Science.gov

Sample records for biosurfactants mannosylerythritol lipids

  1. [Advance in glycolipid biosurfactants--mannosylerythritol lipids].

    PubMed

    Fan, Linlin; Zhang, Jun; Cai, Jin; Dong, Yachen; Xu, Tengyang; He, Guoqing; Chen, Qihe

    2013-09-01

    Mannosylerythritol lipids (MELs), mainly produced by Ustilago and Pseudozyma, are surface active compounds that belong to the glycolipid class of biosurfactants. MELs have potential application in food, pharmaceutical and cosmetics industries due to their excellent surface activities and other peculiar bioactivities. In recent years, the research field of MELs has regained much attention abroad. However, MELs are rarely studied in China. In this review, the producing microorganisms and production conditions, diverse structures, biochemical properties, structure-function relationship and biosynthetic pathways of MELs are described. Some research problems and prospects are summarized and discussed as well. PMID:24409686

  2. Glycolipid biosurfactants, mannosylerythritol lipids, repair the damaged hair.

    PubMed

    Morita, Tomotake; Kitagawa, Masaru; Yamamoto, Shuhei; Sogabe, Atsushi; Imura, Tomohiro; Fukuoka, Tokuma; Kitamoto, Dai

    2010-01-01

    Mannosylerythritol lipids (MELs), are produced from feedstock by the genus Pseudozyma, and are the most promising biosurfactants known due to its versatile interfacial and biochemical actions. In order to broaden the application in cosmetics, the hair care properties of MELs were investigated using damaged hair. On electron microscopic observation, the damaged hair was dramatically recovered with applying MEL-A and MEL-B. The tensile strength of the damaged hair increased by treatment with MEL-A (122.0 +/- 13.5 gf/p), MEL-B (119.4 +/- 7.6 gf/p) and ceramide (100.7 +/- 15.9 gf/p) compared with only lauryl glucoside (96.7 +/- 12.7 gf/p), indicating the advantage of MELs on hair care treatment. In addition, the average friction coefficient of the damaged hair was maintained after treatment with MEL-A (0.108 +/- 0.002), MEL-B (0.107 +/- 0.003) and the ceramide (0.111 +/- 0.003), although lauryl glucoside treatment increased the average friction coefficient (0.126 +/- 0.003). The increase of bending rigidity by treatment with lauryl glucoside (0.204 +/- 0.002) was prevented by treatment with MEL-A (0.129 +/- 0.002), MEL-B (0.176 +/- 0.003) and the ceramide (0.164 +/- 0.002). Consequently, MELs are proposed to be the new hair care ingredient, which are the highly useful agent for not only for the recovery of damaged hair but also for providing the smooth and flexible hair. PMID:20431244

  3. Glycolipid biosurfactants, mannosylerythritol lipids, repair the damaged hair.

    PubMed

    Morita, Tomotake; Kitagawa, Masaru; Yamamoto, Shuhei; Sogabe, Atsushi; Imura, Tomohiro; Fukuoka, Tokuma; Kitamoto, Dai

    2010-01-01

    Mannosylerythritol lipids (MELs), are produced from feedstock by the genus Pseudozyma, and are the most promising biosurfactants known due to its versatile interfacial and biochemical actions. In order to broaden the application in cosmetics, the hair care properties of MELs were investigated using damaged hair. On electron microscopic observation, the damaged hair was dramatically recovered with applying MEL-A and MEL-B. The tensile strength of the damaged hair increased by treatment with MEL-A (122.0 +/- 13.5 gf/p), MEL-B (119.4 +/- 7.6 gf/p) and ceramide (100.7 +/- 15.9 gf/p) compared with only lauryl glucoside (96.7 +/- 12.7 gf/p), indicating the advantage of MELs on hair care treatment. In addition, the average friction coefficient of the damaged hair was maintained after treatment with MEL-A (0.108 +/- 0.002), MEL-B (0.107 +/- 0.003) and the ceramide (0.111 +/- 0.003), although lauryl glucoside treatment increased the average friction coefficient (0.126 +/- 0.003). The increase of bending rigidity by treatment with lauryl glucoside (0.204 +/- 0.002) was prevented by treatment with MEL-A (0.129 +/- 0.002), MEL-B (0.176 +/- 0.003) and the ceramide (0.164 +/- 0.002). Consequently, MELs are proposed to be the new hair care ingredient, which are the highly useful agent for not only for the recovery of damaged hair but also for providing the smooth and flexible hair.

  4. Genome Sequence of the Basidiomycetous Fungus Pseudozyma aphidis DSM70725, an Efficient Producer of Biosurfactant Mannosylerythritol Lipids.

    PubMed

    Lorenz, Stefan; Guenther, Michael; Grumaz, Christian; Rupp, Steffen; Zibek, Susanne; Sohn, Kai

    2014-01-01

    Pseudozyma aphidis is an efficient producer of mannosylerythritol lipids exceeding concentrations of >100 g/liter from renewable feed stocks. Additionally, a biosurfactant cellobiose lipid is also secreted during nitrogen limitation. Here, we describe the sequencing of P. aphidis to unravel the genomic basis of biosurfactant metabolism in P. aphidis. PMID:24526638

  5. Genome Sequence of the Basidiomycetous Fungus Pseudozyma aphidis DSM70725, an Efficient Producer of Biosurfactant Mannosylerythritol Lipids

    PubMed Central

    Lorenz, Stefan; Guenther, Michael; Grumaz, Christian; Rupp, Steffen; Zibek, Susanne

    2014-01-01

    Pseudozyma aphidis is an efficient producer of mannosylerythritol lipids exceeding concentrations of >100 g/liter from renewable feed stocks. Additionally, a biosurfactant cellobiose lipid is also secreted during nitrogen limitation. Here, we describe the sequencing of P. aphidis to unravel the genomic basis of biosurfactant metabolism in P. aphidis. PMID:24526638

  6. Application of yeast glycolipid biosurfactant, mannosylerythritol lipid, as agrospreaders.

    PubMed

    Fukuoka, Tokuma; Yoshida, Shigenobu; Nakamura, Junichi; Koitabashi, Motoo; Sakai, Hideki; Abe, Masahiko; Kitamoto, Dai; Kitamoto, Hiroko

    2015-01-01

    The spreading property of mannosylerythritol lipids (MELs) was investigated in connection with our search for new application in agriculture. The wetting ability of MEL solutions for hydrophobic surfaces was evaluated based on contact angle measurements for several surfactant solutions on abiotic and biotic surfaces. The contact angle of MEL-A solution on a hydrophobic plastic surface at 100 s after placement decreased to 8.4°, and those of other MEL solutions decreased more significantly compared to those of commonly-used nonionic surfactants. In addition, the contact angle of MEL solutions also dropped down to around 10° on various plant leaf surfaces. MEL solutions, in particular, efficiently spread even on poorly wettable Gramineae plant surfaces on which general nonionic surfactant solutions could not. Moreover, the wetting ability of MEL solutions was found to be greatly affected by the structural difference in their carbohydrate configuration. Furthermore, surface pretreatment with MEL solution led to more efficient spreading and fixing of microbial cells onto plant leaf surface compared to several conventional surfactants used in this study. These results suggested that MELs have a potential to use as a natural bio-based spreading agent, particularly as agrochemical spreader for biopesticides. PMID:25891117

  7. Application of yeast glycolipid biosurfactant, mannosylerythritol lipid, as agrospreaders.

    PubMed

    Fukuoka, Tokuma; Yoshida, Shigenobu; Nakamura, Junichi; Koitabashi, Motoo; Sakai, Hideki; Abe, Masahiko; Kitamoto, Dai; Kitamoto, Hiroko

    2015-01-01

    The spreading property of mannosylerythritol lipids (MELs) was investigated in connection with our search for new application in agriculture. The wetting ability of MEL solutions for hydrophobic surfaces was evaluated based on contact angle measurements for several surfactant solutions on abiotic and biotic surfaces. The contact angle of MEL-A solution on a hydrophobic plastic surface at 100 s after placement decreased to 8.4°, and those of other MEL solutions decreased more significantly compared to those of commonly-used nonionic surfactants. In addition, the contact angle of MEL solutions also dropped down to around 10° on various plant leaf surfaces. MEL solutions, in particular, efficiently spread even on poorly wettable Gramineae plant surfaces on which general nonionic surfactant solutions could not. Moreover, the wetting ability of MEL solutions was found to be greatly affected by the structural difference in their carbohydrate configuration. Furthermore, surface pretreatment with MEL solution led to more efficient spreading and fixing of microbial cells onto plant leaf surface compared to several conventional surfactants used in this study. These results suggested that MELs have a potential to use as a natural bio-based spreading agent, particularly as agrochemical spreader for biopesticides.

  8. Reverse vesicle formation from the yeast glycolipid biosurfactant mannosylerythritol lipid-D.

    PubMed

    Fukuoka, Tokuma; Yanagihara, Takashi; Ito, Seya; Imura, Tomohiro; Morita, Tomotake; Sakai, Hideki; Abe, Masahiko; Kitamoto, Dai

    2012-01-01

    Mannosylerythritol lipids (MELs) are secreted by yeasts and are promising glycolipid biosurfactants. In our study on the non-aqueous phase behaviors of MEL homologues, we found that MEL-D (4-O-[2',3'-di-O-alka(e)noyl-β-D-mannopyranosyl]-(2R,3S)-erythritol) forms aggregates in decane. The microscopic observation and the X-ray scattering measurement of these aggregates revealed that they are reverse vesicles that consist of bilayers whose hydrophilic domains are located in the interior of the bilayers. In addition, MEL-D formed reverse vesicles without co-surfactants and co-solvents in various oily solutions, such as n-alkanes, cyclohexane, squalane, squalene, and silicone oils at a concentration below 10 mM. This is the first report on the reverse vesicle formation from biosurfactants. PMID:22531056

  9. Formation of W/O microemulsion based on natural glycolipid biosurfactant, mannosylerythritol lipid-a.

    PubMed

    Worakitkanchanakul, Wannasiri; Imura, Tomohiro; Morita, Tomotake; Fukuoka, Tokuma; Sakai, Hideki; Abe, Masahiko; Rujiravanit, Ratana; Chavadej, Sumaeth; Kitamoto, Dai

    2008-01-01

    Mannosylerythritol lipid-A (MEL-A) is a glycolipid biosurfactant abundantly produced from soybean oil by microorganisms at a yield of up to 100 g/L. In this study, the formation of water-in-oil (W/O) microemulsion based on the single component of MEL-A was confirmed using dynamic light scattering (DLS) and freeze fracture electron microscopy (FF-EM). DLS and FF-EM measurements revealed that the diameter of the microemulsion increases with an increase in water-to-surfactant mole ratio (W(0)) ranging from 20 to 60 nm, and the maximum W(0) value was found to be 20, which is as high as that of soybean lecithin. Glycolipid biosurfactant has a great potential for the formation of W/O microemulsion without using any cosurfactants. PMID:18075224

  10. Microbial conversion of glycerol into glycolipid biosurfactants, mannosylerythritol lipids, by a basidiomycete yeast, Pseudozyma antarctica JCM 10317(T).

    PubMed

    Morita, Tomotake; Konishi, Masaaki; Fukuoka, Tokuma; Imura, Tomohiro; Kitamoto, Dai

    2007-07-01

    Microbial conversion of glycerol into functional bio-based materials was investigated, aiming to facilitate the utilization of waste glycerol. A basidiomycete yeast, Pseudozyma antarctica JCM 10317, efficiently produced mannosylerythritol lipids (MELs) as glycolipid biosurfactants from glycerol. The amount of MEL yield reached 16.3 g l(-1) by intermittent feeding of glycerol. PMID:17697987

  11. Characterization of new glycolipid biosurfactants, tri-acylated mannosylerythritol lipids, produced by Pseudozyma yeasts.

    PubMed

    Fukuoka, Tokuma; Morita, Tomotake; Konishi, Masaaki; Imura, Tomohiro; Kitamoto, Dai

    2007-07-01

    Mannosylerythritol lipids (MELs) are glycolipid biosurfactants produced by Pseudozyma yeasts. They show not only the excellent interfacial properties but also versatile biochemical actions. In the course of MEL production from soybean oil by P. antarctica and P. rugulosa, some new extracellular glycolipids (more hydrophobic than the previously reported di-acylated MELs) were found in the culture medium. The most hydrophobic one was identified as 1-O-alka(e)noyl-4-O-[(4',6'-di-O-acetyl-2',3'-di-O-alka(e)noyl)-beta-D-mannopyranosyl]-D-erythritol, namely tri-acylated MEL. Others were tri-acylated MELs bearing only one acetyl group. The tri-acylated MEL could be prepared by the lipase-catalyzed esterification of a di-acylated MEL with oleic acid implying that the new glycolipids are synthesized from di-acylated MELs in the culture medium containing the residual fatty acids. PMID:17417694

  12. Production of glycolipid biosurfactants, mannosylerythritol lipids, using sucrose by fungal and yeast strains, and their interfacial properties.

    PubMed

    Morita, Tomotake; Ishibashi, Yuko; Fukuoka, Tokuma; Imura, Tomohiro; Sakai, Hideki; Abe, Masahiko; Kitamoto, Dai

    2009-10-01

    Glycolipid biosurfactants, mannosylerythritol lipids (MELs), were produced from glucose and sucrose without vegetable oils. Pseudozyma antarctica JCM 10317, Ustilago maydis NBRC 5346, U. scitaminea NBRC 32730, and P. siamensis CBS 9960 produced mainly MEL-A, MEL-A, MEL-B, and MEL-C respectively. The sucrose-derived MELs showed excellent interfacial properties: low critical micelle concentration as well as that of oil-derived MELs. PMID:19809166

  13. Characterization of the genus Pseudozyma by the formation of glycolipid biosurfactants, mannosylerythritol lipids.

    PubMed

    Morita, Tomotake; Konishi, Masaaki; Fukuoka, Tokuma; Imura, Tomohiro; Kitamoto, Hiroko K; Kitamoto, Dai

    2007-03-01

    Pseudozyma antarctica is one of the best producers of the glycolipid biosurfactants known as mannosylerythritol lipids (MELs), which show not only excellent surface-active properties but also versatile biochemical actions. In order to obtain a variety of producers, all the species of the genus were examined for their production of MELs from soybean oil. Pseudozyma fusiformata, P. parantarctica and P. tsukubaensis were newly identified to be MEL producers. Of the strains tested, P. parantarctica gave the best yield of MELs (30 g L(-1)). The obtained yield corresponded to those of P. antarctica, P. aphidis and P. rugulosa, which are known high-level MEL producers. Interestingly, P. parantarctica and P. fusiformata produced mainly 4-O-[(4',6'-di-O-acetyl-2',3'-di-O-alkanoyl)-beta-d-mannopyranosyl]-meso-erythritol (MEL-A), whereas P. tsukubaensis produced mainly 4-O-[(6'-mono-O-acetyl-2',3'-di-O-alkanoyl)-beta-d-mannopyranosyl]-meso-erythritol (MEL-B). Consequently, six of the nine species clearly produced MELs. Based on the MEL production pattern, the nine species seemed to fall into four groups: the first group produces large amounts of MELs; the second produces both MELs and other biosurfactants; the third mainly produces MEL-B; and the fourth is non-MEL-producing. Thus, MEL production may be an important taxonomic index for the Pseudozyma yeasts. PMID:17328742

  14. Aqueous-phase behavior of natural glycolipid biosurfactant mannosylerythritol lipid A: sponge, cubic, and lamellar phases.

    PubMed

    Imura, Tomohiro; Hikosaka, Yusuke; Worakitkanchanakul, Wannasiri; Sakai, Hideki; Abe, Masahiko; Konishi, Masaaki; Minamikawa, Hiroyuki; Kitamoto, Dai

    2007-02-13

    The aqueous-phase behavior of mannosylerythritol lipid A (MEL-A), which is a glycolipid biosurfactant produced from vegetable oils by yeast strains of the genus Pseudozyma, was investigated using polarized optical microscopy, small-angle X-ray scattering (SAXS), and differential scanning calorimetry (DSC). MEL-A was found to self-assemble into a variety of distinctive lyotropic liquid crystals including sponge (L3), bicontinuous cubic (V2), and lamella (Lalpha) phases. On the basis of SAXS measurements, we determined the structure of the liquid crystals. The estimated lattice constant for Lalpha was 3.58 nm. DSC measurement revealed that the phase transition enthalpies from the liquid crystal to the fluid isotropic phase were in the range of 0.22-0.44 kJ/mol. Although the present MEL-A phase diagram closely resembled that obtained from relatively hydrophobic poly(oxyethylene) or fluorinated surfactants, the MEL-A L3 region was spread considerably over a wide temperature range (20-65 degrees C) compared to L3 of those surfactants: this is probably due to the unique structure which is molecularly engineered by microorganisms. In this paper, we clarify the aqueous phase diagram of the natural glycolipid biosurfactant MEL-A, and we suggest that the obtained lyotropic crystals are potentially useful as novel nanostructured biomaterials. PMID:17279642

  15. Aqueous-phase behavior and vesicle formation of natural glycolipid biosurfactant, mannosylerythritol lipid-B.

    PubMed

    Worakitkanchanakul, Wannasiri; Imura, Tomohiro; Fukuoka, Tokuma; Morita, Tomotake; Sakai, Hideki; Abe, Masahiko; Rujiravanit, Ratana; Chavadej, Sumaeth; Minamikawa, Hiroyuki; Kitamoto, Dai

    2008-08-01

    Mannosylerythritol lipids (MELs) are one of the most promising glycolipid biosurfactants produced by yeast strains of the genus Pseudozyma. In this study, the aqueous-phase behavior of a new monoacetyl MEL derivative, 1-O-beta-(2',3'-di-O-alka(e)noyl-6'-O-acetyl-d-mannopyranosyl)-d-erythritol (MEL-B), was investigated using polarized optical microscopy, small-angle X-ray scattering (SAXS), confocal laser scanning microscopy (CLSM), and differential scanning calorimetry (DSC). The present MEL-B was found to self-assemble into a lamellar (L(alpha)) phase over remarkably wide concentration and temperature ranges. According to SAXS measurement, the interlayer spacing (d) was estimated to be almost constant (about 4.7 nm) at the low MEL-B concentration (60 wt.%) region, the d-spacing gradually decreased to 3.1 nm with an increase in the MEL-B concentration. The thermal stability of the liquid crystalline phase was investigated by DSC measurement. The obtained L(alpha) phase was found to be stable up to 95 degrees C below a MEL-B concentration of 85 wt.%; then, the melting temperature of the liquid crystalline phase dramatically decreased with an increase in MEL-B concentration (above 85 wt.%). Furthermore, we found relatively large vesicles (1-5 microm) at the low MEL-B concentration using CLSM observation. The trapped volume of the obtained MEL-B vesicle was estimated to be about 0.42 microL/mumol by glucose dialysis method. These results suggest that the natural glycolipid biosurfactant, the newly found MEL-B, would be useful in various fields of applications as an L(alpha) phase- and/or vesicle-forming lipid. PMID:18456469

  16. The moisturizing effects of glycolipid biosurfactants, mannosylerythritol lipids, on human skin.

    PubMed

    Yamamoto, Shuhei; Morita, Tomotake; Fukuoka, Tokuma; Imura, Tomohiro; Yanagidani, Shusaku; Sogabe, Atsushi; Kitamoto, Dai; Kitagawa, Masaru

    2012-01-01

    Glycolipid biosurfactants, such as mannosylerythritol lipids (MELs), are produced by different yeasts belonging to the genus Pseudozyma and have been attracting much attention as new cosmetic ingredients owing to their unique liquid-crystal-forming and moisturizing properties. In this study, the effects of different MEL derivatives on the skin were evaluated in detail using a three-dimensional cultured human skin model and an in vivo human study. The skin cells were cultured and treated with sodium dodecyl sulfate (SDS), and the effects of different lipids on the SDS-damaged cells were evaluated on the basis of cell viability. Most MEL derivatives efficiently recovered the viability of the cells and showed high recovery rates (over 80%) comparable with that of natural ceramide. It is interesting that the recovery rate with MEL-A prepared from olive oil was significantly higher than that of MEL-A prepared from soybean oil. The water retention properties of MEL-B were further investigated on human forearm skin in a preliminary study. Compared with the control, the aqueous solution of MEL-B (5 wt%) was estimated to considerably increase the stratum corneum water content in the skin. Moreover, perspiration on the skin surface was clearly suppressed by treatment with the MEL-B solution. These results suggest that MELs are likely to exhibit a high moisturizing action, by assisting the barrier function of the skin. Accordingly, the yeast glycolipids have a strong potential as a new ingredient for skin care products. PMID:22790172

  17. Enzymatic synthesis of a novel glycolipid biosurfactant, mannosylerythritol lipid-D and its aqueous phase behavior.

    PubMed

    Fukuoka, Tokuma; Yanagihara, Takashi; Imura, Tomohiro; Morita, Tomotake; Sakai, Hideki; Abe, Masahiko; Kitamoto, Dai

    2011-02-01

    Mannosylerythritol lipids (MELs) produced by yeasts are one of the most promising glycolipid biosurfactants. In this study, we succeeded in the preparation of a novel MEL homolog having no acetyl groups, namely MEL-D. MEL-D was synthesized by lipase-catalyzed hydrolysis of acetyl groups from a known MEL, and identified as 4-O-[2',3'-di-O-alka(e)noyl-β-d-mannopyranosyl]-(2R,3S)-erythritol. The obtained MEL-D showed a higher critical aggregation concentration (CAC=1.2 × 10(-5)M) and hydrophilicity compared to known MELs, retaining an excellent surface tension lowering activity (the surface tension at the CAC was 24.5mN/m). In addition, we estimated the binary phase diagram of the MEL-D-water system based on a combination of visual inspection, polarized optical microscopy, and SAXS measurement. From these results, MEL-D was found to self-assemble into a lamellar (L(α)) structure over all ranges of concentration. Meanwhile, the one-phase L(α) region of MEL-D was extended wider than those of known MELs. MEL-D might keep more water between the polar layers in accordance with the extension of the interlayer spacing (d). These results suggest that the newly obtained MEL-D would facilitate the application of MELs in various fields as a lamellar-forming glycolipid with higher hydrate ability. PMID:21163471

  18. A basidiomycetous yeast, Pseudozyma crassa, produces novel diastereomers of conventional mannosylerythritol lipids as glycolipid biosurfactants.

    PubMed

    Fukuoka, Tokuma; Kawamura, Mayo; Morita, Tomotake; Imura, Tomohiro; Sakai, Hideki; Abe, Masahiko; Kitamoto, Dai

    2008-11-24

    Mannosylerythritol lipids (MELs) are glycolipid biosurfactants produced by the yeast strains of the genus Pseudozyma. These compounds show not only excellent surface-active properties, but also versatile biochemical actions. During a survey of new MEL producers, we found that a basidiomycetous yeast, Pseudozyma crassa, extracellularly produces three glycolipids. When glucose and oleic acid were used as the carbon source, the total amount of glycolipids reached approximately 4.6g/L in the culture medium. The structures of these glycolipids were similar to those of well-known MEL-A, -B, and -C, respectively. Very interestingly, in all the present glycolipids, the configuration of the erythritol moiety was entirely opposite to that of conventional MELs. The present glycolipids were identified to have the carbohydrate structure of 4-O-beta-D-mannopyranosyl-(2R,3S)-erythritol, stereochemically different from 4-O-beta-D-mannopyranosyl-(2S,3R)-erythritol of conventional MELs. Furthermore, these new glycolipids possessed both short-chain acids (C(2) or C(4)) and long-chain acids (C(14), C(16), or C(18)) on the mannose moiety. The major component of the present glycolipids clearly showed different interfacial and biological properties, compared to conventional MELs comprising two medium-chain acids on the mannose moiety. Accordingly, the novel MEL diastereomers produced by P. crassa should provide us with different glycolipid functions, and facilitate a broad range of applications of MELs. PMID:18805521

  19. Lipase-catalyzed acylation of microbial mannosylerythritol lipids (biosurfactants) and their characterization.

    PubMed

    Recke, Verena K; Beyrle, Catharina; Gerlitzki, Melanie; Hausmann, Rudolf; Syldatk, Christoph; Wray, Victor; Tokuda, Harukuni; Suzuki, Nobutaka; Lang, Siegmund

    2013-05-24

    Culturing Pseudozyma aphidis on glucose as main carbon source and soybean oil as co-substrate the mannosylerythritol lipids MEL-A and MEL-B were produced. Based on their excellent surface/interfacial active behavior they possess a high potential among all known biosurfactants. The components of a microbial MEL mixture were purified by medium pressure liquid chromatography (MPLC) and were used as substrates for in vitro enzymatic modifications. Lipase-catalyzed acylations of MEL-A and MEL-B with uncommon fatty acids from other microbial glycolipids-3-hydroxydecanoic acid from rhamnolipids and 17-hydroxyoctadecanoic acid from classical sophorolipids-yielded functionalized products at the C-1 position of the erythritol. The novel products were purified by MPLC and their structures elucidated by (1)H and (13)C nuclear magnetic resonance spectroscopy and mass spectrometry. In physicochemical characterization experiments two of the three new glycoconjugates lowered the surface tension of water from 72 mN m(-1) to 27-38 mN m(-1). Moreover the novel compounds inhibited the growth of gram-positive bacteria and showed a potential for anti-tumor-promoting activity. PMID:23584591

  20. Activation of fibroblast and papilla cells by glycolipid biosurfactants, mannosylerythritol lipids.

    PubMed

    Morita, Tomotake; Kitagawa, Masaru; Yamamoto, Shuhei; Suzuki, Michiko; Sogabe, Atsushi; Imura, Tomohiro; Fukuoka, Tokuma; Kitamoto, Dai

    2010-01-01

    Mannosylerythritol lipids (MELs), the extracellular glycolipids produced from feedstock by yeasts belonging to the genus Pseudozyma, are the most promising biosurfactants known due to its versatile interfacial and biochemical actions. In order to broaden the application in cosmetics, the cell activating property of MELs was investigated using cultured fibroblast and papilla cells, and a three-dimensional cultured human skin model. The di-acetylated MEL (MEL-A) produced from soybean oil significantly increased the viability of the fibroblast cells over 150% compared with that of control cells. On the other hand, no cell activation was observed by the treatment with MEL-A produced from olive oil. The mono-acetylated MEL (MEL-B) hardly increased the cell viability. The viability of the fibroblast cells decreased with the addition of more than 1 microg/L of MELs, whereas the cultured human skin cells showed high viability with 5 microg/L of MELs. Interestingly, the papilla cells were dramatically activated with 0.001 microg/L of MEL-A produced from soybean oil: the cell viability reached at 150% compared with that of control cells. Consequently, the present MEL-A produced from soybean oil should have a potential as a new hair growth agent stimulating the papilla cells. PMID:20625237

  1. Direct xylan conversion into glycolipid biosurfactants, mannosylerythritol lipids, by Pseudozyma antarctica PYCC 5048(T).

    PubMed

    Faria, Nuno Torres; Marques, Susana; Fonseca, César; Ferreira, Frederico Castelo

    2015-04-01

    Mannosylerythritol lipids (MEL) are glycolipid biosurfactants, produced by Pseudozyma spp., with increasing commercial interest. While MEL can be produced from d-glucose and d-xylose, the direct conversion of the respective lignocellulosic polysaccharides, cellulose and xylan, was not reported yet. The ability of Pseudozyma antarctica PYCC 5048(T) and Pseudozyma aphidis PYCC 5535(T) to use cellulose (Avicel(®)) and xylan (beechwood) as carbon and energy source has been assessed along with their capacity of producing cellulolytic and hemicellulolytic enzymes, toward a consolidated bioprocess (CBP) for MEL production. The yeasts assessed were neither able to grow in medium containing Avicel(®) nor produce cellulolytic enzymes under the conditions tested. On contrary, both yeasts were able to efficiently grow in xylan, but MEL production was only detected in P. antarctica PYCC 5048(T) cultures. MEL titers reached 1.3g/l after 10 days in batch cultures with 40g/l xylan, and 2.0g/l in fed-batch cultures with xylan feeding (additional 40g/l) at day 4. High levels of xylanase activities were detected in xylan cultures, reaching 47-62U/ml (31-32U/mg) at 50°C, and still exhibiting more than 10U/ml under physiological temperature (28°C). Total β-xylosidase activities, displayed mainly as wall-bounded and extracellular activity, accounted for 0.154 and 0.176U/ml in P. antarctica PYCC 5048(T) and P. aphidis PYCC 5535(T) cultures, respectively. The present results demonstrate the potential of Pseudozyma spp. for using directly a fraction of lignocellulosic biomass, xylan, and combining in the same bioprocess the production of xylanolytic enzymes with MEL production.

  2. Direct xylan conversion into glycolipid biosurfactants, mannosylerythritol lipids, by Pseudozyma antarctica PYCC 5048(T).

    PubMed

    Faria, Nuno Torres; Marques, Susana; Fonseca, César; Ferreira, Frederico Castelo

    2015-04-01

    Mannosylerythritol lipids (MEL) are glycolipid biosurfactants, produced by Pseudozyma spp., with increasing commercial interest. While MEL can be produced from d-glucose and d-xylose, the direct conversion of the respective lignocellulosic polysaccharides, cellulose and xylan, was not reported yet. The ability of Pseudozyma antarctica PYCC 5048(T) and Pseudozyma aphidis PYCC 5535(T) to use cellulose (Avicel(®)) and xylan (beechwood) as carbon and energy source has been assessed along with their capacity of producing cellulolytic and hemicellulolytic enzymes, toward a consolidated bioprocess (CBP) for MEL production. The yeasts assessed were neither able to grow in medium containing Avicel(®) nor produce cellulolytic enzymes under the conditions tested. On contrary, both yeasts were able to efficiently grow in xylan, but MEL production was only detected in P. antarctica PYCC 5048(T) cultures. MEL titers reached 1.3g/l after 10 days in batch cultures with 40g/l xylan, and 2.0g/l in fed-batch cultures with xylan feeding (additional 40g/l) at day 4. High levels of xylanase activities were detected in xylan cultures, reaching 47-62U/ml (31-32U/mg) at 50°C, and still exhibiting more than 10U/ml under physiological temperature (28°C). Total β-xylosidase activities, displayed mainly as wall-bounded and extracellular activity, accounted for 0.154 and 0.176U/ml in P. antarctica PYCC 5048(T) and P. aphidis PYCC 5535(T) cultures, respectively. The present results demonstrate the potential of Pseudozyma spp. for using directly a fraction of lignocellulosic biomass, xylan, and combining in the same bioprocess the production of xylanolytic enzymes with MEL production. PMID:25765311

  3. Production of glycolipid biosurfactants, mannosylerythritol lipids, by Pseudozyma siamensis CBS 9960 and their interfacial properties.

    PubMed

    Morita, Tomotake; Konishi, Masaaki; Fukuoka, Tokuma; Imura, Tomohiro; Kitamoto, Dai

    2008-05-01

    The search for a novel producer of glycolipid biosurfactants, mannosylerythritol lipids (MELs), was undertaken on the basis of the analysis of ribosomal DNA sequences of yeast strains of the genus Pseudozyma. In the course of the investigation, Pseudozyma siamensis CBS 9960, which is closely related to Pseudozyma shanxiensis, a known MEL-C producer but with a different morphology, was found to accumulate a large amount of glycolipids. On thin layer chromatography, the extracellular glycolipids showed nearly the same spots as those of the MELs produced by P. shanxiensis. However, the result of high-performance liquid chromatography analysis revealed that the present strain has a much higher glycolipid production yield than P. shanxiensis. From the structural characterization by (1)H and (13)C NMR, the major glycolipid (more than 84% of the total) was identified as a mixture of 4-O-[(2',4'-di-O-acetyl-3'-O-alka(e)noyl)-beta-D-mannopyranosyl]-D-erythritol and 4-O-[(4'-O-acetyl-3'-O-alka(e)noyl-2'-O-butanoyl)-beta-D-mannopyranosyl]-D-erythritol, both of which are types of MEL-C. The present MEL-C possessed a short-chain acid (C(2) or C(4)) at the C-2' position and a long-chain acid (C(16)) at the C-3' position of the mannose moiety, and thus, the hydrophobic part was considerably different from that of conventional MELs, which mainly possess two medium-chain acids (C(10)) at the C-2' and C-3' positions. Under optimal growth conditions with safflower oil in a shake culture, the total amount of MELs reached approximately 19 g/l after 9 d at 25 degrees C. We further investigated the interfacial properties of the present MEL-C, considering its unique hydrophobic structure. The observed critical micelle concentration (CMC) and the surface tension at the CMC of the MEL were 4.5 x 10(-6) M and 30.7 mN/m, respectively. In addition, on a water penetration scan, the MEL efficiently formed the liquid crystal phases such as hexagonal (H) and lamella (L(a)) at a wide range of

  4. Identification of Pseudozyma graminicola CBS 10092 as a producer of glycolipid biosurfactants, mannosylerythritol lipids.

    PubMed

    Morita, Tomotake; Konishi, Masaaki; Fukuoka, Tokuma; Imura, Tomohiro; Yamamoto, Shuhei; Kitagawa, Masaru; Sogabe, Atsushi; Kitamoto, Dai

    2008-01-01

    A basidiomycetous yeast, Pseudozyma graminicola CBS 10092, was found to accumulate a large amount of glycolipids in the cultured medium when grown on soybean oil as the sole carbon source. Based on thin layer chromatography, the extracellular glycolipids gave spots corresponding to those of mannosylerythritol lipids (MELs), which are highly functional and promising biosurfactants. From the structural characterization by 1H and 13C NMR, the main product was identified as 4-O-[(4'-mono-O-acetyl-2', 3'-di-O-alka(e)noyl)-beta-D-mannopyranosyl]-D-erythritol, which is a highly hydrophilic derivative of MELs known as MEL-C. According to high-performance liquid chromatography analysis, the main product, MEL-C, comprised approximately 85% of all the MELs, and the total amount reached approximately 10 g/L for 7 days. The fatty acids of the present MEL-C consisted of mainly C6, C8 and C14 acids, considerably different from those of MEL-C produced by other Pseudozyma strains such as P. antarctica and P. shanxiensis. The observed critical micelle concentration (CMC) and the surface-tension at CMC of the MEL-C were 4.0 x 10(-6) M and 24.2 mN/m, respectively, while those of MEL-A, the most intensively studied MEL, were 2.7 x 10(-6) M and 28.4 mN/m, respectively. This implied that the MEL-C has higher hydrophilicity than conventional MELs hitherto reported. In addition, on a water-penetration scan, the MEL-C efficiently formed the lamella phase (Lalpha) at a wide range of concentrations, indicating its excellent self-assembling properties. From these results, the newly identified MELs produced by P. graminicola are likely to have great potential for use in oil-in-water type emulsifiers and/or washing detergents, and would thus facilitate a broad range of applications for the promising yeast biosurfactants. PMID:18198469

  5. Production of glycolipid biosurfactants, mannosylerythritol lipids, by Pseudozyma siamensis CBS 9960 and their interfacial properties.

    PubMed

    Morita, Tomotake; Konishi, Masaaki; Fukuoka, Tokuma; Imura, Tomohiro; Kitamoto, Dai

    2008-05-01

    The search for a novel producer of glycolipid biosurfactants, mannosylerythritol lipids (MELs), was undertaken on the basis of the analysis of ribosomal DNA sequences of yeast strains of the genus Pseudozyma. In the course of the investigation, Pseudozyma siamensis CBS 9960, which is closely related to Pseudozyma shanxiensis, a known MEL-C producer but with a different morphology, was found to accumulate a large amount of glycolipids. On thin layer chromatography, the extracellular glycolipids showed nearly the same spots as those of the MELs produced by P. shanxiensis. However, the result of high-performance liquid chromatography analysis revealed that the present strain has a much higher glycolipid production yield than P. shanxiensis. From the structural characterization by (1)H and (13)C NMR, the major glycolipid (more than 84% of the total) was identified as a mixture of 4-O-[(2',4'-di-O-acetyl-3'-O-alka(e)noyl)-beta-D-mannopyranosyl]-D-erythritol and 4-O-[(4'-O-acetyl-3'-O-alka(e)noyl-2'-O-butanoyl)-beta-D-mannopyranosyl]-D-erythritol, both of which are types of MEL-C. The present MEL-C possessed a short-chain acid (C(2) or C(4)) at the C-2' position and a long-chain acid (C(16)) at the C-3' position of the mannose moiety, and thus, the hydrophobic part was considerably different from that of conventional MELs, which mainly possess two medium-chain acids (C(10)) at the C-2' and C-3' positions. Under optimal growth conditions with safflower oil in a shake culture, the total amount of MELs reached approximately 19 g/l after 9 d at 25 degrees C. We further investigated the interfacial properties of the present MEL-C, considering its unique hydrophobic structure. The observed critical micelle concentration (CMC) and the surface tension at the CMC of the MEL were 4.5 x 10(-6) M and 30.7 mN/m, respectively. In addition, on a water penetration scan, the MEL efficiently formed the liquid crystal phases such as hexagonal (H) and lamella (L(a)) at a wide range of

  6. Draft Genome Sequence of the Basidiomycetous Yeast-Like Fungus Pseudozyma hubeiensis SY62, Which Produces an Abundant Amount of the Biosurfactant Mannosylerythritol Lipids.

    PubMed

    Konishi, Masaaki; Hatada, Yuji; Horiuchi, Jun-Ichi

    2013-01-01

    The basidiomycetous yeast-like fungus Pseudozyma hubeiensis strain SY62 is capable of producing an abundant amount of the glycolipid biosurfactant mannosylerythritol lipids (MELs), which are a major component of monoacetylated MEL (MEL-C). To reveal the synthetic pathway of the MELs of strain SY62, we present the 18.44-Mb draft genome sequence. PMID:23814110

  7. Draft Genome Sequence of the Basidiomycetous Yeast-Like Fungus Pseudozyma hubeiensis SY62, Which Produces an Abundant Amount of the Biosurfactant Mannosylerythritol Lipids

    PubMed Central

    Hatada, Yuji; Horiuchi, Jun-ichi

    2013-01-01

    The basidiomycetous yeast-like fungus Pseudozyma hubeiensis strain SY62 is capable of producing an abundant amount of the glycolipid biosurfactant mannosylerythritol lipids (MELs), which are a major component of monoacetylated MEL (MEL-C). To reveal the synthetic pathway of the MELs of strain SY62, we present the 18.44-Mb draft genome sequence. PMID:23814110

  8. Mannosylerythritol lipids: a review.

    PubMed

    Arutchelvi, Joseph Irudayaraj; Bhaduri, Sumit; Uppara, Parasu Veera; Doble, Mukesh

    2008-12-01

    Mannosylerythritol lipids (MELs) are surface active compounds that belong to the glycolipid class of biosurfactants (BSs). MELs are produced by Pseudozyma sp. as a major component while Ustilago sp. produces them as a minor component. Although MELs have been known for over five decades, they recently regained attention due to their environmental compatibility, mild production conditions, structural diversity, self-assembling properties and versatile biochemical functions. In this review, the MEL producing microorganisms, the production conditions, their applications, their diverse structures and self-assembling properties are discussed. The biosynthetic pathways and the regulatory mechanisms involved in the production of MEL are also explained here. PMID:18716809

  9. Production and characterization of a glycolipid biosurfactant, mannosylerythritol lipid B, from sugarcane juice by Ustilago scitaminea NBRC 32730.

    PubMed

    Morita, Tomotake; Ishibashi, Yuko; Hirose, Naoto; Wada, Koji; Takahashi, Makoto; Fukuoka, Tokuma; Imura, Tomohiro; Sakai, Hideki; Abe, Masahiko; Kitamoto, Dai

    2011-01-01

    Mannosylerythritol lipids (MELs) are glycolipid biosurfactants excreted by fungal strains. They show not only excellent surface-active properties but also versatile biochemical actions. Ustilago scitaminea NBRC 32730 has been reported mainly to produce a mono-acetylated and di-acylated MEL, MEL-B, from sucrose as sole carbon source. In order to make biosurfactant production more efficient, we focused our attention on the use of sugarcane juice, one of the most economical resources. The fungal strain produced MEL-B at the yield of 12.7 g/L from only sugarcane juice containing 22.4% w/w sugars. Supplementation with organic (yeast extract, peptone, and urea) and inorganic (sodium nitrate and ammonium nitrate) nitrogen sources markedly enhanced the production yield. Of the nitrogen sources, urea gave the best yield. Under optimum conditions, the strain produced 25.1 g/L of MEL-B from the juice (19.3% sugars) supplemented with 1 g/L of urea in a jar fermenter at 25 °C over 7 d. The critical micelle concentration (CMC) and the surface-tension at the CMC for the present MEL-B were 3.7×10(-6) M and 25.2 mN/m respectively. On water-penetration scan, the biosurfactant efficiently formed the lamella phase (L(α)) and myelins over a wide range of concentrations, indicating excellent surface-active and self-assembling properties. More significantly, the biosurfactant showed a ceramide-like skin-care property in a three-dimensional cultured human skin model. Thus, sugarcane juice is likely to be effective in glycolipid production by U. scitaminea NBRC 32730, and should facilitate the application of MELs. PMID:21737925

  10. Characterization of new types of mannosylerythritol lipids as biosurfactants produced from soybean oil by a basidiomycetous yeast, Pseudozyma shanxiensis.

    PubMed

    Fukuoka, Tokuma; Morita, Tomotake; Konishi, Masaaki; Imura, Tomohiro; Kitamoto, Dai

    2007-01-01

    Mannosylerythritol lipids (MELs) are glycolipid biosurfactants produced by the yeast strains of the genus Pseudozyma. These show not only the excellent surface-active properties but also versatile biochemical actions. In course of MEL production from soybean oil by P. shanxiensis, new extracellular glycolipids (more hydrophilic than the previously reported MELs) were found in the culture medium. As a result of the structural characterization, the glycolipids were identified as a mixture of 4-O-[(2', 4'-di-O-acetyl-3'-O-alka(e)noyl)-beta-D-mannopyranosyl]-D-erythritol and 4-O-[(4'-O-acetyl-3'-O-alka(e)noyl-2'-O-butanoyl)-beta-D-mannopyranosyl]-D-erythritol. Interestingly, the new MELs possessed a much shorter chain (C(2) or C(4)) at the C-2' position of the mannose moiety compared to the MELs hitherto reported, which mainly possess a medium-chain acid (C(10)) at the position. They would thus show higher hydrophilicity and/or water-solubility, and expand the development of the environmentally advanced yeast biosurfactants. PMID:17898510

  11. Isolation of Pseudozyma churashimaensis sp. nov., a novel ustilaginomycetous yeast species as a producer of glycolipid biosurfactants, mannosylerythritol lipids.

    PubMed

    Morita, Tomotake; Ogura, Yuki; Takashima, Masako; Hirose, Naoto; Fukuoka, Tokuma; Imura, Tomohiro; Kondo, Yukishige; Kitamoto, Dai

    2011-08-01

    An ustilaginomycetous anamorphic yeast species isolated from the leaves of Saccharum officinarum (sugarcane) in Okinawa, Japan, was identified as a novel Pseudozyma species based on morphological and physiological aspects and molecular taxonomic analysis using the D1/D2 domains of the large subunit (26S) rRNA gene and the internal transcribed spacer 1 (ITS1)-5.8S-ITS2 regions. The name Pseudozyma churashimaensis sp. nov. was proposed for the novel species, with JCM 16988(T) as the type strain. Interestingly, P. churashimaensis was found to produce glycolipid biosurfactants, a mixture of mannosylerythritol lipids (MELs), including a novel tri-acetylated derivative (MEL-A2), from glucose. The observed critical micelle concentration (CMC) and the surface tension at CMC of MEL-A2 were 1.7 × 10⁻⁶ M and 29.2 mN/m, respectively. Moreover, on a water-penetration scan, MEL-A2 efficiently formed different lyotropic liquid crystalline phases, including the lamella phase at a wide range of concentrations, indicating its excellent surface-active and self-assembling properties. The novel strain of the genus Pseudozyma should thus facilitate the application of glycolipid biosurfactants in combination with other MEL producers. PMID:21606002

  12. Efficient production of di- and tri-acylated mannosylerythritol lipids as glycolipid biosurfactants by Pseudozyma parantarctica JCM 11752(T).

    PubMed

    Morita, Tomotake; Konishi, Masaaki; Fukuoka, Tokuma; Imura, Tomohiro; Sakai, Hideki; Kitamoto, Dai

    2008-01-01

    Mannosylerythritol lipids (MELs) are one of the most promising biosurfactants known, because of their multifunctionality and biocompatibility. In order to attain an efficient production of MELs, Pseudozyma parantarctica JCM 11752(T), which is a newly identified strain of the genus, was examined for the productivity of MELs at different culture conditions. The yeast strain showed significant cell growth and production of di-acylated MELs even at 36 degrees C. In contrast, on conventional high-level MEL producers including P. rugulosa, the MEL yield considerably decreased with an increase of the cultivation temperature at over 30 degrees C. On P. parantarctica, soybean oil and sodium nitrate were the best carbon and nitrogen sources, respectively. Under the optimal conditions on a shake-flask culture at 34 degrees C, the amount of di-acylated MELs reached over 100 g/L by intermittent feeding of only soybean oil. Interestingly, the yeast strain produced tri-acylated MELs as well as di-acylated ones when grown on the medium containing higher soybean oil concentrations than 8% (vol/vol). The production of tri-acylated MELs was significantly accelerated at between 34 and 36 degrees C. With 20 % (vol/vol) of soybean oil at 34 degrees C, the yield of tri-acylated MELs reached 22.7 g/L. The extracellular lipase activity considerably depended on the culture temperature, and became the maximum at 34 degrees C; this would bring the accelerated production of tri-acylated MELs. Accordingly, the present strain of P. parantarctica provided high efficiency in MEL production at elevated temperatures compared to conventional MEL producers, and would thus be highly advantageous for the commercial production of the promising biosurfactants. PMID:18781056

  13. Analytical characterization of mannosylerythritol lipid biosurfactants produced by biosynthesis based on feedstock sources from the agrofood industry.

    PubMed

    Onghena, Matthias; Geens, Tinne; Goossens, Eliane; Wijnants, Marc; Pico, Yolanda; Neels, Hugo; Covaci, Adrian; Lemiere, Filip

    2011-05-01

    Mannosylerythritol lipids (MELs) are currently one of the most promising biosurfactants because of their multifunctional applications and good biodegradability. Depending on the yeast strain and the feedstock used for the fermentation process, structural variations in the MELs obtained occur. Therefore, MELs produced by Pseudozyma aphidis DSMZ 70725 with a soybean oil feedstock were characterized by chromatography and mass spectrometry (MS). Column chromatography with silica provided fractionation of the different types of MEL. High-performance liquid chromatography combined with MS was employed for the analysis of the MEL fractions and crude mixtures. A characteristic MS pattern for the MELs was obtained and indications of the presence of new MEL homologues, showing the incorporation of longer and more unsaturated fatty acid chains than previously reported, were given. Gas chromatography-MS analysis confirmed the presence of such unsaturated fatty acid chains in the MELs, demonstrating the incorporation of fatty acids with lengths ranging from C(8) to C(14) and with up to two unsaturations per chain. The incorporation of C(16) and C(18) fatty acid chains requires further investigation. MS/MS data allowed the unambiguous identification of the fatty acids present in the MELs. The product ion spectra also revealed the presence of a new isomeric class of MELs, bearing an acetyl group on the erythritol moiety. PMID:21318245

  14. Isolation of basidiomycetous yeast Pseudozyma tsukubaensis and production of glycolipid biosurfactant, a diastereomer type of mannosylerythritol lipid-B.

    PubMed

    Morita, Tomotake; Takashima, Masako; Fukuoka, Tokuma; Konishi, Masaaki; Imura, Tomohiro; Kitamoto, Dai

    2010-10-01

    The producers of glycolipid biosurfactant, mannosylerythritol lipid-B (MEL-B), were isolated from leaves of Perilla frutescens on Ibaraki in Japan. Four isolates, 1D9, 1D10, 1D11, and 1E5, were identified as basidiomycetous yeast Pseudozyma tsukubaensis by rDNA sequence and biochemical properties. The structure of MEL-B produced by these strains was analyzed by (1)H nuclear magnetic resonance and gas chromatography-mass spectrometry methods, and was determined to be the same as the diastereomer MEL-B produced by P. tsukubaensis NBRC 1940. Of these isolates, P. tsukubaensis 1E5 (JCM 16987) is capable of producing the largest amount of the diastereomer MEL-B from vegetable oils. In order to progress the diastereomer MEL-B production by strain 1E5, factors affecting the production, such as carbon and organic nutrient sources, were further examined. Olive oil and yeast extract were the best carbon and nutrient sources, respectively. Under the optimal conditions, a maximum yield, productivity, and yield coefficient of 73.1 g/L, 10.4 g L(-1) day(-1), and 43.5 g/g were achieved by feeding of olive oil in a 5-L jar-fermenter culture using strain 1E5. PMID:20652239

  15. A yeast glycolipid biosurfactant, mannosylerythritol lipid, shows high binding affinity towards lectins on a self-assembled monolayer system.

    PubMed

    Konishi, Masaaki; Imura, Tomohiro; Fukuoka, Tokuma; Morita, Tomotake; Kitamoto, Dai

    2007-03-01

    Mannosylerythritol lipids (MEL), which are glycolipid biosurfactants secreted by the Pseudozyma yeasts, show not only excellent surface-active properties but also versatile biochemical actions including antitumor and cell-differentiation activities. In order to address the biochemical actions, interactions between MEL-A, the major component of MEL, and different lectins were investigated using the surface plasmon resonance spectroscopy. The monolayer of MEL-A showed high binding affinity to concanavalin A (ConA) and Maackia amurensis lectin-I (MAL-I). The observed affinity constants for ConA and MAL-I were estimated to be 9.48 +/- 1.31 x 10(6) and 3.13 +/- 0.274 x 10(6) M(-1), respectively; the value was comparable to that of Manalpha1-6(Manalpha1-3)Man, which is one of the most specific probe to ConA. Significantly, alpha-methyl-D-mannopyranoside (1 mM) exhibited no binding inhibition between MEL-A and ConA. MEL-A is thus likely to self-assemble to give a high affinity surface, where ConA binds to the hydrophilic headgroup in a different manner from that generally observed in lectin-saccharide interactions. The binding manner should be related with the biochemical actions of MEL toward mammalian cells via protein-carbohydrate interactions. PMID:17205206

  16. Physiological differences in the formation of the glycolipid biosurfactants, mannosylerythritol lipids, between Pseudozyma antarctica and Pseudozyma aphidis.

    PubMed

    Morita, Tomotake; Konishi, Masaaki; Fukuoka, Tokuma; Imura, Tomohiro; Kitamoto, Dai

    2007-02-01

    Vegetable oil is the usual carbon source for the production of biosurfactants (BS), mannosylerythritol lipids (MEL). To simplify the procedures of BS production and recovery, we investigated the extracellular production of MEL from water-soluble carbon sources instead of vegetable oils by using two representative yeast strains. The formation of extracellular MEL from glucose was confirmed by thin layer chromatography (TLC) and HPLC analysis. On glucose cultivation, pure MEL were easily prepared by only solvent extraction of the culture medium, different from the case of soybean oil cultivation. The fatty acid profile of the major MEL produced from glucose was similar to that produced from soybean oil based on GC-MS analysis. The resting cells of Pseudozyma antarctica T-34 produced MEL by feeding of glucose only and gave a yield of 12 g l(-1). In contrast, Pseudozyma aphidis ATCC 32657 gave no MEL from glucose. Moreover, the extracellular lipase activities were detected at high levels during the cultivation regardless of the carbon sources. These results indicate that all the biosynthesis pathways for MEL in P. antarctica T-34 should constitutively function. In conclusion, P. antarctica T-34 thus has potential for BS production from glucose. PMID:17103161

  17. Analysis of expressed sequence tags from the anamorphic basidiomycetous yeast, Pseudozyma antarctica, which produces glycolipid biosurfactants, mannosylerythritol lipids.

    PubMed

    Morita, Tomotake; Konishi, Masaaki; Fukuoka, Tokuma; Imura, Tomohiro; Kitamoto, Dai

    2006-07-15

    Pseudozyma antarctica T-34 secretes a large amount of biosurfactants (BS), mannosylerythritol lipids (MEL), from different carbon sources such as hydrocarbons and vegetable oils. The detailed biosynthetic pathway of MEL remained unknown due to lack of genetic information on the anamorphic basidiomycetous yeasts, including the genus Pseudozyma. Here, in order to obtain genetic information on P. antarctica T-34, we constructed a cDNA library from yeast cells producing MEL from soybean oil and identified the genes expressed through the creation of an expressed sequence tags (EST) library. We generated 398 ESTs, assembled into 146 contiguous sequences. Based upon a BLAST search similarity cut-off of E

  18. Identification of Ustilago cynodontis as a new producer of glycolipid biosurfactants, mannosylerythritol lipids, based on ribosomal DNA sequences.

    PubMed

    Morita, Tomotake; Konishi, Masaaki; Fukuoka, Tokuma; Imura, Tomohiro; Kitamoto, Dai

    2008-01-01

    Mannosylerythritol lipids (MELs) are one of the most promising glycolipid biosurfactants known because of their multifunctionality and biocompatibility. The search for novel producers of MELs was undertaken based on the analysis of ribosomal DNA sequences on basidiomycetous yeasts. The bermuda grass smut fungus Ustilago cynodontis NBRC 7530, which taxonomically relates to Pseudozyma shanxiensis known as a MEL-C producer, was found to accumulate glycolipids in the cultured medium. Under a shake flask culture with soybean oil, the amount of the glycolipids was 1.4 g/L for 7 days at 25 degrees C. As a result of the structural characterization, the main glycolipids was identified as 4-O-[(4'-O-acetyl-3'-O-alka(e)noyl-2'-O-butanoyl)-beta-D-mannopyranosyl]-D-erythritol, and the major fatty acids were C(14) and C(16) ones. The glycolipid was highly hydrophilic MEL-C, and very similar to those produced by P. shanxiensis. The fungi of the genus Ustilago are thus likely to be potential producers of MELs as well as the yeasts of the genus Pseudozyma. PMID:18781055

  19. Control of enzymatic degradation of biodegradable polymers by treatment with biosurfactants, mannosylerythritol lipids, derived from Pseudozyma spp. yeast strains.

    PubMed

    Fukuoka, Tokuma; Shinozaki, Yukiko; Tsuchiya, Wataru; Suzuki, Ken; Watanabe, Takashi; Yamazaki, Toshimasa; Kitamoto, Dai; Kitamoto, Hiroko

    2016-02-01

    Cutinase-like esterase from the yeasts Pseudozyma antarctica (PaE) shows strong degradation activity in an agricultural biodegradable plastic (BP) model of mulch films composed of poly(butylene succinate-co-adipate) (PBSA). P. antarctica is known to abundantly produce a glycolipid biosurfactant, mannosylerythritol lipid (MEL). Here, the effects of MEL on PaE-catalyzed degradation of BPs were investigated. Based on PBSA dispersion solution, the degradation of PBSA particles by PaE was inhibited in the presence of MEL. MEL behavior on BP substrates was monitored by surface plasmon resonance (SPR) using a sensor chip coated with polymer films. The positive SPR signal shift indicated that MEL readily adsorbed and spread onto the surface of a BP film. The amount of BP degradation by PaE was monitored based on the negative SPR signal shift and was decreased 1.7-fold by MEL pretreatment. Furthermore, the shape of PBSA mulch films in PaE-containing solution was maintained with MEL pretreatment, whereas untreated films were almost completely degraded and dissolved. These results suggest that MEL covering the surface of BP film inhibits adsorption of PaE and PaE-catalyzed degradation of BPs. We applied the above results to control the microbial degradation of BP mulch films. MEL pretreatment significantly inhibited BP mulch film degradation by both PaE solution and BP-degradable microorganism. Moreover, the degradation of these films was recovered after removal of the coated MEL by ethanol treatment. These results demonstrate that the biodegradation of BP films can be readily and reversibly controlled by a physical approach using MEL.

  20. Extracellular production of a glycolipid biosurfactant, mannosylerythritol lipid, by Candida sp. SY16 using fed-batch fermentation.

    PubMed

    Kim, Hee-Sik; Jeon, Jong-Woon; Kim, Byung-Hyuk; Ahn, Chi-Yong; Oh, Hee-Mock; Yoon, Byung-Dae

    2006-04-01

    Candida sp. strain SY16 produces a glycolipid-type biosurfactant, mannosylerythritol lipid (MEL-SY16), which can reduce the surface tension of a culture broth from 72 to 30 dyne cm(-1) and highly emulsify hydrocarbons when cultured in soybean-oil-containing media. As such, laboratory-scale fermentation for MEL-SY16 production was performed using optimized conditions. In batch fermentation, MEL-SY16 was mainly produced during the stationary phase of growth, and the concentration of MEL-SY16 reached 37 g l(-1) after 200 h. The effect of pH control on the production of MEL-SY16 was also examined in batch fermentation. The highest production yield of MEL-SY16 was when the pH was controlled at 4.0, and the production was significantly improved compared to batch fermentation without pH control. In fed-batch fermentation, glucose and soybean oil (1:1, w/w) were used in combination as the initial carbon sources for cell growth, and soybean oil was used as the feeding carbon source during the MEL production phase. The feeding of soybean oil resulted in the disappearance of any foam and a sharp increase in the MEL production until 200 h, at which point the concentration of MEL-SY16 was 95 g l(-1). Among the investigated culture systems, the highest MEL-SY16 production and volumetric production rate were achieved with fed-batch fermentation. PMID:16133323

  1. Control of enzymatic degradation of biodegradable polymers by treatment with biosurfactants, mannosylerythritol lipids, derived from Pseudozyma spp. yeast strains.

    PubMed

    Fukuoka, Tokuma; Shinozaki, Yukiko; Tsuchiya, Wataru; Suzuki, Ken; Watanabe, Takashi; Yamazaki, Toshimasa; Kitamoto, Dai; Kitamoto, Hiroko

    2016-02-01

    Cutinase-like esterase from the yeasts Pseudozyma antarctica (PaE) shows strong degradation activity in an agricultural biodegradable plastic (BP) model of mulch films composed of poly(butylene succinate-co-adipate) (PBSA). P. antarctica is known to abundantly produce a glycolipid biosurfactant, mannosylerythritol lipid (MEL). Here, the effects of MEL on PaE-catalyzed degradation of BPs were investigated. Based on PBSA dispersion solution, the degradation of PBSA particles by PaE was inhibited in the presence of MEL. MEL behavior on BP substrates was monitored by surface plasmon resonance (SPR) using a sensor chip coated with polymer films. The positive SPR signal shift indicated that MEL readily adsorbed and spread onto the surface of a BP film. The amount of BP degradation by PaE was monitored based on the negative SPR signal shift and was decreased 1.7-fold by MEL pretreatment. Furthermore, the shape of PBSA mulch films in PaE-containing solution was maintained with MEL pretreatment, whereas untreated films were almost completely degraded and dissolved. These results suggest that MEL covering the surface of BP film inhibits adsorption of PaE and PaE-catalyzed degradation of BPs. We applied the above results to control the microbial degradation of BP mulch films. MEL pretreatment significantly inhibited BP mulch film degradation by both PaE solution and BP-degradable microorganism. Moreover, the degradation of these films was recovered after removal of the coated MEL by ethanol treatment. These results demonstrate that the biodegradation of BP films can be readily and reversibly controlled by a physical approach using MEL. PMID:26512003

  2. Production of different types of mannosylerythritol lipids as biosurfactants by the newly isolated yeast strains belonging to the genus Pseudozyma.

    PubMed

    Konishi, Masaaki; Morita, Tomotake; Fukuoka, Tokuma; Imura, Tomohiro; Kakugawa, Koji; Kitamoto, Dai

    2007-06-01

    Mannosylerythritol lipids (MEL), which are abundantly secreted by yeasts, are one of the most promising biosurfactants known. To obtain various types of MEL and to attain a broad range of applications for them, screening of novel producers was undertaken. Thirteen strains of yeasts were successfully isolated as potential MEL producers; they showed high production yields of MEL of around 20 g l(-1) from 40 g l(-1) of soybean oil. Based on the taxonomical study, all the strains were classified to be the genus Pseudozyma. It is interesting to note that they were categorized into three groups according to their production patterns of MEL. The first group, which included 11 strains taxonomically closely related to high-level MEL producers such as Pseudozyma antarctica and Pseudozyma aphidis, mainly produced 4-O-[(4',6'-di-O-acetyl-2',3'-di-O-alkanoyl)-beta-D-mannopyranosyl]-meso-erythritol (MEL-A) together with 4-O-[(6'-mono-O-acetyl-2',3'-di-O-alkanoyl)-beta-D-mannopyranosyl]-meso-erythritol (MEL-B) and 4-O-[(4'-mono-O-acetyl-2',3'-di-O-alkanoyl)-beta-D-mannopyranosyl]-meso-erythritol (MEL-C) as the minor components. The second group of one strain, which was related to Pseudozyma tsukubaensis, predominantly produced MEL-B. The third group of one strain, which was closely related to Pseudozyma hubeiensis, mainly produced MEL-C; this is the first observation of the efficient production of MEL-C from soybean oil. Moreover, the major fatty acids of the obtained MEL-C were C(6), C(12), and C(16) acids, and were considerably different from those of the other MEL hitherto reported. The biosynthetic manner for MEL is thus likely to significantly vary among the Pseudozyma strains; the newly isolated strains would enable us to attain a large-scale production of MEL and to obtain various types of MEL with different hydrophobic structures. PMID:17505770

  3. Draft Genome Sequence of the Yeast Pseudozyma antarctica Type Strain JCM10317, a Producer of the Glycolipid Biosurfactants, Mannosylerythritol Lipids

    PubMed Central

    Saika, Azusa; Koike, Hideaki; Hori, Tomoyuki; Fukuoka, Tokuma; Sato, Shun; Habe, Hiroshi; Kitamoto, Dai

    2014-01-01

    The basidiomycetous yeast Pseudozyma antarctica is known as a producer of industrial enzymes and the extracellular glycolipids, mannosylerythritol lipids. Here, we report the draft genome sequence of the type strain JCM10317. The draft genome assembly has a size of 18.1 Mb and a G+C content of 60.9%, and it consists of 197 scaffolds. PMID:25291760

  4. Draft Genome Sequence of the Yeast Pseudozyma antarctica Type Strain JCM10317, a Producer of the Glycolipid Biosurfactants, Mannosylerythritol Lipids.

    PubMed

    Saika, Azusa; Koike, Hideaki; Hori, Tomoyuki; Fukuoka, Tokuma; Sato, Shun; Habe, Hiroshi; Kitamoto, Dai; Morita, Tomotake

    2014-01-01

    The basidiomycetous yeast Pseudozyma antarctica is known as a producer of industrial enzymes and the extracellular glycolipids, mannosylerythritol lipids. Here, we report the draft genome sequence of the type strain JCM10317. The draft genome assembly has a size of 18.1 Mb and a G+C content of 60.9%, and it consists of 197 scaffolds. PMID:25291760

  5. Yeast extract stimulates production of glycolipid biosurfactants, mannosylerythritol lipids, by Pseudozyma hubeiensis SY62.

    PubMed

    Konishi, Masaaki; Nagahama, Takahiko; Fukuoka, Tokuma; Morita, Tomotake; Imura, Tomohiro; Kitamoto, Dai; Hatada, Yuji

    2011-06-01

    We improved the culture conditions for a biosurfactant producing yeast, Pseudozyma hubeiensis SY62. We found that yeast extract greatly stimulates MEL production. Furthermore, we demonstrated a highly efficient production of MELs in the improved medium by fed-batch cultivation. The final concentration of MELs reached 129 ± 8.2g/l for one week. PMID:21393057

  6. Genome Sequence of the Basidiomycetous Yeast Pseudozyma antarctica T-34, a Producer of the Glycolipid Biosurfactants Mannosylerythritol Lipids.

    PubMed

    Morita, Tomotake; Koike, Hideaki; Koyama, Yoshinori; Hagiwara, Hiroko; Ito, Emi; Fukuoka, Tokuma; Imura, Tomohiro; Machida, Masayuki; Kitamoto, Dai

    2013-01-01

    The basidiomycetous yeast Pseudozyma antarctica T-34 is an excellent producer of mannosylerythritol lipids (MELs), members of the multifunctional extracellular glycolipids, from various feedstocks. Here, the genome sequence of P. antarctica T-34 was determined and annotated. Analysis of the sequence might provide insights into the properties of this yeast that make it superior for use in the production of functional glycolipids, leading to the further development of P. antarctica for industrial applications. PMID:23558529

  7. Genome Sequence of the Basidiomycetous Yeast Pseudozyma antarctica T-34, a Producer of the Glycolipid Biosurfactants Mannosylerythritol Lipids

    PubMed Central

    Morita, Tomotake; Koike, Hideaki; Koyama, Yoshinori; Hagiwara, Hiroko; Ito, Emi; Fukuoka, Tokuma; Imura, Tomohiro; Machida, Masayuki

    2013-01-01

    The basidiomycetous yeast Pseudozyma antarctica T-34 is an excellent producer of mannosylerythritol lipids (MELs), members of the multifunctional extracellular glycolipids, from various feedstocks. Here, the genome sequence of P. antarctica T-34 was determined and annotated. Analysis of the sequence might provide insights into the properties of this yeast that make it superior for use in the production of functional glycolipids, leading to the further development of P. antarctica for industrial applications. PMID:23558529

  8. Glycolipid biosurfactants, mannosylerythritol lipids, show antioxidant and protective effects against H(2)O(2)-induced oxidative stress in cultured human skin fibroblasts.

    PubMed

    Takahashi, Makoto; Morita, Tomotake; Fukuoka, Tokuma; Imura, Tomohiro; Kitamoto, Dai

    2012-01-01

    Mannosylerythritol lipids (MELs) are biosurfactants known for their versatile interfacial and biochemical properties. To broaden their application in cosmetics, we investigated the antioxidant properties of different MEL derivatives (MEL-A, -B, and -C) by using a 1,1-diphenyl-2-picryl hydrazine (DPPH) free-radical- and superoxide anion-scavenging assay. All MEL derivatives tested showed antioxidant activity in vitro, but at lower levels than those of arbutin. Of the MELs, MEL-C, which is produced from soybean oil by Pseudozyma hubeiensis, showed the highest rates of DPPH radical scavenging (50.3% at 10 mg/mL) and superoxide anion scavenging (>50% at 1 mg/mL). The antioxidant property of MEL-C was further examined using cultured human skin fibroblasts (NB1RGB cells) under H(2)O(2) induced oxidative stress. Surprisingly, MEL-C had a higher protective activity against oxidative stress than arbutin did: 10 µg/mL of MEL-C and arbutin had protective activities of 30.3% and 13%, respectively. Expression of an oxidative stress marker, cyclooxygenase-2, in these cells was repressed by treatment with MEL-C as well as by arbutin. MEL-C was thus confirmed to have antioxidant and protective effects in cells, and we suggest that MELs have potential as anti-aging skin care ingredients. PMID:22864517

  9. A basidiomycetous yeast, Pseudozyma tsukubaensis, efficiently produces a novel glycolipid biosurfactant. The identification of a new diastereomer of mannosylerythritol lipid-B.

    PubMed

    Fukuoka, Tokuma; Morita, Tomotake; Konishi, Masaaki; Imura, Tomohiro; Kitamoto, Dai

    2008-02-25

    Mannosylerythritol lipids (MELs) are glycolipid biosurfactants produced by the yeast strains of the genus Pseudozyma. These compounds show not only excellent surface-active properties but also versatile biochemical activities. In the course of MEL production by Pseudozyma tsukubaensis, we found an unusual MEL that had a different carbohydrate structure from that of conventional MELs. The carbohydrate structure was identified as 1-O-beta-D-mannopyranosyl-D-erythritol, and the MEL was confirmed to be 1-O-beta-(2',3'-di-O-alka(e)noyl-6'-O-acetyl-D-mannopyranosyl)-D-erythritol. Interestingly, the configuration of the erythritol moiety in the present MEL was opposite to that of the known MEL-B, 4-O-beta-(2',3'-di-O-alka(e)noyl-6'-O-acetyl-D-mannopyranosyl)-D-erythritol, and to that of all MELs hitherto reported. The present MEL should thus provide different interfacial and biochemical properties compared to conventional MELs. PMID:18083152

  10. Mannosylerythritol lipids: production and applications.

    PubMed

    Morita, Tomotake; Fukuoka, Tokuma; Imura, Tomohiro; Kitamoto, Dai

    2015-01-01

    Mannosylerythritol lipids (MELs) are a glycolipid class of biosurfactants produced by a variety yeast and fungal strains that exhibit excellent interfacial and biochemical properties. MEL-producing fungi were identified using an efficient screening method for the glycolipid production and taxonomical classification on the basis of ribosomal RNA sequences. MEL production is limited primarily to the genus Pseudozyma, with significant variability among the MEL structures produced by each species. Outside of Pseudozyma, one recently isolated strain, Ustilago scitaminea, has been shown to exhibit abundant MEL-B production from sugarcane juice. Structural analyses of these compounds suggest a role for MELs in numerous cosmetic applications. MELs act as effective topical moisturizers and can repair damaged hair. Furthermore, these compounds have been shown to exhibit both protective and healing activities, to activate fibroblasts and papilla cells, and to act as natural antioxidants. In this review, we provide a brief summary of MEL research over the past few decades, focusing on the identification of MEL-producing fungi, the structural characterization of MELs, the use of alternative compounds as a primary carbon source, and the use of these compounds in cosmetic applications. PMID:25748373

  11. Discovery of Pseudozyma rugulosa NBRC 10877 as a novel producer of the glycolipid biosurfactants, mannosylerythritol lipids, based on rDNA sequence.

