neighbouring wells implied the influence of a liberated gaseous product. ECIS technology demonstrated that the BBB endothelial cells had a lower level of direct sensitivity to sodium azide of ~3 µM. Evidence of gaseous toxicity was consistently observed at 30 µM and above, with disrupted barrier function and cell death in neighbouring wells. We highlight the ability of this cellular biosensor technology to reveal both the direct and gaseous toxicity mediated by sodium azide. The sensitivity and temporal dimension of ECIS technology was instrumental in these observations. These findings have substantial implications for the wide use of sodium azide in biological reagents, raising issues of their application in live-cell assays and with regard to the protection of the user. This research also has wider relevance highlighting the sensitivity of brain endothelial cells to a known mitochondrial disruptor. It is logical to hypothesise that BBB endothelial dysfunction due to mitochondrial dys-regulation could have an important but underappreciated role in a range of neurological diseases.

  8. Characterization and application of a diamine oxidase from Lathyrus sativus as component of an electrochemical biosensor for the determination of biogenic amines in wine and beer.

    PubMed

    Di Fusco, Massimo; Federico, Rodolfo; Boffi, Alberto; Macone, Alberto; Favero, Gabriele; Mazzei, Franco

    2011-08-01

    In this work, we have characterized a diamine oxidase (DAO) from Lathyrus sativus and evaluated its use, for the first time, as biocatalytic component of an electrochemical biosensor for the determination of biogenic amines index in wine and beer samples. Firstly, DAO was electrokinetically characterized free in solution by means of a platinum electrode and then immobilized by using polyazetidine prepolimer on the surface of screen-printed electrodes constituted of two gold working electrodes. The amperometric measurements were carried out by using a flow system at a fixed potential of +600 mV vs the internal silver pseudo reference in phosphate buffer solution (0.1 mol l(-1), pH = 7.4). The analysis of wine and beer samples were performed in flow injection system using the dual channel transducer providing simultaneous detection of sample and blank signal, and the resulting signal (after subtraction of the blank signal) was referred to that of putrescine. The results were compared with those obtained using a modified reference method based on gas chromatography-mass spectrometry analysis on the same samples. The results obtained in the analysis of Italian wines shows the better suitability of DAO-based biosensor in the determination of the biogenic amines (BAs) index expressed as putrescine equivalent in both red and white wines, being less efficient in beer samples where it underestimates by about 50% the BAs content.

  9. Tracing the pH dependent activation of autophagy in cancer cells by silicon nanowire-based impedance biosensor.

    PubMed

    Alikhani, Alireza; Gharooni, Milad; Abiri, Hamed; Farokhmanesh, Fatemeh; Abdolahad, Mohammad

    2018-05-30

    Monitoring the pH dependent behavior of normal and cancer cells by impedimetric biosensor based on Silicon Nanowires (SiNWs) was introduced to diagnose the invasive cancer cells. Autophagy as a biologically activated process in invasive cancer cells during acidosis, protect them from apoptosis in lower pH which presented in our work. As the autophagy is the only activated pathways which can maintain cellular proliferation in acidic media, responses of SiNW-ECIS in acidified cells could be correlated to the probability of autophagy activation in normal or cancer cells. In contrast, cell survival pathway wasn't activated in low-grade cancer cells which resulted in their acidosis. The measured electrical resistance of MCF10, MCF7, and MDA-MB468 cell lines, by SiNW sensor, in normal and acidic media were matched by the biological analyses of their vital functions. Invasive cancer cells exhibited increased electrical resistance in pH 6.5 meanwhile the two other types of the breast cells exhibited sharp (MCF10) and moderate (MCF7) decrease in their resistance. This procedure would be a new trend in microenvironment based cancer investigation. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. BioSentinel: Biosensors for Deep-Space Radiation Study

    NASA Technical Reports Server (NTRS)

    Lokugamage, Melissa P.; Santa Maria, Sergio R.; Marina, Diana B.; Bhattacharya, Sharmila

    2016-01-01

    The BioSentinel mission will be deployed on NASA's Exploration Mission 1 (EM-1) in 2018. We will use the budding yeast, Saccharomyces cerevisiae, as a biosensor to study the effect of deep-space radiation on living cells. The BioSentinel mission will be the first investigation of a biological response to space radiation outside Low Earth Orbit (LEO) in over 40 years. Radiation can cause damage such as double stand breaks (DSBs) on DNA. The yeast cell was chosen for this mission because it is genetically controllable, shares homology with human cells in its DNA repair pathways, and can be stored in a desiccated state for long durations. Three yeast strains will be stored dry in multiple microfluidic cards: a wild type control strain, a mutant defective strain that cannot repair DSBs, and a biosensor strain that can only grow if it gets DSB-and-repair events occurring near a specific gene. Growth and metabolic activity of each strain will be measured by a 3-color LED optical detection system. Parallel experiments will be done on the International Space Station and on Earth so that we can compare the results to that of deep space. One of our main objectives is to characterize the microfluidic card activation sequence before the mission. To increase the sensitivity of yeast cells as biosensors, desiccated yeast in each card will be resuspended in a rehydration buffer. After several weeks, the rehydration buffer will be exchanged with a growth medium in order to measure yeast growth and metabolic activity. We are currently working on a time-course experiment to better understand the effects of the rehydration buffer on the response to ionizing radiation. We will resuspend the dried yeast in our rehydration medium over a period of time; then each week, we will measure the viability and ionizing radiation sensitivity of different yeast strains taken from this rehydration buffer. The data obtained in this study will be useful in finalizing the card activation sequence for this mission.

  11. Label‐Free and Regenerative Electrochemical Microfluidic Biosensors for Continual Monitoring of Cell Secretomes

    PubMed Central

    Kilic, Tugba; Zhang, Yu Shrike; Avci, Huseyin; Hu, Ning; Kim, Duckjin; Branco, Cristina; Aleman, Julio; Massa, Solange; Silvestri, Antonia; Kang, Jian; Desalvo, Anna; Hussaini, Mohammed Abdullah; Chae, Su‐Kyoung; Polini, Alessandro; Bhise, Nupura; Hussain, Mohammad Asif; Lee, HeaYeon

    2017-01-01

    Development of an efficient sensing platform capable of continual monitoring of biomarkers is needed to assess the functionality of the in vitro organoids and to evaluate their biological responses toward pharmaceutical compounds or chemical species over extended periods of time. Here, a novel label‐free microfluidic electrochemical (EC) biosensor with a unique built‐in on‐chip regeneration capability for continual measurement of cell‐secreted soluble biomarkers from an organoid culture in a fully automated manner without attenuating the sensor sensitivity is reported. The microfluidic EC biosensors are integrated with a human liver‐on‐a‐chip platform for continual monitoring of the metabolic activity of the organoids by measuring the levels of secreted biomarkers for up to 7 d, where the metabolic activity of the organoids is altered by a systemically applied drug. The variations in the biomarker levels are successfully measured by the microfluidic regenerative EC biosensors and agree well with cellular viability and enzyme‐linked immunosorbent assay analyses, validating the accuracy of the unique sensing platform. It is believed that this versatile and robust microfluidic EC biosensor that is capable of automated and continual detection of soluble biomarkers will find widespread use for long‐term monitoring of human organoids during drug toxicity studies or efficacy assessments of in vitro platforms. PMID:28546915

  12. Development of Formaldehyde Biosensor for Determination of Formalin in Fish Samples; Malabar Red Snapper (Lutjanus malabaricus) and Longtail Tuna (Thunnus tonggol)

    PubMed Central

    Noor Aini, Bohari; Siddiquee, Shafiquzzaman; Ampon, Kamaruzaman

    2016-01-01

    Electrochemical biosensors are widely recognized in biosensing devices due to the fact that gives a direct, reliable, and reproducible measurement within a short period. During bio-interaction process and the generation of electrons, it produces electrochemical signals which can be measured using an electrochemical detector. A formaldehyde biosensor was successfully developed by depositing an ionic liquid (IL) (e.g., 1-ethyl-3-methylimidazolium trifluoromethanesulfonate ([EMIM][Otf])), gold nanoparticles (AuNPs), and chitosan (CHIT), onto a glassy carbon electrode (GCE). The developed formaldehyde biosensor was analyzed for sensitivity, reproducibility, storage stability, and detection limits. Methylene blue was used as a redox indicator for increasing the electron transfer in the electrochemical cell. The developed biosensor measured the NADH electron from the NAD+ reduction at a potential of 0.4 V. Under optimal conditions, the differential pulse voltammetry (DPV) method detected a wider linear range of formaldehyde concentrations from 0.01 to 10 ppm within 5 s, with a detection limit of 0.1 ppm. The proposed method was successfully detected with the presence of formalin in fish samples, Lutjanus malabaricus and Thunnus Tonggol. The proposed method is a simple, rapid, and highly accurate, compared to the existing technique. PMID:27376338

  13. FLOW INJECTION AMPEROMETRIC DETECTION OF OP NERVE AGENTS BASED ON AN ORGANOPHOSPHORUS-HYDROLASE BIOSENSOR DETECTOR. (R828160)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  14. Patterning pallet arrays for cell selection based on high-resolution measurements of fluorescent biosensors

    PubMed Central

    Shadpour, Hamed; Zawistowski, Jon S.; Herman, Annadele; Hahn, Klaus; Allbritton, Nancy L.

