Science.gov

Sample records for biostable insect kinin

  1. Biostable agonists that match or exceed activity of native insect kinins on recombinant arthropod GPCRs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The multifunctional arthropod insect kinins share the evolutionarily conserved C-terminal pentapeptide motif Phe-X1-X2-Trp-Gly-NH2, where X1 = His, Asn, Ser, or Tyr and X2 = Ser, Pro, or Ala. Insect kinins regulate diuresis in many species of insects. Compounds with similar biological activity cou...

  2. Biostable insect kinin analogs reduce blood meal and disrupt ecdysis in the blood-gorging Chagas' disease vector, Rhodnius prolixus.

    PubMed

    Lange, Angela B; Nachman, Ronald J; Kaczmarek, Krzysztof; Zabrocki, Janusz

    2016-06-01

    Rhodnius prolixus is a blood-gorging hemipteran that takes blood meals that are approximately 10 times its body weight. This blood meal is crucial for growth and development and is needed to ensure a successful molt into the next instar. Kinins are a multifunctional family of neuropeptides which have been shown to play a role in the control of feeding in a variety of insects. In this study, two biostable Aib-containing kinin analogs were tested to see if they interfere with blood-feeding and subsequent development into the next instar. One of the analogs, 1729 (Ac-R[Aib]FF[Aib]WGa), had no effect on the size of the blood meal or on the subsequent molting of the insect into the next instar. This analog also did not interfere with either short-term or long-term diuresis. The second analog, 1728 ([Aib]FF[Aib]WGa), appeared to be an antifeedant. Insects feeding on blood containing this analog (15μM) only consumed 60% of the blood meal taken by insects fed on blood without analog. Insects feeding on blood containing 1728 had a slower rate of rapid diuresis (diuresis in the first 3-5h after feeding) leading to less urine being excreted by 5days post feeding. The consequence of these effects was that insects fed on 1728 did not molt. This data indicates that the biostable Aib-containing analog 1728 disrupts normal growth and development in the blood-feeding insect, R. prolixus.

  3. Biostable Agonists that Match or Exceed Activity of Native Insect Kinins on Recombinant Arthropod GPCRs

    DTIC Science & Technology

    2009-01-01

    diuresis in many species of insects. Compounds with similar biological activity could be exploited for the control of arthropod pest populations such as...species, insect kinins stimulate hindgut contractions, diuresis , digestive enzyme release and probably inhibit larval weight gain (Holman et al., 1990...conserved C-terminal pentapeptide motif Phe-X1-X2-Trp-Gly-NH2, where X1 = His, Asn, Ser, or Tyr and X2 = Ser, Pro, or Ala. Insect kinins regulate diuresis in

  4. Antifeedant Activity and High Mortality in the Pea Aphid Acyrthosiphon pisum (Hemiptera: Aphidae) Induced by Biostable Insect Kinin Analogs

    DTIC Science & Technology

    2010-01-01

    this core Aib analog mimicked the amylase (carbohy- drase) release inhibition activity of natural insect kinins, specifi- cally demonstrating 1.1- and...3,4,28,29,33], inhibit the in vitro release of the digestive enzyme amylase in the midgut [13,14], and inhibit in vivo larvalweightgain [26,33,41...Nachman RJ. In vitro release of amylase by culekinins in two insects: Opsinia arenosella (Lepidoptera) and Rhynchophorus ferrugineus (Coleoptera). Trends

  5. Biostable insect kinin analogs reduce blood meal and disrupt ecdysis in the blood-gorging Chagas’ disease vector, Rhodnius prolixus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rhodnius prolixus is a blood-gorging hemipteran that takes blood meals that are approximately 10 times its body weight. This blood meal is crucial for growth and development and is needed to ensure a successful molt into the next instar. Kinins are a multifunctional family of neuropeptides which hav...

  6. Coordination ability of insect kinin analogs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Spectroscopic data, including electronic absorption, CD and EPR results, as well as theoretical calculations have shown that the insertion of 4-aminopyroglutamate, a novel cis-ppetide bond mimic, in the insect kinin peptide leads to an effective ligand towards Cu(II) ions at basic pH ranges. The 4-a...

  7. Insect kinin analogs with cis-peptide bond motif 4-aminopyroglutamate: Optimal stereochemistry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The insect kinins are present in a wide variety of insects and function as potent diuretic peptides, though they are subject to rapid degradation by internal peptidases. Insect kinin analogs incorporating stereochemical variants of (2S,4S)-4-aminopyroglutamate (APy), a cis-peptide bond motif, demon...

  8. Active diuretic peptidomimetic insect kinin analogs that contain Beta-turn mimetic motif 4-aminopyroglutamate and lack native peptide bonds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The multifunctional arthropod 'insect kinins' share the evolutionarily conserved C-terminal pentapeptide core sequence Phe-X1-X2-Trp-Gly-NH2, where X1 = His, Asn, Ser, or Tyr and X2 = Ser, Pro, or Ala. Insect kinins regulate diuresis in many species of insects, including the cricket. Insect kinins...

  9. Interaction of Mimetic Analogs of Insect Kinin Neuropeptides with Arthropod Receptors

    DTIC Science & Technology

    2010-01-01

    contribution made by the reported ability of insect kinins to inhibit release of protease and amylase digestive enzymes from the lepidopteran midgut...353‑8. 8. Harshini S, Manchu V, Sunitha VB et  al. In vitro release of amylase by culekinins in two insects: Opisinia arenosella (Lepidoptera) and

  10. The Molecular Characterization of the Kinin Transcript and the Physiological Effects of Kinins in the Blood-Gorging Insect Rhodnius prolixus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The dramatic feeding-related activities of the Chagas' disease vector, Rhodnius prolixus are under neurohormonal regulation of serotonin and various neuropeptides. One such family of neuropeptides, the insect kinins, possess diuretic, digestive and myotropic activities in many insects. In this study...

  11. Active peptidomimetic insect kinin analogs with type VI turn motif 4-aminopyroglutamate lack native peptide bonds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two stereochemical variant insect kinin mimetic analogs 1796 and 1797 containing (2S,4S)-APy (APy) and (2R,4S)-APy (Apy), respectively, were synthesized and evaluated on isolated Malpighian tubules of the house cricket Acheta domesticus to determine if they could retain the fluid secretion stimulat...

  12. A C-terminal Aldehyde Analog of the Insect Kinins Inhibits Diuresis in the Housefly

    DTIC Science & Technology

    2006-09-21

    p e p t i d e s 2 8 ( 2 0 0 7 ) 1 4 6 – 1 5 2A C-terminal aldehyde analog of the insect kinins inhibits diuresis in the housefly Ronald J. Nachman a...secretion in crickets, but shows inhibition of both in vitro and in vivo diuresis in the housefly. R-LK-CHO reduced the total amount of urine voided over 3 h...to stimulate Malpighian tubule fluid secretion [2,25]. In the housefly, muscakinin has been implicated in the control of diuresis in response to

  13. Induction of selective blood-tumor barrier permeability and macromolecular transport by a biostable kinin B1 receptor agonist in a glioma rat model.

    PubMed

    Côté, Jérôme; Bovenzi, Veronica; Savard, Martin; Dubuc, Céléna; Fortier, Audrey; Neugebauer, Witold; Tremblay, Luc; Müller-Esterl, Werner; Tsanaclis, Ana-Maria; Lepage, Martin; Fortin, David; Gobeil, Fernand

    2012-01-01

    Treatment of malignant glioma with chemotherapy is limited mostly because of delivery impediment related to the blood-brain tumor barrier (BTB). B1 receptors (B1R), inducible prototypical G-protein coupled receptors (GPCR) can regulate permeability of vessels including possibly that of brain tumors. Here, we determine the extent of BTB permeability induced by the natural and synthetic peptide B1R agonists, LysdesArg(9)BK (LDBK) and SarLys[dPhe(8)]desArg(9)BK (NG29), in syngeneic F98 glioma-implanted Fischer rats. Ten days after tumor inoculation, we detected the presence of B1R on tumor cells and associated vasculature. NG29 infusion increased brain distribution volume and uptake profiles of paramagnetic probes (Magnevist and Gadomer) at tumoral sites (T(1)-weighted imaging). These effects were blocked by B1R antagonist and non-selective cyclooxygenase inhibitors, but not by B2R antagonist and non-selective nitric oxide synthase inhibitors. Consistent with MRI data, systemic co-administration of NG29 improved brain tumor delivery of Carboplatin chemotherapy (ICP-Mass spectrometry). We also detected elevated B1R expression in clinical samples of high-grade glioma. Our results documented a novel GPCR-signaling mechanism for promoting transient BTB disruption, involving activation of B1R and ensuing production of COX metabolites. They also underlined the potential value of synthetic biostable B1R agonists as selective BTB modulators for local delivery of different sized-therapeutics at (peri)tumoral sites.

  14. Induction of Selective Blood-Tumor Barrier Permeability and Macromolecular Transport by a Biostable Kinin B1 Receptor Agonist in a Glioma Rat Model

    PubMed Central

    Côté, Jérôme; Bovenzi, Veronica; Savard, Martin; Dubuc, Céléna; Fortier, Audrey; Neugebauer, Witold; Tremblay, Luc; Müller-Esterl, Werner; Tsanaclis, Ana-Maria; Lepage, Martin; Fortin, David; Gobeil, Fernand

    2012-01-01

    Treatment of malignant glioma with chemotherapy is limited mostly because of delivery impediment related to the blood-brain tumor barrier (BTB). B1 receptors (B1R), inducible prototypical G-protein coupled receptors (GPCR) can regulate permeability of vessels including possibly that of brain tumors. Here, we determine the extent of BTB permeability induced by the natural and synthetic peptide B1R agonists, LysdesArg9BK (LDBK) and SarLys[dPhe8]desArg9BK (NG29), in syngeneic F98 glioma-implanted Fischer rats. Ten days after tumor inoculation, we detected the presence of B1R on tumor cells and associated vasculature. NG29 infusion increased brain distribution volume and uptake profiles of paramagnetic probes (Magnevist and Gadomer) at tumoral sites (T1-weighted imaging). These effects were blocked by B1R antagonist and non-selective cyclooxygenase inhibitors, but not by B2R antagonist and non-selective nitric oxide synthase inhibitors. Consistent with MRI data, systemic co-administration of NG29 improved brain tumor delivery of Carboplatin chemotherapy (ICP-Mass spectrometry). We also detected elevated B1R expression in clinical samples of high-grade glioma. Our results documented a novel GPCR-signaling mechanism for promoting transient BTB disruption, involving activation of B1R and ensuing production of COX metabolites. They also underlined the potential value of synthetic biostable B1R agonists as selective BTB modulators for local delivery of different sized-therapeutics at (peri)tumoral sites. PMID:22629405

  15. Biostable and PEG polymer-conjugated insect pyrokinin analogs demonstrate antifeedant activity and induce high mortality in the pea aphid Acyrthosiphon pisum (Hemiptera: Aphidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The pyrokinins are multifunctional neuropeptides found in a variety of arthropod species, including the pea aphid Acyrthosiphon pisum (Hemiptera: Aphidae). A series of biostable pyrokinin analogs based on the shared C-terminal pentapeptide core region were fed in solutions of artificial diet to the ...

  16. Comparison of insect kinin analogs with cis-peptide bond, type VI-turn motifs identifies optimal stereochemistry for interaction with a recombinant arthropod kinin receptor from the Southern cattle tick, Boophilus microplus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The multifunctional ‘insect kinins’ share the evolutionarily conserved C-terminal pentapeptide motif Phe-X1-X2-Trp-Gly-NH2, where X1 = His, Asn, Ser, or Tyr and X2 = Ser, Pro, or Ala; and are associated with the regulation of diuresis in a variety of species of insects. We previously reported the f...

  17. The Mosquito Aedes aegypti (L.) leucokinin Receptor is a Multiligand Receptor for the three Aedes kinins

    DTIC Science & Technology

    2004-09-07

    receptors for the three Aedes kinins. Keywords: insect GPCR (G protein-coupled receptor ) (myo)kinin receptor ... receptor 57 © 2005 The Royal Entomological Society, Insect Molecular Biology , 14 , 55–67 58 P. V. Pietrantonio et al. © 2005 The... receptor 59 © 2005 The Royal Entomological Society, Insect Molecular Biology , 14 , 55–67 further support to the role of this receptor

  18. The Single Kinin Receptor Signals to Separate and Independent Physiological Pathways in Malpighian Tubules of the Yellow Fever Mosquito

    DTIC Science & Technology

    2010-06-10

    voltage (depolarization) is strikingly similar to that of the kinin diuresis we have elucidated in Aedes Malpighian tubules (5, 39, 65-67). Moreover...excretion. Peptides 19: 469-480, 1998. 22. Coast GM. Neuropeptides implicated in the control of diuresis in insects. Peptides 17: 327-336, 1996. 23

  19. Biostable multi-Aib analogs of tachykinin-related peptides demonstrate potent oral aphicidal activity in the pea aphid Acyrthosiphon pisum (Hemiptera: Aphidae).

    PubMed

    Nachman, Ronald J; Mahdian, Kamran; Nässel, Dick R; Isaac, R Elwyn; Pryor, Nan; Smagghe, Guy

    2011-03-01

    The tachykinin-related peptides (TRPs) are multifunctional neuropeptides found in a variety of arthropod species, including the pea aphid Acyrthosiphon pisum (Hemiptera: Aphidae). Two new biostable TRP analogs containing multiple, sterically hindered Aib residues were synthesized and found to exhibit significantly enhanced resistance to hydrolysis by angiotensin converting enzyme and neprilysin, membrane-bound enzymes that degrade and inactivate natural TRPs. The two biostable analogs were also found to retain significant myostimulatory activity in an isolated cockroach hindgut preparation, the bioassay used to isolate and identify the first members of the TRP family. Indeed one of the analogs (Leuma-TRP-Aib-1) matched the potency and efficacy of the natural, parent TRP peptide in this myotropic bioassay. The two biostable TRP analogs were further fed in solutions of artificial diet to the pea aphid over a period of 3 days and evaluated for antifeedant and aphicidal activity and compared with the effect of treatment with three natural, unmodified TRPs. The two biostable multi-Aib TRP analogs were observed to elicit aphicidal effects within the first 24 h. In contrast natural, unmodified TRPs, including two that are native to the pea aphid, demonstrated little or no activity. The most active analog, double-Aib analog Leuma-TRP-Aib-1 (pEA[Aib]SGFL[Aib]VR-NH(2)), featured aphicidal activity calculated at an LC(50) of 0.0083 nmol/μl (0.0087 μg/μl) and an LT(50) of 1.4 days, matching or exceeding the potency of commercially available aphicides. The mechanism of this activity has yet to be established. The aphicidal activity of the biostable TRP analogs may result from disruption of digestive processes by interfering with gut motility patterns and/or with fluid cycling in the gut; processes shown to be regulated by the TRPs in other insects. These active TRP analogs and/or second generation analogs offer potential as environmentally friendly pest aphid control agents.

  20. The extraction of human urinary kinin (substance z) and its relation to the plasma kinins

    PubMed Central

    Gaddum, J. H.; Horton, E. W.

    1959-01-01

    Human urinary kinin (substance Z) has been extracted by modifications of the methods previously described by Gomes (1955) and Jensen (1958). The separation of two oxytocic fractions from such extracts by paper pulp chromatography (Walaszek, 1957; Jensen, 1958) could not be confirmed. Substance Z could not be distinguished from kallidin, bradykinin or glass-activated kinin by parallel quantitative assays, thus confirming that these four substances are very closely related. PMID:13651588

  1. The biostability of silicone rubbers, a polyamide, and a polyester.

    PubMed

    Roggendorf, E

    1976-01-01

    A biostability test program was designed after evaluation of the relevant literature on in vivo aging phenomena in plastics and elastomers. The program comprised macroscopic, microscopic, mechanical, and physicochemical investigations. Five silicone rubbers, one polyester, and one polyamid were tested as to their aging behavior and their suitability for long-term implantation in the human body was assessed. In order to be able to state the applicability of materials used for endotheses, the various aging phenomena had to be divided into three groups, viz. unspecific, relative, and absolute indications of aging or unserviceability. Changes due to aging were found in all types of implanted plastics and elastomers. Thus, the formation of layers on inlay surfaces occurred regularly and the same would apply to changes in mechanical characteristics during the tensile test. Aging processes resulting in total unserviceability were fragmentation and crazing in the polyester and polyamide sheetings. Other aging phenomena which will easily fit into the classification given above are changes in electrical test values, protein, and lipid depositions without stronger absorptive adhesion, crystallizations on the surface of silicone vulcanizates, and chemical changes in the polyester and polyamide sheetings. Following the assessment of the materials used for endotheses, the test methods used have been evaluated with regard to their suitability for the testing of biostability.

  2. Does the kinin system mediate in cardiovascular abnormalities? An overview.

    PubMed

    Sharma, Jagdish N

    2003-11-01

    All the components of the kallikrein-kinin system are located in the cardiac muscle, and its deficiency may lead to cardiac dysfunction. In recent years, numerous observations obtained from clinical and experimental models of diabetes, hypertension, cardiac failure, ischemia, myocardial infarction, and left ventricular hypertrophy have suggested that the reduced activity of the local kallikrein-kinin system may be instrumental for the induction of cardiovascular-related diseases. The cardioprotective property of the angiotensin-converting enzyme inhibitors is primarily mediated via the kinin-releasing pathway, which may cause regression of left ventricular hypertrophy in hypertensive situations. The ability of kallikrein gene delivery to produce a wide spectrum of beneficial effects makes it an excellent candidate in treating hypertension and cardiovascular and renal diseases. In addition, stable kinin agonists may also be available in the future as therapeutic agents for cardiovascular and renal disorders.

  3. The chromatographic behaviour of wasp venom kinin, kallidin and bradykinin.

    PubMed

    MATHIAS, A P; SCHACHTER, M

    1958-09-01

    Wasp venom kinin which has hitherto appeared to be homogeneous can be resolved by ionexchange chromatography into a single major and two minor components. These are indistinguishable by their action on smooth muscle and by their rapid inactivation by chymotrypsin. All three components of wasp kinin are chromatographically different from kallidin or bradykinin. The close similarity of the latter compounds is confirmed by their identical behaviour on an ion-exchange resin.

  4. Diabetes modulates the expression of glomerular kinin receptors.

    PubMed

    Christopher, Julie; Jaffa, Ayad A

    2002-12-01

    The localization of kinin receptors within the kidney implicates this system in the regulation of glomerular hemodynamics. We reported that diabetes alters the activity of the renal kallikrein-kinin system, and that these alterations contribute to the development of microvascular complications of diabetes. The present study examined the influence of diabetes on the expression of glomerular B1 and B2-kinin receptors, and assessed the cellular signaling of kinin receptor activation. Rats made diabetic with streptozocin (85 mg/kg), displayed plasma glucose levels in the range of 350-500 mg/dl. At 3, 7, and 21 days, B1 and B2-kinin receptor mRNA levels were measured in isolated glomeruli from control and diabetic rats by RT-PCR. Glomeruli revealed a differential pattern of expression between the two kinin receptors. The constitutively expressed B2-receptor was increased three-fold at day 3, but returned to normal levels at day 7; whereas, the inducible B1-receptor was maximally expressed (20-fold) at day 7 and remained elevated (10-fold) at day 21. To test whether the induction of kinin receptors by diabetes translates into increased responsiveness, we measured mitogen-activated protein kinase (MAPK) phosphorylation (p42, p44) in glomeruli isolated from control and diabetic rats stimulated with B1-receptor agonist (des-Arg9-bradykinin, 10(-8) M). A three-fold increase in phosphorylation of MAPK was observed in response to B1-receptor agonist challenge in glomeruli isolated form diabetic rats compared to controls. These findings demonstrate for the first time that glomerular kinin receptors are induced by diabetes, and provide a rationale to study the contribution of these receptors to the development of glomerular injury in diabetes.

  5. Biostability in distribution systems in one city in southern China: characteristics, modeling and control strategy.

    PubMed

    Lu, Pinpin; Zhang, Xiaojian; Zhang, Chiqian; Niu, Zhangbin; Xie, Shuguang; Chen, Chao

    2014-02-01

    This study investigated the bacterial regrowth in drinking water distribution systems receiving finished water from an advanced drinking water treatment plant in one city in southern China. Thirteen nodes in two water supply zones with different aged pipelines were selected to monitor water temperature, dissolved oxygen (DO), chloramine residual, assimilable organic carbon (AOC), and heterotrophic plate counts (HPC). Regression and principal component analyses indicated that HPC had a strong correlation with chloramine residual. Based on Chick-Watson's Law and the Monod equation, biostability curves under different conditions were developed to achieve the goal of HPC < or = 100 CFU/mL. The biostability curves could interpret the scenario under various AOC concentrations and predict the required chloramine residual concentration under the condition of high AOC level. The simulation was also carried out to predict the scenario with a stricter HPC goal (< or = 50 CFU/mL) and determine the required chloramine residual. The biological regrowth control strategy was assessed using biostability curve analysis. The results indicated that maintaining high chloramine residual concentration was the most practical way to achieve the goal of HPC < or = 100 CFU/mL. Biostability curves could be a very useful tool for biostability control in distribution systems. This work could provide some new insights towards biostability control in real distribution systems.

  6. EXTRACTION, RECOVERY, AND BIOSTABILITY OF EDTA FOR REMEDIATION OF HEAVY METAL-CONTAMINATED SOIL. (R825549C052)

    EPA Science Inventory

    Chelation removal of heavy metals from contaminated soil is seen as a viable remediation technique. A useful chelating agent should be strong, reusable, and biostable during metal extraction and recovery operations. This work tested the extraction, recovery, and biostability o...

  7. Development of mimetic analogs of pyrokinin-like neuropeptides to disrupt pest insect physiology/behavior

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pyrokinin (FXPRLamide) neuropeptides regulate a variety of critical processes and behaviors in insects, though they are unsuitable as tools to arthropod endocrinologists and/or as pest management agents due to sub-optimal biostability and/or bioavailability characteristics. Peptidomimetic analogs c...

  8. Collagen/chitosan porous scaffolds with improved biostability for skin tissue engineering.

    PubMed

    Ma, Lie; Gao, Changyou; Mao, Zhengwei; Zhou, Jie; Shen, Jiacong; Hu, Xueqing; Han, Chunmao

    2003-11-01

    Porous scaffolds for skin tissue engineering were fabricated by freeze-drying the mixture of collagen and chitosan solutions. Glutaraldehyde (GA) was used to treat the scaffolds to improve their biostability. Confocal laser scanning microscopy observation confirmed the even distribution of these two constituent materials in the scaffold. The GA concentrations have a slight effect on the cross-section morphology and the swelling ratios of the cross-linked scaffolds. The collagenase digestion test proved that the presence of chitosan can obviously improve the biostability of the collagen/chitosan scaffold under the GA treatment, where chitosan might function as a cross-linking bridge. A detail investigation found that a steady increase of the biostability of the collagen/chitosan scaffold was achieved when GA concentration was lower than 0.1%, then was less influenced at a still higher GA concentration up to 0.25%. In vitro culture of human dermal fibroblasts proved that the GA-treated scaffold could retain the original good cytocompatibility of collagen to effectively accelerate cell infiltration and proliferation. In vivo animal tests further revealed that the scaffold could sufficiently support and accelerate the fibroblasts infiltration from the surrounding tissue. Immunohistochemistry analysis of the scaffold embedded for 28 days indicated that the biodegradation of the 0.25% GA-treated scaffold is a long-term process. All these results suggest that collagen/chitosan scaffold cross-linked by GA is a potential candidate for dermal equivalent with enhanced biostability and good biocompatibility.

  9. Beta-Amino Acid Analogs of an Insect Neuropeptide Feature Potent Bioactivity and Resistance to Peptidase Hydrolysis

    DTIC Science & Technology

    2006-01-01

    AND METHODS Peptide Synthesis Insect kinin analogs were synthesized via Fmoc methodology on Rink Amide resin (Novabiochem, San Diego, CA) using Fmoc ...500–1,900) 100 a 95% confidence limit ( CL ) values in parentheses.10 b-Amino Acid Analogs of an Insect Neuropeptide 79 Biopolymers (Peptide Science) DOI

  10. The corticotropin-releasing factor-like diuretic hormone 44 (DH44) and kinin neuropeptides modulate desiccation and starvation tolerance in Drosophila melanogaster.

    PubMed

    Cannell, Elizabeth; Dornan, Anthony J; Halberg, Kenneth A; Terhzaz, Selim; Dow, Julian A T; Davies, Shireen-A

    2016-06-01

    Malpighian tubules are critical organs for epithelial fluid transport and stress tolerance in insects, and are under neuroendocrine control by multiple neuropeptides secreted by identified neurons. Here, we demonstrate roles for CRF-like diuretic hormone 44 (DH44) and Drosophila melanogaster kinin (Drome-kinin, DK) in desiccation and starvation tolerance. Gene expression and labelled DH44 ligand binding data, as well as highly selective knockdowns and/or neuronal ablations of DH44 in neurons of the pars intercerebralis and DH44 receptor (DH44-R2) in Malpighian tubule principal cells, indicate that suppression of DH44 signalling improves desiccation tolerance of the intact fly. Drome-kinin receptor, encoded by the leucokinin receptor gene, LKR, is expressed in DH44 neurons as well as in stellate cells of the Malpighian tubules. LKR knockdown in DH44-expressing neurons reduces Malpighian tubule-specific LKR, suggesting interactions between DH44 and LK signalling pathways. Finally, although a role for DK in desiccation tolerance was not defined, we demonstrate a novel role for Malpighian tubule cell-specific LKR in starvation tolerance. Starvation increases gene expression of epithelial LKR. Also, Malpighian tubule stellate cell-specific knockdown of LKR significantly reduced starvation tolerance, demonstrating a role for neuropeptide signalling during starvation stress.

  11. The single kinin receptor signals to separate and independent physiological pathways in Malpighian tubules of the yellow fever mosquito

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the past we have used the leucokinins, the kinins of the cockroach Leucophaea, to evaluate the mechanism of diuretic action of kinin peptides in Malpighian tubules of the yellow fever mosquito Aedes aegypti. Now using aedeskinins, the kinins of Aedes, are available, we find that in isolated Aede...

  12. The kinin system: suggestions to broaden some prevailing concepts.

    PubMed

    Erdös, Ervin G; Deddish, Peter A

    2002-12-01

    The existence and importance of the kallikrein-kinin-kininase system, especially in the circulation, has taken over three-quarters of a century to be established. Finding the multiple components derived from renin-angiotensin and their functions stretched over a century [Erdös EG. Perspectives on the early history of angiotensin-converting enzyme-recent follow-ups. In: Giles TD, editor. Angiotensin-converting enzyme (ACE): clinical and experimental insights. Fort Lee: Health Care Communications; 2001, p. 3-16]. Although the discoveries were made independently, it was shown in 1970 that the angiotensin I-converting enzyme (ACE) is identical with kininase II, previously discovered by us, thus, a single protein can regulate either the activation or inactivation of the two peptide products. It followed that inhibitors of ACE can affect both processes [Bhoola KD, Figueroa CD, Worthy K. Bioregulation of kinins: kallikreins, kininogens, and kininases. Pharmacol Rev 1992;44:1-80]. After being engaged for a long time in characterizing the metabolism of various bio-active peptides, we, as well as others, noticed that the effect of ACE inhibitors go beyond simply blocking angiotensin (Ang) II release and bradykinin (BK) inactivation by the enzyme (Kaplan AP, Joseph K, Silverberg M. Pathways for bradykinin formation and inflammatory disease. J Allergy Clin Immunol 2002; 109(2):195-209, Yamada K, Erd6s EG. Kallikrein and prekallikrein of the isolated basolateral membrane of rat kidney. Kidney Int 1982;22:331-7]. It also became apparent to us that in the complex multistep reactions needed to activate the kallikrein-kinin system, there should be some shortcuts-shunts-to accelerate and simplify important processes. Thus, some basic tenets developed after decades of intensive laboratory investigations-and by now generally accepted-can be challenged. For example, it should be considered that the activities of BK and Lys BK (kallidin) can be substantially different, and that

  13. Evaluating the Biostability of Yellow and Clear Intraocular Lenses with a System Simulating Natural Intraocular Environment

    PubMed Central

    Hayashi, Rijo; Hayashi, Shimmin; Arai, Kiyomi; Yoshida, Shinichirou; Chikuda, Makoto; Machida, Shigeki

    2016-01-01

    Purpose Blue light–filtering intraocular lenses (IOLs) are thought to protect the retina from blue light damage after cataract surgery, and the implantation of yellow-tinted IOLs has been commonly used in cataract surgery. To our knowledge, this is the first investigation measuring the long-term biostability of yellow-tinted IOLs using an in vitro system simulating natural intraocular environment. Methods Six hydrophobic acrylic IOLs, three clear IOLs, and three yellow-tinted IOLs were included in the study. Each yellow-tinted IOL was a matching counterpart of a clear IOL, with the only difference being the lens color. The IOLs were kept in conditions replicating the intraocular environment using a perfusion culture system for 7 months. Resolution, light transmittance rate, and the modulation transfer function (MTF) were measured before and after culturing. Surface roughness of the anterior and posterior surfaces was also measured. Results After culturing for 7 months, there were no changes in the resolution, the light transmittance rate, and MTF. The surface roughness of the anterior and posterior surfaces increased after culturing; however, this increase was clinically insignificant. There were no differences in surface roughness between the clear and yellow-tinted IOLs, either before or after culturing. Conclusions A novel in vitro system replicating intraocular environment was used to investigate the biostability of yellow-tinted IOLs. The surface roughness showed no clinically significant increase after culturing for 7 months. Translational Relevance This system is useful for evaluating the biostability of IOLs. PMID:27933221

  14. Biostability and biological performance of a PDMS-based polyurethane for controlled drug release.

    PubMed

    Simmons, Anne; Padsalgikar, Ajay Devidas; Ferris, Lynn Marie; Poole-Warren, Laura Anne

    2008-07-01

    Polymers have been used to deliver therapeutic agents in a range of medical devices with drug eluting stents being the most widespread current application. Although polymers enable controlled release of a therapeutic agent, the polymeric surface has been reported to provide suboptimal biocompatibility and haemocompatibility and it has been suggested that currently used polymers may be at least partly responsible for the late adverse events observed in intravascular stent systems. In this study, the biostability and biological performance of a siloxane-based polyurethane elastomer (E2A) demonstrating excellent long-term biostability in the unloaded state was investigated following incorporation of a therapeutic agent. After implantation in an ovine model for 6 months, samples were assessed using SEM and ATR-FTIR to determine changes in the surface chemical structure and morphology of the materials and tensile testing was used to examine changes in bulk characteristics. Biological response was assessed using in vitro cytotoxicity testing and histological analysis. Results indicated that incorporation of 25mg/g dexamethasone acetate (DexA) into the siloxane-based polyurethane resulted in no significant difference in the biostability and biocompatibility of the material. Some level of cytotoxic potential was exhibited which was believed to result from residual DexA leaching from samples during the extraction process. These findings suggest that E2A is a potential candidate for a delivery vehicle of therapeutic agents in implantable drug delivery applications.

  15. The biostability of cardiac lead insulation materials as assessed from long-term human implants.

    PubMed

    Wilkoff, Bruce L; Rickard, John; Tkatchouk, Ekaterina; Padsalgikar, Ajay D; Gallagher, Genevieve; Runt, James

    2016-02-01

    Accelerated in vitro biostability studies are useful for making relativistic comparisons between materials. However, no in vitro study can completely replicate the complex biochemical and biomechanical environment that a material experiences in the human body. To overcome this limitation, three insulation materials [Optim™ insulation (OPT), Pellethane® 55D (P55D), and silicone elastomer] from cardiac leads that were clinically implanted for up to five years were characterized using visual inspection, SEM, ATR-FTIR, GPC, and tensile testing. Surface cracking was not observed in OPT or silicone samples. Shallow cracking was observed in 17/41 (41%) explanted P55D samples. ATR-FTIR indicated minor surface oxidation in some OPT and P55D samples. OPT molecular weight decreased modestly (∼20%) at 2-3 years before stabilizing at 4-5 years. OPT tensile strength decreased modestly (∼25%) at 2-3 years before stabilizing at 4-5 years. OPT elongation at 4-5 years was unchanged from controls. P55D had no significant changes in molecular weight or tensile properties. Overall, results for OPT and P55D were consistent with and limited to cosmetic surface oxidation. Silicone demonstrated excellent biostability with no identifiable degradation. This study of explanted cardiac leads revealed that OPT, P55D, and silicone elastomer demonstrate similar and excellent biostability through five years of implantation in human patients.

  16. Kinin Peptides Enhance Inflammatory and Oxidative Responses Promoting Apoptosis in a Parkinson's Disease Cellular Model

    PubMed Central

    Kozik, Andrzej

    2016-01-01

    Kinin peptides ubiquitously occur in nervous tissue and participate in inflammatory processes associated with distinct neurological disorders. These substances have also been demonstrated to promote the oxidative stress. On the other hand, the importance of oxidative stress and inflammation has been emphasized in disorders that involve the neurodegenerative processes such as Parkinson's disease (PD). A growing number of reports have demonstrated the increased expression of kinin receptors in neurodegenerative diseases. In this study, the effect of bradykinin and des-Arg10-kallidin, two representative kinin peptides, was analyzed with respect to inflammatory response and induction of oxidative stress in a PD cellular model, obtained after stimulation of differentiated SK-N-SH cells with a neurotoxin, 1-methyl-4-phenylpyridinium. Kinin peptides caused an increased cytokine release and enhanced production of reactive oxygen species and NO by cells. These changes were accompanied by a loss of cell viability and a greater activation of caspases involved in apoptosis progression. Moreover, the neurotoxin and kinin peptides altered the dopamine receptor 2 expression. Kinin receptor expression was also changed by the neurotoxin. These results suggest a mediatory role of kinin peptides in the development of neurodegeneration and may offer new possibilities for its regulation by using specific antagonists of kinin receptors. PMID:27721576

  17. Kinins— The Kallikrein-Kinin System and Oxidative Stress

    PubMed Central

    Kayashima, Yukako; Smithies, Oliver; Kakoki, Masao

    2012-01-01

    Purpose of review The Kallikrein-kinin system (KKS) constitutes a complex multi-enzyme cascade that produces several bioactive kinin peptides and their derivatives including bradykinin. In addition to the classical notion of the KKS as a potent vasodilator and a mediator of inflammatory responses, recent studies suggest a link between the KKS and oxidative stress. A number of established mouse model with altered levels of KKS components opened the way to evaluate precise functions of the KKS. Here we review recent findings on the role of the KKS in cardiovascular diseases and chronic kidney diseases, and discuss potential benefits of KKS activation in these diseases. Recent findings Deletion of both B1R and B2R in a diabetic mouse model exacerbates its renal phenotypes, suggesting that the KKS exerts protective effects on diabetic nephropathy by suppressing oxidative stress, presumably via nitric oxide (NO) and prostaglandins (PGs). Summary Accumulating evidence has highlighted the importance of the KKS as a protective system against oxidative stress and organ damage in the heart and kidney. The activation of the KKS by ACE inhibitors and vasopeptidase inhibitors is likely to be beneficial in senescence-associated cardiovascular diseases and chronic kidney diseases. PMID:22048723

  18. Role of tissue kallikrein-kininogen-kinin pathways in the cardiovascular system.

    PubMed

    Sharma, Jagdish N

    2006-04-01

    All the components of the kallikrein-kinin system are located in the cardiac muscle, and its deficiency may lead to cardiac dysfunction. In recent years, numerous observations obtained from clinical and experimental models of diabetes, hypertension, cardiac failure, ischemia, myocardial infarction and left ventricular hypertrophy have suggested that the reduced activity of the local kallikrein-kinin system may be instrumental for the induction of cardiovascular-related diseases. The cardioprotective property of the angiotensin converting enzyme inhibitors is primarily mediated via kinin-releasing pathway, which may cause regression of the left ventricular hypertrophy in hypertensive situations. The ability of kallikrein gene delivery to produce a wide spectrum of beneficial effects makes it an excellent candidate in treating hypertension, cardiovascular and renal diseases. In addition, stable kinin agonists may also be available in the future as therapeutic agents for cardiovascular and renal disorders.

  19. Impact of UV/H₂O₂ advanced oxidation treatment on molecular weight distribution of NOM and biostability of water.

    PubMed

    Bazri, Mohammad Mahdi; Barbeau, Benoit; Mohseni, Madjid

    2012-10-15

    The presence of natural organic matter (NOM) poses several challenges to the commercial practice of UV/H(2)O(2) process for micropollutant removal. During the commercial application of UV/H(2)O(2) advanced oxidation treatment, NOM is broken down into smaller species potentially affecting biostability by increasing Assimilable Organic Carbon (AOC) and Biodegradable Organic Carbon (BDOC) of water. This work investigated the potential impact of UV/H(2)O(2) treatment on the molecular weight distribution of NOM and biostability of different water sources. A recently developed flow cytometric method for enumeration of bacteria was utilized to assess biological stability of the treated water at various stages through measurement of AOC. BDOC was also assessed for comparison and to better study the biostability of water. Both AOC and BDOC increased by about 3-4 times over the course of treatment, indicating the reduction of biological stability. Initial TOC and the source of NOM were found to be influencing the biostability profile of the treated water. Using high performance size exclusion chromatography, a wide range of organic molecule weights were found responsible for AOC increase; however, low molecular weight organics seemed to contribute more. Positive and meaningful correlations were observed between BDOC and AOC of different waters that underwent different treatments.

  20. A comparative study of kinin, kallidin, and bradykinin

    PubMed Central

    Holdstock, D. J.; Mathias, A. P.; Schachter, M.

    1957-01-01

    Partially purified kinin, a polypeptide in wasp venom, has been found to be a potent smooth-muscle stimulating and hypotensive agent. Such a preparation was 10 to 100 times more effective than histamine in enhancing capillary permeability on intradermal injection, and 10 times more effective than acetylcholine in evoking pain on a cutaneous blister base. Some differences between the actions of salivary kallikrein and trypsin in releasing kallidin or bradykinin have been observed, and some modifications of previous methods of preparing crude kallidin and bradykinin are suggested. Kallidin and bradykinin are effective enhancers of capillary permeability in the guinea-pig and rabbit. Chemical and pharmacological tests failed to differentiate between kallidin and bradykinin which must be, therefore, closely similar compounds. The possible role of kallidin and bradykinin in physiological or pathological conditions is discussed. ImagesFIG. 3FIG. 4FIG. 7 PMID:13446366

  1. The application of counter immunoelectrophoresis (CIE) in ocular protein studies Part II: Kinin activity in the lens wearing eye.

    PubMed

    Mann, Aisling M; Tighe, Brian J

    2002-06-01

    The kinin family are a group of bioactive peptides that are closely involved in the modulation of vascular inflammation and local injury. We have demonstrated here, for the first time, a link between kinin activity and contact lens wear. Protein extracts from daily and extended wear etafilcon A, Group IV, Acuvue lenses (Vistakon), were analysed by counter immunoelectrophoresis. In this way, kinin activity associated with contact lens wear was detected. High molecular weight kininogen was used as the marker protein. In contrast, no kinin activity was detected in the non-lens wearing normal eye.

  2. In vitro biostability evaluation of polyurethane composites in acidic, basic, oxidative, and neutral solutions.

    PubMed

    Lyu, Suping; Schley, James; Loy, Brian; Luo, Lian; Hobot, Chris; Sparer, Randall; Untereker, Darrel; Krzeszak, Jason

    2008-05-01

    New and improved properties can often be achieved by compounding two or more different but compatible materials. But, can failure possibility also be increased by such a compounding strategy? In this article, we compared the in vitro biostability of composites with that of the pure polymer. We tested three model composites in oxidative, acidic, basic, and neutral solutions. We found that oxidation degradation was much more profound in the composites than in the corresponding pure polymer. This degradation seemed to be an intrinsic property of composite materials. We also observed the well documented interfacial debonding between filler and matrix and its effects on the mechanical reinforcement of the hydrated composites. The improvements in acid and base resistance were also observed.

  3. Protease Inhibitors Extracted from Caesalpinia echinata Lam. Affect Kinin Release during Lung Inflammation

    PubMed Central

    Cruz-Silva, Ilana; Praxedes-Garcia, Priscila; Tanaka, Aparecida Sadae; Shimamoto, Kazuaki

    2016-01-01

    Inflammation is an essential process in many pulmonary diseases in which kinins are generated by protease action on kininogen, a phenomenon that is blocked by protease inhibitors. We evaluated kinin release in an in vivo lung inflammation model in rats, in the presence or absence of CeKI (C. echinata kallikrein inhibitor), a plasma kallikrein, cathepsin G, and proteinase-3 inhibitor, and rCeEI (recombinant C. echinata elastase inhibitor), which inhibits these proteases and also neutrophil elastase. Wistar rats were intravenously treated with buffer (negative control) or inhibitors and, subsequently, lipopolysaccharide was injected into their lungs. Blood, bronchoalveolar lavage fluid (BALF), and lung tissue were collected. In plasma, kinin release was higher in the LPS-treated animals in comparison to CeKI or rCeEI groups. rCeEI-treated animals presented less kinin than CeKI-treated group. Our data suggest that kinins play a pivotal role in lung inflammation and may be generated by different enzymes; however, neutrophil elastase seems to be the most important in the lung tissue context. These results open perspectives for a better understanding of biological process where neutrophil enzymes participate and indicate these plant inhibitors and their recombinant correlates for therapeutic trials involving pulmonary diseases. PMID:28044105

  4. The kallikrein-kinin system in diabetic nephropathy

    PubMed Central

    Tomita, Hirofumi; Sanford, Ryan B.; Smithies, Oliver; Kakoki, Masao

    2012-01-01

    Diabetic nephropathy is the major cause of end-stage renal disease worldwide. Although the renin-angiotensin system has been implicated in the pathogenesis of diabetic nephropathy, angiotensin I-converting enzyme (ACE) inhibitors have a beneficial effect on diabetic nephropathy independently of their effects on blood pressure and plasma angiotensin II levels. This suggests that the kallikrein-kinin system (KKS) is also involved in the disease. To study the role of the KKS in diabetic nephropathy, mice lacking either the bradykinin B1 receptor (B1R) or the bradykinin B2 receptor (B2R) have been commonly used. However, because absence of either receptor causes enhanced expression of the other, it is difficult to determine the precise functions of each receptor. This difficulty has recently been overcome by comparing mice lacking both receptors with mice lacking each receptor. Deletion of both B1R and B2R reduces nitric oxide (NO) production and aggravates renal diabetic phenotypes, relevant to either lack of B1R or B2R, demonstrating that both B1R and B2R exert protective effects on diabetic nephropathy presumably via NO. Here, we review previous epidemiological and experimental studies, and discuss novel insights regarding the therapeutic implications of the importance of the KKS in averting diabetic nephropathy. PMID:22318421

  5. Acute effect of potassium canrenoate administration on renin-angiotensin, kallikrein-kinin and prostaglandin systems.

    PubMed

    Lahera, V; Cachofeiro, V; Duran, F; Cañizo, F J; Rodriguez, F J; Tresguerres, J A

    1988-01-01

    1. To investigate the possible effects of potassium canrenoate (PC) on plasma renin activity (PRA) and on renal prostaglandins (PGS) and kinins under elevated sodium and/or potassium intakes, a single dose of PC was administered to four groups of Wistar male rats. 2. They were fed a normal diet (C), a diet supplemented with 4% of NaCl, (Na), with 1% of KCl: (K) or both supplements (NaK). 3. PRA and urinary PGS excretion did not show changes after PC administration, but total urinary kinins showed higher values after the treatment in all groups. 4. A diuretic but not natriuretic effect was observed only in C animals. 5. In conclusion, the single dose of PC was able to stimulate urinary kinins and to spare potassium independently of dietary electrolyte supplements that were able to block the diuretic effect of the drug.

  6. Kinin B1 Receptor in Adipocytes Regulates Glucose Tolerance and Predisposition to Obesity

    PubMed Central

    Motta, Fabiana Louise; Fonseca, Raphael Gomes; Alenina, Natalia; Guadagnini, Dioze; Schadock, Ines; Silva, Elton Dias; Torres, Hugo A. M.; dos Santos, Edson Lucas; Castro, Charlles Heldan; D’Almeida, Vânia; Andreotti, Sandra; Campaña, Amanda Baron; Sertié, Rogério A. L.; Saad, Mario J. A.; Lima, Fabio Bessa; Bader, Michael; Pesquero, João Bosco

    2012-01-01

    Background Kinins participate in the pathophysiology of obesity and type 2 diabetes by mechanisms which are not fully understood. Kinin B1 receptor knockout mice (B1−/−) are leaner and exhibit improved insulin sensitivity. Methodology/Principal Findings Here we show that kinin B1 receptors in adipocytes play a role in controlling whole body insulin action and glucose homeostasis. Adipocytes isolated from mouse white adipose tissue (WAT) constitutively express kinin B1 receptors. In these cells, treatment with the B1 receptor agonist des-Arg9-bradykinin improved insulin signaling, GLUT4 translocation, and glucose uptake. Adipocytes from B1−/− mice showed reduced GLUT4 expression and impaired glucose uptake at both basal and insulin-stimulated states. To investigate the consequences of these phenomena to whole body metabolism, we generated mice where the expression of the kinin B1 receptor was limited to cells of the adipose tissue (aP2-B1/B1−/−). Similarly to B1−/− mice, aP2-B1/B1−/− mice were leaner than wild type controls. However, exclusive expression of the kinin B1 receptor in adipose tissue completely rescued the improved systemic insulin sensitivity phenotype of B1−/− mice. Adipose tissue gene expression analysis also revealed that genes involved in insulin signaling were significantly affected by the presence of the kinin B1 receptor in adipose tissue. In agreement, GLUT4 expression and glucose uptake were increased in fat tissue of aP2-B1/B1−/− when compared to B1−/− mice. When subjected to high fat diet, aP2-B1/B1−/− mice gained more weight than B1−/− littermates, becoming as obese as the wild types. Conclusions/Significance Thus, kinin B1 receptor participates in the modulation of insulin action in adipocytes, contributing to systemic insulin sensitivity and predisposition to obesity. PMID:23024762

  7. Serotonin has kinin-like activity in stimulating secretion by Malpighian tubules of the house cricket Acheta domesticus.

    PubMed

    Coast, Geoffrey

    2011-03-01

    Serotonin stimulates secretion by Malpighian tubules (MT) of a number of insects, and functions as a diuretic hormone in Rhodnius prolixus and in larval Aedes aegypti. Serotonin is here shown to be a potent stimulant of secretion by MT of the house cricket, Acheta domesticus, with an apparent EC(50) of 9.4 nmol L(-1), although its diuretic activity is just 25% of the maximum achievable with either the native CRF-related peptide, Achdo-DH, or a crude extract of the corpora cardiaca. In this respect, the diuretic activity of serotonin is similar to that of the cricket kinin Achdo-KI, and when tested together their actions are not additive, which suggests they target the same transport process. Consistent with this suggestion, the activity of serotonin is chloride-dependent and is associated with a non-selective stimulation of NaCl and KCl transport. In common with Achdo-KI, serotonin has no effect on cAMP production by isolated MT, and both act synergistically with exogenous 8bromo-cAMP in stimulating fluid secretion, most likely by promoting the release of Ca(2+) from intracellular stores. A number of serotonin agonists and antagonists were tested to determine the pharmacological profile of receptors on cricket MT. The results are consistent with the diuretic activity of serotonin being mediated through a 5-HT(2)-like receptor.

  8. Human plasma kallikrein-kinin system: Physiological and biochemical parameters

    PubMed Central

    Bryant, J.W.; Shariat-Madar, z

    2016-01-01

    The plasma kallikrein-kinin system (KKS) plays a critical role in human physiology. The KKS encompasses coagulation factor XII (FXII), the complex of prekallikrein (PK) and high molecular weight kininogen (HK). The conversion of plasma to kallikrein by the activated FXII and in response to numerous different stimuli leads to the generation of bradykinin (BK) and activated HK (HKa, an antiangiogenic peptide). BK is a proinflammatory peptide, a pain mediator and potent vasodilator, leading to robust accumulation of fluid in the interstitium. Systemic production of BK, HKa with the interplay between BK bound-BK receptors and the soluble form of HKa are key to angiogenesis and hemodynamics. KKS has been implicated in the pathogenesis of inflammation, hypertension, endotoxemia, and coagulopathy. In all these cases increased BK levels is the hallmark. In some cases, the persistent production of BK due to the deficiency of the blood protein C1-inhibitor, which controls FXII, is detrimental to the survival of the patients with hereditary angioedema (HAE). In others, the inability of angiotensin converting enzyme (ACE) to degrade BK leads to elevated BK levels and edema in patients on ACE inhibitors. Thus, the mechanisms that interfere with BK liberation or degradation would lead to blood pressure dysfunction. In contrast, anti-kallikrein treatment could have adverse effects in hemodynamic changes induced by vasoconstrictor agents. Genetic models of kallikrein deficiency are needed to evaluate the quantitative role of kallikrein and to validate whether strategies designed to activate or inhibit kallikrein may be important for regulating whole-body BK sensitivity. PMID:19689262

  9. Long-Term Biostability of Self-Assembling Protein Polymers in the Absence of Covalent Crosslinking

    PubMed Central

    Sallach, Rory E.; Cui, Wanxing; Balderrama, Fanor; Martinez, Adam W.; Wen, Jing; Haller, Carolyn A.; Taylor, Jeannette V.; Wright, Elizabeth R.; Long, Robert C.; Chaikof, Elliot L.

    2009-01-01

    Unless chemically crosslinked, matrix proteins, such as collagen or silk, display a limited lifetime in vivo with significant degradation observed over a period of weeks. Likewise, amphiphilic peptides, lipopeptides, or glycolipids that self-assemble through hydrophobic interactions to form thin films, fiber networks, or vesicles do not demonstrate in vivo biostability beyond a few days. We report herein that a self-assembling, recombinant elastin-mimetic triblock copolymer elicited minimal inflammatory response and displayed robust in vivo stability for periods exceeding 1 year, in the absence of either chemical or ionic crosslinking. Specifically, neither a significant inflammatory response nor calcification was observed upon implantation of test materials into the peritoneal cavity or subcutaneous space of a mouse model. Moreover, serial quantitative magnetic resonance imaging, evaluation of pre- and post-explant ultrastructure by cryo-high resolution scanning electron microscopy, and an examination of implant mechanical responses revealed substantial preservation of form, material architecture, and biomechanical properties, providing convincing evidence of a non-chemically or ionically crosslinked protein polymer system that exhibits long-term stability in vivo. PMID:19854505

  10. MATE-1 modulation by kinin B1 receptor enhances cisplatin efflux from renal cells.

    PubMed

    Estrela, Gabriel R; Wasinski, Frederick; Felizardo, Raphael J F; Souza, Laura L; Câmara, Niels O S; Bader, Michael; Araujo, Ronaldo C

    2017-04-01

    Cisplatin is a drug widely used in chemotherapy that frequently causes severe renal dysfunction. Organic transporters have an important role to control the absorption and excretion of cisplatin in renal cells. Deletion and blockage of kinin B1 receptor has already been show to protect against cisplatin-induced acute kidney injury. To test whether it exerts its protective function by modulating the organic transporters in kidney, we studied kinin B1 receptor knockout mice and treatment with a receptor antagonist at basal state and in presence of cisplatin. Cisplatin administration caused downregulation of renal organic transporters; in B1 receptor knockout mice, this downregulation of organic transporters in kidney was absent; and treatment by a B1 receptor antagonist attenuated the downregulation of the transporter MATE-1. Moreover, kinin B1 receptor deletion and blockage at basal state resulted in higher renal expression of MATE-1. Moreover we observed that kinin B1 receptor deletion and blockage result in less accumulation of platinum in renal tissue. Thus, we propose that B1 receptor deletion and blockage protect the kidney from cisplatin-induced acute kidney injury by upregulating the expression of MATE-1, thereby increasing the efflux of cisplatin from renal cells.

  11. Activation of the Kinin B1 Receptor Attenuates Melanoma Tumor Growth and Metastasis

    PubMed Central

    Dillenburg-Pilla, Patricia; Maria, Andrea G.; Reis, Rosana I.; Floriano, Elaine Medeiros; Pereira, Cacilda Dias; De Lucca, Fernando Luiz; Ramos, Simone Gusmão; Pesquero, João B.; Jasiulionis, Miriam G.; Costa-Neto, Claudio M.