    PubMed

    Morita, Tomotake; Konishi, Masaaki; Fukuoka, Tokuma; Imura, Tomohiro; Kitamoto, Dai

    2006-11-01

    The search for a novel producer of glycolipid biosurfactants, mannosylerythritol lipids (MEL) was undertaken based on the analysis of ribosomal DNA sequences on the yeast strains of the genus Pseudozyma. Pseudozyma rugulosa NBRC 10877 was found to produce a large amount of glycolipids from soybean oil. Fluorescence microscopic observation also demonstrated that the strain significantly accumulates polar lipids in the cells. The structure of the glycolipids produced by the strain was analyzed by (1)H and (13)C nuclear magnetic resonance and gas chromatography-mass spectrometry methods, and was determined to be the same as MEL produced by Pseudozyma antarctica, a well-known MEL producer. The major fatty acids of the present MEL consisted of C8 and C10 acids. Based on high performance liquid chromatography, the composition of the produced MEL was as follows: MEL-A (68%), MEL-B (12%), and MEL-C (20%). To enhance the production of MEL by the novel strain, factors affecting the production, such as carbon and nitrogen sources, were further examined. Soybean oil and sodium nitrate were the best carbon and nitrogen sources, respectively. The supplementation of a MEL precursor, such as erythritol, drastically enhanced the production yield from soybean oil at a rate of 70 to 90%. Under the optimal conditions in a shake culture, a maximum yield, productivity, and yield coefficient (on a weight basis to soybean oil supplied) of 142 g l(-1), 5.0 g l(-1) day(-1), and 0.5 g g(-1) were achieved by intermittent feeding of soybean oil and erythritol using the yeast.

  12. Discovery of Pseudozyma rugulosa NBRC 10877 as a novel producer of the glycolipid biosurfactants, mannosylerythritol lipids, based on rDNA sequence.

    PubMed

    Morita, Tomotake; Konishi, Masaaki; Fukuoka, Tokuma; Imura, Tomohiro; Kitamoto, Dai

    2006-11-01

    The search for a novel producer of glycolipid biosurfactants, mannosylerythritol lipids (MEL) was undertaken based on the analysis of ribosomal DNA sequences on the yeast strains of the genus Pseudozyma. Pseudozyma rugulosa NBRC 10877 was found to produce a large amount of glycolipids from soybean oil. Fluorescence microscopic observation also demonstrated that the strain significantly accumulates polar lipids in the cells. The structure of the glycolipids produced by the strain was analyzed by (1)H and (13)C nuclear magnetic resonance and gas chromatography-mass spectrometry methods, and was determined to be the same as MEL produced by Pseudozyma antarctica, a well-known MEL producer. The major fatty acids of the present MEL consisted of C8 and C10 acids. Based on high performance liquid chromatography, the composition of the produced MEL was as follows: MEL-A (68%), MEL-B (12%), and MEL-C (20%). To enhance the production of MEL by the novel strain, factors affecting the production, such as carbon and nitrogen sources, were further examined. Soybean oil and sodium nitrate were the best carbon and nitrogen sources, respectively. The supplementation of a MEL precursor, such as erythritol, drastically enhanced the production yield from soybean oil at a rate of 70 to 90%. Under the optimal conditions in a shake culture, a maximum yield, productivity, and yield coefficient (on a weight basis to soybean oil supplied) of 142 g l(-1), 5.0 g l(-1) day(-1), and 0.5 g g(-1) were achieved by intermittent feeding of soybean oil and erythritol using the yeast. PMID:16733733

  13. Structural characterization and surface-active properties of a new glycolipid biosurfactant, mono-acylated mannosylerythritol lipid, produced from glucose by Pseudozyma antarctica.

    PubMed

    Fukuoka, Tokuma; Morita, Tomotake; Konishi, Masaaki; Imura, Tomohiro; Sakai, Hideki; Kitamoto, Dai

    2007-09-01

    Mannosylerythritol lipids (MELs), which are glycolipid biosurfactants produced by Pseudozyma yeasts, show not only excellent interfacial properties but also versatile biochemical actions. In the course of MEL production from glucose as the sole carbon source, P. antarctica was found to produce unknown glycolipids more hydrophilic than conventional "di-acylated MELs," which have two fatty acyl esters on the mannose moiety. Based on a detailed characterization, the most hydrophilic one was identified as 4-O-(3'-O-alka(e)noyl-beta-D: -mannopyranosyl)-D: -erythritol namely, "mono-acylated MEL." The mono-acylated MEL reduced the surface tension of water to 33.8 mN/m at a critical micelle concentration (CMC) of 3.6 x 10(-4) M, and its hydrophilic-lipophilic balance was tentatively calculated to be 12.15. The observed CMC was 100-fold higher than that of the MELs hitherto reported. Interestingly, of the yeast strains of the genus Pseudozyma, only P. antarctica and P. parantarctica gave the mono-acylated MEL from glucose, despite a great diversity of di-acylated MEL producers in the genus. These strains produced MELs including the mono-acylated one at a rate of 20-25%. From these results, the new MEL is likely to have great potential for use in oil-in-water-type emulsifiers and washing detergents because of its higher water solubility compared to conventional MELs and will thus contribute to facilitating a broad range of applications for the environmentally advanced surfactants. PMID:17607573

  14. A yeast glycolipid biosurfactant, mannosylerythritol lipid, shows potential moisturizing activity toward cultured human skin cells: the recovery effect of MEL-A on the SDS-damaged human skin cells.

    PubMed

    Morita, Tomotake; Kitagawa, Masaru; Suzuki, Michiko; Yamamoto, Shuhei; Sogabe, Atsushi; Yanagidani, Shusaku; Imura, Tomohiro; Fukuoka, Tokuma; Kitamoto, Dai

    2009-01-01

    Mannosylerythritol lipids (MELs) are produced in large amounts from renewable vegetable oils by Pseudozyma antarctica, and are the most promising biosurfactants known due to its versatile interfacial and biochemical actions. In order to broaden the application in cosmetics and pharmaceuticals, the skin care property of MEL-A, the major component of MELs, was investigated using a three-dimensional cultured human skin model. The skin cells were cultured and treated with sodium dodecyl sulfate (SDS) solution of 1 wt%, and the effects of different lipids on the SDS-damaged cells were then evaluated on the basis of the cell viability. The viability of the damaged cells was markedly recovered by the addition of MEL-A in a dose-dependent manner. Compared to the control, MEL-A solutions of 5 wt% and 10 wt% gave the recovery rate of 73% and 91%, respectively, while ceramide solution of 1 wt% gave the rate of over 100%. This revealed that MEL-A shows a ceramide-like moisturizing activity toward the skin cells. Considering the drawbacks of natural ceramides, namely limited amount and high production cost, the yeast biosurfactants should have a great potential as a novel moisturizer for treating the damaged skin. PMID:19915321

  15. Production of mannosylerythritol lipids and their application in cosmetics.

    PubMed

    Morita, Tomotake; Fukuoka, Tokuma; Imura, Tomohiro; Kitamoto, Dai

    2013-06-01

    Mannosylerythritol lipids (MELs) are glycolipid biosurfactants abundantly produced by different basidiomycetous yeasts such as Pseudozyma, and show not only excellent interfacial properties but also versatile biochemical actions. These features of MELs make their application in new technology areas possible. Recently, the structural and functional variety of MELs was considerably expanded by advanced microbial screening methods. Different types of MELs bearing different hydrophilic and hydrophobic parts have been reported. The genes responsible for MEL biosynthesis were identified, and their genetic study is now in progress, aiming to control the chemical structure. The excellent properties leading to practical cosmetic ingredients, i.e., moisturization of dry skin, repair of damaged hair, activation of fibroblast and papilla cells and antioxidant and protective effects in skin cells, have been demonstrated on the yeast glycolipid biosurfactants. In this review, the current status of research and development on MELs, particularly the commercial application in cosmetics, is described. PMID:23584242

  16. Characteristics of mannosylerythritol lipids and their environmental potential.

    PubMed

    Yu, Mingda; Liu, Zhifeng; Zeng, Guangming; Zhong, Hua; Liu, Yang; Jiang, Yongbing; Li, Min; He, Xiaoxiao; He, Yan

    2015-04-30

    Mannosylerythritol lipids (MELs) are promising biosurfactants containing two glycosyl derivatives and various fatty acids, which are mainly secreted by Pseudozyma as well as Ustilago. In this review, the latest research is demonstrated on production conditions, structural diversity, self-assembling properties and versatile biochemical functions of MELs. The genetic study and synthetic pathways, which mainly influence the type and yield of MELs production. Due to the excellent surface activity, biocompatibility and restorative function, MELs can be used in enviornmental industry, which has not been widely noted. In this paper, the current status of research on enviornmental potential of MELs has been discussed including petroleum degradation, bioconversion of chemical wastes and enhanced bioremediation of amphiphilic wastes. PMID:25723622

  17. Identification of a Gene Cluster for Biosynthesis of Mannosylerythritol Lipids in the Basidiomycetous Fungus Ustilago maydis

    PubMed Central

    Hewald, Sandra; Linne, Uwe; Scherer, Mario; Marahiel, Mohamed A.; Kämper, Jörg; Bölker, Michael

    2006-01-01

    Many microorganisms produce surface-active substances that enhance the availability of water-insoluble substrates. Although many of these biosurfactants have interesting potential applications, very little is known about their biosynthesis. The basidiomycetous fungus Ustilago maydis secretes large amounts of mannosylerythritol lipids (MELs) under conditions of nitrogen starvation. We recently described a putative glycosyltransferase, Emt1, which is essential for MEL biosynthesis and whose expression is strongly induced by nitrogen limitation. We used DNA microarray analysis to identify additional genes involved in MEL biosynthesis. Here we show that emt1 is part of a gene cluster which comprises five open reading frames. Three of the newly identified proteins, Mac1, Mac2, and Mat1, contain short sequence motifs characteristic for acyl- and acetyltransferases. Mutational analysis revealed that Mac1 and Mac2 are essential for MEL production, which suggests that they are involved in the acylation of mannosylerythritol. Deletion of mat1 resulted in the secretion of completely deacetylated MELs, as determined by mass spectrometry. We overexpressed Mat1 in Escherichia coli and demonstrated that this enzyme acts as an acetyl coenzyme A-dependent acetyltransferase. Remarkably, Mat1 displays relaxed regioselectivity and is able to acetylate mannosylerythritol at both the C-4 and C-6 hydroxyl groups. Based on these results, we propose a biosynthesis pathway for the generation of mannosylerythritol lipids in U. maydis. PMID:16885300

  18. Identification of a gene cluster for biosynthesis of mannosylerythritol lipids in the basidiomycetous fungus Ustilago maydis.

    PubMed

    Hewald, Sandra; Linne, Uwe; Scherer, Mario; Marahiel, Mohamed A; Kämper, Jörg; Bölker, Michael

    2006-08-01

    Many microorganisms produce surface-active substances that enhance the availability of water-insoluble substrates. Although many of these biosurfactants have interesting potential applications, very little is known about their biosynthesis. The basidiomycetous fungus Ustilago maydis secretes large amounts of mannosylerythritol lipids (MELs) under conditions of nitrogen starvation. We recently described a putative glycosyltransferase, Emt1, which is essential for MEL biosynthesis and whose expression is strongly induced by nitrogen limitation. We used DNA microarray analysis to identify additional genes involved in MEL biosynthesis. Here we show that emt1 is part of a gene cluster which comprises five open reading frames. Three of the newly identified proteins, Mac1, Mac2, and Mat1, contain short sequence motifs characteristic for acyl- and acetyltransferases. Mutational analysis revealed that Mac1 and Mac2 are essential for MEL production, which suggests that they are involved in the acylation of mannosylerythritol. Deletion of mat1 resulted in the secretion of completely deacetylated MELs, as determined by mass spectrometry. We overexpressed Mat1 in Escherichia coli and demonstrated that this enzyme acts as an acetyl coenzyme A-dependent acetyltransferase. Remarkably, Mat1 displays relaxed regioselectivity and is able to acetylate mannosylerythritol at both the C-4 and C-6 hydroxyl groups. Based on these results, we propose a biosynthesis pathway for the generation of mannosylerythritol lipids in U. maydis. PMID:16885300

  19. Phase behavior of ternary mannosylerythritol lipid/water/oil systems.

    PubMed

    Worakitkanchanakul, Wannasiri; Imura, Tomohiro; Fukuoka, Tokuma; Morita, Tomotake; Sakai, Hideki; Abe, Masahiko; Rujiravanit, Ratana; Chavadej, Sumaeth; Minamikawa, Hiroyuki; Kitamoto, Dai

    2009-02-01

    Mannosylerythritol lipids (MELs) are glycolipid biosurfactants (BS) abundantly produced from renewable resources by yeast strains of the genus Pseudozyma. In this study, the ternary phase behaviors of two types of MELs, i.e. MEL-A and MEL-B, mixed with water and oil were investigated at 25 degrees C based on polarized optical microscopy and small-angle X-ray scattering (SAXS). When n-decane was used as an oil phase, diacetylated MEL-A formed single-phase water-in-oil (W/O) microemulsion in a remarkably large region. MEL-A, with a negative spontaneous curvature, also formed sponge (L(3)), reverse bicontinuous cubic (V(2)), and lamellar (L(alpha)) phases. Meanwhile, monoacetylated MEL-B, with the opposite configuration of the erythritol moiety, gave single-phase bicontinuous microemulsion and showed a triangular phase diagram dominated by the L(alpha) phase, suggesting that MEL-B has an almost zero spontaneous curvature. Moreover, we succeeded in preparation of oil-in-liquid crystal (O/LC) emulsion in the biphasic L(alpha)+O region of the MEL-B/water/n-decane system. The obtained gel-like emulsion was stable for at least 1 month. These results clearly demonstrated that the difference in the number of acetyl group on the headgroup and/or the chirality of the erythritol moiety drastically changed the phase behavior of MELs. Accordingly, these MELs would be quite distinctive from conventional BS hitherto reported, and would have great potential for the preparation of microemulsion and LC-based emulsion. PMID:19070997

  20. Production and identification of mannosylerythritol lipid-A homologs from the ustilaginomycetous yeast Pseudozyma aphidis ZJUDM34.

    PubMed

    Fan, Lin-Lin; Dong, Ya-Chen; Fan, Yi-Fei; Zhang, Jun; Chen, Qi-He

    2014-06-17

    Mannosylerythritol lipids (MELs) are mainly produced by strains of the genus Pseudozyma and by Ustilago maydis. These glycolipid biosurfactants exhibit not only excellent surface-active properties but also versatile bioactivities. Mannosylerythritol lipid-A (MEL-A) is worth investigating due to its self-assembling property. In this work, crude MELs were produced by resting Pseudozyma aphidis ZJUDM34 cells using different culture media. MEL-A fractions were isolated and identified using high-performance liquid chromatography combined with mass spectrometry (HPLC-MS) and gas chromatography combined with mass spectrometry (GC-MS). The results showed that MEL-A homologs had long unsaturated fatty acid chains, and the chain lengths range from C8 to C20. Nuclear magnetic resonance (NMR) was employed to confirm the chemical structures of the MEL-A homologs. Fermentation medium without NaNO3 and medium with manganese ions enhanced MEL-A production by Pseudozyma aphidis ZJUDM34. PMID:24814655

  1. Mannosylerythritol lipid, a yeast extracellular glycolipid, shows high binding affinity towards human immunoglobulin G

    PubMed Central

    Im, Jae Hong; Nakane, Takashi; Yanagishita, Hiroshi; Ikegami, Toru; Kitamoto, Dai

    2001-01-01

    Background There have been many attempts to develop new materials with stability and high affinity towards immunoglobulins. Some of glycolipids such as gangliosides exhibit a high affinity toward immunoglobulins. However, it is considerably difficult to develop these glycolipids into the practical separation ligand due to their limited amounts. We thus focused our attention on the feasible use of "mannosylerythritol lipid A", a yeast glycolipid biosurfactant, as an alternative ligand for immunoglobulins, and undertook the investigation on the binding between mannosylerythritol lipid A (MEL-A) and human immunoglobulin G (HIgG). Results In ELISA assay, MEL-A showed nearly the same binding affinity towards HIgG as that of bovine ganglioside GM1. Fab of human IgG was considered to play a more important role than Fc in the binding of HIgG by MEL-A. The bound amount of HIgG increased depending on the attached amount of MEL-A onto poly (2-hydroxyethyl methacrylate) (polyHEMA) beads, whereas the amount of human serum albumin slightly decreased. Binding-amount and -selectivity of HIgG towards MEL-A were influenced by salt species, salt concentration and pH in the buffer solution. The composite of MEL-A and polyHEMA, exhibited a significant binding constant of 1.43 × 106 (M-1) for HIgG, which is approximately 4-fold greater than that of protein A reported. Conclusions MEL-A shows high binding-affinity towards HIgG, and this is considered to be due to "multivalent effect" based on the binding molar ratio. This is the first report on the binding of a natural human antibody towards a yeast glycolipid. PMID:11604104

  2. Characterization of mannosylerythritol lipids containing hexadecatetraenoic acid produced from cuttlefish oil by Pseudozyma churashimaensis OK96.

    PubMed

    Morita, Tomotake; Kawamura, Daisuke; Morita, Naoki; Fukuoka, Tokuma; Imura, Tomohiro; Sakai, Hideki; Abe, Masahiko; Kitamoto, Dai

    2013-01-01

    Biosurfactants are surface-active compounds produced by microorganisms. Mannosylerythritol lipids (MEL) are promising biosurfactants produced by Ustilaginomycetes, and their physicochemical and biochemical properties differ depending on the chemical structure of their hydrophilic and/or hydrophobic moieties. To further develop MEL derivatives and expand their potential applications, we focused our attention on the use of cuttlefish oil, which contains polyunsaturated fatty acids (e.g., docosahexaenoic acid, C₂₂:₆, and eicosapentaenoic acid, C₂₀:₅, as the sole carbon source. Among the microorganisms capable of producing MEL, only nine strains were able to produce them from cuttlefish oil. On gas chromatography-mass spectrometry (GC/MS) analysis, we observed that Pseudozyma churashimaensis OK96 was particularly suitable for the production of MEL-A, a MEL containing hexadecatetraenoic acid (C₁₆:₄) (23.6% of the total unsaturated fatty acids and 7.7% of the total fatty acids). The observed critical micelle concentration (CMC) and surface tension at CMC of the new MEL-A were 5.7×10⁻⁶ M and 29.5 mN/m, respectively, while those of MEL-A produced from soybean oil were 2.7×10⁻⁶ M and 27.7 mN/m, respectively. With polarized optical and confocal laser scanning microscopies, the self-assembling properties of MEL-A were found to be different from those of conventional MEL. Furthermore, based on the DPPH radical-scavenging assay, the anti-oxidative activity of MEL-A was found to be 2.1-fold higher than that of MEL-A produced from soybean oil. Thus, the newly identified MEL-A is attractive as a new functional material with excellent surface-active and antioxidative properties. PMID:23648407

  3. Characterization and Inducing Melanoma Cell Apoptosis Activity of Mannosylerythritol Lipids-A Produced from Pseudozyma aphidis.

    PubMed

    Fan, Linlin; Li, Hongji; Niu, Yongwu; Chen, Qihe

    2016-01-01

    Mannosylerythritol lipids (MELs) are natural glycolipid biosurfactants which have potential applications in the fields of food, cosmetic and medicine. In this study, MELs were produced from vegetable oil by Pseudozyma aphidis. Their structural data through LC/MS, GC/MS and NMR analysis revealed that MEL-A with two acetyls was the major compound and the identified homologs of MEL-A contained a length of C8 to C14 fatty acid chains. This glycolipid exhibited a surface tension of 27.69 mN/m at a critical micelle concentration (CMC), self-assembling into particles in the water solution. It was observed to induce cell growth-inhibition and apoptosis of B16 melanoma cells in a dose-dependent manner, as well as cause cell cycle arrest at the S phase. Further quantitative RT-PCR analysis and western blotting revealed an increasing tendency of both mRNA and protein expressions of Caspase-12, CHOP, GRP78 and Caspase-3, and a down-regulation of protein Bcl-2. Combined with the up regulation of signaling IRE1 and ATF6, it can be speculated that MEL-A-induced B16 melanoma cell apoptosis was associated with the endoplasmic reticulum stress (ERS). PMID:26828792

  4. Characterization and Inducing Melanoma Cell Apoptosis Activity of Mannosylerythritol Lipids-A Produced from Pseudozyma aphidis

    PubMed Central

    Fan, Linlin; Li, Hongji; Niu, Yongwu; Chen, Qihe

    2016-01-01

    Mannosylerythritol lipids (MELs) are natural glycolipid biosurfactants which have potential applications in the fields of food, cosmetic and medicine. In this study, MELs were produced from vegetable oil by Pseudozyma aphidis. Their structural data through LC/MS, GC/MS and NMR analysis revealed that MEL-A with two acetyls was the major compound and the identified homologs of MEL-A contained a length of C8 to C14 fatty acid chains. This glycolipid exhibited a surface tension of 27.69 mN/m at a critical micelle concentration (CMC), self-assembling into particles in the water solution. It was observed to induce cell growth-inhibition and apoptosis of B16 melanoma cells in a dose-dependent manner, as well as cause cell cycle arrest at the S phase. Further quantitative RT-PCR analysis and western blotting revealed an increasing tendency of both mRNA and protein expressions of Caspase-12, CHOP, GRP78 and Caspase-3, and a down-regulation of protein Bcl-2. Combined with the up regulation of signaling IRE1 and ATF6, it can be speculated that MEL-A-induced B16 melanoma cell apoptosis was associated with the endoplasmic reticulum stress (ERS). PMID:26828792

  5. Identification of the gene PaEMT1 for biosynthesis of mannosylerythritol lipids in the basidiomycetous yeast Pseudozyma antarctica.

    PubMed

    Morita, Tomotake; Ito, Emi; Kitamoto, Hiroko K; Takegawa, Kaoru; Fukuoka, Tokuma; Imura, Tomohiro; Kitamoto, Dai

    2010-11-01

    The yeast Pseudozyma antarctica produces a large amount of glycolipid biosurfactants known as mannosylerythritol lipids (MELs), which show not only excellent surface-active properties but also versatile biochemical actions. To investigate the biosynthesis of MELs in the yeast, we recently reported expressed sequence tag (EST) analysis and estimated genes expressing under MEL production conditions. Among the genes, a contiguous sequence of 938 bp, PA_004, showed high sequence identity to the gene emt1, encoding an erythritol/mannose transferase of Ustilago maydis, which is essential for MEL biosynthesis. The predicted translation product of the extended PA_004 containing the two introns and a stop codon was aligned with Emt1 of U. maydis. The predicted amino acid sequence shared high identity (72%) with Emt1 of U. maydis, although the amino-terminal was incomplete. To identify the gene as PaEMT1 encoding an erythritol/mannose transferase of P. antarctica, the gene-disrupted strain was developed by the method for targeted gene disruption, using hygromycin B resistance as the selection marker. The obtained ΔPaEMT1 strain failed to produce MELs, while its growth was the same as that of the parental strain. The additional mannosylerythritol into culture allowed ΔPaEMT1 strain to form MELs regardless of the carbon source supplied, indicating a defect of the erythritol/mannose transferase activity. Furthermore, we found that MEL formation is associated with the morphology and low-temperature tolerance of the yeast. PMID:20564650

  6. The transcriptomic profile of Pseudozyma aphidis during production of mannosylerythritol lipids.

    PubMed

    Günther, Michael; Grumaz, Christian; Lorenz, Stefan; Stevens, Philip; Lindemann, Elena; Hirth, Thomas; Sohn, Kai; Zibek, Susanne; Rupp, Steffen

    2015-02-01

    The basidiomycetous fungus Pseudozyma aphidis is able to convert vegetable oils to abundant amounts of the biosurfactant mannosylerythritol lipid (MEL) with a unique product pattern of MEL-A, MEL-B, MEL-C, and MEL-D. To investigate the metabolism of MEL production, we analyzed the transcriptome of P. aphidis DSM 70725 under MEL-inducing and non-inducing conditions using deep sequencing. Following manual curation of the previously described in silico gene models based on RNA-Seq data, we were able to generate an experimentally verified gene annotation containing 6347 genes. Using this database, our expression analysis revealed that only four of the five cluster genes required for MEL synthesis were clearly induced by the presence of soybean oil. The acetyltransferase encoding gene PaGMAT1 was expressed on a much lower level, which may explain the secretion of MEL with different degrees of acetylation in P. aphidis. In parallel to MEL synthesis, microscopic observations showed morphological changes accompanied by expression of genes responsible for cell development, indicative of a coregulation between MEL synthesis and cell morphology. In addition a set of transcription factors was identified which may be responsible for regulation of MEL synthesis and cell development. The upregulation of genes required for nitrogen metabolism and other assimilation processes indicate additional metabolic pathways required under the MEL-inducing conditions used. We also searched for a conserved gene cluster for cellobiose lipids (CL) but only found seven genes with limited homology distributed over the genome. However, we detected characteristic TLC spots in fermentations using P. aphidis DSM 70725, indicative of CL secretion. PMID:25586580

  7. Production of a novel mannosylerythritol lipid containing a hydroxy fatty acid from castor oil by Pseudozyma tsukubaensis.

    PubMed

    Yamamoto, Shuhei; Fukuoka, Tokuma; Imura, Tomohiro; Morita, Tomotake; Yanagidani, Shusaku; Kitamoto, Dai; Kitagawa, Masaru

    2013-01-01

    Mannosylerythritol lipids (MELs) are glycolipid biosurfactants produced by various yeasts belonging to the genus Pseudozyma, which exhibit excellent surface activities as well as versatile biochemical activities. A study on P. tsukubaensis NBRC1940 as a mono-acetylated MEL (MEL-B) producer revealed that the yeast accumulated a novel glycolipid from castor oil at a yield of 22 g/L. Its main chemical structure was identified as 1-O-β-(2'-O-alka(e)noyl-3'-O-hydroxyalka(e)noyl-6'-O-acetyl-D-mannopyranosyl)-D-erythritol designated as "new MEL-B." The new MEL-B, comprising a hydroxy fatty acid had a reduced surface tension of 28.5 mN/m at a critical micelle concentration (CMC) of 2.2×10⁻⁵ M in water. The observed CMC was 5-fold higher than that of conventional MEL-B. When conventional MEL-B was dispersed in water, it self-assembled to form the lamellar (L(α)) phase at a wide range of concentrations. In contrast, new MEL-B formed spherical oily droplets similar to the sponge (L₃) phase, which is observed in aqueous solutions of di-acetylated MEL (MEL-A). The data suggest that the newly identified MEL-B is likely to have a different structure and interfacial properties compared to the conventional MELs, and could facilitate an increase in the application of glycolipid biosurfactants.

  8. Production of a novel mannosylerythritol lipid containing a hydroxy fatty acid from castor oil by Pseudozyma tsukubaensis.

    PubMed

    Yamamoto, Shuhei; Fukuoka, Tokuma; Imura, Tomohiro; Morita, Tomotake; Yanagidani, Shusaku; Kitamoto, Dai; Kitagawa, Masaru

    2013-01-01

    Mannosylerythritol lipids (MELs) are glycolipid biosurfactants produced by various yeasts belonging to the genus Pseudozyma, which exhibit excellent surface activities as well as versatile biochemical activities. A study on P. tsukubaensis NBRC1940 as a mono-acetylated MEL (MEL-B) producer revealed that the yeast accumulated a novel glycolipid from castor oil at a yield of 22 g/L. Its main chemical structure was identified as 1-O-β-(2'-O-alka(e)noyl-3'-O-hydroxyalka(e)noyl-6'-O-acetyl-D-mannopyranosyl)-D-erythritol designated as "new MEL-B." The new MEL-B, comprising a hydroxy fatty acid had a reduced surface tension of 28.5 mN/m at a critical micelle concentration (CMC) of 2.2×10⁻⁵ M in water. The observed CMC was 5-fold higher than that of conventional MEL-B. When conventional MEL-B was dispersed in water, it self-assembled to form the lamellar (L(α)) phase at a wide range of concentrations. In contrast, new MEL-B formed spherical oily droplets similar to the sponge (L₃) phase, which is observed in aqueous solutions of di-acetylated MEL (MEL-A). The data suggest that the newly identified MEL-B is likely to have a different structure and interfacial properties compared to the conventional MELs, and could facilitate an increase in the application of glycolipid biosurfactants. PMID:23728329

  9. Biosurfactants: a sustainable replacement for chemical surfactants?

    PubMed

    Marchant, Roger; Banat, Ibrahim M

    2012-09-01

    Glycolipid biosurfactants produced by bacteria and yeasts provide significant opportunities to replace chemical surfactants with sustainable biologically produced alternatives in bulk commercial products such as laundry detergents and surface cleaners. Sophorolipids are already available in sufficient yield to make their use feasible while rhamnolipids and mannosylerythritol lipids require further development. The ability to tailor the biosurfactant produced to the specific needs of the product formulation will be an important future step. PMID:22618240

  10. Efficient production of mannosylerythritol lipids with high hydrophilicity by Pseudozyma hubeiensis KM-59.

    PubMed

    Konishi, Masaaki; Morita, Tomotake; Fukuoka, Tokuma; Imura, Tomohiro; Kakugawa, Koji; Kitamoto, Dai

    2008-02-01

    Mannosylerythritol lipids (MELs) are one of the most promising biosurfactants known because of their multifunctionality and biocompatibility. A previously isolated yeast strain, Pseudozyma sp. KM-59, mainly produced a hydrophilic MEL, namely MEL-C (4-O-[4'-O-acetyl-2',3'-di-O-alka(e)noyl-beta-D: -mannopyranosyl]-D: -erythritol). In this study, we taxonomically characterize the strain in detail and investigate the culture conditions. The genetic, morphological, and physiological characteristics of the strain coincided well with those of Pseudozyma hubeiensis. On batch culture for 4 days under optimal conditions, the yield of all MELs was 21.8 g/l; MEL-C comprised approximately 65% of the all MELs. Consequently, on fed-batch culture for 16 days, the yield reached 76.3 g/l; the volumetric productivity was approximately 4.8 g l(-1) day(-1). We further examined the surface-active and self-assembling properties of the hydrophilic MELs produced by the yeast strain. They showed higher emulsifying activities against soybean oil and a mixture of hydrocarbons (2-methylnaphtarene and hexadecane, 1:1) than the synthetic surfactants tested. On water penetration scans, they efficiently formed lyotropic liquid crystalline phases such as myelines and lamella (L alpha) in a broad range of their concentrations, indicating higher hydrophilicity than conventional MELs. More interestingly, there was little difference in the liquid crystal formation between the crude product and purified MEL-C. The present glycolipids with high hydrophilicity are thus very likely to have practical potential without further purification and to expand the application of MELs especially their use in washing detergents and oil-in-water-type emulsifiers. PMID:18071643

  11. The diastereomers of mannosylerythritol lipids have different interfacial properties and aqueous phase behavior, reflecting the erythritol configuration.

    PubMed

    Fukuoka, Tokuma; Yanagihara, Takashi; Imura, Tomohiro; Morita, Tomotake; Sakai, Hideki; Abe, Masahiko; Kitamoto, Dai

    2012-04-01

    Mannosylerythritol lipids (MELs) produced by yeasts are one of the most promising glycolipid biosurfactants. There are two MEL diastereomers, in which the configurations of the erythritol moieties are opposite. The 4-O-β-D-mannopyranosyl-(2S,3R)-erythritol (S-form) or 4-O-β-D-mannopyranosyl-(2R,3S)-erythritol (R-form) is the hydrophilic domain. In this study, we prepared S- and R-form MEL homologs with similar fatty acyl groups, and compared their interfacial properties. Among the four diastereomers (S-MEL-B and -D/R-MEL-B and -D), R-form MELs showed a higher critical aggregation concentration and hydrophilicity compared to the corresponding S-form. R-form MELs also efficiently formed relatively large vesicles compared to S-form. Moreover, we estimated the binary phase diagram of the MEL-water system and compared the aqueous phase behavior among the four diastereomers. The present MELs self-assembled into a lamellar (L(α)) structure at all concentration ranges. Meanwhile, the one-phase L(α) region of R-form MELs was wider than those of S-form MELs. R-form MELs may maintain more water between the polar layers in accordance with an extension of the interlayer spacing. These results suggest that the differences in MEL carbohydrate configurations significantly affect interfacial properties, self-assembly, and hydrate ability. PMID:22341919

  12. The diastereomers of mannosylerythritol lipids have different interfacial properties and aqueous phase behavior, reflecting the erythritol configuration.

    PubMed

    Fukuoka, Tokuma; Yanagihara, Takashi; Imura, Tomohiro; Morita, Tomotake; Sakai, Hideki; Abe, Masahiko; Kitamoto, Dai

    2012-04-01

    Mannosylerythritol lipids (MELs) produced by yeasts are one of the most promising glycolipid biosurfactants. There are two MEL diastereomers, in which the configurations of the erythritol moieties are opposite. The 4-O-β-D-mannopyranosyl-(2S,3R)-erythritol (S-form) or 4-O-β-D-mannopyranosyl-(2R,3S)-erythritol (R-form) is the hydrophilic domain. In this study, we prepared S- and R-form MEL homologs with similar fatty acyl groups, and compared their interfacial properties. Among the four diastereomers (S-MEL-B and -D/R-MEL-B and -D), R-form MELs showed a higher critical aggregation concentration and hydrophilicity compared to the corresponding S-form. R-form MELs also efficiently formed relatively large vesicles compared to S-form. Moreover, we estimated the binary phase diagram of the MEL-water system and compared the aqueous phase behavior among the four diastereomers. The present MELs self-assembled into a lamellar (L(α)) structure at all concentration ranges. Meanwhile, the one-phase L(α) region of R-form MELs was wider than those of S-form MELs. R-form MELs may maintain more water between the polar layers in accordance with an extension of the interlayer spacing. These results suggest that the differences in MEL carbohydrate configurations significantly affect interfacial properties, self-assembly, and hydrate ability.

  13. Effect of Mannosylerythritol lipid-A on light scattering of AOT/D2O/Octane

    NASA Astrophysics Data System (ADS)

    Sharifi, Soheil

    2016-09-01

    The light scattering technique is used for the study of interaction of Mannosylerythritol lipid-A on AOT/D2O/Octane. The collective diffusion of AOT/D2O droplets soluble in Octane mixed with lipid is founded from a correlation function of light scattering. We focus on the variation of the dynamic behavior of droplets as a function of the lipid concentrations and the size of droplets. The increase of concentration of Mannosylerythritol lipid-A on microemulsion decreases the dynamic of droplets. The SAXS experiment shows the size and the interaction of the droplets change by increase of Mannosylerythritol lipid-A concentration. A hard sphere model can describe the interaction of lipid with AOT/D2O droplets.

  14. Isolation and screening of glycolipid biosurfactant producers from sugarcane.

    PubMed

    Morita, Tomotake; Fukuoka, Tokuma; Imura, Tomohiro; Hirose, Naoto; Kitamoto, Dai

    2012-01-01

    Forty-three fungal producers for glycolipid biosurfactants, mannosylerythritol lipids (MELs), were isolated from leaves and smuts of sugarcane plants. These isolates produced MELs with sugarcane juice as nutrient source. The strains were taxonomically categorized into the genera Pseudozyma and Ustilago on the basis of partial sequences of the ribosomal RNA gene. PMID:22972331

  15. Production of microbial glycolipid biosurfactants and their antimicrobial activity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Microbial glycolipids produced by bacteria or yeast as secondary metabolites, such as sophorolipids (SLs), rhamnolipids (RLs) and mannosylerythritol lipids (MELs) are “green” biosurfactants desirable in a bioeconomy. High cost of production is a major hurdle toward widespread commercial use of bios...

  16. Formation of the two novel glycolipid biosurfactants, mannosylribitol lipid and mannosylarabitol lipid, by Pseudozyma parantarctica JCM 11752T.

    PubMed

    Morita, Tomotake; Fukuoka, Tokuma; Imura, Tomohiro; Kitamoto, Dai

    2012-11-01

    In order to develop novel glycolipid biosurfactants, Pseudozyma parantarctica JCM 11752(T), which is known as a producer of mannosylerythritol lipids (MEL), was cultivated using different sugar alcohols with the presence of vegetable oil. When cultivated in a medium containing 4 % (w/v) olive oil and 4 % D-ribitol or D-arabitol, the yeast strain provided different glycolipids, compared to the case of no sugar alcohol. On TLC, both of the extracted glycolipid fractions gave two major spots corresponding to MEL-A (di-acetylated MEL) and MEL-B (mono-acetylated MEL). Based on (1)H NMR analysis, one glycolipid was identified as MEL-A, but the other was not MEL-B. On high-performance liquid chromatography after acid hydrolysis, the unknown glycolipid from the D-ribitol culture provided mainly two peaks identical to D-mannose and D-ribitol, and the other unknown glycolipid from the D-arabitol culture did two peaks identical to D-mannose and D-arabitol. Accordingly, the two unknown glycolipids were identified as mannosylribitol lipid (MRL) and mannosylarabitol lipid (MAL), respectively. The observed critical micelle concentration (CMC) and surface tension at CMC of MRL were 1.6 × 10(-6) M and 23.7 mN/m, and those of MAL were 1.5 × 10(-6) M and 24.2 mN/m, respectively. These surface-tension-lowering activities were significantly higher compared to conventional MEL. Furthermore, on a water-penetration scan, MRL and MAL efficiently formed not only the lamella phase (L(α)) but also the myelins at a wide range of concentrations, indicating their excellent self-assembling properties and high hydrophilicity. The present two glycolipids should thus facilitate the application of biosurfactants as new functional materials. PMID:22722912

  17. Production of a novel glycolipid biosurfactant, mannosylmannitol lipid, by Pseudozyma parantarctica and its interfacial properties.

    PubMed

    Morita, Tomotake; Fukuoka, Tokuma; Konishi, Masaaki; Imura, Tomohiro; Yamamoto, Shuhei; Kitagawa, Masaru; Sogabe, Atsushi; Kitamoto, Dai

    2009-07-01

    The development of a novel glycolipid biosurfactant was undertaken using the high-level producers of mannosylerythritol lipids (MELs) such as Pseudozyma parantarctica, Pseudozyma antarctica, and Pseudozyma rugulosa. Besides the conventional MELs (MEL-A, MEL-B, and MEL-C), these yeasts produced an unknown glycolipid when they were cultivated in a medium containing 4% (w/v) olive oil and 4% (w/w) mannitol as the carbon source. The unknown glycolipid extracted from the culture medium of P. parantarctica JCM 11752(T) displayed the spot with lower mobility than that of known MELs on TLC and provided mainly two peaks identical to mannose and mannitol on high-performance liquid chromatography after acid hydrolysis. Based on structural analysis by (1)H and (13)C nuclear magnetic resonance, the novel glycolipid was composed of mannose and mannitol as the hydrophilic sugar moiety and was identified as mannosylmannitol lipid (MML). Of the strains tested, P. parantarctica JCM 11752(T) gave the best yield of MML (18.2 g/L), which comprised approximately 35% of all glycolipids produced. We further investigated the interfacial properties of the MML, considering the unique hydrophilic structure. The observed critical micelle concentration (CMC) and the surface tension at CMC of the MML were 2.6 x 10(-6) M and 24.2 mN/m, respectively. In addition, on a water-penetration scan, the MML efficiently formed not only the lamella phase (Lalpha) but also the myelins at a wide range of concentrations, indicating its excellent self-assembling properties and high hydrophilicity. The present glycolipid should thus facilitate the application of biosurfactants as new functional materials. PMID:19296097

  18. Surface properties of lipoplexes modified with mannosylerythritol lipid-a and tween 80 and their cellular association.

    PubMed

    Ding, Wuxiao; Hattori, Yoshiyuki; Qi, Xianrong; Kitamoto, Dai; Maitani, Yoshie

    2009-02-01

    The surface properties of cationic liposomes and lipoplexes largely determine the cellular association and gene transfection efficiency. In this study, we measured the surface properties, such as zeta potentials, surface pH and hydration levels of MHAPC- and OH-Chol-lipoplexes and their cellular association, without and with the modification of biosurfactant mannosylerythritol lipid-A (MEL-A) or Tween 80 (MHAPC=N,N-methyl hydroxyethyl aminopropane carbamoyl cholesterol; OH-Chol=cholesteryl-3beta-carboxyamindoethylene-N-hydroxyethylamine). Compared to OH-Chol-lipoplexes, the higher cellular association of MHAPC-lipoplexes correlated with the significantly higher zeta potentials, lower surface pH levels and "drier" surface, as evaluated by the generalized polarization of laurdan. Both MEL-A and Tween 80 modification of MHAPC-lipoplexes did not significantly change zeta potentials and surface pH levels, while MEL-A modification of OH-Chol-lipoplexes seriously decreased them. MEL-A hydrated the liposomal surface of MHAPC-lipoplexes but dehydrated that of OH-Chol-lipoplexes, while Tween 80 hydrated those of MHAPC- and OH-Chol-lipoplexes. In all, cationic liposomes composed of lipids with secondary and tertiary amine exhibited different surface properties and cellular associations of lipoplexes, and modification with surfactants further enlarged their difference. The strong hydration ability of Tween 80 may relate to the low cellular association of lipoplexes, while the dehydration of MEL-A-modified OH-Chol-lipoplexes seemed to compensate the negative zeta potential for the cellular association of lipoplexes. PMID:19182402

  19. Biosurfactants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biosurfactants are surfactants whose common feature is biodegradability, which provides them with a major advantage over the majority of surfactants currently in the market. Biosurfactants are produced from a wide range of raw materials, and manufactured using chemical, enzymatic, microbial, and a c...

  20. Microbial biosurfactants: challenges and opportunities for future exploitation.

    PubMed

    Marchant, Roger; Banat, Ibrahim M

    2012-11-01

    The drive for industrial sustainability has pushed biosurfactants to the top of the agenda of many companies. Biosurfactants offer the possibility of replacing chemical surfactants, produced from nonrenewable resources, with alternatives produced from cheap renewable feedstocks. Biosurfactants are also attractive because they are less damaging to the environment yet are robust enough for industrial use. The most promising biosurfactants at the present time are the glycolipids, sophorolipids produced by Candida yeasts, mannosylerythritol lipids (MELs) produced by Pseudozyma yeasts, and rhamnolipids produced by Pseudomonas. Despite the current enthusiasm for these compounds several residual problems remain. This review highlights remaining problems and indicates the prospects for imminent commercial exploitation of a new generation of microbial biosurfactants.

  1. Microbial biosurfactants: challenges and opportunities for future exploitation.

    PubMed

    Marchant, Roger; Banat, Ibrahim M

    2012-11-01

    The drive for industrial sustainability has pushed biosurfactants to the top of the agenda of many companies. Biosurfactants offer the possibility of replacing chemical surfactants, produced from nonrenewable resources, with alternatives produced from cheap renewable feedstocks. Biosurfactants are also attractive because they are less damaging to the environment yet are robust enough for industrial use. The most promising biosurfactants at the present time are the glycolipids, sophorolipids produced by Candida yeasts, mannosylerythritol lipids (MELs) produced by Pseudozyma yeasts, and rhamnolipids produced by Pseudomonas. Despite the current enthusiasm for these compounds several residual problems remain. This review highlights remaining problems and indicates the prospects for imminent commercial exploitation of a new generation of microbial biosurfactants. PMID:22901730

  2. Mannosylerythritol lipid increases levels of galactoceramide in and neurite outgrowth from PC12 pheochromocytoma cells.

    PubMed

    Shibahara, M; Zhao, X; Wakamatsu, Y; Nomura, N; Nakahara, T; Jin, C; Nagaso, H; Murata, T; Yokoyama, K K

    2000-07-01

    We report here that a microbial extracellular glycolipid,mannosylerythritol lipid (MEL), induces the outgrowth ofneurites from and enhances the activity of acetylcholinesterase(AChE) in PC12 pheochromocytoma cells. Furthermore, treatment ofPC12 cells with MEL increased levels of galactosylceramide(Galbeta1-1'Cer; GalCer). Exposure of PC12 cells to exogenous GalCer caused the dose-dependent outgrowth ofneurites. By contrast, treatment of PC12 cells with nerve growthfactor (NGF) did not increase the level of GalCer in the cells. The neurite-related morphological changes induced by GalCerdifferend from those induced by NGF, indicating differencesbetween the signal transduction pathways triggered by NGF and by GalCer. PMID:19002832

  3. The role of PaAAC1 encoding a mitochondrial ADP/ATP carrier in the biosynthesis of extracellular glycolipids, mannosylerythritol lipids, in the basidiomycetous yeast Pseudozyma antarctica.

    PubMed

    Morita, Tomotake; Ito, Emi; Fukuoka, Tokuma; Imura, Tomohiro; Kitamoto, Dai

    2010-07-01

    Pseudozyma antarctica produces large amounts of the glycolipid biosurfactants known as mannosylerythritol lipids (MEL), which show not only excellent surface-active properties but also versatile biochemical actions. A gene homologous with a mitochondrial ADP/ATP carrier was dominantly expressed in P. antarctica under MEL-producing conditions on the basis of previous gene expression analysis. The gene encoding the mitochondrial ADP/ATP carrier of P. antarctica (PaAAC1) contained a putative open reading frame of 954 bp and encodes a polypeptide of 317 amino acids. The deduced translation product shared high identity of 66%, 70%, 69%, 74%, 75% and 52% with the mitochondrial ADP/ATP carrier of Saccharomyces cerevisiae (AAC1), S. cerevisiae (AAC2), S. cerevisiae (AAC3), Kluyveromyces lactis (KlAAC), Neurospora crassa (NcAAC) and human (ANT1), respectively, and conserved the consensus sequences of all ADP/ATP carrier proteins. The gene expression by introducing a plasmid pUXV1-PaAAC1 into the yeast cells increased the MEL production. In addition, the expression of PaAAC1 in which the conserved arginine and leucine required for ATP transport activity were replaced with isoleucine and serine, respectively, failed to increase MEL production. Accordingly, these results suggest that PaAAC1 encoding a mitochondrial ADP/ATP carrier should be involved in MEL biosynthesis in the yeast. PMID:20146402

  4. Nanoemulsification of pseudo-ceramide by molecular association with mannosylerythritol lipid.

    PubMed

    Kim, Min Kyung; Jeong, Eun Seon; Kim, Kwang Nyeon; Park, Seung Han; Kim, Jin Woong

    2014-04-01

    Ceramide molecules in water-based solutions readily attract each other to form molecular crystals, which seriously hampers to diversify their formulations. This paper describes a facile method that allows fabrication of stable ceramide emulsions through an effective molecular association with a lipid having an asymmetric molecular geometry. The lipid considered in this study is mannosylerythritol lipid (MEL). MEL is specialized in having a unique molecular structure containing sugar alcohol erythritol as a hydrophilic part and two alkyl chains with different number of carbons as hydrophobic moieties. Our particular interest has been focused on experimentally demonstrating how MEL interacts with pseudo-ceramide molecules by observing phase properties, emulsion morphology, and suspension stability. The pseudo-ceramide emulsions prepared with MEL show remarkably improved dispersion stability without either formation of molecular crystals or changes in particle sizes even after storing them for a long time. This suggests that MEL readily associates with the pseudo-ceramide due to the hydrophobic interaction, while it makes a break in the continuity of the molecular assembly of the pseudo-ceramide molecules themselves due to the geometric hindrance coming from MEL's asymmetric molecular structure. PMID:24290102

  5. Genome and Transcriptome Analysis of the Basidiomycetous Yeast Pseudozyma antarctica Producing Extracellular Glycolipids, Mannosylerythritol Lipids

    PubMed Central

    Hagiwara, Hiroko; Ito, Emi; Machida, Masayuki; Sato, Shun; Habe, Hiroshi; Kitamoto, Dai

    2014-01-01

    Pseudozyma antarctica is a non-pathogenic phyllosphere yeast known as an excellent producer of mannosylerythritol lipids (MELs), multi-functional extracellular glycolipids, from vegetable oils. To clarify the genetic characteristics of P. antarctica, we analyzed the 18 Mb genome of P. antarctica T-34. On the basis of KOG analysis, the number of genes (219 genes) categorized into lipid transport and metabolism classification in P. antarctica was one and a half times larger than that of yeast Saccharomyces cerevisiae (140 genes). The gene encoding an ATP/citrate lyase (ACL) related to acetyl-CoA synthesis conserved in oleaginous strains was found in P. antarctica genome: the single ACL gene possesses the four domains identical to that of the human gene, whereas the other oleaginous ascomycetous species have the two genes covering the four domains. P. antarctica genome exhibited a remarkable degree of synteny to U. maydis genome, however, the comparison of the gene expression profiles under the culture on the two carbon sources, glucose and soybean oil, by the DNA microarray method revealed that transcriptomes between the two species were significantly different. In P. antarctica, expression of the gene sets relating fatty acid metabolism were markedly up-regulated under the oily conditions compared with glucose. Additionally, MEL biosynthesis cluster of P. antarctica was highly expressed regardless of the carbon source as compared to U. maydis. These results strongly indicate that P. antarctica has an oleaginous nature which is relevant to its non-pathogenic and MEL-overproducing characteristics. The analysis and dataset contribute to stimulate the development of improved strains with customized properties for high yield production of functional bio-based materials. PMID:24586250

  6. Genome and transcriptome analysis of the basidiomycetous yeast Pseudozyma antarctica producing extracellular glycolipids, mannosylerythritol lipids.

    PubMed

    Morita, Tomotake; Koike, Hideaki; Hagiwara, Hiroko; Ito, Emi; Machida, Masayuki; Sato, Shun; Habe, Hiroshi; Kitamoto, Dai

    2014-01-01

    Pseudozyma antarctica is a non-pathogenic phyllosphere yeast known as an excellent producer of mannosylerythritol lipids (MELs), multi-functional extracellular glycolipids, from vegetable oils. To clarify the genetic characteristics of P. antarctica, we analyzed the 18 Mb genome of P. antarctica T-34. On the basis of KOG analysis, the number of genes (219 genes) categorized into lipid transport and metabolism classification in P. antarctica was one and a half times larger than that of yeast Saccharomyces cerevisiae (140 genes). The gene encoding an ATP/citrate lyase (ACL) related to acetyl-CoA synthesis conserved in oleaginous strains was found in P. antarctica genome: the single ACL gene possesses the four domains identical to that of the human gene, whereas the other oleaginous ascomycetous species have the two genes covering the four domains. P. antarctica genome exhibited a remarkable degree of synteny to U. maydis genome, however, the comparison of the gene expression profiles under the culture on the two carbon sources, glucose and soybean oil, by the DNA microarray method revealed that transcriptomes between the two species were significantly different. In P. antarctica, expression of the gene sets relating fatty acid metabolism were markedly up-regulated under the oily conditions compared with glucose. Additionally, MEL biosynthesis cluster of P. antarctica was highly expressed regardless of the carbon source as compared to U. maydis. These results strongly indicate that P. antarctica has an oleaginous nature which is relevant to its non-pathogenic and MEL-overproducing characteristics. The analysis and dataset contribute to stimulate the development of improved strains with customized properties for high yield production of functional bio-based materials. PMID:24586250

  7. Genetic analysis of biosurfactant production in Ustilago maydis.

    PubMed

    Hewald, Sandra; Josephs, Katharina; Bölker, Michael

    2005-06-01

    The dimorphic basidiomycete Ustilago maydis produces large amounts of surface-active compounds under conditions of nitrogen starvation. These biosurfactants consist of derivatives of two classes of amphipathic glycolipids. Ustilagic acids are cellobiose lipids in which the disaccharide is O-glycosidically linked to 15,16-dihydroxyhexadecanoic acid. Ustilipids are mannosylerythritol lipids derived from acylated beta-d-mannopyranosyl-d-erythritol. Whereas the chemical structure of these biosurfactants has been determined, the genetic basis for their biosynthesis and regulation is largely unknown. Here we report the first identification of two genes, emt1 and cyp1, that are essential for the production of fungal extracellular glycolipids. emt1 is required for mannosylerythritol lipid production and codes for a protein with similarity to prokaryotic glycosyltransferases involved in the biosynthesis of macrolide antibiotics. We suggest that Emt1 catalyzes the synthesis of mannosyl-d-erythritol by transfer of GDP-mannose. Deletion of the gene cyp1 resulted in complete loss of ustilagic acid production. Cyp1 encodes a cytochrome P450 monooxygenase which is highly related to a family of plant fatty acid hydroxylases. Therefore we assume that Cyp1 is directly involved in the biosynthesis of the unusual 15,16-dihydroxyhexadecanoic acid. We could show that mannosylerythritol lipid production is responsible for hemolytic activity on blood agar, whereas ustilagic acid secretion is required for long-range pheromone recognition. The mutants described here allow for the first time a genetic analysis of glycolipid production in fungi. PMID:15932999

  8. Genetic Analysis of Biosurfactant Production in Ustilago maydis

    PubMed Central

    Hewald, Sandra; Josephs, Katharina; Bölker, Michael

    2005-01-01

    The dimorphic basidiomycete Ustilago maydis produces large amounts of surface-active compounds under conditions of nitrogen starvation. These biosurfactants consist of derivatives of two classes of amphipathic glycolipids. Ustilagic acids are cellobiose lipids in which the disaccharide is O-glycosidically linked to 15,16-dihydroxyhexadecanoic acid. Ustilipids are mannosylerythritol lipids derived from acylated β-d-mannopyranosyl-d-erythritol. Whereas the chemical structure of these biosurfactants has been determined, the genetic basis for their biosynthesis and regulation is largely unknown. Here we report the first identification of two genes, emt1 and cyp1, that are essential for the production of fungal extracellular glycolipids. emt1 is required for mannosylerythritol lipid production and codes for a protein with similarity to prokaryotic glycosyltransferases involved in the biosynthesis of macrolide antibiotics. We suggest that Emt1 catalyzes the synthesis of mannosyl-d-erythritol by transfer of GDP-mannose. Deletion of the gene cyp1 resulted in complete loss of ustilagic acid production. Cyp1 encodes a cytochrome P450 monooxygenase which is highly related to a family of plant fatty acid hydroxylases. Therefore we assume that Cyp1 is directly involved in the biosynthesis of the unusual 15,16-dihydroxyhexadecanoic acid. We could show that mannosylerythritol lipid production is responsible for hemolytic activity on blood agar, whereas ustilagic acid secretion is required for long-range pheromone recognition. The mutants described here allow for the first time a genetic analysis of glycolipid production in fungi. PMID:15932999

  9. Production of glycolipid biosurfactants, mannosylerythritol lipids, by a smut fungus, Ustilago scitaminea NBRC 32730.

    PubMed

    Morita, Tomotake; Ishibashi, Yuko; Fukuoka, Tokuma; Imura, Tomohiro; Sakai, Hideki; Abe, Masahiko; Kitamoto, Dai

    2009-03-23

    A smut fungus Ustilago scitaminea NBRC 32730 on sugar cane (Saccharum) was found to accumulate a large amount of glycolipids in the culture medium. As a result of structural characterization, the main glycolipid was identified as MEL-B, 4-O-beta-(2',3'-di-O-alka(e)noyl-6'-O-acetyl-D-mannopyranosyl)-erythritol. The MEL-B was sufficiently produced from a variety of sugars such as sucrose, glucose, fructose, and mannose. Olive oil and methyl oleate were also available as carbon sources to produce MEL-B. However, these residual oils made product recovery very complicated. Under optimal conditions, a maximum MEL yield of 12.8 g/l was achieved by feeding of sucrose. PMID:19270362

  10. Biosurfactant-producing yeasts widely inhabit various vegetables and fruits.

    PubMed

    Konishi, Masaaki; Maruoka, Naruyuki; Furuta, Yoshifumi; Morita, Tomotake; Fukuoka, Tokuma; Imura, Tomohiro; Kitamoto, Dai

    2014-01-01

    The isolation of biosurfactant-producing yeasts from food materials was accomplished. By a combination of a new drop collapse method and thin-layer chromatography, 48 strains were selected as glycolipid biosurfactant producers from 347 strains, which were randomly isolated from various vegetables and fruits. Of the producers, 69% were obtained from vegetables of the Brassica family. Of the 48 producers, 15 strains gave relatively high yields of mannosylerythritol lipids (MELs), and were identified as Pseudozyma yeasts. These strains produced MELs from olive oil at yields ranging from 8.5 to 24.3 g/L. The best yield coefficient reached 0.49 g/g as to the carbon sources added. Accordingly, MEL producers were isolated at high efficiency from various vegetables and fruits, indicating that biosurfactant producers are widely present in foods. The present results should facilitate their application in the food and related industries. PMID:25036844

  11. Treatment of mouse melanoma cells with phorbol 12-myristate 13-acetate counteracts mannosylerythritol lipid-induced growth arrest and apoptosis.

    PubMed

    Zhao, X; Geltinger, C; Kishikawa, S; Ohshima, K; Murata, T; Nomura, N; Nakahara, T; Yokoyama, K K

    2000-07-01

    Mannosylerythritol lipid (MEL), an extracellularglycolipid from yeast, induces the differentiation ofHL-60 promyelocytic leukemia cells towardsgranulocytes. We show here that MEL is also a potentinhibitor of the proliferation of mouse melanoma B16cells. Flow-cytometric analysis of the cell cycle ofMEL-treated B16 cells revealed the accumulation ofcells in the sub-G(0)/G(1) phase, which is a hallmark ofcells undergoing apoptosis. Treatment of B16 cellsfor 24 h with phorbol 12-myristate 13-acetate (PMA),an activator of protein kinase C (PKC), did notinterfere with the growth and survival of the cells,but it effectively counteracted the MEL-induced growtharrest and apoptosis. The activity of PKC was reducedin B16 cells treated with MEL at a concentration atwhich MEL induced apoptosis. However, incubation withPMA in addition to MEL reversed this reduction in theactivity of PKC. These results suggest thatconverging signaling pathways are triggeredindependently by MEL and PMA and that the signalsmight both be mediated by PKC. PMID:19002819

  12. A Gene Cluster for Biosynthesis of Mannosylerythritol Lipids Consisted of 4-O-β-D-Mannopyranosyl-(2R,3S)-Erythritol as the Sugar Moiety in a Basidiomycetous Yeast Pseudozyma tsukubaensis

    PubMed Central

    Saika, Azusa; Koike, Hideaki; Fukuoka, Tokuma; Yamamoto, Shuhei; Kishimoto, Takahide; Morita, Tomotake

    2016-01-01

    Mannosylerythritol lipids (MELs) belong to the glycolipid biosurfactants and are produced by various fungi. The basidiomycetous yeast Pseudozyma tsukubaensis produces diastereomer type of MEL-B, which contains 4-O-β-D-mannopyranosyl-(2R,3S)-erythritol (R-form) as the sugar moiety. In this respect it differs from conventional type of MELs, which contain 4-O-β-D-mannopyranosyl-(2S,3R)-erythritol (S-form) as the sugar moiety. While the biosynthetic gene cluster for conventional type of MELs has been previously identified in Ustilago maydis and Pseudozyma antarctica, the genetic basis for MEL biosynthesis in P. tsukubaensis is unknown. Here, we identified a gene cluster involved in MEL biosynthesis in P. tsukubaensis. Among these genes, PtEMT1, which encodes erythritol/mannose transferase, had greater than 69% identity with homologs from strains in the genera Ustilago, Melanopsichium, Sporisorium and Pseudozyma. However, phylogenetic analysis placed PtEMT1p in a separate clade from the other proteins. To investigate the function of PtEMT1, we introduced the gene into a P. antarctica mutant strain, ΔPaEMT1, which lacks MEL biosynthesis ability owing to the deletion of PaEMT1. Using NMR spectroscopy, we identified the biosynthetic product as MEL-A with altered sugar conformation. These results indicate that PtEMT1p catalyzes the sugar conformation of MELs. This is the first report of a gene cluster for the biosynthesis of diastereomer type of MEL. PMID:27327162

  13. A Gene Cluster for Biosynthesis of Mannosylerythritol Lipids Consisted of 4-O-β-D-Mannopyranosyl-(2R,3S)-Erythritol as the Sugar Moiety in a Basidiomycetous Yeast Pseudozyma tsukubaensis.

    PubMed

    Saika, Azusa; Koike, Hideaki; Fukuoka, Tokuma; Yamamoto, Shuhei; Kishimoto, Takahide; Morita, Tomotake

    2016-01-01

    Mannosylerythritol lipids (MELs) belong to the glycolipid biosurfactants and are produced by various fungi. The basidiomycetous yeast Pseudozyma tsukubaensis produces diastereomer type of MEL-B, which contains 4-O-β-D-mannopyranosyl-(2R,3S)-erythritol (R-form) as the sugar moiety. In this respect it differs from conventional type of MELs, which contain 4-O-β-D-mannopyranosyl-(2S,3R)-erythritol (S-form) as the sugar moiety. While the biosynthetic gene cluster for conventional type of MELs has been previously identified in Ustilago maydis and Pseudozyma antarctica, the genetic basis for MEL biosynthesis in P. tsukubaensis is unknown. Here, we identified a gene cluster involved in MEL biosynthesis in P. tsukubaensis. Among these genes, PtEMT1, which encodes erythritol/mannose transferase, had greater than 69% identity with homologs from strains in the genera Ustilago, Melanopsichium, Sporisorium and Pseudozyma. However, phylogenetic analysis placed PtEMT1p in a separate clade from the other proteins. To investigate the function of PtEMT1, we introduced the gene into a P. antarctica mutant strain, ΔPaEMT1, which lacks MEL biosynthesis ability owing to the deletion of PaEMT1. Using NMR spectroscopy, we identified the biosynthetic product as MEL-A with altered sugar conformation. These results indicate that PtEMT1p catalyzes the sugar conformation of MELs. This is the first report of a gene cluster for the biosynthesis of diastereomer type of MEL. PMID:27327162

  14. Mannosylerythritol lipids secreted by phyllosphere yeast Pseudozyma antarctica is associated with its filamentous growth and propagation on plant surfaces.

    PubMed

    Yoshida, Shigenobu; Morita, Tomotake; Shinozaki, Yukiko; Watanabe, Takashi; Sameshima-Yamashita, Yuka; Koitabashi, Motoo; Kitamoto, Dai; Kitamoto, Hiroko

    2014-01-01

    The biological function of mannosylerythritol lipids (MELs) towards their producer, Pseudozyma antarctica, on plant surfaces was investigated. MEL-producing wild-type strain and its MEL production-defective mutant strain (ΔPaEMT1) were compared in terms of their phenotypic traits on the surface of plastic plates, onion peels, and fresh leaves of rice and wheat. While wild-type cells adhering on plastic surfaces and onion peels changed morphologically from single cells to elongated ones for a short period of about 4 h and 1 day, respectively, ΔPaEMT1 cells did not. Microscopic observation of both strains grown on plant leaf surfaces verified that the wild type colonized a significantly bigger area than that of ΔPaEMT1. However, when MELs were exogenously added to the mutant cells on plant surfaces, their colonized area became enlarged. High-performance liquid chromatography analysis revealed a secretion of higher amount of MELs in the cell suspension incubated with wheat leaf cuttings compared to that in the suspension without cuttings. Transcriptional analysis by real-time reverse transcriptase PCR verified that the expression of erythritol/mannose transferase gene and MELs transporter gene of P. antarctica increased in the cells inoculated onto wheat leaves at 4, 6, and 8 days of incubation, indicating a potential of P. antarctica to produce MELs on the leaves. These findings demonstrate that MELs produced by P. antarctica on plant surfaces could be expected to play a significant role in fungal morphological development and propagation on plant surfaces.

  15. Mannosylerythritol lipids secreted by phyllosphere yeast Pseudozyma antarctica is associated with its filamentous growth and propagation on plant surfaces.

    PubMed

    Yoshida, Shigenobu; Morita, Tomotake; Shinozaki, Yukiko; Watanabe, Takashi; Sameshima-Yamashita, Yuka; Koitabashi, Motoo; Kitamoto, Dai; Kitamoto, Hiroko

    2014-01-01

    The biological function of mannosylerythritol lipids (MELs) towards their producer, Pseudozyma antarctica, on plant surfaces was investigated. MEL-producing wild-type strain and its MEL production-defective mutant strain (ΔPaEMT1) were compared in terms of their phenotypic traits on the surface of plastic plates, onion peels, and fresh leaves of rice and wheat. While wild-type cells adhering on plastic surfaces and onion peels changed morphologically from single cells to elongated ones for a short period of about 4 h and 1 day, respectively, ΔPaEMT1 cells did not. Microscopic observation of both strains grown on plant leaf surfaces verified that the wild type colonized a significantly bigger area than that of ΔPaEMT1. However, when MELs were exogenously added to the mutant cells on plant surfaces, their colonized area became enlarged. High-performance liquid chromatography analysis revealed a secretion of higher amount of MELs in the cell suspension incubated with wheat leaf cuttings compared to that in the suspension without cuttings. Transcriptional analysis by real-time reverse transcriptase PCR verified that the expression of erythritol/mannose transferase gene and MELs transporter gene of P. antarctica increased in the cells inoculated onto wheat leaves at 4, 6, and 8 days of incubation, indicating a potential of P. antarctica to produce MELs on the leaves. These findings demonstrate that MELs produced by P. antarctica on plant surfaces could be expected to play a significant role in fungal morphological development and propagation on plant surfaces. PMID:24706213

  16. Characterization of biosurfactant-containing liposomes and their efficiency for gene transfection.

    PubMed

    Ueno, Yoshinobu; Hirashima, Naohide; Inoh, Yoshikazu; Furuno, Tadahide; Nakanishi, Mamoru

    2007-01-01

    Recently we showed significance of biosurfactants in the field of non-viral vectors for gene transfection. There, a biosurfactant, mannosylerythritol lipid A (MEL-A), especially increased the efficiency of gene transfection mediated with cationic liposomes. However, the molecular mechanism has not been well-understood yet. Here, through the examination of the ability of cationic liposomes containing an MEL (MEL-A, MEL-B or MEL-C) for important transfectional processes of the DNA capsulation and the membrane fusion with anionic liposomes, we found that MEL-A-containing liposomes increased both processes, but that MEL-B and MEL-C-containing liposomes just increased either of them. The results indicated that these kinds of the physicochemical properties in MEL-A-containing liposomes are able to increase the efficiency of liposome-mediated gene transfection. PMID:17202680

  17. Hemolytic activity of a bacterial trehalose lipid biosurfactant produced by Rhodococcus sp.: evidence for a colloid-osmotic mechanism.

    PubMed

    Zaragoza, Ana; Aranda, Francisco J; Espuny, María J; Teruel, José A; Marqués, Ana; Manresa, Angeles; Ortiz, Antonio

    2010-06-01

    A succinoyl trehalose lipid produced by Rhodococcus sp. behaves as a biological surfactant and also displays various interesting biological activities. Trehalose lipid has been shown to have a great tendency to partition into phospholipid membranes; therefore, the characterization of its interaction with biological membranes is of central importance. In this work, human red blood cells have been used as an experimental model. Trehalose lipid causes the swelling of human erythrocytes followed by hemolysis at concentrations well below its critical micellar concentration. Kinetic measurements show that, upon addition of trehalose lipid, K(+) release precedes that of hemoglobin. Osmotic protectants of the appropriate size added to the external medium make it possible to avoid hemolysis. The results indicate that trehalose lipid causes the hemolysis of human erythrocytes by a colloid-osmotic mechanism, most likely by formation of enhanced permeability domains, or "pores" enriched in the biosurfactant, within the erythrocyte membrane. Scanning electron microscopy shows trehalose lipid-induced spherocytosis and echinocytosis of red blood cells, which fits well within the framework of the bilayer-couple hypothesis. The presented results contribute to establishing a molecular basis for the biological properties of this trehalose lipid biosurfactant. PMID:20146489

  18. Deep-sea Rhodococcus sp. BS-15, lacking the phytopathogenic fas genes, produces a novel glucotriose lipid biosurfactant.

    PubMed

    Konishi, Masaaki; Nishi, Shinro; Fukuoka, Tokuma; Kitamoto, Dai; Watsuji, Tomo-O; Nagano, Yuriko; Yabuki, Akinori; Nakagawa, Satoshi; Hatada, Yuji; Horiuchi, Jun-Ichi

    2014-08-01

    Glycolipid biosurfactant-producing bacteria were isolated from deep-sea sediment collected from the Okinawa Trough. Isolate BS15 produced the largest amount of the glycolipid, generating up to 6.31 ± 1.15 g l(-1) after 4 days at 20 °C. Glucose was identified in the hydrolysate of the purified major component of the biosurfactant glycolipid. According to gas chromatography/mass spectrometry analysis, the hydrophobic moieties in the major component were hexadecanoate, octadecanoate, 3-hydroxyhexadecanoate, 2-hydroxyoctanoate, and succinate. The molecular weight of the purified major glycolipid was calculated to be 1,211, while (1)H and (13)C nuclear magnetic resonance spectra confirmed that the major component consisted of 2 mol of α-glucoside and 1 mol of β-glucoside. The molecular structure was assigned as novel trisaccharide-type glycolipid biosurfactant, glucotriose lipids. The critical micelle concentration of the purified major glycolipid was 2.3 × 10(-6) M, with a surface tension of 29.5 mN m(-1). Phylogenetic analysis showed isolate BS15 was closely related to a Rhodococcus strains isolated from Antarctica, and to Rhodococcus fascians, a phytopathogen. PCR analysis showed that the fasA, fasB, fasC, fasD, fasE, and fasF genes, which are involved in phytohormone-like cytokinin production, were not present in the genome of BS15; however, analysis of a draft genome sequence of BS15 (5.5 Mb) identified regions with 31 %, 53 %, 46 %, 30 %, and 31 % DNA sequence identity to the fasA, fasB, fasC, and fasD genes, respectively.