    2011-01-01

    Pallet arrays enable cells to be separated while they remain adherent to a surface and provide a much greater range of cell selection criteria relative to that of current technologies. However there remains a need to further broaden cell selection criteria to include dynamic intracellular signaling events. To demonstrate the feasibility of measuring cellular protein behavior on the arrays using high resolution microscopy, the surfaces of individual pallets were modified to minimize the impact of scattered light at the pallet edges. The surfaces of the three-dimensional pallets on an array were patterned with a coating such as fibronectin using a customized stamping tool. Micropatterns of varying shape and size were printed in designated regions on the pallets in single or multiple steps to demonstrate the reliability and precision of patterning molecules on the pallet surface. Use of a fibronectin matrix stamped at the center of each pallet permitted the localization of H1299 and mouse embryonic fibroblast (MEF) cells to the pallet centers and away from the edges. Compared to pallet arrays with fibronection coating the entire top surface, arrays with a central fibronectin pattern increased the percentage of cells localized to the pallet center by 3-4 fold. Localization of cells to the pallet center also enabled the physical separation of cells from optical artifacts created by the rough pallet side walls. To demonstrate the measurement of dynamic intracellular signaling on the arrays, fluorescence measurements of high spatial resolution were performed using a RhoA GTPase biosensor. This biosensor utilized fluorescence resonance energy transfer (FRET) between cyan fluorescent protein (CFP) and yellow fluorescent protein (YFP) to measure localized RhoA activity in cellular ruffles at the cell periphery. These results demonstrated the ability to perform spatially resolved measurements of fluorescence-based sensors on the pallet arrays. Thus, the patterned pallet arrays should enable novel cell separations in which cell selection is based on complex cellular signaling properties. PMID:21621038

  15. METAL BIOSENSORS: DEVELOPMENT AND ENVIRONMENTAL TESTING

    EPA Science Inventory

    Proteomic and Transcriptional Findings

    P. putida cells responded differentially to Cd and Cu exposures at the proteomic and transcriptome levels. The cells displayed different stress responses that correlated with a more intense oxidative stress imposed...

  16. Human Neural Cell-Based Biosensor

    DTIC Science & Technology

    2013-05-28

    ionotropic receptors in human embryonic stem cell derived neural progenitors. Neuroscience. 2011 Sep 29;192:793-805. Krishnamoorthy M, Gerwe BA, Scharer...coupled receptors . Pharmacol Ther. 2011 Mar;129(3):290-306. Workshop/conference abstracts, presentations, posters, and papers Powe, A, et al

  17. Human Neural Cell-Based Biosensor

    DTIC Science & Technology

    2011-03-11

    following areas: (1) neural progenitor isolation from induced pluripotent stem cells , (2) directed differentiation of progenitors into dopaminergic...from induced pluripotent stem cells , (2) directed differentiation of progenitors into dopaminergic neurons, motoneurons and astrocytes using defined...progenitors from mixed populations, such as induced pluripotent stem cells (iPSCs). We also developed lentiviral based methods to generate iPSCs in

  18. A three-dimensional nitrogen-doped graphene structure: a highly efficient carrier of enzymes for biosensors

    NASA Astrophysics Data System (ADS)

    Guo, Jingxing; Zhang, Tao; Hu, Chengguo; Fu, Lei

    2015-01-01

    In recent years, graphene-based enzyme biosensors have received considerable attention due to their excellent performance. Enormous efforts have been made to utilize graphene oxide and its derivatives as carriers of enzymes for biosensing. However, the performance of these sensors is limited by the drawbacks of graphene oxide such as slow electron transfer rate, low catalytic area and poor conductivity. Here, we report a new graphene-based enzyme carrier, i.e. a highly conductive 3D nitrogen-doped graphene structure (3D-NG) grown by chemical vapour deposition, for highly effective enzyme-based biosensors. Owing to the high conductivity, large porosity and tunable nitrogen-doping ratio, this kind of graphene framework shows outstanding electrical properties and a large surface area for enzyme loading and biocatalytic reactions. Using glucose oxidase (GOx) as a model enzyme and chitosan (CS) as an efficient molecular binder of the enzyme, our 3D-NG based biosensors show extremely high sensitivity for the sensing of glucose (226.24 μA mM-1 m-2), which is almost an order of magnitude higher than those reported in most of the previous studies. The stable adsorption and outstanding direct electrochemical behaviour of the enzyme on the nanocomposite indicate the promising application of this 3D enzyme carrier in high-performance electrochemical biosensors or biofuel cells.In recent years, graphene-based enzyme biosensors have received considerable attention due to their excellent performance. Enormous efforts have been made to utilize graphene oxide and its derivatives as carriers of enzymes for biosensing. However, the performance of these sensors is limited by the drawbacks of graphene oxide such as slow electron transfer rate, low catalytic area and poor conductivity. Here, we report a new graphene-based enzyme carrier, i.e. a highly conductive 3D nitrogen-doped graphene structure (3D-NG) grown by chemical vapour deposition, for highly effective enzyme-based biosensors. Owing to the high conductivity, large porosity and tunable nitrogen-doping ratio, this kind of graphene framework shows outstanding electrical properties and a large surface area for enzyme loading and biocatalytic reactions. Using glucose oxidase (GOx) as a model enzyme and chitosan (CS) as an efficient molecular binder of the enzyme, our 3D-NG based biosensors show extremely high sensitivity for the sensing of glucose (226.24 μA mM-1 m-2), which is almost an order of magnitude higher than those reported in most of the previous studies. The stable adsorption and outstanding direct electrochemical behaviour of the enzyme on the nanocomposite indicate the promising application of this 3D enzyme carrier in high-performance electrochemical biosensors or biofuel cells. Electronic supplementary information (ESI) available: Procedures for CVD growth of 3D-NG, XRD and TEM measurements, a comparison with other graphene-based biosensors, a detailed study on the universality of 3D-NG as an enzyme carrier and more CV data on selectivity and stability. See DOI: 10.1039/c4nr05325g

  19. Application of a SERS-based lateral flow immunoassay strip for the rapid and sensitive detection of staphylococcal enterotoxin B

    NASA Astrophysics Data System (ADS)

    Hwang, Joonki; Lee, Sangyeop; Choo, Jaebum

    2016-06-01

    A novel surface-enhanced Raman scattering (SERS)-based lateral flow immunoassay (LFA) biosensor was developed to resolve problems associated with conventional LFA strips (e.g., limits in quantitative analysis and low sensitivity). In our SERS-based biosensor, Raman reporter-labeled hollow gold nanospheres (HGNs) were used as SERS detection probes instead of gold nanoparticles. With the proposed SERS-based LFA strip, the presence of a target antigen can be identified through a colour change in the test zone. Furthermore, highly sensitive quantitative evaluation is possible by measuring SERS signals from the test zone. To verify the feasibility of the SERS-based LFA strip platform, an immunoassay of staphylococcal enterotoxin B (SEB) was performed as a model reaction. The limit of detection (LOD) for SEB, as determined with the SERS-based LFA strip, was estimated to be 0.001 ng mL-1. This value is approximately three orders of magnitude more sensitive than that achieved with the corresponding ELISA-based method. The proposed SERS-based LFA strip sensor shows significant potential for the rapid and sensitive detection of target markers in a simplified manner.A novel surface-enhanced Raman scattering (SERS)-based lateral flow immunoassay (LFA) biosensor was developed to resolve problems associated with conventional LFA strips (e.g., limits in quantitative analysis and low sensitivity). In our SERS-based biosensor, Raman reporter-labeled hollow gold nanospheres (HGNs) were used as SERS detection probes instead of gold nanoparticles. With the proposed SERS-based LFA strip, the presence of a target antigen can be identified through a colour change in the test zone. Furthermore, highly sensitive quantitative evaluation is possible by measuring SERS signals from the test zone. To verify the feasibility of the SERS-based LFA strip platform, an immunoassay of staphylococcal enterotoxin B (SEB) was performed as a model reaction. The limit of detection (LOD) for SEB, as determined with the SERS-based LFA strip, was estimated to be 0.001 ng mL-1. This value is approximately three orders of magnitude more sensitive than that achieved with the corresponding ELISA-based method. The proposed SERS-based LFA strip sensor shows significant potential for the rapid and sensitive detection of target markers in a simplified manner. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr07243c

  20. Development of Amperometric Glucose Biosensor Based on Prussian Blue Functionlized TiO2 Nanotube Arrays

    PubMed Central

    Gao, Zhi-Da; Qu, Yongfang; Li, Tongtong; Shrestha, Nabeen K.; Song, Yan-Yan

    2014-01-01

    Amperometric biosensors consisting of oxidase and peroxidase have attracted great attention because of their wide application. The current work demonstrates a novel approach to construct an enzymatic biosensor based on TiO2 nanotube arrays (TiNTs) as a supporting electrode on which Prussian Blue (PB)-an “artificial enzyme peroxidase” and enzyme glucose oxidase (GOx) have been immobilized. For this, PB nanocrystals are deposited onto the nanotube wall photocatalytically using the intrinsic photocatalytical property of TiO2, and the GOx/AuNPs nanobiocomposites are subsequently immobilized into the nanotubes via the electrodeposition of polymer. The resulting electrode exhibits a fast response, wide linear range, and good stability for glucose sensing. The sensitivity of the sensor is as high as 248 mA M−1 cm−2, and the detection limit is about 3.2 μM. These findings demonstrate a promising strategy to integrate enzymes and TiNTs, which could provide an analytical access to a large group of enzymes for bioelectrochemical applications including biosensors and biofuel cells. PMID:25367086