    2013-01-01

    Melanoma is a very aggressive tumor that does not respond well to standard therapeutic approaches, such as radio- and chemotherapies. Furthermore, acquiring the ability to metastasize in melanoma and many other tumor types is directly related to incurable disease. The B1 kinin receptor participates in a variety of cancer-related pathophysiological events, such as inflammation and angiogenesis. Therefore, we investigated whether this G protein-coupled receptor plays a role in tumor progression. We used a murine melanoma cell line that expresses the kinin B1 receptor and does not express the kinin B2 receptor to investigate the precise contribution of activation of the B1 receptor in tumor progression and correlated events using various in vitro and in vivo approaches. Activation of the kinin B1 receptor in the absence of B2 receptor inhibits cell migration in vitro and decreases tumor formation in vivo. Moreover, tumors formed from cells stimulated with B1-specific agonist showed several features of decreased aggressiveness, such as smaller size and infiltration of inflammatory cells within the tumor area, higher levels of pro-inflammatory cytokines implicated in the host anti-tumor immune response, lower number of cells undergoing mitosis, a poorer vascular network, no signs of invasion of surrounding tissues or metastasis and increased animal survival. Our findings reveal that activation of the kinin B1 receptor has a host protective role during murine melanoma tumor progression, suggesting that the B1 receptor could be a new anti-tumor GPCR and provide new opportunities for therapeutic targeting. PMID:23691222

  12. Activation of the kinin B1 receptor attenuates melanoma tumor growth and metastasis.

    PubMed

    Dillenburg-Pilla, Patricia; Maria, Andrea G; Reis, Rosana I; Floriano, Elaine Medeiros; Pereira, Cacilda Dias; De Lucca, Fernando Luiz; Ramos, Simone Gusmão; Pesquero, João B; Jasiulionis, Miriam G; Costa-Neto, Claudio M

    2013-01-01

    Melanoma is a very aggressive tumor that does not respond well to standard therapeutic approaches, such as radio- and chemotherapies. Furthermore, acquiring the ability to metastasize in melanoma and many other tumor types is directly related to incurable disease. The B1 kinin receptor participates in a variety of cancer-related pathophysiological events, such as inflammation and angiogenesis. Therefore, we investigated whether this G protein-coupled receptor plays a role in tumor progression. We used a murine melanoma cell line that expresses the kinin B1 receptor and does not express the kinin B2 receptor to investigate the precise contribution of activation of the B1 receptor in tumor progression and correlated events using various in vitro and in vivo approaches. Activation of the kinin B1 receptor in the absence of B2 receptor inhibits cell migration in vitro and decreases tumor formation in vivo. Moreover, tumors formed from cells stimulated with B1-specific agonist showed several features of decreased aggressiveness, such as smaller size and infiltration of inflammatory cells within the tumor area, higher levels of pro-inflammatory cytokines implicated in the host anti-tumor immune response, lower number of cells undergoing mitosis, a poorer vascular network, no signs of invasion of surrounding tissues or metastasis and increased animal survival. Our findings reveal that activation of the kinin B1 receptor has a host protective role during murine melanoma tumor progression, suggesting that the B1 receptor could be a new anti-tumor GPCR and provide new opportunities for therapeutic targeting.

  13. Site and mechanisms of action of kinins in rat ileal mucosa

    SciTech Connect

    Warhurst, G.; Lees, M.; Higgs, N.B.; Turnberg, L.A.

    1987-03-01

    Kinin-induced secretion in the intestine is accompanied by marked increases in mucosal adenosine 3',5'-cyclic monophosphate (cAMP) and prostanoids that undoubtedly contribute to the overall secretory responses. The authors have investigated the effects of kallidin on the phospholipase-prostanoid-cAMP pathway in whole ileal mucosa and in epithelial cells isolated from the same tissue in the rat. Kallidin (1 ..mu..M) stimulated a marked rise in PG (prostaglandin) E/sub 2/ release from the serosal surface of stripped ileal mucosa within 1-2 min, which correlated closely with the rise in mucosal short-circuit current. Mucosal cAMP levels were also increased two to threefold by kallidin. However, kinins were unable to elicit effects under the same conditions in suspensions of viable epithelial cells. PGE/sub 2/ release was unaffected by kallidin or bradykinin at concentrations up to 100 ..mu..M, whereas cAMP levels could be stimulated by forskolin and PGE/sub 2/ but not by kinin. Studies of intestinal phospholipase A/sub 2/ (PLA/sub 2/) activity also suggest a nonepithelial site for kinin action. In the intestine, PLA/sub 2/ activity was found to be concentrated within the subepithelium with significantly lower levels in the epithelium itself. In addition, kallidin was unable to influence phospholipid labeling (an indirect measure of PLA/sub 2/ activity) in cells incubated with (/sup 14/C) arachidonic acid. These studies suggest that kinins initiate increases in intestinal prostaglandin and cAMP production within the subepithelium and not by a direct action on epithelial cells.

  14. Improved biostability assessment of drinking water with a suite of test methods at a water supply treating eutrophic lake water.

    PubMed

    van der Kooij, Dick; Martijn, Bram; Schaap, Peter G; Hoogenboezem, Wim; Veenendaal, Harm R; van der Wielen, Paul W J J

    2015-12-15

    Assessment of drinking-water biostability is generally based on measuring bacterial growth in short-term batch tests. However, microbial growth in the distribution system is affected by multiple interactions between water, biofilms and sediments. Therefore a diversity of test methods was applied to characterize the biostability of drinking water distributed without disinfectant residual at a surface-water supply. This drinking water complied with the standards for the heterotrophic plate count and coliforms, but aeromonads periodically exceeded the regulatory limit (1000 CFU 100 mL(-1)). Compounds promoting growth of the biopolymer-utilizing Flavobacterium johnsoniae strain A3 accounted for c. 21% of the easily assimilable organic carbon (AOC) concentration (17 ± 2 μg C L(-1)) determined by growth of pure cultures in the water after granular activated-carbon filtration (GACF). Growth of the indigenous bacteria measured as adenosine tri-phosphate in water samples incubated at 25 °C confirmed the low AOC in the GACF but revealed the presence of compounds promoting growth after more than one week of incubation. Furthermore, the concentration of particulate organic carbon in the GACF (83 ± 42 μg C L(-1), including 65% carbohydrates) exceeded the AOC concentration. The increased biomass accumulation rate in the continuous biofouling monitor (CBM) at the distribution system reservoir demonstrated the presence of easily biodegradable by-products related to ClO2 dosage to the GACF and in the CBM at 42 km from the treatment plant an iron-associated biomass accumulation was observed. The various methods applied thus distinguished between easily assimilable compounds, biopolymers, slowly biodegradable compounds and biomass-accumulation potential, providing an improved assessment of the biostability of the water. Regrowth of aeromonads may be related to biomass-turnover processes in the distribution system, but establishment of quantitative relationships is needed for

  15. Limitations of predicting in vivo biostability of multiphase polyurethane elastomers using temperature-accelerated degradation testing.

    PubMed

    Padsalgikar, Ajay; Cosgriff-Hernandez, Elizabeth; Gallagher, Genevieve; Touchet, Tyler; Iacob, Ciprian; Mellin, Lisa; Norlin-Weissenrieder, Anna; Runt, James

    2015-01-01

    Polyurethane biostability has been the subject of intense research since the failure of polyether polyurethane pacemaker leads in the 1980s. Accelerated in vitro testing has been used to isolate degradation mechanisms and predict clinical performance of biomaterials. However, validation that in vitro methods reproduce in vivo degradation is critical to the selection of appropriate tests. High temperature has been proposed as a method to accelerate degradation. However, correlation of such data to in vivo performance is poor for polyurethanes due to the impact of temperature on microstructure. In this study, we characterize the lack of correlation between hydrolytic degradation predicted using a high temperature aging model of a polydimethylsiloxane-based polyurethane and its in vivo performance. Most notably, the predicted molecular weight and tensile property changes from the accelerated aging study did not correlate with clinical explants subjected to human biological stresses in real time through 5 years. Further, DMTA, ATR-FTIR, and SAXS experiments on samples aged for 2 weeks in PBS indicated greater phase separation in samples aged at 85°C compared to those aged at 37°C and unaged controls. These results confirm that microstructural changes occur at high temperatures that do not occur at in vivo temperatures. In addition, water absorption studies demonstrated that water saturation levels increased significantly with temperature. This study highlights that the multiphase morphology of polyurethane precludes the use of temperature accelerated biodegradation for the prediction of clinical performance and provides critical information in designing appropriate in vitro tests for this class of materials.

  16. Kinin B1 and B2 receptors are overexpressed in the hippocampus of humans with temporal lobe epilepsy.

    PubMed

    Perosa, Sandra Regina; Argañaraz, Gustavo Adolfo; Goto, Eduardo Massatoshi; Costa, Luciana Gilbert Pessoa; Konno, Ana Carla; Varella, Pedro Paulo Vasconcellos; Santiago, Joselita Ferreira Carvalho; Pesquero, João Bosco; Canzian, Mauro; Amado, Debora; Yacubian, Elza Marcia; Carrete, Henrique; Centeno, Ricardo Silva; Cavalheiro, Esper Abrão; Silva, Jose Antonio; Mazzacoratti, Maria da Graça Naffah

    2007-01-01

    Molecular biology tools have been employed to investigate the participation of peptides in human temporal lobe epilepsy (TLE). Active polypeptides and their receptors have been related to several brain processes, such as inflammation, apoptosis, brain development, K(+) and Ca(2+) channels' activation, cellular growth, and induction of neuronal differentiation. Previous works have shown a neuroprotector effect for kinin B2 receptor and a deleterious, pro-epileptogenic action for kinin B1 receptor in animal models of TLE. The present work was delineated to analyze the kinin B1 and B2 receptors expression in the hippocampus of patients presenting refractory mesial TLE. The hippocampi were removed during the patients surgery in a procedure used for seizure control and compared with tissues obtained after autopsy. Nissl staining was performed to study the tissue morphology and immunohistochemistry, and Western blot was used to compare the distribution and levels of both receptors in the hippocampus. In addition, real time PCR was employed to analyze the gene expression of these receptors. Nissl staining showed sclerotic hippocampi with hilar, granular, and pyramidal cell loss in TLE patients. Immunohistochemistry and Western blot analyses showed increased expression of kinin B1 and B2 receptors but the real-time PCR data demonstrated increased mRNA level only for kinin B2 receptors, when compared with controls. These data show for the first time a relationship between human TLE and the kallikrein-kinin system, confirming ours previous results, obtained from experimental models of epilepsy.

  17. Nicotine impairs cyclooxygenase-2-dependent kinin-receptor-mediated murine airway relaxations

    SciTech Connect

    Xu, Yuan Cardell, Lars-Olaf

    2014-02-15

    Introduction: Cigarette smoke induces local inflammation and airway hyperreactivity. In asthmatics, it worsens the symptoms and increases the risk for exacerbation. The present study investigates the effects of nicotine on airway relaxations in isolated murine tracheal segments. Methods: Segments were cultured for 24 h in the presence of vehicle, nicotine (10 μM) and/or dexamethasone (1 μM). Airway relaxations were assessed in myographs after pre-contraction with carbachol (1 μM). Kinin receptors, cyclooxygenase (COX) and inflammatory mediator expressions were assessed by real-time PCR and confocal-microscopy-based immunohistochemistry. Results: The organ culture procedure markedly increased bradykinin- (selective B{sub 2} receptor agonist) and des-Arg{sup 9}-bradykinin- (selective B{sub 1} receptor agonist) induced relaxations, and slightly increased relaxation induced by isoprenaline, but not that induced by PGE{sub 2}. The kinin receptor mediated relaxations were epithelium-, COX-2- and EP2-receptor-dependent and accompanied by drastically enhanced mRNA levels of kinin receptors, as well as inflammatory mediators MCP-1 and iNOS. Increase in COX-2 and mPGES-1 was verified both at mRNA and protein levels. Nicotine selectively suppressed the organ-culture-enhanced relaxations induced by des-Arg{sup 9}-bradykinin and bradykinin, at the same time reducing mPGES-1 mRNA and protein expressions. α7-nicotinic acetylcholine receptor inhibitors α-bungarotoxin and MG624 both blocked the nicotine effects on kinin B{sub 2} receptors, but not those on B{sub 1}. Dexamethasone completely abolished kinin-induced relaxations. Conclusion: It is tempting to conclude that a local inflammatory process per se could have a bronchoprotective component by increasing COX-2 mediated airway relaxations and that nicotine could impede this safety mechanism. Dexamethasone further reduced airway inflammation together with relaxations. This might contribute to the steroid resistance seen in

  18. Biostability and disinfectant by-product formation in drinking water blended with UF-treated filter backwash water.

    PubMed

    Walsh, M E; Gagnon, G A; Alam, Z; Andrews, R C

    2008-04-01

    The overall objective of this study was to investigate the impact of blending membrane-treated water treatment plant (WTP) residuals with plant-filtered water on finished water quality in terms of biostability and disinfectant by-product (DBP) formation. Filter backwash water (FBWW) was treated with a pilot-scale ultrafiltration (UF) membrane to produce permeate that was blended with plant-finished water. The batch studies involved storing samples for a specified time with a disinfectant residual to simulate residence time in the distribution system. Both chlorinated and non-chlorinated FBWW streams were evaluated, and the experimental design incorporated free chlorine, monochloramine, and chlorine dioxide in parallel to a model system that did not receive a disinfectant dose. The results of the study found that blending 10% UF-treated FBWW with plant-filtered water did not have an impact on water biostability as monitored with heterotrophic plate counts (HPCs) or DBP concentrations as monitored by TTHM and HAA5 concentrations. However, the presence of preformed THM and HAA species found in chlorinated FBWW streams may result in higher levels of initial DBP concentrations in blended water matrices, and could have a significant impact on finished water quality in terms of meeting specific DBP guidelines or regulations.

  19. Modelling combined effect of chloramine and copper on ammonia-oxidizing microbial activity using a biostability approach.

    PubMed

    Sarker, Dipok Chandra; Sathasivan, Arumugam; Rittmann, Bruce E

    2015-11-01

    Continuous and batch laboratory experiments were used to evaluate the combined effects of copper and chloramine on ammonia oxidizing microbes present in otherwise high nitrifying water samples. The experimental data were analyzed using a biostability concept and quantified with the biostable residual concentratrion (BRC) of monochloramine, or the concentration that prevents the onset of nitrification. In the batch experiments, copper dosing ≥0.25 mg-Cu L(-1) resulted in complete inhibition of nitrification, and a lower copper dosing (0.1 mg-Cu L(-1)) delayed nitrification. The BRC was systematically lowered with the addition of copper. For example, a free-ammonium concentration of 0.1 mg-N L(-1) had a BRC of 0.73 mg-Cl2 L(-1) with no Cu, but addition of 0.1 mg-Cu L(-1) lowered the BRC to 0.16 mg-Cl2 L(-1), while addition of 0.25 mg-Cu L(-1) eliminated the need to add chloramine (BRC = 0). A non-competitive inhibition model fit the experimental data well with a copper threshold of 0.044 mg-Cu L(-1) and can be used to estimate Cu doses needed to prevent nitrification based on the chloramine concentration. Full scale systems applications need further study.

  20. Kallikrein-kinin system in the plasma of the snake Bothrops jararaca.

    PubMed Central

    Abdalla, F. M.; Hiraichi, E.; Picarelli, Z. P.; Prezoto, B. C.

    1989-01-01

    1. Bothrops jararaca venom (BJV) caused a fall in the carotid artery blood pressure of the anaesthetized snake. This effect was tachyphylactic and was potentiated by captopril, a kininase II inhibitor; it was partially antagonized by promethazine plus cimetidine and was not affected by atropine. 2. Similar hypotensive effects were obtained by administration of trypsin or a partially purified BJV kininogenase to the snake. 3. Incubation of Bothrops jararaca plasma (BJP) with trypsin released a substance (or substances) that produced hypotension in the snake but not in the rat; this hypotensive effect was also potentiated by captopril. 4. The trypsinised plasma contracted Bothrops jararaca isolated uterus, a pharmacological preparation weakly sensitive to bradykinin. Trypsinised plasma was inactive on pigeon oviduct and rat uterus and displayed a weak action on the guinea-pig ileum. Similar effects were observed with incubates of a fraction of BJP, containing globulins, with a partially purified BJV kininogenase. 5. Like mammalian kinins, the substance(s) was(were) dialysable, thermostable in acid but not in alkaline pH, and inactivated by chymotrypsin but not by trypsin. Its(their) inactivation by BJP or BJP kininase II was inhibited by captopril. 6. These findings strongly suggest that, besides releasing histamine, BJV or trypsin release a kininlike substance (or substances) from the snake plasma. 7. Since BJV and other kininogenases active on mammalian plasma were shown to be unable to release kinins from BJP, in experiments conducted on pharmacological preparations suitable for the assay of mammalian kinins, these data also suggest that the snake Bothrops jararaca, like birds, may have developed its own kallikrein-kinin system. PMID:2804549

  1. Improvement of skin wound healing in diabetic mice by kinin B2 receptor blockade.

    PubMed

    Desposito, Dorinne; Chollet, Catherine; Taveau, Christopher; Descamps, Vincent; Alhenc-Gelas, François; Roussel, Ronan; Bouby, Nadine; Waeckel, Ludovic

    2016-01-01

    Impaired skin wound healing is a major medical problem in diabetic subjects. Kinins exert a number of vascular and other actions limiting organ damage in ischaemia or diabetes, but their role in skin injury is unknown. We investigated, through pharmacological manipulation of bradykinin B1 and B2 receptors (B1R and B2R respectively), the role of kinins in wound healing in non-diabetic and diabetic mice. Using two mouse models of diabetes (streptozotocin-induced and db/db mice) and non-diabetic mice, we assessed the effect of kinin receptor activation or inhibition by subtype-selective pharmacological agonists (B1R and B2R) and antagonist (B2R) on healing of experimental skin wounds. We also studied effects of agonists and antagonist on keratinocytes and fibroblasts in vitro. Levels of Bdkrb1 (encoding B1R) and Bdkrb2 (encoding B2R) mRNAs increased 1-2-fold in healthy and wounded diabetic skin compared with in non-diabetic skin. Diabetes delayed wound healing. The B1R agonist had no effect on wound healing. In contrast, the B2R agonist impaired wound repair in both non-diabetic and diabetic mice, inducing skin disorganization and epidermis thickening. In vitro, B2R activation unbalanced fibroblast/keratinocyte proliferation and increased keratinocyte migration. These effects were abolished by co-administration of B2R antagonist. Interestingly, in the two mouse models of diabetes, the B2R antagonist administered alone normalized wound healing. This effect was associated with the induction of Ccl2 (encoding monocyte chemoattractant protein 1)/Tnf (encoding tumour necrosis factor α) mRNAs. Thus stimulation of kinin B2 receptor impairs skin wound healing in mice. B2R activation occurs in the diabetic skin and delays wound healing. B2R blockade improves skin wound healing in diabetic mice and is a potential therapeutic approach to diabetic ulcers.

  2. Sex Conversion in a Male Vitis vinifera L. by a Kinin.

    PubMed

    Negi, S S; Olmo, H P

    1966-06-17

    A synthetic (reputed) kinin, SD 8339, at 1000 parts per million in alcohol solution, applied to flower clusters of a male grapevine about 3 weeks before anthesis, completely converted the flower sex from male to hermaphrodite. Indolebutyric acid, 2,3,5-triiodobenzoic acid, 2-chloroethyltrimethylammonium chloride beta-naphthoxyacetic acid, beta-indoleacetic acid, alpha-naphthaleneacetic acid, and gibberellin A(3) failed to modify the sex.

  3. Deletion of Kinin B2 Receptor Alters Muscle Metabolism and Exercise Performance

    PubMed Central

    Reis, Felipe C. G.; Haro, Anderson S.; Bacurau, Aline V. N.; Hirabara, Sandro M.; Wasinski, Frederick; Ormanji, Milene S.; Moreira, José B. N.; Kiyomoto, Beatriz H.; Bertoncini, Clelia R. A.; Brum, Patricia C.; Curi, Rui; Bader, Michael; Bacurau, Reury F. P.; Pesquero, João B.; Araújo, Ronaldo C.

    2015-01-01

    Metabolic syndrome is a cluster of metabolic risk factors such as obesity, diabetes and cardiovascular diseases. Mitochondria is the main site of ATP production and its dysfunction leads to decreased oxidative phosphorylation, resulting in lipid accumulation and insulin resistance. Our group has demonstrated that kinins can modulate glucose and lipid metabolism as well as skeletal muscle mass. By using B2 receptor knockout mice (B2R-/-) we investigated whether kinin action affects weight gain and physical performance of the animals. Our results show that B2R-/- mice are resistant to high fat diet-induced obesity, have higher glucose tolerance as well as increased mitochondrial mass. These features are accompanied by higher energy expenditure and a lower feed efficiency associated with an increase in the proportion of type I fibers and intermediary fibers characterized by higher mitochondrial content and increased expression of genes related to oxidative metabolism. Additionally, the increased percentage of oxidative skeletal muscle fibers and mitochondrial apparatus in B2R-/- mice is coupled with a higher aerobic exercise performance. Taken together, our data give support to the involvement of kinins in skeletal muscle fiber type distribution and muscle metabolism, which ultimately protects against fat-induced obesity and improves aerobic exercise performance. PMID:26302153

  4. Kininogen Cleavage Assay: Diagnostic Assistance for Kinin-Mediated Angioedema Conditions

    PubMed Central

    Defendi, Federica; Charignon, Delphine; Ghannam, Arije; Habib, Mohammed; Drouet, Christian

    2016-01-01

    Background Angioedema without wheals (AE) is a symptom characterised by localised episodes of oedema presumably caused by kinin release from kininogen cleavage. It can result from a hereditary deficiency in C1 Inhibitor (C1Inh), but it can present with normal level of C1Inh. These forms are typically difficult to diagnose although enhanced kinin production is suspected or demonstrated in some cases. Objectives We wanted to investigate bradykinin overproduction in all AE condition with normal C1Inh, excluding cases with enhanced kinin catabolism, and to propose this parameter as a disease biomarker. Methods We retrospectively investigated high molecular weight kininogen (HK) cleavage pattern, using gel electrophoresis and immunorevelation. Plasma samples were drawn using the same standardised procedure from blood donors or AE patients with normal C1Inh conditions, normal kinin catabolism, and without prophylaxis. Results Circulating native HK plasma concentrations were similar in the healthy men (interquartile range: 98–175μg/mL, n = 51) and in healthy women (90–176μg/mL, n = 74), while HK cleavage was lower (p<0.001) in men (0–5%) than women (3–9%). Patients exhibited lower native HK concentration (p<10−4; 21–117μg/mL, n = 31 for men; 0–84μg/mL, n = 41 for women) and higher HK cleavage (p<10−4; 10–30% and 14–89%, respectively) than healthy donors. Pathological thresholds were set at: <72μg/mL native HK, >14.4% HK cleavage for men; <38μg/mL; native HK, >33.0% HK cleavage for women, with >98% specificity achieved for all parameters. In plasma from patients undergoing recovery two months after oestrogen/progestin combination withdrawal (n = 13) or two weeks after AE attack (n = 2), HK cleavage was not fully restored, suggesting its use as a post-attack assay. Conclusion As a diagnostic tool, HK cleavage can offer physicians supportive arguments for kinin production in suspected AE cases and improve patient follow-up in clinical trials or

  5. Kinin Receptors Sensitize TRPV4 Channel and Induce Mechanical Hyperalgesia: Relevance to Paclitaxel-Induced Peripheral Neuropathy in Mice.

    PubMed

    Costa, Robson; Bicca, Maíra A; Manjavachi, Marianne N; Segat, Gabriela C; Dias, Fabiana Chaves; Fernandes, Elizabeth S; Calixto, João B

    2017-03-10

    Kinin B1 (B1R) and B2 receptors (B2R) and the transient receptor potential vanilloid 4 (TRPV4) channel are known to play a critical role in the peripheral neuropathy induced by paclitaxel (PTX) in rodents. However, the downstream pathways activated by kinin receptors as well as the sensitizers of the TRPV4 channel involved in this process remain unknown. Herein, we investigated whether kinins sensitize TRPV4 channels in order to maintain PTX-induced peripheral neuropathy in mice. The mechanical hyperalgesia induced by bradykinin (BK, a B2R agonist) or des-Arg(9)-BK (DABK, a B1R agonist) was inhibited by the selective TRPV4 antagonist HC-067047. Additionally, BK was able to sensitize TRPV4, thus contributing to mechanical hyperalgesia. This response was dependent on phospholipase C/protein kinase C (PKC) activation. The selective kinin B1R (des-Arg(9)-[Leu(8)]-bradykinin) and B2R (HOE 140) antagonists reduced the mechanical hyperalgesia induced by PTX, with efficacies and time response profiles similar to those observed for the TRPV4 antagonist (HC-067047). Additionally, both kinin receptor antagonists inhibited the overt nociception induced by hypotonic solution in PTX-injected animals. The same animals presented lower PKCε levels in skin and dorsal root ganglion samples. The selective PKCε inhibitor (εV1-2) reduced the hypotonicity-induced overt nociception in PTX-treated mice with the same magnitude observed for the kinin receptor antagonists. These findings suggest that B1R or B2R agonists sensitize TRPV4 channels to induce mechanical hyperalgesia in mice. This mechanism of interaction may contribute to PTX-induced peripheral neuropathy through the activation of PKCε. We suggest these targets represent new opportunities for the development of effective analgesics to treat chronic pain.

  6. Insect Allergy.

    PubMed

    Lee, Hobart; Halverson, Sara; Mackey, Regina

    2016-09-01

    Insect bites and stings are common. Risk factors are mostly associated with environmental exposure. Most insect bites and stings result in mild, local, allergic reactions. Large local reactions and systemic reactions like anaphylaxis are possible. Common insects that bite or sting include mosquitoes, ticks, flies, fleas, biting midges, bees, and wasps. The diagnosis is made clinically. Identification of the insect should occur when possible. Management is usually supportive. For anaphylaxis, patients should be given epinephrine and transported to the emergency department for further evaluation. Venom immunotherapy (VIT) has several different protocols. VIT is highly effective in reducing systemic reactions and anaphylaxis.

  7. Hypoalgesia and altered inflammatory responses in mice lacking kinin B1 receptors.

    PubMed

    Pesquero, J B; Araujo, R C; Heppenstall, P A; Stucky, C L; Silva, J A; Walther, T; Oliveira, S M; Pesquero, J L; Paiva, A C; Calixto, J B; Lewin, G R; Bader, M

    2000-07-05

    Kinins are important mediators in cardiovascular homeostasis, inflammation, and nociception. Two kinin receptors have been described, B1 and B2. The B2 receptor is constitutively expressed, and its targeted disruption leads to salt-sensitive hypertension and altered nociception. The B1 receptor is a heptahelical receptor distinct from the B2 receptor in that it is highly inducible by inflammatory mediators such as bacterial lipopolysaccharide and interleukins. To clarify its physiological function, we have generated mice with a targeted deletion of the gene for the B1 receptor. B1 receptor-deficient animals are healthy, fertile, and normotensive. In these mice, bacterial lipopolysaccharide-induced hypotension is blunted, and there is a reduced accumulation of polymorphonuclear leukocytes in inflamed tissue. Moreover, under normal noninflamed conditions, they are analgesic in behavioral tests of chemical and thermal nociception. Using whole-cell patch-clamp recordings, we show that the B1 receptor was not necessary for regulating the noxious heat sensitivity of isolated nociceptors. However, by using an in vitro preparation, we could show that functional B1 receptors are present in the spinal cord, and their activation can facilitate a nociceptive reflex. Furthermore, in B1 receptor-deficient mice, we observed a reduction in the activity-dependent facilitation (wind-up) of a nociceptive spinal reflex. Thus, the kinin B1 receptor plays an essential physiological role in the initiation of inflammatory responses and the modulation of spinal cord plasticity that underlies the central component of pain. The B1 receptor therefore represents a useful pharmacological target especially for the treatment of inflammatory disorders and pain.

  8. Primary Role for Kinin B1 and B2 Receptors in Glioma Proliferation.

    PubMed

    Nicoletti, Natália Fontana; Sénécal, Jacques; da Silva, Vinicius Duval; Roxo, Marcelo R; Ferreira, Nelson Pires; de Morais, Rafael Leite T; Pesquero, João Bosco; Campos, Maria Martha; Couture, Réjean; Morrone, Fernanda Bueno

    2016-11-16

    This study investigated the role of kinins and their receptors in malignant brain tumors. As a first approach, GL-261 glioma cells were injected (2 × 10(5) cells in 2 μl/2 min) into the right striatum of adult C57/BL6 wild-type, kinin B1 and B2 receptor knockout (KOB1R and KOB2R) and B1 and B2 receptor double knockout mice (KOB1B2R). The animals received the selective B1R (SSR240612) and/or B2R (HOE-140) antagonists by intracerebroventricular (i.c.v.) route at 5, 10, and 15 days. The tumor size quantification, mitotic index, western blot analysis, quantitative autoradiography, immunofluorescence, and confocal microscopy were carried out in brain tumor samples, 20 days after tumor induction. Our results revealed an uncontrolled tumor growing in KOB1R or SSR240612-treated mice, which was blunted by B2R blockade with HOE-140, suggesting a crosstalk between B1R and B2R in tumor growing. Combined treatment with B1R and B2R antagonists normalized the upregulation of tumor B1R and decreased the tumor size and the mitotic index, as was seen in double KOB1B2R. The B1R was detected on astrocytes in the tumor, indicating a close relationship between this receptor and astroglial cells. Noteworthy, an immunohistochemistry analysis of tumor samples from 16 patients with glioma diagnosis revealed a marked B1R immunopositivity in low-grade gliomas or in older glioblastoma individuals. Furthermore, the clinical data revealed a significantly higher immunopositivity for B1R, when compared to a lower B2R immunolabeling. Taken together, our results show that blocking simultaneously both kinin receptors or alternatively stimulating B1R may be of therapeutic value in the treatment of brain glioblastoma growth and malignancy.

  9. B1-kinin receptors modulate Mesobuthus tamulus venom-induced vasosensory reflex responses in anesthetized rats

    PubMed Central

    Singh, Sanjeev K.; Deshpande, Shripad B.

    2016-01-01

    Objective: Intra-arterial injection of Mesobuthus tamulus (BT) venom produces reflex vasosensory responses modulating cardiorespiratory parameters in albino rats. The present study was conducted to understand the role of kinin receptors in modulating vasosensory reflexes evoked by BT venom. Materials and Methods: In urethane-anesthetized rats, tracheostomy was performed to keep the airway patent. The femoral artery was cannulated proximally, as well as distally, to record the blood pressure (BP) and to inject the chemicals, respectively. Electrocardiographic and respiratory excursions were recorded to compute the heart rate (HR) and respiratory rate (RR). A group of animals was pretreated with saline/kinin receptor antagonists intra-arterially (B1/B2 receptor antagonists) before the injection of venom. Results: After intra-arterial injection of BT venom (1 mg/kg), there was an immediate increase in RR, which reached to 40% within 30 s, followed by a decrease of 40%. Further, there was sustained increase in RR (50%) up to 60 min. The BP started to increase at 40 s, peaking at 5 min (50%), and remained above the initial level up to 60 min. The bradycardiac response started after 5 min which peaked (50% of initial) at 25 min and remained at that level up to 60 min. In B1 receptor antagonist (des-Arg) pretreated animals, venom-induced cardiovascular responses were attenuated (by 20–25% in mean arterial pressure and HR) significantly but not in B2 receptor antagonist (Hoe-140) pretreated animals. Either of the antagonists failed to alter the RR responses. Conclusions: BT venom-induced vasosensory reflex responses modulating cardiovascular parameters are mediated via B1-kinin receptors in anesthetized rats. PMID:27756949

  10. Insect Keepers

    ERIC Educational Resources Information Center

    Moore, Virginia J.; Chessin, Debby A.; Theobald, Becky

    2010-01-01

    Insects are fascinating creatures--especially when you and your students get up close and personal with them! To that end, the authors facilitated an inquiry-based investigation with an emphasis on identification of the different types of insects found in the school yard, their characteristics, their habitat, and what they eat, while engaging the…

  11. Insect phylogenomics.

    PubMed

    Behura, S K

    2015-08-01

    Phylogenomics, the integration of phylogenetics with genome data, has emerged as a powerful approach to study the evolution and systematics of species. Recently, several studies employing phylogenomic tools have provided better insights into insect evolution. Next-generation sequencing methods are now increasingly used by entomologists to generate genomic and transcript sequences of various insect species and strains. These data provide opportunities for comparative genomics and large-scale multigene phylogenies of diverse lineages of insects. Phy-logenomic investigations help us to better understand systematic and evolutionary relationships of insect species that play important roles as herbivores, predators, detritivores, pollinators and disease vectors. It is important that we critically assess the prospects and limitations of phylogenomic methods. In this review, I describe the current status, outline the major challenges and remark on potential future applications of phylogenomic tools in studying insect systematics and evolution.

  12. Pre-dispersed organo-montmorillonite (organo-MMT) nanofiller: Morphology, cytocompatibility and impact on flexibility, toughness and biostability of biomedical ethyl vinyl acetate (EVA) copolymer.

    PubMed

    Osman, Azlin F; M Fitri, Tuty Fareyhynn; Rakibuddin, Md; Hashim, Fatimah; Tuan Johari, Syed Ahmad Tajudin; Ananthakrishnan, Rajakumar; Ramli, Rafiza

    2017-05-01

    Polymer-clay based nanocomposites are among the attractive materials to be applied for various applications, including biomedical. The incorporation of the nano sized clay (nanoclay) into polymer matrices can result in their remarkable improvement in mechanical, thermal and barrier properties as long as the nanofillers are well exfoliated and dispersed throughout the matrix. In this work, exfoliation strategy through pre-dispersing process of the organically modified montmorillonite (organo-MMT) nanofiller was done to obtain ethyl vinyl acetate (EVA) nanocomposite with improved flexibility, toughness, thermal stability and biostability. Our results indicated that the degree of organo-MMT exfoliation affects its cytotoxicity level and the properties of the resulting EVA nanocomposite. The pre-dispersed organo-MMT by ultrasonication in water possesses higher degree of exfoliation as compared to its origin condition and significantly performed reduced cytotoxicity level. Beneficially, this nanofiller also enhanced the EVA flexibility, thermal stability and biostability upon the in vitro exposure. We postulated that these were due to plasticizing effect and enhanced EVA-nanofiller interactions contributing to more stable chemical bonds in the main copolymer chains. Improvement in copolymer flexibility is beneficial for close contact with human soft tissue, while enhancement in toughness and biostability is crucial to extend its life expectancy as insulation material for implantable device.

  13. Inhibition of kinin B1 receptors attenuates pulmonary hypertension and vascular remodeling.

    PubMed

    Murugesan, Priya; Hildebrandt, Tobias; Bernlöhr, Christian; Lee, Dongwon; Khang, Gilson; Doods, Henri; Wu, Dongmei

    2015-10-01

    This study examined whether the kinin B1 receptor is involved in the pathogenesis of pulmonary hypertension, and whether its inhibition could reduce inflammation, pulmonary hypertension, vascular remodeling, and right heart dysfunction. Male Wistar rats underwent left pneumonectomy. Seven days later, the rats were injected subcutaneously with monocrotaline (60 mg/kg). The rats were then randomly assigned to receive treatment with vehicle or with BI113823 (a selective B1 receptor antagonist, 30 mg/kg, twice per day) via oral gavage from the day of monocrotaline injection to day 28. By day 28, BI113823-treated rats had significantly lower mean pulmonary artery pressure, less right ventricular hypertrophy, and pulmonary arterial neointimal formation than that of the vehicle-treated rats. Real-time polymerase chain reaction revealed that there was a significant increase in mRNA expression of B1 receptors in the lungs of monocrotaline-challenged pneumonectomized rats. Treatment with BI113823 significantly reduced macrophage recruitment, as measured via bronchoalveolar lavage. It also markedly reduced CD-68 positive macrophages and proliferating cell nuclear antigen positive cells in the perivascular areas, reduced expression of inducible nitric oxide synthase, matrix metalloproteinase 2 and 9, and B1 receptors compared with measurements in vehicle-treated rats. These findings demonstrate that kinin B1 receptors represent a novel therapeutic target for pulmonary arterial hypertension.

  14. Captopril augments acetylcholine-induced bronchial smooth muscle contractions in vitro via kinin-dependent mechanisms.

    PubMed

    Agrawal, Naman; Akella, Aparna; Deshpande, Shripad B

    2016-06-01

    Angiotensin converting enzyme (ACE) inhibitors therapy is aassociated with bothersome dry cough as an adverse effect. The mechanisms underlying this adverse effect are not clear. Therefore, influence of captopril (an ACE inhibitor) on acetylcholine (ACh)-induced bronchial smooth muscle contractions was investigated. Further, the mechanisms underlying the captopril-induced changes were also explored. In vitro contractions of rat bronchial smooth muscle to cumulative concentrations of ACh were recorded before and after exposure to captopril. Further, the involvement of kinin and inositol triphosphate (IP₃) pathways for captopril-induced alterations were explored. ACh produced concentration-dependent (5-500 µM) increase in bronchial smooth muscle contractions. Pre-treatment with captopril augmented the ACh-induced contractions at each concentration significantly. Pre-treatment with aprotinin (kinin synthesis inhibitor) or heparin (inositol triphosphate, IP₃-inhibitor), blocked the captopril-induced augmentation of bronchial smooth muscle contractions evoked by ACh. Further, captopril-induced augmentation was absent in calcium-free medium. These results suggest that captopril sensitizes bronchial smooth muscles to ACh-induced contractions. This sensitization may be responsible for dry cough associated with captopril therapy.

  15. Comparative effects of two potentiating peptides (KPP and BPP9a) on kinin-induced rat paw edema.

    PubMed

    Fernandes, P D; Guimarães, J A; Assreuy, J

    1991-03-01

    We have previously shown that KPP, a kinin potentiating peptide generated by tryptic digestion of human plasma proteins potentiated kinin effects on isolated smooth muscle preparations like guinea-pig ileum with high potency and specificity. We also obtained evidence suggesting that, unlike other potentiating peptides, KPP exerts its effect by a mechanism different from the inhibition of kinin metabolism by angiotensin converting enzyme, neutral endopeptidase and kininase I. Here we show the potentiating effect of KPP and of BPP9a, a potentiator derived from snake venom, towards the rat paw edema induced by bradykinin (BK). Our results show that: a) KPP is 25-fold more active than BPP9a in potentiating rat paw edema elicited by BK: b) like BPP9a, KPP is specific in potentiating kinin-induced edema, being ineffective in potentiating edema induced by histamine or serotonin; and c) DesArg9-BK (DABK) elicits a small edematogenic response which can be potentiated by both KPP and BPP9a.

  16. Biostable beta-Amino Acid PK/PBAN Analogs: Agonist and Antagonist Properties

    DTIC Science & Technology

    2009-01-01

    development (egg diapause, pupal diapause and pupariation) [15,22,23,25,28,35,36] and defense ( melanin bio- synthesis) [5,18] in a variety of insects. The...converting enzyme trials Drosophila ACE (Mr, 67,000) was purified from a soluble extract of adults as described elsewhere [9,17] and yielded enzyme that...inhibitory activities were obtained with those peptides when Pss-PT was used as an elicitor where PK-bA-1, PK-bA-2, and PK-bA-4 inhibited PT elicited melanin

  17. Differential regulation of collagen secretion by kinin receptors in cardiac fibroblast and myofibroblast

    SciTech Connect

    Catalán, Mabel; Smolic, Christian; Contreras, Ariel; Ayala, Pedro; Olmedo, Ivonne; Copaja, Miguel; Boza, Pía; Vivar, Raúl; Avalos, Yennifer; Lavandero, Sergio; Velarde, Victoria; Díaz-Araya, Guillermo

    2012-06-15

    Kinins mediate their cellular effects through B1 (B1R) and B2 (B2R) receptors, and the activation of B2R reduces collagen synthesis in cardiac fibroblasts (CF). However, the question of whether B1R and/or B2R have a role in cardiac myofibroblasts remains unanswered. Methods: CF were isolated from neonate rats and myofibroblasts were generated by an 84 h treatment with TGF-β1 (CMF). B1R was evaluated by western blot, immunocytochemistry and radioligand assay; B2R, inducible nitric oxide synthase (iNOS), endothelial nitric oxide synthase (eNOS), and cyclooxygenases 1and 2 (COX-1, and COX-2) were evaluated by western blot; intracellular Ca{sup +2} levels were evaluated with Fluo-4AM; collagen secretion was measured in the culture media using the picrosirius red assay kit. Results: B2R, iNOS, COX-1 and low levels of B1R but not eNOS, were detected by western blot in CF. Also, B1R, B2R, and COX-2 but not iNOS, eNOS or COX-1, were detected by western blot in CMF. By immunocytochemistry, our results showed lower intracellular B1R levels in CF and higher B1R levels in CMF, mainly localized on the cell membrane. Additionally, we found B1R only in CMF cellular membrane through radioligand displacement assay. Bradykinin (BK) B2R agonist increased intracellular Ca{sup 2+} levels and reduced collagen secretion both in CF and CMF. These effects were blocked by HOE-140, and inhibited by L-NAME, 1400W and indomethacin. Des-Arg-kallidin (DAKD) B1R agonist did not increase intracellular Ca{sup 2+} levels in CF; however, after preincubation for 1 h with DAKD and re-stimulation with the same agonist, we found a low increase in intracellular Ca{sup 2+} levels. Finally, DAKD increased intracellular Ca{sup 2+} levels and decreased collagen secretion in CMF, being this effect blocked by the B1R antagonist des-Arg9-Leu8-kallidin and indomethacin, but not by L-NAME or 1400 W. Conclusion: B1R, B2R, iNOS and COX-1 were expressed differently between CF and CMF, and collagen secretion was

  18. Glioblastoma-mesenchymal stem cell communication modulates expression patterns of kinin receptors: Possible involvement of bradykinin in information flow.

    PubMed

    Pillat, Micheli M; Oliveira, Mona N; Motaln, Helena; Breznik, Barbara; Glaser, Talita; Lah, Tamara T; Ulrich, Henning

    2016-04-01

    The most aggressive subtype of brain tumors is glioma WHO grade IV, the glioblastoma (GBM). The present work aims to elucidate the role of kinin receptors in interactions between GBM cells and mesenchymal stem cells (MSC). The GBM cell line U87-MG was stably transfected to express dsRed protein, single cell cloned, expanded, and cultured with MSC, both in the direct co-cultures (DC) and indirect co-cultures (IC) at equal cell number ratio for 72 h. Up- and down-regulation of matrix metalloproteases (MMP)-9 expression in U87-MG and MSC cells, respectively, in direct co-culture points to possible MSC participation in tumor invasion. MMP9 expression is in line with significantly increased expression of kinin B1 (B1R) and B2 receptor (B2R) in U87-MG cells and their decreased levels in MSC, as confirmed by quantitative assessment using flow cytometric analysis. Similarly, in indirect cultures (IC), lacking the contact between GBM and MSC cells, an increase of B1 and B2 receptor expression was again noted in U87-MG cells, and no significant changes in kinin receptors in MSC was observed. Functionality of kinin-B1 and B2 receptors was evidenced by stimulation of intracellular calcium fluxes by their respective agonists, des-Arg9-bradykinin (DBK) and bradykinin (BK). Moreover, BK showed a feedback control on kinin receptor expression in mono-cultures, direct and indirect co-cultures. The treatment with BK resulted in down-regulation of B1 and B2 receptors in MSC, with simultaneous up-regulation of these receptors in U87-MG cells, suggesting that functions of BK in information flow between these cells is important for tumor progression and invasion. © 2015 International Society for Advancement of Cytometry.

  19. A new method to assess the influence of migration from polymeric materials on the biostability of drinking water.

    PubMed

    Bucheli-Witschel, Margarete; Kötzsch, Stefan; Darr, Stephan; Widler, Roland; Egli, Thomas

    2012-09-01

    After having produced drinking water of high quality it is of vital interest to distribute the water without compromising its quality neither by recontamination nor by microbial regrowth. To minimize regrowth, the strategy of distributing biostable water is followed in several European countries. This implies on one hand the production of water that has a low level of growth-supporting nutrients, in particular organic carbon compounds, and, on the other hand, using materials for storage/distribution that have a low biofilm formation potential and from which only low amounts of total organic carbon (TOC) leach into the water phase. Currently, the approval of materials in contact with drinking water relies on two tests, a migration test and a biofilm formation test. Here we describe an extended migration testing procedure that allows to obtain information not only on the amount of chemical compounds but also on the amount of growth-supporting compounds leaching into the water. In short, the test developed combines several migration cycles and subsequent measurement of the TOC with a novel, fast and reliable test method for determining the assimilable organic carbon (AOC) in the migration waters. AOC gives an indication on the growth-supporting properties of the material. Thus, an initial characterisation of a material with respect to its suitability for usage in contact with drinking water can be performed in a single assay. Results obtained with the new assay for a number of materials typically used in drinking water and sanitary installations are reported.

  20. Insect Phylogenomics

    PubMed Central

    Behura, Susanta K.

    2015-01-01

    With the advent of next-generation sequencing methods, phylogenetics has taken a new turn in the recent years. Phylogenomics, the integration of phylogenetics with genome data, has emerged as a powerful approach to study systematics and evolution of species. Recently, breakthrough researches employing phylogenomic tools have provided better insights into the timing and pattern of insect evolution. The next-generation sequencing methods are now increasingly used by entomologists to generate genomic and transcript sequences of various insect species and strains. These data provide opportunities for comparative genomics and large-scale multigene phylogenies of diverse lineages of insects. Phylogenomic investigations help us better understand systematic and evolutionary relationships of insect species that play important roles as herbivores, predators, detritivores, pollinators, or disease vectors. It is important that we critically assess the prospects and limitations of phylogenomic methods. In this review, I describe the current status, outline the major challenges, and remark on potential future applications of phylogenomic tools in studying insect systematics and evolution. PMID:25963452

  1. Kinin-B2 Receptor Exerted Neuroprotection After Diisopropylfluorophosphate-induced Neuronal Damage

    PubMed Central

    Torres-Rivera, Wilmarie; Pérez, Dinely; Park, Keon-Young; Carrasco, Marimée; Platt, Manu O.; Eterović, Vesna A.; Ferchmin, Pedro A.; Ulrich, Henning; Martins, Antonio H.

    2013-01-01

    The kinin-B2 receptor (B2BKR) activated by its endogenous ligand bradykinin participates in various metabolic processes including control of arterial pressure and inflammation. Recently, functions for this receptor in brain development and protection against glutamate-provoked excitotoxicity have been proposed. Here, we report neuroprotective properties for bradykinin against organophosphate poisoning using acute hippocampal slices as an in vitro model. Following slice perfusion for 10 min with diisopropylfluorophosphate (DFP) to initiate the noxious stimulus, responses of pyramidal neurons upon an electric impulse were reduced to less than 30 % of control amplitudes. Effects on synaptic-elicited population spikes were reverted when preparations had been exposed to bradykinin 30 min after challenging with DFP. Accordingly, bradykinin-induced population spike recovery was abolished by HOE-140, a B2BKR antagonist. However, the kinin-B1 receptor (B1BKR) agonist Lys-des-Arg9-bradykinin, inducing phosphorylation of MEK/MAPK and cell death, abolished bradykinin-mediated neuroprotection, an effect, which was reverted by the ERK inhibitor PD98059. In agreement with pivotal B1BKR functions in this process, antagonism of endogenous B1BKR activity alone was enough for restoring population spike activity. On the other hand pralidoxime, an oxime, reactivating AChE after organophosphate poisoning, induced population spike recovery after DFP exposure in the presence of bradykinin and Lys-des-Arg9-bradykinin. Lys-des-Arg9-bradykinin did not revert protection exerted by pralidoxime, however when instead bradykinin and Ly-des-Arg9-bradykinin were superfused together, recovery of population spikes diminished. These findings again confirm the neuroprotective feature of bradykinin, which is, diminished by its endogenous metabolites, stimulating the B1BKR, providing a novel understanding of physiological roles of these receptors. PMID:23735753

  2. An Active Insect Kinin Analog with 4-Aminopyroglutamate, A Novel cis-Peptide Bond, Type VI beta-Turn Motif

    DTIC Science & Technology

    2004-01-01

    modified FastMoc0.25 procedure as well as manually by the solid-phase method, using the Fmoc - strategy and starting from Rink Amide resin (Novabiochem...0.53 mM/g). The Fmoc protecting group was removed by 20% piperidine in DMF. A fourfold excess of the respective Fmoc -amino acids was activated in...equivalents). Amino acid side-chain protect- ing groups were Pbf for Arg and Boc for Trp. The coupling of Fmoc -(S,S)-4-aminopyroglutamic acid ( Fmoc -APy

  3. Insect Resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Insect pests exhibit a diverse array of genetic-based responses when interacting with crop systems; these changes can be in response to pathogens, symbiotic microbes, host plants, chemicals, and the environment. Agricultural research has for decades focused on gathering crucial information on the bi...

  4. Stinging Insect Matching Game

    MedlinePlus

    ... for Kids ▸ Stinging Insect Matching Game Share | Stinging Insect Matching Game Stinging insects can ruin summer fun for those who are ... the difference between the different kinds of stinging insects in order to keep your summer safe and ...

  5. Antihypertensive and renoprotective effect of the kinin pathway activated by potassium in a model of salt sensitivity following overload proteinuria.

    PubMed

    Ardiles, Leopoldo; Cardenas, Areli; Burgos, María E; Droguett, Alejandra; Ehrenfeld, Pamela; Carpio, Daniel; Mezzano, Sergio; Figueroa, Carlos D

    2013-06-15

    The albumin overload model induces proteinuria and tubulointersitial damage, followed by hypertension when rats are exposed to a hypersodic diet. To understand the effect of kinin system stimulation on salt-sensitive hypertension and to explore its potential renoprotective effects, the model was induced in Sprague-Dawley rats that had previously received a high-potassium diet to enhance activity of the kinin pathway, followed with/without administration of icatibant to block the kinin B₂ receptor (B₂R). A disease control group received albumin but not potassium or icatibant, and all groups were exposed to a hypersodic diet to induce salt-sensitive hypertension. Potassium treatment increased the synthesis and excretion of tissue kallikrein (Klk1/rKLK1) accompanied by a significant reduction in blood pressure and renal fibrosis and with downregulation of renal transforming growth factor-β (TGF-β) mRNA and protein compared with rats that did not receive potassium. Participation of the B₂R was evidenced by the fact that all beneficial effects were lost in the presence of the B₂R antagonist. In vitro experiments using the HK-2 proximal tubule cell line showed that treatment of tubular cells with 10 nM bradykinin reduced the epithelial-mesenchymal transdifferentiation and albumin-induced production of TGF-β, and the effects produced by bradykinin were prevented by pretreatment with the B₂R antagonist. These experiments support not only the pathogenic role of the kinin pathway in salt sensitivity but also sustain its role as a renoprotective, antifibrotic paracrine system that modulates renal levels of TGF-β.

  6. Insects: A nutritional alternative

    NASA Technical Reports Server (NTRS)

    Dufour, P. A.

    1981-01-01

    Insects are considered as potential food sources in space. Types of insects consumed are discussed. Hazards of insect ingestion are considered. Insect reproduction, requirements, and raw materials conversion are discussed. Nutrition properties and composition of insects are considered. Preparation of insects as human food is discussed.

  7. Insect evolution.

    PubMed

    Engel, Michael S

    2015-10-05

    It goes without saying that insects epitomize diversity, and with over a million documented species they stand out as one of the most remarkable lineages in the 3.5-billion-year history of life on earth (Figure 1). This reality is passé to even the layperson and is taken for granted in the same way none of us think much of our breathing as we go about our day, and yet insects are just as vital to our existence. Insects are simultaneously familiar and foreign to us, and while a small fraction are beloved or reviled, most are simply ignored. These inexorable evolutionary overachievers outnumber us all, their segmented body plan is remarkably labile, they combine a capacity for high rates of speciation with low levels of natural extinction, and their history of successes eclipses those of the more familiar ages of dinosaurs and mammals alike. It is their evolution - persisting over vast expanses of geological time and inextricably implicated in the diversification of other lineages - that stands as one of the most expansive subjects in biology.

  8. Rational design of novel N-alkyl-N capped biostable RNA nanostructures for efficient long-term inhibition of gene expression

    PubMed Central

    Terrazas, Montserrat; Ivani, Ivan; Villegas, Núria; Paris, Clément; Salvans, Cándida; Brun-Heath, Isabelle; Orozco, Modesto

    2016-01-01

    Computational techniques have been used to design a novel class of RNA architecture with expected improved resistance to nuclease degradation, while showing interference RNA activity. The in silico designed structure consists of a 24–29 bp duplex RNA region linked on both ends by N-alkyl-N dimeric nucleotides (BCn dimers; n = number of carbon atoms of the alkyl chain). A series of N-alkyl-N capped dumbbell-shaped structures were efficiently synthesized by double ligation of BCn-loop hairpins. The resulting BCn-loop dumbbells displayed experimentally higher biostability than their 3′-N-alkyl-N linear version, and were active against a range of mRNA targets. We studied first the effect of the alkyl chain and stem lengths on RNAi activity in a screen involving two series of dumbbell analogues targeting Renilla and Firefly luciferase genes. The best dumbbell design (containing BC6 loops and 29 bp) was successfully used to silence GRB7 expression in HER2+ breast cancer cells for longer periods of time than natural siRNAs and known biostable dumbbells. This BC6-loop dumbbell-shaped structure displayed greater anti-proliferative activity than natural siRNAs. PMID:26975656

  9. An optically powered single-channel stimulation implant as test system for chronic biocompatibility and biostability of miniaturized retinal vision prostheses.

