Cho, Dong Guk; Yoo, Haneul; Lee, Haein; Choi, Yeol Kyo; Lee, Minju; Ahn, Dong June; Hong, Seunghun
2018-05-10
We report a high-speed lateral flow strategy for a fast biosensing with an improved selectivity and binding affinity even under harsh conditions. In this strategy, biosensors were fixed at a location away from the center of a round shape disk, and the disk was rotated to create the lateral flow of a target solution on the biosensors during the sensing measurements. Experimental results using the strategy showed high reaction speeds, high binding affinity, and low nonspecific adsorptions of target molecules to biosensors. Furthermore, binding affinity between target molecules and sensing molecules was enhanced even in harsh conditions such as low pH and low ionic strength conditions. These results show that the strategy can improve the performance of conventional biosensors by generating high-speed lateral flows on a biosensor surface. Therefore, our strategy can be utilized as a simple but powerful tool for versatile bio and medical applications.
A Highly Responsive Silicon Nanowire/Amplifier MOSFET Hybrid Biosensor.
Lee, Jieun; Jang, Jaeman; Choi, Bongsik; Yoon, Jinsu; Kim, Jee-Yeon; Choi, Yang-Kyu; Kim, Dong Myong; Kim, Dae Hwan; Choi, Sung-Jin
2015-07-21
This study demonstrates a hybrid biosensor comprised of a silicon nanowire (SiNW) integrated with an amplifier MOSFET to improve the current response of field-effect-transistor (FET)-based biosensors. The hybrid biosensor is fabricated using conventional CMOS technology, which has the potential advantage of high density and low noise performance. The biosensor shows a current response of 5.74 decades per pH for pH detection, which is 2.5 × 10(5) times larger than that of a single SiNW sensor. In addition, we demonstrate charged polymer detection using the biosensor, with a high current change of 4.5 × 10(5) with a 500 nM concentration of poly(allylamine hydrochloride). In addition, we demonstrate a wide dynamic range can be obtained by adjusting the liquid gate voltage. We expect that this biosensor will be advantageous and practical for biosensor applications which requires lower noise, high speed, and high density.
A Highly Responsive Silicon Nanowire/Amplifier MOSFET Hybrid Biosensor
Lee, Jieun; Jang, Jaeman; Choi, Bongsik; Yoon, Jinsu; Kim, Jee-Yeon; Choi, Yang-Kyu; Myong Kim, Dong; Hwan Kim, Dae; Choi, Sung-Jin
2015-01-01
This study demonstrates a hybrid biosensor comprised of a silicon nanowire (SiNW) integrated with an amplifier MOSFET to improve the current response of field-effect-transistor (FET)-based biosensors. The hybrid biosensor is fabricated using conventional CMOS technology, which has the potential advantage of high density and low noise performance. The biosensor shows a current response of 5.74 decades per pH for pH detection, which is 2.5 × 105 times larger than that of a single SiNW sensor. In addition, we demonstrate charged polymer detection using the biosensor, with a high current change of 4.5 × 105 with a 500 nM concentration of poly(allylamine hydrochloride). In addition, we demonstrate a wide dynamic range can be obtained by adjusting the liquid gate voltage. We expect that this biosensor will be advantageous and practical for biosensor applications which requires lower noise, high speed, and high density. PMID:26197105
Yoon, Jinho; Lee, Taek; Bapurao G, Bharate; Jo, Jinhee; Oh, Byung-Keun; Choi, Jeong-Woo
2017-07-15
In this research, the electrochemical biosensor composed of myoglobin (Mb) on molybdenum disulfide nanoparticles (MoS 2 NP) encapsulated with graphene oxide (GO) was fabricated for the detection of hydrogen peroxide (H 2 O 2 ). Hybrid structure composed of MoS 2 NP and GO (GO@MoS 2 ) was fabricated for the first time to enhance the electrochemical signal of the biosensor. As a sensing material, Mb was introduced to fabricate the biosensor for H 2 O 2 detection. Formation and immobilization of GO@MoS 2 was confirmed by transmission electron microscopy, ultraviolet-visible spectroscopy, scanning electron microscopy, and scanning tunneling microscopy. Immobilization of Mb, and electrochemical property of biosensor were investigated by cyclic voltammetry and amperometric i-t measurements. Fabricated biosensor showed the electrochemical signal enhanced redox current as -1.86μA at an oxidation potential and 1.95μA at a reduction potential that were enhanced relative to those of electrode prepared without GO@MoS 2 . Also, this biosensor showed the reproducibility of electrochemical signal, and retained the property until 9 days from fabrication. Upon addition of H 2 O 2 , the biosensor showed enhanced amperometric response current with selectivity relative to that of the biosensor prepared without GO@MoS 2 . This novel hybrid material-based biosensor can suggest a milestone in the development of a highly sensitive detecting platform for biosensor fabrication with highly sensitive detection of target molecules other than H 2 O 2 . Copyright © 2016 Elsevier B.V. All rights reserved.
Zhao, Wei; Ge, Pei-Yu; Xu, Jing-Juan; Chen, Hong-Yuan
2009-09-01
We report on a pair of highly sensitive amperometric biosensors for organophosphate pesticides (OPs) based on assembling acetylcholinesterase (AChE) on poly(dimethylsiloxane) (PDMS)-poly(diallydimethylemmonium) (PDDA)/gold nanoparticles (AuNPs) composite film. Two AChE immobilization strategies are proposed based on the composite film with hydrophobic and hydrophilic surface tailored by oxygen plasma. The twin biosensors show interesting different electrochemical performances. The hydrophobic surface based PDMS-PDDAN AuNPs/choline oxidase (ChO)/AChE biosensor (biosensor-1) shows excellent stability and unique selectivity to hypertoxic organophosphate. At optimal conditions, this biosensor-1 could measure 5.0 x 10(-10) g/L paraoxon and 1.0 x 10(-9) g/L parathion. As for the hydrophilic surface based biosensor (biosensor-2), it shows no selectivity but can be commonly used for the detection of most OPs. Based on the structure of AChE, it is assumed that via the hydrophobic interaction between enzyme molecules and hydrophobic surface, the enzyme active sites surrounded by hydrophobic amino acids face toward the surface and get better protection from OPs. This assumption may explain the different performances of the twin biosensors and especially the unique selectivity of biosensor-1 to hypertoxic OPs. Real sample detection was performed and the omethoate residue on Cottomrose Hibiscus leaves was detected with biosensor-1.
Fabric Organic Electrochemical Transistors for Biosensors.
Yang, Anneng; Li, Yuanzhe; Yang, Chenxiao; Fu, Ying; Wang, Naixiang; Li, Li; Yan, Feng
2018-06-01
Flexible fabric biosensors can find promising applications in wearable electronics. However, high-performance fabric biosensors have been rarely reported due to many special requirements in device fabrication. Here, the preparation of organic electrochemical transistors (OECTs) on Nylon fibers is reported. By introducing metal/conductive polymer multilayer electrodes on the fibers, the OECTs show very stable performance during bending tests. The devices with functionalized gates are successfully used as various biosensors with high sensitivity and selectivity. The fiber-based OECTs are woven together with cotton yarns successfully by using a conventional weaving machine, resulting in flexible and stretchable fabric biosensors with high performance. The fabric sensors show much more stable signals in the analysis of moving aqueous solutions than planar devices due to a capillary effect in fabrics. The fabric devices are integrated in a diaper and remotely operated by using a mobile phone, offering a unique platform for convenient wearable healthcare monitoring. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hu, Ning; Fang, Jiaru; Zou, Ling; Wan, Hao; Pan, Yuxiang; Su, Kaiqi; Zhang, Xi; Wang, Ping
2016-10-01
Cell-based bioassays were effective method to assess the compound toxicity by cell viability, and the traditional label-based methods missed much information of cell growth due to endpoint detection, while the higher throughputs were demanded to obtain dynamic information. Cell-based biosensor methods can dynamically and continuously monitor with cell viability, however, the dynamic information was often ignored or seldom utilized in the toxin and drug assessment. Here, we reported a high-efficient and high-content cytotoxic recording method via dynamic and continuous cell-based impedance biosensor technology. The dynamic cell viability, inhibition ratio and growth rate were derived from the dynamic response curves from the cell-based impedance biosensor. The results showed that the biosensors has the dose-dependent manners to diarrhetic shellfish toxin, okadiac acid based on the analysis of the dynamic cell viability and cell growth status. Moreover, the throughputs of dynamic cytotoxicity were compared between cell-based biosensor methods and label-based endpoint methods. This cell-based impedance biosensor can provide a flexible, cost and label-efficient platform of cell viability assessment in the shellfish toxin screening fields.
A robust high-throughput fungal biosensor assay for the detection of estrogen activity.
Zutz, Christoph; Wagener, Karen; Yankova, Desislava; Eder, Stefanie; Möstl, Erich; Drillich, Marc; Rychli, Kathrin; Wagner, Martin; Strauss, Joseph
2017-10-01
Estrogenic active compounds are present in a variety of sources and may alter biological functions in vertebrates. Therefore, it is crucial to develop innovative analytical systems that allow us to screen a broad spectrum of matrices and deliver fast and reliable results. We present the adaptation and validation of a fungal biosensor for the detection of estrogen activity in cow derived samples and tested the clinical applicability for pregnancy diagnosis in 140 mares and 120 cows. As biosensor we used a previously engineered genetically modified strain of the filamentous fungus Aspergillus nidulans, which contains the human estrogen receptor alpha and a reporter construct, in which β-galactosidase gene expression is controlled by an estrogen-responsive-element. The estrogen response of the fungal biosensor was validated with blood, urine, feces, milk and saliva. All matrices were screened for estrogenic activity prior to and after chemical extraction and the results were compared to an enzyme immunoassay (EIA). The biosensor showed consistent results in milk, urine and feces, which were comparable to those of the EIA. In contrast to the EIA, no sample pre-treatment by chemical extraction was needed. For 17β-estradiol, the biosensor showed a limit of detection of 1ng/L. The validation of the biosensor for pregnancy diagnosis revealed a specificity of 100% and a sensitivity of more than 97%. In conclusion, we developed and validated a highly robust fungal biosensor for detection of estrogen activity, which is highly sensitive and economic as it allows analyzing in high-throughput formats without the necessity for organic solvents. Copyright © 2017 Elsevier Inc. All rights reserved.
Biosensor Architectures for High-Fidelity Reporting of Cellular Signaling
Dushek, Omer; Lellouch, Annemarie C.; Vaux, David J.; Shahrezaei, Vahid
2014-01-01
Understanding mechanisms of information processing in cellular signaling networks requires quantitative measurements of protein activities in living cells. Biosensors are molecular probes that have been developed to directly track the activity of specific signaling proteins and their use is revolutionizing our understanding of signal transduction. The use of biosensors relies on the assumption that their activity is linearly proportional to the activity of the signaling protein they have been engineered to track. We use mechanistic mathematical models of common biosensor architectures (single-chain FRET-based biosensors), which include both intramolecular and intermolecular reactions, to study the validity of the linearity assumption. As a result of the classic mechanism of zero-order ultrasensitivity, we find that biosensor activity can be highly nonlinear so that small changes in signaling protein activity can give rise to large changes in biosensor activity and vice versa. This nonlinearity is abolished in architectures that favor the formation of biosensor oligomers, but oligomeric biosensors produce complicated FRET states. Based on this finding, we show that high-fidelity reporting is possible when a single-chain intermolecular biosensor is used that cannot undergo intramolecular reactions and is restricted to forming dimers. We provide phase diagrams that compare various trade-offs, including observer effects, which further highlight the utility of biosensor architectures that favor intermolecular over intramolecular binding. We discuss challenges in calibrating and constructing biosensors and highlight the utility of mathematical models in designing novel probes for cellular signaling. PMID:25099816
Shariati, Mohsen
2018-05-15
In this paper the field-effect transistor DNA biosensor for detecting hepatitis B virus (HBV) based on indium tin oxide nanowires (ITO NWs) in label free approach has been fabricated. Because of ITO nanowires intensive conductance and functional modified surface, the probe immobilization and target hybridization were increased strongly. The high resolution transmission electron microscopy (HRTEM) measurement showed that ITO nanowires were crystalline and less than 50nm in diameter. The single-stranded hepatitis B virus DNA (SS-DNA) was immobilized as probe on the Au-modified nanowires. The DNA targets were measured in a linear concentration range from 1fM to 10µM. The detection limit of the DNA biosensor was about 1fM. The time of the hybridization process for defined single strand was 90min. The switching ratio of the biosensor between "on" and "off" state was ~ 1.1 × 10 5 . For sensing the specificity of the biosensor, non-complementary, mismatch and complementary DNA oligonucleotide sequences were clearly discriminated. The HBV biosensor confirmed the highly satisfied specificity for differentiating complementary sequences from non-complementary and the mismatch oligonucleotides. The response time of the DNA sensor was 37s with a high reproducibility. The stability and repeatability of the DNA biosensor showed that the peak current of the biosensor retained 98% and 96% of its initial response for measurements after three and five weeks, respectively. Copyright © 2018 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Dohoon; Lee, Jinwoo; Kim, Jungbae
2005-12-05
We fabricated a highly sensitive and fast glucose biosensor by simply immobilizing glucose oxidase in mesocellular carbon foam. Due to its unique structure, the MSU-F-C enabled high enzyme loading without serious mass transfer limitation, resulting in high catalytic efficiency. As a result, the glucose biosensor fabricated with MSU-F-C/GOx showed a high sensitivity and fast response. Given these results and the inherent electrical conductivity, we anticipate that MSU-F-C will make a useful matrix for enzyme immobilization in various biocatalytic and electrobiocatalytic applications.
Development of an amperometric-based glucose biosensor to measure the glucose content of fruit.
Ang, Lee Fung; Por, Lip Yee; Yam, Mun Fei
2015-01-01
An amperometric enzyme-electrode was introduced where glucose oxidase (GOD) was immobilized on chitosan membrane via crosslinking, and then fastened on a platinum working electrode. The immobilized enzyme showed relatively high retention activity. The activity of the immobilized enzyme was influenced by its loading, being suppressed when more than 0.6 mg enzyme was used in the immobilization. The biosensor showing the highest response to glucose utilized 0.21 ml/cm2 thick chitosan membrane. The optimum experimental conditions for the biosensors in analysing glucose dissolved in 0.1 M phosphate buffer (pH 6.0) were found to be 35°C and 0.6 V applied potential. The introduced biosensor reached a steady-state current at 60 s. The apparent Michaelis-Menten constant ([Formula: see text]) of the biosensor was 14.2350 mM, and its detection limit was 0.05 mM at s/n > 3, determined experimentally. The RSD of repeatability and reproducibility of the biosensor were 2.30% and 3.70%, respectively. The biosensor was showed good stability; it retained ~36% of initial activity after two months of investigation. The performance of the biosensors was evaluated by determining the glucose content in fruit homogenates. Their accuracy was compared to that of a commercial glucose assay kit. There was no significance different between two methods, indicating the introduced biosensor is reliable.
Development of an Amperometric-Based Glucose Biosensor to Measure the Glucose Content of Fruit
Ang, Lee Fung; Por, Lip Yee; Yam, Mun Fei
2015-01-01
An amperometric enzyme-electrode was introduced where glucose oxidase (GOD) was immobilized on chitosan membrane via crosslinking, and then fastened on a platinum working electrode. The immobilized enzyme showed relatively high retention activity. The activity of the immobilized enzyme was influenced by its loading, being suppressed when more than 0.6 mg enzyme was used in the immobilization. The biosensor showing the highest response to glucose utilized 0.21 ml/cm2 thick chitosan membrane. The optimum experimental conditions for the biosensors in analysing glucose dissolved in 0.1 M phosphate buffer (pH 6.0) were found to be 35°C and 0.6 V applied potential. The introduced biosensor reached a steady-state current at 60 s. The apparent Michaelis-Menten constant (KMapp) of the biosensor was 14.2350 mM, and its detection limit was 0.05 mM at s/n > 3, determined experimentally. The RSD of repeatability and reproducibility of the biosensor were 2.30% and 3.70%, respectively. The biosensor was showed good stability; it retained ~36% of initial activity after two months of investigation. The performance of the biosensors was evaluated by determining the glucose content in fruit homogenates. Their accuracy was compared to that of a commercial glucose assay kit. There was no significance different between two methods, indicating the introduced biosensor is reliable. PMID:25789757
Targeted Molecular Imaging of Cancer Cells Using MS2-Based 129 Xe NMR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeong, Keunhong; Netirojjanakul, Chawita; Munch, Henrik K.
Targeted, selective, and highly sensitive 129Xe NMR nanoscale biosensors have been synthesized using a spherical MS2 viral capsid, Cryptophane A molecules, and DNA aptamers. The biosensors showed strong binding specificity toward targeted lymphoma cells (Ramos line). Hyperpolarized 129Xe NMR signal contrast and hyper-CEST 129Xe MRI image contrast indicated its promise as highly sensitive hyperpolarized 129Xe NMR nanoscale biosensor for future applications in cancer detection in vivo.
Graphene oxide-based optical biosensor functionalized with peptides for explosive detection.
Zhang, Qian; Zhang, Diming; Lu, Yanli; Yao, Yao; Li, Shuang; Liu, Qingjun
2015-06-15
A label-free optical biosensor was constructed with biofunctionalized graphene oxide (GO) for specific detection of 2,4,6-trinitrotoluene (TNT). By chemically binding TNT-specific peptides with GO, the biosensor gained unique optoelectronic properties and high biological sensitivity, with transducing bimolecular bonding into optical signals. Through UV absorption detection, increasing absorbance responses could be observed in presence of TNT at different concentrations, as low as 4.40×10(-9) mM, and showed dose-dependence and stable behavior. Specific responses of the biosensor were verified with the corporation of 2,6-dinitrotoluene (DNT), which had similar molecular structure to TNT. Thus, with high sensitivity and selectivity, the biosensor provided a convenient approach for detection of explosives as miniaturizing and integrating devices. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Guo, Jingxing; Zhang, Tao; Hu, Chengguo; Fu, Lei
2015-01-01
In recent years, graphene-based enzyme biosensors have received considerable attention due to their excellent performance. Enormous efforts have been made to utilize graphene oxide and its derivatives as carriers of enzymes for biosensing. However, the performance of these sensors is limited by the drawbacks of graphene oxide such as slow electron transfer rate, low catalytic area and poor conductivity. Here, we report a new graphene-based enzyme carrier, i.e. a highly conductive 3D nitrogen-doped graphene structure (3D-NG) grown by chemical vapour deposition, for highly effective enzyme-based biosensors. Owing to the high conductivity, large porosity and tunable nitrogen-doping ratio, this kind of graphene framework shows outstanding electrical properties and a large surface area for enzyme loading and biocatalytic reactions. Using glucose oxidase (GOx) as a model enzyme and chitosan (CS) as an efficient molecular binder of the enzyme, our 3D-NG based biosensors show extremely high sensitivity for the sensing of glucose (226.24 μA mM-1 m-2), which is almost an order of magnitude higher than those reported in most of the previous studies. The stable adsorption and outstanding direct electrochemical behaviour of the enzyme on the nanocomposite indicate the promising application of this 3D enzyme carrier in high-performance electrochemical biosensors or biofuel cells.In recent years, graphene-based enzyme biosensors have received considerable attention due to their excellent performance. Enormous efforts have been made to utilize graphene oxide and its derivatives as carriers of enzymes for biosensing. However, the performance of these sensors is limited by the drawbacks of graphene oxide such as slow electron transfer rate, low catalytic area and poor conductivity. Here, we report a new graphene-based enzyme carrier, i.e. a highly conductive 3D nitrogen-doped graphene structure (3D-NG) grown by chemical vapour deposition, for highly effective enzyme-based biosensors. Owing to the high conductivity, large porosity and tunable nitrogen-doping ratio, this kind of graphene framework shows outstanding electrical properties and a large surface area for enzyme loading and biocatalytic reactions. Using glucose oxidase (GOx) as a model enzyme and chitosan (CS) as an efficient molecular binder of the enzyme, our 3D-NG based biosensors show extremely high sensitivity for the sensing of glucose (226.24 μA mM-1 m-2), which is almost an order of magnitude higher than those reported in most of the previous studies. The stable adsorption and outstanding direct electrochemical behaviour of the enzyme on the nanocomposite indicate the promising application of this 3D enzyme carrier in high-performance electrochemical biosensors or biofuel cells. Electronic supplementary information (ESI) available: Procedures for CVD growth of 3D-NG, XRD and TEM measurements, a comparison with other graphene-based biosensors, a detailed study on the universality of 3D-NG as an enzyme carrier and more CV data on selectivity and stability. See DOI: 10.1039/c4nr05325g
Enzyme-linked, aptamer-based, competitive biolayer interferometry biosensor for palytoxin.
Gao, Shunxiang; Zheng, Xin; Hu, Bo; Sun, Mingjuan; Wu, Jihong; Jiao, Binghua; Wang, Lianghua
2017-03-15
In this study, we coupled biolayer interferometry (BLI) with competitive binding assay through an enzyme-linked aptamer and developed a real-time, ultra-sensitive, rapid quantitative method for detection of the marine biotoxin palytoxin. Horseradish peroxidase-labeled aptamers were used as biorecognition receptors to competitively bind with palytoxin, which was immobilized on the biosensor surface. The palytoxin: horseradish peroxidase-aptamer complex was then submerged in a 3,3'-diaminobenzidine solution, which resulted in formation of a precipitated polymeric product directly on the biosensor surface and a large change in the optical thickness of the biosensor layer. This change could obviously shift the interference pattern and generate a response profile on the BLI biosensor. The biosensor showed a broad linear range for palytoxin (200-700pg/mL) with a low detection limit (0.04pg/mL). Moreover, the biosensor was applied to the detection of palytoxin in spiked extracts and showed a high degree of selectivity for palytoxin, good reproducibility, and stability. This enzyme-linked, aptamer-based, competitive BLI biosensor offers a promising method for rapid and sensitive detection of palytoxin and other analytes. Copyright © 2016 Elsevier B.V. All rights reserved.
Biosensors based on β-galactosidase enzyme: Recent advances and perspectives.
Sharma, Shiv K; Leblanc, Roger M
2017-10-15
Many industries are striving for the development of more reliable and robust β-galactosidase biosensors that exhibit high response rate, increased detection limit and enriched useful lifetime. In a newfangled technological atmosphere, a trivial advantage or disadvantage of the developed biosensor may escort to the survival and extinction of the industry. Several alternative strategies to immobilize β-galactosidase enzyme for their utilization in biosensors have been developed in recent years in the quest of maximum utility by controlling the defects seen in the previous biosensors. The overwhelming call for on-line measurement of different sample constituents has directed science and industry to search for best practical solutions and biosensors are witnessed as the best prospect. The main objective of this paper is to serve as a narrow footbridge by comparing the literary works on the β-galactosidase biosensors, critically analyze their use in the construction of best biosensor by showing the pros and cons of the predicted methods for the practical use of biosensors. Copyright © 2017 Elsevier Inc. All rights reserved.
Yang, Zhanjun; Cao, Yue; Li, Juan; Jian, Zhiqin; Zhang, Yongcai; Hu, Xiaoya
2015-04-29
In this work, we reported an efficient platinum nanoparticles functionalized nitrogen doped graphene (PtNPs@NG) nanocomposite for devising novel electrochemical glucose biosensor for the first time. The fabricated PtNPs@NG and biosensor were characterized using transmission electron microscopy, high-resolution transmission electron microscopy, X-ray photoelectron spectroscopy, static water contact angle, UV-vis spectroscopy, electrochemical impedance spectra and cyclic voltammetry, respectively. PtNPs@NG showed large surface area and excellent biocompatibility, and enhanced the direct electron transfer between enzyme molecules and electrode surface. The glucose oxidase (GOx) immobilized on PtNPs@NG nanocomposite retained its bioactivity, and exhibited a surface controlled, quasi-reversible and fast electron transfer process. The constructed glucose biosensor showed wide linear range from 0.005 to 1.1mM with high sensitivity of 20.31 mA M(-1) cm(-2). The detection limit was calculated to be 0.002 mM at signal-to-noise of 3, which showed 20-fold decrease in comparison with single NG-based electrochemical biosensor for glucose. The proposed glucose biosensor also demonstrated excellent selectivity, good reproducibility, acceptable stability, and could be successfully applied in the detection of glucose in serum samples at the applied potential of -0.33 V. This research provided a promising biosensing platform for the development of excellent electrochemical biosensors. Copyright © 2015 Elsevier B.V. All rights reserved.
A Highly Responsive Silicon Nanowire/Amplifier MOSFET Hybrid Biosensor
2015-07-21
biosensor. The insets show a magnified view of the SiNW channel region (W = 55 nm). ( c ) Photograph of the biosensor chip fabricated via a top-down method...of the SiNW FET is 147 mV/decade. (b) VT and ( c ) ISINW at different pH levels; these values were extracted from Fig. 2a. VT was extracted using the...function of pH level in the hybrid biosensor. The extracted current change is 5.5 × 105 (=5.74 decade per pH). ( c ) Transient response of IMOSFET while
Su, Li; Fong, Chi-Chun; Cheung, Pik-Yuan; Yang, Mengsu
2017-01-01
A novel biosensor based on piezoelectric ceramic resonator was developed for direct detection of cancer markers in the study. For the first time, a commercially available PZT ceramic resonator with high resonance frequency was utilized as transducer for a piezoelectric biosensor. A dual ceramic resonators scheme was designed wherein two ceramic resonators were connected in parallel: one resonator was used as the sensing unit and the other as the control unit. This arrangement minimizes environmental influences including temperature fluctuation, while achieving the required frequency stability for biosensing applications. The detection of the cancer markers Prostate Specific Antigen (PSA) and α-Fetoprotein (AFP) was carried out through frequency change measurement. The device showed high sensitivity (0.25 ng/ml) and fast detection (within 30 min) with small samples (1 μl), which is compatible with the requirements of clinical measurements. The results also showed that the ceramic resonator-based piezoelectric biosensor platform could be utilized with different chemical interfaces, and had the potential to be further developed into biosensor arrays with different specificities for simultaneous detection of multiple analytes.
Soldatkin, O O; Peshkova, V M; Saiapina, O Y; Kucherenko, I S; Dudchenko, O Y; Melnyk, V G; Vasylenko, O D; Semenycheva, L M; Soldatkin, A P; Dzyadevych, S V
2013-10-15
The aim of this work was to develop an array of biosensors for simultaneous determination of four carbohydrates in solution. Several enzyme systems selective to lactose, maltose, sucrose and glucose were immobilised on the surface of four conductometric transducers and served as bio-recognition elements of the biosensor array. Direct enzyme analysis carried out by the developed biosensors was highly sensitive to the corresponding substrates. The analysis lasted 2 min. The dynamic range of substrate determination extended from 0.001 mM to 1.0-3.0mM, and strongly depended on the enzyme system used. An effect of the solution pH, ionic strength and buffer capacity on the biosensors responses was investigated; the conditions of simultaneous operation of all biosensors were optimised. The data on cross-impact of the substrates of all biosensors were obtained; the biosensor selectivity towards possible interfering carbohydrates was tested. The developed biosensor array showed good signal reproducibility and storage stability. The biosensor array is suited for simultaneous, quick, simple, and selective determination of maltose, lactose, sucrose and glucose. © 2013 Elsevier B.V. All rights reserved.
Green Chemistry Glucose Biosensor Development using Etlingera elatior Extract
NASA Astrophysics Data System (ADS)
Fatoni, A.; Anggraeni, M. D.; Zusfahair; Iqlima, H.
2018-01-01
Glucose biosensor development is one of the important strategies for early detection of diabetes mellitus disease. This study was aimed to explore the flower extract of Etlingera elatior for a green-analysis method of glucose biosensor. Flowers were extracted using ethanol: HCl and tested its performances as an indicator of glucose biosensor using glucose oxidase enzyme. The glucose oxidase react with glucose resulted hydrogen peroxide that would change the color of the flower extract. Furthermore, the extract was also studied including their stability to pH, oxidizing and reducing, temperature, and storage. The results showed that the Etlingera elatior extract had high correlation between color change and glucose concentration with regression equation of y = -0.0005x + 0.4724 and R2 of 0.9965. The studied biosensor showed a wide linear range to detect glucose sample of 0 to 500 mM. The extract characterization showed a more stable in low pH (acid), reducing agent addition, heating treatment and storage.
Erdem, Ceren; Zeybek, Derya Koyuncu; Aydoğdu, Gözde; Zeybek, Bülent; Pekyardımcı, Sule; Kılıç, Esma
2014-08-01
In the present work, we designed an amperometric glucose biosensor based on nickel oxide nanoparticles (NiONPs)-modified carbon paste electrode. The biosensor was prepared by incorporation of glucose oxidase and NiONPs into a carbon paste matrix. It showed good analytical performances such as high sensitivity (367 μA mmolL(-1)) and a wide linear response from 1.9×10(-3) mmolL(-1) to 15.0 mmolL(-1) with a limit of detection (0.11 μmolL(-1)). The biosensor was used for the determination of glucose in human serum samples. The results illustrate that NiONPs have enormous potential in the construction of biosensor for determination of glucose.
Han, En; Li, Xia; Cai, Jian-Rong; Cui, Hai-Ying; Zhang, Xing-Ai
2014-01-01
In this study, we developed a highly sensitive amperometric biosensor for glucose detection based on glucose oxidase immobilized in a novel carbon nanosphere (CNS)/sodium alginate (SA) composite matrix. This hybrid material combined the advantages of CNS and natural biopolymer SA. This composite film was characterized by scanning electron microscope, electrochemical impedance spectroscopy and UV-vis, which indicated that the hybrid material was suitable for immobilization of glucose oxidase. Various experimental conditions were investigated that influenced the performance of the biosensor, such as pH, applied potential and temperature. Under the optimum conditions, the biosensor showed excellent performance for glucose over a wide linear concentration range from 1.0 × 10(-6) to 4.6 × 10(-3) M with a detection limit of 0.5 μM based on a signal-to-noise ratio of 3. Furthermore, the biosensor exhibited excellent long-term stability and satisfactory reproducibility.
1-D grating based SPR biosensor for the detection of lung cancer biomarkers using Vroman effect
NASA Astrophysics Data System (ADS)
Teotia, Pradeep Kumar; Kaler, R. S.
2018-01-01
Grating based surface plasmon resonance waveguide biosensor have been reported for the detection of lung cancer biomarkers using Vroman effect. The proposed grating based multilayered biosensor is designed with high detection accuracy for Epidermal growth factor receptor (EGFR) and also analysed to show high detection accuracy with acceptable sensitivity for both cancer biomarkers. The introduction of periodic grating with multilayer metals generates a good resonance that make it possible for early detection of cancerous cells. Using finite difference time domain method, it is observed wavelength of biosensor get red-shifted on variations of the refractive index due to the presence of both the cancerous bio-markers. The reported detection accuracy and sensitivity of proposed biosensor is quite acceptable for both lung cancer biomarkers i.e. Carcinoembryonic antigen (CEA) and Epidermal growth factor receptor (EGFR) which further offer us label free early detection of lung cancer using these biomarkers.
Lee, In-Kyu; Lee, Kwan Hyi; Lee, Seok; Cho, Won-Ju
2014-12-24
We used a microwave annealing process to fabricate a highly reliable biosensor using amorphous-InGaZnO (a-IGZO) thin-film transistors (TFTs), which usually experience threshold voltage instability. Compared with furnace-annealed a-IGZO TFTs, the microwave-annealed devices showed superior threshold voltage stability and performance, including a high field-effect mobility of 9.51 cm(2)/V·s, a low threshold voltage of 0.99 V, a good subthreshold slope of 135 mV/dec, and an outstanding on/off current ratio of 1.18 × 10(8). In conclusion, by using the microwave-annealed a-IGZO TFT as the transducer in an extended-gate ion-sensitive field-effect transistor biosensor, we developed a high-performance biosensor with excellent sensing properties in terms of pH sensitivity, reliability, and chemical stability.
Wu, Baoyan; Hou, Shihua; Miao, Zhiying; Zhang, Cong; Ji, Yanhong
2015-09-18
A novel amperometric glucose biosensor was fabricated by layer-by-layer self-assembly of gold nanorods (AuNRs) and glucose oxidase (GOD) onto single-walled carbon nanotubes (SWCNTs)-functionalized three-dimensional sol-gel matrix. A thiolated aqueous silica sol containing SWCNTs was first assembled on the surface of a cleaned Au electrode, and then the alternate self-assembly of AuNRs and GOD were repeated to assemble multilayer films of AuNRs-GOD onto SWCNTs-functionalized silica gel for optimizing the biosensor. Among the resulting glucose biosensors, the four layers of AuNRs-GOD-modified electrode showed the best performance. The sol-SWCNTs-(AuNRs- GOD)₄/Au biosensor exhibited a good linear range of 0.01-8 mM glucose, high sensitivity of 1.08 μA/mM, and fast amperometric response within 4 s. The good performance of the proposed glucose biosensor could be mainly attributed to the advantages of the three-dimensional sol-gel matrix and stereo self-assembly films, and the natural features of one-dimensional nanostructure SWCNTs and AuNRs. This study may provide a new facile way to fabricate the enzyme-based biosensor with high performance.
Alginate cryogel based glucose biosensor
NASA Astrophysics Data System (ADS)
Fatoni, Amin; Windy Dwiasi, Dian; Hermawan, Dadan
2016-02-01
Cryogel is macroporous structure provides a large surface area for biomolecule immobilization. In this work, an alginate cryogel based biosensor was developed to detect glucose. The cryogel was prepared using alginate cross-linked by calcium chloride under sub-zero temperature. This porous structure was growth in a 100 μL micropipette tip with a glucose oxidase enzyme entrapped inside the cryogel. The glucose detection was based on the colour change of redox indicator, potassium permanganate, by the hydrogen peroxide resulted from the conversion of glucose. The result showed a porous structure of alginate cryogel with pores diameter of 20-50 μm. The developed glucose biosensor was showed a linear response in the glucose detection from 1.0 to 5.0 mM with a regression of y = 0.01x+0.02 and R2 of 0.994. Furthermore, the glucose biosensor was showed a high operational stability up to 10 times of uninterrupted glucose detections.
Boujakhrout, Abderrahmane; Díez, Paula; Sánchez, Alfredo; Martínez-Ruíz, Paloma; Pingarrón, José M; Villalonga, Reynaldo
2016-11-15
Au nanoparticles modified with 4-mercaptopyridine and 6-mercapto-1-hexanol were used as coordination agents to prepare a novel hybrid nanomaterial with Ag:4,4'-bipyridine nanobelts. This nanohybrid was employed to modify glassy carbon electrodes and to construct a horseradish peroxidase-based mediatorless amperometric biosensor for H2O2. The electrode, poised at -100mV, exhibited a rapid response within 4s and a linear calibration range from 90pM to 6.5nM H2O2. The biosensor showed a high sensitivity of 283A/Mcm(2) and a very low detection limit of 45pM at a signal-to-noise ratio of 3. The enzyme biosensor showed high stability when stored at 4°C under dry conditions, retaining over 96% and 78% of its initial activity after 15 and 30days of storage at 4°C, respectively. Copyright © 2016 Elsevier Inc. All rights reserved.
Xie, Lingling; Xu, Yuandong; Cao, Xiaoyu
2013-07-01
In this work, a highly sensitive hydrogen peroxide (H2O2) biosensor based on immobilization of hemoglobin (Hb) at Au nanoparticles (AuNPs)/flower-like zinc oxide/graphene (AuNPs/ZnO/Gr) composite modified glassy carbon electrode (GCE) was constructed, where ZnO and Au nanoparticles were modified through layer-by-layer onto Gr/GCE. Flower-like ZnO nanoparticles could be easily prepared by adding ethanol to the precursor solution having higher concentration of hydroxide ions. The Hb/AuNPs/ZnO/Gr composite film showed a pair of well-defined, quasi-reversible redox peaks with a formal potential (E(0)) of -0.367 V, characteristic features of heme redox couple of Hb. The electron transfer rate constant (k(s)) of immobilized Hb was 1.3 s(-1). The developed biosensor showed a very fast response (<2 s) toward H2O2 with good sensitivity, wide linear range, and low detection limit of 0.8 μM. The fabricated biosensor showed interesting features, including high selectivity, acceptable stability, good reproducibility, and repeatability along with excellent conductivity, facile electron mobility of Gr, and good biocompatibility of ZnO and AuNPs. The fabrication method of this biosensor was simple and effective for determination of H2O2 in real samples with quick response, good sensitivity, high selectivity, and acceptable recovery. Copyright © 2013 Elsevier B.V. All rights reserved.
An InN/InGaN Quantum Dot Electrochemical Biosensor for Clinical Diagnosis
Alvi, Naveed ul Hassan; Gómez, Victor J.; Rodriguez, Paul E.D. Soto; Kumar, Praveen; Zaman, Saima; Willander, Magnus; Nötzel, Richard
2013-01-01
Low-dimensional InN/InGaN quantum dots (QDs) are demonstrated for realizing highly sensitive and efficient potentiometric biosensors owing to their unique electronic properties. The InN QDs are biochemically functionalized. The fabricated biosensor exhibits high sensitivity of 97 mV/decade with fast output response within two seconds for the detection of cholesterol in the logarithmic concentration range of 1 × 10−6 M to 1 × 10−3 M. The selectivity and reusability of the biosensor are excellent and it shows negligible response to common interferents such as uric acid and ascorbic acid. We also compare the biosensing properties of the InN QDs with those of an InN thin film having the same surface properties, i.e., high density of surface donor states, but different morphology and electronic properties. The sensitivity of the InN QDs-based biosensor is twice that of the InN thin film-based biosensor, the EMF is three times larger, and the response time is five times shorter. A bare InGaN layer does not produce a stable response. Hence, the superior biosensing properties of the InN QDs are governed by their unique surface properties together with the zero-dimensional electronic properties. Altogether, the InN QDs-based biosensor reveals great potential for clinical diagnosis applications. PMID:24132228
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Yuting; Zhang, Weiying; Lin, Yuehe
A nanocomposite of gold nanoparticles (AuNPs) decorating a magnetic Fe3O4 core was synthesized using cysteamine (SH–NH2) as linker, and characterized by TEM, XPS, UV and electrochemistry. Then a hydrolase biosensor, based on self-assembly of methyl parathion hydrolase (MPH) on the Fe3O4@Au nanocomposite, was developed for sensitive and selective detection of the organophosphorus pesticide (OP) methyl parathion. The magnetic nanocomposite provides an easy way to construct the enzyme biosensor by simply exerting an external magnetic field, and also provides a simple way to renew the electrode surface by removing the magnet. Unlike inhibition-based enzyme biosensors, the hydrolase is not poisoned bymore » OPs and thus is reusable for continuous measurement. AuNPs not only provide a large surface area, high loading efficiency and fast electron transfer, but also stabilize the enzyme through electrostatic interactions. The MPH biosensor shows rapid response and high selectivity for detection of methyl parathion, with a linear range from 0.5 to 1000 ng/mL and a detection limit of 0.1 ng/mL. It also shows acceptable reproducibility and stability. The simplicity and ease of operation of the proposed method has great potential for on-site detection of P–S containing pesticides and provides a promising strategy to construct a robust biosensor.« less
Skin-like biosensor system via electrochemical channels for noninvasive blood glucose monitoring.
Chen, Yihao; Lu, Siyuan; Zhang, Shasha; Li, Yan; Qu, Zhe; Chen, Ying; Lu, Bingwei; Wang, Xinyan; Feng, Xue
2017-12-01
Currently, noninvasive glucose monitoring is not widely appreciated because of its uncertain measurement accuracy, weak blood glucose correlation, and inability to detect hyperglycemia/hypoglycemia during sleep. We present a strategy to design and fabricate a skin-like biosensor system for noninvasive, in situ, and highly accurate intravascular blood glucose monitoring. The system integrates an ultrathin skin-like biosensor with paper battery-powered electrochemical twin channels (ETCs). The designed subcutaneous ETCs drive intravascular blood glucose out of the vessel and transport it to the skin surface. The ultrathin (~3 μm) nanostructured biosensor, with high sensitivity (130.4 μA/mM), fully absorbs and measures the glucose, owing to its extreme conformability. We conducted in vivo human clinical trials. The noninvasive measurement results for intravascular blood glucose showed a high correlation (>0.9) with clinically measured blood glucose levels. The system opens up new prospects for clinical-grade noninvasive continuous glucose monitoring.
Skin-like biosensor system via electrochemical channels for noninvasive blood glucose monitoring
Chen, Yihao; Lu, Siyuan; Zhang, Shasha; Li, Yan; Qu, Zhe; Chen, Ying; Lu, Bingwei; Wang, Xinyan; Feng, Xue
2017-01-01
Currently, noninvasive glucose monitoring is not widely appreciated because of its uncertain measurement accuracy, weak blood glucose correlation, and inability to detect hyperglycemia/hypoglycemia during sleep. We present a strategy to design and fabricate a skin-like biosensor system for noninvasive, in situ, and highly accurate intravascular blood glucose monitoring. The system integrates an ultrathin skin-like biosensor with paper battery–powered electrochemical twin channels (ETCs). The designed subcutaneous ETCs drive intravascular blood glucose out of the vessel and transport it to the skin surface. The ultrathin (~3 μm) nanostructured biosensor, with high sensitivity (130.4 μA/mM), fully absorbs and measures the glucose, owing to its extreme conformability. We conducted in vivo human clinical trials. The noninvasive measurement results for intravascular blood glucose showed a high correlation (>0.9) with clinically measured blood glucose levels. The system opens up new prospects for clinical-grade noninvasive continuous glucose monitoring. PMID:29279864
Guler, Muhammet; Turkoglu, Vedat; Kivrak, Arif
2015-08-01
In the study, the electrochemical behavior of glucose oxidase (GOx) immobilized on poly([2,2';5',2″]-terthiophene-3'-carbaldehyde) (poly(TTP)) modified glassy carbon electrode (GCE) was investigated. The biosensor (poly(TTP)/GOx/GCE) showed a pair of redox peaks in 0.1 M phosphate buffer (pH 7.4) solution in the absence of oxygen the co-substrate of GOx. In here, Poly(TTP)/GOx/GCE biosensor acts as the co-substrate instead of oxygen. Upon the addition of glucose, the reduction and oxidation peak currents increased until the active site of GOx was fully saturated with glucose. The apparent m was estimated 26.13 mM from Lineweaver-Burk graph. The biosensor displayed a good stability and bioactivity. The biosensor showed a high sensitivity (56.1 nA/mM), a linear range (from 0.5 to 20.15 mM), and a good reproducibility with 3.6% of relative standard deviation. In addition, the interference currents of glycin, ascorbic acid, histidine, uric acid, dopamine, arginine, and fructose on GOx biosensor were investigated. All that substances exhibited an interference current under 10%. It was not shown a marked difference between GOx biosensor and spectrophotometric measurement of glucose in serum examples. UV-visible spectroscopy and scanning electron microscopy (SEM) experiments of the biosensor were also performed. Copyright © 2015 Elsevier B.V. All rights reserved.
Zhang, Diming; Zhang, Qian; Lu, Yanli; Yao, Yao; Li, Shuang; Liu, Qingjun
2017-01-01
Localized surface plasmon resonance (LSPR) associated with metal nanostructures has developed into a highly useful sensor technique. Optical LSPR spectroscopy of nanostructures often shows sharp absorption and scattering peaks, which can be used to probe several bio-molecular interactions. Here, we report nanoplasmonic biosensors using LSPR on nanocup arrays (nanoCA) to recognize bio-molecular binding for biochemical detection. These sensors can be modified to quantify binding of small molecules to proteins for odorant and explosive detections. Electrochemical LSPR biosensors can also be designed by coupling electrochemistry and LSPR spectroscopy measurements. Multiple sensing information can be obtained and electrochemical LSPR property can be investigated for biosensors. In some applications, the electrochemical LSPR biosensor can be used to quantify immunoreactions and enzymatic activity. The biosensors exhibit better performance than those of conventional optical LSPR measurements. With multi-transducers, the nanoplasmonic biosensor can provide a promising approach for bio-detection in environmental monitoring, healthcare diagnostics, and food quality control.
Oxygen sensing glucose biosensors based on alginate nano-micro systems
NASA Astrophysics Data System (ADS)
Chaudhari, Rashmi; Joshi, Abhijeet; Srivastava, Rohit
2014-04-01
Clinically glucose monitoring in diabetes management is done by point-measurement. However, an accurate, continuous glucose monitoring, and minimally invasive method is desirable. The research aims at developing fluorescence-mediated glucose detecting biosensors based on near-infrared radiation (NIR) oxygen sensitive dyes. Biosensors based on Glucose oxidase (GOx)-Rudpp loaded alginate microspheres (GRAM) and GOx-Platinum-octaethylporphyrin (PtOEP)-PLAalginate microsphere system (GPAM) were developed using air-driven atomization and characterized using optical microscopy, CLSM, fluorescence spectro-photometry etc. Biosensing studies were performed by exposing standard solutions of glucose. Uniform sized GRAM and GPAM with size 50+/-10μm were formed using atomization. CLSM imaging of biosensors suggests that Rudpp and PtOEP nanoparticles are uniformly distributed in alginate microspheres. The GRAM and GPAM showed a good regression constant of 0.974 and of 0.9648 over a range of 0-10 mM of glucose with a high sensitivity of 3.349%/mM (625 nm) and 2.38%/mM (645 nm) at 10 mM of glucose for GRAM and GPAM biosensor. GRAM and GPAM biosensors show great potential in development of an accurate and minimally invasive glucose biosensor. NIR dye based assays can aid sensitive, minimally-invasive and interference-free detection of glucose in diabetic patients.
Wu, Baoyan; Hou, Shihua; Miao, Zhiying; Zhang, Cong; Ji, Yanhong
2015-01-01
A novel amperometric glucose biosensor was fabricated by layer-by-layer self-assembly of gold nanorods (AuNRs) and glucose oxidase (GOD) onto single-walled carbon nanotubes (SWCNTs)-functionalized three-dimensional sol-gel matrix. A thiolated aqueous silica sol containing SWCNTs was first assembled on the surface of a cleaned Au electrode, and then the alternate self-assembly of AuNRs and GOD were repeated to assemble multilayer films of AuNRs-GOD onto SWCNTs-functionalized silica gel for optimizing the biosensor. Among the resulting glucose biosensors, the four layers of AuNRs-GOD-modified electrode showed the best performance. The sol-SWCNTs-(AuNRs-GOD)4/Au biosensor exhibited a good linear range of 0.01–8 mM glucose, high sensitivity of 1.08 μA/mM, and fast amperometric response within 4 s. The good performance of the proposed glucose biosensor could be mainly attributed to the advantages of the three-dimensional sol-gel matrix and stereo self-assembly films, and the natural features of one-dimensional nanostructure SWCNTs and AuNRs. This study may provide a new facile way to fabricate the enzyme-based biosensor with high performance. PMID:28347080
AlGaN/GaN High Electron Mobility Transistor-Based Biosensor for the Detection of C-Reactive Protein
Lee, Hee Ho; Bae, Myunghan; Jo, Sung-Hyun; Shin, Jang-Kyoo; Son, Dong Hyeok; Won, Chul-Ho; Jeong, Hyun-Min; Lee, Jung-Hee; Kang, Shin-Won
2015-01-01
In this paper, we propose an AlGaN/GaN high electron mobility transistor (HEMT)-based biosensor for the detection of C-reactive protein (CRP) using a null-balancing circuit. A null-balancing circuit was used to measure the output voltage of the sensor directly. The output voltage of the proposed biosensor was varied by antigen-antibody interactions on the gate surface due to CRP charges. The AlGaN/GaN HFET-based biosensor with null-balancing circuit applied shows that CRP can be detected in a wide range of concentrations, varying from 10 ng/mL to 1000 ng/mL. X-ray photoelectron spectroscopy was carried out to verify the immobilization of self-assembled monolayer with Au on the gated region. PMID:26225981
NASA Astrophysics Data System (ADS)
Kaçar, Ceren; Dalkiran, Berna; Erden, Pınar Esra; Kiliç, Esma
2014-08-01
In this work a new type of hydrogen peroxide biosensor was fabricated based on the immobilization of horseradish peroxidase (HRP) by cross-linking on a glassy carbon electrode (GCE) modified with Co3O4 nanoparticles, multiwall carbon nanotubes (MWCNTs) and gelatin. The introduction of MWCNTs and Co3O4 nanoparticles not only enhanced the surface area of the modified electrode for enzyme immobilization but also facilitated the electron transfer rate, resulting in a high sensitivity of the biosensor. The fabrication process of the sensing surface was characterized by scanning electron microscopy (SEM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Amperometric detection of hydrogen peroxide was investigated by holding the modified electrode at -0.30 V (vs. Ag/AgCl). The biosensor showed optimum response within 5 s at pH 7.0. The optimized biosensor showed linear response range of 7.4 × 10-7-1.9 × 10-5 M with a detection limit of 7.4 × 10-7. The applicability of the purposed biosensor was tested by detecting hydrogen peroxide in disinfector samples. The average recovery was calculated as 100.78 ± 0.89.
NASA Astrophysics Data System (ADS)
Xhoxhi, Moisi; Dudia, Alma; Ymeti, Aurel
2017-05-01
We propose the novel structure of an interferometric biosensor based on multimode interference (MMI) waveguides. We present the design of the biosensor using eigenmode expansion (EME) method in accordance with the requirements and standards of today's photonic technology. The MMI structures with a 90 nm Si3N4 core are used as power splitters with 5 outputs. The 5 high-resolution images at the end of the multimode region show high power balance. We analyze the coupling efficiency of the laser source with the structure, the excess loss and power imbalance for different compact MMI waveguides with widths ranging from 45 μm to 15 μm. For a laser source with a tolerance of +/-1mm in linearization we could achieve a coupling efficiency of 52%. MMI waveguides with tapered channels show excess loss values under 0.5 dB and power imbalance values under 0.08 dB. In addition, we show that for a 10 nm deviation of the source wavelength from its optimal value and for a 10 μm deviation of the MMI length from its optimal value, the performance of the MMI waveguides remains acceptable. Finally, we analyze the power budget of the whole biosensor structure and show that it is sufficient for the proper operation of this device.
H2O2 sensing using HRP modified catalyst-free ZnO nanorods synthesized by RF sputtering
NASA Astrophysics Data System (ADS)
Srivastava, Amit; Kumar, Naresh; Singh, Priti; Singh, Sunil Kumar
2017-06-01
Catalyst-free ( 00 l) oriented ZnO nanorods (NRs) -based biosensor for the H2O2 sensing has been reported. The (002) oriented ZnO NRs as confirmed by X-ray diffraction were successfully grown on indium tin oxide (ITO) coated glass substrate by radio frequency (RF) sputtering technique without using any catalyst. Horseradish peroxidase (HRP) enzyme was immobilized on ZnO NRs by physical adsorption technique to prepare the biosensor. In this HRP/ZnO NR/ITO bioelectrode, nafion solution was added to form a tight membrane on surface. The prepared bioelectrode has been used for biosensing measurements by electrochemical analyzer. The electrochemical studies reveal that the prepared HRP/ZnO NR/ITO biosensor is highly sensitive to the detection of H2O2 over a linear range of 0.250-10 μM. The ZnO NR-based biosensor showed lower value of detection limit (0.125 μM) and higher sensitivity (13.40 µA/µM cm2) towards H2O2. The observed value of higher sensitivity attributed to larger surface area of ZnO nanostructure for effective loading of HRP besides its high electron communication capability. In addition, the biosensor also shows lower value of enzyme's kinetic parameter (Michaelis-Menten constant, K m) of 0.262 μM which indicates enhanced enzyme affinity of HRP to H2O2. The reported biosensor may be useful for various applications in biosensing, clinical, food, and beverage industry.
Batra, Bhawna; Pundir, C S
2013-09-15
A method is described for the construction of a novel amperometric glutamate biosensor based on covalent immobilization of glutamate oxidase (GluOx) onto, carboxylated multi walled carbon nanotubes (cMWCNT), gold nanoparticles (AuNPs) and chitosan (CHIT) composite film electrodeposited on the surface of a Au electrode. The GluOx/cMWCNT/AuNP/CHIT modified Au electrode was characterized by scanning electron microscopy (SEM), fourier transform infra-red (FTIR) spectroscopy, electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The biosensor measured current due to electrons generated at 0.135V against Ag/AgCl from H2O2, which is produced from glutamate by immobilized GluOx. The biosensor showed optimum response within 2s at pH 7.5 and 35°C. A linear relationship was obtained between a wide glutamate concentration range (5-500μM) and current (μA) under optimum conditions. The biosensor showed high sensitivity (155nA/μM/cm(2)), low detection limit (1.6μM) and good storage stability. The biosensor was unaffected by a number of serum substances at their physiological concentrations. The biosensor was evaluated and employed for determination of glutamate in sera from apparently healthy subjects and persons suffering from epilepsy. Copyright © 2013 Elsevier B.V. All rights reserved.
Pan, Hong-zhi; Yu, Hong- Wei; Wang, Na; Zhang, Ze; Wan, Guang-Cai; Liu, Hao; Guan, Xue; Chang, Dong
2015-01-01
To develop a new electrochemical DNA biosensor for determination of Klebsiella pneumoniae carbapenemase, a highly sensitive and selective electrochemical biosensor for DNA detection was constructed based on a glassy carbon electrode (GCE) modified with gold nanoparticles (Au-nano). The Au-nano/GCE was characterized by scanning electromicroscopy, cyclic voltammetry, and electrochemical impedance spectroscopy. The hybridization detection was measured by differential pulse voltammetry using methylene blue as the hybridization indicator. The dynamic range of detection of the sensor for the target DNA sequences was from 1 × 10(-11) to 1 × 10(-8) M, with an LOD of 1 × 10(-12) M. The DNA biosensor had excellent specificity for distinguishing complementary DNA sequence in the presence of non-complementary and mismatched DNA sequence. The Au-nano/GCE showed significant improvement in electrochemical characteristics, and this biosensor was successfully applied for determination of K. pneumoniae.
NASA Astrophysics Data System (ADS)
Dudchenko, Oleksandr Ye; Pyeshkova, Viktoriya M.; Soldatkin, Oleksandr O.; Akata, Burcu; Kasap, Berna O.; Soldatkin, Alexey P.; Dzyadevych, Sergei V.
2016-02-01
The application of silicalite for improvement of enzyme adsorption on new stainless steel electrodes is reported. Glucose oxidase (GOx) was immobilized by two methods: cross-linking by glutaraldehyde (GOx-GA) and cross-linking by glutaraldehyde along with GOx adsorption on silicalite-modified electrode (SME) (GOx-SME-GA). The GOx-SME-GA biosensors were characterized by a four- to fivefold higher sensitivity than GOx-GA biosensor. It was concluded that silicalite together with GA sufficiently enhances enzyme adhesion on stainless steel electrodes. The developed GOx-SME-GA biosensors were characterized by good reproducibility of biosensor preparation (relative standard deviation (RSD)—18 %), improved signal reproducibility (RSD of glucose determination was 7 %), and good storage stability (29 % loss of activity after 18-day storage). A series of fruit juices and nectars was analyzed using GOx-SME-GA biosensor for determination of glucose concentration. The obtained results showed good correlation with the data of high-performance liquid chromatography (HPLC) ( R = 0.99).
A hydrogel biosensor for high selective and sensitive detection of amyloid-beta oligomers.
Sun, Liping; Zhong, Yong; Gui, Jie; Wang, Xianwu; Zhuang, Xiaorong; Weng, Jian
2018-01-01
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive cognitive and memory impairment. It is the most common neurological disease that causes dementia. Soluble amyloid-beta oligomers (AβO) in blood or cerebrospinal fluid (CSF) are the pathogenic biomarker correlated with AD. A simple electrochemical biosensor using graphene oxide/gold nanoparticles (GNPs) hydrogel electrode was developed in this study. Thiolated cellular prion protein (PrP C ) peptide probe was immobilized on GNPs of the hydrogel electrode to construct an AβO biosensor. Electrochemical impedance spectroscopy was utilized for AβO analysis. The specific binding between AβO and PrP C probes on the hydrogel electrode resulted in an increase in the electron-transfer resistance. The biosensor showed high specificity and sensitivity for AβO detection. It could selectively differentiate AβO from amyloid-beta (Aβ) monomers or fibrils. Meanwhile, it was highly sensitive to detect as low as 0.1 pM AβO in artificial CSF or blood plasma. The linear range for AβO detection is from 0.1 pM to 10 nM. This biosensor could be used as a cost-effective tool for early diagnosis of AD due to its high electrochemical performance and bionic structure.
Luo, Jingting; Luo, Pingxiang; Xie, Min; Du, Ke; Zhao, Bixia; Pan, Feng; Fan, Ping; Zeng, Fei; Zhang, Dongping; Zheng, Zhuanghao; Liang, Guangxing
2013-11-15
This work reports a high-performance Mn-doped ZnO multilayer structure Love mode surface acoustic wave (SAW) biosensor for the detection of blood sugar. The biosensor was functionalized via immobilizing glucose oxidase onto a pH-sensitive polymer which was attached on Mn-doped ZnO biosensor. The fabricated SAW glucose biosensor is highly sensitive, accurate and fast with good anti-interference. The sensitivity of the SAW glucose biosensor is 7.184 MHz/mM and the accuracy is 6.96 × 10(-3)mM, which is sensitive and accurate enough for glucose monitoring. A good degree of reversibility and stability of the glucose sensor is also demonstrated, which keeps a constant differential frequency shift up to 32 days. Concerning the time response to human serum, the glucose sensor shows a value of 4.6 ± 0.4 min when increasing glucose concentrations and 7.1 ± 0.6 min when decreasing, which is less than 10 min and reach the fast response requirement for medical applications. The Mn-doped ZnO Love mode SAW biosensor can be fully integrated with CMOS Si chips and developed as a portable, passive and wireless real time detection system for blood sugar monitoring in human serum. Copyright © 2013 Elsevier B.V. All rights reserved.
Yang, Pengqi; Peng, Jingmeng; Chu, Zhenyu; Jiang, Danfeng; Jin, Wanqin
2017-06-15
The large-scale fabrication of nanocomposite based biosensors is always a challenge in the technology commercialization from laboratory to industry. In order to address this issue, we have designed a facile chemical method of fabricated nanocomposite ink applied to the screen-printed biosensor chip. This ink can be derived in the water through the in-situ growth of Prussian blue nanocubes (PBNCs) on the silver nanowires (AgNWs) to construct a composite nanostructure by a facile chemical method. Then a miniature flexible biosensor chip was screen-printed by using the prepared nanocomposite ink. Due to the synergic effects of the large specific surface area, high conductivity and electrocatalytic activity from AgNWs and PBNCs, the as-prepared biosensor chip exhibited a fast response (<3s), a wider linear response from 0.01 to 1.3mM with an ultralow LOD=5µm, and the ultrahigh sensitivities of 131.31 and 481.20µAmM -1 cm -2 for the detections of glucose and hydrogen peroxide (H 2 O 2 ), respectively. Furthermore, the biosensor chip exhibited excellent stability, good reproducibility and high anti-interference ability towards physiological substances under a very low working potential of -0.05. Hence, the proposed biosensor chip also showed a promising potential for the application in practical analysis. Copyright © 2016 Elsevier B.V. All rights reserved.
Field-Effect Biosensors for On-Site Detection: Recent Advances and Promising Targets.
Choi, Jaebin; Seong, Tae Wha; Jeun, Minhong; Lee, Kwan Hyi
2017-10-01
There is an explosive interest in the immediate and cost-effective analysis of field-collected biological samples, as many advanced biodetection tools are highly sensitive, yet immobile. On-site biosensors are portable and convenient sensors that provide detection results at the point of care. They are designed to secure precision in highly ionic and heterogeneous solutions with minimal hardware. Among various methods that are capable of such analysis, field-effect biosensors are promising candidates due to their unique sensitivity, manufacturing scalability, and integrability with computational circuitry. Recent developments in nanotechnological surface modification show promising results in sensing from blood, serum, and urine. This report gives a particular emphasis on the on-site efficacy of recently published field-effect biosensors, specifically, detection limits in physiological solutions, response times, and scalability. The survey of the properties and existing detection methods of four promising biotargets, exosomes, bacteria, viruses, and metabolites, aims at providing a roadmap for future field-effect and other on-site biosensors. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Application of the SSB biosensor to study in vitro transcription.
Cook, Alexander; Hari-Gupta, Yukti; Toseland, Christopher P
2018-02-12
Gene expression, catalysed by RNA polymerases (RNAP), is one of the most fundamental processes in living cells. The majority of methods to quantify mRNA are based upon purification of the nucleic acid which leads to experimental inaccuracies and loss of product, or use of high cost dyes and sensitive spectrophotometers. Here, we describe the use of a fluorescent biosensor based upon the single stranded binding (SSB) protein. In this study, the SSB biosensor showed similar binding properties to mRNA, to that of its native substrate, single-stranded DNA (ssDNA). We found the biosensor to be reproducible with no associated loss of product through purification, or the requirement for expensive dyes. Therefore, we propose that the SSB biosensor is a useful tool for comparative measurement of mRNA yield following in vitro transcription. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Apetrei, Irina Mirela; Apetrei, Constantin
2013-01-01
A biosensor comprising tyrosinase immobilized on a single-walled carbon nanotube-modified glassy carbon electrode has been developed. The sensitive element, ie, tyrosinase, was immobilized using a drop-and-dry method followed by cross-linking. Tyrosinase maintained high bioactivity on this nanomaterial, catalyzing the oxidation of epinephrine to epinephrine-quinone, which was electrochemically reduced (−0.07 V versus Ag/AgCl) on the biosensor surface. Under optimum conditions, the biosensor showed a linear response in the range of 10–110 μM. The limit of detection was calculated to be 2.54 μM with a correlation coefficient of 0.977. The repeatability, expressed as the relative standard deviation for five consecutive determinations of 10−5 M epinephrine solution was 3.4%. A good correlation was obtained between results obtained by the biosensor and those obtained by ultraviolet spectrophotometric methods. PMID:24348034
NASA Astrophysics Data System (ADS)
Luhana, Charles; Bo, Xiang-Jie; Ju, Jian; Guo, Li-Ping
2012-10-01
A new glucose biosensor was developed based on hollow carbon spheres decorated with platinum nanoparticles (Pt/HCSs)-modified glassy carbon electrode immobilized with glucose oxidase (GOx) with the help of Nafion. The Pt nanoparticles were well dispersed on the HCSs with an average size of 2.29 nm. The detection of glucose was achieved via electrochemical detection of the enzymatically liberated H2O2 at +0.5 V versus Ag/AgCl at physiologic pH of 7.4. The Pt/HCSs-modified electrode exhibited excellent electrocatalytic activities toward both the oxidation and reduction of H2O2. The glucose biosensor showed good electrocatalytic performance in terms of high sensitivity (4.1 μA mM-1), low detection limit (1.8 μM), fast response time <3 s, and wide linear range (0.04-8.62 mM). The apparent Michaelis-Menten constant ( K m) and the maximum current density ( i max) values for the biosensor were 10.94 mM and 887 μA cm-2 respectively. Furthermore, this biosensor showed an acceptable reproducibility and high stability. The interfering signals from ascorbic acid and uric acid at concentration levels normally found in human blood were not much compared with the response to glucose. Blood serum samples were also tested with this biosensor and a good recovery was achieved for the two spiked serum samples.
Chen, Jingyi; Zhu, Rong; Huang, Jia; Zhang, Man; Liu, Hongyu; Sun, Min; Wang, Li; Song, Yonghai
2015-08-21
A novel glucose biosensor was developed by immobilizing glucose oxidase (GOD) on a three-dimensional (3D) porous kenaf stem-derived carbon (3D-KSC) which was firstly proposed as a novel supporting material to load biomolecules for electrochemical biosensing. Here, an integrated 3D-KSC electrode was prepared by using a whole piece of 3D-KSC to load the GOD molecules for glucose biosensing. The morphologies of integrated 3D-KSC and 3D-KSC/GOD electrodes were characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The SEM results revealed a 3D honeycomb macroporous structure of the integrated 3D-KSC electrode. The TEM results showed some microporosities and defects in the 3D-KSC electrode. The electrochemical behaviors and electrocatalytic performance of the integrated 3D-KSC/GOD electrode were evaluated by cyclic voltammetry and electrochemical impedance spectroscopy. The effects of pH and scan rates on the electrochemical response of the biosensor have been studied in detail. The glucose biosensor showed a wide linear range from 0.1 mM to 14.0 mM with a high sensitivity of 1.73 μA mM(-1) and a low detection limit of 50.75 μM. Furthermore, the glucose biosensor exhibited high selectivity, good repeatability and reproducibility, and good stability.
Yang, Zhanjun; Tang, Yan; Li, Juan; Zhang, Yongcai; Hu, Xiaoya
2014-04-15
A tetragonal columnar-shaped TiO2 (TCS-TiO2) nanorods are synthesized via a facile route for the immobilization of glucose oxidase (GOx). A novel electrochemical glucose biosensor is constructed based on the direct electrochemistry of GOx at TCS-TiO2 modified glassy carbon electrode. The fabricated biosensor is characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, electrochemical impedance spectra and cyclic voltammetry. The immobilized enzyme molecules on TCS-TiO2 nanorods retain its native structure and bioactivity and show a surface controlled, quasi-reversible and fast electron transfer process. The TCS-TiO2 nanorods have large surface area and provide a favorable microenvironment for enhancing the electron transfer between enzyme and electrode surface. The constructed glucose biosensor shows wide linear range from 5.0×10(-6) to 1.32×10(-3) M with a high sensitivity of 23.2 mA M(-1) cm(-2). The detection limit is calculated to be 2.0×10(-6) M at signal-to-noise of 3. The proposed glucose biosensor also exhibits excellent selectivity, good reproducibility, and acceptable operational stability. Furthermore, the biosensor can be successfully applied in the detection of glucose in serum sample at the applied potential of -0.50 V. The TCS-TiO2 nanorods provide an efficient and promising platform for the immobilization of proteins and development of excellent biosensors. © 2013 Published by Elsevier B.V.
Palanisamy, Selvakumar; Ramaraj, Sayee Kannan; Chen, Shen-Ming; Yang, Thomas C. K.; Yi-Fan, Pan; Chen, Tse-Wei; Velusamy, Vijayalakshmi; Selvam, Sonadevi
2017-01-01
In the present work, we demonstrate the fabrication of laccase biosensor to detect the catechol (CC) using laccase immobilized on graphene-cellulose microfibers (GR-CMF) composite modified screen printed carbon electrode (SPCE). The direct electrochemical behavior of laccase was investigated using laccase immobilized different modified SPCEs, such as GR/SPCE, CMF/SPCE and GR-CMF/SPCE. Compared with laccase immobilized GR and CMF modified SPCEs, a well-defined redox couple of CuI/CuII for laccase was observed at laccase immobilized GR-CMF composite modified SPCE. Cyclic voltammetry results show that the as-prepared biosensor has 7 folds higher catalytic activity with lower oxidation potential towards CC than SPCE modified with GR-CMF composite. Under optimized conditions, amperometric i-t method was used for the quantification of CC, and the amperometric response of the biosensor was linear over the concertation of CC ranging from 0.2 to 209.7 μM. The sensitivity, response time and the detection limit of the biosensor for CC is 0.932 μMμA−1 cm−2, 2 s and 0.085 μM, respectively. The biosensor has high selectivity towards CC in the presence of potentially active biomolecules and phenolic compounds. The biosensor also accessed for the detection of CC in different water samples and shows good practicality with an appropriate repea. PMID:28117357
Slattery, Scott D; Hahn, Klaus M
2014-12-01
Biosensors are valuable tools used to monitor many different protein behaviors in vivo. Demand for new biosensors is high, but their development and characterization can be difficult. During biosensor design, it is necessary to evaluate the effects of different biosensor structures on specificity, brightness, and fluorescence responses. By co-expressing the biosensor with upstream proteins that either stimulate or inhibit the activity reported by the biosensor, one can determine the difference between the biosensor's maximally activated and inactivated state, and examine response to specific proteins. We describe here a method for biosensor validation in a 96-well plate format using an automated microscope. This protocol produces dose-response curves, enables efficient examination of many parameters, and unlike cell suspension assays, allows visual inspection (e.g., for cell health and biosensor or regulator localization). Optimization of single-chain and dual-chain Rho GTPase biosensors is addressed, but the assay is applicable to any biosensor that can be expressed or otherwise loaded in adherent cells. The assay can also be used for purposes other than biosensor validation, using a well-characterized biosensor as a readout for effects of upstream molecules. Copyright © 2014 John Wiley & Sons, Inc.
Development of phage/antibody immobilized magnetostrictive biosensors
NASA Astrophysics Data System (ADS)
Fu, Liling
There is an urgent need for biosensors that are able to detect and quantify the presence of a small amount of pathogens in a real-time manner accurately and quickly to guide prevention efforts and assay food and water quality. Acoustic wave (AW) devices, whose performance is defined by mass sensitivity (Sm) and quality factor (Q value), have been extensively studied as high performance biosensor platforms. However, current AW devices still face some challenges such as the difficulty to be employed in liquid and low Q value in practical applications. The objective of this research is to develop magnetostrictive sensors which include milli/microcantilever type (MSMC) and particle type (MSP). Compared to other AW devices, MSMC exhibits the following advantages: (1) wireless/remote driving and sensing; (2) easy to fabricate; (3) works well in liquid; (4) exhibits a high Q value (> 500 in air). The fundamental study of the damping effect on MSMCs from the surrounding media including air and liquids were conducted to improve the Q value of MSMCs. The experiment results show that the Q value is dependent on the properties of surrounding media (e.g. viscosity, density), the geometry of the MSMCs, and the harmonic mode on the resonance behavior of MSMCs, etc. The phage-coated MSMC has high specificity and sensitivity even while used in water with a low concentration of targeted bacteria. Two currently developed phages, JRB7 and E2, respectively respond to Bacillus anthracis spores and Salmonella typhimurium, were employed as bio-recognition elements in this research. The phage-immobilized MSMC biosensors exhibited high performance and detection of limit was 5 x 104 cfu/ml for the MSMC in size of 1.4 x 0.8 x 0.035 mm. The MSMC-based biosensors were indicated as a very potential method for in-situ monitoring of the biological quality in water. The MSP combine antibody was used to detect Staphylococcus aureus in this experiment. The interface between MSPs and antibody was modified using Traut's Reagent by introducing the sulfhydryl group. To improve the mass sensitivity of magnetostrictive biosensors, several blocking agents were used to resist the nonspecific adsorption of S. aureus on the surface of the magnetostrictive biosensors and the blocking effects were studied by using ELISA and SEM. The results showed casein was one of the best blocking agents to resist the nonspecific binding in this experiment. Casein blocked antibody immobilized MSP biosensors exhibited high sensitivity and the limit of detection is 102 cfu/ml.
Liu, Chang; Yang, Yunchen; Wu, Yun
2018-03-08
Current cancer diagnostic methods are challenged by low sensitivity, high false positive rate, limited tumor information, uncomfortable or invasive procedures, and high cost. Liquid biopsy that analyzes circulating biomarkers in body fluids represents a promising solution to these challenges. Exosomes are one of the promising cancer biomarkers for liquid biopsy because they are cell-secreted, nano-sized, extracellular vesicles that stably exist in all types of body fluids. Exosomes transfer DNAs, RNAs, proteins, and lipids from parent cells to recipient cells for intercellular communication and play important roles in cancer initiation, progression, and metastasis. Many liquid biopsy biosensors have been developed to offer non- or minimally-invasive, highly sensitive, simple, rapid, and cost-effective cancer diagnostics. This review summarized recent advances of liquid biopsy biosensors with a focus on the detection of exosomal proteins as biomarkers for cancer screening, diagnosis, and prognosis. We reviewed six major types of liquid biopsy biosensors including immunofluorescence biosensor, colorimetric biosensor, surface plasmon resonance (SPR) biosensor, surface-enhanced Raman scattering (SERS) biosensor, electrochemical biosensor, and nuclear magnetic resonance (NMR) biosensor. We shared our perspectives on future improvement of exosome-based liquid biopsy biosensors to accelerate their clinical translation.
Liu, Pei; Zhu, Yisi; Lee, Seung Hee; Yun, Minhee
2016-12-01
In this work, we report a flexible field-effect-transistor (FET) biosensor design based on two-dimensional (2-D) polyaniline (PANI) nanostructure. The flexible biosensor devices were fabricated through a facile and inexpensive method that combines top-down and bottom-up processes. The chemically synthesized PANI nanostructure showed excellent p-type semiconductor properties as well as good compatibility with flexible design. With the 2-D PANI nanostructure being as thin as 80 nm and its extremely large surface-area-to-volume (SA/V) ratio due to the intrinsic properties of PANI chemical synthesis, the developed flexible biosensor exhibited outstanding sensing performance in detecting B-type natriuretic peptide (BNP) biomarkers, and was able to achieve high specificity (averagely 112 folds) with the limit of detection as low as 100 pg/mL. PANI nanostructure under bending condition was also investigated and showed controllable conductance changes being less than 20% with good restorability which may open up the possibility for wearable applications.
Clinical determination of glucose in human serum by a tomato skin biosensor.
Han, Hui; Li, Yi; Yue, Huan; Zhou, Zaide; Xiao, Dan; Choi, Martin M F
2008-09-01
Glucose biosensors based on enzyme reaction of glucose oxidase were studied because the symptomatic therapy of diabetes mellitus requires reliable assessment of blood glucose level at frequent intervals. Tomato skin membranes have been successfully employed to entrap glucose oxidase for fabrication of glucose biosensor. Glucose oxidase was immobilized onto the tomato skin and the enzyme membrane was then positioned on the surface of an oxygen electrode. The glucose concentration was quantified by the change of dissolved oxygen. All the serum samples were also simultaneously determined by a Hitachi 7060 chemistry analyzer. The response of the biosensor showed a linear relationship with a concentration range of 1.0-30.0 mmol/l glucose. The limit of detection was 0.20 mmol/l. Error Grid analysis demonstrated that 100% of the results fell within clinically acceptable zones A and B. The F- and t-tests showed no significant differences between the 2 methods. The recovery was 95.0-110.0% for 30 serum samples analysis. The tomato skin biosensor possesses the advantages of simple fabrication, fast response time, low cost and high sensitivity. The results of our method are more accurate than and match well with the current clinical instrument method.
Apetrei, Irina Mirela; Apetrei, Constantin
2016-03-24
This work describes the development and optimization studies of a novel biosensor employed in the detection and quantification of histamine in freshwater fish samples. The proposed biosensor is based on a modified carbon screen-printed electrode with diamineoxidase, graphene and platinum nanoparticles, which detects the hydrogen peroxide formed by the chemical process biocatalysed by the enzyme diamine oxidase and immobilized onto the nanostructurated surface of the receptor element. The amperometric measurements with the biosensor have been implemented in buffer solution of pH 7.4, applying an optimal low potential of +0.4 V. The novel biosensor shows high sensitivity (0.0631 μA·μM), low detection limit (2.54 × 10(-8) M) and a broad linear domain from 0.1 to 300 μM. The applicability in natural complex samples and the analytical parameters of this enzyme sensor have been performed in the quantification of histamine in freshwater fish. An excellent correlation among results achieved with the developed biosensor and results found with the standard method for all freshwater fish samples has been achieved.
Cox, Dianne; Hodgson, Louis
2014-01-01
Cdc42 is critical in a myriad of cellular morphogenic processes, requiring precisely regulated activation dynamics to affect specific cellular events. To facilitate direct observations of Cdc42 activation in live cells, we developed and validated a new biosensor of Cdc42 activation. The biosensor is genetically encoded, of single-chain design and capable of correctly localizing to membrane compartments as well as interacting with its upstream regulators including the guanine nucleotide dissociation inhibitor. We characterized this new biosensor in motile mouse embryonic fibroblasts and observed robust activation dynamics at leading edge protrusions, similar to those previously observed for endogenous Cdc42 using the organic dye-based biosensor system. We then extended our validations and observations of Cdc42 activity to macrophages, and show that this new biosensor is able to detect differential activation patterns during phagocytosis and cytokine stimulation. Furthermore, we observe for the first time, a highly transient and localized activation of Cdc42 during podosome formation in macrophages, which was previously hypothesized but never directly visualized. PMID:24798463
Hanna, Samer; Miskolci, Veronika; Cox, Dianne; Hodgson, Louis
2014-01-01
Cdc42 is critical in a myriad of cellular morphogenic processes, requiring precisely regulated activation dynamics to affect specific cellular events. To facilitate direct observations of Cdc42 activation in live cells, we developed and validated a new biosensor of Cdc42 activation. The biosensor is genetically encoded, of single-chain design and capable of correctly localizing to membrane compartments as well as interacting with its upstream regulators including the guanine nucleotide dissociation inhibitor. We characterized this new biosensor in motile mouse embryonic fibroblasts and observed robust activation dynamics at leading edge protrusions, similar to those previously observed for endogenous Cdc42 using the organic dye-based biosensor system. We then extended our validations and observations of Cdc42 activity to macrophages, and show that this new biosensor is able to detect differential activation patterns during phagocytosis and cytokine stimulation. Furthermore, we observe for the first time, a highly transient and localized activation of Cdc42 during podosome formation in macrophages, which was previously hypothesized but never directly visualized.