  1. Amperometric biosensor based on a single antibody of dual function for rapid detection of Streptococcus agalactiae.

    PubMed

    Vásquez, Gersson; Rey, Alba; Rivera, Camilo; Iregui, Carlos; Orozco, Jahir

    2017-01-15

    Pathogenic bacteria are responsible for several diseases in humans and in a variety of hosts. Detection of pathogenic bacteria is imperative to avoid and/or fight their potential harmful effects. This work reports on the first amperometric biosensor for the rapid detection of Streptococcus agalactiae (S. agalactiae). The biosensor relies on a single biotinylated antibody that immobilizes the bacteria on a screen-printed carbon electrode while is further linked to a streptavidin-conjugated HRP reporter. The biotinylated antibody provides selectivity to the biosensor whereas serves as an anchoring point to the reporter for further amplification of the electrochemical signal. The resultant immunosensor is simple, responds rapidly, and allows for the selective and highly sensitive quantification of S. agalactiae cells in a concentration range of 10 1 -10 7 CFUml -1 , with a detection limit of 10CFUml -1 . The approach not only enables a rapid detection and quantification of S. agalactiae in environmental samples but also opens up new opportunities for the simple fabrication of electrochemical immunosensors for different target pathogens. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Dynamics of human cancer cell lines monitored by electrical and acoustic fluctuation analysis.

    PubMed

    Tarantola, Marco; Marel, Anna-Kristina; Sunnick, Eva; Adam, Holger; Wegener, Joachim; Janshoff, Andreas

    2010-03-01

    Early determination of the metastatic potential of cancer cells is a crucial step for successful oncological treatment. Besides the remarkable progress in molecular genomics- or proteomics-based diagnostics, there is a great demand for in vitro biosensor devices that allow rapid and selective detection of the invasive properties of tumor cells. Here, the classical cancer cell motility in vitro assays for migration and invasion relying on Boyden chambers are compared to a real-time biosensor that analyzes the dynamic properties of adherent cells electro-acoustically with a time resolution on the order of seconds. The sensor relies on the well-established quartz crystal microbalance technique (QCM) that measures the shift in resonance frequency and damping of an oscillating quartz crystal when adsorption, desorption or changes in material properties close to the quartz surface occur. In addition, the QCM is capable of detecting the rather subtle fluctuations of the cell bodies as an indicator for their micromotility. QCM-based micromotility readings of three different cancer cell lines (HT-29, HSC-4, FaDu) are compared with the well-known electrical cell-substrate impedance sensing (ECIS) revealing collective stochastic motion that corresponds to the malignancy of the cells.

  3. Towards an Integrated QR Code Biosensor: Light-Driven Sample Acquisition and Bacterial Cellulose Paper Substrate.

    PubMed

    Yuan, Mingquan; Jiang, Qisheng; Liu, Keng-Ku; Singamaneni, Srikanth; Chakrabartty, Shantanu

    2018-06-01

    This paper addresses two key challenges toward an integrated forward error-correcting biosensor based on our previously reported self-assembled quick-response (QR) code. The first challenge involves the choice of the paper substrate for printing and self-assembling the QR code. We have compared four different substrates that includes regular printing paper, Whatman filter paper, nitrocellulose membrane and lab synthesized bacterial cellulose. We report that out of the four substrates bacterial cellulose outperforms the others in terms of probe (gold nanorods) and ink retention capability. The second challenge involves remote activation of the analyte sampling and the QR code self-assembly process. In this paper, we use light as a trigger signal and a graphite layer as a light-absorbing material. The resulting change in temperature due to infrared absorption leads to a temperature gradient that then exerts a diffusive force driving the analyte toward the regions of self-assembly. The working principle has been verified in this paper using assembled biosensor prototypes where we demonstrate higher sample flow rate due to light induced thermal gradients.

  4. Construction, assembling and application of a trehalase-GOD enzyme electrode system.

    PubMed

    Antonelli, M L; Arduini, F; Laganà, A; Moscone, D; Siliprandi, V

    2009-01-01

    Trehalose is a disaccharide important in foods, serving as a glucose source in many and also as an additive in the food preparation. Because of its peculiar physico-chemical properties it plays an important role as preservative in drying and deep-freezing treatments. A new biosensor for trehalose determination has been realized by means of a flow system, based on a reactor in which the trehalase enzyme catalyses its hydrolysis into two alpha,d-glucose molecules, and a GOD (glucose oxidase) amperometric biosensor is employed for the glucose determination. The optimum operative conditions have been laid out and a particular attention has been paid to the immobilization procedure of the two enzymes. The electrode used is of the SPE (screen-printed electrode) type and has been activated with the Prussian Blue (PB) and then assembled using GOD immobilized with Nafion. The reactor has been prepared with the trehalase enzyme chemically immobilized on an Immunodyne ABC membrane. As demonstration of its utility, the biosensor has been tested on a real sample of Boletus edulis mushroom.

  5. Polyphenols Determination in Olive Oil Samples Based on a Thick Film Voltammetric Sensor and a Tyrosinase Biosensor

    NASA Astrophysics Data System (ADS)

    Capannesi, Cecilia; Palchetti, Ilaria; Mascini, Marco

    2000-12-01

    The aim of the present work was to compare different techniques to evaluate the variation with the storage time and storage conditions in the phenolic content of an extra-virgin olive oil. A disposable screen-printed sensor (SPE) was coupled with differential pulse voltammetry (DPV) to determine the phenolic fractions after extraction with glycine buffer; DPV parameters were chosen in order to study oxidation peak of oleuropein, that was used as reference compound. Moreover a tyrosinase based biosensor operating in organic solvent (hexane) was assembled, using an amperometric oxygen probe as transducer. Calibration curves were realised in flow injection analysis (F.I.A.) using phenol as substrate. Both of these methods are easy to operate, require no extraction (biosensor) or a rapid extraction procedure (SPE), and the analysis time is short (min.). The results obtained with these two innovative procedures were compared with classical spectrophotometric assay using the Folin-Ciocalteau reagent. Other extra-virgin olive oil quality parameters were investigated with classical methods in order to better define the alteration process and results are reported.

  6. FAST: a framework for simulation and analysis of large-scale protein-silicon biosensor circuits.

    PubMed

    Gu, Ming; Chakrabartty, Shantanu

    2013-08-01

    This paper presents a computer aided design (CAD) framework for verification and reliability analysis of protein-silicon hybrid circuits used in biosensors. It is envisioned that similar to integrated circuit (IC) CAD design tools, the proposed framework will be useful for system level optimization of biosensors and for discovery of new sensing modalities without resorting to laborious fabrication and experimental procedures. The framework referred to as FAST analyzes protein-based circuits by solving inverse problems involving stochastic functional elements that admit non-linear relationships between different circuit variables. In this regard, FAST uses a factor-graph netlist as a user interface and solving the inverse problem entails passing messages/signals between the internal nodes of the netlist. Stochastic analysis techniques like density evolution are used to understand the dynamics of the circuit and estimate the reliability of the solution. As an example, we present a complete design flow using FAST for synthesis, analysis and verification of our previously reported conductometric immunoassay that uses antibody-based circuits to implement forward error-correction (FEC).

  7. An SU-8 liquid cell for surface acoustic wave biosensors

    NASA Astrophysics Data System (ADS)

    Francis, Laurent A.; Friedt, Jean-Michel; Bartic, Carmen; Campitelli, Andrew

    2004-08-01

    One significant challenge facing biosensor development is packaging. For surface acoustic wave based biosensors, packaging influences the general sensing performance. The acoustic wave is generated and received thanks to interdigital transducers and the separation between the transducers defines the sensing area. Liquids used in biosensing experiments lead to an attenuation of the acoustic signal while in contact with the transducers. We have developed a liquid cell based on photodefinable epoxy SU-8 that prevents the presence of liquid on the transducers, has a small disturbance effect on the propagation of the acoustic wave, does not interfere with the biochemical sensing event, and leads to an integrated sensor system with reproducible properties. The liquid cell is achieved in two steps. In a first step, the SU-8 is precisely patterned around the transducers to define 120 μm thick walls. In a second step and after the dicing of the sensors, a glass capping is placed manually and glued on top of the SU-8 walls. This design approach is an improvement compared to the more classical solution consisting of a pre-molded cell that must be pressed against the device in order to avoid leaks, with negative consequences on the reproducibility of the experimental results. We demonstrate the effectiveness of our approach by protein adsorption monitoring. The packaging materials do not interfere with the biomolecules and have a high chemical resistance. For future developments, wafer level bonding of the quartz capping onto the SU-8 walls is envisioned.