    PubMed

    Schanze, Thomas; Hesse, Lutz; Lau, Carsten; Greve, Nina; Haberer, Werner; Kammer, Sascha; Doerge, Thomas; Rentzos, Andreas; Stieglitz, Thomas

    2007-06-01

    A microsystem based microimplant with an optically powered single-channel stimulator was designed and developed as test system for an epi-retinal vision implant. Biostability of the hybrid assembly and the encapsulation materials were evaluated in pilot experiments in chronic implantations in a cat animal model. The implant was fabricated on a flexible polyimide substrate with integrated platinum electrode, interconnection lines, and contact pads for hybrid integration of electronic components. The receiver part was realized with four photodiodes connected in series. A parylene C coating was deposited on the electronic components as insulation layer. Silicone rubber was used to encapsulate the electronics in the shape of an artificial intraocular lens to allow proper implantation in the eye. Pilot experiments showed the biostability of the encapsulation approach and full electric functionality of the microimplant to generate stimulation currents over the implantation period of three months in two cats. In one cat, electrical stimulation of the retina evoked neuronal responses in the visual cortex and indicated the feasibility of the system approach for chronic use.

  10. Downregulation of kinin B1 receptor function by B2 receptor heterodimerization and signaling.

    PubMed

    Zhang, Xianming; Brovkovych, Viktor; Zhang, Yongkang; Tan, Fulong; Skidgel, Randal A

    2015-01-01

    Signaling through the G protein-coupled kinin receptors B1 (kB1R) and B2 (kB2R) plays a critical role in inflammatory responses mediated by activation of the kallikrein-kinin system. The kB2R is constitutively expressed and rapidly desensitized in response to agonist whereas kB1R expression is upregulated by inflammatory stimuli and it is resistant to internalization and desensitization. Here we show that the kB1R heterodimerizes with kB2Rs in co-transfected HEK293 cells and natively expressing endothelial cells, resulting in significant internalization and desensitization of the kB1R response in cells pre-treated with kB2R agonist. However, pre-treatment of cells with kB1R agonist did not affect subsequent kB2R responses. Agonists of other G protein-coupled receptors (thrombin, lysophosphatidic acid) had no effect on a subsequent kB1R response. The loss of kB1R response after pretreatment with kB2R agonist was partially reversed with kB2R mutant Y129S, which blocks kB2R signaling without affecting endocytosis, or T342A, which signals like wild type but is not endocytosed. Co-endocytosis of the kB1R with kB2R was dependent on β-arrestin and clathrin-coated pits but not caveolae. The sorting pathway of kB1R and kB2R after endocytosis differed as recycling of kB1R to the cell surface was much slower than that of kB2R. In cytokine-treated human lung microvascular endothelial cells, pre-treatment with kB2R agonist inhibited kB1R-mediated increase in transendothelial electrical resistance (TER) caused by kB1R stimulation (to generate nitric oxide) and blocked the profound drop in TER caused by kB1R activation in the presence of pyrogallol (a superoxide generator). Thus, kB1R function can be downregulated by kB2R co-endocytosis and signaling, suggesting new approaches to control kB1R signaling in pathological conditions.

  11. Insect abatement system

    NASA Technical Reports Server (NTRS)

    Spiro, Clifford Lawrence (Inventor); Burnell, Timothy Brydon (Inventor); Wengrovius, Jeffrey Hayward (Inventor)

    1997-01-01

    An insect abatement system prevents adhesion of insect debris to surfaces which must be kept substantially free of insect debris. An article is coated with an insect abatement coating comprising polyorganosiloxane with a Shore A hardness of less than 50 and a tensile strength of less than 4 MPa. A method for preventing the adhesion of insect debris to surfaces includes the step of applying an insect abatement coating to a surface which must be kept substantially free of insect debris.

  12. Insect inspiration

    NASA Astrophysics Data System (ADS)

    McIntosh, Andy; Beheshti, Novid

    2008-04-01

    The innocuous looking bombardier beetle is one of the most remarkable creatures around. This tiny insect is endowed with a defence mechanism that would be the envy of any comic-strip superhero - it can fight off any spider, frog, ant or bird that comes too close by blasting the attacker with a powerful jet of hot, toxic fluid. Furthermore, the beetle can aim its weapon in any direction (even over its head) with pinpoint accuracy, and can reach distances of up to 20 cm with its spray.

  13. [Changes in some of the kallikrein-kinin system indices in patients with acute pancreatitis].

    PubMed

    Uchikov, P; Terzieva, D; Shtereva, S; Sirakova, I

    1999-01-01

    Proceeding from the major role played by kinins in the pathophysiology of endogenic intoxication among acute pancreatitis patients (AP), and the conflicting and scarce literature data on the issue, the changes in the level of prekallikrein, high-molecular kininogen, alpha 2-macroglobulin, alpha 1-antitrypsin, plasminogen and carboxypeptidase N in the blood are studied in dynamics at 1, 3, 5, 7, 9 and 14 days after admission of 48 patients with mild, and 121 with severe form of acute pancreatitis. Forty-eight individuals are used for control purpose. PK, KG and plasminogen are assayed using the colorimetric method of the Boehringer Company--Mannheim, KG--by chronometric test of the Sigma Diagnostics Company, CPO N--after Folk's method, as modified by Erdös, alpha 2-MG--by radial immunodiffusion according to Mancini, and alpha 1-AJ--by immunoturbidometric method. As shown by the results, in acute pancreatitis KKS activation occurs, demonstrated by the reduced PK, KG and alpha 2-MG values, and by the statistically significant enhancement of alpha 1-DJ, COP N and plasminogen activity. In patients presenting mild forms the aforementioned changes are rather weakly manifested and transient, while in the serious forms they are markedly expressed and persisting. In either form the deviations are rather pronounced in the first three days of disease. Coinciding with a clinical course characterized by cardiovascular changes similarly strongly manifested.

  14. Effect of upright tilting on kinins as compared to renin activity in the renal venous blood from patients with essential hypertension.

    PubMed

    Hulthén, U L; Lecerof, H; Hökfelt, B

    1978-01-01

    The effect of tilting on the release of renal kallikrein as compared to renin was studied by the determination of kinin concentration and plasma renin activity (PRA) in the renal veins in supine position and after 15 min of 45 degrees upright tilting in 10 patients with essential hypertension. Kinin concentration decreased from 0.62 +/- 0.05 microgram/1 (mean +/- S.E.M.) in supine position to 0.51 +/- 0.05 after tilting (p less than 0.01), while PRA increased from 2.84 +/- 0.39 microgram/1/3 h tpo 4.87 +/- 0.66 (p less than 0.001). These results indicate that tilting diminishes the release of renal kallikrein. It is suggested that decreased intrarenal generation of kinins may be of importance for the reduction of diuresis and natriuresis induced by tilting.

  15. Allergies to Insect Venom

    MedlinePlus

    Allergies To Insect Venom Facts About Allergies The tendency to develop allergies may be inherited. If you have allergic tendencies and ... lives of those who are sensitive to it...insect venom! Although less common than pollen allergy, insect ...

  16. Differential regulation of inducible and endothelial nitric oxide synthase by kinin B1 and B2 receptors

    PubMed Central

    Kuhr, F.; Lowry, J.; Zhang, Y.; Brovkovych, V.; Skidgel, R.A.

    2010-01-01

    Kinins are vasoactive peptides that play important roles in cardiovascular homeostasis, pain and inflammation. After release from their precursor kininogens, kinins or their C-terminal des-Arg metabolites activate two distinct G protein-coupled receptors (GPCR), called B2 (B2R) or B1 (B1R). The B2R is expressed constitutively with a wide tissue distribution. In contrast, the B1R is not expressed under normal conditions but is upregulated by tissue insult or inflammatory mediators. The B2R is considered to mediate many of the acute effects of kinins while the B1R is more responsible for chronic responses in inflammation. Both receptors can couple to Gαi and Gαq families of G proteins to release mediators such as nitric oxide (NO), arachidonic acid, prostaglandins, leukotrienes and endothelium derived hyperpolarizing factor and can induce the release of other inflammatory agents. The focus of this review is on the different transduction events that take place upon B2R and B1R activation in human endothelial cells that leads to generation of NO via activation of different NOS isoforms. Importantly, B2R-mediated eNOS activation leads to a transient (~ 5 min) output of NO in control endothelial cells whereas in cytokine-treated endothelial cells, B1R activation leads to very high and prolonged (~90 min) NO production that is mediated by a novel signal transduction pathway leading to post-translational activation of iNOS. PMID:20045558

  17. What Makes an Insect an Insect?

    ERIC Educational Resources Information Center

    NatureScope, 1985

    1985-01-01

    Provides background information on characteristics common to all insects, activities, and student materials (ready-to-copy games, puzzles, coloring pages, worksheets, and/or mazes) which describe: how insects are classified; how they are different from other animals; and the main insect characteristics. Activities include recommended age levels,…

  18. Local bone interaction between renin-angiotensin system and kallikrein-kinin system in diabetic rat

    PubMed Central

    Li, Yong; Shen, Guang-Si; Yu, Chen; Li, Guang-Fei; Shen, Jun-Kang; Xu, You-Jia; Gong, Jian-Ping

    2015-01-01

    Objective: This study was performed to investigate bone deteriorations and the involvement of skeletal renin-angiotensin system (RAS) and kallikrein-kinin system (KKS) of male rat in response to the hyperglycemia. Methods: The biomarkers in serum and urine were measured by ELISA kit, and tibias were taken for the measurement on gene, protein expression and histological analysis, feumrs were taken for the measurement on biomechanical parameters and micro-CT. Results: The DM1 showed the decreased level of osteocalcin, testosterone and FGF-23, and the increased level of serum CTX as compared to those of vehicle group. The H&E staining showed remarkable bone deteriorations, including increased disconnections and separation of trabecular bone among growth plate and joint cartilage in DM1 group. Biomechanically, the maximum load, maximum stress, and strain parameter of DM1 group was significantly lower than control group. Type 1 diabetic mice displayed bone loss shown the reduction of bone volume/total volume, trabecular number, trabecular thickness and bone mineral density. The STZ injection significantly up-regulated mRNA expression of AT1R, AGT, renin, renin-receptor, and ACE, and the expression of AT2R, B1R and B2R were down-regulated in tibia of rat in hyperglycemia group. The protein expression of renin, ACE and Ang II were significantly up-regulated, and AT2R, B1R and B2R were down-regulated in DM1 group. Conclusions: The treatment of hyperglycemia was detrimental to bone as compared to the vehicle group, and the underlying mechanism was mediated, at least partially, through down-regulation of KSS activity and up-regulation of RAS activity in local bone. PMID:25973045

  19. Book Review: Insect Virology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Viruses that infect insects have long been of interest both as a means for controlling insect pest populations in an environmentally safe manner, and also as significant threats to beneficial insects of great value, such as honey bees and silkworms. Insect viruses also have been of intrinsic intere...

  20. Insect-ual Pursuits.

    ERIC Educational Resources Information Center

    Mallow, David

    1991-01-01

    Explains how insects can be used to stimulate student writing. Describes how students can create their own systems to classify and differentiate insects. Discusses insect morphology and includes three detailed diagrams. The author provides an extension activity where students hypothesize about the niche of an insect based on its anatomy. (PR)

  1. Kinin-B1 and B2 receptor activity in proliferation and neural phenotype determination of mouse embryonic stem cells.

    PubMed

    Nascimento, Isis C; Glaser, Talita; Nery, Arthur A; Pillat, Micheli M; Pesquero, João B; Ulrich, Henning

    2015-11-01

    The kinins bradykinin and des-arg(9) -bradykinin cleaved from kininogen precursors by kallikreins exert their biological actions by stimulating kinin-B2 and B1 receptors, respectively. In vitro models of neural differentiation such as P19 embryonal carcinoma cells and neural progenitor cells have suggested the involvement of B2 receptors in neural differentiation and phenotype determination; however, the involvement of B1 receptors in these processes has not been established. Here, we show that B1 and B2 receptors are differentially expressed in mouse embryonic E14Tg2A stem cells undergoing neural differentiation. Proliferation and differentiation assays, performed in the presence of receptor subtype-selective agonists and antagonists, revealed that B1 receptor activity is required for the proliferation of embryonic and differentiating cells as well as for neuronal maturation at later stages of differentiation, while the B2 receptor acts on neural phenotype choice, promoting neurogenesis over gliogenesis. Besides the elucidation of bradykinin functions in an in vitro model reflecting early embryogenesis and neurogenesis, this study contributes to the understanding of B1 receptor functions in this process.

  2. Induction of B(1)-kinin receptors in vascular smooth muscle cells: cellular mechanisms of map kinase activation.

    PubMed

    Christopher, J; Velarde, V; Jaffa, A A

    2001-09-01

    Vascular smooth muscle cell (VSMC) proliferation is a prominent feature of the atherosclerotic process that occurs after endothelial injury. Although a vascular wall kallikrein-kinin system has been described, its contribution to vascular disease remains undefined. Because the B(1)-kinin receptor subtype (B1KR) is induced in VSMCs only in response to injury, we hypothesize that this receptor may be mediating critical events in the progression of vascular disease. In the present study, we provide evidence that des-Arg(9)-bradykinin (dABK) (10(-8) M), acting through B1KR, stimulates the phosphorylation of mitogen-activated protein kinase (MAPK) (p42(mapk) and p44(mapk)). Activation of MAPK by dABK is mediated via a cholera toxin-sensitive pathway and appears to involve protein kinase C, Src kinase, and MAPK kinase. These findings demonstrate that the activation of B1KR in VSMCs leads to the generation of second messengers that converge to activate MAPK and provide a rationale to investigate the mitogenic actions of dABK in vascular injury.

  3. Effect of captopril in the presence of kinin B2 receptor antagonist on duration of survival after prolonged coronary artery ligation in hypertensive rats.

    PubMed

    Sharma, J N; Abbas, S A

    2006-05-01

    In the present investigation, we evaluated the potential effects of captopril, an angiotensin-converting enzyme inhibitor, in the absence and presence of kinin B(2) receptor antagonist (D-Arg-[Hyp3-D-Phe7]-BK) on the duration of survival after prolonged coronary artery ligation in spontaneously hypertensive rats (SHR). The captopril treatment (16 and 32 microg/kg; i.v.) resulted in a significant (p < 0.05) increase in survival time of SHR when compared with that of saline-treated control SHR. Kinin B(2) receptor antagonist (4 microg/kg; i.v.) pretreatment abolished (p > 0.05) the beneficial effect of captopril on the survival time when compared with that in saline-treated control SHR. Both the ligation of coronary artery and captopril treatment resulted in a significant (p < 0.001) fall in systolic blood pressure (SBP), diastolic blood pressure (DBP), and heart rate (HR) of SHR when compared with those of the saline-treated control SHR. In addition, captopril administration caused a significant (p < 0.05) fall in SBP, DBP, and HR of SHR before ligation of the coronary artery (preligation). However, there was no significant change (p > 0.05) in SBP, DBP, and HR between saline- and kinin B(2) receptor antagonist plus captopril-treated SHR during preligation. These finding might indicate that captopril possesses a cardioprotective property as demonstrated by an increase in the survival time of SHR. This beneficial effect of captopril is mediated via the kinin B(2) receptor pathway because kinin B(2) receptor antagonist pretreatment blocked the captopril-induced increase in the survival time of SHR.

  4. Role of kinins in the endothelial protective effect of ischaemic preconditioning

    PubMed Central

    Bouchard, Jean-François; Chouinard, Jérôme; Lamontagne, Daniel

    1998-01-01

    The aim of this study was to assess whether the protective effect of ischaemic preconditioning on endothelial function in coronary arteries of the rat involves kinins. Isolated hearts of the rat were exposed to a 30-min low-flow ischaemia (flow rate of 1 ml min−1) followed by 20-min reperfusion, after which coronaries were precontracted with 0.1 μM U-46619, and the response to the endothelium-dependent vasodilator, 5-hydroxytryptamine (5-HT, 10 μM), compared to that of the endothelium-independent vasodilator, sodium nitroprusside (SNP, 3 μM). In untreated hearts, ischaemia-reperfusion diminished selectively 5-HT-induced vasodilatation, compared with time-matched sham hearts. The vasodilatation to SNP was unaffected after ischaemia-reperfusion. Preconditioning (5 min of zero-flow ischaemia followed by 10 min reperfusion) in untreated hearts preserved the vasodilatation produced by 5-HT. Blockade of B1 and B2 receptors with either 3 nM [Lys0, Leu8, des-Arg9]-bradykinin (LLDBK) or 10 nM Hoe 140 (icatibant), respectively, (started 15 min before ischaemic preconditioning or a corresponding sham period and stopped just before the 20-min reperfusion period) had no effect on the vasodilatation produced by either 5-HT or SNP in sham hearts. Pretreatment with Hoe 140 did not block the protective effect of ischaemic preconditioning on the 5-HT vasodilatation. In contrast, LLDBK halved the protective effect of ischaemic preconditioning on endothelium-dependent vasodilatation. Perfusion with either bradykinin or des-Arg9-bradykinin (1 nM) 30 min before and lasting throughout the ischaemia protected the endothelium. In conclusion, ischaemic preconditioning affords protection to the endothelial function in coronary resistance arteries of the rat partly by activation of B1 receptors. Although exogenous BK perfusion can protect the endothelium, B2 receptors do not play an important role in this protection in the rat isolated heart. PMID:9504381

  5. Insect Bites and Stings

    MedlinePlus

    Most insect bites are harmless, though they sometimes cause discomfort. Bee, wasp, and hornet stings and fire ant bites usually hurt. Mosquito and flea bites usually itch. Insects can also spread diseases. In the United States, ...

  6. Insects: An Interdisciplinary Unit

    ERIC Educational Resources Information Center

    Leger, Heather

    2007-01-01

    The author talks about an interdisciplinary unit on insects, and presents activities that can help students practice communication skills (interpersonal, interpretive, and presentational) and learn about insects with hands-on activities.

  7. Insects and Scorpions

    MedlinePlus

    ... Topics Publications and Products Programs Contact NIOSH NIOSH INSECTS AND SCORPIONS Recommend on Facebook Tweet Share Compartir Stinging or biting insects or scorpions can be hazardous to outdoor workers. ...

  8. Hearing in Insects.

    PubMed

    Göpfert, Martin C; Hennig, R Matthias

    2016-01-01

    Insect hearing has independently evolved multiple times in the context of intraspecific communication and predator detection by transforming proprioceptive organs into ears. Research over the past decade, ranging from the biophysics of sound reception to molecular aspects of auditory transduction to the neuronal mechanisms of auditory signal processing, has greatly advanced our understanding of how insects hear. Apart from evolutionary innovations that seem unique to insect hearing, parallels between insect and vertebrate auditory systems have been uncovered, and the auditory sensory cells of insects and vertebrates turned out to be evolutionarily related. This review summarizes our current understanding of insect hearing. It also discusses recent advances in insect auditory research, which have put forward insect auditory systems for studying biological aspects that extend beyond hearing, such as cilium function, neuronal signal computation, and sensory system evolution.

  9. Respiration in Aquatic Insects.

    ERIC Educational Resources Information Center

    MacFarland, John

    1985-01-01

    This article: (1) explains the respiratory patterns of several freshwater insects; (2) describes the differences and mechanisms of spiracular cutaneous, and gill respiration; and (3) discusses behavioral aspects of selected aquatic insects. (ML)

  10. Ecophysiology and insect herbivory

    SciTech Connect

    Clancy, K.M.; Wagner, M.R.; Reich, P.B.

    1995-07-01

    The relationship of insect herbivory to conifer physiology is examined. Aspects of nutrient assimilation, nutrient distribution, water stress, and climatic change are correlated to defoliation by insects. Other factors examined include plant age, density, structure, soils, and plant genotype.

  11. Exploring Sound with Insects

    ERIC Educational Resources Information Center

    Robertson, Laura; Meyer, John R.

    2010-01-01

    Differences in insect morphology and movement during singing provide a fascinating opportunity for students to investigate insects while learning about the characteristics of sound. In the activities described here, students use a free online computer software program to explore the songs of the major singing insects and experiment with making…

  12. Sunflower insect pests

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Like other annual crops, sunflowers are fed upon by a variety of insect pests capable of reducing yields. Though there are a few insects which are considered consistent or severe (e.g., sunflower moth, banded sunflower moth, red sunflower seed weevil), many more insects are capable of causing proble...

  13. Acoustic Monitoring of Insects

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Farmers, grain elevator managers, and food processors often sample grain for insect damaged kernels and numbers of live adult insects but these easily obtained measurements of insect levels do not provide reliable estimates of the typically much larger populations of internally feeding immature inse...

  14. Insects and Spiders.

    ERIC Educational Resources Information Center

    National Audubon Society, New York, NY.

    This set of teaching aids consists of nine Audubon Nature Bulletins, providing teachers and students with informational reading on insects and spiders. The bulletins have these titles: What Good Are Insects, How Insects Benefit Man, Life of the Honey Bee, Ants and Their Fascinating Ways, Mosquitoes and Other Flies, Caterpillars, Spiders and Silk,…

  15. InsectBase: a resource for insect genomes and transcriptomes

    PubMed Central

    Yin, Chuanlin; Shen, Gengyu; Guo, Dianhao; Wang, Shuping; Ma, Xingzhou; Xiao, Huamei; Liu, Jinding; Zhang, Zan; Liu, Ying; Zhang, Yiqun; Yu, Kaixiang; Huang, Shuiqing; Li, Fei

    2016-01-01

    The genomes and transcriptomes of hundreds of insects have been sequenced. However, insect community lacks an integrated, up-to-date collection of insect gene data. Here, we introduce the first release of InsectBase, available online at http://www.insect-genome.com. The database encompasses 138 insect genomes, 116 insect transcriptomes, 61 insect gene sets, 36 gene families of 60 insects, 7544 miRNAs of 69 insects, 96 925 piRNAs of Drosophila melanogaster and Chilo suppressalis, 2439 lncRNA of Nilaparvata lugens, 22 536 pathways of 78 insects, 678 881 untranslated regions (UTR) of 84 insects and 160 905 coding sequences (CDS) of 70 insects. This release contains over 12 million sequences and provides search functionality, a BLAST server, GBrowse, insect pathway construction, a Facebook-like network for the insect community (iFacebook), and phylogenetic analysis of selected genes. PMID:26578584

  16. InsectBase: a resource for insect genomes and transcriptomes.

    PubMed

    Yin, Chuanlin; Shen, Gengyu; Guo, Dianhao; Wang, Shuping; Ma, Xingzhou; Xiao, Huamei; Liu, Jinding; Zhang, Zan; Liu, Ying; Zhang, Yiqun; Yu, Kaixiang; Huang, Shuiqing; Li, Fei

    2016-01-04

    The genomes and transcriptomes of hundreds of insects have been sequenced. However, insect community lacks an integrated, up-to-date collection of insect gene data. Here, we introduce the first release of InsectBase, available online at http://www.insect-genome.com. The database encompasses 138 insect genomes, 116 insect transcriptomes, 61 insect gene sets, 36 gene families of 60 insects, 7544 miRNAs of 69 insects, 96,925 piRNAs of Drosophila melanogaster and Chilo suppressalis, 2439 lncRNA of Nilaparvata lugens, 22,536 pathways of 78 insects, 678,881 untranslated regions (UTR) of 84 insects and 160,905 coding sequences (CDS) of 70 insects. This release contains over 12 million sequences and provides search functionality, a BLAST server, GBrowse, insect pathway construction, a Facebook-like network for the insect community (iFacebook), and phylogenetic analysis of selected genes.

  17. Preparation of uniform-sized exenatide-loaded PLGA microspheres as long-effective release system with high encapsulation efficiency and bio-stability.

    PubMed

    Qi, Feng; Wu, Jie; Fan, Qingze; He, Fan; Tian, Guifang; Yang, Tingyuan; Ma, Guanghui; Su, Zhiguo

    2013-12-01

    Exenatide-loaded poly(d,l-lactic-co-glycolic acid) (PLGA) microspheres hold great potential as a drug delivery system to treat type 2 diabetes mellitus (T2DM) because they can overcome the shortcoming of exenatide's short half-life and realize sustained efficacy. However, conventional preparation methods often lead to microspheres with a broad size distribution, which in turn would cause poor preparation repeatability, drug efficacy and so forth. In this study, we used Shirasu Porous Glass (SPG) premix membrane emulsification technique characterized with high trans-membrane flux and size controllability to prepare uniform-sized PLGA microspheres. By optimizing trans-membrane pressure and PVA concentration in external aqueous phase, uniform-sized PLGA microspheres with large size (around 20μm) were successfully obtained. To achieve high encapsulation efficiency (EE) and improve in vitro release behavior, we have carefully examined the process parameters. Our results show that using ultrasonication to form primary emulsion, microspheres with high EE were easily obtained, but the rate of in vitro release was very slow. Instead, high EE and appropriate in vitro release were achieved when homogenization with optimized time and speed were employed. Besides, we also systematically investigated the effect of formulations on loading efficiency (LE) as well as the relationship between the resultant size of the microspheres and pore size of the membrane. Finally, through RP-HPLC and CD spectra analysis, we have demonstrated that the bio-stability of exenatide in microspheres was preserved during the preparation process.

  18. Kinin B1 receptor regulates interactions between neutrophils and endothelial cells by modulating the levels of Mac-1, LFA-1 and intercellular adhesion molecule-1.

    PubMed

    Figueroa, Carlos D; Matus, Carola E; Pavicic, Francisca; Sarmiento, Jose; Hidalgo, Maria A; Burgos, Rafael A; Gonzalez, Carlos B; Bhoola, Kanti D; Ehrenfeld, Pamela

    2015-04-01

    Kinins are pro-inflammatory peptides that mimic the cardinal features of inflammation. We examined the concept that expression levels of endothelial intercellular adhesion molecule-1 (ICAM-1) and neutrophil integrins Mac-1 and LFA-1 are modulated by the kinin B1 receptor (B1R) agonist, Lys-des[Arg(9)]bradykinin (LDBK). Stimulation of endothelial cells with LDBK increased the levels of ICAM-1 mRNA transcripts/protein, and also of E-selectin and platelet endothelial adhesion molecule-1. ICAM-1 levels increased in a magnitude comparable with that produced by TNF-α. This stimulatory effect was reduced when endothelial cells, which had been previously transfected with a B1R small interfering RNA, were stimulated with LDBK, under comparable conditions. Similarly, LDBK produced a significant increase in protein levels of LFA-1 and Mac-1 integrins in human neutrophils, an effect that was reversed by pretreatment of cells with 10 µg/ml cycloheximide or a B1R antagonist. Functional experiments performed with post-confluent monolayers of endothelial cells stimulated with LDBK and neutrophils primed with TNF-α, and vice versa, resulted in enhanced adhesiveness between both cells. Neutralizing Abs to ICAM-1 and Mac-1 reduced the adhesion between them. Our results indicate that kinin B1R is a novel modulator that promotes adhesion of leukocytes to endothelial cells, critically enhancing the movement of neutrophils from the circulation to sites of inflammation.

  19. Kinin B(1) and B(2) receptors contribute to orofacial heat hyperalgesia induced by infraorbital nerve constriction injury in mice and rats.

    PubMed

    Luiz, Ana Paula; Schroeder, Samilla Driessen; Chichorro, Juliana Geremias; Calixto, João Batista; Zampronio, Aleksander Roberto; Rae, Giles Alexander

    2010-04-01

    Mechanisms coupled to kinin B(1) and B(2) receptors have been implicated in sensory changes associated to various models of neuropathy. The current study aimed to investigate if kinins also participate in orofacial thermal hyperalgesia induced by constriction of the infraorbital nerve (CION), a model of trigeminal neuropathic pain which displays persistent hypersensitivity to orofacial sensory stimulation, in rats and mice. Male Swiss mice (30-35g) or Wistar rats (200-250g; n=6-10 per group in both cases) underwent CION or sham surgery and were submitted repeatedly to application of heat ( approximately 50 degrees C) to the ipsilateral or contralateral snout, delivered by a heat source placed 1cm from the vibrissal pad. Decreases in latency to display head withdrawal or vigorous snout flicking were considered indicative of heat hyperalgesia. CION caused long-lasting heat hyperalgesia which started on Day 2 after surgery in both species and lasted up to Day 17 in mice and Day 10 in rats. Administration of DALBK or HOE-140 (peptidic B(1) and B(2) receptor antagonists, respectively; each at 3nmol in 10microl) onto the exposed infraorbital nerve of mice at the moment of surgery delayed the development of the thermal hyperalgesia. Systemic treatment on Day 5 (mice) or Day 4 (rats) with Des-Arg(9), Leu(8)-Bradykinin (DALBK, B(1) receptor antagonist, 0.1-1micromol/kg, i.p.) or HOE-140 (B(2) receptor antagonist, 0.001-1micromol/kg, i.p.) transiently reduced heat hyperalgesia in both species. Due to the peptidic nature of DALBK and HOE-140, it is likely that their effects reported herein resulted from blockade of peripheral kinin receptors. Thus, mechanisms operated by kinin B(1) and B(2) receptors, contribute to orofacial heat hyperalgesia induced by CION in both mice and rats. Perhaps kinin B(1) and B(2) receptor antagonists might constitute effective preventive and curative treatments for orofacial thermal hyperalgesia induced by nerve injury.

  20. Insects: Bugged Out!

    ERIC Educational Resources Information Center

    Piehl, Kathy

    2011-01-01

    Insects really need no introduction. They have lived on earth much longer than humans and vastly outnumber people and all other animal species combined. People encounter them daily in their houses and yards. Yet, when children want to investigate insects, books can help them start their explorations. "Paleo Bugs" carries readers back to the time…

  1. Insects and Bugs

    ERIC Educational Resources Information Center

    Sutherland, Karen

    2009-01-01

    They have been around for centuries. They sting, they bite. They cause intense itching or painful sores. They even cause allergic reactions and sometimes death. There are two types of insects that are pests to humans--those that sting and those that bite. The insects that bite do so with their mouths and include mosquitoes, chiggers, and ticks.…

  2. Insect Control Without Bt

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Understanding potential to grow conventional cottons that do not express Bt insecticidal proteins requires an appreciation for the historical impact of Bt cotton on cotton insects. Insects have long been exposed to Bacillus thuringiensis, a common soil-borne bacterium. Commercial deployment of B...

  3. Magnetic compasses in insects

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The use of magnetic information for orientation and navigation is a widespread phenomenon in animals. In contrast to navigational systems in vertebrates, our understanding of the mechanisms underlying the insect magnetic perception and use of the information is at an early stage. Some insects use ma...

  4. Sterile Insect Quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This chapter discusses the history of the development of quality control tchnology, the principles and philosophy of assessing insect quality, and the relative importance of the various parameters used to assess insect quality in the context of mass-rearing for the SIT. Quality control is most devel...

  5. Insect and arachnid hypersensitivity.

    PubMed

    Bevier, D E

    1999-11-01

    Insect hypersensitivity reactions can have a large number of clinical presentations. The majority of reactions are pruritic and involve the short- or sparsely haired areas of the body. Most are associated with eosinophilic infiltration into the skin, often in a perivascular pattern. The diagnosis may be based on compatible clinical signs and improvement with aggressive insect control and, in some cases, confirmation via provocative exposure. Intradermal, prick, or serum testing for allergen-specific IgE can be used to document the presence of reaginic antibodies against insect allergens. Treatments include avoidance, aggressive insect control, and symptomatic support; in some cases, immunotherapy may be useful in decreasing the severity of clinical reactions to insects.

  6. Involvement of the renal kallikrein-kinin system in K(+)-induced diuresis and natriuresis in anesthetized rats.

    PubMed

    Suzuki, T; Katori, M; Fujita, T; Kumagai, Y; Majima, M

    2000-07-07

    Intravenous infusion of a high-K(+) solution (67.5 mM KCl, 67.5 mM NaCl) to anesthetized rats increased urine volume by 47.6% after 60 min, compared with infusion of a Na(+) solution (135 mM NaCl). This treatment also increased urinary excretion of Na(+) by 32.2%, in parallel with an increase in excretion of K(+) or Cl(-). Urinary excretion of kallikrein increased within 60 min after the start of K(+) infusion. A bradykinin B(2) receptor antagonist, 8-[3-[N-[(E)-3-(6-acetamidopyridin-3-yl)acryloylglycyl]-N-me thylamino ]-2,6-dichlorobenzyloxy]-2-methylquinoline (FR173657; 1.0 mg/kg, i.v. ), inhibited the K(+)-induced diuresis and natriuresis by 41.0% and 26.7%, respectively. These results indicate that K(+) load induces diuresis and natriuresis through the renal kallikrein-kinin system in rats.

  7. A Novel Antithrombotic Mechanism Mediated by the Receptors of the Kallikrein/Kinin and Renin–Angiotensin Systems

    PubMed Central

    Schmaier, Alvin H.

    2016-01-01

    The contact activation (CAS) and kallikrein/kinin (KKS) systems regulate thrombosis risk in two ways. First, the CAS influences contact activation-induced factor XI activation and thrombin formation through the hemostatic cascade. Second, prekallikrein (PK) and bradykinin of the KKS regulate expression of three vessel wall G-protein-coupled receptors, the bradykinin B2 receptor (B2R), angiotensin receptor 2, and Mas to influence prostacyclin formation. The degree of intravascular prostacyclin formation inversely regulates intravascular thrombosis risk. A 1.5- to 2-fold increase in prostacyclin, as seen in PK deficiency, increases vessel wall Sirt1 and KLF4 to downregulate vessel wall tissue factor which alone is sufficient to lengthen induced thrombosis times. A twofold to threefold increase in prostacyclin, as seen the B2R-deficient mouse, delays thrombosis and produces a selective platelet function defect of reduced GPVI activation and platelet spreading. Regulation of CAS and KKS protein expression has a profound influence on thrombosis-generating mechanisms in the intravascular compartment. PMID:27965959

  8. Contribution of the Kallikrein/Kinin System to the Mediation of ConA-Induced Inflammatory Ascites.

    PubMed

    Baintner, Károly

    2016-03-01

    Intraperitoneal administration of concanavalin A (ConA, 25 mg/kg b.w.), a cell-binding plant lectin was used for inducing inflammatory ascites, and potential inhibitors were tested in 1 h and 2.5 h experiments, i.e. still before the major influx of leucocytes. At the end of the experiment the peritoneal fluid was collected and measured. The ConA-induced ascites was significantly (p<0.01) and dose-dependently inhibited by icatibant (HOE-140), a synthetic polypeptide antagonist of bradykinin receptors. Aprotinin, a kallikrein inhibitor protein also had significant (p<0.01), but less marked inhibitory effect. L-NAME, an inhibitor of NO synthesis, and atropine methylnitrate, an anticholinergic compound, were ineffective. It is concluded, that the kallikrein/kinin system contributes to the mediation of the ConA-induced ascites by increasing subperitoneal vascular permeability, independent of the eventual vasodilation produced by NO. It is known, that membrane glycoproteins are aggregated by the tetravalent ConA and the resulting distortion of membrane structure may explain the activation of the labile prekallikrein. Complete inhibition of the ConA-induced ascites could not be achieved by aprotinin or icatibant, which indicates the involvement of additional mediators.

  9. Pulmonary oedema producing toxin from Mesobuthus tamulus venom augments cardio-respiratory reflexes through B2 kinin receptors.

    PubMed

    Alex, Anitha B; Akella, Aparna; Tiwari, Anil K; Deshpande, Shripad B

    2014-01-01

    The current study was undertaken to compare the effects of pulmonary oedema producing toxin (PO-Tx) isolated from Mesobuthus tamulus venom on cardio-respiratory reflexes with exogenously administered bradykinin (BK) and to delineate the type of BK receptors mediating these responses. Jugular venous injection of phenyldiguanide (PDG) in anaesthetized rats produced reflex bradycardia, hypotension and apnoea. The PDG-induced reflex was augmented (two folds) by PO-Tx. The pulmonary water content in PO-Tx treated group was also increased. The PO-Tx-induced reflex changes as well as pulmonary oedema were blocked by-Hoe-140 implicating the involvement of B2 kinin receptors. Exogenous BK also produced augmentation (two folds) of the PDG-induced reflexes and increased the pulmonary water content. The BK-induced augmentation was blocked by pre-treatment with des-Arg10 Hoe 140 (a B1 receptor antagonist) and Hoe 140 (B2 receptor antagonist). However, these antagonists did not prevent the development of BK-induced pulmonary oedema. Present results indicate that PO-Tx augmented the PDG-induced reflex responses similar to BK and the PO-Tx induced augmentation of reflexes is mediated through B2 receptors.

  10. Vision in flying insects.

    PubMed

    Egelhaaf, Martin; Kern, Roland

    2002-12-01

    Vision guides flight behaviour in numerous insects. Despite their small brain, insects easily outperform current man-made autonomous vehicles in many respects. Examples are the virtuosic chasing manoeuvres male flies perform as part of their mating behaviour and the ability of bees to assess, on the basis of visual motion cues, the distance travelled in a novel environment. Analyses at both the behavioural and neuronal levels are beginning to unveil reasons for such extraordinary capabilities of insects. One recipe for their success is the adaptation of visual information processing to the specific requirements of the behavioural tasks and to the specific spatiotemporal properties of the natural input.

  11. Beneficial Insects and Insect Pollinators on Milkweed in South Georgia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Insect pollinators are essential for the reproduction of more than two-thirds of the world’s crops, and beneficial insects play an important role in managing pest insects in agricultural farmscapes. These insects depend on nectar for their survival in these farmscapes. The flowers of tropical milkwe...

  12. Insect bites and stings

    MedlinePlus

    Bee sting; Bites - insects, bees, and spiders; Black widow spider bite; Brown recluse bite; Flea bite; Honey bee or hornet sting; Lice bites; Mite bite; Scorpion bite; Spider bite; Wasp sting; Yellow jacket ...

  13. Feeding the insect industry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This article reports the use of insect colloidal artificial diets suitable for the rearing of economically important arthropods, such as Lygus lineolaris, Lygus hesperus, Coleomegilla maculata, and Phytoseiulus persimilis The different diets contain key nutrients such as proteins, carbohydrates, vit...

  14. Evolution of the Insects

    NASA Astrophysics Data System (ADS)

    Grimaldi, David; Engel, Michael S.

    2005-05-01

    This book chronicles the complete evolutionary history of insects--their living diversity and relationships as well as 400 million years of fossils. Introductory sections cover the living species diversity of insects, methods of reconstructing evolutionary relationships, basic insect structure, and the diverse modes of insect fossilization and major fossil deposits. Major sections then explore the relationships and evolution of each order of hexapods. The volume also chronicles major episodes in the evolutionary history of insects from their modest beginnings in the Devonian and the origin of wings hundreds of millions of years before pterosaurs and birds to the impact of mass extinctions and the explosive radiation of angiosperms on insects, and how they evolved into the most complex societies in nature. Whereas other volumes focus on either living species or fossils, this is the first comprehensive synthesis of all aspects of insect evolution. Illustrated with 955 photo- and electron- micrographs, drawings, diagrams, and field photos, many in full color and virtually all of them original, this reference will appeal to anyone engaged with insect diversity--professional entomologists and students, insect and fossil collectors, and naturalists. David Grimaldi and Michael S. Engel have collectively published over 200 scientific articles and monographs on the relationships and fossil record of insects, including 10 articles in the journals Science, Nature, and Proceedings of the National Academy of Sciences. David Grimaldi is curator in the Division of Invertebrate Zoology, American Museum of Natural History and adjunct professor at Cornell University, Columbia University, and the City University of New York. David Grimaldi has traveled in 40 countries on 6 continents, collecting and studying recent species of insects and conducting fossil excavations. He is the author of Amber: Window to the Past (Abrams, 2003). Michael S. Engel is an assistant professor in the

  15. Exploring Insect Vision

    ERIC Educational Resources Information Center

    Damonte, Kathleen

    2005-01-01

    A fly is buzzing around in the kitchen. You sneak up on it with a flyswatter, but just as you get close to it, it flies away. What makes flies and other insects so good at escaping from danger? The fact that insects have eyesight that can easily detect moving objects is one of the things that help them survive. In this month's Science Shorts,…

  16. Corazonin in insects.

    PubMed

    Predel, Reinhard; Neupert, Susanne; Russell, William K; Scheibner, Olaf; Nachman, Ronald J

    2007-01-01

    Corazonin is a peptidergic neurohormone of insects that is expressed in neurosecretory neurons of the pars lateralis of the protocerebrum and transported via nervi corporis cardiaci to the storage lobes of the corpora cardiaca. This peptide occurs with a single isoform in all insects studied so far, with the exception of the Coleoptera in which no corazonin form could be detected. Very few modifications of [Arg(7)]-corazonin, originally isolated from cockroaches, are known, namely [His(7)]-corazonin which is expressed in certain locusts and the stick insect Carausius morosus, and [Thr(4), His(7)]-corazonin recently described from the honey bee Apis mellifera. In this study, we performed a comprehensive screening for corazonin in the different insect groups after detecting of a fourth isoform in a crane fly, Tipula sp. ([Gln(10)]-corazonin). [Arg(7)]-corazonin is distributed in most major lineages of insects, and is thus the ancient form which was present at the time the phylum Insecta evolved. The replacement of Arg with His at position 7 from the N-terminus occurred several times in the evolution of insects. The third isoform, [Thr(4), His(7)]-corazonin, seems to be restricted to bees (Apidae); whereas wasps (Vespidae) and a bumble bee (Apidae) express other corazonins, specifically [His(7)]-corazonin and [Tyr(3), Gln(7), Gln(10)]-corazonin, respectively. A novel corazonin form, [His(4), Gln(7)]-corazonin, was also detected in all South African members of the newly described insect order Mantophasmatodea. The [His(4), Gln(7)]-corazonin separates these species from the Namibian Mantophasmatodea which express [Arg(7)]-corazonin and can be used as a distinct character to distinguish these morphologically similar insects.

  17. Important Insect Pests of Fruit - Important Insect Pests of Nuts - Field Crop Insect Pests - Insect Pests of Vegetable Crops.

    ERIC Educational Resources Information Center

    Gesell, Stanley G.; And Others

    This document consists of four agriculture extension service publications from Pennsylvania State University. The titles are: (1) Important Insect Pests of Fruit; (2) Important Insect Pests of Nuts; (3) Field Crop Insect Pests; and (4) Insect Pests of Vegetable Crops. The first publication gives the hosts, injury, and description of 22 insect…

  18. Insect--plant adaptations.

    PubMed

    Southwood, T R

    1984-01-01

    The adaptation of insects to plants probably commenced in the early Permian period, though most current associations will be more recent. A major burst of adaptation must have followed the rise of the Angiosperms in the Cretaceous period, though some particular associations are as recent as this century. Living plants form a large proportion of the potential food in most habitats, though insects have had to overcome certain general hurdles to live and feed on them. Insects affect the reproduction and survival of plants, and thus the diversity of plant secondary chemicals may have evolved as a response. Where an insect species has a significant effect on a plant species that is its only host, coevolution may be envisaged. A spectacular example is provided by Heliconius butterflies and passion flower vines, studied by L.E. Gilbert and others. But such cases may be likened to 'vortices in the evolutionary stream': most plant species are influenced by a range of phytophagous insects so that selection will be for general defences--a situation termed diffuse coevolution. Evidence is presented on recent host-plant shifts to illustrate both the restrictions and the flexibility in current insect-plant associations.

  19. Insect immunology and hematopoiesis.

    PubMed

    Hillyer, Julián F

    2016-05-01

    Insects combat infection by mounting powerful immune responses that are mediated by hemocytes, the fat body, the midgut, the salivary glands and other tissues. Foreign organisms that have entered the body of an insect are recognized by the immune system when pathogen-associated molecular patterns bind host-derived pattern recognition receptors. This, in turn, activates immune signaling pathways that amplify the immune response, induce the production of factors with antimicrobial activity, and activate effector pathways. Among the immune signaling pathways are the Toll, Imd, Jak/Stat, JNK, and insulin pathways. Activation of these and other pathways leads to pathogen killing via phagocytosis, melanization, cellular encapsulation, nodulation, lysis, RNAi-mediated virus destruction, autophagy and apoptosis. This review details these and other aspects of immunity in insects, and discusses how the immune and circulatory systems have co-adapted to combat infection, how hemocyte replication and differentiation takes place (hematopoiesis), how an infection prepares an insect for a subsequent infection (immune priming), how environmental factors such as temperature and the age of the insect impact the immune response, and how social immunity protects entire groups. Finally, this review highlights some underexplored areas in the field of insect immunobiology.

  20. Leucaena leucocephala serine proteinase inhibitor: primary structure and action on blood coagulation, kinin release and rat paw edema.

    PubMed

    Oliva, M L; Souza-Pinto, J C; Batista, I F; Araujo, M S; Silveira, V F; Auerswald, E A; Mentele, R; Eckerskorn, C; Sampaio, M U; Sampaio, C A

    2000-03-07

    A serine proteinase inhibitor isolated from Leucaena leucocephala seeds (LlTI) was purified to homogeneity by acetone fractionation, ion exchange chromatography, gel filtration and reverse phase chromatography (HPLC). SDS-PAGE indicated a protein with M(r) 20000 and two polypeptide chains (alpha-chain, M(r) 15000, and beta-chain, M(r) 5000), the sequence being determined by automatic Edman degradation and by mass spectroscopy. LlTI is a 174 amino acid residue protein which shows high homology to plant Kunitz inhibitors, especially those double chain proteins purified from the Mimosoideae subfamily. LlTI inhibits plasmin (K(i) 3.2 x 10(-10) M), human plasma kallikrein (K(i) 6.3 x 10(-9) M), trypsin (K(i) 2.5 x 10(-8) M) and chymotrypsin (K(i) 1.4 x 10(-8) M). Factor XIIa activity is inhibited but K(i) was not determined, and factor Xa, tissue kallikrein and thrombin are not inhibited by LlTI. The action of LlTI on enzymes that participate in the blood clotting extrinsic pathway is confirmed by the prolongation of activated partial thromboplastin time, used as clotting time assay. The inhibition of the fibrinolytic activity of plasmin was confirmed on the hydrolysis of fibrin plates. LlTI inhibits kinin release from high molecular weight kininogen by human plasma kallikrein in vitro and, administered intravenously, causes a decrease in paw edema induced by carrageenin or heat in male Wistar rats. In addition, lower concentrations of bradykinin were found in limb perfusion fluids of LlTI-treated rats.

  1. The Kallikrein-Kinin System: A Novel Mediator of IL-17-Driven Anti-Candida Immunity in the Kidney

    PubMed Central

    Ramani, Kritika; Garg, Abhishek V.; Jawale, Chetan V.; Jackson, Edwin K.; Shiva, Sruti S.; Horne, William; Kolls, Jay K.; Gaffen, Sarah L.; Biswas, Partha S.

    2016-01-01

    The incidence of life-threatening disseminated Candida albicans infections is increasing in hospitalized patients, with fatalities as high as 60%. Death from disseminated candidiasis in a significant percentage of cases is due to fungal invasion of the kidney, leading to renal failure. Treatment of candidiasis is hampered by drug toxicity, the emergence of antifungal drug resistance and lack of vaccines against fungal pathogens. IL-17 is a key mediator of defense against candidiasis. The underlying mechanisms of IL-17-mediated renal immunity have so far been assumed to occur solely through the regulation of antimicrobial mechanisms, particularly activation of neutrophils. Here, we identify an unexpected role for IL-17 in inducing the Kallikrein (Klk)-Kinin System (KKS) in C. albicans-infected kidney, and we show that the KKS provides significant renal protection in candidiasis. Microarray data indicated that Klk1 was upregulated in infected kidney in an IL-17-dependent manner. Overexpression of Klk1 or treatment with bradykinin rescued IL-17RA-/- mice from candidiasis. Therapeutic manipulation of IL-17-KKS pathways restored renal function and prolonged survival by preventing apoptosis of renal cells following C. albicans infection. Furthermore, combining a minimally effective dose of fluconazole with bradykinin markedly improved survival compared to either drug alone. These results indicate that IL-17 not only limits fungal growth in the kidney, but also prevents renal tissue damage and preserves kidney function during disseminated candidiasis through the KKS. Since drugs targeting the KKS are approved clinically, these findings offer potential avenues for the treatment of this fatal nosocomial infection. PMID:27814401

  2. A role for plasma kallikrein-kinin system activation in the synovial recruitment of endothelial progenitor cells in arthritis

    PubMed Central

    Dai, Jihong; Agelan, Alexis; Yang, Aizhen; Zuluaga, Viviana; Sexton, Daniel; Colman, Robert W.; Wu, Yi

    2012-01-01

    Objective To examine whether the activation of plasma kallikrein-kinin system (KKS) mediates synovial recruitment of endothelial progenitor cells (EPCs) in arthritis. Methods EPCs were isolated from Lewis rat bone marrow and characterized by the expression of progenitor cell lineage markers and functional property. EPCs were intravenously injected into Lewis rats bearing arthritis, their recruitment and formation of de novo blood vessels in inflamed synovium were evaluated. The role of plasma KKS was examined using a plasma kallikrein inhibitor EPI-KAL2 and an anti-kallikrein antibody 13G11. Transendothelial migration (TEM) assay was used to determine the role of bradykinin and its receptor in EPC mobilization. Results Lewis rat EPCs exhibited strong capacities to form tubes and vacuoles, and expressed higher level of bradykinin type 2 receptor (B2R) and progenitor cell markers CD34 and Sca-1. In Lewis rats bearing arthritis, EPCs were recruited into inflamed synovium at acute phase and formed de novo blood vessels. Inhibition of plasma kallikrein by EPI-KAL2 and 13G11 significantly suppressed synovial recruitment of EPCs and hyperproliferation of synovial cells. Bradykinin concentration-dependently stimulated TEM of EPCs, which was mediated by B2R, as the knockdown of B2R by silencing RNA completely blocked bradykinin-stimulated TEM. Moreover, bradykinin selectively upregulated the expression of homing receptor C-X-C chemokine receptor type 4 (CXCR-4) in EPCs. Conclusion These observations demonstrate a novel role for plasma KKS activation in the synovial recruitment of EPCs in arthritis, acting via kallirein activation and B2R-dependent mechanisms. B2R might be involved in the mobilization of EPCs via upregulation of CXCR-4. PMID:22739815

  3. Intracellular Na+, K+ and Cl- activities in Acheta domesticus Malpighian tubules and the response to a diuretic kinin neuropeptide.

    PubMed

    Coast, Geoffrey M

    2012-08-15

    The mechanism of primary urine production and the activity of a diuretic kinin, Achdo-KII, were investigated in malpighian tubules of Acheta domesticus by measuring intracellular Na(+), K(+) and Cl(-) activities, basolateral membrane voltage (V(b)), fluid secretion and transepithelial ion transport. Calculated electrochemical gradients for K(+) and Cl(-) across the basolateral membrane show they are actively transported into principal cells, and basolateral Ba(2+)-sensitive K(+) channels do not contribute to net transepithelial K(+) transport and fluid secretion. A basolateral Cl(-) conductance was revealed after the blockade of K(+) channels with Ba(2+), and a current carried by the passive outward movement of Cl(-) accounts for the hyperpolarization of V(b) in response to Ba(2+). Ion uptake via Na(+)/K(+)/2Cl(-) cotransport, driven by the inwardly directed Na(+) electrochemical gradient, is thermodynamically feasible, and is consistent with the actions of bumetanide, which reduces fluid secretion and both Na(+) and K(+) transport. The Na(+) gradient is maintained by its extrusion across the apical membrane and by a basolateral ouabain-sensitive Na(+)/K(+)-ATPase. Achdo-KII has no significant effect on the intracellular ion activities or V(b). Electrochemical gradients across the apical membrane were estimated from previously published values for the levels of Na(+), K(+) and Cl(-) in the secreted fluid. The electrochemical gradient for Cl(-) favours passive movement into the lumen, but falls towards zero after stimulation by Achdo-KII. This coincides with a twofold increase in Cl(-) transport, which is attributed to the opening of an apical Cl(-) conductance, which depolarises the apical membrane voltage.

  4. Action of pregnane compounds from Mandevilla illustris against contractions induced by kinins and other oxytocics in the rat isolated uterus.