  19. Production of glycolipid biosurfactants by basidiomycetous yeasts.

    PubMed

    Morita, Tomotake; Fukuoka, Tokuma; Imura, Tomohiro; Kitamoto, Dai

    2009-05-01

    BSs (biosurfactants) produced by various micro-organisms show unique properties (e.g. mild production conditions, lower toxicity, higher biodegradability and environmental compatibility) compared with chemically synthesized surfactants. The numerous advantages of BSs have prompted applications not only in the food, cosmetic and pharmaceutical industries but also in environmental protection and energy-saving technology. Among BSs, glycolipid types are the most promising, owing to their high productivity from renewable resources and versatile biochemical properties. MELs (mannosylerythritol lipids), which are glycolipid BSs abundantly produced by basidiomycetous yeasts such as strains of Pseudozyma, exhibit not only excellent interfacial properties, but also remarkable differentiation-inducing activities against human leukaemia cells. MELs also show high binding affinity towards different immunoglobulins and lectins. Recently, a cationic liposome bearing MEL has been demonstrated to increase dramatically the efficiency of gene transfection into mammalian cells. These features of BSs should broaden their application in new advanced technologies. In the present review the current status of research and development on glycolipid BSs, especially their production by Pseudozyma yeasts, is described. PMID:19341364

  20. NBD-conjugated biosurfactant (MEL-A) shows a new pathway for transfection.

    PubMed

    Ueno, Yoshinobu; Inoh, Yoshikazu; Furuno, Tadahide; Hirashima, Naohide; Kitamoto, Dai; Nakanishi, Mamoru

    2007-11-20

    Gene transfection is a fundamental technology for molecular and cell biology, and also clinical gene therapy. A variety of non-viral vectors have been investigated for gene transfection, but their gene delivery had remained an inefficient process. Recently, we found that a biosurfactant, mannosylerythritol lipid (MEL)-A, dramatically increased the efficiency in transfection of plasmid DNA mediated by cationic liposomes. However, its mechanism has not been understood yet. Here we examined the mechanism of the transfection mediated by cationic liposomes with NBD-conjugated MEL-A. We found that MEL-A first gradually distributed on the intracellular membranes through the plasma membranes of target cells, while the cationic liposomes with MEL-A fused to the plasma membranes in 20-35 min. Thereafter, the oligonucleotide released from the vesicles was immediately transferred to the nucleus. The present results showed a new role of non-viral vectors in transfection. PMID:17884224

  1. Selective production of two diastereomers of disaccharide sugar alcohol, mannosylerythritol by Pseudozyma yeasts.

    PubMed

    Yoshikawa, Jun; Morita, Tomotake; Fukuoka, Tokuma; Konishi, Masaaki; Imura, Tomohiro; Kakugawa, Koji; Kitamoto, Dai

    2014-01-01

    Mannosylerythritol (ME) is the hydrophilic backbone of mannosylerythritol lipids as the most promising biosurfactants produced by different Pseudozyma yeasts, and has been receiving attention as a new sugar alcohol. Different Pseudozyma yeasts were examined for the sugar alcohol production using glucose as the sole carbon source. P. hubeiensis KM-59 highly produced a conventional type of ME, i.e., 4-O-β-D-mannopyranosyl-D-erythritol (4-ME). Interestingly, P. tsukubaensis KM-160 produced a diastereomer of 4-ME, i.e., 1-O-β-D-mannopyranosyl-D-erythritol (1-ME). In shake flask culture with 200 g/l of glucose, strain KM-59 produced 4-ME at a yield of 33.2 g/l (2.2 g/l/day of the productivity), while strain KM-160 produced 1-ME at 30.0 g/l (2.0 g/l/day). Moreover, the two strains were found to produce ME from glycerol; the maximum yields of 4-ME and 1-ME from 200 g/l of glycerol were 16.1 g/l (1.1 g/l/day) and 15.8 g/l (1.1 g/l/day), respectively. The production of 1-ME as the new diastereomer was further investigated in fed batch culture using a 5-l jar-fermenter. Compared to the flask culture, strain KM-160 gave three times higher productivity of 1-ME at 38.0 g/l (6.3 g/l/day) from glucose and at 31.1 g/l (3.5 g/l/day) from glycerol, respectively. This is the first report on the selective production of two diastereomers of ME, and should thus facilitate the functional development and application of the disaccharide sugar alcohol in the food and relative industries. PMID:24272368

  2. Glycolipid biosurfactants: main properties and potential applications in agriculture and food industry.

    PubMed

    Mnif, Inès; Ghribi, Dhouha

    2016-10-01

    Glycolipids, consisting of a carbohydrate moiety linked to fatty acids, are microbial surface active compounds produced by various microorganisms. They are characterized by high structural diversity and have the ability to decrease the surface and interfacial tension at the surface and interface, respectively. Rhamnolipids, trehalolipids, mannosylerythritol lipids and cellobiose lipids are among the most popular glycolipids. They have received much practical attention as biopesticides for controlling plant diseases and protecting stored products. As a result of their antifungal activity towards phytopathogenic fungi and larvicidal and mosquitocidal potencies, glycolipid biosurfactants permit the preservation of plants and plant crops from pest invasion. Also, as a result of their emulsifying and antibacterial activities, glycolipids have great potential as food additives and food preservatives. Furthermore, the valorization of food byproducts via the production of glycolipid biosurfactant has received much attention because it permits the bioconversion of byproducts on valuable compounds and decreases the cost of production. Generally, the use of glycolipids in many fields requires their retention from fermentation media. Accordingly, different strategies have been developed to extract and purify glycolipids. © 2016 Society of Chemical Industry. PMID:27098847

  3. Biosurfactant gene clusters in eukaryotes: regulation and biotechnological potential.

    PubMed

    Roelants, Sophie L K W; De Maeseneire, Sofie L; Ciesielska, Katarzyna; Van Bogaert, Inge N A; Soetaert, Wim

    2014-04-01

    Biosurfactants (BSs) are a class of secondary metabolites representing a wide variety of structures that can be produced from renewable feedstock by a wide variety of micro-organisms. They have (potential) applications in the medical world, personal care sector, mining processes, food industry, cosmetics, crop protection, pharmaceuticals, bio-remediation, household detergents, paper and pulp industry, textiles, paint industries, etc. Especially glycolipid BSs like sophorolipids (SLs), rhamnolipids (RLs), mannosylerythritol lipids (MELs) and cellobioselipids (CBLs) have been described to provide significant opportunities to (partially) replace chemical surfactants. The major two factors currently limiting the penetration of BSs into the market are firstly the limited structural variety and secondly the rather high production price linked with the productivity. One of the keys to resolve the above mentioned bottlenecks can be found in the genetic engineering of natural producers. This could not only result in more efficient (economical) recombinant producers, but also in a diversification of the spectrum of available BSs as such resolving both limiting factors at once. Unraveling the genetics behind the biosynthesis of these interesting biological compounds is indispensable for the tinkering, fine tuning and rearrangement of these biological pathways with the aim of obtaining higher yields and a more extensive structural variety. Therefore, this review focuses on recent developments in the investigation of the biosynthesis, genetics and regulation of some important members of the family of the eukaryotic glycolipid BSs (MELs, CBLs and SLs). Moreover, recent biotechnological achievements and the industrial potential of engineered strains are discussed.

  4. Biosurfactant gene clusters in eukaryotes: regulation and biotechnological potential.

    PubMed

    Roelants, Sophie L K W; De Maeseneire, Sofie L; Ciesielska, Katarzyna; Van Bogaert, Inge N A; Soetaert, Wim

    2014-04-01

    Biosurfactants (BSs) are a class of secondary metabolites representing a wide variety of structures that can be produced from renewable feedstock by a wide variety of micro-organisms. They have (potential) applications in the medical world, personal care sector, mining processes, food industry, cosmetics, crop protection, pharmaceuticals, bio-remediation, household detergents, paper and pulp industry, textiles, paint industries, etc. Especially glycolipid BSs like sophorolipids (SLs), rhamnolipids (RLs), mannosylerythritol lipids (MELs) and cellobioselipids (CBLs) have been described to provide significant opportunities to (partially) replace chemical surfactants. The major two factors currently limiting the penetration of BSs into the market are firstly the limited structural variety and secondly the rather high production price linked with the productivity. One of the keys to resolve the above mentioned bottlenecks can be found in the genetic engineering of natural producers. This could not only result in more efficient (economical) recombinant producers, but also in a diversification of the spectrum of available BSs as such resolving both limiting factors at once. Unraveling the genetics behind the biosynthesis of these interesting biological compounds is indispensable for the tinkering, fine tuning and rearrangement of these biological pathways with the aim of obtaining higher yields and a more extensive structural variety. Therefore, this review focuses on recent developments in the investigation of the biosynthesis, genetics and regulation of some important members of the family of the eukaryotic glycolipid BSs (MELs, CBLs and SLs). Moreover, recent biotechnological achievements and the industrial potential of engineered strains are discussed. PMID:24531239

  5. [Naturally engineered glycolipid biosurfactants leading to distinctive self-assembling properties].

    PubMed

    Kitamoto, Dai

    2008-05-01

    Biosurfactants (BS) are functional amphiphilic compounds produced by a variety of microorganisms. They show unique properties (e.g. mild production conditions, lower toxicity, and environmental compatibility) compared to chemically synthesized counterparts. The numerous advantages of BS have prompted applications not only in the food, cosmetic, and pharmaceutical industries but in energy and environmental technologies as well. Mannosylerythritol lipids (MELs) are one of the most promising BS known, and are produced at yields of over 100 g/l from vegetable oils by yeast strains belonging to the genus Pseudozyma. MELs exhibit excellent surface-active and self-assembling properties leading to the formation of different lyotropic liquid crystals such as sponge (L(3)), bicontinuous cubic (V(2)) and lamella (L(alpha)) phases. They also show versatile biochemical actions, including antitumor and differentiation-inducing activities against human leukemia cells, rat pheochromocytoma cells and mouse melanoma cells. MELs also display high binding affinity toward different immunoglobulins and lectins, indicating great potentials as new affinity ligands for the glycoproteins. More significantly, the cationic liposomes bearing MELs increase dramatically the efficiency of gene transfection into mammalian cells via membrane fusion processes. The yeast BS should thus be novel nanobiomaterials, and broaden their applications in various advanced technologies. PMID:18451615

  6. Synergistic effect of a biosurfactant and protamine on gene transfection efficiency.

    PubMed

    Inoh, Yoshikazu; Furuno, Tadahide; Hirashima, Naohide; Kitamoto, Dai; Nakanishi, Mamoru

    2013-04-11

    Several barriers need to be overcome to ensure successful gene transfection, including passing of the foreign gene through the plasma membrane, escape of this material from lysosomal degradation, and its translocation into the nucleus. We previously showed that the biosurfactant mannosylerythritol lipid-A (MEL-A) enhanced the efficiency of gene transfection mediated by cationic liposomes by facilitating rapid delivery of foreign genes into target cells through membrane fusion between liposomes and the plasma membrane. Moreover, using MEL-A-containing cationic liposomes, the foreign gene was efficiently delivered into the nucleus because it was released directly into the cytosol and thus escaped lysosomal degradation. Here we investigated the effect of pre-condensation of plasmid DNA by a cationic polymer, protamine, on gene transfection. We found that the efficiency of pre-condensed DNA transfection mediated by MEL-A-containing OH liposomes was >10 times higher than that of non-condensed DNA transfection. In contrast, the efficiency of pre-condensed DNA transfection mediated by OH liposomes was only 1.5 times higher than that of non-condensed DNA transfection. MEL-A did not influence plasmid DNA encapsulation by cationic liposomes, but it greatly accelerated the nuclear delivery of pre-condensed plasmid DNA. Our findings indicate that MEL-A and protamine synergistically accelerate the nuclear delivery of foreign gene and consequently promote gene transfection efficiency. PMID:23422688

  7. The ratio of unsaturated fatty acids in biosurfactants affects the efficiency of gene transfection.

    PubMed

    Inoh, Yoshikazu; Furuno, Tadahide; Hirashima, Naohide; Kitamoto, Dai; Nakanishi, Mamoru

    2010-10-15

    An unsaturated hydrocarbon chain in phospholipid was reported to affect a phase transition and a fusogenic activity after mixing membranes, and consequently to achieve a high DNA transfection efficiency. We previously showed that a biosurfactant mannosylerythritol lipid-A (MEL-A) enhances the gene transfection efficiency of cationic liposomes. Here, we have studied the effects of unsaturated fatty acid ratio of MEL-A on the physicochemical properties and gene delivery into cells of cationic liposomes using MEL-A with three different unsaturated fatty acid ratios (9.1%, 21.5%, and 46.3%). The gene transfer efficiency of cationic liposomes containing MEL-A (21.5%) was much higher than that of those containing MEL-A (9.1%) and MEL-A (46.3%). MEL-A (21.5%)-containing cationic liposomes induced highly efficient membrane fusion after addition of anionic liposomes and led to subsequent DNA release. Imaging analysis revealed that MEL-A (21.5%)-containing liposomes fused with the plasma membrane and delivered DNA into the nucleus of NIH-3T3 cells, MEL-A (46.3%)-containing liposomes fused with the plasma membrane did not deliver DNA into the nucleus, and MEL-A (9.1%)-containing liposomes neither fused with the plasma membrane nor delivered DNA into the nucleus. Thus, it is understandable that the unsaturated fatty acid ratio of MEL-A strongly influences the gene transfection efficiency of cationic liposomes. PMID:20674726

  8. Naturally engineered glycolipid biosurfactants leading to distinctive self-assembled structures.

    PubMed

    Imura, Tomohiro; Ohta, Noboru; Inoue, Katsuaki; Yagi, Naoto; Negishi, Hideyuki; Yanagishita, Hiroshi; Kitamoto, Dai

    2006-03-01

    Self-assembling properties of "natural" glycolipid biosurfactants, mannosyl-erythritol lipids A and B (MEL-A, MEL-B), which are abundantly produced from yeast strains, were investigated by using the fluorescence-probe method, dynamic light-scattering (DLS) analysis, freeze-fracture transmission electron microscopy (FF-TEM), and synchrotron small/wide-angle X-ray scattering (SAXS/WAXS) analysis, among other methods. Both MEL-A and MEL-B exhibit excellent self-assembly properties at extremely low concentrations; they self-assemble into large unilamellar vesicles (LUV) just above their critical-aggregation concentration (CAC). The CAC(I) value was found to be 4.0x10(-6) M for MEL-A and 6.0x10(-6) M for MEL-B. Moreover, the self-assembled structure of MEL-A above a CAC(II) value of 2.0x10(-5) M was found to drastically change into sponge structures (L3) composed of a network of randomly connected bilayers that are usually obtained from a complicated multicomponent "synthetic" surfactant system. Interestingly, the average water-channel diameter of the sponge structure was 100 nm. This is relatively large compared with those obtained from "synthetic" surfactant systems. In addition, MEL-B, which has a hydroxyl group at the C-4' position on mannose instead of an acetyl group, gives only one CAC; the self-assembled structure of MEL-B seems to gradually move from LUV to multilamellar vesicles (MLV) with lattice constants of 4.4 nm, depending on the concentration. Furthermore, the lyotropic-liquid-crystal-phase observation at high concentrations demonstrates the formation of an inverted hexagonal phase (H2) for MEL-A, together with a lamella phase (L(alpha)) for MEL-B, indicating a difference between MEL-A and MEL-B molecules in the spontaneous curvature of the assemblies. These results clearly show that the difference in spontaneous curvature caused by the single acetyl group on the head group probably decides the direction of self-assembly of glycolipid biosurfactants. The

  9. Production and structural characterization of Lactobacillus helveticus derived biosurfactant.

    PubMed

    Sharma, Deepansh; Saharan, Baljeet Singh; Chauhan, Nikhil; Bansal, Anshul; Procha, Suresh

    2014-01-01

    A probiotic strain of lactobacilli was isolated from traditional soft Churpi cheese of Yak milk and found positive for biosurfactant production. Lactobacilli reduced the surface tension of phosphate buffer saline (PBS) from 72.0 to 39.5 mNm(-1) pH 7.2 and its critical micelle concentration (CMC) was found to be 2.5 mg mL(-1). Low cost production of Lactobacilli derived biosurfactant was carried out at lab scale fermenter which yields 0.8 mg mL(-1) biosurfactant. The biosurfactant was found least phytotoxic and cytotoxic as compared to the rhamnolipid and sodium dodecyl sulphate (SDS) at different concentration. Structural attributes of biosurfactant were determined by FTIR, NMR ((1)H and (13)C), UPLC-MS, and fatty acid analysis by GCMS which confirmed the presence of glycolipid type of biosurfactant closely similar to xylolipids. Biosurfactant is mainly constituted by lipid and sugar fractions. The present study outcomes provide valuable information on structural characterization of the biosurfactant produced by L. helveticus MRTL91. These findings are encouraging for the application of Lactobacilli derived biosurfactant as nontoxic surface active agents in the emerging field of biomedical applications. PMID:25506070

  10. Production and Structural Characterization of Lactobacillus helveticus Derived Biosurfactant

    PubMed Central

    Sharma, Deepansh; Saharan, Baljeet Singh; Chauhan, Nikhil; Bansal, Anshul; Procha, Suresh

    2014-01-01

    A probiotic strain of lactobacilli was isolated from traditional soft Churpi cheese of Yak milk and found positive for biosurfactant production. Lactobacilli reduced the surface tension of phosphate buffer saline (PBS) from 72.0 to 39.5 mNm−1 pH 7.2 and its critical micelle concentration (CMC) was found to be 2.5 mg mL−1. Low cost production of Lactobacilli derived biosurfactant was carried out at lab scale fermenter which yields 0.8 mg mL−1 biosurfactant. The biosurfactant was found least phytotoxic and cytotoxic as compared to the rhamnolipid and sodium dodecyl sulphate (SDS) at different concentration. Structural attributes of biosurfactant were determined by FTIR, NMR (1H and 13C), UPLC-MS, and fatty acid analysis by GCMS which confirmed the presence of glycolipid type of biosurfactant closely similar to xylolipids. Biosurfactant is mainly constituted by lipid and sugar fractions. The present study outcomes provide valuable information on structural characterization of the biosurfactant produced by L. helveticus MRTL91. These findings are encouraging for the application of Lactobacilli derived biosurfactant as nontoxic surface active agents in the emerging field of biomedical applications. PMID:25506070

  11. Functions and potential applications of glycolipid biosurfactants--from energy-saving materials to gene delivery carriers.

    PubMed

    Kitamoto, Dai; Isoda, Hiroko; Nakahara, Tadaatsu

    2002-01-01

    Biosurfactants (BS) produced by various microorganisms show unique properties (e.g., mild production conditions, lower toxicity, higher biodegradability and environmental compatibility) compared to their chemical counterparts. The numerous advantages of BS have prompted applications not only in the food, cosmetic, and pharmaceutical industries but in environmental protection and energy-saving technology as well. Glycolipid BS are the most promising, due to high productivity from renewable resources and versatile biochemical properties. Mannosylerythritol lipids (MEL), which are glycolipid BS produced by a yeast Candida antarctrica, exhibit not only excellent interfacial properties but also remarkable differentiation-inducing activities against human leukemia cells. MEL also show a potential anti-agglomeration effect on ice particles in ice slurry used for cold thermal storage. Recently, the cationic liposome bearing MEL has been demonstrated to increase dramatically the efficiency of gene transfection into mammalian cells. These features of BS should broaden its applications in new advanced technologies. The current status of research and development on glycolipid BS, especially their function and potential applications, is discussed. PMID:16233292

  12. Biosurfactants in agriculture.

    PubMed

    Sachdev, Dhara P; Cameotra, Swaranjit S

    2013-02-01

    Agricultural productivity to meet growing demands of human population is a matter of great concern for all countries. Use of green compounds to achieve the sustainable agriculture is the present necessity. This review highlights the enormous use of harsh surfactants in agricultural soil and agrochemical industries. Biosurfactants which are reported to be produced by bacteria, yeasts, and fungi can serve as green surfactants. Biosurfactants are considered to be less toxic and eco-friendly and thus several types of biosurfactants have the potential to be commercially produced for extensive applications in pharmaceutical, cosmetics, and food industries. The biosurfactants synthesized by environmental isolates also has promising role in the agricultural industry. Many rhizosphere and plant associated microbes produce biosurfactant; these biomolecules play vital role in motility, signaling, and biofilm formation, indicating that biosurfactant governs plant-microbe interaction. In agriculture, biosurfactants can be used for plant pathogen elimination and for increasing the bioavailability of nutrient for beneficial plant associated microbes. Biosurfactants can widely be applied for improving the agricultural soil quality by soil remediation. These biomolecules can replace the harsh surfactant presently being used in million dollar pesticide industries. Thus, exploring biosurfactants from environmental isolates for investigating their potential role in plant growth promotion and other related agricultural applications warrants details research. Conventional methods are followed for screening the microbial population for production of biosurfactant. However, molecular methods are fewer in reaching biosurfactants from diverse microbial population and there is need to explore novel biosurfactant from uncultured microbes in soil biosphere by using advanced methodologies like functional metagenomics.

  13. Biosurfactants in cosmetics and biopharmaceuticals.

    PubMed

    Varvaresou, A; Iakovou, K

    2015-09-01

    Biosurfactants are surface-active biomolecules that are produced by various micro-organisms. They show unique properties i.e. lower toxicity, higher biodegradability and environmental compatibility compared to their chemical counterparts. Glycolipids and lipopeptides have prompted application in biotechnology and cosmetics due to their multi-functional profile i.e. detergency, emulsifying, foaming and skin hydrating properties. Additionally, some of them can be served as antimicrobials. In this study the current status of research and development on rhamnolipids, sophorolipids, mannosyloerythritol lipids, trehalipids, xylolipids and lipopeptides particularly their commercial application in cosmetics and biopharmaceuticals, is described.

  14. Rapid delivery of small interfering RNA by biosurfactant MEL-A-containing liposomes.

    PubMed

    Inoh, Yoshikazu; Furuno, Tadahide; Hirashima, Naohide; Kitamoto, Dai; Nakanishi, Mamoru

    2011-10-28

    The downregulation of gene expression by RNA interference holds great potential for genetic analysis and gene therapy. However, a more efficient delivery system for small interfering RNA (siRNA) into the target cells is required for wide fields such as cell biology, physiology, and clinical application. Non-viral vectors are stronger candidates than viral vectors because they are safer and easier to prepare. We have previously used a new method for gene transfection by combining cationic liposomes with the biosurfactant mannosylerythritol lipid-A (MEL-A). The novel MEL-A-containing cationic liposomes rapidly delivered DNA (plasmids and oligonucleotides) into the cytosol and nucleus through membrane fusion between liposomes and the plasma membrane, and consequently, enhanced the gene transfection efficiency. In this study, we determined the efficiency of MEL-A-containing cationic liposomes for siRNA delivery. We observed that exogenous and endogenous protein expression was suppressed by approximately 60% at 24h after brief (30 min) incubation of target cells with MEL-A-containing cationic liposome/siRNA complexes. Confocal microscopic analysis showed that suppression of protein expression was caused by rapid siRNA delivery into the cytosol. We found that the MEL-A-containing cationic liposomes directly delivered siRNA into the cytoplasm by the membrane fusion in addition to endocytotic pathway whereas Lipofectamine RNAiMax delivered siRNA only by the endocytotic pathway. It seems that the ability to rapidly and directly deliver siRNA into the cytosol using MEL-A-containing cationic liposomes is able to reduce immune responses, cytotoxicity, and other side effects caused by viral vectors in clinical applications. PMID:22001930

  15. Accumulation of cellobiose lipids under nitrogen-limiting conditions by two ustilaginomycetous yeasts, Pseudozyma aphidis and Pseudozyma hubeiensis.

    PubMed

    Morita, Tomotake; Fukuoka, Tokuma; Imura, Tomohiro; Kitamoto, Dai

    2013-02-01

    Some basidiomycetous yeast strains extracellularly produce cellobiose lipids (CLs), glycolipid biosurfactants which have strong fungicidal activity. The representative CL producer Ustilago maydis produces CLs together with the other glycolipids, mannosylerythritol lipids (MELs); the preference of the two glycolipids is affected considerably by the nitrogen source. To develop new CL producers, 12 MEL producers were cultured under the nitrogen-limited conditions. Pseudozyma aphidis and Pseudozyma. hubeiensis were characterized as new CL producers. CL production was induced on three strains, P. aphidis, Pseudozyma graminicola, and P. hubeiensis under these conditions. The putative homologous genes of U. maydis cyp1, which encodes a P450 monooxygenase, essential for CL biosynthesis, were partially amplified from their genomic DNA. The nucleotide sequences of the gene fragments from P. hubeiensis and P. aphidis shared identities with U. maydis cyp1 of 99% and 78%, respectively. Furthermore, all of the deduced translation products are tightly clustered in the phylogenic tree of the monooxygenase. These results suggest that the genes involved with CL biosynthesis must be widely distributed in the basidiomycetous fungi as well as the MEL biosynthesis genes, and thus, the genus Pseudozyma has great potential as a biosurfactant producer. PMID:22985214

  16. Enhanced biodegradation of lindane using oil-in-water bio-microemulsion stabilized by biosurfactant produced by a new yeast strain, Pseudozyma VITJzN01.

    PubMed

    Abdul Salam, Jaseetha; Das, Nilanjana

    2013-11-28

    Organochlorine pesticide residues continue to remain as a major environmental threat worldwide. Lindane is an organochlorine pesticide widely used as an acaricide in medicine and agriculture. In the present study, a new lindane-degrading yeast strain, Pseudozyma VITJzN01, was identified as a copious producer of glycolipid biosurfactant. The glycolipid structure and type were elucidated by FTIR, NMR spectroscopy, and GC-MS analysis. The surface activity and stability of the glycolipid was analyzed. The glycolipids, characterized as mannosylerythritol lipids (MELs), exhibited excellent surface active properties and the surface tension of water was reduced to 29 mN/m. The glycolipid was stable over a wide range of pH, temperature, and salinity, showing a very low CMC of 25 mg/l. Bio-microemulsion of olive oil-in-water (O/W) was prepared using the purified biosurfactant without addition of any synthetic cosurfactants, for lindane solubilization and enhanced degradation assay in liquid and soil slurry. The O/W bio-microemulsions enhanced the solubility of lindane up to 40-folds. Degradation of lindane (700 mg/l) by VITJzN01 in liquid medium amended with bio-microemulsions was found to be enhanced by 36% in 2 days, compared with degradation in 12 days in the absence of bio-microemulsions. Lindane-spiked soil slurry incubated with bio-microemulsions also showed 20-40% enhanced degradation compared with the treatment with glycolipids or yeast alone. This is the first report on lindane degradation by Pseudozyma sp., and application of bio-microemulsions for enhanced lindane degradation. MEL-stabilized bio-microemulsions can serve as a potential tool for enhanced remediation of diverse lindanecontaminated environments. PMID:23928846

  17. Packing density of glycolipid biosurfactant monolayers give a significant effect on their binding affinity toward immunoglobulin G.

    PubMed

    Imura, Tomohiro; Masuda, Yuma; Ito, Seya; Worakitkanchanakul, Wannasiri; Morita, Tomotake; Fukuoka, Tokuma; Sakai, Hideki; Abe, Masahiko; Kitamoto, Dai

    2008-01-01

    Mannosylerythritol lipid-A (MEL-A) is one of the most promising glycolipid biosurfactants, and abundantly produced by Pseudozyma yeasts. MEL-A gives not only excellent self-assembling properties but also a high binding affinity toward human immunoglobulin G (HIgG). In this study, three kinds of MEL-A were prepared from methyl myristate [MEL-A (m)], olive oil [MEL-A (o)], and soybean oil [MEL-A (s)], and the effect of interfacial properties of each MEL-A monolayer on the binding affinity toward HIgG was investigated using surface plasmon resonance (SPR) and the measurement of surface pressure (pi)-area (A) isotherms. Based on GC-MS analysis, the main fatty acids were C(8) and C(10) acids in all MEL-A, and the content of unsaturated fatty acids was 0% for MEL-A (m), 9.1% for MEL-A (o), 46.3% for MEL-A (s), respectively. Interestingly, the acid content significantly influenced on their binding affinity, and the monolayer of MEL-A (o) gave a higher binding affinity than that of MEL-A (m) and MEL-A (s). Moreover, the mixed MEL-A (o)/ MEL-A (s) monolayer prepared from 1/1 molar ratio, which comprised of 27.8% of unsaturated fatty acids, indicated the highest binding affinity. At the air/water interface, MEL-A (o) monolayer exhibited a phase transition at 13 degrees C from a liquid condensed monolayer to a liquid expanded monolayer, and the area per molecule significantly expanded above 13 degrees C, while the amount of HIgG bound to the liquid expanded monolayer was much higher than that bound to liquid condensed monolayer. The binding affinity of MEL-A toward HIgG is thus likely to closely relate to the monolayer packing density, and may be partly controlled by temperature. PMID:18622124

  18. Kinetic studies on the interactions between glycolipid biosurfactant assembled monolayers and various classes of immunoglobulins using surface plasmon resonance.

    PubMed

    Ito, Seya; Imura, Tomohiro; Fukuoka, Tokuma; Morita, Tomotake; Sakai, Hideki; Abe, Masahiko; Kitamoto, Dai

    2007-08-01

    Kinetic studies on the interactions between self-assembled monolayers of mannosylerythritol lipids (MELs), which are glycolipid biosurfactants abundantly produced by microorganisms, and various classes of immunoglobulins including human IgG, IgA, and IgM were performed using surface plasmon resonance (SPR). The effect of the MEL structure on the binding behavior of HIgG was examined. Assembled monolayers of MEL-A having two acetyl groups on the headgroup gave a high affinity (K(d)=1.7x10(-6)M) toward HIgG, while those of MEL-B or MEL-C having only one acetyl group at C-6' or C-4' position gave little affinity. Our kinetic analysis revealed that the binding manner of HIgG, HIgA (K(d)=2.4x10(-7)M), and HIgM (K(d)=2.2x10(-7)M) to the assembled monolayers of MEL-A is not the monovalent mode but the bivalent mode, and both the first and second rate association constants (k(a1), k(a2)) increase with an increase in the number of antibody binding sites, while those for dissociation (k(d1), k(d2)) changed little. Moreover, we succeeded in directly observing great amounts of HIgG, HIgA, and HIgM bound to MEL-A monolayers using atomic force microscopy (AFM). Finally, we found that MEL-A assembled monolayer binds toward various IgG derived from mouse, pig, rabbit, horse, goat, rat, and bovine as well as human IgG (HIgG), and the only exception was sheep IgG. These results clearly demonstrate that MEL-A assembled monolayers would be useful as noble affinity ligand system for various immunoglobulins. PMID:17428643

  19. Rapid delivery of small interfering RNA by biosurfactant MEL-A-containing liposomes

    SciTech Connect

    Inoh, Yoshikazu; Furuno, Tadahide; Hirashima, Naohide; Kitamoto, Dai; Nakanishi, Mamoru

    2011-10-28

    Highlights: Black-Right-Pointing-Pointer We use MEL-A-containing cationic liposomes for siRNA delivery. Black-Right-Pointing-Pointer MEL-A-containing cationic liposomes can efficiently and rapidly deliver siRNA into the cytoplasm. Black-Right-Pointing-Pointer Rapid delivery of siRNA is due to the membrane fusion between liposomes and plasma membrane. -- Abstract: The downregulation of gene expression by RNA interference holds great potential for genetic analysis and gene therapy. However, a more efficient delivery system for small interfering RNA (siRNA) into the target cells is required for wide fields such as cell biology, physiology, and clinical application. Non-viral vectors are stronger candidates than viral vectors because they are safer and easier to prepare. We have previously used a new method for gene transfection by combining cationic liposomes with the biosurfactant mannosylerythritol lipid-A (MEL-A). The novel MEL-A-containing cationic liposomes rapidly delivered DNA (plasmids and oligonucleotides) into the cytosol and nucleus through membrane fusion between liposomes and the plasma membrane, and consequently, enhanced the gene transfection efficiency. In this study, we determined the efficiency of MEL-A-containing cationic liposomes for siRNA delivery. We observed that exogenous and endogenous protein expression was suppressed by approximately 60% at 24 h after brief (30 min) incubation of target cells with MEL-A-containing cationic liposome/siRNA complexes. Confocal microscopic analysis showed that suppression of protein expression was caused by rapid siRNA delivery into the cytosol. We found that the MEL-A-containing cationic liposomes directly delivered siRNA into the cytoplasm by the membrane fusion in addition to endocytotic pathway whereas Lipofectamine Trade-Mark-Sign RNAiMax delivered siRNA only by the endocytotic pathway. It seems that the ability to rapidly and directly deliver siRNA into the cytosol using MEL-A-containing cationic

  20. Production and characterization of biosurfactant produced by a novel Pseudomonas sp. 2B.

    PubMed

    Aparna, A; Srinikethan, G; Smitha, H

    2012-06-15

    Biosurfactant-producing bacteria were isolated from terrestrial samples collected in areas contaminated with petroleum compounds. Isolates were screened for biosurfactant production using Cetyl Tri Ammonium Bromide (CTAB)-Methylene blue agar selection medium and the qualitative drop-collapse test. An efficient bacterial strain was selected based on rapid drop collapse activity and highest biosurfactant production. The biochemical characteristics and partial sequenced 16S rRNA gene of isolate, 2B, identified the bacterium as Pseudomonas sp. Five different low cost carbon substrates were evaluated for their effect on biosurfactant production. The maximum biosurfactant synthesis (4.97 g/L) occurred at 96 h when the cells were grown on modified PPGAS medium containing 1% (v/v) molasses at 30 °C and 150 rpm. The cell free broth containing the biosurfactant could reduce the surface tension to 30.14 mN/m. The surface active compound showed emulsifying activity against a variety of hydrocarbons and achieved a maximum emulsion index of 84% for sunflower oil. Compositional analysis of the biosurfactant reveals that the extracted biosurfactant was a glycolipid type, which was composed of high percentages of lipid (∼65%, w/w) and carbohydrate (∼32%, w/w). Fourier transform infrared (FT-IR) spectrum of extracted biosurfactant indicates the presence of carboxyl, hydroxyl and methoxyl functional groups. The mass spectra (MS) shows that dirhamnolipid (l-rhamnopyranosyl-l-rhamnopyranosyl-3-hydroxydecanoyl-3-hydroxydecanoate, Rha-Rha-C(10)-C(10)) was detected in abundance with the predominant congener monorhamnolipid (l-rhamnopyranosyl-β-hydroxydecanoyl-β-hydroxydecanoate, Rha-C(10)-C(10)). The crude oil recovery studies using the biosurfactant produced by Pseudomonas sp. 2B suggested its potential application in microbial enhanced oil recovery and bioremediation.

  1. Algal and microbial exopolysaccharides: new insights as biosurfactants and bioemulsifiers.

    PubMed

    Paniagua-Michel, José de Jesús; Olmos-Soto, Jorge; Morales-Guerrero, Eduardo Roberto

    2014-01-01

    Currently, efforts are being made to utilize more natural biological systems as alternatives as a way to replace fossil forms of carbon. There is a growing concern at global level to have nontoxic, nonhazardous surface-active agents; contrary to synthetic surfactants, their biological counterparts or biosurfactants play a primary function, facilitating microbial presence in environments dominated by hydrophilic-hydrophobic interfaces. Algal and microbial biosurfactants/bioemulsifiers from marine and deep-sea environments are attracting major interest due to their structural and functional diversity as molecules actives of surface and an alternative biomass to replace fossil forms of carbon. Algal and microbial surfactants are lipid in nature and classified as glycolipids, phospholipids, lipopeptides, natural lipids, fatty acids, and lipopolysaccharides. These metabolic bioactive products are applicable in a number of industries and processes, viz., food processing, pharmacology, and bioremediation of oil-polluted environments. This chapter presents an update of the progress and potentialities of the principal producers of exopolysaccharide (EPS)-type biosurfactants and bioemulsifiers, viz., macro- and microalgae (cyanobacteria and diatoms) and bacteria from marine and extreme environments. Particular interest is centered into new sources and applications, viz., marine and deep-sea environments and promissory uses of these EPSs as biosurfactants/emulsifiers and other polymeric roles. The enormous benefits of these molecules encourage their discovery, exploitation, and development of new microbial EPSs that could possess novel industrial importance and corresponding innovations.

  2. Preliminary characterization of biosurfactants produced by microorganisms isolated from refinery wastewaters.

    PubMed

    Yalçin, Emine; Ergene, Aysun

    2010-02-01

    Some bacterial strains isolated from refinery wastewaters were identified as Pseudomonas aeruginosa RWI, Pseudomonas putida RWII, Pseudomonas fluorescens RWIII and Burkholderia cepacia RWIV, and the biosurfactants produced by these strains were coded as BS-I, BS-II, BS-III and BS-IV, respectively. The bacterial strains were characterized by the following biochemical methods: Gram stain, oxidase activity, indol, lactose and growth at 42 degrees C. Biosurfactant production was evaluated by: emulsification activity, surface tension measurement and critical micelle concentration. Chemical characterization of the biosurfactants was done by: FTIR and analysis of carbohydrate, protein and lipid content. The biosurfactants showed good emulsification activity against different hydrocarbon sources. The initial surface tension of culture broth was determined as 67.3 mN/m, and production of BS-I, BS-II, BS-III and BS-IV lowered this value to 35.9, 49.2, 51.6 and 45.7 mN/m, respectively. The critical micelle concentration of the biosurfactants was found to be in the range 10-50 mg/L. From the results of this study it was observed that the refinery wastewaters are a suitable source for isolation of biosurfactant-producing bacteria, but are not a substrate for biosurfactant production.

  3. Glycolipid biosurfactants: Potential related biomedical and biotechnological applications.

    PubMed

    Inès, Mnif; Dhouha, Ghribi

    2015-10-30

    Glycolipids, consisting of a carbohydrate moiety linked to fatty acids, are microbial surface active compounds produced by various microorganisms. They are characterized by highly structural diversity and have the ability to decrease the surface and interfacial tension at the surface and interface respectively. Rhamnolipids, trehalolipids, mannosylerythritol-lipids and cellobiose lipids are among the most popular glycolipids. Moreover, their ability to form pores and destabilize biological membrane permits their use in biomedicine as antibacterial, antifungal and hemolytic agents. Their antiviral and antitumor effects enable their use in pharmaceutic as therapeutic agents. Also, glycolipids can inhibit the bioadhesion of pathogenic bacteria enabling their use as anti-adhesive agents and for disruption of biofilm formation and can be used in cosmetic industry. Moreover, they have great potential application in industry as detergents, wetting agents and for flotation. Furthermore, glycolipids can act at the surface and can modulate enzyme activity permitting the enhancement or the inhibition of the activity of certain enzymes. PMID:26359535

  4. Biosurfactants for Microbubble Preparation and Application

    PubMed Central

    Xu, Qingyi; Nakajima, Mitsutoshi; Liu, Zengshe; Shiina, Takeo

    2011-01-01

    Biosurfactants can be classified by their chemical composition and their origin. This review briefly describes various classes of biosurfactants based on their origin and introduces a few of the most widely used biosurfactants. The current status and future trends in biosurfactant production are discussed, with an emphasis on those derived from plants. Following a brief introduction of the properties of microbubbles, recent progress in the application of microbubble technology to molecular imaging, wastewater treatment, and aerobic fermentation are presented. Several studies on the preparation, characterization and applications of biosurfactant-based microbubbles are reviewed. PMID:21339998

  5. Environmental Applications of Biosurfactants: Recent Advances

    PubMed Central

    Pacwa-Płociniczak, Magdalena; Płaza, Grażyna A.; Piotrowska-Seget, Zofia; Cameotra, Swaranjit Singh

    2011-01-01

    Increasing public awareness of environmental pollution influences the search and development of technologies that help in clean up of organic and inorganic contaminants such as hydrocarbons and metals. An alternative and eco-friendly method of remediation technology of environments contaminated with these pollutants is the use of biosurfactants and biosurfactant-producing microorganisms. The diversity of biosurfactants makes them an attractive group of compounds for potential use in a wide variety of industrial and biotechnological applications. The purpose of this review is to provide a comprehensive overview of advances in the applications of biosurfactants and biosurfactant-producing microorganisms in hydrocarbon and metal remediation technologies. PMID:21340005

  6. Streptococcus thermophilus and its biosurfactants inhibit adhesion by Candida spp. on silicone rubber.

    PubMed

    Busscher, H J; van Hoogmoed, C G; Geertsema-Doornbusch, G I; van der Kuijl-Booij, M; van der Mei, H C

    1997-10-01

    The adhesion of yeasts, two Candida albicans and two Candida tropicalis strains isolated from naturally colonized voice prostheses, to silicone rubber with and without a salivary conditioning film in the absence and presence of adhering Streptococcus thermophilus B, a biosurfactant-releasing dairy isolate, was studied. Coverage of 1 to 4% of the surface of silicone rubber substrata with adhering S. thermophilus B gave significant reductions in the initial yeast adhesion regardless of the presence of a conditioning film. Mechanistically, this interference in yeast adhesion by S. thermophilus B was not due to direct physical effects but to biosurfactant release by the adhering bacteria, because experiments with S. thermophilus B cells that had released their biosurfactants prior to adhesion to silicone rubber and competition with yeasts did not show interference with initial yeast adhesion. The amounts of biosurfactants released were highest for mid-exponential- and early-stationary-phase bacteria (37 mg.g of cells-1 [dry weight]), but biosurfactants released by stationary-phase bacteria (14 mg.g of cells-1 [dry weight]) were the most surface active. The crude biosurfactants released were mixtures of various components, with a glycolipid-like component being the most surface active. A lipid-enriched biosurfactant fraction reduced the surface tension of an aqueous solution to about 35 mJ.m-2 at a concentration of only 0.5 mg.ml-1. The amount of biosurfactant released per S. thermophilus B cell was estimated to be sufficient to cover approximately 12 times the area of the cross section of the bacterium, making biosurfactant release a powerful defense weapon in the postadhesion competition of the bacterium with microorganisms such as yeasts. Preadsorption of biosurfactants to the silicone rubber prior to allowing yeasts to adhere was as effective against C. albicans GB 1/2 adhesion as covering 1 to 2% of the silicone rubber surface with adhering S. thermophilus B, but a

  7. Concurrent biosurfactant and ligninolytic enzyme production by Pleurotus spp. in solid-state fermentation.

    PubMed

    Velioglu, Zulfiye; Ozturk Urek, Raziye

    2014-10-01

    Pleurotus spp. is known as one of the significant producers of ligninolytic enzymes which efficiently degrade lignocellulosic materials. Recent studies on potential of biosurfactant production by Pleurotus spp. have increased. Biosurfactants have several positive features compared to synthetic ones. We investigated simultaneous and economic biosurfactant and ligninolytic enzymes (laccase, manganese peroxidase, and lignin peroxidase) production by Pleurotus djamore, Pleurotus eryngii, and Pleurotus sajor-caju in solid-state fermentation in three different growth media. Sunflower seed shell was used as solid substrate; hence, it was not only an alternative way to reduce environmental pollution but also a potential for production of valuable biotechnological products. During the study, oil spreading efficiency, emulsification index (E), surface tension (ST), and enzyme activities were assessed. Correlations between biosurfactant and enzyme activities were investigated. To results, the most active biosurfactant was produced by P. djamore in medium II (ST = 29.79 ± 0.5 mN m(-1); E 24 = 35.29 ± 2.6 %; diameter of clear zone = 3.5 ± 0.3 cm), and the highest LiP activity was determined as 5,832.26 ± 102 UL(-1). When FTIR was used to confirm the various functional groups, the results may indicate the protein-polysaccharide-lipid complex structure of produced biosurfactant. Degradation of several environmental pollutant compounds is a common usage area of biosurfactant and ligninolytic enzymes. PMID:25106898

  8. Biosurfactant-enhanced soil bioremediation

    SciTech Connect

    Kosaric, N.; Lu, G.; Velikonja, J.

    1995-12-01

    Bioremediation of soil contaminated with organic chemicals is a viable alternative method for clean-up and remedy of hazardous waste sites. The final objective in this approach is to convert the parent toxicant into a readily biodegradable product which is harmless to human health and/or the environment. Biodegradation of hydrocarbons in soil can also efficiently be enhanced by addition or in-situ production of biosufactants. It was generally observed that the degradation time was shortened and particularly the adaptation time for the microbes. More data from our laboratories showed that chlorinated aromatic compounds, such as 2,4-dichlorophenol, a herbicide Metolachlor, as well as naphthalene are degraded faster and more completely when selected biosurfactants are added to the soil. More recent data demonstrated an enhanced biodegradation of heavy hydrocarbons in petrochemical sludges, and in contaminated oil when biosurfactants were present or were added prior to the biodegradation process.

  9. Selective formation of mannosyl-L-arabitol lipid by Pseudozyma tsukubaensis JCM16987.

    PubMed

    Morita, Tomotake; Fukuoka, Tokuma; Kosaka, Ayana; Imura, Tomohiro; Sakai, Hideki; Abe, Masahiko; Kitamoto, Dai

    2015-07-01

    To develop a structural homolog of mannosylerythritol lipids (MELs), Pseudozyma tsukubaensis JCM16987 (known to be a specific producer of the diastereomer type of mono-acetylated MEL (MEL-B)) was cultivated in medium containing 4 % (w/v) olive oil as the primary carbon source and 4 % L-arabitol as the supplemental sugar alcohol. Based on thin-layer chromatography (TLC), the glycolipid extract showed two major spots corresponding to MEL-B and an unknown glycolipid (GL1). Based on high-performance liquid chromatography after acid hydrolysis, GL1 from the L-arabitol culture showed two primary peaks identical to mannose and arabitol using the sugar analysis column, and one peak identical to L-arabitol was detected using the chiral resolution column. Based on NMR analysis, GL1 was identified as mono-acetylated mannosyl-L-arabitol lipid (MLAL-B) consisting of mannose, with L-arabitol as the sugar moiety. The observed critical micelle concentration (CMC) and surface tension at the CMC (γCMC) of MLAL-B were 1.2 × 10(-5) M and 32.8 mN/m, which were significantly higher than MEL-B (CMC = 3.1 × 10(-6) M and γcmc = 26.1 mN/m). Furthermore, based on a water-penetration scan, MLAL-B efficiently formed lamellar phase (Lα) and myelins at a broad concentration range. Thus, the present glycolipid showed higher hydrophilicity and/or water solubility and increased our understanding of environmentally advanced biosurfactants. PMID:25957491

  10. Characterization of a biosurfactant produced by Pseudomonas cepacia CCT6659 in the presence of industrial wastes and its application in the biodegradation of hydrophobic compounds in soil.

    PubMed

    Silva, Elias J; Rocha e Silva, Nathália Maria P; Rufino, Raquel D; Luna, Juliana M; Silva, Ricardo O; Sarubbo, Leonie A

    2014-05-01

    The bacterium Pseudomonas cepacia CCT6659 cultivated with 2% soybean waste frying oil and 2% corn steep liquor as substrates produced a biosurfactant with potential application in the bioremediation of soils. The biosurfactant was classified as an anionic biomolecule composed of 75% lipids and 25% carbohydrates. Characterization by proton nuclear magnetic resonance ((1)H and (13)C NMR) revealed the presence of carbonyl, olefinic and aliphatic groups, with typical spectra of lipids. Four sets of biodegradation experiments were carried out with soil contaminated by hydrophobic organic compounds amended with molasses in the presence of an indigenous consortium, as follows: Set 1-soil+bacterial cells; Set 2-soil+biosurfactant; Set 3-soil+bacterial cells+biosurfactant; and Set 4-soil without bacterial cells or biosurfactant (control). Significant oil biodegradation activity (83%) occurred in the first 10 days of the experiments when the biosurfactant and bacterial cells were used together (Set 3), while maximum degradation of the organic compounds (above 95%) was found in Sets 1-3 between 35 and 60 days. It is evident from the results that the biosurfactant alone and its producer species are both capable of promoting biodegradation to a large extent.

  11. Characterisation, surface properties and biological activity of a biosurfactant produced from industrial waste by Candida sphaerica UCP0995 for application in the petroleum industry.

    PubMed

    Luna, Juliana M; Rufino, Raquel D; Sarubbo, Leonie A; Campos-Takaki, Galba Maria

    2013-02-01

    The development of less toxic, biodegradable, surfactants, such as biosurfactants, is a key strategy for acquiring environmentally friendly compounds. The aim of the present study was to employ an optimised medium containing 9% ground nut oil refinery residue and 9% corn steep liquor for the production of a biosurfactant by Candida sphaerica. Fermentation was carried out at 28 °C and 200 rpm for 144 h. Biosurfactant yield was 9 g/l. The biosurfactant reduced the surface tension of the medium to 25 mN/m, with a critical micelle concentration of 0.025%. The product demonstrated stability with regard to surface tension reduction and emulsification in a range of temperatures (5-120 °C) and pH values (2-12) as well as tolerance to high concentrations of NaCl (2-10%). Hydrophobicity tests indicate two possible insoluble substrate uptake mechanisms: direct interfacial uptake and biosurfactant-mediated transfer (cell contact with emulsified or solubilised hydrocarbons). The biosurfactant was characterised as an anionic glycolipid consisting of 70% lipids and 15% carbohydrates and demonstrated no toxicity to the microcrustacean Artemia salina or the vegetables Brassica oleracea, Solanum gilo, Lactuca sativa L. and Brassica oleracea L. The biosurfactant recovered 95% of motor oil adsorbed to a sand sample, demonstrating considerable potential for use in bioremediation processes, especially in the petroleum industry.

  12. Extracellular aromatic biosurfactant produced by Tsukamurella pseudospumae and T. spumae during growth on n-hexadecane.

    PubMed

    Kügler, Johannes H; Kraft, Axel; Heißler, Stefan; Muhle-Goll, Claudia; Luy, Burkhard; Schwack, Wolfgang; Syldatk, Christoph; Hausmann, Rudolf

    2015-10-10

    Biosurfactants are surface-active agents produced by microorganisms and show increasing significance in various industrial applications. A great variety of these secondary metabolites are described to occur within actinomycetes, amongst trehalose lipids and oligosaccharide lipids produced by the family Tsukamurellaceae. This study reports on the production of not yet described compounds with surface active behavior by non-pathogenic Tsukamurella pseudospumae and Tsukamurella spumae during growth on hydrophobic carbon sources. Extracts of the purified compounds differ in terms of structure and performance properties to other biosurfactants described within their family. Infrared and nuclear magnetic resonance spectroscopic analysis revealed the presence of aromatic moieties within the surfactant produced, which to date is only known to occur within phenolic glycolipids of some mycobateria. PMID:26223030

  13. Synthesis, characterization, and oil recovery application of biosurfactant produced by indigenous pseudomonas aeruginosa WJ-1 using waste vegetable oils.

    PubMed

    Xia, Wen-Jie; Luo, Zhi-Bin; Dong, Han-Ping; Yu, Li; Cui, Qing-Feng; Bi, Yong-Qiang

    2012-03-01

    A bacterial strain was isolated and cultured from the oil excavation areas in tropical zone in northern China. The biochemical characteristics and partial sequenced 16S rRNA gene of isolate, WJ-1, was identical to those of cultured representatives of the species Pseudomonas aeruginosa. This bacterium was able to produce a type of biosurfactant. Compositional analysis revealed that the extracted biosurfactant was composed of high percentage lipid (∼74%, w/w) and carbohydrate (∼20%, w/w) in addition to a minor fraction of protein (∼6%, w/w). The best production of 50.2 g/l was obtained when the cells were grown on minimal salt medium containing 6.0% (w/v) glucose and 0.75% (w/v) sodium nitrate supplemented with 0.1% (v/v) element solution at 37 °C and 180 rpm after 96 h. The optimum biosurfactant production pH value was found to be 6.0-8.0. The biosurfactant of WJ-1, with the critical micelle concentration of 0.014 g/L, could reduce surface tension to 24.5 mN/m and emulsified kerosene up to EI(24) ≈95. The results obtained from time course study indicated that the surface tension reduction and emulsification potential was increased in the same way to cell growth. However, maximum biosurfactant production occurred and established in the stationary growth phase (after 90 h). Thin layer chromatography, Fourier transform infrared spectrum, and mass spectrum analysis indicate the extracted biosurfactant was affiliated with rhamnolipid. The core holder flooding experiments demonstrated that the oil recovery efficiency of strain and its biosurfactant was 23.02% residual oil.

  14. Production and antimicrobial property of glycolipid biosurfactants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Microbial glycolipids such as rhamnolipid (RL) and sophorolipid (SL) are an important class of biosurfactants with excellent surface tension-lowering activity. Besides their surfactant- and environment-friendly properties, however, additional value-added property such as bacteriocidal activity is n...

  15. Contributions of biosurfactants to natural or induced bioremediation.

    PubMed

    Lawniczak, Lukasz; Marecik, Roman; Chrzanowski, Lukasz

    2013-03-01

    The number of studies dedicated to evaluating the influence of biosurfactants on bioremediation efficiency is constantly growing. Although significant progress regarding the explanation of mechanisms behind biosurfactant-induced effects could be observed, there are still many factors which are not sufficiently elucidated. This corresponds to the fact that although positive influence of biosurfactants is often reported, there are also numerous cases where no or negative effect was observed. This review summarizes the recent finding in the field of biosurfactant-amended bioremediation, focusing mainly on a critical approach towards potential limitations and causes of failure while investigating the effects of biosurfactants on the efficiency of biodegradation and phytoextraction processes. It also provides a summary of successive steps, which should be taken into consideration when designing biosurfactant-related treatment processes.

  16. Production of a Biosurfactant from Torulopsis bombicola

    PubMed Central

    Cooper, D. G.; Paddock, D. A.

    1984-01-01

    Two types of carbon sources—carbohydrate and vegetable oil—are necessary to obtain large yields of biosurfactant from Torulopsis bombicola ATCC 22214. Most of the surfactant is produced in the late exponential phase of growth. It is possible to grow the yeast on a single carbon source and then add the other type of substrate, after the exponential growth phase, and cause a burst of surfactant production. This product is a mixture of glycolipids. The maximum yield is 70 g liter−1, or 35% of the weight of the substrate used. An economic comparison demonstrated that this biosurfactant could be produced significantly more cheaply than any of the previously reported microbial surfactants. PMID:16346455

  17. Microbial biosurfactants as additives for food industries.

    PubMed

    Campos, Jenyffer Medeiros; Stamford, Tânia Lúcia Montenegro; Sarubbo, Leonie Asfora; de Luna, Juliana Moura; Rufino, Raquel Diniz; Banat, Ibrahim M

    2013-01-01

    Microbial biosurfactants with high ability to reduce surface and interfacial surface tension and conferring important properties such as emulsification, detergency, solubilization, lubrication and phase dispersion have a wide range of potential applications in many industries. Significant interest in these compounds has been demonstrated by environmental, bioremediation, oil, petroleum, food, beverage, cosmetic and pharmaceutical industries attracted by their low toxicity, biodegradability and sustainable production technologies. Despite having significant potentials associated with emulsion formation, stabilization, antiadhesive and antimicrobial activities, significantly less output and applications have been reported in food industry. This has been exacerbated by uneconomical or uncompetitive costing issues for their production when compared to plant or chemical counterparts. In this review, biosurfactants properties, present uses and potential future applications as food additives acting as thickening, emulsifying, dispersing or stabilising agents in addition to the use of sustainable economic processes utilising agro-industrial wastes as alternative substrates for their production are discussed.

  18. Effect of rhamnolipid biosurfactant on solubilization of polycyclic aromatic hydrocarbons.

    PubMed

    Li, Shudong; Pi, Yongrui; Bao, Mutai; Zhang, Cong; Zhao, Dongwei; Li, Yiming; Sun, Peiyan; Lu, Jinren

    2015-12-15

    Rhamnolipid biosurfactant-producing bacteria, Bacillus Lz-2, was isolated from oil polluted water collected from Dongying Shengli oilfield, China. The factors that influence PAH solubilization such as biosurfactant concentration, pH, ionic strength and temperature were discussed. The results showed that the solubilities of naphthalene, phenanthrene and pyrene increased linearly with the rise of rhamnolipid biosurfactant dose above the biosurfactant critical micelle concentration (CMC). Furthermore, the molar solubilization ratio (MSR) values decreased in the following order: naphthalene>phenanthrene>pyrene. However, the solubility percentage increased and followed the opposite order: pyrene>phenanthrene>naphthalene. The solubilities of PAHs in rhamnolipid biosurfactant solution increased with the rise of pH and ionic strength, and reached the maximum values under the conditions of pH11 and NaCl concentration 8 g · L(-1). The solubility of phenanthrene and pyrene increased with the rise of temperature.

  19. Alternative methodology for isolation of biosurfactant-producing bacteria.

    PubMed

    Krepsky, N; Da Silva, F S; Fontana, L F; Crapez, M A C

    2007-02-01

    Wide biosurfactant application on biorremediation is limited by its high production cost. The search for cheaper biossurfactant production alternatives has guided our study. The use of selective media containing sucrose (10 g x L(-1)) and Arabian Light oil (2 g x L(-1)) as carbon sources showed to be effective to screen and maintain biosurfactant-producing consortia isolated from mangrove hydrocarbon-contaminated sediment. The biosurfactant production was assayed by kerosene, gasoline and Arabian Light Emulsification activity and the bacterial growth curve was determined by bacterial quantification. The parameters analyzed for biosurfactant production were the growth curve, salinity concentration, flask shape and oxygenation. All bacteria consortia screened were able to emulsify the petroleum derivatives tested. Biosurfactant production increased according to the incubation time; however the type of emulsification (non-aqueous phase or aqueous phase) did not change with time but with the compound tested. The methodology was able to isolate biosurfactant-producing consortia from superficial mangrove sediment contaminated by petroleum hydrocarbons and was recommended for selection of biosurfactant producing bacteria in tropical countries with low financial resources.

  20. The hydrocarbon-degrading marine bacterium Cobetia sp. strain MM1IDA2H-1 produces a biosurfactant that interferes with quorum sensing of fish pathogens by signal hijacking

    PubMed Central

    Ibacache-Quiroga, C; Ojeda, J; Espinoza-Vergara, G; Olivero, P; Cuellar, M; Dinamarca, M A

    2013-01-01

    Summary Biosurfactants are produced by hydrocarbon-degrading marine bacteria in response to the presence of water-insoluble hydrocarbons. This is believed to facilitate the uptake of hydrocarbons by bacteria. However, these diffusible amphiphilic surface-active molecules are involved in several other biological functions such as microbial competition and intra-or inter-species communication. We report the isolation and characterization of a marine bacterial strain identified as Cobetia sp. MM1IDA2H-1, which can grow using the sulfur-containing heterocyclic aromatic hydrocarbon dibenzothiophene (DBT). As with DBT, when the isolated strain is grown in the presence of a microbial competitor, it produces a biosurfactant. Because the obtained biosurfactant was formed by hydroxy fatty acids and extracellular lipidic structures were observed during bacterial growth, we investigated whether the biosurfactant at its critical micelle concentration can interfere with bacterial communication systems such as quorum sensing. We focused on Aeromonas salmonicida subsp. salmonicida, a fish pathogen whose virulence relies on quorum sensing signals. Using biosensors for quorum sensing based on Chromobacterium violaceum and Vibrio anguillarum, we showed that when the purified biosurfactant was mixed with N-acyl homoserine lactones produced by A. salmonicida, quorum sensing was inhibited, although bacterial growth was not affected. In addition, the transcriptional activities of A. salmonicida virulence genes that are controlled by quorum sensing were repressed by both the purified biosurfactant and the growth in the presence of Cobetia sp. MM1IDA2H-1. We propose that the biosurfactant, or the lipid structures interact with the N-acyl homoserine lactones, inhibiting their function. This could be used as a strategy to interfere with the quorum sensing systems of bacterial fish pathogens, which represents an attractive alternative to classical antimicrobial therapies in fish

  1. Screening of biosurfactants from cloud microorganisms

    NASA Astrophysics Data System (ADS)

    Sancelme, Martine; Canet, Isabelle; Traikia, Mounir; Uhliarikova, Yveta; Capek, Peter; Matulova, Maria; Delort, Anne-Marie; Amato, Pierre

    2015-04-01

    The formation of cloud droplets from aerosol particles in the atmosphere is still not well understood and a main source of uncertainties in the climate budget today. One of the principal parameters in these processes is the surface tension of atmospheric particles, which can be strongly affected by trace compounds called surfactants. Within a project devoted to bring information on atmospheric surfactants and their effects on cloud droplet formation, we focused on surfactants produced by microorganisms present in atmospheric waters. From our unique collection of microorganisms, isolated from cloud water collected at the Puy-de-Dôme (France),1 we undertook a screening of this bank for biosurfactant producers. After extraction of the supernatants of the pure cultures, surface tension of crude extracts was determined by the hanging drop technique. Results showed that a wide variety of microorganisms are able to produce biosurfactants, some of them exhibiting strong surfactant properties as the resulting tension surface decreases to values less then 35 mN.m-1. Preliminary analytical characterization of biosurfactants, obtained after isolation from overproducing cultures of Rhodococcus sp. and Pseudomonas sp., allowed us to identify them as belonging to two main classes, namely glycolipids and glycopeptides. 1. Vaïtilingom, M.; Attard, E.; Gaiani, N.; Sancelme, M.; Deguillaume, L.; Flossmann, A. I.; Amato, P.; Delort, A. M. Long-term features of cloud microbiology at the puy de Dôme (France). Atmos. Environ. 2012, 56, 88-100. Acknowledgements: This work is supported by the French-USA ANR SONATA program and the French-Slovakia programs Stefanik and CNRS exchange.

  2. Development of More Effective Biosurfactants for Enhanced Oil Recovery

    SciTech Connect

    McInerney, J.J.; Han, S.O.; Maudgalya, S.; Mouttaki, H.; Folmsbee, M.; Knapp, R.; Nagle, D.; Jackson, B.E.; Stuadt, M.; Frey, W.

    2003-01-16

    The objectives of this were two fold. First, core displacement studies were done to determine whether microbial processes could recover residual oil at elevated pressures. Second, the importance of biosurfactant production for the recovery of residual oil was studies. In these studies, a biosurfactant-producing, microorganisms called Bacillus licheniformis strain JF-2 was used. This bacterium produces a cyclic peptide biosurfactant that significantly reduces the interfacial tension between oil and brine (7). The use of a mutant deficient in surfactant production and a mathematical MEOR simulator were used to determine the major mechanisms of oil recovery by these two strains.

  3. Trehalolipid biosurfactants from nonpathogenic Rhodococcus actinobacteria with diverse immunomodulatory activities.

    PubMed

    Kuyukina, Maria S; Ivshina, Irena B; Baeva, Tatiana A; Kochina, Olesia A; Gein, Sergey V; Chereshnev, Valery A

    2015-12-25

    Actinobacteria of the genus Rhodococcus produce trehalolipid biosurfactants with versatile biochemical properties and low toxicity. In recent years, these biosurfactants are increasingly studied as possible biomedical agents with expressed immunological activities. Applications of trehalolipids from Rhodococcus, predominantly cell-bound, in biomedicine are also attractive because their cost drawback could be less significant for high-value products. The review summarizes recent findings in immunomodulatory activities of trehalolipid biosurfactants from nonpathogenic Rhodococcus and related actinobacteria and compares their biomedical potential with well-known immunomodifying properties of trehalose dimycolates from Mycobacterium tuberculosis. Molecular mechanisms of trehalolipid interactions with immunocompetent cells are also discussed.

  4. Oil removal from used sorbents using a biosurfactant.

    PubMed

    Wei, Q F; Mather, R R; Fotheringham, A F

    2005-02-01

    Oil spills impose serious damage on the environment. Mechanical recovery by the help of oil sorbents is one of the most important countermeasures in oil spill response. Most sorbents, however, end up in landfills or in incineration after a single use. These options either produce another source of pollution or increase the oil recovery cost. In this study a biosurfactant was used to clean used oil sorbents. This use of biosurfactants is new. Washing parameters tested included sorbent type, washing time, surfactant dosage and temperature. It was found that with biosurfactant washing more than 95% removal of the oil from sorbents was achieved, depending on the washing conditions. Biosurfactants were found to have considerable potential for recycling the used sorbents.

  5. Enhanced aqueous solubilization of tetrachloroethylene by a rhamnolipid biosurfactant.

    PubMed

    Clifford, Joseph S; Ioannidis, Marios A; Legge, Raymond L

    2007-01-15

    A rhamnolipid biosurfactant produced by Pseudomonas aeruginosa ATCC 9027 was isolated, purified and characterized in terms of its ability to mobilize and solubilize tetrachloroethylene (PCE) for potential use in surfactant-enhanced aquifer remediation (SEAR) applications. Using a drop volume method, the PCE-biosurfactant steady-state interfacial tension was determined and found to be ca. 10 mN/m which is not low enough to cause significant PCE nonaqueous phase liquid (NAPL) mobilization. It was observed that the biosurfactant partitioned significantly into PCE at aqueous concentrations higher than the critical micelle concentration (CMC). After accounting for rhamnolipid partitioning into the PCE phase, a weight solubilization ratio (WSR) of 1.2 g(PCE)/g(rhamnolipid) was determined and through this mechanism the biosurfactant significantly improved the apparent aqueous solubility of PCE.

  6. Candida tropicalis BPU1, a novel isolate from the rumen of the Malabari goat, is a dual producer of biosurfactant and polyhydroxybutyrate.

    PubMed

    Priji, Prakasan; Unni, K N; Sajith, S; Benjamin, Sailas

    2013-03-01

    This unique study reports a new strain (BPU1) of Candida tropicalis isolated from the rumen of the Malabari goat, showing dual production of biosurfactant and polyhydroxybutyrate. C. tropicalis strain BPU1, a facultative anaerobe, was tuned to become an aerobe in specially designed flask, the Benjamin flask. The puffy circular colonies were smooth, white-to-cream in colour, with pseudo-filaments. The strain fermented glucose, sucrose, maltose and dextrose, but not lactose and cellulose. It assimilated (NH4 )2 SO4 , peptone, glycine and arginine, but not NaNO3 , as the nitrogen source. Interestingly, it utilized groundnut oil (up to 0.3%) in a specially designed basal mineral salt medium (BSM). Its capability for dual production of a biosurfactant and a polyhydroxybutyarate (PHB) was explored by various methods from the BSM-oil medium. Extracted biosurfactant from 6 day-old culture was biochemically characterized as a complex of lipid and carbohydrate with an Rf value of 0.88 by thin layer chromatography. Its PHB production was confirmed by specific staining methods with Nile blue sulphate, Sudan black B and Sudan 3. Briefly, this first-ever report gives ample physical evidence for the dual production of a glycolipid (biosurfactant) and PHB by C. tropicalis strain BPU1 on a specially designed medium, which would open up elaborate research on this yeast.

  7. Biosurfactant-and-bioemulsifier produced by a promising Cunninghamella echinulata isolated from Caatinga soil in the northeast of Brazil.

    PubMed

    Andrade Silva, Nadielly R; Luna, Marcos A C; Santiago, André L C M A; Franco, Luciana O; Silva, Grayce K B; de Souza, Patrícia M; Okada, Kaoru; Albuquerque, Clarissa D C; da Silva, Carlos A Alves; Campos-Takaki, Galba M

    2014-01-01

    A Mucoralean fungus was isolated from Caatinga soil of Pernambuco, Northeast of Brazil, and was identified as Cunninghamella echinulata by morphological, physiological, and biochemical tests. This strain was evaluated for biosurfactant/bioemulsifier production using soybean oil waste (SOW) and corn steep liquor (CSL) as substrates, added to basic saline solution, by measuring surface tension and emulsifier index and activity. The best results showed the surface water tension was reduced from 72 to 36 mN/m, and an emulsification index (E₂₄) of 80% was obtained using engine oil and burnt engine oil, respectively. A new molecule of biosurfactant showed an anionic charge and a polymeric chemical composition consisting of lipids (40.0% w/w), carbohydrates (35.2% w/w) and protein (20.3% w/w). In addition, the biosurfactant solution (1%) demonstrated its ability for an oil displacement area (ODA) of 37.36 cm², which is quite similar to that for Triton X-100 (38.46 cm²). The stability of the reduction in the surface water tension as well as of the emulsifier index proved to be stable over a wide range of temperatures, in pH, and in salt concentration (4%-6% w/v). The biosurfactant showed an ability to reduce and increase the viscosity of hydrophobic substrates and their molecules, suggesting that it is a suitable candidate for mediated enhanced oil recovery. At the same time, these studies indicate that renewable, relatively inexpensive and easily available resources can be used for important biotechnological processes. PMID:25257520

  8. Biosurfactant-and-Bioemulsifier Produced by a Promising Cunninghamella echinulata Isolated from Caatinga Soil in the Northeast of Brazil

    PubMed Central

    Silva, Nadielly R. Andrade; Luna, Marcos A. C.; Santiago, André L. C. M. A.; Franco, Luciana O.; Silva, Grayce K. B.; de Souza, Patrícia M.; Okada, Kaoru; Albuquerque, Clarissa D. C.; da Silva, Carlos A. Alves; Campos-Takaki, Galba M.

    2014-01-01

    A Mucoralean fungus was isolated from Caatinga soil of Pernambuco, Northeast of Brazil, and was identified as Cunninghamella echinulata by morphological, physiological, and biochemical tests. This strain was evaluated for biosurfactant/bioemulsifier production using soybean oil waste (SOW) and corn steep liquor (CSL) as substrates, added to basic saline solution, by measuring surface tension and emulsifier index and activity. The best results showed the surface water tension was reduced from 72 to 36 mN/m, and an emulsification index (E24) of 80% was obtained using engine oil and burnt engine oil, respectively. A new molecule of biosurfactant showed an anionic charge and a polymeric chemical composition consisting of lipids (40.0% w/w), carbohydrates (35.2% w/w) and protein (20.3% w/w). In addition, the biosurfactant solution (1%) demonstrated its ability for an oil displacement area (ODA) of 37.36 cm2, which is quite similar to that for Triton X-100 (38.46 cm2). The stability of the reduction in the surface water tension as well as of the emulsifier index proved to be stable over a wide range of temperatures, in pH, and in salt concentration (4%–6% w/v). The biosurfactant showed an ability to reduce and increase the viscosity of hydrophobic substrates and their molecules, suggesting that it is a suitable candidate for mediated enhanced oil recovery. At the same time, these studies indicate that renewable, relatively inexpensive and easily available resources can be used for important biotechnological processes. PMID:25257520

  9. Metagenomics for the discovery of novel biosurfactants of environmental interest from marine ecosystems.

    PubMed

    Jackson, Stephen A; Borchert, Erik; O'Gara, Fergal; Dobson, Alan D W

    2015-06-01

    Research focused on the search for new biosurfactants aims to replace chemical surfactants, which while being cost-effective are ecologically undesirable. Metagenomics can lead to discovery of novel biosurfactants, tackling issues of low production yields. Recent successes include the heterologous production of biosurfactants. The dearth of biosurfactants discovered to date through metagenomics is puzzling given that good screening systems and heterologous host systems are available.

  10. Biosurfactant Mediated Biosynthesis of Selected Metallic Nanoparticles

    PubMed Central

    Płaza, Grażyna A.; Chojniak, Joanna; Banat, Ibrahim M.