Apetrei, Irina Mirela; Apetrei, Constantin
2016-01-01
This work describes the development and optimization studies of a novel biosensor employed in the detection and quantification of histamine in freshwater fish samples. The proposed biosensor is based on a modified carbon screen-printed electrode with diamineoxidase, graphene and platinum nanoparticles, which detects the hydrogen peroxide formed by the chemical process biocatalysed by the enzyme diamine oxidase and immobilized onto the nanostructurated surface of the receptor element. The amperometric measurements with the biosensor have been implemented in buffer solution of pH 7.4, applying an optimal low potential of +0.4 V. The novel biosensor shows high sensitivity (0.0631 μA·μM), low detection limit (2.54 × 10−8 M) and a broad linear domain from 0.1 to 300 μM. The applicability in natural complex samples and the analytical parameters of this enzyme sensor have been performed in the quantification of histamine in freshwater fish. An excellent correlation among results achieved with the developed biosensor and results found with the standard method for all freshwater fish samples has been achieved. PMID:27023541
Origin of noise in liquid-gated Si nanowire troponin biosensors.
Kutovyi, Y; Zadorozhnyi, I; Hlukhova, H; Handziuk, V; Petrychuk, M; Ivanchuk, Andriy; Vitusevich, S
2018-04-27
Liquid-gated Si nanowire field-effect transistor (FET) biosensors are fabricated using a complementary metal-oxide-semiconductor-compatible top-down approach. The transport and noise properties of the devices reflect the high performance of the FET structures, which allows label-free detection of cardiac troponin I (cTnI) molecules. Moreover, after removing the troponin antigens the structures demonstrate the same characteristics as before cTnI detection, indicating the reusable operation of biosensors. Our results show that the additional noise is related to the troponin molecules and has characteristics which considerably differ from those usually recorded for conventional FETs without target molecules. We describe the origin of the noise and suggest that noise spectroscopy represents a powerful tool for understanding molecular dynamic processes in nanoscale FET-based biosensors.
Origin of noise in liquid-gated Si nanowire troponin biosensors
NASA Astrophysics Data System (ADS)
Kutovyi, Y.; Zadorozhnyi, I.; Hlukhova, H.; Handziuk, V.; Petrychuk, M.; Ivanchuk, Andriy; Vitusevich, S.
2018-04-01
Liquid-gated Si nanowire field-effect transistor (FET) biosensors are fabricated using a complementary metal-oxide-semiconductor-compatible top-down approach. The transport and noise properties of the devices reflect the high performance of the FET structures, which allows label-free detection of cardiac troponin I (cTnI) molecules. Moreover, after removing the troponin antigens the structures demonstrate the same characteristics as before cTnI detection, indicating the reusable operation of biosensors. Our results show that the additional noise is related to the troponin molecules and has characteristics which considerably differ from those usually recorded for conventional FETs without target molecules. We describe the origin of the noise and suggest that noise spectroscopy represents a powerful tool for understanding molecular dynamic processes in nanoscale FET-based biosensors.
Chakravarty, Swapnajit; Yang, Chun-Ju; Wang, Zheng; Tang, Naimei; Fan, Donglei; Chen, Ray T.
2015-01-01
A method for the dense integration of high sensitivity photonic crystal (PC) waveguide based biosensors is proposed and experimentally demonstrated on a silicon platform. By connecting an additional PC waveguide filter to a PC microcavity sensor in series, a transmission passband is created, containing the resonances of the PC microcavity for sensing purpose. With proper engineering of the passband, multiple high sensitivity PC microcavity sensors can be integrated into microarrays and be interrogated simultaneously between a single input and a single output port. The concept was demonstrated with a 2-channel L55 PC biosensor array containing PC waveguide filters. The experiment showed that the sensors on both channels can be monitored simultaneously from a single output spectrum. Less than 3 dB extra loss for the additional PC waveguide filter is observed. PMID:25829549
Preparing cuprous oxide nanomaterials by electrochemical method for non-enzymatic glucose biosensor
NASA Astrophysics Data System (ADS)
Nguyen, Thu-Thuy; Huy, Bui The; Hwang, Seo-Young; Vuong, Nguyen Minh; Pham, Quoc-Thai; Nghia, Nguyen Ngoc; Kirtland, Aaron; Lee, Yong-Ill
2018-05-01
Cuprous oxide (Cu2O) nanostructure has been synthesized using an electrochemical method with a two-electrode system. Cu foils were used as electrodes and NH2(OH) was utilized as the reducing agent. The effects of pH and applied voltages on the morphology of the product were investigated. The morphology and optical properties of Cu2O particles were characterized using scanning electron microscopy, x-ray diffraction, and diffuse reflectance spectra. The synthesized Cu2O nanostructures that formed in the vicinity of the anode at 2 V and pH = 11 showed high uniform distribution, small size, and good electrochemical sensing. These Cu2O nanoparticles were coated on an Indium tin oxide substrate and applied to detect non-enzyme glucose as excellent biosensors. The non-enzyme glucose biosensors exhibited good performance with high response, good selectivity, wide linear detection range, and a low detection limit at 0.4 μM. Synthesized Cu2O nanostructures are potential materials for a non-enzyme glucose biosensor.
Zhou, Juan; Li, Huan; Yang, Huasong; Cheng, Hui; Lai, Guosong
2017-01-01
Ferrocene-grafted dendrimer was covalently linked to the surface of a carbon nanotubes (CNTs)-chitosan (CS) nanocomposite modified electrode for immobilizing high-content glucose oxidase (GOx), which resulted in the successful development a novel reagentless glucose biosensor. Electrochemical impedance spectroscopy, cyclic voltammetry, and amperometry were used to characterize the preparation process and the enzymatically catalytic response of this biosensor. Due to the excellent electron transfer acceleration of the CNTs and the high-content loading of the GOx biomolecule and ferrocene mediator on the electrode matrix, this biosensor showed excellent analytical performance such as fast response time less than 10 s, wide linear range from 0.02 to 2.91 mM and low detection limit down to 7.5 μM as well as satisfactory stability and reproducibility toward the amperometric glucose determination. In addition, satisfactory result was obtained when it was used for the glucose measurements in human blood samples. Thus this biosensor provides great potentials for practical applications.
Povedano, Eloy; Cincotto, Fernando H; Parrado, Concepción; Díez, Paula; Sánchez, Alfredo; Canevari, Thiago C; Machado, Sergio A S; Pingarrón, José M; Villalonga, Reynaldo
2017-03-15
A novel nanocomposite material consisting of reduced graphene oxide/Rh nanoparticles was prepared by a one-pot reaction process. The strategy involved the simultaneous reduction of RhCl 3 and graphene oxide with NaBH 4 and the in situ deposition of the metal nanoparticles on the 2D carbon nanomaterial planar sheets. Glassy carbon electrode coated with this nanocomposite was employed as nanostructured support for the cross-linking of the enzyme laccase with glutaraldehyde to construct a voltammperometric biosensor for 17β-estradiol in the 0.9-11 pM range. The biosensor showed excellent analytical performance with high sensitivity of 25.7AµM -1 cm -1 , a very low detection limit of 0.54pM and high selectivity. The biosensor was applied to the rapid and successful determination of the hormone in spiked synthetic and real human urine samples. Copyright © 2016 Elsevier B.V. All rights reserved.
Preparing cuprous oxide nanomaterials by electrochemical method for non-enzymatic glucose biosensor.
Nguyen, Thu-Thuy; Huy, Bui The; Hwang, Seo-Young; Vuong, Nguyen Minh; Pham, Quoc-Thai; Nghia, Nguyen Ngoc; Kirtland, Aaron; Lee, Yong-Ill
2018-05-18
Cuprous oxide (Cu 2 O) nanostructure has been synthesized using an electrochemical method with a two-electrode system. Cu foils were used as electrodes and NH 2 (OH) was utilized as the reducing agent. The effects of pH and applied voltages on the morphology of the product were investigated. The morphology and optical properties of Cu 2 O particles were characterized using scanning electron microscopy, x-ray diffraction, and diffuse reflectance spectra. The synthesized Cu 2 O nanostructures that formed in the vicinity of the anode at 2 V and pH = 11 showed high uniform distribution, small size, and good electrochemical sensing. These Cu 2 O nanoparticles were coated on an Indium tin oxide substrate and applied to detect non-enzyme glucose as excellent biosensors. The non-enzyme glucose biosensors exhibited good performance with high response, good selectivity, wide linear detection range, and a low detection limit at 0.4 μM. Synthesized Cu 2 O nanostructures are potential materials for a non-enzyme glucose biosensor.
Label-free optical biosensors based on aptamer-functionalized porous silicon scaffolds.
Urmann, Katharina; Walter, Johanna-Gabriela; Scheper, Thomas; Segal, Ester
2015-02-03
A proof-of-concept for a label-free and reagentless optical biosensing platform based on nanostructured porous silicon (PSi) and aptamers is presented in this work. Aptamers are oligonucleotides (single-stranded DNA or RNA) that can bind their targets with high affinity and specificity, making them excellent recognition elements for biosensor design. Here we describe the fabrication and characterization of aptamer-conjugated PSi biosensors, where a previously characterized his-tag binding aptamer (6H7) is used as model system. Exposure of the aptamer-functionalized PSi to the target proteins as well as to complex fluids (i.e., bacteria lysates containing target proteins) results in robust and well-defined changes in the PSi optical interference spectrum, ascribed to specific aptamer-protein binding events occurring within the nanoscale pores, monitored in real time. The biosensors show exceptional stability and can be easily regenerated by a short rinsing step for multiple biosensing analyses. This proof-of-concept study demonstrates the possibility of designing highly stable and specific label-free optical PSi biosensors, employing aptamers as capture probes, holding immense potential for application in detection of a broad range of targets, in a simple yet reliable manner.
Wu, Chunsheng; Du, Liping; Zou, Ling; Zhao, Luhang; Wang, Ping
2012-12-01
Adenosine triphosphate (ATP) is considered as the key neurotransmitter in taste buds for taste signal transmission and processing. Measurements of ATP secreted from single taste receptor cell (TRC) with high sensitivity and specificity are essential for investigating mechanisms underlying taste cell-to-cell communications. In this study, we presented an aptamer-based biosensor for the detection of ATP locally secreted from single TRC. ATP sensitive DNA aptamer was used as recognition element and its DNA competitor was served as signal transduction element that was covalently immobilized on the surface of light addressable potentiometric sensor (LAPS). Due to the light addressable capability of LAPS, local ATP secretion from single TRC can be detected by monitoring the working potential shifts of LAPS. The results show this biosensor can detect ATP with high sensitivity and specificity. It is demonstrated this biosensor can effectively detect the local ATP secretion from single TRC responding to tastant mixture. This biosensor could provide a promising new tool for the research of taste cell-to-cell communications as well as for the detection of local ATP secretion from other types of ATP secreting individual cells.
Hui, Ni; Sun, Xiaotian; Niu, Shuyan; Luo, Xiliang
2017-01-25
Biofouling arising from nonspecific adsorption is a substantial outstanding challenge in diagnostics and disease monitoring, and antifouling sensing interfaces capable of reducing the nonspecific adsorption of proteins from biological complex samples are highly desirable. We present herein the preparation of novel composite nanofibers through the grafting of polyethylene glycol (PEG) polymer onto polyaniline (PANI) nanofibers and their application in the development of antifouling electrochemical biosensors. The PEGylated PANI (PANI/PEG) nanofibers possessed large surface area and remained conductive and at the same time demonstrated excellent antifouling performances in single protein solutions as well as complex human serum samples. Sensitive and low fouling electrochemical biosensors for the breast cancer susceptibility gene (BRCA1) can be easily fabricated through the attachment of DNA probes to the PANI/PEG nanofibers. The biosensor showed a very high sensitivity to target BRCA1 with a linear range from 0.01 pM to 1 nM and was also efficient enough to detect DNA mismatches with satisfactory selectivity. Moreover, the DNA biosensor based on the PEGylated PANI nanofibers supported the quantification of BRCA1 in complex human serum, indicating great potential of this novel biomaterial for application in biosensors and bioelectronics.
Bacterial host and reporter gene optimization for genetically encoded whole cell biosensors.
Brutesco, Catherine; Prévéral, Sandra; Escoffier, Camille; Descamps, Elodie C T; Prudent, Elsa; Cayron, Julien; Dumas, Louis; Ricquebourg, Manon; Adryanczyk-Perrier, Géraldine; de Groot, Arjan; Garcia, Daniel; Rodrigue, Agnès; Pignol, David; Ginet, Nicolas
2017-01-01
Whole-cell biosensors based on reporter genes allow detection of toxic metals in water with high selectivity and sensitivity under laboratory conditions; nevertheless, their transfer to a commercial inline water analyzer requires specific adaptation and optimization to field conditions as well as economical considerations. We focused here on both the influence of the bacterial host and the choice of the reporter gene by following the responses of global toxicity biosensors based on constitutive bacterial promoters as well as arsenite biosensors based on the arsenite-inducible P ars promoter. We observed important variations of the bioluminescence emission levels in five different Escherichia coli strains harboring two different lux-based biosensors, suggesting that the best host strain has to be empirically selected for each new biosensor under construction. We also investigated the bioluminescence reporter gene system transferred into Deinococcus deserti, an environmental, desiccation- and radiation-tolerant bacterium that would reduce the manufacturing costs of bacterial biosensors for commercial water analyzers and open the field of biodetection in radioactive environments. We thus successfully obtained a cell survival biosensor and a metal biosensor able to detect a concentration as low as 100 nM of arsenite in D. deserti. We demonstrated that the arsenite biosensor resisted desiccation and remained functional after 7 days stored in air-dried D. deserti cells. We also report here the use of a new near-infrared (NIR) fluorescent reporter candidate, a bacteriophytochrome from the magnetotactic bacterium Magnetospirillum magneticum AMB-1, which showed a NIR fluorescent signal that remained optimal despite increasing sample turbidity, while in similar conditions, a drastic loss of the lux-based biosensors signal was observed.
Enzyme-modified nanoporous gold-based electrochemical biosensors.
Qiu, Huajun; Xue, Luyan; Ji, Guanglei; Zhou, Guiping; Huang, Xirong; Qu, Yinbo; Gao, Peiji
2009-06-15
On the basis of the unique physical and chemical properties of nanoporous gold (NPG), which was obtained simply by dealloying Ag from Au/Ag alloy, an attempt was made in the present study to develop NPG-based electrochemical biosensors. The NPG-modified glassy carbon electrode (NPG/GCE) exhibited high-electrocatalytic activity toward the oxidation of nicotinamide adenine dinucleotide (NADH) and hydrogen peroxide (H(2)O(2)), which resulted in a remarkable decrease in the overpotential of NADH and H(2)O(2) electro-oxidation when compared with the gold sheet electrode. The high density of edge-plane-like defective sites and large specific surface area of NPG should be responsible for the electrocatalytic behavior. Such electrocatalytic behavior of the NPG/GCE permitted effective low-potential amperometric biosensing of ethanol or glucose via the incorporation of alcohol dehydrogenase (ADH) or glucose oxidase (GOD) within the three-dimensional matrix of NPG. The ADH- and GOD-modified NPG-based biosensors showed good analytical performance for biosensing ethanol and glucose due to the clean, reproducible and uniformly distributed microstructure of NPG. The stabilization effect of NPG on the incorporated enzymes also made the constructed biosensors very stable. After 1 month storage at 4 degrees C, the ADH- and GOD-based biosensors lost only 5.0% and 4.2% of the original current response. All these indicated that NPG was a promising electrode material for biosensors construction.
Nikzad, Nasrin; Karami, Zahra
2018-04-14
Changes in choline levels can be associated with diseases such as Alzheimer, Parkinson, Huntington, fatty liver, interstitial lung abnormalities, autism and so on. Therefore, quantitative determination of choline is important in the biological and clinical analysis. So far, several methods have been investigated for measuring choline in the body fluids, each of which has disadvantages such as the need for specialist ability, complexity, and high cost. For this purpose, a facile and sensitive colorimetric biosensor based on DNAzyme-choline oxidase coupling used for the determination of choline. In this method, the first, choline oxidase produces H 2 O 2 and betaine in the presence of choline and oxygen, then, the DNAzyme converts colorless ABTS into green ABTS + radicals. Compared to the previous methods, the linear range and the limit of detection of this talented biosensor were 0.1-25 μM and 22 nM. Choline measurement using this biosensor has shown satisfactory selectivity and repeatability. Its recovery was 96.9-103.7%, which shows the reliability of biosensor assay in biological samples. Simplicity, low cost, naked eye, high sensitivity, and precision are the benefits of this biosensor. Taken to gather, the proposed system can be considered as a great biosensor for measuring choline levels especially in point of care diagnostic. Copyright © 2018 Elsevier B.V. All rights reserved.
Jia, Xiaofang; Dong, Shaojun; Wang, Erkang
2016-02-15
Electrochemical biosensors have played active roles at the forefront of bioanalysis because they have the potential to achieve sensitive, specific and low-cost detection of biomolecules and many others. Engineering the electrochemical sensing interface with functional nanomaterials leads to novel electrochemical biosensors with improved performances in terms of sensitivity, selectivity, stability and simplicity. Functional nanomaterials possess good conductivity, catalytic activity, biocompatibility and high surface area. Coupled with bio-recognition elements, these features can amplify signal transduction and biorecognition events, resulting in highly sensitive biosensing. Additionally, microfluidic electrochemical biosensors have attracted considerable attention on account of their miniature, portable and low-cost systems as well as high fabrication throughput and ease of scaleup. For example, electrochemical enzymetic biosensors and aptamer biosensors (aptasensors) based on the integrated microchip can be used for portable point-of-care diagnostics and environmental monitoring. This review is a summary of our recent progress in the field of electrochemical biosensors, including aptasensors, cytosensors, enzymatic biosensors and self-powered biosensors based on biofuel cells. We presented the advantages that functional nanomaterials and microfluidic chip technology bring to the electrochemical biosensors, together with future prospects and possible challenges. Copyright © 2015 Elsevier B.V. All rights reserved.
Chobtang, Jeerasak; de Boer, Imke J. M.; Hoogenboom, Ron L. A. P.; Haasnoot, Willem; Kijlstra, Aize; Meerburg, Bastiaan G.
2011-01-01
Dioxins and dioxin-like polychlorinated biphenyls (DL-PCBs) are hazardous toxic, ubiquitous and persistent chemical compounds, which can enter the food chain and accumulate up to higher trophic levels. Their determination requires sophisticated methods, expensive facilities and instruments, well-trained personnel and expensive chemical reagents. Ideally, real-time monitoring using rapid detection methods should be applied to detect possible contamination along the food chain in order to prevent human exposure. Sensor technology may be promising in this respect. This review gives the state of the art for detecting possible contamination with dioxins and DL-PCBs along the food chain of animal-source foods. The main detection methods applied (i.e., high resolution gas-chromatography combined with high resolution mass-spectrometry (HRGC/HRMS) and the chemical activated luciferase gene expression method (CALUX bioassay)), each have their limitations. Biosensors for detecting dioxins and related compounds, although still under development, show potential to overcome these limitations. Immunosensors and biomimetic-based biosensors potentially offer increased selectivity and sensitivity for dioxin and DL-PCB detection, while whole cell-based biosensors present interpretable biological results. The main shortcoming of current biosensors, however, is their detection level: this may be insufficient as limits for dioxins and DL-PCBs for food and feedstuffs are in pg per gram level. In addition, these contaminants are normally present in fat, a difficult matrix for biosensor detection. Therefore, simple and efficient extraction and clean-up procedures are required which may enable biosensors to detect dioxins and DL-PCBs contamination along the food chain. PMID:22247688
Chobtang, Jeerasak; de Boer, Imke J M; Hoogenboom, Ron L A P; Haasnoot, Willem; Kijlstra, Aize; Meerburg, Bastiaan G
2011-01-01
Dioxins and dioxin-like polychlorinated biphenyls (DL-PCBs) are hazardous toxic, ubiquitous and persistent chemical compounds, which can enter the food chain and accumulate up to higher trophic levels. Their determination requires sophisticated methods, expensive facilities and instruments, well-trained personnel and expensive chemical reagents. Ideally, real-time monitoring using rapid detection methods should be applied to detect possible contamination along the food chain in order to prevent human exposure. Sensor technology may be promising in this respect. This review gives the state of the art for detecting possible contamination with dioxins and DL-PCBs along the food chain of animal-source foods. The main detection methods applied (i.e., high resolution gas-chromatography combined with high resolution mass-spectrometry (HRGC/HRMS) and the chemical activated luciferase gene expression method (CALUX bioassay)), each have their limitations. Biosensors for detecting dioxins and related compounds, although still under development, show potential to overcome these limitations. Immunosensors and biomimetic-based biosensors potentially offer increased selectivity and sensitivity for dioxin and DL-PCB detection, while whole cell-based biosensors present interpretable biological results. The main shortcoming of current biosensors, however, is their detection level: this may be insufficient as limits for dioxins and DL-PCBs for food and feedstuffs are in pg per gram level. In addition, these contaminants are normally present in fat, a difficult matrix for biosensor detection. Therefore, simple and efficient extraction and clean-up procedures are required which may enable biosensors to detect dioxins and DL-PCBs contamination along the food chain.
Massad-Ivanir, Naama; Shtenberg, Giorgi; Raz, Nitzan; Gazenbeek, Christel; Budding, Dries; Bos, Martine P.; Segal, Ester
2016-01-01
Rapid detection of target bacteria is crucial to provide a safe food supply and to prevent foodborne diseases. Herein, we present an optical biosensor for identification and quantification of Escherichia coli (E. coli, used as a model indicator bacteria species) in complex food industry process water. The biosensor is based on a nanostructured, oxidized porous silicon (PSi) thin film which is functionalized with specific antibodies against E. coli. The biosensors were exposed to water samples collected directly from process lines of fresh-cut produce and their reflectivity spectra were collected in real time. Process water were characterized by complex natural micro-flora (microbial load of >107 cell/mL), in addition to soil particles and plant cell debris. We show that process water spiked with culture-grown E. coli, induces robust and predictable changes in the thin-film optical interference spectrum of the biosensor. The latter is ascribed to highly specific capture of the target cells onto the biosensor surface, as confirmed by real-time polymerase chain reaction (PCR). The biosensors were capable of selectively identifying and quantifying the target cells, while the target cell concentration is orders of magnitude lower than that of other bacterial species, without any pre-enrichment or prior processing steps. PMID:27901131
Yu, Ping; He, Xiulan; Zhang, Li; Mao, Lanqun
2015-01-20
Adenosine triphosphate (ATP) aptamer has been widely used as a recognition unit for biosensor development; however, its relatively poor specificity toward ATP against adenosine-5'-diphosphate (ADP) and adenosine-5'-monophosphate (AMP) essentially limits the application of the biosensors in real systems, especially in the complex cerebral system. In this study, for the first time, we demonstrate a dual recognition unit strategy (DRUS) to construct a highly selective and sensitive ATP biosensor by combining the recognition ability of aptamer toward A nucleobase and of polyimidazolium toward phosphate. The biosensors are constructed by first confining the polyimidazolium onto a gold surface by surface-initiated atom transfer radical polymerization (SI-ATRP), and then the aptamer onto electrode surface by electrostatic self-assembly to form dual-recognition-unit-functionalized electrodes. The constructed biosensor based on DRUS not only shows an ultrahigh sensitivity toward ATP with a detection limit down to the subattomole level but also an ultrahigh selectivity toward ATP without interference from ADP and AMP. The constructed biosensor is used for selective and sensitive sensing of the extracellular ATP in the cerebral system by combining in vivo microdialysis and can be used as a promising neurotechnology to probing cerebral ATP concentration.
Massad-Ivanir, Naama; Shtenberg, Giorgi; Raz, Nitzan; Gazenbeek, Christel; Budding, Dries; Bos, Martine P; Segal, Ester
2016-11-30
Rapid detection of target bacteria is crucial to provide a safe food supply and to prevent foodborne diseases. Herein, we present an optical biosensor for identification and quantification of Escherichia coli (E. coli, used as a model indicator bacteria species) in complex food industry process water. The biosensor is based on a nanostructured, oxidized porous silicon (PSi) thin film which is functionalized with specific antibodies against E. coli. The biosensors were exposed to water samples collected directly from process lines of fresh-cut produce and their reflectivity spectra were collected in real time. Process water were characterized by complex natural micro-flora (microbial load of >10 7 cell/mL), in addition to soil particles and plant cell debris. We show that process water spiked with culture-grown E. coli, induces robust and predictable changes in the thin-film optical interference spectrum of the biosensor. The latter is ascribed to highly specific capture of the target cells onto the biosensor surface, as confirmed by real-time polymerase chain reaction (PCR). The biosensors were capable of selectively identifying and quantifying the target cells, while the target cell concentration is orders of magnitude lower than that of other bacterial species, without any pre-enrichment or prior processing steps.
NASA Astrophysics Data System (ADS)
Massad-Ivanir, Naama; Shtenberg, Giorgi; Raz, Nitzan; Gazenbeek, Christel; Budding, Dries; Bos, Martine P.; Segal, Ester
2016-11-01
Rapid detection of target bacteria is crucial to provide a safe food supply and to prevent foodborne diseases. Herein, we present an optical biosensor for identification and quantification of Escherichia coli (E. coli, used as a model indicator bacteria species) in complex food industry process water. The biosensor is based on a nanostructured, oxidized porous silicon (PSi) thin film which is functionalized with specific antibodies against E. coli. The biosensors were exposed to water samples collected directly from process lines of fresh-cut produce and their reflectivity spectra were collected in real time. Process water were characterized by complex natural micro-flora (microbial load of >107 cell/mL), in addition to soil particles and plant cell debris. We show that process water spiked with culture-grown E. coli, induces robust and predictable changes in the thin-film optical interference spectrum of the biosensor. The latter is ascribed to highly specific capture of the target cells onto the biosensor surface, as confirmed by real-time polymerase chain reaction (PCR). The biosensors were capable of selectively identifying and quantifying the target cells, while the target cell concentration is orders of magnitude lower than that of other bacterial species, without any pre-enrichment or prior processing steps.
Ivanov, A N; Younusov, R R; Evtugyn, G A; Arduini, F; Moscone, D; Palleschi, G
2011-07-15
A simple and reliable technique has been developed for the construction of an amperometric acetylcholinesterase biosensor based on screen-printed carbon electrodes. For the first time, one-step modification using single-walled carbon nanotubes and Co phtalocyanine has been proposed to decrease the working potential and to increase the signal of thiocholine oxidation. The biosensor developed made it possible to detect 5-50 ppb of paraoxon and 2-50 ppb of malaoxon with detection limits of 3 and 2 ppb, respectively (incubation 15 min). The biosensor showed high reproducibility when measurements of the substrate and inhibitor were performed (R.S.D. about 1% and 2.5%, respectively). The reliability of the inhibition measurements was confirmed by testing spiked samples of sparkling and tape waters. Copyright © 2011 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Hai, E-mail: hai.yan@utexas.edu; Zou, Yi; Yang, Chun-Ju
A method for the dense integration of high sensitivity photonic crystal (PC) waveguide based biosensors is proposed and experimentally demonstrated on a silicon platform. By connecting an additional PC waveguide filter to a PC microcavity sensor in series, a transmission passband is created, containing the resonances of the PC microcavity for sensing purpose. With proper engineering of the passband, multiple high sensitivity PC microcavity sensors can be integrated into microarrays and be interrogated simultaneously between a single input and a single output port. The concept was demonstrated with a 2-channel L55 PC biosensor array containing PC waveguide filters. The experimentmore » showed that the sensors on both channels can be monitored simultaneously from a single output spectrum. Less than 3 dB extra loss for the additional PC waveguide filter is observed.« less
NASA Astrophysics Data System (ADS)
Park, Seon Joo; Song, Hyun Seok; Kwon, Oh Seok; Chung, Ji Hyun; Lee, Seung Hwan; An, Ji Hyun; Ahn, Sae Ryun; Lee, Ji Eun; Yoon, Hyeonseok; Park, Tai Hyun; Jang, Jyongsik
2014-03-01
The development of molecular detection that allows rapid responses with high sensitivity and selectivity remains challenging. Herein, we demonstrate the strategy of novel bio-nanotechnology to successfully fabricate high-performance dopamine (DA) biosensor using DA Receptor-containing uniform-particle-shaped Nanovesicles-immobilized Carboxylated poly(3,4-ethylenedioxythiophene) (CPEDOT) NTs (DRNCNs). DA molecules are commonly associated with serious diseases, such as Parkinson's and Alzheimer's diseases. For the first time, nanovesicles containing a human DA receptor D1 (hDRD1) were successfully constructed from HEK-293 cells, stably expressing hDRD1. The nanovesicles containing hDRD1 as gate-potential modulator on the conducting polymer (CP) nanomaterial transistors provided high-performance responses to DA molecule owing to their uniform, monodispersive morphologies and outstanding discrimination ability. Specifically, the DRNCNs were integrated into a liquid-ion gated field-effect transistor (FET) system via immobilization and attachment processes, leading to high sensitivity and excellent selectivity toward DA in liquid state. Unprecedentedly, the minimum detectable level (MDL) from the field-induced DA responses was as low as 10 pM in real- time, which is 10 times more sensitive than that of previously reported CP based-DA biosensors. Moreover, the FET-type DRNCN biosensor had a rapid response time (<1 s) and showed excellent selectivity in human serum.
Ramon-Marquez, Teresa; Medina-Castillo, Antonio L; Fernandez-Gutierrez, Alberto; Fernandez-Sanchez, Jorge F
2018-09-01
In this study, we have optimised the sterically directed attachment of biomolecules on the surface of coaxial membranes prepared by co-electrospinning which have been proved to be a material with very high performance for the development of biosensors with optical oxygen transduction. Uricase has been used as model enzyme. Two sterically directed strategies: a) covalent attachment via maleimide, and b) affinity bonding via biotin-streptavidin interaction, have been tested in order to preserve the enzymatic activity of uricase and to improve the analytical figures of merits on the determination of uric acid. The best results were obtained with biotin-streptavidin affinity interaction and using a biotinylation reagent containing a polyethylene glycol chain. The developed biosensor showed high sensitivity towards uric acid with a detection limit of 0.5 µM, a quantification limit of 1.8 µM and linear range from 1.8 to 250 µM. The applicability of the membrane as biosensor with optical oxygen transduction was proved by determining uric acid in serum samples. The obtained results showed a good correlation (0.999) with those obtained by an external reference laboratory. Copyright © 2018 Elsevier B.V. All rights reserved.
Ultra-low current biosensor output detection using portable electronic reader
NASA Astrophysics Data System (ADS)
Yahaya, N. A. N.; Rajapaksha, R. D. A. A.; Uda, M. N. Afnan; Hashim, U.
2017-09-01
Generally, the electrical biosensor usually shows extremely low current signal output around pico ampere to microampere range. In this research, electronic reader with amplifier has been demonstrated to detect ultra low current via the biosensor. The operational amplifier Burr-Brown OPA 128 and Arduino Uno board were used to construct the portable electronic reader. There are two cascaded inverting amplifier were used to detect ultra low current through the biosensor from pico amperes (pA) to nano amperes ranges (nA). A small known input current was form by applying variable voltage between 0.1V to 5.0V across a 5GΩ high resistor to check the amplifier circuit. The amplifier operation was measured with the high impedance current source and has been compared with the theoretical measurement. The Arduino Uno was used to convert the analog signal to digital signal and process the data to display on reader screen. In this project, Proteus software was used to design and test the circuit. Then it was implemented together with Arduino Uno board. Arduino board was programmed using C programming language to make whole circuit communicate each order. The current was measured then it shows a small difference values compared to theoretical values, which is approximately 14pA.
Xiang, Dong; Yin, Longwei; Ma, Jingyun; Guo, Enyan; Li, Qun; Li, Zhaoqiang; Liu, Kegao
2015-01-21
Nanocomposites of NiFex embedded in ordered mesoporous carbon (OMC) (x = 0, 1, 2) were prepared by a wet impregnation and hydrogen reduction process and were used to construct electrochemical biosensors for the amperometric detection of hydrogen peroxide (H2O2) or glucose. The NiFe2/OMC nanocomposites were demonstrated to have a large surface area, suitable mesoporous channels, many edge-plane-like defective sites, and a good distribution of alloyed nanoparticles. The NiFe2/OMC and Nafion modified glass carbon electrode (GCE) exhibited excellent electrocatalytic activities toward the reduction of H2O2 as well. By utilizing it as a bioplatform, GOx (glucose oxidase) cross-linked with Nafion was immobilized on the surface of the electrode for the construction of an amperometric glucose biosensor. Our results indicated that the amperometric hydrogen peroxide biosensor (NiFe2/OMC + Nafion + GCE) showed good analytical performances in term of a high sensitivity of 4.29 μA mM(-1) cm(-2), wide linearity from 6.2 to 42,710 μM and a low detection limit of 0.24 μM at a signal-to-noise ratio of 3 (S/N = 3). This biosensor exhibited excellent selectivity, high stability and negligible interference for the detection of H2O2. In addition, the immobilized enzyme on NiFe2/OMC + Nafion + GCE, retaining its bioactivity, exhibited a reversible two-proton and two-electron transfer reaction, a fast heterogeneous electron transfer rate and an effective Michaelis-Menten constant (K) (3.18 mM). The GOx + NiFe2/OMC + Nafion + GCE could be used to detect glucose based on the oxidation of glucose catalyzed by GOx and exhibited a wide detection range of 48.6-12,500 μM with a high sensitivity of 6.9 μA mM(-1) cm(-2) and a low detection limit of 2.7 μM (S/N = 3). The enzymic biosensor maintained a high selectivity and stability features, and shows great promise for application in the detection of glucose.
Development of biosensors based on the one-dimensional semiconductor nanomaterials.
Yan, Shancheng; Shi, Yi; Xiao, Zhongdang; Zhou, Minmin; Yan, Wenfu; Shen, Haoliang; Hu, Dong
2012-09-01
Biosensors are becoming increasingly important due to their applications in biological and chemical analyses, food safety industry, biomedical diagnostics, clinical detection, and environmental monitoring. Recent years, nanostructured semiconductor materials have been used to fabricate biosensors owing to their biocompatibility, low toxicity, high electron mobility, and easy fabrication. In the present study, we focus on recent various biosensors based on the one-dimensional semiconductor nanomaterials such as electrochemical biosensor, field-effect transistors biosensor, and label-free optical biosensor. In particular, the development of the electrochemical biosensor is discussed detailedly.
Nanomaterial-based Electrochemical Sensors for the Detection of Glucose and Cholesterol
NASA Astrophysics Data System (ADS)
Ahmadalinezhad, Asieh
Electrochemical detection methods are highly attractive for the monitoring of glucose, cholesterol, cancer, infectious diseases, and biological warfare agents due to their low cost, high sensitivity, functionality despite sample turbidity, easy miniaturization via microfabrication, low power requirements, and a relatively simple control infrastructure. The development of implantable biosensors is laden with great challenges, which include longevity and inherent biocompatibility, coupled with the continuous monitoring of analytes. Deficiencies in any of these areas will necessitate their surgical replacement. In addition, random signals arising from non-specific adsorption events can cause problems in diagnostic assays. Hence, a great deal of effort has been devoted to the specific control of surface structures. Nanotechnology involves the creation and design of structures with at least one dimension that is below 100 nm. The optical, magnetic, and electrical properties of nanostructures may be manipulated by altering their size, shape, and composition. These attributes may facilitate improvements in biocompatibility, sensitivity and the specific attachment of biomaterials. Thus, the central theme of this dissertation pertains to highlighting the critical roles that are played by the morphology and intrinsic properties of nanomaterials when they are applied in the development of electrochemical biosensors. For this PhD project, we initially designed and fabricated a novel amperometric glucose biosensor based on the immobilization of glucose oxidase (GOx) on a Prussian blue modified nanoporous gold surface, which exhibited a rapid response and a low detection limit of 2.5 microM glucose. The sensitivity of the biosensor was found to be very high (177 microA/mM) and the apparent Michaelis--Menten constant was calculated to be 2.1 mM. Our study has demonstrated that nanoporous gold provides an excellent matrix for enzyme immobilization. To adopt these advanced properties, we fabricated a highly sensitive and mediator-free electrochemical biosensor for the determination of total cholesterol. The developed biosensor possessed high selectivity and sensitivity (29.33 microA mM--1cm --2). The apparent Michaelis--Menten constant, KappM of this biosensor was very low (0.64 mM), which originated from both the effective immobilization process and the nanoporous structure of the substrate. The biosensor exhibited a wide linear range, up to 300 mg dL--1 , in a physiological environment (pH 7.4); making it a promising candidate for the clinical determination of cholesterol. The fabricated biosensor was tested further by utilizing actual food samples (e.g., margarine, butter and fish oil). The results indicated that it has the potential capacity to be employed as a facile cholesterol detection tool in the food industry and for supplement quality control. To enhance the stability of the biosensors in the continuous monitoring of glucose, we designed a novel platform that was based on buckypaper. The fabricated biosensor responded to glucose with a considerable functional lifetime of over 80 days and detected glucose with a dynamic linear range of over 9 mM with a detection limit of 0.01 mM. To investigate the effects of the physical dimensions of nanomaterials on electrochemical biosensing, we synthesized TiO2 nanowires with controllable dimensions via a facile thermal oxidation treatment of a Ti substrate. To improve the conductivity of the TiO2 nanowires and to facilitate the immobilization of enzymes, a thin layer of carbon was deposited onto the TiO2 nanowires via a chemical vapour deposition method. Upon the immobilization of glucose oxidase as a model protein, direct electron transfer was observed in a mediator-free biosensing environment. Our electrochemical studies have revealed that the electron transfer rate of the immobilized glucose oxidase is strongly dependent on the dimensions of the carbonized TiO 2 nanowires, and that the designed glucose biosensor exhibits a wide linear range, up to 18 mM glucose, as well as high sensitivity and selectivity. Glucose measurements of human serum using the developed biosensor showed excellent agreement with the data recorded by a commercial blood glucose monitoring assay. Finally, we fabricated an enzyme-free glucose sensor based on nanoporous palladium-cadmium (PdCd) networks. A hydrothermal method was applied in the synthesis of PdCd nanomaterials. The effect of the composition of the PdCd nanomaterials on the performance of the electrode was investigated by cyclic voltammetry (CV). Amperometric studies showed that the nanoporous PdCd electrode was responsive to the direct oxidation of glucose with high electrocatalytic activity. The sensitivity of the sensor for continuous glucose monitoring was 146.21 microAmM--1cm--2, with linearity up to 10 mM and a detection limit of 0.05 mM. In summary, the electrochemical biosensors proposed in my PhD study exhibited high sensitivity and selectivity for the continuous monitoring of analytes in the presence of common interference species. Our results have shown that the performance of the biosensors is significantly dependent on the dimensions and morphologies of nanostructured materials. The unique nanomaterials-based platforms proposed in this dissertation open the door to the design and fabrication of high-performance electrochemical biosensors for medical diagnostics.
Dependence of seed layer thickness on sensitivity of nano-ZnO cholesterol biosensor
NASA Astrophysics Data System (ADS)
Lu, Yang-Ming; Wang, Po-Chin; Tang, Jian-Fu; Chu, Sheng-Yuan
2017-01-01
The anemone-like ZnO nanostructures have been synthesized by hydrothermal method and were further adsorbed immobilized cholesterol oxidase (ChOx) as a nano-biosensor. In this study, the sensitivity of biosensor were improved by varying the thickness of the ZnO seed layer. The SEM analysis showed changes in thickness of seed layer will not affect the morphologies of anemone-like ZnO nanostructures. The X-ray Diffraction patterns showed that the (002) plane of anemone-like ZnO grown on various thickness of the seed layer was more prouded than other crystal plane. Abioelectrode (ChOx/ZnO/ITO/glass) grown on the 30nm of ZnO seed layer with high sensitivity of 57.533μAmM-1cm-2 (1.488 μA (mg/dl) -1cm-2), a wide sensitive range from 25 to 500 mg/dl. It is concluded that the thinner sputtered ZnO seed layer for growing anemone-like ZnO nanostructure can effectively improve the sensitivity of the ZnO biosensor.
Two-dimensional Layered MoS2 Biosensors Enable Highly Sensitive Detection of Biomolecules
NASA Astrophysics Data System (ADS)
Lee, Joonhyung; Dak, Piyush; Lee, Yeonsung; Park, Heekyeong; Choi, Woong; Alam, Muhammad A.; Kim, Sunkook
2014-12-01
We present a MoS2 biosensor to electrically detect prostate specific antigen (PSA) in a highly sensitive and label-free manner. Unlike previous MoS2-FET-based biosensors, the device configuration of our biosensors does not require a dielectric layer such as HfO2 due to the hydrophobicity of MoS2. Such an oxide-free operation improves sensitivity and simplifies sensor design. For a quantitative and selective detection of PSA antigen, anti-PSA antibody was immobilized on the sensor surface. Then, introduction of PSA antigen, into the anti-PSA immobilized sensor surface resulted in a lable-free immunoassary format. Measured off-state current of the device showed a significant decrease as the applied PSA concentration was increased. The minimum detectable concentration of PSA is 1 pg/mL, which is several orders of magnitude below the clinical cut-off level of ~4 ng/mL. In addition, we also provide a systematic theoretical analysis of the sensor platform - including the charge state of protein at the specific pH level, and self-consistent channel transport. Taken together, the experimental demonstration and the theoretical framework provide a comprehensive description of the performance potential of dielectric-free MoS2-based biosensor technology.
Barsan, Madalina M; David, Melinda; Florescu, Monica; Ţugulea, Laura; Brett, Christopher M A
2014-10-01
The layer-by-layer (LbL) technique has been used for the construction of a new enzyme biosensor. Multilayer films containing glucose oxidase, GOx, and nitrogen-doped graphene (NG) dispersed in the biocompatible positively-charged polymer chitosan (chit(+)(NG+GOx)), together with the negatively charged polymer poly(styrene sulfonate), PSS(-), were assembled by alternately immersing a gold electrode substrate in chit(+)(NG+GOx) and PSS(-) solutions. Gravimetric monitoring during LbL assembly by an electrochemical quartz microbalance enabled investigation of the adsorption mechanism and deposited mass for each monolayer. Cyclic voltammetry and electrochemical impedance spectroscopy were used to characterize the LbL modified electrodes, in order to establish the contribution of each monolayer to the overall electrochemical properties of the biosensor. The importance of NG in the biosensor architecture was evaluated by undertaking a comparative study without NG in the chit layer. The GOx biosensor's analytical properties were evaluated by fixed potential chronoamperometry and compared with similar reported biosensors. The biosensor operates at a low potential of -0.2V vs., Ag/AgCl, exhibiting a high sensitivity of 10.5 μA cm(-2) mM(-1), and a detection limit of 64 μM. This study shows a simple approach in developing new biosensor architectures, combining the advantages of nitrogen-doped graphene with the LbL technique for enzyme immobilization. Copyright © 2014 Elsevier B.V. All rights reserved.
Photonic crystals: emerging biosensors and their promise for point-of-care applications.
Inan, Hakan; Poyraz, Muhammet; Inci, Fatih; Lifson, Mark A; Baday, Murat; Cunningham, Brian T; Demirci, Utkan
2017-01-23
Biosensors are extensively employed for diagnosing a broad array of diseases and disorders in clinical settings worldwide. The implementation of biosensors at the point-of-care (POC), such as at primary clinics or the bedside, faces impediments because they may require highly trained personnel, have long assay times, large sizes, and high instrumental cost. Thus, there exists a need to develop inexpensive, reliable, user-friendly, and compact biosensing systems at the POC. Biosensors incorporated with photonic crystal (PC) structures hold promise to address many of the aforementioned challenges facing the development of new POC diagnostics. Currently, PC-based biosensors have been employed for detecting a variety of biotargets, such as cells, pathogens, proteins, antibodies, and nucleic acids, with high efficiency and selectivity. In this review, we provide a broad overview of PCs by explaining their structures, fabrication techniques, and sensing principles. Furthermore, we discuss recent applications of PC-based biosensors incorporated with emerging technologies, including telemedicine, flexible and wearable sensing, smart materials and metamaterials. Finally, we discuss current challenges associated with existing biosensors, and provide an outlook for PC-based biosensors and their promise at the POC.
Electronic Biosensors Based on III-Nitride Semiconductors.
Kirste, Ronny; Rohrbaugh, Nathaniel; Bryan, Isaac; Bryan, Zachary; Collazo, Ramon; Ivanisevic, Albena
2015-01-01
We review recent advances of AlGaN/GaN high-electron-mobility transistor (HEMT)-based electronic biosensors. We discuss properties and fabrication of III-nitride-based biosensors. Because of their superior biocompatibility and aqueous stability, GaN-based devices are ready to be implemented as next-generation biosensors. We review surface properties, cleaning, and passivation as well as different pathways toward functionalization, and critically analyze III-nitride-based biosensors demonstrated in the literature, including those detecting DNA, bacteria, cancer antibodies, and toxins. We also discuss the high potential of these biosensors for monitoring living cardiac, fibroblast, and nerve cells. Finally, we report on current developments of covalent chemical functionalization of III-nitride devices. Our review concludes with a short outlook on future challenges and projected implementation directions of GaN-based HEMT biosensors.
Highly sensitive graphene biosensor by monomolecular self-assembly of receptors on graphene surface
NASA Astrophysics Data System (ADS)
Kim, Ji Eun; No, Young Hyun; Kim, Joo Nam; Shin, Yong Seon; Kang, Won Tae; Kim, Young Rae; Kim, Kun Nyun; Kim, Yong Ho; Yu, Woo Jong
2017-05-01
Graphene has attracted a great deal of interest for applications in bio-sensing devices because of its ultra-thin structure, which enables strong electrostatic coupling with target molecules, and its excellent electrical mobility promising for ultra-fast sensing speeds. However, thickly stacked receptors on the graphene's surface interrupts electrostatic coupling between graphene and charged biomolecules, which can reduce the sensitivity of graphene biosensors. Here, we report a highly sensitive graphene biosensor by the monomolecular self-assembly of designed peptide protein receptors. The graphene channel was non-covalently functionalized using peptide protein receptors via the π-π interaction along the graphene's Bravais lattice, allowing ultra-thin monomolecular self-assembly through the graphene lattice. In thickness dependent characterization, a graphene sensor with a monomolecular receptor (thickness less than 3 nm) showed five times higher sensitivity and three times higher voltage shifts than graphene sensors with thick receptor stacks (thicknesses greater than 20 nm), which is attributed to excellent gate coupling between graphene and streptavidin via an ultrathin receptor insulator. In addition to having a fast-inherent response time (less than 0.6 s) based on fast binding speed between biotin and streptavidin, our graphene biosensor is a promising platform for highly sensitive real-time monitoring of biomolecules with high spatiotemporal resolution.
NASA Astrophysics Data System (ADS)
Hoa Nguyen, Thi; Dieu Thuy Ung, Thi; Hien Vu, Thi; Tran, Thi Kim Chi; Quyen Dong, Van; Khang Dinh, Duy; Liem Nguyen, Quang
2012-09-01
This report highlights the fabrication of fluorescence biosensors based on CdTe quantum dots (QDs) for specific detection of H5N1 avian influenza virus. The core biosensor was composed of (i) the highly luminescent CdTe/CdS QDs, (ii) chromatophores extracted from bacteria Rhodospirillum rubrum, and (iii) the antibody of β-subunit. This core part was linked to the peripheral part of the biosensor via a biotin-streptavidin-biotin bridge and finally connected to the H5N1 antibody to make it ready for detecting H5N1 avian influenza virus. Detailed studies of each constituent were performed showing the image of QDs-labeled chromatophores under optical microscope, proper photoluminescence (PL) spectra of CdTe/CdS QDs, chromatophores and the H5N1 avian influenza viruses.
Ngounou, Bertrand; Aliyev, Elchin H; Guschin, Dmitrii A; Sultanov, Yusif M; Efendiev, Ayaz A; Schuhmann, Wolfgang
2007-09-01
The integration of flexible anchoring groups bearing imidazolyl or pyridyl substituents into the structure of electrodeposition paints (EDP) is the basis for the parallel synthesis of a library containing 107 members of different cathodic and anodic EDPs with a high variation in polymer properties. The obtained EDPs were used as immobilization matrix for biosensor fabrication using glucose oxidase as a model enzyme. Amperometric glucose sensors based on the different EDPs showed a wide variation in their sensor characteristics with respect to the apparent Michaelis-Menten constant (KM(app)) representing the linear measuring range and the maximum current (Imax(app)). Based on these results first assumptions concerning the impact of different side chains in the EDP on the expected biosensor properties could be obtained allowing for an improved rational optimization of EDPs used as immobilization matrix in amperometric biosensors.
A platform of BRET-FRET hybrid biosensors for optogenetics, chemical screening, and in vivo imaging.
Komatsu, Naoki; Terai, Kenta; Imanishi, Ayako; Kamioka, Yuji; Sumiyama, Kenta; Jin, Takashi; Okada, Yasushi; Nagai, Takeharu; Matsuda, Michiyuki
2018-06-12
Genetically encoded biosensors based on the principle of Förster resonance energy transfer comprise two major classes: biosensors based on fluorescence resonance energy transfer (FRET) and those based on bioluminescence energy transfer (BRET). The FRET biosensors visualize signaling-molecule activity in cells or tissues with high resolution. Meanwhile, due to the low background signal, the BRET biosensors are primarily used in drug screening. Here, we report a protocol to transform intramolecular FRET biosensors to BRET-FRET hybrid biosensors called hyBRET biosensors. The hyBRET biosensors retain all properties of the prototype FRET biosensors and also work as BRET biosensors with dynamic ranges comparable to the prototype FRET biosensors. The hyBRET biosensors are compatible with optogenetics, luminescence microplate reader assays, and non-invasive whole-body imaging of xenograft and transgenic mice. This simple protocol will expand the use of FRET biosensors and enable visualization of the multiscale dynamics of cell signaling in live animals.
Chhasatia, Rinku; Sweetman, Martin J; Harding, Frances J; Waibel, Michaela; Kay, Tom; Thomas, Helen; Loudovaris, Thomas; Voelcker, Nicolas H
2017-05-15
A label-free porous silicon (pSi) based, optical biosensor, using both an antibody and aptamer bioreceptor motif has been developed for the detection of insulin. Two parallel biosensors were designed and optimised independently, based on each bioreceptor. Both bioreceptors were covalently attached to a thermally hydrosilylated pSi surface though amide coupling, with unreacted surface area rendered stable and low fouling by incorporation of PEG moieties. The insulin detection ability of each biosensor was determined using interferometric reflectance spectroscopy, using a range of different media both with and without serum. Sensing performance was compared in terms of response value, response time and limit of detection (LOD) for each platform. In order to demonstrate the capability of the best performing biosensor to detect insulin from real samples, an in vitro investigation with the aptamer-modified surface was performed. This biosensor was exposed to buffer conditioned by glucose-stimulated human islets, with the result showing a positive response and a high degree of selectivity towards insulin capture. The obtained results correlated well with the ELISA used in the clinic for assaying glucose-stimulated insulin release from donor islets. We anticipate that this type of sensor can be applied as a rapid point-of-use biosensor to assess the quality of donor islets in terms of their insulin production efficiency, prior to transplantation. Copyright © 2017 Elsevier B.V. All rights reserved.
Xi, Fengna; Liu, Lijun; Chen, Zhichun; Lin, Xianfu
2009-05-15
A simple and controllable electrodeposition approach was established for one-step construction of novel reagentless biosensors by in situ formation of chitosan-carbon nanotubes-nile blue-horseradish peroxidase (CS-CNTs-NB-HRP) biocomposite film on electrode surface. The mediator effect of NB, conducting performance of CNTs and the biocompatible microenvironment of CS were combined by such one-step non-manual process. NB could interact with CNTs and resulted in good dispersion of CNTs-NB nanocomposites in aqueous solution. Cyclic voltammetry measurements demonstrated that electrons were efficiently shuttled between HRP and the electrode mediated by NB. The developed reagentless biosensor exhibited a fast amperometric response for the determination of H(2)O(2) and 95% of the steady-state current was obtained within 2s. The linear response of the reagentless biosensor for the determination of H(2)O(2) ranged from 1.0 x 10(-6) to 2.4 x 10(-4)mol l(-1) with a detection limit of 1.2 x 10(-7)mol l(-1). The biosensor exhibited high reproducibility and long-time storage stability. The as-prepared biosensor also showed effective anti-interference capability. The ease of the one-step non-manual technique and the promising feature of the biocomposite could serve as a versatile platform for fabricating electrochemical biosensors.
Bio-inspired patterned networks (BIPS) for development of wearable/disposable biosensors
NASA Astrophysics Data System (ADS)
McLamore, E. S.; Convertino, M.; Hondred, John; Das, Suprem; Claussen, J. C.; Vanegas, D. C.; Gomes, C.
2016-05-01
Here we demonstrate a novel approach for fabricating point of care (POC) wearable electrochemical biosensors based on 3D patterning of bionanocomposite networks. To create Bio-Inspired Patterned network (BIPS) electrodes, we first generate fractal network in silico models that optimize transport of network fluxes according to an energy function. Network patterns are then inkjet printed onto flexible substrate using conductive graphene ink. We then deposit fractal nanometal structures onto the graphene to create a 3D nanocomposite network. Finally, we biofunctionalize the surface with biorecognition agents using covalent bonding. In this paper, BIPS are used to develop high efficiency, low cost biosensors for measuring glucose as a proof of concept. Our results on the fundamental performance of BIPS sensors show that the biomimetic nanostructures significantly enhance biosensor sensitivity, accuracy, response time, limit of detection, and hysteresis compared to conventional POC non fractal electrodes (serpentine, interdigitated, and screen printed electrodes). BIPs, in particular Apollonian patterned BIPS, represent a new generation of POC biosensors based on nanoscale and microscale fractal networks that significantly improve electrical connectivity, leading to enhanced sensor performance.
Wang, Zonghua; Yan, Zhiyong; Wang, Feng; Cai, Jibao; Guo, Lei; Su, Jiakun; Liu, Yang
2017-11-15
A turn-on photoelectrochemical (PEC) biosensor based on the surface defect recognition and multiple signal amplification of metal-organic frameworks (MOFs) was proposed for highly sensitive protein kinase activity analysis and inhibitor evaluation. In this strategy, based on the phosphorylation reaction in the presence of protein kinase A (PKA), the Zr-based metal-organic frameworks (UiO-66) accommodated with [Ru(bpy) 3 ] 2+ photoactive dyes in the pores were linked to the phosphorylated kemptide modified TiO 2 /ITO electrode through the chelation between the Zr 4+ defects on the surface of UiO-66 and the phosphate groups in kemptide. Under visible light irradiation, the excited electrons from [Ru(bpy) 3 ] 2+ adsorbed in the pores of UiO-66 injected into the TiO 2 conduction band to generate photocurrent, which could be utilized for protein kinase activities detection. The large surface area and high porosities of UiO-66 facilitated a large number of [Ru(bpy) 3 ] 2+ that increased the photocurrent significantly, and afforded a highly sensitive PEC analysis of kinase activity. The detection limit of the as-proposed PEC biosensor was 0.0049UmL -1 (S/N!=!3). The biosensor was also applied for quantitative kinase inhibitor evaluation and PKA activities detection in MCF-7 cell lysates. The developed visible-light PEC biosensor provides a simple detection procedure and a cost-effective manner for PKA activity assays, and shows great potential in clinical diagnosis and drug discoveries. Copyright © 2017 Elsevier B.V. All rights reserved.
QCM-nanomagnetic beads biosensor for lead ion detection.
Zhang, Qingli; Cui, Haixia; Xiong, Xingliang; Chen, Jun; Wang, Ying; Shen, Jia; Luo, Yiting; Chen, Longcong
2018-01-15
As lead poses a serious threat to humans even in small amounts, all kinds of lead detection sensors with high sensitivity and selectivity are being constantly improved and put forward. In this report, a novel, simple and label-free quartz crystal microbalance (QCM) biosensor is proposed for detecting lead ions (Pb 2+ ). The biosensor takes full advantage of the high specificity of GR-5 DNAzyme to Pb 2+ and the high sensitivity of QCM. In particular, nanomagnetic beads (NMBs) are used as a novel and effective mean of signal amplification in the biosensor because of their mass and their ability to enhance the inductive effect, which are very beneficial for both higher sensitivity and a lower detection limit. In practice, GR-5 DNAzyme, innovatively combined with NMBs, was modified on the gold electrode of the QCM through gold-sulfur self-assembly. When the electrode was exposed to Pb 2+ solution, DNAzyme was severed into two parts at the RNA site (rA), along with the release of NMBs, which caused a great increase in frequency shift of the QCM electrode. Finally, a perfect linear correlation between the logarithm of Pb 2+ concentration and the change in frequency was obtained from 1 pM to 50 nM, with a detection limit as low as 0.3 pM. Moreover, the biosensor shows both an average recovery of 97 ± 6% in a drinking water sample and an excellent specificity for Pb 2+ compared with other metal ions.
Zhou, Ming; Shang, Li; Li, Bingling; Huang, Lijian; Dong, Shaojun
2008-11-15
In this work, the excellent catalytic activity of highly ordered mesoporous carbons (OMCs) to the electrooxidation of nicotinamide adenine dinucleotide (NADH) and hydrogen peroxide (H(2)O(2)) was described for the construction of electrochemical alcohol dehydrogenase (ADH) and glucose oxidase (GOD)-based biosensors. The high density of edge-plane-like defective sites and high specific surface area of OMCs could be responsible for the electrocatalytic behavior at OMCs modified glassy carbon electrode (OMCs/GE), which induced a substantial decrease in the overpotential of NADH and H(2)O(2) oxidation reaction compared to carbon nanotubes modified glassy carbon electrode (CNTs/GE). Such ability of OMCs permits effective low-potential amperometric biosensing of ethanol and glucose, respectively, at Nafion/ADH-OMCs/GE and Nafion/GOD-OMCs/GE. Especially, as an amperometric glucose biosensor, Nafion/GOD-OMCs/GE showed large determination range (500-15,000 micromoll(-1)), high sensitivity (0.053 nA micromol(-1)), fast (9+/-1s) and stable response (amperometric response retained 90% of the initial activity after 10h stirring of 2 mmoll(-1) glucose solution) to glucose as well as the effective discrimination to the possible interferences, which may make it to readily satisfy the need for the routine clinical diagnosis of diabetes. By comparing the electrochemical performance of OMCs with that of CNTs as electrode material for the construction of ADH- and GOD-biosensors in this work, we reveal that OMCs could be a favorable and promising carbon electrode material for constructing other electrochemical dehydrogenase- and oxidase-based biosensors, which may have wide potential applications in biocatalysis, bioelectronics and biofuel cells.
Yu, J Q; Liu, X F; Chin, L K; Liu, A Q; Luo, K Q
2013-07-21
To better understand how hyperglycemia induces endothelial cell dysfunction under the diabetic conditions, a hemodynamic microfluidic chip system was developed. The system combines a caspase-3-based fluorescence resonance energy transfer (FRET) biosensor cell line which can detect endothelial cell apoptosis in real-time, post-treatment effect and with a limited cell sample, by using a microfluidic chip which can mimic the physiological pulsatile flow profile in the blood vessel. The caspase-3-based FRET biosensor endothelial cell line (HUVEC-C3) can produce a FRET-based sensor protein capable of probing caspase-3 activation. When the endothelial cells undergo apoptosis, the color of the sensor cells changes from green to blue, thus sensing apoptosis. A double-labeling fluorescent technique (yo pro-1 and propidium iodide) was used to validate the findings revealed by the FRET-based caspase sensor. The results show high rates of apoptosis and necrosis of endothelial cells when high glucose concentration was applied in our hemodynamic microfluidic chip combined with an exhaustive pulsatile flow profile. The two apoptosis detection techniques (fluorescent method and FRET biosensor) are comparable; but FRET biosensor offers more advantages such as real-time observation and a convenient operating process to generate more accurate and reliable data. Furthermore, the activation of the FRET biosensor also confirms the endothelial cell apoptosis induced by the abnormal pulsatile shear stress and high glucose concentration is through caspase-3 pathway. A 12% apoptotic rate (nearly a 4-fold increase compared to the static condition) was observed when the endothelial cells were exposed to a high glucose concentration of 20 mM under 2 h exhaustive pulsatile shear stress of 30 dyne cm(-2) and followed with another 10 h normal pulsatile shear stress of 15 dyne cm(-2). Therefore, the most important finding of this study is to develop a novel endothelial cell apoptosis detection method, which combines the microfluidic chip system and FRET biosensor. This finding may provide new insight into how glucose causes endothelial cell dysfunction, which is the major cause of diabetes-derived complications.
Adaptive cancellation of motion artifact in wearable biosensors.
Yousefi, Rasoul; Nourani, Mehrdad; Panahi, Issa
2012-01-01
The performance of wearable biosensors is highly influenced by motion artifact. In this paper, a model is proposed for analysis of motion artifact in wearable photoplethysmography (PPG) sensors. Using this model, we proposed a robust real-time technique to estimate fundamental frequency and generate a noise reference signal. A Least Mean Square (LMS) adaptive noise canceler is then designed and validated using our synthetic noise generator. The analysis and results on proposed technique for noise cancellation shows promising performance.
Nandini, Seetharamaiah; Nalini, Seetharamaiah; Reddy, M B Madhusudana; Suresh, Gurukar Shivappa; Melo, Jose Savio; Niranjana, Pathappa; Sanetuntikul, Jakkid; Shanmugam, Sangaraju
2016-08-01
This manuscript reports a new approach for the synthesis of one dimensional gold nanostructure (AuNs) and its application in the development of cholesterol biosensor. Au nanostructures have been synthesized by exploiting β-diphenylalanine (β-FF) as an sacrificial template, whereas the Au nanoparticles (AuNPs) were synthesized by ultrasound irradiation. X-ray diffractometer (XRD), scanning electron microscope (SEM) and energy dispersive analysis of X-rays (EDAX) have been employed to characterize the morphology and composition of the prepared samples. With the aim to develop a highly sensitive cholesterol biosensor, cholesterol oxidase (ChOx) was immobilized on AuNs which were appended on the graphite (Gr) electrode via chemisorption onto thiol-functionalized graphene oxide (GO-SH). This Gr/GO-SH/AuNs/ChOx biosensor has been characterized using cyclic voltammetry (CV), electrochemical impedance spectroscopy and chronoamperometry. CV results indicated a direct electron transfer between the enzyme and the electrode surface. A new potentiostat intermitant titration technique (PITT) has been studied to determine the diffusion coefficient and maxima potential value. The proposed biosensor showed rapid response, high sensitivity, wide linear range and low detection limit. Furthermore, our AuNs modified electrode showed excellent selectivity, repeatability, reproducibility and long term stability. The proposed electrode has also been used successfully to determine cholesterol in serum samples. Copyright © 2016 Elsevier B.V. All rights reserved.
Gholivand, Mohammad Bagher; Khodadadian, Mehdi
2014-03-15
Cholesterol oxidase (ChOx) and catalase (CAT) were co-immobilized on a graphene/ionic liquid-modified glassy carbon electrode (GR-IL/GCE) to develop a highly sensitive amperometric cholesterol biosensor. The H2O2 generated during the enzymatic reaction of ChOx with cholesterol could be reduced electrocatalytically by immobilized CAT to obtain a sensitive amperometric response to cholesterol. The direct electron transfer between enzymes and electrode surface was investigated by cyclic voltammetry. Both enzymes showed well-defined redox peaks with quasi-reversible behaviors. An excellent sensitivity of 4.163 mA mM(-1)cm(-2), a response time less than 6s, and a linear range of 0.25-215 μM (R(2)>0.99) have been observed for cholesterol determination using the proposed biosensor. The apparent Michaelis-Menten constant (KM(app)) was calculated to be 2.32 mM. The bienzymatic cholesterol biosensor showed good reproducibility (RSDs<5%) with minimal interference from the coexisting electroactive compounds such as ascorbic acid and uric acid. The CAT/ChOx/GR-IL/GCE showed excellent analytical performance for the determination of free cholesterol in human serum samples. © 2013 Elsevier B.V. All rights reserved.
A glucose biosensor based on partially unzipped carbon nanotubes.
Hu, Huifang; Feng, Miao; Zhan, Hongbing
2015-08-15
An amperometric glucose biosensor based on direct electron transfer of glucose oxidase (GOD) self-assembled on the surface of partially unzipped carbon nanotubes (PUCNTs) modified glassy carbon electrode (GCE) has been successfully fabricated. PUCNTs were synthesized via a facile chemical oxidative etching CNTs and used as a novel immobilization matrix for GOD. The cyclic voltammetric result of the PUCNT/GOD/GCE showed a pair of well-defined and quasi-reversible redox peaks with a formal potential of -0.470V and a peak to peak separation of 37mV, revealing that the fast direct electron transfer between GOD and the electrode has been achieved. It is notable that the glucose determination has been achieved in mediator-free condition. The developed biosensor displayed satisfactory analytical performance toward glucose including high sensitivity (19.50μA mM(-1)cm(-2)), low apparent Michaelis-Menten (5.09mM), a wide linear range of 0-17mM, and also preventing the interference from ascorbic acid, uric acid and dopamine usually coexisting with glucose in human blood. In addition, the biosensor acquired excellent storage stabilities. This facile, fast, environment-friendly and economical preparation strategy of PUCNT-GOD may provide a new platform for the fabrication of biocompatible glucose biosensors and other types of biosensors. Copyright © 2015 Elsevier B.V. All rights reserved.
Fluorescent carbon nanoparticle-based lateral flow biosensor for ultrasensitive detection of DNA.
Takalkar, Sunitha; Baryeh, Kwaku; Liu, Guodong
2017-12-15
We report a fluorescent carbon nanoparticle (FCN)-based lateral flow biosensor for ultrasensitive detection of DNA. Fluorescent carbon nanoparticle with a diameter of around 15nm was used as a tag to label a detection DNA probe, which was complementary with the part of target DNA. A capture DNA probe was immobilized on the test zone of the lateral flow biosensor. Sandwich-type hybridization reactions among the FCN-labeled DNA probe, target DNA and capture DNA probe were performed on the lateral flow biosensor. In the presence of target DNA, FCNs were captured on the test zone of the biosensor and the fluorescent intensity of the captured FCNs was measured with a portable fluorescent reader. After systematic optimizations of experimental parameters (the components of running buffers, the concentration of detection DNA probe used in the preparation of FCN-DNA conjugates, the amount of FCN-DNA dispensed on the conjugate pad and the dispensing cycles of the capture DNA probes on the test-zone), the biosensor could detect a minimum concentration of 0.4 fM DNA. This study provides a rapid and low-cost approach for DNA detection with high sensitivity, showing great promise for clinical application and biomedical diagnosis. Copyright © 2017 Elsevier B.V. All rights reserved.
Wang, Juan; Yao, Hong-Bin; He, Dian; Zhang, Chuan-Ling; Yu, Shu-Hong
2012-04-01
Electrospun nanofibrous mats are intensively studied as efficient scaffold materials applied in the fields of tissue engineering, catalysis, and biosensors due to their flexibility and porosity. In this paper, we report a facile route to fabricate gold nanoparticles-poly(vinyl alcohol) (Au NPs-PVA) hybrid water stable nanofibrous mats with tunable densities of Au NPs and further demonstrate the potential application of as-prepared Au NPs-PVA nanofibrous mats as efficient biosensor substrate materials. First, through the designed in situ cross-linkage in coelectrospun PVA-glutaraldehyde nanofibers, water insoluble PVA nanofibrous mats with suitable tensile strength were successfully prepared. Then, 3-mercaptopropyltrimethoxysilane (MPTES) was modified on the surface of obtained PVA nanofibrous films, which triggered successful homogeneous decoration of Au NPs through gold-sulfur bonding interactions. Finally, the Au NPs-PVA nanofibrous mats embedded with horseradish peroxidase (HRP) by electrostatic interactions were used as biosensor substrate materials for H(2)O(2) detection. The fabricated HRP-Au NPs/PVA biosensor showed a highly sensitive detection of H(2)O(2) with a detection limit of 0.5 μM at a signal-to-noise ratio of 3. By modifying other different functional nanaoparticles or enzyme on the PVA nanofibrous film will further expand their potential applications as substrate materials of different biosensors.
Analytical Parameters of an Amperometric Glucose Biosensor for Fast Analysis in Food Samples.
Artigues, Margalida; Abellà, Jordi; Colominas, Sergi
2017-11-14
Amperometric biosensors based on the use of glucose oxidase (GOx) are able to combine the robustness of electrochemical techniques with the specificity of biological recognition processes. However, very little information can be found in literature about the fundamental analytical parameters of these sensors. In this work, the analytical behavior of an amperometric biosensor based on the immobilization of GOx using a hydrogel (Chitosan) onto highly ordered titanium dioxide nanotube arrays (TiO₂NTAs) has been evaluated. The GOx-Chitosan/TiO₂NTAs biosensor showed a sensitivity of 5.46 μA·mM -1 with a linear range from 0.3 to 1.5 mM; its fundamental analytical parameters were studied using a commercial soft drink. The obtained results proved sufficient repeatability (RSD = 1.9%), reproducibility (RSD = 2.5%), accuracy (95-105% recovery), and robustness (RSD = 3.3%). Furthermore, no significant interferences from fructose, ascorbic acid and citric acid were obtained. In addition, the storage stability was further examined, after 30 days, the GOx-Chitosan/TiO₂NTAs biosensor retained 85% of its initial current response. Finally, the glucose content of different food samples was measured using the biosensor and compared with the respective HPLC value. In the worst scenario, a deviation smaller than 10% was obtained among the 20 samples evaluated.
NASA Astrophysics Data System (ADS)
Li, Jia-dong; Cheng, Jun-jie; Miao, Bin; Wei, Xiao-wei; Xie, Jie; Zhang, Jin-cheng; Zhang, Zhi-qiang; Wu, Dong-min
2014-07-01
In order to improve the sensitivity of AlGaN/GaN high electron mobility transistor (HEMT) biosensors, a simple biomolecule-gated AlGaN/GaN HEMT structure was designed and successfully fabricated for prostate specific antigen (PSA) detection. UV/ozone was used to oxidize the GaN surface and then a 3-aminopropyl trimethoxysilane (APTES) self-assembled monolayer was bound to the sensing region. This monolayer serves as a binding layer for attachment of the prostate specific antibody (anti-PSA). The biomolecule-gated AlGaN/GaN HEMT sensor shows a rapid and sensitive response when the target prostate-specific antigen in buffer solution was added to the antibody-immobilized sensing area. The current change showed a logarithm relationship against the PSA concentration from 0.1 pg/ml to 0.993 ng/ml. The sensitivity of 0.215% is determined for 0.1 pg/ml PSA solution. The above experimental result of the biomolecule-gated AlGaN/GaN HEMT biosensor suggested that this biosensor might be a useful tool for prostate cancer screening.
Vanegas, Diana C; Patiño, Laksmi; Mendez, Connie; Oliveira, Daniela Alves de; Torres, Alba M; Gomes, Carmen L; McLamore, Eric S
2018-04-24
In foods, high levels of biogenic amines (BA) are the result of microbial metabolism that could be affected by temperatures and storage conditions. Thus, the level of BA is commonly used as an indicator of food safety and quality. This manuscript outlines the development of laser scribed graphene electrodes, with locally sourced materials, for reagent-free food safety biosensing. To fabricate the biosensors, the graphene surface was functionalized with copper microparticles and diamine oxidase, purchased from a local supermarket; and then compared to biosensors fabricated with analytical grade materials. The amperometric biosensor exhibits good electrochemical performance, with an average histamine sensitivity of 23.3 µA/mM, a lower detection limit of 11.6 µM, and a response time of 7.3 s, showing similar performance to biosensors constructed from analytical grade materials. We demonstrated the application of the biosensor by testing total BA concentration in fish paste samples subjected to fermentation with lactic acid bacteria. Biogenic amines concentrations prior to lactic acid fermentation were below the detection limit of the biosensor, while concentration after fermentation was 19.24 ± 8.21 mg histamine/kg, confirming that the sensor was selective in a complex food matrix. The low-cost, rapid, and accurate device is a promising tool for biogenic amine estimation in food samples, particularly in situations where standard laboratory techniques are unavailable, or are cost prohibitive. This biosensor can be used for screening food samples, potentially limiting food waste, while reducing chances of foodborne outbreaks.
Progress in chemical luminescence-based biosensors: A critical review.
Roda, Aldo; Mirasoli, Mara; Michelini, Elisa; Di Fusco, Massimo; Zangheri, Martina; Cevenini, Luca; Roda, Barbara; Simoni, Patrizia
2016-02-15
Biosensors are a very active research field. They have the potential to lead to low-cost, rapid, sensitive, reproducible, and miniaturized bioanalytical devices, which exploit the high binding avidity and selectivity of biospecific binding molecules together with highly sensitive detection principles. Of the optical biosensors, those based on chemical luminescence detection (including chemiluminescence, bioluminescence, electrogenerated chemiluminescence, and thermochemiluminescence) are particularly attractive, due to their high-to-signal ratio and the simplicity of the required measurement equipment. Several biosensors based on chemical luminescence have been described for quantitative, and in some cases multiplex, analysis of organic molecules (such as hormones, drugs, pollutants), proteins, and nucleic acids. These exploit a variety of miniaturized analytical formats, such as microfluidics, microarrays, paper-based analytical devices, and whole-cell biosensors. Nevertheless, despite the high analytical performances described in the literature, the field of chemical luminescence biosensors has yet to demonstrate commercial success. This review presents the main recent advances in the field and discusses the approaches, challenges, and open issues, with the aim of stimulating a broader interest in developing chemical luminescence biosensors and improving their commercial exploitation. Copyright © 2015 Elsevier B.V. All rights reserved.
A protocatechuate biosensor for Pseudomonas putida KT2440 via promoter and protein evolution.
Jha, Ramesh K; Bingen, Jeremy M; Johnson, Christopher W; Kern, Theresa L; Khanna, Payal; Trettel, Daniel S; Strauss, Charlie E M; Beckham, Gregg T; Dale, Taraka
2018-06-01
Robust fluorescence-based biosensors are emerging as critical tools for high-throughput strain improvement in synthetic biology. Many biosensors are developed in model organisms where sophisticated synthetic biology tools are also well established. However, industrial biochemical production often employs microbes with phenotypes that are advantageous for a target process, and biosensors may fail to directly transition outside the host in which they are developed. In particular, losses in sensitivity and dynamic range of sensing often occur, limiting the application of a biosensor across hosts. Here we demonstrate the optimization of an Escherichia coli- based biosensor in a robust microbial strain for the catabolism of aromatic compounds, Pseudomonas putida KT2440, through a generalizable approach of modulating interactions at the protein-DNA interface in the promoter and the protein-protein dimer interface. The high-throughput biosensor optimization approach demonstrated here is readily applicable towards other allosteric regulators.
Affinity Biosensors for Detection of Mycotoxins in Food.
Evtugyn, Gennady; Subjakova, Veronika; Melikishvili, Sopio; Hianik, Tibor
2018-01-01
This chapter reviews recent achievements in methods of detection of mycotoxins in food. Special focus is on the biosensor technology that utilizes antibodies and nucleic acid aptamers as receptors. Development of biosensors is based on the immobilization of antibodies or aptamers onto various conventional supports like gold layer, but also on nanomaterials such as graphene oxide, carbon nanotubes, and quantum dots that provide an effective platform for achieving high sensitivity of detection using various physical methods, including electrochemical, mass sensitive, and optical. The biosensors developed so far demonstrate high sensitivity typically in subnanomolar limit of detection. Several biosensors have been validated in real samples. The sensitivity of biosensors is similar and, in some cases, even better than traditional analytical methods such as ELISA or chromatography. We believe that future trends will be focused on improving biosensor properties toward practical application in food industry. © 2018 Elsevier Inc. All rights reserved.
A protocatechuate biosensor for Pseudomonas putida KT2440 via promoter and protein evolution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jha, Ramesh K.; Bingen, Jeremy M.; Johnson, Christopher W.
Robust fluorescence-based biosensors are emerging as critical tools for high-throughput strain improvement in synthetic biology. Many biosensors are developed in model organisms where sophisticated synthetic biology tools are also well established. However, industrial biochemical production often employs microbes with phenotypes that are advantageous for a target process, and biosensors may fail to directly transition outside the host in which they are developed. In particular, losses in sensitivity and dynamic range of sensing often occur, limiting the application of a biosensor across hosts. In this study, we demonstrate the optimization of an Escherichia coli-based biosensor in a robust microbial strain formore » the catabolism of aromatic compounds, Pseudomonas putida KT2440, through a generalizable approach of modulating interactions at the protein-DNA interface in the promoter and the protein-protein dimer interface. The high-throughput biosensor optimization approach demonstrated here is readily applicable towards other allosteric regulators.« less
A protocatechuate biosensor for Pseudomonas putida KT2440 via promoter and protein evolution
Jha, Ramesh K.; Bingen, Jeremy M.; Johnson, Christopher W.; ...