    PubMed

    Calixto, J B; Brum, R L; Yunes, R A

    1991-01-01

    1. The effects of 5 pregnane compounds isolated from the rhizomes of Mandevilla illustris were examined against bradykinin (BK), Lysyl-bradykinin (L-BK), acetylcholine (ACh) and oxytocin (Ot)-induced contractions in the isolated uteri of the rat. 2. Compounds MI 15 and MI 18 (5-40 micrograms/ml) caused a parallel and concentration-dependent rightward displacement of BK and L-BK concentration-response curves. Compound MI 21 (2.5-10 micrograms/ml) also produced a concentration-dependent displacement to the right of the BK concentration-response curve, but reduced its maximal response. Schild analysis of these data were linear (r close to 1) and furnished the following PA2 values (as G/ml): 6.0, 5.1 and 5.9, respectively. However, the slopes were significantly higher than unity. Compounds MI 25 and MI 27 (10-40 micrograms/ml) caused little or even no effect against BK and ACh responses. 3. In addition, compounds MI 18 and MI 21 (10-40 micrograms/ml) also antagonized in a concentration-dependent manner L-BK concentration-response curves. Schild plot were linear (r close to 1) and yielded the nominal pA2 values (as G/ml) of 5.0 and 5.8, respectively, but the slopes were significantly different from one. 4. Like the results obtained previously with the crude extract from M. illustris, the purified compounds from the rhizome of this plant were not selective towards kinin action since at the same range concentrations they markedly interfered with both the sensitivities and the maximal responses caused by ACh and Ot in this preparation.

  5. Insect bite reactions.

    PubMed

    Singh, Sanjay; Mann, Baldeep Kaur

    2013-01-01

    Insects are a class of living creatures within the arthropods. Insect bite reactions are commonly seen in clinical practice. The present review touches upon the medically important insects and their places in the classification, the sparse literature on the epidemiology of insect bites in India, and different variables influencing the susceptibility of an individual to insect bites. Clinical features of mosquito bites, hypersensitivity to mosquito bites Epstein-Barr virus NK (HMB-EBV-NK) disease, eruptive pseudoangiomatosis, Skeeter syndrome, papular pruritic eruption of HIV/AIDS, and clinical features produced by bed bugs, Mexican chicken bugs, assassin bugs, kissing bugs, fleas, black flies, Blandford flies, louse flies, tsetse flies, midges, and thrips are discussed. Brief account is presented of the immunogenic components of mosquito and bed bug saliva. Papular urticaria is discussed including its epidemiology, the 5 stages of skin reaction, the SCRATCH principle as an aid in diagnosis, and the recent evidence supporting participation of types I, III, and IV hypersensitivity reactions in its causation is summarized. Recent developments in the treatment of pediculosis capitis including spinosad 0.9% suspension, benzyl alcohol 5% lotion, dimethicone 4% lotion, isopropyl myristate 50% rinse, and other suffocants are discussed within the context of evidence derived from randomized controlled trials and key findings of a recent systematic review. We also touch upon a non-chemical treatment of head lice and the ineffectiveness of egg-loosening products. Knockdown resistance (kdr) as the genetic mechanism making the lice nerves insensitive to permethrin is discussed along with the surprising contrary clinical evidence from Europe about efficacy of permethrin in children with head lice carrying kdr-like gene. The review also presents a brief account of insects as vectors of diseases and ends with discussion of prevention of insect bites and some serious adverse effects

  6. Behavioral Immunity in Insects

    PubMed Central

    de Roode, Jacobus C.; Lefèvre, Thierry

    2012-01-01

    Parasites can dramatically reduce the fitness of their hosts, and natural selection should favor defense mechanisms that can protect hosts against disease. Much work has focused on understanding genetic and physiological immunity against parasites, but hosts can also use behaviors to avoid infection, reduce parasite growth or alleviate disease symptoms. It is increasingly recognized that such behaviors are common in insects, providing strong protection against parasites and parasitoids. We review the current evidence for behavioral immunity in insects, present a framework for investigating such behavior, and emphasize that behavioral immunity may act through indirect rather than direct fitness benefits. We also discuss the implications for host-parasite co-evolution, local adaptation, and the evolution of non-behavioral physiological immune systems. Finally, we argue that the study of behavioral immunity in insects has much to offer for investigations in vertebrates, in which this topic has traditionally been studied. PMID:26466629

  7. Cognition in insects

    PubMed Central

    Webb, Barbara

    2012-01-01

    A traditional view of cognition is that it involves an internal process that represents, tracks or predicts an external process. This is not a general characteristic of all complex neural processing or feedback control, but rather implies specific forms of processing giving rise to specific behavioural capabilities. In this paper, I will review the evidence for such capabilities in insect navigation and learning. Do insects know where they are, or do they only know what to do? Do they learn what stimuli mean, or do they only learn how to behave? PMID:22927570

  8. Insect Repellents: Protect Your Child from Insect Bites

    MedlinePlus

    ... Español Text Size Email Print Share Choosing an Insect Repellent for Your Child Page Content Mosquitoes, biting ... sunscreen needs to be reapplied often. Reactions to Insect Repellents If you suspect that your child is ...

  9. Dispersal of forest insects

    NASA Technical Reports Server (NTRS)

    Mcmanus, M. L.

    1979-01-01

    Dispersal flights of selected species of forest insects which are associated with periodic outbreaks of pests that occur over large contiguous forested areas are discussed. Gypsy moths, spruce budworms, and forest tent caterpillars were studied for their massive migrations in forested areas. Results indicate that large dispersals into forested areas are due to the females, except in the case of the gypsy moth.

  10. Recycled Insect Models

    ERIC Educational Resources Information Center

    Rule, Audrey C.; Meyer, Mary Ann

    2007-01-01

    This article presents an engaging activity in which high school students use a dichotomous key to guide the creation and classification of model insects from recycled plastic lids and containers. Besides teaching the use of a dichotomous key and the effect of evolutionary descent upon groupings of organisms, this activity focuses on an…

  11. Insect mass production technologies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Insects provide a very promising alternative for the future production of animal protein. Their nutritional value in conjunction with their food conversion efficiency and low water requirements, make them a more sustainable choice for the production of food and animal origin. However, to realize the...

  12. Colour constancy in insects.

    PubMed

    Chittka, Lars; Faruq, Samia; Skorupski, Peter; Werner, Annette

    2014-06-01

    Colour constancy is the perceptual phenomenon that the colour of an object appears largely unchanged, even if the spectral composition of the illuminating light changes. Colour constancy has been found in all insect species so far tested. Especially the pollinating insects offer a remarkable opportunity to study the ecological significance of colour constancy since they spend much of their adult lives identifying and choosing between colour targets (flowers) under continuously changing ambient lighting conditions. In bees, whose colour vision is best studied among the insects, the compensation provided by colour constancy is only partial and its efficiency depends on the area of colour space. There is no evidence for complete 'discounting' of the illuminant in bees, and the spectral composition of the light can itself be used as adaptive information. In patchy illumination, bees adjust their spatial foraging to minimise transitions between variously illuminated zones. Modelling allows the quantification of the adaptive benefits of various colour constancy mechanisms in the economy of nature. We also discuss the neural mechanisms and cognitive operations that might underpin colour constancy in insects.

  13. Irradiating insect pests

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This is a non-technical article focusing on phytosanitary uses of irradiation. In a series of interview questions, I present information on the scope of the invasive species problem and the contribution of international trade in agricultural products to the movement of invasive insects. This is foll...

  14. Cotton insect pest management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton production is challenged worldwide by a diversity of arthropod pests that require management to prevent or reduce crop damage. Advances in arthropod control technologies and improved insect and crop management systems have dramatically reduced levels of arthropod damage and the need for inse...

  15. Insects. Thematic Unit.

    ERIC Educational Resources Information Center

    Gosnell, Kathee

    This book is a captivating whole-language thematic unit about the study of insects, relating it to our understanding of the past and our hopes for using our knowledge in the present to balance the ecosystem in the future. It contains a wide variety of lesson ideas and reproducible pages designed for use with intermediate students. At its core,…

  16. People and Insects.

    ERIC Educational Resources Information Center

    NatureScope, 1985

    1985-01-01

    Provides: (1) background information on how insects affect human lives, both positively and negatively, and on integrated pest management strategies; (2) student activities; and (3) materials (ready-to-copy games, puzzles, coloring pages, worksheets, and/or mazes). Each activity includes an objective, recommended age level(s), subject area(s),…

  17. Investigation--Insects!

    ERIC Educational Resources Information Center

    Fay, Janice

    2000-01-01

    Presents activities on insects for second grade students. In the first activity, students build a butterfly garden. In the second activity, students observe stimuli reactions with mealworms in the larval stage. Describes the assessment process and discusses the effects of pollution on living things. (YDS)

  18. Corn insect pests

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Historically, the major corn insect pests in South Dakota have been the larvae of corn rootworms (northern and western), European corn borer, and black cutworm. Bt-corn hybrids are effective against most of these pests. However, there are also minor or sporadic pests of corn in South Dakota includin...

  19. Fluorescence in insects

    NASA Astrophysics Data System (ADS)

    Welch, Victoria L.; Van Hooijdonk, Eloise; Intrater, Nurit; Vigneron, Jean-Pol

    2012-10-01

    Fluorescent molecules are much in demand for biosensors, solar cells, LEDs and VCSEL diodes, therefore, considerable efforts have been expended in designing and tailoring fluorescence to specific technical applications. However, naturally occurring fluorescence of diverse types has been reported from a wide array of living organisms: most famously, the jellyfish Aequorea victoria, but also in over 100 species of coral and in the cuticle of scorpions, where it is the rule, rather than the exception. Despite the plethora of known insect species, comparatively few quantitative studies have been made of insect fluorescence. Because of the potential applications of natural fluorescence, studies in this field have relevance to both physics and biology. Therefore, in this paper, we review the literature on insect fluorescence, before documenting its occurrence in the longhorn beetles Sternotomis virescens, Sternotomis variabilis var. semi rufescens, Anoplophora elegans and Stellognatha maculata, the tiger beetles Cicindela maritima and Cicindela germanica and the weevil Pachyrrhynchus gemmatus purpureus. Optical features of insect fluorescence, including emitted wavelength, molecular ageing and naturally occurring combinations of fluorescence with bioluminescence and colour-producing structures are discussed.

  20. Radar cross section of insects

    NASA Astrophysics Data System (ADS)

    Riley, J. R.

    1985-02-01

    X-band measurements of radar cross section as a function of the angle between insect body axis and the plane of polarization are presented. A finding of particular interest is that in larger insects, maximum cross section occurs when the E-vector is perpendicular to the body axis. A new range of measurements on small insects (aphids, and planthoppers) is also described, and a comprehensive summary of insect cross-section data at X-band is given.

  1. Protecting Yourself from Stinging Insects

    MedlinePlus

    ... from St ing in g In sect s Flying Insects Outdoor workers are at risk of being stung by flying insects (bees, wasps, and hornets) and fire ants. While ... If a worker is stung by a stinging insect: ■■ Have someone stay with the worker to be ...

  2. Detection of insects in grain

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Detecting insects hidden inside kernels of grain is important to grain buyers because internal infestations can result in insect fragments in products made from the grain, or, if the grain is stored before use, the insect population can increase and damage the grain further. In a study in the Unite...

  3. Evaluating insect-microbiomes at the plant-insect interface.

    PubMed

    Casteel, Clare L; Hansen, Allison K

    2014-07-01

    Plants recognize biotic challengers and respond with the appropriate defense by utilizing phytohormone signaling and crosstalk. Despite this, microbes and insects have evolved mechanisms that compromise the plant surveillance system and specific defenses, thus ensuring successful colonization. In nature, plants do not experience insect herbivores and microbes in isolation, but in combination. Over time, relationships have developed between insects and microbes, varying on a continuum from no-relationship to obligate relationships that are required for both organisms to survive. While many reviews have examined plant-insect and plant-microbe interactions and the mechanisms of plant defense, few have considered the interface where microbes and insects may overlap, and synergies may develop. In this review, we critically evaluate the requirements for insect-associated microbes to develop synergistic relationships with their hosts, and we mechanistically discuss how some of these insect-associated microbes can target or modify host plant defenses. Finally, by using bioinformatics and the recent literature, we review evidence for synergies in insect-microbe relationships at the interface of plant-insect defenses. Insect-associated microbes can influence host-plant detection and/or signaling through phytohormone synthesis, conserved microbial patterns, and effectors, however, microbes associated with insects must be maintained in the environment and located in opportunistic positions.

  4. RNAi: future in insect management.

    PubMed

    Burand, John P; Hunter, Wayne B

    2013-03-01

    RNA interference is a post- transcriptional, gene regulation mechanism found in virtually all plants and animals including insects. The demonstration of RNAi in insects and its successful use as a tool in the study of functional genomics opened the door to the development of a variety of novel, environmentally sound approaches for insect pest management. Here the current understanding of the biogenesis of the two RNAi classes in insects is reviewed. These are microRNAs (miRNAs) and short interfering RNAs (siRNAs). Several other key approaches in RNAi -based for insect control, as well as for the prevention of diseases in insects are also reviewed. The problems and prospects for the future use of RNAi in insects are presented.

  5. On quantifying insect movements

    SciTech Connect

    Wiens, J.A.; Crist, T.O. ); Milne, B.T. )

    1993-08-01

    We elaborate on methods described by Turchin, Odendaal Rausher for quantifying insect movement pathways. We note the need to scale measurement resolution to the study insects and the questions being asked, and we discuss the use of surveying instrumentation for recording sequential positions of individuals on pathways. We itemize several measures that may be used to characterize movement pathways and illustrate these by comparisons among several Eleodes beetles occurring in shortgrass steppe. The fractal dimension of pathways may provide insights not available from absolute measures of pathway configuration. Finally, we describe a renormalization procedure that may be used to remove sequential interdependence among locations of moving individuals while preserving the basic attributes of the pathway.

  6. [Insect venom allergies].

    PubMed

    Przybilla, Bernhard; Ruëff, Franziska

    2003-10-01

    Systemic IgE-mediated immediate type reactions (anaphylaxis) due to honeybee or vespid stings are potentially life-threatening; they are reported in up to 5% of the general population. Insect venom allergy is diagnosed by history, skin testing and measurement of insect venom-specific serum IgE; sometimes additional tests are needed. The diagnosis is based on the history of a systemic allergic immediate type sting reaction, without such a medical history any other "positive" test results are irrelevant. Nearly always, patients with systemic allergic sting reactions can be protected from further episodes of anaphylaxis by a carefully performed hyposensitization (specific immunotherapy). If therapeutic efficacy has been proven by tolerance of a re-sting, hyposensitization can be frequently stopped after 3 to 5 years. Patients with a particular risk of frequent re-stings or of very severe sting reactions may have to be treated for a longer time, some of them even life-long.

  7. Insect maintenance and transmission.

    PubMed

    Kingdom, Heather

    2013-01-01

    Phytoplasmas are plant pathogens of huge economic importance due to responsibility for crop yield losses worldwide. Institutions around the world are trying to understand and control this yield loss at a time when food security is high on government agendas. In order to fully understand the mechanisms of phytoplasma infection and spread, more insect vector and phytoplasma colonies will need to be established for research worldwide. Rearing and study of these colonies is essential in the research and development of phytoplasma control measures. This chapter highlights general materials and methods for raising insect vector colonies and maintenance of phytoplasmas. Specific methods of rearing the maize leafhopper and maize bushy stunt phytoplasma and the aster leafhopper and aster yellows phytoplasma strain witches' broom are also included.

  8. Undergraduates' mental models about insect anatomy and insect life cycles

    NASA Astrophysics Data System (ADS)

    Diaz, Arlene Edith

    Educational studies focused on students' alternative conceptions have shown the importance of developing strategies to correct understanding. Identifying and comprehending student mental models are important since they may reflect alternate conceptions about scientific concepts. Mental models have been identified in various science education studies, but little is known about mental models undergraduates hold about insects. This research is significant because it identified mental models undergraduates have about insect anatomy and insect life cycles, exposed students to cognitive conflict by having them complete an online insect tutorial, and analyzed the effectiveness of this insect tutorial in correcting student understanding. An insect assessment was developed and administered pre- and post-instruction to probe students' mental models about insects. Different numbers of undergraduate students participated in different parts of the assessment; 276, 249, 166, and 58 students participated in the listing, drawing. definition, and life cycle parts of the assessment, respectively. The tutorial contained a variety of manipulated insect and non-insect images that challenged the students' understanding and generated cognitive conflict. This intervention guided students in replacing alternate conceptions with correct understanding. It was hypothesized that the tutorial would have a positive impact on student learning about insects. The results suggest that the tutorial had a positive impact on learning.

  9. Polyphenism in insects.

    PubMed

    Simpson, Stephen J; Sword, Gregory A; Lo, Nathan

    2011-09-27

    Polyphenism is the phenomenon where two or more distinct phenotypes are produced by the same genotype. Examples of polyphenism provide some of the most compelling systems for the study of epigenetics. Polyphenisms are a major reason for the success of the insects, allowing them to partition life history stages (with larvae dedicated to feeding and growth, and adults dedicated to reproduction and dispersal), to adopt different phenotypes that best suit predictable environmental changes (seasonal morphs), to cope with temporally heterogeneous environments (dispersal morphs), and to partition labour within social groups (the castes of eusocial insects). We survey the status of research on some of the best known examples of insect polyphenism, in each case considering the environmental cues that trigger shifts in phenotype, the neurochemical and hormonal pathways that mediate the transformation, the molecular genetic and epigenetic mechanisms involved in initiating and maintaining the polyphenism, and the adaptive and life-history significance of the phenomenon. We conclude by highlighting some of the common features of these examples and consider future avenues for research on polyphenism.

  10. Analgesic Effect of Photobiomodulation on Bothrops Moojeni Venom-Induced Hyperalgesia: A Mechanism Dependent on Neuronal Inhibition, Cytokines and Kinin Receptors Modulation

    PubMed Central

    Oliveira, Victoria Regina da Silva; Toniolo, Elaine Flamia; Feliciano, Regiane dos Santos; da Silva Jr., José Antonio; Zamuner, Stella Regina

    2016-01-01

    Background Envenoming induced by Bothrops snakebites is characterized by drastic local tissue damage that involves an intense inflammatory reaction and local hyperalgesia which are not neutralized by conventional antivenom treatment. Herein, the effectiveness of photobiomodulation to reduce inflammatory hyperalgesia induced by Bothrops moojeni venom (Bmv), as well as the mechanisms involved was investigated. Methodology/Principal Findings Bmv (1 μg) was injected through the intraplantar route in the right hind paw of mice. Mechanical hyperalgesia and allodynia were evaluated by von Frey filaments at different time points after venom injection. Low level laser therapy (LLLT) was applied at the site of Bmv injection at wavelength of red 685 nm with energy density of 2.2 J/cm2 at 30 min and 3 h after venom inoculation. Neuronal activation in the dorsal horn spinal cord was determined by immunohistochemistry of Fos protein and the mRNA expression of IL-6, TNF-α, IL-10, B1 and B2 kinin receptors were evaluated by Real time-PCR 6 h after venom injection. Photobiomodulation reversed Bmv-induced mechanical hyperalgesia and allodynia and decreased Fos expression, induced by Bmv as well as the mRNA levels of IL-6, TNF-α and B1 and B2 kinin receptors. Finally, an increase on IL-10, was observed following LLLT. Conclusion/Significance These data demonstrate that LLLT interferes with mechanisms involved in nociception and hyperalgesia and modulates Bmv-induced nociceptive signal. The use of photobiomodulation in reducing local pain induced by Bothropic venoms should be considered as a novel therapeutic tool for the treatment of local symptoms induced after bothropic snakebites. PMID:27749899

  11. Up-regulation of the kinin B2 receptor pathway modulates the TGF-β/Smad signaling cascade to reduce renal fibrosis induced by albumin.

    PubMed

    Cárdenas, Areli; Campos, Javiera; Ehrenfeld, Pamela; Mezzano, Sergio; Ruiz-Ortega, Marta; Figueroa, Carlos D; Ardiles, Leopoldo

    2015-11-01

    The presence of high protein levels in the glomerular filtrate plays an important role in renal fibrosis, a disorder that justifies the use of animal models of experimental proteinuria. Such models have proved useful as tools in the study of the pathogenesis of chronic, progressive renal disease. Since bradykinin and the kinin B2 receptor (B2R) belong to a renoprotective system with mechanisms still unclarified, we investigated its anti-fibrotic role in the in vivo rat model of overload proteinuria. Upon up-regulating the kinin system by a high potassium diet we observed reduction of tubulointerstitial fibrosis, decreased renal expression of α-smooth muscle actin (α-SMA) and vimentin, reduced Smad3 phosphorylation and increase of Smad7. These cellular and molecular effects were reversed by HOE-140, a specific B2R antagonist. In vitro experiments, performed on a cell line of proximal tubular epithelial cells, showed that high concentrations of albumin induced expression of mesenchymal biomarkers, in concomitance with increases in TGF-β1 mRNA and its functionally active peptide, TGF-β1. Stimulation of the tubule cells by bradykinin inhibited the albumin-induced changes, namely α-SMA and vimentin were reduced, and cytokeratin recovered together with increase in Smad7 levels and decrease in type II TGF-β1 receptor, TGF-β1 mRNA and its active fragment. The protective changes produced by bradykinin in vitro were blocked by HOE-140. The development of stable bradykinin analogues and/or up-regulation of the B2R signaling pathway may prove value in the management of chronic renal fibrosis in progressive proteinuric renal diseases.

  12. Thermoregulation in endothermic insects.

    PubMed

    Heinrich, B

    1974-08-30

    On the basis of body weight, most flying insects have higher rates of metabolism, and hence heat production, than other animals. However, rapid rates of cooling because of small body size in most cases precludes appreciable endothermy. The body temperature of small flies in flight is probably close to ambient temperature, and that of flying butterflies and locusts is 5 degrees to 10 degrees C above ambient temperature. Many moths and bumblebees are insulated with scales and hair, and their metabolism during flight can cause the temperature of the flight muscles to increase 20 degrees to 30 degrees C above ambient temperature. Curiously, those insects which (because of size, insulation) retain the most heat in the thorax during flight, also require the highest muscle temperature in order to maintain sufficient power output to continue flight. The minimum muscle temperature for flight varies widely between different species, while the maximum temperature varies over the relatively narrow range of 40 degrees to 45 degrees C. As a consequence, those insects that necessarily generate high muscle temperatures during flight must maintain their thoracic temperature within a relatively narrow range during flight. Active heat loss from the thorax to the abdomen prevents overheating of the flight motor and allows some large moths to be active over a wide range of ambient temperatures. Bumblebees similarly transfer heat from the flight musculature into the abdomen while incubating their brood by abdominal contact. Many of the larger insects would remain grounded if they did not actively increase the temperature of their flight muscles prior to flight. Male tettigoniid grasshoppers elevate their thoracic temperature prior to singing. In addition, some of the social Hymenoptera activate the "flight" muscles specifically to produce heat not only prior to flight but also during nest temperature regulation. During this "shivering" the "flight" muscles are often activated in

  13. Edible insects are the future?

    PubMed

    van Huis, Arnold

    2016-08-01

    The global increase in demand for meat and the limited land area available prompt the search for alternative protein sources. Also the sustainability of meat production has been questioned. Edible insects as an alternative protein source for human food and animal feed are interesting in terms of low greenhouse gas emissions, high feed conversion efficiency, low land use, and their ability to transform low value organic side streams into high value protein products. More than 2000 insect species are eaten mainly in tropical regions. The role of edible insects in the livelihoods and nutrition of people in tropical countries is discussed, but this food source is threatened. In the Western world, there is an increasing interest in edible insects, and examples are given. Insects as feed, in particular as aquafeed, have a large potential. Edible insects have about the same protein content as conventional meat and more PUFA. They may also have some beneficial health effects. Edible insects need to be processed and turned into palatable dishes. Food safety may be affected by toxicity of insects, contamination with pathogens, spoilage during conservation and allergies. Consumer attitude is a major issue in the Western world and a number of strategies are proposed to encourage insect consumption. We discuss research pathways to make insects a viable sector in food and agriculture: an appropriate disciplinary focus, quantifying its importance, comparing its nutritional value to conventional protein sources, environmental benefits, safeguarding food safety, optimising farming, consumer acceptance and gastronomy.

  14. Aircraft anti-insect system

    NASA Technical Reports Server (NTRS)

    Spiro, Clifford Lawrence (Inventor); Fric, Thomas Frank (Inventor); Leon, Ross Michael (Inventor)

    1997-01-01

    Insect debris is removed from or prevented from adhering to insect impingement areas of an aircraft, particularly on an inlet cowl of an engine, by heating the area to 180.degree.-500.degree. C. An apparatus comprising a means to bring hot air from the aircraft engine to a plenum contiguous to the insect impingement area provides for the heating of the insect impingement areas to the required temperatures. The plenum can include at least one tube with a plurality of holes contained in a cavity within the inlet cowl. It can also include an envelope with a plurality of holes on its surface contained in a cavity within the inlet cowl.

  15. Insects in a changing environment

    SciTech Connect

    Harrington, R.; Stork, N.

    1995-12-31

    This book, from a 1993 symposium, focuses on current, anthropogenic changes in insect populations using five major sections: introduction; changes in climate; changes in gas/pollutant levels; changes in land use; and a section of shorter papers. The effects of climate change on insects are assessed using techniques ranging from fossil evidence to simulation models to remote sensing. The section on changes in gas levels addresses a series of individually studies of insect responses to atmospheric gases and other pollutants. The section focusing on the effects of environmental change on insects is well documented.

  16. The renal kallikrein-kinin system: its role as a safety valve for excess sodium intake, and its attenuation as a possible etiologic factor in salt-sensitive hypertension.

    PubMed

    Katori, Makoto; Majima, Masataka

    2003-02-01

    The distal tubules of the kidney express the full set of the components of the kallikrein-kinin system, which works independently from the plasma kallikrein-kinin system. Studies on the role of the renal kallikrein-kinin system, using congenitally kininogen-deficient Brown-Norway Katholiek rats and also bradykinin B2 receptor knockout mice, revealed that this system starts to function and to induce natriuresis and diuresis when sodium accumulates in the body as a result of excess sodium intake or aldosterone release, for example, by angiotensin II. Thus, it can be hypothesized that the system works as a safety valve for sodium accumulation. The large numbers of studies on hypertensive animal models and on essential hypertensive patients, particularly those with salt sensitivity, indicate a tendency toward the reduced excretion of urinary kallikrein, although this reduction is modified by potassium intake and impaired renal function. We hypothesize that the reduced excretion of the renal kallikrein may be attributable to a genetic defect of factor(s) in renal kallikrein secretion process and may cause salt-sensitive hypertension after salt intake.

  17. 7 CFR 51.2290 - Insect injury.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Insect injury. 51.2290 Section 51.2290 Agriculture... Standards for Shelled English Walnuts (Juglans Regia) Definitions § 51.2290 Insect injury. Insect injury means that the insect, web, frass or other evidence of insects is present on the portion of kernel....

  18. 7 CFR 51.2122 - Insect injury.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Insect injury. 51.2122 Section 51.2122 Agriculture... Standards for Grades of Shelled Almonds Definitions § 51.2122 Insect injury. Insect injury means that the insect, web, or frass is present or there is definite evidence of insect feeding....

  19. 7 CFR 51.2122 - Insect injury.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Insect injury. 51.2122 Section 51.2122 Agriculture... Standards for Grades of Shelled Almonds Definitions § 51.2122 Insect injury. Insect injury means that the insect, web, or frass is present or there is definite evidence of insect feeding....

  20. 7 CFR 51.2290 - Insect injury.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Insect injury. 51.2290 Section 51.2290 Agriculture... Standards for Shelled English Walnuts (Juglans Regia) Definitions § 51.2290 Insect injury. Insect injury means that the insect, web, frass or other evidence of insects is present on the portion of kernel....

  1. 1977 Kansas Field Crop Insect Control Recommendations.

    ERIC Educational Resources Information Center

    Brooks, Leroy; Gates, Dell E.

    This publication is prepared to aid producers in selecting methods of insect population management that have proved effective under Kansas conditions. Topics covered include insect control on alfalfa, soil insects attacking corn, insects attacking above-ground parts of corn, and sorghum, wheat, and soybean insect control. The insecticides…

  2. 7 CFR 51.2122 - Insect injury.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Insect injury. 51.2122 Section 51.2122 Agriculture... Standards for Grades of Shelled Almonds Definitions § 51.2122 Insect injury. Insect injury means that the insect, web, or frass is present or there is definite evidence of insect feeding....

  3. 7 CFR 51.2008 - Insect injury.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Insect injury. 51.2008 Section 51.2008 Agriculture....2008 Insect injury. Insect injury means that the insect, frass or web is present inside the nut or the kernel shows definite evidence of insect feeding. Metric Conversion Table...

  4. 7 CFR 51.2290 - Insect injury.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Insect injury. 51.2290 Section 51.2290 Agriculture... Standards for Shelled English Walnuts (Juglans Regia) Definitions § 51.2290 Insect injury. Insect injury means that the insect, web, frass or other evidence of insects is present on the portion of kernel....

  5. 7 CFR 51.2008 - Insect injury.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Insect injury. 51.2008 Section 51.2008 Agriculture....2008 Insect injury. Insect injury means that the insect, frass or web is present inside the nut or the kernel shows definite evidence of insect feeding. Metric Conversion Table...

  6. Hydrodynamics of insect spermatozoa

    NASA Astrophysics Data System (ADS)

    Pak, On Shun; Lauga, Eric

    2010-11-01

    Microorganism motility plays important roles in many biological processes including reproduction. Many microorganisms propel themselves by propagating traveling waves along their flagella. Depending on the species, propagation of planar waves (e.g. Ceratium) and helical waves (e.g. Trichomonas) were observed in eukaryotic flagellar motion, and hydrodynamic models for both were proposed in the past. However, the motility of insect spermatozoa remains largely unexplored. An interesting morphological feature of such cells, first observed in Tenebrio molitor and Bacillus rossius, is the double helical deformation pattern along the flagella, which is characterized by the presence of two superimposed helical flagellar waves (one with a large amplitude and low frequency, and the other with a small amplitude and high frequency). Here we present the first hydrodynamic investigation of the locomotion of insect spermatozoa. The swimming kinematics, trajectories and hydrodynamic efficiency of the swimmer are computed based on the prescribed double helical deformation pattern. We then compare our theoretical predictions with experimental measurements, and explore the dependence of the swimming performance on the geometric and dynamical parameters.

  7. Environmental RNAi in herbivorous insects.

    PubMed

    Ivashuta, Sergey; Zhang, Yuanji; Wiggins, B Elizabeth; Ramaseshadri, Partha; Segers, Gerrit C; Johnson, Steven; Meyer, Steve E; Kerstetter, Randy A; McNulty, Brian C; Bolognesi, Renata; Heck, Gregory R

    2015-05-01

    Environmental RNAi (eRNAi) is a sequence-specific regulation of endogenous gene expression in a receptive organism by exogenous double-stranded RNA (dsRNA). Although demonstrated under artificial dietary conditions and via transgenic plant presentations in several herbivorous insects, the magnitude and consequence of exogenous dsRNA uptake and the role of eRNAi remains unknown under natural insect living conditions. Our analysis of coleopteran insects sensitive to eRNAi fed on wild-type plants revealed uptake of plant endogenous long dsRNAs, but not small RNAs. Subsequently, the dsRNAs were processed into 21 nt siRNAs by insects and accumulated in high quantities in insect cells. No accumulation of host plant-derived siRNAs was observed in lepidopteran larvae that are recalcitrant to eRNAi. Stability of ingested dsRNA in coleopteran larval gut followed by uptake and transport from the gut to distal tissues appeared to be enabling factors for eRNAi. Although a relatively large number of distinct coleopteran insect-processed plant-derived siRNAs had sequence complementarity to insect transcripts, the vast majority of the siRNAs were present in relatively low abundance, and RNA-seq analysis did not detect a significant effect of plant-derived siRNAs on insect transcriptome. In summary, we observed a broad genome-wide uptake of plant endogenous dsRNA and subsequent processing of ingested dsRNA into 21 nt siRNAs in eRNAi-sensitive insects under natural feeding conditions. In addition to dsRNA stability in gut lumen and uptake, dosage of siRNAs targeting a given insect transcript is likely an important factor in order to achieve measurable eRNAi-based regulation in eRNAi-competent insects that lack an apparent silencing amplification mechanism.

  8. Environmental RNAi in herbivorous insects

    PubMed Central

    Ivashuta, Sergey; Zhang, Yuanji; Wiggins, B. Elizabeth; Ramaseshadri, Partha; Segers, Gerrit C.; Johnson, Steven; Meyer, Steve E.; Kerstetter, Randy A.; McNulty, Brian C.; Bolognesi, Renata; Heck, Gregory R.

    2015-01-01

    Environmental RNAi (eRNAi) is a sequence-specific regulation of endogenous gene expression in a receptive organism by exogenous double-stranded RNA (dsRNA). Although demonstrated under artificial dietary conditions and via transgenic plant presentations in several herbivorous insects, the magnitude and consequence of exogenous dsRNA uptake and the role of eRNAi remains unknown under natural insect living conditions. Our analysis of coleopteran insects sensitive to eRNAi fed on wild-type plants revealed uptake of plant endogenous long dsRNAs, but not small RNAs. Subsequently, the dsRNAs were processed into 21 nt siRNAs by insects and accumulated in high quantities in insect cells. No accumulation of host plant-derived siRNAs was observed in lepidopteran larvae that are recalcitrant to eRNAi. Stability of ingested dsRNA in coleopteran larval gut followed by uptake and transport from the gut to distal tissues appeared to be enabling factors for eRNAi. Although a relatively large number of distinct coleopteran insect-processed plant-derived siRNAs had sequence complementarity to insect transcripts, the vast majority of the siRNAs were present in relatively low abundance, and RNA-seq analysis did not detect a significant effect of plant-derived siRNAs on insect transcriptome. In summary, we observed a broad genome-wide uptake of plant endogenous dsRNA and subsequent processing of ingested dsRNA into 21 nt siRNAs in eRNAi-sensitive insects under natural feeding conditions. In addition to dsRNA stability in gut lumen and uptake, dosage of siRNAs targeting a given insect transcript is likely an important factor in order to achieve measurable eRNAi-based regulation in eRNAi-competent insects that lack an apparent silencing amplification mechanism. PMID:25802407

  9. Polarization Imaging and Insect Vision

    ERIC Educational Resources Information Center

    Green, Adam S.; Ohmann, Paul R.; Leininger, Nick E.; Kavanaugh, James A.

    2010-01-01

    For several years we have included discussions about insect vision in the optics units of our introductory physics courses. This topic is a natural extension of demonstrations involving Brewster's reflection and Rayleigh scattering of polarized light because many insects heavily rely on optical polarization for navigation and communication.…

  10. Identifying Insect Bites and Stings

    MedlinePlus

    ... or Animals > Identifying Insect Bites and Stings Health Issues Listen Español Text Size Email Print Share Identifying Insect Bites and Stings Page Content Article Body Mosquitoes Mosquitoes are generally found near water (pools, lakes, birdbaths) and are attracted by bright ...

  11. Reader Survey for INSECT ALERTS.

    ERIC Educational Resources Information Center

    Miller, Mason E.; Sauer, Richard J.

    To determine what might be done to improve "Insect Alerts," which is a newsletter that carries "information on insect biology, abundance, activity and interpretation of control need," put out through the Michigan Cooperative Extension Service 26 weeks a year, a survey was conducted. A mail questionnaire was sent to all 120 county extension…

  12. Plant Defense against Insect Herbivores

    PubMed Central

    Fürstenberg-Hägg, Joel; Zagrobelny, Mika; Bak, Søren

    2013-01-01

    Plants have been interacting with insects for several hundred million years, leading to complex defense approaches against various insect feeding strategies. Some defenses are constitutive while others are induced, although the insecticidal defense compound or protein classes are often similar. Insect herbivory induce several internal signals from the wounded tissues, including calcium ion fluxes, phosphorylation cascades and systemic- and jasmonate signaling. These are perceived in undamaged tissues, which thereafter reinforce their defense by producing different, mostly low molecular weight, defense compounds. These bioactive specialized plant defense compounds may repel or intoxicate insects, while defense proteins often interfere with their digestion. Volatiles are released upon herbivory to repel herbivores, attract predators or for communication between leaves or plants, and to induce defense responses. Plants also apply morphological features like waxes, trichomes and latices to make the feeding more difficult for the insects. Extrafloral nectar, food bodies and nesting or refuge sites are produced to accommodate and feed the predators of the herbivores. Meanwhile, herbivorous insects have adapted to resist plant defenses, and in some cases even sequester the compounds and reuse them in their own defense. Both plant defense and insect adaptation involve metabolic costs, so most plant-insect interactions reach a stand-off, where both host and herbivore survive although their development is suboptimal. PMID:23681010

  13. RNAI: Future in insect management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    RNA interference is a post-transcriptional, gene regulation mechanism found in virtually all plants and animals including insects. The demonstration of RNAi in insects and its successful use as a tool in the study of functional genomics opened the door to the development of a variety of novel, envir...

  14. A Template for Insect Cryopreservation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This article is intended to update the reader on the progress made on insect embryo cryopreservation in the past 20 years and gives information for developing a protocol for cryopreserving insects by using a 2001 study as a template. The study used for the template is the cryopreservation of the Old...

  15. Eicosanoids mediate insect hemocyte migration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hemocyte chemotaxis toward infection and wound sites is an essential component of insect defense reactions, although the biochemical signal mechanisms responsible for mediating chemotaxis in insect cells are not well understood. Here we report on the outcomes of experiments designed to test the hyp...

  16. Population fluctuation in phytophagous insects

    SciTech Connect

    Redfearn, A.; Pimm, S.L. )

    1994-06-01

    We examined how community interactions affect year-to-year population variability in three groups of phytophagous insects: British aphids and moths, and Canadian moths. We first examined how the number of host plant species on which a given phytophagous insect species feeds affects its population variability. Specialist insect species showed a weak tendency to be more variable than generalist species. We then examined how the number of species of parasitoids from which a given phytophagous insects species suffers affects its population variability. Species that are host to few parasitoid species showed a weak tendency to be more variable than species with many parsitoid species. These relationships also depend on other aspects of the life histories of the phytophagous insect species.

  17. Eusocial insects as superorganisms

    PubMed Central

    Hou, Chen; Kaspari, Michael

    2010-01-01

    We recently published a paper titled “Energetic Basis of Colonial Living in Social Insects” showing that basic features of whole colony physiology and life history follow virtually the same size-dependencies as unitary organisms when a colony’s mass is the summed mass of individuals. We now suggest that these results are evidence, not only for the superorganism hypothesis, but also for colony level selection. In addition, we further examine the implications of these results for the metabolism and lifetime reproductive success of eusocial insect colonies. We conclude by discussing the mechanisms which may underlie the observed mass-dependence of survival, growth and reproduction in these colonies. PMID:20798827

  18. The aerodynamics of insect flight.

    PubMed

    Sane, Sanjay P

    2003-12-01

    The flight of insects has fascinated physicists and biologists for more than a century. Yet, until recently, researchers were unable to rigorously quantify the complex wing motions of flapping insects or measure the forces and flows around their wings. However, recent developments in high-speed videography and tools for computational and mechanical modeling have allowed researchers to make rapid progress in advancing our understanding of insect flight. These mechanical and computational fluid dynamic models, combined with modern flow visualization techniques, have revealed that the fluid dynamic phenomena underlying flapping flight are different from those of non-flapping, 2-D wings on which most previous models were based. In particular, even at high angles of attack, a prominent leading edge vortex remains stably attached on the insect wing and does not shed into an unsteady wake, as would be expected from non-flapping 2-D wings. Its presence greatly enhances the forces generated by the wing, thus enabling insects to hover or maneuver. In addition, flight forces are further enhanced by other mechanisms acting during changes in angle of attack, especially at stroke reversal, the mutual interaction of the two wings at dorsal stroke reversal or wing-wake interactions following stroke reversal. This progress has enabled the development of simple analytical and empirical models that allow us to calculate the instantaneous forces on flapping insect wings more accurately than was previously possible. It also promises to foster new and exciting multi-disciplinary collaborations between physicists who seek to explain the phenomenology, biologists who seek to understand its relevance to insect physiology and evolution, and engineers who are inspired to build micro-robotic insects using these principles. This review covers the basic physical principles underlying flapping flight in insects, results of recent experiments concerning the aerodynamics of insect flight, as well

  19. Comparative study on the mechanism of bradykinin potentiation induced by bradykinin-potentiating peptide 9a, enalaprilat and kinin-potentiating peptide.

    PubMed

    Rodrigues, M S; Schaffel, R; Assreuy, J

    1992-06-17

    The action of a kinin-potentiating peptide (KPP) obtained from tryptic digestion of human serum proteins was compared with that of bradykinin-potentiating peptide 9a (BPP9a; obtained from snake venom) and enalaprilat (a synthetic inhibitor of angiotensin-converting enzyme; ACE) as a means of understanding the mechanism of action of KPP on smooth muscle. KPP potentiated bradykinin-induced contractile effects in guinea-pig ileum and rat uterus, but not the bradykinin-induced relaxation of pre-contracted ileum, whereas BPP9a and enalaprilat potentiated both bradykinin effects. The receptor mediating both the contraction and the relaxation elicited by bradykinin in the ileum was found to be of the B2 type. KPP retained its potentiating effect in the presence of enalaprilat in the guinea-pig ileum and rat uterus, whereas the potentiation evoked by BPP9a was abolished. Enalaprilat inhibited the activity of purified ACE, whereas KPP was completely devoid of such an effect. The potentiating effect of KPP, but not that of BPP9a or enalaprilat, was blocked by compounds that inhibit phospholipase A2 and lipoxygenase activity but not by inhibitors of cyclo-oxygenase or phosphodiesterases. The results suggest that the potentiating effect of KPP (i) does not involve inhibition of ACE; (ii) is not due to an increased affinity of the receptor for bradykinin, and (iii) probably involves post-receptor events linked to phospholipase A2 and to the lipoxygenase pathway.

  20. Radar Observation of Insects - Mosquitoes

    NASA Technical Reports Server (NTRS)

    Frost, E.; Downing, J.

    1979-01-01

    Tests were conducted at several sites over the coastal lowlands of New Jersey and over a region of high plains and low mountains in Oklahoma. In one area, a salt marsh in New Jersey, extensive ground tests were combined with laboratory data on expected insect backscatter to arrive at an extremely convincing model of the insect origin of most Dot Angels. A great deal of insight was studied from radar on the buildup and dispersal of insect swarms, since radar can follow where other means of trapping and observation cannot. Data on large-scale behavior as a function of wind and topography are presented. Displayed techniques which show individual or small swarm motion within some larger cloud or mass, or which can show the overall motion over great distances were developed. The influence of wind and terrain on insect motion and dispersal is determined from radar data.

  1. Insect symbionts in food webs

    PubMed Central

    Henry, Lee M.

    2016-01-01

    Recent research has shown that the bacterial endosymbionts of insects are abundant and diverse, and that they have numerous different effects on their hosts' biology. Here we explore how insect endosymbionts might affect the structure and dynamics of insect communities. Using the obligate and facultative symbionts of aphids as an example, we find that there are multiple ways that symbiont presence might affect food web structure. Many symbionts are now known to help their hosts escape or resist natural enemy attack, and others can allow their hosts to withstand abiotic stress or affect host plant use. In addition to the direct effect of symbionts on aphid phenotypes there may be indirect effects mediated through trophic and non-trophic community interactions. We believe that by using data from barcoding studies to identify bacterial symbionts, this extra, microbial dimension to insect food webs can be better elucidated. This article is part of the themed issue ‘From DNA barcodes to biomes’. PMID:27481779

  2. Entomopathogenic nematodes and insect management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Entomopathogenic nematodes (genera Heterorhabditis, Steinernema, and Neosteinernema) are used as bioinsecticides. The nematodes are ubiquitous and have been isolated in soil of every continent except Antarctica. The nematodes kill insects through a mutualism with a bacterium (Photorhabdus spp. or ...

  3. Freshwater Biodiversity and Insect Diversification

    PubMed Central

    Dijkstra, Klaas-Douwe B.; Monaghan, Michael T.; Pauls, Steffen U.

    2016-01-01

    Inland waters cover less than one percent of Earth’s surface, but harbor more than six percent of all insect species: nearly 100,000 species from 12 orders spend one or more life stages in freshwater. Little is known about how this remarkable diversity arose, although allopatric speciation and ecological adaptation are thought to be primary mechanisms. Freshwater habitats are exceptionally susceptible to environmental change, and exhibit marked ecological gradients. The amphibiotic lifestyles of aquatic insects result in complex contributions of extinction and allopatric and non-allopatric speciation in species diversification. In contrast to the lack of evolutionary studies, the ecology and habitat preferences of aquatic insects have been intensively studied, in part because of their widespread use as bio-indicators. The combination of phylogenetics with the extensive ecological data provides a promising avenue for future research, making aquatic insects highly suitable models for the study of ecological diversification. PMID:24160433

  4. The Insect SNMP Gene Family

    DTIC Science & Technology

    2009-01-01

    The insect SNMP gene family Richard G. Vogt a,*,1, Natalie E. Miller a, Rachel Litvack a, Richard A. Fandino a, Jackson Sparks a, Jon Staples a...Wallace Beltsville Agricultural Research Center Plant Sciences Institute, Invasive Insect Biocontrol and Behavior Laboratory, Bldg. 007, Rm. 030...keywords: Pheromone Receptors Olfactory Gustatory Chemosensory Gustatory Mosquito Fly a b s t r a c t SNMPs are membrane proteins observed to associate with

  5. How Do Insects Help the Environment?

    ERIC Educational Resources Information Center

    Hevel, Gary

    2005-01-01

    There are some 5 to 30 million insect species estimated in the world--and the majority of these have yet to be collected or named by science! Of course, the most well known insects are those that cause disease or compete for human agricultural products, but these insects represent only a small fraction of the world's insect population. In reality,…

  6. 7 CFR 51.2008 - Insect injury.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Insect injury. 51.2008 Section 51.2008 Agriculture... Standards for Grades of Filberts in the Shell 1 Definitions § 51.2008 Insect injury. Insect injury means that the insect, frass or web is present inside the nut or the kernel shows definite evidence of...

  7. 46 CFR 108.215 - Insect screens.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Insect screens. 108.215 Section 108.215 Shipping COAST... Construction and Arrangement Accommodation Spaces § 108.215 Insect screens. (a) Accommodation spaces must be protected against the admission of insects. (b) Insect screens must be installed when natural ventilation...

  8. 7 CFR 51.2008 - Insect injury.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Insect injury. 51.2008 Section 51.2008 Agriculture... Standards for Grades of Filberts in the Shell 1 Definitions § 51.2008 Insect injury. Insect injury means that the insect, frass or web is present inside the nut or the kernel shows definite evidence of...

  9. 46 CFR 108.215 - Insect screens.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Insect screens. 108.215 Section 108.215 Shipping COAST... Construction and Arrangement Accommodation Spaces § 108.215 Insect screens. (a) Accommodation spaces must be protected against the admission of insects. (b) Insect screens must be installed when natural ventilation...

  10. Preface: Insect Pathology, 2nd ed

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Insect pathology is an essential component of entomology and provides a non-chemical alternative for insect pest management. There are several groups of organisms that can infect and kill insects including viruses, fungi, microsporidia, bacteria, protists, and nematodes. The dilemma in insect patho...

  11. 7 CFR 51.2008 - Insect injury.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Insect injury. 51.2008 Section 51.2008 Agriculture... Standards for Grades of Filberts in the Shell 1 Definitions § 51.2008 Insect injury. Insect injury means that the insect, frass or web is present inside the nut or the kernel shows definite evidence of...

  12. 7 CFR 51.2122 - Insect injury.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Insect injury. 51.2122 Section 51.2122 Agriculture..., CERTIFICATION, AND STANDARDS) United States Standards for Grades of Shelled Almonds Definitions § 51.2122 Insect injury. Insect injury means that the insect, web, or frass is present or there is definite evidence...

  13. 7 CFR 51.2290 - Insect injury.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Insect injury. 51.2290 Section 51.2290 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... § 51.2290 Insect injury. Insect injury means that the insect, web, frass or other evidence of...

  14. 7 CFR 51.2122 - Insect injury.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Insect injury. 51.2122 Section 51.2122 Agriculture..., CERTIFICATION, AND STANDARDS) United States Standards for Grades of Shelled Almonds Definitions § 51.2122 Insect injury. Insect injury means that the insect, web, or frass is present or there is definite evidence...

  15. 7 CFR 51.2290 - Insect injury.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Insect injury. 51.2290 Section 51.2290 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... § 51.2290 Insect injury. Insect injury means that the insect, web, frass or other evidence of...

  16. 46 CFR 108.215 - Insect screens.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Insect screens. 108.215 Section 108.215 Shipping COAST... Construction and Arrangement Accommodation Spaces § 108.215 Insect screens. (a) Accommodation spaces must be protected against the admission of insects. (b) Insect screens must be installed when natural ventilation...

  17. 46 CFR 108.215 - Insect screens.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Insect screens. 108.215 Section 108.215 Shipping COAST... Construction and Arrangement Accommodation Spaces § 108.215 Insect screens. (a) Accommodation spaces must be protected against the admission of insects. (b) Insect screens must be installed when natural ventilation...

  18. 46 CFR 108.215 - Insect screens.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Insect screens. 108.215 Section 108.215 Shipping COAST... Construction and Arrangement Accommodation Spaces § 108.215 Insect screens. (a) Accommodation spaces must be protected against the admission of insects. (b) Insect screens must be installed when natural ventilation...

  19. Allergic reactions to insect stings and bites.

    PubMed

    Moffitt, John E

    2003-11-01

    Insect stings are an important cause of anaphylaxis. Anaphylaxis can also occur from insect bites but is less common. Insect venoms contain several well-characterized allergens that can trigger anaphylactic reactions. Effective methods to diagnose insect sting allergy and assess risk of future sting reactions have been developed. Management strategies using insect avoidance measures, self-injectable epinephrine, and allergen immunotherapy are very effective in reducing insect-allergic patients' risk of reaction from future stings. Diagnostic and management strategies for patients allergic to insect bites are less developed.

  20. Can insects develop resistance to insect pathogenic fungi?

    PubMed

    Dubovskiy, Ivan M; Whitten, Miranda M A; Yaroslavtseva, Olga N; Greig, Carolyn; Kryukov, Vadim Y; Grizanova, Ekaterina V; Mukherjee, Krishnendu; Vilcinskas, Andreas; Glupov, Viktor V; Butt, Tariq M

    2013-01-01

    Microevolutionary adaptations and mechanisms of fungal pathogen resistance were explored in a melanic population of the Greater wax moth, Galleria mellonella. Under constant selective pressure from the insect pathogenic fungus Beauveria bassiana, 25(th) generation larvae exhibited significantly enhanced resistance, which was specific to this pathogen and not to another insect pathogenic fungus, Metarhizium anisopliae. Defense and stress management strategies of selected (resistant) and non-selected (susceptible) insect lines were compared to uncover mechanisms underpinning resistance, and the possible cost of those survival strategies. We hypothesize that the insects developed a transgenerationally primed resistance to the fungus B. bassiana, a costly trait that was achieved not by compromising life-history traits but rather by prioritizing and re-allocating pathogen-species-specific augmentations to integumental front-line defenses that are most likely to be encountered by invading fungi. Specifically during B. bassiana infection, systemic immune defenses are suppressed in favour of a more limited but targeted repertoire of enhanced responses in the cuticle and epidermis of the integument (e.g. expression of the fungal enzyme inhibitor IMPI, and cuticular phenoloxidase activity). A range of putative stress-management factors (e.g. antioxidants) is also activated during the specific response of selected insects to B. bassiana but not M. anisopliae. This too occurs primarily in the integument, and probably contributes to antifungal defense and/or helps ameliorate the damage inflicted by the fungus or the host's own immune responses.

  1. Can Insects Develop Resistance to Insect Pathogenic Fungi?

    PubMed Central

    Yaroslavtseva, Olga N.; Greig, Carolyn; Kryukov, Vadim Y.; Grizanova, Ekaterina V.; Mukherjee, Krishnendu; Vilcinskas, Andreas; Glupov, Viktor V.; Butt, Tariq M.