  8. Biomimetic Trehalose Biosensor Using Gustatory Receptor (Gr5a) Expressed in Drosophila Cells and Ion-Sensitive Field-Effect Transistor

    NASA Astrophysics Data System (ADS)

    Lau, Hui-Chong; Bae, Tae-Eon; Jang, Hyun-June; Kwon, Jae-Young; Cho, Won-Ju; Lim, Jeong-Ok

    2013-04-01

    The development of potential applications of biosensors using the sensory systems of vertebrates and invertebrates has progressed rapidly, especially in clinical diagnosis. The biosensor developed here involves the use of Drosophila cells expressing the gustatory receptor Gr5a and an ion-sensitive field-effect transistor (ISFET) sensor device. Gustatory receptor Gr5a is expressed abundantly in gustatory neurons and acts as a primary marker for tastants, especially sugar, in Drosophila. As a result, it could potentially serve as a good candidate for potential biomarkers of diseases in which the current knowledge of the cause and treatment is limited. The developed ISFET was based on the outstanding electrical characteristics of the metal-oxide-semiconductor field-effect transistor (MOSFET) with a subthreshold swing of 85 mV/dec, low leakage current of <10-12 and high on/off current ratio of 7.3×106. The SiO2 sensing membrane with a pH sensitivity of 34.9 mV/pH and drift rate 1.17 mV/h was sufficient for biosensing applications. In addition, the sensor device also showed significant compatibility with the Drosophila cells expressing Gr5a and their response to sugar, particularly trehalose. Moreover, the interactions between the transfected Drosophila cells and trehalose were consistent and reliable. This suggests that the developed ISFET sensor device could have potential use in the future as a screening device in diagnosis.

  9. Detection of BCG bacteria using a magnetoresistive biosensor: A step towards a fully electronic platform for tuberculosis point-of-care detection.

    PubMed

    Barroso, Teresa G; Martins, Rui C; Fernandes, Elisabete; Cardoso, Susana; Rivas, José; Freitas, Paulo P

    2018-02-15

    Tuberculosis is one of the major public health concerns. This highly contagious disease affects more than 10.4 million people, being a leading cause of morbidity by infection. Tuberculosis is diagnosed at the point-of-care by the Ziehl-Neelsen sputum smear microscopy test. Ziehl-Neelsen is laborious, prone to human error and infection risk, with a limit of detection of 10 4 cells/mL. In resource-poor nations, a more practical test, with lower detection limit, is paramount. This work uses a magnetoresistive biosensor to detect BCG bacteria for tuberculosis diagnosis. Herein we report: i) nanoparticle assembly method and specificity for tuberculosis detection; ii) demonstration of proportionality between BCG cell concentration and magnetoresistive voltage signal; iii) application of multiplicative signal correction for systematic effects removal; iv) investigation of calibration effectiveness using chemometrics methods; and v) comparison with state-of-the-art point-of-care tuberculosis biosensors. Results present a clear correspondence between voltage signal and cell concentration. Multiplicative signal correction removes baseline shifts within and between biochip sensors, allowing accurate and precise voltage signal between different biochips. The corrected signal was used for multivariate regression models, which significantly decreased the calibration standard error from 0.50 to 0.03log 10 (cells/mL). Results show that Ziehl-Neelsen detection limits and below are achievable with the magnetoresistive biochip, when pre-processing and chemometrics are used. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. One-step nanoimprinted hybrid micro-/nano-structure for in situ protein detection of isolated cell array via localized surface plasmon resonance

    NASA Astrophysics Data System (ADS)

    Ali, Riyaz Ahmad Mohamed; Villariza Espulgar, Wilfred; Aoki, Wataru; Jiang, Shu; Saito, Masato; Ueda, Mitsuyoshi; Tamiya, Eiichi

    2018-03-01

    Nanoplasmonic biosensors show high potentials as label-free devices for continuous monitoring in biomolecular analyses. However, most current sensors comprise multiple-dedicated layers with complicated fabrication procedures, which increases production time and manufacturing costs. In this work, we report the synergistic integration of cell-trapping microwell structures with plasmonic sensing nanopillar structures in a single-layered substrate by one-step thermal nanoimprinting. Here, microwell arrays are used for isolating cells, wherein gold-capped nanostructures sense changes in local refractive index via localized surface plasmon resonance (LSPR). Hence, proteins secreted from trapped cells can be label-freely detected as peak shifts in absorbance spectra. The fabricated device showed a detection limit of 10 ng/µL anti-IgA. In Pichia pastoris cells trial analysis, a red shift of 6.9 nm was observed over 12 h, which is likely due to the protein secretion from the cells. This approach provides an inexpensive, rapid, and reproducible alternative for mass production of biosensors for continuous biomolecular analyses.

  11. Single-cell imaging techniques for the real-time detection of IP₃ in live cells.

    PubMed

    Nelson, Carl P

    2013-01-01

    Inositol 1,4,5-trisphosphate (IP(3)) is a ubiquitous second messenger, derived from the hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP(2)) by enzymes of the phospholipase C (PLC) family. Binding of IP(3) to its cognate receptor in the endoplasmic reticulum membrane leads to release of Ca(2+) into the cytoplasm, which is involved in the regulation of an array of cellular functions. Traditional techniques for the detection of IP(3) have required the extraction of a large number of cells, with limitations in the time resolution of changes in IP(3) and an inability to obtain detailed information on the dynamics of this second messenger in single cells. Recent progress in this field has led to the development of a number of genetically encoded fluorescent biosensors, which upon recombinant expression are able selectively to detect real-time changes in IP(3) in single live cells. In this chapter, I detail protocols for the expression, visualization (by confocol or fluorescence microscopy), and interpretation of data obtained with such biosensors expressed in mammalian cells.

  12. Microelectrode array recordings of cardiac action potentials as a high throughput method to evaluate pesticide toxicity.

    PubMed

    Natarajan, A; Molnar, P; Sieverdes, K; Jamshidi, A; Hickman, J J

    2006-04-01

    The threat of environmental pollution, biological warfare agent dissemination and new diseases in recent decades has increased research into cell-based biosensors. The creation of this class of sensors could specifically aid the detection of toxic chemicals and their effects in the environment, such as pyrethroid pesticides. Pyrethroids are synthetic pesticides that have been used increasingly over the last decade to replace other pesticides like DDT. In this study we used a high-throughput method to detect pyrethroids by using multielectrode extracellular recordings from cardiac cells. The data from this cell-electrode hybrid system was compared to published results obtained with patch-clamp electrophysiology and also used as an alternative method to further understand pyrethroid effects. Our biosensor consisted of a confluent monolayer of cardiac myocytes cultured on microelectrode arrays (MEA) composed of 60 substrate-integrated electrodes. Spontaneous activity of these beating cells produced extracellular field potentials in the range of 100 microV to nearly 1200 microV with a beating frequency of 0.5-4 Hz. All of the tested pyrethroids; alpha-Cypermethrin, Tetramethrin and Tefluthrin, produced similar changes in the electrophysiological properties of the cardiac myocytes, namely reduced beating frequency and amplitude. The sensitivity of our toxin detection method was comparable to earlier patch-clamp studies, which indicates that, in specific applications, high-throughput extracellular methods can replace single-cell studies. Moreover, the similar effect of all three pyrethroids on the measured parameters suggests, that not only detection of the toxins but, their classification might also be possible with this method. Overall our results support the idea that whole cell biosensors might be viable alternatives when compared to current toxin detection methods.

  13. Through the Looking Glass: Time-lapse Microscopy and Longitudinal Tracking of Single Cells to Study Anti-cancer Therapeutics

    PubMed Central

    Burke, Russell T.; Orth, James D.

    2016-01-01

    The response of single cells to anti-cancer drugs contributes significantly in determining the population response, and therefore is a major contributing factor in the overall outcome. Immunoblotting, flow cytometry and fixed cell experiments are often used to study how cells respond to anti-cancer drugs. These methods are important, but they have several shortcomings. Variability in drug responses between cancer and normal cells, and between cells of different cancer origin, and transient and rare responses are difficult to understand using population averaging assays and without being able to directly track and analyze them longitudinally. The microscope is particularly well suited to image live cells. Advancements in technology enable us to routinely image cells at a resolution that enables not only cell tracking, but also the observation of a variety of cellular responses. We describe an approach in detail that allows for the continuous time-lapse imaging of cells during the drug response for essentially as long as desired, typically up to 96 hr. Using variations of the approach, cells can be monitored for weeks. With the employment of genetically encoded fluorescent biosensors numerous processes, pathways and responses can be followed. We show examples that include tracking and quantification of cell growth and cell cycle progression, chromosome dynamics, DNA damage, and cell death. We also discuss variations of the technique and its flexibility, and highlight some common pitfalls. PMID:27213923

  14. Biosensors for breast cancer diagnosis: A review of bioreceptors, biotransducers and signal amplification strategies.