2018-06-01
Robust fluorescence-based biosensors are emerging as critical tools for high-throughput strain improvement in synthetic biology. Many biosensors are developed in model organisms where sophisticated synthetic biology tools are also well established. However, industrial biochemical production often employs microbes with phenotypes that are advantageous for a target process, and biosensors may fail to directly transition outside the host in which they are developed. In particular, losses in sensitivity and dynamic range of sensing often occur, limiting the application of a biosensor across hosts. In this study, we demonstrate the optimization of an Escherichia coli-based biosensor in a robust microbial strain formore » the catabolism of aromatic compounds, Pseudomonas putida KT2440, through a generalizable approach of modulating interactions at the protein-DNA interface in the promoter and the protein-protein dimer interface. The high-throughput biosensor optimization approach demonstrated here is readily applicable towards other allosteric regulators.« less
Lu, Lu
2018-07-01
Electrochemical (bio)sensors have attracted much attention due to their high sensitivity, fast response time, biocompatibility, low cost and easy miniaturization. Specially, ever-growing necessity and interest have given rise to the fast development of electrochemical (bio)sensors for the detection of small biomolecules. They play enormous roles in the life processes with various biological function, such as life signal transmission, genetic expression and metabolism. Moreover, their amount in body can be used as an indicator for diagnosis of many diseases. For example, an abnormal concentration of blood glucose can indicate hyperglycemia or hypoglycemia. Graphene (GR) shows great applications in electrochemical (bio)sensors. Compared with two-dimensional (2D) GR that is inclined to stack together due to the strong π-π interaction, monolithic 3D porous GR has larger specific area, superior mechanical strength, better stability, higher conductivity and electrocatalytic activity. So they attracted more and increasing attention as sensing materials for small biomolecules. This review focuses on the recent advances and strategies in the fabrication methods of 3D porous GR and the development of various electrochemical (bio)sensors based on porous GR and its nanocomposites for the detection of small biomolecules. The challenges and future efforts direction of high-performance electrochemical (bio)sensors based on 3D porous GR for more sensitive analysis of small biomolecules are discussed and proposed. It will give readers an overall understanding of their progress and provide some theoretical guidelines for their future efforts and development. Copyright © 2018 Elsevier B.V. All rights reserved.
BIOSENSORS FOR ENVIRONMENTAL MONITORING: A REGULATORY PERSPECTIVE
Biosensors show the potential to complement laboratory-based analytical methods for environmental applications. Although biosensors for potential environmental-monitoring applications have been reported for a wide range of environmental pollutants, from a regulatory perspective, ...
Electrochemical Glucose Biosensor of Platinum Nanospheres Connected by Carbon Nanotubes
Claussen, Jonathan C.; Kim, Sungwon S.; Haque, Aeraj ul; Artiles, Mayra S.; Porterfield, D. Marshall; Fisher, Timothy S.
2010-01-01
Background Glucose biosensors comprised of nanomaterials such as carbon nanotubes (CNTs) and metallic nanoparticles offer enhanced electrochemical performance that produces highly sensitive glucose sensing. This article presents a facile biosensor fabrication and biofunctionalization procedure that utilizes CNTs electrochemically decorated with platinum (Pt) nanospheres to sense glucose amperometrically with high sensitivity. Method Carbon nanotubes are grown in situ by microwave plasma chemical vapor deposition (MPCVD) and electro-chemically decorated with Pt nanospheres to form a CNT/Pt nanosphere composite biosensor. Carbon nanotube electrodes are immobilized with fluorescently labeled bovine serum albumin (BSA) and analyzed with fluorescence microscopy to demonstrate their biocompatibility. The enzyme glucose oxidase (GOX) is immobilized onto the CNT/Pt nanosphere biosensor by a simple drop-coat method for amperometric glucose sensing. Results Fluorescence microscopy demonstrates the biofunctionalization capability of the sensor by portraying adsorption of fluorescently labeled BSA unto MPCVD-grown CNT electrodes. The subsequent GOX–CNT/Pt nanosphere biosensor demonstrates a high sensitivity toward H2O2 (7.4 μA/mM/cm2) and glucose (70 μA/mM/cm2), with a glucose detection limit and response time of 380 nM (signal-to-noise ratio = 3) and 8 s (t90%), respectively. The apparent Michaelis–Menten constant (0.64 mM) of the biosensor also reflects the improved sensitivity of the immobilized GOX/nanomaterial complexes. Conclusions The GOX–CNT/Pt nanosphere biosensor outperforms similar CNT, metallic nanoparticle, and more conventional carbon-based biosensors in terms of glucose sensitivity and detection limit. The biosensor fabrication and biofunctionalization scheme can easily be scaled and adapted for microsensors for physiological research applications that require highly sensitive glucose sensing. PMID:20307391
Electrochemical glucose biosensor of platinum nanospheres connected by carbon nanotubes.
Claussen, Jonathan C; Kim, Sungwon S; Haque, Aeraj Ul; Artiles, Mayra S; Porterfield, D Marshall; Fisher, Timothy S
2010-03-01
Glucose biosensors comprised of nanomaterials such as carbon nanotubes (CNTs) and metallic nanoparticles offer enhanced electrochemical performance that produces highly sensitive glucose sensing. This article presents a facile biosensor fabrication and biofunctionalization procedure that utilizes CNTs electrochemically decorated with platinum (Pt) nanospheres to sense glucose amperometrically with high sensitivity. Carbon nanotubes are grown in situ by microwave plasma chemical vapor deposition (MPCVD) and electro-chemically decorated with Pt nanospheres to form a CNT/Pt nanosphere composite biosensor. Carbon nanotube electrodes are immobilized with fluorescently labeled bovine serum albumin (BSA) and analyzed with fluorescence microscopy to demonstrate their biocompatibility. The enzyme glucose oxidase (GO(X)) is immobilized onto the CNT/Pt nanosphere biosensor by a simple drop-coat method for amperometric glucose sensing. Fluorescence microscopy demonstrates the biofunctionalization capability of the sensor by portraying adsorption of fluorescently labeled BSA unto MPCVD-grown CNT electrodes. The subsequent GO(X)-CNT/Pt nanosphere biosensor demonstrates a high sensitivity toward H(2)O(2) (7.4 microA/mM/cm(2)) and glucose (70 microA/mM/cm(2)), with a glucose detection limit and response time of 380 nM (signal-to-noise ratio = 3) and 8 s (t(90%)), respectively. The apparent Michaelis-Menten constant (0.64 mM) of the biosensor also reflects the improved sensitivity of the immobilized GO(X)/nanomaterial complexes. The GO(X)-CNT/Pt nanosphere biosensor outperforms similar CNT, metallic nanoparticle, and more conventional carbon-based biosensors in terms of glucose sensitivity and detection limit. The biosensor fabrication and biofunctionalization scheme can easily be scaled and adapted for microsensors for physiological research applications that require highly sensitive glucose sensing. (c) 2010 Diabetes Technology Society.
A creatinine biosensor based on admittance measurement
NASA Astrophysics Data System (ADS)
Ching, Congo Tak-Shing; Sun, Tai-Ping; Jheng, Deng-Yun; Tsai, Hou-Wei; Shieh, Hsiu-Li
2015-08-01
Regular check of blood creatinine level is very important as it is a measurement of renal function. Therefore, the objective of this study is to develop a simple and reliable creatinine biosensor based on admittance measurement for precise determination of creatinine. The creatinine biosensor was fabricated with creatinine deiminase immobilized on screen-printed carbon electrodes. Admittance measurement at a specific frequency ranges (22.80 - 84.71 Hz) showed that the biosensor has an excellent linear (r2 > 0.95) response range (50 - 250 uM), which covers the normal physiological and pathological ranges of blood creatinine levels. Intraclass correlation coefficient (ICC) showed that the biosensor has excellent reliability and validity (ICC = 0.98). In conclusion, a simple and reliable creatinine biosensor was developed and it is capable of precisely determining blood creatinine levels in both the normal physiological and pathological ranges.
Devasenathipathy, Rajkumar; Mani, Veerappan; Chen, Shen-Ming; Huang, Sheng-Tung; Huang, Tsung-Tao; Lin, Chun-Mao; Hwa, Kuo-Yuan; Chen, Ting-Yo; Chen, Bo-Jun
2015-10-01
Biopolymer pectin stabilized gold nanoparticles were prepared at graphene and multiwalled carbon nanotubes (GR-MWNTs/AuNPs) and employed for the determination of glucose. The formation of GR-MWNTs/AuNPs was confirmed by scanning electron microscopy, X-ray diffraction, UV-vis and FTIR spectroscopy methods. Glucose oxidase (GOx) was successfully immobilized on GR-MWNTs/AuNPs film and direct electron transfer of GOx was investigated. GOx exhibits highly enhanced redox peaks with formal potential of -0.40 V (vs. Ag/AgCl). The amount of electroactive GOx and electron transfer rate constant were found to be 10.5 × 10(-10) mol cm(-2) and 3.36 s(-1), respectively, which were significantly larger than the previous reports. The fabricated amperometric glucose biosensor sensitively detects glucose and showed two linear ranges: (1) 10 μM - 2 mM with LOD of 4.1 μM, (2) 2 mM - 5.2 mM with LOD of 0.95 mM. The comparison of the biosensor performance with reported sensors reveals the significant improvement in overall sensor performance. Moreover, the biosensor exhibited appreciable stability, repeatability, reproducibility and practicality. The other advantages of the fabricated biosensor are simple and green fabrication approach, roughed and stable electrode surface, fast in sensing and highly reproducible. Copyright © 2015 Elsevier Inc. All rights reserved.
Kim, Jungkil; Park, Shin-Young; Kim, Sung; Lee, Dae Hun; Kim, Ju Hwan; Kim, Jong Min; Kang, Hee; Han, Joong-Soo; Park, Jun Woo; Lee, Hosun; Choi, Suk-Ho
2016-08-18
Single-Si-nanowire (NW)-based DNA sensors have been recently developed, but their sensitivity is very limited because of high noise signals, originating from small source-drain current of the single Si NW. Here, we demonstrate that chemical-vapor-deposition-grown large-scale graphene/surface-modified vertical-Si-NW-arrays junctions can be utilized as diode-type biosensors for highly-sensitive and -selective detection of specific oligonucleotides. For this, a twenty-seven-base-long synthetic oligonucleotide, which is a fragment of human DENND2D promoter sequence, is first decorated as a probe on the surface of vertical Si-NW arrays, and then the complementary oligonucleotide is hybridized to the probe. This hybridization gives rise to a doping effect on the surface of Si NWs, resulting in the increase of the current in the biosensor. The current of the biosensor increases from 19 to 120% as the concentration of the target DNA varies from 0.1 to 500 nM. In contrast, such biosensing does not come into play by the use of the oligonucleotide with incompatible or mismatched sequences. Similar results are observed from photoluminescence microscopic images and spectra. The biosensors show very-uniform current changes with standard deviations ranging ~1 to ~10% by ten-times endurance tests. These results are very promising for their applications in accurate, selective, and stable biosensing.
Wang, Huan; Wang, Xiaomei; Wang, Jue; Fu, Weiling; Yao, Chunyan
2016-01-01
The detection of tumor markers is very important in early cancer diagnosis; however, tumor markers are usually present at very low concentrations, especially in the early stages of tumor development. Surface plasmon resonance (SPR) is widely used to detect biomolecular interactions; it has inherent advantages of being high-throughput, real-time, and label-free technique. However, its sensitivity needs essential improvement for practical applications. In this study, we developed a signal amplification strategy using antibody-quantum dot (QD) conjugates for the sensitive and quantitative detection of α-fetoprotein (AFP), carcinoembryonic antigen (CEA) and cytokeratin fragment 21-1 (CYFRA 21-1) in clinical samples. The use of a dual signal amplification strategy using AuNP-antibody and antibody-QD conjugates increased the signal amplification by 50-folds. The constructed SPR biosensor showed a detection limit as low as 0.1 ng/mL for AFP, CEA, and CYFRA 21-1. Moreover, the results obtained using this SPR biosensor were consistent with those obtained using the electrochemiluminescence method. Thus, the constructed SPR biosensor provides a highly sensitive and specific approach for the detection of tumor markers. This SPR biosensor can be expected to be readily applied for the detection of other tumor markers and can offer a potentially powerful solution for tumor screening. PMID:27615417
Torati, Sri Ramulu; Reddy, Venu; Yoon, Seok Soo; Kim, CheolGi
2016-04-15
The template assisted electrochemical deposition technique was used for the synthesis of gold nanotubes array (AuNTsA). The morphological structure of the synthesized AuNTsA was observed by scanning electron microscopy and found that the individual nanotubes are around 1.5 μm in length with a diameter of 200 nm. Nanotubes are vertically aligned to the Au thick film, which is formed during the synthesis process of nanotubes. The electrochemical performance of the AuNTsA was compared with the bare Au electrode and found that AuNTsA has better electron transfer surface than bare Au electrode which is due to the high surface area. Hence, the AuNTsA was used as an electrode for the fabrication of DNA hybridization biosensor for detection of Mycobacterium Tuberculosis DNA. The DNA hybridization biosensor constructed by AuNTsA electrode was characterized by cyclic voltammetry technique with Fe(CN)6(3-/4-) as an electrochemical redox indicator. The selectivity of the fabricated biosensor was illustrated by hybridization with complementary DNA and non-complementary DNA with probe DNA immobilized AuNTsA electrode using methylene blue as a hybridization indicator. The developed electrochemical DNA biosensor shows good linear range of complementary DNA concentration from 0.01 ng/μL to 100 ng/μL with high detection limit. Copyright © 2015 Elsevier B.V. All rights reserved.
Single Nanochannel-Aptamer-Based Biosensor for Ultrasensitive and Selective Cocaine Detection.
Wang, Jian; Hou, Jue; Zhang, Huacheng; Tian, Ye; Jiang, Lei
2018-01-17
Ultrasensitive and selective detection of molecules at nano or sub-nanomolar level is very important for many areas such as early diagnosis and drug testing. Herein, we report a high-sensitive cocaine sensor based on a single nanochannel coupled with DNA aptamers. The single nanochannel-aptamer-based biosensor can recognize cocaine molecules with an excellent sensitivity and good selectivity. A linear relationship between target cocaine concentration and output ionic current is obtained in a wide concentration range of cocaine from 1 nM to 10 μM. The cocaine sensor also shows a detection limit down to 1 nM. This study provides a new avenue to develop new nanochannel-aptamer-based biosensors for rapid and ultratrace detection of a variety of illicit drugs.
Translating University Biosensor Research to a High School Laboratory Experience
ERIC Educational Resources Information Center
Heldt, Caryn L.; Bank, Alex; Turpeinen, Dylan; King, Julia A.
2016-01-01
The need to increase science, technology, engineering, and mathematics (STEM) graduates is great. To interest more students into STEM degrees, we made our graphene biosensor research portable, inexpensive, and safe to demonstrate technology development to high school students. The students increased their knowledge of biosensors and proteins, and…
NASA Astrophysics Data System (ADS)
Ahmad, Rafiq; Tripathy, Nirmalya; Ahn, Min-Sang; Hahn, Yoon-Bong
2017-04-01
This study demonstrates a highly stable, selective and sensitive uric acid (UA) biosensor based on high aspect ratio zinc oxide nanorods (ZNRs) vertical grown on electrode surface via a simple one-step low temperature solution route. Uricase enzyme was immobilized on the ZNRs followed by Nafion covering to fabricate UA sensing electrodes (Nafion/Uricase-ZNRs/Ag). The fabricated electrodes showed enhanced performance with attractive analytical response, such as a high sensitivity of 239.67 μA cm-2 mM-1 in wide-linear range (0.01-4.56 mM), rapid response time (~3 s), low detection limit (5 nM), and low value of apparent Michaelis-Menten constant (Kmapp, 0.025 mM). In addition, selectivity, reproducibility and long-term storage stability of biosensor was also demonstrated. These results can be attributed to the high aspect ratio of vertically grown ZNRs which provides high surface area leading to enhanced enzyme immobilization, high electrocatalytic activity, and direct electron transfer during electrochemical detection of UA. We expect that this biosensor platform will be advantageous to fabricate ultrasensitive, robust, low-cost sensing device for numerous analyte detection.
Hierarchically mesostructured porous TiO2 hollow nanofibers for high performance glucose biosensing.
Guo, Qiaohui; Liu, Lijuan; Zhang, Man; Hou, Haoqing; Song, Yonghai; Wang, Huadong; Zhong, Baoying; Wang, Li
2017-06-15
Effective immobilization of enzymes on an electrode surface is of great importance for biosensor development, but it still remains challenging because enzymes tend to denaturation and/or form close-packed structures. In this work, a free-standing TiO 2 hollow nanofibers (HNF-TiO 2 ) was successfully prepared by a simple and scalable electrospun nanofiber film template-assisted sol-gel method, and was further explored for glucose oxidase (GOD) immobilization and biosensing. This porous and nanotubular HNF-TiO 2 provides a well-defined hierarchical nanostructure for GOD loading, and the fine TiO 2 nanocrystals facilitate direct electron transfer from GOD to the electrode, also the strong interaction between GOD and HNF-TiO 2 greatly enhances the stability of the biosensor. The as-prepared glucose biosensors show good sensing performances both in O 2 -free and O 2 -containing conditions with good sensitivity, satisfactory selectivity, long-term stability and sound reliability. The novel textile formation, porous and hierarchically mesostructured nature of HNF-TiO 2 with excellent analytical performances make it a superior platform for the construction of high-performance glucose biosensors. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Lin; Zhang, Aidong; Du, Dan
2012-07-13
We demonstrate a facile procedure to efficiently prepare Prussian blue nanocubes/reduced graphene oxide (PBNCs/rGO) nanocomposite by directly mixing Fe3+ and [Fe(CN)6]3 in the presence of GO in polyethyleneimine aqueous solution, resulting in a novel acetylcholinesterase (AChE) biosensor for detection of organophosphorus pesticides (OPs). The obtained nanocomposite was characterized by X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and energy dispersive X-ray (EDX) microanalysis. It was clearly observed that the nanosheet has been decorated with cubic PB nanoparticles and nearly all the nanoparticles are distributed uniformly only on the surface of the reduced GO. No isolated PB nanoparticles were observed, indicatingmore » the strong interaction between PB nanocubes and the reduced GO and the formation of PBNCs/rGO nanocomposite. The obtained PBNCs/rGO based AChE biosensor make the peak potential shift negatively to 220 mV. The AChE biosensor shows rapid response and high sensitivity for detection of monocrotophos. These results suggest that the PBNCs/rGO hybrids nanocomposite exhibited high electrocatalytic activity towards the oxidation of thiocholine, which lead to the sensitive detection of OP pesticides.« less
Magnetically-refreshable receptor platform structures for reusable nano-biosensor chips
NASA Astrophysics Data System (ADS)
Yoo, Haneul; Lee, Dong Jun; Cho, Dong-guk; Park, Juhun; Nam, Ki Wan; Tak Cho, Young; Park, Jae Yeol; Chen, Xing; Hong, Seunghun
2016-01-01
We developed a magnetically-refreshable receptor platform structure which can be integrated with quite versatile nano-biosensor structures to build reusable nano-biosensor chips. This structure allows one to easily remove used receptor molecules from a biosensor surface and reuse the biosensor for repeated sensing operations. Using this structure, we demonstrated reusable immunofluorescence biosensors. Significantly, since our method allows one to place receptor molecules very close to a nano-biosensor surface, it can be utilized to build reusable carbon nanotube transistor-based biosensors which require receptor molecules within a Debye length from the sensor surface. Furthermore, we also show that a single sensor chip can be utilized to detect two different target molecules simply by replacing receptor molecules using our method. Since this method does not rely on any chemical reaction to refresh sensor chips, it can be utilized for versatile biosensor structures and virtually-general receptor molecular species.
Parthasarathy, P; Vivekanandan, S
2018-12-01
Uric acid biosensors for arthritis disease has been developed for the specific selection of uricase enzyme film thickness coated over the TiO 2 -CeO 2 nano-composite matrix is modelled mathematically. This model is purely based on R-diffusion conditions with irreversible first-order catalytic reactions. By arithmetical method, the impact of the thickness of enzyme layer on the current response of the biosensor was explored. This article displays a structure for choice of the enzyme layer thickness, guaranteeing the adequately stable sensitivity of a biosensor in a required extent of the maximal enzymatic rate. The numerical outcomes showed subjective and sensible quantitative information for oxidation current due to uric acid also shows the maximum change in the biosensor current response due to the change in membrane thickness, which will be more suitable for uric acid biosensor for the application of arthritis disease diagnosis.
Film bulk acoustic resonators (FBARs) as biosensors: A review.
Zhang, Yi; Luo, Jikui; Flewitt, Andrew J; Cai, Zhiqiang; Zhao, Xiubo
2018-09-30
Biosensors play important roles in different applications such as medical diagnostics, environmental monitoring, food safety, and the study of biomolecular interactions. Highly sensitive, label-free and disposable biosensors are particularly desired for many clinical applications. In the past decade, film bulk acoustic resonators (FBARs) have been developed as biosensors because of their high resonant frequency and small base mass (hence greater sensitivity), lower cost, label-free capability and small size. This paper reviews the piezoelectric materials used for FBARs, the optimisation of device structures, and their applications as biosensors in a wide range of biological applications such as the detection of antigens, DNAs and small biomolecules. Their integration with microfluidic devices and high-throughput detection are also discussed. Copyright © 2018 Elsevier B.V. All rights reserved.
Biosensor discovery of thyroxine transport disrupting chemicals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marchesini, Gerardo R.; Meimaridou, Anastasia; Haasnoot, Willem
2008-10-01
Ubiquitous chemicals may interfere with the thyroid system that is essential in the development and physiology of vertebrates. We applied a surface plasmon resonance (SPR) biosensor-based screening method for the fast screening of chemicals with thyroxine (T4) transport disrupting activity. Two inhibition assays using the main thyroid hormone transport proteins, T4 binding globulin (TBG) and transthyretin (TTR), in combination with a T4-coated biosensor chip were optimized and automated for screening chemical libraries. The transport protein-based biosensor assays were rapid, high throughput and bioeffect-related. A library of 62 chemicals including the natural hormones, polychlorinated biphenyls (PCBs), polybrominated diphenylethers (PBDEs) and metabolites,more » halogenated bisphenol A (BPA), halogenated phenols, pharmaceuticals, pesticides and other potential environmentally relevant chemicals was tested with the two assays. We discovered ten new active compounds with moderate to high affinity for TBG with the TBG assay. Strikingly, the most potent binding was observed with hydroxylated metabolites of the brominated diphenyl ethers (BDEs) BDE 47, BDE 49 and BDE 99, that are commonly found in human plasma. The TTR assay confirmed the activity of previously identified hydroxylated metabolites of PCBs and PBDEs, halogenated BPA and genistein. These results show that the hydroxylated metabolites of the ubiquitous PBDEs not only target the T4 transport at the TTR level, but also, and to a great extent, at the TBG level where most of the T4 in humans is circulating. The optimized SPR biosensor-based transport protein assay is a suitable method for high throughput screening of large libraries for potential thyroid hormone disrupting compounds.« less
Rapid detection of Salmonella Typhimurium in chicken carcass using a SPR biosensor
NASA Astrophysics Data System (ADS)
Wang, Shizhou; Lan, Yubin; Yin, Yongguang; Dasari, Thirumala R.
2005-11-01
The SPR biosensor was sensitive to the presence of Salmonella Typhimurium in chicken carcass. The selectivity of the SPR biosensor was assayed using a series of antibody concentrations and dilution series of the organism. The SPR biosensor was specific to Salmonella Typhimurium at concentrations of 106 CFU/ml. Initial results show potential for its application for pathogenic bacteria monitoring.
NASA Astrophysics Data System (ADS)
Chen, Qianwei; Sun, Tai; Song, Xuefen; Ran, Qincui; Yu, Chongsheng; Yang, Jun; Feng, Hua; Yu, Leyong; Wei, Dapeng
2017-08-01
We demonstrate a flexible biosensor for lactate detection based on l-lactate oxidase immobilized by chitosan film cross-linked with glutaraldehyde on the surface of a graphene nanowall (GNW) electrode. The oxygen-plasma technique was developed to enhance the wettability of the GNWs, and the strength of the sensor’s oxidation response depended on the concentration of lactate. First, in order to eliminate interference from other substances, biosensors were primarily tested in deionized water and displayed good electrochemical reversibility at different scan rates (20-100 mV s-1), a large index range (1.0 μM to 10.0 mM) and a low detection limit (1.0 μM) for lactate. Next, these sensors were further examined in phosphate buffer solution (to mimick human body fluids), and still exhibited high sensitivity, stability and flexibility. These results show that the GNW-based lactate biosensors possess important potential for application in clinical analysis, sports medicine and the food industry.
Goos-Hänchen effect in semiconductor metamaterial waveguide and its application as a biosensor
NASA Astrophysics Data System (ADS)
Tang, Tingting; Li, Chaoyang; Luo, Li; Zhang, Yanfen; Li, Jie
2016-06-01
We investigate Goos-Hänchen (GH) effect in a prism waveguide coupling structure with semiconductor metamaterial (SMM) of ZnGaO/ZnO multilayer and explore the possibility as a biosensor. The GH effect in three different waveguides and their performances as a refractive index sensor to detect glycerol concentration in water are analyzed. The SMM brings a periodic property of GH shift peaks which is not found in other waveguides. It is also verified that setting coupling layer of the prism waveguide coupling structure as sensing area is an effective method to significantly increase the sensitivity to refractive index variation. A schematic diagram for the biosensor configuration is designed, and the sensitivity distribution for different glycerol water index is given. Calculation results show that in the proposed biosensor the maximum sensitivity reaches 3.2 × 106 μm/RIU and resolution reaches 1.6 × 10-7 (around 1.33306) with high sensitive position sensitive detector.
Chen, Qianwei; Sun, Tai; Song, Xuefen; Ran, Qincui; Yu, Chongsheng; Yang, Jun; Feng, Hua; Yu, Leyong; Wei, Dapeng
2017-08-04
We demonstrate a flexible biosensor for lactate detection based on l-lactate oxidase immobilized by chitosan film cross-linked with glutaraldehyde on the surface of a graphene nanowall (GNW) electrode. The oxygen-plasma technique was developed to enhance the wettability of the GNWs, and the strength of the sensor's oxidation response depended on the concentration of lactate. First, in order to eliminate interference from other substances, biosensors were primarily tested in deionized water and displayed good electrochemical reversibility at different scan rates (20-100 mV s -1 ), a large index range (1.0 μM to 10.0 mM) and a low detection limit (1.0 μM) for lactate. Next, these sensors were further examined in phosphate buffer solution (to mimick human body fluids), and still exhibited high sensitivity, stability and flexibility. These results show that the GNW-based lactate biosensors possess important potential for application in clinical analysis, sports medicine and the food industry.
Lin, Songyue; Feng, Wendou; Miao, Xiaofei; Zhang, Xiangxin; Chen, Sujing; Chen, Yuanqiang; Wang, Wei; Zhang, Yining
2018-07-01
Flexible and implantable glucose biosensors are emerging technologies for continuous monitoring of blood-glucose of diabetes. Developing a flexible conductive substrates with high active surface area is critical for advancing the technology. Here, we successfully fabricate a flexible and highly sensitive nonenzymatic glucose by using DVD-laser scribed graphene (LSG) as a flexible conductively substrate. Copper nanoparticles (Cu-NPs) are electrodeposited as the catalyst. The LSG/Cu-NPs sensor demonstrates excellent catalytic activity toward glucose oxidation and exhibits a linear glucose detection range from 1 μM to 4.54 mM with high sensitivity (1.518 mA mM -1 cm -2 ) and low limit of detection (0.35 μM). Moreover, the LSG/Cu-NPs sensor shows excellent reproducibility and long-term stability. It is also highly selective toward glucose oxidation under the presence of various interfering species. Excellent flexing stability is also demonstrated by the LSG/Cu-NPs sensor, which is capable of maintaining 83.9% of its initial current after being bent against a 4-mm diameter rod for 180 times. The LSG/Cu-NPs sensor shows great potential for practical application as a nonenzymatic glucose biosensor. Meanwhile, the LSG conductive substrate provides a platform for the developing next-generation flexible and potentially implantable bioelectronics and biosensors. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Jian, Aoqun; Zou, Lu; Tang, Haiquan; Duan, Qianqian; Ji, Jianlong; Zhang, Qianwu; Zhang, Xuming; Sang, Shengbo
2017-06-01
The issue of thermal effects is inevitable for the ultrahigh refractive index (RI) measurement. A biosensor with parallel-coupled dual-microring resonator configuration is proposed to achieve high resolution and free thermal effects measurement. Based on the coupled-resonator-induced transparency effect, the design and principle of the biosensor are introduced in detail, and the performance of the sensor is deduced by simulations. Compared to the biosensor based on a single-ring configuration, the designed biosensor has a 10-fold increased Q value according to the simulation results, thus the sensor is expected to achieve a particularly high resolution. In addition, the output signal of the mathematical model of the proposed sensor can eliminate the thermal influence by adopting an algorithm. This work is expected to have great application potentials in the areas of high-resolution RI measurement, such as biomedical discoveries, virus screening, and drinking water safety.
NASA Astrophysics Data System (ADS)
Wingo, J.; Devkota, J.; Mai, T. T. T.; Nguyen, X. P.; Mukherjee, P.; Srikanth, H.; Phan, M. H.; Vietnam Academy of Science and Technology Collaboration; University of South Florida Team
2014-03-01
A precise detection of low concentrations of biomolecules attached to magnetic nanoparticles in complex biological systems is a challenging task and requires biosensors with improved sensitivity. Here, we present a highly sensitive magnetic biosensor based on the magneto-reactance (MX) effect of a Co65Fe4Ni2Si15B14 amorphous ribbon with nanohole-patterned surface for detection and quantification of anticancer drugs (Curcumin) tagged to Fe3O4 nanoparticles. The detection and quantification of Curcumin were assessed by the change in MX of the ribbon subject to varying concentrations of the functionalized Fe3O4 nanoparticles. A high capacity of the MX-based biosensor in quantitative analysis of the nanoparticles was achieved in the range of 0 - 50 ng/ml, beyond which the detection sensitivity (η) remained unchanged. The η of the biosensor reached an extremely high value of 30%, which is about 4-5 times higher than that of a magneto-impedance (MI) based biosensor. This biosensor is well suited for detection of low-concentration magnetic biomarkers in biological systems. This work was supported by was supported by the Florida Cluster for Advanced Smart Sensor Technologies, USAMRMC (Grant # W81XWH-07-1-0708), and the NSF-funded REU program at the USF.
Yang, Cheng-Hao; Kuo, Long-Sheng; Chen, Ping-Hei; Yang, Chii-Rong; Tsai, Zuo-Min
2012-01-15
This study utilized the radio frequency (RF) technology to develop a multilayered polymeric DNA sensor with the help of gold and magnetic nanoparticles. The flexible polymeric materials, poly (p-xylylene) (Parylene) and polyethylene naphtholate (PEN), were used as substrates to replace the conventional rigid substrates such as glass and silicon wafers. The multilayered polymeric RF biosensor, including the two polymer layers and two copper transmission structure layers, was developed to reduce the total sensor size and further enhance the sensitivity of the biochip in the RF DNA detection. Thioglycolic acid (TGA) was used on the surface of the proposed biochip to form a thiolate-modified sensing surface for DNA hybridization. Gold nanoparticles (AuNPs) and magnetic nanoparticles (MNPs) were used to immobilize on the surface of the biosensor to enhance overall detection sensitivity. In addition to gold nanoparticles, the magnetic nanoparticles has been demonstrated the applicability for RF DNA detection. The performance of the proposed biosensor was evaluated by the shift of the center frequency of the RF biosensor because the electromagnetic characteristic of the biosensors can be altered by the immobilized multilayer nanoparticles on the biosensor. The experimental results show that the detection limit of the DNA concentration can reach as low as 10 pM, and the largest shift of the center frequency with triple-layer AuNPs and MNPs can approach 0.9 and 0.7 GHz, respectively. Such the achievement implies that the developed biosensor can offer an alternative inexpensive, disposable, and highly sensitive option for application in biomedicine diagnostic systems because the price and size of each biochip can be effectively reduced by using fully polymeric materials and multilayer-detecting structures. Copyright © 2011 Elsevier B.V. All rights reserved.
Analytical Parameters of an Amperometric Glucose Biosensor for Fast Analysis in Food Samples
2017-01-01
Amperometric biosensors based on the use of glucose oxidase (GOx) are able to combine the robustness of electrochemical techniques with the specificity of biological recognition processes. However, very little information can be found in literature about the fundamental analytical parameters of these sensors. In this work, the analytical behavior of an amperometric biosensor based on the immobilization of GOx using a hydrogel (Chitosan) onto highly ordered titanium dioxide nanotube arrays (TiO2NTAs) has been evaluated. The GOx–Chitosan/TiO2NTAs biosensor showed a sensitivity of 5.46 μA·mM−1 with a linear range from 0.3 to 1.5 mM; its fundamental analytical parameters were studied using a commercial soft drink. The obtained results proved sufficient repeatability (RSD = 1.9%), reproducibility (RSD = 2.5%), accuracy (95–105% recovery), and robustness (RSD = 3.3%). Furthermore, no significant interferences from fructose, ascorbic acid and citric acid were obtained. In addition, the storage stability was further examined, after 30 days, the GOx–Chitosan/TiO2NTAs biosensor retained 85% of its initial current response. Finally, the glucose content of different food samples was measured using the biosensor and compared with the respective HPLC value. In the worst scenario, a deviation smaller than 10% was obtained among the 20 samples evaluated. PMID:29135931
Komatsubara, Akira T.; Matsuda, Michiyuki; Aoki, Kazuhiro
2015-01-01
Biosensors based on the principle of Förster (or fluorescence) resonance energy transfer (FRET) have been developed to visualize spatio-temporal dynamics of signalling molecules in living cells. Many of them adopt a backbone of intramolecular FRET biosensor with a cyan fluorescent protein (CFP) and yellow fluorescent protein (YFP) as donor and acceptor, respectively. However, there remains the difficulty of establishing cells stably expressing FRET biosensors with a YFP and CFP pair by lentiviral or retroviral gene transfer, due to the high incidence of recombination between YFP and CFP genes. To address this, we examined the effects of codon-diversification of YFP on the recombination of FRET biosensors introduced by lentivirus or retrovirus. The YFP gene that was fully codon-optimized to E.coli evaded the recombination in lentiviral or retroviral gene transfer, but the partially codon-diversified YFP did not. Further, the length of spacer between YFP and CFP genes clearly affected recombination efficiency, suggesting that the intramolecular template switching occurred in the reverse-transcription process. The simple mathematical model reproduced the experimental data sufficiently, yielding a recombination rate of 0.002–0.005 per base. Together, these results show that the codon-diversified YFP is a useful tool for expressing FRET biosensors by lentiviral or retroviral gene transfer. PMID:26290434
Rapid amplification/detection of nucleic acid targets utilizing a HDA/thin film biosensor.
Jenison, Robert; Jaeckel, Heidi; Klonoski, Joshua; Latorra, David; Wiens, Jacinta
2014-08-07
Thin film biosensors exploit a flat, optically coated silicon-based surface whereupon formation of nucleic acid hybrids are enzymatically transduced in a molecular thin film that can be detected by the unaided human eye under white light. While the limit of sensitivity for detection of nucleic acid targets is at sub-attomole levels (60 000 copies) many clinical specimens containing bacterial pathogens have much lower levels of analyte present. Herein, we describe a platform, termed HDA/thin film biosensor, which performs helicase-dependant nucleic acid amplification on a thin film biosensor surface to improve the limit of sensitivity to 10 copies of the mecA gene present in methicillin-resistant strains of Staphylococcus. As double-stranded DNA is unwound by helicase it was either bound by solution-phase DNA primers to be copied by DNA polymerase or hybridized to surface immobilized probe on the thin film biosensor surface to be detected. Herein, we show that amplification reactions on the thin film biosensor are equivalent to in standard thin wall tubes, with detection at the limit of sensitivity of the assay occurring after 30 minutes of incubation time. Further we validate the approach by detecting the presence of the mecA gene in methicillin-resistant Staphylococcus aureus (MRSA) from positive blood culture aliquots with high specificity (signal/noise ratio of 105).
Electrochemical affinity biosensors for detection of mycotoxins: A review.
Vidal, Juan C; Bonel, Laura; Ezquerra, Alba; Hernández, Susana; Bertolín, Juan R; Cubel, Carlota; Castillo, Juan R
2013-11-15
This review discusses the current state of electrochemical biosensors in the determination of mycotoxins in foods. Mycotoxins are highly toxic secondary metabolites produced by molds. The acute toxicity of these results in serious human and animal health problems, although it has been only since early 1960s when the first studied aflatoxins were found to be carcinogenic. Mycotoxins affect a broad range of agricultural products, most important cereals and cereal-based foods. A majority of countries, mentioning especially the European Union, have established preventive programs to control contamination and strict laws of the permitted levels in foods. Official methods of analysis of mycotoxins normally requires sophisticated instrumentation, e.g. liquid chromatography with fluorescence or mass detectors, combined with extraction procedures for sample preparation. For about sixteen years, the use of simpler and faster analytical procedures based on affinity biosensors has emerged in scientific literature as a very promising alternative, particularly electrochemical (i.e., amperometric, impedance, potentiometric or conductimetric) affinity biosensors due to their simplicity and sensitivity. Typically, electrochemical biosensors for mycotoxins use specific antibodies or aptamers as affinity ligands, although recombinant antibodies, artificial receptors and molecular imprinted polymers show potential utility. This article deals with recent advances in electrochemical affinity biosensors for mycotoxins and covers complete literature from the first reports about sixteen years ago. Copyright © 2013 Elsevier B.V. All rights reserved.
A FRET Biosensor for ROCK Based on a Consensus Substrate Sequence Identified by KISS Technology.
Li, Chunjie; Imanishi, Ayako; Komatsu, Naoki; Terai, Kenta; Amano, Mutsuki; Kaibuchi, Kozo; Matsuda, Michiyuki
2017-01-11
Genetically-encoded biosensors based on Förster/fluorescence resonance energy transfer (FRET) are versatile tools for studying the spatio-temporal regulation of signaling molecules within not only the cells but also tissues. Perhaps the hardest task in the development of a FRET biosensor for protein kinases is to identify the kinase-specific substrate peptide to be used in the FRET biosensor. To solve this problem, we took advantage of kinase-interacting substrate screening (KISS) technology, which deduces a consensus substrate sequence for the protein kinase of interest. Here, we show that a consensus substrate sequence for ROCK identified by KISS yielded a FRET biosensor for ROCK, named Eevee-ROCK, with high sensitivity and specificity. By treating HeLa cells with inhibitors or siRNAs against ROCK, we show that a substantial part of the basal FRET signal of Eevee-ROCK was derived from the activities of ROCK1 and ROCK2. Eevee-ROCK readily detected ROCK activation by epidermal growth factor, lysophosphatidic acid, and serum. When cells stably-expressing Eevee-ROCK were time-lapse imaged for three days, ROCK activity was found to increase after the completion of cytokinesis, concomitant with the spreading of cells. Eevee-ROCK also revealed a gradual increase in ROCK activity during apoptosis. Thus, Eevee-ROCK, which was developed from a substrate sequence predicted by the KISS technology, will pave the way to a better understanding of the function of ROCK in a physiological context.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Qinghong; Fang, Xiangdong; Goddard, William
2013-10-17
Mercury has been well known as an environmental pollutant to the environment and to cause serious effects on human health for several decades. To effectively control mercury pollution and reduce mercury damages, the sensitive determination of mercury is essential. Currently, many different types of sensor-based assays have been developed, while the whole-cell biosensor has been gaining increasingly attentions due to its easy reproducibility and the possibility to greatly reduce the cost. However, significant improvements on the specificity, sensitivity, stability and simplicity of the whole-cell biosensor are still needed prior to its eventual commercialization. Sponsored by US Department of Energy undermore » the contract agreement DE-FG02-07ER64410, we applied the special synthetic biology and directed evolution strategies to improve the effectiveness and performance of whole-cell biosensors. We have constructed different whole-cell biosensors for the mercuric ion and methylmercury detection with metalloregulator MerR, fluorescent protein mCherry and organomercurial lyase MerB. By introducing the mercuric transporter MerT, we were able to increase the detection sensitivity of whole-cell biosensors by at least one fold. By introducing the bio-amplification genetic circuit based on the gene cascade expression system of PRM-cI from bacteriophage l and Pm-XylS2 from Pseudomonas putida, we have increased the detection sensitivity of whole-cell biosensors by 1~2 folds in our tested conditions. With the directed evolution of MerR and subsequent high-throughput screening via color assay and microplate screening, we have dramatically increased the detection sensitivity by up to 10 folds at low concentration of mercury (II) of 1-10nM. Structural modeling and computational analysis of the mutated MerR showed that many mutations could cause the change of a loop to helix, which could be responsible for the increased mercury sensitivity.« less
Shimomura, Takeshi; Sumiya, Touru; Ono, Masatoshi; Ito, Tetsuji; Hanaoka, Taka-aki
2012-02-10
A novel amperometric biosensor for the measurement of L-lactate has been developed. The device comprises a screen-printed carbon electrode containing cobalt phthalocyanine (CoPC-SPCE), coated with lactate oxidase (LOD) that is immobilized in mesoporous silica (FSM8.0) using a polymer matrix of denatured polyvinyl alcohol; a Nafion layer on the electrode surface acts as a barrier to interferents. The sampling unit attached to the SPCE requires only a small sample volume of 100 μL for each measurement. The measurement of l-lactate is based on the signal produced by hydrogen peroxide, the product of the enzymatic reaction. The behavior of the biosensor, LOD-FSM8.0/Naf/CoPC-SPCE, was examined in terms of pH, applied potential, sensitivity and operational range, selectivity, and storage stability. The sensor showed an optimum response at a pH of 7.4 and an applied potential of +450 mV. The determination range and the response time for L-lactate were 18.3 μM to 1.5 mM and approximately 90s, respectively. In addition, the sensor exhibited high selectivity for L-lactate and was quite stable in storage, showing no noticeable change in its initial response after being stored for over 9 months. These results indicate that our method provides a simple, cost-effective, high-performance biosensor for l-lactate. Copyright © 2011 Elsevier B.V. All rights reserved.
Construction of uric acid biosensor based on biomimetic titanate nanotubes.
Tao, Haisheng; Wang, Xuebin; Wang, Xizhang; Hu, Yemin; Ma, Yanwen; Lu, Yinong; Hu, Zheng
2010-02-01
A uric acid biosensor has been fabricated through the immobilization of uricase on glassy carbon electrode modified by biomimetic titanate nanotubes of high specific surface area synthesized by hydrothermal decomposition. The so-constructed biosensor presents a high affinity to uric acid with a small apparent Michaelis-Menten constant of only 0.66 mM. The biosensor exhibits fairly good electrochemical properties such as the high sensitivity of 184.3 microAcm(-2)mM(-1), the fast response of less than 2 s, as well as the wide linear range from 1 microM to 5 mM. These performances indicate that titanate nanotubes could provide a favorable microenvironment for uricase immobilization, stabilize its biological activity, and function as an efficient electron conducting tunnel to facilitate the electron transfer. This suggests an important potential of titanate nanotubes in uric acid biosensors.
Potocký, Martin; Pleskot, Roman; Pejchar, Přemysl; Vitale, Nicolas; Kost, Benedikt; Zárský, Viktor
2014-07-01
Although phosphatidic acid (PA) is structurally the simplest membrane phospholipid, it has been implicated in the regulation of many cellular events, including cytoskeletal dynamics, membrane trafficking and stress responses. Plant PA shows rapid turnover but the information about its spatio-temporal distribution in plant cells is missing. Here we demonstrate the use of a lipid biosensor that enables us to monitor PA dynamics in plant cells. The biosensor consists of a PA-binding domain of yeast SNARE Spo20p fused to fluorescent proteins. Live-cell imaging of PA dynamics in transiently transformed tobacco (Nicotiana tabacum) pollen tubes was performed using confocal laser scanning microscopy. In growing pollen tubes, PA shows distinct annulus-like fluorescence pattern in the plasma membrane behind the extreme tip. Coexpression studies with markers for other plasmalemma signaling lipids phosphatidylinositol 4,5-bisphosphate and diacylglycerol revealed limited colocalization at the shoulders of the apex. PA distribution and concentrations show distinct responses to various lipid signaling inhibitors. Fluorescence recovery after photobleaching (FRAP) analysis suggests high PA turnover in the plasma membrane. Our data show that a biosensor based on the Spo20p-PA binding domain is suitable for live-cell imaging of PA also in plant cells. In tobacco pollen tubes, distinct subapical PA maximum corroborates its involvement in the regulation of endocytosis and actin dynamics. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.
Zhang, Yanyan; Zhang, Cong; Ma, Rui; Du, Xin; Dong, Wenhao; Chen, Yuan; Chen, Qiang
2017-06-01
The present work describes an effective strategy to fabricate a highly sensitive and selective DNA-biosensor for the determination of mercury ions (Hg 2+ ). The DNA 1 was modified onto the surface of Au electrode by the interaction between sulfydryl group and Au electrode. DNA probe is complementary with DNA 1. In the presence of Hg 2+ , the electrochemical signal increases owing to that Hg 2+ -mediated thymine bases induce the conformation of DNA probe to change from line to hairpin and less DNA probes adsorb into DNA 1. Taking advantage of its reduction property, methylene blue is considered as the signal indicating molecule. For improving the sensitivity of the biosensor, Au nanoparticles (Au NPs) modified reporter DNA 3 is used to adsorb DNA 1. Electrochemical behaviors of the biosensor were evaluated by electrochemical impedance spectroscopy and cyclic voltammetry. Several important parameters which could affect the property of the biosensor were studied and optimized. Under the optimal conditions, the biosensor exhibits wide linear range, high sensitivity and low detection limit. Besides, it displays superior selectivity and excellent stability. The biosensor was also applied for water sample detection with satisfactory result. The novel strategy of fabricating biosensor provides a potential platform for fabricating a variety of metal ions biosensors. Copyright © 2017 Elsevier B.V. All rights reserved.
Giménez-Gómez, Pablo; Gutiérrez-Capitán, Manuel; Capdevila, Fina; Puig-Pujol, Anna; Fernández-Sánchez, César; Jiménez-Jorquera, Cecilia
2016-01-28
L-lactic acid is monitored during malolactic fermentation process of wine and its evolution is strongly related with the quality of the final product. The analysis of L-lactic acid is carried out off-line in a laboratory. Therefore, there is a clear demand for analytical tools that enabled real-time monitoring of this process in field and biosensors have positioned as a feasible alternative in this regard. The development of an amperometric biosensor for L-lactate determination showing long-term stability is reported in this work. The biosensor architecture includes a thin-film gold electrochemical transducer selectively modified with an enzymatic membrane, based on a three-dimensional matrix of polypyrrole (PPy) entrapping lactate oxidase (LOX) and horseradish peroxidase (HRP) enzymes. The experimental conditions of the biosensor fabrication regarding the pyrrole polymerization and the enzymes entrapment are optimized. The biosensor response to L-lactate is linear in a concentration range of 1 × 10(-6)-1 × 10(-4) M, with a detection limit of 5.2 × 10(-7) M and a sensitivity of - (13500 ± 600) μA M(-1) cm(-2). The biosensor shows an excellent working stability, retaining more than 90% of its original sensitivity after 40 days. This is the determining factor that allowed for the application of this biosensor to monitor the malolactic fermentation of three red wines, showing a good agreement with the standard colorimetric method. Copyright © 2015 Elsevier B.V. All rights reserved.
A novel nano-photonics biosensor concept for rapid molecular diagnostics
NASA Astrophysics Data System (ADS)
Klunder, Dion J. W.; van Herpen, Maarten M. J. W.; Kolesnychenko, Aleksey; Hornix, Eefje; Kahya, Nicoletta; de Boer, Ruth; Stapert, Henk
2008-04-01
We present a novel nano-photonics biosensor concept that offers an ultra-high surface specificity and excellent suppression of background signals due to the sample fluid on top of the biosensor. In our contribution, we will briefly discuss the operation principle and fabrication of the biosensor, followed by a more detailed discussion on the experimentally determined performance parameters. Recent results on detection of fluorescently labeled molecules in a highly fluorescent background will be shown, and we will give an outlook on real-time detection of bio-molecules such as proteins and nucleic acids.
NASA Astrophysics Data System (ADS)
Zhang, Jian; Yu, Xin; Guo, Weibo; Qiu, Jichuan; Mou, Xiaoning; Li, Aixue; Liu, Hong
2016-04-01
The demand for a highly sensitive and selective glucose biosensor which can be used for implantable or on-time monitoring is constantly increasing. In this work, TiO2 nanorods were synthesized in situ on the surface of graphite microfibers to yield TiO2 nanorod/graphite microfiber hybrid electrodes. The TiO2 nanorods not only retain the high activity of the immobilized glucose molecule, but also promote the direct electron transfer process on the electrode surface. As a working electrode in an electrochemical glucose biosensor in a flowing system, the microfiber hybrid electrodes exhibit high sensitivity, selectivity and stability. Due to its simplicity, low cost, high stability, and unique morphology, the TiO2 nanorod/graphite microfiber hybrid electrode is expected to be an excellent candidate for an implantable biosensor or for in situ flow monitoring.The demand for a highly sensitive and selective glucose biosensor which can be used for implantable or on-time monitoring is constantly increasing. In this work, TiO2 nanorods were synthesized in situ on the surface of graphite microfibers to yield TiO2 nanorod/graphite microfiber hybrid electrodes. The TiO2 nanorods not only retain the high activity of the immobilized glucose molecule, but also promote the direct electron transfer process on the electrode surface. As a working electrode in an electrochemical glucose biosensor in a flowing system, the microfiber hybrid electrodes exhibit high sensitivity, selectivity and stability. Due to its simplicity, low cost, high stability, and unique morphology, the TiO2 nanorod/graphite microfiber hybrid electrode is expected to be an excellent candidate for an implantable biosensor or for in situ flow monitoring. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr01360k
Guo, Jing; Yuan, Changjing; Yan, Qi; Duan, Qiuyue; Li, Xiaolu; Yi, Gang
2018-05-15
A simple and sensitive electrochemical biosensor was developed for microRNA-196a detection, which is of important diagnostic significance for pancreatic cancer. It was based on cyclic enzymatic signal amplification (CESA) and template-free DNA extension reaction. In the presence of microRNA-196a, duplex-specific nuclease (DSN) catalyzed the digestion of the 3'-PO 4 terminated capture probe (CP), resulting in the target recycling amplification. Meanwhile, the 3'-OH terminal of CP was exposed. Then, template-free DNA extension reaction was triggered by terminal deoxynucleotidyl transferase (TdT), producing amounts of single-stranded DNA (ssDNA). After ssDNA absorbed numerous methylene blue (MB), an ultrasensitive electrochemical readout was obtained. Based on this dual amplification mechanism, the proposed biosensor exhibited a high sensitivity for detection of microRNA-196a down to 15 aM with a linear range from 0.05 fM to 50 pM. This biosensor displayed high specificity, which could discriminate target microRNAs from one base mismatched microRNAs. It also showed good reproducibility and stability. Furthermore, it was successfully applied to the determination of microRNA-196a in plasma samples. In conclusion, with the excellent analytical performance, this biosensor might have the potential for application in clinical diagnostics of pancreatic cancer. Copyright © 2018 Elsevier B.V. All rights reserved.
Zhou, Yaoyu; Tang, Lin; Zeng, Guangming; Chen, Jun; Cai, Ye; Zhang, Yi; Yang, Guide; Liu, Yuanyuan; Zhang, Chen; Tang, Wangwang
2014-11-15
Herein, we reported here a promising biosensor by taking advantage of the unique ordered mesoporous carbon nitride material (MCN) to convert the recognition information into a detectable signal with enzyme firstly, which could realize the sensitive, especially, selective detection of catechol and phenol in compost bioremediation samples. The mechanism including the MCN based on electrochemical, biosensor assembly, enzyme immobilization, and enzyme kinetics (elucidating the lower detection limit, different linear range and sensitivity) was discussed in detail. Under optimal conditions, GCE/MCN/Tyr biosensor was evaluated by chronoamperometry measurements and the reduction current of phenol and catechol was proportional to their concentration in the range of 5.00 × 10(-8)-9.50 × 10(-6)M and 5.00 × 10(-8)-1.25 × 10(-5)M with a correlation coefficient of 0.9991 and 0.9881, respectively. The detection limits of catechol and phenol were 10.24 nM and 15.00 nM (S/N=3), respectively. Besides, the data obtained from interference experiments indicated that the biosensor had good specificity. All the results showed that this material is suitable for load enzyme and applied to the biosensor due to the proposed biosensor exhibited improved analytical performances in terms of the detection limit and specificity, provided a powerful tool for rapid, sensitive, especially, selective monitoring of catechol and phenol simultaneously. Moreover, the obtained results may open the way to other MCN-enzyme applications in the environmental field. Copyright © 2014 Elsevier B.V. All rights reserved.
Recent Advances in Bioprinting and Applications for Biosensing
Dias, Andrew D.; Kingsley, David M.; Corr, David T.
2014-01-01
Future biosensing applications will require high performance, including real-time monitoring of physiological events, incorporation of biosensors into feedback-based devices, detection of toxins, and advanced diagnostics. Such functionality will necessitate biosensors with increased sensitivity, specificity, and throughput, as well as the ability to simultaneously detect multiple analytes. While these demands have yet to be fully realized, recent advances in biofabrication may allow sensors to achieve the high spatial sensitivity required, and bring us closer to achieving devices with these capabilities. To this end, we review recent advances in biofabrication techniques that may enable cutting-edge biosensors. In particular, we focus on bioprinting techniques (e.g., microcontact printing, inkjet printing, and laser direct-write) that may prove pivotal to biosensor fabrication and scaling. Recent biosensors have employed these fabrication techniques with success, and further development may enable higher performance, including multiplexing multiple analytes or cell types within a single biosensor. We also review recent advances in 3D bioprinting, and explore their potential to create biosensors with live cells encapsulated in 3D microenvironments. Such advances in biofabrication will expand biosensor utility and availability, with impact realized in many interdisciplinary fields, as well as in the clinic. PMID:25587413
Development of electrochemical biosensors with various types of zeolites
NASA Astrophysics Data System (ADS)
Soldatkina, O. V.; Kucherenko, I. S.; Soldatkin, O. O.; Pyeshkova, V. M.; Dudchenko, O. Y.; Akata Kurç, B.; Dzyadevych, S. V.
2018-03-01
In the work, different types of zeolites were used for the development of enzyme-based electrochemical biosensors. Zeolites were added to the biorecognition elements of the biosensors and served as additional components of the biomembranes or adsorbents for enzymes. Three types of biosensors (conductometric, amperometric and potentiometric) were studied. The developed biosensors were compared with the similar biosensors without zeolites. The biosensors contained the following enzymes: urease, glucose oxidase, glutamate oxidase, and acetylcholinesterase and were intended for the detection of urea, glucose, glutamate, and acetylcholine, respectively. Construction of the biosensors using the adsorption of enzymes on zeolites has several advantages: simplicity, good reproducibility, quickness, absence of toxic compounds. These benefits are particularly important for the standardization and further mass production of the biosensors. Furthermore, a biosensor for the sucrose determination contained a three-enzyme system (invertase/mutatorase/glucose oxidase), immobilized by a combination of adsorption on silicalite and cross-linking via glutaraldehyde; such combined immobilization demonstrated better results as compared with adsorption or cross-linking separately. The analysis of urea and sucrose concentrations in the real samples was carried out. The results, obtained with biosensors, had high correlation with the results of traditional analytical methods, thus the developed biosensors are promising for practical applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Durand, Fabien; Stines-Chaumeil, Claire; Flexer, Victoria
2010-11-26
Research highlights: {yields} A new mutant of PQQ-GDH designed for glucose biosensors application. {yields} First mutant of PQQ-GDH with higher activity for D-glucose than the Wild type. {yields} Position N428 is a key point to increase the enzyme activity. {yields} Molecular modeling shows that the N428 C mutant displays a better interaction for PQQ than the WT. -- Abstract: We report for the first time a soluble PQQ-glucose dehydrogenase that is twice more active than the wild type for glucose oxidation and was obtained by combining site directed mutagenesis, modelling and steady-state kinetics. The observed enhancement is attributed to amore » better interaction between the cofactor and the enzyme leading to a better electron transfer. Electrochemical experiments also demonstrate the superiority of the new mutant for glucose oxidation and make it a promising enzyme for the development of high-performance glucose biosensors and biofuel cells.« less
NASA Astrophysics Data System (ADS)
Devkota, J.; Wingo, J.; Mai, T. T. T.; Nguyen, X. P.; Huong, N. T.; Mukherjee, P.; Srikanth, H.; Phan, M. H.
2014-05-01
We report on a highly sensitive magnetic biosensor based on the magneto-reactance (MX) effect of a Co65Fe4Ni2Si15B14 amorphous ribbon with a nanohole-patterned surface for detection and quantification of anticancer drugs (Curcumin) tagged to superparamagnetic (Fe3O4) nanoparticles. Fe3O4 nanoparticles (mean size, ˜10 nm) were first coated with Alginate, and Curcumin was then tagged to the nanoparticles. The detection and quantification of Curcumin were assessed by the change in MX of the ribbon subject to varying concentrations of the Fe3O4 nanoparticles to which Curcumin was tagged. A high capacity of the MX-based biosensor in quantitative analysis of Curcumin-loaded Fe3O4 nanoparticles was achieved in the range of 0-50 ng/ml, beyond which the detection sensitivity of the sensor remained unchanged. The detection sensitivity of the biosensor reached an extremely high value of 30%, which is about 4-5 times higher than that of a magneto-impedance (MI) based biosensor. This biosensor is well suited for detection of low-concentration magnetic biomarkers in biological systems.
Al-Mokaram, Ali M A Abdul Amir; Yahya, Rosiyah; Abdi, Mahnaz M; Mahmud, Habibun Nabi Muhammad Ekramul
2017-05-31
The performance of a modified electrode of nanocomposite films consisting of polypyrrole-chitosan-titanium dioxide (Ppy-CS-TiO₂) has been explored for the developing a non-enzymatic glucose biosensors. The synergy effect of TiO₂ nanoparticles (NPs) and conducting polymer on the current responses of the electrode resulted in greater sensitivity. The incorporation of TiO₂ NPs in the nanocomposite films was confirmed by X-ray photoelectron spectroscopy (XPS) spectra. FE-SEM and HR-TEM provided more evidence for the presence of TiO₂ in the Ppy-CS structure. Glucose biosensing properties were determined by amperommetry and cyclic voltammetry (CV). The interfacial properties of nanocomposite electrodes were studied by electrochemical impedance spectroscopy (EIS). The developed biosensors showed good sensitivity over a linear range of 1-14 mM with a detection limit of 614 μM for glucose. The modified electrode with Ppy-CS nanocomposite also exhibited good selectivity and long-term stability with no interference effect. The Ppy-CS-TiO₂ nanocomposites films presented high electron transfer kinetics. This work shows the role of nanomaterials in electrochemical biosensors and describes the process of their homogeneous distribution in composite films by a one-step electrochemical process, where all components are taken in a single solution in the electrochemical cell.
Zaitseva, A S; Arlyapov, V A; Yudina, N Yu; Alferov, S V; Reshetilov, A N
2017-03-01
We investigated the use of one- and two-mediator systems in amperometric BOD biosensors (BOD, biochemical oxygen demand) based on the yeast Debaryomyces hansenii. Screening of nine mediators potentially capable of electron transfer - ferrocene, 1,1'-dimethylferrocene, ferrocenecarboxaldehyde, ferroceneacetonitrile, neutral red, 2,6-dichlorophenolindophenol, thionine, methylene blue and potassium ferricyanide - showed only ferrocene and neutral red to be efficient electron carriers for the eukaryotes studied. Two-mediator systems based on combinations of the investigated compounds were used to increase the efficiency of electron transfer. The developed two-mediator biosensors exceeded their one-mediator analogs by their characteristics. The most preferable two-mediator system for developing a BOD biosensor was a ferrocene-methylene blue combination that ensured a satisfactory long-time stability (43 days), selectivity, sensitivity (the lower limit of the determined BOD 5 concentrations, 2.5mg О 2 /dm 3 ) and speed (assay time for one sample, not greater than 10min) of BOD determination. Analysis of water samples showed that the use of a ferrocene-methylene blue two-mediator system and the yeast D. hansenii enabled registration of data that highly correlated with the results of the standard method (R=0.9913). Copyright © 2017 Elsevier Inc. All rights reserved.
Large Scale Bacterial Colony Screening of Diversified FRET Biosensors
Litzlbauer, Julia; Schifferer, Martina; Ng, David; Fabritius, Arne; Thestrup, Thomas; Griesbeck, Oliver
2015-01-01
Biosensors based on Förster Resonance Energy Transfer (FRET) between fluorescent protein mutants have started to revolutionize physiology and biochemistry. However, many types of FRET biosensors show relatively small FRET changes, making measurements with these probes challenging when used under sub-optimal experimental conditions. Thus, a major effort in the field currently lies in designing new optimization strategies for these types of sensors. Here we describe procedures for optimizing FRET changes by large scale screening of mutant biosensor libraries in bacterial colonies. We describe optimization of biosensor expression, permeabilization of bacteria, software tools for analysis, and screening conditions. The procedures reported here may help in improving FRET changes in multiple suitable classes of biosensors. PMID:26061878
Highly sensitive dendrimer-based nanoplasmonic biosensor for drug allergy diagnosis.
Soler, Maria; Mesa-Antunez, Pablo; Estevez, M-Carmen; Ruiz-Sanchez, Antonio Jesus; Otte, Marinus A; Sepulveda, Borja; Collado, Daniel; Mayorga, Cristobalina; Torres, Maria Jose; Perez-Inestrosa, Ezequiel; Lechuga, Laura M
2015-04-15
A label-free biosensing strategy for amoxicillin (AX) allergy diagnosis based on the combination of novel dendrimer-based conjugates and a recently developed nanoplasmonic sensor technology is reported. Gold nanodisks were functionalized with a custom-designed thiol-ending-polyamido-based dendron (d-BAPAD) peripherally decorated with amoxicilloyl (AXO) groups (d-BAPAD-AXO) in order to detect specific IgE generated in patient's serum against this antibiotic during an allergy outbreak. This innovative strategy, which follows a simple one-step immobilization procedure, shows exceptional results in terms of sensitivity and robustness, leading to a highly-reproducible and long-term stable surface which allows achieving extremely low limits of detection. Moreover, the viability of this biosensor approach to analyze human biological samples has been demonstrated by directly analyzing and quantifying specific anti-AX antibodies in patient's serum without any sample pretreatment. An excellent limit of detection (LoD) of 0.6ng/mL (i.e. 0.25kU/L) has been achieved in the evaluation of clinical samples evidencing the potential of our nanoplasmonic biosensor as an advanced diagnostic tool to quickly identify allergic patients. The results have been compared and validated with a conventional clinical immunofluorescence assay (ImmunoCAP test), confirming an excellent correlation between both techniques. The combination of a novel compact nanoplasmonic platform and a dendrimer-based strategy provides a highly sensitive label free biosensor approach with over two times better detectability than conventional SPR. Both the biosensor device and the carrier structure hold great potential in clinical diagnosis for biomarker analysis in whole serum samples and other human biological samples. Copyright © 2014 Elsevier B.V. All rights reserved.
Lignin and silicate based hydrogels for biosensor applications
NASA Astrophysics Data System (ADS)
Burrs, S. L.; Jairam, S.; Vanegas, D. C.; Tong, Z.; McLamore, E. S.
2013-05-01
Advances in biocompatible materials and electrocatalytic nanomaterials have extended and enhanced the field of biosensors. Immobilization of biorecognition elements on nanomaterial platforms is an efficient technique for developing high fidelity biosensors. Single layer (i.e., Langmuir-Blodgett) protein films are efficient, but disadvantages of this approach include high cost, mass transfer limitations, and Vromer competition for surface binding sites. There is a need for simple, user friendly protein-nanomaterial sensing membranes that can be developed in laboratories or classrooms (i.e., outside of the clean room). In this research, we develop high fidelity nanomaterial platforms for developing electrochemical biosensors using sustainable biomaterials and user-friendly deposition techniques. Catalytic nanomaterial platforms are developed using a combination of self assembled monolayer chemistry and electrodeposition. High performance biomaterials (e.g., nanolignin) are recovered from paper pulp waste and combined with proteins and nanomaterials to form active sensor membranes. These methods are being used to develop electrochemical biosensors for studying physiological transport in biomedical, agricultural, and environmental applications.
Environmental Stability of Plasmonic Biosensors Based on Natural versus Artificial Antibody.
Luan, Jingyi; Xu, Ting; Cashin, John; Morrissey, Jeremiah J; Kharasch, Evan D; Singamaneni, Srikanth
2018-06-13
Plasmonic biosensors based on the refractive index sensitivity of localized surface plasmon resonance (LSPR) are considered to be highly promising for on-chip and point-of-care biodiagnostics. However, most of the current plasmonic biosensors employ natural antibodies as biorecognition elements, which can easily lose their biorecognition ability upon exposure to environmental stressors (e.g., temperature and humidity). Plasmonic biosensors relying on molecular imprints as recognition elements (artificial antibodies) are hypothesized to be an attractive alternative for applications in resource-limited settings due to their excellent thermal, chemical, and environmental stability. In this work, we provide a comprehensive comparison of the stability of plasmonic biosensors based on natural and artificial antibodies. Although the natural antibody-based plasmonic biosensors exhibit superior sensitivity, their stability (temporal, thermal, and chemical) was found to be vastly inferior to those based on artificial antibodies. Our results convincingly demonstrate that these novel classes of artificial antibody-based plasmonic biosensors are highly attractive for point-of-care and resource-limited conditions where tight control over transport, storage, and handling conditions is not possible.
A low-cost photonic biosensor built on a polymer platform
NASA Astrophysics Data System (ADS)
Wang, Linghua; Kodeck, Valérie; Van Vlierberghe, Sandra; Ren, Jun; Teng, Jie; Han, Xiuyou; Jian, Xigao; Baets, Roel; Morthier, Geert; Zhao, Mingshan
2011-12-01
Planar integrated optical biosensors are becoming more and more important as they facilitate label-free and real time monitoring biosensing with high sensitivity. In this paper, the systematic research on one kind of optical biosensor, based on a resonant principle in a polymer ring resonator, will be presented. Reduced footprint and high sensitivity are advantages of this kind of biosensor. Rather than expensive CMOS fabrication, the device with high performance is fabricated through a simple UV based soft imprint technique utilizing self-developed low loss polymer material. The measurement results for the bulk sensing of a NaCl solution and the surface sensing of a minimal amount of avidin molecules in a buffered solution will be presented.
Tepper, Naama; Shlomi, Tomer
2011-01-21
Combinatorial approaches in metabolic engineering work by generating genetic diversity in a microbial population followed by screening for strains with improved phenotypes. One of the most common goals in this field is the generation of a high rate chemical producing strain. A major hurdle with this approach is that many chemicals do not have easy to recognize attributes, making their screening expensive and time consuming. To address this problem, it was previously suggested to use microbial biosensors to facilitate the detection and quantification of chemicals of interest. Here, we present novel computational methods to: (i) rationally design microbial biosensors for chemicals of interest based on substrate auxotrophy that would enable their high-throughput screening; (ii) predict engineering strategies for coupling the synthesis of a chemical of interest with the production of a proxy metabolite for which high-throughput screening is possible via a designed bio-sensor. The biosensor design method is validated based on known genetic modifications in an array of E. coli strains auxotrophic to various amino-acids. Predicted chemical production rates achievable via the biosensor-based approach are shown to potentially improve upon those predicted by current rational strain design approaches. (A Matlab implementation of the biosensor design method is available via http://www.cs.technion.ac.il/~tomersh/tools).
Wang, Qingxiang; Gao, Feng; Ni, Jiancong; Liao, Xiaolei; Zhang, Xuan; Lin, Zhenyu
2016-01-01
An ultrasensitive DNA biosensor has been developed through in-situ labeling of electroactive melamine-Cu2+ complex (Mel-Cu2+) on the end of hairpin-like probe using gold nanoparticles (AuNPs) as the signal amplification platform. The 3′-thiolated hairpin-like probe was first immobilized to the gold electrode surface by the Au-S bond. The AuNPs were then tethered on the free 5′-end of the immobilized probe via the special affinity between Au and the modified -NH2. Followed by, the Mel and Cu2+ were assembled on the AuNPs surface through Au-N bond and Cu2+-N bond, respectively. Due to the surface area and electrocatalytic effects of the AuNPs, the loading amount and electron transfer kinetic of the Mel-Cu2+ were enhanced greatly, resulting in significantly enhanced electrochemical response of the developed biosensor. Compared with the synthesis process of conventional electroactive probe DNA accomplished by homogeneous method, the method presented in this work is more reagent- and time-saving. The proposed biosensor showed high selectivity, wide linear range and low detection limit. This novel strategy could also be extended to the other bioanalysis platforms such as immunosensors and aptasensors. PMID:26931160
A sensitive glucose biosensor based on Ag@C core-shell matrix.
Zhou, Xuan; Dai, Xingxin; Li, Jianguo; Long, Yumei; Li, Weifeng; Tu, Yifeng
2015-04-01
Nano-Ag particles were coated with colloidal carbon (Ag@C) to improve its biocompatibility and chemical stability for the preparation of biosensor. The core-shell structure was evidenced by transmission electron microscope (TEM) and the Fourier transfer infrared (FTIR) spectra revealed that the carbon shell is rich of function groups such as -OH and -COOH. The as-prepared Ag@C core-shell structure can offer favorable microenvironment for immobilizing glucose oxidase and the direct electrochemistry process of glucose oxidase (GOD) at Ag@C modified glassy carbon electrode (GCE) was realized. The modified electrode exhibited good response to glucose. Under optimum experimental conditions the biosensor linearly responded to glucose concentration in the range of 0.05-2.5mM, with a detection limit of 0.02mM (S/N=3). The apparent Michaelis-Menten constant (KM(app)) of the biosensor is calculated to be 1.7mM, suggesting high enzymatic activity and affinity toward glucose. In addition, the GOD-Ag@C/Nafion/GCE shows good reproducibility and long-term stability. These results suggested that core-shell structured Ag@C is an ideal matrix for the immobilization of the redox enzymes and further the construction of the sensitive enzyme biosensor. Copyright © 2015 Elsevier B.V. All rights reserved.
Deng, Huimin; Shen, Wei; Gao, Zhiqiang
2013-07-22
Herein a novel strategy for the construction of an amperometric biosensor for highly sensitive and selective determination of glucose is described. The biosensor is made of a biocomposite membrane of glucose oxidase (GOx) and an Os(bpy)2 (bpy=2,2'-bipyridine)-based anionic redox polymer (Os-RP) mediator. The biosensor is fabricated through the co-immobilization of GOx and the Os-RP on the surface of a glassy carbon electrode by a simple one-step chemical crosslinking process. The crosslinked Os-RP/GOx composite membrane shows excellent catalytic activity toward the oxidation of glucose. Under optimal experimental conditions, a linear correlation between the oxidation current of glucose in amperometry at 0.25 V (vs. Ag/AgCl) and glucose concentration up to 10 mM with a sensitivity of 16.5 μA mM(-1) cm(-2) and a response time <5 s. Due to the presence of anionic sulfonic acid groups in the backbone of the redox polymer, the biosensor exhibits excellent selectivity to glucose in the presence of ascorbic acid and uric acid. The low hydrophobicity of the composite membrane also effectively retards the transport of molecular oxygen within the membrane. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Potentiometric Biosensor for Studying Hydroquinone Cytotoxicity in vitro
Wang, Yanyan; Chen, Qiang; Zeng, Xiangqun
2009-01-01
Many processes in living cells have electrochemical characteristics that are suitable for measurement by potentiometric biosensors. Potentiometric biosensors allow non invasive, real-time monitoring of the extracellular environment changes by measuring the potential at cell/sensor interface. This can be used as an indicator for overall cell cytotoxicity. The present work employs a potentiometric sensor array to investigate the cytotoxicity of hydroquinone to cultured mammalian V79 cells. Various electrode substrates (Au, PPy-HQ and PPy-PS) used for cell growth were designed and characterized. The controllable release of hydroquinone from PPy substrates was studied. Our results showed that hydroquinone exposure affected cell proliferation and delayed cell growth and attachment in a dose-dependent manner. Additionally, we have shown that exposure of V79 cells to hydroquinone at low doses (i.e 5μM) for more than 15 hours allows V79 cells to gain enhanced adaptability to survive exposure to high toxic HQ doses afterwards. Compared with traditional methods, the potentiometric biosensor not only provides non-invasive and real time monitoring of the cellular reactions but also is more sensitive for in vitro cytotoxicity study. By real time and non-invasive monitoring of the extracellular potential in vitro, the potentiometric sensor system represents a promising biosensor system for drug discovery. PMID:19926470
Disposable L-lactate biosensor based on a screen-printed carbon electrode enhanced by graphene
NASA Astrophysics Data System (ADS)
Tu, Dandan; He, Yu; Rong, Yuanzhen; Wang, You; Li, Guang
2016-04-01
In this work, an amperometric L-lactate biosensor based on a graphene-modified screen-printed carbon electrode (SPCE) was constructed. First, the electrocatalytic performance of the SPCE modified with graphene by a one-step electrodeposition process (OerGO/SPCE) was investigated. The cyclic voltammogram of OerGO/SPCE, which showed a well-defined redox peak, had a smaller peak potential separation than that of SPCE, revealing the improvement in electron transfer speed brought about by modifying with graphene. Next, lactate oxidase and potassium ferricyanide were dropped on the OerGO/SPCE to construct a graphene-modified L-lactate biosensor (LOD/K3[Fe(CN)6]/OerGO/SPCE). The proposed biosensor, with a detection limit of 60 μM, had a high sensitivity (42.42 μA mM-1 cm-2) when working at a low working potential (0.15 V). The linear range was 0.5 mM-15 mM, covering the detecting range of L-lactate in clinical applications. The L-lactate biosensor had a short response time (10 s) and required only 10 μl of the sample. This L-lactate sensor modified with electrodeposited graphene had a larger sensitivity than that based on the bare SPCE. Thus, our low-cost and disposable L-lactate biosensor enhanced by graphene can perform as an attractive electrochemical device that can be manufactured for point-of-care testing (POCT) devices and be employed in POCT applications.
Chen, Huan; Xi, Fengna; Gao, Xia; Chen, Zhichun; Lin, Xianfu
2010-08-01
Bienzyme bionanomultilayer electrode for glucose biosensing was constructed based on functional carbon nanotubes and sugar-lectin biospecific interaction through layer-by-layer (LBL) assembly. After being functionalized by wrapping with polyelectrolyte, multiwalled carbon nanotubes (MCNTs) were water soluble and positively charged. MCNT-bienzyme bionanomultilayer electrode was then fabricated by LBL assembly of horseradish peroxidase (HRP) and glucose oxidase (GOD) on functional MCNT modified electrode. The attachment of the MCNT-bienzyme bionanomultilayer with the underlying electrode and each layer in the bionanomultilayer was based on reliably electrostatic or sugar-lectin biospecific interaction. The developed bienzyme biosensor exhibited fast amperometric response for the determination of glucose. The linear response of the developed biosensor for the determination of glucose ranged from 2.0 x 10(-6) to 1.7 x 10(-4) M with a detection limit of 2.5 x 10(-7) M. The biosensor can be used directly to determine glucose in serum. The construction of the bienzyme biosensor showed potential for the preparation of MCNT-enzyme nanocomposite with controllability and high performance. Copyright 2010 Elsevier Inc. All rights reserved.
Lakard, Boris; Magnin, Delphine; Deschaume, Olivier; Vanlancker, Guilhem; Glinel, Karine; Demoustier-Champagne, Sophie; Nysten, Bernard; Jonas, Alain M; Bertrand, Patrick; Yunus, Sami
2011-06-15
A potentiometric biosensor based on urease was developed for the quantitative determination of urea concentration in aqueous solutions for biomedical applications. The urease was either physisorbed onto an electrodeposited polyaniline film (PANI), or immobilized on a layer-by-layer film (LbL) assembled over the PANI film, that was obtained by the alternate deposition of charged polysaccharides (carboxymethylpullulan (CMP) and chitosan (CHI)). In the latter case, the urease (Urs) enzyme was either physically adsorbed or covalently grafted to the LbL film using carbodiimide coupling reaction. Potentiometric responses of the enzymatic biosensors were measured as a function of the urea concentration in aqueous solutions (from 10(-6) to 10(-1) mol L(-1) urea). Very high sensitivity and short response time were observed for the present biosensor. Moreover, a stability study showed a higher stability over time for the potentiometric response of the sensor with the enzyme-grafted LbL film, testifying for the protective nature of the polysaccharide coating and the interest of covalent grafting. Copyright © 2011 Elsevier B.V. All rights reserved.