    2013-01-01

    Microevolutionary adaptations and mechanisms of fungal pathogen resistance were explored in a melanic population of the Greater wax moth, Galleria mellonella. Under constant selective pressure from the insect pathogenic fungus Beauveria bassiana, 25th generation larvae exhibited significantly enhanced resistance, which was specific to this pathogen and not to another insect pathogenic fungus, Metarhizium anisopliae. Defense and stress management strategies of selected (resistant) and non-selected (susceptible) insect lines were compared to uncover mechanisms underpinning resistance, and the possible cost of those survival strategies. We hypothesize that the insects developed a transgenerationally primed resistance to the fungus B. bassiana, a costly trait that was achieved not by compromising life-history traits but rather by prioritizing and re-allocating pathogen-species-specific augmentations to integumental front-line defenses that are most likely to be encountered by invading fungi. Specifically during B. bassiana infection, systemic immune defenses are suppressed in favour of a more limited but targeted repertoire of enhanced responses in the cuticle and epidermis of the integument (e.g. expression of the fungal enzyme inhibitor IMPI, and cuticular phenoloxidase activity). A range of putative stress-management factors (e.g. antioxidants) is also activated during the specific response of selected insects to B. bassiana but not M. anisopliae. This too occurs primarily in the integument, and probably contributes to antifungal defense and/or helps ameliorate the damage inflicted by the fungus or the host’s own immune responses. PMID:23560083

  2. Evolutionary plasticity of insect immunity.

    PubMed

    Vilcinskas, Andreas

    2013-02-01

    Many insect genomes have been sequenced and the innate immune responses of several species have been studied by transcriptomics, inviting the comparative analysis of immunity-related genes. Such studies have demonstrated significant evolutionary plasticity, with the emergence of novel proteins and protein domains correlated with insects adapting to both abiotic and biotic environmental stresses. This review article focuses on effector molecules such as antimicrobial peptides (AMPs) and proteinase inhibitors, which display greater evolutionary dynamism than conserved components such as immunity-related signaling molecules. There is increasing evidence to support an extended role for insect AMPs beyond defense against pathogens, including the management of beneficial endosymbionts. The total number of AMPs varies among insects with completed genome sequences, providing intriguing examples of immunity gene expansion and loss. This plasticity is discussed in the context of recent developments in evolutionary ecology suggesting that the maintenance and deployment of immune responses reallocates resources from other fitness-related traits thus requiring fitness trade-offs. Based on our recent studies using both model and non-model insects, I propose that insect immunity genes can be lost when alternative defense strategies with a lower fitness penalty have evolved, such as the so-called social immunity in bees, the chemical sanitation of the microenvironment by some beetles, and the release of antimicrobial secondary metabolites in the hemolymph. Conversely, recent studies provide evidence for the expansion and functional diversification of insect AMPs and proteinase inhibitors to reflect coevolution with a changing pathosphere and/or adaptations to habitats or food associated with microbial contamination.

  3. Drosophila's view on insect vision.

    PubMed

    Borst, Alexander

    2009-01-13

    Within the last 400 million years, insects have radiated into at least a million species, accounting for more than half of all known living organisms: they are the most successful group in the animal kingdom, found in almost all environments of the planet, ranging in body size from a mere 0.1 mm up to half a meter. Their eyes, together with the respective parts of the nervous system dedicated to the processing of visual information, have long been the subject of intense investigation but, with the exception of some very basic reflexes, it is still not possible to link an insect's visual input to its behavioral output. Fortunately for the field, the fruit fly Drosophila is an insect, too. This genetic workhorse holds great promise for the insect vision field, offering the possibility of recording, suppressing or stimulating any single neuron in its nervous system. Here, I shall give a brief synopsis of what we currently know about insect vision, describe the genetic toolset available in Drosophila and give some recent examples of how the application of these tools have furthered our understanding of color and motion vision in Drosophila.

  4. Kinetic and thermodynamic characterization of the interactions between the components of human plasma kinin-forming system and isolated and purified cell wall proteins of Candida albicans.

    PubMed

    Seweryn, Karolina; Karkowska-Kuleta, Justyna; Wolak, Natalia; Bochenska, Oliwia; Kedracka-Krok, Sylwia; Kozik, Andrzej; Rapala-Kozik, Maria

    2015-01-01

    Cell wall proteins of Candida albicans, besides their best known role in the adhesion of this fungal pathogen to host's tissues, also bind some soluble proteins, present in body fluids and involved in maintaining the biochemical homeostasis of the human organism. In particular, three plasma factors - high-molecular-mass kininogen (HK), factor XII (FXII) and prekallikrein (PPK) - have been shown to adhere to candidal cells. These proteins are involved in the surface-contact-catalyzed production of bradykinin-related peptides (kinins) that contribute to inflammatory states associated with microbial infections. We recently identified several proteins, associated with the candidal cell walls, and probably involved in the binding of HK. In our present study, a list of potential FXII- and PPK-binding proteins was proposed, using an affinity selection (on agarose-coupled FXII or PPK) from a whole mixture of β-1,3-glucanase-extrated cell wall-associated proteins and the mass-spectrometry protein identification. Five of these fungal proteins, including agglutinin-like sequence protein 3 (Als3), triosephosphate isomerase 1 (Tpi1), enolase 1 (Eno1), phosphoglycerate mutase 1 (Gpm1) and glucose-6-phosphate isomerase 1 (Gpi1), were purified and characterized in terms of affinities to the human contact factors, using the surface plasmon resonance measurements. Except Gpm1 that bound only PPK, and Als3 that exhibited an affinity to HK and FXII, the other isolated proteins interacted with all three contact factors. The determined dissociation constants for the identified protein complexes were of 10(-7) M order, and the association rate constants were in a range of 10(4)-10(5) M(-1)s(-1). The identified fungal pathogen-host protein interactions are potential targets for novel anticandidal therapeutic approaches.

  5. Activation of kinin B1 receptor increases the release of metalloproteases-2 and -9 from both estrogen-sensitive and -insensitive breast cancer cells.

    PubMed

    Ehrenfeld, Pamela; Conejeros, Ivan; Pavicic, Maria F; Matus, Carola E; Gonzalez, Carlos B; Quest, Andrew F G; Bhoola, Kanti D; Poblete, Maria T; Burgos, Rafael A; Figueroa, Carlos D

    2011-02-01

    The kinin B(1) receptor (B(1)R) agonist Lys-des[Arg(9)]-bradykinin (LDBK) increases proliferation of estrogen-sensitive breast cancer cells by a process involving activation of the epidermal growth factor receptor (EGFR) and downstream signaling via the ERK1/2 mitogen-activated protein kinase pathway. Here, we investigated whether B(1)R stimulation induced release of the extracellular matrix metalloproteases MMP-2 and MMP-9 via ERK-dependent pathway in both estrogen-sensitive MCF-7 and -insensitive MDA-MB-231 breast cancer cells. Cells were stimulated with 1-100nM of the B(1)R agonist for variable time-points. Western blotting and gelatin zymography were used to evaluate the presence of MMP-2 and MMP-9 in the extracellular medium. Stimulation of B(1)R with as little as 1 nM LDBK induced the accumulation of these metalloproteases in the medium within 5-30min of stimulation. In parallel, immunocytochemistry revealed that metalloprotease levels in the breast cancer cells declined after stimulation. This effect was blocked either by pre-treating the cells with a B(1)R antagonist or by transfecting with B(1)R-specific siRNA. Activation of the ERK1/2 pathway and EGFR transactivation was required for release of metalloproteases because both the MEK1 inhibitor, PD98059, and AG1478, an inhibitor of the EGFR-tyrosine kinase activity, blocked this event. The importance of EGFR-dependent signaling was additionally confirmed since transfection of cells with the dominant negative EGFR mutant HERCD533 blocked the release of metalloproteases. Thus, activation of B(1)R is likely to enhance breast cancer cells invasiveness by releasing enzymes that degrade the extracellular matrix and thereby favor metastasis.

  6. Polarization Imaging and Insect Vision

    NASA Astrophysics Data System (ADS)

    Green, Adam S.; Ohmann, Paul R.; Leininger, Nick E.; Kavanaugh, James A.

    2010-01-01

    For several years we have included discussions about insect vision in the optics units of our introductory physics courses. This topic is a natural extension of demonstrations involving Brewster's reflection and Rayleigh scattering of polarized light because many insects heavily rely on optical polarization for navigation and communication. Students, especially those majoring in the life sciences, tend to find the conversation intriguing because of its interdisciplinary context. To make it even more appealing, we recently created a laboratory component that allows students to use digital cameras and polarizing filters to create polarization maps of environmental scenes and insect bodies. In this paper we describe how to do so with ImageJ, a widely used and freely available image processing program that is suitable for students with no programming experience.

  7. Insects, infestations and nutrient fluxes

    NASA Astrophysics Data System (ADS)

    Michalzik, B.

    2012-04-01

    Forest ecosystems are characterized by a high temporal and spatial variability in the vertical transfer of energy and matter within the canopy and the soil compartment. The mechanisms and controlling factors behind canopy processes and system-internal transfer dynamics are imperfectly understood at the moment. Seasonal flux diversities and inhomogeneities in throughfall composition have been reported from coniferous and deciduous forests, and in most cases leaf leaching has been considered as principle driver for differences in the amount and quality of nutrients and organic compounds (Tukey and Morgan 1963). Since herbivorous insects and the processes they initiate received less attention in past times, ecologists now emphasize the need for linking biological processes occurring in different ecosystem strata to explain rates and variability of nutrient cycling (Bardgett et al. 1998, Wardle et al. 2004). Consequently, herbivore insects in the canopies of forests are increasingly identified to play an important role for the (re)cycling and availability of nutrients, or, more generally, for the functioning of ecosystems not only in outbreak situations but also at endemic (non-outbreak) density levels (Stadler et al. 2001, Hunter et al. 2003). Before, little attention was paid to insect herbivores when quantifying element and energy fluxes through ecosystems, although the numerous and different functions insects fulfill in ecosystems (e.g. as pollinators, herbivores or detritivores) were unanimously recognized (Schowalter 2000). Amongst the reasons for this restraint was the argument that the total biomass of insects tends to be relatively low compared to the biomass of trees or the pool of soil organic matter (Ohmart et al. 1983). A second argument which was put forward to justify the inferior role of insects in nutrient cycling were the supposed low defoliation losses between 5-10% of the annual leaf biomass, or net primary production, due to insect herbivory under

  8. Calcitonin-like diuretic hormones in insects.

    PubMed

    Zandawala, Meet

    2012-10-01

    Insect neuropeptides control various biological processes including growth, development, homeostasis and reproduction. The calcitonin-like diuretic hormone (CT/DH) is one such neuropeptide that has been shown to affect salt and water transport by Malpighian tubules of several insects. With an increase in the number of sequenced insect genomes, CT/DHs have been predicted in several insect species, making it easier to characterize the gene encoding this hormone and determine its function in the species in question. This mini review summarizes the current knowledge on insect CT/DHs, focusing on mRNA and peptide structures, distribution patterns, physiological roles, and receptors in insects.

  9. Recombinant baculoviruses for insect control.

    PubMed

    Inceoglu, A B; Kamita, S G; Hinton, A C; Huang, Q; Severson, T F; Kang, K; Hammock, B D

    2001-10-01

    Baculoviruses are double-stranded DNA viruses which are highly selective for several insect groups. They are valuable natural control agents, but their utility in many agricultural applications has been limited by their slow speed of kill and narrow host specificity. Baculoviruses have been genetically modified to express foreign genes under powerful promoters in order to accelerate their speed of kill. In our and other laboratories, the expression of genes coding for insect juvenile hormone esterases and various peptide neurotoxins has resulted in recombinant baculoviruses with promise as biological insecticides. These viruses are efficacious in the laboratory, greenhouse and field and dramatically reduce damage caused by insect feeding. The recombinant viruses synergize and are synergized by classical pesticides such as pyrethroids. Since they are highly selective for pest insects, they can be used without disrupting biological control. Because the recombinant virus produces fewer progeny in infected larvae than the wild-type virus, they are rapidly out-competed in the ecosystem. The viruses can be used effectively with crops expressing endotoxins of Bacillus thuringiensis. They can be produced industrially but also by village industries, indicating that they have the potential to deliver sustainable pest control in developing countries. It remains to be seen, however, whether the current generation of recombinant baculoviruses will be competitive with the new generation of synthetic chemical pesticides. Current research clearly indicates, though, that the use of biological vectors of genes for insect control will find a place in agriculture. Baculoviruses will also prove valuable in testing the potential utility of proteins and peptides for insect control.

  10. Insect growth regulators and insect control: a critical appraisal.

    PubMed Central

    Siddall, J B

    1976-01-01

    Insect growth regulators (IGRs) of the juvenile hormone type alter physiological processes essential to insect development and appear to act specifically on insects. Three natural juvenile hormones have been found in insects but not in other organisms. Future use of antagonists or inhibitors of hormone synthesis may be technically possible as an advantageous extension of pest control by IGRs. A documented survey of the properties, metabolism, toxicology, and uses of the most commercially advanced chemical, methoprene, shows it to be environmentally acceptable and toxicologically innocuous. Derivation of its current use patterns is discussed and limitations on these are noted. Residue levels and their measurement in the ppb region have allowed exemption from the requirement of tolerances in the EPA registered use of methoprene for mosquito control. Tolerances for foods accompany its fully approved use for control of manure breeding flies through a cattle feed supplement. The human health effects of using this chemical appear to be purely beneficial, but further advances through new IGR chemicals appear unlikely without major changes in regulatory and legislative policy. PMID:976222

  11. Insects as a Nitrogen Source for Plants.

    PubMed

    Behie, Scott W; Bidochka, Michael J

    2013-07-31

    Many plants have evolved adaptations in order to survive in low nitrogen environments. One of the best-known adaptations is that of plant symbiosis with nitrogen-fixing bacteria; this is the major route by which nitrogen is incorporated into plant biomass. A portion of this plant-associated nitrogen is then lost to insects through herbivory, and insects represent a nitrogen reservoir that is generally overlooked in nitrogen cycles. In this review we show three specialized plant adaptations that allow for the recovery of insect nitrogen; that is, plants gaining nitrogen from insects. First, we show specialized adaptations by carnivorous plants in low nitrogen habitats. Insect carnivorous plants such as pitcher plants and sundews (Nepenthaceae/Sarraceniaceae and Drosera respectively) are able to obtain substantial amounts of nitrogen from the insects that they capture. Secondly, numerous plants form associations with mycorrhizal fungi that can provide soluble nitrogen from the soil, some of which may be insect-derived nitrogen, obtained from decaying insects or insect frass. Finally, a specialized group of endophytic, insect-pathogenic fungi (EIPF) provide host plants with insect-derived nitrogen. These soil-inhabiting fungi form a remarkable symbiosis with certain plant species. They can infect a wide range of insect hosts and also form endophytic associations in which they transfer insect-derived nitrogen to the plant. Root colonizing fungi are found in disparate fungal phylogenetic lineages, indicating possible convergent evolutionary strategies between taxa, evolution potentially driven by access to carbon-containing root exudates.

  12. Insects as a Nitrogen Source for Plants

    PubMed Central

    Behie, Scott W.; Bidochka, Michael J.

    2013-01-01

    Many plants have evolved adaptations in order to survive in low nitrogen environments. One of the best-known adaptations is that of plant symbiosis with nitrogen-fixing bacteria; this is the major route by which nitrogen is incorporated into plant biomass. A portion of this plant-associated nitrogen is then lost to insects through herbivory, and insects represent a nitrogen reservoir that is generally overlooked in nitrogen cycles. In this review we show three specialized plant adaptations that allow for the recovery of insect nitrogen; that is, plants gaining nitrogen from insects. First, we show specialized adaptations by carnivorous plants in low nitrogen habitats. Insect carnivorous plants such as pitcher plants and sundews (Nepenthaceae/Sarraceniaceae and Drosera respectively) are able to obtain substantial amounts of nitrogen from the insects that they capture. Secondly, numerous plants form associations with mycorrhizal fungi that can provide soluble nitrogen from the soil, some of which may be insect-derived nitrogen, obtained from decaying insects or insect frass. Finally, a specialized group of endophytic, insect-pathogenic fungi (EIPF) provide host plants with insect-derived nitrogen. These soil-inhabiting fungi form a remarkable symbiosis with certain plant species. They can infect a wide range of insect hosts and also form endophytic associations in which they transfer insect-derived nitrogen to the plant. Root colonizing fungi are found in disparate fungal phylogenetic lineages, indicating possible convergent evolutionary strategies between taxa, evolution potentially driven by access to carbon-containing root exudates. PMID:26462427

  13. Edible Insects in China: Utilization and Prospects.

    PubMed

    Feng, Ying; Chen, Xiao-Ming; Zhao, Min; He, Zhao; Sun, Long; Wang, Cheng-Ye; Ding, Wei-Feng

    2017-02-22

    The use of edible insects has a long history in China, where they have been consumed for more than two thousand years. In general, the level of acceptance is high for the consumption of insects in China. Many studies on edible insects have been conducted in the last twenty years, and the scope of the research includes the culture of entomophagy and the identification, nutritional value, farming and breeding of edible insects, in addition to food production and safety. Currently, 324 species of insects from 11 orders are documented that are either edible or associated with entomophagy in China, which include the common edible species, some less commonly consumed species, and some medicinal insects. However, only approximately 10 to 20 types of insects are consumed regularly. The nutritional values for 174 species are available in China, including edible, feed and medicinal species. Although the nutritional values vary among species, all the insects examined contain protein, fat, vitamins and minerals at levels that meet human nutritional requirements. Edible insects were, and continue to be, consumed by different ethnic groups in many parts of China. People directly consume insects or food products made from insects. The processing of products from insect protein powder, oil, and chitin and the development of health care foods has been studied in China. People also consume insects indirectly by eating livestock that were fed insects, which may be a more acceptable pathway to use insects in human diets. Although limited, the data on the food safety of insects indicate that insects are safe for food or feed. Incidences of allergic reactions after consuming silkworm pupae, cicades and crickets have been reported in China. Insect farming is a unique breeding industry in rural China and is a source of income for local people. Insects are reared and bred for human food, medicine and animal feed using two approaches in China: the insects are either fully domesticated and

  14. The Curious Connection Between Insects and Dreams.

    PubMed

    Klein, Barrett A

    2011-12-21

    A majority of humans spend their waking hours surrounded by insects, so it should be no surprise that insects also appear in humans' dreams as we sleep. Dreaming about insects has a peculiar history, marked by our desire to explain a dream's significance and by the tactic of evoking emotions by injecting insects in dream-related works of art, film, music, and literature. I surveyed a scattered literature for examples of insects in dreams, first from the practices of dream interpretation, psychiatry, and scientific study, then from fictional writings and popular culture, and finally in the etymology of entomology by highlighting insects with dream-inspired Latinate names. A wealth of insects in dreams, as documented clinically and culturally, attests to the perceived relevance of dreams and to the ubiquity of insects in our lives.

  15. FAQ: Insect Repellent Use and Safety

    MedlinePlus

    ... Mosquito Surveillance Software Health Education Public Service Videos Insect Repellent Use & Safety Recommend on Facebook Tweet Share ... the repellent with you. Top of Page Can insect repellents be used on children? Yes. Most products ...

  16. Insect response to plant defensive protease inhibitors.

    PubMed

    Zhu-Salzman, Keyan; Zeng, Rensen

    2015-01-07

    Plant protease inhibitors (PIs) are natural plant defense proteins that inhibit proteases of invading insect herbivores. However, their anti-insect efficacy is determined not only by their potency toward a vulnerable insect system but also by the response of the insect to such a challenge. Through the long history of coevolution with their host plants, insects have developed sophisticated mechanisms to circumvent antinutritional effects of dietary challenges. Their response takes the form of changes in gene expression and the protein repertoire in cells lining the alimentary tract, the first line of defense. Research in insect digestive proteases has revealed the crucial roles they play in insect adaptation to plant PIs and has brought about a new appreciation of how phytophagous insects employ this group of molecules in both protein digestion and counterdefense. This review provides researchers in related fields an up-to-date summary of recent advances.

  17. Insect Evolution: The Origin of Wings.

    PubMed

    Ross, Andrew

    2017-02-06

    The debate on the evolution of wings in insects has reached a new level. The study of primitive fossil insect nymphs has revealed that wings developed from a combination of the dorsal part of the thorax and the body wall.

  18. Palaeontology: Chinese amber insects bridge the gap.

    PubMed

    Ross, Andrew

    2014-07-21

    n the study of fossil insects, Chinese amber from Fushun has been largely overlooked. A new study now reveals a highly diverse biota and provides a wealth of new information on the past Asian insect fauna.

  19. Insects--How To Study Them

    ERIC Educational Resources Information Center

    Matthews, E. G.

    1975-01-01

    Describes an approach to the study of entomology directed at people with no special knowledge of insects. The aim of this approach is to reveal some biological principles by studying insects from an ecological point of view. (GS)

  20. Introducing Virological Concepts Using an Insect Virus.

    ERIC Educational Resources Information Center

    Sheppard, Roger F.

    1980-01-01

    A technique is presented which utilizes wax moth larvae in a laboratory investigation of an insect virus. Describes how an insect virus can be used to introduce undergraduate biology students to laboratory work on viruses and several virological concepts. (SA)

  1. The Curious Connection Between Insects and Dreams

    PubMed Central

    Klein, Barrett A.

    2011-01-01

    A majority of humans spend their waking hours surrounded by insects, so it should be no surprise that insects also appear in humans’ dreams as we sleep. Dreaming about insects has a peculiar history, marked by our desire to explain a dream’s significance and by the tactic of evoking emotions by injecting insects in dream-related works of art, film, music, and literature. I surveyed a scattered literature for examples of insects in dreams, first from the practices of dream interpretation, psychiatry, and scientific study, then from fictional writings and popular culture, and finally in the etymology of entomology by highlighting insects with dream-inspired Latinate names. A wealth of insects in dreams, as documented clinically and culturally, attests to the perceived relevance of dreams and to the ubiquity of insects in our lives. PMID:26467945

  2. Insects Affecting Man. MP-21.

    ERIC Educational Resources Information Center

    Lawson, Fred A.; Spackman, Everett

    The insects discussed in this document are those which have a direct effect upon humans either through a permanent association, as with lice, or a temporary association in the case of flies, bees, wasps, and spiders. In each case, life cycles and identifying characteristics are presented with remarks about the specific effect incurred by man. (CS)

  3. Making Connections with Insect Royalty.

    ERIC Educational Resources Information Center

    Hobbie, Ann

    2000-01-01

    Describes a one-month sixth grade class activity with monarch butterflies called Monarch in the Classroom. Students learn about insects, especially the class material butterflies, including their life cycle, eating habits, migration, and how they overwinter. The lesson plan covers sorting animals, focusing on features, analyzing the community for…

  4. Visual Navigation in Nocturnal Insects.

    PubMed

    Warrant, Eric; Dacke, Marie

    2016-05-01

    Despite their tiny eyes and brains, nocturnal insects have evolved a remarkable capacity to visually navigate at night. Whereas some use moonlight or the stars as celestial compass cues to maintain a straight-line course, others use visual landmarks to navigate to and from their nest. These impressive abilities rely on highly sensitive compound eyes and specialized visual processing strategies in the brain.

  5. The Seat of Insect Learning.

    ERIC Educational Resources Information Center

    Dyer, Fred C.

    1997-01-01

    Describes the role of mushroom bodies--cup-shaped structures perched atop the brain of an insect--in learning. Mushroom bodies may help fruit flies in learning meaningful odors, cockroaches in spatial learning, and honeybees both in locating pollen and nectar and in navigating back to the colony. (PVD)

  6. [Individual protection against insect vectors].

    PubMed

    Carnevale, P; Mouchet, J

    1997-01-01

    Many diseases for which no vaccine is available are transmitted by insect and arthropod vectors, the main exceptions being yellow fever and Japanese encephalitis B. Treatment is less and less effective due to the development of chemoresistance to therapeutic and prophylactic drugs as is well-illustrated by malaria. One of the best methods of preventing these diseases is personal protection against insect bites. Personal protection measures can be divided into three categories which can be used separately or in combination : application of repellents to the skin, wearing clothes impregnated with insecticides, and use of bed nets and other barriers impregnated with insecticides. The choice of method depends on the type of insect vector involved. For insects that are active during the day or at dusk, application of repellents to the skin gives good short-term protection and wearing impregnated clothes is useful. Bed nets that have been properly impregnated with pyrethroids are highly effective for night-time protection. Since personal protection methods are not 100% effective, they must be used in association with chemoprophylaxis according to medical guidelines. Medical advice should be sought if fever should occur especially after returning from a trip in the tropics.

  7. Bug City: Aquatic Insects [Videotape].

    ERIC Educational Resources Information Center

    1998

    "Bug City" is a video series created to help children learn about insects and other small critters. All aspects of bug life are touched upon including body structure, food, habitat, life cycle, mating habits, camouflage, mutualism (symbiosis), adaptations, social behavior, and more. Each program features dramatic microscopic photography,…

  8. Plant defense against insect herbivory

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Damage to maize crops by insect herbivores such as beet and fall army worm causes significant impact in the Southern United States in terms of both yield loss and insecticide use. Enhanced understanding of how maize can defend itself against such attacks at a molecular level will enable development ...

  9. The insect SNMP gene family

    Technology Transfer Automated Retrieval System (TEKTRAN)

    SNMPs are membrane proteins that have been shown to associate with chemosensory neurons in insects; in Drosophila melanogaster, SNMP1 has been shown to be essential for the detection of the pheromone cis vaccenyl acetate (Benton et al., 2001; Jin et al., 2008). To extend these observations to other ...

  10. Nontoxic Antifreeze for Insect Traps

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Propylene glycol in water is a safe and effective alternative to ethylene glycol as a capture liquid in insect traps (pitfalls, flight intercepts, pan traps). Propylene glycol formulations are readily available because it is the primary (95%) ingredient in certain automotive antifreeze formulations...

  11. Exaggerated trait growth in insects

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Animal structures occasionally attain extreme proportions, eclipsing in size other, surrounding body parts. We review insect examples of exaggerated traits, such as the mandibles of stag beetles, the claspers of praying mantises, the elongated hindlimbs of grasshoppers, and the giant heads of soldie...

  12. Evolution of insect olfactory receptors

    PubMed Central

    Missbach, Christine; Dweck, Hany KM; Vogel, Heiko; Vilcinskas, Andreas; Stensmyr, Marcus C; Hansson, Bill S; Grosse-Wilde, Ewald

    2014-01-01

    The olfactory sense detects a plethora of behaviorally relevant odor molecules; gene families involved in olfaction exhibit high diversity in different animal phyla. Insects detect volatile molecules using olfactory (OR) or ionotropic receptors (IR) and in some cases gustatory receptors (GRs). While IRs are expressed in olfactory organs across Protostomia, ORs have been hypothesized to be an adaptation to a terrestrial insect lifestyle. We investigated the olfactory system of the primary wingless bristletail Lepismachilis y-signata (Archaeognatha), the firebrat Thermobia domestica (Zygentoma) and the neopteran leaf insect Phyllium siccifolium (Phasmatodea). ORs and the olfactory coreceptor (Orco) are with very high probability lacking in Lepismachilis; in Thermobia we have identified three Orco candidates, and in Phyllium a fully developed OR/Orco-based system. We suggest that ORs did not arise as an adaptation to a terrestrial lifestyle, but evolved later in insect evolution, with Orco being present before the appearance of ORs. DOI: http://dx.doi.org/10.7554/eLife.02115.001 PMID:24670956

  13. Transposable elements for insect transformation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The germ-line of more than 35 species from five orders of insects have been genetically transformed, using vectors derived from Class II transposable elements. Initially the P and hobo vector systems developed for D. melanogaster were not applicable to other species, but four transposons found in ot...

  14. The insect SNMP gene family.

    PubMed

    Vogt, Richard G; Miller, Natalie E; Litvack, Rachel; Fandino, Richard A; Sparks, Jackson; Staples, Jon; Friedman, Robert; Dickens, Joseph C

    2009-07-01

    SNMPs are membrane proteins observed to associate with chemosensory neurons in insects; in Drosophila melanogaster, SNMP1 has been shown to be essential for the detection of the pheromone cis-vaccenyl acetate (CVA). SNMPs are one of three insect gene clades related to the human fatty acid transporter CD36. We previously characterized the CD36 gene family in 4 insect Orders that effectively cover the Holometabola, or some 80% of known insect species and the 300 million years of evolution since this lineage emerged: Lepidoptera (e.g. Bombyx mori, Antheraea polyphemus, Manduca sexta, Heliothis virescens, Helicoverpa assulta, Helicoverpa armigera, Mamestra brassicae); Diptera (D. melanogaster, Drosophila pseudoobscura, Aedes aegypti, Anopheles gambiae, Culex pipiens quinquefasciatus); Hymenoptera (Apis mellifera); and Coleoptera (Tribolium castaneum). This previous study suggested a complex topography within the SNMP clade including a strongly supported SNMP1 sub-clade plus additional SNMP genes. To further resolve the SNMP clade here, we used cDNA sequences of SNMP1 and SNMP2 from various Lepidoptera species, D. melanogaster and Ae. aegypti, as well as BAC derived genomic sequences from Ae. aegypti as models for proposing corrected sequences of orthologues in the D. pseudoobscura and An. gambiae genomes, and for identifying orthologues in the B. mori and C. pipiens q. genomes. We then used these sequences to analyze the SNMP clade of the insect CD36 gene family, supporting the existence of two well supported sub-clades, SNMP1 and SNMP2, throughout the dipteran and lepidopteran lineages, and plausibly throughout the Holometabola and across a broad evolutionary time scale. We present indirect evidence based on evolutionary selection (dN/dS) that the dipteran SNMPs are expressed as functional proteins. We observed expansions of the SNMP1 sub-clade in C. pipiens q. and T. castaneum suggesting that the SNMP1s may have an expanded functional role in these species.

  15. Buckling failures in insect exoskeletons.

    PubMed

    Parle, Eoin; Herbaj, Simona; Sheils, Fiona; Larmon, Hannah; Taylor, David

    2015-12-17

    Thin walled tubes are often used for load-bearing structures, in nature and in engineering, because they offer good resistance to bending and torsion at relatively low weight. However, when loaded in bending they are prone to failure by buckling. It is difficult to predict the loading conditions which cause buckling, especially for tubes whose cross sections are not simple shapes. Insights into buckling prevention might be gained by studying this phenomenon in the exoskeletons of insects and other arthropods. We investigated the leg segments (tibiae) of five different insects: the locust (Schistocerca gergaria), American cockroach (Periplaneta americana), death's head cockroach (Blaberus discoidalis), stick insect (Parapachymorpha zomproi) and bumblebee (Bombus terrestris audax). These were tested to failure in cantilever bending and modelled using finite element analysis (FEA). The tibiae of the locust and the cockroaches were found to be approximately circular in shape. Their buckling loads were well predicted by linear elastic FEA, and also by one of the analytical solutions available in the literature for elastic buckling. The legs of the stick insect are also circular in cross section but have several prominent longitudinal ridges. We hypothesised that these ridges might protect the legs against buckling but we found that this was not the case: the loads necessary for elastic buckling were not reached in practice because yield occurred in the material, causing plastic buckling. The legs of bees have a non-circular cross section due to a pollen-carrying feature (the corbicula). We found that this did not significantly affect their resistance to buckling. Our results imply that buckling is the dominant failure mode in the tibia of insects; it likely to be a significant consideration for other arthropods and any organisms with stiff exoskeletons. The interactions displayed here between material properties and cross sectional geometry may provide insights for the

  16. Using new technology and insect behavior in novel terrestrial and flying insect traps

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Insect traps are commonly used for both population sampling and insect control, the former as part of an integrated pest management (IPM) program. We developed traps for two insects, one as part of a pesticide based IPM system and the other for population control. Our IPM trap is for crawling insect...

  17. 21 CFR 1250.95 - Insect control.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Insect control. 1250.95 Section 1250.95 Food and... SANITATION Sanitation Facilities and Conditions on Vessels § 1250.95 Insect control. Vessels shall be maintained free of infestation by flies, mosquitoes, fleas, lice, and other insects known to be vectors...

  18. Radar, Insect Population Ecology, and Pest Management

    NASA Technical Reports Server (NTRS)

    Vaughn, C. R. (Editor); Wolf, W. (Editor); Klassen, W. (Editor)

    1979-01-01

    Discussions included: (1) the potential role of radar in insect ecology studies and pest management; (2) the potential role of radar in correlating atmospheric phenomena with insect movement; (3) the present and future radar systems; (4) program objectives required to adapt radar to insect ecology studies and pest management; and (5) the specific action items to achieve the objectives.

  19. 21 CFR 1250.95 - Insect control.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Insect control. 1250.95 Section 1250.95 Food and... SANITATION Sanitation Facilities and Conditions on Vessels § 1250.95 Insect control. Vessels shall be maintained free of infestation by flies, mosquitoes, fleas, lice, and other insects known to be vectors...

  20. Perception of insect feeding by plants.

    PubMed

    Bonaventure, G

    2012-11-01

    The recognition of phytophagous insects by plants induces a set of very specific responses aimed at deterring tissue consumption and reprogramming metabolism and development of the plant to tolerate the herbivore. The recognition of insects by plants requires the plant's ability to perceive chemical cues generated by the insects and to distinguish a particular pattern of tissue disruption. Relatively little is known about the molecular basis of insect perception by plants and the signalling mechanisms directly associated with this perception. Importantly, the insect feeding behaviour (piercing-sucking versus chewing) is a decisive determinant of the plant's defence response, and the mechanisms used to perceive insects from different feeding guilds may be distinct. During insect feeding, components of the saliva of chewing or piercing-sucking insects come into contact with plant cells, and elicitors or effectors present in this insect-derived fluid are perceived by plant cells to initiate the activation of specific signalling cascades. Although receptor-ligand interactions controlling insect perception have yet not been molecularly described, a significant number of regulatory components acting downstream of receptors and involved in the activation of defence responses against insects has been reported. Some of these regulators mediate changes in the phytohormone network, while others directly control gene expression or the redox state of the cell. These processes are central in the orchestration of plant defence responses against insects.

  1. Insect biomass to enhance food production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Studies have established that insects are as good source of protein as conventional animal food (between 15 and 67% dry weight content). Insects are a good source of essential amino acids and essential fatty acids. Insect fat has a higher content of polyunsaturated (essential) fatty acids and a lowe...

  2. Insect Control (1): Use of Pheromones

    ERIC Educational Resources Information Center

    Marx, Jean L.

    1973-01-01

    Discusses current research relating to the use of pheromones as a means of controlling insect pests. These chemicals, which are secreted by insects to affect the behavior of other individuals of the same species, may be used to eliminate pests without destroying their predators and other beneficial insects. (JR)

  3. Applications of acoustics in insect pest management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Acoustic technology has been applied for many years in studies of insect communication and in the monitoring of calling-insect population levels, geographic distributions, and diversity, as well as in the detection of cryptic insects in soil, wood, container crops, and stored products. Acoustic devi...

  4. Insect stereopsis demonstrated using a 3D insect cinema.

    PubMed

    Nityananda, Vivek; Tarawneh, Ghaith; Rosner, Ronny; Nicolas, Judith; Crichton, Stuart; Read, Jenny

    2016-01-07

    Stereopsis - 3D vision - has become widely used as a model of perception. However, all our knowledge of possible underlying mechanisms comes almost exclusively from vertebrates. While stereopsis has been demonstrated for one invertebrate, the praying mantis, a lack of techniques to probe invertebrate stereopsis has prevented any further progress for three decades. We therefore developed a stereoscopic display system for insects, using miniature 3D glasses to present separate images to each eye, and tested our ability to deliver stereoscopic illusions to praying mantises. We find that while filtering by circular polarization failed due to excessive crosstalk, "anaglyph" filtering by spectral content clearly succeeded in giving the mantis the illusion of 3D depth. We thus definitively demonstrate stereopsis in mantises and also demonstrate that the anaglyph technique can be effectively used to deliver virtual 3D stimuli to insects. This method opens up broad avenues of research into the parallel evolution of stereoscopic computations and possible new algorithms for depth perception.

  5. Insect diversity in the fossil record

    NASA Technical Reports Server (NTRS)

    Labandeira, C. C.; Sepkoski, J. J. Jr; Sepkoski JJ, J. r. (Principal Investigator)

    1993-01-01

    Insects possess a surprisingly extensive fossil record. Compilation of the geochronologic ranges of insect families demonstrates that their diversity exceeds that of preserved vertebrate tetrapods through 91 percent of their evolutionary history. The great diversity of insects was achieved not by high origination rates but rather by low extinction rates comparable to the low rates of slowly evolving marine invertebrate groups. The great radiation of modern insects began 245 million years ago and was not accelerated by the expansion of angiosperms during the Cretaceous period. The basic trophic machinery of insects was in place nearly 100 million years before angiosperms appeared in the fossil record.

  6. How and why do insects migrate?

    PubMed

    Holland, Richard A; Wikelski, Martin; Wilcove, David S

    2006-08-11

    Countless numbers of insects migrate within and between continents every year, and yet we know very little about the ultimate reasons and proximate mechanisms that would explain these mass movements. Here we suggest that perhaps the most important reason for insects to migrate is to hedge their reproductive bets. By spreading their breeding efforts in space and time, insects distribute their offspring over a range of environmental conditions. We show how the study of individual long-distance movements of insects may contribute to a better understanding of migration. In the future, advances in tracking methods may enable the global surveillance of large insects such as desert locusts.

  7. Fungal allelochemicals in insect pest management.

    PubMed

    Holighaus, Gerrit; Rohlfs, Marko

    2016-07-01

    Interactions between insects and fungi are widespread, and important mediators of these interactions are fungal chemicals that can therefore be considered as allelochemicals. Numerous studies suggest that fungal chemicals can affect insects in many different ways. Here, we apply the terminology established by insect-plant ecologists for categorizing the effect of fungal allelochemicals on insects and for evaluating the application potential of these chemicals in insect pest management. Our literature survey shows that fungal volatile and non-volatile chemicals have an enormous potential to influence insect behavior and fitness. Many of them still remain to be discovered, but some recent examples of repellents and toxins could open up new ways for developing safe insect control strategies. However, we also identified shortcomings in our understanding of the chemical ecology of insect-fungus interactions and the way they have been investigated. In particular, the mode-of-action of fungal allelochemicals has often not been appropriately designated or examined, and the way in which induction by insects affects fungal chemical diversity is poorly understood. This review should raise awareness that in-depth ecological studies of insect-fungus interactions can reveal novel allelochemicals of particular benefit for the development of innovative insect pest management strategies.

  8. Newly discovered insect RNA viruses in China.

    PubMed

    Qiu, Yang; Wang, ZhaoWei; Liu, YongXiang; Qi, Nan; Si, Jie; Xiang, Xue; Xia, XiaoLing; Hu, YuanYang; Zhou, Xi

    2013-08-01

    Insects are a group of arthropods and the largest group of animals on Earth, with over one million species described to date. Like other life forms, insects suffer from viruses that cause disease and death. Viruses that are pathogenic to beneficial insects cause dramatic economic losses on agriculture. In contrast, viruses that are pathogenic to insect pests can be exploited as attractive biological control agents. All of these factors have led to an explosion in the amount of research into insect viruses in recent years, generating impressive quantities of information on the molecular and cellular biology of these viruses. Due to the wide variety of insect viruses, a better understanding of these viruses will expand our overall knowledge of their virology. Here, we review studies of several newly discovered RNA insect viruses in China.

  9. 75 FR 47592 - Final Test Guideline; Product Performance of Skin-applied Insect Repellents of Insect and Other...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-06

    ... AGENCY Final Test Guideline; Product Performance of Skin-applied Insect Repellents of Insect and Other... Product Performance of Skin-applied Insect Repellents of Insect and Other Arthropods Test Guidelines... ``Product Performance of Skin-applied Insect Repellents of Insects and Other Arthropods'' (OPPTS...

  10. Corpse Management in Social Insects

    PubMed Central

    Sun, Qian; Zhou, Xuguo

    2013-01-01

    Undertaking behavior is an essential adaptation to social life that is critical for colony hygiene in enclosed nests. Social insects dispose of dead individuals in various fashions to prevent further contact between corpses and living members in a colony. Focusing on three groups of eusocial insects (bees, ants, and termites) in two phylogenetically distant orders (Hymenoptera and Isoptera), we review mechanisms of death recognition, convergent and divergent behavioral responses toward dead individuals, and undertaking task allocation from the perspective of division of labor. Distinctly different solutions (e.g., corpse removal, burial and cannibalism) have evolved, independently, in the holometabolous hymenopterans and hemimetabolous isopterans toward the same problem of corpse management. In addition, issues which can lead to a better understanding of the roles that undertaking behavior has played in the evolution of eusociality are discussed. PMID:23569436

  11. Corpse management in social insects.

    PubMed

    Sun, Qian; Zhou, Xuguo

    2013-01-01

    Undertaking behavior is an essential adaptation to social life that is critical for colony hygiene in enclosed nests. Social insects dispose of dead individuals in various fashions to prevent further contact between corpses and living members in a colony. Focusing on three groups of eusocial insects (bees, ants, and termites) in two phylogenetically distant orders (Hymenoptera and Isoptera), we review mechanisms of death recognition, convergent and divergent behavioral responses toward dead individuals, and undertaking task allocation from the perspective of division of labor. Distinctly different solutions (e.g., corpse removal, burial and cannibalism) have evolved, independently, in the holometabolous hymenopterans and hemimetabolous isopterans toward the same problem of corpse management. In addition, issues which can lead to a better understanding of the roles that undertaking behavior has played in the evolution of eusociality are discussed.

  12. Immunity in a Social Insect

    NASA Astrophysics Data System (ADS)

    Rosengaus, Rebeca B.; Traniello, James F. A.; Chen, Tammy; Brown, Julie J.; Karp, Richard D.

    Although pathogens appear to have exerted significant selective pressure on various aspects of sociality, mechanisms of disease resistance in the social insects are poorly understood. We report here on an immune response to infection by the dampwood termite, Zootermopsis angusticollis. Nymphs immunized with an injection of 7.6×107, 7.6×105, or 7.6×104 cells/ml glutaraldehyde-killed solution of the bacterium Pseudomonas aeruginosa had significantly higher survivorship than controls following a challenge with a lethal concentration of active bacteria. Similarly, nymphs exposed to a 9×10-1 spores/ml suspension of the fungus Metarhizium anisopliae had higher survivorship than controls after a challenge with a lethal concentration of spores. Prior exposure to a pathogen thus conferred upon termites a degree of protection during a subsequent encounter with the same pathogen. This represents the first demonstration of immune function in vivo in a social insect.

  13. Histone acetylation in insect chromosomes.

    PubMed

    Allfrey, V G; Pogo, B G; Littau, V C; Gershey, E L; Mirsky, A E

    1968-01-19

    Acetylation of histones takes place along the salivary gland chromosomes of Chironomus thummi when RNA synthesis is active. It can be observed but not measured quantitatively by autoradiography of chromosome squashes. The "fixatives" commonly used in preparing squashes of insect chromosomes preferentially extract the highly acetylated "arginine-rich" histone fractions; the use of such fixatives may explain the reported absence of histone acetylation in Drosophila melanogaster.

  14. Benzoquinolinediones: activity as insect teratogens

    SciTech Connect

    Walton, B.T.; Ho, C.H.; Ma, C.Y.; O'Neill, E.G.; Kao, G.L.

    1983-10-28

    Morphological abnormalities including extra compound eyes, extra heads, and distally duplicated legs were generated in cricket embryos by treating eggs with single doses of either benz(g)isoquinoline-5,10-dione or benzo(h)quinoline-5,6-dione. Slight structural modifications of the molecules resulted in a loss of teratogenic activity, although embryotoxicity occurred. These potent insect teratogens can be used for analysis of developmental events during embryogenesis. 13 references, 4 figures, 1 table.

  15. Isotope Labeling in Insect Cells

    PubMed Central

    Saxena, Krishna; Dutta, Arpana; Klein-Seetharaman, Judith

    2011-01-01

    Recent years have seen remarkable progress in applying nuclear magnetic resonance (NMR) spectroscopy to proteins that have traditionally been difficult to study due to issues with folding, posttranslational modification, and expression levels or combinations thereof. In particular, insect cells have proved useful in allowing large quantities of isotope-labeled, functional proteins to be obtained and purified to homogeneity, allowing study of their structures and dynamics by using NMR. Here, we provide protocols that have proven successful in such endeavors. PMID:22167667

  16. Seasonal adaptations in arctic insects.

    PubMed

    Danks, Hugh V

    2004-04-01

    Many insect species live in the arctic and show a wide range of adaptations to its extreme severity and seasonality. Long, cold winters are met, for example, by cold hardiness and choice of protected sites. Cold hardiness includes both widespread tolerance to freezing and extreme supercooling ability, as well as unusual responses in a few species, such as lack of typical cryoprotectants. Adaptations to short, cool summers include activity at low temperatures, selection of warm habitats and microhabitats, melanism and hairiness coupled with basking behaviour, and prolonged or abbreviated life cycles. Diapause ensures that many species emerge early in summer, with brief synchronized reproduction that maximizes the time for offspring development before winter returns. Some species overwinter in sites that thaw earliest in spring, even if they are relatively exposed in winter. Other adaptations respond to year-to-year variability: for example, prolonged diapause can provide insurance against unsuitable summers. All of these adaptations are co-ordinated. For example, cold hardiness relies on physiological and biochemical adaptations but also on habitat choice and timing. Because the adaptations are complex, predicted climatic warming probably will have unexpected effects. In particular, an increase in temperature that increases summer cloud when sea ice melts would likely reduce temperatures for insect development and activity, because sunshine provides critical warmth to insects and their microhabitats. Changes in moisture will also be important. Moreover, responses differ among species, depending especially on their microhabitats. The complexity of the responses of insects to arctic conditions reinforces the need for research that is sufficiently detailed.

  17. Circadian organization in hemimetabolous insects.

    PubMed

    Tomioka, Kenji; Abdelsalam, Salaheldin

    2004-12-01

    The circadian system of hemimetabolous insects is reviewed in respect to the locus of the circadian clock and multioscillatory organization. Because of relatively easy access to the nervous system, the neuronal organization of the clock system in hemimetabolous insects has been studied, yielding identification of the compound eye as the major photoreceptor for entrainment and the optic lobe for the circadian clock locus. The clock site within the optic lobe is inconsistent among reported species; in cockroaches the lobula was previously thought to be a most likely clock locus but accessory medulla is recently stressed to be a clock center, while more distal part of the optic lobe including the lamina and the outer medulla area for the cricket. Identification of the clock cells needs further critical studies. Although each optic lobe clock seems functionally identical, in respect to photic entrainment and generation of the rhythm, the bilaterally paired clocks form a functional unit. They interact to produce a stable time structure within individual insects by exchanging photic and temporal information through neural pathways, in which serotonin and pigment-dispersing factor (PDF) are involved as chemical messengers. The mutual interaction also plays an important role in seasonal adaptation of the rhythm.

  18. THE CHEMISTRY OF INSECT HEMOLYMPH

    PubMed Central

    Wyatt, G. R.; Kalf, G. F.

    1957-01-01

    α,α-Trehalose, a sugar previously regarded as a product characteristic of certain lower plants, has been identified as a major blood sugar of insects. Trehalose has been isolated in pure form from the blood of pupae of the silk moth, Telea polyphemus, and has been recognized chromatographically in all the insects examined, which comprise 10 species belonging to 5 different orders. Trehalose has been determined quantitatively with anthrone after either chromatographic separation or chemical degradation of other sugars. In larvae and pupae of 4 species of Lepidoptera it ranges from 0.2 to 1.5 gm. per 100 ml. of blood and makes up over 90 per cent of the blood sugar; in larvae of a sawfly, about 80 per cent of the blood sugar is trehalose. In Bombyx mori and Platysamia cecropia, the pupal blood trehalose level is about half that in the mature larva, suggesting utilization of trehalose for glycogen synthesis during pupation. Small amounts of glucose and apparent glycogen are also present in the plasma of these insects. In Bombyx larval plasma there is also 0.04 to 0.12 gm. per 100 ml. of glucose-6-phosphate and smaller amounts of an apparent ketose phosphate. PMID:13439163

  19. Individual versus collective cognition in social insects

    PubMed Central

    Feinerman, Ofer; Korman, Amos

    2017-01-01

    The concerted responses of eusocial insects to environmental stimuli are often referred to as collective cognition on the level of the colony. To achieve collective cognition a group can draw on two different sources: individual cognition and the connectivity between individuals. Computation in neural-networks, for example, is attributed more to sophisticated communication schemes than to the complexity of individual neurons. The case of social insects, however, can be expected to differ. This is since individual insects are cognitively capable units that are often able to process information that is directly relevant at the level of the colony. Furthermore, involved communication patterns seem difficult to implement in a group of insects since these lack clear network structure. This review discusses links between the cognition of an individual insect and that of the colony. We provide examples for collective cognition whose sources span the full spectrum between amplification of individual insect cognition and emergent group-level processes. PMID:28057830

  20. The kallikrein-kinin system in experimental Chagas disease: a paradigm to investigate the impact of inflammatory edema on GPCR-mediated pathways of host cell invasion by Trypanosoma cruzi

    PubMed Central

    Scharfstein, Julio; Andrade, Daniele; Svensjö, Erik; Oliveira, Ana Carolina; Nascimento, Clarissa R.

    2013-01-01

    Chronic chagasic myocarditis (CCM) depends on Trypanosoma cruzi persistence in the myocardium. Studies of the proteolytic mechanisms governing host/parasite balance in peripheral sites of T. cruzi infection revealed that tissue culture trypomastigotes (TCTs) elicit inflammatory edema and stimulate protective type-1 effector T cells through the activation of the kallikrein-kinin system. Molecular studies linked the proinflammatory phenotype of Dm28c TCTs to the synergistic activities of tGPI, a lipid anchor that functions as a Toll-like receptor 2 (TLR2) ligand, and cruzipain, a kinin-releasing cysteine protease. Analysis of the dynamics of inflammation revealed that TCTs activate innate sentinel cells via TLR2, releasing CXC chemokines, which in turn evoke neutrophil/CXCR2-dependent extravasation of plasma proteins, including high molecular weight kininogen (HK), in parasite-laden tissues. Further downstream, TCTs process surface bound HK, liberating lysyl-BK (LBK), which then propagates inflammatory edema via signaling of endothelial G-protein-coupled bradykinin B2 receptors (BK2R). Dm28 TCTs take advantage of the transient availability of infection-promoting peptides (e.g., bradykinin and endothelins) in inflamed tissues to invade cardiovascular cells via interdependent signaling of BKRs and endothelin receptors (ETRs). Herein we present a space-filling model whereby ceramide-enriched endocytic vesicles generated by the sphingomyelinase pathway might incorporate BK2R and ETRs, which then trigger Ca2+-driven responses that optimize the housekeeping mechanism of plasma membrane repair from cell wounding. The hypothesis predicts that the NF-κB-inducible BKR (BK1R) may integrate the multimolecular signaling platforms forged by ceramide rafts, as the chronic myocarditis progresses. Exploited as gateways for parasite invasion, BK2R, BK1R, ETAR, ETBR, and other G protein-coupled receptor partners may enable persistent myocardial parasitism in the edematous tissues at

  1. Gimbals in the insect leg.

    PubMed

    Frantsevich, Leonid; Wang, Weiying

    2009-01-01

    We studied the common kinematic features of the coxa and trochanter in cursorial and raptorial legs, which are the short size of the podomers, predominantly monoaxial joints, and the approximate orthogonality of adjacent joint axes. The chain coxa-trochanter with its short elements and serial orthogonality of joint axes resembles the gimbals which combine versatility and tolerance to external perturbations. The geometry of legs was studied in 23 insect species of 12 orders. Insects with monoaxial joints were selected. The joint between the trochanter and the femur (TFJ) is defined either by two vestigial condyles or by a straight anterior hinge. Direction of the joint axes in the two basal podomers was assessed by 3D measurements or by goniometry in two planes. Length of the coxa is <15% (mostly <8%) of the total length of the cursorial leg, that of the trochanter <10%. Angles between the proximal and distal joint axes in the middle coxa range from 124 to 84 degrees (mean 97+/-14 degrees ), in the trochanter (in all legs studied) from 125 to 72 degrees (mean 90+/-13 degrees ). Vectors of the distal axis in the coxa are concentrated about the normal to the plane defined by the proximal axis and the midpoint between the distal condyles. These vectors in the trochanter lie at various angles to the normal; angles are correlated with the direction of the TFJ relative to the femur. Range of reduction about the TFJ is over 60 degrees in the foreleg of Ranatra linearis, Mantispa lobata and the hind leg in Carabus coriaceus (confirming observations of previous authors), 40-60 degrees in the foreleg of Vespa crabro and in the middle one in Ammophila campestris, 10-30 degrees in other studied specimens. The special role of the trochanter in autotomy and in active propulsion in some insect groups is discussed. The majority of insects possess small trochanters and slightly movable TFJs with the joint axis laying in the femur-tibia plane. We pose the hypothesis that the TFJ

  2. Feeling what an insect feels.

    PubMed

    Mohand Ousaid, Abdenbi; Millet, Guillaume; Haliyo, Sinan; Régnier, Stéphane; Hayward, Vincent

    2014-01-01

    We describe a manually operated, bilateral mechanical scaling instrument that simultaneously magnifies microscopic forces and reduces displacements with quasi-perfect transparency. In contrast with existing micro-teleoperation designs, the system is unconditionally stable for any scaling gains and interaction curves. In the present realization, the work done by the hand is more than a million times that done by a microscopic probe so that one can feel complete interaction cycles with water and compare them to what is felt when an insect leg interacts with a wet surface.