    PubMed

    Mittal, Sunil; Kaur, Hardeep; Gautam, Nandini; Mantha, Anil K

    2017-02-15

    Breast cancer is highly prevalent in females and accounts for second highest number of deaths, worldwide. Cumbersome, expensive and time consuming detection techniques presently available for detection of breast cancer potentiates the need for development of novel, specific and ultrasensitive devices. Biosensors are the promising and selective detection devices which hold immense potential as point of care (POC) tools. Present review comprehensively scrutinizes various breast cancer biosensors developed so far and their technical evaluation with respect to efficiency and potency of selected bioreceptors and biotransducers. Use of glycoproteins, DNA biomarkers, micro-RNA, circulatory tumor cells (CTC) and some potential biomarkers are introduced briefly. The review also discusses various strategies used in signal amplification such as nanomaterials, redox mediators, p19 protein, duplex specific nucleases (DSN) and redox cycling. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Evaluation of a GFP Report Gene Construct for Environmental Arsenic Detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberto, F.F.; Barnes, J.M.; Bruhn, D.F.

    Detection of arsenic and other heavy metal contaminants in the environment is critical to ensuring safe drinking water and effective cleanup of historic activities that have led to widespread contamination of soil and groundwater. Biosensors have the potential to significantly reduce the costs associated with site characterization and long term environmental monitoring. By exploiting the highly selective and sensitive natural mechanisms by which bacteria and other living organisms respond to heavy metals, and fusing transcriptionally active components of these mechanisms to reporter genes, such as B-galactosidase, bacterial luciferase (lux), or green fluorescent protein (GFP) from marine jellyfish, it is possiblemore » to produce inexpensive, yet effective biosensors. This article describes the response to submicrogram quantities of arsenite and arsenate of a whole cell arsenic biosensor utilizing a GFP reporter gene.« less

  16. Development of a dielectrophoresis-assisted surface plasmon resonance fluorescence biosensor for detection of bacteria

    NASA Astrophysics Data System (ADS)

    Kuroda, Chiaki; Iizuka, Ryota; Ohki, Yoshimichi; Fujimaki, Makoto

    2018-05-01

    To detect biological substances such as bacteria speedily and accurately, a dielectrophoresis-assisted surface plasmon resonance (SPR) fluorescence biosensor is being developed. Using Escherichia coli as a target organism, an appropriate voltage frequency to collect E. coli cells on indium tin oxide quadrupole electrodes by dielectrophoresis is analyzed. Then, E. coli is stained with 4‧,6-diamidino-2-phenylindole (DAPI). To clearly detect fluorescence signals from DAPI-stained E. coli cells, the sensor is optimized so that we can excite SPR on Al electrodes by illuminating 405 nm photons. As a result, the number of fluorescence signals is increased on the electrodes by the application of a low-frequency voltage. This indicates that E. coli cells with a lower permittivity than the surrounding water are collected by negative dielectrophoresis onto the electrodes where the electric field strength is lowest.

  17. Feasibility Study of Odor Biosensor Using Dissociate Neuronal Culture with Gene Expression of Ionotropic Odorant Receptors

    NASA Astrophysics Data System (ADS)

    Tanada, Norio; Sakurai, Takeshi; Mitsuno, Hidefumi; Bakkum, Douglas; Kanzaki, Ryohei; Takahashi, Hirokazu

    We propose a highly sensitive and real-time odor biosensor by expressing ionotropic odorant receptors of insects into dissociated cultures of neurons of rats. The odorant-gated ion channel structure of insect odorant receptor is expected to allow easy functional expression into cells. The neuronal dissociated cultures of rats have two significant advantages: a long lifetime comparable to rats, i.e., a few years; and amplification ability from weak ionic currents of odorant receptors into easily detectable action potentials of neurons. In the present work, in order to show the feasibility of the proposed sensor, we attempt to express the pheromone receptors of silkmoth, Bombyx mori, into cultured neurons of rats. We demonstrate that 10% of neuronal cells transfected using Lipofectamine successfully expressed pheromone receptors, and that these cells showed significant increase of calcium signals by 50% at the presentation of pheromone.

  18. Computational modelling of the flow of viscous fluids in carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Khosravian, N.; Rafii-Tabar, H.

    2007-11-01

    Carbon nanotubes will have extensive application in all areas of nano-technology, and in particular in the field of nano-fluidics, wherein they can be used for molecular separation, nano-scale filtering and as nano-pipes for conveying fluids. In the field of nano-medicine, nanotubes can be functionalized with various types of receptors to act as bio-sensors for the detection and elimination of cancer cells, or be used as bypasses and even neural connections. Modelling fluid flow inside nanotubes is a very challenging problem, since there is a complex interplay between the motion of the fluid and the stability of the walls. A critical issue in the design of nano-fluidic devices is the induced vibration of the walls, due to the fluid flow, which can promote structural instability. It has been established that the resonant frequencies depend on the flow velocity. We have studied, for the first time, the flow of viscous fluids through multi-walled carbon nanotubes, using the Euler-Bernoulli classical beam theory to model the nanotube as a continuum structure. Our aim has been to compute the effect of the fluid flow on the structural stability of the nanotubes, without having to consider the details of the fluid-walls interaction. The variations of the resonant frequencies with the flow velocity are obtained for both unembedded nanotubes, and when they are embedded in an elastic medium. It is found that a nanotube conveying a viscous fluid is more stable against vibration-induced buckling than a nanotube conveying a non-viscous fluid, and that the aspect ratio plays the same role in both cases.

  19. Recombinant antibodies and their use in biosensors.

    PubMed

    Zeng, Xiangqun; Shen, Zhihong; Mernaugh, Ray

    2012-04-01

    Inexpensive, noninvasive immunoassays can be used to quickly detect disease in humans. Immunoassay sensitivity and specificity are decidedly dependent upon high-affinity, antigen-specific antibodies. Antibodies are produced biologically. As such, antibody quality and suitability for use in immunoassays cannot be readily determined or controlled by human intervention. However, the process through which high-quality antibodies can be obtained has been shortened and streamlined by use of genetic engineering and recombinant antibody techniques. Antibodies that traditionally take several months or more to produce when animals are used can now be developed in a few weeks as recombinant antibodies produced in bacteria, yeast, or other cell types. Typically most immunoassays use two or more antibodies or antibody fragments to detect antigens that are indicators of disease. However, a label-free biosensor, for example, a quartz-crystal microbalance (QCM) needs one antibody only. As such, the cost and time needed to design and develop an immunoassay can be substantially reduced if recombinant antibodies and biosensors are used rather than traditional antibody and assay (e.g. enzyme-linked immunosorbant assay, ELISA) methods. Unlike traditional antibodies, recombinant antibodies can be genetically engineered to self-assemble on biosensor surfaces, at high density, and correctly oriented to enhance antigen-binding activity and to increase assay sensitivity, specificity, and stability. Additionally, biosensor surface chemistry and physical and electronic properties can be modified to further increase immunoassay performance above and beyond that obtained by use of traditional methods. This review describes some of the techniques investigators have used to develop highly specific and sensitive, recombinant antibody-based biosensors for detection of antigens in simple or complex biological samples.

  20. Nanoyeast and Other Cell Envelope Compositions for Protein Studies and Biosensor Applications

    PubMed Central

    2016-01-01

    Rapid progress in disease biomarker discovery has increased the need for robust detection technologies. In the past several years, the designs of many immunoaffinity reagents have focused on lowering costs and improving specificity while also promoting stability. Antibody fragments (scFvs) have long been displayed on the surface of yeast and phage libraries for selection; however, the stable production of such fragments presents challenges that hamper their widespread use in diagnostics. Membrane and cell wall proteins similarly suffer from stability problems when solubilized from their native environment. Recently, cell envelope compositions that maintain membrane proteins in native or native-like lipid environment to improve their stability have been developed. This cell envelope composition approach has now been adapted toward stabilizing antibody fragments by retaining their native cell wall environment. A new class of immunoaffinity reagents has been developed that maintains antibody fragment attachment to yeast cell wall. Herein, we review recent strategies that incorporate cell wall fragments with functional scFvs, which are designed for easy production while maintaining specificity and stability when in use with simple detection platforms. These cell wall based antibody fragments are globular in structure, and heterogeneous in size, with fragments ranging from tens to hundreds of nanometers in size. These fragments appear to retain activity once immobilized onto biosensor surfaces for the specific and sensitive detection of pathogen antigens. They can be quickly and economically generated from a yeast display library and stored lyophilized, at room temperature, for up to a year with little effect on stability. This new format of scFvs provides stability, in a simple and low-cost manner toward the use of scFvs in biosensor applications. The production and “panning” of such antibody cell wall composites are also extremely facile, enabling the rapid adoption of stable and inexpensive affinity reagents for emerging infectious threats. PMID:27762541

  1. Surface engineered biosensors for the early detection of cancer

    NASA Astrophysics Data System (ADS)