    2014-01-01

    Developing a reliable experimental protocol for the synthesis of nanomaterials is one of the challenging topics in current nanotechnology particularly in the context of the recent drive to promote green technologies in their synthesis. The increasing need to develop clean, nontoxic and environmentally safe production processes for nanoparticles to reduce environmental impact, minimize waste and increase energy efficiency has become essential in this field. Consequently, recent studies on the use of microorganisms in the synthesis of selected nanoparticles are gaining increased interest as they represent an exciting area of research with considerable development potential. Microorganisms are known to be capable of synthesizing inorganic molecules that are deposited either intra- or extracellularly. This review presents a brief overview of current research on the use of biosurfactants in the biosynthesis of selected metallic nanoparticles and their potential importance. PMID:25110864

  11. New Transfection Agents Based on Liposomes Containing Biosurfactant MEL-A

    PubMed Central

    Nakanishi, Mamoru; Inoh, Yoshikazu; Furuno, Tadahide

    2013-01-01

    Nano vectors are useful tools to deliver foreign DNAs, oligonucleotides, and small interfering double-stranded RNAs (siRNAs) into mammalian cells with gene transfection and gene regulation. In such experiments we have found the liposomes with a biosurfacant mannosylerythriol lipid (MEL-A) are useful because of their high transfer efficiency, and their unique mechanism to transfer genes to target cells with the lowest toxicity. In the present review we will describe our current work, which may contribute to the great advance of gene transfer to target cells and gene regulations. For more than two decades, the liposome technologies have changed dramatically and various methods have been proposed in the fields of biochemistry, cell biology, biotechnology, and so on. In addition, they were towards to pharmaceutics and clinical applications. The liposome technologies were expected to use gene therapy, however, they have not reached a requested goal as of yet. In the present paper we would like to present an approach using a biosurfactant, MEL-A, which is a surface-active compound produced by microorganisms growing on water-insoluble substrates and increases efficiency in gene transfection. The present work shows new transfection agents based on liposomes containing biosurfactant MEL-A. PMID:24300514

  12. Possibilities and challenges for biosurfactants use in petroleum industry.

    PubMed

    Perfumo, Amedea; Rancich, Ivo; Banat, Ibrahim M

    2010-01-01

    Biosurfactants are a group of microbial molecules identified by their unique capabilities to interact with hydrocarbons. Emulsification and de-emulsification, dispersion, foaming, wetting and coating are some of the numerous surface activities that biosurfactants can achieve when applied within systems such as immiscible liquid/liquid (e.g., oil/water), solid/ liquid (e.g., rock/oil and rock/water) and gas/liquid. Therefore, the possibilities of exploiting these bioproducts in oil-related sciences are vast and made petroleum industry their largest possible market at present. The role of biosurfactants in enhancing oil recovery from reservoirs is certainly the best known; however they can be effectively applied in many other fields from transportation of crude oil in pipeline to the clean-up of oil storage tanks and even manufacturing of fine petrochemicals. When properly used, biosurfactants are comparable to traditional chemical analogues in terms of performances and offer advantages with regard to environment protection/conservation. This chapter aims at providing an up-to-date overview of biosurfactant roles, applications and possible future uses related to petroleum industry. PMID:20545279

  13. Biosurfactants: Multifunctional Biomolecules of the 21st Century.

    PubMed

    Santos, Danyelle Khadydja F; Rufino, Raquel D; Luna, Juliana M; Santos, Valdemir A; Sarubbo, Leonie A

    2016-01-01

    In the era of global industrialisation, the exploration of natural resources has served as a source of experimentation for science and advanced technologies, giving rise to the manufacturing of products with high aggregate value in the world market, such as biosurfactants. Biosurfactants are amphiphilic microbial molecules with hydrophilic and hydrophobic moieties that partition at liquid/liquid, liquid/gas or liquid/solid interfaces. Such characteristics allow these biomolecules to play a key role in emulsification, foam formation, detergency and dispersal, which are desirable qualities in different industries. Biosurfactant production is considered one of the key technologies for development in the 21st century. Besides exerting a strong positive impact on the main global problems, biosurfactant production has considerable importance to the implantation of sustainable industrial processes, such as the use of renewable resources and "green" products. Biodegradability and low toxicity have led to the intensification of scientific studies on a wide range of industrial applications for biosurfactants in the field of bioremediation as well as the petroleum, food processing, health, chemical, agricultural and cosmetic industries. In this paper, we offer an extensive review regarding knowledge accumulated over the years and advances achieved in the incorporation of biomolecules in different industries.

  14. Biosurfactants: Multifunctional Biomolecules of the 21st Century.

    PubMed

    Santos, Danyelle Khadydja F; Rufino, Raquel D; Luna, Juliana M; Santos, Valdemir A; Sarubbo, Leonie A

    2016-01-01

    In the era of global industrialisation, the exploration of natural resources has served as a source of experimentation for science and advanced technologies, giving rise to the manufacturing of products with high aggregate value in the world market, such as biosurfactants. Biosurfactants are amphiphilic microbial molecules with hydrophilic and hydrophobic moieties that partition at liquid/liquid, liquid/gas or liquid/solid interfaces. Such characteristics allow these biomolecules to play a key role in emulsification, foam formation, detergency and dispersal, which are desirable qualities in different industries. Biosurfactant production is considered one of the key technologies for development in the 21st century. Besides exerting a strong positive impact on the main global problems, biosurfactant production has considerable importance to the implantation of sustainable industrial processes, such as the use of renewable resources and "green" products. Biodegradability and low toxicity have led to the intensification of scientific studies on a wide range of industrial applications for biosurfactants in the field of bioremediation as well as the petroleum, food processing, health, chemical, agricultural and cosmetic industries. In this paper, we offer an extensive review regarding knowledge accumulated over the years and advances achieved in the incorporation of biomolecules in different industries. PMID:26999123

  15. Biosurfactants: Multifunctional Biomolecules of the 21st Century

    PubMed Central

    Santos, Danyelle Khadydja F.; Rufino, Raquel D.; Luna, Juliana M.; Santos, Valdemir A.; Sarubbo, Leonie A.

    2016-01-01

    In the era of global industrialisation, the exploration of natural resources has served as a source of experimentation for science and advanced technologies, giving rise to the manufacturing of products with high aggregate value in the world market, such as biosurfactants. Biosurfactants are amphiphilic microbial molecules with hydrophilic and hydrophobic moieties that partition at liquid/liquid, liquid/gas or liquid/solid interfaces. Such characteristics allow these biomolecules to play a key role in emulsification, foam formation, detergency and dispersal, which are desirable qualities in different industries. Biosurfactant production is considered one of the key technologies for development in the 21st century. Besides exerting a strong positive impact on the main global problems, biosurfactant production has considerable importance to the implantation of sustainable industrial processes, such as the use of renewable resources and “green” products. Biodegradability and low toxicity have led to the intensification of scientific studies on a wide range of industrial applications for biosurfactants in the field of bioremediation as well as the petroleum, food processing, health, chemical, agricultural and cosmetic industries. In this paper, we offer an extensive review regarding knowledge accumulated over the years and advances achieved in the incorporation of biomolecules in different industries. PMID:26999123

  16. Biosurfactants Produced by Marine Microorganisms with Therapeutic Applications

    PubMed Central

    Gudiña, Eduardo J.; Teixeira, José A.; Rodrigues, Lígia R.

    2016-01-01

    Marine microorganisms possess unique metabolic and physiological features and are an important source of new biomolecules, such as biosurfactants. Some of these surface-active compounds synthesized by marine microorganisms exhibit antimicrobial, anti-adhesive and anti-biofilm activity against a broad spectrum of human pathogens (including multi-drug resistant pathogens), and could be used instead of existing drugs to treat infections caused by them. In other cases, these biosurfactants show anti-cancer activity, which could be envisaged as an alternative to conventional therapies. However, marine biosurfactants have not been widely explored, mainly due to the difficulties associated with the isolation and growth of their producing microorganisms. Culture-independent techniques (metagenomics) constitute a promising approach to study the genetic resources of otherwise inaccessible marine microorganisms without the requirement of culturing them, and can contribute to the discovery of novel biosurfactants with significant biological activities. This paper reviews the most relevant biosurfactants produced by marine microorganisms with potential therapeutic applications and discusses future perspectives and opportunities to discover novel molecules from marine environments. PMID:26901207

  17. Biosurfactants Produced by Marine Microorganisms with Therapeutic Applications.

    PubMed

    Gudiña, Eduardo J; Teixeira, José A; Rodrigues, Lígia R

    2016-02-01

    Marine microorganisms possess unique metabolic and physiological features and are an important source of new biomolecules, such as biosurfactants. Some of these surface-active compounds synthesized by marine microorganisms exhibit antimicrobial, anti-adhesive and anti-biofilm activity against a broad spectrum of human pathogens (including multi-drug resistant pathogens), and could be used instead of existing drugs to treat infections caused by them. In other cases, these biosurfactants show anti-cancer activity, which could be envisaged as an alternative to conventional therapies. However, marine biosurfactants have not been widely explored, mainly due to the difficulties associated with the isolation and growth of their producing microorganisms. Culture-independent techniques (metagenomics) constitute a promising approach to study the genetic resources of otherwise inaccessible marine microorganisms without the requirement of culturing them, and can contribute to the discovery of novel biosurfactants with significant biological activities. This paper reviews the most relevant biosurfactants produced by marine microorganisms with potential therapeutic applications and discusses future perspectives and opportunities to discover novel molecules from marine environments. PMID:26901207

  18. Biosurfactants Produced by Marine Microorganisms with Therapeutic Applications.

    PubMed

    Gudiña, Eduardo J; Teixeira, José A; Rodrigues, Lígia R

    2016-02-18

    Marine microorganisms possess unique metabolic and physiological features and are an important source of new biomolecules, such as biosurfactants. Some of these surface-active compounds synthesized by marine microorganisms exhibit antimicrobial, anti-adhesive and anti-biofilm activity against a broad spectrum of human pathogens (including multi-drug resistant pathogens), and could be used instead of existing drugs to treat infections caused by them. In other cases, these biosurfactants show anti-cancer activity, which could be envisaged as an alternative to conventional therapies. However, marine biosurfactants have not been widely explored, mainly due to the difficulties associated with the isolation and growth of their producing microorganisms. Culture-independent techniques (metagenomics) constitute a promising approach to study the genetic resources of otherwise inaccessible marine microorganisms without the requirement of culturing them, and can contribute to the discovery of novel biosurfactants with significant biological activities. This paper reviews the most relevant biosurfactants produced by marine microorganisms with potential therapeutic applications and discusses future perspectives and opportunities to discover novel molecules from marine environments.

  19. Cassava flour wastewater as a substrate for biosurfactant production.

    PubMed

    Nitschke, Marcia; Pastore, Glaucia

    2003-01-01

    Five cassava flour wastewater (manipueira) preparations were tested as culture media for biosurfactant production by a wild-type Bacillus sp. isolate. No-solids (F), no-solids diluted (F/2), natural (I), natural diluted (I/2), and decanted (IPS) were the tested manipueira media. The microorganism was able to grow and to produce biosurfactant on all manipueira preparations. The media whose solids were removed (F and F/2) showed better results than preparations with the presence of solids (I, I/2, and IPS). No-solids medium (F) showed a surface tension of 26,59 mN/m and reciprocal of critical micelle concentration of over 100 and was selected as a potential substrate for biosurfactant production.

  20. Foliar penetration enhanced by biosurfactant rhamnolipid.

    PubMed

    Liu, Haojing; Shao, Bing; Long, Xuwei; Yao, Yang; Meng, Qin

    2016-09-01

    With recent environmental and health concerns, biosurfactants have obtained increasing interest in replacing conventional surfactants for diverse applications. In agriculture, the use of surfactant in stimulating foliar uptake is mainly for wetting leaf surface, resisting deposition/evaporation, enhancing penetration across cuticular membrane (CM) and translocation. This paper aimed to address the improved foliar uptake by rhamnolipid (RL) in comparison with the currently used alkyl polyglucoside (APG). As found, compared with APG at 900mg/L (1×critical micellar concentration, CMC), RL at a much lower concentration of 50mg/L (1×CMC) showed much better wettability and surface activity, indicative of its high effectiveness as surfactants. Its performance on resistance to deposition and evaporation was at least as same as APG. Moreover, RL could significantly improve the penetration of herbicide glyphosate and other two small water-soluble molecules (phenol red and Fe(2+)) across CM at an equivalent efficiency as APG at 1×CMC. Finally, the greatly enhanced herbicidal actitivity of glyphosate on greenhouse plants confirmed that RL and APG could both enhance the foliar uptake including translocation. Overall, RL should be more applicable than APG in agriculture due to its more promising properties on health/environmental friendliness.

  1. Foliar penetration enhanced by biosurfactant rhamnolipid.

    PubMed

    Liu, Haojing; Shao, Bing; Long, Xuwei; Yao, Yang; Meng, Qin

    2016-09-01

    With recent environmental and health concerns, biosurfactants have obtained increasing interest in replacing conventional surfactants for diverse applications. In agriculture, the use of surfactant in stimulating foliar uptake is mainly for wetting leaf surface, resisting deposition/evaporation, enhancing penetration across cuticular membrane (CM) and translocation. This paper aimed to address the improved foliar uptake by rhamnolipid (RL) in comparison with the currently used alkyl polyglucoside (APG). As found, compared with APG at 900mg/L (1×critical micellar concentration, CMC), RL at a much lower concentration of 50mg/L (1×CMC) showed much better wettability and surface activity, indicative of its high effectiveness as surfactants. Its performance on resistance to deposition and evaporation was at least as same as APG. Moreover, RL could significantly improve the penetration of herbicide glyphosate and other two small water-soluble molecules (phenol red and Fe(2+)) across CM at an equivalent efficiency as APG at 1×CMC. Finally, the greatly enhanced herbicidal actitivity of glyphosate on greenhouse plants confirmed that RL and APG could both enhance the foliar uptake including translocation. Overall, RL should be more applicable than APG in agriculture due to its more promising properties on health/environmental friendliness. PMID:27281240

  2. Monolayers assembled from a glycolipid biosurfactant from Pseudozyma (Candida) antarctica serve as a high-affinity ligand system for immunoglobulin G and M.

    PubMed

    Imura, Tomohiro; Ito, Seya; Azumi, Reiko; Yanagishita, Hiroshi; Sakai, Hideki; Abe, Masahiko; Kitamoto, Dai

    2007-06-01

    A carbohydrate ligand system has been developed which is composed of self-assembled monolayers (SAMs) of mannosylerythritol lipid-A (MEL-A) from Pseudozyma antarctica, serving for human immunoglobulin G and M (HIgG and HIgM). The estimated binding constants from surface plasmon resonance (SPR) measurement were Ka = 9.4 x 10(6) M(-1) for HIgG and 5.4 x 10(6) M(-1) for HIgM, respectively. The binding site was not in the Fc region of immunoglobulin but in the Fab region. Large amounts of HIgG and HIgM bound to MEL-A SAMs were directly observed by atomic force microscopy. PMID:17342348

  3. Identification of potential local isolated for biosurfactant production

    NASA Astrophysics Data System (ADS)

    Shafiei, Zahra; Yusoff, Wan Mohtar Wan; Hamid, Aidil Abdul; Moazami, Nasrin; Hamzah, Ainon; Fooladi, Taybeh

    2013-11-01

    Biosurfactant are amphiphilic molecule that have received increasing attention in recent years because of their role in the growth of microorganisms on water-insoluble hydrophobic materials such as hydrocarbons as well as their commercial potential in the cosmetics, food, oil recovery and agricultural industries. In this study a potential biosurfactant producing strain was isolated from several soil samples of Terengganu oil refinery, Malaysia and selected during preliminary screening using hemolytic activity, oil spreading and drop collapsed technique. Isolates with at least more than one positive response to these three methods were subjected to complementary screening by measuring surface tension reduction as well as emulsification capacity. The biosurfactant produced by isolated 5M was able to reduced surface tension of culture medium from 60 mN/m to30mN/m. The biochemical and morphological characterization, 16SrRNA gene sequencing showed that the isolated 5M belongs to bacillus groups. The maximum production of biosurfactant by Bacillus 5M was observed after 48 h of incubation.

  4. Evaluation of biosurfactants for crude oil contaminated soil washing.

    PubMed

    Urum, Kingsley; Pekdemir, Turgay

    2004-12-01

    An evaluation of the ability of aqueous biosurfactant solutions (aescin, lecithin, rhamnolipid, saponin and tannin) for possible applications in washing crude oil contaminated soil was carried out. The biosurfactants behaviour in soil-water, water-oil and oil-soil systems (such as foaming, solubilization, sorption to soil, emulsification, surface and interfacial tension) was measured and compared with a well-known chemical surfactant (sodium dodecyl sulphate, SDS) at varying concentrations. Results showed that the biosurfactants were able to remove significant amount of crude oil from the contaminated soil at different solution concentrations for instance rhamnolipid and SDS removed up to 80% oil and lecithin about 42%. The performance of water alone in crude oil removal was equally as good as those of the other biosurfactants. Oil removal was due to mobilization, caused by the reduction of surface and interfacial tensions. Solubilization and emulsification effects in oil removal were negligible due to the low crude oil solubilization of 0.11%. Therefore, these studies suggest that knowledge of surfactants' behaviour across different systems is paramount before their use in the practical application of oil removal.

  5. Immunostimulation by phospholipopeptide biosurfactant from Staphylococcus hominis in Oreochromis mossambicus.

    PubMed

    Rajeswari, Veluchamy; Kalaivani Priyadarshini, Sekaran; Saranya, Viswanathan; Suguna, Ponnusamy; Shenbagarathai, Rajaiah

    2016-01-01

    The immunostimulatory effect of phospholipopeptide biosurfactant from Staphylococcus hominis (GenBank Accession No: KJ564272) was assessed with Oreochromis mossambicus. The non-specific (serum lysozyme activity, serum antiprotease activity, serum peroxidase activity and serum bactericidal activity), specific (bacterial agglutination assay) immune responses and disease resistance activity against Aeromonas hydrophila were examined. Fish were intraperitonially injected with water soluble secondary metabolite (biosurfactant) of S. hominis at a dose of 2 mg, 20 mg and 200 mg kg(-1) body weight. Commercial surfactant surfactin (sigma) at 20 mg kg(-1) was used as standard and saline as negative control. All the doses of water soluble biosurfactant tested, significantly enhanced the specific, nonspecific immunity and disease resistance from the day of post administration of phospholipopeptide biosurfactant till the tail of the experimental period. These results clearly indicated that the secondary metabolite isolated from S. hominis stimulates the immunity of finfish thereby could enhance aquaculture production.

  6. Utilization of sophorolipids as biosurfactants for postemergence herbicides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sophorolipids are carbohydrate-based, amphiphilic biosurfactants produced by several species of the Starmerella yeast clade. Most sophorolipids are partially acetylated sophorose sugars O-ß-glycosidically linked to 17-L-hydroxy-delta9-octadecenoic acid, where typically the acyl carboxyl group forms...

  7. Spray drying as a strategy for biosurfactant recovery, concentration and storage.

    PubMed

    Barcelos, Gisely S; Dias, Lívia C; Fernandes, Péricles L; Fernandes, Rita de Cássi R; Borges, Arnaldo C; Kalks, Karlos Hm; Tótola, Marcos R

    2014-01-01

    The objective of this study was to analyze the use of Spray Drying for concentration and preservation of biosurfactants produced by Bacillus subtilis LBBMA RI4914 isolated from a heavy oil reservoir. Kaolinite and maltodextrin 10DE or 20DE were tested as drying adjuvants. Surface activity of the biosurfactant was analyzed by preparing dilution x surface activity curves of crude biosurfactant, crude biosurfactant plus adjuvants and of the dried products, after their reconstitution in water. The shelf life of the dried products was also evaluated. Spray drying was effective in the recovery and concentration of biosurfactant, while keeping its surface activity. Drying adjuvants were required to obtain a solid product with the desired characteristics. These compounds did not interfere with tensoactive properties of the biosurfactant molecules. The dehydrated product maintained its surfactant properties during storage at room temperature during the evaluation period (120 days), with no detectable loss of activity. PMID:24570847

  8. Characterization of biosurfactant-producing strains of fluorescent pseudomonads in a soilless cultivation system.

    PubMed

    Hultberg, Malin; Bergstrand, Karl-Johan; Khalil, Sammar; Alsanius, Beatrix

    2008-08-01

    The use of biosurfactants is a promising alternative in biological control of zoospore-producing plant pathogens. In the present study, biosurfactant production by the indigenous population of fluorescent pseudomonads in a soilless plant cultivation system was studied during the growing season. A total of 600 strains was screened and of these 18.5% were observed to produce biosurfactants. Production of both antibiotics and biosurfactant was uncommon among the isolated strains. A selective effect of the cultivation system filter was observed on the biosurfactant-producing strains and these strains were only occasionally observed after the filter, despite having a significantly higher motility than the nonbiosurfactant-producing strains. The majority of biosurfactant-producing strains were isolated from the filter skin, which suggests that this is a suitable surface for inoculation with biocontrol strains.

  9. Utilization of oleo-chemical industry by-products for biosurfactant production

    PubMed Central

    2013-01-01

    Biosurfactants are the surface active compounds produced by micro-organisms. The eco-friendly and biodegradable nature of biosurfactants makes their usage more advantageous over chemical surfactants. Biosurfactants encompass the properties of dropping surface tension, stabilizing emulsions, promoting foaming and are usually non- toxic and biodegradable. Biosurfactants offer advantages over their synthetic counterparts in many applications ranging from environmental, food, and biomedical, cosmetic and pharmaceutical industries. The important environmental applications of biosurfactants include bioremediation and dispersion of oil spills, enhanced oil recovery and transfer of crude oil. The emphasis of present review shall be with reference to the commercial production, current developments and future perspectives of a variety of approaches of biosurfactant production from the micro-organisms isolated from various oil- contaminated sites and from the by-products of oleo-chemical industry wastes/ by-products viz. used edible oil, industrial residues, acid oil, deodorizer distillate, soap-stock etc. PMID:24262384

  10. Utilization of oleo-chemical industry by-products for biosurfactant production.

    PubMed

    Bhardwaj, Garima; Cameotra, Swaranjit Singh; Chopra, Harish Kumar

    2013-01-01

    Biosurfactants are the surface active compounds produced by micro-organisms. The eco-friendly and biodegradable nature of biosurfactants makes their usage more advantageous over chemical surfactants. Biosurfactants encompass the properties of dropping surface tension, stabilizing emulsions, promoting foaming and are usually non- toxic and biodegradable. Biosurfactants offer advantages over their synthetic counterparts in many applications ranging from environmental, food, and biomedical, cosmetic and pharmaceutical industries. The important environmental applications of biosurfactants include bioremediation and dispersion of oil spills, enhanced oil recovery and transfer of crude oil. The emphasis of present review shall be with reference to the commercial production, current developments and future perspectives of a variety of approaches of biosurfactant production from the micro-organisms isolated from various oil- contaminated sites and from the by-products of oleo-chemical industry wastes/ by-products viz. used edible oil, industrial residues, acid oil, deodorizer distillate, soap-stock etc. PMID:24262384

  11. Biodegradation of 4-nitrotoluene with biosurfactant production by Rhodococcus pyridinivorans NT2: metabolic pathway, cell surface properties and toxicological characterization.

    PubMed

    Kundu, Debasree; Hazra, Chinmay; Dandi, Navin; Chaudhari, Ambalal

    2013-11-01

    A novel 4-nitrotoluene-degrading bacterial strain was isolated from pesticides contaminated effluent-sediment and identified as Rhodococcus pyridinivorans NT2 based on morphological and biochemical properties and 16S rDNA sequencing. The strain NT2 degraded 4-NT (400 mg l(-1)) with rapid growth at the end of 120 h, reduced surface tension of the media from 71 to 29 mN m(-1) and produced glycolipidic biosurfactants (45 mg l(-1)). The biosurfactant was purified and characterized as trehalose lipids. The biosurfactant was stable in high salinity (10 % w/v NaCl), elevated temperatures (120 °C for 15 min) and a wide pH range (2.0-10.0). The noticeable changes during biodegradation were decreased hydrophobicity; an increase in degree of fatty acid saturation, saturated/unsaturated ratio and cyclopropane fatty acid. Biodegradation of 4-NT was accompanied by the accumulation of ammonium (NH4 (+)) and negligible amount of nitrite ion (NO2 (-)). Product stoichiometry showed a carbon (C) and nitrogen (N) mass balance of 37 and 35 %, respectively. Biodegradation of 4-NT proceeded by oxidation at the methyl group to form 4-nitrobenzoate, followed by reduction and hydrolytic deamination yielding protocatechuate, which was metabolized through β-ketoadipate pathway. In vitro and in vivo acute toxicity assays in adult rat (Rattus norvegicus) showed sequential detoxification and the order of toxicity was 4-NT >4-nitrobenzyl alcohol >4-nitrobenzaldehyde >4-nitrobenzoate > protocatechuate. Taken together, the strain NT2 could be used as a potential bioaugmentation candidate for the bioremediation of contaminated sites.

  12. Characterization and Emulsification Properties of Rhamnolipid and Sophorolipid Biosurfactants and Their Applications

    PubMed Central

    Nguyen, Thu T.; Sabatini, David A.

    2011-01-01

    Due to their non-toxic nature, biodegradability and production from renewable resources, research has shown an increasing interest in the use of biosurfactants in a wide variety of applications. This paper reviews the characterization of rhamnolipid and sophorolipid biosurfactants based on their hydrophilicity/hydrophobicity and their ability to form microemulsions with a range of oils without additives. The use of the biosurfactants in applications such as detergency and vegetable oil extraction for biodiesel application is also discussed. Rhamnolipid was found to be a hydrophilic surfactant while sophorolipid was found to be very hydrophobic. Therefore, rhamnolipid and sophorolipid biosurfactants in mixtures showed robust performance in these applications. PMID:21541055

  13. Biosurfactant production by Bacillus subtilis B30 and its application in enhancing oil recovery.

    PubMed

    Al-Wahaibi, Yahya; Joshi, Sanket; Al-Bahry, Saif; Elshafie, Abdulkadir; Al-Bemani, Ali; Shibulal, Biji

    2014-02-01

    The fermentative production of biosurfactants by Bacillus subtilis strain B30 and the evaluation of biosurfactant based enhanced oil recovery using core-flood were investigated. Different carbon sources (glucose, sucrose, starch, date molasses, cane molasses) were tested to determine the optimal biosurfactant production. The isolate B30 produced a biosurfactant that could reduce the surface tension and interfacial tension to 26.63±0.45 mN/m and 3.79±0.27 mN/m, respectively in less than 12h in both glucose or date molasses based media. A crude biosurfactant concentration of 0.3-0.5 g/l and critical micelle dilution (CMD) values of 1:8 were observed. The biosurfactants gave stable emulsions with wide range of hydrocarbons including light and heavy crude oil. The biosurfactants were partially purified and identified as a mixture of lipopeptides similar to surfactin, using high performance thin layer chromatography and Fourier transform infrared spectroscopy. The biosurfactants were stable over wide range of pH, salinity and temperatures. The crude biosurfactant preparation enhanced light oil recovery by 17-26% and heavy oil recovery by 31% in core-flood studies. The results are indicative of the potential of the strain for the development of ex situ microbial enhanced oil recovery processes using glucose or date molasses based minimal media. PMID:24240116

  14. Isolation and characterization of a biosurfactant-producing Fusarium sp. BS-8 from oil contaminated soil.

    PubMed

    Qazi, Muneer A; Kanwal, Tayyaba; Jadoon, Muniba; Ahmed, Safia; Fatima, Nighat

    2014-01-01

    This study reports characterization of a biosurfactant-producing fungal isolate from oil contaminated soil of Missa Keswal oil field, Pakistan. It was identified as Fusarium sp. BS-8 on the basis of macroscopic and microscopic morphology, and 18S rDNA gene sequence homology. The biosurfactant-producing capability of the fungal isolates was screened using oil displacement activity, emulsification index assay, and surface tension (SFT) measurement. The optimization of operational parameters and culture conditions resulted in maximum biosurfactant production using 9% (v/v) inoculum at 30°C, pH 7.0, using sucrose and yeast extract, as carbon and nitrogen sources, respectively. A C:N ratio of 0.9:0.1 (w/w) was found to be optimum for growth and biosurfactant production. At optimal conditions, it attained lowest SFT (i.e., 32 mN m(-1) ) with a critical micelle concentration of ≥ 1.2 mg mL(-1) . During 5 L shake flask fermentation experiments, the biosurfactant productivity was 1.21 g L(-1) pure biosurfactant having significant emulsifying index (E24 , 70%) and oil-displacing activity (16 mm). Thin layer chromatography and Fourier transform infrared spectrometric analyses indicated a lipopeptide type of the biosurfactant. The Fusarium sp. BS-8 has substantial potential of biosurfactant production, yet it needs to be fully characterized with possibility of relatively new class of biosurfactants.

  15. Characterization and emulsification properties of rhamnolipid and sophorolipid biosurfactants and their applications.

    PubMed

    Nguyen, Thu T; Sabatini, David A

    2011-01-01

    Due to their non-toxic nature, biodegradability and production from renewable resources, research has shown an increasing interest in the use of biosurfactants in a wide variety of applications. This paper reviews the characterization of rhamnolipid and sophorolipid biosurfactants based on their hydrophilicity/hydrophobicity and their ability to form microemulsions with a range of oils without additives. The use of the biosurfactants in applications such as detergency and vegetable oil extraction for biodiesel application is also discussed. Rhamnolipid was found to be a hydrophilic surfactant while sophorolipid was found to be very hydrophobic. Therefore, rhamnolipid and sophorolipid biosurfactants in mixtures showed robust performance in these applications. PMID:21541055

  16. Biosurfactant-enhanced bioremediation of aged polycyclic aromatic hydrocarbons (PAHs) in creosote contaminated soil.

    PubMed

    Bezza, Fisseha Andualem; Chirwa, Evans M Nkhalambayausi

    2016-02-01

    The potential for biological treatment of an environment contaminated by complex petrochemical contaminants was evaluated using creosote contaminated soil in ex situ bio-slurry reactors. The efficacy of biosurfactant application and stimulation of in situ biosurfactant production was investigated. The biosurfactant produced was purified and characterised using Fourier transform infrared (FTIR) spectroscopy. Biosurfactant enhanced degradation of PAHs was 86.5% (with addition of biosurfactant) and 57% in controls with no biosurfactant and nutrient amendments after incubation for 45 days. A slight decrease in degradation rate observed in the simultaneous biosurfactant and nutrient, NH4NO3 and KH2PO4, supplemented microcosm can be attributed to preferential microbial consumption of the biosurfactant supplemented. The overall removal of PAHs was determined to be mass transport limited since the dissolution rate caused by the biosurfactant enhanced the bioavailability of the PAHs to the microorganisms. The consortium culture was predominated by the aromatic ring-cleaving species Bacillus stratosphericus, Bacillus subtilis, Bacillus megaterium, and Pseudomonas aeruginosa.

  17. Sophorolipid biosurfactants: Possible uses as antibacterial and antibiofilm agent.

    PubMed

    Díaz De Rienzo, Mayri A; Banat, Ibrahim M; Dolman, Ben; Winterburn, James; Martin, Peter J

    2015-12-25

    Biosurfactants are amphipathic, surface-active molecules of microbial origin which accumulate at interfaces reducing interfacial tension and leading to the formation of aggregated micellular structures in solution. Some biosurfactants have been reported to have antimicrobial properties, the ability to prevent adhesion and to disrupt biofilm formation. We investigated antimicrobial properties and biofilm disruption using sophorolipids at different concentrations. Growth of Gram negative Cupriavidus necator ATCC 17699 and Gram positive Bacillus subtilis BBK006 were inhibited by sophorolipids at concentrations of 5% v/v with a bactericidal effect. Sophorolipids (5% v/v) were also able to disrupt biofilms formed by single and mixed cultures of B. subtilis BBK006 and Staphylococcus aureus ATCC 9144 under static and flow conditions, as was observed by scanning electron microscopy. The results indicated that sophorolipids may be promising compounds for use in biomedical application as adjuvants to other antimicrobial against some pathogens through inhibition of growth and/or biofilm disruption. PMID:25738966

  18. DEVELOPMENT OF MICROORGANISMS WITH IMPROVED TRANSPORT AND BIOSURFACTANT ACTIVITY FOR ENHANCED OIL RECOVERY

    SciTech Connect

    M.J. McInerney; N. Youssef; T. Fincher; S.K. Maudgalya; M.J. Folmsbee; R. Knapp; D. Nagle

    2004-05-31

    Diverse microorganisms were screened for biosurfactant production and anaerobic growth at elevated salt concentrations to obtain candidates most suitable for microbial oil recovery. Seventy percent of the 205 strains tested, mostly strains of Bacillus mojavensis, Bacillus subtilis, Bacillus licheniformis, and Bacillus sonorensis, produced biosurfactants aerobically and 41% of the strains had biosurfactant activity greater than Bacillus mojavensis JF-2, the current candidate for oil recovery. Biosurfactant activity varied with the percentage of the 3-hydroxy-tetradecanoate isomers in the fatty acid portion of the biosurfactant. Changing the medium composition by incorporation of different precursors of 3-hydroxy tetradecanoate increased the activity of biosurfactant. The surface tension and critical micelle concentration of 15 different, biosurfactant-producing Bacillus strains was determined individually and in combination with other biosurfactants. Some biosurfactant mixtures were found to have synergistic effect on surface tension (e.g. surface tension was lowered from 41 to 31 mN/m in some cases) while others had a synergistic effect on CMD-1 values. We compared the transport abilities of spores from three Bacillus strains using a model porous system to study spore recovery and transport. Sand-packed columns were used to select for spores or cells with the best transport abilities through brine-saturated sand. Spores of Bacillus mojavensis strains JF-2 and ROB-2 and a natural recombinant, strain C-9, transported through sand at very high efficiencies. The earliest cells/spores that emerged from the column were re-grown, allowed to sporulate, and applied to a second column. This procedure greatly enhanced the transport of strain C-9. Spores with enhanced transport abilities can be easily obtained and that the preparation of inocula for use in MEOR is feasible. Tertiary oil recovery experiments showed that 10 to 40 mg/l of JF-2 biosurfactant in the presence of 0

  19. Efficiency of lipopeptide biosurfactants in removal of petroleum hydrocarbons and heavy metals from contaminated soil.

    PubMed

    Singh, Anil Kumar; Cameotra, Swaranjit Singh

    2013-10-01

    This study describes the potential application of lipopeptide biosurfactants in removal of petroleum hydrocarbons and heavy metals from the soil samples collected from industrial dumping site. High concentrations of heavy metals (like iron, lead, nickel, cadmium, copper, cobalt and zinc) and petroleum hydrocarbons were present in the contaminated soil samples. Lipopeptide biosurfactant, consisting of surfactin and fengycin was obtained from Bacillus subtilis A21. Soil washing with biosurfactant solution removed significant amount of petroleum hydrocarbon (64.5 %) and metals namely cadmium (44.2 %), cobalt (35.4 %), lead (40.3 %), nickel (32.2 %), copper (26.2 %) and zinc (32.07 %). Parameters like surfactant concentration, temperature, agitation condition and pH of the washing solution influenced the pollutant removing ability of biosurfactant mixture. Biosurfactant exhibited substantial hydrocarbon solubility above its critical micelle concentration. During washing, 50 % of biosurfactant was sorbed to the soil particles decreasing effective concentration during washing process. Biosurfactant washed soil exhibited 100 % mustard seed germination contradictory to water washed soil where no germination was observed. The results indicate that the soil washing with mixture of lipopeptide biosurfactants at concentrations above its critical micelle concentration can be an efficient and environment friendly approach for removing pollutants (petroleum hydrocarbon and heavy metals) from contaminated soil.

  20. Antimicrobial and anti-adhesive potential of a biosurfactant Rufisan produced by Candida lipolytica UCP 0988.

    PubMed

    Rufino, R D; Luna, J M; Sarubbo, L A; Rodrigues, L R M; Teixeira, J A C; Campos-Takaki, G M

    2011-05-01

    In the last years, researches developed with biosurfactants for application in the medical area have been revealing the promising biological activities of these biomolecules. In this work the antimicrobial and anti-adhesive properties of a biosurfactant Rufisan isolated from the yeast Candida lipolytica UCP 0988, growth in a medium supplemented with ground nut refinery residue was determined against several microorganisms. The biosurfactant was able to reduce the water surface tension from 70 to 25.3 mN/m and showed a critical micelle concentration (CMC) of 0.03%. The biosurfactant was isolated after 72 h of fermentation and was tested in concentrations varying from 0.75 to 12 mg/l. The highest antimicrobial activities were observed against Streptococcus agalactiae, Streptococcus mutans, Streptococcus mutans NS, Streptococcus mutans HG, Streptococcus sanguis 12, Streptococcus oralis J22 at a concentration superior to the biosurfactant critical micelle concentration. Moreover, the biosurfactant showed anti-adhesive activity against most of the microorganisms tested. As far as we know, this is the first compilation of data on antimicrobial and anti-adhesive activities of a biosurfactant obtained from a Candida strain against such a broad group of microorganisms. The results obtained in this work showed that the biosurfactant from C. lipolytica is a potential antimicrobial and/or anti-adhesive agent for several biomedical applications.

  1. Biosurfactants from Acinetobacter calcoaceticus BU03 enhance the solubility and biodegradation of phenanthrene.

    PubMed

    Zhao, Zhenyong; Wong, Jonathan W C

    2009-03-01

    A thermophilic bacterial strain, Acinetobacter calcoaceticus BU03, with a biosurfactant-producing capability, was isolated from petroleum-contaminated soil with an improved procedure which employed the solubilization of polycyclic aromatic hydrocarbons (PAHs), i.e. naphthalene in agar plate, as a selection criterion. Crude biosurfactant was recovered from the culture of BU03 by extraction with n-hexane, and its properties were investigated. Biosurfactants from A. calcoaceticus BU03 constitute a thermo-stable mixture, composed of different agents with surface activities. At their critical micelle concentration (CMC) of 152.4 mg L(-1), the crude biosurfactants produced from A. calcoaceticus BU03 decreased the air-water surface tension to 38.4 mN m(-1). In thermophilic conditions, the emulsifying activity is 2.8 times that of Tween 80. The effects of the biosurfactants produced by A. calcoaceticus on the solubility and biodegradation of PAHs were investigated in batch systems. Biosurfactants produced by A. calcoaceticus BU03 at 25 times their CMC significantly increased the apparent aqueous solubility of phenanthrene (PHE), pyrene (PYR) and benzo(a)pyrene (B[a]P) to 54.3, 6.33 and 2.08 mg L(-1), respectively. In aqueous system, the biosurfactants at concentrations of 0.5 CMC and 1 CMC slightly enhanced the biodegradation of PHE by a consortium of PAH-degrading microrganisms. Results indicate that biosurfactants from A. calcoaceticus BU03 have potential to enhance the removal of PAHs from contaminated sites.

  2. Rhamnolipid biosurfactants: evolutionary implications, applications and future prospects from untapped marine resource.

    PubMed

    Kiran, George Seghal; Ninawe, Arun Shivanth; Lipton, Anuj Nishanth; Pandian, Vijayalakshmi; Selvin, Joseph

    2016-01-01

    Rhamnolipid-biosurfactants are known to be produced by the genus Pseudomonas, however recent literature reported that rhamnolipids (RLs) are distributed among diverse microbial genera. To integrate the evolutionary implications of rhamnosyl transferase among various groups of microorganisms, a comprehensive comparative motif analysis was performed amongst bacterial producers. Findings on new RL-producing microorganism is helpful from a biotechnological perspective and to replace infective P. aeruginosa strains which ultimately ensure industrially safe production of RLs. Halotolerant biosurfactants are required for efficient bioremediation of marine oil spills. An insight on the exploitation of marine microbes as the potential source of RL biosurfactants is highlighted in the present review. An economic production process, solid-state fermentation using agro-industrial and industrial waste would increase the scope of biosurfactants commercialization. Potential and prospective applications of RL-biosurfactants including hydrocarbon bioremediation, heavy metal removal, antibiofilm activity/biofilm disruption and greener synthesis of nanoparticles are highlighted in this review. PMID:25641324

  3. Biosurfactant Production by Bacillus salmalaya for Lubricating Oil Solubilization and Biodegradation

    PubMed Central

    Dadrasnia, Arezoo; Ismail, Salmah

    2015-01-01

    This study investigated the capability of a biosurfactant produced by a novel strain of Bacillus salmalaya to enhance the biodegradation rates and bioavailability of organic contaminants. The biosurfactant produced by cultured strain 139SI showed high physicochemical properties and surface activity in the selected medium. The biosurfactant exhibited a high emulsification index and a positive result in the drop collapse test, with the results demonstrating the wetting activity of the biosurfactant and its potential to produce surface-active molecules. Strain 139SI can significantly reduce the surface tension (ST) from 70.5 to 27 mN/m, with a critical micelle concentration of 0.4%. Moreover, lubricating oil at 2% (v/v) was degraded on Day 20 (71.5). Furthermore, the biosurfactant demonstrated high stability at different ranges of salinity, pH, and temperature. Overall, the results indicated the potential use of B. salmalaya 139SI in environmental remediation processes. PMID:26295402

  4. Biosurfactant production by Pseudomonas fluorescens growing on molasses and its application in phenol degradation

    NASA Astrophysics Data System (ADS)

    Suryantia, Venty; Marliyana, Soerya Dewi; Wulandari, Astri

    2015-12-01

    A molasses based medium for the biosurfactant production by Pseudomonas fluorescens was developed, where the effect of pre-treated of molasses and medium composition were evaluated. Biosurfactant production was followed by measuring optical density (OD), surface tension and emulsifying index (E24) over 12 days of fermentation. The optimum condition for the biosurfactant production was obtained when a medium containing of 8 g/L nutrient broth, 5 g/L NaCl, 1 g/L NH4NO3 and 5% v/v pre-treated molasses with centrifugation was used as media with 3 days of fermentation. The biosurfactant was identified as a rhamnolipid type biosurfactant which had critical micelle concentration (CMC) value of 801 mg/L and was able to reduce the surface tension of the water from 80 mN/m to 51 mN/m. The biosurfactants had water in oil (w/o) emulsion type. Biosurfactant was able to emulsify various hydrocarbons, which were able to decrase the interfacial tension about 50-75% when benzyl chloride, anisaldehyde and palm oil were used as immiscible compounds. The biosurfactant exhibited the E24 value of about 50% and the stable emulsion was reached up to 30 days when lubricant was used as an immiscible compound. Up to 68% of phenol was degraded in the presence of biosurfactant within 15 days, whereas only 56% of phenol was degraded in the absence of biosurfactant. Overall, the results exhibited that molasses are recommended for the rhamnolipids production which possessed good surface-active properties and had potential application in the enhancement of phenol degradation.

  5. Biosurfactant MEL-A enhances cellular association and gene transfection by cationic liposome.

    PubMed

    Igarashi, Saki; Hattori, Yoshiyuki; Maitani, Yoshie

    2006-05-30

    Mannnosylerythritol lipid A (MEL-A), a biosurfactant produced by microorganisms, has many biological activities. To enhance the gene transfection efficiency of a cationic liposome, we prepared a MEL-liposome (MEL-L) composed of 3beta-[N-(N',N'-dimethylaminoethane)-carbamoyl] cholesterol (DC-Chol), dioleoyl phosphatidylethanolamine (DOPE) and MEL-A, and investigated its transfection efficiency in human cervix carcinoma Hela cells. MEL-L was about 40 nm in size, and the MEL-L/plasmid DNA complex (MEL-lipoplex) remained an injectable size (169 nm). MEL-A induced a significantly higher level of gene expression, compared to commercially available Tfx20 and the liposome without MEL-A (Cont-L). Analysis of flow cytometric profiles clearly indicated that the amount of DNA associated with the cells was rapidly increased and sustained by addition of MEL-A to the liposome. Confocal microscopic observation indicated that the MEL-lipoplex distributed widely in the cytoplasm, and the DNA was detected strongly in the cytoplasm and around the nucleus, compared with Cont-L. These results suggested that MEL-A increased gene expression by enhancing the association of the lipoplexes with the cells in serum. MEL-L might prove a remarkable non-viral vector for gene transfection and gene therapy. PMID:16624437

  6. Assessing Bacillus subtilis biosurfactant effects on the biodegradation of petroleum products.

    PubMed

    Montagnolli, Renato Nallin; Lopes, Paulo Renato Matos; Bidoia, Ederio Dino

    2015-01-01

    Microbial pollutant removal capabilities can be determined and exploited to accomplish bioremediation of hydrocarbon-polluted environments. Thus, increasing knowledge on environmental behavior of different petroleum products can lead to better bioremediation strategies. Biodegradation can be enhanced by adding biosurfactants to hydrocarbon-degrading microorganism consortia. This work aimed to improve petroleum products biodegradation by using a biosurfactant produced by Bacillus subtilis. The produced biosurfactant was added to biodegradation assays containing crude oil, diesel, and kerosene. Biodegradation was monitored by a respirometric technique capable of evaluating CO₂ production in an aerobic simulated wastewater environment. The biosurfactant yielded optimal surface tension reduction (30.9 mN m(-1)) and emulsification results (46.90% with kerosene). Biodegradation successfully occurred and different profiles were observed for each substance. Precise mathematical modeling of biosurfactant effects on petroleum degradation profile was designed, hence allowing long-term kinetics prediction. Assays containing biosurfactant yielded a higher overall CO₂ output. Higher emulsification and an enhanced CO2 production dataset on assays containing biosurfactants was observed, especially in crude oil and kerosene.

  7. Biosurfactant production by Bacillus subtilis using corn steep liquor as culture medium

    PubMed Central

    Gudiña, Eduardo J.; Fernandes, Elisabete C.; Rodrigues, Ana I.; Teixeira, José A.; Rodrigues, Lígia R.

    2015-01-01

    In this work, biosurfactant production by Bacillus subtilis #573 was evaluated using corn steep liquor (CSL) as culture medium. The best results were obtained in a culture medium consisting of 10% (v/v) of CSL, with a biosurfactant production of about 1.3 g/l. To the best of our knowledge, this is the first report describing biosurfactant production by B. subtilis using CSL as culture medium. Subsequently, the effect of different metals (iron, manganese, and magnesium) on biosurfactant production was evaluated using the medium CSL 10%. It was found that for all the metals tested, the biosurfactant production was increased (up to 4.1, 4.4, and 3.5 g/l for iron, manganese, and magnesium, respectively). When the culture medium was supplemented with the optimum concentration of the three metals simultaneously, the biosurfactant production was increased up to 4.8 g/l. Furthermore, the biosurfactant exhibited a good performance in oil recovery assays when compared with chemical surfactants, which suggests its possible application in microbial enhanced oil recovery or bioremediation. PMID:25705209

  8. Preliminary characterization of biosurfactant produced by a PAH-degrading Paenibacillus sp. under thermophilic conditions.

    PubMed

    Mesbaiah, Fatma Zohra; Eddouaouda, Kamel; Badis, Abdelmalek; Chebbi, Alif; Hentati, Dorra; Sayadi, Sami; Chamkha, Mohamed

    2016-07-01

    The capacities of a biosurfactant producing and polycyclic aromatic hydrocarbon (PAH) utilizing bacterium, namely, strain 1C, isolated from an Algerian contaminated soil, were investigated. Strain 1C belonged to the Paenibacillus genus and was closely related to the specie Paenibacillus popilliae, with 16S rRNA gene sequence similarity of 98.4 %. It was able to produce biosurfactant using olive oil as substrate. The biosurfactant production was shown by surface tension (32.6 mN/m) after 24 h of incubation at 45 °C and 150 rpm. The biosurfactant(s) retained its properties during exposure to elevated temperatures (70 °C), relatively high salinity (20 % NaCl), and a wide range of pH values (2-10). The infrared spectroscopy (FTIR) revealed that its chemical structure belonged to lipopeptide class. The critical micelle concentration (CMC) of this biosurfactant was about 0.5 g/l with 29.4 mN/m. In addition, the surface active compound(s) produced by strain 1C enhanced PAH solubility and showed a significant antimicrobial activity against pathogens. In addition to its biosurfactant production, strain 1C was shown to be able to utilize PAHs as the sole carbon and energy sources. Strain 1C as hydrocarbonoclastic bacteria and its interesting surface active agent may be used for cleaning the environments polluted with polyaromatic hydrocarbons. PMID:27053051

  9. Utilization of banana peel as a novel substrate for biosurfactant production by Halobacteriaceae archaeon AS65.

    PubMed

    Chooklin, Chanika Saenge; Maneerat, Suppasil; Saimmai, Atipan

    2014-05-01

    In this study, biosurfactant-producing bacteria was evaluated for biosurfactant production by using banana peel as a sole carbon source. From the 71 strains screened, Halobacteriaceae archaeon AS65 produced the highest biosurfactant activity. The highest biosurfactant production (5.30 g/l) was obtained when the cells were grown on a minimal salt medium containing 35 % (w/v) banana peel and 1 g/l commercial monosodium glutamate at 30 °C and 200 rpm after 54 h of cultivation. The biosurfactant obtained by extraction with ethyl acetate showed high surface tension reduction (25.5 mN/m), a small critical micelle concentration value (10 mg/l), thermal and pH stability with respect to surface tension reduction and emulsification activity, and a high level of salt tolerance. The biosurfactant obtained was confirmed as a lipopeptide by using a biochemical test FT-IR, NMR, and mass spectrometry. The crude biosurfactant showed a broad spectrum of antimicrobial activity and had the ability to emulsify oil, enhance PAHs solubility, and oil bioremediation.

  10. Effect of biosurfactants on the aqueous solubility of PCE and TCE.

    PubMed

    Albino, John D; Nambi, Indumathi M

    2009-12-01

    The effect of biosurfactants on the solubility of tetrachloroethylene (PCE) and trichloroethylene (TCE) was studied in batch experiments pertaining to their use for solubilization and mobilization of such contaminants in surfactant enhanced aquifer remediation. Biosurfactants, rhamnolipid and surfactin used in solubility studies were synthesized in our laboratory by Pseudomonas aeruginosa (MTCC 2297) and Bacillus subtilis (MTCC 2423), respectively. The efficiency of the biosurfactants in solubilizing the chlorinated solvents was compared to that of synthetic surfactants. The Weight Solubilization Ratio (WSR) values for solubilization of PCE and TCE by biosurfactants were very high compared to the values obtained for synthetic surfactants. Surfactin proved to be a better surfactant over rhamnolipid. The WSR of surfactin on solubilization of PCE and TCE were 3.83 and 12.5, respectively, whereas the values obtained for rhamnolipid were 2.06 and 8.36. The solubility of the chlorinated solvents by biosurfactants was considerably affected by the changes in pH. The aqueous solubility of PCE and TCE increased tremendously with decrease in pH. The solubility of biosurfactants was observed to decrease with the pH, favoring partitioning of surfactants into the chlorinated solvents in significant amounts at lower pH. The excessive accumulation of biosurfactants at the interface facilitated interfacial tension reductions resulting in higher solubility of the chlorinated solvents at pH less than 7.

  11. Optimization of cultural conditions for biosurfactant production by Pleurotus djamor in solid state fermentation.

    PubMed

    Velioglu, Zulfiye; Ozturk Urek, Raziye

    2015-11-01

    Being eco-friendly, less toxic, more biodegradable and biocompatible, biological surfactants have higher activity and stability compared to synthetic ones. In spite of the fact that there are abundant benefits of biosurfactants over the synthetic congeners, the problem related with the economical and large scale production proceeds. The utilization of several industrial wastes in the production media as substrates reduces the production cost. This current study aims optimization of biosurfactant production conditions by Pleurotus djamor, grown on sunflower seed shell, grape wastes or potato peels as renewable cheap substrates in solid state fermentation. After determination of the best substrate for biosurfactant production, we indicate optimum size and amount of solid substrate, volume of medium, temperature, pH and Fe(2+) concentrations on biosurfactant production. In optimum conditions, by reducing water surface tension to 28.82 ± 0.3 mN/m and having oil displacement diameter of 3.9 ± 0.3 cm, 10.205 ± 0.5 g/l biosurfactant was produced. Moreover, chemical composition of biosurfactant produced in optimum condition was determined by FTIR. Lastly, laboratory's large-scale production was carried out in optimum conditions in a tray bioreactor designed by us and 8.9 ± 0.5 g/l biosurfactant was produced with a significant surface activity (37.74 ± 0.3 mN/m). With its economical suggestions and applicability of laboratory's large-scale production, this work indicates the possibility of using low cost agro-industrial wastes as renewable substrates for biosurfactant production. Therefore, using economically produced biosurfactant will reduce cost in several applications such as bioremediation, oil recovery and biodegradation of toxic chemicals.

  12. Glycerol as substrate for the production of biosurfactant by Pseudomonas aeruginosa UCP0992.

    PubMed

    Silva, S N R L; Farias, C B B; Rufino, R D; Luna, J M; Sarubbo, L A

    2010-08-01

    In this work the influence of the carbon source concentration, of the type and concentration of the nitrogen source and of the cultivation conditions (temperature, aeration and agitation speed) in mineral medium formulated with glycerol was studied for biosurfactant production by Pseudomonas aeruginosa UCP0992. The kinetics of microorganism growth and biosurfactant production have been described for the medium supplemented with 3% glycerol and 0.6% NaNO(3), at 28 degrees C during 120 h under 200 rpm, showing a growth-associated production. The isolated biosurfactant corresponded to a concentration of 8.0 g/l after 96 h. The medium surface tension was reduced to 27.4 mN/m and the emulsification index of hexadecane reached 75-80% after 72 h. A CMC of 700 mg/l and an interfacial tension against hexadecane of 2 mN/m were obtained. The biosurfactant showed stability when submitted at 90 degrees C during 2 h, and thermal (4-120 degrees C) and pH (4-12) stability regarding the surface tension reduction and the emulsification capacity of vegetable oils and hydrocarbons, and tolerance under high salt concentrations (2-10%). The biosurfactant was characterized as a group of rhamnolipids with anionic nature. The crude biosurfactant did not show toxicity against the microcrustacean Artemia salina and the cabbage (Brassica oleracea), while the isolated biosurfactant showed toxicity against the microcrustacean at the CMC. The application of the biosurfactant in diesel recovery from sand was demonstrated by removal percentiles above 85%. The results obtained in this work are noteworthy for possible biosurfactant production from glycerol with potential of application in the environment.

  13. Optimization of cultural conditions for biosurfactant production by Pleurotus djamor in solid state fermentation.

    PubMed

    Velioglu, Zulfiye; Ozturk Urek, Raziye

    2015-11-01

    Being eco-friendly, less toxic, more biodegradable and biocompatible, biological surfactants have higher activity and stability compared to synthetic ones. In spite of the fact that there are abundant benefits of biosurfactants over the synthetic congeners, the problem related with the economical and large scale production proceeds. The utilization of several industrial wastes in the production media as substrates reduces the production cost. This current study aims optimization of biosurfactant production conditions by Pleurotus djamor, grown on sunflower seed shell, grape wastes or potato peels as renewable cheap substrates in solid state fermentation. After determination of the best substrate for biosurfactant production, we indicate optimum size and amount of solid substrate, volume of medium, temperature, pH and Fe(2+) concentrations on biosurfactant production. In optimum conditions, by reducing water surface tension to 28.82 ± 0.3 mN/m and having oil displacement diameter of 3.9 ± 0.3 cm, 10.205 ± 0.5 g/l biosurfactant was produced. Moreover, chemical composition of biosurfactant produced in optimum condition was determined by FTIR. Lastly, laboratory's large-scale production was carried out in optimum conditions in a tray bioreactor designed by us and 8.9 ± 0.5 g/l biosurfactant was produced with a significant surface activity (37.74 ± 0.3 mN/m). With its economical suggestions and applicability of laboratory's large-scale production, this work indicates the possibility of using low cost agro-industrial wastes as renewable substrates for biosurfactant production. Therefore, using economically produced biosurfactant will reduce cost in several applications such as bioremediation, oil recovery and biodegradation of toxic chemicals. PMID:25865657

  14. BIODEGRADATION OF PETROLEUM-WASTE BY BIOSURFACTANT-PRODUCING BACTERIA

    SciTech Connect

    Brigmon, R; Grazyna A. Plaza, G; Kamlesh Jangid, K; Krystyna Lukasik, K; Grzegorz Nalecz-Jawecki, G; Topher Berry, T

    2007-05-16

    The degradation of petroleum waste by mixed bacterial cultures which produce biosurfactants: Ralstonia pickettii SRS (BP-20), Alcaligenes piechaudii SRS (CZOR L-1B), Bacillus subtilis (1'- 1a), Bacillus sp. (T-1) and Bacillus sp. (T'-1) was investigated. The total petroleum hydrocarbons were degraded substantially (91 %) by the mixed bacterial culture in 30 days (reaching up to 29 % in the first 72 h). Similarly, the toxicity of the biodegraded petroleum waste decreased 3 times after 30 days as compared to raw petroleum waste. Thus, the mixed bacterial strains effectively clean-up the petroleum waste and they can be used in other bioremediation processes.

  15. Evaluation of biosurfactants grown in corn oil by Rhodococcus rhodochrous on removing of heavy metal ion from aqueous solution

    NASA Astrophysics Data System (ADS)

    Suryanti, Venty; Hastuti, Sri; Pujiastuti, Dwi

    2016-02-01

    The potential application of biosurfactants to remove heavy metal ion from aqueous solution by batch technique was examined. The glycolipids type biosurfactants were grown in a media containing of 20% v/v corn oil with 7 days of fermentation by Rhodococcus rhodochrous. The biosurfactants reduced the surface tension of water of about 51% from 62 mN/m to 30 mN/m. The biosurfactant increased the E24 of water-palm oil emulsion of about 55% from 43% to 97% and could maintain this E24 value of above 50% for up to 9 days. Heavy metal ion removal, in this case cadmium ion, by crude and patially purified biosurfactants has been investigated from aqueous solution at pH 6. Adsorption capacity of Cd(II) ion by crude biosurfactant with 5 and 10 minutes of contact times were 1.74 and 1.82 mg/g, respectively. Additionally, the adsorption capacity of Cd(II) ion by partially purified biosurfactant with 5 and 10 minutes of contact times were 0.79 and 1.34 mg/g, respectively. The results demonstrated that the adsorption capacity of Cd(II) ion by crude biosurfactant was higher than that of by partially purified biosurfactant. The results suggested that the biosurfactant could be used in the removal of heavy metal ions from aqueous solution.

  16. Dissolution Coupled Biodegradation of Pce by Inducing In-Situ Biosurfactant Production Under Anaerobic Conditions

    NASA Astrophysics Data System (ADS)

    Dominic, J.; Nambi, I. M.

    2013-12-01

    Biosurfactants have proven to enhance the bioavailability and thereby elevate the rate of degradation of Light Non Aqueous Phase Liquids (LNAPLs) such as crude oil and petroleum derivatives. In spite of their superior characteristics, use of these biomolecules for remediation of Dense Non Aqueous Phase Liquids (DNAPLs) such as chlorinated solvents is still not clearly understood. In this present study, we have investigated the fate of tetrachloroethylene (PCE) by inducing in-situ biosurfactants production, a sustainable option which hypothesizes increase in bioavailability of LNAPLs. In order to understand the effect of biosurfactants on dissolution and biodegradation under the inducement of in-situ biosurfactant production, batch experiments were conducted in pure liquid media. The individual influence of each process such as biosurfactant production, dissolution of PCE and biodegradation of PCE were studied separately for getting insights on the synergistic effect of each process on the fate of PCE. Finally the dissolution coupled biodegradation of non aqueous phase PCE was studied in conditions where biosurfactant production was induced by nitrate limitation. The effect of biosurfactants was differentiated by repeating the same experiments were the biosurfactant production was retarded. The overall effect of in-situ biosurfactant production process was evaluated by use of a mathematical model. The process of microbial growth, biosurfactant production, dissolution and biodegradation of PCE were translated as ordinary differential equations. The modelling exercise was mainly performed to get insight on the combined effects of various processes that determine the concentration of PCE in its aqueous and non-aqueous phases. Model simulated profiles of PCE with the kinetic coefficients evaluated earlier from individual experiments were compared with parameters fitted for observations in experiments with dissolution coupled biodegradation process using optimization

  17. In-Situ Anaerobic Biosurfactant Production Process For Remediation Of DNAPL Contamination In Subsurface Aquifers

    NASA Astrophysics Data System (ADS)

    Albino, J. D.; Nambi, I. M.

    2009-12-01

    Microbial Enhanced Oil Recovery (MEOR) and remediation of aquifers contaminated with hydrophobic contaminants require insitu production of biosurfactants for mobilization of entrapped hydrophobic liquids. Most of the biosurfactant producing microorganisms produce them under aerobic condition and hence surfactant production is limited in subsurface condition due to lack of oxygen. Currently bioremediation involves expensive air sparging or excavation followed by exsitu biodegradation. Use of microorganisms which can produce biosurfactants under anaerobic conditions can cost effectively expedite the process of insitu bioremediation or mobilization. In this work, the feasibility of anaerobic biosurfactant production in three mixed anaerobic cultures prepared from groundwater and soil contaminated with chlorinated compounds and municipal sewage sludge was investigated. The cultures were previously enriched under complete anaerobic conditions in the presence of Tetrachloroethylene (PCE) for more than a year before they were studied for biosurfactant production. Biosurfactant production under anaerobic conditions was simulated using two methods: i) induction of starvation in the microbial cultures and ii) addition of complex fermentable substrates. Positive result for biosurfactant production was not observed when the cultures were induced with starvation by adding PCE as blobs which served as the only terminal electron acceptor. However, slight reduction in interfacial tension was noticed which was caused by the adherence of microbes to water-PCE interface. Biosurfactant production was observed in all the three cultures when they were fed with complex fermentable substrates and surface tension of the liquid medium was lowered below 35 mN/m. Among the fermentable substrates tested, vegetable oil yielded highest amount of biosurfactant in all the cultures. Complete biodegradation of PCE to ethylene at a faster rate was also observed when vegetable oil was amended to the

  18. Development of Microorganisms with Improved Transport and Biosurfactant Activity for Enhanced Oil Recovery

    SciTech Connect

    M.J. McInerney; K.E. Duncan; N. Youssef; T. Fincher; S.K. Maudgalya; M.J. Folmsbee; R. Knapp; Randy R. Simpson; N.Ravi; D. Nagle

    2005-08-15

    The project had three objectives: (1) to develop microbial strains with improved biosurfactant properties that use cost-effective nutrients, (2) to obtain biosurfactant strains with improved transport properties through sandstones, and (3) to determine the empirical relationship between surfactant concentration and interfacial tension and whether in situ reactions kinetics and biosurfactant concentration meets appropriate engineering design criteria. Here, we show that a lipopeptide biosurfactant produced by Bacillus mojavensis strain JF-2 mobilized substantial amounts of residual hydrocarbon from sand-packed columns and Berea sandstone cores when a viscosifying agent and a low molecular weight alcohol were present. The amount of residual hydrocarbon mobilized depended on the biosurfactant concentration. Tertiary oil recovery experiments showed that 10 to 40 mg/l of JF-2 biosurfactant in the presence of 0.1 mM 2,3-butanediol and 1 g/l of partially hydrolyzed polyacrylamide (PHPA) recovered 10-40% of residual oil from Berea sandstone cores. Even low biosurfactant concentrations (16 mg/l) mobilized substantial amounts of residual hydrocarbon (29%). The bio-surfactant lowered IFT by nearly 2 orders of magnitude compared to typical IFT values of 28-29 mN/m. Increasing the salinity increased the IFT with or without 2,3-butanediol present. The lowest interfacial tension observed was 0.1 mN/m. A mathematical model that relates oil recovery to biosurfactant concentration was modified to include the stepwise changes in IFT as biosurfactant concentrations changes. This model adequately predicted the experimentally observed changes in IFT as a function of biosurfactant concentration. Theses data show that lipopeptide biosurfactant systems may be effective in removing hydrocarbon contamination sources in soils and aquifers and for the recovery of entrapped oil from low production oil reservoirs. Diverse microorganisms were screened for biosurfactant production and anaerobic

  19. Development of More Effective Biosurfactants for Enhanced Oil Recovery/Advanced Recovery Concepts Awards

    SciTech Connect

    McInerney, M.J.; Marsh, T.L.; Zhang, X.; Knapp, R.M.; Nagle, Jr., D.P.; Sharma, P.K.; Jackson, B.E.

    2002-05-28

    The objectives of this were two fold. First, core displacement studies were done to determine whether microbial processes could recover residual oil at elevated pressures. Second, the importance of biosurfactant production for the recovery of residual oil was studies. In these studies, a biosurfactant-producing, microorganisms called Bacillus licheniformis strain JF-2 was used. This bacterium produces a cyclic peptide biosurfactant that significantly reduces the interfacial tension between oil and brine (7). The use of a mutant deficient in surfactant production and a mathematical MEOR simulator were used to determine the major mechanisms of oil recovery by these two strains.

  20. Rhamnolipid biosurfactants: production and their potential in environmental biotechnology.

    PubMed

    Pornsunthorntawee, Orathai; Wongpanit, Panya; Rujiravanit, Ratana

    2010-01-01

    Certain species of Pseudomonas are able to produce and excrete a heterogeneous mixture of biosurfactants with a glycolipid structure. These are known as rhamnolipids. In the biosynthetic process, rhamnolipid production is governed by both the genetic regulatory system and central metabolic pathways involving fatty acid synthesis, activated sugars and enzymes. These surface-active compounds can be produced from various types of low-cost substrates, such as carbohydrates, vegetable oils and even industrial wastes, leading to a good potential for commercial exploitation. By controlling environmental factors and growth conditions, high rhamnolipid production yields can be achieved. Rhamnolipids provide good physicochemical properties in terms of surface activities, stabilities and emulsification activities. Moreover, these surface-active compounds exhibit antimicrobial activities against both phytopathogenic fungi and bacteria. Due to an increase in concerns about environmental protection and the distinguishing properties of the rhamnolipids, it seems that rhamnolipids meet the criteria for several industrial and environmental applications, such as environmental remediation and biological control. Rhamnolipids have already been commercially produced, making them more economically competitive with synthetic surfactants. In the near future, rhamnolipids may be commercially successful biosurfactants.

  1. Factorial Design to Optimize Biosurfactant Production by Yarrowia lipolytica

    PubMed Central

    Fontes, Gizele Cardoso; Fonseca Amaral, Priscilla Filomena; Nele, Marcio; Zarur Coelho, Maria Alice

    2010-01-01

    In order to improve biosurfactant production by Yarrowia lipolytica IMUFRJ 50682, a factorial design was carried out. A 24 full factorial design was used to investigate the effects of nitrogen sources (urea, ammonium sulfate, yeast extract, and peptone) on maximum variation of surface tension (ΔST) and emulsification index (EI). The best results (67.7% of EI and 20.9 mN m−1 of ΔST) were obtained in a medium composed of 10 g 1−1 of ammonium sulfate and 0.5 g 1−1 of yeast extract. Then, the effects of carbon sources (glycerol, hexadecane, olive oil, and glucose) were evaluated. The most favorable medium for biosurfactant production was composed of both glucose (4% w/v) and glycerol (2% w/v), which provided an EI of 81.3% and a ΔST of 19.5 mN m−1. The experimental design optimization enhanced ΔEI by 110.7% and ΔST by 108.1% in relation to the standard process. PMID:20368788

  2. Lactic Acid and Biosurfactants Production from Residual Cellulose Films.

    PubMed

    Portilla Rivera, Oscar Manuel; Arzate Martínez, Guillermo; Jarquín Enríquez, Lorenzo; Vázquez Landaverde, Pedro Alberto; Domínguez González, José Manuel

    2015-11-01

    The increasing amounts of residual cellulose films generated as wastes all over the world represent a big scale problem for the meat industry regarding to environmental and economic issues. The use of residual cellulose films as a feedstock of glucose-containing solutions by acid hydrolysis and further fermentation into lactic acid and biosurfactants was evaluated as a method to diminish and revalorize these wastes. Under a treatment consisting in sulfuric acid 6% (v/v); reaction time 2 h; solid liquid ratio 9 g of film/100 mL of acid solution, and temperature 130 °C, 35 g/L of glucose and 49% of solubilized film was obtained. From five lactic acid strains, Lactobacillus plantarum was the most suitable for metabolizing the glucose generated. The process was scaled up under optimized conditions in a 2-L bioreactor, producing 3.4 g/L of biomass, 18 g/L of lactic acid, and 15 units of surface tension reduction of a buffer phosphate solution. Around 50% of the cellulose was degraded by the treatment applied, and the liqueurs generated were useful for an efficient production of lactic acid and biosurfactants using L. plantarum. Lactobacillus bacteria can efficiently utilize glucose from cellulose films hydrolysis without the need of clarification of the liqueurs.

  3. Biodegradation of diesel oil by a novel microbial consortium: comparison between co-inoculation with biosurfactant-producing strain and exogenously added biosurfactants.

    PubMed

    Mnif, Inès; Mnif, Sami; Sahnoun, Rihab; Maktouf, Sameh; Ayedi, Younes; Ellouze-Chaabouni, Semia; Ghribi, Dhouha

    2015-10-01

    Bioremediation, involving the use of microorganisms to detoxify or remove pollutants, is the most interesting strategy for hydrocarbon remediation. In this aim, four hydrocarbon-degrading bacteria were isolated from oil-contaminated soil in Tunisia. They were identified by the 16S rDNA sequence analysis, as Lysinibacillus bronitolerans RI18 (KF964487), Bacillus thuringiensis RI16 (KM111604), Bacillus weihenstephanensis RI12 (KM094930), and Acinetobacter radioresistens RI7 (KJ829530). Moreover, a lipopeptide biosurfactant produced by Bacillus subtilis SPB1, confirmed to increase diesel solubility, was tested to increase diesel biodegradation along with co-inoculation with two biosurfactant-producing strains. Culture studies revealed the enhancement of diesel biodegradation by the selected consortium with the addition of SPB1 lipopeptide and in the cases of co-inoculation by biosurfactant-producing strain. In fact, an improvement of about 38.42 and 49.65 % of diesel degradation was registered in the presence of 0.1 % lipopeptide biosurfactant and when culturing B. subtilis SPB1 strain with the isolated consortium, respectively. Furthermore, the best improvement, evaluated to about 55.4 %, was recorded when using the consortium cultured with B. subtilis SPB1 and A. radioresistens RI7 strains. Gas chromatography analyses were correlated with the gravimetric evaluation of the residual hydrocarbons. Results suggested the potential applicability of the selected consortium along with the ex situ- and in situ-added biosurfactant for the effective bioremediation of diesel-contaminated water and soil.