Resonant efficiency improvement design of piezoelectric biosensor for bacteria gravimetric sensing.
Tsai, Jang-Zern; Chen, Ching-Jung; Shie, Dung-Ting; Liu, Jen-Tsai
2014-01-01
The piezoelectric biosensor have been widely used in ultra-small mass detection of biomolecular, based on PZT piezoelectric material can create a variety of compositions geometrically; it could widely develop a high-frequency resonator and measure the change of the slightest mass while improve the limited detection simultaneously. Therefore, the piezoelectric biosensor of this study was fabricated by a spin-coating method and backside etching process for improving the characteristic of piezoelectric biosensor. The result exhibited that the 250 μm × 250 μm working size has the most favorable piezoelectric characteristic. The tunability was approximately 38.56 % and it showed that reducing the substrate thickness could obtain a clear resonance signal in a range of 60 to 380 MHz. In theory calculated for gravimetric sensing, it could achieve 0.1 ng sensing sensitivity. In gravimetric sensing, the sensing range was between 50,000~100,000 CFU/ml. Sensing range was lower in clinical urinary tract infection (100,000 CFU/ml), thus demonstrating its usefulness for preventive medicine. It can understand the piezoelectric sensor of this study has potential application in the future for biomedical gravimetric sensing.
Ahmad, Nor Monica; Abdullah, Jaafar; Yusof, Nor Azah; Ab Rashid, Ahmad Hazri; Abd Rahman, Samsulida; Hasan, Md Rakibul
2016-06-29
A phenolic biosensor based on a zirconium oxide/polyethylene glycol/tyrosinase composite film for the detection of phenolic compounds has been explored. The formation of the composite film was expected via electrostatic interaction between hexacetyltrimethylammonium bromide (CTAB), polyethylene glycol (PEG), and zirconium oxide nanoparticles casted on screen printed carbon electrode (SPCE). Herein, the electrode was treated by casting hexacetyltrimethylammonium bromide on SPCE to promote a positively charged surface. Later, zirconium oxide was mixed with polyethylene glycol and the mixture was dropped cast onto the positively charged SPCE/CTAB. Tyrosinase was further immobilized onto the modified SPCE. Characterization of the prepared nanocomposite film and the modified SPCE surface was investigated by scanning electron microscopy (SEM), Electrochemical Impedance Spectroscopy (EIS), and Cyclic voltamogram (CV). The developed biosensor exhibits rapid response for less than 10 s. Two linear calibration curves towards phenol in the concentrations ranges of 0.075-10 µM and 10-55 µM with the detection limit of 0.034 µM were obtained. The biosensor shows high sensitivity and good storage stability for at least 30 days.
Vijayaraj, Kathiresan; Dinakaran, Thirumalai; Lee, Yujeong; Kim, Suhkmann; Kim, Hyung Sik; Lee, Jaewon; Chang, Seung-Cheol
2017-12-09
We developed a new strategy for construction of a biosensor for the neurotransmitter dopamine. The biosensor was constructed by one-step electrochemical deposition of a nanocomposite in aqueous solution at pH 7.0, consisting of molybdenum disulfide, multi-walled carbon nanotubes, and polypyrrole. A series of analytical methods was performed to investigate the surface characteristics and the improved electrocatalytic effect of the nanocomposite, including cyclic voltammetry, electrochemical impedance spectroscopy, field-emission scanning electron microscopy, atomic force microscopy, and Raman spectroscopy. The constructed biosensor showed high sensitivity (1.130 μAμM -1 cm -2 ) with a dynamic linearity range of 25-1000 nM and a detection limit of 10 nM. Additionally, the designed sensor exhibited strong anti-interference ability and satisfactory reproducibility. The practical application of the sensor was manifested for the ex vivo determination of dopamine neurotransmitters using brain tissue samples of a mouse Parkinson's disease model. Copyright © 2017 Elsevier Inc. All rights reserved.
Effect of Diffusion Limitations on Multianalyte Determination from Biased Biosensor Response
Baronas, Romas; Kulys, Juozas; Lančinskas, Algirdas; Žilinskas, Antanas
2014-01-01
The optimization-based quantitative determination of multianalyte concentrations from biased biosensor responses is investigated under internal and external diffusion-limited conditions. A computational model of a biocatalytic amperometric biosensor utilizing a mono-enzyme-catalyzed (nonspecific) competitive conversion of two substrates was used to generate pseudo-experimental responses to mixtures of compounds. The influence of possible perturbations of the biosensor signal, due to a white noise- and temperature-induced trend, on the precision of the concentration determination has been investigated for different configurations of the biosensor operation. The optimization method was found to be suitable and accurate enough for the quantitative determination of the concentrations of the compounds from a given biosensor transient response. The computational experiments showed a complex dependence of the precision of the concentration estimation on the relative thickness of the outer diffusion layer, as well as on whether the biosensor operates under diffusion- or kinetics-limited conditions. When the biosensor response is affected by the induced exponential trend, the duration of the biosensor action can be optimized for increasing the accuracy of the quantitative analysis. PMID:24608006
Barsan, Madalina M; Pifferi, Valentina; Falciola, Luigi; Brett, Christopher M A
2016-07-13
A combination of the electroactive polymer poly(brilliant green) (PBG) or conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) with carbon nanotubes to obtain CNT/PBG and CNT/PEDOT modified carbon film electrodes (CFE) has been investigated as a new biosensor platform, incorporating the enzymes glucose oxidase (GOx) as test enzyme, alcohol oxidase (AlcOx) or alcohol dehydrogenase (AlcDH). The sensing parameters were optimized for all biosensors based on CNT/PBG/CFE, CNT/PEDOT/CFE platforms. Under optimized conditions, both GOx biosensors exhibited very similar sensitivities, while in the case of AlcOx and AlcDH biosensors, AlcOx/CNT/PBG/CFE was found to give a higher sensitivity and lower detection limit. The influence of dissolved O2 on oxidase-biosensor performance was investigated and was shown to be different for each enzyme. Comparisons were made with similar reported biosensors, showing the advantages of the new biosensors, and excellent selectivity against potential interferents was successfully demonstrated. Finally, alcohol biosensors were successfully used for the determination of ethanol in alcoholic beverages. Copyright © 2016 Elsevier B.V. All rights reserved.
Recent advances in electrochemical biosensors based on graphene two-dimensional nanomaterials.
Song, Yang; Luo, Yanan; Zhu, Chengzhou; Li, He; Du, Dan; Lin, Yuehe
2016-02-15
Graphene as a star among two-dimensional nanomaterials has attracted tremendous research interest in the field of electrochemistry due to their intrinsic properties, including the electronic, optical, and mechanical properties associated with their planar structure. The marriage of graphene and electrochemical biosensors has created many ingenious biosensing strategies for applications in the areas of clinical diagnosis and food safety. This review provides a comprehensive overview of the recent advances in the development of graphene based electrochemical biosensors. Special attention is paid to graphene-based enzyme biosensors, immunosensors, and DNA biosensors. Future perspectives on high-performance graphene-based electrochemical biosensors are also discussed. Copyright © 2015 Elsevier B.V. All rights reserved.
Shu-Ping Lin; Jhong-Yi Ciou; Tung-Yen Lai; Tsung-Wu Lin
2017-07-01
Because of the properties of high charge mobility, large detection area and chemical stability of graphene, it has been applied in many biomedical applications. Graphene oxide (GO) with abundant oxygenated functional groups is easily to form an aqueous suspension by sonication. Here, the exposed areas on the patterned-circuit silicon-based chips were first modified by (3-aminopropyl) trimethoxysilane (APTMS) for later chemically immobilized GO. After that, solution-based reduction process using hydrazine was used to gain reduced GO (RGO)-based biosensors. ESCA survey spectra showed oxygen-containing functional groups of GO decreased from 47% to 5.7%, 4.1%, 3.8%, and 3.6% under varied reduction times of 30 min, 40 min, 50 min, and 60 min, respectively. D/G intensity ratio (I D /I G ) in Raman spectra showed 1.03 after 60-min reduction process. The 60-min reduction process was further used in the electrical sensing experiments. Since different deposited layers of graphene were obtained in our experimental processes, 60-min-RGO-based biosensors have been found that those immobilized RGO possessed semiconductive property as the layers are less than 11. By contrary, when the layers were above 11, the immobilized RGO would resemble metallic material. In addition, the impedimetric analyses indicated obvious signal responses above 86 kHz and showed a concentration-dependent trend in dopamine sensing in physiological phosphate buffered saline (PBS) using 60-min-RGO-based biosensors which were feature of semiconductor.
Geng, Deyu; Zhang, Zhixia; Guo, Huarong
2012-01-01
p21CIP1/WAF1 is a p53-target gene in response to cellular DNA damage. Here we report the development of a fish cell biosensor system for high throughput genotoxicity detection of new drugs, by stably integrating two reporter plasmids of pGL3-p21-luc (human p21 promoter linked to firefly luciferase) and pRL-CMV-luc (CMV promoter linked to Renilla luciferase) into marine flatfish flounder gill (FG) cells, referred to as p21FGLuc. Initial validation of this genotoxicity biosensor system showed that p21FGLuc cells had a wild-type p53 signaling pathway and responded positively to the challenge of both directly acting genotoxic agents (bleomycin and mitomycin C) and indirectly acting genotoxic agents (cyclophosphamide with metabolic activation), but negatively to cyclophosphamide without metabolic activation and the non-genotoxic agents ethanol and D-mannitol, thus confirming a high specificity and sensitivity, fast and stable response to genotoxic agents for this easily maintained fish cell biosensor system. This system was especially useful in the genotoxicity detection of Di(2-ethylhexyl) phthalate (DEHP), a rodent carcinogen, but negatively reported in most non-mammalian in vitro mutation assays, by providing a strong indication of genotoxicity for DEHP. A limitation for this biosensor system was that it might give false positive results in response to sodium butyrate and any other agents, which can trans-activate the p21 gene in a p53-independent manner. PMID:25585933
[Acute toxicity analysis performance of CellSense biosensor with E. coli].
Wang, Xue-Jiang; Wang, Hong; Zhao, Jian-Fu; Xia, Si-Qing; Zhao, Hong-Ning
2009-04-15
E. coli microbial electrodes for CellSense biosensor were prepared by polycarbonate membrane immobilization process, and their performance for heavy metals and toxic organic compounds acute toxicity determination were studied. The results showed that when E. coli was in logarithmic and stationary phase, the CellSense biosensor with E. coli showed good performance in heavy metal ions and organic pollutants acute toxicity analysis, when E. coli was in its decline phase, the stability and sensitivity of the CellSense biosensor was poor. The EC50 values of Hg2+, Cu2+, Zn2+, o-chlorophenol (2-CP) and p-nitrophenol (4-NP) detected by CellSense biosensor with E. coli were 0.6, 3.1, 5.8, 180 and 94 microg/mL, respectively. The immobilized E. coli electrodes could still suit for acute toxicity assessment after 2 months storage at 4 degrees C.
NASA Astrophysics Data System (ADS)
Chiu, Nan-Fu; Huang, Teng-Yi; Kuo, Chun-Chuan
2015-05-01
We describe a fundamental study on the plasmonic properties and advanced biosensing mechanisms of functionalized graphene. We discuss a specific design using modified carboxyl groups, which can modulate surface plasmon (SP) coupling and provide an advantage for their binding to the sensing layer with high-performance affinity in an immunological reaction. The functionalized graphene-based surface plasmon resonance (SPR) biosensors have three advantages: high performance, high sensitivity, and excellent molecular kinetic response. In the future, functionalized graphene sheets will make a unique contribution to photonic and SPR diagnosis devices. We wish to highlight the essential characteristics of functionalized graphene-based SPR biosensors to assist researchers in developing and advancing suitable biosensors for unique applications.
Genetically engineered microbial biosensors for in situ monitoring of environmental pollution.
Shin, Hae Ja
2011-02-01
Microbial biosensors are compact, portable, cost effective, and simple to use, making them seem eminently suitable for the in situ monitoring of environmental pollution. One promising approach for such applications is the fusion of reporter genes with regulatory genes that are dose-dependently responsive to the target chemicals or physiological signals. Their biosensor capabilities, such as target range and sensitivity, could be improved by modification of regulatory genes. Recent uses of such genetically engineered microbial biosensors include the development of portable biosensor kits and high-throughput cell arrays on chips, optic fibers, or other platforms for on-site and on-line monitoring of environmental pollution. This mini-review discusses recent advances in microbial biosensors and their future prospects, with a focus on the development and application of genetically modified microbial biosensors for in situ environmental monitoring.
NASA Astrophysics Data System (ADS)
Liu, Yi Jun; Mandelis, Andreas; Guo, Xinxin
2015-11-01
In this work, laser-based wavelength-modulated differential photothermal radiometry (WM-DPTR) is applied to develop a non-invasive in-vehicle alcohol biosensor. WM-DPTR features unprecedented ethanol-specificity and sensitivity by suppressing baseline variations through a differential measurement near the peak and baseline of the mid-infrared ethanol absorption spectrum. Biosensor signal calibration curves are obtained from WM-DPTR theory and from measurements in human blood serum and ethanol solutions diffused from skin. The results demonstrate that the WM-DPTR-based calibrated alcohol biosensor can achieve high precision and accuracy for the ethanol concentration range of 0-100 mg/dl. The high-performance alcohol biosensor can be incorporated into ignition interlocks that could be fitted as a universal accessory in vehicles in an effort to reduce incidents of drinking and driving.
Liu, Yi Jun; Mandelis, Andreas; Guo, Xinxin
2015-11-01
In this work, laser-based wavelength-modulated differential photothermal radiometry (WM-DPTR) is applied to develop a non-invasive in-vehicle alcohol biosensor. WM-DPTR features unprecedented ethanol-specificity and sensitivity by suppressing baseline variations through a differential measurement near the peak and baseline of the mid-infrared ethanol absorption spectrum. Biosensor signal calibration curves are obtained from WM-DPTR theory and from measurements in human blood serum and ethanol solutions diffused from skin. The results demonstrate that the WM-DPTR-based calibrated alcohol biosensor can achieve high precision and accuracy for the ethanol concentration range of 0-100 mg/dl. The high-performance alcohol biosensor can be incorporated into ignition interlocks that could be fitted as a universal accessory in vehicles in an effort to reduce incidents of drinking and driving.
Ayenimo, Joseph G; Adeloju, Samuel B
2017-08-15
A novel polypyrrole (PPy)-based bilayer amperometric glucose biosensor integrated with a permselective layer has been developed for detection of glucose in the presence of interferences. It comprises of a PPy-GOx film grown, in the absence of electrolyte, as an inner layer, and a permselective PPy-Cl film as an outer layer. The PPy-GOx/PPy-Cl bilayer biosensor was effective in rejecting 98% of ascorbic acid and 100% of glycine, glutamic acid and uric acid. With an outer layer thickness of 6.6nm, the bilayer biosensor gave nearly identical glucose response to that of a single layer PPy-GOx biosensor. The biosensor also exhibited good reproducibility (1.9% rsd, n=10), high stability (more than 2months), wide linear range (0.5-24mM), low K m (8.4mM), high I max (77.2μAcm -2 ), low detection limit (26.9μM) and good sensitivity (3.5μAcm -2 mM -1 ). The bilayer biosensor was successfully employed for glucose determination in various fruit juices. Copyright © 2017 Elsevier Ltd. All rights reserved.
Stasyuk, Nataliya Ye.; Smutok, Oleh V.; Zakalskiy, Andriy E.; Zakalska, Oksana M.; Gonchar, Mykhailo V.
2014-01-01
A novel methylamine-selective amperometric bienzyme biosensor based on recombinant primary amine oxidase isolated from the recombinant yeast strain Saccharomyces cerevisiae and commercial horseradish peroxidase is described. Two amine oxidase preparations were used: free enzyme (AMO) and covalently immobilized on the surface of gold nanoparticles (AMO-nAu). Some bioanalytical parameters (sensitivity, selectivity, and storage stability) of the developed biosensors were investigated. The sensitivity for both sensors is high: 1450 ± 113 and 700 ± 30 A−1 ·M−1 ·m−2 for AMO-nAu biosensor, respectively. The biosensors exhibit the linear range from 15 μM to 150 μM (AMO-nAu) and from 15 μM to 60 μM (AMO). The developed biosensor demonstrated a good selectivity toward methylamine (MA) (signal for dimethylamine and trimethylamine is less than 5% and for ethylamine 15% compared to MA output) and reveals a satisfactory storage stability. The constructed amperometric biosensor was used for MA assay in real samples of fish products in comparison with chemical method. The values obtained with both approaches different methods demonstrated a high correlation. PMID:25136590
Electrochemical Enzyme Biosensors Revisited: Old Solutions for New Problems.
Monteiro, Tiago; Almeida, Maria Gabriela
2018-05-14
Worldwide legislation is driving the development of novel and highly efficient analytical tools for assessing the composition of every material that interacts with Consumers or Nature. The biosensor technology is one of the most active R&D domains of Analytical Sciences focused on the challenge of taking analytical chemistry to the field. Electrochemical biosensors based on redox enzymes, in particular, are highly appealing due to their usual quick response, high selectivity and sensitivity, low cost and portable dimensions. This review paper aims to provide an overview of the most important advances made in the field since the proposal of the first biosensor, the well-known hand-held glucose meter. The first section addresses the current needs and challenges for novel analytical tools, followed by a brief description of the different components and configurations of biosensing devices, and the fundamentals of enzyme kinetics and amperometry. The following sections emphasize on enzyme-based amperometric biosensors and the different stages of their development.
Pakapongpan, Saithip; Poo-Arporn, Rungtiva P
2017-07-01
A novel approach of the immobilization of a highly selective and stable glucose biosensor based on direct electrochemistry was fabricated by a self-assembly of glucose oxidase (GOD) on reduced graphene oxide (RGO) covalently conjugated to magnetic nanoparticles (Fe 3 O 4 NPs) modified on a magnetic screen-printed electrode (MSPE). The RGO-Fe 3 O 4 nanocomposite has remarkable enhancement in large surface areas, is favorable environment for enzyme immobilization, facilitates electron transfer between enzymes and electrode surfaces and possesses superparamagnetism property. The morphology and electrochemical properties of RGO-Fe 3 O 4 /GOD were characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, cyclic voltammetry (CV) and amperometry. The modified electrode was a fast, direct electron transfer with an apparent electron transfer rate constant (k s ) of 13.78s -1 . The proposed biosensor showed fast amperometric response (3s) to glucose with a wide linear range from 0.05 to 1mM, a low detection limit of 0.1μM at a signal to noise ratio of 3 (S/N=3) and good sensitivity (5.9μA/mM). The resulting biosensor has high stability, good reproducibility, excellent selectivity and successfully applied detection potential at -0.45V. This mediatorless glucose sensing used the advantages of covalent bonding and self-assembly as a new approach for immobilizing enzymes without any binder. It would be worth noting that it opens a new avenue for fabricating excellent electrochemical biosensors. This is a new approach that reporting the immobilization of glucose oxidase on reduced graphene oxide (RGO) covalently conjugated to magnetic nanoparticles (Fe 3 O 4 NPs) by electrostatic interaction and modified screen printed electrode. We propose the reagentless with fabrication method without binder and adhesive agents for immobilized enzyme. Fe 3 O 4 NPs increasing surface area to enhance the immobilization and prevent the leaching of enzymes at electrode surfaces by magnetic stickers which is improve the stability of the biosensor. Based on this synthesis technique, it is a good new strategy and simple used to fabrication of third-generation glucose biosensor and this nanocomposite could be used as a platform for disposable biosensor and biofuel cell applications. Copyright © 2017 Elsevier B.V. All rights reserved.
Zhong, Xia; Chai, Ya-Qin; Yuan, Ruo
2014-10-01
Well-distributed hollow gold nanospheres (Aushell@GOD) (20 ± 5 nm) were synthesized using the glucose oxidase (GOD) cross-linked with glutaraldehyde as a template. A glucose biosensor was prepared based on Aushell@GOD nanospheres for catalyzing luminol electrogenerated chemiluminescence (ECL). Firstly, chitosan was modified in a glassy carbon electrode which offered an interface of abundant amino-groups to assemble Aushell@GOD nanospheres. Then, glucose oxidase was adsorbed on the surface of Aushell@GOD nanospheres via binding interactions between Aushell and amino groups of GOD to construct a glucose biosensor. The Aushell@GOD nanospheres were investigated with TEM and UV-vis. The ECL behaviors of the biosensor were also investigated. Results showed that, the obtained Aushell@GOD nanospheres exhibited excellent catalytic effect towards the ECL of luminol-H2O2 system. The response of the prepared biosensor to glucose was linear with the glucose concentration in the range of 1.0 μM to 4.3mM (R=0.9923) with a detection limit of 0.3 μM (signal to noise=3). This ECL biosensor exhibited short response time and excellent stability for glucose. At the same time the prepared ECL biosensor showed good reproducibility, sensitivity and selectivity. Copyright © 2014 Elsevier B.V. All rights reserved.
Applications of one-dimensional structured nanomaterials as biosensors and transparent electronics
NASA Astrophysics Data System (ADS)
Ishikawa, Fumiaki
This dissertation presents applications of one-dimensional structured nanomaterials, carbon nanotubes and In2O3 nanowires, for biosensors and transparent electronics. Chapter 1 gives the motivation to study applications of one-dimensional structured nanomaterials, and also brief introduction to structure, synthesis, and electronic properties of carbon nanotubes and In2O3 nanowires. In Chapter 2, introduction and motivation of biosensors using nanotubes/nanowires is given, followed by an overview on important background knowledge and concepts in biosensing. In Chapter 3, application of carbon nanotube biosensors toward brown tide algae detection is presented. Our devices successfully detected a brown tide marker selectively with real-time response. In Chapter 4, we demonstrate that In2O3 nanowire biosensors coupled with an antibody mimic protein (Fibronectin, Fn) can be used to detect nucleocapsid (N) protein, a biomarker for severe acute respiratory syndrome (SARS), at concentrations to below the sub-nanomolar range. In Chapter 5, we develop an analytical method to calibrate nanowire biosensor responses that can suppress the device-to-device variation in sensing response significantly. In Chapter 6, we investigate the effect of nanotube density on the biosensor performance, and proved that it plays an important role through systematic studies. In Chapter 7, I propose a future direction of nanobiosensors research, and show preliminary results along the proposed direction. I first present a concept of an ideal bioassay system with a list of requirements for the system, and propose the strategy of multi-integration to establish a system based on nanobiosensors that satisfies all of the requirements. In Chapter 8, we demonstrate high performance fully transparent transistors based on transfer printed aligned carbon nanotubes on both rigid and flexible substrates. We achieved device mobility as high as 1,300 cm 2V-1s-1 on glass substrates, which is the highest among transparent transistors reported so far. We also demonstrated fully transparent PMOS inverters on flexible substrates, and also successfully controlled commercial GaN light--emitting diodes (LEDs) with light intensity modulation of 103. Lastly, a brief summary of this thesis is given in Chapter 9.
Narwal, Vinay; Pundir, C S
2017-05-01
Nanoparticles (NPs) of commercial lipase from Candida rugosa, of glycerol kinase (GK) from Cellulomonas species, of glycerol-3- phosphate oxidase (GPO) from Aerococcus viridans were prepared, characterized and co-immobilized onto a pencil graphite (PG) electrode. The morphological and electrochemical characterization of PG electrode was performed by scanning electron microscopy (SEM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) before and after co-immobilization of enzyme nanoparticles (ENPs). An improved amperometric triglyceride (TG) biosensor was fabricated using Lipase NPs/GKNPs/GPONPs/PG electrode as the working electrode, Ag/AgCl as the standard electrode and Pt wire as auxiliary electrode. The biosensor showed optimum response within 2.5s at a pH 7.0 and temperature of 35°C. The biosensor measured current due to electrons generated at 0.1V against Ag/AgCl, from H 2 O 2 , which is produced from triolein by co-immobilized ENPs. A linear relationship was obtained over between a wide triolein concentration range (0.1mM-45mM) and current (mA) under optimal conditions. The Lipase NPs/GKNPs/GPONPs/PG electrode showed high sensitivity (1241±20mAcm -2 mM -1 ); a lower detection limit (0.1nM) and good correlation coeficient (R 2 =0.99) with a standard enzymic colorimetric method. Analytical recovery of added triolein in serum was 98.01%, within and between batch coefficients of variation (CV) were 0.05% and 0.06% respectively. The biosensor was evaluated and employed for determination of TG in the serum of apparently healthy subject and persons suffering from hypertriglyceridemia. The biosensor lost 20% of its initial activity after its continued uses over a period of 240days, while being stored at 4°C. Copyright © 2017 Elsevier Inc. All rights reserved.
Numerical modeling of the dynamic response of a bioluminescent bacterial biosensor.
Affi, Mahmoud; Solliec, Camille; Legentilhomme, Patrick; Comiti, Jacques; Legrand, Jack; Jouanneau, Sulivan; Thouand, Gérald
2016-12-01
Water quality and water management are worldwide issues. The analysis of pollutants and in particular, heavy metals, is generally conducted by sensitive but expensive physicochemical methods. Other alternative methods of analysis, such as microbial biosensors, have been developed for their potential simplicity and expected moderate cost. Using a biosensor for a long time generates many changes in the growth of the immobilized bacteria and consequently alters the robustness of the detection. This work simulated the operation of a biosensor for the long-term detection of cadmium and improved our understanding of the bioluminescence reaction dynamics of bioreporter bacteria inside an agarose matrix. The choice of the numerical tools is justified by the difficulty to measure experimentally in every condition the biosensor functioning during a long time (several days). The numerical simulation of a biomass profile is made by coupling the diffusion equation and the consumption/reaction of the nutrients by the bacteria. The numerical results show very good agreement with the experimental profiles. The growth model verified that the bacterial growth is conditioned by both the diffusion and the consumption of the nutrients. Thus, there is a high bacterial density in the first millimeter of the immobilization matrix. The growth model has been very useful for the development of the bioluminescence model inside the gel and shows that a concentration of oxygen greater than or equal to 22 % of saturation is required to maintain a significant level of bioluminescence. A continuous feeding of nutrients during the process of detection of cadmium leads to a biofilm which reduces the diffusion of nutrients and restricts the presence of oxygen from the first layer of the agarose (1 mm) and affects the intensity of the bioluminescent reaction. The main advantage of this work is to link experimental works with numerical models of growth and bioluminescence in order to provide a general purpose model to understand, anticipate, or predict the dysfunction of a biosensor using immobilized bioluminescent bioreporter in a matrix.
Homemade Bienzymatic-Amperometric Biosensor for Beverages Analysis
ERIC Educational Resources Information Center
Blanco-Lopez, M. C.; Lobo-Castanon, M. J.; Miranda-Ordieres, A. J.
2007-01-01
The construction of an amperometric biosensor for glucose analysis is described demonstrating that the analysis is easy to perform and the biosensor gives good analytical performance. This experiment helped the students to acquire problem-solving and teamwork skills, allowing them to reach a high level of independent and critical thought.
Prediction of the limit of detection of an optical resonant reflection biosensor.
Hong, Jongcheol; Kim, Kyung-Hyun; Shin, Jae-Heon; Huh, Chul; Sung, Gun Yong
2007-07-09
A prediction of the limit of detection of an optical resonant reflection biosensor is presented. An optical resonant reflection biosensor using a guided-mode resonance filter is one of the most promising label-free optical immunosensors due to a sharp reflectance peak and a high sensitivity to the changes of optical path length. We have simulated this type of biosensor using rigorous coupled wave theory to calculate the limit of detection of the thickness of the target protein layer. Theoretically, our biosensor has an estimated ability to detect thickness change approximately the size of typical antigen proteins. We have also investigated the effects of the absorption and divergence of the incident light on the detection ability of the biosensor.
Li, Jia; Rossignol, Fabrice; Macdonald, Joanne
2015-06-21
Inkjet printing is emerging at the forefront of biosensor fabrication technologies. Parallel advances in both ink chemistry and printers have led to a biosensor manufacturing approach that is simple, rapid, flexible, high resolution, low cost, efficient for mass production, and extends the capabilities of devices beyond other manufacturing technologies. Here we review for the first time the factors behind successful inkjet biosensor fabrication, including printers, inks, patterning methods, and matrix types. We discuss technical considerations that are important when moving beyond theoretical knowledge to practical implementation. We also highlight significant advances in biosensor functionality that have been realised through inkjet printing. Finally, we consider future possibilities for biosensors enabled by this novel combination of chemistry and technology.
Tu, Wenwen; Lei, Jianping; Ju, Huangxian
2009-01-01
A functional composite of single-walled carbon nanotubes (SWNTs) with hematin, a water-insoluble porphyrin, was first prepared in 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF(6)]) ionic liquid. The novel composite in ionic liquid was characterized by scanning electron microscopy, ultraviolet absorption spectroscopy, and electrochemical impedance spectroscopy, and showed a pair of direct redox peaks of the Fe(III)/Fe(II) couple. The composite-[BMIM][PF(6)]-modified glassy carbon electrode showed excellent electrocatalytic activity toward the reduction of trichloroacetic acid (TCA) in neutral media due to the synergic effect among SWNTs, [BMIM][PF(6)], and porphyrin, which led to a highly sensitive and stable amperometric biosensor for TCA with a linear range from 9.0x10(-7) to 1.4x10(-4) M. The detection limit was 3.8x10(-7) M at a signal-to-noise ratio of 3. The TCA biosensor had good analytical performance, such as rapid response, good reproducibility, and acceptable accuracy, and could be successfully used for the detection of residual TCA in polluted water. The functional composite in ionic liquid provides a facile way to not only obtain the direct electrochemistry of water-insoluble porphyrin, but also construct novel biosensors for monitoring analytes in real environmental samples.
A symmetric metamaterial element-based RF biosensor for rapid and label-free detection
NASA Astrophysics Data System (ADS)
Lee, Hee-Jo; Lee, Jung-Hyun; Jung, Hyo-Il
2011-10-01
A symmetric metamaterial element-based RF biosensing scheme is experimentally demonstrated by detecting biomolecular binding between a prostate-specific antigen (PSA) and its antibody. The metamaterial element in a high-impedance microstrip line shows an intrinsic S21 resonance having a Q-factor of 55. The frequency shift with PSA concentration, i.e., 100 ng/ml, 10 ng/ml, and 1 ng/ml, is observed and the changes are Δf ≈ 20 MHz, 10 MHz, and 5 MHz, respectively. The proposed biosensor offers advantages of label-free detection, a simple and direct scheme, and cost-efficient fabrication.
Microfluidic transmission surface plasmon resonance enhancement for biosensor applications
NASA Astrophysics Data System (ADS)
Lertvachirapaiboon, Chutiparn; Baba, Akira; Ekgasit, Sanong; Shinbo, Kazunari; Kato, Keizo; Kaneko, Futao
2017-01-01
The microfluidic transmission surface plasmon resonance (MTSPR) constructed by assembling a gold-coated grating substrate with a microchannel was employed for biosensor application. The transmission surface plasmon resonance spectrum obtained from the MTSPR sensor chip showed a strong and narrow surface plasmon resonance (SPR) peak located between 650 and 800 nm. The maximum SPR excitation was observed at an incident angle of 35°. The MTSPR sensor chip was employed for glucose sensor application. Gold-coated grating substrates were functionalized using 3-mercapto-1-propanesulfonic acid sodium salt and subsequently functionalized using a five-bilayer poly(allylamine hydrochloride)/poly(sodium 4-styrenesulfonate) to facilitate the coupling/decoupling of the surface plasmon and to prepare a uniform surface for sensing. The detection limit of our developed system for glucose was 2.31 mM. This practical platform represents a high possibility of further developing several biomolecules, multiplex systems, and a point-of-care assay for practical biosensor applications.
Glucose Oxidase Biosensor Modeling and Predictors Optimization by Machine Learning Methods.
Gonzalez-Navarro, Felix F; Stilianova-Stoytcheva, Margarita; Renteria-Gutierrez, Livier; Belanche-Muñoz, Lluís A; Flores-Rios, Brenda L; Ibarra-Esquer, Jorge E
2016-10-26
Biosensors are small analytical devices incorporating a biological recognition element and a physico-chemical transducer to convert a biological signal into an electrical reading. Nowadays, their technological appeal resides in their fast performance, high sensitivity and continuous measuring capabilities; however, a full understanding is still under research. This paper aims to contribute to this growing field of biotechnology, with a focus on Glucose-Oxidase Biosensor (GOB) modeling through statistical learning methods from a regression perspective. We model the amperometric response of a GOB with dependent variables under different conditions, such as temperature, benzoquinone, pH and glucose concentrations, by means of several machine learning algorithms. Since the sensitivity of a GOB response is strongly related to these dependent variables, their interactions should be optimized to maximize the output signal, for which a genetic algorithm and simulated annealing are used. We report a model that shows a good generalization error and is consistent with the optimization.
Radhakrishnan, Nitin; Park, Jongwon; Kim, Chang-Soo
2012-01-01
Utilizing a simple fluidic structure, we demonstrate the improved performance of oxidase-based enzymatic biosensors. Electrolysis of water is utilized to generate bubbles to manipulate the oxygen microenvironment close to the biosensor in a fluidic channel. For the proper enzyme reactions to occur, a simple mechanical procedure of manipulating bubbles was developed to maximize the oxygen level while minimizing the pH change after electrolysis. The sensors show improved sensitivities based on the oxygen dependency of enzyme reaction. In addition, this oxygen-rich operation minimizes the ratio of electrochemical interference signal by ascorbic acid during sensor operation (i.e., amperometric detection of hydrogen peroxide). Although creatinine sensors have been used as the model system in this study, this method is applicable to many other biosensors that can use oxidase enzymes (e.g., glucose, alcohol, phenol, etc.) to implement a viable component for in-line fluidic sensor systems. PMID:23012527
AL-Mokaram, Ali M. A. Abdul Amir; Yahya, Rosiyah; Abdi, Mahnaz M.; Mahmud, Habibun Nabi Muhammad Ekramul
2017-01-01
The performance of a modified electrode of nanocomposite films consisting of polypyrrole–chitosan–titanium dioxide (Ppy-CS-TiO2) has been explored for the developing a non-enzymatic glucose biosensors. The synergy effect of TiO2 nanoparticles (NPs) and conducting polymer on the current responses of the electrode resulted in greater sensitivity. The incorporation of TiO2 NPs in the nanocomposite films was confirmed by X-ray photoelectron spectroscopy (XPS) spectra. FE-SEM and HR-TEM provided more evidence for the presence of TiO2 in the Ppy-CS structure. Glucose biosensing properties were determined by amperommetry and cyclic voltammetry (CV). The interfacial properties of nanocomposite electrodes were studied by electrochemical impedance spectroscopy (EIS). The developed biosensors showed good sensitivity over a linear range of 1–14 mM with a detection limit of 614 μM for glucose. The modified electrode with Ppy-CS nanocomposite also exhibited good selectivity and long-term stability with no interference effect. The Ppy-CS-TiO2 nanocomposites films presented high electron transfer kinetics. This work shows the role of nanomaterials in electrochemical biosensors and describes the process of their homogeneous distribution in composite films by a one-step electrochemical process, where all components are taken in a single solution in the electrochemical cell. PMID:28561760
Portable guided-mode resonance biosensor platform for point-of-care testing
NASA Astrophysics Data System (ADS)
Sung, Gun Yong; Kim, Wan-Joong; Ko, Hyunsung; Kim, Bong K.; Kim, Kyung-Hyun; Huh, Chul; Hong, Jongcheol
2012-10-01
It represents a viable solution for the realization of a portable biosensor platform that could screen/diagnose acute myocardial infarction by measuring cardiac marker concentrations such as cardiac troponin I (cTnI), creatine kinase MB (CK-MB), and myoglobin (MYO) for application to u-health monitoring system. The portable biosensor platform introduced in this presentation has a more compact structure and a much higher measuring resolution than a conventional spectrometer system. Portable guided-mode resonance (GMR) biosensor platform was composed of a biosensor chip stage, an optical pick-up module, and a data display panel. Disposable plastic GMR biosensor chips with nano-grating patterns were fabricated by injection-molding. Whole blood filtration and label-free immunoassay were performed on these single chips, automatically. Optical pick-up module was fabricated by using the miniaturized bulk optics and the interconnecting optical fibers and a tunable VCSEL (vertical cavity surface emitting laser). The reflectance spectrum from the GMR biosensor was measured by the optical pick-up module. Cardiac markers in human serum with concentrations less than 0.1ng/mL were analyzed using a GMR biosensor. Analysis time was 30min, which is short enough to meet clinical requirements. Our results show that the GMR biosensor will be very useful in developing lowcost portable biosensors that can screen for cardiac diseases.
2016-04-01
AFCEC-CX-TY-TR-2016-0007 HANDHELD CHEM/ BIOSENSOR USING EXTREME CONFORMATIONAL CHANGES IN DESIGNED BINDING PROTEINS TO ENHANCE SURFACE PLASMON...Include area code) 03/24/2016 Abstract 08/14/2015--03/31/2016 Handheld chem/ biosensor using extreme conformational changes in designed binding...Baltimore, Maryland on 17-21 April 2016. We propose the development of a highly sensitive handheld chem/ biosensor device using a novel class of engineered
A New Laccase Based Biosensor for Tartrazine.
Mazlan, Siti Zulaikha; Lee, Yook Heng; Hanifah, Sharina Abu
2017-12-09
Laccase enzyme, a commonly used enzyme for the construction of biosensors for phenolic compounds was used for the first time to develop a new biosensor for the determination of the azo-dye tartrazine. The electrochemical biosensor was based on the immobilization of laccase on functionalized methacrylate-acrylate microspheres. The biosensor membrane is a composite of the laccase conjugated microspheres and gold nanoparticles (AuNPs) coated on a carbon-paste screen-printed electrode. The reaction involving tartrazine can be catalyzed by laccase enzyme, where the current change was measured by differential pulse voltammetry (DPV) at 1.1 V. The anodic peak current was linear within the tartrazine concentration range of 0.2 to 14 μM ( R ² = 0.979) and the detection limit was 0.04 μM. Common food ingredients or additives such as glucose, sucrose, ascorbic acid, phenol and sunset yellow did not interfere with the biosensor response. Furthermore, the biosensor response was stable up to 30 days of storage period at 4 °C. Foods and beverage were used as real samples for the biosensor validation. The biosensor response to tartrazine showed no significant difference with a standard HPLC method for tartrazine analysis.
A New Laccase Based Biosensor for Tartrazine
Mazlan, Siti Zulaikha; Lee, Yook Heng; Hanifah, Sharina Abu
2017-01-01
Laccase enzyme, a commonly used enzyme for the construction of biosensors for phenolic compounds was used for the first time to develop a new biosensor for the determination of the azo-dye tartrazine. The electrochemical biosensor was based on the immobilization of laccase on functionalized methacrylate-acrylate microspheres. The biosensor membrane is a composite of the laccase conjugated microspheres and gold nanoparticles (AuNPs) coated on a carbon-paste screen-printed electrode. The reaction involving tartrazine can be catalyzed by laccase enzyme, where the current change was measured by differential pulse voltammetry (DPV) at 1.1 V. The anodic peak current was linear within the tartrazine concentration range of 0.2 to 14 μM (R2 = 0.979) and the detection limit was 0.04 μM. Common food ingredients or additives such as glucose, sucrose, ascorbic acid, phenol and sunset yellow did not interfere with the biosensor response. Furthermore, the biosensor response was stable up to 30 days of storage period at 4 °C. Foods and beverage were used as real samples for the biosensor validation. The biosensor response to tartrazine showed no significant difference with a standard HPLC method for tartrazine analysis. PMID:29232842
NASA Astrophysics Data System (ADS)
Kucherenko, Ivan S.; Soldatkin, Oleksandr O.; Kasap, Berna Ozansoy; Kurç, Burcu Akata; Melnyk, Volodymir G.; Semenycheva, Lyudmila M.; Dzyadevych, Sergei V.; Soldatkin, Alexei P.
This work describes urease-based conductometric biosensors that were created using nontypical method of urease immobilization via adsorption on micro- and nanoporous particles: silicalite and nanocrystalline zeolites Beta (BEA) and L. Conductometric transducers with nickel, gold, and platinum interdigitated electrodes were used. Active regions of the nickel transducers were modified with microparticles using two procedures—spin coating and drop coating. Gold and platinum transducers were modified with silicalite using drop coating since it was more effective. Scanning electron microscopy was used to evaluate effectiveness of these procedures. The procedure of spin coating produced more uniform layers of particles (and biosensors had good reproducibility of preparation), but it was more complicated, drop coating was easier and led to formation of a bulk of particles; thus, biosensors had bigger sensitivity but worse reproducibility of preparation. Urease was immobilized onto transducers modified with particles by physical adsorption. Analytical characteristics of the obtained biosensors for determination of urea (calibration curves, sensitivity, limit of detection, linear concentration range, noise of responses, reproducibility of signal during a day, and operational stability during 3 days) were compared. Biosensors with all three particles deposited by spin coating showed similar characteristics; however, silicalite was a bit more effective. Biosensors based on nickel transducers modified by drop coating had better characteristics in comparison with modification by spin coating (except reproducibility of preparation). Transducers with gold electrodes showed best characteristics while creating biosensors, platinum electrodes were slightly inferior to them, and nickel electrodes were the worst.
NASA Astrophysics Data System (ADS)
Yuan, Yufeng; Yu, Xiantong; Ouyang, Qingling; Shao, Yonghong; Song, Jun; Qu, Junle; Yong, Ken-Tye
2018-04-01
This study proposed a novel highly anisotropic surface plasmon resonance (SPR) biosensor employing emerging 2D black phosphorus (BP) and graphene atomic layers. Light absorption and energy loss were well balanced by optimizing gold film thickness and number of BP layers to generate the strongest SPR excitation. The proposed SPR biosensor was designed by the phase-modulation approach and is more sensitive to biomolecule bindings, providing 3 orders of magnitude higher sensitivity than the red-shift in SPR angle. Our results show the optimized configuration was 48 nm Au film coated with 4-layer BP crystal to produce the sharpest phase variation (up to 89.8975°), and lowest minimum reflectivity (1.9119 × 10-7). Detection sensitivity up to 7.4914 × 104 degree/refractive index unit is almost 4.5 times enhanced compared to monolayer graphene-based SPR sensors with 48 nm Au film. The anisotropic BP layers act as a polarizer, so the proposed SPR biosensor would exhibit optically tunable detection sensitivity, making it a promising candidate for exploring highly anisotropic platforms in biosensing.
NASA Astrophysics Data System (ADS)
Chen, I.-H.; Horikawa, S.; Xi, J.; Wikle, H. C.; Barbaree, J. M.; Chin, B. A.
2017-05-01
Phage based magneto-elastic (ME) biosensors have been shown to be able to rapidly detect Salmonella in various food systems to serve food pathogen monitoring purposes. In this ME biosensor platform, the free-standing strip-shaped magneto-elastic sensor is the transducer and the phage probe that recognizes Salmonella in food serves as the bio-recognition element. According to Sorokulova et al. at 2005, a developed oligonucleotide probe E2 was reported to have high specificity to Salmonella enterica Typhimurium. In the report, the specificity tests were focused in most of Enterobacterace groups outside of Salmonella family. Here, to understand the specificity of phage E2 to different Salmonella enterica serotypes within Salmonella Family, we further tested the specificity of the phage probe to thirty-two Salmonella serotypes that were present in the major foodborne outbreaks during the past ten years (according to Centers for Disease Control and Prevention). The tests were conducted through an Enzyme linked Immunosorbent Assay (ELISA) format. This assay can mimic probe immobilized conditions on the magnetoelastic biosensor platform and also enable to study the binding specificity of oligonucleotide probes toward different Salmonella while avoiding phage/ sensor lot variations. Test results confirmed that this oligonucleotide probe E2 was high specific to Salmonella Typhimurium cells but showed cross reactivity to Salmonella Tennessee and four other serotypes among the thirty-two tested Salmonella serotypes.
Technical performance of lactate biosensors and a test-strip device during labour.
Luttkus, A K; Fotopoulou, C; Sehouli, J; Stupin, J; Dudenhausen, J W
2010-04-01
Lactate in fetal blood has a high diagnostic power to detect fetal compromise due to hypoxia, as lactate allows an estimation of duration and intensity of metabolic acidemia. Biosensor technology allows an instantaneous diagnosis of fetal compromise in the delivery room. The goal of the current investigation is to define the preanalytical and analytical biases of this technology under routine conditions in a labour ward in comparison to test-strip technology, which allows measurement of lactate alone. Three lactate biosensors (RapidLab 865, Siemens Medical Solutions Diagnostics, Bad Nauheim, Germany; Radiometer ABL625 and ABL 700, Radiometer Copenhagen, Denmark) and one test-strip device (Lactate Pro, Oxford Instruments, UK) were evaluated regarding precision in serial and repetitive measurements in over 1350 samples of fetal whole blood. The coefficient of variation (CV) and the standard deviation (SD) were calculated. The average value of all three biosensors was defined as an artificial reference value (refval). Blood tonometry was performed in order to test the quality of respiratory parameters and to simulate conditions of fetal hypoxia (pO (2): 10 and 20 mmHg). The precision of serial measurements of all biosensors indicated a coefficient of variation (CV) between 1.55 and 3.16% with an SD from 0.042 to 0.053 mmol/L. The test-strip device (Lactate Pro) mounted to 0.117 mmol/L and 3.99% (SD, CV). When compared to our reference value (refval) ABL 625 showed the closest correlation of -0.1%, while Siemens RapidLab 865 showed an overestimation of +8.9%, ABL700 an underestimation of -6.2% and Lactate Pro of -3.7%. For routine use all tested biosensors show sufficient precision. The test-strip device shows a slightly higher standard deviation. A direct comparison of measured lactate values from the various devices needs to be interpreted with caution as each method detects different lactate concentrations. Furthermore, the 40 min process of tonometry led to an increase of SD and coefficient of variation in all devices. This results in the important preanalytical finding that the precision of replicated measurements worsens significantly with time. The clinician should be aware of the type of analyser used and of preanalytical biases before making clinical decisions on the basis of lactate values.
NASA Astrophysics Data System (ADS)
Malmir, Narges; Fasihi, Kiazand
2017-11-01
In this work, we present a novel high-sensitive optical label-free biosensor based on a two-dimensional photonic crystal (2D PC). The suggested structure is composed of a negative refraction structure in a hexagonal lattice PC, along with a positive refraction structure which is arranged in a square lattice PC. The frequency shift of the transmission peak is measured respect to the changes of refractive indices of the studied materials (the blood plasma, water, dry air and normal air). The studied materials are filled into a W1 line-defect waveguide which is located in the PC structure with positive refraction (the microfluidic nanochannel). Our numerical simulations, which are based on finite-difference time-domain (FDTD) method, show that in the proposed structure, a sensitivity about 1100 nm/RIU and a transmission efficiency more than 75% can be achieved. With this design, to the best of our knowledge, the obtained sensitivity and the transmission efficiency are one of the highest values in the reported PC label-free biosensors.
A biosensor generated via high throughput screening quantifies cell edge Src dynamics
Gulyani, Akash; Vitriol, Eric; Allen, Richard; Wu, Jianrong; Gremyachinskiy, Dmitriy; Lewis, Steven; Dewar, Brian; Graves, Lee M.; Kay, Brian K.; Kuhlman, Brian; Elston, Tim; Hahn, Klaus M.
2011-01-01
Fluorescent biosensors for living cells currently require laborious optimization and a unique design for each target. They are limited by the availability of naturally occurring ligands with appropriate target specificity. Here we describe a biosensor based on an engineered fibronectin monobody scaffold that can be tailored to bind different targets via high throughput screening. This Src family kinase (SFK) biosensor was made by derivatizing a monobody specific for activated SFK with a bright dye whose fluorescence increases upon target binding. We identified sites for dye attachment and alterations to eliminate vesiculation in living cells, providing a generalizable scaffold for biosensor production. This approach minimizes cell perturbation because it senses endogenous, unmodified target, and because sensitivity is enhanced by direct dye excitation. Automated correlation of cell velocities and SFK activity revealed that SFK are activated specifically during protrusion. Activity correlates with velocity, and peaks 1–2 microns from the leading edge. PMID:21666688
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Yi Jun; Mandelis, Andreas, E-mail: mandelis@mie.utoronto.ca; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9
In this work, laser-based wavelength-modulated differential photothermal radiometry (WM-DPTR) is applied to develop a non-invasive in-vehicle alcohol biosensor. WM-DPTR features unprecedented ethanol-specificity and sensitivity by suppressing baseline variations through a differential measurement near the peak and baseline of the mid-infrared ethanol absorption spectrum. Biosensor signal calibration curves are obtained from WM-DPTR theory and from measurements in human blood serum and ethanol solutions diffused from skin. The results demonstrate that the WM-DPTR-based calibrated alcohol biosensor can achieve high precision and accuracy for the ethanol concentration range of 0-100 mg/dl. The high-performance alcohol biosensor can be incorporated into ignition interlocks that couldmore » be fitted as a universal accessory in vehicles in an effort to reduce incidents of drinking and driving.« less
Zehani, Nedjla; Fortgang, Philippe; Saddek Lachgar, Mohamed; Baraket, Abdoullatif; Arab, Madjid; Dzyadevych, Sergei V; Kherrat, Rochdi; Jaffrezic-Renault, Nicole
2015-12-15
A highly sensitive electrochemical biosensor for the detection of Bisphenol A (BPA) in water has been developed by immobilizing tyrosinase onto a diazonium-functionalized boron doped diamond electrode (BDD) modified with multi-walled carbon nanotubes (MWCNTs). The fabricated biosensor exhibits excellent electroactivity towards o-quinone, a product of this enzymatic reaction of BPA oxidation catalyzed by tyrosinase. The developed BPA biosensor displays a large linear range from 0.01 nM to 100 nM, with a detection limit (LOD) of 10 pM. The feasibility of the proposed biosensor has been demonstrated on BPA spiked water river samples. Therefore, it could be a promising and reliable analytical tool for on-site monitoring of BPA in waste water. Copyright © 2015 Elsevier B.V. All rights reserved.
Liu, Linlin; Ma, Qiang; Li, Yang; Liu, ZiPing; Su, Xingguang
2015-01-15
In this work, a novel facile signal-off electrochemiluminescence (ECL) biosensor has been developed for the determination of glucose based on the integration of chitosan (CHIT), CdTe quantum dots (CdTe QDs) and Au nanoparticles (Au NPs) on the glassy carbon electrode (GCE). Chitosan displays high water permeability, hydrophilic property, strong hydrogel ability and good adhesion to load the double nanoparticles to the glassy carbon electrode surfaces. Au NPs are efficient glucose oxidase (GOx)-mimickess to catalytically oxidize glucose, similar to the natural process. Upon the addition of glucose, the Au NPs catalyzed glucose to produce gluconic acid and hydrogen peroxide (H2O2) based on the consumption of dissolved oxygen (O2), which resulted in a quenching effect on the ECL emission. Therefore, the determination of glucose could be achieved by monitoring the signal-off ECL biosensor. Under the optimum conditions, the ECL intensity of CdTe QDs and the concentration of glucose have a good linear relationship in the range of 0.01-10 mmol L(-1). The limit of detection for glucose was 5.28 μmol L(-1) (S/N=3). The biosensor showed good sensitivity, selectivity, reproducibility and stability. The proposed biosensor has been employed for the detection of glucose in human serum samples with satisfactory results. Copyright © 2014 Elsevier B.V. All rights reserved.
2014-01-01
In this paper, single-stranded DNA (ss-DNA) is demonstrated to functionalize graphene (GR) and to further guide the growth of PtAu bimetallic nanoparticles (PtAuNPs) on GR with high densities and dispersion. The obtained nanocomposites (PtAuNPs/ss-DNA/GR) were characterized by transmission electron microscopy (TEM), energy-dispersive X-ray spectrometer (EDS), and electrochemical techniques. Then, an enzyme nanoassembly was prepared by self-assembling glucose oxidase (GOD) on PtAuNP/ss-DNA/GR nanocomposites (GOD/PtAuNPs/ss-DNA/GR). The nanocomposites provided a suitable microenvironment for GOD to retain its biological activity. The direct and reversible electron transfer process between the active site of GOD and the modified electrode was realized without any extra electron mediator. Thus, the prepared GOD/PtAuNP/ss-DNA/GR electrode was proposed as a biosensor for the quantification of glucose. The effects of pH, applied potential, and temperature on the performance of the biosensor were discussed in detail and were optimized. Under optimal conditions, the biosensor showed a linearity with glucose concentration in the range of 1.0 to 1,800 μM with a detection limit of 0.3 μM (S/N = 3). The results demonstrate that the developed approach provides a promising strategy to improve the sensitivity and enzyme activity of electrochemical biosensors. PMID:24572068
NASA Astrophysics Data System (ADS)
DeLuna, Frank; Ding, XiaoFie; Sun, Lu-Zhe; Ye, Jing Yong
2017-02-01
Biomarker screening for prostate-specific antigen (PSA) is the current clinical standard for detection of prostate cancer. However this method has shown many limitations, mainly in its specificity, which can lead to a high false positive rate. Thus, there is a growing need in developing a more specific detection system for prostate cancer. Using a Photonic- Crystal-based biosensor in a Total-Internal-Reflection (PC-TIR) configuration, we demonstrate the use of refractive index (RI) to accomplish label-free detection of prostate cancer cells against non-cancerous prostate epithelial cells. The PC-TIR biosensor possesses an open microcavity, which in contrast to traditional closed microcavities, allows for easier access of analyte molecules or cells to interact with its sensing surface. In this study, an imaging system was designed using the PC-TIR biosensor to quantify cell RI as the contrast parameter for prostate cancer detection. Non-cancerous BPH-1 prostate epithelial cells and prostate cancer PC-3 cells were placed on a single biosensor and measured concurrently. Recorded image data was then analyzed through a home-built MatLab program. Results demonstrate that RI is a suitable variable for differentiation between prostate cancer cells and non-cancerous prostate epithelial cells. Our study shows clinical potential in utilizing RI test for the detection of prostate cancer.
Wu, Chang-Lin; He, Jian-An; Gu, Da-Yong; Shao, Chao-Peng; Zhu, Yi; Dang, Xin-Tang
2018-01-01
This study was aimed to establish a novel strategy based on the surface plasmon resonance (SPR) technology for platelet compatibility testing. A novel surface matrix was prepared based on poly (OEGMA-co-HEMA) via surface-initiated polymerization as a biosensor surface platform. Type O universal platelets and donor platelets were immobilized on these novel matrices via amine-coupling reaction and worked as a capturing ligand for binding the platelet antibody. Antibodies binding to platelets were monitored in real time by injecting the samples into a microfluidic channel. Clinical serum samples (n = 186) with multiple platelet transfusions were assayed for platelet antibodies using the SPR technology and monoclonal antibody-immobilized platelet antigen (MAIPA) assay. The novel biosensor surface achieved nonfouling background and high immobilization capacity and showed good repeatability and stability after regeneration. The limit of detection of the SPR biosensor for platelet antibody was estimated to be 50 ng/mL. The sensitivity and specificity were 92% and 98.7%. It could detect the platelet antibody directly in serum samples, and the results were similar to MAIPA assay. A novel strategy to facilitate the sensitive and reliable detection of platelet compatibility for developing an SPR-based biosensor was established in this study. The SPR-based biosensor combined with novel surface chemistry is a promising method for platelet compatibility testing.
Abdalhai, Mandour H; Fernandes, António Maximiano; Bashari, Mohand; Ji, Jian; He, Qian; Sun, Xiulan
2014-12-31
Rapid early detection of food contamination is the main key in food safety and quality control. Biosensors are emerging as a vibrant area of research, and the use of DNA biosensor recognition detectors is relatively new. In this study a genomic DNA biosensor system with a fixing and capture probe was modified by a sulfhydryl and amino group, respectively, as complementary with target DNA. After immobilization and hybridization, the following sandwich structure fixing DNA-target DNA-capture DNA-PbS NPs was formed to detect pathogenic bacteria (Staphylococuus aureus EF529607.1) by using GCE modified with (multiwalled carbon nanotubes-chitosan-bismuth) to increase the sensitivity of the electrode. The modification procedure was characterized by cyclic voltammetry and electrochemical impedance spectroscopy. The sandwich structure was dissolved in 1 M nitric acid to become accessible to the electrode, and the PbS NPs was measured in solution by differential pulse voltammetry (DPV). The results showed that the detection limit of the DNA sensor was 3.17 × 10(-14) M S. aureus using PbS NPs, whereas the result for beef samples was 1.23 ng/mL. Thus, according to the experimental results presented, the DNA biosensor exhibited high sensitivity and rapid response, and it will be useful for the food matrix.
García-Martinez, Gonzalo; Bustabad, Enrique Alonso; Perrot, Hubert; Gabrielli, Claude; Bucur, Bogdan; Lazerges, Mathieu; Rose, Daniel; Rodriguez-Pardo, Loreto; Fariña, Jose; Compère, Chantal; Vives, Antonio Arnau
2011-01-01
This work deals with the design of a high sensitivity DNA sequence detector using a 50 MHz quartz crystal microbalance (QCM) electronic oscillator circuit. The oscillator circuitry is based on Miller topology, which is able to work in damping media. Calibration and experimental study of frequency noise are carried out, finding that the designed sensor has a resolution of 7.1 ng/cm(2) in dynamic conditions (with circulation of liquid). Then the oscillator is proved as DNA biosensor. Results show that the system is able to detect the presence of complementary target DNAs in a solution with high selectivity and sensitivity. DNA target concentrations higher of 50 ng/mL can be detected.
Klukova, L.; Filip, J.; Belicky, S.; Vikartovska, A.; Tkac, J.
2017-01-01
A label-free ultrasensitive impedimetric biosensor with lectin immobilised on graphene oxide (GO) for the detection of glycoproteins from 1 aM is shown here. This is the first time a functional lectin biosensor with lectin directly immobilised on a graphene-based interface without any polymer modifier has been described. The study also shows that hydrophilic oxidative debris present on GO has a beneficial effect on the sensitivity of (8.46 ± 0.20)% per decade for the lectin biosensor compared to the sensitivity of (4.52 ± 0.23)% per decade for the lectin biosensor built up from GO with the oxidative debris washed out. PMID:27277703
Zhao, Shuai; Liu, Pu; Niu, Yongyan; Chen, Zhengjun; Khan, Aman; Zhang, Pengyun; Li, Xiangkai
2018-02-22
Hexavalent chromium (Cr(VI)) is a well-known toxic heavy metal in industrial wastewater, but in situ and real time monitoring cannot be achieved by current methods used during industrial wastewater treatment processes. In this study, a Sediment Microbial Fuel Cell (SMFC) was used as a biosensor for in situ real-time monitoring of Cr(VI), which was the organic substrate is oxidized in the anode and Cr(VI) is reduced at the cathode simultaneously. The pH 6.4 and temperature 25 °C were optimal conditions for the operation. Under the optimal conditions, linearity (R² = 0.9935) of the generated voltage was observed in the Cr(VI) concentration range from 0.2 to 0.7 mg/L. The system showed high specificity for Cr(VI), as other co-existing ions such as Cu 2+ , Zn 2+ , and Pb 2+ did not interfere with Cr(VI) detection. In addition, when the sediment MFC-based biosensor was applied for measuring Cr(VI) in actual wastewater samples, a low deviation (<8%) was obtained, which indicated its potential as a reliable biosensor device. MiSeq sequencing results showed that electrochemically active bacteria ( Geobacter and Pseudomonas ) were enriched at least two-fold on the biofilm of the anode in the biosensor as compared to the SMFC without Cr(VI). Cyclic voltammetry curves indicated that a pair of oxidation/reduction peaks appeared at -111 mV and 581 mV, respectively. These results demonstrated that the proposed sediment microbial fuel cell-based biosensor can be applied as an early warning device for real time in situ detection of Cr(VI) in industrial wastewaters.
Qiang, Tian; Wang, Cong; Kim, Nam-Young
2017-12-15
A concept for characterizing a radiofrequency (RF) patch biosensor combined with volume-fixed structures is presented for timely monitoring of an individual's glucose levels based on frequency variation. Two types of patch biosensors-separately integrated with a backside slot (0.53μL) and a front-side tank (0.70μL) structure-were developed to achieve precise and efficient detection while excluding the effects of interference due to the liquidity, shape, and thickness of the tested glucose sample. A glucose test analyte at different concentrations (50-600mg/dL) was dropped into the volume-fixed structures. It fully interacted with the RF patch electromagnetic field, effectively and sensitively changing the resonance frequency and magnitude of the reflection coefficient. Measurement results based on the resonance frequency showed high sensitivity up to 1.13MHz and 1.97MHz per mg/dL, and low detection limits of 26.54mg/dL and 15.22mg/dL, for the two types of patch biosensors, respectively, as well as a short response time of less than 1s. Excellent reusability of the proposed biosensors was verified through three sets of measurements for each individual glucose sample. Regression analysis revealed a good linear correlation between glucose concentrations and the resonance frequency shift. Moreover, to facilitate a multi-parameter-sensitive detection of glucose, the magnitude of the reflection coefficient was also tested, and it showed a good linear correlation with the glucose concentration. Thus, the proposed approach can be adopted for distinguishing glucose solution levels, and it is a potential candidate for early-stage detection of glucose levels in diabetes patients. Copyright © 2017 Elsevier B.V. All rights reserved.
Zhao, Shuai; Liu, Pu; Niu, Yongyan; Chen, Zhengjun; Khan, Aman; Zhang, Pengyun; Li, Xiangkai
2018-01-01
Hexavalent chromium (Cr(VI)) is a well-known toxic heavy metal in industrial wastewater, but in situ and real time monitoring cannot be achieved by current methods used during industrial wastewater treatment processes. In this study, a Sediment Microbial Fuel Cell (SMFC) was used as a biosensor for in situ real-time monitoring of Cr(VI), which was the organic substrate is oxidized in the anode and Cr(VI) is reduced at the cathode simultaneously. The pH 6.4 and temperature 25 °C were optimal conditions for the operation. Under the optimal conditions, linearity (R2 = 0.9935) of the generated voltage was observed in the Cr(VI) concentration range from 0.2 to 0.7 mg/L. The system showed high specificity for Cr(VI), as other co-existing ions such as Cu2+, Zn2+, and Pb2+ did not interfere with Cr(VI) detection. In addition, when the sediment MFC-based biosensor was applied for measuring Cr(VI) in actual wastewater samples, a low deviation (<8%) was obtained, which indicated its potential as a reliable biosensor device. MiSeq sequencing results showed that electrochemically active bacteria (Geobacter and Pseudomonas) were enriched at least two-fold on the biofilm of the anode in the biosensor as compared to the SMFC without Cr(VI). Cyclic voltammetry curves indicated that a pair of oxidation/reduction peaks appeared at −111 mV and 581 mV, respectively. These results demonstrated that the proposed sediment microbial fuel cell-based biosensor can be applied as an early warning device for real time in situ detection of Cr(VI) in industrial wastewaters. PMID:29470394
Izadi, Zahra; Sheikh-Zeinoddin, Mahmoud; Ensafi, Ali A; Soleimanian-Zad, Sabihe
2016-06-15
This paper describes fabrication of a DNA-based Au-nanoparticle modified pencil graphite electrode (PGE) biosensor for detection of Bacillus cereus, causative agent of two types of food-borne disease, i.e., emetic and diarrheal syndrome. The sensing element of the biosensor was comprised of gold nanoparticles (GNPs) self-assembled with single-stranded DNA (ssDNA) of nheA gene immobilized with thiol linker on the GNPs modified PGE. The size, shape and dispersion of the GNPs were characterized by field emission scanning electron microscope (FESEM). Detection of B. cereus was carried out based on an increase in the charge transfer resistance (Rct) of the biosensor due to hybridization of the ss-DNA with target DNA. An Atomic force microscope (AFM) was used to confirm the hybridization. The biosensor sensitivity in pure cultures of B. cereus was found to be 10(0) colony forming units per milliliter (CFU/mL) with a detection limit of 9.4 × 10(-12) mol L(-1). The biosensor could distinguish complementary from mismatch DNA sequence. The proposed biosensor exhibited a rapid detection, low cost, high sensitivity to bacterial contamination and could exclusively and specifically detect the target DNA sequence of B. cereus from other bacteria that can be found in dairy products. Moreover, the DNA biosensor exhibited high reproducibility and stability, thus it may be used as a suitable biosensor to detect B. cereus and to become a portable system for food quality control. Copyright © 2016 Elsevier B.V. All rights reserved.
Khoshbin, Zahra; Housaindokht, Mohammad Reza; Verdian, Asma; Bozorgmehr, Mohammad Reza
2018-09-30
The serious threats of mercury (Hg 2+ ) and lead (Pb 2+ ) ions for the public health makes it important to achieve the detection methods of the ions with high affinity and specificity. Metal ions usually coexist in some environment and foodstuff or clinical samples. Therefore, it is very necessary to develop a fast and simple method for simultaneous monitoring the amount of metal ions, especially when Hg 2+ and Pb 2+ coexist. DNAzyme-based biosensors and aptasensors have been highly regarded for this purpose as two main groups of the functional nucleic acid (FNA)-based biosensors. In this review, we summarize the recent achievements of functional nucleic acid-based biosensors for the simultaneous detection of Hg 2+ and Pb 2+ ions in two main optical and electrochemical groups. The tremendous interest in utilizing the various nanomaterials is also highlighted in the fabrication of the FNA-based biosensors. Finally, some results are presented based on the advantages and disadvantages of the studied FNA-based biosensors to compare their validation. Copyright © 2018 Elsevier B.V. All rights reserved.
Microfabricated Electrochemical Cell-Based Biosensors for Analysis of Living Cells In Vitro
Wang, Jun; Wu, Chengxiong; Hu, Ning; Zhou, Jie; Du, Liping; Wang, Ping
2012-01-01
Cellular biochemical parameters can be used to reveal the physiological and functional information of various cells. Due to demonstrated high accuracy and non-invasiveness, electrochemical detection methods have been used for cell-based investigation. When combined with improved biosensor design and advanced measurement systems, the on-line biochemical analysis of living cells in vitro has been applied for biological mechanism study, drug screening and even environmental monitoring. In recent decades, new types of miniaturized electrochemical biosensor are emerging with the development of microfabrication technology. This review aims to give an overview of the microfabricated electrochemical cell-based biosensors, such as microelectrode arrays (MEA), the electric cell-substrate impedance sensing (ECIS) technique, and the light addressable potentiometric sensor (LAPS). The details in their working principles, measurement systems, and applications in cell monitoring are covered. Driven by the need for high throughput and multi-parameter detection proposed by biomedicine, the development trends of electrochemical cell-based biosensors are also introduced, including newly developed integrated biosensors, and the application of nanotechnology and microfluidic technology. PMID:25585708
Progress in utilisation of graphene for electrochemical biosensors.
Lawal, Abdulazeez T
2018-05-30
This review discusses recent graphene (GR) electrochemical biosensor for accurate detection of biomolecules, including glucose, hydrogen peroxide, dopamine, ascorbic acid, uric acid, nicotinamide adenine dinucleotide, DNA, metals and immunosensor through effective immobilization of enzymes, including glucose oxidase, horseradish peroxidase, and haemoglobin. GR-based biosensors exhibited remarkable performance with high sensitivities, wide linear detection ranges, low detection limits, and long-term stabilities. Future challenges for the field include miniaturising biosensors and simplifying mass production are discussed. Copyright © 2018 Elsevier B.V. All rights reserved.
Advances in nano-scaled biosensors for biomedical applications.
Wang, Jianling; Chen, Guihua; Jiang, Hui; Li, Zhiyong; Wang, Xuemei
2013-08-21
Recently, a growing amount of attention has been focused on the utility of biosensors for biomedical applications. Combined with nanomaterials and nanostructures, nano-scaled biosensors are installed for biomedical applications, such as pathogenic bacteria monitoring, virus recognition, disease biomarker detection, among others. These nano-biosensors offer a number of advantages and in many respects are ideally suited to biomedical applications, which could be made as extremely flexible devices, allowing biomedical analysis with speediness, excellent selectivity and high sensitivity. This minireview discusses the literature published in the latest years on the advances in biomedical applications of nano-scaled biosensors for disease bio-marking and detection, especially in bio-imaging and the diagnosis of pathological cells and viruses, monitoring pathogenic bacteria, thus providing insight into the future prospects of biosensors in relevant clinical applications.
Rozi, Normazida; Ahmad, Amalina; Yook Heng, Lee; Shyuan, Loh Kee; Hanifah, Sharina Abu
2018-01-01
An enzyme-based electrochemical biosensor was investigated for the analysis of Sunset Yellow synthetic food dye. A glassy carbon electrode was coated with a poly(acrylamide-co-ethyl methacrylate) membrane to immobilize laccase using a single-step photopolymerization procedure. Poly(acrylamide-co-ethyl methacrylate) membrane was demonstrated to have acceptable water absorption and suitable for biosensor application. Sunset Yellow biosensor exhibited a linear response range from 0.08 to 10.00 µM with a detection limit of 0.02 µM. This biosensor was successfully used to determine Sunset Yellow in soft drinks with recoveries of 99.0–101.6%. The method was validated using high-performance liquid chromatography, indicating the biosensor can be as a promising alternative method for Sunset Yellow detection. PMID:29301262
Mussel-Inspired Electro-Cross-Linking of Enzymes for the Development of Biosensors.
El-Maiss, Janwa; Cuccarese, Marco; Maerten, Clément; Lupattelli, Paolo; Chiummiento, Lucia; Funicello, Maria; Schaaf, Pierre; Jierry, Loïc; Boulmedais, Fouzia
2018-06-06
In medical diagnosis and environmental monitoring, enzymatic biosensors are widely applied because of their high sensitivity, potential selectivity, and their possibility of miniaturization/automation. Enzyme immobilization is a critical process in the development of this type of biosensors with the necessity to avoid the denaturation of the enzymes and ensuring their accessibility toward the analyte. Electrodeposition of macromolecules is increasingly considered to be the most suitable method for the design of biosensors. Being simple and attractive, it finely controls the immobilization of enzymes on electrode surfaces, usually by entrapment or adsorption, using an electrical stimulus. Performed manually, enzyme immobilization by cross-linking prevents enzyme leaching and was never done using an electrochemical stimulus. In this work, we present a mussel-inspired electro-cross-linking process using glucose oxidase (GOX) and a homobifunctionalized catechol ethylene oxide spacer as a cross-linker in the presence of ferrocene methanol (FC) acting as a mediator of the buildup. Performed in one pot, the process takes place in three steps: (i) electro-oxidation of FC, by the application of cyclic voltammetry, creating a gradient of ferrocenium (FC + ); (ii) oxidation of bis-catechol into a bis-quinone molecule by reaction with the electrogenerated FC + ; and (iii) a chemical reaction of bis-quinone with free amino moieties of GOX through Michael addition and a Schiff's base condensation reaction. Employed for the design of a second-generation glucose biosensor using ferrocene methanol (FC) as a mediator, this new enzyme immobilization process presents several advantages. The cross-linked enzymatic film (i) is obtained in a one-pot process with nonmodified GOX, (ii) is strongly linked to the metallic electrode surface thanks to catechol moieties, and (iii) presents no leakage issues. The developed GOX/bis-catechol film shows a good response to glucose with a quite wide linear range from 1.0 to 12.5 mM as well as a good sensitivity (0.66 μA/mM cm 2 ) and a high selectivity to glucose. These films would distinguish between healthy (3.8 and 6.5 mM) and hyperglycemic subjects (>7 mM). Finally, we show that this electro-cross-linking process allows the development of miniaturized biosensors through the functionalization of a single electrode out of a microelectrode array. Elegant and versatile, this electro-cross-linking process can also be used for the development of enzymatic biofuel cells.
Modularization and Response Curve Engineering of a Naringenin-Responsive Transcriptional Biosensor.
De Paepe, Brecht; Maertens, Jo; Vanholme, Bartel; De Mey, Marjan
2018-05-18
To monitor the intra- and extracellular environment of micro-organisms and to adapt their metabolic processes accordingly, scientists are reprogramming nature's myriad of transcriptional regulatory systems into transcriptional biosensors, which are able to detect small molecules and, in response, express specific output signals of choice. However, the naturally occurring response curve, the key characteristic of biosensor circuits, is typically not in line with the requirements for real-life biosensor applications. In this contribution, a natural LysR-type naringenin-responsive biosensor circuit is developed and characterized with Escherichia coli as host organism. Subsequently, this biosensor is dissected into a clearly defined detector and effector module without loss of functionality, and the influence of the expression levels of both modules on the biosensor response characteristics is investigated. Two collections of ten unique synthetic biosensors each are generated. Each collection demonstrates a unique diversity of response curve characteristics spanning a 128-fold change in dynamic and 2.5-fold change in operational ranges and 3-fold change in levels of Noise, fit for a wide range of applications, such as adaptive laboratory evolution, dynamic pathway control and high-throughput screening methods. The established biosensor engineering concepts, and the developed biosensor collections themselves, are of use for the future development and customization of biosensors in general, for the multitude of biosensor applications and as a compelling alternative for the commonly used LacI-, TetR- and AraC-based inducible circuits.
Chen, Jinyuan; Liu, Zhoujie; Peng, Huaping; Zheng, Yanjie; Lin, Zhen; Liu, Ailin; Chen, Wei; Lin, Xinhua
2017-12-15
Previously reported electrochemical DNA biosensors based on in-situ polymerization approach reveal that terminal deoxynucleoside transferase (TdTase) has good amplifying performance and promising application in the design of electrochemical DNA biosensor. However, this method, in which the background is significantly affected by the amount of TdTase, suffers from being easy to produce false positive result and poor stability. Herein, we firstly present a novel electrochemical DNA biosensor based on grafting-to mode of TdTase-mediated extension, in which DNA targets are polymerized in homogeneous solution and then hybridized with DNA probes on BSA-based DNA carrier platform. It is surprising to find that the background in the grafting-to mode of TdTase-based electrochemical DNA biosensor have little interference from the employed TdTase. Most importantly, the proposed electrochemical DNA biosensor shows greatly improved detection performance over the in-situ polymerization approach-based electrochemical DNA biosensor. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhan, Xiang-Mi; Hao, Mei-Lan; Wang, Quan; Li, Wei; Xiao, Hong-Ling; Feng, Chun; Jiang, Li-Juan; Wang, Cui-Mei; Wang, Xiao-Liang; Wang, Zhan-Guo
2017-03-01
Gallium nitride- (GaN) based high electron mobility transistors (HEMTs) provide a good platform for biological detection. In this work, both Au-gated AlInN/GaN HEMT and AlGaN/GaN HEMT biosensors are fabricated for the detection of deoxyribonucleic acid (DNA) hybridization. The Au-gated AlInN/GaN HEMT biosensor exhibits higher sensitivity in comparison with the AlGaN/GaN HEMT biosensor. For the former, the drain-source current ( {V}{DS}=0.5 V) shows a clear decrease of 69 μA upon the introduction of 1 μmolL {}-1 (μM) complimentary DNA to the probe DNA at the sensor area, while for the latter it is only 38 μA. This current reduction is a notable indication of the hybridization. The high sensitivity can be attributed to the thinner barrier of the AlInN/GaN heterostructure, which makes the two-dimensional electron gas channel more susceptible to a slight change of the surface charge. Supported by the National Key Research and Development Program of China under Grant Nos 2016YFB0400104 and 2016YFB0400301, the National Natural Sciences Foundation of China under Grant No 61334002, and the National Science and Technology Major Project.
Jiang, Hui; Jiang, Donglei; Shao, Jingdong; Sun, Xiulan; Wang, Jiasheng
2016-11-14
Due to the high toxicity of bacterial lipopolysaccharide (LPS), resulting in sepsis and septic shock, two major causes of death worldwide, significant effort is directed toward the development of specific trace-level LPS detection systems. Here, we report sensitive, user-friendly, high-throughput LPS detection in a 96-well microplate using a transcriptional biosensor system, based on 293/hTLR4A-MD2-CD14 cells that are transformed by a red fluorescent protein (mCherry) gene under the transcriptional control of an NF-κB response element. The recognition of LPS activates the biosensor cell, TLR4, and the co-receptor-induced NF-κB signaling pathway, which results in the expression of mCherry fluorescent protein. The novel cell-based biosensor detects LPS with specificity at low concentration. The cell-based biosensor was evaluated by testing LPS isolated from 14 bacteria. Of the tested bacteria, 13 isolated Enterobacteraceous LPSs with hexa-acylated structures were found to increase red fluorescence and one penta-acylated LPS from Pseudomonadaceae appeared less potent. The proposed biosensor has potential for use in the LPS detection in foodstuff and biological products, as well as bacteria identification, assisting the control of foodborne diseases.