    Islam, Muhymin

    Cancer commences in the building block of human body which is cells and in most of the cases remains silent at early stage. Diseases are only expressed at molecular and cellular level at primary stages. Recognition of diseases at this micro and nano level might reduce the mortality rate of cancer significantly. This research work aimed to introduce novel electronic biosensors for for identification of cancer at cellular level. The dissertation study focuses on 1) Label-Free Isolation of Metastatic Tumor Cells Using Filter Based Microfluidic device; 2) Nanotextured Polymer Substrates for Enhanced Cancer Cell Isolation and Cell Growth; 3) Nanotextured Microfluidic Channel for Electrical Profiling and Detection of Tumor Cells from Blood; and 4) Single Biochip for the Detection of Tumor Cells by Electrical Profile and Surface Immobilized Aptamer. Standard silicon processing techniques were followed to fabricate all of the biosensors. Nantoextruing and surface functionalizon were also incorporated to elevate the efficiency of the devices. The first approach aimed to detect cancer cells from blood based on their mechanophysical properties. Cancer cells are larger than blood cells but highly elastic in nature. These cells can squeeze through small microchannels much smaller than their size. The cross sectional area of the microchannels was optimized to isolate tumor cells from blood. Nanotextured polymer substrates, a platform inspired from the natural basement membrane was used to enhance the isolation and growth of tumor cells. Micro reactive ion etching was performed to have better control on features of nantoxtured surfaces and did not require any template. Next, electrical measurement of ionic current was performed across single microchannel to detect tumor cells from blood. Later, nanotexturing enhanced the efficiency of the device by selectively altering the translocation profile of cancer cells. Eventually aptamer functionalized nanotextured polymer surface was integrated with current measurement facilities in a single biochip to discriminate tumor cells from blood with higher efficiency and selectivity. This biochip can be an implemented as a point-of-care device for the early detection of cancer at cellular level.

  2. A label-free nanostructured plasmonic biosensor based on Blu-ray discs with integrated microfluidics for sensitive biodetection.

    PubMed

    López-Muñoz, Gerardo A; Estevez, M-Carmen; Peláez-Gutierrez, E Cristina; Homs-Corbera, Antoni; García-Hernandez, M Carmen; Imbaud, J Ignacio; Lechuga, Laura M

    2017-10-15

    Nanostructure-based plasmonic biosensors have quickly positioned themselves as interesting candidates for the design of portable optical biosensor platforms considering the potential benefits they can offer in integration, miniaturization, multiplexing, and real-time label-free detection. We have developed a simple integrated nanoplasmonic sensor taking advantage of the periodic nanostructured array of commercial Blu-ray discs. Sensors with two gold film thicknesses (50 and 100nm) were fabricated and optically characterized by varying the oblique-angle of the incident light in optical reflectance measurements. Contrary to the use normal light incidence previously reported with other optical discs, we observed an enhancement in sensitivity and a narrowing of the resonant linewidths as the light incidence angle was increased, which could be related to the generation of Fano resonant modes. The new sensors achieve a figure of merit (FOM) up to 35 RIU -1 and a competitive bulk limit of detection (LOD) of 6.3×10 -6 RIU. These values significantly improve previously reported results obtained with normal light incidence reflectance measurements using similar structures. The sensor has been combined with versatile, simple, ease to-fabricate microfluidics. The integrated chip is only 1cm 2 (including a PDMS flow cell with a 50µm height microfluidic channel fabricated with double-sided adhesive tape) and all the optical components are mounted on a 10cm×10cm portable prototype, illustrating its facile miniaturization, integration and potential portability. Finally, to assess the label-free biosensing capability of the new sensor, we have evaluated the presence of specific antibodies against the GTF2b protein, a tumor-associate antigen (TAA) related to colorectal cancer. We have achieved a LOD in the pM order and have assessed the feasibility of directly measuring biological samples such as human serum. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Imaging energy status in live cells with a fluorescent biosensor of the intracellular ATP-to-ADP ratio

    PubMed Central

    Tantama, Mathew; Martínez-François, Juan Ramón; Mongeon, Rebecca; Yellen, Gary

    2013-01-01

    The ATP:ADP ratio is a critical parameter of cellular energy status that regulates many metabolic activities. Here we report an optimized genetically-encoded fluorescent biosensor, PercevalHR, that senses the ATP:ADP ratio. PercevalHR is tuned to the range of intracellular ATP:ADP expected in mammalian cells, and it can be used with one- or two-photon microscopy in live samples. We use PercevalHR to visualize activity-dependent changes in ATP:ADP when neurons are exposed to multiple stimuli, demonstrating that it is a sensitive reporter of physiological changes in energy consumption and production. We also use PercevalHR to visualize intracellular ATP:ADP while simultaneously recording currents from ATP-sensitive potassium (KATP) channels in single cells, showing that PercevalHR enables the study of coordinated variation in ATP:ADP and KATP channel open probability in intact cells. With its ability to monitor changes in cellular energetics within seconds, PercevalHR should be a versatile tool for metabolic research. PMID:24096541

  4. Self-assembly of an upconverting nanocomplex and its application to turn-on detection of metalloproteinase-9 in living cells

    NASA Astrophysics Data System (ADS)

    Nguyen, Phuong-Diem; Thanh Cong, Vu; Baek, Changyoon; Min, Junhong

    2016-10-01

    Upcoversion nanoparticles are an emerging luminescent nanomaterial with excellent photophysical properties that have great benefits in biological sensing. In this study, a luminescent turn-on biosensor for cell-secreted protease activity assay is established based on resonance energy transfer in an upconversion nanoparticle-graphene oxide nano-assembly. The proposed biosensor consists of a blue-emitting upconversion nanoparticle covered with a quenching complex, comprising gelatin as the proteinase substrate and graphene oxide nanosheets as luminescence acceptors. After enzymatic digestion, the upconversion nanoparticles lose the gelatin cover due to the disassembly of the quenching complex, thus the upconverting luminescence in the blue region is restored (a turn-on response). The recovered upconverting luminescence is proportional to the protease concentration; the limit of detection was 12 ng ml-1. Finally, the upconversion-graphene oxide nanocomplex was successfully applied in the detection of cell-secreted protease-metalloproteinase in MCF-7 cancer cells with high sensitivity and specificity.

  5. Protein and cell micropatterning and its integration with micro/nanoparticles assembly.

    PubMed

    Yap, F L; Zhang, Y

    2007-01-15

    Micropatterning of proteins and cells has become very popular over the past decade due to its importance in the development of biosensors, microarrays, tissue engineering and cellular studies. This article reviews the techniques developed for protein and cell micropatterning and its biomedical applications. The prospect of integrating micro and nanoparticles with protein and cell micropatterning is discussed. The micro/nanoparticles are assembled into patterns and form the substrate for proteins and cell attachment. The assembled particles create a micro or nanotopography, depending on the size of the particles employed. The nonplanar structure can increase the surface area for biomolecules attachment and therefore enhance the sensitivity for detection in biosensors. Furthermore, a nanostructured substrate can influence the conformation and functionality of protein attached to it, while cellular response in terms of morphology, adhesion, proliferation, differentiation, etc. can be affected by a surface expressing micro or nanoscale structures. Proteins and cells tend to lose their normal functions upon attachment to substrate. By recognizing the types of topography that are favourable for preserving proteins and cell behaviour, and integrating it with micropattering will lead to the development of functional protein and cell patterns.

  6. Increasing cell–device adherence using cultured insect cells for receptor-based biosensors

    PubMed Central

    Mitsuno, Hidefumi; Sakurai, Takeshi; Okamoto, Yuki; Tixier-Mita, Agnès; Toshiyoshi, Hiroshi; Mita, Yoshio; Kanzaki, Ryohei

    2018-01-01

    Field-effect transistor (FET)-based biosensors have a wide range of applications, and a bio-FET odorant sensor, based on insect (Sf21) cells expressing insect odorant receptors (ORs) with sensitivity and selectivity, has emerged. To fully realize the practical application of bio-FET odorant sensors, knowledge of the cell–device interface for efficient signal transfer, and a reliable and low-cost measurement system using the commercial complementary metal-oxide semiconductor (CMOS) foundry process, will be indispensable. However, the interfaces between Sf21 cells and sensor devices are largely unknown, and electrode materials used in the commercial CMOS foundry process are generally limited to aluminium, which is reportedly toxic to cells. In this study, we investigated Sf21 cell–device interfaces by developing cross-sectional specimens. Calcium imaging of Sf21 cells expressing insect ORs was used to verify the functions of Sf21 cells as odorant sensor elements on the electrode materials. We found that the cell–device interface was approximately 10 nm wide on average, suggesting that the adhesion mechanism of Sf21 cells may differ from that of other cells. These results will help to construct accurate signal detection from expressed insect ORs using FETs. PMID:29657822

  7. Nano interfaced biosensor for detection of choline in triple negative breast cancer cells.

    PubMed

    Thiagarajan, Vignesh; Madhurantakam, Sasya; Sethuraman, Swaminathan; Balaguru Rayappan, John Bosco; Maheswari Krishnan, Uma

    2016-01-15

    Choline, a type of Vitamin B, is an important nutrient in the human body and is involved in key metabolic pathways. Abnormal levels of choline leads to diseased conditions. The levels of choline and its associated compounds are found to be elevated in triple negative breast cancer (TNBC) patients. The choline level ranges from 0.4 to 4.9mmol/kg in TNBC. Thus the detection of choline levels in cells can aid in diagnosing breast cancer. The present work aims to develop a nano-interfaced electrochemical biosensor for the rapid detection of choline in cancer cells. For electrochemical detection, glassy carbon electrode coated with a zinc oxide nano-interface was used as the working electrode. Zinc oxide synthesized by hydrothermal method was characterized using SEM and XRD. The choline oxidase (ChOx) enzyme was immobilized on the nano-interface by drop-casting. Choline oxidase (ChOx) converts choline to betaine and H2O2 in the presence of oxygen. The H2O2 produced was determined amperometrically. The amount of H2O2 produced is directly proportional to concentration of choline present. The sensitivity, selectivity, stability and concentration studies were carried out and quantification of choline in TNBC was also carried out. The results demonstrate that this biosensor has the potential to be developed as a clinical tool for breast cancer detection. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Construction of a ColD cda promoter-based SOS-green fluorescent protein whole-cell biosensor with higher sensitivity toward genotoxic compounds than constructs based on recA, umuDC, or sulA promoters.