  4. Application of lipopeptide biosurfactant isolated from a halophile: Bacillus tequilensis CH for inhibition of biofilm.

    PubMed

    Pradhan, Arun Kumar; Pradhan, Nilotpala; Mall, Gangotri; Panda, Himadri Tanaya; Sukla, Lala Behari; Panda, Prasanna Kumar; Mishra, Barada Kanta

    2013-11-01

    Biosurfactants are amphiphilic molecules having hydrophobic and hydrophilic moieties produced by various microorganisms. These molecules trigger the reduction of surface tension or interfacial tension in liquids. A biosurfactant-producing halophile was isolated from Lake Chilika, a brackish water lake of Odisha, India (19°41'39″N, 85°18'24″E). The halophile was identified as Bacillus tequilensis CH by biochemical tests and 16S rRNA gene sequencing and assigned accession no. KC851857 by GenBank. The biosurfactant produced by B. tequilensis CH was partially characterized as a lipopeptide using thin-layer chromatography, Fourier transform infrared spectroscopy, and nuclear magnetic resonance techniques. The minimum effective concentration of a biosurfactant for inhibition of pathogenic biofilm (Escherichia coli and Streptococcus mutans) on hydrophilic and hydrophobic surfaces was found to be 50 μg ml(-1). This finding has potential for a variety of applications.

  5. DEVELOPMENT OF MICROORGANISMS WITH IMPROVED TRANSPORT AND BIOSURFACTANT ACTIVITY FOR ENHANCED OIL RECOVERY

    SciTech Connect

    M.J. McInerney; R.M. Knapp; D.P. Nagle, Jr.; Kathleen Duncan; N. Youssef; M.J. Folmsbee; S. Maudgakya

    2003-06-26

    Biosurfactants enhance hydrocarbon biodegradation by increasing apparent aqueous solubility or affecting the association of the cell with poorly soluble hydrocarbon. Here, we show that a lipopeptide biosurfactant produced by Bacillus mojavensis strain JF-2 mobilized substantial amounts of residual hydrocarbon from sand-packed columns when a viscosifying agent and a low molecular weight alcohol were present. The amount of residual hydrocarbon mobilized depended on the biosurfactant concentration. One pore volume of cell-free culture fluid with 900 mg/l of the biosurfactant, 10 mM 2,3-butanediol and 1000 mg/l of partially hydrolyzed polyacrylamide polymer mobilized 82% of the residual hydrocarbon. Consistent with the high residual oil recoveries, we found that the bio-surfactant lowered the interfacial tension (IFT) between oil and water by nearly 2 orders of magnitude compared to typical IFT values of 28-29 mN/m. Increasing the salinity increased the IFT with or without 2,3-butanediol present. The lowest interfacial tension observed was 0.1 mN/m. The lipopeptide biosurfactant system may be effective in removing hydrocarbon contamination sources in soils and aquifers and for the recovery of entrapped oil from low production oil reservoirs. Previously, we reported that Proteose peptone was necessary for anaerobic growth and biosurfactant production by B. mojavensis JF-2. The data gathered from crude purification of the growth-enhancing factor in Proteose peptone suggested that it consisted of nucleic acids; however, nucleic acid bases, nucleotides or nucleosides did not replace the requirement for Proteose Peptone. Further studies revealed that salmon sperm DNA, herring sperm DNA, Echerichia coli DNA and synthetic DNA replaced the requirement for Proteose peptone. In addition to DNA, amino acids and nitrate were required for anaerobic growth and vitamins further improved growth. We now have a defined medium that can be used to manipulate growth and biosurfactant

  6. Isolation and selection of new biosurfactant producing bacteria from degraded palm kernel cake under liquid state fermentation.

    PubMed

    Jamal, Parveen; Mir, Shajrat; Alam, Md Zahangir; Wan Nawawi, Wan M Fazli

    2014-01-01

    Biosurfactants are surface-active compounds produced by different microorganisms. The aim of this study was to introduce palm kernel cake (PKC) as a novel substrate for biosurfactant production using a potent bacterial strain under liquid state fermentation. This study was primarily based on the isolation and identification of biosurfactant-producing bacteria that could utilize palm kernel cake as a new major substrate. Potential bacterial strains were isolated from degraded PKC and screened for biosurfactant production with the help of the drop collapse assay and by analyzing the surface tension activity. From the screened isolates, a new strain, SM03, showed the best and most consistent results, and was therefore selected as the most potent biosurfactant-producing bacterial strain. The new strain was identified as Providencia alcalifaciens SM03 using the Gen III MicroPlate Biolog Microbial Identification System. The yield of the produced biosurfactant was 8.3 g/L.

  7. Biodegradation and toxicity of a crude oil/aqueous system in the presence of a biosurfactant

    SciTech Connect

    Page, C.A.; Bonner, J.S.; Kanga, S.A.

    1995-12-31

    Biodegradation studies were performed on aqueous solutions containing surfactants. The solutions were analyzed for microbial growth and depletion of polycyclic aromatic hydrocarbons (PAHs). The toxicity of the mixture was calculated using linear regression methods. Detailed results are presented, which indicate that the biosurfactants increased the aqueous solubilities for petroluem PAHs. The increased toxicities of these solutions support this conclusion. Preliminary results indicate that degradation rates are also increased by the presence of biosurfactants.

  8. Evaluation of different carbon sources for growth and biosurfactant production by Pseudomonas fluorescens isolated from wastewaters.

    PubMed

    Stoimenova, Emilia; Vasileva-Tonkova, Evgenia; Sotirova, Anna; Galabova, Danka; Lalchev, Zdravko

    2009-01-01

    The indigenous strain Pseudomonas fluorescens, isolated from industrial wastewater, was able to produce glycolipid biosurfactants from a variety of carbon sources, including hydrophilic compounds, hydrocarbons, mineral oils, and vegetable oils. Hexadecane, mineral oils, vegetable oils, and glycerol were preferred carbon sources for growth and biosurfactant production by the strain. Biosurfactant production was detected by measuring the surface and interfacial tension, rhamnose concentration and emulsifying activity. The surface tension of supernatants varied from 28.4 mN m(-1) with phenanthrene to 49.6 mN m(-1) with naphthalene and heptane as carbon sources. The interfacial tension has changed in a narrow interval between 6.4 and 7.6 mN m(-1). The emulsifying activity was determined to be highest in media with vegetable oils as substrates. The biosurfactant production on insoluble carbon sources contributed to a significant increase of cell hydrophobicity and correlated with an increased growth of the strain on these substrates. Based on these results, a mechanism of biosurfactant-enhanced interfacial uptake of hydrophobic substrates could be proposed as predominant for the strain. With hexadecane as a carbon source, the pH value of 7.0-7.2 and temperature of (28 +/- 2) degrees C were optimum for growth and biosurfactant production by P. fluorescens cells. The increased specific protein and biosurfactant release during growth of the strain on hexadecane in the presence of NaCl at contents up to 2% could be due to increased cell permeability. The capability of P. fluorescens strain HW-6 to adapt its own metabolism to use different nutrients as energy sources and to keep up relatively high biosurfactant levels in the medium during the stationary phase is a promising feature for its possible application in biological treatments.

  9. Biosurfactant-producing strains in enhancing solubilization and biodegradation of petroleum hydrocarbons in groundwater.

    PubMed

    Liu, Hong; Wang, Hang; Chen, Xuehua; Liu, Na; Bao, Suriguge

    2014-07-01

    Three biosurfactant-producing strains designated as BS-1, BS-3, and BS-4 were screened out from crude oil-contaminated soil using a combination of surface tension measurement and oil spreading method. Thin layer chromatography and infrared analysis indicated that the biosurfactants produced by the three strains were lipopeptide, glycolipid, and phospholipid. The enhancement of solubilization and biodegradation of petroleum hydrocarbons in groundwater employing biosurfactant-producing strains was investigated. The three strain mixtures led to more solubilization of petroleum hydrocarbons in groundwater, and the solubilization rate was 10.5 mg l−1. The combination of biosurfactant-producing strains and petroleum-degrading strains exhibited a higher biodegradation efficiency of 85.4 % than the petroleum-degrading strains (71.2 %). Biodegradation was enhanced the greatest with biosurfactant-producing strains and petroleum-degrading strains in a ratio of 1:1. Fluorescence microscopy images illustrate that the oil dispersed into smaller droplets and emulsified in the presence of biosurfactant-producing strains, which attached to the oil. Thus, the biodegradation of petroleum hydrocarbons in groundwater was enhanced.

  10. Optimization and characterization of biosurfactant production from marine Vibrio sp. strain 3B-2

    PubMed Central

    Hu, Xiaoke; Wang, Caixia; Wang, Peng

    2015-01-01

    A biosurfactant-producing bacterium, designated 3B-2, was isolated from marine sediment and identified as Vibrio sp. by 16S rRNA gene sequencing. The culture medium composition was optimized to increase the capability of 3B-2 for producing biosurfactant. The produced biosurfactant was characterized in terms of protein concentration, surface tension, and oil-displacement efficiency. The optimal medium for biosurfactant production contained: 0.5% lactose, 1.1% yeast extract, 2% sodium chloride, and 0.1% disodium hydrogen phosphate. Under optimal conditions (28°C), the surface tension of crude biosurfactant could be reduced to 41 from 71.5 mN/m (water), while its protein concentration was increased to up to 6.5 g/L and the oil displacement efficiency was improved dramatically at 6.5 cm. Two glycoprotein fractions with the molecular masses of 22 and 40 kDa were purified from the biosurfactant, which held great potential for applications in microbial enhanced oil recovery and bioremediation. PMID:26441908

  11. The inhibitory effect of a Lactobacillus acidophilus derived biosurfactant on biofilm producer Serratia marcescens

    PubMed Central

    Shokouhfard, Maliheh; Kermanshahi, Rouha Kasra; Shahandashti, Roya Vahedi; Feizabadi, Mohammad Mehdi; Teimourian, Shahram

    2015-01-01

    Objective(s): Serratia marcescens is one of the nosocomial pathogen with the ability to form biofilm which is an important feature in the pathogenesis of S. marcescens. The aim of this study was to determine the anti-adhesive properties of a biosurfactant isolated from Lactobacillus acidophilus ATCC 4356, on S. marcescens strains. Materials and Methods: Lactobacillus acidophilus ATCC 4356 was selected as a probiotic strain for biosurfactant production. Anti-adhesive activities was determined by pre-coating and co- incubating methods in 96-well culture plates. Results: The FTIR analysis of derived biosurfactant revealed the composition as protein component. Due to the release of such biosurfactants, L. acidophilus was able to interfere with the adhesion and biofilm formation of the S. marcescens strains. In co-incubation method, this biosurfactant in 2.5 mg/ml concentration showed anti-adhesive activity against all tested strains of S. marcescens (P<0.05). Conclusion: Our results show that the anti-adhesive properties of L. acidophilus biosurfactant has the potential to be used against microorganisms responsible for infections in the urinary, vaginal and gastrointestinal tracts, as well as skin, making it a suitable alternative to conventional antibiotics. PMID:26730335

  12. Biosurfactant Production by Cultivation of Bacillus atrophaeus ATCC 9372 in Semidefined Glucose/Casein-Based Media

    NASA Astrophysics Data System (ADS)

    Das Neves, Luiz Carlos Martins; de Oliveira, Kátia Silva; Kobayashi, Márcio Junji; Vessoni Penna, Thereza Christina; Converti, Attilio

    Biosurfactants are proteins with detergent, emulsifier, and antimicrobial actions that have potential application in environmental applications such as the treatment of organic pollutants and oil recovery. Bacillus atrophaeus strains are nonpathogenic and are suitable source of biosurfactants, among which is surfactin. The aim of this work is to establish a culture medium composition able to stimulate biosurfactants production by B. atrophaeus ATCC 9372. Batch cultivations were carried out in a rotary shaker at 150 rpm and 35°C for 24 h on glucose- and/or casein-based semidefined culture media also containing sodium chloride, dibasic sodium phosphate, and soy flour. The addition of 14.0 g/L glucose in a culture medium containing 10.0 g/L of casein resulted in 17 times higher biosurfactant production (B max=635.0 mg/L). Besides, the simultaneous presence of digested casein (10.0 g/L), digested soy flour (3.0 g/L), and glucose (18.0 g/L) in the medium was responsible for a diauxic effect during cell growth. Once the diauxie started, the average biosurfactants concentration was 16.8% less than that observed before this phenomenon. The capability of B. atrophaeus strain to adapt its own metabolism to use several nutrients as energy sources and to preserve high levels of biosurfactants in the medium during the stationary phase is a promising feature for its possible application in biological treatments.

  13. Characterization of biosurfactants from indigenous soil bacteria recovered from oil contaminated sites.

    PubMed

    Kumar, Govind; Kumar, Rajesh; Sharma, Anita

    2015-09-01

    Three bacterial isolates (G1, G2 and G3) characterized as Pseudomonas plecoglossicida, Lysinibacillus fusiformis and Bacillus safensis were recovered from contaminated soil of oil refinery. These bacterial isolates produced biosurfactants in MSM medium in stationary phase. Biosurfactants were characterized on the basis of their emulsifying properties with petrol, diesel, mobil oil and petrol engine oil. Reduction in surface tension (below 40 mN m(-1)) and blood hemolysis were also included in biosurfactants characterization. Emulsification indices of G1, G2 and G3 were in the range of 98.82, 23.53 and 58.82 for petrol; 29.411,1.05 and 70.588 for diesel; 35.31, 2.93 and 17.60 for mobil oil and 35.284, 58.82 and 17.647 for petrol engine oil respectively. Dry weight of the extracted biosurfactant was 4.6, 1.4 and 2.4 g I(-1) for G1, G2 and G3 respectively. Structural analysis of the biosurfactants by Fourier Transform Infrared Spectroscopy (FTIR) revealed significant differences in the bonding pattern of individual biosurfactant. PMID:26521551

  14. Screening of biosurfactant-producing bacteria from offshore oil and gas platforms in North Atlantic Canada.

    PubMed

    Cai, Qinhong; Zhang, Baiyu; Chen, Bing; Song, Xing; Zhu, Zhiwen; Cao, Tong

    2015-05-01

    From offshore oil and gas platforms in North Atlantic Canada, crude oil, formation water, drilling mud, treated produced water and seawater samples were collected for screening potential biosurfactant producers. In total, 59 biosurfactant producers belong to 4 genera, namely, Bacillus, Rhodococcus, Halomonas, and Pseudomonas were identified and characterized. Phytogenetic trees based on 16S ribosomal deoxyribonucleic acid (16S rDNA) were constructed with isolated strains plus their closely related strains and isolated strains with biosurfactant producers in the literature, respectively. The distributions of the isolates were site and medium specific. The richness, diversity, and evenness of biosurfactant producer communities in oil and gas platform samples have been analyzed. Diverse isolates were found with featured properties such as effective reduction of surface tension, producing biosurfactants at high rate and stabilization of water-in-oil or oil-in-water emulsion. The producers and their corresponding biosurfactants had promising potential in applications such as offshore oil spill control, enhancing oil recovery and soil washing treatment of petroleum hydrocarbon-contaminated sites.

  15. Screening of biosurfactant-producing bacteria from offshore oil and gas platforms in North Atlantic Canada.

    PubMed

    Cai, Qinhong; Zhang, Baiyu; Chen, Bing; Song, Xing; Zhu, Zhiwen; Cao, Tong

    2015-05-01

    From offshore oil and gas platforms in North Atlantic Canada, crude oil, formation water, drilling mud, treated produced water and seawater samples were collected for screening potential biosurfactant producers. In total, 59 biosurfactant producers belong to 4 genera, namely, Bacillus, Rhodococcus, Halomonas, and Pseudomonas were identified and characterized. Phytogenetic trees based on 16S ribosomal deoxyribonucleic acid (16S rDNA) were constructed with isolated strains plus their closely related strains and isolated strains with biosurfactant producers in the literature, respectively. The distributions of the isolates were site and medium specific. The richness, diversity, and evenness of biosurfactant producer communities in oil and gas platform samples have been analyzed. Diverse isolates were found with featured properties such as effective reduction of surface tension, producing biosurfactants at high rate and stabilization of water-in-oil or oil-in-water emulsion. The producers and their corresponding biosurfactants had promising potential in applications such as offshore oil spill control, enhancing oil recovery and soil washing treatment of petroleum hydrocarbon-contaminated sites. PMID:25903403

  16. Production and characterisation of glycolipid biosurfactant by Halomonas sp. MB-30 for potential application in enhanced oil recovery.

    PubMed

    Dhasayan, Asha; Kiran, G Seghal; Selvin, Joseph

    2014-12-01

    Biosurfactant-producing Halomonas sp. MB-30 was isolated from a marine sponge Callyspongia diffusa, and its potency in crude oil recovery from sand pack column was investigated. The biosurfactant produced by the strain MB-30 reduced the surface tension to 30 mN m(-1) in both glucose and hydrocarbon-supplemented minimal media. The critical micelle concentration of biosurfactant obtained from glucose-based medium was at 0.25 mg ml(-1) at critical micelle dilution 1:10. The chemical structure of glycolipid biosurfactant was characterised by infrared spectroscopy and proton magnetic resonance spectroscopy. The emulsification activity of MB-30 biosurfactant was tested with different hydrocarbons, and 93.1 % emulsification activity was exhibited with crude oil followed by kerosene (86.6 %). The formed emulsion was stable for up to 1 month. To identify the effectiveness of biosurfactant for enhanced oil recovery in extreme environments, the interactive effect of pH, temperature and salinity on emulsion stability with crude oil and kerosene was evaluated. The stable emulsion was formed at and above pH 7, temperature >80 °C and NaCl concentration up to 10 % in response surface central composite orthogonal design model. The partially purified biosurfactant recovered 62 % of residual crude oil from sand pack column. Thus, the stable emulsifying biosurfactant produced by Halomonas sp. MB-30 could be used for in situ biosurfactant-mediated enhanced oil recovery process and hydrocarbon bioremediation in extreme environments.

  17. Production and characterisation of glycolipid biosurfactant by Halomonas sp. MB-30 for potential application in enhanced oil recovery.

    PubMed

    Dhasayan, Asha; Kiran, G Seghal; Selvin, Joseph

    2014-12-01

    Biosurfactant-producing Halomonas sp. MB-30 was isolated from a marine sponge Callyspongia diffusa, and its potency in crude oil recovery from sand pack column was investigated. The biosurfactant produced by the strain MB-30 reduced the surface tension to 30 mN m(-1) in both glucose and hydrocarbon-supplemented minimal media. The critical micelle concentration of biosurfactant obtained from glucose-based medium was at 0.25 mg ml(-1) at critical micelle dilution 1:10. The chemical structure of glycolipid biosurfactant was characterised by infrared spectroscopy and proton magnetic resonance spectroscopy. The emulsification activity of MB-30 biosurfactant was tested with different hydrocarbons, and 93.1 % emulsification activity was exhibited with crude oil followed by kerosene (86.6 %). The formed emulsion was stable for up to 1 month. To identify the effectiveness of biosurfactant for enhanced oil recovery in extreme environments, the interactive effect of pH, temperature and salinity on emulsion stability with crude oil and kerosene was evaluated. The stable emulsion was formed at and above pH 7, temperature >80 °C and NaCl concentration up to 10 % in response surface central composite orthogonal design model. The partially purified biosurfactant recovered 62 % of residual crude oil from sand pack column. Thus, the stable emulsifying biosurfactant produced by Halomonas sp. MB-30 could be used for in situ biosurfactant-mediated enhanced oil recovery process and hydrocarbon bioremediation in extreme environments. PMID:25326183

  18. Optimization of biosurfactant production in soybean oil by rhodococcus rhodochrous and its utilization in remediation of cadmium-contaminated solution

    NASA Astrophysics Data System (ADS)

    Suryanti, Venty; Hastuti, Sri; Andriani, Dewi

    2016-02-01

    Biosurfactant production by Rhodococcus rhodochrous in soybean oil was developed, where the effect of medium composition and fermentation time were evaluated. The optimum condition for biosurfactant production was achieved when a medium containing 30 g/L TSB (tryptic soy broth) and 20% v/v soybean oil was used as media with 7 days of fermentation. Biosurfactant was identified as glycolipids type biosurfactant which had critical micelle concentration (CMC) value of 896 mg/L. The biosurfactant had oil in water emulsion type and was able to reduce the surface tension of palm oil about 52% which could stabilize the emulsion up to 12 days. The batch removal of cadmium metal ion by crude and partially purified biosurfactants have been examined from synthetic aqueous solution at pH 6. The results exhibited that the crude biosurfactant had a much better adsorption ability of Cd(II) than that of partially purified biosurfactant. However, it was found that there was no significant difference in the adsorption of Cd(II) with 5 and 10 minutes of contact time. The results indicated that the biosurfactant could be used in remediation of heavy metals from contaminated aqueous solution.

  19. Advances in utilization of renewable substrates for biosurfactant production

    PubMed Central

    2011-01-01

    Biosurfactants are amphiphilic molecules that have both hydrophilic and hydrophobic moieties which partition preferentially at the interfaces such as liquid/liquid, gas/liquid or solid/liquid interfaces. Such characteristics enable emulsifying, foaming, detergency and dispersing properties. Their low toxicity and environmental friendly nature and the wide range of potential industrial applications in bioremediation, health care, oil and food processing industries makes them a highly sought after group of chemical compounds. Interest in them has also been encouraged because of the potential advantages they offer over their synthetic counterparts in many fields spanning environmental, food, biomedical, petrochemical and other industrial applications. Their large scale production and application however are currently restricted by the high cost of production and by the limited understanding of their interactions with cells and with the abiotic environment. In this paper, we review the current knowledge and latest advances in the search for cost effective renewable agro industrial alternative substrates for their production. PMID:21906330

  20. Vesicle formation in hydrocarbons assisted with microbial hydrolases and biosurfactants.

    PubMed

    Gnanamani, A; Kavitha, V; Sekaran, G; Rajakumar, G Suseela

    2008-12-01

    The present study demonstrates the role of microbial hydrolases in the transformation of hydrocarbons (soybean, sunflower, groundnut and gingelly oil, etc.) to vesicles. The combined effect of lipolytic enzyme generation and biosurfactants production during microbial growth at optimized media and environmental conditions mediates this transformation. Among the microbial species, Candida albicans exhibit complete transformation compared to Pseudomonads and Bacillus sps. Within hydrocarbons, only soybean and sunflower oils transformed to solid mass and no change with the remaining oils. Characterization of the vesicles revealed an increase in total weight by 160-180% compared to the original weight of hydrocarbon taken for the study and more than 73% increases in viscosity. Acid value and saponification value also showed an increase, respectively, by 78 and 84%. The bound water content estimated was 26%. Light microscopic analysis exhibit, presence of unilamellar and bi-lamellar structures. PMID:18829271

  1. Evaluation of a lipopeptide biosurfactant from Bacillus natto TK-1 as a potential source of anti-adhesive, antimicrobial and antitumor activities

    PubMed Central

    Cao, Xiao-Hong; Liao, Zhen-Yu; Wang, Chun-Ling; Yang, Wen-Yan; Lu, Mei-Fang

    2009-01-01

    A lipopeptide biosurfactant produced by Bacillus natto TK-1 has a strong surface activity. The biosurfactant was found to be an anti-adhesive agent against several bacterial strains, and also showed a broad spectrum of antimicrobial activity. The biosurfactant induced a significant reduction in tumor cells viability in a dose-dependent manner. PMID:24031375

  2. Characterization of Biosurfactant Produced by Bacillus licheniformis TT42 Having Potential for Enhanced Oil Recovery.

    PubMed

    Suthar, Harish; Nerurkar, Anuradha

    2016-09-01

    Bacillus licheniformis TT42 produced a low-molecular weight anionic biosurfactant that reduced the surface tension of water from 72 to 27 mN/m and the interfacial tension from 12 to 0.05 mN/m against crude oil. We have earlier reported significant enhancement in oil recovery in laboratory sand pack columns and core flood studies, by biosurfactant-TT42 compared to standard strain, Bacillus mojavensis JF2. In the context of this application of the biosurfactant-TT42, its characterization was deemed important. In the preliminary studies, the biosurfactant-TT42 was found to be functionally stable at under conditions of temperature, pH, and salinity generally prevalent in oil reservoirs. Furthermore, the purified biosurfactant-TT42 was found to have a CMC of 22 mg/l. A newly developed activity staining TLC method was used for the purification of biosurfactant-TT42. Structural characterization of biosurfactant-TT42 using TLC, Fourier transform infrared spectroscopy (FTIR), GC-MS, and matrix-assisted laser desorption ionization time of flight (MALDI-TOF)/TOF suggested that it was a mixture of lipopeptide species, all having a common hydrophilic cyclic heptapeptide head with the sequence, Gln-Leu/Ileu-Leu/Ileu-Val-Asp-Leu/Ileu-Leu/Ileu linked to hydrophobic tails of different lengths of 3β-OH-fatty acids bearing 1043, 1057 and 1071 Da molecular weight, where 3β-OH-C19 fatty acid was predominant. This is the longest chain length of fatty acids reported in a lipopeptide.

  3. Involvement of phenazines and biosurfactants in biocontrol of Pythium myriotylum root rot on cocoyam by Pseudomonas sp. CMR12A

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pseudomonas sp. CMR12a was isolated from the rhizosphere of the tropical tuber crop cocoyam and produces both phenazines and cyclic lipopeptide (CLP) biosurfactants. CMR12a was shown to be an efficient biocontrol agent of P. myriotylum on cocoyam. To assess the importance of phenazine and biosurfact...

  4. Kinetic study of biosurfactant production by Bacillus subtilis LAMI005 grown in clarified cashew apple juice.

    PubMed

    de Oliveira, Darlane Wellen Freitas; França, Italo Waldimiro Lima; Félix, Anne Kamilly Nogueira; Martins, João Jeferson Lima; Giro, Maria Estela Aparecida; Melo, Vânia Maria M; Gonçalves, Luciana Rocha Barros

    2013-01-01

    In this work a low cost medium for the production of a biosurfactant by Bacillus subtilis LAMI005 and the kinetics of surfactin production considering the effect of initial substrate concentration were investigated. First, cashew apple juice supplementation for optimal production of biosurfactant by B. subtilis LAMI005 was studied. The medium formulated with clarified cashew apple juice and distilled water, supplemented with 1.0 g/L of (NH(4))(2)SO(4), proved to be the best among the nutrients evaluated. The crude biosurfactant had the ability to decrease the surface tension of water to 30 dyne/cm, with a critical micelle concentration (CMC) of 63.0 mg/L. Emulsification experiments indicated that this biosurfactant effectively emulsified kerosene (IE(24)=67%) and soybean oil (IE(24)=64%). Furthermore, the emulsion stability was always very high. It was shown by biochemical analysis, IR spectra, that there is no qualitative differences in the composition of the crude biosurfactant from a standard sample of surfactin from B. subtilis.

  5. Characterization and Application of Biosurfactant Produced by Bacillus licheniformis R2.

    PubMed

    Joshi, Sanket J; Geetha, S J; Desai, Anjana J

    2015-09-01

    The biosurfactant produced by Bacillus licheniformis R2 was characterized and studied for enhancing the heavy crude oil recovery at 80 °C in coreflood experiments. The strain was found to be nonpathogenic and produced biosurfactant, reducing the surface tension of medium from 70 to 28 mN/m with 1.1 g/l yield. The biosurfactant was quite stable during exposure to elevated temperatures (85 °C for 90 days), high salinity (10 % NaCl), and a wide range of pH (5-12) for 10 days. It was characterized as lipopeptide similar to lichenysin-A, with a critical micelle concentration of about 19.4 mg/l. The efficiency of crude biosurfactant for enhanced oil recovery by core flood studies revealed it to recovering additional 37.1 % oil from Berea sandstone cores at 80 °C. The results are indicative of the potential for the development of lipopeptide biosurfactant-based ex situ microbial enhanced heavy oil recovery from depleting oil fields with extreme temperatures.

  6. A practical approach to biosurfactant production using nonaseptic fermentation of mixed cultures

    SciTech Connect

    Ghurye, G.L.; Vipulanandan, C.; Willson, R.C. )

    1994-08-20

    Non-aseptic production of biosurfactant from molasses by a mixed culture was investigated in stirred batch reactors. Biosurfactant production was quantified by surface tension reduction, critical micelle dilution (CMD), and emulsification capacity (EC). Biosurfactant production was directly correlated with biomass production, and was improved by pH control and addition of yeast extract. Centrifugation of the whole broth increased emulsifying capacity and reduced surface tension. Acidification of the whole broth increased the emulsification capacity but reduced the apparent biosurfactant concentration (CMD), without affecting the surface tension. The emulsification capacity of the cell-free broth was equivalent to that of a 100 mg/L solution of sodium dodecyl sulfate. The emulsification capacity of the whole broth and cell-free broth were reduced by about 50% at and above NaCl concentrations of 100 mM. Preliminary characterization suggests that the biosurfactant activity is primarily associated with one or more protease-sensitive species, released from cells in larger quantities after more vigorous centrifugation.

  7. Inhibition of initial adhesion of uropathogenic Enterococcus faecalis by biosurfactants from Lactobacillus isolates.

    PubMed Central

    Velraeds, M M; van der Mei, H C; Reid, G; Busscher, H J

    1996-01-01

    In this study, 15 Lactobacillus isolates were found to produce biosurfactants in the mid-exponential and stationary growth phases. The stationary-phase biosurfactants from lactobacillus casei subsp. rhamnosus 36 and ATCC 7469, Lactobacillus fermentum B54, and Lactobacillus acidophilus RC14 were investigated further to determine their capacity to inhibit the initial adhesion of uropathogenic Enterococcus faecalis 1131 to glass in a parallel-plate flow chamber. The initial deposition rate of E. faecalis to glass with an adsorbed biosurfactant layer from L. acidophilus RC14 or L. fermentum B54 was significantly decreased by approximately 70%, while the number of adhering enterococci after 4 h of adhesion was reduced by an average of 77%. The surface activity of the biosurfactants and their activity inhibiting the initial adhesion of E. faecalis 1131 were retained after dialysis (molecular weight cutoff, 6,000 to 8,000) and freeze-drying. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy revealed that the freeze-dried biosurfactants from L. acidophilus RC14 and L. fermentum B54 were richest in protein, while those from L. casei subsp. rhamnosus 36 and ATCC 7469 had relatively high polysaccharide and phosphate contents. PMID:8787394

  8. Biosurfactant produced from Actinomycetes nocardiopsis A17: Characterization and its biological evaluation.

    PubMed

    Chakraborty, Samrat; Ghosh, Mandakini; Chakraborti, Srijita; Jana, Sougata; Sen, Kalyan Kumar; Kokare, Chandrakant; Zhang, Lixin

    2015-08-01

    This investigation aims to isolate an Actinomycetes strain producing a biosurfactant from the unexplored region of industrial and coal mine areas. Actinomycetes are selected for this study as their novel chemistry was not exhausted and they have tremendous potential to produce bioactive secondary metabolites. The biosurfactant was characterized and further needed to be utilized for pharmaceutical dosage form. Isolation, purification, screening, and characterization of the Actinomycetes A17 were done followed by its fermentation in optimized conditions. The cell-free supernatant was used for the extraction of the biosurfactant and precipitated by cold acetone. The dried precipitate was purified by TLC and the emulsification index, surface tension and CMC were determined. The isolated strain with preferred results was identified as Actinomycetes nocardiopsis A17 with high foam-forming properties. It gives lipase, amylase, gelatinase, and protease activity. The emulsification index was found to be 93±0.8 with surface tension 66.67 dyne/cm at the lowest concentration and cmc 0.6 μg/ml. These biosurfactants were characterized by Fourier transform infra red (FT-IR) spectroscopy and liquid chromatography-mass spectrometry (LC-MS). Therefore, it can be concluded that the biosurfactant produced by Actinomycetes nocardiopsis sp. strain A17 was found to have satisfactory results with high surface activity and emulsion-forming ability.

  9. Biosurfactant produced from Actinomycetes nocardiopsis A17: Characterization and its biological evaluation.

    PubMed

    Chakraborty, Samrat; Ghosh, Mandakini; Chakraborti, Srijita; Jana, Sougata; Sen, Kalyan Kumar; Kokare, Chandrakant; Zhang, Lixin

    2015-08-01

    This investigation aims to isolate an Actinomycetes strain producing a biosurfactant from the unexplored region of industrial and coal mine areas. Actinomycetes are selected for this study as their novel chemistry was not exhausted and they have tremendous potential to produce bioactive secondary metabolites. The biosurfactant was characterized and further needed to be utilized for pharmaceutical dosage form. Isolation, purification, screening, and characterization of the Actinomycetes A17 were done followed by its fermentation in optimized conditions. The cell-free supernatant was used for the extraction of the biosurfactant and precipitated by cold acetone. The dried precipitate was purified by TLC and the emulsification index, surface tension and CMC were determined. The isolated strain with preferred results was identified as Actinomycetes nocardiopsis A17 with high foam-forming properties. It gives lipase, amylase, gelatinase, and protease activity. The emulsification index was found to be 93±0.8 with surface tension 66.67 dyne/cm at the lowest concentration and cmc 0.6 μg/ml. These biosurfactants were characterized by Fourier transform infra red (FT-IR) spectroscopy and liquid chromatography-mass spectrometry (LC-MS). Therefore, it can be concluded that the biosurfactant produced by Actinomycetes nocardiopsis sp. strain A17 was found to have satisfactory results with high surface activity and emulsion-forming ability. PMID:25989147

  10. Antibiofilm activity of biosurfactant producing coral associated bacteria isolated from gulf of mannar.

    PubMed

    Padmavathi, Alwar Ramanujam; Pandian, Shunmugiah Karutha

    2014-12-01

    Coral Associated Bacteria (CAB) (N = 22) isolated from the mucus of the coral Acropora digitifera were screened for biosurfactants using classical screening methods; hemolysis test, lipase production, oil displacement, drop collapse test and emulsifying activity. Six CAB (U7, U9, U10, U13, U14, and U16) were found to produce biosurfactants and were identified by 16S ribosomal RNA gene sequencing as Providencia rettgeri, Psychrobacter sp., Bacillus flexus, Bacillus anthracis, Psychrobacter sp., and Bacillus pumilus respectively. Their cell surface hydrophobicity was determined by Microbial adhesion to hydrocarbon assay and the biosurfactants produced were extracted and characterized by Fourier Transform Infrared spectroscopy. Since the biosurfactants are known for their surface modifying capabilities, antibiofilm activity of positive isolates was evaluated against biofilm forming Pseudomonas aeruginosa ATCC10145. Stability of the active principle exhibiting antibiofilm activity was tested through various temperature treatments ranging from 60 to 100 °C and Proteinase K treatment. CAB isolates U7 and U9 exhibited stable antibiofilm activity even after exposure to higher temperatures which is promising for the development of novel antifouling agents for diverse industrial applications. Further, this is the first report on biosurfactant production by a coral symbiont. PMID:25320434

  11. Distribution and diversity of biosurfactant-producing bacteria in a wastewater treatment plant.

    PubMed

    Ndlovu, Thando; Khan, Sehaam; Khan, Wesaal

    2016-05-01

    The distribution and diversity of culturable biosurfactant-producing bacteria were investigated in a wastewater treatment plant (WWTP) using the Shannon and Simpson's indices. Twenty wastewater samples were analysed, and from 667 isolates obtained, 32 were classified as biosurfactant producers as they reduced the surface tension of the culture medium (71.1 mN/m), with the lowest value of 32.1 mN/m observed. Certain isolates also formed stable emulsions with diesel, kerosene and mineral oils. The 16S ribosomal RNA (rRNA) analysis classified the biosurfactant producers into the Aeromonadaceae, Bacillaceae, Enterobacteriaceae, Gordoniaceae and the Pseudomonadaceae families. In addition, numerous isolates carried the surfactin 4'-phosphopantetheinyl transferase (sfp), rhamnosyltransferase subunit B (rhlB) and bacillomycin C (bamC) genes involved in the biosynthesis of surfactin, rhamnolipid and bacillomycin, respectively. While, biosurfactant-producing bacteria were found at all sampling points in the WWTP, the Simpson's diversity (1 - D) and the Shannon-Weaver (H) indices revealed an increase in bacterial diversity in the influent samples (0.8356 and 2.08), followed by the effluent (0.8 and 1.6094) and then the biological trickling filter (0.7901 and 1.6770) samples. Numerous biosurfactant-producing bacteria belonging to diverse genera are thus present throughout a WWTP.

  12. Biosurfactants production by yeasts using soybean oil and glycerol as low cost substrate

    PubMed Central

    Accorsini, Fábio Raphael; Mutton, Márcia Justino Rossini; Lemos, Eliana Gertrudes Macedo; Benincasa, Maria

    2012-01-01

    Biosurfactants are bioactive agents that can be produced by many different microorganisms. Among those, special attention is given to yeasts, since they can produce many types of biosurfactants in large scale, using several kinds of substrates, justifying its use for industrial production of those products. For this production to be economically viable, the use of residual carbon sources is recommended. The present study isolated yeasts from soil contaminated with petroleum oil hydrocarbons and assessed their capacity for producing biosurfactants in low cost substrates. From a microbial consortium enriched, seven yeasts were isolated, all showing potential for producing biosurfactants in soybean oil. The isolate LBPF 3, characterized as Candida antarctica, obtained the highest levels of production - with a final production of 13.86 g/L. The isolate LBPF 9, using glycerol carbon source, obtained the highest reduction in surface tension in the growth medium: approximately 43% of reduction after 24 hours of incubation. The products obtained by the isolates presented surfactant activity, which reduced water surface tension to values that varied from 34 mN/m, obtained from the product of isolates LBPF 3 and 16 LBPF 7 (respectively characterized as Candida antarctica and Candida albicans) to 43 mN/m from the isolate LPPF 9, using glycerol as substrate. The assessed isolates all showed potential for the production of biosurfactants in conventional sources of carbon as well as in agroindustrial residue, especially in glycerol. PMID:24031810

  13. Production of biosurfactant by Pseudomonas aeruginosa grown on cashew apple juice.

    PubMed

    Rocha, Maria V P; Souza, Maria C M; Benedicto, Sofia C L; Bezerra, Márcio S; Macedo, Gorete R; Pinto, Gustavo A Saavedra; Gonçalves, Luciana R B

    2007-04-01

    In this work, the ability of biosurfactant production by Pseudomonas aeruginosa in batch cultivation using cashew apple juice (CAJ) and mineral media was evaluated. P. aeruginosa was cultivated in CAJ, which was supplemented with peptone (5.0 g/L) and nutritive broth. All fermentation assays were performed in Erlenmeyer flasks containing 300 mL, incubated at 30 degrees C and 150 rpm. Cell growth (biomass and cell density), pH, and superficial tension were monitored vs time. Surface tension was reduced by 10.58 and 41% when P. aeruginosa was cultivated in nutrient broth and CAJ supplemented with peptone, respectively. These results indicated that CAJ is an adequate medium for growth and biosurfactant production. Best results of biosurfactant production were obtained when CAJ was supplemented with peptone.

  14. Optimizing Carbon/Nitrogen Ratio for Biosurfactant Production by a Bacillus subtilis Strain

    NASA Astrophysics Data System (ADS)

    Fonseca, R. R.; Silva, A. J. R.; de Franca, F. P.; Cardoso, V. L.; Sérvulo, E. F. C.

    A Bacillus subtilis strain isolated from contaminated soil from a refinery has been screened for biosurfactant production in crystal sugar (sucrose) with different nitrogen sources (NaNO3' (NH4)2SO4' urea, and residual brewery yeast). The highest reduction in surface tension was achieved with a 48-h fermentation of crystal sugar and ammonium nitrate. Optimization of carbon/nitrogen ratio (3,9, and 15) and agitation rate (50, 150, and 250 rpm) for biosurfactant production was carried out using complete factorial design and response surface analysis. The condition of C/N 3 and 250 rpm allowed the maximum increase in surface activity of biosurfactant. A suitable model has been developed, having presented great accordance experimental data. Preliminary characterization of the bioproduct suggested it to be a lipopeptide with some isomers differing from those of a commercial surfactin.

  15. Enhanced bioremediation of crude oil utilizing lipophilic fertilizers combined with biosurfactants and molasses.

    PubMed

    Nikolopoulou, Maria; Kalogerakis, Nicolas

    2008-11-01

    Many research studies have demonstrated the feasibility and efficacy of fertilization with nitrogen and phosphorus to combat oil spills in marine environments. Rapid dilution of water-soluble nutrients can be overcome by oleophilic formulations that retain optimal nutrient concentrations at the oil-water interface where biodegradation occurs. Previous work has demonstrated that biodegradation processes are enhanced by the addition of lipophilic fertilizers of natural origin (uric acid and lecithin). In this work, we examined the effectiveness of these nutrients in combination with biosurfactants (rhamnolipids) and molasses (source of C and vitamins) to enhance the biodegradation by naturally occurring microorganisms. It was found that the use of biosurfactants resulted in an increased removal of petroleum hydrocarbons (96% removal of C19-C34 n-alkanes within a period of 18 days) as well as in a reduction of the lag phase (almost 80% removal was achieved within the first week of biosurfactant application). PMID:18799169

  16. Supporting data for identification of biosurfactant-producing bacteria isolated from agro-food industrial effluent.

    PubMed

    Fulazzaky, Mohamad Ali; Abdullah, Shakila; Salim, Mohd Razman

    2016-06-01

    The goal of this study was to identify the biosurfactant-producing bacteria isolated from agro-food industrial effluet. The identification of the potential bacterial strain using a polymerase chain reaction of the 16S rRNA gene analysis was closely related to Serratia marcescens with its recorded strain of SA30 "Fundamentals of mass transfer and kinetics for biosorption of oil and grease from agro-food industrial effluent by Serratia marcescens SA30" (Fulazzaky et al., 2015) [1]; however, many biochemical tests have not been published yet. The biochemical tests of biosurfactant production, haemolytic assay and cell surface hydrophobicity were performed to investigate the beneficial strain of biosurfactant-producing bacteria. Here we do share data collected from the biochemical tests to get a better understanding of the use of Serratia marcescens SA30 to degrade oil, which contributes the technical features of strengthening the biological treatment of oil-contaminated wastewater in tropical environments.

  17. Heterologous production of the lipopeptide biosurfactant serrawettin W1 in Escherichia coli.

    PubMed

    Thies, Stephan; Santiago-Schübel, Beatrix; Kovačić, Filip; Rosenau, Frank; Hausmann, Rudolf; Jaeger, Karl-Erich

    2014-07-10

    The non-ionic biosurfactant serrawettin W1 is a lipopeptide produced by red-pigmented strains of Serratia marcescens which shows antimicrobial, antitumor and plant protecting properties. Here, we report a simple method for heterologous production of this biosurfactant. S. marcescens strain DSM12481 was identified as a novel serrawettin W1 producer and the respective nonribosomal peptide synthetase gene swrW was cloned and expressed in Escherichia coli BL21 Gold. Chemical analysis of heterologous serrawettin W1 revealed that E. coli mainly produced serrawettin with C10 fatty acids as does S. marcescens. Additionally, serrawettin species with longer fatty acids (C13, C14) were detected in S. marcescens which were absent in E. coli. The expression system described here paves the way for the large scale production of this biotechnologically important biosurfactant.

  18. Applications of biosurfactants in the petroleum industry and the remediation of oil spills.

    PubMed

    de Cássia F S Silva, Rita; Almeida, Darne G; Rufino, Raquel D; Luna, Juliana M; Santos, Valdemir A; Sarubbo, Leonie Asfora

    2014-07-15

    Petroleum hydrocarbons are important energy resources. However, petroleum is also a major pollutant of the environment. Contamination by oil and oil products has caused serious harm, and increasing attention has been paid to the development and implementation of innovative technologies for the removal of these contaminants. Biosurfactants have been extensively used in the remediation of water and soil, as well as in the main stages of the oil production chain, such as extraction, transportation, and storage. This diversity of applications is mainly due to advantages such as biodegradability, low toxicity and better functionality under extreme conditions in comparison to synthetic counterparts. Moreover, biosurfactants can be obtained with the use of agro-industrial waste as substrate, which helps reduce overall production costs. The present review describes the potential applications of biosurfactants in the oil industry and the remediation of environmental pollution caused by oil spills.

  19. Supporting data for identification of biosurfactant-producing bacteria isolated from agro-food industrial effluent.

    PubMed

    Fulazzaky, Mohamad Ali; Abdullah, Shakila; Salim, Mohd Razman

    2016-06-01

    The goal of this study was to identify the biosurfactant-producing bacteria isolated from agro-food industrial effluet. The identification of the potential bacterial strain using a polymerase chain reaction of the 16S rRNA gene analysis was closely related to Serratia marcescens with its recorded strain of SA30 "Fundamentals of mass transfer and kinetics for biosorption of oil and grease from agro-food industrial effluent by Serratia marcescens SA30" (Fulazzaky et al., 2015) [1]; however, many biochemical tests have not been published yet. The biochemical tests of biosurfactant production, haemolytic assay and cell surface hydrophobicity were performed to investigate the beneficial strain of biosurfactant-producing bacteria. Here we do share data collected from the biochemical tests to get a better understanding of the use of Serratia marcescens SA30 to degrade oil, which contributes the technical features of strengthening the biological treatment of oil-contaminated wastewater in tropical environments. PMID:27077083

  20. Applications of Biosurfactants in the Petroleum Industry and the Remediation of Oil Spills

    PubMed Central

    Silva, Rita de Cássia F. S.; Almeida, Darne G.; Rufino, Raquel D.; Luna, Juliana M.; Santos, Valdemir A.; Sarubbo, Leonie Asfora

    2014-01-01

    Petroleum hydrocarbons are important energy resources. However, petroleum is also a major pollutant of the environment. Contamination by oil and oil products has caused serious harm, and increasing attention has been paid to the development and implementation of innovative technologies for the removal of these contaminants. Biosurfactants have been extensively used in the remediation of water and soil, as well as in the main stages of the oil production chain, such as extraction, transportation, and storage. This diversity of applications is mainly due to advantages such as biodegradability, low toxicity and better functionality under extreme conditions in comparison to synthetic counterparts. Moreover, biosurfactants can be obtained with the use of agro-industrial waste as substrate, which helps reduce overall production costs. The present review describes the potential applications of biosurfactants in the oil industry and the remediation of environmental pollution caused by oil spills. PMID:25029542

  1. Genomic and functional features of the biosurfactant producing Bacillus sp. AM13.

    PubMed

    Shaligram, Shraddha; Kumbhare, Shreyas V; Dhotre, Dhiraj P; Muddeshwar, Manohar G; Kapley, Atya; Joseph, Neetha; Purohit, Hemant P; Shouche, Yogesh S; Pawar, Shrikant P

    2016-09-01

    Genomic studies provide deeper insights into secondary metabolites produced by diverse bacterial communities, residing in various environmental niches. This study aims to understand the potential of a biosurfactant producing Bacillus sp. AM13, isolated from soil. An integrated approach of genomic and chemical analysis was employed to characterize the antibacterial lipopeptide produced by the strain AM13. Genome analysis revealed that strain AM13 harbors a nonribosomal peptide synthetase (NRPS) cluster; highly similar with known biosynthetic gene clusters from surfactin family: lichenysin (85 %) and surfactin (78 %). These findings were substantiated with supplementary experiments of oil displacement assay and surface tension measurements, confirming the biosurfactant production. Further investigation using LCMS approach exhibited similarity of the biomolecule with biosurfactants of the surfactin family. Our consolidated effort of functional genomics provided chemical as well as genetic leads for understanding the biochemical characteristics of the bioactive compound. PMID:27492417

  2. Production of Biosurfactant by Pseudomonas aeruginosa Grown on Cashew Apple Juice

    NASA Astrophysics Data System (ADS)

    Rocha, Maria V. P.; Souza, Maria C. M.; Benedicto, Sofia C. L.; Bezerra, Márcio S.; Macedo, Gorete R.; Saavedra Pinto, Gustavo A.; Gonçalves, Luciana R. B.

    In this work, the ability of biosurfactant production by Pseudomonas aeruginosa in batch cultivation using cashew apple juice (CAJ) and mineral media was evaluated. P. aeruginosa was cultivated in CAJ, which was supplemented with peptone (5.0 g/L) and nutritive broth. All fermentation assays were performed in Erlenmeyer flasks containing 300 mL, incubated at 30°C and 150 rpm. Cell growth (biomass and cell density), pH, and superficial tension were monitored vs time. Surface tension was reduced by 10.58 and 41% when P. aeruginosa was cultivated in nutrient broth and CAJ supplemented with peptone, respectively. These results indicated that CAJ is an adequate medium for growth and biosurfactant production. Best results of biosurfactant production were obtained when CAJ was supplemented with peptone.

  3. Glycolipids produced by Rouxiella sp. DSM 100043 and isolation of the biosurfactants via foam-fractionation.

    PubMed

    Kügler, Johannes H; Muhle-Goll, Claudia; Hansen, Silla H; Völp, Annika R; Kirschhöfer, Frank; Kühl, Boris; Brenner-Weiss, Gerald; Luy, Burkhard; Syldatk, Christoph; Hausmann, Rudolf

    2015-12-01

    Microorganisms produce a great variety of secondary metabolites that feature surface active and bioactive properties. Those possessing an amphiphilc molecular structure are also termed biosurfactant and are of great interest due to their often unique properties. Rouxiella sp. DSM 100043 is a gram negative enterobacter isolated from peat-bog soil and described as a new biosurfactant producing species in this study. Rouxiella sp. produces glycolipids, biosurfactants with a carbohydrate moiety in its structure. This study characterizes the composition of glycolipids with different hydrophobicities that have been produced during cultivation in a bioreactor and been extracted and purified from separated foam. Using two dimensional nuclear magnetic resonance spectroscopy, the hydrophilic moieties are elucidated as glucose with various acylation sites and as talose within the most polar glycolipids. The presence of 3' hydroxy lauroleic acid as well as myristic and myristoleic acid has been detected. PMID:26698314

  4. Solubilization of Polycyclic Aromatic Hydrocarbons by Single and Binary Mixed Rhamnolipid-Sophorolipid Biosurfactants.

    PubMed

    Song, Dandan; Liang, Shengkang; Yan, Lele; Shang, Yujun; Wang, Xiuli

    2016-07-01

    Biosurfactants are promising additives for surfactant enhanced remediation (SER) technologies due to their low toxicity and high biodegradability. To develop green and efficient additives for SER, the aqueous solubility enhancements of polycyclic aromatic hydrocarbons (PAHs; naphthalene, phenanthrene, and pyrene) by rhamnolipid (RL) and sophorolipid (SL) biosurfactants were investigated in single and binary mixed systems. The solubilization capacities were quantified in terms of the solubility enhancement factor, molar solubilization ratio (MSR), and micelle-water partition coefficient (). Rughbin's model was applied to evaluate the interaction parameters (β) in the mixed RL-SL micelles. The solubility of the PAHs increased linearly with the glycolipid concentration above the critical micelle concentration (CMC) in both single and mixed systems. Binary RL-SL mixtures exhibited greater solubilization than individual glycolipids. At a SL molar fraction of 0.7 to 0.8, the solubilization capacity was the greatest, and the MSR and reached their maximum values, and β values became positive. These results suggest that the two biosurfactants act synergistically to increase the solubility of the PAHs. The solubilization capacity of the RL-SL mixtures increased with increasing temperature and decreased with increasing salinity. The aqueous solubility of phenanthrene reached a maximum value at pH of 5.5. Moreover, the mixed RL-SL systems exhibited a strong ability to solubilize PAHs, even in the presence of heavy metal ions. These mixed biosurfactant systems have the potential to improve the performance of SER technologies using biosurfactants to solubilize hydrophobic organic contaminants by decreasing the applied biosurfactant concentration, which reduces the costs of remediation. PMID:27380091

  5. Quorum signal molecules as biosurfactants affecting swarming in Rhizobium etli

    PubMed Central

    Daniels, Ruth; Reynaert, Sven; Hoekstra, Hans; Verreth, Christel; Janssens, Joost; Braeken, Kristien; Fauvart, Maarten; Beullens, Serge; Heusdens, Christophe; Lambrichts, Ivo; De Vos, Dirk E.; Vanderleyden, Jos; Vermant, Jan; Michiels, Jan

    2006-01-01

    Swarming motility is suggested to be a social phenomenon that enables groups of bacteria to coordinately and rapidly move atop solid surfaces. This multicellular behavior, during which the apparently organized bacterial populations are embedded in an extracellular slime layer, has previously been linked with biofilm formation and virulence. Many population density-controlled activities involve the activation of complex signaling pathways using small diffusible molecules, also known as autoinducers. In Gram-negative bacteria, quorum sensing (QS) is achieved primarily by means of N-acylhomoserine lactones (AHLs). Here, we report on a dual function of AHL molecules in controlling swarming behavior of Rhizobium etli, the bacterial symbiotic partner of the common bean plant. The major swarming regulator of R. etli is the cinIR QS system, which is specifically activated in swarming cells by its cognate AHL and other long-chain AHLs. This signaling role of long-chain AHLs is required for high-level expression of the cin and rai QS systems. Besides this signaling function, the long-chain AHLs also have a direct role in surface movement of swarmer cells as these molecules possess significant surface activity and induce liquid flows, known as Marangoni flows, as a result of gradients in surface tension at biologically relevant concentrations. These results point to an as-yet-undisclosed direct role of long-chain AHL molecules as biosurfactants. PMID:16990436

  6. Removal of Mercury by Foam Fractionation Using Surfactin, a Biosurfactant

    PubMed Central

    Chen, Hau-Ren; Chen, Chien-Cheng; Reddy, A. Satyanarayana; Chen, Chien-Yen; Li, Wun Rong; Tseng, Min-Jen; Liu, Hung-Tsan; Pan, Wei; Maity, Jyoti Prakash; Atla, Shashi B.

    2011-01-01

    The separation of mercury ions from artificially contaminated water by the foam fractionation process using a biosurfactant (surfactin) and chemical surfactants (SDS and Tween-80) was investigated in this study. Parameters such as surfactant and mercury concentration, pH, foam volume, and digestion time were varied and their effects on the efficiency of mercury removal were investigated. The recovery efficiency of mercury ions was highly sensitive to the concentration of the surfactant. The highest mercury ion recovery by surfactin was obtained using a surfactin concentration of 10 × CMC, while recovery using SDS required < 10 × CMC and Tween-80 >10 × CMC. However, the enrichment of mercury ions in the foam was superior with surfactin, the mercury enrichment value corresponding to the highest metal recovery (10.4%) by surfactin being 1.53. Dilute solutions (2-mg L−1 Hg2+) resulted in better separation (36.4%), while concentrated solutions (100 mg L−1) enabled only a 2.3% recovery using surfactin. An increase in the digestion time of the metal solution with surfactin yielded better separation as compared with a freshly-prepared solution, and an increase in the airflow rate increased bubble production, resulting in higher metal recovery but low enrichment. Basic solutions yielded higher mercury separation as compared with acidic solutions due to the precipitation of surfactin under acidic conditions. PMID:22174661

  7. The anionic biosurfactant rhamnolipid does not denature industrial enzymes

    PubMed Central

    Madsen, Jens K.; Pihl, Rasmus; Møller, Anders H.; Madsen, Anne T.; Otzen, Daniel E.; Andersen, Kell K.

    2015-01-01

    Biosurfactants (BS) are surface-active molecules produced by microorganisms. Their combination of useful properties and sustainable production make them promising industrial alternatives to petrochemical and oleochemical surfactants. Here we compare the impact of the anionic BS rhamnolipid (RL) and the conventional/synthetic anionic surfactant sodium dodecyl sulfate (SDS) on the structure and stability of three different commercially used enzymes, namely the cellulase Carezyme® (CZ), the phospholipase Lecitase Ultra® (LT) and the α-amylase Stainzyme® (SZ). Our data reveal a fundamental difference in their mode of interaction. SDS shows great diversity of interaction toward the different enzymes. It efficiently unfolds both LT and CZ, but LT is unfolded by SDS through formation of SDS clusters on the enzyme well below the cmc, while CZ is only unfolded by bulk micelles and on average binds significantly less SDS than LT. SDS binds with even lower stoichiometry to SZ and leads to an increase in thermal stability. In contrast, RL does not affect the tertiary or secondary structure of any enzyme at room temperature, has little impact on thermal stability and only binds detectably (but at low stoichiometries) to SZ. Furthermore, all enzymes maintain activity at both monomeric and micellar concentrations of RL. We conclude that RL, despite its anionic charge, is a surfactant that does not compromise the structural integrity of industrially relevant enzymes. This makes RL a promising alternative to current synthetic anionic surfactants in a wide range of commercial applications. PMID:25941516

  8. Disruption of Yarrowia lipolytica biofilms by rhamnolipid biosurfactant

    PubMed Central

    2012-01-01

    Background Yarrowia lipolytica is an ascomycetous dimorphic fungus that exhibits biofilm mode of growth. Earlier work has shown that biosurfactants such as rhamnolipids are efficient dispersants of bacterial biofilms. However, their effectiveness against fungal biofilms (particularly Y. lipolytica) has not been investigated. The aim of this study was to determine the effect of rhamnolipid on a biofilm forming strain of Y. lipolytica. Two chemical surfactants, cetyl-trimethyl ammonium bromide (CTAB) and sodium dodecyl sulphate (SDS) were used as controls for comparison. Results The methylene blue dye exclusion assay indicated an increase in fungal cell permeability after rhamnolipid treatment. Microtiter plate assay showed that the surfactant coating decreased Y. lipolytica biofilm formation by 50%. Rhamnolipid treatment disrupted pre-formed biofilms in a more effective manner than the other two surfactants. Confocal laser scanning microscopic studies showed that biofilm formation onto glass surfaces was decreased by 67% after sub-minimum inhibitory concentration (sub-MIC) treatment with rhamnolipids. The disruption of biofilms after rhamnolipid treatment was significant (P<0.05) when compared to SDS and CTAB. Conclusion The results indicate a potential application of the biological surfactant to disrupt Y. lipolytica biofilms. PMID:22839701

  9. Biosurfactant production in sugar beet molasses by some Pseudomonas spp.

    PubMed

    Onbasli, Dilsad; Aslim, Belma

    2009-01-01

    In this study rhamnolipid biosurfactant production was investigated in eighteen strains of Pseudomonas spp.. Rhamnolipid by these strains was determined by a spectrophotometric method in nutrient broth medium (NB). From the 18 strains screened, two Pseudomonas strains (Pseudomonas luteola B17 and Pseudomonas putida B12) which had produced the highest percentage yield of rhamnolipid were examined for rhamnolipid production at different incubation times (24, 48 and 72 hr) and different sugar beet molasses concentrations [1-5% w/v concentration (1-5 g molasses/100 ml water)]. The rhamnolipid production increased with the increase in the concentration of molasses and maximum production occurred when 5 % (w/v) of molasses were used. At the same time, maximum rhamnolipid production occurred after 72 hr of incubation. When the amount of rhamnolipid produced at different incubation times (24, 48 and 72 hr) and with different concentrations of molasses [1-5 % w/v concentration (1-5 g molasses/100 ml water)] by Pseudomonas spp.; was compared, no significant difference in amount of production was seen. These studies show that the waste product from sugar industry may be suggested for important biotechnological processes such as rhamnolipid production.

  10. Biosurfactant-enhanced removal of residual hydrocarbon from soil

    NASA Astrophysics Data System (ADS)

    Bai, Guiyun; Brusseau, Mark L.; Miller, Raina M.

    1997-02-01

    An anionic monorhamnolipid biosurfactant produced by Pseudomonas aeruginosa was investigated for its potential to remove residual hexadecane from sand columns. In a series of column experiments, residual hexadecane saturation was established by pumping 14C-hexadecane into water-saturated sand columns and then flushing with water at a velocity of 25 cm h -1. Monorhamnolipid solutions of varying concentration were then applied to the columns at a velocity of 15 cm H -1 to remove the residual hexadecane. Of the rhamnolipid concentrations tested, which ranged from 40 to 1500 mg l -1, the optimal concentration for residual removal was 500 mg l -1, approximately ten times the critical micelle concentration (cmc). Approximately 84% of the residual was removed from the column packed with {20}/{30} mesh sand, and 22% was removed from the {40}/{50} mesh column. The primary mechanism for residual removal was mobilization (displacement and dispersion), whereas solubilization was found to be insignificant. The performance of monorhamnolipid was compared with that of two synthetic surfactant solutions on a mass basis (500 mg l -1) for the {40}/{50} mesh sand. Sodium dodecyl sulfate (0.2 X cmc), and polyoxyethylene (20) sorbitan monooleate (38 × cmc), removed 0% and 6.1% of the residual saturation, respectively.

  11. Development of an In Situ Biosurfactant Production Technology for Enhanced Oil Recovery

    SciTech Connect

    M.J. McInerney; R.M. Knapp; Kathleen Duncan; D.R. Simpson; N. Youssef; N. Ravi; M.J. Folmsbee; T.Fincher; S. Maudgalya; Jim Davis; Sandra Weiland

    2007-09-30

    The long-term economic potential for enhanced oil recovery (EOR) is large with more than 300 billion barrels of oil remaining in domestic reservoirs after conventional technologies reach their economic limit. Actual EOR production in the United States has never been very large, less than 10% of the total U. S. production even though a number of economic incentives have been used to stimulate the development and application of EOR processes. The U.S. DOE Reservoir Data Base contains more than 600 reservoirs with over 12 billion barrels of unrecoverable oil that are potential targets for microbially enhanced oil recovery (MEOR). If MEOR could be successfully applied to reduce the residual oil saturation by 10% in a quarter of these reservoirs, more than 300 million barrels of oil could be added to the U.S. oil reserve. This would stimulate oil production from domestic reservoirs and reduce our nation's dependence on foreign imports. Laboratory studies have shown that detergent-like molecules called biosurfactants, which are produced by microorganisms, are very effective in mobilizing entrapped oil from model test systems. The biosurfactants are effective at very low concentrations. Given the promising laboratory results, it is important to determine the efficacy of using biosurfactants in actual field applications. The goal of this project is to move biosurfactant-mediated oil recovery from laboratory investigations to actual field applications. In order to meet this goal, several important questions must be answered. First, it is critical to know whether biosurfactant-producing microbes are present in oil formations. If they are present, then it will be important to know whether a nutrient regime can be devised to stimulate their growth and activity in the reservoir. If biosurfactant producers are not present, then a suitable strain must be obtained that can be injected into oil reservoirs. We were successful in answering all three questions. The specific objectives

  12. Enhancement of oil degradation by co-culture of hydrocarbon degrading and biosurfactant producing bacteria.

    PubMed

    Kumar, Manoj; Leon, Vladimir; Materano, Angela De Sisto; Ilzins, Olaf A

    2006-01-01

    In this study the biodegradation of oil by hydrocarbon degrading Pseudomonas putida in the presence of a biosurfactant-producing bacterium was investigated. The co-culture of test organisms exhibited improved degradation capacities, in a reproducible fashion, in aqueous and soil matrix in comparison to the individual bacterium culture. Results indicate that the in situ biosurfactant production not only resulted in increased emulsification of the oil but also change the adhesion of the hydrocarbon to cell surface of other bacterium. The understanding of interactions beetwen microbes may provide opportunities to further enhancement of contaminants biodegradation by making a suitable blend for bioaugmentation.

  13. Combined effects of DOM and biosurfactant enhanced biodegradation of polycylic armotic hydrocarbons (PAHs) in soil-water systems.

    PubMed

    Yu, Hui; Huang, Guo-He; Xiao, Huining; Wang, Lei; Chen, Wei

    2014-09-01

    This study systematically investigated the interactive effects of dissolved organic matter (DOM) and biosurfactant (rhamnolipid) on the biodegradation of phenanthrene (PHE) and pyrene (PYR) in soil-water systems. The degradations of two polycyclic aromatic hydrocarbons (PAHs) were fitted well with first order kinetic model and the degradation rates were in proportion to the concentration of biosurfactant. In addition, the degradation enhancement of PHE was higher than that of PYR. The addition of soil DOM itself at an environmental level would inhibit the biodegradation of PAHs. However, in the system with co-existence of DOM and biosurfactant, the degradation of PAHs was higher than that in only biosurfactant addition system, which may be attributed to the formation of DOM-biosurfactant complex micelles. Furthermore, under the combined conditions, the degradation of PAH increased with the biosurfactant concentration, and the soil DOM added system showed slightly higher degradation than the compost DOM added system, indicating that the chemical structure and composition of DOM would also affect the bioavailability of PAHs. The study result may broaden knowledge of biosurfactant enhanced bioremediation of PAHs contaminated soil and groundwater.

  14. First report of a lipopeptide biosurfactant from thermophilic bacterium Aneurinibacillus thermoaerophilus MK01 newly isolated from municipal landfill site.

    PubMed

    Sharafi, Hakimeh; Abdoli, Mahya; Hajfarajollah, Hamidreza; Samie, Nima; Alidoust, Leila; Abbasi, Habib; Fooladi, Jamshid; Zahiri, Hossein Shahbani; Noghabi, Kambiz Akbari

    2014-07-01

    A biosurfactant-producing thermophile was isolated from the Kahrizak landfill of Tehran and identified as a bacterium belonging to the genus Aneurinibacillus. A thermostable lipopeptide-type biosurfactant was purified from the culture medium of this bacterium and showed stability in the temperature range of 20-90 °C and pH range of 5-10. The produced biosurfactant could reduce the surface tension of water from 72 to 43 mN/m with a CMC of 1.21 mg/mL. The strain growing at a temperature of 45 °C produces a substantial amount of 5 g/L of biosurfactant in the medium supplemented with sunflower oil as the sole carbon source. Response surface methodology was employed to optimize the biosurfactant production using sunflower oil, sodium nitrate, and yeast extract as variables. The optimization resulted in 6.75 g/L biosurfactant production, i.e., 35% improved as compared to the unoptimized condition. Thin-layer chromatography, FTIR spectroscopy, 1H-NMR spectroscopy, and biochemical composition analysis confirmed the lipopeptide structure of the biosurfactant.

  15. Evaluation of the effect of nutrient ratios on biosurfactant production by Serratia marcescens using a Box-Behnken design.

    PubMed

    Roldán-Carrillo, T; Martínez-García, X; Zapata-Peñasco, I; Castorena-Cortés, G; Reyes-Avila, J; Mayol-Castillo, M; Olguín-Lora, P

    2011-09-01

    The strain SmSA, identified as Serratia marcescens and known as a biosurfactant producer, was isolated from hydrocarbon contaminated soil from Veracruz, México. The interactions among the C/N, C/Mg and C/Fe ratios have not been examined for this microorganism. In this work was evaluated the effect of these nutrients at three levels using a mineral medium with glucose as the carbon source. A Box-Behnken experimental design was utilised to maximise biosurfactant production, which was assessed by oil spreading and surface tension tests. The treatment with C/N=5, C/Fe=26,000 and C/Mg=30 showed the best result since the surface tension was reduced to 30 mN m(-1). The multiple regression and response surface analyses indicated that the interaction between C/N and C/Mg had the utmost effect on the reduction of surface tension and biosurfactant production. The conditions of the best treatment were used to scale up biosurfactant production in a 3L bioreactor giving a yield of 4.1 gL(-1) of pure biosurfactant. It was found that the biosurfactant was mainly produced in the exponential phase and decreased the surface tension to 31 mN m(-1). The contact between the biosurfactant with heavy oil (15° API) increased its displacement from 9.3 to 18 cm.

  16. Biofilm inhibition and antimicrobial action of lipopeptide biosurfactant produced by heavy metal tolerant strain Bacillus cereus NK1.

    PubMed

    Sriram, Muthu Irulappan; Kalishwaralal, Kalimuthu; Deepak, Venkataraman; Gracerosepat, Raja; Srisakthi, Kandasamy; Gurunathan, Sangiliyandi

    2011-07-01

    Biosurfactants are worthful microbial amphiphilic molecules with efficient surface-active and biological properties applicable to several industries and processes. Among them lipopeptides represent a class of microbial surfactants with increasing scientific, therapeutic and biotechnological interests. A heavy metal tolerant Bacillus strain has been isolated and the biofilm inhibition and antimicrobial activity of biosurfactant produced by the strain have been studied. Biosurfactant production was confirmed by the conventional screening methods including hemolytic activity, drop collapsing test, oil displacement test, emulsification and lipase production assays. The biosurfactant produced by this strain was a lipopeptide and exhibited strong surface activity. The biosurfactant has been characterized using FTIR, TLC and HPLC. The minimum active dose of this biosurfactant when compared with the other chemical surfactants was found as 0.150±0.06 μg. The critical micelle concentration was found to be 45 mg/l. The biosurfactant was found to be stable and active over a wide range of pH, temperature and NaCl concentration. It was also able to emulsify a wide range of hydrocarbons and oils thereby extending its application for the bioremediation of oil contaminated sites. The biosurfactant exhibited significant reduction in biofilm formation by pathogens and showed potent antimicrobial activity against various gram positive, gram negative bacteria and fungi. Agar diffusion assay for heavy metal resistance showed that the isolate was resistant to ferrous, lead and zinc. Considering the biofilm inhibition and antimicrobial property of biosurfactant, it can be utilized as a potential therapeutic molecule for numerous microbial infections. The heavy metal resistance of the strain can also be harnessed as an invaluable biological tool for in situ bioremediation.

  17. Characterization of sophorolipid biosurfactant produced by Cryptococcus sp. VITGBN2 and its application on Zn(II) removal from electroplating wastewater.