Cai, Wei; Xie, Shunbi; Zhang, Jin; Tang, Dianyong; Tang, Ying
2017-12-15
In this work, an electrochemical impedance biosensor for high sensitive detection of Hg 2+ was presented by coupling with Hg 2+ -induced activation of Mg 2+ -specific DNAzyme (Mg 2+ -DNAzyme) for target cycling and hybridization chain reaction (HCR) assembled DNA hydrogel for signal amplification. Firstly, we synthesized two different copolymer chains P1 and P2 by modifying hairpin DNA H3 and H4 with acrylamide polymer, respectively. Subsequently, Hg 2+ was served as trigger to activate the Mg 2+ -DNAzyme for selectively cleavage ribonucleobase-modified substrate in the presence of Mg 2+ . The partial substrate strand could dissociate from DNAzyme structure, and hybridize with capture probe H1 to expose its concealed sequence for further hybridization. With the help of the exposed sequence, the HCR between hairpin DNA H3 and H4 in P1 and P2 was initiated, and assembled a layer of DNA cross-linked hydrogel on the electrode surface. The formed non-conductive DNA hydrogel film could greatly hinder the interfacial electronic transfer which provided a possibility for us to construct a high sensitive impedance biosensor for Hg 2+ detection. Under the optimal conditions, the impedance biosensor showed an excellent sensitivity and selectivity toward Hg 2+ in a concentration range of 0.1pM - 10nM with a detection limit of 0.042pM Moreover, the real sample analysis reveal that the proposed biosensor is capable of discriminating Hg 2+ ions in reliable and quantitative manners, indicating this method has a promising potential for preliminary application in routine tests. Copyright © 2017 Elsevier B.V. All rights reserved.
Ghica, Mariana Emilia; Pauliukaite, Rasa; Marchand, Nicolas; Devic, Eric; Brett, Christopher M A
2007-05-15
Improved biosensors for acetaldehyde determination have been developed using a bienzymatic strategy, based on a mediator-modified carbon film electrode and co-immobilisation of NADH oxidase and aldehyde dehydrogenase. Modification of the carbon film electrode with poly(neutral red) mediator resulted in a sensitive, low-cost and reliable NADH detector. Immobilisation of the enzymes was performed using encapsulation in a sol-gel matrix or cross-linking with glutaraldehyde. The bienzymatic biosensors were characterized by studying the influence of pH, applied potential and co-factors. The sol-gel and glutaraldehyde biosensors showed a linear response up to 60 microM and 100 microM, respectively, with detection limits of 2.6 microM and 3.3 microM and sensitivities were 1.7 microA mM(-1) and 5.6 microA mM(-1). The optimised biosensors showed good stability and good selectivity and have been tested for application for the determination of acetaldehyde in natural samples such as wine.
Li, Zhijun; Munro, Kim; Narouz, Mina R; Lau, Andrew; Hao, Hongxia; Crudden, Cathleen M; Horton, J Hugh
2018-05-30
Sensor surfaces play a predominant role in the development of optical biosensor technologies for the analysis of biomolecular interactions. Thiol-based self-assembled monolayers (SAMs) on gold have been widely used as linker layers for sensor surfaces. However, the degradation of the thiol-gold bond can limit the performance and durability of such surfaces, directly impacting their performance and cost-effectiveness. To this end, a new family of materials based on N-heterocyclic carbenes (NHCs) has emerged as an alternative for surface modification, capable of self-assembling onto a gold surface with higher affinity and superior stability as compared to the thiol-based systems. Here we demonstrate three applications of NHC SAMs supporting a dextran layer as a tunable platform for developing various affinity-capture biosensor surfaces. We describe the development and testing of NHC-based dextran biosensor surfaces modified with each of streptavidin, nitrilotriacetic acid, and recombinant Protein A. These affinity-capture sensor surfaces enable oriented binding of ligands for optimal performance in biomolecular assays. Together, the intrinsic high stability and flexible design of the NHC biosensing platforms show great promise and open up exciting possibilities for future biosensing applications.
Ahmad, Nor Monica; Abdullah, Jaafar; Yusof, Nor Azah; Ab Rashid, Ahmad Hazri; Abd Rahman, Samsulida; Hasan, Md. Rakibul
2016-01-01
A phenolic biosensor based on a zirconium oxide/polyethylene glycol/tyrosinase composite film for the detection of phenolic compounds has been explored. The formation of the composite film was expected via electrostatic interaction between hexacetyltrimethylammonium bromide (CTAB), polyethylene glycol (PEG), and zirconium oxide nanoparticles casted on screen printed carbon electrode (SPCE). Herein, the electrode was treated by casting hexacetyltrimethylammonium bromide on SPCE to promote a positively charged surface. Later, zirconium oxide was mixed with polyethylene glycol and the mixture was dropped cast onto the positively charged SPCE/CTAB. Tyrosinase was further immobilized onto the modified SPCE. Characterization of the prepared nanocomposite film and the modified SPCE surface was investigated by scanning electron microscopy (SEM), Electrochemical Impedance Spectroscopy (EIS), and Cyclic voltamogram (CV). The developed biosensor exhibits rapid response for less than 10 s. Two linear calibration curves towards phenol in the concentrations ranges of 0.075–10 µM and 10–55 µM with the detection limit of 0.034 µM were obtained. The biosensor shows high sensitivity and good storage stability for at least 30 days. PMID:27367738
Brondani, Daniela; Scheeren, Carla Weber; Dupont, Jairton; Vieira, Iolanda Cruz
2012-08-21
Halloysite clay nanotubes were used as a support for the immobilization of the enzyme peroxidase from clover sprouts (Trifolium), and employed together with platinum nanoparticles in 1-butyl-3-methylimidazolium hexafluorophosphate ionic liquid (Pt-BMI·PF(6)) in the development of a new biosensor for the determination of catecholamines by square-wave voltammetry. Under optimized conditions, the analytical curves showed detection limits of 0.05, 0.06, 0.07, 0.12 μM for dopamine, isoproterenol, dobutamine and epinephrine, respectively. The biosensor demonstrated high sensitivity, good repeatability and reproducibility, and long-term stability (18% decrease in response over 150 days). A recovery study of dopamine in pharmaceutical samples gave values from 97.5 to 101.4%. The proposed biosensor was successfully applied to the determination of dopamine in pharmaceutical samples, with a maximum relative error of ±1.0% in relation to the standard (spectrophotometric) method. The good analytical performance of the proposed method can be attributed to the efficient immobilization of the peroxidase in the nanoclay, and the facilitation of electron transfer between the protein and the electrode surface due to the presence of the Pt nanoparticles and ionic liquid.
A low cost color-based bacterial biosensor for measuring arsenic in groundwater.
Huang, Chi-Wei; Wei, Chia-Cheng; Liao, Vivian Hsiu-Chuan
2015-12-01
Using arsenic (As) contaminated groundwater for drinking or irrigation has caused major health problems for humans around the world, raising a need to monitor As level efficiently and economically. This study developed a color-based bacterial biosensor which is easy-to-use and inexpensive for measuring As and could be complementary to current As detecting techniques. The arsR-lacZ recombinant gene cassette in nonpathogenic strain Escherichia coli DH5α was used in the color-based biosensor which could be observed by eyes or measured by spectrometer. The developed bacterial biosensor demonstrates a quantitative range from 10 to 500μgL(-1) of As in 3-h reaction time. Furthermore, the biosensor was able to successfully detect and estimate As concentration in groundwater sample by measuring optical density at 595nm (OD595). Among different storage methods used in this study, biosensor in liquid at 4°C showed the longest shelf life about 9d, and liquid storage at RT and cell pellet could also be stored for about 3-5d. In conclusion, this study showed that the As biosensor with reliable color signal and economical preservation methods is useful for rapid screening of As pollutant, providing the potential for large scale screening and better management strategies for environmental quality control. Copyright © 2015 Elsevier Ltd. All rights reserved.
Esmaeili-Bandboni, Aghil; Amini, Seyed Mohammad; Faridi-Majidi, Reza; Bagheri, Jamshid; Mohammadnejad, Javad; Sadroddiny, Esmaeil
2018-06-01
MiR-155 plays a critical role in the formation of cancers and other diseases. In this study, the authors aimed to design and fabricate a biosensor based on cross-linking gold nanoparticles (AuNPs) aggregation for the detection and quantification of miR-155. Also, they intended to compare this method with SYBR Green real-time polymerase chain reaction (PCR). Primers for real-time PCR, and two thiolated capture probes for biosensor, complementary with miR-155, were designed. Citrate capped AuNPs (18.7 ± 3.6 nm) were synthesised and thiolated capture probes immobilised to AuNPs. The various concentrations of synthetic miR-155 were measured by this biosensor and real-time PCR method. Colorimetric changes were studied, and the calibration curves were plotted. Results showed the detection limit of 10 nM for the fabricated biosensor and real-time PCR. Also, eye detection using colour showed the weaker detection limit (1 µM), for this biosensor. MiR-133b as the non-complementary target could not cause a change in both colour and UV-visible spectrum. The increase in hydrodynamic diameter and negative zeta potential of AuNPs after the addition of probes verified the biosensor accurately fabricated. This fabricated biosensor could detect miR-155 simpler and faster than previous methods.
Strambini, L M; Longo, A; Scarano, S; Prescimone, T; Palchetti, I; Minunni, M; Giannessi, D; Barillaro, G
2015-04-15
In this work a novel self-powered microneedle-based transdermal biosensor for pain-free high-accuracy real-time measurement of glycaemia in interstitial fluid (ISF) is reported. The proposed transdermal biosensor makes use of an array of silicon-dioxide hollow microneedles that are about one order of magnitude both smaller (borehole down to 4µm) and more densely-packed (up to 1×10(6)needles/cm(2)) than state-of-the-art microneedles used for biosensing so far. This allows self-powered (i.e. pump-free) uptake of ISF to be carried out with high efficacy and reliability in a few seconds (uptake rate up to 1µl/s) by exploiting capillarity in the microneedles. By coupling the microneedles operating under capillary-action with an enzymatic glucose biosensor integrated on the back-side of the needle-chip, glucose measurements are performed with high accuracy (±20% of the actual glucose level for 96% of measures) and reproducibility (coefficient of variation 8.56%) in real-time (30s) over the range 0-630mg/dl, thus significantly improving microneedle-based biosensor performance with respect to the state-of-the-art. Copyright © 2014 Elsevier B.V. All rights reserved.
Lee, Hae Won; Kang, Dong-Ho; Cho, Jeong Ho; Lee, Sungjoo; Jun, Dong-Hwan; Park, Jin-Hong
2018-05-30
In recent years when the demand for high-performance biosensors has been aroused, a field-effect transistor (FET)-type biosensor (BioFET) has attracted great interest because of its high sensitivity, label-free detection, fast detection speed, and miniaturization. However, the insulating membrane in the conventional BioFET, which is essential in preventing the surface dangling bonds of typical semiconductors from nonspecific bindings, has limited the sensitivity of biosensors. Here, we present a highly sensitive and reusable membraneless BioFET based on a defect-free van der Waals material, tungsten diselenide (WSe 2 ). We intentionally generated a few surface defects that serve as extra binding sites for the bioreceptor immobilization through weak oxygen plasma treatment, consequently magnifying the sensitivity values to 2.87 × 10 5 A/A for 10 mM glucose. The WSe 2 BioFET also maintained its high sensitivity even after several cycles of rinsing and glucose application were repeated.
Anderson, Kash; Poulter, Benjamin; Dudgeon, John; Li, Shu-En; Ma, Xiang
2017-08-05
A novel and highly sensitive nonenzymatic glucose biosensor was developed by nucleating colloidal silver nanoparticles (AgNPs) on MoS₂. The facile fabrication method, high reproducibility (97.5%) and stability indicates a promising capability for large-scale manufacturing. Additionally, the excellent sensitivity (9044.6 μA mM -1 cm -2 ), low detection limit (0.03 μM), appropriate linear range of 0.1-1000 μM, and high selectivity suggests that this biosensor has a great potential to be applied for noninvasive glucose detection in human body fluids, such as sweat and saliva.
A large response range reflectometric urea biosensor made from silica-gel nanoparticles.
Alqasaimeh, Muawia; Heng, Lee Yook; Ahmad, Musa; Raj, A S Santhana; Ling, Tan Ling
2014-07-22
A new silica-gel nanospheres (SiO2NPs) composition was formulated, followed by biochemical surface functionalization to examine its potential in urea biosensor development. The SiO2NPs were basically synthesized based on sol-gel chemistry using a modified Stober method. The SiO2NPs surfaces were modified with amine (-NH2) functional groups for urease immobilization in the presence of glutaric acid (GA) cross-linker. The chromoionophore pH-sensitive dye ETH 5294 was physically adsorbed on the functionalized SiO2NPs as pH transducer. The immobilized urease determined urea concentration reflectometrically based on the colour change of the immobilized chromoionophore as a result of the enzymatic hydrolysis of urea. The pH changes on the biosensor due to the catalytic enzyme reaction of immobilized urease were found to correlate with the urea concentrations over a linear response range of 50-500 mM (R2 = 0.96) with a detection limit of 10 mM urea. The biosensor response time was 9 min with reproducibility of less than 10% relative standard deviation (RSD). This optical urea biosensor did not show interferences by Na+, K+, Mg2+ and NH4+ ions. The biosensor performance has been validated using urine samples in comparison with a non-enzymatic method based on the use of p-dimethylaminobenzaldehyde (DMAB) reagent and demonstrated a good correlation between the two different methods (R2 = 0.996 and regression slope of 1.0307). The SiO2NPs-based reflectometric urea biosensor showed improved dynamic linear response range when compared to other nanoparticle-based optical urea biosensors.
Zamani, Parichehr; Sajedi, Reza H; Hosseinkhani, Saman; Zeinoddini, Mehdi; Bakhshi, Bita
2016-05-15
In this study, a hybridoma based biosensor was developed for rapid, sensitive and selective detection of Vibrio cholerae O1 which converts the antibody-antigen binding to bioluminescence light. After investigation on hybridoma performance, the biosensor was constructed by transfecting specific hybridoma cells with aequorin reporter gene and the bioluminescence activities of stable biosensor were measured. The sensitivity of biosensor was as few as 50 CFU/ml and it showed no responses to other entric bacteria. Moreover, the response time of biosensor was estimated in 7th second which means this method is considerably faster than many available detection assays. In addition, this biosensor was successfully applied to V. cholerae detection in environmental samples with no significant loss in sensitivity, demonstrating our proposed biosensor provides a sensitive and reliable method for detection of V. cholerae in natural samples. The application of whole hybridoma cell directly as a sensing element in biosensor construction which mentioned for the first time in present study suggests that hybridoma cells could provide a valuable tool for future studies in both basic and diagnostic sciences and could be considered as a fast and specific sensing element for detection of other pathogens in different applications. Copyright © 2015 Elsevier B.V. All rights reserved.
Computational modeling of mediator oxidation by oxygen in an amperometric glucose biosensor.
Simelevičius, Dainius; Petrauskas, Karolis; Baronas, Romas; Razumienė, Julija
2014-02-07
In this paper, an amperometric glucose biosensor is modeled numerically. The model is based on non-stationary reaction-diffusion type equations. The model consists of four layers. An enzyme layer lies directly on a working electrode surface. The enzyme layer is attached to an electrode by a polyvinyl alcohol (PVA) coated terylene membrane. This membrane is modeled as a PVA layer and a terylene layer, which have different diffusivities. The fourth layer of the model is the diffusion layer, which is modeled using the Nernst approach. The system of partial differential equations is solved numerically using the finite difference technique. The operation of the biosensor was analyzed computationally with special emphasis on the biosensor response sensitivity to oxygen when the experiment was carried out in aerobic conditions. Particularly, numerical experiments show that the overall biosensor response sensitivity to oxygen is insignificant. The simulation results qualitatively explain and confirm the experimentally observed biosensor behavior.
Computational Modeling of Mediator Oxidation by Oxygen in an Amperometric Glucose Biosensor
Šimelevičius, Dainius; Petrauskas, Karolis; Baronas, Romas; Julija, Razumienė
2014-01-01
In this paper, an amperometric glucose biosensor is modeled numerically. The model is based on non-stationary reaction-diffusion type equations. The model consists of four layers. An enzyme layer lies directly on a working electrode surface. The enzyme layer is attached to an electrode by a polyvinyl alcohol (PVA) coated terylene membrane. This membrane is modeled as a PVA layer and a terylene layer, which have different diffusivities. The fourth layer of the model is the diffusion layer, which is modeled using the Nernst approach. The system of partial differential equations is solved numerically using the finite difference technique. The operation of the biosensor was analyzed computationally with special emphasis on the biosensor response sensitivity to oxygen when the experiment was carried out in aerobic conditions. Particularly, numerical experiments show that the overall biosensor response sensitivity to oxygen is insignificant. The simulation results qualitatively explain and confirm the experimentally observed biosensor behavior. PMID:24514882
Rapid sucrose monitoring in green coffee samples using multienzymatic biosensor.
Stredansky, Miroslav; Redivo, Luca; Magdolen, Peter; Stredansky, Adam; Navarini, Luciano
2018-07-15
Amperometric biosensor utilizing FAD-dependent glucose dehydrogenase (FAD-GDH) for a specific sucrose monitoring in green coffee is described. FAD-GDH was co-immobilized with invertase and mutarotase on a thin-layer gold planar electrode using chitosan. The biosensor showed a wide linearity (from 10 to 1200 μM), low detection limit (8.4 μM), fast response time (50 s), and appeared to be O2 independent. In addition the biosensors exhibited a good operational (3 days) and storage (1 year) stability. Finally, the results achieved from the biosensor measurements of sucrose in 17 samples of green coffee (Coffea arabica, C. canephora and C. liberica) were compared with those obtained by the standard HPLC method. The good correlation among results of real samples, satisfactory analytical performance and simple use of the presented biosensor make it suitable for application in coffee industry. Copyright © 2018 Elsevier Ltd. All rights reserved.
Halder, Arnab; Zhang, Minwei; Chi, Qijin
2017-01-15
Design and synthesis of low-cost, highly stable, electroactive and biocompatible material is one of the key steps for the advancement of electrochemical biosensing systems. To this end, we have explored a facile way for the successful synthesis of redox active and bioengineering of reduced graphene oxide (RGO) for the development of versatile biosensing platform. A highly branched polymer (PEI) is used for reduction and simultaneous derivation of graphene oxide (GO) to form a biocompatible polymeric matrix on RGO nanosheet. Ferrocene redox moieties are then wired onto RGO nanosheets through the polymer matrix. The as-prepared functional composite is electrochemically active and enables to accommodate enzymes stably. For proof-of-concept studies, two crucial redox enzymes for biosensors (i.e. cholesterol oxidase and glucose oxidase) are targeted. The enzyme integrated and RGO supported biosensing hybrid systems show high stability, excellent selectivity, good reproducibility and fast sensing response. As measured, the detection limit of the biosensors for glucose and cholesterol is 5µM and 0.5µM (S/N=3), respectively. The linear response range of the biosensor is from 0.1 to 15.5mM for glucose and from 2.5 to 25µM for cholesterol. Furthermore, this biosensing platform shows good anti-interference ability and reasonable stability. The nanohybrid biosensing materials can be combined with screen-printed electrodes, which are successfully used for measuring the glucose and cholesterol level of real human serum samples. Copyright © 2016 Elsevier B.V. All rights reserved.
Piezoelectric detection of bilirubin based on bilirubin-imprinted titania film electrode.
Yang, Zhengpeng; Yan, Jinlong; Zhang, Chunjing
2012-02-01
A novel quartz crystal microbalance (QCM) sensor with a high selectivity and sensitivity has been developed for bilirubin determination, based on the modification of bilirubin-imprinted titania film onto a quartz crystal by molecular imprinting and surface sol-gel techniques. The performance of the developed bilirubin biosensor was evaluated and the results indicated that a sensitive bilirubin biosensor could be fabricated. The obtained bilirubin biosensor presents high-selectivity monitoring of bilirubin, better reproducibility, shorter response time (30 min), wider linear range (0.1-50 μM), and lower detection limit (0.05 μM). The analytical application of the bilirubin biosensor confirms the feasibility of bilirubin determination in serum sample. Copyright © 2011 Elsevier Inc. All rights reserved.
Graphene as a signal amplifier for preparation of ultrasensitive electrochemical biosensors.
Filip, Jaroslav; Kasák, Peter; Tkac, Jan
2015-01-01
Early diagnostics of diseases performed with minimal money and time consumption has become achievable due to recent advances in development of biosensors. These devices use biorecognition elements for selective interaction with an analyte and signal readout is obtained via different types of transducers. Operational characteristics of biosensors have been reported to improve substantially, when a diverse range of nanomaterials was employed. This review presents construction of electrochemical biosensors based on graphene, atomically thin 2D carbon crystals, which is currently intensively studied nanomaterial. The most attractive directions of graphene applications in biosensor preparation are discussed here including novel detection and amplification schemes exploiting graphene's unique electrochemical, physical and chemical properties. The future of graphene-based biosensors is most likely bright, but there is still a lot of work to do to fulfill high expectations.
Naik, Subhashchandra; Kumru, Ozan S; Cullom, Melissa; Telikepalli, Srivalli N; Lindboe, Elizabeth; Roop, Taylor L; Joshi, Sangeeta B; Amin, Divya; Gao, Phillip; Middaugh, C Russell; Volkin, David B; Fisher, Mark T
2014-10-01
The ability of a GroEL-based bio-layer interferometry (BLI) assay to detect structurally altered and/or aggregated species of pharmaceutically relevant proteins is demonstrated. Assay development included optimizing biotinylated-GroEL immobilization to streptavidin biosensors, combined with biophysical and activity measurements showing native and biotinylated GroEL are both stable and active. First, acidic fibroblast growth factor (FGF-1) was incubated under conditions known to promote (40°C) and inhibit (heparin addition) molten globule formation. Heat exposed (40°C) FGF-1 exhibited binding to GroEL-biosensors, which was significantly diminished in the presence of heparin. Second, a polyclonal human IgG solution containing 6-8% non-native dimer showed an increase in higher molecular weight aggregates upon heating by size exclusion chromatography (SEC). The poly IgG solution displayed binding to GroEL-biosensors initially with progressively increased binding upon heating. Enriched preparations of the IgG dimers or monomers showed significant binding to GroEL-biosensors. Finally, a thermally treated IgG1 monoclonal antibody (mAb) solution also demonstrated increased GroEL-biosensor binding, but with different kinetics. The bound complexes could be partially to fully dissociated after ATP addition (i.e., specific GroEL binding) depending on the protein, environmental stress, and the assay's experimental conditions. Transmission electron microscopy (TEM) images of GroEL-mAb complexes, released from the biosensor, also confirmed interaction of bound complexes at the GroEL binding site with heat-stressed mAb. Results indicate that the GroEL-biosensor-BLI method can detect conformationally altered and/or early aggregation states of proteins, and may potentially be useful as a rapid, stability-indicating biosensor assay for monitoring the structural integrity and physical stability of therapeutic protein candidates. © 2014 The Protein Society.
Naik, Subhashchandra; Kumru, Ozan S; Cullom, Melissa; Telikepalli, Srivalli N; Lindboe, Elizabeth; Roop, Taylor L; Joshi, Sangeeta B; Amin, Divya; Gao, Phillip; Middaugh, C Russell; Volkin, David B; Fisher, Mark T
2014-01-01
The ability of a GroEL-based bio-layer interferometry (BLI) assay to detect structurally altered and/or aggregated species of pharmaceutically relevant proteins is demonstrated. Assay development included optimizing biotinylated-GroEL immobilization to streptavidin biosensors, combined with biophysical and activity measurements showing native and biotinylated GroEL are both stable and active. First, acidic fibroblast growth factor (FGF-1) was incubated under conditions known to promote (40°C) and inhibit (heparin addition) molten globule formation. Heat exposed (40°C) FGF-1 exhibited binding to GroEL-biosensors, which was significantly diminished in the presence of heparin. Second, a polyclonal human IgG solution containing 6–8% non-native dimer showed an increase in higher molecular weight aggregates upon heating by size exclusion chromatography (SEC). The poly IgG solution displayed binding to GroEL-biosensors initially with progressively increased binding upon heating. Enriched preparations of the IgG dimers or monomers showed significant binding to GroEL-biosensors. Finally, a thermally treated IgG1 monoclonal antibody (mAb) solution also demonstrated increased GroEL-biosensor binding, but with different kinetics. The bound complexes could be partially to fully dissociated after ATP addition (i.e., specific GroEL binding) depending on the protein, environmental stress, and the assay’s experimental conditions. Transmission electron microscopy (TEM) images of GroEL-mAb complexes, released from the biosensor, also confirmed interaction of bound complexes at the GroEL binding site with heat-stressed mAb. Results indicate that the GroEL-biosensor-BLI method can detect conformationally altered and/or early aggregation states of proteins, and may potentially be useful as a rapid, stability-indicating biosensor assay for monitoring the structural integrity and physical stability of therapeutic protein candidates. PMID:25043635
Novel amperometric glucose biosensor based on MXene nanocomposite.
Rakhi, R B; Nayak, Pranati; Xia, Chuan; Alshareef, Husam N
2016-11-10
A biosensor platform based on Au/MXene nanocomposite for sensitive enzymatic glucose detection is reported. The biosensor leverages the unique electrocatalytic properties and synergistic effects between Au nanoparticles and MXene sheets. An amperometric glucose biosensor is fabricated by the immobilization of glucose oxidase (GOx) enzyme on Nafion solubilized Au/ MXene nanocomposite over glassy carbon electrode (GCE). The biomediated Au nanoparticles play a significant role in facilitating the electron exchange between the electroactive center of GOx and the electrode. The GOx/Au/MXene/Nafion/GCE biosensor electrode displayed a linear amperometric response in the glucose concentration range from 0.1 to 18 mM with a relatively high sensitivity of 4.2 μAmM -1 cm -2 and a detection limit of 5.9 μM (S/N = 3). Furthermore, the biosensor exhibited excellent stability, reproducibility and repeatability. Therefore, the Au/MXene nanocomposite reported in this work is a potential candidate as an electrochemical transducer in electrochemical biosensors.
DNA nanotechnology-enabled biosensors.
Chao, Jie; Zhu, Dan; Zhang, Yinan; Wang, Lianhui; Fan, Chunhai
2016-02-15
Biosensors employ biological molecules to recognize the target and utilize output elements which can translate the biorecognition event into electrical, optical or mass-sensitive signals to determine the quantities of the target. DNA-based biosensors, as a sub-field to biosensor, utilize DNA strands with short oligonucleotides as probes for target recognition. Although DNA-based biosensors have offered a promising alternative for fast, simple and cheap detection of target molecules, there still exist key challenges including poor stability and reproducibility that hinder their competition with the current gold standard for DNA assays. By exploiting the self-recognition properties of DNA molecules, researchers have dedicated to make versatile DNA nanostructures in a highly rigid, controllable and functionalized manner, which offers unprecedented opportunities for developing DNA-based biosensors. In this review, we will briefly introduce the recent advances on design and fabrication of static and dynamic DNA nanostructures, and summarize their applications for fabrication and functionalization of DNA-based biosensors. Copyright © 2015 Elsevier B.V. All rights reserved.
Novel amperometric glucose biosensor based on MXene nanocomposite
Rakhi, R. B.; Nayuk, Pranati; Xia, Chuan; Alshareef, Husam N.
2016-01-01
A biosensor platform based on Au/MXene nanocomposite for sensitive enzymatic glucose detection is reported. The biosensor leverages the unique electrocatalytic properties and synergistic effects between Au nanoparticles and MXene sheets. An amperometric glucose biosensor is fabricated by the immobilization of glucose oxidase (GOx) enzyme on Nafion solubilized Au/ MXene nanocomposite over glassy carbon electrode (GCE). The biomediated Au nanoparticles play a significant role in facilitating the electron exchange between the electroactive center of GOx and the electrode. The GOx/Au/MXene/Nafion/GCE biosensor electrode displayed a linear amperometric response in the glucose concentration range from 0.1 to 18 mM with a relatively high sensitivity of 4.2 μAmM−1 cm−2 and a detection limit of 5.9 μM (S/N = 3). Furthermore, the biosensor exhibited excellent stability, reproducibility and repeatability. Therefore, the Au/MXene nanocomposite reported in this work is a potential candidate as an electrochemical transducer in electrochemical biosensors. PMID:27830757
Wang, Cheng Yan; Tan, Xing Rong; Chen, Shi Hong; Hu, Fang Xin; Zhong, Hua An; Zhang, Yu
2012-02-01
One-step synthesis method was proposed to obtain the nanocomposites of platinum nanoclusters and multiwalled carbon nanotubes (PtNCs-MWNTs), which were used as a novel immobilization matrix for the enzyme to fabricate glucose biosensor. The fabrication process of the biosensor was characterized by cyclic voltammetry, electrochemical impedance spectroscopy, atomic force microscopy and scanning electron microscope. Due to the favorable characteristic of PtNCs-MWNTs nanocomposites, the biosensor exhibited good characteristics, such as wide linear range (3.0 μM-12.1 mM), low detection limit (1.0 μM), high sensitivity (12.8 μA mM⁻¹), rapid response time (within 6 s). The apparent Michaelis-Menten constant (K(app)(m)) is 2.1 mM. The performance of the resulting biosensor is more prominent than that of most of the reported glucose biosensors. Furthermore, it was demonstrated that this biosensor can be used for the assay of glucose in human serum samples.
González-Guerrero, Ana Belén; Maldonado, Jesús; Dante, Stefania; Grajales, Daniel; Lechuga, Laura M
2017-01-01
A label-free interferometric transducer showing a theoretical detection limit for homogeneous sensing of 5 × 10 -8 RIU, being equivalent to a protein mass coverage resolution of 2.8 fg mm -2 , is used to develop a high sensitive biosensor for protein detection. The extreme sensitivity of this transducer combined with a selective bioreceptor layer enables the direct evaluation of the human growth hormone (hGH) in undiluted urine matrix in the 10 pg mL -1 range. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ziegler, C; Göpel, W
1998-10-01
Current biosensor developments can be summarised by different trends. For traditional enzymatic biosensors such as glucose sensors, steady improvements of well known basic principles have been made in order to achieve better sensor stability. On the other hand, new affinity sensors such as nucleic acid sensors, transmembrane sensors, and sensors utilising whole cells or even cell networks have become of increasing interest. New ways to miniaturise biosensors and to control their interfaces down to the molecular level have been introduced (the bioelectronics approach). High-throughput screening based on various signal transduction principles has become of increasing importance.
Assessing activity of Hepatitis A virus 3C protease using a cyclized luciferase-based biosensor.
Zhou, Junwei; Wang, Dang; Xi, Yongqiang; Zhu, Xinyu; Yang, Yuting; Lv, Mengting; Luo, Chuanzhen; Chen, Jiyao; Ye, Xu; Fang, Liurong; Xiao, Shaobo
2017-07-08
Hepatitis A is an acute infection caused by Hepatitis A virus (HAV), which is widely distributed throughout the world. The HAV 3C cysteine protease (3C pro ), an important nonstructural protein, is responsible for most cleavage within the viral polyprotein and is critical for the processes of viral replication. Our group has previously demonstrated that HAV 3C pro cleaves human NF-κB essential modulator (NEMO), a kinase required in interferon signaling. Based on this finding, we generated four luciferase-based biosensors containing the NEMO sequence (PVLKAQ↓ADIYKA) that is cleaved by HAV 3C pro and/or the Nostoc punctiforme DnaE intein, to monitor the activity of HAV 3C pro in human embryonic kidney cells (HEK-293T). Western blotting showed that HAV 3C pro recognized and cleaved the NEMO cleavage sequence incorporated in the four biosensors, whereas only one cyclized luciferase-based biosensor (233-DnaE-HAV, 233DH) showed a measurable and reliable increase in firefly luciferase activity, with very low background, in the presence of HAV 3C pro . With this biosensor (233DH), we monitored HAV 3C pro activity in HEK-293T cells, and tested it against a catalytically deficient mutant HAV 3C pro and other virus-encoded proteases. The results showed that the activity of this luciferase biosensor is specifically dependent on HAV 3C pro . Collectively, our data demonstrate that the luciferase biosensor developed here might provide a rapid, sensitive, and efficient evaluation of HAV 3C pro activity, and should extend our better understanding of the biological relevance of HAV 3C pro . Copyright © 2017 Elsevier Inc. All rights reserved.
A novel pungency biosensor prepared with fixing taste-bud tissue of rats.
Qiao, Lixin; Jiao, Lihua; Pang, Guangchang; Xie, Junbo
2015-06-15
A novel taste biosensor based on ligand-receptor interaction was developed through fixing taste-bud tissues of SD rats to a glassy carbon electrode. Using the sodium alginate-starch gel as a fixing agent, taste-bud tissues of SD rats were fixed between two nuclear microporous membranes to make a sandwich-type sensing membrane. With the taste biosensor, the response current induced by capsaicin and gingerol stimulating the corresponding receptors was measured. The results showed that the lowest limit of detection of this biosensor to capsaicin was 1×10(-13) mol/L and the change rate of response current was the highest at the concentration of 9×10(-13) mol/L, indicating that the capsaicin receptor was saturated at this point. The lowest limit of detection of this biosensor to gingerol was 1×10(-12) mol/L, and the gingerol receptor was saturated when the concentration of gingerol was 3×10(-11) mol/L. It was demonstrated that the interaction curves of capsaicin and gingerol with their respective receptors exhibited high correlation (R(2): 0.9841 and 0.9904). The binding constant and dissociation constant of gingerol with its receptor were 1.564×10(-11) and 1.815×10(-11) respectively, which were all higher than those of capsaicin with its receptor (1.249×10(-12) and 2.078×10(-12)). This study, for the first time, made it possible to quantitatively determine the interaction of the taste receptor and pungent substances with a new biosensor, thus providing a simple approach for monitoring pungent substances and investigating the mechanism of ligand-receptor interaction. Copyright © 2015 Elsevier B.V. All rights reserved.
Development of An Impedimetric Aptasensor for the Detection of Staphylococcus aureus.
Reich, Peggy; Stoltenburg, Regina; Strehlitz, Beate; Frense, Dieter; Beckmann, Dieter
2017-11-21
In combination with electrochemical impedance spectroscopy, aptamer-based biosensors are a powerful tool for fast analytical devices. Herein, we present an impedimetric aptasensor for the detection of the human pathogen Staphylococcus aureus . The used aptamer targets protein A, a surface bound virulence factor of S. aureus . The thiol-modified protein A-binding aptamer was co-immobilized with 6-mercapto-1-hexanol onto gold electrodes by self-assembly. Optimization of the ratio of aptamer to 6-mercapto-1-hexanol resulted in an average density of 1.01 ± 0.44 × 10 13 aptamer molecules per cm². As shown with quartz crystal microbalance experiments, the immobilized aptamer retained its functionality to bind recombinant protein A. Our impedimetric biosensor is based on the principle that binding of target molecules to the immobilized aptamer decreases the electron transfer between electrode and ferri-/ferrocyanide in solution, which is measured as an increase of impedance. Microscale thermophoresis measurements showed that addition of the redox probe ferri-/ferrocyanide has no influence on the binding of aptamer and its target. We demonstrated that upon incubation with various concentrations of S. aureus , the charge-transfer resistance increased proportionally. The developed biosensor showed a limit of detection of 10 CFU·mL -1 and results were available within 10 minutes. The biosensor is highly selective, distinguishing non-target bacteria such as Escherichia coli and Staphylococcus epidermidis . This work highlights the immense potential of impedimetric aptasensors for future biosensing applications.
Development of An Impedimetric Aptasensor for the Detection of Staphylococcus aureus
Strehlitz, Beate; Beckmann, Dieter
2017-01-01
In combination with electrochemical impedance spectroscopy, aptamer-based biosensors are a powerful tool for fast analytical devices. Herein, we present an impedimetric aptasensor for the detection of the human pathogen Staphylococcus aureus. The used aptamer targets protein A, a surface bound virulence factor of S. aureus. The thiol-modified protein A-binding aptamer was co-immobilized with 6-mercapto-1-hexanol onto gold electrodes by self-assembly. Optimization of the ratio of aptamer to 6-mercapto-1-hexanol resulted in an average density of 1.01 ± 0.44 × 1013 aptamer molecules per cm2. As shown with quartz crystal microbalance experiments, the immobilized aptamer retained its functionality to bind recombinant protein A. Our impedimetric biosensor is based on the principle that binding of target molecules to the immobilized aptamer decreases the electron transfer between electrode and ferri-/ferrocyanide in solution, which is measured as an increase of impedance. Microscale thermophoresis measurements showed that addition of the redox probe ferri-/ferrocyanide has no influence on the binding of aptamer and its target. We demonstrated that upon incubation with various concentrations of S. aureus, the charge-transfer resistance increased proportionally. The developed biosensor showed a limit of detection of 10 CFU·mL−1 and results were available within 10 minutes. The biosensor is highly selective, distinguishing non-target bacteria such as Escherichia coli and Staphylococcus epidermidis. This work highlights the immense potential of impedimetric aptasensors for future biosensing applications. PMID:29160851
Li, Juan; Qin, Xingzhang; Yang, Zhanjun; Qi, Huamei; Xu, Qin; Diao, Guowang
2013-01-30
A mesoporous silica nanoshpere (MSN) was proposed to modify glassy carbon electrode (GCE) for the immobilization of protein. Using glucose oxidase (GOD) as a model, direct electrochemistry of protein and biosensing at the MSN modified GCE was studied for the first time. The MNS had large surface area and offered a favorable microenvironment for facilitating the direct electron transfer between enzyme and electrode surface. Scanning electron microscopy, transmission electron microscopy, UV-vis spectroscopy and cyclic voltammetry were used to examine the interaction between GOD and the MSN matrix. The results demonstrated that the immobilized enzyme on the MSN retained its native structure and bioactivity. In addition, the electrochemical reaction showed a surface controlled, reversible two-proton and two-electron transfer process with the apparent electron transfer rate constant of 3.96 s(-1). The MNS-based glucose biosensor exhibited the two linear ranges of 0.04-2.0 mM and 2.0-4.8 mM, a high sensitivity of 14.5 mA M(-1) cm(-2) and a low detection limit of 0.02 mM at signal-to-noise of 3. The proposed biosensor showed excellent selectivity, good reproducibility, acceptable stability and could be successfully applied in the reagentless detection of glucose in real samples at -0.45 V. The work displayed that mesoporous silica nanosphere provided a promising approach for immobilizing proteins and fabrication of excellent biosensors. Copyright © 2012 Elsevier B.V. All rights reserved.
Meng Zhang; Peh, Jessie; Hergenrother, Paul J; Cunningham, Brian T
2014-01-01
High throughput screening of protein-small molecule binding interactions using label-free optical biosensors is challenging, as the detected signals are often similar in magnitude to experimental noise. Here, we describe a novel self-referencing external cavity laser (ECL) biosensor approach that achieves high resolution and high sensitivity, while eliminating thermal noise with sub-picometer wavelength accuracy. Using the self-referencing ECL biosensor, we demonstrate detection of binding between small molecules and a variety of immobilized protein targets with binding affinities or inhibition constants in the sub-nanomolar to low micromolar range. The demonstrated ability to perform detection in the presence of several interfering compounds opens the potential for increasing the throughput of the approach. As an example application, we performed a "needle-in-the-haystack" screen for inhibitors against carbonic anhydrase isozyme II (CA II), in which known inhibitors are clearly differentiated from inactive molecules within a compound library.
Thin Hydrogel Films for Optical Biosensor Applications
Mateescu, Anca; Wang, Yi; Dostalek, Jakub; Jonas, Ulrich
2012-01-01
Hydrogel materials consisting of water-swollen polymer networks exhibit a large number of specific properties highly attractive for a variety of optical biosensor applications. This properties profile embraces the aqueous swelling medium as the basis of biocompatibility, non-fouling behavior, and being not cell toxic, while providing high optical quality and transparency. The present review focuses on some of the most interesting aspects of surface-attached hydrogel films as active binding matrices in optical biosensors based on surface plasmon resonance and optical waveguide mode spectroscopy. In particular, the chemical nature, specific properties, and applications of such hydrogel surface architectures for highly sensitive affinity biosensors based on evanescent wave optics are discussed. The specific class of responsive hydrogel systems, which can change their physical state in response to externally applied stimuli, have found large interest as sophisticated materials that provide a complex behavior to hydrogel-based sensing devices. PMID:24957962
Zhang, Zhihong; Guo, Chuanpan; Zhang, Shuai; He, Linghao; Wang, Minghua; Peng, Donglai; Tian, Junfeng; Fang, Shaoming
2017-03-15
We synthesized two kinds of carbon-based nanocomposites of silver nanoclusters (AgNCs). An aptamer for targeted platelet-derived growth factor-BB (PDGF-BB) detection was used as the organic phase to produce AgNCs@Apt, three dimensional reduced graphene oxide@AgNCs@Aptamer (3D-rGO@AgNCs@Apt), and graphene quantum dots@AgNCs@Aptamer (GQD@AgNCs@Apt) nanocomposites. The formation mechanism of the developed nanocomposites was described by detailed characterizations of their chemical and crystal structures. Subsequently, the as-synthesized nanoclusters containing aptamer strands were applied as the sensitive layers to fabricate a novel electrochemical aptasensor for the detection of PDGF-BB, which may be directly used to determine the target protein. Electrochemical impedance spectra showed that the developed 3D-rGO@AgNCs@Apt-based biosensor exhibited the highest sensitivity for PDGF-BB detection among three kinds of fabricated aptasensors, with an extremely low detection limit of 0.82pgmL -1 . In addition, the 3D-rGO@AgNCs@Apt-based biosensor showed high selectivity, stability, and applicability for the detection of PDGF-BB. This finding indicated that the AgNC-based nanocomposites prepared by a one-step method could be used as an electrochemical biosensor for various detection procedures in the biomedical field. Copyright © 2016 Elsevier B.V. All rights reserved.
Photonic crystal fiber-based plasmonic biosensor with external sensing approach
NASA Astrophysics Data System (ADS)
Rifat, Ahmmed A.; Hasan, Md. Rabiul; Ahmed, Rajib; Butt, Haider
2018-01-01
We propose a simple photonic crystal fiber (PCF) biosensor based on the surface plasmon resonance effect. The sensing properties are characterized using the finite element method. Chemically stable gold material is deposited on the outer surface of the PCF to realize the practical sensing approach. The performance of the modeled biosensor is investigated in terms of wavelength sensitivity, amplitude sensitivity, sensor resolution, and linearity of the resonant wavelength with the variation of structural parameters. In the sensing range of 1.33 to 1.37, maximum sensitivities of 4000 nm/RIU and 478 are achieved with the high sensor resolutions of 2.5×10-5 and 2.1×10-5 RIU using wavelength and amplitude interrogation methods, respectively. The designed biosensor will reduce fabrication complexity due to its simple and realistic hexagonal lattice structure. It is anticipated that the proposed biosensor may find possible applications for unknown biological and biochemical analyte detections with a high degree of accuracy.
NASA Astrophysics Data System (ADS)
Starodub, N. F.; Ogorodniichuk, J.; Lebedeva, T.; Shpylovyy, P.
2013-11-01
In this work we have designed high-specific biosensors for Salmonella typhimurium detection based on the surface plasmon resonance (SPR) and total internal reflection ellipsometry (TIRE). It has been demonstrated high selectivity and sensitivity of analysis. As a registering part for our experiments the Spreeta (USA) and "Plasmonotest" (Ukraine) with flowing cell have been applied among of SPR device. Previous researches confirmed an efficiency of SPR biosensors using for detecting of specific antigen-antibody interactions therefore this type of reactions with some previous preparations of surface binding layer was used as reactive part. It has been defined that in case with Spreeta sensitivity was on the level 103 - 107 cells/ml. Another biosensor based on the SPR has shown the sensitivity within 101 - 106 cells/ml. Maximal sensitivity was on the level of several cells in 10 ml (up to the fact that less than 5 cells) which has been obtained using the biosensor based on TIRE.
Improvement of up-converting phosphor technology-based biosensor
NASA Astrophysics Data System (ADS)
Xie, Chengke; Huang, Lihua; Zhang, Youbao; Guo, Xiaoxian; Qu, Jianfeng; Huang, Huijie
2008-12-01
A novel biosensor based on up-converting phosphor technology (UPT) was developed several years ago. It is a kind of optical biosensor using up-converting phosphor (UCP) particles as the biological marker. From then on, some improvements have been made for this UPT-based biosensor. The primary aspects of the improvement lie in the control system. On one hand, the hardware of the control system has been optimized, including replacing two single chip microcomputers (SCM) with only one, the optimal design of the keyboard interface circuit and the liquid crystal module (LCM) control circuit et al.. These result in lower power consumption and higher reliability. On the other hand, a novel signal processing algorithm is proposed in this paper, which can improve the automation and operating simplicity of the UPT-based biosensor. It has proved to have high sensitivity (~ng/ml), high stability and good repeatability (CV<5%), which is better than the former system. It can meet the need of some various applications such as rapid immunoassay, chemical and biological detection and so on.
Portable evanescent wave fiber biosensor for highly sensitive detection of Shigella
NASA Astrophysics Data System (ADS)
Xiao, Rui; Rong, Zhen; Long, Feng; Liu, Qiqi
2014-11-01
A portable evanescent wave fiber biosensor was developed to achieve the rapid and highly sensitive detection of Shigella. In this study, a DNA probe was covalently immobilized onto fiber-optic biosensors that can hybridize with a fluorescently labeled complementary DNA. The sensitivity of detection for synthesized oligonucleotides can reach 10-10 M. The surface of the sensor can be regenerated with 0.5% sodium dodecyl sulfate solution (pH 1.9) for over 30 times without significant deterioration of performance. The total analysis time for a single sample, including the time for measurement and surface regeneration, was less than 6 min. We employed real-time polymerase chain reaction (PCR) and compared the results of both methods to investigate the actual Shigella DNA detection capability of the fiber-optic biosensor. The fiber-optic biosensor could detect as low as 102 colony-forming unit/mL Shigella. This finding was comparable with that by real-time PCR, which suggests that this method is a potential alternative to existing detection methods.
Grawe, Gregory Ferreira; de Oliveira, Tássia Regina; de Andrade Narciso, Esther; Moccelini, Sally Katiuce; Terezo, Ailton José; Soares, Marcos Antonio; Castilho, Marilza
2015-01-15
In this work, a biosensor was constructed by physical adsorption of the isolated endophytic fungus Eupenicillium shearii FREI-39 esterase on halloysite, using graphite powder, multi-walled carbon nanotubes and mineral oil for the determination of carbofuran pesticide by inhibition of the esterase using square-wave voltammetry (SWV). Specific esterase activities were determined each 2 days over a period of 15 days of growth in four different inoculation media. The highest specific activity was found on 6th day, with 33.08 U on PDA broth. The best performance of the proposed biosensor was obtained using 0.5 U esterase activity. The carbofuran concentration response was linear in the range from 5.0 to 100.0 µg L(-1) (r=0.9986) with detection and quantification limits of 1.69 µg L(-1) and 5.13 µg L(-1), respectively. A recovery study of carbofuran in spiked water samples showed values ranging from 103.8±6.7% to 106.7±9.7%. The biosensor showed good repeatability and reproducibility and remained stable for a period of 20 weeks. The determination of carbofuran in spiked water samples using the proposed biosensor was satisfactory when compared to the chromatographic reference method. The results showed no significant difference at the 95% confidence level with t-test statistics. The application of enzymes from endophytic fungi in constructing biosensors broadens the biotechnological importance of these microorganisms. Copyright © 2014 Elsevier B.V. All rights reserved.
On the origin of enhanced sensitivity in nanoscale FET-based biosensors
Shoorideh, Kaveh; Chui, Chi On
2014-01-01
Electrostatic counter ion screening is a phenomenon that is detrimental to the sensitivity of charge detection in electrolytic environments, such as in field-effect transistor-based biosensors. Using simple analytical arguments, we show that electrostatic screening is weaker in the vicinity of concave curved surfaces, and stronger in the vicinity of convex surfaces. We use this insight to show, using numerical simulations, that the enhanced sensitivity observed in nanoscale biosensors is due to binding of biomolecules in concave corners where screening is reduced. We show that the traditional argument, that increased surface area-to-volume ratio for nanoscale sensors is responsible for their increased sensitivity, is incorrect. PMID:24706861
Buber, Ece; Yuzer, Abdulcelil; Soylemez, Saniye; Kesik, Melis; Ince, Mine; Toppare, Levent
2017-03-01
A novel glucose oxidase (GOx) based amperometric biosensor utilizing a conducting polymer (CP), multi walled carbon nanotubes (MWCNTs) and a novel water soluble zinc phthalocyanine (ZnPc) was constructed. For this purpose, a novel ZnPc was synthesized to examine the role of being a part of support material for enzyme deposition. High water solubility was achieved with the introduction of tetra quaternized imidazolyl moieties at the peripheral positions of phthalocyanine. In order to fabricate the proposed biosensor, a graphite electrode was firstly modified with poly[9,9-di-(2-ethylhexyl)- fluorenyl-2,7-diyl] end capped with N,N-Bis(4- methylphenyl)-4-aniline (PFLA) and MWCNTs. Then, GOx was co-immobilized with ZnPc onto the modified surface. To the best our knowledge, a sensor design which combines conjugated polymer/MWCNTs/ZnPc was attempted for the first time and this approach resulted in improved biosensor characteristics. The constructed biosensor showed a linear response for glucose between 0.025-1.0mM with a detection limit of 0.018mM. K M app and sensitivity values were calculated as 0.53mM and 82.18μAmm -1 cm -2 , respectively. Moreover, scanning electron microscopy (SEM) and cyclic voltammetry (CV) techniques were used to investigate the surface modifications. Finally, fabricated biosensor was tested on beverages for glucose detection successfully. Copyright © 2016 Elsevier B.V. All rights reserved.
Vosoughi, Amin; Yazdian, Fatemeh; Amoabediny, Ghassem; Hakim, Maziar
2015-08-15
A novel hydrogen sulfide microbial biosensor was developed based on investigating the influence of four design parameters: cell concentration, immobilization bed type, hydrogen sulfide concentration, and geometrical shape of the biosensor. Thiobacillus thioparus was used as the recognition element and it was immobilized on sodium alginate as well as agarose bed. The results were optimized by the application of statistical optimization software based on response time of the system. Oxygen reduction was considered as the detection sign. Sodium alginate solution with a concentration of 2.3% (w/v) and optical density of 10 at 605 nm was found as the optimum conditions for immobilization with response time of 72s . Optimum response time of immobilized T. thioparus on agarose was also found equal to 120 s at agarose concentration of 1.2% (w/v) and optical density of 10.83. Performance of the biosensor in different temperatures, pH and agitation speeds was also analyzed. The designed biosensor could detect concentrations of hydrogen sulfide as low as 0.5 ppm. T. thioparus could retain 99% of the original activity in both systems, after ten days passing the fabrication. A fractal analysis was also done theoretically to investigate the diffusion of oxygen in immobilized cells which showed a satisfactory value of oxygen take up by the immobilized cells. Copyright © 2015 Elsevier B.V. All rights reserved.
A Method for Identifying Small-Molecule Aggregators Using Photonic Crystal Biosensor Microplates
Chan, Leo L.; Lidstone, Erich A.; Finch, Kristin E.; Heeres, James T.; Hergenrother, Paul J.; Cunningham, Brian T.
2010-01-01
Small molecules identified through high-throughput screens are an essential element in pharmaceutical discovery programs. It is now recognized that a substantial fraction of small molecules exhibit aggregating behavior leading to false positive results in many screening assays, typically due to nonspecific attachment to target proteins. Therefore, the ability to efficiently identify compounds within a screening library that aggregate can streamline the screening process by eliminating unsuitable molecules from further consideration. In this work, we show that photonic crystal (PC) optical biosensor microplate technology can be used to identify and quantify small-molecule aggregation. A group of aggregators and nonaggregators were tested using the PC technology, and measurements were compared with those gathered by three alternative methods: dynamic light scattering (DLS), an α-chymotrypsin colorimetric assay, and scanning electron microscopy (SEM). The PC biosensor measurements of aggregation were confirmed by visual observation using SEM, and were in general agreement with the α-chymotrypsin assay. DLS measurements, in contrast, demonstrated inconsistent readings for many compounds that are found to form aggregates in shapes, very different from the classical spherical particles assumed in DLS modeling. As a label-free detection method, the PC biosensor aggregation assay is simple to implement and provides a quantitative direct measurement of the mass density of material adsorbed to the transducer surface, whereas the microplate-based sensor format enables compatibility with high-throughput automated liquid-handling methods used in pharmaceutical screening. PMID:20930952
Farkas, Eniko; Szekacs, Andras; Kovacs, Boglarka; Olah, Marianna; Horvath, Robert; Szekacs, Inna
2018-06-05
Rapid and inexpensive biosensor technologies allowing real-time analysis of biomolecular and cellular events have become the basis of next-generation cell-based screening techniques. Our work opens up novel opportunities in the application of the high-throughput label-free Epic BenchTop optical biosensor in cell toxicity studies. The Epic technology records integrated cellular responses about changes in cell morphology and dynamic mass redistribution of cellular contents at the 100-150 nm layer above the sensor surface. The aim of the present study was to apply this novel technology to identify the effect of the herbicide Roundup Classic, its co-formulant polyethoxylated tallow amine (POEA), and its active ingredient glyphosate, on MC3T3-E1 cells adhered on the biosensor surface. The half maximal inhibitory concentrations of Roundup Classic, POEA and glyphosate upon 1 h of exposure were found to be 0.024%, 0.021% and 0.163% in serum-containing medium and 0.028%, 0.019% and 0.538% in serum-free conditions, respectively (at concentrations equivalent to the diluted Roundup solution). These results showed a good correlation with parallel end-point assays, demonstrating the outstanding utility of the Epic technique in cytotoxicity screening, allowing not only high-throughput, real-time detection, but also reduced assay run time and cytotoxicity assessment at end-points far before cell death would occur. Copyright © 2018 Elsevier B.V. All rights reserved.
Substrate specificity and interferences of a direct-electron-transfer-based glucose biosensor.
Felice, Alfons K G; Sygmund, Christoph; Harreither, Wolfgang; Kittl, Roman; Gorton, Lo; Ludwig, Roland
2013-05-01
Electrochemical sensors for glucose monitoring employ different signal transduction strategies for electron transfer from the biorecognition element to the electrode surface. We present a biosensor that employs direct electron transfer and evaluate its response to various interfering substances known to affect glucose biosensors. The enzyme cellobiose dehydrogenase (CDH) was adsorbed on the surface of a carbon working electrode and covalently bound by cross linking. The response of CDH-modified electrodes to glucose and possible interfering compounds was measured by flow-injection analysis, linear sweep, and chronoamperometry. Chronoamperometry showed initial swelling/wetting of the electrode. After stabilization, the signal was stable and a sensitivity of 0.21 µA mM-1 cm-2 was obtained. To investigate the influence of the interfering substances on the biorecognition element, the simplest possible sensor architecture was used. The biosensor showed little (<5% signal deviation) or no response to various reported electroactive or otherwise interfering substances. Direct electron transfer from the biorecognition element to the electrode is a new principle applied to glucose biosensors, which can be operated at a low polarization potential of -100 mV versus silver/silver chloride. The reduction of interferences by electrochemically active substances is an attractive feature of this promising technology for the development of continuous glucose biosensors. © 2013 Diabetes Technology Society.
Ahmad, Rafiq; Tripathy, Nirmalya; Park, Jin-Ho; Hahn, Yoon-Bong
2015-08-04
We report a novel straightforward approach for simultaneous and highly-selective detection of multi-analytes (i.e. glucose, cholesterol and urea) using an integrated field-effect transistor (i-FET) array biosensor without any interference in each sensor response. Compared to analytically-measured data, performance of the ZnO nanorod based i-FET array biosensor is found to be highly reliable for rapid detection of multi-analytes in mice blood, and serum and blood samples of diabetic dogs.
NASA Astrophysics Data System (ADS)
Velychko, T. P.; Soldatkin, O. O.; Melnyk, V. G.; Marchenko, S. V.; Kirdeciler, S. K.; Akata, B.; Soldatkin, A. P.; El'skaya, A. V.; Dzyadevych, S. V.
2016-02-01
Development of a conductometric biosensor for the urea detection has been reported. It was created using a non-typical method of the recombinant urease immobilization via adsorption on nanoporous particles of silicalite. It should be noted that this biosensor has a number of advantages, such as simple and fast performance, the absence of toxic compounds during biosensor preparation, and high reproducibility (RSD = 5.1 %). The linear range of urea determination by using the biosensor was 0.05-15 mM, and a lower limit of urea detection was 20 μM. The bioselective element was found to be stable for 19 days. The characteristics of recombinant urease-based biomembranes, such as dependence of responses on the protein and ion concentrations, were investigated. It is shown that the developed biosensor can be successfully used for the urea analysis during renal dialysis.
Photoelectrochemical enzymatic biosensors.
Zhao, Wei-Wei; Xu, Jing-Juan; Chen, Hong-Yuan
2017-06-15
Enzymatic biosensors have been valuable bioanalytical devices for analysis of diverse targets in disease diagnosis, biological and biomedical research, etc. Photoelectrochemical (PEC) bioanalysis is a recently emerged method that promptly becoming a subject of new research interests due to its attractive potential for future bioanalysis with high sensitivity and specificity. PEC enzymatic biosensors integrate the inherent sensitivities of PEC bioanalysis and the selectivity of enzymes and thus share their both advantages. Currently, PEC enzymatic biosensors have become a hot topic of significant research and the recent impetus has grown rapidly as demonstrated by increased research papers. Given the pace of advances in this area, this review will make a thorough discussion and survey on the fundamentals, sensing strategies, applications and the state of the art in PEC enzymatic biosensors, followed by future prospects based on our own opinions. We hope this work could provide an accessible introduction to PEC enzymatic biosensors for any scientist. Copyright © 2016 Elsevier B.V. All rights reserved.
Donmez, Soner; Arslan, Fatma; Arslan, Halit
2016-05-01
In this paper, we demonstrate a simple, sensitive, inexpensive, disposable and label-free electrochemical nucleic acid biosensor for the detection of the hepatitis C virus genotype 1a (HCV1a). The nucleic acid biosensor was designed with the amino-linked inosine-substituted 20-mer probes, which were immobilized onto a disposable pencil graphite electrode (PGE) by covalent linking. The proposed nucleic acid biosensor was linear in the range of 0.05 and 0.75 μM, exhibiting a limit of detection of 54.9 nM. The single-stranded synthetic PCR product analogs of HCV1a were also detected with satisfactory results under optimal conditions, showing the potential application of this biosensor.
Alcohol biosensing by polyamidoamine (PAMAM)/cysteamine/alcohol oxidase-modified gold electrode.
Akin, Mehriban; Yuksel, Merve; Geyik, Caner; Odaci, Dilek; Bluma, Arne; Höpfner, Tim; Beutel, Sascha; Scheper, Thomas; Timur, Suna
2010-01-01
A highly stable and sensitive amperometric alcohol biosensor was developed by immobilizing alcohol oxidase (AOX) through Polyamidoamine (PAMAM) dendrimers on a cysteamine-modified gold electrode surface. Ethanol determination is based on the consumption of dissolved oxygen content due to the enzymatic reaction. The decrease in oxygen level was monitored at -0.7 V vs. Ag/AgCl and correlated with ethanol concentration. Optimization of variables affecting the system was performed. The optimized ethanol biosensor showed a wide linearity from 0.025 to 1.0 mM with 100 s response time and detection limit of (LOD) 0.016 mM. In the characterization studies, besides linearity some parameters such as operational and storage stability, reproducibility, repeatability, and substrate specificity were studied in detail. Stability studies showed a good preservation of the bioanalytical properties of the sensor, 67% of its initial sensitivity was kept after 1 month storage at 4 degrees C. The analytical characteristics of the system were also evaluated for alcohol determination in flow injection analysis (FIA) mode. Finally, proposed biosensor was applied for ethanol analysis in various alcoholic beverage as well as offline monitoring of alcohol production through the yeast cultivation. Copyright 2010 American Institute of Chemical Engineers
A Large Response Range Reflectometric Urea Biosensor Made from Silica-Gel Nanoparticles
Alqasaimeh, Muawia; Heng, Lee Yook; Ahmad, Musa; Raj, A.S. Santhana; Ling, Tan Ling
2014-01-01
A new silica-gel nanospheres (SiO2NPs) composition was formulated, followed by biochemical surface functionalization to examine its potential in urea biosensor development. The SiO2NPs were basically synthesized based on sol–gel chemistry using a modified Stober method. The SiO2NPs surfaces were modified with amine (-NH2) functional groups for urease immobilization in the presence of glutaric acid (GA) cross-linker. The chromoionophore pH-sensitive dye ETH 5294 was physically adsorbed on the functionalized SiO2NPs as pH transducer. The immobilized urease determined urea concentration reflectometrically based on the colour change of the immobilized chromoionophore as a result of the enzymatic hydrolysis of urea. The pH changes on the biosensor due to the catalytic enzyme reaction of immobilized urease were found to correlate with the urea concentrations over a linear response range of 50–500 mM (R2 = 0.96) with a detection limit of 10 mM urea. The biosensor response time was 9 min with reproducibility of less than 10% relative standard deviation (RSD). This optical urea biosensor did not show interferences by Na+, K+, Mg2+ and NH4+ ions. The biosensor performance has been validated using urine samples in comparison with a non-enzymatic method based on the use of p-dimethylaminobenzaldehyde (DMAB) reagent and demonstrated a good correlation between the two different methods (R2 = 0.996 and regression slope of 1.0307). The SiO2NPs-based reflectometric urea biosensor showed improved dynamic linear response range when compared to other nanoparticle-based optical urea biosensors. PMID:25054632
Interdigitated electrodes as impedance and capacitance biosensors: A review
NASA Astrophysics Data System (ADS)
Mazlan, N. S.; Ramli, M. M.; Abdullah, M. M. A. B.; Halin, D. S. C.; Isa, S. S. M.; Talip, L. F. A.; Danial, N. S.; Murad, S. A. Z.
2017-09-01
Interdigitated electrodes (IDEs) are made of two individually addressable interdigitated comb-like electrode structures. IDEs are one of the most favored transducers, widely utilized in technological applications especially in the field of biological and chemical sensors due to their inexpensive, ease of fabrication process and high sensitivity. In order to detect and analyze a biochemical molecule or analyte, the impedance and capacitance signal need to be obtained. This paper investigates the working principle and influencer of the impedance and capacitance biosensors. The impedance biosensor depends on the resistance and capacitance while the capacitance biosensor influenced by the dielectric permittivity. However, the geometry and structures of the interdigitated electrodes affect both impedance and capacitance biosensor. The details have been discussed in this paper.
Post-Translational Modification of Bionanoparticles as a Modular Platform for Biosensor Assembly.
Sun, Qing; Chen, Qi; Blackstock, Daniel; Chen, Wilfred
2015-08-25
Context driven biosensor assembly with modular targeting and detection moieties is gaining significant attentions. Although protein-based nanoparticles have emerged as an excellent platform for biosensor assembly, current strategies of decorating bionanoparticles with targeting and detection moieties often suffer from unfavorable spacing and orientation as well as bionanoparticle aggregation. Herein, we report a highly modular post-translational modification approach for biosensor assembly based on sortase A-mediated ligation. This approach enables the simultaneous modifications of the Bacillus stearothermophilus E2 nanoparticles with different functional moieties for antibody, enzyme, DNA aptamer, and dye decoration. The resulting easy-purification platform offers a high degree of targeting and detection modularity with signal amplification. This flexibility is demonstrated for the detection of both immobilized antigens and cancer cells.
Ding, Liang; Bond, Alan M; Zhai, Jianping; Zhang, Jie
2013-10-03
Nanoparticles with desirable properties not exhibited by the bulk material can be readily synthesized because of rapid technological developments in the fields of materials science and nanotechnology. In particular their highly attractive electrochemical properties and electrocatalytic activity have facilitated achievement of the high level of signal amplification needed for the development of ultrasensitive electrochemical affinity biosensors for the detection of proteins and DNA. This review article explains the basic principles of nanoparticle based electrochemical biosensors, highlights the recent advances in the development of nanoparticle based signal amplification strategies, and provides a critical assessment of the likely drawbacks associated with each strategy. Finally, future perspectives for achieving advanced signal simplification in nanoparticles based biosensors are considered. Copyright © 2013 Elsevier B.V. All rights reserved.
Recent advances in transition-metal dichalcogenides based electrochemical biosensors: A review.
Wang, Yi-Han; Huang, Ke-Jing; Wu, Xu
2017-11-15
Layered transition metal dichalcogenides (TMDCs) comprise a category of two-dimensional (2D) materials that offer exciting properties, including large surface area, metallic and semi-conducting electrical capabilities, and intercalatable morphologies. Biosensors employ biological molecules to recognize the target and utilize output elements which can translate the biorecognition event into electrical, optical or mass-sensitive signals to determine the quantities of the target. TMDCs nanomaterials have been widely applied in various electrochemical biosensors with high sensitivity and selectivity. The marriage of TMDCs and electrochemical biosensors has created many productive sensing strategies for applications in the areas of clinical diagnosis, environmental monitoring and food safety. In recent years, an increasing number of TMDCs-based electrochemical biosensors are reported, suggesting TMDCs offers new possibilities of improving the performance of electrochemical biosensors. This review summarizes recent advances in electrochemical biosensors based on TMDCs for detection of various inorganic and organic analytes in the last five years, including glucose, proteins, DNA, heavy metal, etc. In addition, we also point out the challenges and future perspectives related to the material design and development of TMDCs-based electrochemical biosensors. Copyright © 2017 Elsevier B.V. All rights reserved.
Lang, Qiaolin; Han, Lei; Hou, Chuantao; Wang, Fei; Liu, Aihua
2016-08-15
A sensitive amperometric acetylcholinesterase (AChE) biosensor, based on gold nanorods (AuNRs), was developed for the detection of organophosphate pesticide. Compared with Au@Ag heterogeneous NRs, AuNRs exhibited excellent electrocatalytic properties, which can electrocatalytically oxidize thiocholine, the hydrolysate of acetylthiocholine chloride (ATCl) by AChE at +0.55V (vs. SCE). The AChE/AuNRs/GCE biosensor was fabricated on basis of the inhibition of AChE activity by organophosphate pesticide. The biosensor could detect paraoxon in the linear range from 1nM to 5μM and dimethoate in the linear range from 5nM to 1μM, respectively. The detection limits of paraoxon and dimethoate were 0.7nM and 3.9nM, which were lower than the reported AChE biosensor. The proposed biosensor could restore to over 95% of its original current, which demonstrated the good reactivation. Moreover, the biosensor can be applicable to real water sample measurement. Thus, the biosensor exhibited low applied potential, high sensitivity and good stability, providing a promising tool for analysis of pesticides. Copyright © 2016 Elsevier B.V. All rights reserved.
Fabrication of nanoporous thin-film working electrodes and their biosensing applications.
Li, Tingjie; Jia, Falong; Fan, Yaxi; Ding, Zhifeng; Yang, Jun
2013-04-15
Electrochemical detection for point-of-care diagnostics is of great interest due to its high sensitivity, fast analysis time and ability to operate on a small scale. Herein, we report the fabrication of a nanoporous thin-film electrode and its application in the configuration of a simple and robust enzymatic biosensor. The nanoporous thin-film was formed in a planar gold electrode through an alloying/dealloying process. The nanoporous electrode has an electroactive surface area up to 40 times higher than that of a flat gold electrode of the same size. The nanoporous electrode was used as a substrate to build an enzymatic electrochemical biosensor for the detection of glucose in standard samples and control serum samples. The example glucose biosensor has a linear response up to 30 mM, with a high sensitivity of 0.50 μA mM⁻¹ mm⁻², and excellent anti-interference ability against lactate, uric acid and ascorbic acid. Abundant catalyst and enzyme were stably entrapped in the nanoporous structure, leading to high stability and reproducibility of the biosensor. Development of such nanoporous structure enables the miniaturization of high-performance electrochemical biosensors for point-of-care diagnostics or environmental field testing. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Hongsu; Luo, Ruiping; Chen, Yang; Si, Qi; Niu, Xiaodi
2018-05-01
A sensor based on mesoporous carbon materials immobilized with sortase A (SrtA) for determination of Staphylococcus aureus (S. aureus) is reported. To prepare the biosensor, we first synthesized carboxyl-functionalized mesoporous hollow carbon spheres, then applied them as carriers for immobilization of SrtA. Based on the catalytic mechanism of SrtA, a highly sensitive, inexpensive, and rapid method was developed for S. aureus detection. The sensor showed a linear response in the bacterial concentration range of 0.125 × 102 colony-forming units (CFU) mL-1 to 2.5 × 102 CFU mL-1, with detection limit as low as 9.0 CFU mL-1. The method was successfully used for quantitative detection of S. aureus in whole milk samples, giving results similar to experimental results obtained from the plate counting method. This biosensor could also be used to detect other Gram-positive bacteria that secrete SrtA.
NASA Astrophysics Data System (ADS)
Lv, Zhuo; Luo, Ruiping; Xi, Lijuan; Chen, Yang; Wang, Hongsu
2017-11-01
This work describes the synthesis of three-dimensional hollow hierarchical mesoporous bioactive glass (HMBG) microspheres based on Herba leonuri pollen grains via a hydrothermal method. The HMBG microspheres perfectly copied the hierarchical porous structure and inner hollow structure constituting the double-layer surface of the natural Herba leonuri pollen grains. This structural mimicry of the pollen grains resulted in a higher degree of adsorption of acetylcholinesterase (AChE) on HMBG microspheres in comparison with mesoporous bioactive glass. Subsequently, an amperometric biosensor for the detection of Malathion was fabricated by immobilizing AChE onto an HMBG microspheres-modified carbon paste electrode. The biosensor response exhibited two good linear ranges during an incubation time of 10 min in the malathion concentration ranges of 0.02-50 ppb and 50-600 ppb, with a detection limit of 0.0135 ppb ( S/ N = 3). Overall, the prepared enzymatic biosensor showed high sensitivity in the rapid detection of Malathion and could be applied to detect pesticide residues in vegetable matter.
Devauges, Viviane; Matthews, Daniel R.; Aluko, Justin; Nedbal, Jakub; Levitt, James A.; Poland, Simon P.; Coban, Oana; Weitsman, Gregory; Monypenny, James; Ng, Tony; Ameer-Beg, Simon M.
2014-01-01
We present a novel imaging system combining total internal reflection fluorescence (TIRF) microscopy with measurement of steady-state acceptor fluorescence anisotropy in order to perform live cell Förster Resonance Energy Transfer (FRET) imaging at the plasma membrane. We compare directly the imaging performance of fluorescence anisotropy resolved TIRF with epifluorescence illumination. The use of high numerical aperture objective for TIRF required correction for induced depolarization factors. This arrangement enabled visualisation of conformational changes of a Raichu-Cdc42 FRET biosensor by measurement of intramolecular FRET between eGFP and mRFP1. Higher activity of the probe was found at the cell plasma membrane compared to intracellularly. Imaging fluorescence anisotropy in TIRF allowed clear differentiation of the Raichu-Cdc42 biosensor from negative control mutants. Finally, inhibition of Cdc42 was imaged dynamically in live cells, where we show temporal changes of the activity of the Raichu-Cdc42 biosensor. PMID:25360776
Glucose Oxidase Biosensor Modeling and Predictors Optimization by Machine Learning Methods †
Gonzalez-Navarro, Felix F.; Stilianova-Stoytcheva, Margarita; Renteria-Gutierrez, Livier; Belanche-Muñoz, Lluís A.; Flores-Rios, Brenda L.; Ibarra-Esquer, Jorge E.
2016-01-01
Biosensors are small analytical devices incorporating a biological recognition element and a physico-chemical transducer to convert a biological signal into an electrical reading. Nowadays, their technological appeal resides in their fast performance, high sensitivity and continuous measuring capabilities; however, a full understanding is still under research. This paper aims to contribute to this growing field of biotechnology, with a focus on Glucose-Oxidase Biosensor (GOB) modeling through statistical learning methods from a regression perspective. We model the amperometric response of a GOB with dependent variables under different conditions, such as temperature, benzoquinone, pH and glucose concentrations, by means of several machine learning algorithms. Since the sensitivity of a GOB response is strongly related to these dependent variables, their interactions should be optimized to maximize the output signal, for which a genetic algorithm and simulated annealing are used. We report a model that shows a good generalization error and is consistent with the optimization. PMID:27792165
Biosensors based on cantilevers.
Alvarez, Mar; Carrascosa, Laura G; Zinoviev, Kiril; Plaza, Jose A; Lechuga, Laura M
2009-01-01
Microcantilevers based-biosensors are a new label-free technique that allows the direct detection of biomolecular interactions in a label-less way and with great accuracy by translating the biointeraction into a nanomechanical motion. Low cost and reliable standard silicon technologies are widely used for the fabrication of cantilevers with well-controlled mechanical properties. Over the last years, the number of applications of these sensors has shown a fast growth in diverse fields, such as genomic or proteomic, because of the biosensor flexibility, the low sample consumption, and the non-pretreated samples required. In this chapter, we report a dedicated design and a fabrication process of highly sensitive microcantilever silicon sensors. We will describe as well an application of the device in the environmental field showing the immunodetection of an organic toxic pesticide as an example. The cantilever biofunctionalization process and the subsequent pesticide determination are detected in real time by monitoring the nanometer-scale bending of the microcantilever due to a differential surface stress generated between both surfaces of the device.
Yeom, Se-Hyuk; Kim, Ok-Geun; Kang, Byoung-Ho; Kim, Kyu-Jin; Yuan, Heng; Kwon, Dae-Hyuk; Kim, Hak-Rin; Kang, Shin-Won
2011-11-07
We propose a design for a highly sensitive biosensor based on nanostructured anodized aluminum oxide (AAO) substrates. A gold-deposited AAO substrate exhibits both optical interference and localized surface plasmon resonance (LSPR). In our sensor, application of these disparate optical properties overcomes problems of limited sensitivity, selectivity, and dynamic range seen in similar biosensors. We fabricated uniform periodic nanopore lattice AAO templates by two-step anodizing and assessed their suitability for application in biosensors by characterizing the change in optical response on addition of biomolecules to the AAO template. To determine the suitability of such structures for biosensing applications, we immobilized a layer of C-reactive protein (CRP) antibody on a gold coating atop an AAO template. We then applied a CRP antigen (Ag) atop the immobilized antibody (Ab) layer. The shift in reflectance is interpreted as being caused by the change in refractive index with membrane thickness. Our results confirm that our proposed AAO-based biosensor is highly selective toward detection of CRP antigen, and can measure a change in CRP antigen concentration of 1 fg/ml. This method can provide a simple, fast, and sensitive analysis for protein detection in real-time.
Current trends in nanomaterial embedded field effect transistor-based biosensor.
Nehra, Anuj; Pal Singh, Krishna
2015-12-15
Recently, as metal-, polymer-, and carbon-based biocompatible nanomaterials have been increasingly incorporated into biosensing applications, with various nanostructures having been used to increase the efficacy and sensitivity of most of the detecting devices, including field effect transistor (FET)-based devices. These nanomaterial-based methods also became the ideal for the amalgamation of biomolecules, especially for the fabrication of ultrasensitive, low-cost, and robust FET-based biosensors; these are categorically very successful at binding the target specified entities in the confined gated micro-region for high functionality. Furthermore, the contemplation of nanomaterial-based FET biosensors to various applications encompasses the desire for detection of many targets with high selectivity, and specificity. We assess how such devices have empowered the achievement of elevated biosensor performance in terms of high sensitivity, selectivity and low detection limits. We review the recent literature here to illustrate the diversity of FET-based biosensors, based on various kinds of nanomaterials in different applications and sum up that graphene or its assisted composite based FET devices are comparatively more efficient and sensitive with highest signal to noise ratio. Lastly, the future prospects and limitations of the field are also discussed. Copyright © 2015 Elsevier B.V. All rights reserved.
Li, Xin; Kaattari, Stephen L; Vogelbein, Mary A; Vadas, George G; Unger, Michael A
2016-03-01
Immunoassays based on monoclonal antibodies (mAbs) are highly sensitive for the detection of polycyclic aromatic hydrocarbons (PAHs) and can be employed to determine concentrations in near real-time. A sensitive generic mAb against PAHs, named as 2G8, was developed by a three-step screening procedure. It exhibited nearly uniformly high sensitivity against 3-ring to 5-ring unsubstituted PAHs and their common environmental methylated PAHs, with IC 50 values between 1.68-31 μg/L (ppb). 2G8 has been successfully applied on the KinExA Inline Biosensor system for quantifying 3-5 ring PAHs in aqueous environmental samples. PAHs were detected at a concentration as low as 0.2 μg/L. Furthermore, the analyses only required 10 min for each sample. To evaluate the accuracy of the 2G8-based biosensor, the total PAH concentrations in a series of environmental samples analyzed by biosensor and GC-MS were compared. In most cases, the results yielded a good correlation between methods. This indicates that generic antibody 2G8 based biosensor possesses significant promise for a low cost, rapid method for PAH determination in aqueous samples.