    PubMed

    Norman, Anders; Hestbjerg Hansen, Lars; Sørensen, Søren J

    2005-05-01

    Four different green fluorescent protein (GFP)-based whole-cell biosensors were created based on the DNA damage inducible SOS response of Escherichia coli in order to evaluate the sensitivity of individual SOS promoters toward genotoxic substances. Treatment with the known carcinogen N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) revealed that the promoter for the ColD plasmid-borne cda gene had responses 12, 5, and 3 times greater than the recA, sulA, and umuDC promoters, respectively, and also considerably higher sensitivity. Furthermore, we showed that when the SOS-GFP construct was introduced into an E. coli host deficient in the tolC gene, the minimal detection limits toward mitomycin C, MNNG, nalidixic acid, and formaldehyde were lowered to 9.1 nM, 0.16 microM, 1.1 microM, and 141 microM, respectively, which were two to six times lower than those in the wild-type strain. This study thus presents a new SOS-GFP whole-cell biosensor which is not only able to detect minute levels of genotoxins but, due to its use of the green fluorescent protein, also a reporter system which should be applicable in high-throughput screening assays as well as a wide variety of in situ detection studies.

  9. Highly selective detection of single-nucleotide polymorphisms using a quartz crystal microbalance biosensor based on the toehold-mediated strand displacement reaction.

    PubMed

    Wang, Dingzhong; Tang, Wei; Wu, Xiaojie; Wang, Xinyi; Chen, Gengjia; Chen, Qiang; Li, Na; Liu, Feng

    2012-08-21

    Toehold-mediated strand displacement reaction (SDR) is first introduced to develop a simple quartz crystal microbalance (QCM) biosensor without an enzyme or label at normal temperature for highly selective and sensitive detection of single-nucleotide polymorphism (SNP) in the p53 tumor suppressor gene. A hairpin capture probe with an external toehold is designed and immobilized on the gold electrode surface of QCM. A successive SDR is initiated by the target sequence hybridization with the toehold domain and ends with the unfolding of the capture probe. Finally, the open-loop capture probe hybridizes with the streptavidin-coupled reporter probe as an efficient mass amplifier to enhance the QCM signal. The proposed biosensor displays remarkable specificity to target the p53 gene fragment against single-base mutant sequences (e.g., the largest discrimination factor is 63 to C-C mismatch) and high sensitivity with the detection limit of 0.3 nM at 20 °C. As the crucial component of the fabricated biosensor for providing the high discrimination capability, the design rationale of the capture probe is further verified by fluorescence sensing and atomic force microscopy imaging. Additionally, a recovery of 84.1% is obtained when detecting the target sequence in spiked HeLa cells lysate, demonstrating the feasibility of employing this biosensor in detecting SNPs in biological samples.

  10. Role of Aspergillus niger acrA in Arsenic Resistance and Its Use as the Basis for an Arsenic Biosensor

    PubMed Central

    Choe, Se-In; Gravelat, Fabrice N.; Al Abdallah, Qusai; Lee, Mark J.; Gibbs, Bernard F.

    2012-01-01

    Arsenic contamination of groundwater sources is a major issue worldwide, since exposure to high levels of arsenic has been linked to a variety of health problems. Effective methods of detection are thus greatly needed as preventive measures. In an effort to develop a fungal biosensor for arsenic, we first identified seven putative arsenic metabolism and transport genes in Aspergillus niger, a widely used industrial organism that is generally regarded as safe (GRAS). Among the genes tested for RNA expression in response to arsenate, acrA, encoding a putative plasma membrane arsenite efflux pump, displayed an over 200-fold increase in gene expression in response to arsenate. We characterized the function of this A. niger protein in arsenic efflux by gene knockout and confirmed that AcrA was located at the cell membrane using an enhanced green fluorescent protein (eGFP) fusion construct. Based on our observations, we developed a putative biosensor strain containing a construct of the native promoter of acrA fused with egfp. We analyzed the fluorescence of this biosensor strain in the presence of arsenic using confocal microscopy and spectrofluorimetry. The biosensor strain reliably detected both arsenite and arsenate in the range of 1.8 to 180 μg/liter, which encompasses the threshold concentrations for drinking water set by the World Health Organization (10 and 50 μg/liter). PMID:22467499

  11. MEMS-based power generation techniques for implantable biosensing applications.

    PubMed

    Lueke, Jonathan; Moussa, Walied A

    2011-01-01

    Implantable biosensing is attractive for both medical monitoring and diagnostic applications. It is possible to monitor phenomena such as physical loads on joints or implants, vital signs, or osseointegration in vivo and in real time. Microelectromechanical (MEMS)-based generation techniques can allow for the autonomous operation of implantable biosensors by generating electrical power to replace or supplement existing battery-based power systems. By supplementing existing battery-based power systems for implantable biosensors, the operational lifetime of the sensor is increased. In addition, the potential for a greater amount of available power allows additional components to be added to the biosensing module, such as computational and wireless and components, improving functionality and performance of the biosensor. Photovoltaic, thermovoltaic, micro fuel cell, electrostatic, electromagnetic, and piezoelectric based generation schemes are evaluated in this paper for applicability for implantable biosensing. MEMS-based generation techniques that harvest ambient energy, such as vibration, are much better suited for implantable biosensing applications than fuel-based approaches, producing up to milliwatts of electrical power. High power density MEMS-based approaches, such as piezoelectric and electromagnetic schemes, allow for supplemental and replacement power schemes for biosensing applications to improve device capabilities and performance. In addition, this may allow for the biosensor to be further miniaturized, reducing the need for relatively large batteries with respect to device size. This would cause the implanted biosensor to be less invasive, increasing the quality of care received by the patient.

  12. Functionalized vertical GaN micro pillar arrays with high signal-to-background ratio for detection and analysis of proteins secreted from breast tumor cells.

    PubMed

    Choi, Mun-Ki; Kim, Gil-Sung; Jeong, Jin-Tak; Lim, Jung-Taek; Lee, Won-Yong; Umar, Ahmad; Lee, Sang-Kwon

    2017-11-02

    The detection of cancer biomarkers has recently attracted significant attention as a means of determining the correct course of treatment with targeted therapeutics. However, because the concentration of these biomarkers in blood is usually relatively low, highly sensitive biosensors for fluorescence imaging and precise detection are needed. In this study, we have successfully developed vertical GaN micropillar (MP) based biosensors for fluorescence sensing and quantitative measurement of CA15-3 antigens. The highly ordered vertical GaN MP arrays result in the successful immobilization of CA15-3 antigens on each feature of the arrays, thereby allowing the detection of an individual fluorescence signal from the top surface of the arrays owing to the high regularity of fluorophore-tagged MP spots and relatively low background signal. Therefore, our fluorescence-labeled and CA15-3 functionalized vertical GaN-MP-based biosensor is suitable for the selective quantitative analysis of secreted CA15-3 antigens from MCF-7 cell lines, and helps in the early diagnosis and prognosis of serious diseases as well as the monitoring of the therapeutic response of breast cancer patients.

  13. Electrochemical lectin based biosensors as a label-free tool in glycomics

    PubMed Central

    Bertók, Tomáš; Katrlík, Jaroslav; Gemeiner, Peter; Tkac, Jan

    2016-01-01

    Glycans and other saccharide moieties attached to proteins and lipids, or present on the surface of a cell, are actively involved in numerous physiological or pathological processes. Their structural flexibility (that is based on the formation of various kinds of linkages between saccharides) is making glycans superb “identity cards”. In fact, glycans can form more “words” or “codes” (i.e., unique sequences) from the same number of “letters” (building blocks) than DNA or proteins. Glycans are physicochemically similar and it is not a trivial task to identify their sequence, or - even more challenging - to link a given glycan to a particular physiological or pathological process. Lectins can recognise differences in glycan compositions even in their bound state and therefore are most useful tools in the task to decipher the “glycocode”. Thus, lectin-based biosensors working in a label-free mode can effectively complement the current weaponry of analytical tools in glycomics. This review gives an introduction into the area of glycomics and then focuses on the design, analytical performance, and practical utility of lectin-based electrochemical label-free biosensors for the detection of isolated glycoproteins or intact cells. PMID:27239071

  14. Comprehensive analysis of chemokine-induced cAMP-inhibitory responses using a real-time luminescent biosensor.

    PubMed

    Felouzis, Virginia; Hermand, Patricia; de Laissardière, Guy Trambly; Combadière, Christophe; Deterre, Philippe

    2016-01-01

    Chemokine receptors are members of the G-protein-coupled receptor (GPCR) family coupled to members of the Gi class, whose primary function is to inhibit the cellular adenylate cyclase. We used a cAMP-related and PKA-based luminescent biosensor (GloSensor™ F-22) to monitor the real-time downstream response of chemokine receptors, especially CX3CR1 and CXCR4, after activation with their cognate ligands CX3CL1 and CXCL12. We found that the amplitudes and kinetic profiles of the chemokine responses were conserved in various cell types and were independent of the nature and concentration of the molecules used for cAMP prestimulation, including either the adenylate cyclase activator forskolin or ligands mediating Gs-mediated responses like prostaglandin E2 or beta-adrenergic agonist. We conclude that the cAMP chemokine response is robustly conserved in various inflammatory conditions. Moreover, the cAMP-related luminescent biosensor appears as a valuable tool to analyze the details of Gi-mediated cAMP-inhibitory cellular responses, even in native conditions and could help to decipher their precise role in cell function. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Bio-analytical applications of microbial fuel cell-based biosensors for onsite water quality monitoring.