    PubMed

    Basak, Geetanjali; Das, Nilanjana

    2014-11-01

    The present study aimed at elucidating the role of biosurfactant produced by yeast for the removal of Zn(II) ions from electroplating wastewater. The yeast species isolated from CETP, Vellore, Tamilnadu was identified as Cryptococcus sp.VITGBN2, based on molecular techniques, and was found to be potent producer of biosurfactant in mineral salt media containing vegetable oil as additional carbon source. Chemical structure of the purified biosurfactant was identified as acidic diacetate sophorolipid through GC-MS analysis. Interaction of Zn(II) ions with biosurfactant was monitored using FT-IR, SEM and EDS analysis. Zn (II) removal at 100 mg l(-1) concentration was 84.8% compared were other synthetic surfactants (Tween 80 and sodium dodecyl sulphate), yeast mediated biosurfactant showed enhanced Zn (II) removal in batch mode. The role of biosurfactant on Zn(II) removal was evaluated in column mode packed with biosurfactant entrapped in sodium alginate beads. At a flow rate of 1 ml min(-1) and bed height of 12 cm, immobilized biosurfactant showed 94.34% Zn(II) removal from electroplating wastewater. The present study confirmed that Zn(II) removal was biosurfactant mediated. This is the first report establishing the involvement of yeast mediated biosurfactant in Zn(II) removal from wastewater.

  18. Natural surfactants used in cosmetics: glycolipids.

    PubMed

    Lourith, N; Kanlayavattanakul, M

    2009-08-01

    Cosmetic surfactant performs detergency, wetting, emulsifying, solubilizing, dispersing and foaming effects. Adverse reactions of chemical synthesis surfactant have an effect on environment and humans, particularly severe in long term. Biodegradability, low toxicity and ecological acceptability which are the benefits of naturally derived surfactant that promises cosmetic safety are, therefore, highly on demand. Biosurfactant producible from microorganisms exhibiting potential surface properties suitable for cosmetic applications especially incorporate with their biological activities. Sophorolipids, rhamnolipids and mannosylerythritol lipids are the most widely used glycolipids biosurfactant in cosmetics. Literatures and patents relevant to these three glycolipids reviewed were emphasizing on the cosmetic applications including personal care products presenting the cosmetic efficiency, efficacy and economy benefits of glycolipids biosurfactant. PMID:19496839

  19. The influence of vegetable oils on biosurfactant production by Serratia marcescens.

    PubMed

    Ferraz, Cristina; De Araújo, Alvaro A; Pastore, Glaucia M

    2002-01-01

    The production of biosurfactant, a surface-active compound, by two Serratia marcescensstrains was tested on minimal culture medium supplemented with vegetable oils, considering that it is well known that these compounds stimulate biosurfactant production. The vegetable oils tested included soybean, olive, castor, sunflower, and coconut fat. The results showed a decrease in surface tension of the culture medium without oil from 64.54 to 29.57, with a critical micelle dilution (CMD(-1)) and CMD(-2) of 41.77 and 68.92 mN/m, respectively. Sunflower oil gave the best results (29.75 mN/m) with a CMD(-1) and CMD-2 of 36.69 and 51.41 mN/m, respectively. Sunflower oil contains about 60% of linoleic acid. The addition of linoleic acid decreased the surface tension from 53.70 to 28.39, with a CMD(-1) of 29.72 and CMD(-2) of 37.97, suggesting that this fatty acid stimulates the biosurfactant production by the LB006 strain. In addition, the crude precipitate surfactant reduced the surface tension of water from 72.00 to 28.70 mN/m. These results suggest that the sunflower oil's linoleic acid was responsible for the increase in biosurfactant production by the LB006 strain. PMID:12018306

  20. Enhancement of hydrocarbon waste biodegradation by addition of a biosurfactant from Bacillus subtilis O9.

    PubMed

    Morán, A C; Olivera, N; Commendatore, M; Esteves, J L; Siñeriz, F

    2000-01-01

    A non-sterile biosurfactant preparation (surfactin) was obtained from a 24-h culture of Bacillus subtilis O9 grown on sucrose and used to study its effect on the biodegradation of hydrocarbon wastes by an indigenous microbial community at the Erlenmeyer-flask scale. Crude biosurfactant was added to the cultures to obtain concentrations above and below the critical micelle concentration (CMC). Lower concentration affected neither biodegradation nor microbial growth. Higher concentration gave higher cell concentrations. Biodegradation of aliphatic hydrocarbons increased from 20.9 to 35.5% and in the case of aromatic hydrocarbons from nil to 41%, compared to the culture without biosurfactant. The enhancement effect of biosurfactant addition was more noticeable in the case of long chain alkanes. Pristane and phytane isoprenoids were degraded to the same extent as n-C17 and n-C18 alkanes and, consequently, no decrease in the ratios n-C17/pri and n-C18/phy was observed. Rapid production of surfactin crude preparation could make it practical for bioremediation of ship bilge wastes. PMID:11194975

  1. The influence of vegetable oils on biosurfactant production by Serratia marcescens.

    PubMed

    Ferraz, Cristina; De Araújo, Alvaro A; Pastore, Glaucia M

    2002-01-01

    The production of biosurfactant, a surface-active compound, by two Serratia marcescensstrains was tested on minimal culture medium supplemented with vegetable oils, considering that it is well known that these compounds stimulate biosurfactant production. The vegetable oils tested included soybean, olive, castor, sunflower, and coconut fat. The results showed a decrease in surface tension of the culture medium without oil from 64.54 to 29.57, with a critical micelle dilution (CMD(-1)) and CMD(-2) of 41.77 and 68.92 mN/m, respectively. Sunflower oil gave the best results (29.75 mN/m) with a CMD(-1) and CMD-2 of 36.69 and 51.41 mN/m, respectively. Sunflower oil contains about 60% of linoleic acid. The addition of linoleic acid decreased the surface tension from 53.70 to 28.39, with a CMD(-1) of 29.72 and CMD(-2) of 37.97, suggesting that this fatty acid stimulates the biosurfactant production by the LB006 strain. In addition, the crude precipitate surfactant reduced the surface tension of water from 72.00 to 28.70 mN/m. These results suggest that the sunflower oil's linoleic acid was responsible for the increase in biosurfactant production by the LB006 strain.

  2. Optimization of crude oil degradation by Dietzia cinnamea KA1, capable of biosurfactant production.

    PubMed

    Kavynifard, Amirarsalan; Ebrahimipour, Gholamhossein; Ghasempour, Alireza

    2016-05-01

    The aim of this study was isolation and characterization of a crude oil degrader and biosurfactant-producing bacterium, along with optimization of conditions for crude oil degradation. Among 11 isolates, 5 were able to emulsify crude oil in Minimal Salt Medium (MSM) among which one isolate, named KA1, showed the highest potency for growth rate and biodegradation. The isolate was identified as Dietzia cinnamea KA1 using morphological and biochemical characteristics and 16S rRNA gene sequencing. The optimal conditions were 510 mM NaCl, pH 9.0, 35 °C, and minimal requirement of 46.5 mM NH4 Cl and 2.10 mM NaH2 PO4 . Gravimetric test and Gas chromatography-Mass spectroscopy technique (GC-MS) showed that Dietzia cinnamea KA1 was able to utilize and degrade 95.7% of the crude oil after 5 days, under the optimal conditions. The isolate was able to grow and produce biosurfactant when cultured in MSM supplemented with crude oil, glycerol or whey as the sole carbon sources, but bacterial growth was occurred using molasses with no biosurfactant production. This is the first report of biosurfactant production by D. cinnamea using crude oil, glycerol and whey and the first study to report a species of Dietzia degrading a wide range of hydrocarbons in a short time. PMID:26615815

  3. Characterization of a Soybean Oil-based Biosurfactant and Evaluation of its Ability to Form Microbubbles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper characterizes the physio-chemical properties of the soybean oil (SBO)-based polymeric surfactant, Palozengs R-004 (hereafter referred to as R-004). The surface activity of R-004 is comparable to the reported activities of biosurfactants produced by microorganisms and higher than some of ...

  4. Biosurfactant-mediated biodegradation of straight and methyl-branched alkanes by Pseudomonas aeruginosa ATCC 55925

    PubMed Central

    2011-01-01

    Accidental oil spills and waste disposal are important sources for environmental pollution. We investigated the biodegradation of alkanes by Pseudomonas aeruginosa ATCC 55925 in relation to a rhamnolipid surfactant produced by the same bacterial strain. Results showed that the linear C11-C21 compounds in a heating oil sample degraded from 6% to 100%, whereas the iso-alkanes tended to be recalcitrant unless they were exposed to the biosurfactant; under such condition total biodegradation was achieved. Only the biodegradation of the commercial C12-C19 alkanes could be demonstrated, ranging from 23% to 100%, depending on the experimental conditions. Pristane (a C19 branched alkane) only biodegraded when present alone with the biosurfactant and when included in an artificial mixture even without the biosurfactant. In all cases the biosurfactant significantly enhanced biodegradation. The electron scanning microscopy showed that cells depicted several adaptations to growth on hydrocarbons, such as biopolymeric spheres with embedded cells distributed over different layers on the spherical surfaces and cells linked to each other by extracellular appendages. Electron transmission microscopy revealed transparent inclusions, which were associated with hydrocarbon based-culture cells. These patterns of hydrocarbon biodegradation and cell adaptations depended on the substrate bioavailability, type and length of hydrocarbon. PMID:21906343

  5. Bacterial desorption in water-saturated porous media in the presence of rhamnolipid biosurfactant.

    PubMed

    Chen, Gang; Qiao, Mingqi; Zhang, Huiyun; Zhu, Honglong

    2004-10-01

    We investigated the effects of transients in elution chemistry on bacterial desorption in water-saturated porous media. Two typical Gram-positive bacterial strains of Lactobacillus casei and Streptococcus mitis were used as the model bacteria in this research. These two strains were first deposited in the porous medium, after which the medium with deposited bacteria was flushed with rhamnolipid biosurfactant solutions with a step increase in concentrations, and pulse-type bacterial releases were obtained. Bacterial desorption was quantified from bacterial breakthrough curves. It was found that bacterial retention in silica sand corresponded to bacterial interaction free energies with silica sand evaluated at the equilibrium distance, which were calculated based on independently determined bacterial, sediment and solution surface thermodynamic properties. With the increase in rhamnolipid biosurfactant concentrations, interactions between bacteria and silica sand decreased, and consequently less bacteria were retained. The decrease in interactions between bacteria and silica sand with increasing rhamnolipid biosurfactant concentrations was attributed to a decrease in the solution electron acceptor parameter of the Lewis acid/base component of surface tension, gamma3+. The increase in rhamnolipid biosurfactant concentrations favored the decrease in solution gamma3+, and consequently decreased the interactions between bacteria and silica sand. PMID:15380553

  6. Biosurfactant production by a CO2 sequestering Bacillus sp. strain ISTS2.

    PubMed

    Sundaram, Smita; Thakur, Indu Shekhar

    2015-01-01

    A chemolithotrophic bacterium, Bacillus sp. strain ISTS2, produced biosurfactant when enriched in the chemostat in presence of sodium bicarbonate as carbon source was evaluated for carbon dioxide (CO2) sequestration and biosurfactant production. CO2 sequestration efficiency of the bacterium was determined by enzymatic activity of carbonic anhydrase and ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO). Biosurfactant production ability at 100 mM NHCO3 and 5% CO2 was screened by surface and interfacial tension measurement, emulsification stability test, hydrophobicity test, contact angle measurement, bacterial adhesion to hydrocarbon and purified by silica gel column (60-120 mesh). Thin layer chromatography (TLC) and gas chromatography-mass spectrometry (GC-MS) showed that the crude biosurfactant of ISTS2 were composed of lipopeptides and free fatty acids (FA) and its hydrophobic fraction contained five kinds of fatty acids (FA) with chain lengths of C14-C19. Thus Bacillus sp. strain IST2 can be used as a cleaner bioprocess for the utilization of industrial CO2 as alternate substrate.

  7. Formation and stabilization of nanoemulsions using biosurfactants: Rhamnolipids.

    PubMed

    Bai, Long; McClements, David Julian

    2016-10-01

    Nanoemulsions are used in the food, cosmetics, personal care and pharmaceutical industries to provide desirable optical, textural, stability, and delivery characteristics. In many industrial applications, it is desirable to formulate nanoemulsions using natural ingredients so as to develop label-friendly products. Rhamnolipids are biosurfactants isolated from certain microorganisms using fermentation processes. They are glycolipids that have a polar head consisting of rhamnose units and a non-polar tail consisting of a hydrocarbon chain. In this study, the interfacial characteristics of this natural surfactant at medium chain triglyceride (MCT) oil-water interfaces were characterized, and its ability to form nanoemulsions was compared to that of another natural surfactant (quillaja saponins). The influence of rhamnolipid concentration, homogenization pressure, and oil type on the mean droplet diameter of emulsions produced by microfluidization was determined. Rhamnolipids were highly effective at forming small droplets (d32<0.15μm) at low surfactant-to-oil ratios (SOR<1:10) for MCT oil. Rhamnolipids could also be used to form small droplets using long chain triglyceride oils, such as corn and fish oil. Rhamnolipid-coated droplets were stable to aggregation over a range of pH values (5-9), salt concentrations (<100mM NaCl) and temperatures (20-90°C). However, droplet aggregation was observed at highly acidic (pH 2-4) and high ionic strength (200-500mM NaCl) conditions. These effects were attributed to a reduction in electrostatic repulsion at low pH and high salt levels. Rhamnolipid-coated droplets had a high negative charge at neutral pH that decreased in magnitude with decreasing pH. These results indicate that rhamnolipids are effective natural surfactants that may be able to replace synthetic surfactants in certain commercial applications. PMID:27372634

  8. Magnetic biocatalysts and their uses to obtain biodiesel and biosurfactants.

    PubMed

    López, Carmen; Cruz-Izquierdo, Alvaro; Picó, Enrique A; García-Bárcena, Teresa; Villarroel, Noelia; Llama, María J; Serra, Juan L

    2014-01-01

    Nanobiocatalysis, as the synergistic combination of nanotechnology and biocatalysis, is rapidly emerging as a new frontier of biotechnology. The use of immobilized enzymes in industrial applications often presents advantages over their soluble counterparts, mainly in view of stability, reusability and simpler operational processing. Because of their singular properties, such as biocompatibility, large and modifiable surface and easy recovery, iron oxide magnetic nanoparticles (MNPs) are attractive super-paramagnetic materials that serve as a support for enzyme immobilization and facilitate separations by applying an external magnetic field. Cross-linked enzyme aggregates (CLEAs) have several benefits in the context of industrial applications since they can be cheaply and easily prepared from unpurified enzyme extracts and show improved storage and operational stability against denaturation by heat and organic solvents. In this work, by using the aforementioned advantages of MNPs of magnetite and CLEAs, we prepared two robust magnetically-separable types of nanobiocatalysts by binding either soluble enzyme onto the surface of MNPs functionalized with amino groups or by cross-linking aggregates of enzyme among them and to MNPs to obtain magnetic CLEAs. For this purpose the lipase B of Candida antarctica (CALB) was used. The hydrolytic and biosynthetic activities of the resulting magnetic nanobiocatalysts were assessed in aqueous and organic media. Thus, the hydrolysis of triglycerides and the transesterification reactions to synthesize biodiesel and biosurfactants were studied using magnetic CLEAs of CALB. The efficiency and easy performance of this magnetic biocatalysis validates this proof of concept and sets the basis for the application of magnetic CLEAs at industrial scale. PMID:25207271

  9. Magnetic biocatalysts and their uses to obtain biodiesel and biosurfactants

    PubMed Central

    López, Carmen; Cruz-Izquierdo, Álvaro; Picó, Enrique A.; García-Bárcena, Teresa; Villarroel, Noelia; Llama, María J.; Serra, Juan L.

    2014-01-01

    Nanobiocatalysis, as the synergistic combination of nanotechnology and biocatalysis, is rapidly emerging as a new frontier of biotechnology. The use of immobilized enzymes in industrial applications often presents advantages over their soluble counterparts, mainly in view of stability, reusability and simpler operational processing. Because of their singular properties, such as biocompatibility, large and modifiable surface and easy recovery, iron oxide magnetic nanoparticles (MNPs) are attractive super-paramagnetic materials that serve as a support for enzyme immobilization and facilitate separations by applying an external magnetic field. Cross-linked enzyme aggregates (CLEAs) have several benefits in the context of industrial applications since they can be cheaply and easily prepared from unpurified enzyme extracts and show improved storage and operational stability against denaturation by heat and organic solvents. In this work, by using the aforementioned advantages of MNPs of magnetite and CLEAs, we prepared two robust magnetically-separable types of nanobiocatalysts by binding either soluble enzyme onto the surface of MNPs functionalized with amino groups or by cross-linking aggregates of enzyme among them and to MNPs to obtain magnetic CLEAs. For this purpose the lipase B of Candida antarctica (CALB) was used. The hydrolytic and biosynthetic activities of the resulting magnetic nanobiocatalysts were assessed in aqueous and organic media. Thus, the hydrolysis of triglycerides and the transesterification reactions to synthesize biodiesel and biosurfactants were studied using magnetic CLEAs of CALB. The efficiency and easy performance of this magnetic biocatalysis validates this proof of concept and sets the basis for the application of magnetic CLEAs at industrial scale. PMID:25207271

  10. Biosurfactant production by Pseudomonas aeruginosa A41 using palm oil as carbon source.

    PubMed

    Thaniyavarn, Jiraporn; Chongchin, Aree; Wanitsuksombut, Nopparat; Thaniyavarn, Suthep; Pinphanichakarn, Pairoh; Leepipatpiboon, Natthanant; Morikawa, Masaaki; Kanaya, Shigenori

    2006-08-01

    Biosurfactant production by Pseudomonas aeruginosa A41, a strain isolated from seawater in the gulf of Thailand, was examined when grown in defined medium containing 2% vegetable oil or fatty acid as a carbon source in the presence of vitamins, trace elements and 0.4% NH(4)NO(3), at pH 7 and 30 degrees C with 200 rpm-shaking for 7 days. The yield of biosurfactant steadily increased even after a stationary phase. Under such conditions the surface tension of the medium was lowered from 55-70 mN/m to 27.8-30 mN/m with every carbon source tested. However, types of carbon sources were found to affect biosurfactant yield. The yields of rhamnolipid biosurfactant were 6.58 g/L, 2.91 g/L and 2.93 g/L determined as rhamnose content when olive oil, palm oil and coconut oil, respectively, were used as a carbon source. Among them, biosurfactant obtained from palm oil was the best in lowering surface tension of the medium. Increase in biosurfactant activities in terms of oil displacement test and rhamnose content were observed to be higher with shorter chain fatty acids than that of the longer chains (C12>C14>C16). In addition, we found that C18:2, highly unsaturated fatty acid, showed higher oil displacement activity and rhamnose content than that of C18:1. The optimal oil displacement activity was found at pH 7-9 and in the presence of 0.5-3% NaCl. The oil displacement activity was stable to temperatures up to 100 degrees C for 15 h. Surface tension reduction activity was relatively stable at pH 2-12 and 0-5% of NaCl. Emusification activity tested with various types of hydrocarbons and vegetable oils showed similarity of up to 60% stability. The partially purified biosurfactant via TLC and silica gel column chromatography gave three main peaks on HPLC with mass spectra of 527, 272, and 661 m/z respectively, corresponding to sodium-monorhamnodecanoate, hydroxyhexadecanoic acid and an unknown compound, respectively. PMID:17116970

  11. Artificial neural network modeling and genetic algorithm based medium optimization for the improved production of marine biosurfactant.

    PubMed

    Sivapathasekaran, C; Mukherjee, Soumen; Ray, Arja; Gupta, Ashish; Sen, Ramkrishna

    2010-04-01

    A nonlinear model describing the relationship between the biosurfactant concentration as a process output and the critical medium components as the independent variables was developed by artificial neural network modeling. The model was optimized for the maximum biosurfactant production by using genetic algorithm. Based on a single-factor-at-a-time optimization strategy, the critical medium components were found to be glucose, urea, SrCl(2) and MgSO(4). The experimental results obtained from a statistical experimental design were used for the modeling and optimization by linking an artificial neural network (ANN) model with genetic algorithm (GA) in MATLAB. Using the optimized concentration of critical elements, the biosurfactant yield showed close agreement with the model prediction. An enhancement in biosurfactant production by approximately 70% was achieved by this optimization procedure. PMID:19914826

  12. Purification and characterization of biosurfactant produced by Bacillus licheniformis Y-1 and its application in remediation of petroleum contaminated soil.

    PubMed

    Liu, Boqun; Liu, Jinpeng; Ju, Meiting; Li, Xiaojing; Yu, Qilin

    2016-06-15

    In our previous research, a petroleum degrading bacteria strain Bacillus licheniformis Y-1 was obtained in Dagang Oilfield which had the capability of producing biosurfactant. This biosurfactant was isolated and purified in this work. The biosurfactant produced by strain Y-1 had the capability to decrease the surface tension of water from 74.66 to 27.26mN/m, with the critical micelle concentration (CMC) of 40mg/L. The biosurfactant performed not only excellent stabilities against pH, temperature and salinity, but also great emulsifying activities to different kinds of oil, especially the crude oil. According to the results of FT-IR spectrum and (1)H NMR spectrum detection, the surfactant was determined to be a cyclic lipopeptide. Furthermore, through the addition of surfactant, the effect of petroleum contaminated soil remediation by fungi got a significant improvement. PMID:27114088

  13. Purification and characterization of biosurfactant produced by Bacillus licheniformis Y-1 and its application in remediation of petroleum contaminated soil.

    PubMed

    Liu, Boqun; Liu, Jinpeng; Ju, Meiting; Li, Xiaojing; Yu, Qilin

    2016-06-15

    In our previous research, a petroleum degrading bacteria strain Bacillus licheniformis Y-1 was obtained in Dagang Oilfield which had the capability of producing biosurfactant. This biosurfactant was isolated and purified in this work. The biosurfactant produced by strain Y-1 had the capability to decrease the surface tension of water from 74.66 to 27.26mN/m, with the critical micelle concentration (CMC) of 40mg/L. The biosurfactant performed not only excellent stabilities against pH, temperature and salinity, but also great emulsifying activities to different kinds of oil, especially the crude oil. According to the results of FT-IR spectrum and (1)H NMR spectrum detection, the surfactant was determined to be a cyclic lipopeptide. Furthermore, through the addition of surfactant, the effect of petroleum contaminated soil remediation by fungi got a significant improvement.

  14. Management of soybean oil refinery wastes through recycling them for producing biosurfactant using Pseudomonas aeruginosa MR01.

    PubMed

    Partovi, Maryam; Lotfabad, Tayebe Bagheri; Roostaazad, Reza; Bahmaei, Manochehr; Tayyebi, Shokoufe

    2013-06-01

    Biosurfactant production through a fermentation process involving the biodegradation of soybean oil refining wastes was studied. Pseudomonas aeruginosa MR01 was able to produce extracellular biosurfactant when it was cultured in three soybean oil refinement wastes; acid oil, deodorizer distillate and soapstock, at different carbon to nitrogen ratios. Subsequent fermentation kinetics in the three types of waste culture were also investigated and compared with kinetic behavior in soybean oil medium. Biodegradation of wastes, biosurfactant production, biomass growth, nitrate consumption and the number of colony forming units were detected in four proposed media, at specified time intervals. Unexpectedly, wastes could stimulate the biodegradation activity of MR01 bacterial cells and thus biosurfactant synthesis beyond that of the refined soybean oil. This is evident from higher yields of biodegradation and production, as revealed in the waste cultures (Ydeg|(Soybean oil) = 53.9 % < Ydeg|(wastes) and YP/S|(wastes) > YP/S|(Soybean oil) = 0.31 g g(-1), respectively). Although production yields were approximately the same in the three waste cultures (YP/S|(wastes) =/~ 0.5 g g(-1)), microbial activity resulted in higher yields of biodegradation (96.5 ± 1.13 %), maximum specific growth rate (μ max = 0.26 ± 0.02 h(-1)), and biosurfactant purity (89.6 %) with a productivity of 14.55 ± 1.10 g l(-1), during the bioconversion of soapstock into biosurfactant. Consequently, applying soybean oil soapstock as a substrate for the production of biosurfactant with commercial value has the potential to provide a combination of economical production with environmental protection through the biosynthesis of an environmentally friendly (green) compound and reduction of waste load entering the environment. Moreover, this work inferred spectrophotometry as an easy method to detect rhamnolipids in the biosurfactant products. PMID:23361970

  15. Screening of cloud microorganisms isolated at the Puy de Dôme (France) station for the production of biosurfactants

    NASA Astrophysics Data System (ADS)

    Renard, Pascal; Canet, Isabelle; Sancelme, Martine; Wirgot, Nolwenn; Deguillaume, Laurent; Delort, Anne-Marie

    2016-09-01

    A total of 480 microorganisms collected from 39 clouds sampled at the Puy de Dôme station (alt. 1465 m; 45°46'19'' N, 2°57'52'' E; Massif Central, France) were isolated and identified. This unique collection was screened for biosurfactant (surfactants of microbial origin) production by measuring the surface tension (σ) of the crude extracts, comprising the supernatants of the pure cultures, using the pendant drop technique. The results showed that 41 % of the tested strains were active producers (σ < 55 mN m-1), with 7 % being extremely active (σ < 30 mN m-1). The most efficient biosurfactant producers (σ < 45 mN m-1) belong to a few bacterial genera (Pseudomonas and Xanthomonas) from the Υ-Proteobacteria class (78 %) and a yeast genus (Udeniomyces) from the Basidiomycota phylum (11 %). Some Bacillus strains from the Firmicutes phylum were also active but represented a small fraction of the collected population. Strains from the Actinobacteria phylum in the collection examined in the present study showed moderate biosurfactant production (45<σ < 55 mN m-1). Pseudomonas (Υ-Proteobacteria), the most frequently detected genus in clouds, with some species issued from the phyllosphere, was the dominant group for the production of biosurfactants. We observed some correlations between the chemical composition of cloud water and the presence of biosurfactant-producing microorganisms, suggesting the "biogeography" of this production. Moreover, the potential impact of the production of biosurfactants by cloud microorganisms on atmospheric processes is discussed.

  16. Effects of rhamnolipid biosurfactant JBR425 and synthetic surfactant surfyno1465 on the peroxidase-catalyzed oxidation of 2-naphthol.

    PubMed

    Rūta, Ivanec-Goranina; Juozas, Kulys

    2013-07-01

    The kinetics of the recombinant Coprinus cinereus peroxidase-catalyzed 2-naphthol oxidation was investigated in the presence of rhamnolipid biosurfactant JBR425 and synthetic surfactant Surfynol465 at pH 5.5 and 250C, with concentrations of (bio)surfactants both less than critical micelle concentrations (CMC) and larger than CMC. It was shown that monomers of JBR425 as well as monomers of Surfynol465 had an enhancing effect on the conversion of 2-naphthol in dose response manner and did not influence the initial rate of 2-naphthol oxidation. The results were accounted by a scheme, which contains a stadium of enzyme inhibition by oligomeric 2-naphthol oxidation products. The action of the biosurfactant's (or synthetic surfactant's) monomers was explained by avoidance of the enzyme active center clothing with oligomers. Similar results have demonstrated the potential of rhamnolipid biosurfactant JBR425 due to its biodegradability. When biosurfactants' concentrations are larger than CMC, (bio)surfactants have an opposite effect on the oxidation of 2-naphthol by peroxidase.

  17. Biosurfactant production by hydrocarbon-degrading Brevibacterium and Vibrio isolates from the sea pen Pteroeides spinosum (Ellis, 1764).

    PubMed

    Graziano, Marco; Rizzo, Carmen; Michaud, Luigi; Porporato, Erika Maria Diletta; De Domenico, Emilio; Spanò, Nunziacarla; Lo Giudice, Angelina

    2016-09-01

    Among filter-feeders, pennatulids are the most complex and polymorphic members of the cnidarian class Anthozoa. They display a wide distribution throughout all the oceans, constituting a significant component of the sessile megafauna from intertidal to abyssal depths. In this study, a total of 118 bacterial isolates from enrichment cultures, carried out with homogenates of the sea pen Pteroeides spinosum (Ellis, 1764), were screened for hydrocarbon utilization by using the 2,6-dichlorophenol indophenol assay. Among them, 83 hydrocarbon-oxidizing isolates were analyzed for biosurfactant production by standard screening tests (i.e., emulsifying activity, E24 detection, surface tension measurement, microplate assay). The 16S rRNA gene sequencing revealed the affiliation of the most promising isolates to the genera Brevibacterium and Vibrio. Biosurfactant production resulted strongly affected by salinity and temperature conditions, and occurred in the presence of diesel oil and/or crude oil, whereas no production was observed when isolates were grown on tetradecane. The strains resulted able to create stable emulsions, thus suggesting the production of biosurfactants. Further analyses revealed a glycolipidic nature of the biosurfactant extracted from Vibrio sp. PBN295, a genus that has been only recently reported as biosurfactant producer. Results suggest that pennatulids could represent a novel source for the isolation of hydrocarbon-oxidizing bacteria with potential in biosurfactant production. PMID:27119461

  18. A Novel Biosurfactant Produced by Aureobasidium pullulans L3-GPY from a Tiger Lily Wild Flower, Lilium lancifolium Thunb.

    PubMed Central

    Kim, Jong Shik; Lee, In Kyoung; Yun, Bong Sik

    2015-01-01

    Yeast biosurfactants are important biotechnological products in the food industry, and they have medical and cosmeceutical applications owing to their specific modes of action, low toxicity, and applicability. Thus, we have isolated and examined biosurfactant-producing yeast for various industrial and medical applications. A rapid and simple method was developed to screen biosurfactant-producing yeasts for high production of eco-friendly biosurfactants. Using this method, several potential niches of biosurfactant-producing yeasts, such as wild flowers, were investigated. We successfully selected a yeast strain, L3-GPY, with potent surfactant activity from a tiger lily, Lilium lancifolium Thunb. Here, we report the first identification of strain L3-GPY as the black yeast Aureobasidium pullulans. In addition, we isolated a new low-surface-tension chemical, designated glycerol-liamocin, from the culture supernatant of strain L3-GPY through consecutive chromatography steps, involving an ODS column, solvent partition, silica gel, Sephadex LH-20, and an ODS Sep-Pak cartridge column. The chemical structure of glycerol-liamocin, determined by mass spectrometry and nuclear magnetic resonance spectroscopy, indicates that it is a novel compound with the molecular formula C33H62O12. Furthermore, glycerol-liamocin exhibited potent biosurfactant activity (31 mN/m). These results suggest that glycerol-liamocin is a potential novel biosurfactantfor use in various industrial applications. PMID:25849549

  19. Electrokinetic-Enhanced Remediation of Phenanthrene-Contaminated Soil Combined with Sphingomonas sp. GY2B and Biosurfactant.

    PubMed

    Lin, Weijia; Guo, Chuling; Zhang, Hui; Liang, Xujun; Wei, Yanfu; Lu, Guining; Dang, Zhi

    2016-04-01

    Electrokinetic-microbial remediation (EMR) has emerged as a promising option for the removal of polycyclic aromatic hydrocarbons (PAHs) from contaminated soils. The aim of this study was to enhance degradation of phenanthrene (Phe)-contaminated soils using EMR combined with biosurfactants. The electrokinetic (EK) remediation, combined with Phe-degrading Sphingomonas sp. GY2B, and biosurfactant obtained by fermentation of Pseudomonas sp. MZ01, degraded Phe in the soil with an efficiency of up to 65.1 % at the anode, 49.9 % at the cathode after 5 days of the treatment. The presence of biosurfactants, electricity, and a neutral electrolyte stimulated the growth of the degrading bacteria as shown by a rapid increase in microbial biomass with time. The electrical conductivity and pH changed little during the course of the treatment, which benefitted the growth of microorganisms and the remediation of Phe-contaminated soil. The EMR system with the addition of biosurfactant had the highest Phe removal, demonstrating the biosurfactant may enhance the bioavailability of Phe and the interaction with the microorganism. This study suggests that the EMR combined with biosurfactants can be used to enhance in situ bioremediation of PAH-contaminated soils. PMID:26683200

  20. Structural and physicochemical characterization of crude biosurfactant produced by Pseudomonas aeruginosa SP4 isolated from petroleum-contaminated soil.

    PubMed

    Pornsunthorntawee, Orathai; Wongpanit, Panya; Chavadej, Sumaeth; Abe, Masahiko; Rujiravanit, Ratana

    2008-04-01

    Pseudomonas aeruginosa strain SP4, isolated from petroleum-contaminated soil in Thailand, was used to produce a biosurfactant from a nutrient broth with palm oil as the carbon source. The key components of the crude biosurfactant were fractionated by using HPLC-ELSD technique. With the use of ATR-FTIR spectroscopy, in combination with (1)H NMR and MS analyses, chemical structures of the fractionated components of the crude biosurfactant were identified as rhamnolipid species. When compared to synthetic surfactants, including Pluronic F-68, which is a triblock nonionic surfactant containing poly(ethylene oxide) and poly(propylene oxide), and sodium dodecyl sulfate, the crude biosurfactant showed comparable physicochemical properties, in terms of the surface activities. The crude biosurfactant reduced the surface tension of pure water to 29.0 mN/m with a critical micelle concentration of approximately 200 mg/l, and it exhibited good thermal and pH stability. The crude biosurfactant also formed stable water-in-oil microemulsions with crude oil and various types of vegetable oils, but not with short-chain hydrocarbons.

  1. Effect of biosurfactant and fertilizer on biodegradation of crude oil by marine isolates of Bacillus megaterium, Corynebacterium kutscheri and Pseudomonas aeruginosa.

    PubMed

    Thavasi, Rengathavasi; Jayalakshmi, Singaram; Banat, Ibrahim M

    2011-01-01

    This study was conducted to investigate the effects of fertilizers and biosurfactants on biodegradation of crude oil by three marine bacterial isolates; Bacillus megaterium, Corynebacterium kutscheri and Pseudomonas aeruginosa. Five sets of experiments were carried out in shake flask and microcosm conditions with crude oil as follows: Set 1-only bacterial cells added (no fertilizer and biosurfactant), Set 2-with additional fertilizer only, Set 3-with additional biosurfactant only, Set 4-with added biosurfactant+fertilizer, Set 5-with no bacterial cells added (control), all the above experimental sets were incubated for 168 h. The biosurfactant+fertilizer added Set 4, resulted in maximum crude oil degradation within shake flask and microcosm conditions. Among the three bacterial isolates, P. aeruginosa and biosurfactant produced by this strain resulted in maximum crude oil degradation compared to the other two bacterial strains investigated. Interestingly, when biosurfactant and bacterial cells were used (Set 3), significant oil biodegradation activity occurred and the difference between this treatment and that in Set 4 with added fertilizer+biosurfactant were only 4-5% higher degradation level in shake flask and 3.2-7% in microcosm experiments for all three bacterial strains used. It is concluded that, biosurfactants alone capable of promoting biodegradation to a large extent without added fertilizers, which will reduce the cost of bioremediation process and minimizes the dilution or wash away problems encountered when water soluble fertilizers used during bioremediation of aquatic environments. PMID:20863694

  2. An efficient thermotolerant and halophilic biosurfactant-producing bacterium isolated from Dagang oil field for MEOR application

    NASA Astrophysics Data System (ADS)

    Wu, Langping; Richnow, Hans; Yao, Jun; Jain, Anil

    2014-05-01

    Dagang Oil field (Petro China Company Limited) is one of the most productive oil fields in China. In this study, 34 biosurfactant-producing strains were isolated and cultured from petroleum reservoir of Dagang oil field, using haemolytic assay and the qualitative oil-displacement test. On the basis of 16S rDNA analysis, the isolates were closely related to the species in genus Pseudomonas, Staphylococcus and Bacillus. One of the isolates identified as Bacillus subtilis BS2 were selected for further study. This bacterium was able to produce a type of biosurfactant with excessive foam-forming properties at 37ºC as well as at higher temperature of 55ºC. The biosurfactant produced by the strain BS2 could reduce the surface tension of the culture broth from 70.87 mN/m to 28.97 mN/m after 8 days of incubation at 37ºC and to 36.15 mN/m after 20 days of incubation at 55ºC, respectively. The biosurfactant showed stability at high temperature (up to 120ºC), a wide range of pH (2 to 12) and salt concentrations (up to 12%) offering potential for biotechnology. Fourier transform infrared (FT-IR) spectrum of extracted biosurfactant tentatively characterized the produced biosurfactant as glycolipid derivative. Elemental analysis of the biosurfactant by energy dispersive X-ray spectroscopy (EDS) reveals that the biosurfactant was anionic in nature. 15 days of biodegradation of crude oil suggested a preferential usage of n-alkane upon microbial metabolism of BS2 as a carbon substrate and consequently also for the synthesis of biosurfactants. Core flood studies for oil release indicated 9.6% of additional oil recovery over water flooding at 37ºC and 7.2% of additional oil recovery at 55 ºC. Strain BS2 was characterized as an efficient biosurfactant-producing, thermotolerant and halophillic bacterium and has the potential for application for microbial enhanced oil recovery (MEOR) through water flooding in China's oil fields even in situ as adapted to reservoir chemistry and

  3. Structural Characterization and Antimicrobial Activity of a Biosurfactant Obtained From Bacillus pumilus DSVP18 Grown on Potato Peels

    PubMed Central

    Sharma, Deepak; Ansari, Mohammad Javed; Gupta, Sonam; Al Ghamdi, Ahmad; Pruthi, Parul; Pruthi, Vikas

    2015-01-01

    Background: Biosurfactants constitute a structurally diverse group of surface-active compounds derived from microorganisms. They are widely used industrially in various industrial applications such as pharmaceutical and environmental sectors. Major limiting factor in biosurfactant production is their production cost. Objectives: The aim of this study was to investigate biosurfactant production under laboratory conditions with potato peels as the sole source of carbon source. Materials and Methods: A biosurfactant-producing bacterial strain (Bacillus pumilus DSVP18, NCBI GenBank accession no. GQ865643) was isolated from motor oil contaminated soil samples. Biochemical characteristics of the purified biosurfactant were determined and its chemical structure was analyzed. Stability studies were performed and biological activity of the biosurfactant was also evaluated. Results: The strain, when grown on modified minimal salt media supplemented with 2% potato peels as the sole carbon source, showed the ability to reduce Surface Tension (ST) value of the medium from 72 to 28.7 mN/m. The isolated biosurfactant (3.2 ± 0.32 g/L) was stable over a wide range of temperatures (20 - 120 ºC), pH (2-12) and salt concentrations (2 - 12%). When characterized using high-performance liquid chromatography (HPLC) and Fourier transform infrared spectroscopy, it was found to be a lipopeptide in nature, which was further confirmed by Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (mass peak 1044.60) and nuclear magnetic resonance (NMR) studies. Data showed that the isolated biosurfactant at the concentration range of 30 - 35 µg/ml had strong antimicrobial activity when tested against standard strains of Bacillus cereus, Escherichia coli, Salmonella enteritidis, Staphylococcus aureus and Paenibacillus larvae. Conclusions: Potato peels were proved to be potentially useful substrates for biosurfactant production by B. pumilus DSVP18. The strain possessed a

  4. Biosurfactant production from marine hydrocarbon-degrading consortia and pure bacterial strains using crude oil as carbon source.

    PubMed

    Antoniou, Eleftheria; Fodelianakis, Stilianos; Korkakaki, Emmanouela; Kalogerakis, Nicolas

    2015-01-01

    Biosurfactants (BSs) are "green" amphiphilic molecules produced by microorganisms during biodegradation, increasing the bioavailability of organic pollutants. In this work, the BS production yield of marine hydrocarbon degraders isolated from Elefsina bay in Eastern Mediterranean Sea has been investigated. The drop collapse test was used as a preliminary screening test to confirm BS producing strains or mixed consortia. The community structure of the best consortia based on the drop collapse test was determined by 16S-rDNA pyrotag screening. Subsequently, the effect of incubation time, temperature, substrate and supplementation with inorganic nutrients, on BS production, was examined. Two types of BS - lipid mixtures were extracted from the culture broth; the low molecular weight BS Rhamnolipids and Sophorolipids. Crude extracts were purified by silica gel column chromatography and then identified by thin layer chromatography and Fourier transform infrared spectroscopy. Results indicate that BS production yield remains constant and low while it is independent of the total culture biomass, carbon source, and temperature. A constant BS concentration in a culture broth with continuous degradation of crude oil (CO) implies that the BS producing microbes generate no more than the required amount of BSs that enables biodegradation of the CO. Isolated pure strains were found to have higher specific production yields than the complex microbial marine community-consortia. The heavy oil fraction of CO has emerged as a promising substrate for BS production (by marine BS producers) with fewer impurities in the final product. Furthermore, a particular strain isolated from sediments, Paracoccus marcusii, may be an optimal choice for bioremediation purposes as its biomass remains trapped in the hydrocarbon phase, not suffering from potential dilution effects by sea currents.

  5. Biosurfactant production from marine hydrocarbon-degrading consortia and pure bacterial strains using crude oil as carbon source

    PubMed Central

    Antoniou, Eleftheria; Fodelianakis, Stilianos; Korkakaki, Emmanouela; Kalogerakis, Nicolas

    2015-01-01

    Biosurfactants (BSs) are “green” amphiphilic molecules produced by microorganisms during biodegradation, increasing the bioavailability of organic pollutants. In this work, the BS production yield of marine hydrocarbon degraders isolated from Elefsina bay in Eastern Mediterranean Sea has been investigated. The drop collapse test was used as a preliminary screening test to confirm BS producing strains or mixed consortia. The community structure of the best consortia based on the drop collapse test was determined by 16S-rDNA pyrotag screening. Subsequently, the effect of incubation time, temperature, substrate and supplementation with inorganic nutrients, on BS production, was examined. Two types of BS – lipid mixtures were extracted from the culture broth; the low molecular weight BS Rhamnolipids and Sophorolipids. Crude extracts were purified by silica gel column chromatography and then identified by thin layer chromatography and Fourier transform infrared spectroscopy. Results indicate that BS production yield remains constant and low while it is independent of the total culture biomass, carbon source, and temperature. A constant BS concentration in a culture broth with continuous degradation of crude oil (CO) implies that the BS producing microbes generate no more than the required amount of BSs that enables biodegradation of the CO. Isolated pure strains were found to have higher specific production yields than the complex microbial marine community-consortia. The heavy oil fraction of CO has emerged as a promising substrate for BS production (by marine BS producers) with fewer impurities in the final product. Furthermore, a particular strain isolated from sediments, Paracoccus marcusii, may be an optimal choice for bioremediation purposes as its biomass remains trapped in the hydrocarbon phase, not suffering from potential dilution effects by sea currents. PMID:25904907

  6. Biosurfactant production from marine hydrocarbon-degrading consortia and pure bacterial strains using crude oil as carbon source.

    PubMed

    Antoniou, Eleftheria; Fodelianakis, Stilianos; Korkakaki, Emmanouela; Kalogerakis, Nicolas

    2015-01-01

    Biosurfactants (BSs) are "green" amphiphilic molecules produced by microorganisms during biodegradation, increasing the bioavailability of organic pollutants. In this work, the BS production yield of marine hydrocarbon degraders isolated from Elefsina bay in Eastern Mediterranean Sea has been investigated. The drop collapse test was used as a preliminary screening test to confirm BS producing strains or mixed consortia. The community structure of the best consortia based on the drop collapse test was determined by 16S-rDNA pyrotag screening. Subsequently, the effect of incubation time, temperature, substrate and supplementation with inorganic nutrients, on BS production, was examined. Two types of BS - lipid mixtures were extracted from the culture broth; the low molecular weight BS Rhamnolipids and Sophorolipids. Crude extracts were purified by silica gel column chromatography and then identified by thin layer chromatography and Fourier transform infrared spectroscopy. Results indicate that BS production yield remains constant and low while it is independent of the total culture biomass, carbon source, and temperature. A constant BS concentration in a culture broth with continuous degradation of crude oil (CO) implies that the BS producing microbes generate no more than the required amount of BSs that enables biodegradation of the CO. Isolated pure strains were found to have higher specific production yields than the complex microbial marine community-consortia. The heavy oil fraction of CO has emerged as a promising substrate for BS production (by marine BS producers) with fewer impurities in the final product. Furthermore, a particular strain isolated from sediments, Paracoccus marcusii, may be an optimal choice for bioremediation purposes as its biomass remains trapped in the hydrocarbon phase, not suffering from potential dilution effects by sea currents. PMID:25904907

  7. On-line biomass estimation in biosurfactant production process by Candida lipolytica UCP 988.

    PubMed

    da Costa Albuquerque, Clarissa Daisy; de Campos-Takaki, Galba Maria; Fileti, Ana Maria Frattini

    2008-11-01

    Biomass is an important variable in biosurfactant production process. However, such bioprocess variable, usually, is collected by sampling and determined by off-line analysis, with significant time delay. Therefore, simple and reliable on-line biomass estimation procedures are highly desirable. An artificial neural network model (ANN) is presented for the on-line estimation of biomass concentration, in biosurfactant production by Candida lipolytica UCP 988, as a nonlinear function of pH and dissolved oxygen. Several configurations were evaluated while developing the optimal ANN model. The optimal ANN model consists of one hidden layer with four neurons. The performance of the ANN was checked using experimental data. The results obtained indicate a very good predictive capacity for the ANN-based software sensor with values of R2 of 0.969 and RMSE of 0.021 for biomass concentration. Estimated biomass using the ANN was proved to be a simple, robust and accurate method.

  8. Biofilm lifestyle enhances diesel bioremediation and biosurfactant production in the Antarctic polyhydroxyalkanoate producer Pseudomonas extremaustralis.

    PubMed

    Tribelli, Paula M; Di Martino, Carla; López, Nancy I; Raiger Iustman, Laura J

    2012-09-01

    Diesel is a widely distributed pollutant. Bioremediation of this kind of compounds requires the use of microorganisms able to survive and adapt to contaminated environments. Pseudomonas extremaustralis is an Antarctic bacterium with a remarkable survival capability associated to polyhydroxyalkanoates (PHAs) production. This strain was used to investigate the effect of cell growth conditions--in biofilm versus shaken flask cultures--as well as the inocula characteristics associated with PHAs accumulation, on diesel degradation. Biofilms showed increased cell growth, biosurfactant production and diesel degradation compared with that obtained in shaken flask cultures. PHA accumulation decreased biofilm cell attachment and enhanced biosurfactant production. Degradation of long-chain and branched alkanes was observed in biofilms, while in shaken flasks only medium-chain length alkanes were degraded. This work shows that the PHA accumulating bacterium P. extremaustralis can be a good candidate to be used as hydrocarbon bioremediation agent, especially in extreme environments.

  9. A Novel Glycolipid Biosurfactant Confers Grazing Resistance upon Pantoea ananatis BRT175 against the Social Amoeba Dictyostelium discoideum.

    PubMed

    Smith, Derek D N; Nickzad, Arvin; Déziel, Eric; Stavrinides, John

    2016-01-01

    Pantoea is a versatile genus of bacteria with both plant- and animal-pathogenic strains, some of which have been suggested to cause human infections. There is, however, limited knowledge on the potential determinants used for host association and pathogenesis in animal systems. In this study, we used the model host Dictyostelium discoideum to show that isolates of Pantoea ananatis exhibit differential grazing susceptibility, with some being resistant to grazing by the amoebae. We carried out a high-throughput genetic screen of one grazing-resistant isolate, P. ananatis BRT175, using the D. discoideum pathosystem to identify genes responsible for the resistance phenotype. Among the 26 candidate genes involved in grazing resistance, we identified rhlA and rhlB, which we show are involved in the biosynthesis of a biosurfactant that enables swarming motility in P. ananatis BRT175. Using liquid chromatography-mass spectrometry (LC-MS), the biosurfactant was shown to be a glycolipid with monohexose-C10-C10 as the primary congener. We show that this novel glycolipid biosurfactant is cytotoxic to the amoebae and is capable of compromising cellular integrity, leading to cell lysis. The production of this biosurfactant may be important for bacterial survival in the environment and could contribute to the establishment of opportunistic infections. IMPORTANCE The genetic factors used for host interaction by the opportunistic human pathogen Pantoea ananatis are largely unknown. We identified two genes that are important for the production of a biosurfactant that confers grazing resistance against the social amoeba Dictyostelium discoideum. We show that the biosurfactant, which exhibits cytotoxicity toward the amoebae, is a glycolipid that incorporates a hexose rather than rhamnose. The production of this biosurfactant may confer a competitive advantage in the environment and could potentially contribute to the establishment of opportunistic infections. PMID:27303689

  10. A Novel Glycolipid Biosurfactant Confers Grazing Resistance upon Pantoea ananatis BRT175 against the Social Amoeba Dictyostelium discoideum.

    PubMed

    Smith, Derek D N; Nickzad, Arvin; Déziel, Eric; Stavrinides, John

    2016-01-01

    Pantoea is a versatile genus of bacteria with both plant- and animal-pathogenic strains, some of which have been suggested to cause human infections. There is, however, limited knowledge on the potential determinants used for host association and pathogenesis in animal systems. In this study, we used the model host Dictyostelium discoideum to show that isolates of Pantoea ananatis exhibit differential grazing susceptibility, with some being resistant to grazing by the amoebae. We carried out a high-throughput genetic screen of one grazing-resistant isolate, P. ananatis BRT175, using the D. discoideum pathosystem to identify genes responsible for the resistance phenotype. Among the 26 candidate genes involved in grazing resistance, we identified rhlA and rhlB, which we show are involved in the biosynthesis of a biosurfactant that enables swarming motility in P. ananatis BRT175. Using liquid chromatography-mass spectrometry (LC-MS), the biosurfactant was shown to be a glycolipid with monohexose-C10-C10 as the primary congener. We show that this novel glycolipid biosurfactant is cytotoxic to the amoebae and is capable of compromising cellular integrity, leading to cell lysis. The production of this biosurfactant may be important for bacterial survival in the environment and could contribute to the establishment of opportunistic infections. IMPORTANCE The genetic factors used for host interaction by the opportunistic human pathogen Pantoea ananatis are largely unknown. We identified two genes that are important for the production of a biosurfactant that confers grazing resistance against the social amoeba Dictyostelium discoideum. We show that the biosurfactant, which exhibits cytotoxicity toward the amoebae, is a glycolipid that incorporates a hexose rather than rhamnose. The production of this biosurfactant may confer a competitive advantage in the environment and could potentially contribute to the establishment of opportunistic infections.

  11. A Novel Glycolipid Biosurfactant Confers Grazing Resistance upon Pantoea ananatis BRT175 against the Social Amoeba Dictyostelium discoideum

    PubMed Central

    Smith, Derek D. N.; Nickzad, Arvin

    2016-01-01

    ABSTRACT Pantoea is a versatile genus of bacteria with both plant- and animal-pathogenic strains, some of which have been suggested to cause human infections. There is, however, limited knowledge on the potential determinants used for host association and pathogenesis in animal systems. In this study, we used the model host Dictyostelium discoideum to show that isolates of Pantoea ananatis exhibit differential grazing susceptibility, with some being resistant to grazing by the amoebae. We carried out a high-throughput genetic screen of one grazing-resistant isolate, P. ananatis BRT175, using the D. discoideum pathosystem to identify genes responsible for the resistance phenotype. Among the 26 candidate genes involved in grazing resistance, we identified rhlA and rhlB, which we show are involved in the biosynthesis of a biosurfactant that enables swarming motility in P. ananatis BRT175. Using liquid chromatography-mass spectrometry (LC-MS), the biosurfactant was shown to be a glycolipid with monohexose-C10-C10 as the primary congener. We show that this novel glycolipid biosurfactant is cytotoxic to the amoebae and is capable of compromising cellular integrity, leading to cell lysis. The production of this biosurfactant may be important for bacterial survival in the environment and could contribute to the establishment of opportunistic infections. IMPORTANCE The genetic factors used for host interaction by the opportunistic human pathogen Pantoea ananatis are largely unknown. We identified two genes that are important for the production of a biosurfactant that confers grazing resistance against the social amoeba Dictyostelium discoideum. We show that the biosurfactant, which exhibits cytotoxicity toward the amoebae, is a glycolipid that incorporates a hexose rather than rhamnose. The production of this biosurfactant may confer a competitive advantage in the environment and could potentially contribute to the establishment of opportunistic infections. PMID

  12. Production and characterization of microbial biosurfactants for potential use in oil-spill remediation.

    PubMed

    Marti, M E; Colonna, W J; Patra, P; Zhang, H; Green, C; Reznik, G; Pynn, M; Jarrell, K; Nyman, J A; Somasundaran, P; Glatz, C E; Lamsal, B P

    2014-02-01

    Two biosurfactants, surfactin and fatty acyl-glutamate, were produced from genetically-modified strains of Bacillus subtilis on 2% glucose and mineral salts media in shake-flasks and bioreactors. Biosurfactant synthesis ceased when the main carbohydrate source was completely depleted. Surfactin titers were ∼30-fold higher than fatty acyl-glutamate in the same medium. When bacteria were grown in large aerated bioreactors, biosurfactants mostly partitioned to the foam fraction, which was recovered. Dispersion effectiveness of surfactin and fatty acyl-glutamate was evaluated by measuring the critical micelle concentration (CMC) and dispersant-to-oil ratio (DOR). The CMC values for surfactin and fatty acyl-glutamate in double deionized distilled water were 0.015 and 0.10 g/L, respectively. However, CMC values were higher, 0.02 and 0.4 g/L for surfactin and fatty acyl-glutamate, respectively, in 12 parts per thousand Instant Ocean®[corrected].sea salt, which has been partly attributed to saline-induced conformational changes in the solvated ionic species of the biosurfactants. The DORs for surfactin and fatty acyl-glutamate were 1:96 and 1:12, respectively, in water. In Instant Ocean® solutions containing 12 ppt sea salt, these decreased to 1:30 and 1:4, respectively, suggesting reduction in oil dispersing efficiency of both surfactants in saline. Surfactant toxicities were assessed using the Gulf killifish, Fundulus grandis, which is common in estuarine habitats of the Gulf of Mexico. Surfactin was 10-fold more toxic than fatty acyl-glutamate. A commercial surfactant, sodium laurel sulfate, had intermediate toxicity. Raising the salinity from 5 to 25 ppt increased the toxicity of all three surfactants; however, the increase was the lowest for fatty acyl-glutamate.

  13. Effects of biosurfactants on the viability and proliferation of human breast cancer cells

    PubMed Central

    2014-01-01

    Biosurfactants are molecules with surface activity produced by microorganisms that can be used in many biomedical applications. The anti-tumour potential of these molecules is being studied, although results are still scarce and few data are available regarding the mechanisms underlying such activity. In this work, the anti-tumour activity of a surfactin produced by Bacillus subtilis 573 and a glycoprotein (BioEG) produced by Lactobacillus paracasei subsp. paracasei A20 was evaluated. Both biosurfactants were tested against two breast cancer cell lines, T47D and MDA-MB-231, and a non-tumour fibroblast cell line (MC-3 T3-E1), specifically regarding cell viability and proliferation. Surfactin was found to decrease viability of both breast cancer cell lines studied. A 24 h exposure to 0.05 g l-1 surfactin led to inhibition of cell proliferation as shown by cell cycle arrest at G1 phase. Similarly, exposure of cells to 0.15 g l-1 BioEG for 48 h decreased cancer cells’ viability, without affecting normal fibroblasts. Moreover, BioEG induced the cell cycle arrest at G1 for both breast cancer cell lines. The biosurfactant BioEG was shown to be more active than surfactin against the studied breast cancer cells. The results gathered in this work are very promising regarding the biosurfactants potential for breast cancer treatment and encourage further work with the BioEG glycoprotein. PMID:24949273

  14. Oil degradation and biosurfactant production by the deep sea bacterium Dietzia maris As-13-3

    PubMed Central

    Wang, Wanpeng; Cai, Bobo; Shao, Zongze

    2014-01-01

    Recent investigations of extreme environments have revealed numerous bioactive natural products. However, biosurfactant-producing strains from deep sea extreme environment are largely unknown. Here, we show that Dietzia maris As-13-3 isolated from deep sea hydrothermal field could produce di-rhamnolipid as biosurfactant. The critical micelle concentration (CMC) of the purified di-rhamnolipid was determined to be 120 mgL−1, and it lowered the surface tension of water from 74 ± 0.2 to 38 ± 0.2 mN m−1. Further, the alkane metabolic pathway-related genes and di-rhamnolipid biosynthesis-related genes were also analyzed by the sequencing genome of D. maris As-13-3 and quantitative real-time PCR (Q-PCR), respectively. Q-PCR analysis showed that all these genes were induced by n-Tetradecane, n-Hexadecane, and pristane. To the best of our knowledge, this is first report about the complete pathway of the di-rhamnolipid synthesis process in the genus Dietzia. Thus, our study provided the insights into Dietzia in respects of oil degradation and biosurfactant production, and will help to evaluate the potential of Dietzia in marine oil removal. PMID:25566224

  15. Supporting data for identification of biosurfactant-producing bacteria isolated from agro-food industrial effluent

    PubMed Central

    Fulazzaky, Mohamad Ali; Abdullah, Shakila; Salim, Mohd Razman

    2016-01-01

    The goal of this study was to identify the biosurfactant-producing bacteria isolated from agro-food industrial effluet. The identification of the potential bacterial strain using a polymerase chain reaction of the 16S rRNA gene analysis was closely related to Serratia marcescens with its recorded strain of SA30 “Fundamentals of mass transfer and kinetics for biosorption of oil and grease from agro-food industrial effluent by Serratia marcescens SA30” (Fulazzaky et al., 2015) [1]; however, many biochemical tests have not been published yet. The biochemical tests of biosurfactant production, haemolytic assay and cell surface hydrophobicity were performed to investigate the beneficial strain of biosurfactant-producing bacteria. Here we do share data collected from the biochemical tests to get a better understanding of the use of Serratia marcescens SA30 to degrade oil, which contributes the technical features of strengthening the biological treatment of oil-contaminated wastewater in tropical environments. PMID:27077083

  16. Metagenomic discovery of novel enzymes and biosurfactants in a slaughterhouse biofilm microbial community

    PubMed Central

    Thies, Stephan; Rausch, Sonja Christina; Kovacic, Filip; Schmidt-Thaler, Alexandra; Wilhelm, Susanne; Rosenau, Frank; Daniel, Rolf; Streit, Wolfgang; Pietruszka, Jörg; Jaeger, Karl-Erich

    2016-01-01

    DNA derived from environmental samples is a rich source of novel bioactive molecules. The choice of the habitat to be sampled predefines the properties of the biomolecules to be discovered due to the physiological adaptation of the microbial community to the prevailing environmental conditions. We have constructed a metagenomic library in Escherichia coli DH10b with environmental DNA (eDNA) isolated from the microbial community of a slaughterhouse drain biofilm consisting mainly of species from the family Flavobacteriaceae. By functional screening of this library we have identified several lipases, proteases and two clones (SA343 and SA354) with biosurfactant and hemolytic activities. Sequence analysis of the respective eDNA fragments and subsequent structure homology modelling identified genes encoding putative N-acyl amino acid synthases with a unique two-domain organisation. The produced biosurfactants were identified by NMR spectroscopy as N-acyltyrosines with N-myristoyltyrosine as the predominant species. Critical micelle concentration and reduction of surface tension were similar to those of chemically synthesised N-myristoyltyrosine. Furthermore, we showed that the newly isolated N-acyltyrosines exhibit antibiotic activity against various bacteria. This is the first report describing the successful application of functional high-throughput screening assays for the identification of biosurfactant producing clones within a metagenomic library. PMID:27271534

  17. Metagenomic discovery of novel enzymes and biosurfactants in a slaughterhouse biofilm microbial community.

    PubMed

    Thies, Stephan; Rausch, Sonja Christina; Kovacic, Filip; Schmidt-Thaler, Alexandra; Wilhelm, Susanne; Rosenau, Frank; Daniel, Rolf; Streit, Wolfgang; Pietruszka, Jörg; Jaeger, Karl-Erich

    2016-01-01

    DNA derived from environmental samples is a rich source of novel bioactive molecules. The choice of the habitat to be sampled predefines the properties of the biomolecules to be discovered due to the physiological adaptation of the microbial community to the prevailing environmental conditions. We have constructed a metagenomic library in Escherichia coli DH10b with environmental DNA (eDNA) isolated from the microbial community of a slaughterhouse drain biofilm consisting mainly of species from the family Flavobacteriaceae. By functional screening of this library we have identified several lipases, proteases and two clones (SA343 and SA354) with biosurfactant and hemolytic activities. Sequence analysis of the respective eDNA fragments and subsequent structure homology modelling identified genes encoding putative N-acyl amino acid synthases with a unique two-domain organisation. The produced biosurfactants were identified by NMR spectroscopy as N-acyltyrosines with N-myristoyltyrosine as the predominant species. Critical micelle concentration and reduction of surface tension were similar to those of chemically synthesised N-myristoyltyrosine. Furthermore, we showed that the newly isolated N-acyltyrosines exhibit antibiotic activity against various bacteria. This is the first report describing the successful application of functional high-throughput screening assays for the identification of biosurfactant producing clones within a metagenomic library. PMID:27271534

  18. Emulsification and antioxidation of biosurfactant extracts from Chinese medicinal herbs fermentation in vitro.

    PubMed

    Chen, Chunyeh; Lin, Tachen; Shieh, Youmin

    2015-10-01

    Much attention has been paid to biosurfactants produced using microorganisms, but little direct evidence for the development of natural biosurfactants combined with Chinese medicinal herbs are available. We investigated the emulsification and antioxidation of biosurfactant extracts from Chinese medicinal herb fermentation (BECMHF) in vitro and their application in water retention capacity and the skin prick and allergy test (SPAT) index for skin cells. The results showed that the water retention capacity of BECMHF was positively associated with the emulsification index. The SPAT index of 8 Chinese medicinal herbs was 0 at a 1% or 2% concentration, suggesting no sensitivity or adverse effects on the skin cells. Eight BECMHFs produced using Alcaligenes piechaudii CC-ESB2 exhibited antioxidant capabilities, including 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical and superoxide scavenging activity, and superoxide dismutase (SOD)-like activity at a concentration of 10 mg/ml. The mechanism involved inhibitory effects on nitrite, inducible nitric oxide synthase (iNOS) expression, and reactive oxygen species (ROSs) generation. BECMHFs exhibit favorable antioxidative properties in health food and satisfactory emulsifying and moisturizing characteristics in cosmetic formulations, which have potential applications in the health food and cosmetic industries, respectively. PMID:25812919

  19. Biosurfactant as a Promoter of Methane Hydrate Formation: Thermodynamic and Kinetic Studies.

    PubMed

    Arora, Amit; Cameotra, Swaranjit Singh; Kumar, Rajnish; Balomajumder, Chandrajit; Singh, Anil Kumar; Santhakumari, B; Kumar, Pushpendra; Laik, Sukumar

    2016-01-01

    Natural gas hydrates (NGHs) are solid non-stoichiometric compounds often regarded as a next generation energy source. Successful commercialization of NGH is curtailed by lack of efficient and safe technology for generation, dissociation, storage and transportation. The present work studied the influence of environment compatible biosurfactant on gas hydrate formation. Biosurfactant was produced by Pseudomonas aeruginosa strain A11 and was characterized as rhamnolipids. Purified rhamnolipids reduced the surface tension of water from 72 mN/m to 36 mN/m with Critical Micelle Concentration (CMC) of 70 mg/l. Use of 1000 ppm rhamnolipids solution in C type silica gel bed system increased methane hydrate formation rate by 42.97% and reduced the induction time of hydrate formation by 22.63% as compared to water saturated C type silica gel. Presence of rhamnolipids also shifted methane hydrate formation temperature to higher values relative to the system without biosurfactant. Results from thermodynamic and kinetic studies suggest that rhamnolipids can be applied as environment friendly methane hydrate promoter. PMID:26869357

  20. Biosurfactant as a Promoter of Methane Hydrate Formation: Thermodynamic and Kinetic Studies

    NASA Astrophysics Data System (ADS)

    Arora, Amit; Cameotra, Swaranjit Singh; Kumar, Rajnish; Balomajumder, Chandrajit; Singh, Anil Kumar; Santhakumari, B.; Kumar, Pushpendra; Laik, Sukumar

    2016-02-01

    Natural gas hydrates (NGHs) are solid non-stoichiometric compounds often regarded as a next generation energy source. Successful commercialization of NGH is curtailed by lack of efficient and safe technology for generation, dissociation, storage and transportation. The present work studied the influence of environment compatible biosurfactant on gas hydrate formation. Biosurfactant was produced by Pseudomonas aeruginosa strain A11 and was characterized as rhamnolipids. Purified rhamnolipids reduced the surface tension of water from 72 mN/m to 36 mN/m with Critical Micelle Concentration (CMC) of 70 mg/l. Use of 1000 ppm rhamnolipids solution in C type silica gel bed system increased methane hydrate formation rate by 42.97% and reduced the induction time of hydrate formation by 22.63% as compared to water saturated C type silica gel. Presence of rhamnolipids also shifted methane hydrate formation temperature to higher values relative to the system without biosurfactant. Results from thermodynamic and kinetic studies suggest that rhamnolipids can be applied as environment friendly methane hydrate promoter.

  1. Oil degradation and biosurfactant production by the deep sea bacterium Dietzia maris As-13-3.

    PubMed

    Wang, Wanpeng; Cai, Bobo; Shao, Zongze

    2014-01-01

    Recent investigations of extreme environments have revealed numerous bioactive natural products. However, biosurfactant-producing strains from deep sea extreme environment are largely unknown. Here, we show that Dietzia maris As-13-3 isolated from deep sea hydrothermal field could produce di-rhamnolipid as biosurfactant. The critical micelle concentration (CMC) of the purified di-rhamnolipid was determined to be 120 mgL(-1), and it lowered the surface tension of water from 74 ± 0.2 to 38 ± 0.2 mN m(-1). Further, the alkane metabolic pathway-related genes and di-rhamnolipid biosynthesis-related genes were also analyzed by the sequencing genome of D. maris As-13-3 and quantitative real-time PCR (Q-PCR), respectively. Q-PCR analysis showed that all these genes were induced by n-Tetradecane, n-Hexadecane, and pristane. To the best of our knowledge, this is first report about the complete pathway of the di-rhamnolipid synthesis process in the genus Dietzia. Thus, our study provided the insights into Dietzia in respects of oil degradation and biosurfactant production, and will help to evaluate the potential of Dietzia in marine oil removal. PMID:25566224

  2. Biosurfactant as a Promoter of Methane Hydrate Formation: Thermodynamic and Kinetic Studies

    PubMed Central

    Arora, Amit; Cameotra, Swaranjit Singh; Kumar, Rajnish; Balomajumder, Chandrajit; Singh, Anil Kumar; Santhakumari, B.; Kumar, Pushpendra; Laik, Sukumar

    2016-01-01

    Natural gas hydrates (NGHs) are solid non-stoichiometric compounds often regarded as a next generation energy source. Successful commercialization of NGH is curtailed by lack of efficient and safe technology for generation, dissociation, storage and transportation. The present work studied the influence of environment compatible biosurfactant on gas hydrate formation. Biosurfactant was produced by Pseudomonas aeruginosa strain A11 and was characterized as rhamnolipids. Purified rhamnolipids reduced the surface tension of water from 72 mN/m to 36 mN/m with Critical Micelle Concentration (CMC) of 70 mg/l. Use of 1000 ppm rhamnolipids solution in C type silica gel bed system increased methane hydrate formation rate by 42.97% and reduced the induction time of hydrate formation by 22.63% as compared to water saturated C type silica gel. Presence of rhamnolipids also shifted methane hydrate formation temperature to higher values relative to the system without biosurfactant. Results from thermodynamic and kinetic studies suggest that rhamnolipids can be applied as environment friendly methane hydrate promoter. PMID:26869357

  3. Emulsification and antioxidation of biosurfactant extracts from Chinese medicinal herbs fermentation in vitro.

    PubMed

    Chen, Chunyeh; Lin, Tachen; Shieh, Youmin

    2015-10-01

    Much attention has been paid to biosurfactants produced using microorganisms, but little direct evidence for the development of natural biosurfactants combined with Chinese medicinal herbs are available. We investigated the emulsification and antioxidation of biosurfactant extracts from Chinese medicinal herb fermentation (BECMHF) in vitro and their application in water retention capacity and the skin prick and allergy test (SPAT) index for skin cells. The results showed that the water retention capacity of BECMHF was positively associated with the emulsification index. The SPAT index of 8 Chinese medicinal herbs was 0 at a 1% or 2% concentration, suggesting no sensitivity or adverse effects on the skin cells. Eight BECMHFs produced using Alcaligenes piechaudii CC-ESB2 exhibited antioxidant capabilities, including 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical and superoxide scavenging activity, and superoxide dismutase (SOD)-like activity at a concentration of 10 mg/ml. The mechanism involved inhibitory effects on nitrite, inducible nitric oxide synthase (iNOS) expression, and reactive oxygen species (ROSs) generation. BECMHFs exhibit favorable antioxidative properties in health food and satisfactory emulsifying and moisturizing characteristics in cosmetic formulations, which have potential applications in the health food and cosmetic industries, respectively.

  4. Biosurfactants as demulsifying agents for oil recovery from oily sludge--performance evaluation.

    PubMed

    Chirwa, Evans M N; Mampholo, Tshepo; Fayemiwo, Oluwademilade

    2013-01-01

    The oil producing and petroleum refining industries dispose of a significant amount of oily sludge annually. The sludge typically contains a mixture of oil, water and solid particles in the form of complex slurry. The oil in the waste sludge is inextractible due to the complex composition and complex interactions in the sludge matrix. The sludge is disposed of on land or into surface water bodies thereby creating toxic conditions or depleting oxygen required by aquatic animals. In this study, a fumed silica mixture with hydrocarbons was used to facilitate stable emulsion ('Pickering' emulsion) of the oily sludge. The second step of controlled demulsification and separation of oil and sludge into layers was achieved using either a commercial surfactant (sodium dodecyl sulphate (SDS)) or a cost-effective biosurfactant from living organisms. The demulsification and separation of the oil layer using the commercial surfactant SDS was achieved within 4 hours after stopping mixing, which was much faster than the 10 days required to destabilise the emulsion using crude biosurfactants produced by a consortium of petrochemical tolerant bacteria. The recovery rate with bacteria could be improved by using a more purified biosurfactant without the cells.

  5. Adsorption of a biosurfactant on surfaces to enhance the disinfection of surfaces contaminated with Listeria monocytogenes.