Bog, Uwe; Laue, Thomas; Grossmann, Tobias; Beck, Torsten; Wienhold, Tobias; Richter, Benjamin; Hirtz, Michael; Fuchs, Harald; Kalt, Heinz; Mappes, Timo
2013-07-21
We report on a novel approach to realize on-chip microlasers, by applying highly localized and material-saving surface functionalization of passive photonic whispering gallery mode microresonators. We apply dip-pen nanolithography on a true three-dimensional structure. We coat solely the light-guiding circumference of pre-fabricated poly(methyl methacrylate) resonators with a multifunctional molecular ink. The functionalization is performed in one single fabrication step and simultaneously provides optical gain as well as molecular binding selectivity. This allows for a direct and flexible realization of on-chip microlasers, which can be utilized as biosensors in optofluidic lab-on-a-chip applications. In a proof-of-concept we show how this highly localized molecule deposition suffices for low-threshold lasing in air and water, and demonstrate the capability of the ink-lasers as biosensors in a biotin-streptavidin binding experiment.
NASA Astrophysics Data System (ADS)
Gartia, Manas R.; Misra, Santosh K.; Ye, Mao; Schwartz-Duval, Aaron; Plucinski, Lisa; Zhou, Xiangfei; Kellner, David; Labriola, Leanne T.; Pan, Dipanjan
2015-11-01
Limited training, high cost, and low equipment mobility leads to inaccuracies in decision making and is concerning with serious ocular injuries such as suspected ruptured globe or post-operative infections. Here, we present a novel point-of-service (POS) quantitative ascorbic acid (AA) assay with use of the OcuCheck Biosensor. The present work describes the development and clinical testing of the paper-based biosensor that measures the changes in electrical resistance of the enzyme-plated interdigitated electrodes to quantify the level of AA present in ocular fluid. We have demonstrated the proof-of-concept of the biosensor testing 16 clinical samples collected from aqueous humor of patients undergoing therapeutic anterior chamber paracentesis. Comparing with gold standard colorimetric assay for AA concentration, OcuCheck showed accuracy of >80%, sensitivity of >88% and specificity of >71%. At present, there are no FDA-approved POS tests that can directly measures AA concentration levels in ocular fluid. We envisage that the device can be realized as a handheld, battery powered instrument that will have high impact on glaucoma care and point-of-care diagnostics of penetrating ocular globe injuries.
Lee, Jung-Rok; Sato, Noriyuki; Bechstein, Daniel J. B.; Osterfeld, Sebastian J.; Wang, Junyi; Gani, Adi Wijaya; Hall, Drew A.; Wang, Shan X.
2016-01-01
Giant magnetoresistive (GMR) biosensors consisting of many rectangular stripes are being developed for high sensitivity medical diagnostics of diseases at early stages, but many aspects of the sensing mechanism remain to be clarified. Using e-beam patterned masks on the sensors, we showed that the magnetic nanoparticles with a diameter of 50 nm located between the stripes predominantly determine the sensor signals over those located on the sensor stripes. Based on computational analysis, it was confirmed that the particles in the trench, particularly those near the edges of the stripes, mainly affect the sensor signals due to additional field from the stripe under an applied field. We also demonstrated that the direction of the average magnetic field from the particles that contributes to the signal is indeed the same as that of the applied field, indicating that the particles in the trench are pivotal to produce sensor signal. Importantly, the same detection principle was validated with a duplex protein assay. Also, 8 different types of sensor stripes were fabricated and design parameters were explored. According to the detection principle uncovered, GMR biosensors can be further optimized to improve their sensitivity, which is highly desirable for early diagnosis of diseases. PMID:26728870
Non-enzymatic Fluorescent Biosensor for Glucose Sensing Based on ZnO Nanorods
NASA Astrophysics Data System (ADS)
Mai, Hong Hanh; Pham, Van Thanh; Nguyen, Viet Tuyen; Sai, Cong Doanh; Hoang, Chi Hieu; Nguyen, The Binh
2017-06-01
We have developed a non-enzymatic fluorescent biosensor for glucose sensing based on ZnO nanorods. ZnO nanorods of high density, high crystallinity, and good alignment were grown on low-cost industrial copper substrates at low temperature. To grow them directly on the substrates without using a seed layer, we utilized a simple one-step seedless hydrothermal method, which is based on galvanic cell structure. Herein, the glucose-treated ZnO nanorods together with the ultraviolet (UV) irradiation of the sample during the photoluminescent measurement played the role of a catalyst. They decomposed glucose into hydrogen peroxide (H2O2) and gluconic acid, which is similar to the glucose oxidase enzyme (GOx) used in enzymatic sensors. Due to the formation of H2O2, the photoluminescence intensity of the UV emission peak of ZnO nanorods decreased as the glucose concentration increased from 1 mM to 100 mM. In comparison with glucose concentration of a normal human serum, which is in the range of 4.4-6.6 mM, the obtained results show potential of non-enzymatic fluorescent biosensors in medical applications.
Preparation of PVA membrane for immobilization of GOD for glucose biosensor.
Kumar, Jitendra; D'Souza, S F
2008-03-15
A membrane was prepared using polyvinyl alcohol (PVA) with low and high degree of polymerization (DOP), acetone, benzoic acid (BA) and was cross-linked by UV treatment. Membrane composition was optimized on the basis of swelling index. Membrane prepared with 12% low DOP and 8% high DOP of PVA, 2% BA, dissolved in buffer containing 20% acetone and cross-linked with UV treatment exhibited lower swelling index. Fourier transform infrared (FTIR) study of the membranes showed appearance of a strong band at approximately 2337 cm(-1) when UV was used for cross-linking in the presence of benzoic acid. Scanning electron microscope (SEM) study revealed that membrane cross-linked with UV treatment was smoother. Glucose oxidase (GOD)-PVA membrane was associated with the dissolved oxygen (DO) probe for biosensor reading. Glucose was detected on the basis of depletion of oxygen, when immobilized GOD oxidizes glucose to gluconolactone. A wide detection range, 0.9-225 mg/dl was estimated from the linear range of calibration plot of biosensor reading. Membranes were reused for 32 reactions without significant loss of activity and stored for 30 days (approximately 90% activity) at 4 degrees C. Membranes were also used with real blood samples.
Gartia, Manas R; Misra, Santosh K; Ye, Mao; Schwartz-Duval, Aaron; Plucinski, Lisa; Zhou, Xiangfei; Kellner, David; Labriola, Leanne T; Pan, Dipanjan
2015-11-03
Limited training, high cost, and low equipment mobility leads to inaccuracies in decision making and is concerning with serious ocular injuries such as suspected ruptured globe or post-operative infections. Here, we present a novel point-of-service (POS) quantitative ascorbic acid (AA) assay with use of the OcuCheck Biosensor. The present work describes the development and clinical testing of the paper-based biosensor that measures the changes in electrical resistance of the enzyme-plated interdigitated electrodes to quantify the level of AA present in ocular fluid. We have demonstrated the proof-of-concept of the biosensor testing 16 clinical samples collected from aqueous humor of patients undergoing therapeutic anterior chamber paracentesis. Comparing with gold standard colorimetric assay for AA concentration, OcuCheck showed accuracy of >80%, sensitivity of >88% and specificity of >71%. At present, there are no FDA-approved POS tests that can directly measures AA concentration levels in ocular fluid. We envisage that the device can be realized as a handheld, battery powered instrument that will have high impact on glaucoma care and point-of-care diagnostics of penetrating ocular globe injuries.
Gartia, Manas R.; Misra, Santosh K.; Ye, Mao; Schwartz-Duval, Aaron; Plucinski, Lisa; Zhou, Xiangfei; Kellner, David; Labriola, Leanne T.; Pan, Dipanjan
2015-01-01
Limited training, high cost, and low equipment mobility leads to inaccuracies in decision making and is concerning with serious ocular injuries such as suspected ruptured globe or post-operative infections. Here, we present a novel point-of-service (POS) quantitative ascorbic acid (AA) assay with use of the OcuCheck Biosensor. The present work describes the development and clinical testing of the paper-based biosensor that measures the changes in electrical resistance of the enzyme-plated interdigitated electrodes to quantify the level of AA present in ocular fluid. We have demonstrated the proof-of-concept of the biosensor testing 16 clinical samples collected from aqueous humor of patients undergoing therapeutic anterior chamber paracentesis. Comparing with gold standard colorimetric assay for AA concentration, OcuCheck showed accuracy of >80%, sensitivity of >88% and specificity of >71%. At present, there are no FDA-approved POS tests that can directly measures AA concentration levels in ocular fluid. We envisage that the device can be realized as a handheld, battery powered instrument that will have high impact on glaucoma care and point-of-care diagnostics of penetrating ocular globe injuries. PMID:26525715
High-throughput determination of biochemical oxygen demand (BOD) by a microplate-based biosensor.
Pang, Hei-Leung; Kwok, Nga-Yan; Chan, Pak-Ho; Yeung, Chi-Hung; Lo, Waihung; Wong, Kwok-Yin
2007-06-01
The use of the conventional 5-day biochemical oxygen demand (BOD5) method in BOD determination is greatly hampered by its time-consuming sampling procedure and its technical difficulty in the handling of a large pool of wastewater samples. Thus, it is highly desirable to develop a fast and high-throughput biosensor for BOD measurements. This paper describes the construction of a microplate-based biosensor consisting of an organically modified silica (ORMOSIL) oxygen sensing film for high-throughput determination of BOD in wastewater. The ORMOSIL oxygen sensing film was prepared by reacting tetramethoxysilane with dimethyldimethoxysilane in the presence of the oxygen-sensitive dye tris(4,7-diphenyl-1,10-phenanthroline)ruthenium-(II) chloride. The silica composite formed a homogeneous, crack-free oxygen sensing film on polystyrene microtiter plates with high stability, and the embedded ruthenium dye interacted with the dissolved oxygen in wastewater according to the Stern-Volmer relation. The bacterium Stenotrophomonas maltophilia was loaded into the ORMOSIL/ PVA composite (deposited on the top of the oxygen sensing film) and used to metabolize the organic compounds in wastewater. This BOD biosensor was found to be able to determine the BOD values of wastewater samples within 20 min by monitoring the dissolved oxygen concentrations. Moreover, the BOD values determined by the BOD biosensor were in good agreement with those obtained by the conventional BOD5 method.
Polymer dual ring resonators for label-free optical biosensing using microfluidics.
Salleh, Muhammad H M; Glidle, Andrew; Sorel, Marc; Reboud, Julien; Cooper, Jonathan M
2013-04-18
We demonstrate a polymer resonator microfluidic biosensor that overcomes the complex manufacturing procedures required to fabricate traditional devices. In this new format, we show that a gapless light coupling photonic configuration, fabricated in SU8 polymer, can achieve high sensitivity, label-free chemical sensing in solution and high sensitivity biological sensing, at visible wavelengths.
High-throughput label-free microcontact printing graphene-based biosensor for valley fever.
Tsai, Shih-Ming; Goshia, Tyler; Chen, Yen-Chang; Kagiri, Agnes; Sibal, Angelo; Chiu, Meng-Hsuen; Gadre, Anand; Tung, Vincent; Chin, Wei-Chun
2018-06-18
The highly prevalent and virulent disease in the Western Hemisphere Coccidioidomycosis, also known as Valley Fever, can cause serious illness such as severe pneumonia with respiratory failure. It can also take on a disseminated form where the infection spreads throughout the body. Thus, a serious impetus exists to develop effective detection of the disease that can also operate in a rapid and high-throughput fashion. Here, we report the assembly of a highly sensitive biosensor using reduced graphene oxide (rGO) with Coccidioides(cocci) antibodies as the target analytes. The facile design made possible by the scalable microcontact printing (μCP) surface patterning technique which enables rapid, ultrasensitive detection. It provides a wide linear range and sub picomolar (2.5 pg/ml) detection, while also delivering high selectivity and reproducibility. This work demonstrates an important advancement in the development of a sensitive label-free rGO biosensor for Coccidioidomycosis detection. This result also provides the potential application of direct pathogen diagnosis for the future biosensor development. Copyright © 2018 Elsevier B.V. All rights reserved.
Cerium Oxide Nanoparticles Decorated Graphene Nanosheets for Selective Detection of Dopamine.
Nayak, Pranati; Santhosh, P N; Ramaprabhu, S
2015-07-01
The fabrication of a novel amperometric biosensor based on selective determination of dopamine (DA) using nafion coated cerium oxide nanoparticles (NPs) decorated graphene nanosheets (CeO2-HEG-nafion) as a transducer candidate is reported. Graphene was synthesized by hydrogen exfoliation technique. Decoration of CeO2NPs over graphene nanosheets was done by chemical reduction method. The electrochemical impedance spectroscopy (EIS) study shows the enhanced electron transfer kinetics of the composite compared to HEG modified and bare glassy carbon electrode (GCE). The response of the composite towards dopamine displays a lower oxidation potential of 0.23 V and a high oxidation current. The sensor exhibits linearity from 10 µM to 780 µM with a detection limit of 1 µM. In the presence of nafion, it shows excellent selectivity for coexisting interference species like Ascorbic acid (AA) and Uric acid (UA). The excellent performance of the biosensor can be attributed to large active surface area, enhanced electron transfer kinetics and high catalytic activity of the composite.
Haddad, R; Cosnier, S; Maaref, A; Holzinger, M
2009-12-01
Single-walled carbon nanotubes were functionalized with biotin using either electropolymerization or formation of pi-stacking interactions for the construction of biosensors. Thanks to the high affinity of the avidin-biotin interactions, a biotinylated glucose oxidase (B-GOX) as a biomolecule model was immobilized on the biotinylated nanotubes. The influence of the biosensor configuration on their amperometric performances was investigated by changing the amount of nanotubes and the numbers of avidin/B-GOX layers. By increasing the amount of nanotube and avidin/B-GOX layers, both sensor setups show a perfect linear increase of immobilized enzymes reflecting a high reproducibility of our systems. The highest sensitivities (up to 5.2 mA M(-1) cm(-2)) and maximum current densities (up to 55 microA cm(-2)) were obtained using nanotube deposits modified by electrochemical coatings. In contrast, non-covalently functionalized biotin-nanotubes show a better permeability for the enzymatically generated hydrogen peroxide.
Bechstein, Daniel J B; Lee, Jung-Rok; Ooi, Chin Chun; Gani, Adi W; Kim, Kyunglok; Wilson, Robert J; Wang, Shan X
2015-06-30
Magnetic biosensors have emerged as a sensitive and versatile platform for high performance medical diagnostics. These magnetic biosensors require well-tailored magnetic particles as detection probes, which need to give rise to a large and specific biological signal while showing very low nonspecific binding. This is especially important in wash-free bioassay protocols, which do not require removal of particles before measurement, often a necessity in point of care diagnostics. Here we show that magnetic interactions between magnetic particles and magnetized sensors dramatically impact particle transport and magnetic adhesion to the sensor surfaces. We investigate the dynamics of magnetic particles' biomolecular binding and magnetic adhesion to the sensor surface using microfluidic experiments. We elucidate how flow forces can inhibit magnetic adhesion, greatly diminishing or even eliminating nonspecific signals in wash-free magnetic bioassays, and enhancing signal to noise ratios by several orders of magnitude. Our method is useful for selecting and optimizing magnetic particles for a wide range of magnetic sensor platforms.
High performance wash-free magnetic bioassays through microfluidically enhanced particle specificity
Bechstein, Daniel J.B.; Lee, Jung-Rok; Ooi, Chin Chun; Gani, Adi W.; Kim, Kyunglok; Wilson, Robert J.; Wang, Shan X.
2015-01-01
Magnetic biosensors have emerged as a sensitive and versatile platform for high performance medical diagnostics. These magnetic biosensors require well-tailored magnetic particles as detection probes, which need to give rise to a large and specific biological signal while showing very low nonspecific binding. This is especially important in wash-free bioassay protocols, which do not require removal of particles before measurement, often a necessity in point of care diagnostics. Here we show that magnetic interactions between magnetic particles and magnetized sensors dramatically impact particle transport and magnetic adhesion to the sensor surfaces. We investigate the dynamics of magnetic particles’ biomolecular binding and magnetic adhesion to the sensor surface using microfluidic experiments. We elucidate how flow forces can inhibit magnetic adhesion, greatly diminishing or even eliminating nonspecific signals in wash-free magnetic bioassays, and enhancing signal to noise ratios by several orders of magnitude. Our method is useful for selecting and optimizing magnetic particles for a wide range of magnetic sensor platforms. PMID:26123868
Early Lung Cancer Diagnosis by Biosensors
Zhang, Yuqian; Yang, Dongliang; Weng, Lixing; Wang, Lianhui
2013-01-01
Lung cancer causes an extreme threat to human health, and the mortality rate due to lung cancer has not decreased during the last decade. Prognosis or early diagnosis could help reduce the mortality rate. If microRNA and tumor-associated antigens (TAAs), as well as the corresponding autoantibodies, can be detected prior to clinical diagnosis, such high sensitivity of biosensors makes the early diagnosis and prognosis of cancer realizable. This review provides an overview of tumor-associated biomarker identifying methods and the biosensor technology available today. Laboratorial researches utilizing biosensors for early lung cancer diagnosis will be highlighted. PMID:23892596
Bhalla, Nikhil; Jolly, Pawan; Formisano, Nello
2016-01-01
Biosensors are nowadays ubiquitous in biomedical diagnosis as well as a wide range of other areas such as point-of-care monitoring of treatment and disease progression, environmental monitoring, food control, drug discovery, forensics and biomedical research. A wide range of techniques can be used for the development of biosensors. Their coupling with high-affinity biomolecules allows the sensitive and selective detection of a range of analytes. We give a general introduction to biosensors and biosensing technologies, including a brief historical overview, introducing key developments in the field and illustrating the breadth of biomolecular sensing strategies and the expansion of nanotechnological approaches that are now available. PMID:27365030
Werlen, Christoph; Jaspers, Marco C. M.; van der Meer, Jan Roelof
2004-01-01
Genetically constructed microbial biosensors for measuring organic pollutants are mostly applied in aqueous samples. Unfortunately, the detection limit of most biosensors is insufficient to detect pollutants at low but environmentally relevant concentrations. However, organic pollutants with low levels of water solubility often have significant gas-water partitioning coefficients, which in principle makes it possible to measure such compounds in the gas rather than the aqueous phase. Here we describe the first use of a microbial biosensor for measuring organic pollutants directly in the gas phase. For this purpose, we reconstructed a bioluminescent Pseudomonas putida naphthalene biosensor strain to carry the NAH7 plasmid and a chromosomally inserted gene fusion between the sal promoter and the luxAB genes. Specific calibration studies were performed with suspended and filter-immobilized biosensor cells, in aqueous solution and in the gas phase. Gas phase measurements with filter-immobilized biosensor cells in closed flasks, with a naphthalene-contaminated aqueous phase, showed that the biosensor cells can measure naphthalene effectively. The biosensor cells on the filter responded with increasing light output proportional to the naphthalene concentration added to the water phase, even though only a small proportion of the naphthalene was present in the gas phase. In fact, the biosensor cells could concentrate a larger proportion of naphthalene through the gas phase than in the aqueous suspension, probably due to faster transport of naphthalene to the cells in the gas phase. This led to a 10-fold lower detectable aqueous naphthalene concentration (50 nM instead of 0.5 μM). Thus, the use of bacterial biosensors for measuring organic pollutants in the gas phase is a valid method for increasing the sensitivity of these valuable biological devices. PMID:14711624
Zhybak, M; Beni, V; Vagin, M Y; Dempsey, E; Turner, A P F; Korpan, Y
2016-03-15
The use of a novel ammonium ion-specific copper-polyaniline nano-composite as transducer for hydrolase-based biosensors is proposed. In this work, a combination of creatinine deaminase and urease has been chosen as a model system to demonstrate the construction of urea and creatinine biosensors to illustrate the principle. Immobilisation of enzymes was shown to be a crucial step in the development of the biosensors; the use of glycerol and lactitol as stabilisers resulted in a significant improvement, especially in the case of the creatinine, of the operational stability of the biosensors (from few hours to at least 3 days). The developed biosensors exhibited high selectivity towards creatinine and urea. The sensitivity was found to be 85 ± 3.4 mAM(-1)cm(-2) for the creatinine biosensor and 112 ± 3.36 mAM(-1)cm(-2) for the urea biosensor, with apparent Michaelis-Menten constants (KM,app), obtained from the creatinine and urea calibration curves, of 0.163 mM for creatinine deaminase and 0.139 mM for urease, respectively. The biosensors responded linearly over the concentration range 1-125 µM, with a limit of detection of 0.5 µM and a response time of 15s. The performance of the biosensors in a real sample matrix, serum, was evaluated and a good correlation with standard spectrophotometric clinical laboratory techniques was found. Copyright © 2015 Elsevier B.V. All rights reserved.
Recombinant antibodies and their use in biosensors.
Zeng, Xiangqun; Shen, Zhihong; Mernaugh, Ray
2012-04-01
Inexpensive, noninvasive immunoassays can be used to quickly detect disease in humans. Immunoassay sensitivity and specificity are decidedly dependent upon high-affinity, antigen-specific antibodies. Antibodies are produced biologically. As such, antibody quality and suitability for use in immunoassays cannot be readily determined or controlled by human intervention. However, the process through which high-quality antibodies can be obtained has been shortened and streamlined by use of genetic engineering and recombinant antibody techniques. Antibodies that traditionally take several months or more to produce when animals are used can now be developed in a few weeks as recombinant antibodies produced in bacteria, yeast, or other cell types. Typically most immunoassays use two or more antibodies or antibody fragments to detect antigens that are indicators of disease. However, a label-free biosensor, for example, a quartz-crystal microbalance (QCM) needs one antibody only. As such, the cost and time needed to design and develop an immunoassay can be substantially reduced if recombinant antibodies and biosensors are used rather than traditional antibody and assay (e.g. enzyme-linked immunosorbant assay, ELISA) methods. Unlike traditional antibodies, recombinant antibodies can be genetically engineered to self-assemble on biosensor surfaces, at high density, and correctly oriented to enhance antigen-binding activity and to increase assay sensitivity, specificity, and stability. Additionally, biosensor surface chemistry and physical and electronic properties can be modified to further increase immunoassay performance above and beyond that obtained by use of traditional methods. This review describes some of the techniques investigators have used to develop highly specific and sensitive, recombinant antibody-based biosensors for detection of antigens in simple or complex biological samples.
A biosensor based on graphite epoxy composite electrode for aspartame and ethanol detection.
Kirgöz, Ulkü Anik; Odaci, Dilek; Timur, Suna; Merkoçi, Arben; Alegret, Salvador; Beşün, Nurgün; Telefoncu, Azmi
2006-06-16
A gelatin membrane with carboxyl esterase and alcohol oxidase was subsequently integrated onto the surface of a graphite epoxy composite electrode (GECE). The developed biosensors showed linearity in the range of 2.5-400 microM for aspartame and 2.5-25 microM for ethanol with response times of 170 and 70s for each analyte, respectively. The resulting bienzyme biosensor was used for aspartame detection in diet coke samples and ethanol detection in beer and wine samples. From the obtained results, it can be concluded that the developed biosensor is a selective, practical and economic tool for aspartame and ethanol detection in real samples.
In-line pressure-flow module for in vitro modelling of haemodynamics and biosensor validation
NASA Technical Reports Server (NTRS)
Koenig, S. C.; Schaub, J. D.; Ewert, D. L.; Swope, R. D.; Convertino, V. A. (Principal Investigator)
1997-01-01
An in-line pressure-flow module for in vitro modelling of haemodynamics and biosensor validation has been developed. Studies show that good accuracy can be achieved in the measurement of pressure and of flow, in steady and pulstile flow systems. The model can be used for development, testing and evaluation of cardiovascular-mechanical-electrical anlogue models, cardiovascular prosthetics (i.e. valves, vascular grafts) and pressure and flow biosensors.
Nanomolar detection of methylparaben by a cost-effective hemoglobin-based biosensor.
Hajian, A; Ghodsi, J; Afraz, A; Yurchenko, O; Urban, G
2016-12-01
This work describes the development of a new biosensor for methylparaben determination using electrocatalytic properties of hemoglobin in the presence of hydrogen peroxide. The voltammetric oxidation of methylparaben by the proposed biosensor in phosphate buffer (pH=7.0), a physiological pH, was studied and it was confirmed that methylparaben undergoes a one electron-one proton reaction in a diffusion-controlled process. The biosensor was fabricated by carbon paste electrode modified with hemoglobin and multiwalled carbon nanotube. Based on the excellent electrochemical properties of the modified electrode, a sensitive voltammetric method was used for determination of methylparaben within a linear range from 0.1 to 13μmolL(-1) and detection limit of 25nmolL(-1). The developed biosensor possessed accurate and rapid response to methylparaben and showed good sensitivity, stability, and repeatability. Finally, the applicability of the proposed biosensor was verified by methylparaben evaluation in various real samples. Copyright © 2016 Elsevier B.V. All rights reserved.
Malekzad, Hedieh; Zangabad, Parham Sahandi; Mohammadi, Hadi; Sadroddini, Mohsen; Jafari, Zahra; Mahlooji, Niloofar; Abbaspour, Somaye; Gholami, Somaye; Ghanbarpoor, Mana; Pashazadeh, Rahim; Beyzavi, Ali; Karimi, Mahdi; Hamblin, Michael R
2018-03-01
Nanotechnology has illustrated significant potentials in biomolecular-sensing applications; particularly its introduction to anti-doping detection is of great importance. Illicit recreational drugs, substances that can be potentially abused, and drugs with dosage limitations according to the prohibited lists announced by the World Antidoping Agency (WADA) are becoming of increasing interest to forensic chemists. In this review, the theoretical principles of optical biosensors based on noble metal nanoparticles, and the transduction mechanism of commonly-applied plasmonic biosensors are covered. We review different classes of recently-developed plasmonic biosensors for analytic determination and quantification of illicit drugs in anti-doping applications. The important classes of illicit drugs include anabolic steroids, opioids, stimulants, and peptide hormones. The main emphasis is on the advantages that noble metal nano-particles bring to optical biosensors for signal enhancement and the development of highly sensitive (label-free) biosensors. In the near future, such optical biosensors may be an invaluable substitute for conventional anti-doping detection methods such as chromatography-based approaches, and may even be commercialized for routine anti-doping tests.
On Chip Protein Pre-Concentration for Enhancing the Sensitivity of Porous Silicon Biosensors.
Arshavsky-Graham, Sofia; Massad-Ivanir, Naama; Paratore, Federico; Scheper, Thomas; Bercovici, Moran; Segal, Ester
2017-12-22
Porous silicon (PSi) nanomaterials have been widely studied as label-free optical biosensors for protein detection. However, these biosensors' performance, specifically in terms of their sensitivity (which is typically in the micromolar range), is insufficient for many applications. Herein, we present a proof-of-concept application of the electrokinetic isotachophoresis (ITP) technique for real-time preconcentration of a target protein on a PSi biosensor. With ITP, a highly concentrated target zone is delivered to the sensing area, where the protein target is captured by immobilized aptamers. The detection of the binding events is conducted in a label-free manner by reflective interferometric Fourier transformation spectroscopy (RIFTS). Up to 1000-fold enhancement in local concentration of the protein target and the biosensor's sensitivity are achieved, with a measured limit of detection of 7.5 nM. Furthermore, the assay is successfully performed in complex media, such as bacteria lysate samples, while the selectivity of the biosensor is retained. The presented assay could be further utilized for other protein targets, and to promote the development of clinically useful PSi biosensors.
Saleem, Waqas; Salinas, Carlos; Watkins, Brian; Garvey, Gavin; Sharma, Anjal C; Ghosh, Ritwik
2016-12-15
An antibody, specific to fibrinogen, has been covalently attached to graphene and deposited onto screen printed electrodes using a chitosan hydrogel binder to prepare an inexpensive electrochemical fibrinogen biosensor. Fourier Transform Infrared (FT-IR) spectroscopy has been utilized to confirm the presence of the antibody on the graphene scaffold. Electrochemical Impedance Spectroscopy (EIS) has been utilized to demonstrate that the biosensor responds in a selective manner to fibrinogen in aqueous media even in the presence of plasminogen, a potentially interfering molecule in the coagulopathy cascade. Furthermore, the biosensor was shown to reliably sense fibrinogen in the presence of high background serum albumin levels. Finally, we demonstrated detection of clinically relevant fibrinogen concentrations (938-44,542μg/dL) from human serum and human whole blood samples using this biosensor. This biosensor can potentially be used in a point-of-care device to detect the onset of coagulopathy and monitor response following therapeutic intervention in trauma patients. Thus this biosensor may improve the clinical management of patients with trauma-induced coagulopathy. Copyright © 2016 Elsevier B.V. All rights reserved.
Nanomaterials towards fabrication of cholesterol biosensors: Key roles and design approaches.
Saxena, Urmila; Das, Asim Bikas
2016-01-15
Importance of cholesterol biosensors is already recognized in the clinical diagnosis of cardiac and brain vascular diseases as discernible from the enormous amount of research in this field. Nevertheless, the practical application of a majority of the fabricated cholesterol biosensors is ordinarily limited by their inadequate performance in terms of one or more analytical parameters including stability, sensitivity and detection limit. Nanoscale materials offer distinctive size tunable electronic, catalytic and optical properties which opened new opportunities for designing highly efficient biosensor devices. Incorporation of nanomaterials in biosensing devices has found to improve the electroactive surface, electronic conductivity and biocompatibility of the electrode surfaces which then improves the analytical performance of the biosensors. Here we have reviewed recent advances in nanomaterial-based cholesterol biosensors. Foremost, the diverse roles of nanomaterials in these sensor systems have been discussed. Later, we have exhaustively explored the strategies used for engineering cholesterol biosensors with nanotubes, nanoparticles and nanocomposites. Finally, this review concludes with future outlook signifying some challenges of these nanoengineered cholesterol sensors. Copyright © 2015 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Yu; Bioengineering Program, Lehigh University, Bethlehem, Pennsylvania 18015; Zhang, Xiaohui
2014-11-24
We designed and constructed three dimensional (3D) zinc oxide Nanotetrapods (T-ZnOs) modified AlGaAs/GaAs high electron mobility transistors (HEMTs) for enzymatic uric acid (UA) detection. The chemical vapor deposition synthesized T-ZnOs was distributed on the gate areas of HEMTs in order to immobilize uricase and improve the sensitivity of the HEMTs. Combining with the high efficiency of enzyme immobilization by T-ZnOs and high sensitivity from HEMT, the as-constructed uricase/T-ZnOs/HEMTs biosensor showed fast response towards UA at ∼1 s, wide linear range from 0.2 nM to 0.2 mM and the low detect limit at 0.2 nM. The results point out an avenue to design electronic devicemore » as miniaturized lab-on-chip device for high sensitive and specific in biomedical and clinical diagnosis applications.« less
Facile fabrication of all-solid-state SnO2/NiCo2O4 biosensor for self-powered glucose detection
NASA Astrophysics Data System (ADS)
Cai, Bin; Mao, Weiwei; Ye, Zhizhen; Huang, Jingyun
2016-09-01
With increasing attention on daily diabetes management, we develop an all-solid-state self-powered glucose biosensor, with simultaneous solar energy conversion, electrochemical energy storage and glucose sensing. The SnO2 nanosheet arrays are used to obtain photogenerated electron-hole pairs, and rhombus-shaped NiCo2O4 nanorod arrays are developed for solar energy storage. A stable open circuit voltage ~0.58 V is obtained after being fully charged, which is a suitable voltage for the oxidation of glucose. The biosensor can work under two different modes without any external bias voltage, and both show large linear range and excellent selectivity. Under the sunlight, photocurrent shows a sensitive decrease upon different glucose additions. Meanwhile, in the dark condition, the open circuit voltage of the charged biosensor also exhibits a corresponding response to glucose.
Electrochemical sensors and biosensors for the analysis of antineoplastic drugs.
Lima, Handerson Rodrigues Silva; da Silva, Josany Saibrosa; de Oliveira Farias, Emanuel Airton; Teixeira, Paulo Ronaldo Sousa; Eiras, Carla; Nunes, Lívio César Cunha
2018-06-15
Cancer is a leading cause of death worldwide, often being treated with antineoplastic drugs that have high potential for toxicity to humans and the environment, even at very low concentrations. Therefore, monitoring these drugs is of utmost importance. Among the techniques used to detect substances at low concentrations, electrochemical sensors and biosensors have been noted for their practicality and low cost. This review brings, for the first time, a simplified outline of the main electrochemical sensors and biosensors developed for the analysis of antineoplastic drugs. The drugs analyzed and the methodology used for electrochemical sensing are described, as are the techniques used for drug quantification and the analytical performance of each sensor, highlighting the limit of detection (LOD), as well as the linear range of quantification (LR) for each system. Finally, we present a technological prospection on the development and use of electrochemical sensors and biosensors in the quantification of antineoplastic drugs. A search of international patent databases revealed no patents currently submitted under this topic, suggesting this is an area to be further explored. We also show that the use of these systems has been gaining prominence in recent years, and that the quantification of antineoplastic drugs using electrochemical techniques could bring great financial and health benefits. Copyright © 2018. Published by Elsevier B.V.
Glucose biosensor based on functionalized ZnO nanowire/graphite films dispersed on a Pt electrode
NASA Astrophysics Data System (ADS)
Gallay, P.; Tosi, E.; Madrid, R.; Tirado, M.; Comedi, D.
2016-10-01
We present a glucose biosensor based on ZnO nanowire self-sustained films grown on compacted graphite flakes by the vapor transport method. Nanowire/graphite films were fragmented in water, filtered to form a colloidal suspension, subsequently functionalized with glucose oxidase and finally transferred to a metal electrode (Pt). The obtained devices were evaluated using scanning electron microscopy, energy-dispersive x-ray spectroscopy, cyclic voltammetry and chronoamperometry. The electrochemical responses of the devices were determined in buffer solutions with successive glucose aggregates using a tripolar electrode system. The nanostructured biosensors showed excellent analytical performance, with linear response to glucose concentrations, high sensitivity of up to ≈17 μA cm-2 mM-1 in the 0.03-1.52 mM glucose concentration range, relatively low Michaelis-Menten constant, excellent reproducibility and a fast response. The detection limits are more than an order of magnitude lower than those achievable in commercial biosensors for glucose control, which is promising for the development of glucose monitoring methods that do not require blood extraction from potentially diabetic patients. The strong detection enhancements provided by the functionalized nanostructures are much larger than the electrode surface-area increase and are discussed in terms of the physical and chemical mechanisms involved in the detection and transduction processes.
Versatile graphene biosensors for enhancing human cell therapy.
Vlăsceanu, George M; Amărandi, Roxana-Maria; Ioniță, Mariana; Tite, Teddy; Iovu, Horia; Pilan, Luisa; Burns, Jorge S
2018-05-01
Technological advances in engineering and cell biology stimulate novel approaches for medical treatment, in particular cell-based therapy. The first cell-based gene therapy against cancer was recently approved by the US Food and Drug Administration. Progress in cancer diagnosis includes a blood test detecting five cancer types. Numerous stem cell phase I/II clinical trials showing safety and efficacy will soon pursue qualifying criteria for advanced therapy medicinal products (ATMP), aspiring to join the first stem-cell therapy approved by the European Medicines Agency. Cell based therapy requires extensive preclinical characterisation of biomarkers indicating mechanisms of action crucial to the desired therapeutic effect. Quantitative analyses monitoring critical functions for the manufacture of optimal cell and tissue-based clinical products include successful potency assays for implementation. The challenge to achieve high quality measurement is increasingly met by progress in biosensor design. We adopt a cell therapy perspective to highlight recent examples of graphene-enhanced biointerfaces for measurement of biomarkers relevant to cancer treatment, diagnosis and tissue regeneration. Graphene based biosensor design problems can thwart their use for health care transformative point of care testing and real-time applications. We discuss concerns to be addressed and emerging solutions for establishing clinical grade biosensors to accelerate human cell therapy. Copyright © 2018 Elsevier B.V. All rights reserved.
A novel assay for detecting canine parvovirus using a quartz crystal microbalance biosensor.
Kim, Yong Kwan; Lim, Seong-In; Choi, Sarah; Cho, In-Soo; Park, Eun-Hye; An, Dong-Jun
2015-07-01
Rapid and accurate diagnosis is crucial to reduce both the shedding and clinical signs of canine parvovirus (CPV). The quartz crystal microbalance (QCM) is a new tool for measuring frequency changes associated with antigen-antibody interactions. In this study, the QCM biosensor and ProLinker™ B were used to rapidly diagnosis CPV infection. ProLinker™ B enables antibodies to be attached to a gold-coated quartz surface in a regular pattern and in the correct orientation for antigen binding. Receiver operating characteristics (ROC) curves were used to set a cut-off value using reference CPVs (two groups: one CPV-positive and one CPV-negative). The ROC curves overlapped and the point of intersection was used as the cut-off value. A QCM biosensor with a cut-off value of -205 Hz showed 95.4% (104/109) sensitivity and 98.0% (149/152) specificity when used to test 261 field fecal samples compared to PCR. In conclusion, the QCM biosensor described herein is eminently suitable for the rapid diagnosis of CPV infection with high sensitivity and specificity. Therefore, it is a promising analytical tool that will be useful for clinical diagnosis, which requires rapid and reliable analyses. Copyright © 2015 Elsevier B.V. All rights reserved.
Recent development of nano-materials used in DNA biosensors.
Xu, Kai; Huang, Junran; Ye, Zunzhong; Ying, Yibin; Li, Yanbin
2009-01-01
As knowledge of the structure and function of nucleic acid molecules has increased, sequence-specific DNA detection has gained increased importance. DNA biosensors based on nucleic acid hybridization have been actively developed because of their specificity, speed, portability, and low cost. Recently, there has been considerable interest in using nano-materials for DNA biosensors. Because of their high surface-to-volume ratios and excellent biological compatibilities, nano-materials could be used to increase the amount of DNA immobilization; moreover, DNA bound to nano-materials can maintain its biological activity. Alternatively, signal amplification by labeling a targeted analyte with nano-materials has also been reported for DNA biosensors in many papers. This review summarizes the applications of various nano-materials for DNA biosensors during past five years. We found that nano-materials of small sizes were advantageous as substrates for DNA attachment or as labels for signal amplification; and use of two or more types of nano-materials in the biosensors could improve their overall quality and to overcome the deficiencies of the individual nano-components. Most current DNA biosensors require the use of polymerase chain reaction (PCR) in their protocols. However, further development of nano-materials with smaller size and/or with improved biological and chemical properties would substantially enhance the accuracy, selectivity and sensitivity of DNA biosensors. Thus, DNA biosensors without PCR amplification may become a reality in the foreseeable future.
Recent Development of Nano-Materials Used in DNA Biosensors
Xu, Kai; Huang, Junran; Ye, Zunzhong; Ying, Yibin; Li, Yanbin
2009-01-01
As knowledge of the structure and function of nucleic acid molecules has increased, sequence-specific DNA detection has gained increased importance. DNA biosensors based on nucleic acid hybridization have been actively developed because of their specificity, speed, portability, and low cost. Recently, there has been considerable interest in using nano-materials for DNA biosensors. Because of their high surface-to-volume ratios and excellent biological compatibilities, nano-materials could be used to increase the amount of DNA immobilization; moreover, DNA bound to nano-materials can maintain its biological activity. Alternatively, signal amplification by labeling a targeted analyte with nano-materials has also been reported for DNA biosensors in many papers. This review summarizes the applications of various nano-materials for DNA biosensors during past five years. We found that nano-materials of small sizes were advantageous as substrates for DNA attachment or as labels for signal amplification; and use of two or more types of nano-materials in the biosensors could improve their overall quality and to overcome the deficiencies of the individual nano-components. Most current DNA biosensors require the use of polymerase chain reaction (PCR) in their protocols. However, further development of nano-materials with smaller size and/or with improved biological and chemical properties would substantially enhance the accuracy, selectivity and sensitivity of DNA biosensors. Thus, DNA biosensors without PCR amplification may become a reality in the foreseeable future. PMID:22346713
A thermal biosensor based on enzyme reaction.
Zheng, Yi-Hua; Hua, Tse-Chao; Xu, Fei
2005-01-01
Application of the thermal biosensor as analytical tool is promising due to advantages as universal, simplicity and quick response. A novel thermal biosensor based on enzyme reaction has been developed. This biosensor is a flow injection analysis system and consists of two channels with enzyme reaction column and reference column. The reference column, which is set for eliminating the unspecific heat, is inactived on special enzyme reaction of the ingredient to be detected. The special enzyme reaction takes places in the enzyme reaction column at a constant temperature realizing by a thermoelectric thermostat. Thermal sensor based on the thermoelectric module containing 127 serial BiTe-thermocouples is used to monitor the temperature difference between two streams from the enzyme reaction column and the reference column. The analytical example for dichlorvos shows that this biosensor can be used as analytical tool in medicine and biology.
Oligonucleotide-based biosensors for in vitro diagnostics and environmental hazard detection.
Jung, Il Young; Lee, Eun Hee; Suh, Ah Young; Lee, Seung Jin; Lee, Hyukjin
2016-04-01
Oligonucleotide-based biosensors have drawn much attention because of their broad applications in in vitro diagnostics and environmental hazard detection. They are particularly of interest to many researchers because of their high specificity as well as excellent sensitivity. Recently, oligonucleotide-based biosensors have been used to achieve not only genetic detection of targets but also the detection of small molecules, peptides, and proteins. This has further broadened the applications of these sensors in the medical and health care industry. In this review, we highlight various examples of oligonucleotide-based biosensors for the detection of diseases, drugs, and environmentally hazardous chemicals. Each example is provided with detailed schematics of the detection mechanism in addition to the supporting experimental results. Furthermore, future perspectives and new challenges in oligonucleotide-based biosensors are discussed.
NASA Astrophysics Data System (ADS)
Della Ventura, B.; Funari, R.; Anoop, K. K.; Amoruso, S.; Ausanio, G.; Gesuele, F.; Velotta, R.; Altucci, C.
2015-06-01
We report an application of femtosecond laser ablation to improve the sensitivity of biosensors based on a quartz crystal microbalance device. The nanoparticles produced by irradiating a gold target with 527-nm, 300-fs laser pulses, in high vacuum, are directly deposited on the quartz crystal microbalance electrode. Different gold electrodes are fabricated by varying the deposition time, thus addressing how the nanoparticles surface coverage influences the sensor response. The modified biosensor is tested by weighting immobilized IgG antibody from goat and its analyte (IgG from mouse), and the results are compared with a standard electrode. A substantial increase of biosensor sensitivity is achieved, thus demonstrating that femtosecond laser ablation and deposition is a viable physical method to improve the biosensor sensitivity by means of nanostructured electrodes.
Witte, Christopher; Martos, Vera; Rose, Honor May; Reinke, Stefan; Klippel, Stefan; Schröder, Leif; Hackenberger, Christian P R
2015-02-23
The targeting of metabolically labeled glycans with conventional MRI contrast agents has proved elusive. In this work, which further expands the utility of xenon Hyper-CEST biosensors in cell experiments, we present the first successful molecular imaging of such glycans using MRI. Xenon Hyper-CEST biosensors are a novel class of MRI contrast agents with very high sensitivity. We designed a multimodal biosensor for both fluorescent and xenon MRI detection that is targeted to metabolically labeled sialic acid through bioorthogonal chemistry. Through the use of a state of the art live-cell bioreactor, it was demonstrated that xenon MRI biosensors can be used to image cell-surface glycans at nanomolar concentrations. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
High S/N Ratio Slotted Step Piezoresistive Microcantilever Designs for Biosensors
Ansari, Mohd Zahid; Cho, Chongdu
2013-01-01
This study proposes new microcantilever designs in slotted step configuration to improve the S/N ratio of surface stress-based sensors used in physical, chemical, biochemical and biosensor applications. The cantilevers are made of silicon dioxide with a u-shaped silicon piezoresistor in p-doped. The cantilever step length and piezoresistor length is varied along with the operating voltage to characterise the surface stress sensitivity and thermal drifting sensitivity of the cantilevers when used as immunosensor. The numerical analysis is performed using ANSYS Multiphysics. Results show the surface stress sensitivity and the S/N ratio of the slotted step cantilevers is improved by more than 32% and 22%, respectively, over its monolithic counterparts. PMID:23535637
High S/N ratio slotted step piezoresistive microcantilever designs for biosensors.
Ansari, Mohd Zahid; Cho, Chongdu
2013-03-26
This study proposes new microcantilever designs in slotted step configuration to improve the S/N ratio of surface stress-based sensors used in physical, chemical, biochemical and biosensor applications. The cantilevers are made of silicon dioxide with a u-shaped silicon piezoresistor in p-doped. The cantilever step length and piezoresistor length is varied along with the operating voltage to characterise the surface stress sensitivity and thermal drifting sensitivity of the cantilevers when used as immunosensor. The numerical analysis is performed using ANSYS Multiphysics. Results show the surface stress sensitivity and the S/N ratio of the slotted step cantilevers is improved by more than 32% and 22%, respectively, over its monolithic counterparts.
Development of biosensors and their application in metabolic engineering.
Zhang, Jie; Jensen, Michael K; Keasling, Jay D
2015-10-01
In a sustainable bioeconomy, many commodities and high value chemicals, including pharmaceuticals, will be manufactured using microbial cell factories from renewable feedstocks. These cell factories can be efficiently generated by constructing libraries of diversified genomes followed by screening for the desired phenotypes. However, methods available for microbial genome diversification far exceed our ability to screen and select for those variants with optimal performance. Genetically encoded biosensors have shown the potential to address this gap, given their ability to respond to small molecule binding and ease of implementation with high-throughput analysis. Here we describe recent progress in biosensor development and their applications in a metabolic engineering context. We also highlight examples of how biosensors can be integrated with synthetic circuits to exert feedback regulation on the metabolism for improved performance of cell factories. Copyright © 2015 Elsevier Ltd. All rights reserved.
Advances in arsenic biosensor development--a comprehensive review.
Kaur, Hardeep; Kumar, Rabindra; Babu, J Nagendra; Mittal, Sunil
2015-01-15
Biosensors are analytical devices having high sensitivity, portability, small sample requirement and ease of use for qualitative and quantitative monitoring of various analytes of human importance. Arsenic (As), owing to its widespread presence in nature and high toxicity to living creatures, requires frequent determination in water, soil, agricultural and food samples. The present review is an effort to highlight the various advancements made so far in the development of arsenic biosensors based either on recombinant whole cells or on certain arsenic-binding oligonucleotides or proteins. The role of futuristic approaches like surface plasmon resonance (SPR) and aptamer technology has also been discussed. The biomethods employed and their general mechanisms, advantages and limitations in relevance to arsenic biosensors developed so far are intended to be discussed in this review. Copyright © 2014 Elsevier B.V. All rights reserved.
Biofuel metabolic engineering with biosensors.
Morgan, Stacy-Anne; Nadler, Dana C; Yokoo, Rayka; Savage, David F
2016-12-01
Metabolic engineering offers the potential to renewably produce important classes of chemicals, particularly biofuels, at an industrial scale. DNA synthesis and editing techniques can generate large pathway libraries, yet identifying the best variants is slow and cumbersome. Traditionally, analytical methods like chromatography and mass spectrometry have been used to evaluate pathway variants, but such techniques cannot be performed with high throughput. Biosensors - genetically encoded components that actuate a cellular output in response to a change in metabolite concentration - are therefore a promising tool for rapid and high-throughput evaluation of candidate pathway variants. Applying biosensors can also dynamically tune pathways in response to metabolic changes, improving balance and productivity. Here, we describe the major classes of biosensors and briefly highlight recent progress in applying them to biofuel-related metabolic pathway engineering. Copyright © 2016 Elsevier Ltd. All rights reserved.
Cui, Hui-Fang; Wu, Wen-Wen; Li, Meng-Meng; Song, Xiaojie; Lv, Yuanxu; Zhang, Ting-Ting
2018-01-15
A highly stable electrochemical acetylcholinesterase (AChE) biosensor for detection of organophosphorus pesticides (OPs) was developed simply by adsorption of AChE on chitosan (CS), TiO 2 sol-gel, and reduced graphene oxide (rGO) based multi-layered immobilization matrix (denoted as CS @ TiO 2 -CS/rGO). The biosensor fabrication conditions were optimized, and the fabrication process was probed and confirmed by scanning electron microscopy and electrochemical techniques. The matrix has a mesoporous nanostructure. Incorporation of CS and electrodeposition of a CS layer into/on the TiO 2 sol-gel makes the gel become mechanically strong. The catalytic activity of the AChE immobilized CS @ TiO 2 -CS/rGO/glassy carbon electrode to acetylthiocholine is significantly higher than those missing any one of the component in the matrix. The detection linear range of the biosensor to dichlorvos, a model OP compound, is from 0.036μM (7.9 ppb) to 22.6μM, with a limit of detection of 29nM (6.4 ppb) and a total detection time of about 25min. The biosensor is very reproducibly and stable both in detection and in storage, and can accurately detect the dichlorvos levels in cabbage juice samples, providing an efficient platform for immobilization of AChE, and a promisingly applicable OPs biosensor with high reliability, simplicity, and rapidness. Copyright © 2017 Elsevier B.V. All rights reserved.
Design of surface modifications for nanoscale sensor applications.
Reimhult, Erik; Höök, Fredrik
2015-01-14
Nanoscale biosensors provide the possibility to miniaturize optic, acoustic and electric sensors to the dimensions of biomolecules. This enables approaching single-molecule detection and new sensing modalities that probe molecular conformation. Nanoscale sensors are predominantly surface-based and label-free to exploit inherent advantages of physical phenomena allowing high sensitivity without distortive labeling. There are three main criteria to be optimized in the design of surface-based and label-free biosensors: (i) the biomolecules of interest must bind with high affinity and selectively to the sensitive area; (ii) the biomolecules must be efficiently transported from the bulk solution to the sensor; and (iii) the transducer concept must be sufficiently sensitive to detect low coverage of captured biomolecules within reasonable time scales. The majority of literature on nanoscale biosensors deals with the third criterion while implicitly assuming that solutions developed for macroscale biosensors to the first two, equally important, criteria are applicable also to nanoscale sensors. We focus on providing an introduction to and perspectives on the advanced concepts for surface functionalization of biosensors with nanosized sensor elements that have been developed over the past decades (criterion (iii)). We review in detail how patterning of molecular films designed to control interactions of biomolecules with nanoscale biosensor surfaces creates new possibilities as well as new challenges.
Design of Surface Modifications for Nanoscale Sensor Applications
Reimhult, Erik; Höök, Fredrik
2015-01-01
Nanoscale biosensors provide the possibility to miniaturize optic, acoustic and electric sensors to the dimensions of biomolecules. This enables approaching single-molecule detection and new sensing modalities that probe molecular conformation. Nanoscale sensors are predominantly surface-based and label-free to exploit inherent advantages of physical phenomena allowing high sensitivity without distortive labeling. There are three main criteria to be optimized in the design of surface-based and label-free biosensors: (i) the biomolecules of interest must bind with high affinity and selectively to the sensitive area; (ii) the biomolecules must be efficiently transported from the bulk solution to the sensor; and (iii) the transducer concept must be sufficiently sensitive to detect low coverage of captured biomolecules within reasonable time scales. The majority of literature on nanoscale biosensors deals with the third criterion while implicitly assuming that solutions developed for macroscale biosensors to the first two, equally important, criteria are applicable also to nanoscale sensors. We focus on providing an introduction to and perspectives on the advanced concepts for surface functionalization of biosensors with nanosized sensor elements that have been developed over the past decades (criterion (iii)). We review in detail how patterning of molecular films designed to control interactions of biomolecules with nanoscale biosensor surfaces creates new possibilities as well as new challenges. PMID:25594599
Protein Biosensors Based on Polymer Nanowires, Carbon Nanotubes and Zinc Oxide Nanorods
M., Anish Kumar; Jung, Soyoun; Ji, Taeksoo
2011-01-01
The development of biosensors using electrochemical methods is a promising application in the field of biotechnology. High sensitivity sensors for the bio-detection of proteins have been developed using several kinds of nanomaterials. The performance of the sensors depends on the type of nanostructures with which the biomaterials interact. One dimensional (1-D) structures such as nanowires, nanotubes and nanorods are proven to have high potential for bio-applications. In this paper we review these three different kinds of nanostructures that have attracted much attention at recent times with their great performance as biosensors. Materials such as polymers, carbon and zinc oxide have been widely used for the fabrication of nanostructures because of their enhanced performance in terms of sensitivity, biocompatibility, and ease of preparation. Thus we consider polymer nanowires, carbon nanotubes and zinc oxide nanorods for discussion in this paper. We consider three stages in the development of biosensors: (a) fabrication of biomaterials into nanostructures, (b) alignment of the nanostructures and (c) immobilization of proteins. Two different methods by which the biosensors can be developed at each stage for all the three nanostructures are examined. Finally, we conclude by mentioning some of the major challenges faced by many researchers who seek to fabricate biosensors for real time applications. PMID:22163892
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boutopoulos, Christos; Zergioti, Ioanna; Touloupakis, Eleftherios
This letter demonstrates the direct laser printing of photosynthetic material onto low cost nonfunctionalized screen printed electrodes for the fabrication of photosynthesis-based amperometric biosensors. The high kinetic energy of the transferred material induces direct immobilization of the thylakoids onto the electrodes without the use of linkers. This type of immobilization is able to establish efficient electrochemical contact between proteins and electrode, stabilizing the photosynthetic biomolecule and transporting electrons to the solid state device with high efficiency. The functionality of the laser printed biosensors was evaluated by the detection of a common herbicide such as Linuron.
Graphene Based Electrochemical Sensors and Biosensors: A Review
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shao, Yuyan; Wang, Jun; Wu, Hong
2010-05-01
Graphene, emerging as a true 2-dimensional material, has received increasing attention due to its unique physicochemical properties (high surface area, excellent conductivity, high mechanical strength, and ease of functionalization and mass production). This article selectively reviews recent advances in graphene-based electrochemical sensors and biosensors. In particular, graphene for direct electrochemistry of enzyme, its electrocatalytic activity toward small biomolecules (hydrogen peroxide, NADH, dopamine, etc.), and graphene-based enzyme biosensors have been summarized in more detail; Graphene-based DNA sensing and environmental analysis have been discussed. Future perspectives in this rapidly developing field are also discussed.
Amine oxidase-based biosensors for spermine and spermidine determination.
Boffi, Alberto; Favero, Gabriele; Federico, Rodolfo; Macone, Alberto; Antiochia, Riccarda; Tortolini, Cristina; Sanzó, Gabriella; Mazzei, Franco
2015-02-01
The present work describes the development and optimization of electrochemical biosensors for specific determination of the biogenic polyamine spermine (Spm) and spermidine (Spmd) whose assessment represents a novel important analytical tool in food analysis and human diagnostics. These biosensors have been prepared using novel engineered enzymes: polyamine oxidase (PAO) endowed with selectivity towards Spm and Spmd and spermine oxidase (SMO) characterized by strict specificity towards Spm. The current design entails biosensors in which the enzymes were entrapped in poly(vinyl alcohol) bearing styrylpyridinium groups (PVA-SbQ), a photocrosslinkable gel, onto an electrode surface. Screen-printed electrodes (SPEs) were used as electrochemical transducers for enzymatically produced hydrogen peroxide, operating at different potential vs Ag/AgCl according to the material of the working electrode (WE): +700 mV for graphite (GP) or -100 mV for Prussian blue (PB)-modified SPE, respectively. Biosensor performances were evaluated by means of flow injection amperometric (FIA) measurements. The modified electrodes showed good sensitivity, long-term stability and reproducibility. Under optimal conditions, the PAO biosensor showed a linear range 0.003-0.3 mM for Spm and 0.01-0.4 mM for Spmd, while with the SMO biosensor, a linear range of 0.004-0.5 mM for Spm has been obtained. The main kinetic parameters apparent Michaelis constant (K M), turnover number (K cat) and steady-state current (I max) were determined. The proposed device was then applied to the determination of biogenic amines in blood samples. The results obtained were in good agreement with those obtained with the GC-MS reference method.
Measurement of salivary cortisol by a chemiluminescent organic-based immunosensor.
Pires, N M M; Dong, T
2014-01-01
A highly sensitive chemiluminescent immunoassay (CLIA) using a sensitive organic photodetector was developed to detect human cortisol, an important biomarker for stress-related diseases. The developed CLIA was performed onto gold-coated glass chips, on which anti-cortisol antibodies were immobilised and chemiluminescent horseradish peroxidase-luminol-peroxide reactions were generated. Using cortisol-spiked artificial saliva samples, the CLIA biosensor showed a linear range of detection between 0.1 ng/mL and 175 ng/mL and a detection limit of 80 pg/mL. The sensor response was highly specific to cortisol and did not vary significantly between assays. The results indicate the potential clinical application of the CLIA sensor. Furthermore, the simple layered structure of the organic photodetector may encourage the realisation of integrated optical biosensors for point-of-use measurement of salivary cortisol levels.
Loaiza, Oscar A; Lamas-Ardisana, Pedro J; Añorga, Larraitz; Jubete, Elena; Ruiz, Virginia; Borghei, Maryam; Cabañero, Germán; Grande, Hans J
2015-02-01
This work describes the fabrication of a new lactate biosensor. The strategy is based on the use of a novel hybrid nanomaterial for amperometric biosensors i.e. platinum nanoparticles (PtNps) supported on graphitized carbon nanofibers (PtNps/GCNF) prepared by chemical reduction of the Pt precursor at GCNF surfaces. The biosensors were constructed by covalent immobilization of lactate oxidase (LOx) onto screen printed carbon electrodes (SPCEs) modified with PtNps (PtNps/GCNF-SPCEs) using polyethyleneimine (PEI) and glutaraldehyde (GA). Experimental variables concerning both the biosensor design and the detection process were investigated for an optimal analytical performance. Lactate biosensors show good reproducibility (RSD 4.9%, n=10) and sensitivity (41,302±546) μA/Mcm(2), with a good limit of detection (6.9μM). Covalent immobilization of the enzyme allows the reuse of the biosensor for several measurements, converting them in a cheap alternative to the solid electrodes. The long-term stability of the biosensors was also evaluated. 90% of the signal was kept after 3months of storage at room temperature (RT), while 95% was retained after 18months at -20°C. These results demonstrate that the method provides sensitive electrochemical lactate biosensors where the stability of the enzymatic activity can be preserved for a long period of time in adequate storage conditions. Copyright © 2014 Elsevier B.V. All rights reserved.
Kim, Nam-Young; Adhikari, Kishor Kumar; Dhakal, Rajendra; Chuluunbaatar, Zorigt; Wang, Cong; Kim, Eun-Soo
2015-01-15
Tremendous demands for sensitive and reliable label-free biosensors have stimulated intensive research into developing miniaturized radiofrequency resonators for a wide range of biomedical applications. Here, we report the development of a robust, reusable radiofrequency resonator based integrated passive device biosensor chip fabricated on a gallium arsenide substrate for the detection of glucose in water-glucose solutions and sera. As a result of the highly concentrated electromagnetic energy between the two divisions of an intertwined spiral inductor coupled with an interdigital capacitor, the proposed glucose biosensor chip exhibits linear detection ranges with high sensitivity at center frequency. This biosensor, which has a sensitivity of up to 199 MHz/mgmL(-1) and a short response time of less than 2 sec, exhibited an ultralow detection limit of 0.033 μM and a reproducibility of 0.61% relative standard deviation. In addition, the quantities derived from the measured S-parameters, such as the propagation constant (γ), impedance (Z), resistance (R), inductance (L), conductance (G) and capacitance (C), enabled the effective multi-dimensional detection of glucose.
Kim, Nam-Young; Adhikari, Kishor Kumar; Dhakal, Rajendra; Chuluunbaatar, Zorigt; Wang, Cong; Kim, Eun-Soo
2015-01-01
Tremendous demands for sensitive and reliable label-free biosensors have stimulated intensive research into developing miniaturized radiofrequency resonators for a wide range of biomedical applications. Here, we report the development of a robust, reusable radiofrequency resonator based integrated passive device biosensor chip fabricated on a gallium arsenide substrate for the detection of glucose in water-glucose solutions and sera. As a result of the highly concentrated electromagnetic energy between the two divisions of an intertwined spiral inductor coupled with an interdigital capacitor, the proposed glucose biosensor chip exhibits linear detection ranges with high sensitivity at center frequency. This biosensor, which has a sensitivity of up to 199 MHz/mgmL−1 and a short response time of less than 2 sec, exhibited an ultralow detection limit of 0.033 μM and a reproducibility of 0.61% relative standard deviation. In addition, the quantities derived from the measured S-parameters, such as the propagation constant (γ), impedance (Z), resistance (R), inductance (L), conductance (G) and capacitance (C), enabled the effective multi-dimensional detection of glucose. PMID:25588958
Hooda, Vinita; Gahlaut, Anjum; Gothwal, Ashish; Hooda, Vikas
2018-04-27
Clinical manifestations of the elevated plasma triacylglycerol (TG) include a greater prevalence of atherosclerotic heart disease, acute pancreatitis, diabetes mellitus, hypertension, and ischemic vascular disease. Hence, these significant health troubles have attracted scientific attention for the precise detection of TG in biological samples. Numerous techniques have been employed to quantify TG over many decades, but biosensors hold the leading position owing to their superior traits such as highly specific recognition for target molecules, accuracy, minituarization, small sample requirement and rapid response. Enzyme-based electrochemical biosensors represent an instantaneous resolution for the foremost bottlenecks constraining laboratory prototypes to reach real time bedside applications. We highlight the choice of transducers and constructive strategies to design high-performance biosensor for the quantification of triglycerides in sera and early diagnosis of health problems related to it. In the present review, a small effort has been made to emphasize the significant role of enzymes, nanostructured metal oxides, graphene, conducting polypyrrole, nanoparticles, porous silicon, EISCAP and ENFET in enabling TG biosensors more proficient and taking a revolutionary step forward.
Design of highly sensitive multichannel bimetallic photonic crystal fiber biosensor
NASA Astrophysics Data System (ADS)
Hameed, Mohamed Farhat O.; Alrayk, Yassmin K. A.; Shaalan, Abdelhamid A.; El Deeb, Walid S.; Obayya, Salah S. A.
2016-10-01
A design of a highly sensitive multichannel biosensor based on photonic crystal fiber is proposed and analyzed. The suggested design has a silver layer as a plasmonic material coated by a gold layer to protect silver oxidation. The reported sensor is based on detection using the quasi transverse electric (TE) and quasi transverse magnetic (TM) modes, which offers the possibility of multichannel/multianalyte sensing. The numerical results are obtained using a finite element method with perfect matched layer boundary conditions. The sensor geometrical parameters are optimized to achieve high sensitivity for the two polarized modes. High-refractive index sensitivity of about 4750 nm/RIU (refractive index unit) and 4300 nm/RIU with corresponding resolutions of 2.1×10-5 RIU, and 2.33×10-5 RIU can be obtained according to the quasi TM and quasi TE modes of the proposed sensor, respectively. Further, the reported design can be used as a self-calibration biosensor within an unknown analyte refractive index ranging from 1.33 to 1.35 with high linearity and high accuracy. Moreover, the suggested biosensor has advantages in terms of compactness and better integration of microfluidics setup, waveguide, and metallic layers into a single structure.
NASA Astrophysics Data System (ADS)
Kumar, Rajeev; Kushwaha, Angad S.; Srivastava, Monika; Mishra, H.; Srivastava, S. K.
2018-03-01
In the present communication, a highly sensitive surface plasmon resonance (SPR) biosensor with Kretschmann configuration having alternate layers, prism/zinc oxide/silver/gold/graphene/biomolecules (ss-DNA) is presented. The optimization of the proposed configuration has been accomplished by keeping the constant thickness of zinc oxide (32 nm), silver (32 nm), graphene (0.34 nm) layer and biomolecules (100 nm) for different values of gold layer thickness (1, 3 and 5 nm). The sensitivity of the proposed SPR biosensor has been demonstrated for a number of design parameters such as gold layer thickness, number of graphene layer, refractive index of biomolecules and the thickness of biomolecules layer. SPR biosensor with optimized geometry has greater sensitivity (66 deg/RIU) than the conventional (52 deg/RIU) as well as other graphene-based (53.2 deg/RIU) SPR biosensor. The effect of zinc oxide layer thickness on the sensitivity of SPR biosensor has also been analysed. From the analysis, it is found that the sensitivity increases significantly by increasing the thickness of zinc oxide layer. It means zinc oxide intermediate layer plays an important role to improve the sensitivity of the biosensor. The sensitivity of SPR biosensor also increases by increasing the number of graphene layer (upto nine layer).
Porous photonic crystal external cavity laser biosensor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Qinglan; Peh, Jessie; Hergenrother, Paul J.
2016-08-15
We report the design, fabrication, and testing of a photonic crystal (PC) biosensor structure that incorporates a porous high refractive index TiO{sub 2} dielectric film that enables immobilization of capture proteins within an enhanced surface-area volume that spatially overlaps with the regions of resonant electromagnetic fields where biomolecular binding can produce the greatest shifts in photonic crystal resonant wavelength. Despite the nanoscale porosity of the sensor structure, the PC slab exhibits narrowband and high efficiency resonant reflection, enabling the structure to serve as a wavelength-tunable element of an external cavity laser. In the context of sensing small molecule interactions withmore » much larger immobilized proteins, we demonstrate that the porous structure provides 3.7× larger biosensor signals than an equivalent nonporous structure, while the external cavity laser (ECL) detection method provides capability for sensing picometer-scale shifts in the PC resonant wavelength caused by small molecule binding. The porous ECL achieves a record high figure of merit for label-free optical biosensors.« less
BIOSENSORS FOR ENVIRONMENTAL APPLICATIONS
A review, with 19 references, is given on challenges and possible opportunities for the development of biosensors for environmental monitoring applications. The high cost and slow turnaround times typically associated with the measurement of regulated pollutants clearly indicates...
New Trends in Impedimetric Biosensors for the Detection of Foodborne Pathogenic Bacteria
Wang, Yixian; Ye, Zunzhong; Ying, Yibin
2012-01-01
The development of a rapid, sensitive, specific method for the foodborne pathogenic bacteria detection is of great importance to ensure food safety and security. In recent years impedimetric biosensors which integrate biological recognition technology and impedance have gained widespread application in the field of bacteria detection. This paper presents an overview on the progress and application of impedimetric biosensors for detection of foodborne pathogenic bacteria, particularly the new trends in the past few years, including the new specific bio-recognition elements such as bacteriophage and lectin, the use of nanomaterials and microfluidics techniques. The applications of these new materials or techniques have provided unprecedented opportunities for the development of high-performance impedance bacteria biosensors. The significant developments of impedimetric biosensors for bacteria detection in the last five years have been reviewed according to the classification of with or without specific bio-recognition element. In addition, some microfluidics systems, which were used in the construction of impedimetric biosensors to improve analytical performance, are introduced in this review. PMID:22737018
S-Layer Protein-Based Biosensors.
Schuster, Bernhard
2018-04-11
The present paper highlights the application of bacterial surface (S-) layer proteins as versatile components for the fabrication of biosensors. One technologically relevant feature of S-layer proteins is their ability to self-assemble on many surfaces and interfaces to form a crystalline two-dimensional (2D) protein lattice. The S-layer lattice on the surface of a biosensor becomes part of the interface architecture linking the bioreceptor to the transducer interface, which may cause signal amplification. The S-layer lattice as ultrathin, highly porous structure with functional groups in a well-defined special distribution and orientation and an overall anti-fouling characteristics can significantly raise the limit in terms of variety and the ease of bioreceptor immobilization, compactness of bioreceptor molecule arrangement, sensitivity, specificity, and detection limit for many types of biosensors. The present paper discusses and summarizes examples for the successful implementation of S-layer lattices on biosensor surfaces in order to give a comprehensive overview on the application potential of these bioinspired S-layer protein-based biosensors.
[Amperometric biosensor for lactate analysis in wines and grape must during fermentation].
Shkotova, L V; Horiushkina, T B; Slast'ia, E A; Soldatkin, O P; Tranh-Minh, S; Chovelon, J M; Dziadevych, S V
2005-01-01
The amperometric biosensor based on lactate oxidase for determination of lactate has been developed, and two methods of immobilization of lactate oxidase on the surface of industrial screen-printed platinum electrodes SensLab were compared. A sensor with immobilized in the Resydrol polymer lactate oxidase by the method of physical adsorption is characterized of narrow dynamic range and greater response value in comparison with a biosensor based on immobilised in poly(3,4-ethylenedioxythiophene) lactate oxidase by the method of electrochemical polymerization. Operational stability of the biosensor developed was studied and it was shown, that the immobilization method does not influence their stability. The analysis of the lactate in wine and during wine fermentation has been conducted. High correlation of the data obtained by means of amperometric lactate biosensor and a standard method of an ionic chromatography has been shown. The developed biosensor could be applied in the food industry for the control and optimization of the wine fermentation process, and quality control of wine.
Wang, Dingzhong; Tang, Wei; Wu, Xiaojie; Wang, Xinyi; Chen, Gengjia; Chen, Qiang; Li, Na; Liu, Feng
2012-08-21
Toehold-mediated strand displacement reaction (SDR) is first introduced to develop a simple quartz crystal microbalance (QCM) biosensor without an enzyme or label at normal temperature for highly selective and sensitive detection of single-nucleotide polymorphism (SNP) in the p53 tumor suppressor gene. A hairpin capture probe with an external toehold is designed and immobilized on the gold electrode surface of QCM. A successive SDR is initiated by the target sequence hybridization with the toehold domain and ends with the unfolding of the capture probe. Finally, the open-loop capture probe hybridizes with the streptavidin-coupled reporter probe as an efficient mass amplifier to enhance the QCM signal. The proposed biosensor displays remarkable specificity to target the p53 gene fragment against single-base mutant sequences (e.g., the largest discrimination factor is 63 to C-C mismatch) and high sensitivity with the detection limit of 0.3 nM at 20 °C. As the crucial component of the fabricated biosensor for providing the high discrimination capability, the design rationale of the capture probe is further verified by fluorescence sensing and atomic force microscopy imaging. Additionally, a recovery of 84.1% is obtained when detecting the target sequence in spiked HeLa cells lysate, demonstrating the feasibility of employing this biosensor in detecting SNPs in biological samples.
Multicolor fluorescent biosensor for multiplexed detection of DNA.
Hu, Rong; Liu, Tao; Zhang, Xiao-Bing; Huan, Shuang-Yan; Wu, Cuichen; Fu, Ting; Tan, Weihong
2014-05-20
Development of efficient methods for highly sensitive and rapid screening of specific oligonucleotide sequences is essential to the early diagnosis of serious diseases. In this work, an aggregated cationic perylene diimide (PDI) derivative was found to efficiently quench the fluorescence emission of a variety of anionic oligonucleotide-labeled fluorophores that emit at wavelengths from the visible to NIR region. This broad-spectrum quencher was then adopted to develop a multicolor biosensor via a label-free approach for multiplexed fluorescent detection of DNA. The aggregated perylene derivative exhibits a very high quenching efficiency on all ssDNA-labeled dyes associated with biosensor detection, having efficiency values of 98.3 ± 0.9%, 97 ± 1.1%, and 98.2 ± 0.6% for FAM, TAMRA, and Cy5, respectively. An exonuclease-assisted autocatalytic target recycling amplification was also integrated into the sensing system. High quenching efficiency combined with autocatalytic target recycling amplification afforded the biosensor with high sensitivity toward target DNA, resulting in a detection limit of 20 pM, which is about 50-fold lower than that of traditional unamplified homogeneous fluorescent assay methods. The quencher did not interfere with the catalytic activity of nuclease, and the biosensor could be manipulated in either preaddition or postaddition manner with similar sensitivity. Moreover, the proposed sensing system allows for simultaneous and multicolor analysis of several oligonucleotides in homogeneous solution, demonstrating its potential application in the rapid screening of multiple biotargets.
Design of nanostructured-based glucose biosensors
NASA Astrophysics Data System (ADS)
Komirisetty, Archana; Williams, Frances; Pradhan, Aswini; Konda, Rajini B.; Dondapati, Hareesh; Samantaray, Diptirani
2012-04-01
This paper presents the design of glucose sensors that will be integrated with advanced nano-materials, bio-coatings and electronics to create novel devices that are highly sensitive, inexpensive, accurate, and reliable. In the work presented, a glucose biosensor and its fabrication process flow have been designed. The device is based on electrochemical sensing using a working electrode with bio-functionalized zinc oxide (ZnO) nano-rods. Among all metal oxide nanostructures, ZnO nano-materials play a significant role as a sensing element in biosensors due to their properties such as high isoelectric point (IEP), fast electron transfer, non-toxicity, biocompatibility, and chemical stability which are very crucial parameters to achieve high sensitivity. Amperometric enzyme electrodes based on glucose oxidase (GOx) are used due to their stability and high selectivity to glucose. The device also consists of silicon dioxide and titanium layers as well as platinum working and counter electrodes and a silver/silver chloride reference electrode. Currently, the biosensors are being fabricated using the process flow developed. Once completed, the sensors will be bio-functionalized and tested to characterize their performance, including their sensitivity and stability.
Label-free electrical detection using carbon nanotube-based biosensors.
Maehashi, Kenzo; Matsumoto, Kazuhiko
2009-01-01
Label-free detections of biomolecules have attracted great attention in a lot of life science fields such as genomics, clinical diagnosis and practical pharmacy. In this article, we reviewed amperometric and potentiometric biosensors based on carbon nanotubes (CNTs). In amperometric detections, CNT-modified electrodes were used as working electrodes to significantly enhance electroactive surface area. In contrast, the potentiometric biosensors were based on aptamer-modified CNT field-effect transistors (CNTFETs). Since aptamers are artificial oligonucleotides and thus are smaller than the Debye length, proteins can be detected with high sensitivity. In this review, we discussed on the technology, characteristics and developments for commercialization in label-free CNT-based biosensors.
Kumar, Sandeep; Ahlawat, Wandit; Kumar, Rajesh; Dilbaghi, Neeraj
2015-08-15
Technological advancements worldwide at rapid pace in the area of materials science and nanotechnology have made it possible to synthesize nanoparticles with desirable properties not exhibited by the bulk material. Among variety of available nanomaterials, graphene, carbon nanotubes, zinc oxide and gold nanopartilces proved to be elite and offered amazing electrochemical biosensing. This encourages us to write a review which highlights the recent achievements in the construction of genosensor, immunosensor and enzymatic biosensor based on the above nanomaterials. Carbon based nanomaterials offers a direct electron transfer between the functionalized nanomaterials and active site of bioreceptor without involvement of any mediator which not only amplifies the signal but also provide label free sensing. Gold shows affinity towards immunological molecules and is most routinely used for immunological sensing. Zinc oxide can easily immobilize proteins and hence offers a large group of enzyme based biosensor. Modification of the working electrode by introduction of these nanomaterials or combination of two/three of above nanomaterials together and forming a nanocomposite reflected the best results with excellent stability, reproducibility and enhanced sensitivity. Highly attractive electrochemical properties and electrocatalytic activity of these elite nanomaterials have facilitated achievement of enhanced signal amplification needed for the construction of ultrasensitive electrochemical affinity biosensors for detection of glucose, cholesterol, Escherichia coli, influenza virus, cancer, human papillomavirus, dopamine, glutamic acid, IgG, IgE, uric acid, ascorbic acid, acetlycholine, cortisol, cytosome, sequence specific DNA and amino acids. Recent researches for bedside biosensors are also discussed. Copyright © 2015 Elsevier B.V. All rights reserved.
Campuzano, Susana; Loaiza, Oscar A; Pedrero, María; de Villena, F Javier Manuel; Pingarrón, José M
2004-06-01
A bienzyme biosensor for the simultaneous determination of glucose and fructose was developed by coimmobilising glucose oxidase (GOD), fructose dehydrogenase (FDH), and the mediator, tetrathiafulvalene (TTF), by cross-linking with glutaraldehyde atop a 3-mercaptopropionic acid (MPA) self-assembled monolayer (SAM) on a gold disk electrode (AuE). The performance of this bienzyme electrode under batch and flow injection (FI) conditions, as well as an amperometric detection in high-performance liquid chromatography (HPLC), are reported. The order of enzyme immobilisation atop the MPA-SAM affected the biosensor amperometric response in terms of sensitivity, with the immobilisation order GOD, FDH, TTF being selected. Similar analytical characteristics to those obtained with single GOD or FDH SAM-based biosensors for glucose and fructose were achieved with the bienzyme electrode, indicating that no noticeable changes in the biosensor responses to the analytes occurred as a consequence of the coimmobilisation of both enzymes on the same MPA-AuE. The suitability of the bienzyme biosensor for the analysis of real samples under flow injection conditions was tested by determining glucose in two certified serum samples. The simultaneous determination of glucose and fructose in the same sample cannot be performed without a separation step because at the detection potential used (+0.10 V), both sugars show amperometric response. Consequently, HPLC with amperometric detection at the TTF-FDH-GOD-MPA-AuE was accomplished. Glucose and fructose were simultaneously determined in honey, cola softdrink, and commercial apple juice, and the results were compared with those obtained by using other reference methods.