  3. Feeling What an Insect Feels

    PubMed Central

    Mohand Ousaid, Abdenbi; Millet, Guillaume; Haliyo, Sinan; Régnier, Stéphane; Hayward, Vincent

    2014-01-01

    We describe a manually operated, bilateral mechanical scaling instrument that simultaneously magnifies microscopic forces and reduces displacements with quasi-perfect transparency. In contrast with existing micro-teleoperation designs, the system is unconditionally stable for any scaling gains and interaction curves. In the present realization, the work done by the hand is more than a million times that done by a microscopic probe so that one can feel complete interaction cycles with water and compare them to what is felt when an insect leg interacts with a wet surface. PMID:25271636

  4. Delayed insect access alters carrion decomposition and necrophagous insect community assembly

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vertebrate carrion in terrestrial ecosystems is an unpredictable, ephemeral resource pulse that contributes to local biodiversity and nutrient transformation dynamics. We hypothesized that delayed insect access to carrion would demonstrate marked shifts in necrophagous insect community structure, t...

  5. A magnetic fluid microdevice using insect wings

    NASA Astrophysics Data System (ADS)

    Sudo, S.; Tsuyuki, K.; Yano, T.; Takagi, K.

    2008-05-01

    A magnetic fluid microdevice using Diptera insect wings is proposed and constructed. The magnetic fluid device is composed of insect wings, a small permanent magnet, coil, and kerosene-based magnetic fluid. First, the structural properties of insect wings are studied through measurements of certain morphological parameters. Secondly, the novel type of microwind energy converter is constructed. Thirdly, the power generation characteristics of the magnetic fluid microdevice using insect wings are examined. It is found that the output power is roughly proportional to the cube of the airflow velocity.

  6. Carrion insects of the Egyptian western desert.

    PubMed

    Hegazi, E M; Shaaban, M A; Sabry, E

    1991-09-01

    A general survey was made on the zoosaprophagous insects and their associates in a natural ecosystem in the Egyptian western desert (80 km west of Alexandria, 12 km from the Mediterranean Sea shore). Two types of traps were used, one for flying insects and the other for soil-burrowing insects. Two types of decaying media were used as baits: the common freshwater fish (Tilapia zilii Gerv.) and the desert snail (Eremina desertorum). More than 30 insect species were trapped. The following orders and families were represented: Diptera (Calliphoridae, Sarcophagidae, Muscidae); Coleoptera (Histeridae, Scarabaeidae, Dermestidae, Tenebrionidae); Hymenoptera (Chalcididae, Pteromalidae, Eulophidae, Formicidae). Monthly totals of numbers trapped in each of these groups are presented.

  7. Laser- based Insect Tracker (LIT)

    NASA Astrophysics Data System (ADS)

    Mesquita, Leonardo; Sinha, Shiva; van Steveninck, Rob De Ruyter

    2011-03-01

    Insects are excellent model systems for studying learning and behavior, and the potential for genetic manipulation makes the fruitfly especially attractive. Many aspects of fruitfly behavior have been studied through video based tracking methods. However, to our knowledge no current system incorporates signals for behavioral conditioning in freely moving flies. We introduce a non-video based method that enables tracking of single insects over large volumes (> 8000cm3 at high spatial (<1mm) and temporal (<1ms) resolution for extended periods (>1 hour). The system uses a set of moveable mirrors that steer a tracking laser beam. Tracking is based on feedback from a four-quadrant sensor, sampling the beam after it bounces back from a retro reflector. Through the same mirrors we couple a high speed camera for flight dynamics analysis and an IR laser for aversive heat conditioning. Such heat shocks, combined with visual stimuli projected on a screen surrounding the flight arena, enable studies of learning and memory. By sampling the long term statistics of behavior, the system augments quantitative studies of behavioral phenotypes. Preliminary results of such studies will be presented.

  8. Smads and insect hemimetabolan metamorphosis.

    PubMed

    Santos, Carolina G; Fernandez-Nicolas, Ana; Belles, Xavier

    2016-09-01

    In contrast with Drosophila melanogaster, practically nothing is known about the involvement of the TGF-β signaling pathway in the metamorphosis of hemimetabolan insects. To partially fill this gap, we have studied the role of Smad factors in the metamorphosis of the German cockroach, Blattella germanica. In D. melanogaster, Mad is the canonical R-Smad of the BMP branch of the TGF-β signaling pathway, Smox is the canonical R-Smad of the TGF-β/Activin branch and Medea participates in both branches. In insects, metamorphosis is regulated by the MEKRE93 pathway, which starts with juvenile hormone (JH), whose signal is transduced by Methoprene-tolerant (Met), which stimulates the expression of Krüppel homolog 1 (Kr-h1) that acts to repress E93, the metamorphosis trigger. In B. germanica, metamorphosis is determined at the beginning of the sixth (final) nymphal instar (N6), when JH production ceases, the expression of Kr-h1 declines, and the transcription of E93 begins to increase. The RNAi of Mad, Smox and Medea in N6 of B. germanica reveals that the BMP branch of the TGF-β signaling pathway regulates adult ecdysis and wing extension, mainly through regulating the expression of bursicon, whereas the TGF-β/Activin branch contributes to increasing E93 and decreasing Kr-h1 at the beginning of N6, crucial for triggering adult morphogenesis, as well as to regulating the imaginal molt timing.

  9. The use and manipulation of insect reproductive molecules for controlling insect populations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The use and manipulation of insect reproductive molecules, and the genes that encode them, provides a variety of methods to control insect fertility and thus a means of population control for insect pests. Towards this end, we first studied the yolk polypeptide gene from the caribfly, Anastrepha su...

  10. What Do Elementary Students Know about Insects?

    ERIC Educational Resources Information Center

    Barrow, Lloyd H.

    2002-01-01

    Presents an interview-based study of (n=56) elementary school students. Determines students' understanding about insect characteristics, life cycles, environmental conditions, and impact on humans. Suggests building units of instruction based on students' personal questions about insects. (Contains 16 references.) (Author/YDS)

  11. Scope and Basic Principles of Insect Pathology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Insects are the dominant animals in the world with more than one million described species. The vast majority of insects are innocuous or beneficial to humans, but a small percentage are pests that require a significant amount of our time, effort and funds to reduce their negative effects on food pr...

  12. Insect vision: controlling actions through optic flow.

    PubMed

    Collett, Thomas S

    2002-09-17

    Insects depend upon optic flow to supply much of their information about the three-dimensional structure of the world. Many insects use translational flow to measure the distance of objects from themselves. A recent study has provided new insights into the way Drosophila use optic flow to pick out a close target to approach.

  13. Potential applications of insect symbionts in biotechnology.

    PubMed

    Berasategui, Aileen; Shukla, Shantanu; Salem, Hassan; Kaltenpoth, Martin

    2016-02-01

    Symbiotic interactions between insects and microorganisms are widespread in nature and are often the source of ecological innovations. In addition to supplementing their host with essential nutrients, microbial symbionts can produce enzymes that help degrade their food source as well as small molecules that defend against pathogens, parasites, and predators. As such, the study of insect ecology and symbiosis represents an important source of chemical compounds and enzymes with potential biotechnological value. In addition, the knowledge on insect symbiosis can provide novel avenues for the control of agricultural pest insects and vectors of human diseases, through targeted manipulation of the symbionts or the host-symbiont associations. Here, we discuss different insect-microbe interactions that can be exploited for insect pest and human disease control, as well as in human medicine and industrial processes. Our aim is to raise awareness that insect symbionts can be interesting sources of biotechnological applications and that knowledge on insect ecology can guide targeted efforts to discover microorganisms of applied value.

  14. Permian insect wing from antarctic sentinel mountains.

    PubMed

    Tasch, P; Riek, E F

    1969-06-27

    A homopterous insect wing was found in micaceous graywacke from the Polarstar Formation, Sentinel Mountains. The unusual venation is reminiscent of family Stenoviciidae known from the Permian and Triassic of Eastern Australia and elsewhere. This first documented account of Paleozoic insects in Antarctica bears on drift questions.

  15. Towards the elements of successful insect RNAi.

    PubMed

    Scott, Jeffrey G; Michel, Kristin; Bartholomay, Lyric C; Siegfried, Blair D; Hunter, Wayne B; Smagghe, Guy; Zhu, Kun Yan; Douglas, Angela E

    2013-12-01

    RNA interference (RNAi), the sequence-specific suppression of gene expression, offers great opportunities for insect science, especially to analyze gene function, manage pest populations, and reduce disease pathogens. The accumulating body of literature on insect RNAi has revealed that the efficiency of RNAi varies between different species, the mode of RNAi delivery, and the genes being targeted. There is also variation in the duration of transcript suppression. At present, we have a limited capacity to predict the ideal experimental strategy for RNAi of a particular gene/insect because of our incomplete understanding of whether and how the RNAi signal is amplified and spread among insect cells. Consequently, development of the optimal RNAi protocols is a highly empirical process. This limitation can be relieved by systematic analysis of the molecular physiological basis of RNAi mechanisms in insects. An enhanced conceptual understanding of RNAi function in insects will facilitate the application of RNAi for dissection of gene function, and to fast-track the application of RNAi to both control pests and develop effective methods to protect beneficial insects and non-insect arthropods, particularly the honey bee (Apis mellifera) and cultured Pacific white shrimp (Litopenaeus vannamei) from viral and parasitic diseases.

  16. Testing mechanistic models of growth in insects.

    PubMed

    Maino, James L; Kearney, Michael R

    2015-11-22

    Insects are typified by their small size, large numbers, impressive reproductive output and rapid growth. However, insect growth is not simply rapid; rather, insects follow a qualitatively distinct trajectory to many other animals. Here we present a mechanistic growth model for insects and show that increasing specific assimilation during the growth phase can explain the near-exponential growth trajectory of insects. The presented model is tested against growth data on 50 insects, and compared against other mechanistic growth models. Unlike the other mechanistic models, our growth model predicts energy reserves per biomass to increase with age, which implies a higher production efficiency and energy density of biomass in later instars. These predictions are tested against data compiled from the literature whereby it is confirmed that insects increase their production efficiency (by 24 percentage points) and energy density (by 4 J mg(-1)) between hatching and the attainment of full size. The model suggests that insects achieve greater production efficiencies and enhanced growth rates by increasing specific assimilation and increasing energy reserves per biomass, which are less costly to maintain than structural biomass. Our findings illustrate how the explanatory and predictive power of mechanistic growth models comes from their grounding in underlying biological processes.

  17. Estimating Aquatic Insect Populations. Introduction to Sampling.

    ERIC Educational Resources Information Center

    Chihuahuan Desert Research Inst., Alpine, TX.

    This booklet introduces high school and junior high school students to the major groups of aquatic insects and to population sampling techniques. Chapter 1 consists of a short field guide which can be used to identify five separate orders of aquatic insects: odonata (dragonflies and damselflies); ephemeroptera (mayflies); diptera (true flies);…

  18. Agricultural applications of insect ecological genomics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural entomology is poised to benefit from the application of ecological genomics, in particular the fields of biofuels generation and pest insect control. Metagenomic methods can characterize microbial communities of termites, wood-boring beetles and other insects, and transcriptomic approa...

  19. Applications of genome editing in insects

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Insect genome editing was first reported 1991 in Drosophila melanogaster but the technology used was not portable to other species. Not until the recent development of facile, engineered DNA endonuclease systems has gene editing become widely available to insect scientists. Most applications in inse...

  20. Secondary succession: insect-plant relationships

    SciTech Connect

    Brown, V.K.

    1984-12-01

    Botanists have dominated the study of secondary succession, and as a result, models and theories have focused on plants. Recent work, however, has revealed several complex relationships between plants and insects during succession, including adaptations of life-cycle strategies. Furthermore, insect herbivores play a key role in the course and rate of plant succession.

  1. Sustainable management of insect-resistant crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop genetically engineered to provide resistance to specific groups of insect pests have been adopted by millions of growers throughout the world. Here we document the effects of transgenic crops on pest population densities, beneficial insect densities and biological control services, insecticide ...

  2. 21 CFR 1250.95 - Insect control.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Insect control. 1250.95 Section 1250.95 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) REGULATIONS... maintained free of infestation by flies, mosquitoes, fleas, lice, and other insects known to be vectors...

  3. 21 CFR 1250.95 - Insect control.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Insect control. 1250.95 Section 1250.95 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) REGULATIONS... maintained free of infestation by flies, mosquitoes, fleas, lice, and other insects known to be vectors...

  4. 21 CFR 1250.95 - Insect control.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Insect control. 1250.95 Section 1250.95 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) REGULATIONS... maintained free of infestation by flies, mosquitoes, fleas, lice, and other insects known to be vectors...

  5. Genomics of Insect-Soybean Interactions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The dissection of plant-insect interactions has lagged behind that of interactions between plants and other types of pests. Insect pests interact with plants in a variety of ways, ranging from piercing and sucking of phloem to consumption of leaves and other tissues. Hence, a wide range of genetic m...

  6. Insects and Spiders. Environmental Education Curriculum.

    ERIC Educational Resources Information Center

    Topeka Public Schools, KS.

    This unit is designed to provide information on insects and spiders that special education students are capable of understanding. The activities are aimed at level 2 and level 3 educable mentally retarded classes. There are four topics: (1) Characteristics and Life Cycles of Insects; (2) Characteristics of Spiders; (3) Habitats and Food Sources of…

  7. Testing mechanistic models of growth in insects

    PubMed Central

    Maino, James L.; Kearney, Michael R.

    2015-01-01

    Insects are typified by their small size, large numbers, impressive reproductive output and rapid growth. However, insect growth is not simply rapid; rather, insects follow a qualitatively distinct trajectory to many other animals. Here we present a mechanistic growth model for insects and show that increasing specific assimilation during the growth phase can explain the near-exponential growth trajectory of insects. The presented model is tested against growth data on 50 insects, and compared against other mechanistic growth models. Unlike the other mechanistic models, our growth model predicts energy reserves per biomass to increase with age, which implies a higher production efficiency and energy density of biomass in later instars. These predictions are tested against data compiled from the literature whereby it is confirmed that insects increase their production efficiency (by 24 percentage points) and energy density (by 4 J mg−1) between hatching and the attainment of full size. The model suggests that insects achieve greater production efficiencies and enhanced growth rates by increasing specific assimilation and increasing energy reserves per biomass, which are less costly to maintain than structural biomass. Our findings illustrate how the explanatory and predictive power of mechanistic growth models comes from their grounding in underlying biological processes. PMID:26609084

  8. First Aid: Insect Stings and Bites

    MedlinePlus

    ... Are Insect Repellents With DEET Safe for Kids? Bug Bites and Stings Can I Use Bug Killers and Repellents During Pregnancy? Insect Sting Allergy ... Hey! A Mosquito Bit Me! Summer Safety Center Bug Bites and Stings Contact Us Print Resources Send ...

  9. Eric Carle-Inspired Insect Collages.

    ERIC Educational Resources Information Center

    Palamountain, Eileen; Turner, Kim

    2000-01-01

    Describes a lesson in which students create collage insects inspired by the work of Eric Carle (The Very Hungry Caterpillar). Connects art, language arts, and science. Discusses how students make paper to use as the collage material and how students create the insects. (CMK)

  10. Perspectives on the state of insect transgenics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genetic transformation is a critical component to the fundamental genetic analysis of insect species, and holds great promise for establishing strains that improve population control and behavior for practical application. This is especially so for insects that are disease vectors, many of which a...

  11. Multiorganismal Insects: Diversity and Function of Resident Microorganisms

    PubMed Central

    Douglas, Angela E.

    2015-01-01

    All insects are colonized by microorganisms on the insect exoskeleton, in the gut and hemocoel, and within insect cells. The insect microbiota is generally different from microorganisms in the external environment, including ingested food. Specifically, certain microbial taxa are favored by the conditions and resources in the insect habitat, by their tolerance of insect immunity, and by specific mechanisms for their transmission. The resident microorganisms can promote insect fitness by contributing to nutrition, especially by providing essential amino acids, B vitamins, and, for fungal partners, sterols. Some microorganisms protect their insect hosts against pathogens, parasitoids, and other parasites by synthesizing specific toxins or modifying the insect immune system. Priorities for future research include elucidation of microbial contributions to detoxification, especially of plant allelochemicals in phytophagous insects, and resistance to pathogens; as well as their role in among-insect communication; and the potential value of manipulation of the microbiota to control insect pests. PMID:25341109

  12. Multiorganismal insects: diversity and function of resident microorganisms.

    PubMed

    Douglas, Angela E

    2015-01-07

    All insects are colonized by microorganisms on the insect exoskeleton, in the gut and hemocoel, and within insect cells. The insect microbiota is generally different from microorganisms in the external environment, including ingested food. Specifically, certain microbial taxa are favored by the conditions and resources in the insect habitat, by their tolerance of insect immunity, and by specific mechanisms for their transmission. The resident microorganisms can promote insect fitness by contributing to nutrition, especially by providing essential amino acids, B vitamins, and, for fungal partners, sterols. Some microorganisms protect their insect hosts against pathogens, parasitoids, and other parasites by synthesizing specific toxins or modifying the insect immune system. Priorities for future research include elucidation of microbial contributions to detoxification, especially of plant allelochemicals in phytophagous insects, and resistance to pathogens; as well as their role in among-insect communication; and the potential value of manipulation of the microbiota to control insect pests.

  13. The smallest insects evolve anucleate neurons.

    PubMed

    Polilov, Alexey A

    2012-01-01

    The smallest insects are comparable in size to unicellular organisms. Thus, their size affects their structure not only at the organ level, but also at the cellular level. Here we report the first finding of animals with an almost entirely anucleate nervous system. Adults of the smallest flying insects of the parasitic wasp genus Megaphragma (Hymenoptera: Trichogrammatidae) have only 339-372 nuclei in the central nervous system, i.e., their ganglia, including the brain, consist almost exclusively of processes of neurons. In contrast, their pupae have ganglia more typical of other insects, with about 7400 nuclei in the central nervous system. During the final phases of pupal development, most neuronal cell bodies lyse. As adults, these insects have many fewer nucleated neurons, a small number of cell bodies in different stages of lysis, and about 7000 anucleate cells. Although most neurons lack nuclei, these insects exhibit many important behaviors, including flight and searching for hosts.

  14. A call to insect scientists: Challenges and opportunities of managing insect communities under climate change

    USGS Publications Warehouse

    Hellmann, Jessica J.; Grundel, Ralph; Hoving, Chris; Schuurman, Gregor W.

    2016-01-01

    As climate change moves insect systems into uncharted territory, more knowledge about insect dynamics and the factors that drive them could enable us to better manage and conserve insect communities. Climate change may also require us revisit insect management goals and strategies and lead to a new kind of scientific engagement in management decision-making. Here we make five key points about the role of insect science in aiding and crafting management decisions, and we illustrate those points with the monarch butterfly and the Karner blue butterfly, two species undergoing considerable change and facing new management dilemmas. Insect biology has a strong history of engagement in applied problems, and as the impacts of climate change increase, a reimagined ethic of entomology in service of broader society may emerge. We hope to motivate insect biologists to contribute time and effort toward solving the challenges of climate change.

  15. A call to insect scientists: challenges and opportunities of managing insect communities under climate change.

    PubMed

    Hellmann, Jessica J; Grundel, Ralph; Hoving, Chris; Schuurman, Gregor W

    2016-10-01

    As climate change moves insect systems into uncharted territory, more knowledge about insect dynamics and the factors that drive them could enable us to better manage and conserve insect communities. Climate change may also require us to revisit insect management goals and strategies and lead to a new kind of scientific engagement in management decision-making. Here we make five key points about the role of insect science in aiding and crafting management decisions, and we illustrate those points with the monarch butterfly and the Karner blue butterfly, two species undergoing considerable change and facing new management dilemmas. Insect biology has a strong history of engagement in applied problems, and as the impacts of climate change increase, a reimagined ethic of entomology in service of broader society may emerge. We hope to motivate insect biologists to contribute time and effort toward solving the challenges of climate change.

  16. Neural mechanisms of insect navigation.

    PubMed

    Webb, Barbara; Wystrach, Antoine

    2016-06-01

    We know more about the ethology of insect navigation than the neural substrates. Few studies have shown direct effects of brain manipulation on navigational behaviour; or measure brain responses that clearly relate to the animal's current location or spatial target, independently of specific sensory cues. This is partly due to the methodological problems of obtaining neural data in a naturally behaving animal. However, substantial indirect evidence, such as comparative anatomy and knowledge of the neural circuits that provide relevant sensory inputs provide converging arguments for the role of some specific brain areas: the mushroom bodies; and the central complex. Finally, modelling can help bridge the gap by relating the computational requirements of a given navigational task to the type of computation offered by different brain areas.

  17. Vector insects and their control.

    PubMed

    Lehane, M J

    1996-01-01

    This paper emphasizes the huge influence that vector-transmitted disease has on humans using plague, epidemic typhus and nagana as examples. The continuing need for vector control in campaigns against insect-transmitted disease is shown by reference to current control programmes mounted against Chagas' disease, onchocerciasis, lymphatic filariasis and nagana. These successful campaigns have not been reliant on new breakthroughs but on the forging of available tools into effective strategies widely and efficiently used by the control authorities, and the long-lasting political commitment to the success of the schemes in question. A brief mention is made of current fashions in vector control research and that great care needs to be taken by policy-makers to achieve a balance between long-term research aiming at the production of fundamentally new control technologies and operational research aiming to forge the often highly effective tools we already have into sound control strategies.

  18. Exaggerated trait growth in insects.

    PubMed

    Lavine, Laura; Gotoh, Hiroki; Brent, Colin S; Dworkin, Ian; Emlen, Douglas J

    2015-01-07

    Animal structures occasionally attain extreme proportions, eclipsing in size the surrounding body parts. We review insect examples of exaggerated traits, such as the mandibles of stag beetles (Lucanidae), the claspers of praying mantids (Mantidae), the elongated hindlimbs of grasshoppers (Orthoptera: Caelifera), and the giant heads of soldier ants (Formicidae) and termites (Isoptera). Developmentally, disproportionate growth can arise through trait-specific modifications to the activity of at least four pathways: the sex determination pathway, the appendage patterning pathway, the insulin/IGF signaling pathway, and the juvenile hormone/ecdysteroid pathway. Although most exaggerated traits have not been studied mechanistically, it is already apparent that distinct developmental mechanisms underlie the evolution of the different types of exaggerated traits. We suggest this reflects the nature of selection in each instance, revealing an exciting link between mechanism, form, and function. We use this information to make explicit predictions for the types of regulatory pathways likely to underlie each type of exaggerated trait.

  19. An Automated Flying-Insect-Detection System

    NASA Technical Reports Server (NTRS)

    Vann, Timi; Andrews, Jane C.; Howell, Dane; Ryan, Robert

    2005-01-01

    An automated flying-insect-detection system (AFIDS) was developed as a proof-of-concept instrument for real-time detection and identification of flying insects. This type of system has use in public health and homeland security decision support, agriculture and military pest management, and/or entomological research. Insects are first lured into the AFIDS integrated sphere by insect attractants. Once inside the sphere, the insect's wing beats cause alterations in light intensity that is detected by a photoelectric sensor. Following detection, the insects are encouraged (with the use of a small fan) to move out of the sphere and into a designated insect trap where they are held for taxonomic identification or serological testing. The acquired electronic wing beat signatures are preprocessed (Fourier transformed) in real-time to display a periodic signal. These signals are sent to the end user where they are graphically displayed. All AFIDS data are pre-processed in the field with the use of a laptop computer equipped with LABVIEW. The AFIDS software can be programmed to run continuously or at specific time intervals when insects are prevalent. A special DC-restored transimpedance amplifier reduces the contributions of low-frequency background light signals, and affords approximately two orders of magnitude greater AC gain than conventional amplifiers. This greatly increases the signal-to-noise ratio and enables the detection of small changes in light intensity. The AFIDS light source consists of high-intensity Al GaInP light-emitting diodes (LEDs). The AFIDS circuitry minimizes brightness fluctuations in the LEDs and when integrated with an integrating sphere, creates a diffuse uniform light field. The insect wing beats isotropically scatter the diffuse light in the sphere and create wing beat signatures that are detected by the sensor. This configuration minimizes variations in signal associated with insect flight orientation.

  20. The earliest known holometabolous insects.

    PubMed

    Nel, André; Roques, Patrick; Nel, Patricia; Prokin, Alexander A; Bourgoin, Thierry; Prokop, Jakub; Szwedo, Jacek; Azar, Dany; Desutter-Grandcolas, Laure; Wappler, Torsten; Garrouste, Romain; Coty, David; Huang, Diying; Engel, Michael S; Kirejtshuk, Alexander G

    2013-11-14

    The Eumetabola (Endopterygota (also known as Holometabola) plus Paraneoptera) have the highest number of species of any clade, and greatly contribute to animal species biodiversity. The palaeoecological circumstances that favoured their emergence and success remain an intriguing question. Recent molecular phylogenetic analyses have suggested a wide range of dates for the initial appearance of the Holometabola, from the Middle Devonian epoch (391 million years (Myr) ago) to the Late Pennsylvanian epoch (311 Myr ago), and Hemiptera (310 Myr ago). Palaeoenvironments greatly changed over these periods, with global cooling and increasing complexity of green forests. The Pennsylvanian-period crown-eumetabolan fossil record remains notably incomplete, particularly as several fossils have been erroneously considered to be stem Holometabola (Supplementary Information); the earliest definitive beetles are from the start of the Permian period. The emergence of the hymenopterids, sister group to other Holometabola, is dated between 350 and 309 Myr ago, incongruent with their current earliest record (Middle Triassic epoch). Here we describe five fossils--a Gzhelian-age stem coleopterid, a holometabolous larva of uncertain ordinal affinity, a stem hymenopterid, and early Hemiptera and Psocodea, all from the Moscovian age--and reveal a notable penecontemporaneous breadth of early eumetabolan insects. These discoveries are more congruent with current hypotheses of clade divergence. Eumetabola experienced episodes of diversification during the Bashkirian-Moscovian and the Kasimovian-Gzhelian ages. This cladogenetic activity is perhaps related to notable episodes of drying resulting from glaciations, leading to the eventual demise in Euramerica of coal-swamp ecosystems, evidenced by floral turnover during this interval. These ancient species were of very small size, living in the shadow of Palaeozoic-era 'giant' insects. Although these discoveries reveal unexpected Pennsylvanian

  1. Viruses of commercialized insect pollinators.

    PubMed

    Gisder, Sebastian; Genersch, Elke

    2016-08-03

    Managed insect pollinators are indispensable in modern agriculture. They are used worldwide not only in the open field but also in greenhouses to enhance fruit set, seed production, and crop yield. Managed honey bee (Apis mellifera, Apis cerana) colonies provide the majority of commercial pollination although other members of the superfamily Apoidea are also exploited and commercialized as managed pollinators. In the recent past, it became more and more evident that viral diseases play a key role in devastating honey bee colony losses and it was also recognized that many viruses originally thought to be honey bee specific can also be detected in other pollinating insects. However, while research on viruses infecting honey bees started more than 50years ago and the knowledge on these viruses is growing ever since, little is known on virus diseases of other pollinating bee species. Recent virus surveys suggested that many of the viruses thought to be honey bee specific are actually circulating in the pollinator community and that pollinator management and commercialization of pollinators provide ample opportunity for viral diseases to spread. However, the direction of disease transmission is not always clear and the impact of these viral diseases on the different hosts remains elusive in many cases. With our review we want to provide an up-to-date overview on the viruses detected in different commercialized pollinators in order to encourage research in the field of pollinator virology that goes beyond molecular detection of viruses. A deeper understanding of this field of virology is urgently needed to be able to evaluate the impact of viruses on pollinator health and the role of different pollinators in spreading viral diseases and to be able to decide on appropriate measures to prevent virus-driven pollinator decline.

  2. Energy scavenging from insect flight

    NASA Astrophysics Data System (ADS)

    Erkan Aktakka, Ethem; Kim, Hanseup; Najafi, Khalil

    2011-09-01

    This paper reports the design, fabrication and testing of an energy scavenger that generates power from the wing motion of a Green June Beetle (Cotinis nitida) during its tethered flight. The generator utilizes non-resonant piezoelectric bimorphs operated in the d31 bending mode to convert mechanical vibrations of a beetle into electrical output. The available deflection, force, and power output from oscillatory movements at different locations on a beetle are measured with a meso-scale piezoelectric beam. This way, the optimum location to scavenge energy is determined, and up to ~115 µW total power is generated from body movements. Two initial generator prototypes were fabricated, mounted on a beetle, and harvested 11.5 and 7.5 µW in device volumes of 11.0 and 5.6 mm3, respectively, from 85 to 100 Hz wing strokes during the beetle's tethered flight. A spiral generator was designed to maximize the power output by employing a compliant structure in a limited area. The necessary technology needed to fabricate this prototype was developed, including a process to machine high-aspect ratio devices from bulk piezoelectric substrates with minimum damage to the material using a femto-second laser. The fabricated lightweight spiral generators produced 18.5-22.5 µW on a bench-top test setup mimicking beetles' wing strokes. Placing two generators (one on each wing) can result in more than 45 µW of power per insect. A direct connection between the generator and the flight muscles of the insect is expected to increase the final power output by one order of magnitude.

  3. Insect prophenoloxidase: the view beyond immunity

    PubMed Central

    Lu, Anrui; Zhang, Qiaoli; Zhang, Jie; Yang, Bing; Wu, Kai; Xie, Wei; Luan, Yun-Xia; Ling, Erjun

    2014-01-01

    Insect prophenoloxidase (PPO) is an important innate immunity protein due to its involvement in cellular and humoral defense. It belongs to a group of type-3 copper-containing proteins that occurs in almost all organisms. Insect PPO has been studied for over a century, and the PPO activation cascade is becoming clearer. The insect PPO activation pathway incorporates several important proteins, including pattern-recognition receptors (PGRP, β GRP, and C-type lectins), serine proteases, and serine protease inhibitors (serpins). Due to their complexity, PPO activation mechanisms vary among insect species. Activated phenoloxidase (PO) oxidizes phenolic molecules to produce melanin around invading pathogens and wounds. The crystal structure of Manduca sexta PPO shows that a conserved amino acid, phenylalanine (F), can block the active site pocket. During activation, this blocker must be dislodged or even cleaved at the N-terminal sequence to expose the active site pockets and allow substrates to enter. Thanks to the crystal structure of M. sexta PPO, some domains and specific amino acids that affect PPO activities have been identified. Further studies of the relationship between PPO structure and enzyme activities will provide an opportunity to examine other type-3 copper proteins, and trace when and why their various physiological functions evolved. Recent researches show that insect PPO has a relationship with neuron activity, longevity, feces melanization (phytophagous insects) and development, which suggests that it is time for us to look back on insect PPO beyond the view of immunity in this review. PMID:25071597

  4. Resilience in social insect infrastructure systems.

    PubMed

    Middleton, Eliza J T; Latty, Tanya

    2016-03-01

    Both human and insect societies depend on complex and highly coordinated infrastructure systems, such as communication networks, supply chains and transportation networks. Like human-designed infrastructure systems, those of social insects are regularly subject to disruptions such as natural disasters, blockages or breaks in the transportation network, fluctuations in supply and/or demand, outbreaks of disease and loss of individuals. Unlike human-designed systems, there is no deliberate planning or centralized control system; rather, individual insects make simple decisions based on local information. How do these highly decentralized, leaderless systems deal with disruption? What factors make a social insect system resilient, and which factors lead to its collapse? In this review, we bring together literature on resilience in three key social insect infrastructure systems: transportation networks, supply chains and communication networks. We describe how systems differentially invest in three pathways to resilience: resistance, redirection or reconstruction. We suggest that investment in particular resistance pathways is related to the severity and frequency of disturbance. In the final section, we lay out a prospectus for future research. Human infrastructure networks are rapidly becoming decentralized and interconnected; indeed, more like social insect infrastructures. Human infrastructure management might therefore learn from social insect researchers, who can in turn make use of the mature analytical and simulation tools developed for the study of human infrastructure resilience.

  5. Resilience in social insect infrastructure systems

    PubMed Central

    2016-01-01

    Both human and insect societies depend on complex and highly coordinated infrastructure systems, such as communication networks, supply chains and transportation networks. Like human-designed infrastructure systems, those of social insects are regularly subject to disruptions such as natural disasters, blockages or breaks in the transportation network, fluctuations in supply and/or demand, outbreaks of disease and loss of individuals. Unlike human-designed systems, there is no deliberate planning or centralized control system; rather, individual insects make simple decisions based on local information. How do these highly decentralized, leaderless systems deal with disruption? What factors make a social insect system resilient, and which factors lead to its collapse? In this review, we bring together literature on resilience in three key social insect infrastructure systems: transportation networks, supply chains and communication networks. We describe how systems differentially invest in three pathways to resilience: resistance, redirection or reconstruction. We suggest that investment in particular resistance pathways is related to the severity and frequency of disturbance. In the final section, we lay out a prospectus for future research. Human infrastructure networks are rapidly becoming decentralized and interconnected; indeed, more like social insect infrastructures. Human infrastructure management might therefore learn from social insect researchers, who can in turn make use of the mature analytical and simulation tools developed for the study of human infrastructure resilience. PMID:26962030

  6. New light shed on the oldest insect.

    PubMed

    Engel, Michael S; Grimaldi, David A

    2004-02-12

    Insects are the most diverse lineage of all life in numbers of species, and ecologically they dominate terrestrial ecosystems. However, how and when this immense radiation of animals originated is unclear. Only a few fossils provide insight into the earliest stages of insect evolution, and among them are specimens in chert from Rhynie, Scotland's Old Red Sandstone (Pragian; about 396-407 million years ago), which is only slightly younger than formations harbouring the earliest terrestrial faunas. The most well-known animal from Rhynie is the springtail Rhyniella praecursor (Entognatha; Collembola), long considered to be the oldest hexapod. For true insects (Ectognatha), the oldest records are two apparent wingless insects from later in the Devonian period of North America. Here we show, however, that a fragmentary fossil from Rhynie, Rhyniognatha hirsti, is not only the earliest true insect but may be relatively derived within basal Ectognatha. In fact, Rhyniognatha has derived characters shared with winged insects, suggesting that the origin of wings may have been earlier than previously believed. Regardless, Rhyniognatha indicates that insects originated in the Silurian period and were members of some of the earliest terrestrial faunas.

  7. Prostaglandins and Their Receptors in Insect Biology

    PubMed Central

    Stanley, David; Kim, Yonggyun

    2011-01-01

    We treat the biological significance of prostaglandins (PGs) and their known receptors in insect biology. PGs and related eicosanoids are oxygenated derivatives of arachidonic acid (AA) and two other C20 polyunsaturated fatty acids. PGs are mostly appreciated in the context of biomedicine, but a growing body of literature indicates the biological significance of these compounds extends throughout the animal kingdom, and possibly beyond. The actions of most PGs are mediated by specific receptors. Biomedical research has discovered a great deal of knowledge about PG receptors in mammals, including their structures, pharmacology, molecular biology and cellular locations. Studies of PG receptors in insects lag behind the biomedical background, however, recent results hold the promise of accelerated research in this area. A PG receptor has been identified in a class of lepidopteran hemocytes and experimentally linked to the release of prophenoloxidase. PGs act in several crucial areas of insect biology. In reproduction, a specific PG, PGE2, releases oviposition behavior in most crickets and a few other insect species; PGs also mediate events in egg development in some species, which may represent all insects. PGs play major roles in modulating fluid secretion in Malpighian tubules, rectum and salivary glands, although, again, this has been studied in only a few insect species that may represent the Class. Insect immunity is a very complex defense system. PGs and other eicosanoids mediate a large number of immune reactions to infection and invasion. We conclude that research into PGs and their receptors in insects will lead to important advances in our understanding of insect biology. PMID:22654840

  8. Prostaglandins and their receptors in insect biology.

    PubMed

    Stanley, David; Kim, Yonggyun

    2011-01-01

    We treat the biological significance of prostaglandins (PGs) and their known receptors in insect biology. PGs and related eicosanoids are oxygenated derivatives of arachidonic acid (AA) and two other C20 polyunsaturated fatty acids. PGs are mostly appreciated in the context of biomedicine, but a growing body of literature indicates the biological significance of these compounds extends throughout the animal kingdom, and possibly beyond. The actions of most PGs are mediated by specific receptors. Biomedical research has discovered a great deal of knowledge about PG receptors in mammals, including their structures, pharmacology, molecular biology and cellular locations. Studies of PG receptors in insects lag behind the biomedical background, however, recent results hold the promise of accelerated research in this area. A PG receptor has been identified in a class of lepidopteran hemocytes and experimentally linked to the release of prophenoloxidase. PGs act in several crucial areas of insect biology. In reproduction, a specific PG, PGE(2), releases oviposition behavior in most crickets and a few other insect species; PGs also mediate events in egg development in some species, which may represent all insects. PGs play major roles in modulating fluid secretion in Malpighian tubules, rectum and salivary glands, although, again, this has been studied in only a few insect species that may represent the Class. Insect immunity is a very complex defense system. PGs and other eicosanoids mediate a large number of immune reactions to infection and invasion. We conclude that research into PGs and their receptors in insects will lead to important advances in our understanding of insect biology.

  9. An Automated Flying-Insect Detection System

    NASA Technical Reports Server (NTRS)

    Vann, Timi; Andrews, Jane C.; Howell, Dane; Ryan, Robert

    2007-01-01

    An automated flying-insect detection system (AFIDS) was developed as a proof-of-concept instrument for real-time detection and identification of flying insects. This type of system has use in public health and homeland-security decision support, agriculture and military pest management, and/or entomological research. Insects are first lured into the AFIDS integrated sphere by insect attractants. Once inside the sphere, the insect s wing beats cause alterations in light intensity that is detected by a photoelectric sensor. Following detection, the insects are encouraged (with the use of a small fan) to move out of the sphere and into a designated insect trap where they are held for taxonomic identification or serological testing. The acquired electronic wing-beat signatures are preprocessed (Fourier transformed) in real time to display a periodic signal. These signals are sent to the end user where they are graphically. All AFIDS data are preprocessed in the field with the use of a laptop computer equipped with LabVIEW. The AFIDS software can be programmed to run continuously or at specific time intervals when insects are prevalent. A special DC-restored transimpedance amplifier reduces the contributions of low-frequency background light signals, and affords approximately two orders of magnitude greater AC gain than conventional amplifiers. This greatly increases the signal-to-noise ratio and enables the detection of small changes in light intensity. The AFIDS light source consists of high-intensity Al-GaInP light-emitting diodes (LEDs). The AFIDS circuitry minimizes brightness fluctuations in the LEDs and when integrated with an integrating sphere, creates a diffuse uniform light field. The insect wing beats isotropically scatter the diffuse light in the sphere and create wing-beat signatures that are detected by the sensor. This configuration minimizes variations in signal associated with insect flight orientation. Preliminary data indicate that AFIDS has

  10. Democratizing evolutionary biology, lessons from insects.

    PubMed

    Dunn, Robert R; Beasley, DeAnna E

    2016-12-01

    The engagement of the public in the scientific process is an old practice. Yet with recent advances in technology, the role of the citizen scientist in studying evolutionary processes has increased. Insects provide ideal models for understanding these evolutionary processes at large scales. This review highlights how insect-based citizen science has led to the expansion of specimen collections and reframed research questions in light of new observations and unexpected discoveries. Given the rapid expansion of human-modified (and inhabited) environments, the degree to which the public can participate in insect-based citizen science will allow us to track and monitor evolutionary trends at a global scale.

  11. Evolutionary genetics of insect innate immunity

    PubMed Central

    2015-01-01

    Patterns of evolution in immune defense genes help to understand the evolutionary dynamics between hosts and pathogens. Multiple insect genomes have been sequenced, with many of them having annotated immune genes, which paves the way for a comparative genomic analysis of insect immunity. In this review, I summarize the current state of comparative and evolutionary genomics of insect innate immune defense. The focus is on the conserved and divergent components of immunity with an emphasis on gene family evolution and evolution at the sequence level; both population genetics and molecular evolution frameworks are considered. PMID:25750410

  12. Insect contamination protection for laminar flow surfaces

    NASA Technical Reports Server (NTRS)

    Croom, Cynthia C.; Holmes, Bruce J.

    1986-01-01

    The ability of modern aircraft surfaces to achieve laminar flow was well-accepted in recent years. Obtaining the maximum benefit of laminar flow for aircraft drag reduction requires maintaining minimum leading-edge contamination. Previously proposed insect contamination prevention methods have proved impractical due to cost, weight, or inconvenience. Past work has shown that insects will not adhere to water-wetted surfaces, but the large volumes of water required for protection rendered such a system impractical. The results of a flight experiment conducted by NASA to evaluate the performance of a porous leading-edge fluid discharge ice protection system operated as an insect contamination protections system are presented. In addition, these flights explored the environmental and atmospheric conditions most suitable for insect accumulation.

  13. Insect food aiming at Mars emigration

    NASA Astrophysics Data System (ADS)

    Katayama, Naomi; Yamashita, Masamichi; Hashimoto, Hirofumi; Nagasaka, Sanako; Kuwayama, Akemi; Sofue, Megumi

    2012-07-01

    We study insect food aiming at Mars emigration.In space agriculture, insect is the important creature which we cannot miss.It is necessary for the pollination of the plant, and it is rich to protein and lipid as food.I reported that silkworm is an insect necessary for astroponics in particular last time.We make clothes using silk thread, and the pupa becomes the food.In addition, the clothes can make food as protein when we need not to use it. The bee is a very important insect in the space agriculture,too.We examined nutrition of silkworm, bee, grasshopper, snail and the white ant which are necessary for Mars emigration.We will introduce of good balance space foods.We will report many meal menu for Mars emigration.

  14. Symbiont-mediated RNA interference in insects.

    PubMed

    Whitten, Miranda M A; Facey, Paul D; Del Sol, Ricardo; Fernández-Martínez, Lorena T; Evans, Meirwyn C; Mitchell, Jacob J; Bodger, Owen G; Dyson, Paul J

    2016-02-24

    RNA interference (RNAi) methods for insects are often limited by problems with double-stranded (ds) RNA delivery, which restricts reverse genetics studies and the development of RNAi-based biocides. We therefore delegated to insect symbiotic bacteria the task of: (i) constitutive dsRNA synthesis and (ii) trauma-free delivery. RNaseIII-deficient, dsRNA-expressing bacterial strains were created from the symbionts of two very diverse pest species: a long-lived blood-sucking bug, Rhodnius prolixus, and a short-lived globally invasive polyphagous agricultural pest, western flower thrips (Frankliniella occidentalis). When ingested, the manipulated bacteria colonized the insects, successfully competed with the wild-type microflora, and sustainably mediated systemic knockdown phenotypes that were horizontally transmissible. This represents a significant advance in the ability to deliver RNAi, potentially to a large range of non-model insects.

  15. Comparative psychoneuroimmunology: evidence from the insects.

    PubMed

    Adamo, Shelley A

    2006-09-01

    Interactions between immune systems, nervous systems, and behavior are well established in vertebrates. A comparative examination of these interactions in other animals will help us understand their evolution and present adaptive functions. Insects show immune-behavioral interactions similar to those seen in vertebrates, suggesting that many of them may have a highly conserved function. Activation of an immune response in insects results in illness-induced anorexia, behavioral fever, changes in reproductive behavior, and decreased learning ability in a broad range of species. Flight-or-fight behaviors result in a decline in disease resistance. In insects, illness-induced anorexia may enhance immunity. Stress-induced immunosuppression is probably due to physiological conflicts between the immune response and those of other physiological processes. Because insects occupy a wide range of ecological niches, they will be useful in examining how some immune-behavioral interactions are sculpted by an animal's behavioral ecology.

  16. Principles of Insect Identification. MP-20.

    ERIC Educational Resources Information Center

    Lawson, Fred A.; Burkhardt, Chris C.

    This document provides information for the complete classification of members of the phylum Arthropoda. Both major and minor insect orders are discussed relative to their anatomical characteristics and importance. (CS)

  17. Insect Bites and Stings: First Aid

    MedlinePlus

    ... wasp, a hornet, a fire ant or a scorpion, can result in severe reactions. Some insects also ... Rapid heartbeat Hives Nausea, cramps or vomiting A scorpion sting and is a child Take these actions ...

  18. A systematic nomenclature for the insect brain.

    PubMed

    Ito, Kei; Shinomiya, Kazunori; Ito, Masayoshi; Armstrong, J Douglas; Boyan, George; Hartenstein, Volker; Harzsch, Steffen; Heisenberg, Martin; Homberg, Uwe; Jenett, Arnim; Keshishian, Haig; Restifo, Linda L; Rössler, Wolfgang; Simpson, Julie H; Strausfeld, Nicholas J; Strauss, Roland; Vosshall, Leslie B

    2014-02-19

    Despite the importance of the insect nervous system for functional and developmental neuroscience, descriptions of insect brains have suffered from a lack of uniform nomenclature. Ambiguous definitions of brain regions and fiber bundles have contributed to the variation of names used to describe the same structure. The lack of clearly determined neuropil boundaries has made it difficult to document precise locations of neuronal projections for connectomics study. To address such issues, a consortium of neurobiologists studying arthropod brains, the Insect Brain Name Working Group, has established the present hierarchical nomenclature system, using the brain of Drosophila melanogaster as the reference framework, while taking the brains of other taxa into careful consideration for maximum consistency and expandability. The following summarizes the consortium's nomenclature system and highlights examples of existing ambiguities and remedies for them. This nomenclature is intended to serve as a standard of reference for the study of the brain of Drosophila and other insects.

  19. Selectivity of odorant receptors in insects

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Insect olfactory receptors (ORs) detect chemical signals, shape neuronal physiology and regulate behavior. Although ORs have been categorized as generalists and specialists based on their ligand spectrum, both electrophysiological studies and recent pharmacological investigations show that ORs spec...

  20. Molecular evolutionary analyses of insect societies.

    PubMed

    Fischman, Brielle J; Woodard, S Hollis; Robinson, Gene E

    2011-06-28

    The social insects live in extraordinarily complex and cohesive societies, where many individuals sacrifice their personal reproduction to become helpers in the colony. Identifying adaptive molecular changes involved in eusocial evolution in insects is important for understanding the mechanisms underlying transitions from solitary to social living, as well as the maintenance and elaboration of social life. Here, we review recent advances made in this area of research in several insect groups: the ants, bees, wasps, and termites. Drawing from whole-genome comparisons, candidate gene approaches, and a genome-scale comparative analysis of protein-coding sequence, we highlight novel insights gained for five major biological processes: chemical signaling, brain development and function, immunity, reproduction, and metabolism and nutrition. Lastly, we make comparisons across these diverse approaches and social insect lineages and discuss potential common themes of eusocial evolution, as well as challenges and prospects for future research in the field.

  1. Molecular evolutionary analyses of insect societies

    PubMed Central

    Fischman, Brielle J.; Woodard, S. Hollis; Robinson, Gene E.

    2011-01-01

    The social insects live in extraordinarily complex and cohesive societies, where many individuals sacrifice their personal reproduction to become helpers in the colony. Identifying adaptive molecular changes involved in eusocial evolution in insects is important for understanding the mechanisms underlying transitions from solitary to social living, as well as the maintenance and elaboration of social life. Here, we review recent advances made in this area of research in several insect groups: the ants, bees, wasps, and termites. Drawing from whole-genome comparisons, candidate gene approaches, and a genome-scale comparative analysis of protein-coding sequence, we highlight novel insights gained for five major biological processes: chemical signaling, brain development and function, immunity, reproduction, and metabolism and nutrition. Lastly, we make comparisons across these diverse approaches and social insect lineages and discuss potential common themes of eusocial evolution, as well as challenges and prospects for future research in the field. PMID:21690385

  2. How to Find Insects Weathering the Winter.

    ERIC Educational Resources Information Center

    Brody, Jane

    1979-01-01

    Discusses how and where to find insects and other invertebrates in winter, as well as how to collect samples in order to watch those animals reappear in spring. Includes crickets, honey bees, mosquitoes, house flies, and butterflies and moths. (MA)

  3. RNAi-mediated crop protection against insects.

    PubMed

    Price, Daniel R G; Gatehouse, John A

    2008-07-01

    Downregulation of the expression of specific genes through RNA interference (RNAi), has been widely used for genetic research in insects. The method has relied on the injection of double-stranded RNA (dsRNA), which is not possible for practical applications in crop protection. By contrast, specific suppression of gene expression in nematodes is possible through feeding with dsRNA. This approach was thought to be unfeasible in insects, but recent results have shown that dsRNA fed as a diet component can be effective in downregulating targeted genes. More significantly, expression of dsRNA directed against suitable insect target genes in transgenic plants has been shown to give protection against pests, opening the way for a new generation of insect-resistant crops.

  4. Biology of the CAPA peptides in insects.

    PubMed

    Predel, R; Wegener, C

    2006-11-01

    CAPA peptides have been isolated from a broad range of insect species as well as an arachnid, and can be grouped into the periviscerokinin and pyrokinin peptide families. In insects, CAPA peptides are the characteristic and most abundant neuropeptides in the abdominal neurohemal system. In many species, CAPA peptides exert potent myotropic effects on different muscles such as the heart. In others, including blood-sucking insects able to transmit serious diseases, CAPA peptides have strong diuretic or anti-diuretic effects and thus are potentially of medical importance. CAPA peptides undergo cell-type-specific sorting and packaging, and are the first insect neuropeptides shown to be differentially processed. In this review, we discuss the current knowledge on the structure, distribution, receptors and physiological actions of the CAPA peptides.

  5. Symbiont-mediated RNA interference in insects

    PubMed Central

    Whitten, Miranda M. A.; Facey, Paul D.; Del Sol, Ricardo; Fernández-Martínez, Lorena T.; Evans, Meirwyn C.; Mitchell, Jacob J.; Bodger, Owen G.

    2016-01-01

    RNA interference (RNAi) methods for insects are often limited by problems with double-stranded (ds) RNA delivery, which restricts reverse genetics studies and the development of RNAi-based biocides. We therefore delegated to insect symbiotic bacteria the task of: (i) constitutive dsRNA synthesis and (ii) trauma-free delivery. RNaseIII-deficient, dsRNA-expressing bacterial strains were created from the symbionts of two very diverse pest species: a long-lived blood-sucking bug, Rhodnius prolixus, and a short-lived globally invasive polyphagous agricultural pest, western flower thrips (Frankliniella occidentalis). When ingested, the manipulated bacteria colonized the insects, successfully competed with the wild-type microflora, and sustainably mediated systemic knockdown phenotypes that were horizontally transmissible. This represents a significant advance in the ability to deliver RNAi, potentially to a large range of non-model insects. PMID:26911963

  6. Mechanics and aerodynamics of insect flight control.

    PubMed

    Taylor, G K

    2001-11-01

    Insects have evolved sophisticated fight control mechanisms permitting a remarkable range of manoeuvres. Here, I present a qualitative analysis of insect flight control from the perspective of flight mechanics, drawing upon both the neurophysiology and biomechanics literatures. The current literature does not permit a formal, quantitative analysis of flight control, because the aerodynamic force systems that biologists have measured have rarely been complete and the position of the centre of gravity has only been recorded in a few studies. Treating the two best-known insect orders (Diptera and Orthoptera) separately from other insects, I discuss the control mechanisms of different insects in detail. Recent experimental studies suggest that the helicopter model of flight control proposed for Drosophila spp. may be better thought of as a facultative strategy for flight control, rather than the fixed (albeit selected) constraint that it is usually interpreted to be. On the other hand, the so-called 'constant-lift reaction' of locusts appears not to be a reflex for maintaining constant lift at varying angles of attack, as is usually assumed, but rather a mechanism to restore the insect to pitch equilibrium following a disturbance. Differences in the kinematic control mechanisms used by the various insect orders are related to differences in the arrangement of the wings, the construction of the flight motor and the unsteady mechanisms of lift production that are used. Since the evolution of insect flight control is likely to have paralleled the evolutionary refinement of these unsteady aerodynamic mechanisms, taxonomic differences in the kinematics of control could provide an assay of the relative importance of different unsteady mechanisms. Although the control kinematics vary widely between orders, the number of degrees of freedom that different insects can control will always be limited by the number of independent control inputs that they use. Control of the moments

  7. Laboratory and Modeling Studies of Insect Swarms

    DTIC Science & Technology

    2016-03-10

    the number of individual insects present? We used trajectory data for swarms containing as many as 60 individuals and as few a single insect. Calling ...the group morphology they produce: a model of flocking birds , for example, will be judged successful if each agent moves in the same direction. As...community of physicists and applied mathematicians working on so- called active materials. Following some of their work, we were thus motived to ask a

  8. Linking energetics and overwintering in temperate insects.

    PubMed

    Sinclair, Brent J

    2015-12-01

    Overwintering insects cannot feed, and energy they take into winter must therefore fuel energy demands during autumn, overwintering, warm periods prior to resumption of development in spring, and subsequent activity. Insects primarily consume lipids during winter, but may also use carbohydrate and proteins as fuel. Because they are ectotherms, the metabolic rate of insects is temperature-dependent, and the curvilinear nature of the metabolic rate-temperature relationship means that warm temperatures are disproportionately important to overwinter energy use. This energy use may be reduced physiologically, by reducing the slope or elevation of the metabolic rate-temperature relationship, or because of threshold changes, such as metabolic suppression upon freezing. Insects may also choose microhabitats or life history stages that reduce the impact of overwinter energy drain. There is considerable capacity for overwinter energy drain to affect insect survival and performance both directly (via starvation) or indirectly (for example, through a trade-off with cryoprotection), but this has not been well-explored. Likewise, the impact of overwinter energy drain on growing-season performance is not well understood. I conclude that overwinter energetics provides a useful lens through which to link physiology and ecology and winter and summer in studies of insect responses to their environment.