    PubMed

    Meylheuc, T; Renault, M; Bellon-Fontaine, M N

    2006-05-25

    The effects of sodium hypochlorite (NaOCl) and peracetic acid/hydrogen peroxide (PAH) on the inactivation of adherent Listeria monocytogenes LO28 cells were examined. The surfaces tested were stainless steel and polytetrafluoroethylene (PTFE) conditioned or not with an anionic biosurfactant produced by Pseudomonas fluorescens. Dilution-neutralization methods were used to assess the effectiveness of sanitizer solutions on planktonic and adherent cells. Tests were performed on L. monocytogenes cultivated at 37 degrees Celsius (body temperature) or 20 degrees Celsius (ambient temperature). The results demonstrated that i) a total deficiency in nutrients induced by the incubation of cells in 0.15 M NaCl favored the action of NaOCl and PAH on planktonic cells; ii) by reducing the number of cells adhering to stainless steel, pre-conditioning of the surface with the biosurfactant reduced the level of contamination of the surface and thus favored the bactericidal activities of the disinfectants; and iii) the weak binding energies involved in the adsorption of the biosurfactant on PTFE surfaces resulted in there being no reduction by the polymer of the surface contamination. Furthermore, this study confirmed that adherent cells exhibited increased resistance to the actions of the disinfectants when compared to the resistance of planktonic cells. PMID:16488496

  6. [Effect of biosurfactants Acinetobacter calcoaceticus K-4 and Rhodococcus erythropolis EK-1 on some microorganisms].

    PubMed

    Pirog, T P; Konon, A D; Sofilkanich, A P; Skochko, A B

    2011-01-01

    It has been established that the preparations of biosurfactants Rhodococcus erythropolis EK-1 (0.61 -2.1 mg/ml) and Acinetobacter calcoaceticus K-4 (0.15 - 0.22 mg/ml) in a form of supernatants of the cultural liquid show antimicrobial effect in respect of a number of microorganisms (Bacillus subtilis BT-2, Escherichia coli IEM-1, Candida tropicalis BT-5, Candida albicans D6, Candida utilis BVC-65, Saccharomyces cerevisiae OB-3). No inhibiting effect of biosurfactant preparations of R. erythropolis EK-1 on the cells of S. cerevisiae OB-3 and E. coli IEM-I and antifungal effect of the both studied surfactants on Aspergillus niger P-3 and Fusarium culmorum T-7 were revealed. The survival of microbe cells depend on biosurfactants concentration in the preparations, on exposure time as well as on physiological state of test-cultures. It has been established that the surfactant preparations of A. calcoaceticus K-4 had a higher effect on the spores of B. subtilis BT-2, than on vegetative cells, thus decreasing the spore culture survival by 75% in 2 h of exposure.

  7. Characterization and properties of biosurfactants produced by a newly isolated strain Bacillus methylotrophicus DCS1 and their applications in enhancing solubility of hydrocarbon.

    PubMed

    Jemil, Nawel; Ben Ayed, Hanen; Hmidet, Noomen; Nasri, Moncef

    2016-11-01

    Six biosurfactant-producing bacteria were isolated from hydrocarbon contaminated soils in Sfax, Tunisia. Isolates were screened for biosurfactant production by different conventional methods including hemolytic activity, surface tension reduction, drop-collapsing and oil displacement tests. All these screening tests show that all the isolates behave differently. Among the isolated bacteria, DCS1 strain was selected for further studies based on its highest activities and it was identified as Bacillus methylotrophicus DCS1. This strain was found to be a potent producer of biosurfactant when cultivated in mineral-salts medium supplemented with diesel oil (2 %, v/v) as a sole carbon source. Physicochemical properties and stability of biosurfactants synthesized by B. methylotrophicus DCS1 were investigated. The produced biosurfactants DCS1, from Landy medium, possess high surface activity that could lower the surface tension of water to a value of 31 from 72 mN m(-1) and have a critical micelle concentration (CMC) of 100 mg L(-1). Compared with SDS and Tween 80, biosurfactants showed excellent emulsification activities against different hydrocarbon substrates and high solubilization efficiency towards diesel oil. Biosurfactants DCS1 showed good stability in a wide range of temperature, pH and salinity. These results suggested that biosurfactants produced by B. methylotrophicus DCS1 could be an alternative to chemically synthesized surfactants for use in bioremediation processes to enhance the solubility of hydrophobic compounds. PMID:27628335

  8. Characterization and properties of biosurfactants produced by a newly isolated strain Bacillus methylotrophicus DCS1 and their applications in enhancing solubility of hydrocarbon.

    PubMed

    Jemil, Nawel; Ben Ayed, Hanen; Hmidet, Noomen; Nasri, Moncef

    2016-11-01

    Six biosurfactant-producing bacteria were isolated from hydrocarbon contaminated soils in Sfax, Tunisia. Isolates were screened for biosurfactant production by different conventional methods including hemolytic activity, surface tension reduction, drop-collapsing and oil displacement tests. All these screening tests show that all the isolates behave differently. Among the isolated bacteria, DCS1 strain was selected for further studies based on its highest activities and it was identified as Bacillus methylotrophicus DCS1. This strain was found to be a potent producer of biosurfactant when cultivated in mineral-salts medium supplemented with diesel oil (2 %, v/v) as a sole carbon source. Physicochemical properties and stability of biosurfactants synthesized by B. methylotrophicus DCS1 were investigated. The produced biosurfactants DCS1, from Landy medium, possess high surface activity that could lower the surface tension of water to a value of 31 from 72 mN m(-1) and have a critical micelle concentration (CMC) of 100 mg L(-1). Compared with SDS and Tween 80, biosurfactants showed excellent emulsification activities against different hydrocarbon substrates and high solubilization efficiency towards diesel oil. Biosurfactants DCS1 showed good stability in a wide range of temperature, pH and salinity. These results suggested that biosurfactants produced by B. methylotrophicus DCS1 could be an alternative to chemically synthesized surfactants for use in bioremediation processes to enhance the solubility of hydrophobic compounds.

  9. Utilization of palm oil decanter cake as a novel substrate for biosurfactant production from a new and promising strain of Ochrobactrum anthropi 2/3.

    PubMed

    Noparat, Pongsak; Maneerat, Suppasil; Saimmai, Atipan

    2014-03-01

    A biosurfactant-producing bacterium, isolate 2/3, was isolated from mangrove sediment in the south of Thailand. It was evaluated as a potential biosurfactant producer. The highest biosurfactant production (4.52 g/l) was obtained when the cells were grown on a minimal salt medium containing 25 % (v/v) palm oil decanter cake and 1 % (w/v) commercial monosodium glutamate as carbon and nitrogen sources, respectively. After microbial cultivation at 30 °C in an optimized medium for 96 h, the biosurfactant produced was found to reduce the surface tension of pure water to 25.0 mN/m with critical micelle concentrations of 8.0 mg/l. The stability of the biosurfactant at different salinities, pH and temperature and also its emulsifying activity was investigated. It is an effective surfactant at very low concentrations over a wide range of temperatures, pH and salt concentrations. The biosurfactant obtained was confirmed as a glycolipid type biosurfactant by using a biochemical test, fourier-transform infrared spectroscopy, MNR and mass spectrometry. The crude biosurfactant showed a broad spectrum of antimicrobial activity and also had the ability to emulsify oil and enhance polyaromatic hydrocarbons solubility.

  10. Synergistic effect of thermophilic temperature and biosurfactant produced by Acinetobacter calcoaceticus BU03 on the biodegradation of phenanthrene in bioslurry system.

    PubMed

    Zhao, Zhenyong; Selvam, Ammaiyappan; Wong, Jonathan Woon-Chung

    2011-06-15

    This study aimed at investigating the synergistic effect of temperature and biosurfactant on the biodegradation of phenanthrene in bioslurry. Bench-scale bioslurry experiments were conducted at 25 and 55°C. The desorption rate coefficients of phenanthrene (K(des)) obtained using the pseudo-first order model were 0.0026 and 0.0035 kg mg(-1)h(-1) at 25 and 55°C, respectively. Addition of 1500 mg L(-1) biosurfactant, produced by Acinetobacter calcoaceticus BU03, marginally increased the K(des) at 25°C since most of biosurfactant was sorbed onto soil; however, significantly increased the K(des) to 0.0087 kg mg(-1)h(-1) at 55°C as the thermophilic temperature reduced the adsorption of the biosurfactant onto soil and subsequently enhanced the desorption of phenanthrene. The biodegradation of phenanthrene well fitted pseudo-first order kinetics based on the assumption that biodegradation was limited by the desorption. About 78.7% of phenanthrene was degraded in 30 days at 25°C; and addition of biosurfactant did not affect the biodegradation. However, addition of the biosurfactant or inoculation of A. calcoaceticus BU03 at 55°C significantly enhanced the biodegradation by increasing the K(des). Results indicate that synergistic application of thermophilic temperature and biosurfactant or inoculation of biosurfactant producing microorganisms is an effective and innovative method to enhance the efficiency of PAH degradation in bioslurry system.

  11. Enrichment and identification of biosurfactant-producing oil field microbiota utilizing electron acceptors other than oxygen and nitrate.

    PubMed

    Kryachko, Yuriy; Semler, Diana; Vogrinetz, John; Lemke, Markus; Links, Matthew G; McCarthy, E Luke; Haug, Brenda; Hemmingsen, Sean M

    2016-08-10

    Microorganisms indigenous to an oil reservoir were grown in media containing either sucrose or proteins in four steel vessels under anoxic conditions at 30°C and 8.3MPa for 30days, to enrich biosurfactant producers. Fermentation of substrate was possible in the protein-containing medium and either fermentation or respiration through reduction of sulfate occurred in the sucrose-containing medium. Growth of microorganisms led to 3.4-5.4-fold surface tension reduction indicating production of biosurfactants in amounts sufficient for enhancement of gas-driven oil recovery. Analysis of sequenced cpn60 amplicons showed that Pseudomonas sp. highly similar to biosurfactant producing P. fluorescens and to Pseudomonas sp. strain TKP predominated, and a bacterium highly similar to biosurfactant producing Bacillus mojavensis was present in vessels. Analysis of 16S rDNA amplicons allowed only genus-level identification of these bacteria. Thus, cpn60-amplicon analysis was a more relevant tool for identification of putative biosurfactant producers than 16S rDNA-amplicon analysis.

  12. Formulation of a Commercial Biosurfactant for Application as a Dispersant of Petroleum and By-Products Spilled in Oceans

    PubMed Central

    Freitas, Bruno G.; Brito, Juliana G. M.; Brasileiro, Pedro P. F.; Rufino, Raquel D.; Luna, Juliana M.; Santos, Valdemir A.; Sarubbo, Leonie A.

    2016-01-01

    Oil spills in oceans cause irreparable damage to marine life and harm the coastal populations of affected areas. It is therefore fundamental to develop treatment strategies for such spills. Currently, chemical dispersants have been used during oil spills, although these agents have been increasingly restricted due to their toxic potential. Thus, the aim of the present study was to formulate a biodegradable commercial biosurfactant for application as a dispersant. Biosurfactants are scientifically known biomolecules produced by microorganisms capable of allowing water-oil interaction. Thus, a biosurfactant was produced by the yeast Candida bombicola URM 3718 cultivated in industrial waste and formulated with the addition of a potassium sorbate preservative for fractionated sterilization (tyndallization) and the combination of fluent vaporization with the preservative. After formulation, samples were stored for 120 days, followed by surface tension, emulsification and oil dispersant tests in sea water. The results were promising for the biosurfactant formulated with the preservative, which demonstrated stability and an absence of toxicity in experiments with a marine indicator. The commercial biosurfactant was tested at different pH values, temperatures and in the presence of salt, demonstrating potential industrial application at a cost compatible with the environmental field. The formulation process developed in this research was patented in the Brazilian National Intellectual Property Institute (patent number BR1020140179631). PMID:27803697

  13. Biodegradation of endosulfan isomers and its metabolite endosulfate by two biosurfactant producing bacterial strains of Bordetella petrii.

    PubMed

    Odukkathil, Greeshma; Vasudevan, Namasivayam

    2015-01-01

    The main objective of the investigation was to study the biodegradation of endosulfan isomers and its major metabolite endosulfate by two biosurfactant producing bacterial strains of Bordetella petrii. The significance of the study is to evaluate the capability of biosurfactant producing bacterial strains in enhancing the bioavailability of endosulfan. Sixty bacterial strains were isolated from the endosulfan degrading bacterial consortium and were screened for endosulfan degradation and biosurfactant production. Among those, two strains Bordetella petrii I GV 34 (Gene bank Accession No KJ02262) and Bordetella petrii II GV 36 (Gene bank Accession No KJ022625) were capable of degrading endosulfan with simultaneous biosurfactant production. Bordetella petrii I degraded 89% of α and 84% of β isomers of endosulfan whereas Bordetella petrii II degraded 82% of both the isomers. Both the strains were able to reduce the surface tension up to 19.6% and 21.4% with a minimum observed surface tension of 45 Dynes/cm and 44 Dynes/cm, respectively. The study revealed that the strains have the potential to enhance the degradation endosulfan residues in contaminated sites and water by biosurfactant production.

  14. Biosurfactant activity, heavy metal tolerance and characterization of Joostella strain A8 from the Mediterranean polychaete Megalomma claparedei (Gravier, 1906).

    PubMed

    Rizzo, Carmen; Michaud, Luigi; Graziano, Marco; De Domenico, Emilio; Syldatk, Christoph; Hausmann, Rudolf; Lo Giudice, Angelina

    2015-08-01

    The effect of heavy metals on the activity of biosurfactants produced by Joostella strain A8 from the polychaete Megalomma claparedei was investigated. Biosurfactant activity was first improved by evaluating the influence of abiotic parameters. Higher E(24) indices were achieved at 25 °C in mineral salt medium supplemented with 2 % glucose, 3 % sodium chloride (w/v) and 0.1 % ammonium chloride (w/v). Considerable surface tension reduction was never recorded. Heavy metal tolerance was preliminarily assayed by plate diffusion method resulting in the order of toxicity Cd > Cu > Zn. The activity of biosurfactants was then evaluated in the presence of heavy metals at different concentrations in liquid cultures that were incubated under optimal conditions for biosurfactant activity. The production of stable emulsions resulted generally higher in the presence of metals. These findings suggest that biosurfactant production could represent a bacterial adaptive strategy to defend cells from a stress condition derived from heavy metals in the bulk environment. PMID:26059469

  15. Investigation of Antimicrobial Activity and Statistical Optimization of Bacillus subtilis SPB1 Biosurfactant Production in Solid-State Fermentation

    PubMed Central

    Ghribi, Dhouha; Abdelkefi-Mesrati, Lobna; Mnif, Ines; Kammoun, Radhouan; Ayadi, Imen; Saadaoui, Imen; Maktouf, Sameh; Chaabouni-Ellouze, Semia

    2012-01-01

    During the last years, several applications of biosurfactants with medical purposes have been reported. Biosurfactants are considered relevant molecules for applications in combating many diseases. However, their use is currently extremely limited due to their high cost in relation to that of chemical surfactants. Use of inexpensive substrates can drastically decrease its production cost. Here, twelve solid substrates were screened for the production of Bacillus subtilis SPB1 biosurfactant and the maximum yield was found with millet. A Plackett-Burman design was then used to evaluate the effects of five variables (temperature, moisture, initial pH, inoculum age, and inoculum size). Statistical analyses showed that temperature, inoculum age, and moisture content had significantly positive effect on SPB1 biosurfactant production. Their values were further optimized using a central composite design and a response surface methodology. The optimal conditions of temperature, inoculum age, and moisture content obtained under the conditions of study were 37°C, 14 h, and 88%, respectively. The evaluation of the antimicrobial activity of this compound was carried out against 11 bacteria and 8 fungi. The results demonstrated that this biosurfactant exhibited an important antimicrobial activity against microorganisms with multidrug-resistant profiles. Its activity was very effective against Staphylococcus aureus, Staphylococcus xylosus, Enterococcus faecalis, Klebsiella pneumonia, and so forth. PMID:22536017

  16. Production of biosurfactant by Bacillus subtilis LB5a on a pilot scale using cassava wastewater as substrate.

    PubMed

    Barros, Francisco Fábio Cavalcante; Ponezi, Alexandre Nunes; Pastore, Gláucia Maria

    2008-09-01

    The main characteristic of biosurfactants is their property of reducing the superficial and interfacial tension between two immiscible liquids of different polarities. The main obstacle to the application of biosurfactants is the high production costs, the use of alternative substrates being indicated to solve this problem. This work report the production of biosurfactant by Bacillus subtilis LB5a on a pilot scale using cassava wastewater as the substrate, and the study of the parameters related to its production. The cassava wastewater was heated, centrifuged and poured into a 40-liter batch pilot bioreactor adapted for simultaneous foam collection during the fermentative process. The temperature was maintained at 35 degrees C, agitation at 150 rpm and aeration 0.38 vvm during the first 12 h, and 0.63 vvm for the rest of the process. Samples of liquid fermentate were collected at regular intervals for the analysis of total carbohydrates, reducing sugars, pH, CFU/mL count and superficial tension. The foam was centrifuged and the biosurfactant purified. The kinetic data of the process showed that both the microbial population, which reached a maximum after about 24 h, and the foam production of 10.6 L, peaked between 24 and 36 h, coinciding with the greatest production of biosurfactant. The yield of semi-purified surfactant in the foam was 2.4 g/L. The superficial tension of the medium was reduced from 51 to 27 mN/m and the critical micellar concentration was 11 mg/L, which, in principle, characterizes it as a good tensoactive agent. As a function of its composition and productivity, cassava wastewater was identified as a good substrate for the production of the biosurfactant.

  17. Biosurfactant Produced by Salmonella Enteritidis SE86 Can Increase Adherence and Resistance to Sanitizers on Lettuce Leaves (Lactuca sativa L., cichoraceae)

    PubMed Central

    Rossi, Eliandra M.; Beilke, Luniele; Kochhann, Marília; Sarzi, Diana H.; Tondo, Eduardo C.

    2016-01-01

    Salmonella Enteritidis SE86 is an important foodborne pathogen in Southern Brazil and it is able to produce a biosurfactant. However, the importance of this compound for the microorganism is still unknown. This study aimed to investigate the influence of the biosurfactant produced by S. Enteritidis SE86 on adherence to slices of lettuce leaves and on resistance to sanitizers. First, lettuce leaves were inoculated with S. Enteritidis SE86 in order to determine the amount of biosurfactant produced. Subsequently, lettuce leaves were inoculated with S. Enteritidis SE86 with and without the biosurfactant, and the adherence and bacterial resistance to different sanitization methods were evaluated. S. Enteritidis SE86 produced biosurfactant after 16 h (emulsification index of 11 to 52.15 percent, P < 0.05) and showed greater adherence capability and resistance to sanitization methods when the compound was present. The scanning electron microscopy demonstrated that S. Enteritidis was able to adhere, form lumps, and invade the lettuce leaves’ stomata in the presence of the biosurfactant. Results indicated that the biosurfactant produced by S. Enteritidis SE86 contributed to adherence and increased resistance to sanitizers when the microorganism was present on lettuce leaves. PMID:26834727

  18. Analysis of biosurfactants from industrially viable Pseudomonas strain isolated from crude oil suggests how rhamnolipids congeners affect emulsification property and antimicrobial activity

    PubMed Central

    Das, Palashpriya; Yang, Xin-Ping; Ma, Luyan Z.

    2014-01-01

    Rhamnolipid biosurfactants produced mainly by Pseudomonas sp. had been reported to possess a wide range of potential industrial application. These biosurfactants are produced as monorhamnolipid (MRL) and di-rhamnolipid (DRL) congeners. The present study deals with rhamnolipid biosurfactants produced by three bacterial isolates from crude oil. Biosurfactants produced by one of the strains (named as IMP67) was found to be very efficacious based on its critical micelle concentration value and hydrocarbon emulsification property. Strikingly, antimicrobial, and anti-biofilm potential of this biosurfactant were higher than biosurfactants produced by other two strains. Thin layer chromatography analysis and rhamnose quantification showed that the rhamnolipids of IMP67 had more MRL congeners than biosurfactants of the other two strains. Emulsification and antimicrobial actions were affected by manual change of MRL and DRL congener proportions. Increase of MRL proportion enhanced emulsification index and antimicrobial property to Gram negative bacteria. This result indicated that the ratio of MRL and DRL affected the emulsification potentials of rhamnolipids, and suggested that high emulsification potentials might enhance rhamnolipids to penetrate the cell wall of Gram negative bacteria. In line with this finding, rhamnolipids of IMP67 also reduced the MIC of some antibiotics against bacteria, suggesting their synergistic role with the antibiotics. PMID:25566212

  19. Biosurfactant Produced by Salmonella Enteritidis SE86 Can Increase Adherence and Resistance to Sanitizers on Lettuce Leaves (Lactuca sativa L., cichoraceae).

    PubMed

    Rossi, Eliandra M; Beilke, Luniele; Kochhann, Marília; Sarzi, Diana H; Tondo, Eduardo C

    2016-01-01

    Salmonella Enteritidis SE86 is an important foodborne pathogen in Southern Brazil and it is able to produce a biosurfactant. However, the importance of this compound for the microorganism is still unknown. This study aimed to investigate the influence of the biosurfactant produced by S. Enteritidis SE86 on adherence to slices of lettuce leaves and on resistance to sanitizers. First, lettuce leaves were inoculated with S. Enteritidis SE86 in order to determine the amount of biosurfactant produced. Subsequently, lettuce leaves were inoculated with S. Enteritidis SE86 with and without the biosurfactant, and the adherence and bacterial resistance to different sanitization methods were evaluated. S. Enteritidis SE86 produced biosurfactant after 16 h (emulsification index of 11 to 52.15 percent, P < 0.05) and showed greater adherence capability and resistance to sanitization methods when the compound was present. The scanning electron microscopy demonstrated that S. Enteritidis was able to adhere, form lumps, and invade the lettuce leaves' stomata in the presence of the biosurfactant. Results indicated that the biosurfactant produced by S. Enteritidis SE86 contributed to adherence and increased resistance to sanitizers when the microorganism was present on lettuce leaves. PMID:26834727

  20. Green synthesis and characterization of cuprous oxide nanoparticles in presence of a bio-surfactant

    NASA Astrophysics Data System (ADS)

    Behera, M.; Giri, G.

    2014-12-01

    Herein, we report a facile green synthesis of Cu2O nanoparticles (NPs) using copper sulfate as precursor salt and hydrazine hydrate as reducing agent in presence of bio-surfactant (i.e. leaves extract of arka — a perennial shrub) at 60 to 70 °C in an aqueous medium. A broad band centered at 460 nm in absorption spectrum reveals the formation of surfactant stabilized Cu2O NPs. X-ray diffraction pattern of the surfactant stabilized NPs suggests the formation of only Cu2O phase in assistance of a bio-surfactant with the crystallite size of ˜8 nm. A negative zeta potential of -12 mV at 8.0 pH in surfactant stabilized Cu2O NPs hints non-bonding electron transfer from O-atom of saponin to the surface of NP. Red-shift in the vibrational band (Cu-O stretching) of Cu2O from 637 cm-1 to 640 cm-1 in presence of bio-surfactant suggests an interfacial interaction between NPs and O-atoms of -OH groups of saponin present in the plant (i.e. Calotropis gigantean) extract. From X-ray photoelectron spectroscopy spectra, a decrease in binding energy of both 2p3/2 and 2p1/2 bands in Cu2O with saponin molecules as compared to bulk Cu atom reveals a charge transfer interaction between NP and saponin surfactant molecules. Transmission electron microscopy images show crystalline nature of Cu2O NPs with an fcc lattice.

  1. Rhamnolipid Biosurfactants as New Players in Animal and Plant Defense against Microbes

    PubMed Central

    Vatsa, Parul; Sanchez, Lisa; Clement, Christophe; Baillieul, Fabienne; Dorey, Stephan

    2010-01-01

    Rhamnolipids are known as very efficient biosurfactant molecules. They are used in a wide range of industrial applications including food, cosmetics, pharmaceutical formulations and bioremediation of pollutants. The present review provides an overview of the effect of rhamnolipids in animal and plant defense responses. We describe the current knowledge on the stimulation of plant and animal immunity by these molecules, as well as on their direct antimicrobial properties. Given their ecological acceptance owing to their low toxicity and biodegradability, rhamnolipids have the potential to be useful molecules in medicine and to be part of alternative strategies in order to reduce or replace pesticides in agriculture. PMID:21614194

  2. Novel rhamnolipid biosurfactants produced by a polycyclic aromatic hydrocarbon-degrading bacterium Pseudomonas aeruginosa strain NY3

    PubMed Central

    Nie, Maiqian; Yin, Xihou; Ren, Chunyan; Wang, Yang; Xu, Feng; Shen, Qirong

    2014-01-01

    A novel rhamnolipid biosurfactant-producing and Polycyclic Aromatic Hydrocarbon (PAH)-degrading bacterium Pseudomonas aeruginosa strain NY3 was isolated from petroleum-contaminated soil samples. Strain NY3 was characterized by its extraordinary capacity to produce structurally diverse rhamnolipids. A total of 25 rhamnolipid components and 37 different parent molecular ions, representing various metal ion adducts (Na+, 2Na+ and K+), were detected by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Among these compounds are ten new rhamnolipids. In addition to its biosurfactant production, strain NY3 was shown to be capable of efficient degradation of PAHs as well as synergistic improvement in the degradation of high molecular weight PAHs by its biosurfactant. These findings have added novel members to the rhamnolipid group and expanded current knowledge regarding the diversity and productive capability of rhamnolipid biosurfactants from a single specific strain with variation of only one carbon source. Additionally, this paper lays the foundation for improvement in the yield of NY3BS and study of the degradation pathway(s) of PAHs in P. aeruginosa strain NY3. PMID:20580808

  3. Enhanced Biological Control of Phytophthora Blight of Pepper by Biosurfactant-Producing Pseudomonas

    PubMed Central

    Özyilmaz, Ümit; Benlioglu, Kemal

    2013-01-01

    Pseudomonas isolates from different crop plants were screened for in vitro growth inhibition of Phytophthora capsici and production of biosurfactant. Two in vivo experiments were performed to determine the efficacy of selected Pseudomonas strains against Phytophthora blight of pepper by comparing two fungicide treatments [acibenzolar-S-methyl (ASM) and ASM + mefenoxam]. Bacterial isolates were applied by soil drenching (1 × 109 cells/ml), ASM (0.1 μg a.i./ml) and ASM + mefenoxam (0.2 mg product/ml) were applied by foliar spraying, and P. capsici inoculum was incorporated into the pot soil three days after treatments. In the first experiment, four Pseudomonas strains resulted in significant reduction from 48.4 to 61.3% in Phytophthora blight severity. In the second experiment, bacterial treatments combining with olive oil (5 mL per plant) significantly enhanced biological control activity, resulting in a reduction of disease level ranging from 56.8 to 81.1%. ASM + mefenoxam was the most effective treatment while ASM alone was less effective in both bioassays. These results indicate that our Pseudomonas fluorescens strains (6L10, 6ba6 and 3ss9) that have biosurfactant-producing abilities are effective against P. capsici on pepper, and enhanced disease suppression could be achieved when they were used in combination with olive oil. PMID:25288970

  4. BioSurfDB: knowledge and algorithms to support biosurfactants and biodegradation studies

    PubMed Central

    Oliveira, Jorge S.; Araújo, Wydemberg; Lopes Sales, Ana Isabela; de Brito Guerra, Alaine; da Silva Araújo, Sinara Carla; de Vasconcelos, Ana Tereza Ribeiro; Agnez-Lima, Lucymara F.; Freitas, Ana Teresa

    2015-01-01

    Crude oil extraction, transportation and use provoke the contamination of countless ecosystems. Therefore, bioremediation through surfactants mobilization or biodegradation is an important subject, both economically and environmentally. Bioremediation research had a great boost with the recent advances in Metagenomics, as it enabled the sequencing of uncultured microorganisms providing new insights on surfactant-producing and/or oil-degrading bacteria. Many research studies are making available genomic data from unknown organisms obtained from metagenomics analysis of oil-contaminated environmental samples. These new datasets are presently demanding the development of new tools and data repositories tailored for the biological analysis in a context of bioremediation data analysis. This work presents BioSurfDB, www.biosurfdb.org, a curated relational information system integrating data from: (i) metagenomes; (ii) organisms; (iii) biodegradation relevant genes; proteins and their metabolic pathways; (iv) bioremediation experiments results, with specific pollutants treatment efficiencies by surfactant producing organisms; and (v) a biosurfactant-curated list, grouped by producing organism, surfactant name, class and reference. The main goal of this repository is to gather information on the characterization of biological compounds and mechanisms involved in biosurfactant production and/or biodegradation and make it available in a curated way and associated with a number of computational tools to support studies of genomic and metagenomic data. Database URL: www.biosurfdb.org PMID:25833955

  5. Effect of biosurfactants on Pseudomonas aeruginosa and Staphylococcus aureus biofilms in a BioFlux channel.

    PubMed

    Diaz De Rienzo, M A; Stevenson, P S; Marchant, R; Banat, I M

    2016-07-01

    Recent studies have indicated that biosurfactants play a role both in maintaining channels between multicellular structures in biofilms and in dispersal of cells from biofilms. A combination of caprylic acid (0.01 % v/v) together with rhamnolipids (0.04 % v/v) was applied to biofilms of Pseudomonas aeruginosa ATCC 15442, Staphylococcus aureus ATCC 9144 and a mixed culture under BioFlux flowthrough conditions and caused disruption of the biofilms. The biofilms were also treated with a combination of rhamnolipids (0.04 % v/v) and sophorolipids (0.01 %). Control treatments with PBS 1× had no apparent effect on biofilm disruption. The Gram-positive bacterium (S. aureus ATCC 9144) was more sensitive than P. aeruginosa ATCC 15442 in terms of disruption and viability as shown by Live/Dead staining. Disruption of biofilms of P. aeruginosa ATCC 15442 was minimal. Oxygen consumption by biofilms, after different treatments with biosurfactants, confirms that sophorolipid on its own is unable to kill/inhibit cells of P. aeruginosa ATCC 15442, and even when used in combination with rhamnolipids, under static conditions, no decrease in the cell viability was observed. Cells in biofilms exposed to mono-rhamnolipids (0.04 % v/v) showed behaviour typical of exposure to bacteriostatic compounds, but when exposed to di-rhamnolipids (0.04 % v/v), they displayed a pattern characteristic of bactericidal compounds. PMID:26825819

  6. Natural emulsifiers - Biosurfactants, phospholipids, biopolymers, and colloidal particles: Molecular and physicochemical basis of functional performance.

    PubMed

    McClements, David Julian; Gumus, Cansu Ekin

    2016-08-01

    There is increasing consumer pressure for commercial products that are more natural, sustainable, and environmentally friendly, including foods, cosmetics, detergents, and personal care products. Industry has responded by trying to identify natural alternatives to synthetic functional ingredients within these products. The focus of this review article is on the replacement of synthetic surfactants with natural emulsifiers, such as amphiphilic proteins, polysaccharides, biosurfactants, phospholipids, and bioparticles. In particular, the physicochemical basis of emulsion formation and stabilization by natural emulsifiers is discussed, and the benefits and limitations of different natural emulsifiers are compared. Surface-active polysaccharides typically have to be used at relatively high levels to produce small droplets, but the droplets formed are highly resistant to environmental changes. Conversely, surface-active proteins are typically utilized at low levels, but the droplets formed are highly sensitive to changes in pH, ionic strength, and temperature. Certain phospholipids are capable of producing small oil droplets during homogenization, but again the droplets formed are highly sensitive to changes in environmental conditions. Biosurfactants (saponins) can be utilized at low levels to form fine oil droplets that remain stable over a range of environmental conditions. Some nature-derived nanoparticles (e.g., cellulose, chitosan, and starch) are effective at stabilizing emulsions containing relatively large oil droplets. Future research is encouraged to identify, isolate, purify, and characterize new types of natural emulsifier, and to test their efficacy in food, cosmetic, detergent, personal care, and other products.

  7. A comparison of effects of broad-spectrum antibiotics and biosurfactants on established bacterial biofilms.

    PubMed

    Quinn, Gerry A; Maloy, Aaron P; Banat, Malik M; Banat, Ibrahim M

    2013-11-01

    Current antibiofilm solutions based on planktonic bacterial physiology have limited efficacy in clinical and occasionally environmental settings. This has prompted a search for suitable alternatives to conventional therapies. This study compares the inhibitory properties of two biological surfactants (rhamnolipids and a plant-derived surfactant) against a selection of broad-spectrum antibiotics (ampicillin, chloramphenicol and kanamycin). Testing was carried out on a range of bacterial physiologies from planktonic and mixed bacterial biofilms. Rhamnolipids (Rhs) have been extensively characterised for their role in the development of biofilms and inhibition of planktonic bacteria. However, there are limited direct comparisons with antimicrobial substances on established biofilms comprising single or mixed bacterial strains. Baseline measurements of inhibitory activity using planktonic bacterial assays established that broad-spectrum antibiotics were 500 times more effective at inhibiting bacterial growth than either Rhs or plant surfactants. Conversely, Rhs and plant biosurfactants reduced biofilm biomass of established single bacterial biofilms by 74-88 and 74-98 %, respectively. Only kanamycin showed activity against biofilms of Bacillus subtilis and Staphylococcus aureus. Broad-spectrum antibiotics were also ineffective against a complex biofilm of marine bacteria; however, Rhs and plant biosurfactants reduced biofilm biomass by 69 and 42 %, respectively. These data suggest that Rhs and plant-derived surfactants may have an important role in the inhibition of complex biofilms. PMID:23783562

  8. Biosurfactant yields and nutrient consumption of Pseudomonas fluorescens 378 studied in a microcomputer controlled multifermentation system.

    PubMed

    Persson, A; Molin, G; Andersson, N; Sjöholm, J

    1990-07-01

    Production of biosurfactant AP-6 and consumption of carbon (succinic acid) and nitrogen (ammonium ions) by Pseudomonas fluorescens 378 were studied under different growth conditions. The study was performed in a microcomputer controlled multibatch fermentation system which enabled simultaneous running of 10 fermentors. The fermentors were mantled glass vessels, temperature controlled by circulated water, and mixing was arranged by magnetic stirrers. They were connected to the computer system (pH measurement and control) via signal conditioning cards. The microcomputer had a 128 kbytes RAM, two 800-kbyte floppy disc drives, a graphic terminal, and expansion cards. Biosurfactant production was independent of the carbon-to-nitrogen ratio and the phosphorus content in the medium. Omitting the Fe(III) supplement to the medium increased the product yield by 120%. Changes in oxygen transfer rate and pH in the iron deficient cultures did not have any effect on the product yield. Iron deficiency increased the cell consumption of carbon source. Consumption of carbon source in relation to nitrogen uptake (carbon/nitrogen quotient) increased with increasing quotient in the growth medium. The uptake of carbon and nitrogen changed in the intervals of 1.2-1.5 g/g biomass and 0.09-0.16 g/g biomass, respectively. The consumption of carbon increased from 1.5 g/g biomass to 2.0 g/g biomass when the medium concentration of phosphorus was decreased from 0.18 to 0.027 g/L. PMID:18595075

  9. BioSurfDB: knowledge and algorithms to support biosurfactants and biodegradation studies.

    PubMed

    Oliveira, Jorge S; Araújo, Wydemberg; Lopes Sales, Ana Isabela; Brito Guerra, Alaine de; Silva Araújo, Sinara Carla da; de Vasconcelos, Ana Tereza Ribeiro; Agnez-Lima, Lucymara F; Freitas, Ana Teresa

    2015-01-01

    Crude oil extraction, transportation and use provoke the contamination of countless ecosystems. Therefore, bioremediation through surfactants mobilization or biodegradation is an important subject, both economically and environmentally. Bioremediation research had a great boost with the recent advances in Metagenomics, as it enabled the sequencing of uncultured microorganisms providing new insights on surfactant-producing and/or oil-degrading bacteria. Many research studies are making available genomic data from unknown organisms obtained from metagenomics analysis of oil-contaminated environmental samples. These new datasets are presently demanding the development of new tools and data repositories tailored for the biological analysis in a context of bioremediation data analysis. This work presents BioSurfDB, www.biosurfdb.org, a curated relational information system integrating data from: (i) metagenomes; (ii) organisms; (iii) biodegradation relevant genes; proteins and their metabolic pathways; (iv) bioremediation experiments results, with specific pollutants treatment efficiencies by surfactant producing organisms; and (v) a biosurfactant-curated list, grouped by producing organism, surfactant name, class and reference. The main goal of this repository is to gather information on the characterization of biological compounds and mechanisms involved in biosurfactant production and/or biodegradation and make it available in a curated way and associated with a number of computational tools to support studies of genomic and metagenomic data. PMID:25833955

  10. Natural emulsifiers - Biosurfactants, phospholipids, biopolymers, and colloidal particles: Molecular and physicochemical basis of functional performance.

    PubMed

    McClements, David Julian; Gumus, Cansu Ekin

    2016-08-01

    There is increasing consumer pressure for commercial products that are more natural, sustainable, and environmentally friendly, including foods, cosmetics, detergents, and personal care products. Industry has responded by trying to identify natural alternatives to synthetic functional ingredients within these products. The focus of this review article is on the replacement of synthetic surfactants with natural emulsifiers, such as amphiphilic proteins, polysaccharides, biosurfactants, phospholipids, and bioparticles. In particular, the physicochemical basis of emulsion formation and stabilization by natural emulsifiers is discussed, and the benefits and limitations of different natural emulsifiers are compared. Surface-active polysaccharides typically have to be used at relatively high levels to produce small droplets, but the droplets formed are highly resistant to environmental changes. Conversely, surface-active proteins are typically utilized at low levels, but the droplets formed are highly sensitive to changes in pH, ionic strength, and temperature. Certain phospholipids are capable of producing small oil droplets during homogenization, but again the droplets formed are highly sensitive to changes in environmental conditions. Biosurfactants (saponins) can be utilized at low levels to form fine oil droplets that remain stable over a range of environmental conditions. Some nature-derived nanoparticles (e.g., cellulose, chitosan, and starch) are effective at stabilizing emulsions containing relatively large oil droplets. Future research is encouraged to identify, isolate, purify, and characterize new types of natural emulsifier, and to test their efficacy in food, cosmetic, detergent, personal care, and other products. PMID:27181392

  11. BioSurfDB: knowledge and algorithms to support biosurfactants and biodegradation studies.

    PubMed

    Oliveira, Jorge S; Araújo, Wydemberg; Lopes Sales, Ana Isabela; Brito Guerra, Alaine de; Silva Araújo, Sinara Carla da; de Vasconcelos, Ana Tereza Ribeiro; Agnez-Lima, Lucymara F; Freitas, Ana Teresa

    2015-01-01

    Crude oil extraction, transportation and use provoke the contamination of countless ecosystems. Therefore, bioremediation through surfactants mobilization or biodegradation is an important subject, both economically and environmentally. Bioremediation research had a great boost with the recent advances in Metagenomics, as it enabled the sequencing of uncultured microorganisms providing new insights on surfactant-producing and/or oil-degrading bacteria. Many research studies are making available genomic data from unknown organisms obtained from metagenomics analysis of oil-contaminated environmental samples. These new datasets are presently demanding the development of new tools and data repositories tailored for the biological analysis in a context of bioremediation data analysis. This work presents BioSurfDB, www.biosurfdb.org, a curated relational information system integrating data from: (i) metagenomes; (ii) organisms; (iii) biodegradation relevant genes; proteins and their metabolic pathways; (iv) bioremediation experiments results, with specific pollutants treatment efficiencies by surfactant producing organisms; and (v) a biosurfactant-curated list, grouped by producing organism, surfactant name, class and reference. The main goal of this repository is to gather information on the characterization of biological compounds and mechanisms involved in biosurfactant production and/or biodegradation and make it available in a curated way and associated with a number of computational tools to support studies of genomic and metagenomic data.

  12. Lipid nanotechnology.

    PubMed

    Mashaghi, Samaneh; Jadidi, Tayebeh; Koenderink, Gijsje; Mashaghi, Alireza

    2013-01-01

    Nanotechnology is a multidisciplinary field that covers a vast and diverse array of devices and machines derived from engineering, physics, materials science, chemistry and biology. These devices have found applications in biomedical sciences, such as targeted drug delivery, bio-imaging, sensing and diagnosis of pathologies at early stages. In these applications, nano-devices typically interface with the plasma membrane of cells. On the other hand, naturally occurring nanostructures in biology have been a source of inspiration for new nanotechnological designs and hybrid nanostructures made of biological and non-biological, organic and inorganic building blocks. Lipids, with their amphiphilicity, diversity of head and tail chemistry, and antifouling properties that block nonspecific binding to lipid-coated surfaces, provide a powerful toolbox for nanotechnology. This review discusses the progress in the emerging field of lipid nanotechnology. PMID:23429269

  13. Lipid Nanotechnology

    PubMed Central

    Mashaghi, Samaneh; Jadidi, Tayebeh; Koenderink, Gijsje; Mashaghi, Alireza

    2013-01-01

    Nanotechnology is a multidisciplinary field that covers a vast and diverse array of devices and machines derived from engineering, physics, materials science, chemistry and biology. These devices have found applications in biomedical sciences, such as targeted drug delivery, bio-imaging, sensing and diagnosis of pathologies at early stages. In these applications, nano-devices typically interface with the plasma membrane of cells. On the other hand, naturally occurring nanostructures in biology have been a source of inspiration for new nanotechnological designs and hybrid nanostructures made of biological and non-biological, organic and inorganic building blocks. Lipids, with their amphiphilicity, diversity of head and tail chemistry, and antifouling properties that block nonspecific binding to lipid-coated surfaces, provide a powerful toolbox for nanotechnology. This review discusses the progress in the emerging field of lipid nanotechnology. PMID:23429269

  14. Lipid Storage Diseases

    MedlinePlus

    ... Awards Enhancing Diversity Find People About NINDS NINDS Lipid Storage Diseases Information Page Condensed from Lipid Storage ... en Español Additional resources from MedlinePlus What are Lipid Storage Diseases? Lipid storage diseases are a group ...

  15. Biosurfactants and increased bioavailability of sorbed organic contaminants: Measurements using a biosensor

    SciTech Connect

    Strong-Gunderson, J.M.; Palumbo, A.V.; Applegate, B.; Saylor, G.S.

    1993-12-31

    Bioremediation of sites contaminated with hydrophobic materials that sorb onto the soil matrix is very difficult due to reduced microbial (bio)availability. Following biosurfactant addition, we have measured an increase in contaminant bioavailability by using a lux biosensor. Direct microbial bioavailability was determined by using a genetically engineered microbial bioreporter strain of Pseudomonas putida. This strain was engineered so the lux genes, which code for light production, are transcriptionally fused with genes that code for contaminant degradation and are thus induced in the presence of specific compounds. By using a bioreporter we can quantify the actual microbial bioavailability of the contaminants and compare it to concentrations measured by other analytical methods (e.g. gas chromatograph). It is possible that these values are not equal to each other. Thus, bioremediation rates may not be accurately predicted if bioavailability is not considered.

  16. EPS solubilization treatment by applying the biosurfactant rhamnolipid to reduce clogging in constructed wetlands.

    PubMed

    Du, Mingpu; Xu, Dong; Trinh, Xuantung; Liu, Shuangyuan; Wang, Mei; Zhang, Yi; Wu, Junmei; Zhou, Qiaohong; Wu, Zhenbin

    2016-10-01

    Application of extracellular polymeric substances (EPS) solubilization treatment with biosurfactant rhamnolipid (RL) to reduce clogging in constructed wetlands was first conducted in this study. The results showed significant improvement in the solubilization and dispersion of clogging matter following the treatment. And RL dosage of 0.09-0.15g/L altered microbial group make-up and had an overall positive effect on the growth of microorganisms. Moreover, RL was found to enhance EPS dissolution and dispersion, which was beneficial for the release of enzymes embedded in the EPS, and resulted in enhanced pollutant removal. The treatment had no apparent detrimental effect on wetland plants. Our results indicate that the optimum dosage of RL is 0.12g/L, and that the approach provides a promising and moderate option to reverse wetland clogging through RL-mediated solubilization treatment. PMID:27428300

  17. Production of Enzymes from Agroindustrial Wastes by Biosurfactant-Producing Strains of Bacillus subtilis.

    PubMed

    Barros, Francisco Fábio Cavalcante; Simiqueli, Ana Paula Resende; de Andrade, Cristiano José; Pastore, Gláucia Maria

    2013-01-01

    Bacteria in the genus Bacillus are the source of several enzymes of current industrial interest. Hydrolases, such as amylases, proteases, and lipases, are the main enzymes consumed worldwide and have applications in a wide range of products and industrial processes. Fermentation processes by Bacillus subtilis using cassava wastewater as a substrate are reported in the technical literature; however, the same combination of microorganisms and this culture medium is limited or nonexistent. In this paper, the amylase, protease, and lipase production of ten Bacillus subtilis strains previously identified as biosurfactant producers in cassava wastewater was evaluated. The LB1a and LB5a strains were selected for analysis using a synthetic medium and cassava wastewater and were identified as good enzyme producers, especially of amylases and proteases. In addition, the enzymatic activity results indicate that cassava wastewater was better than the synthetic medium for the induction of these enzymes. PMID:23533780

  18. Production of Enzymes from Agroindustrial Wastes by Biosurfactant-Producing Strains of Bacillus subtilis.

    PubMed

    Barros, Francisco Fábio Cavalcante; Simiqueli, Ana Paula Resende; de Andrade, Cristiano José; Pastore, Gláucia Maria

    2013-01-01

    Bacteria in the genus Bacillus are the source of several enzymes of current industrial interest. Hydrolases, such as amylases, proteases, and lipases, are the main enzymes consumed worldwide and have applications in a wide range of products and industrial processes. Fermentation processes by Bacillus subtilis using cassava wastewater as a substrate are reported in the technical literature; however, the same combination of microorganisms and this culture medium is limited or nonexistent. In this paper, the amylase, protease, and lipase production of ten Bacillus subtilis strains previously identified as biosurfactant producers in cassava wastewater was evaluated. The LB1a and LB5a strains were selected for analysis using a synthetic medium and cassava wastewater and were identified as good enzyme producers, especially of amylases and proteases. In addition, the enzymatic activity results indicate that cassava wastewater was better than the synthetic medium for the induction of these enzymes.

  19. EPS solubilization treatment by applying the biosurfactant rhamnolipid to reduce clogging in constructed wetlands.

    PubMed

    Du, Mingpu; Xu, Dong; Trinh, Xuantung; Liu, Shuangyuan; Wang, Mei; Zhang, Yi; Wu, Junmei; Zhou, Qiaohong; Wu, Zhenbin

    2016-10-01

    Application of extracellular polymeric substances (EPS) solubilization treatment with biosurfactant rhamnolipid (RL) to reduce clogging in constructed wetlands was first conducted in this study. The results showed significant improvement in the solubilization and dispersion of clogging matter following the treatment. And RL dosage of 0.09-0.15g/L altered microbial group make-up and had an overall positive effect on the growth of microorganisms. Moreover, RL was found to enhance EPS dissolution and dispersion, which was beneficial for the release of enzymes embedded in the EPS, and resulted in enhanced pollutant removal. The treatment had no apparent detrimental effect on wetland plants. Our results indicate that the optimum dosage of RL is 0.12g/L, and that the approach provides a promising and moderate option to reverse wetland clogging through RL-mediated solubilization treatment.

  20. Improved production of biosurfactant by a Pseudomonas aeruginosa mutant using vegetable oil refinery wastes.

    PubMed

    Raza, Zulfiqar Ali; Rehman, Asma; Khan, Muhammad Saleem; Khalid, Zafar M

    2007-02-01

    Biosurfactant production by Pseudomonas aeruginosa EBN-8 mutant was studied in shake flasks on separate wastes from canola, soybean and corn oil refineries. Of the substrates tested, canola oil refinery waste (COD=20 g l(-1)) supplemented with sodium nitrate (at COD/N=20) showed the best microbial growth (4.50 g l(-1)) and rhamnolipid production (8.50 g l(-1)), at 10 d of incubation with the specific growth rate of 0.316 h(-1) and specific product yield of 0.597 g g(-1) h. Its cell-free supernatant showed the critical micelle dilution (CMD) of 150 and surface tension (ST) of 28.5 mN m(-1).

  1. Biosurfactant production through Bacillus sp. MTCC 5877 and its multifarious applications in food industry.

    PubMed

    Anjum, Farhan; Gautam, Gunjan; Edgard, Gnansounou; Negi, Sangeeta

    2016-08-01

    In this study Bacillus sp. MTCC5877 was explored for the production of biosurfactant (BSs) and various carbon sources 1% (w/v), 0.5% (w/v) nitrogen sources were tested at different pH, and temperature. Yield was measured in terms of Emulsification index (EI), Oil Displacement Area (ODA) and Drop Collapse Area (DCA) and maximum emulsification activities of BSs were found (E24) 50%, 76% and 46%, respectively, and maximum ODA of 5.0, 6.2 and 4.7cm, were shown respectively. The BS was able to reduce the surface tension of water from 72 to 30mN/m and 72 to 32mN/m. Structural compositions of BS were confirmed by FTIR, GC-MS and NMR. Anti-adhesive property of BS was determined and found effective against biofilm formation. It could remove 73% Cd from vegetable which confirms its application in food industry.

  2. Computational study of elements of stability of a four-helix bundle protein biosurfactant.

    PubMed

    Schaller, Andrea; Connors, Natalie K; Dwyer, Mirjana Dimitrijev; Oelmeier, Stefan A; Hubbuch, Jürgen; Middelberg, Anton P J

    2015-01-01

    Biosurfactants are surface-active molecules produced principally by microorganisms. They are a sustainable alternative to chemically-synthesized surfactants, having the advantages of being non-toxic, highly functional, eco-friendly and biodegradable. However they are currently only used in a few industrial products due to costs associated with production and purification, which exceed those for commodity chemical surfactants. DAMP4, a member of a four-helix bundle biosurfactant protein family, can be produced in soluble form and at high yield in Escherichia coli, and can be recovered using a facile thermal phase-separation approach. As such, it encompasses an interesting synergy of biomolecular and chemical engineering with prospects for low-cost production even for industrial sectors. DAMP4 is highly functional, and due to its extraordinary thermal stability it can be purified in a simple two-step process, in which the combination of high temperature and salt leads to denaturation of all contaminants, whereas DAMP4 stays stable in solution and can be recovered by filtration. This study aimed to characterize and understand the fundamental drivers of DAMP4 stability to guide further process and surfactant design studies. The complementary use of experiments and molecular dynamics simulation revealed a broad pH and temperature tolerance for DAMP4, with a melting point of 122.4 °C, suggesting the hydrophobic core as the major contributor to thermal stability. Simulation of systematically created in silico variants of DAMP4 showed an influence of number and location of hydrophilic mutations in the hydrophobic core on stability, demonstrating a tolerance of up to three mutations before a strong loss in stability occurred. The results suggest a consideration of a balance of stability, functionality and kinetics for new designs according to their application, aiming for maximal functionality but at adequate stability to allow for cost-efficient production using thermal

  3. Lipid14: The Amber Lipid Force Field.

    PubMed

    Dickson, Callum J; Madej, Benjamin D; Skjevik, Age A; Betz, Robin M; Teigen, Knut; Gould, Ian R; Walker, Ross C

    2014-02-11

    The AMBER lipid force field has been updated to create Lipid14, allowing tensionless simulation of a number of lipid types with the AMBER MD package. The modular nature of this force field allows numerous combinations of head and tail groups to create different lipid types, enabling the easy insertion of new lipid species. The Lennard-Jones and torsion parameters of both the head and tail groups have been revised and updated partial charges calculated. The force field has been validated by simulating bilayers of six different lipid types for a total of 0.5 μs each without applying a surface tension; with favorable comparison to experiment for properties such as area per lipid, volume per lipid, bilayer thickness, NMR order parameters, scattering data, and lipid lateral diffusion. As the derivation of this force field is consistent with the AMBER development philosophy, Lipid14 is compatible with the AMBER protein, nucleic acid, carbohydrate, and small molecule force fields.

  4. Malachite green bioremoval by a newly isolated strain Citrobacter sedlakii RI11; enhancement of the treatment by biosurfactant addition.

    PubMed

    Mnif, Inès; Fendri, Raouia; Ghribi, Dhouha

    2015-01-01

    Citrobacter sedlackii RI11, isolated from acclimated textile effluent after selective enrichment on synthetic dyes, was assessed for malachite green (MG) biotreatment potency. Results indicate that this bacterium has potential for use in effective treatment of MG contaminated wastewaters under shaking conditions at neutral and alkaline pH value, characteristic of typical textile effluents. Also, the newly isolated strain can tolerate higher doses of dye and decolorize up to 1,000 mg/l of dye. When used as microbial surfactant to enhance MG biodecolorization, Bacillus subtilis SPB1-derived lipopeptide accelerated the decolorization rate and maximized the decolorization efficiency at an optimal concentration of biosurfactant of about 0.075%. Studies ensured that MG removal by this strain could be due to biodegradation and/or adsorption. Results on germination potencies of different seeds using the treated dyes under different conditions favor the use of SPB1 biosurfactant for the treatment of MG. PMID:26465297

  5. Malachite green bioremoval by a newly isolated strain Citrobacter sedlakii RI11; enhancement of the treatment by biosurfactant addition.

    PubMed

    Mnif, Inès; Fendri, Raouia; Ghribi, Dhouha

    2015-01-01

    Citrobacter sedlackii RI11, isolated from acclimated textile effluent after selective enrichment on synthetic dyes, was assessed for malachite green (MG) biotreatment potency. Results indicate that this bacterium has potential for use in effective treatment of MG contaminated wastewaters under shaking conditions at neutral and alkaline pH value, characteristic of typical textile effluents. Also, the newly isolated strain can tolerate higher doses of dye and decolorize up to 1,000 mg/l of dye. When used as microbial surfactant to enhance MG biodecolorization, Bacillus subtilis SPB1-derived lipopeptide accelerated the decolorization rate and maximized the decolorization efficiency at an optimal concentration of biosurfactant of about 0.075%. Studies ensured that MG removal by this strain could be due to biodegradation and/or adsorption. Results on germination potencies of different seeds using the treated dyes under different conditions favor the use of SPB1 biosurfactant for the treatment of MG.

  6. Monitoring of oil pollution at Gemsa Bay and bioremediation capacity of bacterial isolates with biosurfactants and nanoparticles.

    PubMed

    El-Sheshtawy, H S; Khalil, N M; Ahmed, W; Abdallah, R I

    2014-10-15

    Fifteen crude oil-degrading bacterial isolates were isolated from an oil-polluted area in Gemsa Bay, Red Sea, Egypt. Two bacterial species showed the highest growth rate on crude oil hydrocarbons. From an analysis of 16S rRNA sequences, these isolates were identified as Pseudomonas xanthomarina KMM 1447 and Pseudomonas stutzeri ATCC 17588. Gas Chromatographic (GC) analysis of the crude oil remaining in the culture medium after one week at 30°C showed that the optimum biodegradation of crude petroleum oil was demonstrated at 50% in medium containing biosurfactant with two types of nanoparticles separately and two bacterial species. The complete degradation of some different members of polyaromatics and the percentage biodegradation of other polyaromatics increased in microcosm containing two different types of nanoparticles with biosurfactant after 7 days. In conclusion, these bacterial strains may be useful for the bioremediation process in the Gemsa Bay, Red Sea decreasing oil pollution in this marine ecosystem.

  7. In situ biosurfactant production and hydrocarbon removal by Pseudomonas putida CB-100 in bioaugmented and biostimulated oil-contaminated soil

    PubMed Central

    Ángeles, Martínez-Toledo; Refugio, Rodríguez-Vázquez

    2013-01-01

    In situ biosurfactant (rhamnolipid) production by Pseudomonas putida CB-100 was achieved during a bioaugmented and biostimulated treatment to remove hydrocarbons from aged contaminated soil from oil well drilling operations. Rhamnolipid production and contaminant removal were determined for several treatments of irradiated and non-irradiated soils: nutrient addition (nitrogen and phosphorus), P. putida addition, and addition of both (P. putida and nutrients). The results were compared against a control treatment that consisted of adding only sterilized water to the soils. In treatment with native microorganisms (non-irradiated soils) supplemented with P. putida, the removal of total petroleum hydrocarbons (TPH) was 40.6%, the rhamnolipid production was 1.54 mg/kg, and a surface tension of 64 mN/m was observed as well as a negative correlation (R = −0.54; p < 0.019) between TPH concentration (mg/kg) and surface tension (mN/m), When both bacteria and nutrients were involved, TPH levels were lowered to 33.7%, and biosurfactant production and surface tension were 2.03 mg/kg and 67.3 mN/m, respectively. In irradiated soil treated with P. putida, TPH removal was 24.5% with rhamnolipid generation of 1.79 mg/kg and 65.6 mN/m of surface tension, and a correlation between bacterial growth and biosurfactant production (R = −0.64; p < 0.009) was observed. When the nutrients and P. putida were added, TPH removal was 61.1%, 1.85 mg/kg of biosurfactants were produced, and the surface tension was 55.6 mN/m. In summary, in irradiated and non-irradiated soils, in situ rhamnolipid production by P. putida enhanced TPH decontamination of the soil. PMID:24294259

  8. In situ biosurfactant production and hydrocarbon removal by Pseudomonas putida CB-100 in bioaugmented and biostimulated oil-contaminated soil.

    PubMed

    Ángeles, Martínez-Toledo; Refugio, Rodríguez-Vázquez

    2013-01-01

    In situ biosurfactant (rhamnolipid) production by Pseudomonas putida CB-100 was achieved during a bioaugmented and biostimulated treatment to remove hydrocarbons from aged contaminated soil from oil well drilling operations. Rhamnolipid production and contaminant removal were determined for several treatments of irradiated and non-irradiated soils: nutrient addition (nitrogen and phosphorus), P. putida addition, and addition of both (P. putida and nutrients). The results were compared against a control treatment that consisted of adding only sterilized water to the soils. In treatment with native microorganisms (non-irradiated soils) supplemented with P. putida, the removal of total petroleum hydrocarbons (TPH) was 40.6%, the rhamnolipid production was 1.54 mg/kg, and a surface tension of 64 mN/m was observed as well as a negative correlation (R = -0.54; p < 0.019) between TPH concentration (mg/kg) and surface tension (mN/m), When both bacteria and nutrients were involved, TPH levels were lowered to 33.7%, and biosurfactant production and surface tension were 2.03 mg/kg and 67.3 mN/m, respectively. In irradiated soil treated with P. putida, TPH removal was 24.5% with rhamnolipid generation of 1.79 mg/kg and 65.6 mN/m of surface tension, and a correlation between bacterial growth and biosurfactant production (R = -0.64; p < 0.009) was observed. When the nutrients and P. putida were added, TPH removal was 61.1%, 1.85 mg/kg of biosurfactants were produced, and the surface tension was 55.6 mN/m. In summary, in irradiated and non-irradiated soils, in situ rhamnolipid production by P. putida enhanced TPH decontamination of the soil. PMID:24294259

  9. In situ biosurfactant production and hydrocarbon removal by Pseudomonas putida CB-100 in bioaugmented and biostimulated oil-contaminated soil.

    PubMed

    Ángeles, Martínez-Toledo; Refugio, Rodríguez-Vázquez

    2013-01-01

    In situ biosurfactant (rhamnolipid) production by Pseudomonas putida CB-100 was achieved during a bioaugmented and biostimulated treatment to remove hydrocarbons from aged contaminated soil from oil well drilling operations. Rhamnolipid production and contaminant removal were determined for several treatments of irradiated and non-irradiated soils: nutrient addition (nitrogen and phosphorus), P. putida addition, and addition of both (P. putida and nutrients). The results were compared against a control treatment that consisted of adding only sterilized water to the soils. In treatment with native microorganisms (non-irradiated soils) supplemented with P. putida, the removal of total petroleum hydrocarbons (TPH) was 40.6%, the rhamnolipid production was 1.54 mg/kg, and a surface tension of 64 mN/m was observed as well as a negative correlation (R = -0.54; p < 0.019) between TPH concentration (mg/kg) and surface tension (mN/m), When both bacteria and nutrients were involved, TPH levels were lowered to 33.7%, and biosurfactant production and surface tension were 2.03 mg/kg and 67.3 mN/m, respectively. In irradiated soil treated with P. putida, TPH removal was 24.5% with rhamnolipid generation of 1.79 mg/kg and 65.6 mN/m of surface tension, and a correlation between bacterial growth and biosurfactant production (R = -0.64; p < 0.009) was observed. When the nutrients and P. putida were added, TPH removal was 61.1%, 1.85 mg/kg of biosurfactants were produced, and the surface tension was 55.6 mN/m. In summary, in irradiated and non-irradiated soils, in situ rhamnolipid production by P. putida enhanced TPH decontamination of the soil.

  10. Application of biosurfactants and periodic voltage gradient for enhanced electrokinetic remediation of metals and PAHs in dredged marine sediments.

    PubMed

    Ammami, M T; Portet-Koltalo, F; Benamar, A; Duclairoir-Poc, C; Wang, H; Le Derf, F

    2015-04-01

    Dredged harbor sediment co-contaminated by heavy metals and polycyclic aromatic hydrocarbons (PAHs) was subjected to enhanced electrokinetic treatments, using a mixture of a chelating agent (citric acid CA) and a surfactant as additives in the processing fluids. We tested various operating conditions (at 1 V cm(-1)): different CA concentrations, applying a periodic voltage gradient, pre-conditioning the sediment with the additives, and replacing the synthetic surfactant Tween 20 (TW20) by biosurfactants. Increasing the CA concentration was favorable for both metal and PAH removal. Applying a periodic voltage gradient associated to a low concentration of CA and TW20 provided the best results for Zn, Cd and Pb removal and also for removal of the 16 priority PAHs. Promising results were obtained with solutions containing rhamnolipids (0.028%) and a viscosin-like biosurfactant produced by Pseudomonas fluorescens Pfa7B (0.025%), associated to a periodic voltage gradient. Although the rhamnolipid and the viscosin-like compounds involved a higher electrical current than TW20, metals were less removed from the sediment. The electroosmotic flow was lower when we used biosurfactants, hence a less effective effect on PAH removal.

  11. Isolation and characterization of biosurfactant production under extreme environmental conditions by alkali-halo-thermophilic bacteria from Saudi Arabia

    PubMed Central

    Elazzazy, Ahmed M.; Abdelmoneim, T.S.; Almaghrabi, O.A.

    2014-01-01

    Twenty three morphologically distinct microbial colonies were isolated from soil and sea water samples, which were collected from Jeddah region, Saudi Arabia for screening of the most potent biosurfactant strains. The isolated bacteria were selected by using different methods as drop collapse test, oil displacement test, blue agar test, blood hemolysis test, emulsification activity and surface tension. The results showed that the ability of Virgibacillus salarius to grow and reduce surface tension under a wide range of pH, salinities and temperatures gives bacteria isolate an advantage in many applications such as pharmaceutical, cosmetics, food industries and bioremediation in marine environment. The biosurfactant production by V. salarius decreased surface tension and emulsifying activity (30 mN/m and 80%, respectively). In addition to reducing the production cost of biosurfactants by tested several plant-derived oils such as jatropha oil, castor oils, jojoba oil, canola oil and cottonseed oil. In this respect the feasibility to reusing old frying oil of sunflower for production rhamnolipids and sophorolipids, their use that lead to solve many ecological and industrial problems. PMID:26150754

  12. Isolation and characterization of biosurfactant production under extreme environmental conditions by alkali-halo-thermophilic bacteria from Saudi Arabia.

    PubMed

    Elazzazy, Ahmed M; Abdelmoneim, T S; Almaghrabi, O A

    2015-07-01

    Twenty three morphologically distinct microbial colonies were isolated from soil and sea water samples, which were collected from Jeddah region, Saudi Arabia for screening of the most potent biosurfactant strains. The isolated bacteria were selected by using different methods as drop collapse test, oil displacement test, blue agar test, blood hemolysis test, emulsification activity and surface tension. The results showed that the ability of Virgibacillus salarius to grow and reduce surface tension under a wide range of pH, salinities and temperatures gives bacteria isolate an advantage in many applications such as pharmaceutical, cosmetics, food industries and bioremediation in marine environment. The biosurfactant production by V. salarius decreased surface tension and emulsifying activity (30 mN/m and 80%, respectively). In addition to reducing the production cost of biosurfactants by tested several plant-derived oils such as jatropha oil, castor oils, jojoba oil, canola oil and cottonseed oil. In this respect the feasibility to reusing old frying oil of sunflower for production rhamnolipids and sophorolipids, their use that lead to solve many ecological and industrial problems.

  13. Antimicrobial and anti-adhesive properties of biosurfactant produced by lactobacilli isolates, biofilm formation and aggregation ability.

    PubMed

    Zakaria Gomaa, Eman

    2013-01-01

    This study aimed to investigate the antimicrobial and anti-adhesive properties of biosurfactant extracted from ten lactobacilli species isolated from Egyptian dairy products. The produced biosurfactants showed distinct antimicrobial and anti-adhesive activities against several pathogenic microorganisms. Furthermore, lactobacilli isolates were studied for biofilm formation and lactic acid production in different growth media. All lactobacilli isolates produced biofilm on polystyrene surface in all media tested to different degrees. L. acidophilus showed the highest biofilm formation in Rogosa medium. However, the highest lactic acid production was recorded by L. brevis (39.63 g/L), followed by L. reuteri (33.32 g/L) in MRS medium. Evaluation based on in vitro studies including auto-aggregation and co-aggregation with three pathogenic bacterial strains was further analyzed. All lactobacilli isolates tested were able to auto-aggregate (ranging from 51.12% to 78.17% assessed at 5 h of incubation). The lactobacilli isolates co-aggregate with the tested bacterial strains to different degrees; among them L. delbrueckii showed the highest scores of co-aggregation with Candida albicans ATC70014, reaching 59.37%. The aggregation ability exhibited by the isolated lactobacilli, together with the antimicrobial and anti-adhesive properties observed for their biosurfactants, opens future prospects for their use against microorganisms responsible for diseases and infections and as effective probiotic strains.

  14. Biosurfactant from red ash trees enhances the bioremediation of PAH contaminated soil at a former gasworks site.

    PubMed

    Blyth, Warren; Shahsavari, Esmaeil; Morrison, Paul D; Ball, Andrew S

    2015-10-01

    Polycyclic aromatic hydrocarbons (PAHs) are persistent contaminants that accumulate in soil, sludge and on vegetation and are produced through activities such as coal burning, wood combustion and in the use of transport vehicles. Naturally occurring surfactants have been known to enhance PAH-removal from soil by improving PAH solubilization thereby increasing PAH-microbe interactions. The aim of this research was to determine if a biosurfactant derived from the leaves of the Australian red ash (Alphitonia excelsa) would enhance bioremediation of a heavily PAH-contaminated soil and to determine how the microbial community was affected. Results of GC-MS analysis show that the extracted biosurfactant was significantly more efficient than the control in regards to the degradation of total 16 US EPA priority PAHs (78.7% degradation compared to 62.0%) and total petroleum hydrocarbons (TPH) (92.9% degradation compared to 44.3%). Furthermore the quantification of bacterial genes by qPCR analysis showed that there was an increase in the number of gene copies associated with Gram positive PAH-degrading bacteria. The results suggest a commercial potential for the use of the Australian red ash tree as a source of biosurfactant for use in the accelerated degradation of hydrocarbons. PMID:26217887

  15. Biosurfactant from red ash trees enhances the bioremediation of PAH contaminated soil at a former gasworks site.

    PubMed

    Blyth, Warren; Shahsavari, Esmaeil; Morrison, Paul D; Ball, Andrew S

    2015-10-01

    Polycyclic aromatic hydrocarbons (PAHs) are persistent contaminants that accumulate in soil, sludge and on vegetation and are produced through activities such as coal burning, wood combustion and in the use of transport vehicles. Naturally occurring surfactants have been known to enhance PAH-removal from soil by improving PAH solubilization thereby increasing PAH-microbe interactions. The aim of this research was to determine if a biosurfactant derived from the leaves of the Australian red ash (Alphitonia excelsa) would enhance bioremediation of a heavily PAH-contaminated soil and to determine how the microbial community was affected. Results of GC-MS analysis show that the extracted biosurfactant was significantly more efficient than the control in regards to the degradation of total 16 US EPA priority PAHs (78.7% degradation compared to 62.0%) and total petroleum hydrocarbons (TPH) (92.9% degradation compared to 44.3%). Furthermore the quantification of bacterial genes by qPCR analysis showed that there was an increase in the number of gene copies associated with Gram positive PAH-degrading bacteria. The results suggest a commercial potential for the use of the Australian red ash tree as a source of biosurfactant for use in the accelerated degradation of hydrocarbons.

  16. Application of polyhydroxyalkanoate (PHA) synthesis regulatory protein PhaR as a bio-surfactant and bactericidal agent.

    PubMed

    Ma, Hong-Kun; Liu, Ming-Ming; Li, Shi-Yan; Wu, Qiong; Chen, Jin-Chun; Chen, Guo-Qiang

    2013-06-20

    Polyhydroxyalkanoates (PHA), a family of diverse bio-polyesters, are produced by many bacteria as an energy and carbon storage material. PHA synthesis regulatory protein PhaR was reported to attach on the surface of intracellular PHA granules for convenience of synthesis regulation. PhaR was found to have an amphiphilic property. However, no study was conducted to exploit this property for applications as bio-surfactant and bactericide agent. Purified PhaR showed a higher emulsification ability than that of the widely used chemical surfactants including SDS, Tween 20, sodium oleate, and liquefied detergent (LD). PhaR also showed a higher emulsification ability than bio-surfactants rhamnose and PHA granules associated protein termed phasin or PhaP. Non-purified PhaR, namely, the native inclusion bodies and cell lysates, also demonstrated to be an excellent surfactant. PhaR was found highly stable even at 95 °C. In addition, PhaR was revealed to be a promising bactericidal agent against Gram positive and negative bacteria. PhaR can be conveniently produced by recombinant Escherichia coli. It has shown to be a bio-surfactant with excellent emulsification ability and strong bactericidal capacity at elevated temperature as high as 95 °C. Therefore, PhaR could be used in areas including food, beverage, pharmaceutical and cosmetics industries.