Sethuraman, V; Muthuraja, P; Anandha Raj, J; Manisankar, P
2016-10-15
The fabrication, characterization and analytical performances were investigated for a catechol biosensor, based on the PEDOT-rGO-Fe2O3-PPO composite modified glassy carbon (GC) electrode. The graphene oxide (GO) doped conducting polymer poly (3,4-ethylenedioxythiophene) (PEDOT) was prepared through electrochemical polymerization by potential cycling. Reduction of PEDOT-GO was carried out by amperometric method. Fe2O3 nanoparticles were synthesized in ethanol by hydrothermal method. The mixture of Fe2O3, PPO and glutaraldehyde was casted on the PEDOT-rGO electrode. The surface morphology of the modified electrodes was studied by FE-SEM and AFM. Cyclic voltammetric studies of catechol on the enzyme modified electrode revealed higher reduction peak current. Determination of catechol was carried out successfully by Differential Pulse Voltammetry (DPV) technique. The fabricated biosensor investigated shows a maximum current response at pH 6.5. The catechol biosensor exhibited wide sensing linear range from 4×10(-8) to 6.20×10(-5)M, lower detection limit of 7×10(-9)M, current maxima (Imax) of 92.55µA and Michaelis-Menten (Km) constant of 30.48µM. The activation energy (Ea) of enzyme electrode is 35.93KJmol(-1) at 50°C. There is no interference from d-glucose and l-glutamic acid, ascorbic acid and o-nitrophenol. The PEDOT-rGO-Fe2O3-PPO biosensor was stable for at least 75 days when stored in a buffer at about 4°C. Copyright © 2015 Elsevier B.V. All rights reserved.
Two-dimensional ytterbium oxide nanodisks based biosensor for selective detection of urea.
Ibrahim, Ahmed A; Ahmad, Rafiq; Umar, Ahmad; Al-Assiri, M S; Al-Salami, A E; Kumar, Rajesh; Ansari, S G; Baskoutas, S
2017-12-15
Herein, we demonstrate synthesis and application of two-dimensional (2D) rectangular ytterbium oxide (Yb 2 O 3 ) nanodisks via a facile hydrothermal method. The structural, morphological, compositional, crystallinity, and phase properties of as-synthesized nanodisks were carried out using several analytical techniques that showed well defined 2D rectangular nanodisks/sheet like morphologies. The average thickness and edge length of the nanosheet structures were 20 ± 5nm and 600 ± 50nm, respectively. To develop urea biosensor, glassy carbon electrodes (GCE) were modified with Yb 2 O 3 nanodisks, followed by urease immobilization and Nafion membrane covering (GCE/Yb 2 O 3 /Urease/Nafion). The fabricated biosensor showed sensitivity of 124.84μAmM -1 cm -2 , wide linear range of 0.05-19mM, detection limit down to ~ 2μM, and fast response time of ~ 3s. The developed biosensor was also used for the urea detection in water samples through spike-recovery experiments, which illustrates satisfactory recoveries. In addition, the obtained desirable selectivity towards specific interfering species, long-term stability, reproducibility, and repeatability further confirm the potency of as-fabricated urea biosensor. Copyright © 2017 Elsevier B.V. All rights reserved.
Shrestha, Bishnu Kumar; Ahmad, Rafiq; Mousa, Hamouda M; Kim, In-Gi; Kim, Jeong In; Neupane, Madhav Prasad; Park, Chan Hee; Kim, Cheol Sang
2016-11-15
A highly electroactive bio-nanohybrid film of polypyrrole (PPy)-Nafion (Nf)-functionalized multi-walled carbon nanotubes (fMWCNTs) nanocomposite was prepared on the glassy carbon electrode (GCE) by a facile one-step electrochemical polymerization technique followed by chitosan-glucose oxidase (CH-GOx) immobilization on its surface to achieve a high-performance glucose biosensor. The as-fabricated nanohybrid composite provides high surface area for GOx immobilization and thus enhances the enzyme-loading efficiency. The structural characterization revealed that the PPy-Nf-fMWCNTs nanocomposite films were uniformly formed on GCE and after GOx immobilization, the surface porosities of the film were decreased due to enzyme encapsulation inside the bio-nanohybrid composite materials. The electrochemical behavior of the fabricated biosensor was investigated by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and amperometry measurements. The results indicated an excellent catalytic property of bio-nanohybrid film for glucose detection with improved sensitivity of 2860.3μAmM(-1)cm(-2), the linear range up to 4.7mM (R(2)=0.9992), and a low detection limit of 5μM under a signal/noise (S/N) ratio of 3. Furthermore, the resulting biosensor presented reliable selectivity, better long-term stability, good repeatability, reproducibility, and acceptable measurement of glucose concentration in real serum samples. Thus, this fabricated biosensor provides an efficient and highly sensitive platform for glucose sensing and can open up new avenues for clinical applications. Copyright © 2016 Elsevier Inc. All rights reserved.
Song, Dandan; Li, Qian; Lu, Xiong; Li, Yanshan; Li, Yan; Wang, Yuanzhe; Gao, Faming
2018-06-18
A novel electrochemical biosensor was designed for sensitive detection of organophosphate pesticides based on three-dimensional porous bimetallic alloy architecture with ultrathin nanowires (PdCo NWs, PdCu NWs, PdNi NWs) and monolayer MoS 2 nanosheet (m-MoS 2 ). The bimetallic alloy NWs/m-MoS 2 nanomaterials were used as a sensing platform for electrochemical analysis of omethoate, a representative organophosphate pesticide, via acetylcholinesterase inhibition pathway. We demonstrated that all three bimetallic alloy NWs enhanced electrochemical responses of enzymatic biosensor, benefited from bimetallic synergistic action and porous structure. In particular, PdNi NWs outperformed other two bimetallic alloy. Moreover, PdNi NWs/m-MoS 2 as an electronic transducer is superior to the corresponding biosensor in the absence of monolayer MoS 2 nanosheet, which arise from synergistic signal amplification effect between different components. Under optimized conditions, the developed biosensor on the basis of PdNi NWs/m-MoS 2 shows outstanding performance for the electrochemical assay of omethoate, such as a wide linear range (10 -13 M∼10 -7 M), a low detection limit of 0.05 pM at a signal-to-noise ratio of 3, high sensitivity and long-time stability. The results demonstrate that bimetallic alloy NWs/m-MoS 2 nanocomposites could be excellent transducers to promote electron transfer for the electrochemical reactions, holding great potentials in the construction of current and future biosensing devices. Copyright © 2018 Elsevier B.V. All rights reserved.
Pang, Xuehui; Zhang, Yong; Pan, Jihong; Zhao, Yanxia; Chen, Yao; Ren, Xiang; Ma, Hongmin; Wei, Qin; Du, Bin
2016-03-15
Based on ZnO nanorods (NRs)/CH3NH3PbI3/nitrogen-doped carbon quantum dots (NCQDs) nanocomposites, the highly sensitive detection of fibroblast-like synoviocyte (FLS) cell was realized by a photoelectrochemical (PEC) biosensor. ZnO/CH3NH3PbI3/NCQDs nanocomposites were exploited as the photo-to-electron generator to produce the signal. CH3NH3PbI3 was spin-coated on ZnO surface after ZnO NRs grew on ITO electrode then by dropping on the modified electrode, NCQDs were diffused and adhered to the surface of ZnO and CH3NH3PbI3. In the presence of EDC/NHS, the combination of CH3NH3PbI3 and NCQDs was achieved by the carboxyl groups (-COOH) and amino groups (-NH2) in the preparation process. Furthermore, the capture probe of FLS cell, CD95 antibody, can be anchored by -COOH and -NH2 groups through EDC/NHS. The specific recognition between the antibody capture probes and cell targets gained high-sensitive detection for FLS cell for the first time. The developed biosensor showed a wide linear range from 1.0 × 10(4)cell/mL to 10 cell/mL and a low detection limit of 2 cell/mL. This kind of biosensor would provide a novel detection strategy for FLS cell. Copyright © 2015 Elsevier B.V. All rights reserved.
Li, Xin; Kaattari, Stephen L.; Vogelbein, Mary A.; Vadas, George G.; Unger, Michael A.
2016-01-01
Immunoassays based on monoclonal antibodies (mAbs) are highly sensitive for the detection of polycyclic aromatic hydrocarbons (PAHs) and can be employed to determine concentrations in near real-time. A sensitive generic mAb against PAHs, named as 2G8, was developed by a three-step screening procedure. It exhibited nearly uniformly high sensitivity against 3-ring to 5-ring unsubstituted PAHs and their common environmental methylated PAHs, with IC50 values between 1.68–31 μg/L (ppb). 2G8 has been successfully applied on the KinExA Inline Biosensor system for quantifying 3-5 ring PAHs in aqueous environmental samples. PAHs were detected at a concentration as low as 0.2 μg/L. Furthermore, the analyses only required 10 min for each sample. To evaluate the accuracy of the 2G8-based biosensor, the total PAH concentrations in a series of environmental samples analyzed by biosensor and GC-MS were compared. In most cases, the results yielded a good correlation between methods. This indicates that generic antibody 2G8 based biosensor possesses significant promise for a low cost, rapid method for PAH determination in aqueous samples. PMID:26925369
Potentiometric Urea Biosensor Based on an Immobilised Fullerene-Urease Bio-Conjugate
Saeedfar, Kasra; Heng, Lee Yook; Ling, Tan Ling; Rezayi, Majid
2013-01-01
A novel method for the rapid modification of fullerene for subsequent enzyme attachment to create a potentiometric biosensor is presented. Urease was immobilized onto the modified fullerene nanomaterial. The modified fullerene-immobilized urease (C60-urease) bioconjugate has been confirmed to catalyze the hydrolysis of urea in solution. The biomaterial was then deposited on a screen-printed electrode containing a non-plasticized poly(n-butyl acrylate) (PnBA) membrane entrapped with a hydrogen ionophore. This pH-selective membrane is intended to function as a potentiometric urea biosensor with the deposition of C60-urease on the PnBA membrane. Various parameters for fullerene modification and urease immobilization were investigated. The optimal pH and concentration of the phosphate buffer for the urea biosensor were 7.0 and 0.5 mM, respectively. The linear response range of the biosensor was from 2.31 × 10−3 M to 8.28 × 10−5 M. The biosensor's sensitivity was 59.67 ± 0.91 mV/decade, which is close to the theoretical value. Common cations such as Na+, K+, Ca2+, Mg2+ and NH4+ showed no obvious interference with the urea biosensor's response. The use of a fullerene-urease bio-conjugate and an acrylic membrane with good adhesion prevented the leaching of urease enzyme and thus increased the stability of the urea biosensor for up to 140 days. PMID:24322561
Potentiometric urea biosensor based on an immobilised fullerene-urease bio-conjugate.
Saeedfar, Kasra; Heng, Lee Yook; Ling, Tan Ling; Rezayi, Majid
2013-12-06
A novel method for the rapid modification of fullerene for subsequent enzyme attachment to create a potentiometric biosensor is presented. Urease was immobilized onto the modified fullerene nanomaterial. The modified fullerene-immobilized urease (C60-urease) bioconjugate has been confirmed to catalyze the hydrolysis of urea in solution. The biomaterial was then deposited on a screen-printed electrode containing a non-plasticized poly(n-butyl acrylate) (PnBA) membrane entrapped with a hydrogen ionophore. This pH-selective membrane is intended to function as a potentiometric urea biosensor with the deposition of C60-urease on the PnBA membrane. Various parameters for fullerene modification and urease immobilization were investigated. The optimal pH and concentration of the phosphate buffer for the urea biosensor were 7.0 and 0.5 mM, respectively. The linear response range of the biosensor was from 2.31 × 10-3 M to 8.28 × 10-5 M. The biosensor's sensitivity was 59.67 ± 0.91 mV/decade, which is close to the theoretical value. Common cations such as Na+, K+, Ca2+, Mg2+ and NH4+ showed no obvious interference with the urea biosensor's response. The use of a fullerene-urease bio-conjugate and an acrylic membrane with good adhesion prevented the leaching of urease enzyme and thus increased the stability of the urea biosensor for up to 140 days.
A glucose biosensor based on Prussian blue/chitosan hybrid film.
Wang, Xueying; Gu, Haifang; Yin, Fan; Tu, Yifeng
2009-01-01
Based on electrodeposition of Prussian blue (PB) and chitosan (CS) directly on gold electrode, a hybrid film of PB/CS has been prepared. PB in this film shows a good stability compared with pure PB film when it worked in neutral and weak alkalescent solution and can act as redox mediator. It provides the potential application of such film in biosensor fabrication. A glucose biosensor was fabricated by electrodepositing glucose oxidase (GOD)/CS film on this PB/CS modified electrode. The optimum experimental conditions of biosensor for the detection of glucose have been studied in detail. Under the optimal conditions, a linear dependence of the catalytic current upon glucose concentration was obtained in the range of 2x10(-6) to 4x10(-4)M with a detection limit of 3.97x10(-7)M. The resulting biosensor could be applied to detect the blood sugar in real samples without any pretreatment.
Tortolini, Cristina; Sanzò, Gabriella; Antiochia, Riccarda; Mazzei, Franco; Favero, Gabriele
2017-01-01
Electrochemical biosensors provide an attractive means of analyzing the content of a biological sample due to the direct conversion of a biological event to an electronic signal. The signal transduction and the general performance of electrochemical biosensors are often determined by the surface architectures that connect the sensing element to the biological sample at the nanometer scale. The most common surface modification techniques, the various electrochemical transduction mechanisms, and the choice of the recognition receptor molecules all influence the ultimate sensitivity of the sensor. We show herein a novel electrochemical biosensing platform based on the coupling of two different nanostructured materials (gold nanoparticles and fullerenols) displaying interesting electrochemical features. The use of these nanomaterials improved the electrochemical performance of the proposed biosensor.An application of the nanostructured enzyme-based biosensor has been developed for evaluating the detection of polyphenols either in buffer solution or in real wine samples.
Nanochannels Photoelectrochemical Biosensor.
Zhang, Nan; Ruan, Yi-Fan; Zhang, Li-Bin; Zhao, Wei-Wei; Xu, Jing-Juan; Chen, Hong-Yuan
2018-02-06
Nanochannels have brought new opportunities for biosensor development. Herein, we present the novel concept of a nanochannels photoelectrochemical (PEC) biosensor based on the integration of a unique Cu x O-nanopyramid-islands (NPIs) photocathode, an anodic aluminum oxide (AAO) membrane, and alkaline phosphatase (ALP) catalytic chemistry. The Cu x O-NPIs photocathode possesses good performance, and further assembly with AAO yields a designed architecture composed of vertically aligned, highly ordered nanoarrays on top of the Cu x O-NPIs film. After biocatalytic precipitation (BCP) was stimulated within the channels, the biosensor was used for the successful detection of ALP activity. This study has not only provided a novel paradigm for an unconventional nanochannels PEC biosensor, which can be used for general bioanalytical purposes, but also indicated that the new concept of nanochannel-semiconductor heterostructures is a step toward innovative biomedical applications.
Hansen, Lars Hestbjerg; Ferrari, Belinda; Sørensen, Anders Hay; Veal, Duncan; Sørensen, Søren Johannes
2001-01-01
Combining the high specificity of bacterial biosensors and the resolution power of fluorescence-activated cell sorting (FACS) provided qualitative detection of oxytetracycline production by Streptomyces rimosus in soil microcosms. A plasmid containing a transcriptional fusion between the tetR-regulated Ptet promoter from Tn10 and a FACS-optimized gfp gene was constructed. When harbored by Escherichia coli, this plasmid produces large amounts of green fluorescent protein (GFP) in the presence of tetracycline. This tetracycline biosensor was used to detect the production of oxytetracycline by S. rimosus introduced into sterile soil. The tetracycline-induced GFP-producing biosensors were detected by FACS analysis, enabling the detection of oxytetracycline encounters by single biosensor cells. This approach can be used to study interactions between antibiotic producers and their target organisms in soil. PMID:11133451
MOF-Bacteriophage Biosensor for Highly Sensitive and Specific Detection of Staphylococcus aureus.
Bhardwaj, Neha; Bhardwaj, Sanjeev K; Mehta, Jyotsana; Kim, Ki-Hyun; Deep, Akash
2017-10-04
To produce a sensitive and specific biosensor for Staphylococcus aureus, bacteriophages have been interfaced with a water-dispersible and environmentally stable metal-organic framework (MOF), NH 2 -MIL-53(Fe). The conjugation of the MOF with bacteriophages has been achieved through the use of glutaraldehyde as cross-linker. Highly sensitive detection of S. aureus in both synthetic and real samples was realized by the proposed MOF-bacteriophage biosensor based on the photoluminescence quenching phenomena: limit of detection (31 CFU/mL) and range of detection (40 to 4 × 10 8 CFU/mL). This is the first report exploiting the use of an MOF-bacteriophage complex for the biosensing of S. aureus. The results of our study highlight that the proposed biosensor is more sensitive than most of the previous methods while exhibiting some advanced features like specificity, regenerability, extended range of linear detection, and stability for long-term storage (even at room temperature).
Biosensor technology: technology push versus market pull.
Luong, John H T; Male, Keith B; Glennon, Jeremy D
2008-01-01
Biosensor technology is based on a specific biological recognition element in combination with a transducer for signal processing. Since its inception, biosensors have been expected to play a significant analytical role in medicine, agriculture, food safety, homeland security, environmental and industrial monitoring. However, the commercialization of biosensor technology has significantly lagged behind the research output as reflected by a plethora of publications and patenting activities. The rationale behind the slow and limited technology transfer could be attributed to cost considerations and some key technical barriers. Analytical chemistry has changed considerably, driven by automation, miniaturization, and system integration with high throughput for multiple tasks. Such requirements pose a great challenge in biosensor technology which is often designed to detect one single or a few target analytes. Successful biosensors must be versatile to support interchangeable biorecognition elements, and in addition miniaturization must be feasible to allow automation for parallel sensing with ease of operation at a competitive cost. A significant upfront investment in research and development is a prerequisite in the commercialization of biosensors. The progress in such endeavors is incremental with limited success, thus, the market entry for a new venture is very difficult unless a niche product can be developed with a considerable market volume.
Moradi, M; Sattarahmady, N; Rahi, A; Hatam, G R; Sorkhabadi, S M Rezayat; Heli, H
2016-12-01
Detection of leishmaniasis is important in clinical diagnoses. In the present study, identification of Leishmania parasites was performed by a label-free, PCR-free and signal-on ultrasensitive electrochemical DNA biosensor. Gold nanoleaves were firstly electrodeposited by an electrodeposition method using spermidine as a shape directing agent. The biosensor was fabricated by immobilization of a Leishmania major specific DNA probe onto gold nanoleaves, and methylene blue was employed as a marker. Hybridization of the complementary single stranded DNA sequence with the biosensor under the selected conditions was then investigated. The biosensor could detect a synthetic DNA target in a range of 1.0×10 -10 to 1.0×10 -19 molL -1 with a limit of detection of 1.8×10 -20 molL -1 , and genomic DNA in a range of 0.5-20ngμL -1 with a limit of detection of 0.07ngμL -1 . The biosensor could distinguish Leishmania major from a non-complementary-sequence oligonucleotide and the tropica species with a high selectivity. The biosensor was applicable to detect Leishmania major in patient samples. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Rahman, Mahbubur; Heng, Lee Yook; Futra, Dedi; Ling, Tan Ling
2017-08-01
An ultrasensitive electrochemical biosensor for the determination of pathogenic Vibrio cholerae ( V. cholerae) DNA was developed based on polystyrene-co-acrylic acid (PSA) latex nanospheres-gold nanoparticles composite (PSA-AuNPs) DNA carrier matrix. Differential pulse voltammetry (DPV) using an electroactive anthraquninone oligonucleotide label was used for measuring the biosensor response. Loading of gold nanoparticles (AuNPs) on the DNA-latex particle electrode has significantly amplified the faradaic current of DNA hybridisation. Together with the use of a reported probe, the biosensor has demonstrated high sensitivity. The DNA biosensor yielded a reproducible and wide linear response range to target DNA from 1.0 × 10-21 to 1.0 × 10-8 M (relative standard deviation, RSD = 4.5%, n = 5) with a limit of detection (LOD) of 1.0 × 10-21 M ( R 2 = 0.99). The biosensor obtained satisfactory recovery values between 91 and 109% ( n = 3) for the detection of V. cholerae DNA in spiked samples and could be reused for six consecutive DNA assays with a repeatability RSD value of 5% ( n = 5). The electrochemical biosensor response was stable and maintainable at 95% of its original response up to 58 days of storage period.
Alpat, Senol; Telefoncu, Azmi
2010-01-01
In this work, a novel voltammetric ethanol biosensor was constructed using alcohol dehydrogenase (ADH). Firstly, alcohol dehydrogenase was immobilized on the surface of a glassy carbon electrode modified by cellulose acetate (CA) bonded to toluidine blue O (TBO). Secondly, the surface was covered by a glutaraldehyde/bovine serum albumin (BSA) cross-linking procedure to provide a new voltammetric sensor for the ethanol determination. In order to fabricate the biosensor, a new electrode matrix containing insoluble Toluidine Blue O (TBO) was obtained from the process, and enzyme/coenzyme was combined on the biosensor surface. The influence of various experimental conditions was examined for the characterization of the optimum analytical performance. The developed biosensor exhibited sensitive and selective determination of ethanol and showed a linear response between 1 × 10(-5) M and 4 × 10(-4) M ethanol. A detection limit calculated as three times the signal-to-noise ratio was 5.0 × 10(-6) M. At the end of the 20(th) day, the biosensor still retained 50% of its initial activity.
Tong, Feifei; Lian, Yan; Han, Junliang
2016-12-18
Biological information is obtained from the interaction between the series detection electrode and the organism or the physical field of biological cultures in the non-mass responsive piezoelectric biosensor. Therefore, electric parameter of the electrode will affect the biosensor signal. The electric field distribution of the microelectrode used in this study was simulated using the COMSOL Multiphysics analytical tool. This process showed that the electric field spatial distribution is affected by the width of the electrode finger or the space between the electrodes. In addition, the characteristic response of the piezoelectric sensor constructed serially with an annular microelectrode was tested and applied for the continuous detection of Escherichia coli culture or HeLa cell culture. Results indicated that the piezoelectric biosensor with an annular microelectrode meets the requirements for the real-time detection of E. coli or HeLa cells in culture. Moreover, this kind of piezoelectric biosensor is more sensitive than the sensor with an interdigital microelectrode. Thus, the piezoelectric biosensor acts as an effective analysis tool for acquiring online cell or microbial culture information.
Wynn, Daniel; Deo, Sapna; Daunert, Sylvia
2017-01-01
Bacterial whole cell-based biosensors have been genetically engineered to achieve selective and reliable detection of a wide range of hazardous chemicals. Although whole-cell biosensors demonstrate many advantages for field-based detection of target analytes, there are still some challenges that need to be addressed. Most notably, their often modest shelf life and need for special handling and storage make them challenging to use in situations where access to reagents, instrumentation, and expertise are limited. These problems can be circumvented by developing biosensors in Bacillus spores, which can be engineered to address all of these concerns. In its sporulated state, a whole cell-based biosensor has a remarkably long life span and is exceptionally resistant to environmental insult. When these spores are germinated for use in analytical techniques, they show no loss in performance, even after long periods of storage under harsh conditions. In this chapter, we will discuss the development and use of whole cell-based sensors, their adaptation to spore-based biosensors, their current applications, and future directions in the field. © 2017 Elsevier Inc. All rights reserved.
Alpat, Şenol; Telefoncu, Azmi
2010-01-01
In this work, a novel voltammetric ethanol biosensor was constructed using alcohol dehydrogenase (ADH). Firstly, alcohol dehydrogenase was immobilized on the surface of a glassy carbon electrode modified by cellulose acetate (CA) bonded to toluidine blue O (TBO). Secondly, the surface was covered by a glutaraldehyde/bovine serum albumin (BSA) cross-linking procedure to provide a new voltammetric sensor for the ethanol determination. In order to fabricate the biosensor, a new electrode matrix containing insoluble Toluidine Blue O (TBO) was obtained from the process, and enzyme/coenzyme was combined on the biosensor surface. The influence of various experimental conditions was examined for the characterization of the optimum analytical performance. The developed biosensor exhibited sensitive and selective determination of ethanol and showed a linear response between 1 × 10−5 M and 4 × 10−4 M ethanol. A detection limit calculated as three times the signal-to-noise ratio was 5.0 × 10−6 M. At the end of the 20th day, the biosensor still retained 50% of its initial activity. PMID:22315566
A multichannel smartphone optical biosensor for high-throughput point-of-care diagnostics.
Wang, Li-Ju; Chang, Yu-Chung; Sun, Rongrong; Li, Lei
2017-01-15
Current reported smartphone spectrometers are only used to monitor or measure one sample at a time. For the first time, we demonstrate a multichannel smartphone spectrometer (MSS) as an optical biosensor that can simultaneously optical sense multiple samples. In this work, we developed a novel method to achieve the multichannel optical spectral sensing with nanometer resolution on a smartphone. A 3D printed cradle held the smartphone integrated with optical components. This optical sensor performed accurate and reliable spectral measurements by optical intensity changes at specific wavelength or optical spectral shifts. A custom smartphone multi-view App was developed to control the optical sensing parameters and to align each sample to the corresponding channel. The captured images were converted to the transmission spectra in the visible wavelength range from 400nm to 700nm with the high resolution of 0.2521nm per pixel. We validated the performance of this MSS via measuring the concentrations of protein and immunoassaying a type of human cancer biomarker. Compared to the standard laboratory instrument, the results sufficiently showed that this MSS can achieve the comparative analysis detection limits, accuracy and sensitivity. We envision that this multichannel smartphone optical biosensor will be useful in high-throughput point-of-care diagnostics with its minimizing size, light weight, low cost and data transmission function. Copyright © 2016 Elsevier B.V. All rights reserved.
Conroy, David J.R.; Millner, Paul A.; Stewart, Douglas I.; Pollmann, Katrin
2010-01-01
The fabrication of novel uranyl (UO22+) binding protein based sensors is reported. The new biosensor responds to picomolar levels of aqueous uranyl ions within minutes using Lysinibacillus sphaericus JG-A12 S-layer protein tethered to gold electrodes. In comparison to traditional self assembled monolayer based biosensors the porous bioconjugated layer gave greater stability, longer electrode life span and a denser protein layer. Biosensors responded specifically to UO22+ ions and showed minor interference from Ni2+, Cs+, Cd2+ and Co2+. Chemical modification of JG-A12 protein phosphate and carboxyl groups prevented UO22+ binding, showing that both moieties are involved in the recognition to UO22+. PMID:22399904
Hong, Chien-Chong; Lin, Chih-Chung; Hong, Chian-Lang; Lin, Zi-Xiang; Chung, Meng-Hua; Hsieh, Pei-Wen
2016-12-15
This paper proposes a novel handheld analyzer with disposable lab-on-a-chip technology for the electrical detection of the anesthetic propofol in human plasma samples for clinical diagnoses. The developed on-chip biosensors are based on the conduction of molecularly imprinted polymers (MIPs) that employ label-free electrical detection techniques. Propofol in total intravenous anesthesia is widely used with a target-controlled infusion system. At present, the methods employed for detecting blood propofol concentrations in hospitals comprise high-performance liquid chromatography and ion mobility spectrometry. These conventional instruments are bulky, expensive, and difficult to access. In this study, we developed a novel plastic microfluidic biochip with an on-chip anesthetic biosensor that was characterized for the rapid detection of propofol concentrations. The experimental results revealed that the response time of the developed propofol biosensors was 25s. The specific binding of an MIP to a nonimprinted polymer (NIP) reached up to 560%. Moreover, the detection limit of the biosensors was 0.1μg/mL, with a linear detection range of 0.1-30μg/mL. The proposed disposable microfluidic biochip with an on-chip anesthetic biosensor using MIPs exhibited excellent performance in the separation and sensing of propofol molecules in the human plasma samples. Compared with large-scale conventional instruments, the developed microfluidic biochips with on-chip MIP biosensors present the advantages of a compact size, high selectivity, low cost, rapid response, and single-step detection. Copyright © 2016 Elsevier B.V. All rights reserved.
3D nitrogen-doped graphene/β-cyclodextrin: host-guest interactions for electrochemical sensing
NASA Astrophysics Data System (ADS)
Liu, Jilun; Leng, Xuanye; Xiao, Yao; Hu, Chengguo; Fu, Lei
2015-07-01
Host-guest interactions, especially those between cyclodextrins (CDs, including α-, β- and γ-CD) and various guest molecules, exhibit a very high supramolecular recognition ability. Thus, they have received considerable attention in different fields. These specific interactions between host and guest molecules are promising for biosensing and clinical detection. However, there is a lack of an ideal electrode substrate for CDs to increase their performance in electrochemical sensing. Herein, we propose a new 3D nitrogen-doped graphene (3D-NG) based electrochemical sensor, taking advantage of the superior sensitivity of host-guest interactions. Our 3D-NG was fabricated by a template-directed chemical vapour deposition (CVD) method, and it showed a large specific surface area, a high capacity for biomolecules and a high electron transfer efficiency. Thus, for the first time, we took 3D-NG as an electrode substrate for β-CD to establish a new type of biosensor. Using dopamine (DA) and acetaminophen (APAP) as representative guest molecules, our 3D-NG/β-CD biosensor shows extremely high sensitivities (5468.6 μA mM-1 cm-2 and 2419.2 μA mM-1 cm-2, respectively), which are significantly higher than those reported in most previous studies. The stable adsorption of β-CD on 3D-NG indicates potential applications in clinical detection and medical testing.Host-guest interactions, especially those between cyclodextrins (CDs, including α-, β- and γ-CD) and various guest molecules, exhibit a very high supramolecular recognition ability. Thus, they have received considerable attention in different fields. These specific interactions between host and guest molecules are promising for biosensing and clinical detection. However, there is a lack of an ideal electrode substrate for CDs to increase their performance in electrochemical sensing. Herein, we propose a new 3D nitrogen-doped graphene (3D-NG) based electrochemical sensor, taking advantage of the superior sensitivity of host-guest interactions. Our 3D-NG was fabricated by a template-directed chemical vapour deposition (CVD) method, and it showed a large specific surface area, a high capacity for biomolecules and a high electron transfer efficiency. Thus, for the first time, we took 3D-NG as an electrode substrate for β-CD to establish a new type of biosensor. Using dopamine (DA) and acetaminophen (APAP) as representative guest molecules, our 3D-NG/β-CD biosensor shows extremely high sensitivities (5468.6 μA mM-1 cm-2 and 2419.2 μA mM-1 cm-2, respectively), which are significantly higher than those reported in most previous studies. The stable adsorption of β-CD on 3D-NG indicates potential applications in clinical detection and medical testing. Electronic supplementary information (ESI) available: The procedure for preparing the sensor, wide survey XPS, XRD patterns, the effect of scan rate, more CV data on the stability and selectivity, and a comparison with previous studies. See DOI: 10.1039/c5nr03109e
NASA Astrophysics Data System (ADS)
Rahman, Mahbubur; Heng, Lee Yook; Futra, Dedi; Chiang, Chew Poh; Rashid, Zulkafli A.; Ling, Tan Ling
2017-08-01
The present research describes a simple method for the identification of the gender of arowana fish ( Scleropages formosus). The DNA biosensor was able to detect specific DNA sequence at extremely low level down to atto M regimes. An electrochemical DNA biosensor based on acrylic microsphere-gold nanoparticle (AcMP-AuNP) hybrid composite was fabricated. Hydrophobic poly(n-butylacrylate-N-acryloxysuccinimide) microspheres were synthesised with a facile and well-established one-step photopolymerization procedure and physically adsorbed on the AuNPs at the surface of a carbon screen printed electrode (SPE). The DNA biosensor was constructed simply by grafting an aminated DNA probe on the succinimide functionalised AcMPs via a strong covalent attachment. DNA hybridisation response was determined by differential pulse voltammetry (DPV) technique using anthraquinone monosulphonic acid redox probe as an electroactive oligonucleotide label (Table 1). A low detection limit at 1.0 × 10-18 M with a wide linear calibration range of 1.0 × 10-18 to 1.0 × 10-8 M ( R 2 = 0.99) can be achieved by the proposed DNA biosensor under optimal conditions. Electrochemical detection of arowana DNA can be completed within 1 hour. Due to its small size and light weight, the developed DNA biosensor holds high promise for the development of functional kit for fish culture usage.
Wen, Yunping; Wen, Wei; Zhang, Xiuhua; Wang, Shengfu
2016-05-15
Nitromethane (CH3NO2) is an important organic chemical raw material with a wide variety of applications as well as one of the most common pollutants. Therefore it is pretty important to establish a simple and sensitive detection method for CH3NO2. In our study, a novel amperometric biosensor for nitromethane (CH3NO2) based on immobilization of electrochemically-reduced graphene oxide (rGO), chitosan (CS) and hemoglobin (Hb) on a glassy carbon electrode (GCE) was constructed. Scanning electron microscopy, infrared spectroscopy and electrochemical methods were used to characterize the Hb-CS/rGO-CS composite film. The effects of scan rate and pH of phosphate buffer on the biosensor have been studied in detail and optimized. Due to the graphene and chitosan nanocomposite, the developed biosensor demonstrating direct electrochemistry with faster electron-transfer rate (6.48s(-1)) and excellent catalytic activity towards CH3NO2. Under optimal conditions, the proposed biosensor exhibited fast amperometric response (<5s) to CH3NO2 with a wide linear range of 5 μM~1.46 mM (R=0.999) and a low detection limit of 1.5 μM (S/N=3). In addition, the biosensor had high selectivity, reproducibility and stability, providing the possibility for monitoring CH3NO2 in complex real samples. Copyright © 2016 Elsevier B.V. All rights reserved.
Dervisevic, Muamer; Custiuc, Esma; Çevik, Emre; Şenel, Mehmet
2015-08-15
A novel nanocomposite host matrix for enzyme immobilization of xanthine oxidase was developed by incorporating MWCNT in poly(GMA-co-VFc) copolymer film. In the food industry fish is a product with a very low commercial life, and a high variability as well elevated level of xanthine is an important biomarker as a sign of spoilage. The fabricated process was characterized by scanning electron microscopy (SEM), and the electrochemical behaviors of the biosensor were characterized by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The prepared enzyme electrodes exhibited maximum response at pH 7.0 and 45°C +0.35 V and reached 95% of steady-state current in about ∼ 4 s and its sensitivity was 16 mAM(-1). Linear ranges (2-28 μM, 28-46 and 46-86 μM), analytical performance and a low detection limit 0.12 μM obtained from the xanthine biosensor gives reliable results in measuring xanthine concentration in the fish meat. All the results indicating that the resulting biosensor exhibited a good response to xanthine that was related to the addition of MWCNT in the polymeric mediator film which played an important role in the biosensor performance. In addition, the biosensor exhibited high good storage stability and satisfactory anti-interference ability. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Tanada, Norio; Sakurai, Takeshi; Mitsuno, Hidefumi; Bakkum, Douglas; Kanzaki, Ryohei; Takahashi, Hirokazu
We propose a highly sensitive and real-time odor biosensor by expressing ionotropic odorant receptors of insects into dissociated cultures of neurons of rats. The odorant-gated ion channel structure of insect odorant receptor is expected to allow easy functional expression into cells. The neuronal dissociated cultures of rats have two significant advantages: a long lifetime comparable to rats, i.e., a few years; and amplification ability from weak ionic currents of odorant receptors into easily detectable action potentials of neurons. In the present work, in order to show the feasibility of the proposed sensor, we attempt to express the pheromone receptors of silkmoth, Bombyx mori, into cultured neurons of rats. We demonstrate that 10% of neuronal cells transfected using Lipofectamine successfully expressed pheromone receptors, and that these cells showed significant increase of calcium signals by 50% at the presentation of pheromone.
A urea biosensor based on pH-sensitive Sm2TiO5 electrolyte-insulator-semiconductor.
Pan, Tung-Ming; Huang, Ming-De; Lin, Wan-Ying; Wu, Min-Hsien
2010-06-11
A urea biosensor based on pH-sensitive Sm(2)TiO(5) electrolyte-insulator-semiconductor (EIS) has been described. We used X-ray diffraction, Auger electron spectroscopy, and atomic force microscopy to investigate the structural and morphological features of high-k Sm(2)TiO(5) sensing membranes that had been subjected to annealing at different temperatures. The EIS device incorporating a high-k Sm(2)TiO(5) sensing film that had been annealed at 900 degrees C exhibited good sensing characteristics, including a high sensitivity of 60.5 mV/pH (in solutions from pH 2 to 12), a small hysteresis voltage of 2.72 mV (in the pH loop 7-->4-->7-->10-->7), and a low drift rate of 1.15 mV h(-1) (in the buffer solution at pH 7). The Sm(2)TiO(5) EIS device also showed a high selective response towards H(+). This improvement can be attributed to the small number of crystal defects and the large surface roughness. In addition, the urea biosensor based on pH-sensitive EIS incorporating a Sm(2)TiO(5) sensing membrane annealed at 900 degrees C allowed the potentiometric analysis of urea, at concentrations ranging from 0.1 to 32 mM, with a sensitivity of 72.85 mV/purea. Copyright 2010 Elsevier B.V. All rights reserved.
Microbial Fuels Cell-Based Biosensor for Toxicity Detection: A Review
Zhou, Tuoyu; Han, Huawen; Liu, Pu; Xiong, Jian; Tian, Fake; Li, Xiangkai
2017-01-01
With the unprecedented deterioration of environmental quality, rapid recognition of toxic compounds is paramount for performing in situ real-time monitoring. Although several analytical techniques based on electrochemistry or biosensors have been developed for the detection of toxic compounds, most of them are time-consuming, inaccurate, or cumbersome for practical applications. More recently, microbial fuel cell (MFC)-based biosensors have drawn increasing interest due to their sustainability and cost-effectiveness, with applications ranging from the monitoring of anaerobic digestion process parameters (VFA) to water quality detection (e.g., COD, BOD). When a MFC runs under correct conditions, the voltage generated is correlated with the amount of a given substrate. Based on this linear relationship, several studies have demonstrated that MFC-based biosensors could detect heavy metals such as copper, chromium, or zinc, as well as organic compounds, including p-nitrophenol (PNP), formaldehyde and levofloxacin. Both bacterial consortia and single strains can be used to develop MFC-based biosensors. Biosensors with single strains show several advantages over systems integrating bacterial consortia, such as selectivity and stability. One of the limitations of such sensors is that the detection range usually exceeds the actual pollution level. Therefore, improving their sensitivity is the most important for widespread application. Nonetheless, MFC-based biosensors represent a promising approach towards single pollutant detection. PMID:28956857
Microbial Fuels Cell-Based Biosensor for Toxicity Detection: A Review.
Zhou, Tuoyu; Han, Huawen; Liu, Pu; Xiong, Jian; Tian, Fake; Li, Xiangkai
2017-09-28
With the unprecedented deterioration of environmental quality, rapid recognition of toxic compounds is paramount for performing in situ real-time monitoring. Although several analytical techniques based on electrochemistry or biosensors have been developed for the detection of toxic compounds, most of them are time-consuming, inaccurate, or cumbersome for practical applications. More recently, microbial fuel cell (MFC)-based biosensors have drawn increasing interest due to their sustainability and cost-effectiveness, with applications ranging from the monitoring of anaerobic digestion process parameters (VFA) to water quality detection (e.g., COD, BOD). When a MFC runs under correct conditions, the voltage generated is correlated with the amount of a given substrate. Based on this linear relationship, several studies have demonstrated that MFC-based biosensors could detect heavy metals such as copper, chromium, or zinc, as well as organic compounds, including p -nitrophenol (PNP), formaldehyde and levofloxacin. Both bacterial consortia and single strains can be used to develop MFC-based biosensors. Biosensors with single strains show several advantages over systems integrating bacterial consortia, such as selectivity and stability. One of the limitations of such sensors is that the detection range usually exceeds the actual pollution level. Therefore, improving their sensitivity is the most important for widespread application. Nonetheless, MFC-based biosensors represent a promising approach towards single pollutant detection.
Rapid and label-free bioanalytical method of alpha fetoprotein detection using LSPR chip
NASA Astrophysics Data System (ADS)
Kim, Dongjoo; Kim, Jinwoon; Kwak, Cheol Hwan; Heo, Nam Su; Oh, Seo Yeong; Lee, Hoomin; Lee, Go-Woon; Vilian, A. T. Ezhil; Han, Young-Kyu; Kim, Woo-Sik; Kim, Gi-bum; Kwon, Soonjo; Huh, Yun Suk
2017-07-01
Alpha fetoprotein (AFP) is a cancer marker, particularly for hepatocellular carcinoma. Normal levels of AFP are less than 20 ng/mL; however, its levels can reach more than 400 ng/mL in patients with HCC. Enzyme linked immunosorbent assay (ELISA) and radioimmunoassay (RIA) have been employed for clinical diagnosis of AFP; however, these methods are time consuming and labor intensive. In this study, we developed a localized surface plasmon resonance (LSPR) based biosensor for simple and rapid detection of AFP. This biosensor consists of a UV-Vis spectrometer, a cuvette cell, and a biosensor chip nanopatterned with gold nanoparticles (AuNPs). In our LSPR biosensor, binding of AFP to the surface of the sensor chip led to an increasing magnitude of the LSPR signals, which was measured by an ultraviolet-visible (UV-Vis) spectrometer. Our LSPR biosensor showed sufficient detectability of AFP at concentrations of 1 ng/mL to 1 μg/mL. Moreover, the overall procedure for detection of AFP was completed within 20 min. This biosensor could also be utilized for a point of care test (POCT) by employing a portable UV-Vis spectrometer. Owing to the simplicity and rapidity of the detection process, our LSPR biosensor is expected to replace traditional diagnostic methods for the early detection of diseases.
Impact of SPR biosensor assay configuration on antibody: Neonatal Fc receptor binding data
Wang, Xiangdan; McKay, Patrick; Dutina, George; Hass, Philip E.; Nijem, Ihsan; Allison, David; Cowan, Kyra J.; Lin, Kevin; Quarmby, Valerie; Yang, Jihong
2017-01-01
ABSTRACT Binding interactions with the neonatal Fc receptor (FcRn) are one determinant of pharmacokinetic properties of recombinant human monoclonal antibody (rhumAb) therapeutics, and a conserved binding motif in the crystallizable fragment (Fc) region of IgG molecules interacts with FcRn. Surface plasmon resonance (SPR) biosensor assays are often used to characterize interactions between FcRn and rhumAb therapeutics. In such assays, generally either the rhumAb (format 1) or the FcRn protein (format 2) is immobilized on a biosensor chip. However, because evidence suggests that, in some cases, the variable domains of a rhumAb may also affect FcRn binding, we evaluated the effect of SPR assay configuration on binding data. We sought to assess FcRn binding properties of 2 rhumAbs (rhumAb1 and rhumAb2) to FcRn proteins using these 2 biosensor assay formats. The two rhumAbs have greater than 99% sequence identity in the Fc domain but differ in their Fab regions. rhumAb2 contains a positively charged patch in the variable domain that is absent in rhumAb1. Our results showed that binding of rhumAb1 to FcRn was independent of biosensor assay configuration, while binding of rhumAb2 to FcRn was highly SPR assay configuration dependent. Further investigations revealed that the format dependency of rhumAb2-FcRn binding is linked to the basic residues that form a positively charged patch in the variable domain of rhumAb2. Our work highlights the importance of analyzing rhumAb-FcRn binding interactions using 2 alternate SPR biosensor assay configurations. This approach may also provide a simple way to identify the potential for non-Fc-driven FcRn binding interactions in otherwise typical IgGs. PMID:28001487
Polymeric 3D Printed Functional Microcantilevers for Biosensing Applications.
Stassi, Stefano; Fantino, Erika; Calmo, Roberta; Chiappone, Annalisa; Gillono, Matteo; Scaiola, Davide; Pirri, Candido Fabrizio; Ricciardi, Carlo; Chiadò, Alessandro; Roppolo, Ignazio
2017-06-07
In this study, we show for the first time the production of mass-sensitive polymeric biosensors by 3D printing technology with intrinsic functionalities. We also demonstrate the feasibility of mass-sensitive biosensors in the form of microcantilever in a one-step printing process, using acrylic acid as functional comonomer for introducing a controlled amount of functional groups that can covalently immobilize the biomolecules onto the polymer. The effectiveness of the application of 3D printed microcantilevers as biosensors is then demonstrated with their implementation in a standard immunoassay protocol. This study shows how 3D microfabrication techniques, material characterization, and biosensor development could be combined to obtain an engineered polymeric microcantilever with intrinsic functionalities. The possibility of tuning the composition of the starting photocurable resin with the addition of functional agents, and consequently controlling the functionalities of the 3D printed devices, paves the way to a new class of mass-sensing microelectromechanical system devices with intrinsic properties.
Zhang, Hongyan; Lv, Jie; Jia, Zhenhong
2018-01-01
We successfully demonstrate a porous silicon (PS) double Bragg mirror by electrochemical etching at room temperature as a deoxyribonucleic acid (DNA) label-free biosensor for detecting ammonia-oxidizing bacteria (AOB). Compared to various other one-dimension photonic crystal configurations of PS, the double Bragg mirror structure is quite easy to prepare and exhibits interesting optical properties. The width of high reflectivity stop band of the PS double Bragg mirror is about 761 nm with a sharp and deep resonance peak at 1328 nm in the reflectance spectrum, which gives a high sensitivity and distinguishability for sensing performance. The detection sensitivity of such a double Bragg mirror structure is illustrated through the investigation of AOB DNA hybridization in the PS pores. The redshifts of the reflectance spectra show a good linear relationship with both complete complementary and partial complementary DNA. The lowest detection limit for complete complementary DNA is 27.1 nM and the detection limit of the biosensor for partial complementary DNA is 35.0 nM, which provides the feasibility and effectiveness for the detection of AOB in a real environment. The PS double Bragg mirror structure is attractive for widespread biosensing applications and provides great potential for the development of optical applications.
Bioelectrocatalytic application of titania nanotube array for molecule detection.
Xie, Yibing; Zhou, Limin; Huang, Haitao
2007-06-15
A bioelectrocatalysis system based on titania nanotube electrode has been developed for the quantitative detection application. Highly ordered titania nanotube array with inner diameter of 60 nm and total length of 540 nm was formed by anodizing titanium foils. The functionalization modification was achieved by embedding glucose oxidases inside tubule channels and electropolymerizing pyrrole for interfacial immobilization. Morphology and microstructure characterization, electrochemical properties and bioelectrocatalytic reactivities of this composite were fully investigated. The direct detection of hydrogen peroxide by electrocatalytic reduction reaction was fulfilled on pure titania nanotube array with a detection limit up to 2.0 x 10(-4)mM. A biosensor based on the glucose oxidase-titania/titanium electrode was constructed for amperometric detection and quantitative determination of glucose in a phosphate buffer solution (pH 6.8) under a potentiostatic condition (-0.4V versus SCE). The resulting glucose biosensor showed an excellent performance with a response time below 5.6s and a detection limit of 2.0 x 10(-3)mM. The corresponding detection sensitivity was 45.5 microA mM(-1)cm(-2). A good operational reliability was also achieved with relative standard deviations below 3.0%. This novel biosensor exhibited quite high response sensitivity and low detection limit for potential applications.
Evanescent wave fluorescence biosensors: Advances of the last decade
Taitt, Chris Rowe; Anderson, George P.; Ligler, Frances S.
2015-01-01
Biosensor development has been a highly dynamic field of research and has progressed rapidly over the past two decades. The advances have accompanied the breakthroughs in molecular biology, nanomaterial sciences, and most importantly computers and electronics. The subfield of evanescent wave fluorescence biosensors has also matured dramatically during this time. Fundamentally, this review builds on our earlier 2005 review. While a brief mention of seminal early work will be included, this current review will focus on new technological developments as well as technology commercialized in just the last decade. Evanescent wave biosensors have found a wide array applications ranging from clinical diagnostics to biodefense to food testing; advances in those applications and more are described herein. PMID:26232145
Molecularly imprinted hydroxyapatite thin film for bilirubin recognition.
Yang, Zhengpeng; Zhang, Chunjing
2011-11-15
A novel piezoelectric sensor has been developed for bilirubin (BR) detection, based on the modification of molecularly imprinted hydroxyapatite (HAP) film onto a quartz crystal by molecular imprinting and surface sol-gel technique. The performance of the developed BR biosensor was evaluated and the results indicated that a sensitive BR biosensor could be fabricated. The obtained BR biosensor presents high-selectivity monitoring of BR, better reproducibility, shorter response time (37 min), wider linear range (0.05-80μM) and lower detection limit (0.01μM). The analytical application of the BR biosensor confirms the feasibility of BR detection in serum sample. Copyright © 2011 Elsevier B.V. All rights reserved.
Bhalla, Nikhil; Jolly, Pawan; Formisano, Nello; Estrela, Pedro
2016-06-30
Biosensors are nowadays ubiquitous in biomedical diagnosis as well as a wide range of other areas such as point-of-care monitoring of treatment and disease progression, environmental monitoring, food control, drug discovery, forensics and biomedical research. A wide range of techniques can be used for the development of biosensors. Their coupling with high-affinity biomolecules allows the sensitive and selective detection of a range of analytes. We give a general introduction to biosensors and biosensing technologies, including a brief historical overview, introducing key developments in the field and illustrating the breadth of biomolecular sensing strategies and the expansion of nanotechnological approaches that are now available. © 2016 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.
Towards the Development of Electrical Biosensors Based on Nanostructured Porous Silicon
Recio-Sánchez, Gonzalo; Torres-Costa, Vicente; Manso, Miguel; Gallach, Darío; López-García, Juan; Martín-Palma, Raúl J.
2010-01-01
The typical large specific surface area and high reactivity of nanostructured porous silicon (nanoPS) make this material very suitable for the development of sensors. Moreover, its biocompatibility and biodegradability opens the way to the development of biosensors. As such, in this work the use of nanoPS in the field of electrical biosensing is explored. More specifically, nanoPS-based devices with Al/nanoPS/Al and Au-NiCr/nanoPS/Au-NiCr structures were fabricated for the electrical detection of glucose and Escherichia Coli bacteria at different concentrations. The experimental results show that the current-voltage characteristics of these symmetric metal/nanoPS/metal structures strongly depend on the presence/absence and concentration of species immobilized on the surface.
Fluidics cube for biosensor miniaturization
NASA Technical Reports Server (NTRS)
Dodson, J. M.; Feldstein, M. J.; Leatzow, D. M.; Flack, L. K.; Golden, J. P.; Ligler, F. S.
2001-01-01
To create a small, portable, fully automated biosensor, a compact means of fluid handling is required. We designed, manufactured, and tested a "fluidics cube" for such a purpose. This cube, made of thermoplastic, contains reservoirs and channels for liquid samples and reagents and operates without the use of any internal valves or meters; it is a passive fluid circuit that relies on pressure relief vents to control fluid movement. We demonstrate the ability of pressure relief vents to control fluid movement and show how to simply manufacture or modify the cube. Combined with the planar array biosensor developed at the Naval Research Laboratory, it brings us one step closer to realizing our goal of a handheld biosensor capable of analyzing multiple samples for multiple analytes.
Hydrothermal synthesis of NiWO4 crystals for high performance non-enzymatic glucose biosensors
NASA Astrophysics Data System (ADS)
Mani, Sivakumar; Vediyappan, Veeramani; Chen, Shen-Ming; Madhu, Rajesh; Pitchaimani, Veerakumar; Chang, Jia-Yaw; Liu, Shang-Bin
2016-04-01
A facile hydrothermal route for the synthesis of ordered NiWO4 nanocrystals, which show promising applications as high performance non-enzymatic glucose sensor is reported. The NiWO4-modified electrodes showed excellent sensitivity (269.6 μA mM-1 cm-2) and low detection limit (0.18 μM) for detection of glucose with desirable selectivity, stability, and tolerance to interference, rendering their prospective applications as cost-effective, enzyme-free glucose sensors.
Hydrothermal synthesis of NiWO4 crystals for high performance non-enzymatic glucose biosensors.
Mani, Sivakumar; Vediyappan, Veeramani; Chen, Shen-Ming; Madhu, Rajesh; Pitchaimani, Veerakumar; Chang, Jia-Yaw; Liu, Shang-Bin
2016-04-18
A facile hydrothermal route for the synthesis of ordered NiWO4 nanocrystals, which show promising applications as high performance non-enzymatic glucose sensor is reported. The NiWO4-modified electrodes showed excellent sensitivity (269.6 μA mM(-1 )cm(-2)) and low detection limit (0.18 μM) for detection of glucose with desirable selectivity, stability, and tolerance to interference, rendering their prospective applications as cost-effective, enzyme-free glucose sensors.
CMOS Electrochemical Instrumentation for Biosensor Microsystems: A Review.
Li, Haitao; Liu, Xiaowen; Li, Lin; Mu, Xiaoyi; Genov, Roman; Mason, Andrew J
2016-12-31
Modern biosensors play a critical role in healthcare and have a quickly growing commercial market. Compared to traditional optical-based sensing, electrochemical biosensors are attractive due to superior performance in response time, cost, complexity and potential for miniaturization. To address the shortcomings of traditional benchtop electrochemical instruments, in recent years, many complementary metal oxide semiconductor (CMOS) instrumentation circuits have been reported for electrochemical biosensors. This paper provides a review and analysis of CMOS electrochemical instrumentation circuits. First, important concepts in electrochemical sensing are presented from an instrumentation point of view. Then, electrochemical instrumentation circuits are organized into functional classes, and reported CMOS circuits are reviewed and analyzed to illuminate design options and performance tradeoffs. Finally, recent trends and challenges toward on-CMOS sensor integration that could enable highly miniaturized electrochemical biosensor microsystems are discussed. The information in the paper can guide next generation electrochemical sensor design.
CMOS Electrochemical Instrumentation for Biosensor Microsystems: A Review
Li, Haitao; Liu, Xiaowen; Li, Lin; Mu, Xiaoyi; Genov, Roman; Mason, Andrew J.
2016-01-01
Modern biosensors play a critical role in healthcare and have a quickly growing commercial market. Compared to traditional optical-based sensing, electrochemical biosensors are attractive due to superior performance in response time, cost, complexity and potential for miniaturization. To address the shortcomings of traditional benchtop electrochemical instruments, in recent years, many complementary metal oxide semiconductor (CMOS) instrumentation circuits have been reported for electrochemical biosensors. This paper provides a review and analysis of CMOS electrochemical instrumentation circuits. First, important concepts in electrochemical sensing are presented from an instrumentation point of view. Then, electrochemical instrumentation circuits are organized into functional classes, and reported CMOS circuits are reviewed and analyzed to illuminate design options and performance tradeoffs. Finally, recent trends and challenges toward on-CMOS sensor integration that could enable highly miniaturized electrochemical biosensor microsystems are discussed. The information in the paper can guide next generation electrochemical sensor design. PMID:28042860
Coupling bimolecular PARylation biosensors with genetic screens to identify PARylation targets.
Krastev, Dragomir B; Pettitt, Stephen J; Campbell, James; Song, Feifei; Tanos, Barbara E; Stoynov, Stoyno S; Ashworth, Alan; Lord, Christopher J
2018-05-22
Poly (ADP-ribose)ylation is a dynamic protein modification that regulates multiple cellular processes. Here, we describe a system for identifying and characterizing PARylation events that exploits the ability of a PBZ (PAR-binding zinc finger) protein domain to bind PAR with high-affinity. By linking PBZ domains to bimolecular fluorescent complementation biosensors, we developed fluorescent PAR biosensors that allow the detection of temporal and spatial PARylation events in live cells. Exploiting transposon-mediated recombination, we integrate the PAR biosensor en masse into thousands of protein coding genes in living cells. Using these PAR-biosensor "tagged" cells in a genetic screen we carry out a large-scale identification of PARylation targets. This identifies CTIF (CBP80/CBP20-dependent translation initiation factor) as a novel PARylation target of the tankyrase enzymes in the centrosomal region of cells, which plays a role in the distribution of the centrosomal satellites.
Graphene nano-ink biosensor arrays on a microfluidic paper for multiplexed detection of metabolites.
Labroo, Pratima; Cui, Yue
2014-02-27
The development of a miniaturized and low-cost platform for the highly sensitive, selective and rapid detection of multiplexed metabolites is of great interest for healthcare, pharmaceuticals, food science, and environmental monitoring. Graphene is a delicate single-layer, two-dimensional network of carbon atoms with extraordinary electrical sensing capability. Microfluidic paper with printing technique is a low cost matrix. Here, we demonstrated the development of graphene-ink based biosensor arrays on a microfluidic paper for the multiplexed detection of different metabolites, such as glucose, lactate, xanthine and cholesterol. Our results show that the graphene biosensor arrays can detect multiple metabolites on a microfluidic paper sensitively, rapidly and simultaneously. The device exhibits a fast measuring time of less than 2 min, a low detection limit of 0.3 μM, and a dynamic detection range of 0.3-15 μM. The process is simple and inexpensive to operate and requires a low consumption of sample volume. We anticipate that these results could open exciting opportunities for a variety of applications. Copyright © 2014 Elsevier B.V. All rights reserved.
Huang, Qitong; Lin, Xiaofeng; Zhu, Jie-Ji; Tong, Qing-Xiao
2017-08-15
In this study, a green and fast method was developed to synthesize high-yield carbon dots (CDs) via one-pot microwave treatment of banana peels without using any other surface passivation agents. Then the as-prepared CDs was used as the reducing agent and stabilizer to synthesize a Pd-Au@CDs nanocomposite by a simple sequential reduction strategy. Finally, Pd-Au@CDs nanocomposite modified glassy carbon electrode (Pd-Au@CDs/GCE) was obtained as a biosensor for target DNA after being immobilized a single-stranded probe DNA by a carboxyl ammonia condensation reaction. Under the optimal conditions, the sensor could detect target DNA concentrations in the range from 5.0×10 -16 to 1.0×10 -1 °molL -1 . The detection limit (LD) was estimated to be 1.82×10 -17 molL -1 , which showed higher sensitivity than other electrochemical biosensors reported. In addition, the DNA sensor was also successfully applied to detect colitoxin DNA in human serum. Copyright © 2017 Elsevier B.V. All rights reserved.
A silicon-based peptide biosensor for label-free detection of cancer cells
NASA Astrophysics Data System (ADS)
Martucci, Nicola M.; Rea, Ilaria; Ruggiero, Immacolata; Terracciano, Monica; De Stefano, Luca; Migliaccio, Nunzia; Dardano, Principia; Arcari, Paolo; Rendina, Ivo; Lamberti, Annalisa
2015-05-01
Sensitive and accurate detection of cancer cells plays a crucial role in diagnosis of cancer and minimal residual disease, so being one of the most hopeful approaches to reduce cancer death rates. In this paper, a strategy for highly selective and sensitive detection of lymphoma cells on planar silicon-based biosensor has been evaluated. In this setting an Idiotype peptide, able to specifically bind the B-cell receptor (BCR) of A20 cells in mice engrafted with A20 lymphoma, has been covalently linked to the sensor active surface and used as molecular probe. The biochip here presented showed a coverage efficiency of 85% with a detection efficiency of 8.5×10-3 cells/μm2. The results obtained suggested an efficient way for specific label-free cell detection by using a silicon-based peptide biosensor. In addition, the present recognition strategy, besides being useful for the development of sensing devices capable of monitoring minimal residual disease, could be used to find and characterize new specific receptor-ligand interactions through the screening of a recombinant phage library.
Angle-resolved diffraction grating biosensor based on porous silicon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lv, Changwu; Li, Peng; Jia, Zhenhong, E-mail: jzhh@xju.edu.cn
2016-03-07
In this study, an optical biosensor based on a porous silicon composite structure was fabricated using a simple method. This structure consists of a thin, porous silicon surface diffraction grating and a one-dimensional porous silicon photonic crystal. An angle-resolved diffraction efficiency spectrum was obtained by measuring the diffraction efficiency at a range of incident angles. The angle-resolved diffraction efficiency of the 2nd and 3rd orders was studied experimentally and theoretically. The device was sensitive to the change of refractive index in the presence of a biomolecule indicated by the shift of the diffraction efficiency spectrum. The sensitivity of this sensormore » was investigated through use of an 8 base pair antifreeze protein DNA hybridization. The shifts of the angle-resolved diffraction efficiency spectrum showed a relationship with the change of the refractive index, and the detection limit of the biosensor reached 41.7 nM. This optical device is highly sensitive, inexpensive, and simple to fabricate. Using shifts in diffraction efficiency spectrum to detect biological molecules has not yet been explored, so this study establishes a foundation for future work.« less
NASA Astrophysics Data System (ADS)
Bakhmachuk, A.; Gorbatiuk, O.; Rachkov, A.; Dons'koi, B.; Khristosenko, R.; Ushenin, I.; Peshkova, V.; Soldatkin, A.
2017-02-01
The developed surface plasmon resonance (SPR) biosensor based on the recombinant Staphylococcal protein A with an additional cysteine residue (SPA-Cys) used as a biorecognition component showed a good selectivity and sensitivity for the immunoglobulin detection. The developed biosensor with SPA-Cys-based bioselective element can also be used as a first step of immunosensor creation. The successful immobilization of SPA-Cys on the nanolayer gold sensor surface of the SPR spectrometer was performed. The efficiency of blocking nonspecific sorption sites on the sensor surface with milk proteins, gelatin, BSA, and HSA was studied, and a rather high efficiency of using gelatin was confirmed. The SPR biosensor selectively interacted with IgG and did not interact with the control proteins. The linear dependence of the sensor response on the IgG concentration in the range from 2 to 10 μg/ml was shown. Using the calibration curve, the IgG concentration was measured in the model samples. The determined concentrations are in good agreement ( r 2 = 0.97) with the given concentration of IgG.
Jiang, Lixiang; Luo, Jing; Dong, Wenjie; Wang, Chengmin; Jin, Wen; Xia, Yuetong; Wang, Haijing; Ding, Hua; Jiang, Long; He, Hongxuan
2015-07-01
H5N1 avian influenza has caused serious economic losses as well as posed significant threats to public health, agriculture and wildlife. It is important to develop a rapid, sensitive and specific detection platform suitable for disease surveillance and control. In this study, a highly sensitive, specific and rapid biosensor based on polydiacetylene was developed for detecting H5 influenza virus. The polydiacetylene based biosensor was produced from an optimized ratio of 10,12-pentacosadiynoic acid and 1,2-dimyristoyl-sn-glycero-3-phosphocholine, with the anti-H5 influenza antibody embedded onto the vesicle surface. The optimized polydiacetylene vesicle could detect H5 influenza virus sensitively with a detection limit of 0.53 copies/μL, showing a dramatic blue-to-red color change that can be observed directly by the naked eye and recorded by a UV-vis spectrometer. The sensitivity, specificity and accuracy of the biosensor were also evaluated. The sensor could specifically differentiate H5 influenza virus from H3 influenza virus, Newcastle disease virus and porcine reproductive and respiratory syndrome virus. Detection using tracheal swabs was in accord with virus isolation results, and comparable to the RT-PCR method. These results offer the possibility and potential of simple polydiacetylene based bio-analytical method for influenza surveillance. Copyright © 2015 Elsevier B.V. All rights reserved.
Microfluidic biosensor for β-Hydroxybutyrate (βHBA) determination of subclinical ketosis diagnosis.
Weng, Xuan; Zhao, Wenting; Neethirajan, Suresh; Duffield, Todd
2015-02-12
Determination of β-hydroxybutyrate (βHBA) is a gold standard for diagnosis of Subclinical Ketosis (SCK), a common disease in dairy cows that causes significant economic loss. Early detection of SCK can help reduce the risk of the disease progressing into clinical stage, thus minimizing economic losses on dairy cattle. Conventional laboratory methods are time consuming and labor-intensive, requiring expensive and bulky equipment. Development of portable and robust devices for rapid on-site SCK diagnosis is an effective way to prevent and control ketosis and can significantly aid in the management of dairy animal health. Microfluidic technology provides a rapid, cost-effective way to develop handheld devices for on-farm detection of sub-clinical ketosis. In this study, a highly sensitive microfluidics-based biosensor for on-site SCK diagnosis has been developed. A rapid, low-cost microfluidic biosensor with high sensitivity and specificity was developed for SCK diagnosis. Determination of βHBA was employed as the indicator in the diagnosis of SCK. On-chip detection using miniaturized and cost-effective optical sensor can be finished in 1 minute with a detection limit of 0.05 mM concentration. Developed microfluidic biosensor was successfully tested with the serum samples from dairy cows affected by SCK. The results of the developed biosensor agreed well with two other laboratory methods. The biosensor was characterized by high sensitivity and specificity towards βHBA with a detection limit of 0.05 mM. The developed microfluidic biosensor provides a promising prototype for a cost-effective handheld meter for on-site SCK diagnosis. By using microfluidic method, the detection time is significantly decreased compared to other laboratory methods. Here, we demonstrate a field-deployable device to precisely identify and measure subclinical ketosis by specific labeling and quantification of β-hydroxybutyate in cow blood samples. A real-time on-site detection system will maximize convenience for the farmers.
Amperometric Enzyme-Based Biosensors for Application in Food and Beverage Industry
NASA Astrophysics Data System (ADS)
Csöoregi, Elisabeth; Gáspñr, Szilveszter; Niculescu, Mihaela; Mattiasson, Bo; Schuhmann, Wolfgang
Continuous, sensitive, selective, and reliable monitoring of a large variety of different compounds in various food and beverage samples is of increasing importance to assure a high-quality and tracing of any possible source of contamination of food and beverages. Most of the presently used classical analytical methods are often requiring expensive instrumentation, long analysis times and well-trained staff. Amperometric enzyme-based biosensors on the other hand have emerged in the last decade from basic science to useful tools with very promising application possibilities in food and beverage industry. Amperometric biosensors are in general highly selective, sensitive, relatively cheap, and easy to integrate into continuous analysis systems. A successful application of such sensors for industrial purposes, however, requires a sensor design, which satisfies the specific needs of monitoring the targeted analyte in the particular application, Since each individual application needs different operational conditions and sensor characteristics, it is obvious that biosensors have to be tailored for the particular case. The characteristics of the biosensors are depending on the used biorecognition element (enzyme), nature of signal transducer (electrode material) and the communication between these two elements (electron-transfer pathway).
Development of an acoustic wave based biosensor for vapor phase detection of small molecules
NASA Astrophysics Data System (ADS)
Stubbs, Desmond
For centuries scientific ingenuity and innovation have been influenced by Mother Nature's perfect design. One of her more elusive designs is that of the sensory olfactory system, an array of highly sensitive receptors responsible for chemical vapor recognition. In the animal kingdom this ability is magnified among canines where ppt (parts per trillion) sensitivity values have been reported. Today, detection dogs are considered an essential part of the US drug and explosives detection schemes. However, growing concerns about their susceptibility to extraneous odors have inspired the development of highly sensitive analytical detection tools or biosensors known as "electronic noses". In general, biosensors are distinguished from chemical sensors in that they use an entity of biological origin (e.g. antibody, cell, enzyme) immobilized onto a surface as the chemically-sensitive film on the device. The colloquial view is that the term "biosensors" refers to devices which detect the presence of entities of biological origin, such as proteins or single-stranded DNA and that this detection must take place in a liquid. Our biosensor utilizes biomolecules, specifically IgG monoclonal antibodies, to achieve molecular recognition of relatively small molecules in the vapor phase.
Development and testing of a fluorescence biosensor for glucose sensing
NASA Astrophysics Data System (ADS)
Aloraefy, Mamdouh; Pfefer, Joshua; Ramella-Roman, Jessica; Sapsford, Kim
2012-06-01
Rapid, accurate, and minimally-invasive biosensors for glucose measurement have the potential to enhance management of diabetes mellitus and improve patient outcome in intensive care settings. Recent studies have indicated that implantable biosensors based on Förster Resonance Energy Transfer (FRET) can provide high sensitivity in quantifying glucose concentrations. However, standard approaches for determining the potential for interference from other biological constituents have not been established. The aim of this work was to design and optimize a FRET-based glucose sensor and assess its specificity to glucose. A sensor based on competitive binding between concanavalin A and dextran, labeled with long-wavelength acceptor and donor fluorophores, was developed. This process included optimization of dextran molecular weight and donor concentration, acceptor to donor ratio, and hydrogel concentration, as well as the number of polymer layers for encapsulation. The biosensor performance was characterized in terms of its response to clinically relevant glucose concentrations. The potential for interference and the development of test methods to evaluate this effect were studied using a potential clinical interferent, maltose. Results indicated that our biosensor had a prediction accuracy of better than 11% and that the robustness to maltose was highly dependent on glucose level.
Sharma, Deepti; Lee, Jongmin; Seo, Junyoung; Shin, Heungjoo
2017-01-01
We developed a versatile and highly sensitive biosensor platform. The platform is based on electrochemical-enzymatic redox cycling induced by selective enzyme immobilization on nano-sized carbon interdigitated electrodes (IDEs) decorated with gold nanoparticles (AuNPs). Without resorting to sophisticated nanofabrication technologies, we used batch wafer-level carbon microelectromechanical systems (C-MEMS) processes to fabricate 3D carbon IDEs reproducibly, simply, and cost effectively. In addition, AuNPs were selectively electrodeposited on specific carbon nanoelectrodes; the high surface-to-volume ratio and fast electron transfer ability of AuNPs enhanced the electrochemical signal across these carbon IDEs. Gold nanoparticle characteristics such as size and morphology were reproducibly controlled by modulating the step-potential and time period in the electrodeposition processes. To detect cholesterol selectively using AuNP/carbon IDEs, cholesterol oxidase (ChOx) was selectively immobilized via the electrochemical reduction of the diazonium cation. The sensitivity of the AuNP/carbon IDE-based biosensor was ensured by efficient amplification of the redox mediators, ferricyanide and ferrocyanide, between selectively immobilized enzyme sites and both of the combs of AuNP/carbon IDEs. The presented AuNP/carbon IDE-based cholesterol biosensor exhibited a wide sensing range (0.005–10 mM) and high sensitivity (~993.91 µA mM−1 cm−2; limit of detection (LOD) ~1.28 µM). In addition, the proposed cholesterol biosensor was found to be highly selective for the cholesterol detection. PMID:28914766
SPR imaging biosensor for the quantitation of fibronectin concentration in blood samples.
Sankiewicz, Anna; Romanowicz, Lech; Pyc, Marlena; Hermanowicz, Adam; Gorodkiewicz, Ewa
2018-02-20
The purpose of this study was presentation of a new biosensor capable of determination of fibronectin. This biosensor was based on the specific interaction of anti-fibronectin antibody produced in rabbit with fibronectin. The surface plasmon resonance imaging (SPRI) technique was used as a detecting method. Optimization and characterization properties of the biosensor were studied. The determination of fibronectin concentration in natural samples was done. The results were compared with a reference method (Enzyme-Linked Immunosorbent Assay-ELISA). The analytically useful dynamic response range of biosensor is between 5 and 400ngmL -1 . The detection limit is 1.5ngmL -1 and limit quantification is 5ngmL -1 . The proposed SPRI biosensor showed good selectivity for potential interferences. It was applied to determine fibronectin concentrations in plasma of healthy donors and of patients after thermal injury. Good correlations between results obtained using the SPRI biosensor and ELISA test (correlation coefficients for healthy donors 0.996, for patients 0.984) were obtained. The average fibronectin concentration of healthy donors was 140.5±24.6μgmL -1 and the average fibronectin concentration of patients was 601.5±72.1μgmL -1 , which was in agreement with results obtained by other investigators. The obtained results indicate that the developed biosensor may be a candidate for monitoring fibronectin concentration in blood samples. Copyright © 2017 Elsevier B.V. All rights reserved.
Prototype amperometric biosensor for sialic acid determination.
Marzouk, Sayed A M; Ashraf, S S; Tayyari, Khawla A Al
2007-02-15
This paper describes the first report on the development, characterization, and applications of a prototype amperometric biosensor for free sialic acid (SA). The sensor was constructed by the coimmobilization of two enzymes, i.e., N-acetylneuraminic acid aldolase and pyruvate oxidase, on a polyester microporous membrane, which was then mounted on top of a platinum disk electrode. The SA biosensor operation was based on the sequential action of the two enzymes to ultimately produce hydrogen peroxide, which was then detected by anodic amperometry at the platinum electrode. The surface of the platinum electrode was coated with an electropolymeric layer to enhance the biosensor selectivity in the presence of interfering oxidizable species. Optimization of the enzyme layer composition resulted in a fast and steady current response in phosphate buffer pH 7.2 at 37 degrees C. The limit of detection was 10 microM, and the response was linear to 3.5 mM (r = 0.9987). The prepared SA biosensors retained approximately 85% of their initial sensitivity after 8 days and showed excellent response reproducibility (CV = 2.3%). Utilization of a third enzyme, sialidase, expanded the scope of the present SA biosensor to determine bound sialic acid as well. The merits of the described biosensor allowed its successful application in determining SA in biological and pharmaceutical samples. The obtained results indicated that the presented SA biosensor should be a useful bioanalytical tool in several biological and clinical applications such as screening of SA as a nonspecific tumor marker as well as monitoring of tumor therapy.
Potentiometric glucose biosensor based on core-shell Fe3O4-enzyme-polypyrrole nanoparticles.
Yang, Zhengpeng; Zhang, Chunjing; Zhang, Jianxin; Bai, Wanbei
2014-01-15
Core-shell Fe3O4-enzyme-polypyrrole (Ppy) nanoparticles with excellent magnetism and conductivity were successfully prepared via the surface modification and enzyme self-encapsulation within Ppy. A novel potentiometric glucose biosensor has been constructed by effectively attaching the proposed Fe3O4-enzyme-Ppy nanoparticles to the surface of the magnetic glassy carbon electrode (MGCE). The optimum biosensing conditions could be provided with polymerization time of pyrrole for 6h and 0.42 mg immobilization amount of Fe3O4-enzyme-Ppy nanoparticles on MGCE. The performance of the developed glucose biosensor was evaluated and the results indicated that a sensitive glucose biosensor could be fabricated. The obtained glucose biosensor presents shorter response time (6 s), wider linear range (0.5 μM to 34 mM), lower limit of detection (LOD, 0.3 μM), high-selectivity monitoring of glucose and good stability (with about 98.1% of the initial response signal retained after 20 days). The analytical application of the glucose biosensor confirms the feasibility of glucose detection in serum sample. © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Hong; Cao, Xiaojian; Jia, Ke; Chai, Xueting; Lu, Hua; Lu, Zuhong
2001-10-01
A fiber optic fluorescence biosensor for choline is introduced in this paper. Choline is an important neurotransmitter in mammals. Due to the growing needs for on-site clinical monitoring of the choline, much effect has been devoted to develop choline biosensors. Fiber-optic fluorescence biosensors have many advantages, including miniaturization, flexibility, and lack of electrical contact and interference. The choline fiber-optic biosensor we designed implemented a bifurcated fiber to perform fluorescence measurements. The light of the blue LED is coupled into one end of the fiber as excitation and the emission spectrum from sensing film is monitored by fiber-spectrometer (S2000, Ocean Optics) through the other end of the fiber. The sensing end of the fiber is coated with Nafion film dispersed with choline oxidase and oxygen sensitive luminescent Ru(II) complex (Tris(2,2'-bipyridyl)dichlororuthenium(II), hexahydrate). Choline oxidase catalyzes the oxidation of choline to betaine and hydrogen peroxide while consuming oxygen. The fluorescence intensity of oxygen- sensitive Ru(II) are related to the choline concentration. The response of the fiber-optic sensor in choline solution is represented and discussed. The result indicates a low-cost, high-performance, portable choline biosensor.