  9. Extracellular ice phase transitions in insects.

    PubMed

    Hawes, T C

    2014-01-01

    At temperatures below their temperature of crystallization (Tc), the extracellular body fluids of insects undergo a phase transition from liquid to solid. Insects that survive the transition to equilibrium (complete freezing of the body fluids) are designated as freeze tolerant. Although this phenomenon has been reported and described in many Insecta, current nomenclature and theory does not clearly delineate between the process of transition (freezing) and the final solid phase itself (the frozen state). Thus freeze tolerant insects are currently, by convention, described in terms of the temperature at which the crystallization of their body fluids is initiated, Tc. In fact, the correct descriptor for insects that tolerate freezing is the temperature of equilibrium freezing, Tef. The process of freezing is itself a separate physical event with unique physiological stresses that are associated with ice growth. Correspondingly there are a number of insects whose physiological cryo-limits are very specifically delineated by this transitional envelope. The distinction also has considerable significance for our understanding of insect cryobiology: firstly, because the ability to manage endogenous ice growth is a fundamental segregator of cryotype; and secondly, because our understanding of internal ice management is still largely nascent.

  10. Tomographic Reconstruction of Neopterous Carboniferous Insect Nymphs

    PubMed Central

    Garwood, Russell; Ross, Andrew; Sotty, Daniel; Chabard, Dominique; Charbonnier, Sylvain; Sutton, Mark; Withers, Philip J.

    2012-01-01

    Two new polyneopteran insect nymphs from the Montceau-les-Mines Lagerstätte of France are presented. Both are preserved in three dimensions, and are imaged with the aid of X-ray micro-tomography, allowing their morphology to be recovered in unprecedented detail. One–Anebos phrixos gen. et sp. nov.–is of uncertain affinities, and preserves portions of the antennae and eyes, coupled with a heavily spined habitus. The other is a roachoid with long antennae and chewing mouthparts very similar in form to the most generalized mandibulate mouthparts of extant orthopteroid insects. Computer reconstructions reveal limbs in both specimens, allowing identification of the segments and annulation in the tarsus, while poorly developed thoracic wing pads suggest both are young instars. This work describes the morphologically best-known Palaeozoic insect nymphs, allowing a better understanding of the juveniles’ palaeobiology and palaeoecology. We also consider the validity of evidence from Palaeozoic juvenile insects in wing origin theories. The study of juvenile Palaeozoic insects is currently a neglected field, yet these fossils provide direct evidence on the evolution of insect development. It is hoped this study will stimulate a renewed interest in such work. PMID:23049858

  11. Baculovirus-insect cell expression systems.

    PubMed

    Jarvis, Donald L

    2009-01-01

    In the early 1980s, the first-published reports of baculovirus-mediated foreign gene expression stimulated great interest in the use of baculovirus-insect cell systems for recombinant protein production. Initially, this system appeared to be the first that would be able to provide the high production levels associated with bacterial systems and the eukaryotic protein processing capabilities associated with mammalian systems. Experience and an increased understanding of basic insect cell biology have shown that these early expectations were not completely realistic. Nevertheless, baculovirus-insect cell expression systems have the capacity to produce many recombinant proteins at high levels and they also provide significant eukaryotic protein processing capabilities. Furthermore, important technological advances over the past 20 years have improved upon the original methods developed for the isolation of baculovirus expression vectors, which were inefficient, required at least some specialized expertise and, therefore, induced some frustration among those who used the original baculovirus-insect cell expression system. Today, virtually any investigator with basic molecular biology training can relatively quickly and efficiently isolate a recombinant baculovirus vector and use it to produce their favorite protein in an insect cell culture. This chapter will begin with background information on the basic baculovirus-insect cell expression system and will then focus on recent developments that have greatly facilitated the ability of an average investigator to take advantage of its attributes.

  12. Attention-like processes in insects

    PubMed Central

    2016-01-01

    Attention is fundamentally important for sensory systems to focus on behaviourally relevant stimuli. It has therefore been an important field of study in human psychology and neuroscience. Primates, however, are not the only animals that might benefit from attention-like processes. Other animals, including insects, also have to use their senses and select one among many stimuli to forage, avoid predators and find mates. They have evolved different mechanisms to reduce the information processed by their brains to focus on only relevant stimuli. What are the mechanisms used by insects to selectively attend to visual and auditory stimuli? Do these attention-like mechanisms achieve the same functions as they do in primates? To investigate these questions, I use an established framework for investigating attention in non-human animals that proposes four fundamental components of attention: salience filters, competitive selection, top-down sensitivity control and working memory. I discuss evidence for each of these component processes in insects and compare the characteristics of these processes in insects to what we know from primates. Finally, I highlight important outstanding questions about insect attention that need to be addressed for us to understand the differences and similarities between vertebrate and insect attention. PMID:27852803

  13. Insects breathe discontinuously to avoid oxygen toxicity.

    PubMed

    Hetz, Stefan K; Bradley, Timothy J

    2005-02-03

    The respiratory organs of terrestrial insects consist of tracheal tubes with external spiracular valves that control gas exchange. Despite their relatively high metabolic rate, many insects have highly discontinuous patterns of gas exchange, including long periods when the spiracles are fully closed. Two explanations have previously been put forward to explain this behaviour: first, that this pattern serves to reduce respiratory water loss, and second, that the pattern may have initially evolved in underground insects as a way of dealing with hypoxic or hypercapnic conditions. Here we propose a third possible explanation based on the idea that oxygen is necessary for oxidative metabolism but also acts as a toxic chemical that can cause oxidative damage of tissues even at relatively low concentrations. At physiologically normal partial pressures of CO2, the rate of CO2 diffusion out of the insect respiratory system is slower than the rate of O2 entry; this leads to a build-up of intratracheal CO2. The spiracles must therefore be opened at intervals to rid the insect of accumulated CO2, a process that exposes the tissues to dangerously high levels of O2. We suggest that the cyclical pattern of open and closed spiracles observed in resting insects is a necessary consequence of the need to rid the respiratory system of accumulated CO2, followed by the need to reduce oxygen toxicity.

  14. Isotope labeling of proteins in insect cells.

    PubMed

    Skora, Lukasz; Shrestha, Binesh; Gossert, Alvar D

    2015-01-01

    Protein targets of contemporary research are often membrane proteins, multiprotein complexes, secreted proteins, or other proteins of human origin. These are difficult to express in the standard expression host used for most nuclear magnetic resonance (NMR) studies, Escherichia coli. Insect cells represent an attractive alternative, since they have become a well-established expression system and simple solutions have been developed for generation of viruses to efficiently introduce the target protein DNA into cells. Insect cells enable production of a larger fraction of the human proteome in a properly folded way than bacteria, as insect cells have a very similar set of cytosolic chaperones and a closely related secretory pathway. Here, the limited and defined glycosylation pattern that insect cells produce is an advantage for structural biology studies. For these reasons, insect cells have been established as the most widely used eukaryotic expression host for crystallographic studies. In the past decade, significant advancements have enabled amino acid type-specific as well as uniform isotope labeling of proteins in insect cells, turning them into an attractive expression host for NMR studies.

  15. Factors affecting the sticking of insects on modified aircraft wings

    NASA Technical Reports Server (NTRS)

    Yi, O.; Chan, R.; Eiss, N. S.; Pingali, U.; Wightman, J. P.

    1988-01-01

    The adhesion of insects to aircraft wings is studied. Insects were collected in road tests in past studies and a large experimental error was introduced caused by the variability of insect flux. The presence of such errors has been detected by studying the insect distribution across an aluminum-strip covered half-cylinder mounted on the top of a car. After a nonuniform insect distribution (insect flux) was found from three road tests, a new arrangement of samples was developed. The feasibility of coating aircraft wing surfaces with polymers to reduce the number of insects sticking onto the surfaces was studied using fluorocarbon elastomers, styrene butadiene rubbers, and Teflon.

  16. Charting the Visual Space of Insect Eyes - Delineating the Guidance, Navigation and Control of Insect Flight by Their Optical Sensor

    DTIC Science & Technology

    2014-06-01

    AFRL-AFOSR-UK-TR-2014-0021 Charting the visual space of insect eyes - Delineating the guidance, navigation and control of insect ...the visual space of insect eyes - Delineating the guidance, navigation and control of insect flight by their optical sensor 5a. CONTRACT NUMBER...is unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT Insect visual systems are extremely compact and presumably optimized for optimal

  17. Quantifying the movement of multiple insects using an optical insect counter

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An optical insect counter (OIC) was designed and tested. The new system integrated a line-scan camera and a vertical light sheet along with data collection and image processing software to count numbers of flying insects crossing a vertical plane defined by the light sheet. The system also allows ...

  18. Harnessing insect-microbe chemical communications to control insect pest of agricultural systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Insect pests have long been known to impose serious yield, economic, and food safety problems to managed crops worldwide, and are known to vector microbes, many of which are pathogenic or toxigenic. At the heart of many of these studies has been the vital understanding of the plant-insect interactio...

  19. Naturally occurring insect growth regulators. II. Screening of insect and plant extracts as insect juvenile hormone mimics.

    PubMed

    Jacobson, M; Redfern, R E; Mills, G D

    1975-01-01

    Ethereal extracts prepared from the larvae, pupae, or eggs of 10 species of insects and from various parts of 343 species of higher plants were screened for juvenilizing effects against Tenebrio molitor and Oncopeltus fasciatus. Activity in both species was shown by an extract of the larvae of the stable fly, Stomoxys calcitrans, whereas an extract of the pupae was active in O. fasiatus only. Extracts of two plant species (Echinacea angustifolia roots and Chamaecyparis lawsoniana seeds) showed high juvenilizing activity in T. MOLITOR, AND EXtracts of five plant species (Clethra alnifolia stems, leaves, and fruits, Sassafras albidum roots and root bark, Eucalyptus camaldulensis stems and bark, Pinus rigida twigs and leaves, and Iris douglasiana roots, stems, and fruits) were highly active in O. fasciatus an extract of Tsuga canadensis leaves showed lower activity in this insect. Extracts of 16 species of plants showed high insecticidal activity (mortality) in O. fasciatus but lacked juvenilizing properties in both species of test insects.

  20. Flapping wing aerodynamics: from insects to vertebrates.

    PubMed

    Chin, Diana D; Lentink, David

    2016-04-01

    More than a million insects and approximately 11,000 vertebrates utilize flapping wings to fly. However, flapping flight has only been studied in a few of these species, so many challenges remain in understanding this form of locomotion. Five key aerodynamic mechanisms have been identified for insect flight. Among these is the leading edge vortex, which is a convergent solution to avoid stall for insects, bats and birds. The roles of the other mechanisms - added mass, clap and fling, rotational circulation and wing-wake interactions - have not yet been thoroughly studied in the context of vertebrate flight. Further challenges to understanding bat and bird flight are posed by the complex, dynamic wing morphologies of these species and the more turbulent airflow generated by their wings compared with that observed during insect flight. Nevertheless, three dimensionless numbers that combine key flow, morphological and kinematic parameters - the Reynolds number, Rossby number and advance ratio - govern flapping wing aerodynamics for both insects and vertebrates. These numbers can thus be used to organize an integrative framework for studying and comparing animal flapping flight. Here, we provide a roadmap for developing such a framework, highlighting the aerodynamic mechanisms that remain to be quantified and compared across species. Ultimately, incorporating complex flight maneuvers, environmental effects and developmental stages into this framework will also be essential to advancing our understanding of the biomechanics, movement ecology and evolution of animal flight.

  1. Uncontrolled Stability in Freely Flying Insects

    NASA Astrophysics Data System (ADS)

    Melfi, James, Jr.; Wang, Z. Jane

    2015-11-01

    One of the key flight modes of a flying insect is longitudinal flight, traveling along a localized two-dimensional plane from one location to another. Past work on this topic has shown that flying insects, unless stabilized by some external stimulus, are typically unstable to a well studied pitching instability. In our work, we examine this instability in a computational study to understand whether it is possible for either evolution or an aero-vehicle designer to stabilize longitudinal flight through changes to insect morphology, kinematics, or aerodynamic quantities. A quasi-steady wingbeat averaged flapping flight model is used to describe the insect. From this model, a number of non-dimensional parameters are identified. The effect of these parameters was then quantified using linear stability analysis, applied to various translational states of the insect. Based on our understanding of these parameters, we demonstrate how to find an intrinsically stable flapping flight sequence for a dragonfly-like flapping flier in an instantaneous flapping flight model.

  2. Acoustic communication in insect disease vectors

    PubMed Central

    Vigoder, Felipe de Mello; Ritchie, Michael Gordon; Gibson, Gabriella; Peixoto, Alexandre Afranio

    2013-01-01

    Acoustic signalling has been extensively studied in insect species, which has led to a better understanding of sexual communication, sexual selection and modes of speciation. The significance of acoustic signals for a blood-sucking insect was first reported in the XIX century by Christopher Johnston, studying the hearing organs of mosquitoes, but has received relatively little attention in other disease vectors until recently. Acoustic signals are often associated with mating behaviour and sexual selection and changes in signalling can lead to rapid evolutionary divergence and may ultimately contribute to the process of speciation. Songs can also have implications for the success of novel methods of disease control such as determining the mating competitiveness of modified insects used for mass-release control programs. Species-specific sound “signatures” may help identify incipient species within species complexes that may be of epidemiological significance, e.g. of higher vectorial capacity, thereby enabling the application of more focussed control measures to optimise the reduction of pathogen transmission. Although the study of acoustic communication in insect vectors has been relatively limited, this review of research demonstrates their value as models for understanding both the functional and evolutionary significance of acoustic communication in insects. PMID:24473800

  3. Magnetoreception in eusocial insects: an update

    PubMed Central

    Wajnberg, Eliane; Acosta-Avalos, Daniel; Alves, Odivaldo Cambraia; de Oliveira, Jandira Ferreira; Srygley, Robert B.; Esquivel, Darci M. S.

    2010-01-01

    Behavioural experiments for magnetoreception in eusocial insects in the last decade are reviewed. Ants and bees use the geomagnetic field to orient and navigate in areas around their nests and along migratory paths. Bees show sensitivity to small changes in magnetic fields in conditioning experiments and when exiting the hive. For the first time, the magnetic properties of the nanoparticles found in eusocial insects, obtained by magnetic techniques and electron microscopy, are reviewed. Different magnetic oxide nanoparticles, ranging from superparamagnetic to multi-domain particles, were observed in all body parts, but greater relative concentrations in the abdomens and antennae of honeybees and ants have focused attention on these segments. Theoretical models for how these specific magnetosensory apparatuses function have been proposed. Neuron-rich ant antennae may be the most amenable to discovering a magnetosensor that will greatly assist research into higher order processing of magnetic information. The ferromagnetic hypothesis is believed to apply to eusocial insects, but interest in a light-sensitive mechanism is growing. The diversity of compass mechanisms in animals suggests that multiple compasses may function in insect orientation and navigation. The search for magnetic compasses will continue even after a magnetosensor is discovered in eusocial insects. PMID:20106876

  4. Magnetoreception in eusocial insects: an update.

    PubMed

    Wajnberg, Eliane; Acosta-Avalos, Daniel; Alves, Odivaldo Cambraia; de Oliveira, Jandira Ferreira; Srygley, Robert B; Esquivel, Darci M S

    2010-04-06

    Behavioural experiments for magnetoreception in eusocial insects in the last decade are reviewed. Ants and bees use the geomagnetic field to orient and navigate in areas around their nests and along migratory paths. Bees show sensitivity to small changes in magnetic fields in conditioning experiments and when exiting the hive. For the first time, the magnetic properties of the nanoparticles found in eusocial insects, obtained by magnetic techniques and electron microscopy, are reviewed. Different magnetic oxide nanoparticles, ranging from superparamagnetic to multi-domain particles, were observed in all body parts, but greater relative concentrations in the abdomens and antennae of honeybees and ants have focused attention on these segments. Theoretical models for how these specific magnetosensory apparatuses function have been proposed. Neuron-rich ant antennae may be the most amenable to discovering a magnetosensor that will greatly assist research into higher order processing of magnetic information. The ferromagnetic hypothesis is believed to apply to eusocial insects, but interest in a light-sensitive mechanism is growing. The diversity of compass mechanisms in animals suggests that multiple compasses may function in insect orientation and navigation. The search for magnetic compasses will continue even after a magnetosensor is discovered in eusocial insects.

  5. Fungus-insect gall of Phlebopus portentosus.

    PubMed

    Zhang, Chun-Xia; He, Ming-Xia; Cao, Yang; Liu, Jing; Gao, Feng; Wang, Wen-Bing; Ji, Kai-Ping; Shao, Shi-Cheng; Wang, Yun

    2015-01-01

    Phlebopus portentosus is a popular edible wild mushroom found in the tropical Yunnan, China, and northern Thailand. In its natural habitats, a gall often has been found on some plant roots, around which fungal fruiting bodies are produced. The galls are different from common insect galls in that their cavity walls are not made from plant tissue but rather from the hyphae of P. portentosus. Therefore we have termed this phenomenon "fungus-insect gall". Thus far six root mealy bug species in the family Pseudococcidae that form fungus-insect galls with P. portentosus have been identified: Formicococcus polysperes, Geococcus satellitum, Planococcus minor, Pseudococcus cryptus, Paraputo banzigeri and Rastrococcus invadens. Fungus-insect galls were found on the roots of more than 21 plant species, including Delonix regia, Citrus maxima, Coffea arabica and Artocarpus heterophyllus. Greenhouse inoculation trials showed that fungus-insect galls were found on the roots of A. heterophyllus 1 mo after inoculation. The galls were subglobose to globose, fulvous when young and became dark brown at maturation. Each gall harbored one or more mealy bugs and had a chimney-like vent for ventilation and access to the gall. The cavity wall had three layers. Various shaped mealy bug wax deposits were found inside the wall. Fungal hyphae invaded the epidermis of plant roots and sometimes even the cortical cells during the late stage of gall development. The identity of the fungus inside the cavity was confirmed by molecular methods.

  6. Insect pest management in forest ecosystems

    NASA Astrophysics Data System (ADS)

    Dahlsten, Donald L.; Rowney, David L.

    1983-01-01

    Understanding the role of insects in forest ecosystems is vital to the development of environmentally and economically sound pest management strategies in forestry Most of the research on forest insects has been confined to phytophagous species associated with economically important tree species The roles of most other insects in forest environments have generally been ignored, including the natural enemies and associates of phytophagous species identified as being important In the past few years several investigations have begun to reevaluate the role of phytophagous species responsible for perturbation in forest ecosystems, and it appears that these species may be playing an important role in the primary productivity of those ecosystems Also, there is an increasing awareness that forest pest managers have been treating the symptoms and not the causes of the problems in the forest Many insect problems are associated with poor sites or sites where trees are growing poorly because of crowding As a result, there is considerable emphasis on the hazard rating of stands of trees for their susceptibility to various phytophagous insects The next step is to manipulate forest stands to make them less susceptible to forest pest complexes A thinning study in California is used as an example and shows that tree mortality in ponderosa pine ( Pinus ponderosa) attributable to the western pine beetle ( Dendroctonus brevicomis) can be reduced by commercial thinning to reduce stocking

  7. Veins improve fracture toughness of insect wings.

    PubMed

    Dirks, Jan-Henning; Taylor, David

    2012-01-01

    During the lifetime of a flying insect, its wings are subjected to mechanical forces and deformations for millions of cycles. Defects in the micrometre thin membranes or veins may reduce the insect's flight performance. How do insects prevent crack related material failure in their wings and what role does the characteristic vein pattern play? Fracture toughness is a parameter, which characterises a material's resistance to crack propagation. Our results show that, compared to other body parts, the hind wing membrane of the migratory locust S. gregaria itself is not exceptionally tough (1.04±0.25 MPa√m). However, the cross veins increase the wing's toughness by 50% by acting as barriers to crack propagation. Using fracture mechanics, we show that the morphological spacing of most wing veins matches the critical crack length of the material (1132 µm). This finding directly demonstrates how the biomechanical properties and the morphology of locust wings are functionally correlated in locusts, providing a mechanically 'optimal' solution with high toughness and low weight. The vein pattern found in insect wings thus might inspire the design of more durable and lightweight artificial 'venous' wings for micro-air-vehicles. Using the vein spacing as indicator, our approach might also provide a basis to estimate the wing properties of endangered or extinct insect species.

  8. Neuropeptidergic regulation of reproduction in insects.

    PubMed

    Van Wielendaele, Pieter; Badisco, Liesbeth; Vanden Broeck, Jozef

    2013-07-01

    Successful animal reproduction depends on multiple physiological and behavioral processes that take place in a timely and orderly manner in both mating partners. It is not only necessary that all relevant processes are well coordinated, they also need to be adjusted to external factors of abiotic and biotic nature (e.g. population density, mating partner availability). Therefore, it is not surprising that several hormonal factors play a crucial role in the regulation of animal reproductive physiology. In insects (the largest class of animals on planet Earth), lipophilic hormones, such as ecdysteroids and juvenile hormones, as well as several neuropeptides take part in this complex regulation. While some peptides can affect reproduction via an indirect action (e.g. by influencing secretion of juvenile hormone), others exert their regulatory activity by directly targeting the reproductive system. In addition to insect peptides with proven activities, several others were suggested to also play a role in the regulation of reproductive physiology. Because of the long evolutionary history of many insect orders, it is not always clear to what extent functional data obtained in a given species can be extrapolated to other insect taxa. In this paper, we will review the current knowledge concerning the neuropeptidergic regulation of insect reproduction and situate it in a more general physiological context.

  9. Shifting behaviour: epigenetic reprogramming in eusocial insects.

    PubMed

    Patalano, Solenn; Hore, Timothy A; Reik, Wolf; Sumner, Seirian

    2012-06-01

    Epigenetic modifications are ancient and widely utilised mechanisms that have been recruited across fungi, plants and animals for diverse but fundamental biological functions, such as cell differentiation. Recently, a functional DNA methylation system was identified in the honeybee, where it appears to underlie queen and worker caste differentiation. This discovery, along with other insights into the epigenetics of social insects, allows provocative analogies to be drawn between insect caste differentiation and cellular differentiation, particularly in mammals. Developing larvae in social insect colonies are totipotent: they retain the ability to specialise as queens or workers, in a similar way to the totipotent cells of early embryos before they differentiate into specific cell lineages. Further, both differentiating cells and insect castes lose phenotypic plasticity by committing to their lineage, losing the ability to be readily reprogrammed. Hence, a comparison of the epigenetic mechanisms underlying lineage differentiation (and reprogramming) between cells and social insects is worthwhile. Here we develop a conceptual model of how loss and regain of phenotypic plasticity might be conserved for individual specialisation in both cells and societies. This framework forges a novel link between two fields of biological research, providing predictions for a unified approach to understanding the molecular mechanisms underlying biological complexity.

  10. Acoustic communication in insect disease vectors.

    PubMed

    Vigoder, Felipe de Mello; Ritchie, Michael Gordon; Gibson, Gabriella; Peixoto, Alexandre Afranio

    2013-01-01

    Acoustic signalling has been extensively studied in insect species, which has led to a better understanding of sexual communication, sexual selection and modes of speciation. The significance of acoustic signals for a blood-sucking insect was first reported in the XIX century by Christopher Johnston, studying the hearing organs of mosquitoes, but has received relatively little attention in other disease vectors until recently. Acoustic signals are often associated with mating behaviour and sexual selection and changes in signalling can lead to rapid evolutionary divergence and may ultimately contribute to the process of speciation. Songs can also have implications for the success of novel methods of disease control such as determining the mating competitiveness of modified insects used for mass-release control programs. Species-specific sound "signatures" may help identify incipient species within species complexes that may be of epidemiological significance, e.g. of higher vectorial capacity, thereby enabling the application of more focussed control measures to optimise the reduction of pathogen transmission. Although the study of acoustic communication in insect vectors has been relatively limited, this review of research demonstrates their value as models for understanding both the functional and evolutionary significance of acoustic communication in insects.

  11. Insect cell culture in reagent bottles.

    PubMed

    Rieffel, S; Roest, S; Klopp, J; Carnal, S; Marti, S; Gerhartz, B; Shrestha, B

    2014-01-01

    Growing insect cells with high air space in culture vessel is common from the early development of suspension cell culture. We believed and followed it with the hope that it allows sufficient air for optimal cell growth. However, we missed to identify how much air exactly cells need for its growth and multiplication. Here we present the innovative method that changed the way we run insect cell culture. The method is easy to adapt, cost-effective and useful for both academic and industrial research labs. We believe this method will revolutionize the way we run insect cell culture by increasing throughput in a cost-effective way. In our study we identified:•Insect cells need to be in suspension; air space in culture vessel and type of culture vessel is of less importance. Shaking condition that introduces small air bubbles and maintains it in suspension for longer time provides better oxygen transfer in liquid. For this, high-fill volume in combination with speed and shaking diameter are important.•Commercially available insect cells are not fragile as original isolates. These cells can easily withstand higher shaking speed.•Growth condition in particular lab set-up needs to be optimized. The condition used in one lab may not be optimum for another lab due to different incubators from different vendors.

  12. Electrical power generation from insect flight

    NASA Astrophysics Data System (ADS)

    Reissman, Timothy; MacCurdy, Robert B.; Garcia, Ephrahim

    2011-03-01

    This article presents an implementation of a miniature energy harvester (weighing 0.292 grams) on an insect (hawkmoth Manduca sexta) in un-tethered flight. The harvester utilizes a piezoelectric transducer which converts the vibratory motion induced by the insect's flight into electrical power (generating up to 59 μWRMS). By attaching a low-power management circuit (weighing 0.200 grams) to the energy harvester and accumulating the converted energy onboard the flying insect, we are able to visually demonstrate pulsed power delivery (averaging 196 mW) by intermittently flashing a light emitting diode. This self-recharging system offers biologists a new means for powering onboard electronics used to study small flying animals. Using this approach, the lifetime of the electronics would be limited only by the lifetime of the individuals, a vast improvement over current methods.

  13. The rapidly changing landscape of insect phylogenetics.

    PubMed

    Maddison, David R

    2016-12-01

    Insect phylogenetics is being profoundly changed by many innovations. Although rapid developments in genomics have center stage, key progress has been made in phenomics, field and museum science, digital databases and pipelines, analytical tools, and the culture of science. The importance of these methodological and cultural changes to the pace of inference of the hexapod Tree of Life is discussed. The innovations have the potential, when synthesized and mobilized in ways as yet unforeseen, to shine light on the million or more clades in insects, and infer their composition with confidence. There are many challenges to overcome before insects can enter the 'phylocognisant age', but because of the promise of genomics, phenomics, and informatics, that is now an imaginable future.

  14. Freshwater biodiversity and aquatic insect diversification.

    PubMed

    Dijkstra, Klaas-Douwe B; Monaghan, Michael T; Pauls, Steffen U

    2014-01-01

    Inland waters cover less than 1% of Earth's surface but harbor more than 6% of all insect species: Nearly 100,000 species from 12 orders spend one or more life stages in freshwater. Little is known about how this remarkable diversity arose, although allopatric speciation and ecological adaptation are thought to be primary mechanisms. Freshwater habitats are highly susceptible to environmental change and exhibit marked ecological gradients. Standing waters appear to harbor more dispersive species than running waters, but there is little understanding of how this fundamental ecological difference has affected diversification. In contrast to the lack of evolutionary studies, the ecology and habitat preferences of aquatic insects have been intensively studied, in part because of their widespread use as bioindicators. The combination of phylogenetics with the extensive ecological data provides a promising avenue for future research, making aquatic insects highly suitable models for the study of ecological diversification.

  15. Will climate change affect insect pheromonal communication?

    PubMed

    Boullis, Antoine; Detrain, Claire; Francis, Frédéric; Verheggen, François J

    2016-10-01

    Understanding how climate change will affect species interactions is a challenge for all branches of ecology. We have only limited understanding of how increasing temperature and atmospheric CO2 and O3 levels will affect pheromone-mediated communication among insects. Based on the existing literature, we suggest that the entire process of pheromonal communication, from production to behavioural response, is likely to be impacted by increases in temperature and modifications to atmospheric CO2 and O3 levels. We argue that insect species relying on long-range chemical signals will be most impacted, because these signals will likely suffer from longer exposure to oxidative gases during dispersal. We provide future directions for research programmes investigating the consequences of climate change on insect pheromonal communication.

  16. Unraveling navigational strategies in migratory insects

    PubMed Central

    Merlin, Christine; Heinze, Stanley; Reppert, Steven M.

    2011-01-01

    Long-distance migration is a strategy some animals use to survive a seasonally changing environment. To reach favorable grounds, migratory animals have evolved sophisticated navigational mechanisms that rely on a map and compasses. In migratory insects, the existence of a map sense (sense of position) remains poorly understood, but recent work has provided new insights into the mechanisms some compasses use for maintaining a constant bearing during long-distance navigation. The best-studied directional strategy relies on a time-compensated sun compass, used by diurnal insects, for which neural circuits have begun to be delineated. Yet, a growing body of evidence suggests that migratory insects may also rely on other compasses that use night sky cues or the Earth's magnetic field. Those mechanisms are ripe for exploration. PMID:22154565

  17. Epigenetic code and insect behavioural plasticity.

    PubMed

    Maleszka, Ryszard

    2016-06-01

    Although the nature of the genetic control of adaptive behaviours in insects is a major unresolved problem it is now understood that epigenetic mechanisms, bound by genetic constraints, are prime drivers of brain plasticity arising from both developmental and experience-dependent events. With the recent advancements in methylomics and emerging analyses of histones and non-protein-coding RNAs, insect epigenetics is well positioned to ask more direct questions and importantly, address them experimentally. To achieve rapid progress, insect epigenetics needs to focus on mechanistic explanations of epigenomic dynamics and move beyond low-depth genome-wide analyses to cell-type specific epigenomics. One topic of a high priority is the impact of sequence variants on generating differential methylation patterns and their contribution to behavioural plasticity.

  18. Agricultural applications of insect ecological genomics.

    PubMed

    Poelchau, Monica F; Coates, Brad S; Childers, Christopher P; Peréz de León, Adalberto A; Evans, Jay D; Hackett, Kevin; Shoemaker, DeWayne

    2016-02-01

    Agricultural entomology is poised to benefit from the application of ecological genomics, particularly the fields of biofuels generation and pest control. Metagenomic methods can characterize microbial communities of termites, wood-boring beetles and livestock pests, and transcriptomic approaches reveal molecular bases behind wood-digesting capabilities of these insects, leading to potential mechanisms for biofuel generation. Genome sequences are being exploited to develop new pest control methods, identify candidate antigens to vaccinate livestock, and discover RNAi target sequences and potential non-target effects in other insects. Gene content analyses of pest genome sequences and their endosymbionts suggest metabolic interdependencies between organisms, exposing potential gene targets for insect control. Finally, genome-wide association studies and genotyping by high-throughput sequencing promise to improve management of pesticide resistance.

  19. Damage signals in the insect immune response

    PubMed Central

    Krautz, Robert; Arefin, Badrul; Theopold, Ulrich

    2014-01-01

    Insects and mammals share an ancient innate immune system comprising both humoral and cellular responses. The insect immune system consists of the fat body, which secretes effector molecules into the hemolymph and several classes of hemocytes, which reside in the hemolymph and of protective border epithelia. Key features of wound- and immune responses are shared between insect and mammalian immune systems including the mode of activation by commonly shared microbial (non-self) patterns and the recognition of these patterns by dedicated receptors. It is unclear how metazoan parasites in insects, which lack these shared motifs, are recognized. Research in recent years has demonstrated that during entry into the insect host, many eukaryotic pathogens leave traces that alert potential hosts of the damage they have afflicted. In accordance with terminology used in the mammalian immune systems, these signals have been dubbed danger- or damage-associated signals. Damage signals are necessary byproducts generated during entering hosts either by mechanical or proteolytic damage. Here, we briefly review the current stage of knowledge on how wound closure and wound healing during mechanical damage is regulated and how damage-related signals contribute to these processes. We also discuss how sensors of proteolytic activity induce insect innate immune responses. Strikingly damage-associated signals are also released from cells that have aberrant growth, including tumor cells. These signals may induce apoptosis in the damaged cells, the recruitment of immune cells to the aberrant tissue and even activate humoral responses. Thus, this ensures the removal of aberrant cells and compensatory proliferation to replace lost tissue. Several of these pathways may have been co-opted from wound healing and developmental processes. PMID:25071815

  20. RNA interference: Applications and advances in insect toxicology and insect pest management.

    PubMed

    Kim, Young Ho; Soumaila Issa, Moustapha; Cooper, Anastasia M W; Zhu, Kun Yan

    2015-05-01

    Since its discovery, RNA interference (RNAi) has revolutionized functional genomic studies due to its sequence-specific nature of post-transcriptional gene silencing. In this paper, we provide a comprehensive review of the recent literature and summarize the current knowledge and advances in the applications of RNAi technologies in the field of insect toxicology and insect pest management. Many recent studies have focused on identification and validation of the genes encoding insecticide target proteins, such as acetylcholinesterases, ion channels, Bacillus thuringiensis receptors, and other receptors in the nervous system. RNAi technologies have also been widely applied to reveal the role of genes encoding cytochrome P450 monooxygenases, carboxylesterases, and glutathione S-transferases in insecticide detoxification and resistance. More recently, studies have focused on understanding the mechanism of insecticide-mediated up-regulation of detoxification genes in insects. As RNAi has already shown great potentials for insect pest management, many recent studies have also focused on host-induced gene silencing, in which several RNAi-based transgenic plants have been developed and tested as proof of concept for insect pest management. These studies indicate that RNAi is a valuable tool to address various fundamental questions in insect toxicology and may soon become an effective strategy for insect pest management.

  1. Integration of Insect Infestations into Dynamic Global Vegetation Models Using Insect Functional Types

    NASA Astrophysics Data System (ADS)

    Kim, J. B.; Smith, E.

    2011-12-01

    Many have explored the impact of climate change on insects and explored predictions under future scenarios. But the converse has been limited: no DGVM simulates insect infestation. We are assessing the potential impact of simulating insect infestation processes on DGVMs, and creating a framework for development of insect functional types (IFTs) for integration with DGVMs. Some work have been done devising IFTs for conservation and resource management, but results are limited to qualitative groupings of insect taxa based on resource usage and response to environment. The integration of IFTs into DGVMs would enable exploration of interaction between climate change and vegetation dynamics at the global scale. IFTs have the potential to significantly impact global carbon balance and vegetation distributions, and interaction with other disturbance regimes already modeled in DGVMs (e.g., fire, drought, herbivory). We identify relevant features of existing DGVMs, including spatial and temporal scales, extents, and focuses; how other disturbances are modeled; and model areas where IFTs would link to DGVMs. We identify relevant features of insect models, including hazard and risk models; spatial and temporal resolutions and extents; spatial processes; and commonly used variables. We outline the key considerations, including tradeoffs between accuracy of representation and the breadth of applicability; morphology, physiology, biochemistry, reproductive and demographic characteristics; functional effects vs. functional responses; major axes of specialization that are consistent across environments, biogeographic regions, and major insect taxa; and whether IFTs can be empirically evaluated. We propose major axes to define IFTs, and present a sample IFT, the westwide pine beetle.

  2. Remote detection of insect epidemics in conifers

    NASA Technical Reports Server (NTRS)

    Heller, R. C.

    1970-01-01

    With properly exposed color or infrared color film, discolored foliage caused by insect infestations in ponderosa pine is detectable on moderately small-scale photographs with acceptable accuracies. Black and white photographs which matched the wavebands of the ERTS multispectral scanner were combined into one additive color photo. This imagery was not as useful as photographs taken on color, color infrared, or color film with a minus blue filter. Based on the high-altitude color and color infrared photos obtained, it is concluded that only insect infestations larger than 100 meters in diameter are detectable on ERTS imagery.

  3. Insect vision as model for machine vision

    NASA Astrophysics Data System (ADS)

    Osorio, D.; Sobey, Peter J.

    1992-11-01

    The neural architecture, neurophysiology and behavioral abilities of insect vision are described, and compared with that of mammals. Insects have a hardwired neural architecture of highly differentiated neurons, quite different from the cerebral cortex, yet their behavioral abilities are in important respects similar to those of mammals. These observations challenge the view that the key to the power of biological neural computation is distributed processing by a plastic, highly interconnected, network of individually undifferentiated and unreliable neurons that has been a dominant picture of biological computation since Pitts and McCulloch's seminal work in the 1940's.

  4. Molecular basis of odor detection in insects.

    PubMed

    Benton, Richard

    2009-07-01

    Olfactory systems are evolutionarily ancient, underlying the common requirement for all animals to sense and respond to diverse volatile chemical signals in their environment. Odor detection is mediated by odorant receptors (ORs) that, in most olfactory systems, comprise large families of divergent G protein-coupled receptors. Here, I discuss our and others' recent investigations of ORs in the fruit fly, Drosophila melanogaster, which have revealed insights into the distinct evolutionary origin and molecular function of insect ORs. I also describe a bioinformatics strategy that we developed to identify molecules that function with these insect-specific receptors in odor detection.

  5. Two Dimensional Mechanism for Insect Hovering

    SciTech Connect

    Jane Wang, Z.

    2000-09-04

    Resolved computation of two dimensional insect hovering shows for the first time that a two dimensional hovering motion can generate enough lift to support a typical insect weight. The computation reveals a two dimensional mechanism of creating a downward dipole jet of counterrotating vortices, which are formed from leading and trailing edge vortices. The vortex dynamics further elucidates the role of the phase relation between the wing translation and rotation in lift generation and explains why the instantaneous forces can reach a periodic state after only a few strokes. The model predicts the lower limits in Reynolds number and amplitude above which the averaged forces are sufficient. (c) 2000 The American Physical Society.

  6. Joint Statement on Insect Repellents by EPA and CDC

    EPA Pesticide Factsheets

    The EPA and the CDC are recommending the public to use insect repellents and take other precautions to avoid biting insects that carry serious diseases. This statement discusses diseases of concern, government roles, and repellent selection and use.

  7. From Fossil Parasitoids to Vectors: Insects as Parasites and Hosts.

    PubMed

    Nagler, Christina; Haug, Joachim T

    2015-01-01

    Within Metazoa, it has been proposed that as many as two-thirds of all species are parasitic. This propensity towards parasitism is also reflected within insects, where several lineages independently evolved a parasitic lifestyle. Parasitic behaviour ranges from parasitic habits in the strict sense, but also includes parasitoid, phoretic or kleptoparasitic behaviour. Numerous insects are also the host for other parasitic insects or metazoans. Insects can also serve as vectors for numerous metazoan, protistan, bacterial and viral diseases. The fossil record can report this behaviour with direct (parasite associated with its host) or indirect evidence (insect with parasitic larva, isolated parasitic insect, pathological changes of host). The high abundance of parasitism in the fossil record of insects can reveal important aspects of parasitic lifestyles in various evolutionary lineages. For a comprehensive view on fossil parasitic insects, we discuss here different aspects, including phylogenetic systematics, functional morphology and a direct comparison of fossil and extant species.

  8. Machine learning for characterization of insect vector feeding

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Insects that feed by ingesting plant and animal fluids cause devastating damage to humans, livestock, and agriculture worldwide, primarily by transmitting phytopathogenic and zoonotic pathogens. The feeding processes required for successful disease transmission by sucking insects can be recorded by ...

  9. The role of mites in insect-fungus associations.

    PubMed

    Hofstetter, R W; Moser, J C

    2014-01-01

    The interactions among insects, mites, and fungi are diverse and complex but poorly understood in most cases. Associations among insects, mites, and fungi span an almost incomprehensible array of ecological interactions and evolutionary histories. Insects and mites often share habitats and resources and thus interact within communities. Many mites and insects rely on fungi for nutrients, and fungi benefit from them with regard to spore dispersal, habitat provision, or nutrient resources. Mites have important impacts on community dynamics, ecosystem processes, and biodiversity within many insect-fungus systems. Given that mites are understudied but highly abundant, they likely have bigger, more important, and more widespread impacts on communities than previously recognized. We describe mutualistic and antagonistic effects of mites on insect-fungus associations, explore the processes that underpin ecological and evolutionary patterns of these multipartite communities, review well-researched examples of the effects of mites on insect-fungus associations, and discuss approaches for studying mites within insect-fungus communities.

  10. Molecular mechanisms of phenotypic plasticity in social insects

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Polyphenism in insects, whereby a single genome expresses different phenotypes in response to environmental cues, is a fascinating biological phenomenon. Social insects are especially intriguing examples of phenotypic plasticity because division of labor results in the development of extreme morphol...

  11. Hormones and pheromones in regulation of insect behavior

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Both pheromones and hormones are well recognized regulators of insect biology. However, the interactions between hormones and pheromones in coordinating insect biology are less well understood. We have studied the interactions between juvenile hormone, its precursor methyl farnesoate, and pheromon...

  12. Eight Ways to Catch an Insect

    ERIC Educational Resources Information Center

    Gray, Alice

    1977-01-01

    The webs of eight North American spiders are illustrated and discussed. Using these webs, the spiders are able to catch insects for their meals. Each of the webs are unique and require a different approach to the problem of food getting. (MA)

  13. Asymmetric radar echo patterns from insects

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Radar echoes from insects, birds, and bats in the atmosphere exhibit both symmetry and asymmetry in polarimetric patterns. Symmetry refers to similar magnitudes of polarimetric variables at opposite azimuths, and asymmetry relegates to differences in these magnitudes. Asymmetry can be due to diffe...

  14. Insects: Little Things That Run the World

    ERIC Educational Resources Information Center

    Tilley, Luke

    2014-01-01

    Insects are easily the most abundant and diverse group of animals, with over 24,000 species in the UK alone. They can be found in almost every habitat on Earth and are fundamentally important to ecology, conservation, food production, animal and human health, and biodiversity. They are a prominent feature of almost every food web in the UK and…

  15. Quantitative Analysis of Radar Returns from Insects

    NASA Technical Reports Server (NTRS)

    Riley, J. R.

    1979-01-01

    When a number of flying insects is low enough to permit their resolution as individual radar targets, quantitative estimates of their aerial density are developed. Accurate measurements of heading distribution using a rotating polarization radar to enhance the wingbeat frequency method of identification are presented.

  16. Magnetoreception in Eusocial Insects: An Update

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Behavioral experiments for magnetoreception in eusocial insects in the last decade are reviewed. Ants and bees use the geomagnetic field to orient and navigate in areas around their nests and in migratory paths. Bees show sensitivity to small changes in magnetic fields in conditioning experiments a...

  17. Insect photoreceptor adaptations to night vision.

    PubMed

    Honkanen, Anna; Immonen, Esa-Ville; Salmela, Iikka; Heimonen, Kyösti; Weckström, Matti

    2017-04-05

    Night vision is ultimately about extracting information from a noisy visual input. Several species of nocturnal insects exhibit complex visually guided behaviour in conditions where most animals are practically blind. The compound eyes of nocturnal insects produce strong responses to single photons and process them into meaningful neural signals, which are amplified by specialized neuroanatomical structures. While a lot is known about the light responses and the anatomical structures that promote pooling of responses to increase sensitivity, there is still a dearth of knowledge on the physiology of night vision. Retinal photoreceptors form the first bottleneck for the transfer of visual information. In this review, we cover the basics of what is known about physiological adaptations of insect photoreceptors for low-light vision. We will also discuss major enigmas of some of the functional properties of nocturnal photoreceptors, and describe recent advances in methodologies that may help to solve them and broaden the field of insect vision research to new model animals.This article is part of the themed issue 'Vision in dim light'.

  18. Transgenic plants protected from insect attack

    NASA Astrophysics Data System (ADS)

    Vaeck, Mark; Reynaerts, Arlette; Höfte, Herman; Jansens, Stefan; de Beuckeleer, Marc; Dean, Caroline; Zabeau, Marc; Montagu, Marc Van; Leemans, Jan

    1987-07-01

    The Gram-positive bacterium Bacillus thuringiensis produces proteins which are specifically toxic to a variety of insect species. Modified genes have been derived from bt2, a toxin gene cloned from one Bacillus strain. Transgenic tobacco plants expressing these genes synthesize insecticidal proteins which protect them from feeding damage by larvae of the tobacco hornworm.

  19. Insect Pests Models and Insecticide Application

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the past, the dominant approach in theoretical pest management ecology has emphasized the use of simple analytical or mathematical models and the analysis of systems in equilibrium. Recent advancements in computer technology have provided the opportunity for ecological insect modelers to move aw...

  20. Insect flight dynamics: Stability and control

    NASA Astrophysics Data System (ADS)

    Sun, Mao

    2014-04-01

    Insects can hover, fly forward, climb, and descend with ease while demonstrating amazing stability, and they can also maneuver in impressive ways as no other organisms can. Is their flight inherently stable? If so, how can they maneuver so well? In recent years, significant progress has been made in revealing the dynamic flight stability and flight control mechanisms of insects and has partially answered these questions. Here the most recent advances in this active area are reviewed. The aim is to provide the background necessary to do research in the area and raise questions that need to be addressed in the future. This review begins with an overview of the flapping kinematics and aerodynamics of insect flight. It is followed by a summary of the governing equations of insect motion and the simplified theoretical models used for analysis of dynamic stability and control. Next, the stability properties of hovering flight and forward flight are scrutinized. Then the flight control properties are explored, dealing in turn with flight stabilization control, steady-state control for changing from hovering to forward flight and from one forward-flight speed to another, and control for maneuvers near hovering. Finally, remarks are given on the state of the art of this research field and speculation is made on its outlook in the near future.

  1. Almond Production Manual Chapter: Insects and Mites

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The navel orangeworm, Amyelois transitella (Walker), is the most important insect pest of almond in California and can cost as much as $500 dollars per acre to control when the costs of insecticides and sanitation are included. It is a native of the southwestern United States and Mexico and was firs...

  2. Studying insect diversity in the tropics.

    PubMed Central

    Godfray, H C; Lewis, T; Memmott, J

    1999-01-01

    Understanding the extent and causes of insect diversity in the humid tropics is one of the major challenges in modern ecology. We review some of the current approaches to this problem, and discuss how future progress may be made. Recent calculations that there may be more than 30 million species of insect on earth have focused attention on the magnitude of this problem and stimulated several new lines of research (although the true figure is now widely thought to be between five and ten million species). We discuss work based on insecticidal logging surveys; studies of herbivore and parasitoid specificity; macroecological approaches; and the construction of food webs. It is argued that progress in estimating insect diversity and in understanding insect community dynamics will be enhanced by building local inventories of species diversity, and in descriptive and experimental studies of the trophic structure of communities. As an illustration of work aimed at the last goal, we discuss the construction and analysis of quantitative host-parasitoid food webs, drawing on our work on leaf miner communities in Central America. PMID:11605624

  3. Insect Pests of Field Crops. MP-28.

    ERIC Educational Resources Information Center

    Burkhardt, Chris C.

    This document addresses the principles of field crop insect control through biological, mechanical, and chemical processes. Identification, life history, damage, pesticides, pesticide use and environmental considerations are presented for the major pests of corn, alfalfa, beans, small grains, sugar beets, and potatoes. Each section is accompanied…

  4. Personal Insect Repellents and Minimum Risk Pesticides

    EPA Pesticide Factsheets

    An exempt pesticide product may not bear claims to control rodent, insect or microbial pests in a way that links the pests with specific disease. We are considering a proposal to remove personal mosquito and tick repellents from the minimum risk exemption.

  5. The microRNA toolkit of insects

    PubMed Central

    Ylla, Guillem; Fromm, Bastian; Piulachs, Maria-Dolors; Belles, Xavier

    2016-01-01

    Is there a correlation between miRNA diversity and levels of organismic complexity? Exhibiting extraordinary levels of morphological and developmental complexity, insects are the most diverse animal class on earth. Their evolutionary success was in particular shaped by the innovation of holometabolan metamorphosis in endopterygotes. Previously, miRNA evolution had been linked to morphological complexity, but astonishing variation in the currently available miRNA complements of insects made this link unclear. To address this issue, we sequenced the miRNA complement of the hemimetabolan Blattella germanica and reannotated that of two other hemimetabolan species, Locusta migratoria and Acyrthosiphon pisum, and of four holometabolan species, Apis mellifera, Tribolium castaneum, Bombyx mori and Drosophila melanogaster. Our analyses show that the variation of insect miRNAs is an artefact mainly resulting from poor sampling and inaccurate miRNA annotation, and that insects share a conserved microRNA toolkit of 65 families exhibiting very low variation. For example, the evolutionary shift toward a complete metamorphosis was accompanied only by the acquisition of three and the loss of one miRNA families. PMID:27883064

  6. Bug City: House and Backyard Insects [Videotape].

    ERIC Educational Resources Information Center

    1998

    "Bug City" is a video series created to help children learn about insects and other small critters. All aspects of bug life are touched upon including body structure, food, habitat, life cycle, mating habits, camouflage, mutualism (symbiosis), adaptations, social behavior, and more. Each program features dramatic microscopic photography,…

  7. Using entomopathogenic nematodes for crop insect control

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this paper is to provide an overview on using entomopathogenic nematodes for insect pest control. Entomopathogenic nematodes (genera Steinernema and Heterorhabditis), are be used as natural biopesticides. Unlike plant parasitic nematodes, which can be serious crop pests, entomopat...

  8. A Sequential Insect Dispenser for Behavioral Experiments

    ERIC Educational Resources Information Center

    Gans, Carl; Mix, Harold

    1974-01-01

    Describes the construction and operation of an automatic insect dispenser suitable for feeding small vertebrates that are being maintained for behavioral experiments. The food morsels are squirted from their chambers an an air jet, and may be directed at a particluar portion of the cage or distributed to different areas. (JR)

  9. An insect pupal cell with antimicrobial properties

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil-dwelling insects have developed various defense mechanisms to defend against pathogen infection. The pecan weevil, Curculio caryae, spends two to three years in the soil inside an earthen cell. We hypothesized that the cell may possess antimicrobial properties. In a laboratory study, we teste...

  10. Insect-Plant Relationships in Ecological Teaching.

    ERIC Educational Resources Information Center

    Fry, G. L. A.; Wratten, S. D.

    1979-01-01

    Discusses the current theories concerning the evolution of insect-plant relationships. Offers several experiments based on recent publications in this field, concerning relationships between herbivore number and plants' successional status, geographical range, geological history, and stage of growth, and also experiments on the chemical basis of…

  11. Insects of war, terror and torture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    From plagues to malaria transmission, insects and other arthropods have been natural or intentional health and agricultural threats to military and civilian populations throughout human history. The success or failure of military operations frequently has been determined by correctly anticipating in...

  12. Insect Control (II): Hormones and Viruses

    ERIC Educational Resources Information Center

    Marx, Jean L.

    1973-01-01

    Discusses research in the use of hormones and viruses to control insect populations. Although entomologists do not think that pheromones, hormones, and viruses will completely replace more conventional chemical insecticides, they will become increasingly important and will reduce our dependence on traditional insecticides. (JR)

  13. Acoustic Detection of Insects in Palm Trees

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Commercial-crop and ornamental palm trees serve important functions in tropical and subtropical regions of the world, and considerable precautions are taken each year to identify and control infestations of a variety of different insect pests. Large weevils, including the red palm weevil and the co...

  14. Development of Baits for Insect Control

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This article outlines the importance of baits. Baits are formulations that can be used to deliver a toxic chemical or a pathogen (active agent) via ingestion to an insect pest with the goal of killing it. A bait formulations consist of a bait matrix which is the carrier for an active agent. The bait...

  15. Asexuality: the insects that stick with it.

    PubMed

    Maderspacher, Florian

    2011-07-12

    One hope of trying to understand why sex is so powerful and prevalent a mode of reproduction relies on the rare examples of animals that persist long-term without having sex. Now, several species of stick insects join that illustrious circle.