    PubMed

    ElMekawy, A; Hegab, H M; Pant, D; Saint, C P

    2018-01-01

    Globally, sustainable provision of high-quality safe water is a major challenge of the 21st century. Various chemical and biological monitoring analytics are presently utilized to guarantee the availability of high-quality water. However, these techniques still face some challenges including high costs, complex design and onsite and online limitations. The recent technology of using microbial fuel cell (MFC)-based biosensors holds outstanding potential for the rapid and real-time monitoring of water source quality. MFCs have the advantages of simplicity in design and efficiency for onsite sensing. Even though some sensing applications of MFCs were previously studied, e.g. biochemical oxygen demand sensor, recently numerous research groups around the world have presented new practical applications of this technique, which combine multidisciplinary scientific knowledge in materials science, microbiology and electrochemistry fields. This review presents the most updated research on the utilization of MFCs as potential biosensors for monitoring water quality and considers the range of potentially toxic analytes that have so far been detected using this methodology. The advantages of MFCs over established technology are also considered as well as future work required to establish their routine use. © 2017 The Society for Applied Microbiology.

  16. Functional Micrococcus lysodeikticus layers deposited by laser technique for the optical sensing of lysozyme.

    PubMed

    Dinca, Valentina; Zaharie-Butucel, Diana; Stanica, Luciana; Brajnicov, Simona; Marascu, Valentina; Bonciu, Anca; Cristocea, Andra; Gaman, Laura; Gheorghiu, Mihaela; Astilean, Simion; Vasilescu, Alina

    2018-02-01

    Whole cell optical biosensors, made by immobilizing whole algal, bacterial or mammalian cells on various supports have found applications in several fields, from ecology and ecotoxicity testing to biopharmaceutical production or medical diagnostics. We hereby report the deposition of functional bacterial layers of Micrococcus lysodeikticus (ML) via Matrix-Assisted Pulsed Laser Evaporation (MAPLE) on poly(diallyldimethylamonium) (PDDA)-coated-glass slides and their application as an optical biosensor for the detection of lysozyme in serum. Lysozyme is an enzyme upregulated in inflammatory diseases and ML is an enzymatic substrate for this enzyme. The MAPLE-deposited bacterial interfaces were characterised by Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), Fourier-Transformed Infrared Spectroscopy (FTIR), Raman and optical microscopy and were compared with control interfaces deposited via layer-by-layer on the same substrate. After MAPLE deposition and coating with graphene oxide (GO), ML-modified interfaces retained their functionality and sensitivity to lysozyme's lytic action. The optical biosensor detected lysozyme in undiluted serum in the clinically relevant range up to 10μgmL -1 , in a fast and simple manner. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Simple and rapid fabrication of disposable carbon-based electrochemical cells using an electronic craft cutter for sensor and biosensor applications.

    PubMed

    Afonso, André S; Uliana, Carolina V; Martucci, Diego H; Faria, Ronaldo C

    2016-01-01

    This work describes the construction of an all-plastic disposable carbon-based electrochemical cell (DCell) using a simple procedure based on the use of a home cutter printer for prototyping and laminating. The cutter printer and adhesive vinyl films were used to produce three electrodes in an electrochemical cell layout, and a laminating process was then used to define the geometric area and insulate the electrodes. The DCell showed excellent performance in several applications including the determination of toxic metals in water samples, the immobilization of DNA and the detection of Salmonella. An unmodified DCell was applied for Pb and Cd detection in the range of 100-300 ng mL(-1) with a limit of detection of 50 and 39 ng mL(-1) for Cd and Pb, respectively. DNA was successfully immobilized on a DCell and used for studies of interaction between bisphenol A and DNA. The square wave voltammetry of a DNA modified DCell presented a guanine oxidation current 2.5 times greater after exposure of the electrode to bisphenol A and no current variation for the adenine moiety indicating that bisphenol A showed a preference for DNA interaction sites. A magneto-immunoassay was developed using a DCell for Salmonella detection in milk samples. The system presented a linear range from 100 to 700 cells mL(-1) with a limit of detection of 100 cells mL(-1) and good recovery values between 93% and 101% in milk samples, with no interference from Escherichia coli. Using the proposed method, hundreds of DCells can be assembled in less than two hours, at a material cost of less than US $0.02 per cell. The all-plastic disposable electrochemical cell developed was successfully applied as an electrochemical sensor and biosensor. The feasibility of the developed all-plastic disposable electrochemical cell was demonstrated in applications as both sensor and biosensor. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Live Cell in Vitro and in Vivo Imaging Applications: Accelerating Drug Discovery

    PubMed Central

    Isherwood, Beverley; Timpson, Paul; McGhee, Ewan J; Anderson, Kurt I; Canel, Marta; Serrels, Alan; Brunton, Valerie G; Carragher, Neil O

    2011-01-01

    Dynamic regulation of specific molecular processes and cellular phenotypes in live cell systems reveal unique insights into cell fate and drug pharmacology that are not gained from traditional fixed endpoint assays. Recent advances in microscopic imaging platform technology combined with the development of novel optical biosensors and sophisticated image analysis solutions have increased the scope of live cell imaging applications in drug discovery. We highlight recent literature examples where live cell imaging has uncovered novel insight into biological mechanism or drug mode-of-action. We survey distinct types of optical biosensors and associated analytical methods for monitoring molecular dynamics, in vitro and in vivo. We describe the recent expansion of live cell imaging into automated target validation and drug screening activities through the development of dedicated brightfield and fluorescence kinetic imaging platforms. We provide specific examples of how temporal profiling of phenotypic response signatures using such kinetic imaging platforms can increase the value of in vitro high-content screening. Finally, we offer a prospective view of how further application and development of live cell imaging technology and reagents can accelerate preclinical lead optimization cycles and enhance the in vitro to in vivo translation of drug candidates. PMID:24310493

  19. Bioanalytical and chemical sensors using living taste, olfactory, and neural cells and tissues: a short review.

    PubMed

    Wu, Chunsheng; Lillehoj, Peter B; Wang, Ping

    2015-11-07

    Biosensors utilizing living tissues and cells have recently gained significant attention as functional devices for chemical sensing and biochemical analysis. These devices integrate biological components (i.e. single cells, cell networks, tissues) with micro-electro-mechanical systems (MEMS)-based sensors and transducers. Various types of cells and tissues derived from natural and bioengineered sources have been used as recognition and sensing elements, which are generally characterized by high sensitivity and specificity. This review summarizes the state of the art in tissue- and cell-based biosensing platforms with an emphasis on those using taste, olfactory, and neural cells and tissues. Many of these devices employ unique integration strategies and sensing schemes based on sensitive transducers including microelectrode arrays (MEAs), field effect transistors (FETs), and light-addressable potentiometric sensors (LAPSs). Several groups have coupled these hybrid biosensors with microfluidics which offers added benefits of small sample volumes and enhanced automation. While this technology is currently limited to lab settings due to the limited stability of living biological components, further research to enhance their robustness will enable these devices to be employed in field and clinical settings.

  20. Optoelectric biosensor using indium-tin-oxide electrodes.

    PubMed

    Choi, Chang Kyoung; Kihm, Kenneth D; English, Anthony E

    2007-06-01

    The use of an optically thin indium-tin-oxide (ITO) electrode is presented for an optoelectric biosensor simultaneously recording optical images and microimpedance to examine time-dependent cellular growth. The transmittance of a 100 nm thick ITO electrode layer is approximately the same as the transmittance of a clean glass substrate, whereas the industry-standard Au(47.5 nm)/Ti(2.5 nm) electrode layer drops the transmittance to less than 10% of that of the glass substrate. The simultaneous optoelectric measurements permit determining the correlation of the cell-covered area increase with the microimpedance increase, and the example results obtained for live porcine pulmonary artery endothelial cells delineate the quantitative and comprehensive nature of cellular attachment and spreading to the substrate, which has not been clearly perceived before.

Top