Limsakul, Praopim; Peng, Qin; Wu, Yiqian; Allen, Molly E; Liang, Jing; Remacle, Albert G; Lopez, Tyler; Ge, Xin; Kay, Brian K; Zhao, Huimin; Strongin, Alex Y; Yang, Xiang-Lei; Lu, Shaoying; Wang, Yingxiao
2018-04-19
Monitoring enzymatic activities at the cell surface is challenging due to the poor efficiency of transport and membrane integration of fluorescence resonance energy transfer (FRET)-based biosensors. Therefore, we developed a hybrid biosensor with separate donor and acceptor that assemble in situ. The directed evolution and sequence-function analysis technologies were integrated to engineer a monobody variant (PEbody) that binds to R-phycoerythrin (R-PE) dye. PEbody was used for visualizing the dynamic formation/separation of intercellular junctions. We further fused PEbody with the enhanced CFP and an enzyme-specific peptide at the extracellular surface to create a hybrid FRET biosensor upon R-PE capture for monitoring membrane-type-1 matrix metalloproteinase (MT1-MMP) activities. This biosensor revealed asymmetric distribution of MT1-MMP activities, which were high and low at loose and stable cell-cell contacts, respectively. Therefore, directed evolution and rational design are promising tools to engineer molecular binders and hybrid FRET biosensors for monitoring molecular regulations at the surface of living cells. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kaçar, Ceren; Erden, Pınar Esra; Kılıç, Esma
2017-10-01
A novel matrix, carboxylated multiwalled carbon nanotubes-tin oxide nanoparticles-graphene-chitosan (c-MWCNTs-SnO2-GR-CS) composite, was prepared for biosensor construction. Lysine oxidase (LOx) enzyme was immobilized covalently on the surface of c-MWCNTs-GR-SnO2-CS composite modified glassy carbon electrode (GCE) using N-ethyl-N‧-(3-dimethyaminopropyl) carbodiimide (EDC) and N-hydroxyl succinimide (NHS). Effects of electrode composition and buffer pH on biosensor response were investigated to optimize the working conditions. The biosensor exhibited wide linear range (9.9 × 10-7 M-1.6 × 10-4 M), low detection limit (1.5 × 10-7 M), high sensitivity (55.20 μA mM-1 cm-2) and fast amperometric response (<25 s) at +0.70 V vs. Ag/AgCl. With good repeatability and long-term stability, the c-MWCNTs-SnO2-GR-CS based biosensor offered an alternative for L-lysine biosensing. The practical applicability of the biosensor in two dietary supplements has also been addressed.
Pan, Daodong; Gu, Yuanyuan; Lan, Hangzhen; Sun, Yangying; Gao, Huiju
2015-01-01
In this research, the graphene with excellent dispersity is prepared successfully by introducing gold nanoparticle to separate the individual sheets. Various techniques are adopted to characterize the prepared graphene and graphene-gold nanoparticle composite materials. This fabricated new composite material is used as the support material to construct a novel tyrosinase based biosensor for detection of bisphenol A (BPA). The electrochemical performances of the proposed new enzyme biosensor were investigated by differential pulse voltammetry (DPV) method. The proposed biosensor exhibited excellent performance for BPA determination with a wide linear range (2.5×10(-3)-3.0 μM), a highly reproducible response (RSD of 2.7%), low interferences and long-term stability. And more importantly, the calculated detection limit of the proposed biosensor was as low as 1 nM. Compared with other detection methods, this graphene-gold nanoparticle composite based tyrosinase biosensor is proved to be a promising and reliable tool for rapid detection of BPA for on-site analysis of emergency BPA related pollution affairs. Copyright © 2014 Elsevier B.V. All rights reserved.
[Receptor elements for biosensors in two ways of methylotrophic yeast immobilization].
Zaĭtsev, M G; Arliapov, V A; Alferov, V A; Reshetilov, A N
2012-01-01
Receptor elements for biosensors based on Hansenula polymorpha NCYC 495 In yeast cells for ethanol assay were developed using two ways of cell immobilization, i.e., physical adsorption on a glass fiber membrane and covalent binding on a modified nitrocellulose membrane. The linear diapason of ethanol assays for a biosensor based on yeast cells adsorbed on glass fiber was 0.05-1.18; for a biosensor based on yeasts immobilized on a nitrocellulose membrane, 0.2-1.53 mM. Receptor elements based on sorbed cells possessed 2.5 times higher long-term stability. The time response was 1.5 times less for cells immobilized using DEAE-dextran and benzochinone. The results of ethyl alcohol assays using biosensors based on cells immobilized via adsorption and covalent binding, as well as using the standard areometric method, had high correlation coefficients (0.998 and 0.997, respectively, for the two ways of immobilization). The results indicate the possibility to consider the described models of receptor elements for biosensors as prototypes for experimental samples for practical use.
Hyperspectral imaging for simultaneous measurements of two FRET biosensors in pancreatic β-cells.
Elliott, Amicia D; Bedard, Noah; Ustione, Alessandro; Baird, Michelle A; Davidson, Michael W; Tkaczyk, Tomasz; Piston, David W
2017-01-01
Fluorescent protein (FP) biosensors based on Förster resonance energy transfer (FRET) are commonly used to study molecular processes in living cells. There are FP-FRET biosensors for many cellular molecules, but it remains difficult to perform simultaneous measurements of multiple biosensors. The overlapping emission spectra of the commonly used FPs, including CFP/YFP and GFP/RFP make dual FRET measurements challenging. In addition, a snapshot imaging modality is required for simultaneous imaging. The Image Mapping Spectrometer (IMS) is a snapshot hyperspectral imaging system that collects high resolution spectral data and can be used to overcome these challenges. We have previously demonstrated the IMS's capabilities for simultaneously imaging GFP and CFP/YFP-based biosensors in pancreatic β-cells. Here, we demonstrate a further capability of the IMS to image simultaneously two FRET biosensors with a single excitation band, one for cAMP and the other for Caspase-3. We use these measurements to measure simultaneously cAMP signaling and Caspase-3 activation in pancreatic β-cells during oxidative stress and hyperglycemia, which are essential components in the pathology of diabetes.
Mechanistic Challenges and Advantages of Biosensor Miniaturization into the Nanoscale.
Soleymani, Leyla; Li, Feng
2017-04-28
Over the past few decades, there has been tremendous interest in developing biosensing systems that combine high sensitivity and specificity with rapid sample-to-answer times, portability, low-cost operation, and ease-of-use. Miniaturizing the biosensor dimensions into the nanoscale has been identified as a strategy for addressing the functional requirements of point-of-care and wearable biosensors. However, it is important to consider that decreasing the critical dimensions of biosensing elements impacts the two most important performance metrics of biosensors: limit-of-detection and response time. Miniaturization into the nanoscale enhances signal-to-noise-ratio by increasing the signal density (signal/geometric surface area) and reducing background signals. However, there is a trade-off between the enhanced signal transduction efficiency and the longer time it takes to collect target analytes on sensor surfaces due to the increase in mass transport times. By carefully considering the signal transduction mechanisms and reaction-transport kinetics governing different classes of biosensors, it is possible to develop structure-level and device-level strategies for leveraging miniaturization toward creating biosensors that combine low limit-of-detection with rapid response times.
Xiang, Mei-Hao; Liu, Jin-Wen; Li, Na; Tang, Hao; Yu, Ru-Qin; Jiang, Jian-Hui
2016-02-28
Graphitic C3N4 (g-C3N4) nanosheets provide an attractive option for bioprobes and bioimaging applications. Utilizing highly fluorescent and water-dispersible ultrathin g-C3N4 nanosheets, a highly sensitive, selective and label-free biosensor has been developed for ALP detection for the first time. The developed approach utilizes a natural substrate of ALP in biological systems and thus affords very high catalytic efficiency. This novel biosensor is demonstrated to enable quantitative analysis of ALP in a wide range from 0.1 to 1000 U L(-1) with a low detection limit of 0.08 U L(-1), which is among the most sensitive assays for ALP. It is expected that the developed method may provide a low-cost, convenient, rapid and highly sensitive platform for ALP-based clinical diagnostics and biomedical applications.
Nanoparticle-based electrochemical sensors for the detection of lactate and hydrogen peroxide
NASA Astrophysics Data System (ADS)
Uzunoglu, Aytekin
In the present study, electrochemical sensors for the detection of lactate and hydrogen peroxide were constructed by exploiting the physicochemical properties of metal ad metal oxide nanoparticles. This study can be divided into two main sections. While chapter 2, 3, and 4 report on the construction of electrochemical lactate biosensors using CeO2 and CeO2-based mixed metal oxide nanoparticles, chapter 5 and 6 show the development of electrochemical hydrogen peroxide sensors by the decoration of the electrode surface with palladium-based nanoparticles. First generation oxidase enzyme-based sensors suffer from oxygen dependency which results in errors in the response current of the sensors in O2-lean environments. To address this challenge, the surface of the sensors must be modified with oxygen rich materials. In this regard, we developed a novel electrochemical lactate biosensor design by exploiting the oxygen storage capacity of CeO2 and CeO 2-CuO nanoparticles. By the introduction of CeO2 nanoparticles into the enzyme layer of the sensors, negative interference effect of ascorbate which resulted from the formation of oxygen-lean regions was eliminated successfully. When CeO2-based design was exposed to higher degree of O2 -depleted environments, however, the response current of the biosensors experienced an almost 21 % decrease, showing that the OSC of CeO2 was not high enough to sustain the enzymatic reactions. When CeO2-CuO nanoparticles, which have 5 times higher OSC than pristine CeO2, were used as an oxygen supply in the enzyme layer, the biosensors did not show any drop in the performance when moving from oxygen-rich to oxygen-lean conditions. In the second part of the study, PdCu/SPCE and PdAg/rGO-based electrochemical H2O2 sensors were designed and their performances were evaluated to determine their sensitivity, linear range, detection limit, and storage stability. In addition, practical applicability of the sensors was studied in human serum. The chronoamperometry results showed that the PdCu/SPCE sensors yielded a high sensitivity (396.7 microA mM -1 cm-2), a wide linear range (0.5 -11 mM), and a low limit of detection (0.7 microM) at the applied potential of -0.3 V. For PdAg/rGO sensors, a high sensitivity of 247.6 +/- 2.7 microA˙mM -1˙cm-2 was obtained towards H2O 2 in a linear range of 0.05 mM to 28 mM.
Synthesis and cytotoxicity of azo nano-materials as new biosensors for L-Arginine determination.
Shang, Xuefang; Luo, Leiming; Ren, Kui; Wei, Xiaofang; Feng, Yaqian; Li, Xin; Xu, Xiufang
2015-06-01
Inspired from biological counterparts, chemical modification of azo derivatives with function groups may provide a highly efficient method to detect amino acid. Herein, we have designed and prepared a series of azo nano-materials involving -NO2, -COOH, -SO3H and naphthyl group, which showed high response for Arginine (Arg) among normal twenty kinds of (Alanine, Valine, Leucine, Isoleucine, Methionine, Aspartic acid, Glutamic acid, Arginine, Glycine, Serine, Threonine, Asparagine, Phenylalanine, Histidine, Tryptophan, Proline, Lysine, Glutamine, Tyrosine and Cysteine). Furthermore, theoretical investigation further illustrated the possible binding mode in the host-guest interaction and the roles of molecular frontier orbitals in molecular interplay. In addition, nano-material 3 exhibited high binding ability for Arg and low cytotoxicity to KYSE450 cells over a concentration range of 5-50μmol·L(-1) which may be used a biosensor for the Arg detection in vivo. Copyright © 2015 Elsevier B.V. All rights reserved.
Khan, Md. Rajibur Rahaman; Khalilian, Alireza; Kang, Shin-Won
2016-01-01
In this paper, we proposed an interdigitated capacitor (IDC)-based glucose biosensor to measure different concentrations of glucose from 1 μM to 1 M. We studied four different types of solvatochromic dyes: Auramine O, Nile red, Rhodamine B, and Reichardt’s dye (R-dye). These dyes were individually incorporated into a polymer [polyvinyl chloride (PVC)] and N,N-Dimethylacetamide (DMAC) solution to make the respective dielectric/sensing materials. To the best of our knowledge, we report for the first time an IDC glucose biosensing system utilizing a solvatochromic-dye-containing sensing membrane. These four dielectric or sensing materials were individually placed into the interdigitated electrode (IDE) by spin coating to make four IDC glucose biosensing elements. The proposed IDC glucose biosensor has a high sensing ability over a wide dynamic range and its sensitivity was about 23.32 mV/decade. It also has fast response and recovery times of approximately 7 s and 5 s, respectively, excellent reproducibility with a standard deviation of approximately 0.023, highly stable sensing performance, and real-time monitoring capabilities. The proposed IDC glucose biosensor was compared with an IDC, potentiometric, FET, and fiber-optic glucose sensor with respect to response time, dynamic range width, sensitivity, and linearity. We observed that the designed IDC glucose biosensor offered excellent performance. PMID:26907291
Khan, Md Rajibur Rahaman; Khalilian, Alireza; Kang, Shin-Won
2016-02-20
In this paper, we proposed an interdigitated capacitor (IDC)-based glucose biosensor to measure different concentrations of glucose from 1 μM to 1 M. We studied four different types of solvatochromic dyes: Auramine O, Nile red, Rhodamine B, and Reichardt's dye (R-dye). These dyes were individually incorporated into a polymer [polyvinyl chloride (PVC)] and N,N-Dimethylacetamide (DMAC) solution to make the respective dielectric/sensing materials. To the best of our knowledge, we report for the first time an IDC glucose biosensing system utilizing a solvatochromic-dye-containing sensing membrane. These four dielectric or sensing materials were individually placed into the interdigitated electrode (IDE) by spin coating to make four IDC glucose biosensing elements. The proposed IDC glucose biosensor has a high sensing ability over a wide dynamic range and its sensitivity was about 23.32 mV/decade. It also has fast response and recovery times of approximately 7 s and 5 s, respectively, excellent reproducibility with a standard deviation of approximately 0.023, highly stable sensing performance, and real-time monitoring capabilities. The proposed IDC glucose biosensor was compared with an IDC, potentiometric, FET, and fiber-optic glucose sensor with respect to response time, dynamic range width, sensitivity, and linearity. We observed that the designed IDC glucose biosensor offered excellent performance.
Abellán-Llobregat, A.; Jeerapan, I.; Bandodkar, A.; Vidal, L.; Canals, A.; Wang, J.; Morallón, E.
2017-01-01
Here we present two types of all-printable, highly stretchable, and inexpensive devices based on platinum (Pt)-decorated graphite for glucose determination in physiological fluids. Said devices are: a non-enzymatic sensor and an enzymatic biosensor, the latter showing promising results. Glucose has been quantified by measuring hydrogen peroxide (H2O2) reduction by chronoamperometry at -0.35 V (vs pseudo-Ag/AgCl) using glucose-oxidase immobilized on Pt-decorated graphite. The sensor performs well for the quantification of glucose in phosphate buffer solution (0.25 M PBS, pH 7.0), with a working range between 33 μM and 0.9 mM, high sensitivity and selectivity, and a low limit of detection (LOD). Thus it provides an alternative non-invasive and on-body quantification of glucose levels in human perspiration. This biosensor has been successfully applied on real human perspiration samples and results also show a significant correlation between glucose concentration in perspiration and glucose concentration in blood measured by a commercial glucose meter. PMID:28167366
Engineering carbon nanomaterials for future applications: energy and bio-sensor
NASA Astrophysics Data System (ADS)
Das, Santanu; Lahiri, Indranil; Kang, Chiwon; Choi, Wonbong
2011-06-01
This paper presents our recent results on carbon nanomaterials for applications in energy storage and bio-sensor. More specifically: (i) A novel binder-free carbon nanotubes (CNTs) structure as anode in Li-ion batteries. The interfacecontrolled CNT structure, synthesized through a two-step chemical vapor deposition (CVD) and directly grown on copper current collector, showed very high specific capacity - almost three times as that of graphite, excellent rate capability. (ii) A large scale graphene film was grown on Cu foil by thermal chemical vapor deposition and transferred to various substrates including PET, glass and silicon by using hot press lamination and etching process. The graphene/PET film shows high quality, flexible transparent conductive structure with unique electrical-mechanical properties; ~88.80 % light transmittance and ~ 100 Ω/sq sheet resistance. We demonstrate application of graphene/PET film as flexible and transparent electrode for field emission displays. (iii) Application of individual carbon nanotube as nanoelectrode for high sensitivity electrochemical sensor and device miniaturization. An individual CNT is split into a pair of nanoelectrodes with a gap between them. Single molecular-level detection of DNA hybridization was studied. Hybridization of the probe with its complementary strand results in an appreciable change in the electrical output signal.
Study and development of label-free optical biosensors for biomedical applications
NASA Astrophysics Data System (ADS)
Choi, Charles J.
For the majority of assays currently performed, fluorescent or colorimetric chemical labels are commonly attached to the molecules under study so that they may be readily visualized. The methods of using labels to track biomolecular binding events are very sensitive and effective, and are employed as standardized assay protocol across research labs worldwide. However, using labels induces experimental uncertainties due to the effect of the label on molecular conformation, active binding sites, or inability to find an appropriate label that functions equivalently for all molecules in an experiment. Therefore, the ability to perform highly sensitive biochemical detection without the use of fluorescent labels would further simplify assay protocols and would provide quantitative kinetic data, while removing experimental artifacts from fluorescent quenching, shelf-life, and background fluorescence phenomena. In view of the advantages mentioned above, the study and development of optical label-free sensor technologies have been undertaken here. In general, label-free photonic crystal (PC) biosensors and metal nanodome array surface-enhanced Raman scattering (SERS) substrates, both of which are fabricated by nanoreplica molding process, have been used as the method to attack the problem. Chapter 1 shows the work on PC label-free biosensor incorporated microfluidic network for bioassay performance enhancement and kinetic reaction rate constant determination. Chapter 2 describes the work on theoretical and experimental comparison of label-free biosensing in microplate, microfluidic, and spot-based affinity capture assays. Chapter 3 shows the work on integration of PC biosensor with actuate-to-open valve microfluidic chip for pL-volume combinatorial mixing and screening application. In Chapter 4, the development and characterization of SERS nanodome array is shown. Lastly, Chapter 5 describes SERS nanodome sensor incorporated tubing for point-of-care monitoring of intravenous drugs and metabolites.
Dai, Zhihui; Shao, Guojian; Hong, Jianmin; Bao, Jianchun; Shen, Jian
2009-01-01
A tetragonal pyramid-shaped porous ZnO (TPSP-ZnO) nanostructure is used for the immobilization, direct electrochemistry and biosensing of proteins. The prepared ZnO has a large surface area and good biocompatibility. Using glucose oxidase (GOD) as a model, this shaped ZnO is tested for immobilization of proteins and the construction of electrochemical biosensors with good electrochemical performances. The interaction between GOD and TPSP-ZnO is examined by using AFM, N(2) adsorption isotherms and electrochemical methods. The immobilized GOD at a TPSP-ZnO-modified glassy carbon electrode shows a good direct electrochemical behavior, which depends on the properties of the TPSP-ZnO. Based on a decrease of the electrocatalytic response of the reduced form of GOD to dissolved oxygen, the proposed biosensor exhibits a linear response to glucose concentrations ranging from 0.05 to 8.2mM with a detection limit of 0.01mM at an applied potential of -0.50V which has better biosensing properties than those from other morphological ZnO nanoparticles. The biosensor shows good stability, reproducibility, low interferences and can diagnose diabetes very fast and sensitively. Such the TPSP-ZnO nanostructure provides a good matrix for protein immobilization and biosensor preparation.
Azzouzi, Sawsen; Rotariu, Lucian; Benito, Ana M; Maser, Wolfgang K; Ben Ali, Mounir; Bala, Camelia
2015-07-15
In this work, a novel amperometric biosensor based on gold nanoparticles anchored on reduced graphene oxide (RGO-AuNPs) and l-lactate dehydrogenase (LDH) was developed for the sensing of l-lactate. Firstly, the RGO-AuNPs modified screen printed electrodes were tested for NADH detection showing a wide dynamic range and a low detection limit. Next, the biosensor was constructed by incorporating both enzyme and RGO-AuNPs in a sol gel matrix derived from tetrametoxysilane and methyltrimetoxysilane. The enzyme loading, working pH, and coenzyme concentration were optimized. The biosensor linearly responded to l-lactate in the range of 10µM-5mM and showed a good specific sensitivity of 154µA/mMcm(2) with a detection limit of 0.13µM. This was accompanied by good reproducibility and operational stability. Tests on artificial serum proved that l-lactate can be determined practically without interferences from commonly interfering compounds such as urate, paracetamol and l-ascorbate. Our LDH/RGO-AuNPs/SPCE based biosensor thus performs as electrochemical device for the detection of l-lactate as a viable early cancer bio-marker. Copyright © 2015 Elsevier B.V. All rights reserved.
In Vivo Model to Test Implanted Biosensors for Blood pH
NASA Technical Reports Server (NTRS)
Arnaud, Sara B.; Somps, Chris J.; Madou, Marc; Hines, John; Wade, Charles E. (Technical Monitor)
1997-01-01
Biosensors for monitoring physiologic data continuously through telemetry are available for heart rate, respiration, and temperature but not for blood pH or ions affected by hydrogen ion concentration. A telemetric biosensor for monitoring blood pH on-line could be used to identify and manage problems in fluid and electrolyte metabolism, cardiac and respiratory function during space flight and the acid-base status of patients without the need for venipuncture in patients on Earth. Critical to the development of biosensors is a method for evaluating their performance after implantation. Mature rats, prepared with jugular, cannulas for repeated blood samples, were exposed to a gas mixture containing high levels of carbon dioxide (7%) in a closed environment to induce mild respiratory acidosis. Serial blood gas and pH measurements in venous blood were compared with electrical responses from sensors implanted in the subcutaneous tissue. Animals became slightly tachypneic after exposure to excess CO2, but remained alert and active. After 5 minutes, basal blood pH decreased from 7.404 +/- 0.013 to 7.289 +/- 0.010 (p less than 0.001)and PC02 increased from 45 +/- 6 to 65 +/- 4 mm. Hg (p les than 0.001). Thereafter pH and blood gas parameters remained stable. Implanted sensors showed a decrease in millivolts (mV) which paralleled the change in pH and averaged 5-6 mV per 0.1 unit pH. Implanted sensors remained sensitive to modest changes in tissue pH for one week. A system for inducing acidosis in rats was developed to test the in vivo performance of pH biosensors. The system provides a method which is sensitive, rapid and reproducible in the same and different animals with full recovery, for testing the performance of sensors implanted in subcutaneous tissues.
Rahmanian, Reza; Mozaffari, Sayed Ahmad; Abedi, Mohammad
2015-12-01
In the present study, a facile and simple fabrication method of a semiconductor based urea biosensor was reported via three steps: (i) producing a ZnO-PVA composite film by means of a polymer assisted electrodeposition of zinc oxide (ZnO) on the F-doped SnO2 conducting glass (FTO) using water soluble polyvinyl alcohol (PVA), (ii) obtaining a nanoporous ZnO film by PVA omission via a subsequent post-treatment by annealing of the ZnO-PVA film, and (iii) preparation of a FTO/ZnO/Urs biosensor by exploiting a nanoporous ZnO film as an efficient and excellent platform area for electrostatic immobilization of urease enzyme (Urs) which was forced by the difference in their isoelectric point (IEP). The characterization techniques focused on the analysis of the ZnO-PVA film surfaces before and after annealing, which had a prominent effect on the porosity of the prepared ZnO film. The surface characterization of the nanostructured ZnO film by a field emission-scanning electron microscopy (FE-SEM), exhibited a film surface area as an effective bio-sensing matrix for enzyme immobilization. The structural characterization and monitoring of the biosensor fabrication was performed using UV-Vis, Fourier Transform Infrared (FT-IR), Raman Spectroscopy, Thermogravimetric Analysis (TGA), Cyclic Voltammetry (CV), and Electrochemical Impedance Spectroscopy (EIS) techniques. The impedimetric results of the FTO/ZnO/Urs biosensor showed a high sensitivity for urea detection within 8.0-110.0mg dL(-1) with the limit of detection as 5.0mg dL(-1). Copyright © 2015 Elsevier B.V. All rights reserved.
Molecular signaling in live cells studied by FRET
NASA Astrophysics Data System (ADS)
Chien, Shu; Wang, Yingxiao
2011-11-01
Genetically encoded biosensors based on fluorescence resonance energy transfer (FRET) enables visualization of signaling events in live cells with high spatiotemporal resolution. We have used FRET to assess temporal and spatial characteristics for signaling molecules, including tyrosine kinases Src and FAK, small GTPase Rac, calcium, and a membrane-bound matrix metalloproteinase MT1-MMP. Activations of Src and Rac by platelet derived growth factor (PDGF) led to distinct subcellular patterns during cell migration on micropatterned surface, and these two enzymes interact with each other to form a feedback loop with differential regulations at different subcellular locations. We have developed FRET biosensors to monitor FAK activities at rafts vs. non-raft regions of plasma membrane in live cells. In response to cell adhesion on matrix proteins or stimulation by PDGF, the raft-targeting FAK biosensor showed a stronger FRET response than that at non-rafts. The FAK activation at rafts induced by PDGF is mediated by Src. In contrast, the FAK activation at rafts induced by adhesion is independent of Src activity, but rather is essential for Src activation. Thus, Src is upstream to FAK in response to chemical stimulation (PDGF), but FAK is upstream to Src in response to mechanical stimulation (adhesion). A novel biosensor has been developed to dynamically visualize the activity of membrane type-1-matrix metalloproteinase (MT1-MMP), which proteolytically remodels the extracellular matrix. Epidermal growth factor (EGF) directed active MT1-MMP to the leading edge of migrating live cancer cells with local accumulation of EGF receptor via a process dependent on an intact cytoskeletal network. In summary, FRET-based biosensors enable the elucidation of molecular processes and hierarchies underlying spatiotemporal regulation of biological and pathological processes, thus advancing our knowledge on how cells perceive mechanical/chemical cues in space and time to coordinate molecular/cellular functions.
An efficient biosensor made of an electromagnetic trap and a magneto-resistive sensor.
Li, Fuquan; Kosel, Jürgen
2014-09-15
Magneto-resistive biosensors have been found to be useful because of their high sensitivity, low cost, small size, and direct electrical output. They use super-paramagnetic beads to label a biological target and detect it via sensing the stray field. In this paper, we report a new setup for magnetic biosensors, replacing the conventional "sandwich" concept with an electromagnetic trap. We demonstrate the capability of the biosensor in the detection of E. coli. The trap is formed by a current-carrying microwire that attracts the magnetic beads into a sensing space on top of a tunnel magneto-resistive sensor. The sensor signal depends on the number of beads in the sensing space, which depends on the size of the beads. This enables the detection of biological targets, because such targets increase the volume of the beads. Experiments were carried out with a 6 µm wide microwire, which attracted the magnetic beads from a distance of 60 μm, when a current of 30 mA was applied. A sensing space of 30 µm in length and 6 µm in width was defined by the magnetic sensor. The results showed that individual E. coli bacterium inside the sensing space could be detected using super-paramagnetic beads that are 2.8 µm in diameter. The electromagnetic trap setup greatly simplifies the device and reduces the detection process to two steps: (i) mixing the bacteria with magnetic beads and (ii) applying the sample solution to the sensor for measurement, which can be accomplished within about 30 min with a sample volume in the µl range. This setup also ensures that the biosensor can be cleaned easily and re-used immediately. The presented setup is readily integrated on chips via standard microfabrication techniques. Copyright © 2014 Elsevier B.V. All rights reserved.
Molecular signaling in live cells studied by FRET
NASA Astrophysics Data System (ADS)
Chien, Shu; Wang, Yingxiao
2012-03-01
Genetically encoded biosensors based on fluorescence resonance energy transfer (FRET) enables visualization of signaling events in live cells with high spatiotemporal resolution. We have used FRET to assess temporal and spatial characteristics for signaling molecules, including tyrosine kinases Src and FAK, small GTPase Rac, calcium, and a membrane-bound matrix metalloproteinase MT1-MMP. Activations of Src and Rac by platelet derived growth factor (PDGF) led to distinct subcellular patterns during cell migration on micropatterned surface, and these two enzymes interact with each other to form a feedback loop with differential regulations at different subcellular locations. We have developed FRET biosensors to monitor FAK activities at rafts vs. non-raft regions of plasma membrane in live cells. In response to cell adhesion on matrix proteins or stimulation by PDGF, the raft-targeting FAK biosensor showed a stronger FRET response than that at non-rafts. The FAK activation at rafts induced by PDGF is mediated by Src. In contrast, the FAK activation at rafts induced by adhesion is independent of Src activity, but rather is essential for Src activation. Thus, Src is upstream to FAK in response to chemical stimulation (PDGF), but FAK is upstream to Src in response to mechanical stimulation (adhesion). A novel biosensor has been developed to dynamically visualize the activity of membrane type-1-matrix metalloproteinase (MT1-MMP), which proteolytically remodels the extracellular matrix. Epidermal growth factor (EGF) directed active MT1-MMP to the leading edge of migrating live cancer cells with local accumulation of EGF receptor via a process dependent on an intact cytoskeletal network. In summary, FRET-based biosensors enable the elucidation of molecular processes and hierarchies underlying spatiotemporal regulation of biological and pathological processes, thus advancing our knowledge on how cells perceive mechanical/chemical cues in space and time to coordinate molecular/cellular functions.
Smartphone based non-invasive salivary glucose biosensor.
Soni, Anuradha; Jha, Sandeep Kumar
2017-12-15
The present work deals with the development of a non-invasive optical glucose biosensor using saliva samples and a smartphone. The sensor was fabricated with a simple methodology by immobilization of Glucose oxidase enzyme along with a pH responsive dye on a filter paper based strip. The strip changes color upon reaction with glucose present in saliva and the color changes were detected using a smartphone camera through RGB profiling. This standalone biosensor showed good sensitivity and low interference while operating within 20 s response time. We used various means for improvements such as the use of slope method instead of differential response; use of a responsive pH indicator and made numerous tweaks in the smartphone app. Calibration with spiked saliva samples with slopes for (R + G + B) pixels revealed an exponentially increasing calibration curve with a linear detection range of 50-540 mg/dL, sensitivity of 0.0012 pixels sec -1 /mg dL -1 and LOD of 24.6 mg/dL. The biosensor was clinically validated on both healthy and diabetic subjects divided into several categories based on sex, age, diabetic status etc. and correlation between blood and salivary glucose has been established for better standardization of the sensor. Correlation of 0.44 was obtained between blood and salivary glucose in healthy individuals whereas it was 0.64 and 0.94 in case of prediabetic and diabetic patients respectively. The developed biosensor has the potential to be used for mass diagnosis of diabetes especially in such areas where people remain prohibited from routine analysis due to high healthcare cost. Apart from that, a smartphone would be the only device the user needs for this measurement, along with a disposable low cost test strip. Copyright © 2017 Elsevier B.V. All rights reserved.
Esfandyarpour, Rahim; Esfandyarpour, Hesaam; Harris, James S; Davis, Ronald W
2013-11-22
Biosensors are used for the detection of biochemical molecules such as proteins and nucleic acids. Traditional techniques, such as enzyme-linked immuno-sorbent assay (ELISA), are sensitive but require several hours to yield a result and usually require the attachment of a fluorophore molecule to the target molecule. Micromachined biosensors that employ electrical detection are now being developed. Here we describe one such device, which is ultrasensitive, real-time, label free and localized. It is called the nanoneedle biosensor and shows promise to overcome some of the current limitations of biosensors. The key element of this device is a 10 nm wide annular gap at the end of the needle, which is the sensitive part of the sensor. The total diameter of the sensor is about 100 nm. Any change in the population of molecules in this gap results in a change of impedance across the gap. Single molecule detection should be possible because the sensory part of the sensor is in the range of bio-molecules of interest. To increase throughput we can flow the solution containing the target molecules over an array of such structures, each with its own integrated read-out circuitry to allow 'real-time' detection (i.e. several minutes) of label free molecules without sacrificing sensitivity. To fabricate the arrays we used electron beam lithography together with associated pattern transfer techniques. Preliminary measurements on individual needle structures in water are consistent with the design. Since the proposed sensor has a rigid nano-structure, this technology, once fully developed, could ultimately be used to directly monitor protein quantities within a single living cell, an application that would have significant utility for drug screening and studying various intracellular signaling pathways.
Cordeiro, C A; de Vries, M G; Ngabi, W; Oomen, P E; Cremers, T I F H; Westerink, B H C
2015-05-15
Enzyme-based amperometric biosensors are widely used for monitoring key biomarkers. In experimental neuroscience there is a growing interest in in vivo continuous and simultaneous monitoring of metabolism-related biomarkers, like glucose, lactate and pyruvate. The use of multiplex biosensors will provide better understanding of brain energy metabolism and its role in neuropathologies such as diabetes, ischemia, and epilepsy. We have developed and characterized an implantable multiplex microbiosensor device (MBD) for simultaneous and continuous in vivo monitoring of glucose, lactate, and pyruvate. First, we developed and characterized amperometric microbiosensors for monitoring lactate and pyruvate. In vitro evaluation allowed us to choose the most suitable biosensors for incorporation into the MBD, along with glucose and background biosensors. Fully assembled MBDs were characterized in vitro. The calculated performance parameters (LOD, LR, LRS, IMAX and appKM) showed that the multiplex MBD was highly selective and sensitive (LRS≥100 nA/mM) for each analyte and within an adequate range for in vivo application. Finally, MBDs were implanted in the mPFC of anesthetized adult male Wistar rats for in vivo evaluation. Following an equilibration period, baseline brain levels of glucose (1.3±0.2 mM), lactate (1.5±0.4 mM) and pyruvate (0.3±0.1 mM) were established. Subsequently, the MBDs recorded the responses of the animals when submitted to hyperglycemic (40% glucose i.v.) and hypoglycemic (5 U/kg insulin i.v.) challenges. Afterwards, MBDs were recalibrated to convert electrochemical readings into accurate substrate concentrations and to assess biofouling. The presented MBD can monitor simultaneously multiple biomarkers in vivo. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Esfandyarpour, Rahim; Esfandyarpour, Hesaam; Harris, James S.; Davis, Ronald W.
2013-11-01
Biosensors are used for the detection of biochemical molecules such as proteins and nucleic acids. Traditional techniques, such as enzyme-linked immuno-sorbent assay (ELISA), are sensitive but require several hours to yield a result and usually require the attachment of a fluorophore molecule to the target molecule. Micromachined biosensors that employ electrical detection are now being developed. Here we describe one such device, which is ultrasensitive, real-time, label free and localized. It is called the nanoneedle biosensor and shows promise to overcome some of the current limitations of biosensors. The key element of this device is a 10 nm wide annular gap at the end of the needle, which is the sensitive part of the sensor. The total diameter of the sensor is about 100 nm. Any change in the population of molecules in this gap results in a change of impedance across the gap. Single molecule detection should be possible because the sensory part of the sensor is in the range of bio-molecules of interest. To increase throughput we can flow the solution containing the target molecules over an array of such structures, each with its own integrated read-out circuitry to allow ‘real-time’ detection (i.e. several minutes) of label free molecules without sacrificing sensitivity. To fabricate the arrays we used electron beam lithography together with associated pattern transfer techniques. Preliminary measurements on individual needle structures in water are consistent with the design. Since the proposed sensor has a rigid nano-structure, this technology, once fully developed, could ultimately be used to directly monitor protein quantities within a single living cell, an application that would have significant utility for drug screening and studying various intracellular signaling pathways.
Alcohol Dehydrogenase of Bacillus strain for Measuring Alcohol Electrochemically
NASA Astrophysics Data System (ADS)
Iswantini, D.; Nurhidayat, N.; Ferit, H.
2017-03-01
Alcohol dehydrogenase (ADH) was applied to produce alcohol biosensor. The enzyme was collected from cultured Bacillus sp. in solid media. From 6 tested isolates, bacteria from fermented rice grain (TST.A) showed the highest oxidation current which was further applied as the bioreceptor. Various ethanol concentrations was measured based on the increase of maximum oxidation current value. However, a reduction value was happened when the ethanol concentration was higher than 5%. Comparing the result of spectrophotometry measurement, R2 value obtained from the biosensor measurement method was higher. The new proposed method resulted a wider detection range, from 0.1-5% of ethanol concentration. The result showed that biosensor method has big potency to be used as alcohol detector in foods or bevearages.
Synthesis and assessment of peptide-nanocellulosic biosensors
USDA-ARS?s Scientific Manuscript database
Nanocellulose is an ideal transducer surface for biosensors: it provides a high surface area, easily derivatized with bioactive molecules, and abrogates binding of proteins present in biological fluids where analytes and clinical biomarkers are of interest. Here an example of approaches to biosenso...
ERIC Educational Resources Information Center
Niagi, John; Warner, John; Andreesco, Silvana
2007-01-01
The study describes the development of new biosensors based on metal nanoparticles because of its high surface area and large binding ability. The adopted procedure is extremely simple and versatile and can be used in various applications of electrochemistry.
Screening Substrate Properties of Microorganisms for Biosensor Detection of Oligosaccharides
USDA-ARS?s Scientific Manuscript database
Oligosaccharides feature high biological activity ensuring their wide application in the biotechnology, food, and cosmetic industries. On the other hand they are considered environmental pollutants. The study outlines a biosensor approach to detect these substances which is important from above st...
Hsu, Cheng-Teng; Hsiao, Hung-Chan; Fang, Mei-Yen; Zen, Jyh-Myng
2009-10-15
Disposable one shot usage blood glucose strips are routinely used in the diagnosis and management of diabetes mellitus and their performance can vary greatly. In this paper we critically evaluated the long-term stability of glucose strips made of barrel plating gold electrodes. Compared to other glucose biosensing platforms of vapor deposited palladium and screen printed carbon electrodes, the proposed glucose biosensor was found to show the best stability among the three biosensing platforms in thermal acceleration experiments at 40 degrees C for 6 months with an average bias of 3.4% at glucose concentrations of 5-20 mM. The precision test of this barrel plating gold glucose biosensor also showed the best performance (coefficients of variation in the range of 1.4-2.4%) in thermal acceleration experiments at 40 degrees C, 50 degrees C and 70 degrees C for 27 days. Error grid analysis revealed that all measurements fell in zone A and zone B. Regression analysis showed no significant difference between the proposed biosensor and the reference method at 99% confidence level. The amperometric glucose biosensor fabricated by inserting two barrel plating gold electrodes onto an injection-molding plastic base followed by immobilizing with a bio-reagent layer and membrane was very impressive with a long-term stability up to 2.5 years at 25 degrees C. Overall, these results indicated that the glucose oxidase/barrel plating gold biosensing platform is ideal for long-term accurate glycemic control.
Szunerits, Sabine; Boukherroub, Rabah
2018-06-06
Reliable data obtained from analysis of DNA, proteins, bacteria and other disease-related molecules or organisms in biological samples have become a fundamental and crucial part of human health diagnostics and therapy. The development of non-invasive tests that are rapid, sensitive, specific and simple would allow patient discomfort to be prevented, delays in diagnosis to be avoided and the status of a disease to be followed up. Bioanalysis is thus a progressive discipline for which the future holds many exciting opportunities. The use of biosensors for the early diagnosis of diseases has become widely accepted as a point-of-care diagnosis with appropriate specificity in a short time. To allow a reliable diagnosis of a disease at an early stage, highly sensitive biosensors are required as the corresponding biomarkers are generally expressed at very low concentrations. In the past 50 years, various biosensors have been researched and developed encompassing a wide range of applications. This contrasts the limited number of commercially available biosensors. When it comes to sensing of biomarkers with the required picomolar (pM) sensitivity for real-time sensing of biological samples, only a handful of sensing systems have been proposed, and these are often rather complex and costly. Lately, graphene-based materials have been considered as superior over other nanomaterials for the development of sensitive biosensors. The advantages of graphene-based sensor interfaces are numerous, including enhanced surface loading of the desired ligand due to the high surface-to-volume ratio, excellent conductivity and a small band gap that is beneficial for sensitive electrical and electrochemical read-outs, as well as tunable optical properties for optical read-outs such as fluorescence and plasmonics. In this paper, we review the advances made in recent years on graphene-based biosensors in the field of medical diagnosis.
Carbohydrate-based electrochemical biosensor for detection of a cancer biomarker in human plasma.
Devillers, Marion; Ahmad, Lama; Korri-Youssoufi, Hafsa; Salmon, Laurent
2017-10-15
Autocrine motility factor (AMF) is a tumor-secreted cytokine that stimulates tumor cell motility in vitro and metastasis in vivo. AMF could be detected in serum or urine of cancer patients with worse prognosis. Reported as a cancer biomarker, AMF secretion into body fluids might be closely related to metastases formation. In this study, a sensitive and specific carbohydrate-based electrochemical biosensor was designed for the detection and quantification of a protein model of AMF, namely phosphoglucose isomerase from rabbit muscle (RmPGI). Indeed, RmPGI displays high homology with AMF and has been shown to have AMF activity. The biosensor was constructed by covalent binding of the enzyme substrate d-fructose 6-phosphate (F6P). Immobilization was achieved on a gold surface electrode following a bottom-up approach through an aminated surface obtained by electrochemical patterning of ethylene diamine and terminal amine polyethylene glycol chain to prevent non-specific interactions. Carbohydrate-protein interactions were quantified in a range of 10 fM to 100nM. Complex formation was analyzed through monitoring of the redox couple Fe 2+ /Fe 3+ by electrochemical impedance spectroscopy and square wave voltammetry. The F6P-biosensor demonstrates a detection limit of 6.6 fM and high selectivity when compared to other non-specific glycolytic proteins such as d-glucose-6-phosphate dehydrogenase. Detection of protein in spiked plasma was demonstrated and accuracy of 95% is obtained compared to result obtained in PBS (phosphate buffered saline). F6P-biosensor is a very promising proof of concept required for the design of a carbohydrate-based electrochemical biosensor using the enzyme substrate as bioreceptor. Such biosensor could be generalized to detect other protein biomarkers of interest. Copyright © 2017 Elsevier B.V. All rights reserved.
Dong, Tao; Pires, Nuno Miguel Matos
2017-08-15
This work reports a novel optical microfluidic biosensor with highly sensitive organic photodetectors (OPDs) for absorbance-based detection of salivary protein biomarkers at the point of care. The compact and miniaturized biosensor has comprised OPDs made of polythiophene-C 70 bulk heterojunction for the photoactive layer; whilst a calcium-free cathode interfacial layer, made of linear polyethylenimine, was incorporated to the photodetectors to enhance the low cost. The OPDs realized onto a glass chip were aligned to antibody-functionalized chambers of a poly(methyl methacrylate) microfluidic chip, in where immunogold-silver assays were conducted. The biosensor has detected IL-8, IL-1β and MMP-8 protein in spiked saliva with high detection specificity and short analysis time exhibiting detection limits between 80pgmL -1 and 120pgmL -1 . The result for IL-8 was below the clinical established cut-off of 600pgmL -1 , which revealed the potential of the biosensor to early detection of oral cancer. The detection limit was also comparable to other previously reported immunosensors performed with bulky instrumentation or using inorganic photodetectors. The optical detection sensitivity of the polythiophene-C 70 OPD was enhanced by optimizing the thickness of the photoactive layer and anode interfacial layer prior to the saliva immunoassays. Further, the biosensor was tested with unspiked human saliva samples, and the results of measuring IL-8 and IL-1β were in statistical agreement with those provided by two commercial assays of ELISA. The optical microfluidic biosensor reported hereby offers an attractive and cost-effective tool to diagnostics or screening purposes at the point of care. Copyright © 2017 Elsevier B.V. All rights reserved.
Bio-sensing applications of cerium oxide nanoparticles: Advantages and disadvantages.
Charbgoo, Fahimeh; Ramezani, Mohammad; Darroudi, Majid
2017-10-15
Cerium oxide nanoparticles (CNPs) contain several properties such as catalytic activity, fluorescent quencher and electrochemical, high surface area, and oxygen transfer ability, which have attracted considerable attention in developing high-sensitive biosensors. CNPs can be used as a whole sensor or a part of recognition or transducer element. However, reports have shown that applying these nanoparticles in sensor design could remarkably enhance detection sensitivity. CNP's outstanding properties in biosensors which go from high catalytic activity and surface area to oxygen transfer and fluorescent quenching capabilities are also highlighted. Herein, we discuss the advantages and disadvantages of CNPs-based biosensors that function through various detection modes including colorimetric, electrochemistry, and chemoluminescent regarding the detection of small organic chemicals, metal ions and biomarkers. Copyright © 2017 Elsevier B.V. All rights reserved.
Thin-film amperometric multibiosensor for simultaneous determination of lactate and glucose in wine.
Shkotova, Lyudmyla V; Piechniakova, Nataliia Y; Kukla, Oleksandr L; Dzyadevych, Sergei V
2016-04-15
An amperometric multi-biosensor based on lactate and glucose oxidases has been developed for determination of lactate and glucose in wine. Gold thin-film amperometric electrodes were used as multi-transducers. Analytical characteristics of the multi-biosensor developed were studied. The minimum detectable concentration was 5×10(-6) mol/l for both glucose and lactate. High reproducibility and storage stability of the multi-biosensor are demonstrated in this paper. Lactate and glucose were determined in wine, and a good correlation was obtained with concentrations determined using high-performance liquid chromatography (correlation coefficient for glucose R(2)=0.998, for lactate R(2)=0.718). Copyright © 2015 Elsevier Ltd. All rights reserved.
Xiu, Yu; Jang, Sungho; Jones, J Andrew; Zill, Nicholas A; Linhardt, Robert J; Yuan, Qipeng; Jung, Gyoo Yeol; Koffas, Mattheos A G
2017-10-01
The ability to design and construct combinatorial synthetic metabolic pathways has far exceeded our capacity for efficient screening and selection of the resulting microbial strains. The need for high-throughput rapid screening techniques is of upmost importance for the future of synthetic biology and metabolic engineering. Here we describe the development of an RNA riboswitch-based biosensor module with dual fluorescent reporters, and demonstrate a high-throughput flow cytometry-based screening method for identification of naringenin over producing Escherichia coli strains in co-culture. Our efforts helped identify a number of key operating parameters that affect biosensor performance, including the selection of promoter and linker elements within the sensor-actuator domain, and the effect of host strain, fermentation time, and growth medium on sensor dynamic range. The resulting biosensor demonstrates a high correlation between specific fluorescence of the biosensor strain and naringenin titer produced by the second member of the synthetic co-culture system. This technique represents a novel application for synthetic microbial co-cultures and can be expanded from naringenin to any metabolite if a suitable riboswitch is identified. The co-culture technique presented here can be applied to a variety of target metabolites in combination with the SELEX approach for aptamer design. Due to the compartmentalization of the two genetic constructs responsible for production and detection into separate cells and application as independent modules of a synthetic microbial co-culture we have subsequently reduced the need for re-optimization of the producer module when the biosensor is replaced or removed. Biotechnol. Bioeng. 2017;114: 2235-2244. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Donmez, Soner; Arslan, Fatma; Sarı, Nurşen; Hasanoğlu Özkan, Elvan; Arslan, Halit
2017-09-01
In the present study, a novel biosensor that is sensitive to glucose was prepared using the microspheres modified with (4-formyl-3-methoxyphenoxymethyl)polystyrene (FMPS) with l-glycine. Polymeric microspheres having Schiff bases were prepared from FMPS using the glycine condensation method. Glucose oxidase enzyme was immobilized onto modified carbon paste electrode by cross-linking with glutaraldehyde. Oxidation of enzymatically produced H 2 O 2 (+0.5 V vs. Ag/AgCl) was used for determination of glucose. Optimal temperature and pH were found as 50 °C and 8.0, respectively. The glucose biosensor showed a linear working range from 5.0 × 10 -4 to 1.0 × 10 -2 M, R 2 = 0.999. Storage and operational stability of the biosensor were also investigated. The biosensor gave perfect reproducible results after 20 measurements with 3.3% relative standard deviation. It also had good storage stability. © 2016 International Union of Biochemistry and Molecular Biology, Inc.
The blocking reagent optimization for the magnetoelastic biosensor
NASA Astrophysics Data System (ADS)
Hu, Jiajia; Chai, Yating; Horikawa, Shin; Wikle, Howard C.; Wang, Feng'en; Du, Songtao; Chin, Bryan A.; Hu, Jing
2015-06-01
The wireless phage-based magnetoelastic (ME) biosensor has proven to be promising for real-time detection of pathogenic bacteria on fresh produces. The ME biosensor consists of a freestanding ME resonator as the signal transducer and filamentous phage as the biomolecular-recognition element, which can specifically bind to a pathogen of interest. Due to the Joule magnetostriction effect, the biosensors can be placed into mechanical resonance when subjected to a time-varying magnetic field alternating at the sensor's resonant frequency. Upon the attachment of the target pathogen, the mass of the biosensor increases, thereby decreasing its resonant frequency. This paper presents an investigation of blocking reagents immobilization for detecting Salmonella Typhimurium on fresh food surfaces. Three different blocking reagents (BSA, SuperBlock blocking buffer, and blocker BLOTTO) were used and compared. The optical microscope was used for bacterial cells binding observation. Student t-test was used to statistically analysis the experiment results. The results shows that SuperBlock blocking buffer and blocker BLOTTO have much better blocking performance than usually used BSA.
Next-generation RNA-based fluorescent biosensors enable anaerobic detection of cyclic di-GMP
Wang, Xin C.; Wilson, Stephen C.; Hammond, Ming C.
2016-01-01
Bacteria occupy a diverse set of environmental niches with differing oxygen availability. Anaerobic environments such as mammalian digestive tracts and industrial reactors harbor an abundance of both obligate and facultative anaerobes, many of which play significant roles in human health and biomanufacturing. Studying bacterial function under partial or fully anaerobic conditions, however, is challenging given the paucity of suitable live-cell imaging tools. Here, we introduce a series of RNA-based fluorescent biosensors that respond selectively to cyclic di-GMP, an intracellular bacterial second messenger that controls cellular motility and biofilm formation. We demonstrate the utility of these biosensors in vivo under both aerobic and anaerobic conditions, and we show that biosensor expression does not interfere with the native motility phenotype. Together, our results attest to the effectiveness and versatility of RNA-based fluorescent biosensors, priming further development and application of these and other analogous sensors to study host–microbial and microbial–microbial interactions through small molecule signals. PMID:27382070
Electrochemical l-Lactic Acid Sensor Based on Immobilized ZnO Nanorods with Lactate Oxidase
Ibupoto, Zafar Hussain; Ali Shah, Syed Muhammad Usman; Khun, Kimleang; Willander, Magnus
2012-01-01
In this work, fabrication of gold coated glass substrate, growth of ZnO nanorods and potentiometric response of lactic acid are explained. The biosensor was developed by immobilizing the lactate oxidase on the ZnO nanorods in combination with glutaraldehyde as a cross linker for lactate oxidase enzyme. The potentiometric technique was applied for the measuring the output (EMF) response of l-lactic acid biosensor. We noticed that the present biosensor has wide linear detection range of concentration from 1 × 10−4–1 × 100 mM with acceptable sensitivity about 41.33 ± 1.58 mV/decade. In addition, the proposed biosensor showed fast response time less than 10 s, a good selectivity towards l-lactic acid in presence of common interfering substances such as ascorbic acid, urea, glucose, galactose, magnesium ions and calcium ions. The present biosensor based on immobilized ZnO nanorods with lactate oxidase sustained its stability for more than three weeks. PMID:22736960
Electrochemical L-lactic acid sensor based on immobilized ZnO nanorods with lactate oxidase.
Ibupoto, Zafar Hussain; Shah, Syed Muhammad Usman Ali; Khun, Kimleang; Willander, Magnus
2012-01-01
In this work, fabrication of gold coated glass substrate, growth of ZnO nanorods and potentiometric response of lactic acid are explained. The biosensor was developed by immobilizing the lactate oxidase on the ZnO nanorods in combination with glutaraldehyde as a cross linker for lactate oxidase enzyme. The potentiometric technique was applied for the measuring the output (EMF) response of l-lactic acid biosensor. We noticed that the present biosensor has wide linear detection range of concentration from 1 × 10(-4)-1 × 10(0) mM with acceptable sensitivity about 41.33 ± 1.58 mV/decade. In addition, the proposed biosensor showed fast response time less than 10 s, a good selectivity towards l-lactic acid in presence of common interfering substances such as ascorbic acid, urea, glucose, galactose, magnesium ions and calcium ions. The present biosensor based on immobilized ZnO nanorods with lactate oxidase sustained its stability for more than three weeks.
Du, Jian; Yu, Xiuping; Wu, Ying; Di, Junwei
2013-05-01
The electrochemical and photoelectrochemical biosensors based on glucose oxidase (GOD) and ZnS nanoparticles modified indium tin oxide (ITO) electrode were investigated. The ZnS nanoparticles were electrodeposited directly on the surface of ITO electrode. The enzyme was immobilized on ZnS/ITO electrode surface by sol-gel method to fabricate glucose biosensor. GOD could electrocatalyze the reduction of dissolved oxygen, which resulted in a great increase of the reduction peak current. The reduction peak current decreased linearly with the addition of glucose, which could be used for glucose detection. Moreover, ZnS nanoparticles deposited on ITO electrode surface showed good photocurrent response under illumination. A photoelectrochemical biosensor for the detection of glucose was also developed by monitoring the decreases in the cathodic peak photocurrent. The results indicated that ZnS nanoparticles deposited on ITO substrate were a good candidate material for the immobilization of enzyme in glucose biosensor construction. Copyright © 2013 Elsevier B.V. All rights reserved.
Li, Zedong; Li, Fei; Xing, Yue; Liu, Zhi; You, Minli; Li, Yingchun; Wen, Ting; Qu, Zhiguo; Ling Li, Xiao; Xu, Feng
2017-12-15
Paper-based microfluidic biosensors have recently attracted increasing attentions in point-of-care testing (POCT) territories benefiting from their affordable, accessible and eco-friendly features, where technologies for fabricating such biosensors are preferred to be equipment free, easy-to-operate and capable of rapid prototyping. In this work, we developed a pen-on-paper (PoP) strategy based on two custom-made pens, i.e., a wax pen and a conductive-ink pen, to fully write paper-based microfluidic biosensors through directly writing both microfluidic channels and electrodes. Particularly, the proposed wax pen is competent to realize one-step fabrication of wax channels on paper, as the melted wax penetrates into paper during writing process without any post-treatments. The practical applications of the fabricated paper-based microfluidic biosensors are demonstrated by both colorimetric detection of Salmonella typhimurium DNA with detection limit of 1nM and electrochemical measurement of glucose with detection limit of 1mM. The developed PoP strategy for making microfluidic biosensors on paper characterized by true simplicity, prominent portability and excellent capability for rapid prototyping shows promising prospect in POCT applications. Copyright © 2017 Elsevier B.V. All rights reserved.
Biosensors and bioelectronics on smartphone for portable biochemical detection.
Zhang, Diming; Liu, Qingjun
2016-01-15
Smartphone has been widely integrated with sensors, such as test strips, sensor chips, and hand-held detectors, for biochemical detections due to its portability and ubiquitous availability. Utilizing built-in function modules, smartphone is often employed as controller, analyzer, and displayer for rapid, real-time, and point-of-care monitoring, which can significantly simplify design and reduce cost of the detecting systems. This paper presents a review of biosensors and bioelectronics on smartphone for portable biochemical detections. The biosensors and bioelectronics based on smartphone can mainly be classified into biosensors using optics, surface plasmon resonance, electrochemistry, and near-field communication. The developments of these biosensors and bioelectronics on smartphone are reviewed along with typical biochemical detecting cases. Sensor strategies, detector attachments, and coupling methods are highlighted to show designs of the compact, lightweight, and low-cost sensor systems. The performances and advantages of these designs are introduced with their applications in healthcare diagnosis, environment monitoring, and food evaluation. With advances in micro-manufacture, sensor technology, and miniaturized electronics, biosensor and bioelectronic devices on smartphone can be used to perform biochemical detections as common and convenient as electronic tag readout in foreseeable future. Copyright © 2015 Elsevier B.V. All rights reserved.
Performance of optical biosensor using alcohol oxidase enzyme for formaldehyde detection
NASA Astrophysics Data System (ADS)
Sari, A. P.; Rachim, A.; Nurlely, Fauzia, V.
2017-07-01
The recent issue in the world is the long exposure of formaldehyde which is can increase the risk of human health, therefore, that is very important to develop a device and method that can be optimized to detect the formaldehyde elements accurately, have a long lifetime and can be fabricated and produced in large quantities. A new and simple prepared optical biosensor for detection of formaldehyde in aqueous solutions using alcohol oxidase (AOX) enzyme was successfully fabricated. The poly-n-butyl acrylic-co-N-acryloxysuccinimide (nBA-NAS) membranes containing chromoionophore ETH5294 were used for immobilization of alcohol oxidase enzyme (AOX). Biosensor response was based on the colour change of chromoionophore as a result of enzymatic oxidation of formaldehyde and correlated with the detection concentration of formaldehyde. The performance of biosensor parameters were measured through the optical absorption value using UV-Vis spectrophotometer including the repeatability, reproducibility, selectivity and lifetime. The results showed that the prepared biosensor has good repeatability (RSD = 1.9 %) and good reproducibility (RSD = 2.1 %). The biosensor was selective formaldehyde with no disturbance by methanol, ethanol, and acetaldehyde, and also stable before 49 days and decrease by 41.77 % after 49 days.
Dzyadevych, Sergei V; Soldatkin, Alexey P; Korpan, Yaroslav I; Arkhypova, Valentyna N; El'skaya, Anna V; Chovelon, Jean-Marc; Martelet, Claude; Jaffrezic-Renault, Nicole
2003-10-01
This paper is a review of the authors' publications concerning the development of biosensors based on enzyme field-effect transistors (ENFETs) for direct substrates or inhibitors analysis. Such biosensors were designed by using immobilised enzymes and ion-selective field-effect transistors (ISFETs). Highly specific, sensitive, simple, fast and cheap determination of different substances renders them as promising tools in medicine, biotechnology, environmental control, agriculture and the food industry. The biosensors based on ENFETs and direct enzyme analysis for determination of concentrations of different substrates (glucose, urea, penicillin, formaldehyde, creatinine, etc.) have been developed and their laboratory prototypes were fabricated. Improvement of the analytical characteristics of such biosensors may be achieved by using a differential mode of measurement, working solutions with different buffer concentrations and specific agents, negatively or positively charged additional membranes, or genetically modified enzymes. These approaches allow one to decrease the effect of the buffer capacity influence on the sensor response in an aim to increase the sensitivity of the biosensors and to extend their dynamic ranges. Biosensors for the determination of concentrations of different toxic substances (organophosphorous pesticides, heavy metal ions, hypochlorite, glycoalkaloids, etc.) were designed on the basis of reversible and/or irreversible enzyme inhibition effect(s). The conception of an enzymatic multibiosensor for the determination of different toxic substances based on the enzyme inhibition effect is also described. We will discuss the respective advantages and disadvantages of biosensors based on the ENFETs developed and also demonstrate their practical application.
Hernández-Ibáñez, Naiara; García-Cruz, Leticia; Montiel, Vicente; Foster, Christopher W; Banks, Craig E; Iniesta, Jesús
2016-03-15
l-lactate is an essential metabolite present in embryonic cell culture. Changes of this important metabolite during the growth of human embryo reflect the quality and viability of the embryo. In this study, we report a sensitive, stable, and easily manufactured electrochemical biosensor for the detection of lactate within embryonic cell cultures media. Screen-printed disposable electrodes are used as electrochemical sensing platforms for the miniaturization of the lactate biosensor. Chitosan/multi walled carbon nanotubes composite have been employed for the enzymatic immobilization of the lactate oxidase enzyme. This novel electrochemical lactate biosensor analytical efficacy is explored towards the sensing of lactate in model (buffer) solutions and is found to exhibit a linear response towards lactate over the concentration range of 30.4 and 243.9 µM in phosphate buffer solution, with a corresponding limit of detection (based on 3-sigma) of 22.6 µM and exhibits a sensitivity of 3417 ± 131 µAM(-1) according to the reproducibility study. These novel electrochemical lactate biosensors exhibit a high reproducibility, with a relative standard deviation of less than 3.8% and an enzymatic response over 82% after 5 months stored at 4 °C. Furthermore, high performance liquid chromatography technique has been utilized to independently validate the electrochemical lactate biosensor for the determination of lactate in a commercial embryonic cell culture medium providing excellent agreement between the two analytical protocols. Copyright © 2015 Elsevier B.V. All rights reserved.
Lu, Shaoying; Ouyang, Mingxing; Seong, Jihye; Zhang, Jin; Chien, Shu; Wang, Yingxiao
2008-07-25
Genetically encoded biosensors based on fluorescence resonance energy transfer (FRET) have been widely applied to visualize the molecular activity in live cells with high spatiotemporal resolution. However, the rapid diffusion of biosensor proteins hinders a precise reconstruction of the actual molecular activation map. Based on fluorescence recovery after photobleaching (FRAP) experiments, we have developed a finite element (FE) method to analyze, simulate, and subtract the diffusion effect of mobile biosensors. This method has been applied to analyze the mobility of Src FRET biosensors engineered to reside at different subcompartments in live cells. The results indicate that the Src biosensor located in the cytoplasm moves 4-8 folds faster (0.93+/-0.06 microm(2)/sec) than those anchored on different compartments in plasma membrane (at lipid raft: 0.11+/-0.01 microm(2)/sec and outside: 0.18+/-0.02 microm(2)/sec). The mobility of biosensor at lipid rafts is slower than that outside of lipid rafts and is dominated by two-dimensional diffusion. When this diffusion effect was subtracted from the FRET ratio images, high Src activity at lipid rafts was observed at clustered regions proximal to the cell periphery, which remained relatively stationary upon epidermal growth factor (EGF) stimulation. This result suggests that EGF induced a Src activation at lipid rafts with well-coordinated spatiotemporal patterns. Our FE-based method also provides an integrated platform of image analysis for studying molecular mobility and reconstructing the spatiotemporal activation maps of signaling molecules in live cells.
Gessei, Tomoko; Arakawa, Takahiro; Kudo, Hiroyuki; Mitsubayashi, Kohji
2015-09-21
Accumulation of sorbitol in the tissue is known to cause microvascular diabetic complications. In this paper, a fiber-optic biosensor for sorbitol which is used as a biomarker of diabetic complications was developed and tested. The biosensor used a sorbitol dehydrogenase from microorganisms of the genus Flavimonas with high substrate specificity and detected the fluorescence of reduced nicotinamide adenine dinucleotide (NADH) by the enzymatic reaction. An ultraviolet light emitting diode (UV-LED) was used as the excitation light source of NADH. The fluorescence of NADH was detected using a spectrometer or a photomultiplier tube (PMT). The UV-LED and the photodetector were coupled using a Y-shaped optical fiber. In the experiment, an optical fiber probe with a sorbitol dehydrogenase immobilized membrane was placed in a cuvette filled with a phosphate buffer containing the oxidized form of nicotinamide adenine dinucleotide (NAD(+)). The changes in NADH fluorescence intensity were measured after adding a standard sorbitol solution. According to the experimental assessment, the calibration range of the sorbitol biosensor systems using a spectrometer and a PMT was 5.0-1000 μmol L(-1) and 1.0-1000 μmol L(-1), respectively. The sorbitol biosensor system using the sorbitol dehydrogenase from microorganisms of the genus Flavimonas has high selectivity and sensitivity compared with that from sheep liver. The sorbitol biosensor allows for point-of-care testing applications or daily health care tests for diabetes patients.
Wang, Jin
2018-06-01
A near infrared (NIR) optical biosensor based on peptide functionalized single-walled carbon nanotubes (SWCNTs) hybrids for 2,4,6-trinitrotoluene (TNT) explosive detection was developed. The TNT binding peptide was directly anchored on the sidewall of the SWCNTs using the π-π interaction between the aromatic amino acids and SWCNTs, forming the peptide-SWCNTs hybrids for near infrared absorption spectra measurement. The evidence of the morphology of peptide-SWCNTs hybrids was obtained using atomic force microscopy (AFM). The results demonstrated that peptide-SWCNTs hybrids based NIR optical biosensor exhibited sensitive and highly selective for TNT explosive determination, addressing a promising optical biosensor for security application. Copyright © 2018. Published by Elsevier Inc.
Antibodies and antibody-derived analytical biosensors
Sharma, Shikha; Byrne, Hannah
2016-01-01
The rapid diagnosis of many diseases and timely initiation of appropriate treatment are critical determinants that promote optimal clinical outcomes and general public health. Biosensors are now being applied for rapid diagnostics due to their capacity for point-of-care use with minimum need for operator input. Antibody-based biosensors or immunosensors have revolutionized diagnostics for the detection of a plethora of analytes such as disease markers, food and environmental contaminants, biological warfare agents and illicit drugs. Antibodies are ideal biorecognition elements that provide sensors with high specificity and sensitivity. This review describes monoclonal and recombinant antibodies and different immobilization approaches crucial for antibody utilization in biosensors. Examples of applications of a variety of antibody-based sensor formats are also described. PMID:27365031
Warren, Sean C.; Margineanu, Anca; Katan, Matilda; Dunsby, Chris; French, Paul M. W.
2015-01-01
Multiplexed imaging of Förster Resonance Energy Transfer (FRET)-based biosensors potentially presents a powerful approach to monitoring the spatio-temporal correlation of signalling pathways within a single live cell. Here, we discuss the potential of homo-FRET based biosensors to facilitate multiplexed imaging. We demonstrate that the homo-FRET between pleckstrin homology domains of Akt (Akt-PH) labelled with mCherry may be used to monitor 3′-phosphoinositide accumulation in live cells and show how global analysis of time resolved fluorescence anisotropy measurements can be used to quantify this accumulation. We further present multiplexed imaging readouts of calcium concentration, using fluorescence lifetime measurements of TN-L15-a CFP/YFP based hetero-FRET calcium biosensor-with 3′-phosphoinositide accumulation. PMID:26133241
3D hydrogel scaffold doped with 2D graphene materials for biosensors and bioelectronics.
Song, Hyun Seok; Kwon, Oh Seok; Kim, Jae-Hong; Conde, João; Artzi, Natalie
2017-03-15
Hydrogels consisting of three-dimensional (3D) polymeric networks have found a wide range of applications in biotechnology due to their large water capacity, high biocompatibility, and facile functional versatility. The hydrogels with stimulus-responsive swelling properties have been particularly instrumental to realizing signal transduction in biosensors and bioelectronics. Graphenes are two-dimensional (2D) nanomaterials with unprecedented physical, optical, and electronic properties and have also found many applications in biosensors and bioelectronics. These two classes of materials present complementary strengths and limitations which, when effectively coupled, can result in significant synergism in their electrical, mechanical, and biocompatible properties. This report reviews recent advances made with hydrogel and graphene materials for the development of high-performance bioelectronics devices. The report focuses on the interesting intersection of these materials wherein 2D graphenes are hybridized with 3D hydrogels to develop the next generation biosensors and bioelectronics. Copyright © 2016 Elsevier B.V. All rights reserved.
Ang, Lee Fung; Por, Lip Yee; Yam, Mun Fei
2013-01-01
Two chitosan samples (medium molecular weight (MMCHI) and low molecular weight (LMCHI)) were investigated as an enzyme immobilization matrix for the fabrication of a glucose biosensor. Chitosan membranes prepared from acetic acid were flexible, transparent, smooth and quick-drying. The FTIR spectra showed the existence of intermolecular interactions between chitosan and glucose oxidase (GOD). Higher catalytic activities were observed on for GOD-MMCHI than GOD-LMCHI and for those crosslinked with glutaraldehyde than using the adsorption technique. Enzyme loading greater than 0.6 mg decreased the activity. Under optimum conditions (pH 6.0, 35°C and applied potential of 0.6 V) response times of 85 s and 65 s were observed for medium molecular weight chitosan glucose biosensor (GOD-MMCHI/PT) and low molecular weight chitosan glucose biosensor (GOD-LMCHI/PT), respectively. The apparent Michaelis-Menten constant ([Formula: see text]) was found to be 12.737 mM for GOD-MMCHI/PT and 17.692 mM for GOD-LMCHI/PT. This indicated that GOD-MMCHI/PT had greater affinity for the enzyme. Moreover, GOD-MMCHI/PT showed higher sensitivity (52.3666 nA/mM glucose) when compared with GOD-LMCHI/PT (9.8579 nA/mM glucose) at S/N>3. Better repeatability and reproducibility were achieved with GOD-MMCHI/PT than GOD-LMCHI/PT regarding glucose measurement. GOD-MMCHI/PT was found to give the highest enzymatic activity among the electrodes under investigation. The extent of interference encountered by GOD-MMCHI/PT and GOD-LMCHI/PT was not significantly different. Although the Nafion coated biosensor significantly reduced the signal due to the interferents under study, it also significantly reduced the response to glucose. The performance of the biosensors in the determination of glucose in rat serum was evaluated. Comparatively better accuracy and recovery results were obtained for GOD-MMCHI/PT. Hence, GOD-MMCHI/PT showed a better performance when compared with GOD-LMCHI/PT. In conclusion, chitosan membranes shave the potential to be a suitable matrix for the development of glucose biosensors.
Study on Different Molecular Weights of Chitosan as an Immobilization Matrix for a Glucose Biosensor
Ang, Lee Fung; Por, Lip Yee; Yam, Mun Fei
2013-01-01
Two chitosan samples (medium molecular weight (MMCHI) and low molecular weight (LMCHI)) were investigated as an enzyme immobilization matrix for the fabrication of a glucose biosensor. Chitosan membranes prepared from acetic acid were flexible, transparent, smooth and quick-drying. The FTIR spectra showed the existence of intermolecular interactions between chitosan and glucose oxidase (GOD). Higher catalytic activities were observed on for GOD-MMCHI than GOD-LMCHI and for those crosslinked with glutaraldehyde than using the adsorption technique. Enzyme loading greater than 0.6 mg decreased the activity. Under optimum conditions (pH 6.0, 35°C and applied potential of 0.6 V) response times of 85 s and 65 s were observed for medium molecular weight chitosan glucose biosensor (GOD-MMCHI/PT) and low molecular weight chitosan glucose biosensor (GOD-LMCHI/PT), respectively. The apparent Michaelis-Menten constant () was found to be 12.737 mM for GOD-MMCHI/PT and 17.692 mM for GOD-LMCHI/PT. This indicated that GOD-MMCHI/PT had greater affinity for the enzyme. Moreover, GOD-MMCHI/PT showed higher sensitivity (52.3666 nA/mM glucose) when compared with GOD-LMCHI/PT (9.8579 nA/mM glucose) at S/N>3. Better repeatability and reproducibility were achieved with GOD-MMCHI/PT than GOD-LMCHI/PT regarding glucose measurement. GOD-MMCHI/PT was found to give the highest enzymatic activity among the electrodes under investigation. The extent of interference encountered by GOD-MMCHI/PT and GOD-LMCHI/PT was not significantly different. Although the Nafion coated biosensor significantly reduced the signal due to the interferents under study, it also significantly reduced the response to glucose. The performance of the biosensors in the determination of glucose in rat serum was evaluated. Comparatively better accuracy and recovery results were obtained for GOD-MMCHI/PT. Hence, GOD-MMCHI/PT showed a better performance when compared with GOD-LMCHI/PT. In conclusion, chitosan membranes shave the potential to be a suitable matrix for the development of glucose biosensors. PMID:23940599
Superior Sensitivity of Copper-Based Plasmonic Biosensors.
Stebunov, Yury V; Yakubovsky, Dmitry I; Fedyanin, Dmitry Yu; Arsenin, Aleksey V; Volkov, Valentyn S
2018-04-17
Plasmonic biosensing has been demonstrated to be a powerful technique for quantitative determination of molecular analytes and kinetic analysis of biochemical reactions. However, interfaces of most plasmonic biosensors are made of noble metals, such as gold and silver, which are not compatible with industrial production technologies. This greatly limits biosensing applications beyond biochemical and pharmaceutical research. Here, we propose and investigate copper-based biosensor chips fully fabricated with a standard complementary metal-oxide-semiconductor (CMOS) process. The protection of thin copper films from oxidation is achieved with SiO 2 and Al 2 O 3 dielectric films deposited onto the metal surface. In addition, the deposition of dielectric films with thicknesses of only several tens of nanometers significantly improves the biosensing sensitivity, owing to better localization of electromagnetic field above the biosensing surface. According to surface plasmon resonance (SPR) measurements, the copper biosensor chips coated with thin films of SiO 2 (25 nm) and Al 2 O 3 (15 nm) show 55% and 75% higher sensitivity to refractive index changes, respectively, in comparison to pure gold sensor chips. To test biomolecule immobilization, the copper-dielectric biosensor chips are coated with graphene oxide linking layers and used for the selective analysis of oligonucleotide hybridization. The proposed plasmonic biosensors make SPR technology more affordable for various applications and provide the basis for compact biosensors integrated with modern electronic devices.
Vaghela, Chetana; Kulkarni, Mohan; Haram, Santosh; Aiyer, Rohini; Karve, Meena
2018-03-01
A potentiometric biosensor based on agarose-guar gum (A-G) entrapped bio-nanoconjugate of urease with gold nanoparticles (AUNps), has been reported for the first time for glyphosate detection. The biosensor is based on inhibition of urease activity by glyphosate, which was measured by direct potentiometry using ammonium ion selective electrode covered with A-G-urease nanoconjugate membrane. TEM and FTIR analysis revealed nanoconjugate formation and its immobilization in A-G matrix respectively. The composite biopolymer employed for immobilization yields thin, transparent, flexible membrane having superior mechanical strength and stability. It retains the maximum activity (92%) of urease with negligible leaching. The conjugation of urease with AUNps allows improvement in response characteristics for potentiometric measurement. The biosensor shows a linear response in the glyphosate concentration range from 0.5ppm-50ppm, with limit of detection at 0.5ppm, which covers maximum residual limit set by WHO for drinking water. The inhibition of catalytic activity of urease nanoconjugate by gyphosate was confirmed by FTIR analysis. The response of fabricated biosensor is selective towards glyphosate as against various other pesticides. The biosensor exhibits good performance in terms of reproducibility and prolonged storage stability of 180days. Thus, the present biosensor provides an alternative method for simple, selective and cost effective detection of glyphosate based on urease inhibition. Copyright © 2017 Elsevier B.V. All rights reserved.
Pemberton, R M; Pittson, R; Biddle, N; Hart, J P
2009-01-01
Microband glucose biosensors were fabricated by screen-printing a water-based carbon ink formulation containing cobalt phthalocyanine redox mediator and glucose oxidase (GOD) enzyme, then insulating and sectioning through the thick (20mum) film to expose a 3mm-long working electrode edge. The performance of these biosensors for glucose analysis was investigated at 25 degrees C. Voltammetry in glucose-containing buffer solutions established that an operating potential of +0.4V vs. Ag/AgCl was suitable for analysis under both stirring and quiescent conditions. The influence of pH on biosensor performance was established and an operational pH of 8.0 was selected. Steady-state responses were obtained under quiescent conditions, suggesting a mixed mechanism predominated by radial diffusion, indicative of microelectrode behaviour. Calibration studies obtained with these biosensors showed steady-state currents that were linearly dependent on glucose concentration from the limit of detection (0.27mM) up to 2.0mM, with a precision for replicate biosensors of 6.2-10.7%. When applied to the determination of glucose in human serum, the concentration compared favourably to that determined by a spectroscopic method. These results have demonstrated a simple means of fabricating biosensors for glucose measurement and determination in situations where low-current real-time monitoring under quiescent conditions would be desirable.
El Harrad, Loubna; Amine, Aziz
2016-04-01
A simple and sensitive amperometric biosensor was developed for the screening of potential xanthine oxidase inhibitors from medicinal plants. This biosensor was prepared by immobilization of xanthine oxidase on the surface of prussian blue modified screen-printed electrodes using nafion and glutaraldehyde. The developed biosensor showed a linear amperometric response at an applied potential of +0.05 V toward the detection of hypoxanthine from 5 μM to 45 μM with a detection limit of 0.4 μM (S/N=3) and its sensitivity was found to be 600 mA M(-1) cm(-2). In addition, the biosensor exhibited a good storage stability. The inhibition of xanthine oxidase by allopurinol was studied under the optimized conditions. The linear range of allopurinol concentration is obtained up to 2.5 μM with an estimated 50% of inhibitionI50=1.8 μM. The developed biosensor was successfully applied to the screening of xanthine oxidase inhibitors from 13 medicinal plants belonging to different families. Indeed, Moroccan people traditionally use these plants as infusion for the treatment of gout and its related symptoms. For this purpose, water extracts obtained from the infusion of these plants were used for the experiments. In this work, 13 extracts were assayed and several of them demonstrated xanthine oxidase inhibitory effect, with an inhibition greater than 50% compared to spectrophotometry measurements that only few extracts showed an inhibition greater than 50%. Copyright © 2016 Elsevier Inc. All rights reserved.
Advantages and application of label-free detection assays in drug screening.
Cunningham, Brian T; Laing, Lance G
2008-08-01
Adoption is accelerating for a new family of label-free optical biosensors incorporated into standard format microplates owing to their ability to enable highly sensitive detection of small molecules, proteins and cells for high-throughput drug discovery applications. Label-free approaches are displacing other detection technologies owing to their ability to provide simple assay procedures for hit finding/validation, accessing difficult target classes, screening the interaction of cells with drugs and analyzing the affinity of small molecule inhibitors to target proteins. This review describes several new drug discovery applications that are under development for microplate-based photonic crystal optical biosensors and the key issues that will drive adoption of the technology. Microplate-based optical biosensors are enabling a variety of cell-based assays, inhibition assays, protein-protein binding assays and protein-small molecule binding assays to be performed with high-throughput and high sensitivity.