  16. Current excitement from insect muscarinic receptors.

    PubMed

    Trimmer, B A

    1995-02-01

    Recent electrophysiological, pharmacological and molecular studies suggest that muscarinic ACh receptors (mAChRs) in insects are related to, but distinct from, their mammalian counterparts. Insect mAChRs perform two primary roles that are distinguished by their locations. Presynaptic mAChRs, present on sensory terminals, inhibit transmitter release, thereby reducing the effectiveness of specific afferent inputs. In contrast, postsynaptic mAChRs depolarize and increase the excitability of motoneurons and interneurons, thereby acting as dynamic-gain controls. This postsynaptic modulation is achieved in different ways in specific neurons but generally results from the activation of persistent inward and outward currents. At the level of neural processing, these distinct roles enable insect mAChRs to regulate the transfer of sensory information, and modulate the contributions of central neurons to central pattern generators and reflexes. Because these phenomena can be studied in identified neurons, a combination of physiological and molecular studies of mAChRs in insects should help to elucidate some of their behavioral roles. Furthermore, such studies could lead to the identification of general mechanisms of functional plasticity in neuronal networks.

  17. Prostaglandins and their receptors in insect biology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We treat the biological significance of prostaglandins (PGs) and their known receptors in insect biology. PGs and related eicosanoids are oxygenated derivatives of arachidonic acid (AA) and two other C20 polyunsaturated fatty acids. PGs are mostly appreciated in the context of biomedicine, but a gr...

  18. Numerical investigation of insect wing fracture behaviour.

    PubMed

    Rajabi, H; Darvizeh, A; Shafiei, A; Taylor, D; Dirks, J-H

    2015-01-02

    The wings of insects are extremely light-weight biological composites with exceptional biomechanical properties. In the recent years, numerical simulations have become a very powerful tool to answer experimentally inaccessible questions on the biomechanics of insect flight. However, many of the presented models require a sophisticated balance of biomechanical material parameters, many of which are not yet available. In this article we show the first numerical simulations of crack propagation in insect wings. We have used a combination of the maximum-principal stress theory, the traction separation law and basic biomechanical properties of cuticle to develop simple yet accurate finite element (FE) models of locust wings. The numerical results of simulated tensile tests on wing samples are in very good qualitative, and interestingly, also in excellent quantitative agreement with previously obtained experimental data. Our study further supports the idea that the cross-veins in insect wings act as barriers against crack propagation and consequently play a dominant role in toughening the whole wing structure. The use of numerical simulations also allowed us to combine experimental data with previously inaccessible data, such as the distribution of the first principal stress through the wing membrane and the veins. A closer look at the stress-distribution within the wings might help to better understand fracture-toughening mechanisms and also to design more durable biomimetic micro-air vehicles.

  19. Insect pathogens: molecular approaches and techniques

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This book serves as a primer for molecular techniques in insect pathology and is tailored for a wide scientific audience. Contributing authors are internationally recognized experts. The book comprises four sections: 1) pathogen identification and diagnostics, 2) pathogen population genetics and p...

  20. Novel proteinase inhibitor promotes resistance to insects

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A novel Beta vulgaris serine proteinase inhibitor gene (BvSTI) and its protein are identified in response to insect feeding on B. vulgaris seedlings. BvSTI is cloned into an expression vector with constitutive promoter and transformed into Nicotiana benthamiana plants to assess BvSTI’s ability to ...

  1. Plant defences against herbivore and insect attack

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plants deploy a number of defences against attack by insects and other herbivores. Direct defence is conferred by plant products and structures that deter or kill the herbivores. Chemical toxins and deterrents vary widely among plant species, and some typical toxins include alkaloids, terpenoids, st...

  2. Measuring Asymmetry in Insect-Plant Networks

    NASA Astrophysics Data System (ADS)

    Cruz, Cláudia P. T.; de Almeida, Adriana M.; Corso, Gilberto

    2011-03-01

    In this work we focus on interaction networks between insects and plants and in the characterization of insect plant asymmetry, an important issue in coevolution and evolutionary biology. We analyze in particular the asymmetry in the interaction matrix of animals (herbivorous insects) and plants (food resource for the insects). Instead of driving our attention to the interaction matrix itself we derive two networks associated to the bipartite network: the animal network, D1, and the plant network, D2. These networks are constructed according to the following recipe: two animal species are linked once if they interact with the same plant. In a similar way, in the plant network, two plants are linked if they interact with the same animal. To explore the asymmetry between D2 and D1 we test for a set of 23 networks from the ecologic literature networks: the difference in size, ΔL, clustering coefficient difference, ΔC, and mean connectivity difference, Δ. We used a nonparametric statistical test to check the differences in ΔL, ΔC and Δ. Our results indicate that ΔL and Δ show a significative asymmetry.

  3. Insect Biodiversity in the Palearctic Region

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Insect biodiversity in the Palearctic Region is described. Palearctic occupies cold, temperate, and subtropical regions of Eurasia and Africa north of the Sahara Desert together with islands of the Arctic, Atlantic and Pacific oceans. Based on currently available data, there are about 200,000 speci...

  4. Insect destroyers of Tamarisk in southeastern Kazakhstan

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This monograph contains the results of research work on the insect herbivores of tamarisk in southeastern Kazakhstan, which were conducted annually for last 12 years (1994-2006), and also the information, obtained by one of the authors (Mityaev) in the mid-1950s. Studies were conducted within the f...

  5. Active conformation of an insect neuropeptide family.

    PubMed Central

    Nachman, R J; Roberts, V A; Dyson, H J; Holman, G M; Tainer, J A

    1991-01-01

    To understand the structural and chemical basis for insect neuropeptide activity, we have designed, synthesized, and determined the conformation of a biologically active cyclic analog of the pyrokinins, an insect neuropeptide family that mediates myotropic (visceral muscle contractile) activity. Members of this insect neuropeptide family share the common C-terminal pentapeptide sequence Phe-Xaa-Pro-Arg-Leu-NH2 (Xaa = Ser, Thr, or Val). Circular dichroic, nuclear magnetic resonance, and molecular dynamics analyses of the conformationally restricted cyclic pyrokinin analog cyclo(-Asn-Thr-Ser-Phe-Thr-Pro-Arg-Leu-) indicated the presence of a beta-turn in the active core region encompassing residues Thr-Pro-Arg-Leu. The rigid cyclic analog retains biological activity, suggesting that its C-terminal beta-turn is the active pyrokinin conformation recognized by the myotropic receptor. As individual pyrokinins and pyrokinin-like neuropeptides demonstrate both oviduct-contractile and pheromone-biosynthesis activities in various insects, the biologically active beta-turn structure reported here holds broad significance for many biological processes. Images PMID:2034692

  6. Chapter 6. available lepidopteran insect cell lines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This chapter lists the known cell lines from Lepidoptera, largely based on previous compilations of insect cell lines published by W. Fred Hink. More than 320 lines from 65 species are listed. The official designation is given for each cell line as well as the species, tissue source, and, when kno...

  7. Odorant and pheromone receptors in insects.

    PubMed

    Ha, Tal Soo; Smith, Dean P

    2009-01-01

    Since the emergence of the first living cells, survival has hinged on the ability to detect and localize chemicals in the environment. Modern animal species ranging from insects to mammals express large odorant receptor repertoires to detect the structurally diverse array of volatile molecules important for survival. Despite the essential nature of chemical detection, there is surprising diversity in the signaling mechanisms that different species use for odorant detection. In vertebrates, odorant receptors are classical G-protein coupled, seven transmembrane receptors that activate downstream effector enzymes that, in turn, produce second messengers that open ion channels. However, recent work reveals that insects have adopted different strategies to detect volatile chemicals. In Drosophila, the odorant receptors, predicted to have seven transmembrane domains, have reversed membrane topology compared to classical G-protein coupled receptors. Furthermore, insect odorant receptors appear to form odorant-gated ion channels. Pheromone detection in insects is even more unusual, utilizing soluble, extracellular receptors that undergo conformational activation. These alternate olfactory signaling strategies are discussed in terms of receptor design principles.

  8. Satellite DNA in insects: a review.

    PubMed

    Palomeque, T; Lorite, P

    2008-06-01

    The study of insect satellite DNAs (satDNAs) indicates the evolutionary conservation of certain features despite their sequence heterogeneity. Such features can include total length, monomer length, motifs, particular regions and/or secondary and tertiary structures. satDNAs may act as protein-binding sites, structural domains or sites for epigenetic modifications. The selective constraints in the evolution of satDNAs may be due to the satDNA sequence interaction with specific proteins important in heterochromatin formation and possible a role in controlling gene expression. The transcription of satDNA has been described in vertebrates, invertebrates and plants. In insects, differential satDNA expression has been observed in different cells, developmental stages, sex and caste of the individuals. These transcription differences may suggest their involvement in gene-regulation processes. In addition, the satDNA or its transcripts appear to be involved in heterochromatin formation and in chromatin-elimination processes. The importance of transposable elements to insect satDNA is shown by their presence as a constituent of satDNA in several species of insects (including possible active elements). In addition, they may be involved in the formation of centromeres and telomeres and in the homogenization and expansion of satDNA.

  9. Prospects for gene transmformation in insects

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ability to manipulate genetic material in vitro and integrate it into a host genome has proven to be one of the more powerful methods of genetic analysis, as well as a means to manipUlate an organism's biology. In insects, the use of gene transformation is equally Significant in its potential to...

  10. Recombinant Protein Production and Insect Cell Culture and Process

    NASA Technical Reports Server (NTRS)

    Spaulding, Glenn F. (Inventor); Goodwin, Thomas J. (Inventor); OConnor, Kim C. (Inventor); Francis, Karen M. (Inventor); Andrews, Angela D. (Inventor); Prewett, Tracey L. (Inventor)

    1997-01-01

    A process has been developed for recombinant production of selected polypeptides using transformed insect cells cultured in a horizontally rotating culture vessel modulated to create low shear conditions. A metabolically transformed insect cell line is produced using the culture procedure regardless of genetic transformation. The recombinant polypeptide can be produced by an alternative process using virtually infected or stably transformed insect cells containing a gene encoding the described polypeptide. The insect cells can also be a host for viral production.

  11. Recombinant protein production and insect cell culture and process

    NASA Technical Reports Server (NTRS)

    Spaulding, Glenn (Inventor); Prewett, Tacey (Inventor); Goodwin, Thomas (Inventor); Francis, Karen (Inventor); Andrews, Angela (Inventor); Oconnor, Kim (Inventor)

    1993-01-01

    A process has been developed for recombinant production of selected polypeptides using transformed insect cells cultured in a horizontally rotating culture vessel modulated to create low shear conditions. A metabolically transformed insect cell line is produced using the culture procedure regardless of genetic transformation. The recombinant polypeptide can be produced by an alternative process using the cultured insect cells as host for a virus encoding the described polypeptide such as baculovirus. The insect cells can also be a host for viral production.

  12. Diversity of insect nicotinic acetylcholine receptor subunits.

    PubMed

    Jones, Andrew K; Sattelle, David B

    2010-01-01

    Nicotinic acetylcholine receptors (nAChRs) are ligand-gated ion channels that mediate fast synaptic transmission in the insect nervous system and are targets of a major group of insecticides, the neonicotinoids. They consist of five subunits arranged around a central ion channeL Since the subunit composition determines the functional and pharmacological properties of the receptor the presence of nAChR families comprising several subunit-encodinggenes provides a molecular basis for broad functional diversity. Analyses of genome sequences have shown that nAChR gene families remain compact in diverse insect species, when compared to their nematode andvertebrate counterparts. Thus, the fruit fly (Drosophila melanogaster), malaria mosquito (Anopheles gambiae), honey bee (Apis mellifera), silk worm (Bombyx mon) and the red flour beetle (Tribolium castaneum) possess 10-12 nAChR genes while human and the nematode Caenorhabditis elegans have 16 and 29 respectively. Although insect nAChRgene families are amongst the smallest known, receptor diversity can be considerably increased by the posttranscriptional processes alternative splicing and mRNA A-to-I editingwhich can potentially generate protein products which far outnumber the nAChR genes. These two processes can also generate species-specific subunit isoforms. In addition, each insect possesses at least one highly divergent nAChR subunit which may perform species-specific functions. Species-specific subunit diversification may offer promising targets for future rational design of insecticides that target specific pest insects while sparing beneficial species.

  13. Similarities between decapod and insect neuropeptidomes.

    PubMed

    Veenstra, Jan A

    2016-01-01

    Background. Neuropeptides are important regulators of physiological processes and behavior. Although they tend to be generally well conserved, recent results using trancriptome sequencing on decapod crustaceans give the impression of significant differences between species, raising the question whether such differences are real or artefacts. Methods. The BLAST+ program was used to find short reads coding neuropeptides and neurohormons in publicly available short read archives. Such reads were then used to find similar reads in the same archives, and the DNA assembly program Trinity was employed to construct contigs encoding the neuropeptide precursors as completely as possible. Results. The seven decapod species analyzed in this fashion, the crabs Eriocheir sinensis, Carcinus maenas and Scylla paramamosain, the shrimp Litopenaeus vannamei, the lobster Homarus americanus, the fresh water prawn Macrobrachium rosenbergii and the crayfish Procambarus clarkii had remarkably similar neuropeptidomes. Although some neuropeptide precursors could not be assembled, in many cases individual reads pertaining to the missing precursors show unambiguously that these neuropeptides are present in these species. In other cases, the tissues that express those neuropeptides were not used in the construction of the cDNA libraries. One novel neuropeptide was identified: elongated PDH (pigment dispersing hormone), a variation on PDH that has a two-amino-acid insertion in its core sequence. Hyrg is another peptide that is ubiquitously present in decapods and is likely a novel neuropeptide precursor. Discussion. Many insect species have lost one or more neuropeptide genes, but apart from elongated PDH and hyrg all other decapod neuropeptides are present in at least some insect species, and allatotropin is the only insect neuropeptide missing from decapods. This strong similarity between insect and decapod neuropeptidomes makes it possible to predict the receptors for decapod neuropeptides

  14. Similarities between decapod and insect neuropeptidomes

    PubMed Central

    2016-01-01

    Background. Neuropeptides are important regulators of physiological processes and behavior. Although they tend to be generally well conserved, recent results using trancriptome sequencing on decapod crustaceans give the impression of significant differences between species, raising the question whether such differences are real or artefacts. Methods. The BLAST+ program was used to find short reads coding neuropeptides and neurohormons in publicly available short read archives. Such reads were then used to find similar reads in the same archives, and the DNA assembly program Trinity was employed to construct contigs encoding the neuropeptide precursors as completely as possible. Results. The seven decapod species analyzed in this fashion, the crabs Eriocheir sinensis, Carcinus maenas and Scylla paramamosain, the shrimp Litopenaeus vannamei, the lobster Homarus americanus, the fresh water prawn Macrobrachium rosenbergii and the crayfish Procambarus clarkii had remarkably similar neuropeptidomes. Although some neuropeptide precursors could not be assembled, in many cases individual reads pertaining to the missing precursors show unambiguously that these neuropeptides are present in these species. In other cases, the tissues that express those neuropeptides were not used in the construction of the cDNA libraries. One novel neuropeptide was identified: elongated PDH (pigment dispersing hormone), a variation on PDH that has a two-amino-acid insertion in its core sequence. Hyrg is another peptide that is ubiquitously present in decapods and is likely a novel neuropeptide precursor. Discussion. Many insect species have lost one or more neuropeptide genes, but apart from elongated PDH and hyrg all other decapod neuropeptides are present in at least some insect species, and allatotropin is the only insect neuropeptide missing from decapods. This strong similarity between insect and decapod neuropeptidomes makes it possible to predict the receptors for decapod neuropeptides

  15. Evaluation of hazardous chemicals in edible insects and insect-based food intended for human consumption.

    PubMed

    Poma, Giulia; Cuykx, Matthias; Amato, Elvio; Calaprice, Chiara; Focant, Jean Francois; Covaci, Adrian

    2017-02-01

    Due to the rapid increase in world population, the waste of food and resources, and non-sustainable food production practices, the use of alternative food sources is currently strongly promoted. In this perspective, insects may represent a valuable alternative to main animal food sources due to their nutritional value and sustainable production. However, edible insects may be perceived as an unappealing food source and are indeed rarely consumed in developed countries. The food safety of edible insects can thus contribute to the process of acceptance of insects as an alternative food source, changing the perception of developed countries regarding entomophagy. In the present study, the levels of organic contaminants (i.e. flame retardants, PCBs, DDT, dioxin compounds, pesticides) and metals (As, Cd, Co, Cr, Cu, Ni, Pb, Sn, Zn) were investigated in composite samples of several species of edible insects (greater wax moth, migratory locust, mealworm beetle, buffalo worm) and four insect-based food items currently commercialized in Belgium. The organic chemical mass fractions were relatively low (PCBs: 27-2065 pg/g ww; OCPs: 46-368 pg/g ww; BFRs: up to 36 pg/g ww; PFRs 783-23800 pg/g ww; dioxin compounds: up to 0.25 pg WHO-TEQ/g ww) and were generally lower than those measured in common animal products. The untargeted screening analysis revealed the presence of vinyltoluene, tributylphosphate (present in 75% of the samples), and pirimiphos-methyl (identified in 50% of the samples). The levels of Cu and Zn in insects were similar to those measured in meat and fish in other studies, whereas As, Co, Cr, Pb, Sn levels were relatively low in all samples (<0.03 mg/kg ww). Our results support the possibility to consume these insect species with no additional hazards in comparison to the more commonly consumed animal products.

  16. INSECT PHYLOGENOMICS. Comment on "Phylogenomics resolves the timing and pattern of insect evolution".

    PubMed

    Tong, K Jun; Duchêne, Sebastián; Ho, Simon Y W; Lo, Nathan

    2015-07-31

    Misof et al. (Reports, 7 November 2014, p. 763) used a genome-scale data set to estimate the relationships among insect orders and the time scale of their evolution. Here, we reanalyze their data and show that their method has led to systematic underestimation of the evolutionary time scale. We find that key insect groups evolved up to 100 million years earlier than inferred in their study.

  17. Quantifying the Movement of Multiple Insects Using an Optical Insect Counter

    DTIC Science & Technology

    2010-06-01

    insects crossed, with respect to the tunnel width. To test the OIC imaging system, 20 mosquitoes (5–15 day-old female Aedes aegypti L.) contained in a 20...Douglas LW. 1986. Female sex pheromone of the melonworm, Diaphania hylinata (Lepidoptera: Pyralidae) and analysis of male responses to pheromone in a...moving upwind in the tunnel. The time differential between the 2 triggering events can also be used to calculate velocity if individual insects passing

  18. 7 CFR 58.147 - Insect and rodent control program.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Insect and rodent control program. 58.147 Section 58... Service 1 Operations and Operating Procedures § 58.147 Insect and rodent control program. In addition to... made responsible for the performance of a regularly scheduled insect and rodent control...

  19. 46 CFR 72.20-55 - Insect screens.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 3 2010-10-01 2010-10-01 false Insect screens. 72.20-55 Section 72.20-55 Shipping COAST... Accommodations for Officers and Crew § 72.20-55 Insect screens. Provisions must be made to protect the crew quarters against the admission of insects....

  20. 46 CFR 190.20-55 - Insect screens.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Insect screens. 190.20-55 Section 190.20-55 Shipping... ARRANGEMENT Accomodations for Officers, Crew, and Scientific Personnel § 190.20-55 Insect screens. Provisions must be made to protect the crew quarters against the admission of insects....

  1. 40 CFR 161.590 - Nontarget insect data requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Nontarget insect data requirements... § 161.590 Nontarget insect data requirements. (a) Table. Sections 161.100 through 161.102 describe how to use this table to determine the nontarget insect data requirements and the substance to be...

  2. 20 CFR 654.415 - Insect and rodent control.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false Insect and rodent control. 654.415 Section 654.415 Employees' Benefits EMPLOYMENT AND TRAINING ADMINISTRATION, DEPARTMENT OF LABOR SPECIAL... Insect and rodent control. Housing and facilities shall be free of insects, rodents, and other vermin....

  3. 25 CFR 163.31 - Insect and disease control.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Insect and disease control. 163.31 Section 163.31 Indians... Management and Operations § 163.31 Insect and disease control. (a) The Secretary is authorized to protect and preserve Indian forest land from disease or insects (Sept. 20, 1922, Ch. 349, 42 Stat. 857). The...

  4. 46 CFR 92.20-55 - Insect screens.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Insect screens. 92.20-55 Section 92.20-55 Shipping COAST... ARRANGEMENT Accommodations for Officers and Crew § 92.20-55 Insect screens. Provisions must be made to protect the crew quarters against the admission of insects....

  5. 7 CFR 58.247 - Insect and rodent control program.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Insect and rodent control program. 58.247 Section 58... Service 1 Operations and Operating Procedures § 58.247 Insect and rodent control program. In addition to... made responsible for the performance of a regularly scheduled insect and rodent control program...

  6. Coconut leaf bioactivity toward generalist maize insect pests

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tropical plants are often more resistant to insects than temperate plants due to evolution of robust defenses to cope with a more constant insect threat. Coconut (Cocos nucifera L.) has very few chewing leaf feeding insect pests and was tested against two omnivorous leaf feeding caterpillar species,...

  7. Expression of heat shock protein genes in insect stress responses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The heat shock proteins (HSPs) that are abundantly expressed in insects are important modulators of insect survival. Expression of HSP genes in insects is not only developmentally regulated, but also induced by various stressors in order to confer protection against such stressors. The expression o...

  8. Metabolomics reveals insect metabolic responses associated with fungal infection.

    PubMed

    Xu, Yong-Jiang; Luo, Feifei; Gao, Qiang; Shang, Yanfang; Wang, Chengshu

    2015-06-01

    The interactions between insects and pathogenic fungi are complex. We employed metabolomic techniques to profile insect metabolic dynamics upon infection by the pathogenic fungus Beauveria bassiana. Silkworm larvae were infected with fungal spores and microscopic observations demonstrated that the exhaustion of insect hemocytes was coupled with fungal propagation in the insect body cavity. Metabolomic analyses revealed that fungal infection could significantly alter insect energy and nutrient metabolisms as well as the immune defense responses, including the upregulation of carbohydrates, amino acids, fatty acids, and lipids, but the downregulation of eicosanoids and amines. The insect antifeedant effect of the fungal infection was evident with the reduced level of maclurin (a component of mulberry leaves) in infected insects but elevated accumulations in control insects. Insecticidal and cytotoxic mycotoxins like oosporein and beauveriolides were also detected in insects at the later stages of infection. Taken together, the metabolomics data suggest that insect immune responses are energy-cost reactions and the strategies of nutrient deprivation, inhibition of host immune responses, and toxin production would be jointly employed by the fungus to kill insects. The data obtained in this study will facilitate future functional studies of genes and pathways associated with insect-fungus interactions.

  9. 7 CFR 58.147 - Insect and rodent control program.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Insect and rodent control program. 58.147 Section 58... Service 1 Operations and Operating Procedures § 58.147 Insect and rodent control program. In addition to... made responsible for the performance of a regularly scheduled insect and rodent control...

  10. 46 CFR 72.20-55 - Insect screens.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 3 2011-10-01 2011-10-01 false Insect screens. 72.20-55 Section 72.20-55 Shipping COAST... Accommodations for Officers and Crew § 72.20-55 Insect screens. Provisions must be made to protect the crew quarters against the admission of insects....

  11. 20 CFR 654.415 - Insect and rodent control.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 20 Employees' Benefits 3 2011-04-01 2011-04-01 false Insect and rodent control. 654.415 Section 654.415 Employees' Benefits EMPLOYMENT AND TRAINING ADMINISTRATION, DEPARTMENT OF LABOR SPECIAL... Insect and rodent control. Housing and facilities shall be free of insects, rodents, and other vermin....

  12. 46 CFR 190.20-55 - Insect screens.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Insect screens. 190.20-55 Section 190.20-55 Shipping... ARRANGEMENT Accomodations for Officers, Crew, and Scientific Personnel § 190.20-55 Insect screens. Provisions must be made to protect the crew quarters against the admission of insects....

  13. 46 CFR 92.20-55 - Insect screens.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Insect screens. 92.20-55 Section 92.20-55 Shipping COAST... ARRANGEMENT Accommodations for Officers and Crew § 92.20-55 Insect screens. Provisions must be made to protect the crew quarters against the admission of insects....

  14. Automatic monitoring of insect pests in stored grain

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Manual sampling of insects in stored grain is a laborious and time consuming process. Automation of grain sampling should help to increase the adoption of stored-grain integrated pest management. To make accurate insect management decisions, managers need to know both the insect species and numbers ...

  15. Grain sorghum hybrid resistance to insect and bird damage - 2015

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A total of 26 grain sorghum hybrids (24 commercial grain sorghum hybrids and a pair of sugarcane aphid resistant and susceptible controls) were evaluated for resistance to insect and bird damage in Tifton, Georgia. A total of 10 insect pests were observed. The insect pests in order of importance are...

  16. Grain sorghum hybrid resistance to insect and bird damage-2014

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thirty seven grain sorghum hybrids were evaluated for resistance to insect and bird damage in 2014 in Tifton, and a total of 10 insect pests were observed. While sorghum midge and bird damage was relatively low, sorghum webworm and aphid damage was high. Those insects in order of importance are: sug...

  17. Converting insect colony waste into a potting susbstrate.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rearing insect generates both a solid and semisolid waste that is generally discarded in landfills. A study was initiated to determine if the semi-solid insect colony waste product and vermiculite used in insect rearing could be combined and used as a growth substrate for plants. The semi-solid larv...

  18. 46 CFR 72.20-55 - Insect screens.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 3 2013-10-01 2013-10-01 false Insect screens. 72.20-55 Section 72.20-55 Shipping COAST... Accommodations for Officers and Crew § 72.20-55 Insect screens. Provisions must be made to protect the crew quarters against the admission of insects....

  19. 46 CFR 190.20-55 - Insect screens.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Insect screens. 190.20-55 Section 190.20-55 Shipping... ARRANGEMENT Accomodations for Officers, Crew, and Scientific Personnel § 190.20-55 Insect screens. Provisions must be made to protect the crew quarters against the admission of insects....

  20. 46 CFR 92.20-55 - Insect screens.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Insect screens. 92.20-55 Section 92.20-55 Shipping COAST... ARRANGEMENT Accommodations for Officers and Crew § 92.20-55 Insect screens. Provisions must be made to protect the crew quarters against the admission of insects....

  1. 46 CFR 92.20-55 - Insect screens.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Insect screens. 92.20-55 Section 92.20-55 Shipping COAST... ARRANGEMENT Accommodations for Officers and Crew § 92.20-55 Insect screens. Provisions must be made to protect the crew quarters against the admission of insects....

  2. 7 CFR 58.147 - Insect and rodent control program.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Insect and rodent control program. 58.147 Section 58... Service 1 Operations and Operating Procedures § 58.147 Insect and rodent control program. In addition to... made responsible for the performance of a regularly scheduled insect and rodent control...

  3. 7 CFR 58.147 - Insect and rodent control program.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Insect and rodent control program. 58.147 Section 58... Service 1 Operations and Operating Procedures § 58.147 Insect and rodent control program. In addition to... made responsible for the performance of a regularly scheduled insect and rodent control...

  4. 20 CFR 654.415 - Insect and rodent control.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 20 Employees' Benefits 3 2013-04-01 2013-04-01 false Insect and rodent control. 654.415 Section 654.415 Employees' Benefits EMPLOYMENT AND TRAINING ADMINISTRATION, DEPARTMENT OF LABOR SPECIAL... Insect and rodent control. Housing and facilities shall be free of insects, rodents, and other vermin....

  5. 7 CFR 58.247 - Insect and rodent control program.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Insect and rodent control program. 58.247 Section 58... Service 1 Operations and Operating Procedures § 58.247 Insect and rodent control program. In addition to... made responsible for the performance of a regularly scheduled insect and rodent control program...

  6. 7 CFR 58.247 - Insect and rodent control program.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Insect and rodent control program. 58.247 Section 58... Service 1 Operations and Operating Procedures § 58.247 Insect and rodent control program. In addition to... made responsible for the performance of a regularly scheduled insect and rodent control program...

  7. 7 CFR 58.247 - Insect and rodent control program.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Insect and rodent control program. 58.247 Section 58... Service 1 Operations and Operating Procedures § 58.247 Insect and rodent control program. In addition to... made responsible for the performance of a regularly scheduled insect and rodent control program...

  8. 20 CFR 654.415 - Insect and rodent control.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 20 Employees' Benefits 3 2014-04-01 2014-04-01 false Insect and rodent control. 654.415 Section 654.415 Employees' Benefits EMPLOYMENT AND TRAINING ADMINISTRATION, DEPARTMENT OF LABOR SPECIAL... Insect and rodent control. Housing and facilities shall be free of insects, rodents, and other vermin....

  9. 7 CFR 58.147 - Insect and rodent control program.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Insect and rodent control program. 58.147 Section 58... Service 1 Operations and Operating Procedures § 58.147 Insect and rodent control program. In addition to... made responsible for the performance of a regularly scheduled insect and rodent control...

  10. 46 CFR 72.20-55 - Insect screens.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 3 2012-10-01 2012-10-01 false Insect screens. 72.20-55 Section 72.20-55 Shipping COAST... Accommodations for Officers and Crew § 72.20-55 Insect screens. Provisions must be made to protect the crew quarters against the admission of insects....

  11. 20 CFR 654.415 - Insect and rodent control.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 20 Employees' Benefits 3 2012-04-01 2012-04-01 false Insect and rodent control. 654.415 Section 654.415 Employees' Benefits EMPLOYMENT AND TRAINING ADMINISTRATION, DEPARTMENT OF LABOR SPECIAL... Insect and rodent control. Housing and facilities shall be free of insects, rodents, and other vermin....

  12. 46 CFR 72.20-55 - Insect screens.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 3 2014-10-01 2014-10-01 false Insect screens. 72.20-55 Section 72.20-55 Shipping COAST... Accommodations for Officers and Crew § 72.20-55 Insect screens. Provisions must be made to protect the crew quarters against the admission of insects....

  13. 46 CFR 190.20-55 - Insect screens.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Insect screens. 190.20-55 Section 190.20-55 Shipping... ARRANGEMENT Accomodations for Officers, Crew, and Scientific Personnel § 190.20-55 Insect screens. Provisions must be made to protect the crew quarters against the admission of insects....

  14. 46 CFR 190.20-55 - Insect screens.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Insect screens. 190.20-55 Section 190.20-55 Shipping... ARRANGEMENT Accomodations for Officers, Crew, and Scientific Personnel § 190.20-55 Insect screens. Provisions must be made to protect the crew quarters against the admission of insects....

  15. 46 CFR 92.20-55 - Insect screens.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Insect screens. 92.20-55 Section 92.20-55 Shipping COAST... ARRANGEMENT Accommodations for Officers and Crew § 92.20-55 Insect screens. Provisions must be made to protect the crew quarters against the admission of insects....

  16. Physical principles of fluid-mediated insect attachment - Shouldn't insects slip?

    PubMed

    Dirks, Jan-Henning

    2014-01-01

    Insects use either hairy or smooth adhesive pads to safely adhere to various kinds of surfaces. Although the two types of adhesive pads are morphologically different, they both form contact with the substrate via a thin layer of adhesive fluid. To model adhesion and friction forces generated by insect footpads often a simple "wet adhesion" model is used, in which two flat undeformable substrates are separated by a continuous layer of fluid. This review summarizes the key physical and tribological principles that determine the adhesion and friction in such a model. Interestingly, such a simple wet-adhesion model falls short in explaining several features of insect adhesion. For example, it cannot predict the observed high static friction forces of the insects, which enable them to cling to vertical smooth substrates without sliding. When taking a closer look at the "classic" attachment model, one can see that it is based on several simplifications, such as rigid surfaces or continuous layers of Newtonian fluids. Recent experiments show that these assumptions are not valid in many cases of insect adhesion. Future tribological models for insect adhesion thus need to incorporate deformable adhesive pads, non-Newtonian properties of the adhesive fluid and/or partially "dry" or solid-like contact between the pad and the substrate.

  17. External Insect Morphology: A Negative Factor in Attitudes toward Insects and Likelihood of Incorporation in Future Science Education Settings

    ERIC Educational Resources Information Center

    Wagler, Ron; Wagler, Amy

    2012-01-01

    This study investigated if the external morphology of an insect had a negative effect on United States (US) preservice elementary teacher's attitudes toward insects and beliefs concerning the likelihood of incorporating insects into future science education settings. 270 US kindergarten through sixth grade preservice elementary teachers…

  18. RNAi for insect control: current perspective and future challenges.

    PubMed

    Katoch, Rajan; Sethi, Amit; Thakur, Neelam; Murdock, Larry L

    2013-10-01

    The research on the RNA interference (RNAi) for the control of insect pests has made significant growth in recent years. The availability of the genomic sequences of insects has further widened the horizons for the testing of this technology to various insect groups. Different modes of application of double-stranded RNA (dsRNA) have been tested; however, the practicability of delivery of dsRNA in insects still remains the biggest challenge. Till date, the oral delivery of dsRNA in insects is one of the efficient approaches for the practical application of this technique. The uptake of dsRNA from the insect gut is mediated either by SID-1/SID-2 transmembrane proteins or by endocytosis; however, the systemic RNAi machinery still remains to be revealed in insect species. The RNAi-mediated gene knockdown has shown striking results in different insect groups, pointing it to be the upcoming technique for insect control. However, before the successful application of this technique for insect control, some potential issues need to be resolved. This review presents the account of prospects and challenges for the use of this technology for insect control.

  19. Exploiting natural variation to identify insect-resistance genes.

    PubMed

    Broekgaarden, Colette; Snoeren, Tjeerd A L; Dicke, Marcel; Vosman, Ben

    2011-10-01

    Herbivorous insects are widespread and often serious constraints to crop production. The use of insect-resistant crops is a very effective way to control insect pests in agriculture, and the development of such crops can be greatly enhanced by knowledge on plant resistance mechanisms and the genes involved. Plants have evolved diverse ways to cope with insect attack that has resulted in natural variation for resistance towards herbivorous insects. Studying the molecular genetics and transcriptional background of this variation has facilitated the identification of resistance genes and processes that lead to resistance against insects. With the development of new technologies, molecular studies are not restricted to model plants anymore. This review addresses the need to exploit natural variation in resistance towards insects to increase our knowledge on resistance mechanisms and the genes involved. We will discuss how this knowledge can be exploited in breeding programmes to provide sustainable crop protection against insect pests. Additionally, we discuss the current status of genetic research on insect-resistance genes. We conclude that insect-resistance mechanisms are still unclear at the molecular level and that exploiting natural variation with novel technologies will contribute greatly to the development of insect-resistant crop varieties.

  20. Flight investigation of insect contamination and its alleviation

    NASA Technical Reports Server (NTRS)

    Peterson, J. B., Jr.; Fisher, D. F.

    1978-01-01

    An investigation of leading edge contamination by insects was conducted with a JetStar airplane instrumented to detect transition on the outboard leading edge flap and equipped with a system to spray the leading edge in flight. The results of airline type flights with the JetStar indicated that insects can contaminate the leading edge during takeoff and climbout. The results also showed that the insects collected on the leading edges at 180 knots did not erode at cruise conditions for a laminar flow control airplane and caused premature transition of the laminar boundary layer. None of the superslick and hydrophobic surfaces tested showed any significant advantages in alleviating the insect contamination problem. While there may be other solutions to the insect contamination problem, the results of these tests with a spray system showed that a continouous water spray while encountering the insects is effective in preventing insect contamination of the leading edges.

  1. Emerging strategies for RNA interference (RNAi) applications in insects.

    PubMed

    Nandety, Raja Sekhar; Kuo, Yen-Wen; Nouri, Shahideh; Falk, Bryce W

    2015-01-01

    RNA interference (RNAi) in insects is a gene regulatory process that also plays a vital role in the maintenance and in the regulation of host defenses against invading viruses. Small RNAs determine the specificity of the RNAi through precise recognition of their targets. These small RNAs in insects comprise small interfering RNAs (siRNAs), micro RNAs (miRNAs) and Piwi interacting RNAs (piRNAs) of various lengths. In this review, we have explored different forms of the RNAi inducers that are presently in use, and their applications for an effective and efficient fundamental and practical RNAi research with insects. Further, we reviewed trends in next generation sequencing (NGS) technologies and their importance for insect RNAi, including the identification of novel insect targets as well as insect viruses. Here we also describe a rapidly emerging trend of using plant viruses to deliver the RNAi inducer molecules into insects for an efficient RNAi response.

  2. Emerging strategies for RNA interference (RNAi) applications in insects

    PubMed Central

    Nandety, Raja Sekhar; Kuo, Yen-Wen; Nouri, Shahideh; Falk, Bryce W

    2015-01-01

    RNA interference (RNAi) in insects is a gene regulatory process that also plays a vital role in the maintenance and in the regulation of host defenses against invading viruses. Small RNAs determine the specificity of the RNAi through precise recognition of their targets. These small RNAs in insects comprise small interfering RNAs (siRNAs), micro RNAs (miRNAs) and Piwi interacting RNAs (piRNAs) of various lengths. In this review, we have explored different forms of the RNAi inducers that are presently in use, and their applications for an effective and efficient fundamental and practical RNAi research with insects. Further, we reviewed trends in next generation sequencing (NGS) technologies and their importance for insect RNAi, including the identification of novel insect targets as well as insect viruses. Here we also describe a rapidly emerging trend of using plant viruses to deliver the RNAi inducer molecules into insects for an efficient RNAi response. PMID:25424593

  3. Bugs, butterflies, and spiders: children's understandings about insects

    NASA Astrophysics Data System (ADS)

    Shepardson, Daniel P.

    2002-06-01

    This article explores elementary children's ideas about insects. The study involved 20 children from each grade level, kindergarten through fifth-grade, for a total of 120 children. The data collection procedure was designed to investigate what an insect means to children, through the use of three different tasks: draw and explain, interview about instances, and the formulation of a general rule. Considering children's responses to the three tasks, I found that their ideas about insects reflect understandings based on physical characteristics of size and shape, arthropod characteristics, insect characteristics, human-insect interactions, life habits of insects, feeding habits of insects, and means of locomotion. Children's understandings are juxtaposed to that of a scientific perspective, elucidating implications for curriculum development and instructional practice.

  4. Localizing viruses in their insect vectors.

    PubMed

    Blanc, Stéphane; Drucker, Martin; Uzest, Marilyne

    2014-01-01

    The mechanisms and impacts of the transmission of plant viruses by insect vectors have been studied for more than a century. The virus route within the insect vector is amply documented in many cases, but the identity, the biochemical properties, and the structure of the actual molecules (or molecule domains) ensuring compatibility between them remain obscure. Increased efforts are required both to identify receptors of plant viruses at various sites in the vector body and to design competing compounds capable of hindering transmission. Recent trends in the field are opening questions on the diversity and sophistication of viral adaptations that optimize transmission, from the manipulation of plants and vectors ultimately increasing the chances of acquisition and inoculation, to specific "sensing" of the vector by the virus while still in the host plant and the subsequent transition to a transmission-enhanced state.

  5. Insects as vectors: systematics and biology.

    PubMed

    Rodhain, F

    2015-04-01

    Among the many complex relationships between insects and microorganisms such as viruses, bacteria and parasites, some have resulted in the establishment of biological systems within which the insects act as a biological vector for infectious agents. It is therefore advisable to understand the identity and biology of these vectors in depth, in order to define procedures for epidemiological surveillance and anti-vector control. The following are successively reviewed in this article: Anoplura (lice), Siphonaptera (fleas), Heteroptera (bugs: Cimicidae, Triatoma, Belostomatidae), Psychodidae (sandflies), Simuliidae (black flies), Ceratopogonidae (biting midges), Culicidae (mosquitoes), Tabanidae (horseflies) and Muscidae (tsetse flies, stable flies and pupipara). The authors provide a rapid overview of the morphology, systematics, development cycle and bio-ecology of each of these groups of vectors. Finally, their medical and veterinary importance is briefly reviewed.

  6. Vision and visual navigation in nocturnal insects.

    PubMed

    Warrant, Eric; Dacke, Marie

    2011-01-01

    With their highly sensitive visual systems, nocturnal insects have evolved a remarkable capacity to discriminate colors, orient themselves using faint celestial cues, fly unimpeded through a complicated habitat, and navigate to and from a nest using learned visual landmarks. Even though the compound eyes of nocturnal insects are significantly more sensitive to light than those of their closely related diurnal relatives, their photoreceptors absorb photons at very low rates in dim light, even during demanding nocturnal visual tasks. To explain this apparent paradox, it is hypothesized that the necessary bridge between retinal signaling and visual behavior is a neural strategy of spatial and temporal summation at a higher level in the visual system. Exactly where in the visual system this summation takes place, and the nature of the neural circuitry that is involved, is currently unknown but provides a promising avenue for future research.

  7. Insect phylogenetics in the digital age.

    PubMed

    Dietrich, Christopher H; Dmitriev, Dmitry A

    2016-12-01

    Insect systematists have long used digital data management tools to facilitate phylogenetic research. Web-based platforms developed over the past several years support creation of comprehensive, openly accessible data repositories and analytical tools that support large-scale collaboration, accelerating efforts to document Earth's biota and reconstruct the Tree of Life. New digital tools have the potential to further enhance insect phylogenetics by providing efficient workflows for capturing and analyzing phylogenetically relevant data. Recent initiatives streamline various steps in phylogenetic studies and provide community access to supercomputing resources. In the near future, automated, web-based systems will enable researchers to complete a phylogenetic study from start to finish using resources linked together within a single portal and incorporate results into a global synthesis.

  8. Remote radio control of insect flight.

    PubMed

    Sato, Hirotaka; Berry, Christopher W; Peeri, Yoav; Baghoomian, Emen; Casey, Brendan E; Lavella, Gabriel; Vandenbrooks, John M; Harrison, Jon F; Maharbiz, Michel M

    2009-01-01

    We demonstrated the remote control of insects in free flight via an implantable radio-equipped miniature neural stimulating system. The pronotum mounted system consisted of neural stimulators, muscular stimulators, a radio transceiver-equipped microcontroller and a microbattery. Flight initiation, cessation and elevation control were accomplished through neural stimulus of the brain which elicited, suppressed or modulated wing oscillation. Turns were triggered through the direct muscular stimulus of either of the basalar muscles. We characterized the response times, success rates, and free-flight trajectories elicited by our neural control systems in remotely controlled beetles. We believe this type of technology will open the door to in-flight perturbation and recording of insect flight responses.

  9. Immune response inhibits associative learning in insects.

    PubMed Central

    Mallon, Eamonn B; Brockmann, Axel; Schmid-Hempel, Paul

    2003-01-01

    In vertebrates, it is well established that there are many intricate interactions between the immune system and the nervous system, and vice versa. Regarding insects, until now little has been known about the link between these two systems. Here, we present behavioural evidence indicating a link between the immune system and the nervous system in insects. We show that otherwise non-infected honeybees whose immune systems are challenged by a non-pathogenic immunogenic elicitor lipopolysaccharide (LPS) have reduced abilities to associate an odour with sugar reward in a classical conditioning paradigm. The cost of an immune response therefore not only affects survival of the host, as previously shown, but also everyday behaviour and memory formation. PMID:14667337

  10. Remote Radio Control of Insect Flight

    PubMed Central

    Sato, Hirotaka; Berry, Christopher W.; Peeri, Yoav; Baghoomian, Emen; Casey, Brendan E.; Lavella, Gabriel; VandenBrooks, John M.; Harrison, Jon F.; Maharbiz, Michel M.

    2009-01-01

    We demonstrated the remote control of insects in free flight via an implantable radio-equipped miniature neural stimulating system. The pronotum mounted system consisted of neural stimulators, muscular stimulators, a radio transceiver-equipped microcontroller and a microbattery. Flight initiation, cessation and elevation control were accomplished through neural stimulus of the brain which elicited, suppressed or modulated wing oscillation. Turns were triggered through the direct muscular stimulus of either of the basalar muscles. We characterized the response times, success rates, and free-flight trajectories elicited by our neural control systems in remotely controlled beetles. We believe this type of technology will open the door to in-flight perturbation and recording of insect flight responses. PMID:20161808

  11. Velocity correlations in laboratory insect swarms

    NASA Astrophysics Data System (ADS)

    Ni, R.; Ouellette, N. T.

    2015-12-01

    In contrast to animal groups such as bird flocks or migratory herds that display net, directed motion, insect swarms do not possess global order. Without such order, it is difficult to define and characterize the transition to collective behavior in swarms; nevertheless, visual observation of swarms strongly suggests that swarming insects do behave collectively. It has recently been suggested that correlation rather than order is the hallmark of emergent collective behavior. Here, we report measurements of spatial velocity correlation functions in laboratory mating swarms of the non-biting midge Chironomus riparius. Although we find some correlation at short distances, our swarms are in general only weakly correlated, in contrast to what has been observed in field studies. Our results hint at the potentially important role of environmental conditions on collective behavior, and suggest that general indicators of the collective nature of swarming are still needed.

  12. Insects and Spiders: Infestations and Bites

    PubMed Central

    Turgeon, E.W.T.

    1987-01-01

    Despite successful eradication techniques and specific effective therapies, insect bites and infestations remain a source of great human misery. The current scabies pandemic shows no signs of abating. Bed bugs, which through the ages have been second only to the malarial mosquito as an insect vector of fatal infection, have now been implicated in the transmission of Hepatitis B and possibly African acquired immune deficiency syndrome (AIDS). The incidence of head- and pubic lice is on the rise, the latter paralleling, and often co-existing with, other sexually transmitted diseases. Black widow spiders are native to many populous areas in southern Canada, and the brown recluse spider's range now encompasses Canada, thanks to moving vans and central heating. ImagesFigure 1Figure 2Figure 3Figure 4Figure 5Figure 6 PMID:21263961

  13. Information Processing in Social Insect Networks

    PubMed Central

    Waters, James S.; Fewell, Jennifer H.

    2012-01-01

    Investigating local-scale interactions within a network makes it possible to test hypotheses about the mechanisms of global network connectivity and to ask whether there are general rules underlying network function across systems. Here we use motif analysis to determine whether the interactions within social insect colonies resemble the patterns exhibited by other animal associations or if they exhibit characteristics of biological regulatory systems. Colonies exhibit a predominance of feed-forward interaction motifs, in contrast to the densely interconnected clique patterns that characterize human interaction and animal social networks. The regulatory motif signature supports the hypothesis that social insect colonies are shaped by selection for network patterns that integrate colony functionality at the group rather than individual level, and demonstrates the utility of this approach for analysis of selection effects on complex systems across biological levels of organization. PMID:22815740

  14. Comparative magnetic measurements on social insects

    NASA Astrophysics Data System (ADS)

    Ferreira, Jandira; Cernicchiaro, Geraldo; Winklhofer, Michael; Dutra, Humberto; de Oliveira, Paulo S.; S. Esquivel, Darci M.; Wajnberg, Eliane

    2005-03-01

    Biogenic magnetite has been detected in several species of social insects and may well form the basis of a magnetic sensory system in these animals, although other physiological functions are possible, too. We report here on hysteresis measurements on honeybees ( Apis mellifera) and the termite Neocapritermes opacus. The ratio of saturation remanence to saturation magnetization, Jrs/ Js, was determined as 0.11 (0.15) in bees (termite), the coercive force Hc as 90 (50 Oe). The magnetic remanence is generally low (of the order of 10 -6 emu per individual). The values obtained are similar to the ones reported previously on a migratory ant species, which suggests that biomineralization of magnetic material in social insects may underlie a generic process.

  15. Managing social insects of urban importance.

    PubMed

    Rust, Michael K; Su, Nan-Yao

    2012-01-01

    Social insects have a tremendous economic and social impact on urban communities. The rapid urbanization of the world has dramatically increased the incidence of urban pests. Human commerce has resulted in the spread of urban invasive species worldwide such that various species are now common to many major urban centers. We aim to highlight those social behaviors that can be exploited to control these pests with the minimal use of pesticides. Their cryptic behavior often prohibits the direct treatment of colonies. However, foraging and recruitment are essential aspects of their social behavior and expose workers to traps, baits, and pesticide applications. The advent of new chemistries has revolutionized the pest management strategies used to control them. In recent years, there has been an increased environmental awareness, especially in the urban community. Advances in molecular and microbial agents promise additional tools in developing integrated pest management programs against social insects.

  16. Studying insect motion with piezoelectric sensors

    NASA Astrophysics Data System (ADS)

    Mika, Bartosz; Lee, Hyungoo; González, Jorge M.; Vinson, S. Bradleigh; Liang, Hong

    2007-04-01

    Piezoelectric materials have been widely used in applications such as transducers, acoustic components, as well as motion, pressure and airborne sensors. Because of the material's biocompatibility and flexibility, we have been able to apply small piezoelectric sensors, made of PVDF, to cockroaches. We built a laboratory test system to study the piezoelectric properties of a bending sensor. The tested motion was compared with that of the sensor attached to a cockroach. Surface characterization and finite element analysis revealed the effects of microstructure on piezoelectric response. The sensor attachment enables us to monitor the insects' locomotion and study their behaviors. The applications of engineering materials to insects opens the door to innovating approaches to integrating biological, mechanical and electrical systems.

  17. Lignin degradation in wood-feeding insects.

    PubMed

    Geib, Scott M; Filley, Timothy R; Hatcher, Patrick G; Hoover, Kelli; Carlson, John E; Jimenez-Gasco, Maria del Mar; Nakagawa-Izumi, Akiko; Sleighter, Rachel L; Tien, Ming

    2008-09-02

    The aromatic polymer lignin protects plants from most forms of microbial attack. Despite the fact that a significant fraction of all lignocellulose degraded passes through arthropod guts, the fate of lignin in these systems is not known. Using tetramethylammonium hydroxide thermochemolysis, we show lignin degradation by two insect species, the Asian longhorned beetle (Anoplophora glabripennis) and the Pacific dampwood termite (Zootermopsis angusticollis). In both the beetle and termite, significant levels of propyl side-chain oxidation (depolymerization) and demethylation of ring methoxyl groups is detected; for the termite, ring hydroxylation is also observed. In addition, culture-independent fungal gut community analysis of A. glabripennis identified a single species of fungus in the Fusarium solani/Nectria haematococca species complex. This is a soft-rot fungus that may be contributing to wood degradation. These results transform our understanding of lignin degradation by wood-feeding insects.

  18. The evolution of insect germline specification strategies

    PubMed Central

    Quan, Honghu; Lynch, Jeremy A.

    2016-01-01

    The establishment of the germline is essential for sexually reproducing organisms. In animals, there are two major strategies to specify the germline: maternal provision and zygotic induction. The molecular basis of the maternal provision mode has been well characterized in several model organisms (fly, frog, fish, and nematode), while that of the zygotic induction mode has mainly been studied in mammalian models such as the mouse. Shifts in germline determination modes occur unexpectedly frequently and many such shifts have occurred several times among insects. Given their general tractability and rapidly increasing genomic and genetic tools applicable to many species, the insects present a uniquely powerful model system for understanding major transitions in reproductive strategies, and developmental processes in general. PMID:27088076

  19. Cultivating Insect Cells To Produce Recombinant Proteins

    NASA Technical Reports Server (NTRS)

    Spaulding, Glenn; Goodwin, Thomas; Prewett, Tacey; Andrews, Angela; Francis, Karen; O'Connor, Kim

    1996-01-01

    Method of producing recombinant proteins involves growth of insect cells in nutrient solution in cylindrical bioreactor rotating about cylindrical axis, oriented horizontally and infecting cells with viruses into which genes of selected type cloned. Genes in question those encoding production of desired proteins. Horizontal rotating bioreactor preferred for use in method, denoted by acronym "HARV", described in "High-Aspect-Ratio Rotating Cell-Culture Vessel" (MSC-21662).

  20. The visual system of male scale insects.

    PubMed

    Buschbeck, Elke K; Hauser, Martin

    2009-03-01

    Animal eyes generally fall into two categories: (1) their photoreceptive array is convex, as is typical for camera eyes, including the human eye, or (2) their photoreceptive array is concave, as is typical for the compound eye of insects. There are a few rare examples of the latter eye type having secondarily evolved into the former one. When viewed in a phylogenetic framework, the head morphology of a variety of male scale insects suggests that this group could be one such example. In the Margarodidae (Hemiptera, Coccoidea), males have been described as having compound eyes, while males of some more derived groups only have two single-chamber eyes on each side of the head. Those eyes are situated in the place occupied by the compound eye of other insects. Since male scale insects tend to be rare, little is known about how their visual systems are organized, and what anatomical traits are associated with this evolutionary transition. In adult male Margarodidae, one single-chamber eye (stemmateran ocellus) is present in addition to a compound eye-like region. Our histological investigation reveals that the stemmateran ocellus has an extended retina which is formed by concrete clusters of receptor cells that connect to its own first-order neuropil. In addition, we find that the ommatidia of the compound eyes also share several anatomical characteristics with simple camera eyes. These include shallow units with extended retinas, each of which is connected by its own small nerve to the lamina. These anatomical changes suggest that the margarodid compound eye represents a transitional form to the giant unicornal eyes that have been described in more derived species.