  17. Application of biosurfactants and periodic voltage gradient for enhanced electrokinetic remediation of metals and PAHs in dredged marine sediments.

    PubMed

    Ammami, M T; Portet-Koltalo, F; Benamar, A; Duclairoir-Poc, C; Wang, H; Le Derf, F

    2015-04-01

    Dredged harbor sediment co-contaminated by heavy metals and polycyclic aromatic hydrocarbons (PAHs) was subjected to enhanced electrokinetic treatments, using a mixture of a chelating agent (citric acid CA) and a surfactant as additives in the processing fluids. We tested various operating conditions (at 1 V cm(-1)): different CA concentrations, applying a periodic voltage gradient, pre-conditioning the sediment with the additives, and replacing the synthetic surfactant Tween 20 (TW20) by biosurfactants. Increasing the CA concentration was favorable for both metal and PAH removal. Applying a periodic voltage gradient associated to a low concentration of CA and TW20 provided the best results for Zn, Cd and Pb removal and also for removal of the 16 priority PAHs. Promising results were obtained with solutions containing rhamnolipids (0.028%) and a viscosin-like biosurfactant produced by Pseudomonas fluorescens Pfa7B (0.025%), associated to a periodic voltage gradient. Although the rhamnolipid and the viscosin-like compounds involved a higher electrical current than TW20, metals were less removed from the sediment. The electroosmotic flow was lower when we used biosurfactants, hence a less effective effect on PAH removal. PMID:25644703

  18. Isolation and characterization of biosurfactant production under extreme environmental conditions by alkali-halo-thermophilic bacteria from Saudi Arabia.

    PubMed

    Elazzazy, Ahmed M; Abdelmoneim, T S; Almaghrabi, O A

    2015-07-01

    Twenty three morphologically distinct microbial colonies were isolated from soil and sea water samples, which were collected from Jeddah region, Saudi Arabia for screening of the most potent biosurfactant strains. The isolated bacteria were selected by using different methods as drop collapse test, oil displacement test, blue agar test, blood hemolysis test, emulsification activity and surface tension. The results showed that the ability of Virgibacillus salarius to grow and reduce surface tension under a wide range of pH, salinities and temperatures gives bacteria isolate an advantage in many applications such as pharmaceutical, cosmetics, food industries and bioremediation in marine environment. The biosurfactant production by V. salarius decreased surface tension and emulsifying activity (30 mN/m and 80%, respectively). In addition to reducing the production cost of biosurfactants by tested several plant-derived oils such as jatropha oil, castor oils, jojoba oil, canola oil and cottonseed oil. In this respect the feasibility to reusing old frying oil of sunflower for production rhamnolipids and sophorolipids, their use that lead to solve many ecological and industrial problems. PMID:26150754

  19. The impact of the Bacillus subtilis SPB1 biosurfactant on the midgut histology of Spodoptera littoralis (Lepidoptera: Noctuidae) and determination of its putative receptor.

    PubMed

    Ghribi, Dhouha; Abdelkefi-Mesrati, Lobna; Boukedi, Hanen; Elleuch, Mouna; Ellouze-Chaabouni, Semia; Tounsi, Slim

    2012-02-01

    SPB1 is a Bacillus subtilis strain producing a lipopeptide biosurfactant. The insecticidal activity of this biosurfactant was evaluated against the Egyptian cotton leaf worm (Spodoptera littoralis). It displayed toxicity with an LC(50) of 251 ng/cm(2). The histopathological changes occurred in the larval midgut of S. littoralis treated with B. subtilis SPB1 biosurfactant were vesicle formation in the apical region, cellular vacuolization and destruction of epithelial cells and their boundaries. Ligand-blotting experiments with S. littoralis brush border membrane vesicles showed binding of SPB1 biosurfactant to a protein of 45 kDa corresponding to its putative receptor. The latter differs in molecular size from those recognized by Bacillus thuringiensis Vip3A and Cry1C toxins, commonly known by their activity against S. littoralis. This result wires the application of B. subtilis biosurfactant for effective control of S. littoralis larvae, particularly in the cases where S. littoralis will develop resistance against B. thuringiensis toxins. PMID:22079884

  20. Effect of Fe nanoparticle on growth and glycolipid biosurfactant production under solid state culture by marine Nocardiopsis sp. MSA13A

    PubMed Central

    2014-01-01

    Background Iron is an essential element in several pathways of microbial metabolism, and therefore low iron toxicity is expected on the usage of Fe nanoparticles (NPs). This study aims to determine the effect of Fe NPs on biosurfactant production by marine actinobacterium Nocardiopsis sp. MSA13A under solid state culture. Foam method was used in the production of Fe NPs which were long and fiber shaped in nature. Results The SEM observation showed non toxic nature of Fe NPs as no change in the morphology of the filamentous structure of Nocardiopsis MSA13A. The production of biosurfactant by Nocardiopsis MSA13A under solid state culture supplemented with Fe NPs increased to 80% over control. The biosurfactant produced by Nocardiopsis MSA13A was characterized as glycolipid derivative which effectively disrupted the pre-formed biofilm of Vibrio pathogen. Conclusion The use of metal NPs as supplement would reduce the impact of non-metallic ions of the metal salts in a fermentation process. This would ultimately useful to achieve greener production process for biosurfactants. The present results are first report on the optimization of biosurfactant production under SSC using Fe NPs. PMID:24885470

  1. Use of biosurfactants from urban wastes compost in textile dyeing and soil remediation.

    PubMed

    Montoneri, Enzo; Boffa, Vittorio; Savarino, Piero; Tambone, Fulvia; Adani, Fabrizio; Micheletti, Luca; Gianotti, Carlo; Chiono, Roberto

    2009-01-01

    A compost isolated humic acid-like (cHAL) material was pointed out in previous work for its potential as auxiliary in chemical technology. Its potential is based on its relatively low 0.4gL(-1) critical micellar concentration (cmc) in water, which enables cHAL to enhance the water solubility of hydrophobic substances, like phenanthrene, when used at higher concentrations than 0.4gL(-1). This material could be obtained from a 1:1 v/v mixture of municipal solid and lignocellulosic wastes composted for 15 days. The compost, containing 69.3% volatile solids, 39.6% total organic C and 21C/N ratio, was extracted for 24h at 65 degrees C under N2 with aqueous 0.1molL(-1) NaOH and 0.1molL(-1) Na4P2O7, and the solution was acidified to separate the precipitated cHAL in 12% yield from soluble carbohydrates and other humic and non-humic substances. In this work two typical applications of surfactants, i.e., textile dyeing (TD) and soil remediation by washing (SW), were chosen as grounds for testing the performance of the cHAL biosurfactant against the one of sodium dodecylsulfate (SDS), which is a well established commercial synthetic surfactant. The TD trials were carried out with nylon 6 microfiber and a water insoluble dye, while the SW tests were performed with two soils contaminated by polycyclic aromatic hydrocarbons (PAH) for several decades. Performances were rated in the TD experiments based on the fabric colour intensity (DeltaE) and uniformity (sigmaDeltaE), and in the SW experiments based on the total hydrocarbons concentration (CWPAH) and on the residual surfactant (Cre) concentrations in the washing solution equilibrated with the contaminated soils. The results show that both cHAL and SDS exhibit enhanced performance when applied above their cmc values. However, while in the TD case a significant performance effect was observed at the surfactants cmc value, in the SW case the required surfactants concentration values were equivalent to 25-125xcmc for cHAL and to

  2. Using Biosurfactants Produced from Agriculture Process Waste Streams to Improve Oil Recovery in Fractured Carbonate Reservoirs

    SciTech Connect

    Stephen Johnson; Mehdi Salehi; Karl Eisert; Sandra Fox

    2009-01-07

    This report describes the progress of our research during the first 30 months (10/01/2004 to 03/31/2007) of the original three-year project cycle. The project was terminated early due to DOE budget cuts. This was a joint project between the Tertiary Oil Recovery Project (TORP) at the University of Kansas and the Idaho National Laboratory (INL). The objective was to evaluate the use of low-cost biosurfactants produced from agriculture process waste streams to improve oil recovery in fractured carbonate reservoirs through wettability mediation. Biosurfactant for this project was produced using Bacillus subtilis 21332 and purified potato starch as the growth medium. The INL team produced the biosurfactant and characterized it as surfactin. INL supplied surfactin as required for the tests at KU as well as providing other microbiological services. Interfacial tension (IFT) between Soltrol 130 and both potential benchmark chemical surfactants and crude surfactin was measured over a range of concentrations. The performance of the crude surfactin preparation in reducing IFT was greater than any of the synthetic compounds throughout the concentration range studied but at low concentrations, sodium laureth sulfate (SLS) was closest to the surfactin, and was used as the benchmark in subsequent studies. Core characterization was carried out using both traditional flooding techniques to find porosity and permeability; and NMR/MRI to image cores and identify pore architecture and degree of heterogeneity. A cleaning regime was identified and developed to remove organic materials from cores and crushed carbonate rock. This allowed cores to be fully characterized and returned to a reproducible wettability state when coupled with a crude-oil aging regime. Rapid wettability assessments for crushed matrix material were developed, and used to inform slower Amott wettability tests. Initial static absorption experiments exposed limitations in the use of HPLC and TOC to determine

  3. Biosurfactant production by Serratia marcescens SS-1 and its isogenic strain SMdeltaR defective in SpnR, a quorum-sensing LuxR family protein.

    PubMed

    Wei, Yu-Hong; Lai, Hsin-Chih; Chen, Shan-Yu; Yeh, Mao-Song; Chang, Jo-Shu

    2004-05-01

    Serratia marcescens SS-1 and its SpnR-defective isogenic mutant, SMdeltaR, produced an extracellular surfactant able to decrease surface tension of water from 72 to 37 dyne cm(-1) (SMdeltaR strain) and to 45 dyne cm(-1) (SS-1 strain). The biosurfactant also emulsified kerosene and diesel with a maximum emulsion index of 77% (diesel and kerosene) for the SMdeltaR strain, and 72% (kerosene) and 40% (diesel) for the SS-1 strain. Deletion of spnR gene appeared to enhance biosurfactant production. Model simulations suggest that biosurfactant production by the two strains was growth-associated. The SMdeltaR strain had a yield coefficient of 22-32% g dry cell(-1), which is 32-50% higher than that of the SS-1 strain.

  4. Influence of different magnetites on properties of magnetic Pseudomonas aeruginosa immobilizates used for biosurfactant production.

    PubMed

    Heyd, M; Weigold, P; Franzreb, M; Berensmeier, S

    2009-01-01

    During the last decades, whole-cell immobilization has been used successfully in many bioprocesses. In particular, it is aimed at implementing continuous production processes, reaching higher production rates, and reusing the biocatalyst. In some cases, effective retention of immobilizates in the bioprocess is not feasible by membranes or sieves due to pore plugging or undesired losses of immobilizates. In the present publication, it is reported about the investigation of magnetic immobilizates of Pseudomonas aeruginosa for application in continuous biosurfactant production of rhamnolipids by foam fractionation and retention of entrained immobilizates by high-gradient magnetic separation from foam. Different materials and methods were tested with respect to important parameters, such as stability, diffusion properties or magnetic separation. Good magnetic separation of immobilizates was achieved at 5% (w/w) magnetite loading. Best results in terms of homogeneous embedding, good diffusion properties, and stability enhancement vis-à-vis pure alginate beads was achieved with alginate beads with embedded Bayoxide magnetite or MagPrep silica particles. Although polyurethane immobilizates showed higher stabilities compared with alginate beads, rhamnolipid diffusion in immobilizates was superior in magnetic alginate beads. Regarding bead production, smaller immobilizates were achieved with suspension polymerization compared to droplet extrusion by the JetCutting technology. In total, magnetic immobilizates are a promising tool for an easier handling of biocatalysts in a continuous biological production process, but they have to be adapted to the current production task.

  5. A Biosurfactant-Sophorolipid Acts in Synergy with Antibiotics to Enhance Their Efficiency

    PubMed Central

    Joshi-Navare, Kasturi; Prabhune, Asmita

    2013-01-01

    Sophorolipids (SLs), biosurfactants with antimicrobial properties, have been tried to address the problem of antibiotic resistance. The synergistic action of SL and antibiotics was checked using standard microdilution and spread plate methods. With Staphylococcus aureus, SL-tetracycline combination achieved total inhibition before 4 h of exposure while tetracycline alone couldnot achieve total inhibition till the end of 6 h. The inhibition caused by exposure of bacterium to SL-tetracycline mixture was ~25% more as compared to SL alone. In spite of known robustness of gram-negative bacteria, SL-cefaclor mixture proved to be efficient against Escherichia coli which showed ~48% more inhibition within 2 h of exposure as compared to cefaclor alone. Scanning electron microscopy of the cells treated with mixture revealed bacterial cell membrane damage and pore formation. Moreover, SLs being a type of asymmetric bola, they are expected to form self-assemblies with unique functionality. This led to the speculation that SLs being amphiphilic in nature can span through the structurally alike cell membrane and facilitate the entry of drug molecules. PMID:24089681

  6. Rhamnolipid biosurfactant analysis using online turbulent flow chromatography-liquid chromatography-tandem mass spectrometry.

    PubMed

    Behrens, Beate; Helmer, Patrick O; Tiso, Till; Blank, Lars M; Hayen, Heiko

    2016-09-23

    Rhamnolipids are biosurfactants produced by a variety of bacterial species that present a promising alternative to surfactants from petrochemical or oleochemical origin. The success of the fermentation is evaluated by subsequent qualitative and quantitative analysis. However, the sample preparation for high numbers of samples is often laborious and inefficient. In this study an online sample preparation is developed for the qualitative and quantitative analysis of rhamnolipids by LC-MS/MS. Online sample preparation is carried out on a TurboFlow Cyclone MAX column using turbulent flow chromatography. Sample preparation prior the analysis is minimized to a dilution and syringe filtration step leading to an instrumental analysis time of 33min. The limit of detection and the limit of quantification were 0.4ng and 0.6ng on column, respectively. Recovery of the main mono- and di-rhamnolipids from a fermentation sample was 102-104%. Additionally, the rhamnolipid biosynthetic precursors 3-hydroxy(alkanoyloxy)alkanoic acids (HAAs) are covered, albeit extraction is not quantitative (85-90%). The analysis of rhamnolipids from four different microbial species was in good agreement with previous reports. The presented method allows rapid and comprehensive analysis of rhamnolipids with minimal sample preparation directly from the fermentation broth. The application of complementary data-dependent MS/MS acquisition enables non-target screening of rhamnolipids.

  7. Antibacterial properties of biosurfactants against selected Gram-positive and -negative bacteria.

    PubMed

    Díaz De Rienzo, Mayri A; Stevenson, Paul; Marchant, Roger; Banat, Ibrahim M

    2016-01-01

    The antibacterial properties and ability to disrupt biofilms of biosurfactants (rhamnolipids, sophorolipids) and sodium dodecyl sulphate (SDS) in the presence and absence of selected organic acids were investigated. Pseudomonas aeruginosa PAO1 was inhibited by sophorolipids and SDS at concentrations >5% v/v, and the growth of Escherichia coli NCTC 10418 was also inhibited by sophorolipids and SDS at concentrations >5% and 0.1% v/v, respectively. Bacillus subtilis NCTC 10400 was inhibited by rhamnolipids, sophorolipids and SDS at concentrations >0.5% v/v of all three; the same effect was observed with Staphylococcus aureus ATCC 9144. The ability to attach to surfaces and biofilm formation of P. aeruginosa PAO1, E. coli NCTC 10418 and B. subtilis NCTC 10400 was inhibited by sophorolipids (1% v/v) in the presence of caprylic acid (0.8% v/v). In the case of S. aureus ATCC 9144, the best results were obtained using caprylic acid on its own. It was concluded that sophorolipids are promising compounds for the inhibition/disruption of biofilms formed by Gram-positive and Gram-negative microorganisms and this activity can be enhanced by the presence of booster compounds such as caprylic acid. PMID:26598715

  8. Effects of biosurfactant-producing bacteria on biodegradation and transport of phenanthrene in subsurface soil.

    PubMed

    Chang, Jae-Soo; Cha, Daniel K; Radosevich, Mark; Jin, Yan

    2015-01-01

    This study investigated the effects of surfactant-producing microorganism, Pseudomonas aeruginosa ATCC 9027, on phenanthrene (PHE) biodegradation by two different PHE-degrading bacteria (Isolate P5-2 and Pseudomonas strain R) in soil. Phenanthrene mineralization experiments were conducted with soils inoculated with one of PHE-degraders and/or the surfactant-producer. Influence of co-inoculation with the surfactant-producing bacteria on phenanthrene transport and biodegradation was also examined in soil columns. P. strain R mineralized phenanthrene faster and to a greater extent than Isolate P5-2 in the test soil. Co-inoculation with the surfactant-producing bacteria significantly enhanced phenanthrene biodegradation by P. strain R but it did not affect the biodegradation by Isolate P5-2 in both batch and column systems. Production of biosurfactants by P. aeruginosa ATCC 9027 was negligible under the given conditions. This study demonstrated that bioaugmentation with surfactant-producing bacteria could enhance in situ bioremediation of soils contaminated with polycyclic aromatic hydrocarbons (PAHs) and the beneficial effect of the bioaugmentation depended on types of PAH-degrading microorganisms present.

  9. Rhamnolipid biosurfactant analysis using online turbulent flow chromatography-liquid chromatography-tandem mass spectrometry.

    PubMed

    Behrens, Beate; Helmer, Patrick O; Tiso, Till; Blank, Lars M; Hayen, Heiko

    2016-09-23

    Rhamnolipids are biosurfactants produced by a variety of bacterial species that present a promising alternative to surfactants from petrochemical or oleochemical origin. The success of the fermentation is evaluated by subsequent qualitative and quantitative analysis. However, the sample preparation for high numbers of samples is often laborious and inefficient. In this study an online sample preparation is developed for the qualitative and quantitative analysis of rhamnolipids by LC-MS/MS. Online sample preparation is carried out on a TurboFlow Cyclone MAX column using turbulent flow chromatography. Sample preparation prior the analysis is minimized to a dilution and syringe filtration step leading to an instrumental analysis time of 33min. The limit of detection and the limit of quantification were 0.4ng and 0.6ng on column, respectively. Recovery of the main mono- and di-rhamnolipids from a fermentation sample was 102-104%. Additionally, the rhamnolipid biosynthetic precursors 3-hydroxy(alkanoyloxy)alkanoic acids (HAAs) are covered, albeit extraction is not quantitative (85-90%). The analysis of rhamnolipids from four different microbial species was in good agreement with previous reports. The presented method allows rapid and comprehensive analysis of rhamnolipids with minimal sample preparation directly from the fermentation broth. The application of complementary data-dependent MS/MS acquisition enables non-target screening of rhamnolipids. PMID:27567141

  10. Influence of different magnetites on properties of magnetic Pseudomonas aeruginosa immobilizates used for biosurfactant production.

    PubMed

    Heyd, M; Weigold, P; Franzreb, M; Berensmeier, S

    2009-01-01

    During the last decades, whole-cell immobilization has been used successfully in many bioprocesses. In particular, it is aimed at implementing continuous production processes, reaching higher production rates, and reusing the biocatalyst. In some cases, effective retention of immobilizates in the bioprocess is not feasible by membranes or sieves due to pore plugging or undesired losses of immobilizates. In the present publication, it is reported about the investigation of magnetic immobilizates of Pseudomonas aeruginosa for application in continuous biosurfactant production of rhamnolipids by foam fractionation and retention of entrained immobilizates by high-gradient magnetic separation from foam. Different materials and methods were tested with respect to important parameters, such as stability, diffusion properties or magnetic separation. Good magnetic separation of immobilizates was achieved at 5% (w/w) magnetite loading. Best results in terms of homogeneous embedding, good diffusion properties, and stability enhancement vis-à-vis pure alginate beads was achieved with alginate beads with embedded Bayoxide magnetite or MagPrep silica particles. Although polyurethane immobilizates showed higher stabilities compared with alginate beads, rhamnolipid diffusion in immobilizates was superior in magnetic alginate beads. Regarding bead production, smaller immobilizates were achieved with suspension polymerization compared to droplet extrusion by the JetCutting technology. In total, magnetic immobilizates are a promising tool for an easier handling of biocatalysts in a continuous biological production process, but they have to be adapted to the current production task. PMID:19691121

  11. Biosurfactant production by marine bacterial isolates from the Venezuelan Atlantic Front.

    PubMed

    Bozo-Hurtado, Lorelei; Rocha, Carlos A; Malavé, Raydav; Suárez, Paula

    2012-11-01

    Our purpose was to detect, isolate and characterize tensioactive agents with or without emulsifying activity from marine bacterial strains present in seawater and sediment samples from the Venezuelan Atlantic Front. Biosurfactants found in cell-free supernatants from all cultures presented high surface activity as they were able to reduce the water surface tension from 72 dynes cm(-1) to values between 41.7 and 33.9 dynes cm(-1). However, high indirect CMC values were registered for the most of these compounds (51.4%-56.1% v/v). Culture supernatants from S3 and S29 strains showed highest emulsifying activity in the dispersion assay with diesel oil (absorbance 1.06 and 1.18, respectively), while supernatant from the S10 strain induced the most stable oil-in-water emulsions with 16° and 25°API crude oils. Only culture supernatant from S3 strain was able to produce stable oil-in water emulsions with diesel oil and both type of crude oils.

  12. Influence of biosurfactant on the diesel oil remediation in soil-water system.

    PubMed

    Li, Yu-Ying; Zheng, Xi-Lai; Li, Bing

    2006-01-01

    There were six high diesel oil degrading bacteria strains isolated from the oil contaminated soil that collected from Linzi City. The strain Y1 was able to produce biosurfactant rhamnolipid when cultivated on diesel oil as carbon source. The critical micelle concentrations (CMC) of rhamnolipid in water and in the soil were measured respectively according to the correlation between the surface tension of the medium and the added rhamnolipid concentration. The results showed that the CMC of rhamnolipid in water was 65 mg/L, and was 185 mg/L in soil. The tests on diesel oil biodegradation were conducted with the addition of different concentrations of rhamnolipid in water and in soil respectively. When 0.01% rhamnolipid was added to water, the diesel oil degradation was enhanced. On the contrary, when the same concentration of rhamnolipid was added to the soil, the degradation of diesel oil was inhibited. The results suggested that the rhamnolipid could enhance the diesel oil biodegradation, indicating that the concentration of rhamnolipid was higher than the corresponding CMC in the medium. Kinetics parameters for the diesel oil biodegradation parameters such as biodegradation constant (lambda), coefficient of correlation (r) and half life (t1/2) in both tests were numerically analyzed in this paper, indicating that the moderate concentration of rhamnolipid in the medium could not only enhance the extent of diesel oil biodegradation but also shorten the time for oil remediation.

  13. WETTABILITY ALTERATION OF CARBONATE ROCK MEDIATED BY BIOSURFACTANT PRODUCED FROM HIGH-STARCH AGRICULTURAL EFFLUENTS

    SciTech Connect

    Mehdi Salehi; Stephen Johnson; Gregory Bala; Jenn-Tai Liang

    2006-09-01

    Surfactants can be used to alter wettability of reservoir rock, increasing spontaneous imbibition and thus improving oil yields. Commercial synthetic surfactants are often prohibitively expensive and so a crude preparation of the anionic biosurfactant, surfactin, from Bacillus subtilis grown on high-starch industrial and agricultural effluents has been proposed as an economical alternative. To assess the effectiveness of the surfactin, it is compared to commercially available surfactants. In selecting a suitable benchmark surfactant, two metrics are examined: the ability of the surfactants to alter wettability at low concentrations, and the degree to which they are absorbed onto reservoir matrix. We review the literature to survey the adsorption models that have been developed to describe surfactant adsorption in porous media. These models are evaluated using the experimental data from this study. Crushed carbonate rock samples are cleaned and aged in crude oil. The wettability change mediated by dilute solutions of commercial anionic surfactants and surfactin is assessed using a two-phase separation; and surfactant loss due to retention and adsorption the rock is determined.

  14. Toxicity comparison of biosurfactants and synthetic surfactants used in oil spill remediation to two estuarine species.

    PubMed

    Edwards, Katherine R; Lepo, Joe Eugene; Lewis, Michael A

    2003-10-01

    The relative environmental toxicities of synthetic and biogenic surfactants used in oil spill remediation efforts are not well understood. Acute and chronic toxicities of three synthetic surfactants and three microbiologically produced surfactants were determined and compared in this study for the estuarine epibenthic invertebrate, Mysidopsis bahia and the inland silverside, Menidia beryllina. The toxicities of the surfactant were determined in standard laboratory static and static-renewal tests of 4-7 d duration. Results were specific to the surfactant, response parameter and test species. The LC50 values (nominal concentrations) for M. bahia ranged from 3.3 mg/l (Triton X-100) to >1000 mg/l (PES-61) and 2.5 mg/l (Triton X-100) to 413.6 mg/l (PES-61) for M. beryllina. Chronic first-effect concentrations (mg/l) for the six surfactants ranged from 2.3 to 465.0 (M. beryllina) and 1.0 to >1000.0 (M. bahia) based on reductions in growth and fecundity. Few generalizations could be made concerning the results due to their variability but M. bahia was generally the more sensitive species and the toxicities of the biosurfactants were intermediate to those of the synthetic surfactants.

  15. Interaction of a biosurfactant, Surfactin with a cationic Gemini surfactant in aqueous solution.

    PubMed

    Jin, Lei; Garamus, Vasil M; Liu, Fang; Xiao, Jingwen; Eckerlebe, Helmut; Willumeit-Römer, Regine; Mu, Bozhong; Zou, Aihua

    2016-11-01

    The interaction between biosurfactant Surfactin and cationic Gemini surfactant ethanediyl-1,3-bis(dodecyldimethylammonium bromide) (abbreviated as 12-3-12) was investigated using turbidity, surface tension, dynamic light scattering (DLS) and small angle neutron scattering (SANS). Analysis of critical micelle concentration (CMC) values in Surfactin/12-3-12 mixture indicates that there is synergism in formation of mixed Surfactin/12-3-12 micelles. Although Surfactin and 12-3-12 are oppositely charged in phosphate buffer solution (PBS, pH7.4), there are no precipitates observed at the concentrations below the CMC of Surfactin/12-3-12 system. However, at the concentration above CMC value, the Surfactin/12-3-12 mixture is severely turbid with high 12-3-12 content. DLS and SANS measurements follow the size and shape changes of mixed Surfactin/12-3-12 aggregates from small spherical micelles via elongated aggregates to large bulk complexes with increasing fraction of Gemini surfactant. PMID:27475707

  16. Biosurfactant templated quantum sized fluorescent gold nanoclusters for in vivo bioimaging in zebrafish embryos.

    PubMed

    S, Chandirasekar; C, Chandrasekaran; T, Muthukumarasamyvel; G, Sudhandiran; N, Rajendiran

    2016-07-01

    We report the biosurfactant (sodium cholate) templated bright bluish-green emitting gold nanoclusters (AuNCs) by green chemical approach. Optical properties of the AuNCs were studied using UV-vis and luminescence spectroscopy. Lifetime of the fluorescent AuNCs was measured using time correlated single photon counting technique (TCSPC). High-resolution transmission electron microscopy (HR-TEM) and dynamic light scattering (DLS) were used to measure the sizes of the clusters. In-vivo toxicity and bioimaging studies of sodium cholate (NaC) templated AuNCs were carried out at different developmental stages of zebrafish embryos. The survival rate, hatching rate, heart rate, malformation and apoptotic gene expression experiments shows no significant toxicity in developing embryos up to 100μL/mL of AuNCs concentration and the AuNCs stained embryos exhibited green fluorescence with high intensity over the period from 4 to 96hpf (hours post fertilization) which shows that AuNCs were stable in living organisms.

  17. Influence of salinity and temperature on the activity of biosurfactants by polychaete-associated isolates.

    PubMed

    Rizzo, Carmen; Michaud, Luigi; Syldatk, Christoph; Hausmann, Rudolf; De Domenico, Emilio; Lo Giudice, Angelina

    2014-02-01

    Influence of different parameters on biosurfactant (BS) activity was carried out on strains that were isolated from the polychaetes Megalomma claparedei, Sabella spallanzanii and Branchiomma luctuosum and additional 30 strains that were previously identified as potential BS producers from crude oil enrichments of the same polychaete specimens. The selection of BS-producing strains from polychaete natural samples was carried out by using standard screening tests. The BS activity by each isolate was evaluated for the effect of salinity and temperature on emulsion production and surface tension reduction, during incubation in mineral medium supplemented with tetradecane or diesel oil. All isolates showed a similar time course of BS activity, and the latter was more influenced by salinity rather than temperature. Some of the BS producers belonged to genera that have not (i.e. Citricoccus, Cellulophaga, Tenacibaculum and Maribacter) or have poorly been (Psychrobacter, Vibrio, and Pseudoalteromonas) reported as able to produce BSs. This is remarkable as some of them have previously been detected in hydrocarbon-enriched samples. Results confirm that filter-feeding polychaetes are an efficient source for the isolation of BS producers. PMID:24170506

  18. [Electricity generation of surplus sludge microbial fuel cell enhanced by biosurfactant].

    PubMed

    Peng, Hai-Li; Zhang, Zhi-Ping; Li, Xiao-Ming; Yang, Qi; Luo, Kun; Yi, Xin

    2014-01-01

    The effect of biosurfactant (rhamnolipid/TSS, 0.3 g x g(-1)) on the characteristics of electricity generation by surplus sludge microbial fuel cell (SSMFC) and the reduction of surplus sludge were discussed. In the control group, the electrogenesis cycle was 20 d, the maximal power density was 236.84 mW x m(-2), the coulomb efficiency was 5.7%, and the TCOD, TSS and VSS removal efficiency was 58.5%, 56.7% and 66.3%, respectively. In the experimental group, the electrogenesis cycle was 35 d, the coulomb efficiency was 11.8%, the maximal power density was 516. 67 mW x m(-2) which was increased by 118. 15% as compared to the control group, and the TCOD, TSS and VSS removal efficiency was 58.5% , 56.7% and 66.3%, which raised by 104.5%, 96.2% and 98.5% as compared to the control group, respectively. With the operation of the system, the output voltage of control group and experimental group kept stable for a period of time before gradually reduced, the SCOD, protein and soluble sugar concentrations of surplus sludge first increased and then decreased. This study demonstrated that the addition of rhamnolipid enhanced the electricity generation of SSMFC with simultaneous promotion of sludge reduction.

  19. Antibacterial properties of biosurfactants against selected Gram-positive and -negative bacteria.

    PubMed

    Díaz De Rienzo, Mayri A; Stevenson, Paul; Marchant, Roger; Banat, Ibrahim M

    2016-01-01

    The antibacterial properties and ability to disrupt biofilms of biosurfactants (rhamnolipids, sophorolipids) and sodium dodecyl sulphate (SDS) in the presence and absence of selected organic acids were investigated. Pseudomonas aeruginosa PAO1 was inhibited by sophorolipids and SDS at concentrations >5% v/v, and the growth of Escherichia coli NCTC 10418 was also inhibited by sophorolipids and SDS at concentrations >5% and 0.1% v/v, respectively. Bacillus subtilis NCTC 10400 was inhibited by rhamnolipids, sophorolipids and SDS at concentrations >0.5% v/v of all three; the same effect was observed with Staphylococcus aureus ATCC 9144. The ability to attach to surfaces and biofilm formation of P. aeruginosa PAO1, E. coli NCTC 10418 and B. subtilis NCTC 10400 was inhibited by sophorolipids (1% v/v) in the presence of caprylic acid (0.8% v/v). In the case of S. aureus ATCC 9144, the best results were obtained using caprylic acid on its own. It was concluded that sophorolipids are promising compounds for the inhibition/disruption of biofilms formed by Gram-positive and Gram-negative microorganisms and this activity can be enhanced by the presence of booster compounds such as caprylic acid.

  20. Diversity of Nonribosomal Peptide Synthetases Involved in the Biosynthesis of Lipopeptide Biosurfactants

    PubMed Central

    Roongsawang, Niran; Washio, Kenji; Morikawa, Masaaki

    2011-01-01

    Lipopeptide biosurfactants (LPBSs) consist of a hydrophobic fatty acid portion linked to a hydrophilic peptide chain in the molecule. With their complex and diverse structures, LPBSs exhibit various biological activities including surface activity as well as anti-cellular and anti-enzymatic activities. LPBSs are also involved in multi-cellular behaviors such as swarming motility and biofilm formation. Among the bacterial genera, Bacillus (Gram-positive) and Pseudomonas (Gram-negative) have received the most attention because they produce a wide range of effective LPBSs that are potentially useful for agricultural, chemical, food, and pharmaceutical industries. The biosynthetic mechanisms and gene regulation systems of LPBSs have been extensively analyzed over the last decade. LPBSs are generally synthesized in a ribosome-independent manner with megaenzymes called nonribosomal peptide synthetases (NRPSs). Production of active-form NRPSs requires not only transcriptional induction and translation but also post-translational modification and assemblage. The accumulated knowledge reveals the versatility and evolutionary lineage of the NRPSs system. This review provides an overview of the structural and functional diversity of LPBSs and their different biosynthetic mechanisms in Bacillus and Pseudomonas, including both typical and unique systems. Finally, successful genetic engineering of NRPSs for creating novel lipopeptides is also discussed. PMID:21339982

  1. [Effect of growth factors and some microelements on biosurfactant synthesis of Acinetobacter calcoaceticus IMV B-7241].

    PubMed

    Pirog, T P; Shevchuk, T A; Mashchenko, O Iu; Parfeniuk, S A; Iutinskaia, G A

    2013-01-01

    The effect of yeast autolysate and microelements on synthesis of surface-active substances (SAS, biosurfactants) was investigated under cultivation of Acinetobacter calcoaceticus IMV B-7241 on various carbon substrates (n-hexadecane, ethanol, glycerol). The authors have shown a possibility to substitute the yeast autolysate and microelement mixture in the composition of ethanol- and n-hexadecane-containing media by copper sulfate (0.16 micromol/l) and iron sulfate (3.6 micromol/l), and in the medium with glycerol by 0.21 mmol/l of KCl, 38 micromol/l of zinc sulfate and 0.16 micromol/l of copper sulfate. Under such conditions of cultivation of the strain IMV B-7241 the SAS concentration exceeded that on the initial media, which contained the yeast autolysate and microelements, 1.2-1.6 times. The authors have also established the activating effect of low (0.01 mM) concentrations of Fe2+ on activity of the enzymes of biosynthesis of surface-active amino- (NADP-dependent glutamate dehydrogenase) and glycolipids (phosphoenolpyruvate(PhEP)-synthetase, PhEP-carboxykinase), as well as of anaplerotic reaction(PhEP-carboxylase). A necessity to introduce zinc cations into glycerol-containing medium is determined by their stimulating effect on activity of 4-dinitroso-N,N-dimethylaniline-dependent alcohol dehydrogenase--one of the enzymes of this substrate catabolism in A. calcoaceticus IMV B-7241.

  2. Leaching heavy metals in municipal solid waste incinerator fly ash with chelator/biosurfactant mixed solution.

    PubMed

    Xu, Ying; Chen, Yu

    2015-07-01

    The chelator [S,S]-ethylene diamine disuccinic acid, citric acid, and biosurfactant saponin are selected as leaching agents. In this study, the leaching effect of saponin mixed with either ethylene diamine disuccinic acid or citric acid on the levels of copper, zinc, lead, and cadmium in municipal solid waste incinerator fly ash is investigated. Results indicate that saponin separately mixed with ethylene diamine disuccinic acid and citric acid exhibits a synergistic solubilisation effect on copper, zinc, lead, and cadmium leaching from fly ash. However, saponin and ethylene diamine disuccinic acid mixed solution exhibits a synergistic solubilisation effect that is superior to that of a saponin and citric acid mixed solution. The extraction rate of heavy metal in fly ash leached with a saponin and chelator mixed solution is related to the pH of the leaching solution, and the optimal range of the pH is suggested to be approximately neutral. After leaching with a saponin and chelator mixed solution, copper, zinc, lead, and cadmium contents significantly decreased (p < 0.05) in the extractable or acid-soluble and reducible fractions. By adopting the proposed approach, the leaching concentrations of copper, zinc, lead, and cadmium in treated fly ash are in accordance with Standard for Pollution Control on the Security Landfill Site for Hazardous Wastes GB18598-2001. PMID:26185165

  3. Genetic regulations of the biosynthesis of microbial surfactants: an overview.

    PubMed

    Das, Palashpriya; Mukherjee, Soumen; Sen, Ramkrishna

    2008-01-01

    Microbial biosurfactants are surface active metabolites synthesized by microbes growing on a variety of substrates. In spite of having great potential for commercial, therapeutic and environmental applications, industrial level production has not been realized for their low yields and productivities. One vital factor determining their biosynthesis is the genetic makeup of the producer organisms. Studies on molecular genetics and biochemistry of the synthesis of several biosurfactants have revealed the operons, the enzymes and the metabolic pathways required for their extracellular production. Surfactin, a cyclic lipopeptide biosurfactant is a potent antimicrobial agent and is produced as a result of non-ribosomal biosynthesis catalyzed by a large multienzyme peptide synthetase complex called the surfactin synthetase. Pathways for the synthesis of other lipopeptides such as iturin, lichenysin and arthrofactin are also mediated by similar enzyme complexes. These non-ribosomal peptide synthetases (NRPSs) responsible for lipopeptide biosynthesis display a high degree of structural similarity among themselves even from distant microbial species. Plasmid-encoded- rhlA, B, R and I genes of rhl quorum sensing system are required for production of glycolipid biosurfactants by Pseudomonas species. Molecular genetics of biosynthesis of alasan and emulsan by Acinetobacter species and of the fungal biosurfactants such as mannosylerythritol lipids (MEL) and hydrophobins have been deciphered. However, limited genetic information is available about biosynthesis of other biosurfactants such as viscosin, amphisin and putisolvin produced by some strains of Pseudomonas species. Understanding of the genetic regulatory mechanisms would help to develop metabolically engineered hyper-producing strains with better product characteristics and acquired capability of utilizing cheap agro-industrial wastes as substrates. This article thus provides an overview of the role and importance of

  4. Lipid14: The Amber Lipid Force Field.

    PubMed

    Dickson, Callum J; Madej, Benjamin D; Skjevik, Age A; Betz, Robin M; Teigen, Knut; Gould, Ian R; Walker, Ross C

    2014-02-11

    The AMBER lipid force field has been updated to create Lipid14, allowing tensionless simulation of a number of lipid types with the AMBER MD package. The modular nature of this force field allows numerous combinations of head and tail groups to create different lipid types, enabling the easy insertion of new lipid species. The Lennard-Jones and torsion parameters of both the head and tail groups have been revised and updated partial charges calculated. The force field has been validated by simulating bilayers of six different lipid types for a total of 0.5 μs each without applying a surface tension; with favorable comparison to experiment for properties such as area per lipid, volume per lipid, bilayer thickness, NMR order parameters, scattering data, and lipid lateral diffusion. As the derivation of this force field is consistent with the AMBER development philosophy, Lipid14 is compatible with the AMBER protein, nucleic acid, carbohydrate, and small molecule force fields. PMID:24803855

  5. Accumulation of high-value lipids in single-cell microorganisms: a mechanistic approach and future perspectives.

    PubMed

    Garay, Luis A; Boundy-Mills, Kyria L; German, J Bruce

    2014-04-01

    In recent years attention has been focused on the utilization of microorganisms as alternatives for industrial and nutritional applications. Considerable research has been devoted to techniques for growth, extraction, and purification of high-value lipids for their use as biofuels and biosurfactants as well as high-value metabolites for nutrition and health. These successes argue that the elucidation of the mechanisms underlying the microbial biosynthesis of such molecules, which are far from being completely understood, now will yield spectacular opportunities for industrial scale biomolecular production. There are important additional questions to be solved to optimize the processing strategies to take advantage of the assets of microbial lipids. The present review describes the current state of knowledge regarding lipid biosynthesis, accumulation, and transport mechanisms present in single-cell organisms, specifically yeasts, microalgae, bacteria, and archaea. Similarities and differences in biochemical pathways and strategies of different microorganisms provide a diverse toolset to the expansion of biotechnologies for lipid production. This paper is intended to inspire a generation of lipid scientists to insights that will drive the biotechnologies of microbial production as uniquely enabling players of lipid biotherapeutics, biofuels, biomaterials, and other opportunity areas into the 21st century. PMID:24628496

  6. Accumulation of High-Value Lipids in Single-Cell Microorganisms: A Mechanistic Approach and Future Perspectives

    PubMed Central

    2015-01-01

    In recent years attention has been focused on the utilization of microorganisms as alternatives for industrial and nutritional applications. Considerable research has been devoted to techniques for growth, extraction, and purification of high-value lipids for their use as biofuels and biosurfactants as well as high-value metabolites for nutrition and health. These successes argue that the elucidation of the mechanisms underlying the microbial biosynthesis of such molecules, which are far from being completely understood, now will yield spectacular opportunities for industrial scale biomolecular production. There are important additional questions to be solved to optimize the processing strategies to take advantage of the assets of microbial lipids. The present review describes the current state of knowledge regarding lipid biosynthesis, accumulation, and transport mechanisms present in single-cell organisms, specifically yeasts, microalgae, bacteria, and archaea. Similarities and differences in biochemical pathways and strategies of different microorganisms provide a diverse toolset to the expansion of biotechnologies for lipid production. This paper is intended to inspire a generation of lipid scientists to insights that will drive the biotechnologies of microbial production as uniquely enabling players of lipid biotherapeutics, biofuels, biomaterials, and other opportunity areas into the 21st century. PMID:24628496

  7. Biosurfactant assisted synthesis of Fe3O4@rhamnolipid@BiOBr and its behaviour in plasma discharge system

    NASA Astrophysics Data System (ADS)

    Wang, Li; Yu, Zebin; Hou, Yanping; Peng, Zhenbo; Zhang, Li; Meng, Zhengcheng; Li, Fengyuan; He, Jun; Huang, Junlin

    2016-06-01

    A novel Fe3O4@rhamnolipid@BiOBr (FRB) was synthesized via a modified precipitation method and applied in the plasma discharge system. Rhamnolipid was used as biosurfactant to modify Fe3O4 by interacting with Fe3O4 via its aliphatic chain. The results show that the prepared FRB magnetic photocatalyst exhibited excellent photocatalytic activity and Fenton reaction behavior in the plasma discharge system. Meanwhile, the addition of FRB could improve energy efficiency of defluorination by 21.29 mg kW‑1 h‑1.

  8. Biosurfactant assisted synthesis of Fe3O4@rhamnolipid@BiOBr and its behaviour in plasma discharge system

    NASA Astrophysics Data System (ADS)

    Wang, Li; Yu, Zebin; Hou, Yanping; Peng, Zhenbo; Zhang, Li; Meng, Zhengcheng; Li, Fengyuan; He, Jun; Huang, Junlin

    2016-06-01

    A novel Fe3O4@rhamnolipid@BiOBr (FRB) was synthesized via a modified precipitation method and applied in the plasma discharge system. Rhamnolipid was used as biosurfactant to modify Fe3O4 by interacting with Fe3O4 via its aliphatic chain. The results show that the prepared FRB magnetic photocatalyst exhibited excellent photocatalytic activity and Fenton reaction behavior in the plasma discharge system. Meanwhile, the addition of FRB could improve energy efficiency of defluorination by 21.29 mg kW-1 h-1.

  9. Characterization of hydrocarbon-degrading and biosurfactant-producing Pseudomonas sp. P-1 strain as a potential tool for bioremediation of petroleum-contaminated soil.

    PubMed

    Pacwa-Płociniczak, Magdalena; Płaza, Grażyna Anna; Poliwoda, Anna; Piotrowska-Seget, Zofia

    2014-01-01

    The Pseudomonas sp. P-1 strain, isolated from heavily petroleum hydrocarbon-contaminated soil, was investigated for its capability to degrade hydrocarbons and produce a biosurfactant. The strain degraded crude oil, fractions A5 and P3 of crude oil, and hexadecane (27, 39, 27 and 13% of hydrocarbons added to culture medium were degraded, respectively) but had no ability to degrade phenanthrene. Additionally, the presence of gene-encoding enzymes responsible for the degradation of alkanes and naphthalene in the genome of the P-1 strain was reported. Positive results of blood agar and methylene blue agar tests, as well as the presence of gene rhl, involved in the biosynthesis of rhamnolipid, confirmed the ability of P-1 for synthesis of glycolipid biosurfactant. 1H and 13C nuclear magnetic resonance, Fourier transform infrared spectrum and mass spectrum analyses indicated that the extracted biosurfactant was affiliated with rhamnolipid. The results of this study indicate that the P-1 and/or biosurfactant produced by this strain have the potential to be used in bioremediation of hydrocarbon-contaminated soils.

  10. Effect of medium components on the production of a biosurfactant from Candida tropicalis applied to the removal of hydrophobic contaminants in soil.

    PubMed

    Batista, Ranielly M; Rufino, Raquel D; Luna, Juliana M; de Souza, José Edson G; Sarubbo, Leonie A

    2010-05-01

    The influence of medium constituents on the production of biosurfactants by Candida tropicalis cultivated in waste frying oil was investigated according to a fractional factorial 2(5-1) design. The combined effect of the C/N(inorganic), C/Fe, C/Mg, and C/P ratios and yeast extract on surface tension reduction, biosurfactant yield, emulsification activity, and biomass were studied. The highest biosurfactant yield was reached when low C/Mg and low C/P ratio variables were combined, while the cell growth was favored by increasing the nitrogen concentration. The highest surface tension net decrease, on the other hand, was observed at low yeast extract concentration, low C/Fe, and high C/P ratios. Emulsification indices against lubrication and automobile waste oil of approximately 65 to 95% were observed. The crude biosurfactant produced in the medium--formulated with 2% waste frying oil, 0.067% NH4Cl, 0.025% MgSO4.7H2O, 0.067% KH2PO4, and 0.0026% FeCl3.6H2O--removed approximately 78 to 97% of the petroleum and motor oil adsorbed in sand samples.

  11. Biodegradation rate enhancement of hydrocarbons by an oleophilic fertilizer and a rhamnolipid biosurfactant

    SciTech Connect

    Churchill, S.A.; Griffin, R.A.; Jones, L.P.; Churchill, P.F.

    1995-01-01

    The oleophilic fertilizer Inipol EAP 22 and a microbial biosurfactant (rhamnotipid) were investigated for their ability to increase the rate of biodegradation of aliphatic and aromatic hydrocarbons by pure bacterial cultures. Both Inipol EAP 22 and rhamnolipid were found to lower the surface tension of a phosphate buffered solution to 32 mN m{sup -1}. Each surfactant dramatically increased the apparent aqueous solubility of solid 2-methylnaphthalene, and were capable of emulsifying liquid hydrocarbons. Biodegradation experiments were carried out with the TOL plasmid-containing strain, Pseudomonas putida (ATCC30015); the OCT plasmid-containing strain, P. oleovorans (ATCC29347); and an unknown naphthalene-degrading strain (ATCC15075). Cells were grown under conditions where biodegradative enzymes were induced before their utilization. Model studies were conducted to investigate the ability of Inipol EAP 22 and rhamnolipid to enhance the rate of transport and uptake of hydrocarbons into bacterial cells, and to assess the impact that increasing the apparent aqueous solubility of hydrocarbons has on their rate of biodegradation. The extent of rate enhancement of compound mineralization resulting from surfactant addition was significantly greater for the sparingly soluble alkanes, hexadecane and octadecane, than for the more soluble aromatics, toluene and 2-methylnaphthalene. The results suggest that increasing the bioavailability of hydrocarbons to bacteria may be a useful method to accelerate the rate of biodegradation at contaminated sites. Lastly, the data supports the hypothesis that surface-active components present in the oleophilic fertilizer formulation, Inipol EAP 22, may have significantly contributed to the positive results reported in tests of remedial agent impact on bioremediation, which was used as a supplemental cleanup technology on Exxon Valdez crude oil contaminated Alaskan beaches. 27 ref., 12 figs., 6 tabs.

  12. Antimicrobial and antibiofilm potential of biosurfactants isolated from lactobacilli against multi-drug-resistant pathogens

    PubMed Central

    2014-01-01

    Background Biosurfactants (BS) are amphiphilic compounds produced by microbes, either on the cell surface or secreted extracellularly. BS exhibit strong antimicrobial and anti-adhesive properties, making them good candidates for applications used to combat infections. In this study, our goal was to assess the in vitro antimicrobial, anti-adhesive and anti-biofilm abilities of BS produced by Lactobacillus jensenii and Lactobacillus rhamnosus against clinical Multidrug Resistant (MDR) strains of Acinetobacter baumannii, Escherichia coli, and Staphylococcus aureus (MRSA). Cell-bound BS from both L. jensenii and L. rhamnosus were extracted and isolated. The surface activities of crude BS samples were evaluated using an oil spreading assay. The antimicrobial, anti-adhesive and anti-biofilm activities of both BS against the above mentioned MDR pathogens were determined. Results Surface activities for both BS ranged from 6.25 to 25 mg/ml with clear zones observed between 7 and 11 cm. BS of both L. jensenii and L. rhamnosus showed antimicrobial activities against A. baumannii, E. coli and S. aureus at 25-50 mg/ml. Anti-adhesive and anti-biofilm activities were also observed for the aforementioned pathogens between 25 and 50 mg/ml. Finally, analysis by electron microscope indicated that the BS caused membrane damage for A. baumannii and pronounced cell wall damage in S. aureus. Conclusion Our results indicate that BS isolated from two Lactobacilli strains has antibacterial properties against MDR strains of A. baumannii, E. coli and MRSA. Both BS also displayed anti-adhesive and anti-biofilm abilities against A. baumannii, E. coli and S. aureus. Together, these capabilities may open up possibilities for BS as an alternative therapeutic approach for the prevention and/or treatment of hospital-acquired infections. PMID:25124936

  13. Optimizing the use of biosurfactants to remove diesel contamination in porous media

    SciTech Connect

    Cote, A.L.; Tumeo, M.A.

    1995-12-31

    It has been demonstrated that biosurfactants can be used to successfully enhance the removal of hydrocarbon contamination from soils. The Environmental Technology Laboratory (ETL) at the University of Alaska Fairbanks is currently involved in a multiyear study of surfactant usage in oil spill remediation in cold climates. Funding for this work is provided by the National Science Foundation, Petroleum Environmental Services, Inc., the Alaska Department of Conservation, and the University of Alaska Fairbanks. In the Summer of 1993, researchers from ETL successfully used a biologically derived surfactant to remove weathered crude oil contamination remaining from the Exxon Valdez oil spill. This same technology may be applicable to other hydrocarbon-contaminated sites. Subsequent laboratory studies are being performed using soil columns to quantify the interaction between surfactant usage and soil characteristics. Specifically, the amount of surfactant applied, the method of application, the level of diesel contamination, and the type of soil matrix are being investigated. Diesel fuel has been chosen as a common type of hydrocarbon contamination. Adsorption of the surfactant on particle surfaces within the soil matrix can increase the cost of surfactant application and potentially diminish oil recovery. Four soil types are being used in these studies; a well-sorted, medium-grained sand; a moderately-sorted gravel, a volcanically-derived soil and a silt representative of tundra conditions. All of these soils are frequently encountered in oil spill remediation. This paper focuses on the relationships being identified between the level of contamination, soil matrix type, and the effectiveness of contaminant removal by biologically-derived surfactants.

  14. Ice-nucleation negative fluorescent pseudomonads isolated from Hebridean cloud and rain water produce biosurfactants

    NASA Astrophysics Data System (ADS)

    Ahern, H. E.; Walsh, K. A.; Hill, T. C. J.; Moffett, B. F.

    2006-10-01

    Microorganisms were discovered in clouds over 100 years ago but information on bacterial community structure and function is limited. Clouds may not only be a niche within which bacteria could thrive but they might also influence dynamic processes using ice nucleating and cloud condensing abilities. Cloud and rain samples were collected from two mountains in the Outer Hebrides, NW Scotland, UK. Community composition was determined using a combination of amplified 16S ribosomal DNA restriction analysis and sequencing. 256 clones yielded 100 operational taxonomic units (OTUs) of which half were related to bacteria from terrestrial psychrophilic environments. Cloud samples were dominated by a mixture of fluorescent Pseudomonas spp., some of which have been reported to be ice nucleators. It was therefore possible that these bacteria were using the ice nucleation (IN) gene to trigger the Bergeron-Findeisen process of raindrop formation as a mechanism for dispersal. In this study the IN gene was not detected in any of the isolates using both polymerase chain reaction (PCR) and differential scanning calorimetry (DSC). Instead 55% of the total isolates from both cloud and rain samples displayed significant biosurfactant activity when analyzed using the drop-collapse technique. All were characterised as fluorescent pseudomonads. Surfactants have been found to be very important in lowering atmospheric critical supersaturations required for the activation of aerosols into cloud condensation nuclei (CCN). It is also known that surfactants influence cloud droplet size and increase cloud lifetime and albedo. Some bacteria are known to act as CCN and so it is conceivable that these fluorescent pseudomonads are using surfactants to facilitate their activation from aerosols into CCN. This would allow water scavenging, countering desiccation, and assist in their widespread dispersal.

  15. Towards the industrialization of new biosurfactants: Biotechnological opportunities for the lactone esterase gene from Starmerella bombicola.

    PubMed

    Roelants, Sophie L K W; Ciesielska, Katarzyna; De Maeseneire, Sofie L; Moens, Helena; Everaert, Bernd; Verweire, Stijn; Denon, Quenten; Vanlerberghe, Brecht; Van Bogaert, Inge N A; Van der Meeren, Paul; Devreese, Bart; Soetaert, Wim

    2016-03-01

    Although sophorolipids (SLs) produced by S. bombicola are a real showcase for the industrialization of microbial biosurfactants, some important drawbacks are associated with this efficient biological process, e.g., the simultaneous production of acidic and lactonic SLs. Depending on the application, there is a requirement for the naturally produced mixture to be manipulated to give defined ratios of the components. Recently, the enzyme responsible for the lactonization of SLs was discovered. The discovery of the gene encoding this lactone esterase (sble) enabled the development of promising S. bombicola strains producing either solely lactonic (using a sble overexpression strain described in this paper: oe sble) or solely acidic SLs (using a sble deletion strain, which was recently described, but not characterized yet: Δsble). The new S. bombicola strains were used to investigate the production processes (fermentation and purification) of either lactonic or acidic SLs. The strains maintain the high inherent productivities of the wild-type or even perform slightly better and thus represent a realistic industrial opportunity. 100% acidic SLs with a mixed acetylation pattern were obtained for the Δsble strain, while the inherent capacity to selectively produce lactonic SLs was significantly increased (+42%) for the oe sble strain (99% lactonic SLs). Moreover, the regulatory effect of citrate on lactone SL formation for the wild-type was absent in this new strain, which indicates that it is more robust and better suited for the industrial production of lactonic SLs. Basic parameters were determined for the purified SLs, which confirm that the two new strains produce molecules with distinctive properties of which the application potential can now easily be investigated independently.

  16. Influence of a Rhamnolipid Biosurfactant on the Transport of Bacteria through a Sandy Soil

    PubMed Central

    Bai, G.; Brusseau, M. L.; Miller, R. M.

    1997-01-01

    The objective of this study was to investigate the influence of an anionic rhamnolipid biosurfactant on the transport of bacterial cells through soil under saturated conditions. Three cell types with various hydrophobicities, i.e., Pseudomonas aeruginosa ATCC 9027, ATCC 27853, and ATCC 15442, were used in this study. In a series of experiments, columns packed with sterile sand were saturated with sterile artificial groundwater for 15 h, and then 3 pore volumes of (sup3)H-labeled bacterial suspensions with various rhamnolipid concentrations was pumped through the column. This was followed by 4 pore volumes of the rhamnolipid solution alone. The measured bacterial cell breakthrough curves were optimized by using an advection-dispersion transport model incorporating two-domain reversible sorption (instantaneous and rate limited) and with two first-order sink terms for irreversible adsorption. The influence of the rhamnolipid on the surface charge densities of the bacteria and the porous medium was also investigated. The results show that the rhamnolipid enhanced the transport of all cell types tested. For example, the rhamnolipid increased the recovery of the most hydrophilic strain, ATCC 9027, from 22.5 to 56.3%. Similarly, the recovery of ATCC 27853 increased from 36.8 to 49.4%, and the recovery of ATCC 15442, the most hydrophobic strain, increased from 17.7 to 40.5% in the presence of the rhamnolipid. The negative surface charge density of the porous medium was increased, while the surface charge density of the bacteria was not changed in the presence of the rhamnolipid. The model results suggest that the rhamnolipid predominantly affected irreversible adsorption of cells. PMID:16535601

  17. [Influence of pH on synthesis of Acinetobacter calcoaceticus IMV B-7241 biosurfactants].

    PubMed

    Pirog, T P; Antoniuk, S I; Konon, A D; Shevchuk, T A; Parfeniuk, S A

    2013-01-01

    Synthesis of extracellular metabolites with surface-active and emulsifying properties, pH being maintained at the level of 5.8-8.0, in the process of cultivation of Acinetobacter calcoaceticus IMV B-7241 in the medium with ethanol (2%, volume part) was investigated. It is established that the neutral value of pH is optimal for synthesis of surface-active substances (SAS, biosurfactants) of A. calcoaceticus IMV B-7241. The maintenance of pH at the level of 7.0 with the help of KOH solution was accompanied by the 1.8-fold increase of the amount of synthesized SAS as compared with the process indicators without regulation of pH. The substitution of KOH by NaOH to maintain pH at the optimal level led to the 1.2-1.5-fold decrease of SAS concentration that is determined by the inhibiting effect of sodium cations on activity of biosynthesis enzymes of surface-active amino- and glycolipids of A. calcoaceticus IMV B-7241. The medium neutralization by KOH solution in the process of cultivation of the strain IMV B-7241 with further introduction of fumarate (0.01%) and citrate (0.01%) at the end of the exponential phase was accompanied by the 1.2-fold increase of the amount of synthesized SAS compared with the indicators of the analogous process without neutralization and by the 3 5-fold increase compared with bacteria cultivation on ethanol without organic acids and pH regulation.

  18. Lipopeptide biosurfactant viscosin enhances dispersal of Pseudomonas fluorescens SBW25 biofilms.

    PubMed

    Bonnichsen, Lise; Bygvraa Svenningsen, Nanna; Rybtke, Morten; de Bruijn, Irene; Raaijmakers, Jos M; Tolker-Nielsen, Tim; Nybroe, Ole

    2015-12-01

    Pseudomonads produce several lipopeptide biosurfactants that have antimicrobial properties but that also facilitate surface motility and influence biofilm formation. Detailed studies addressing the significance of lipopeptides for biofilm formation and architecture are rare. Hence, the present study sets out to determine the specific role of the lipopeptide viscosin in Pseudomonas fluorescens SBW25 biofilm formation, architecture and dispersal, and to relate viscA gene expression to viscosin production and effect. Initially, we compared biofilm formation of SBW25 and the viscosin-deficient mutant strain SBW25ΔviscA in static microtitre assays. These experiments demonstrated that viscosin had little influence on the amount of biofilm formed by SBW25 during the early stages of biofilm development. Later, however, SBW25 formed significantly less biofilm than SBW25ΔviscA. The indication that viscosin is involved in biofilm dispersal was confirmed by chemical complementation of the mutant biofilm. Furthermore, a fluorescent bioreporter showed that viscA expression was induced in biofilms 4 h prior to dispersal. Subsequent detailed studies of biofilms formed in flow cells for up to 5 days revealed that SBW25 and SBW25ΔviscA developed comparable biofilms dominated by well-defined, mushroom-shaped structures. Carbon starvation was required to obtain biofilm dispersal in this system. Dispersal of SBW25 biofilms was significantly greater than of SBW25ΔviscA biofilms after 3 h and, importantly, carbon starvation strongly induced viscA expression, in particular for cells that were apparently leaving the biofilm. Thus, the present study points to a role for viscosin-facilitated motility in dispersal of SBW25 biofilms.

  19. Studies of the cell surface properties of Candida species and relation to the production of biosurfactants for environmental applications.

    PubMed

    Coimbra, Camila D; Rufino, Raquel D; Luna, Juliana M; Sarubbo, Leonie A

    2009-03-01

    In practical bioremediation of petroleum pollution, treatment systems often use soil, sand, and other aquifer porous media besides water solutions. The distribution of the microbial cell also plays an important role in the whole process of bioremediation; therefore, the adhesion ability of cells to porous media is one of the key factors influencing the efficiency of treatment. The probable modes of hydrocarbon uptake in cells of Candida were studied based on data for cell hydrophobicity, emulsifying activity, surface tension, and interfacial tension of the cell-free culture medium. Six Candida strains were cultivated in insoluble and soluble substrates for 144 h, including n-hexadecane, soybean oil, ground-nut oil refinery residue, corn steep liquor, and glucose. The results obtained showed the potential of yeasts for application in the removal of hydrophobic compounds. Depending the strain and substrate used the adhesion ability of yeast cells and the production of surfactants and emulsifiers can take place simultaneously, thus increasing the efficiency of bioremediation treatment of petroleum pollution. The application of crude biosurfactants separated from the yeast cells was also demonstrated by tests of removal of petroleum and the derivate motor oil adsorbed in sand samples. Biosurfactants produced in low-cost medium were able to remove 90% of the hydrophobic contaminants.

  20. Cookies from composite wheat-sesame peels flours: dough quality and effect of Bacillus subtilis SPB1 biosurfactant addition.

    PubMed

    Zouari, Raida; Besbes, Souhail; Ellouze-Chaabouni, Semia; Ghribi-Aydi, Dhouha

    2016-03-01

    Sesame coat is a valuable by-product. The study was carried out on sesame peels flour at different replacing levels of white wheat flour in five cookies dough formulations. The functional properties of composite flours such as swelling capacity, water holding capacity, oil holding capacity, emulsifying capacity, foam capacity, gelatinization temperature, least gelation concentration and bulk density were increased with increase in the sesame peels flour incorporation along with wheat flour. Texture analysis of dough revealed that, the addition of sesame peels flour affected the quality of dough in terms of hardness, cohesion, adhesion and breaking strength. Cookies supplemented with sesame peels flour showed interesting physical properties with lower moisture content and higher spread factor than those made by white wheat flour. But, their hardness increase with the increase of the replacement ratio and their color becomes indesirable. Interestingly, sensory results indicated that cookies supplemented with sesame peels flour were acceptable at a level that not exceeds 30% of incorporation. By the addition of SPB1 biosurfactant at 0.1%, the dough texture profile was significantly improved and the action of this bioemulsifier was more pronounced than a commercial emulsifier known as glycerol monostearate. With the addition of SPB1 biosurfactant on cookies' dough, we manage to obtain cookies softer and with better overall quality.

  1. Cookies from composite wheat-sesame peels flours: dough quality and effect of Bacillus subtilis SPB1 biosurfactant addition.

    PubMed

    Zouari, Raida; Besbes, Souhail; Ellouze-Chaabouni, Semia; Ghribi-Aydi, Dhouha

    2016-03-01

    Sesame coat is a valuable by-product. The study was carried out on sesame peels flour at different replacing levels of white wheat flour in five cookies dough formulations. The functional properties of composite flours such as swelling capacity, water holding capacity, oil holding capacity, emulsifying capacity, foam capacity, gelatinization temperature, least gelation concentration and bulk density were increased with increase in the sesame peels flour incorporation along with wheat flour. Texture analysis of dough revealed that, the addition of sesame peels flour affected the quality of dough in terms of hardness, cohesion, adhesion and breaking strength. Cookies supplemented with sesame peels flour showed interesting physical properties with lower moisture content and higher spread factor than those made by white wheat flour. But, their hardness increase with the increase of the replacement ratio and their color becomes indesirable. Interestingly, sensory results indicated that cookies supplemented with sesame peels flour were acceptable at a level that not exceeds 30% of incorporation. By the addition of SPB1 biosurfactant at 0.1%, the dough texture profile was significantly improved and the action of this bioemulsifier was more pronounced than a commercial emulsifier known as glycerol monostearate. With the addition of SPB1 biosurfactant on cookies' dough, we manage to obtain cookies softer and with better overall quality. PMID:26471616

  2. Disorders of Lipid Metabolism

    MedlinePlus

    ... Metabolic Disorders Disorders of Carbohydrate Metabolism Disorders of Amino Acid Metabolism Disorders of Lipid Metabolism Fats (lipids) are ... carbohydrates and low in fats. Supplements of the amino acid carnitine may be helpful. The long-term outcome ...

  3. Irinotecan Lipid Complex Injection

    MedlinePlus

    Irinotecan lipid complex is used in combination with other medications to treat pancreatic cancer that has spread to other parts of ... after treatment with other chemotherapy medications. Irinotecan lipid complex is in a class of antineoplastic medications called ...

  4. Vincristine Lipid Complex Injection

    MedlinePlus

    Vincristine lipid complex is used to treat a certain type of acute lymphoblastic leukemia (ALL; a type of cancer of the ... two different treatments with other medications. Vincristine lipid complex is in a class of medications called vinca ...

  5. Daunorubicin Lipid Complex Injection

    MedlinePlus

    Daunorubicin lipid complex is used to treat advanced Kaposi's sarcoma (a type of cancer that causes abnormal tissue to grow on ... related to acquired immunodeficiency syndrome (AIDS). Daunorubicin lipid complex is in a class of medications called anthracyclines. ...

  6. Cytarabine Lipid Complex Injection

    MedlinePlus

    Cytarabine lipid complex is used to treat lymphomatous meningitis (a type of cancer in the covering of the spinal cord and brain). Cytarabine lipid complex is in a class of medications called antimetabolites. ...

  7. Doxorubicin Lipid Complex Injection

    MedlinePlus

    Doxorubicin lipid complex is used to treat ovarian cancer that has not improved or that has worsened after treatment with other medications. Doxorubicin lipid complex is also used to treat Kaposi's sarcoma (a ...

  8. Lipid composition in a strain of Bacillus subtilis, a producer of iturin A lipopeptides that are active against uropathogenic bacteria.

    PubMed

    Bernat, Przemysław; Paraszkiewicz, Katarzyna; Siewiera, Paulina; Moryl, Magdalena; Płaza, Grażyna; Chojniak, Joanna

    2016-10-01

    Urinary tract infections are a common disease in humans. Therefore, new methods are needed to destroy biofilms that are formed by uropathogens. Iturin A lipopeptides (LPs) C14 and C15 are potent biosurfactants synthetized by the Bacillus subtilis I'1a strain. The biological activity of extracted LPs was confirmed by examining extracts from I'1a cultures against uropathogenic bacteria that had been isolated from biofilms on urinary catheters. Compared with cultures of DSM 3257, which produce surfactin at a relatively low level, the extract obtained from strain I'1a exhibited a greater inhibitory effect against both planktonic and sessile forms of Escherichia coli, Serratia marcescens, Enterobacter cloacae, Proteus mirabilis, Citrobacter freundii and Enterococcus faecalis. Moreover, cyclic LP biosurfactants may disturb the integrity of cytoplasmic membranes; therefore, we investigated the effects of synthetized LPs on fatty acids and phospholipids of B. subtilis. LPs and lipids were analyzed using GC-MS, LC-MS/MS and MALDI-TOF/TOF techniques. Compared with B. subtilis DSM 3257, membranes of the I'1a strain were characterized by an increased amount of anteiso fatty acids and a ten-fold higher ratio of phosphatidylglycerol (PG)-to-phosphatidylethanolamine (PE). Interestingly, in cultures of B. subtilis DSM 3257 supplemented with LP extracts of the I'1a strain, the PG-to-PE ratio was fourfold higher, and the amount of anteiso fatty acids was also increased. PMID:27550437

  9. Lipid composition in a strain of Bacillus subtilis, a producer of iturin A lipopeptides that are active against uropathogenic bacteria.

    PubMed

    Bernat, Przemysław; Paraszkiewicz, Katarzyna; Siewiera, Paulina; Moryl, Magdalena; Płaza, Grażyna; Chojniak, Joanna

    2016-10-01

    Urinary tract infections are a common disease in humans. Therefore, new methods are needed to destroy biofilms that are formed by uropathogens. Iturin A lipopeptides (LPs) C14 and C15 are potent biosurfactants synthetized by the Bacillus subtilis I'1a strain. The biological activity of extracted LPs was confirmed by examining extracts from I'1a cultures against uropathogenic bacteria that had been isolated from biofilms on urinary catheters. Compared with cultures of DSM 3257, which produce surfactin at a relatively low level, the extract obtained from strain I'1a exhibited a greater inhibitory effect against both planktonic and sessile forms of Escherichia coli, Serratia marcescens, Enterobacter cloacae, Proteus mirabilis, Citrobacter freundii and Enterococcus faecalis. Moreover, cyclic LP biosurfactants may disturb the integrity of cytoplasmic membranes; therefore, we investigated the effects of synthetized LPs on fatty acids and phospholipids of B. subtilis. LPs and lipids were analyzed using GC-MS, LC-MS/MS and MALDI-TOF/TOF techniques. Compared with B. subtilis DSM 3257, membranes of the I'1a strain were characterized by an increased amount of anteiso fatty acids and a ten-fold higher ratio of phosphatidylglycerol (PG)-to-phosphatidylethanolamine (PE). Interestingly, in cultures of B. subtilis DSM 3257 supplemented with LP extracts of the I'1a strain, the PG-to-PE ratio was fourfold higher, and the amount of anteiso fatty acids was also increased.

  10. Isolation and Characterization of Gram-Positive Biosurfactant-Producing Halothermophilic Bacilli From Iranian Petroleum Reservoirs

    PubMed Central

    Zargari, Saeed; Ramezani, Amin; Ostvar, Sassan; Rezaei, Rasool; Niazi, Ali; Ayatollahi, Shahab

    2014-01-01

    Background: Petroleum reservoirs have long been known as the hosts of extremophilic microorganisms. Some of these microorganisms are known for their potential biotechnological applications, particularly production of extra and intracellular polymers and enzymes. Objectives: Here, 14 petroleum liquid samples from southern Iranian oil reservoirs were screened for presence of biosurfactant‐producing halothermophiles. Materials and Methods: Mixture of the reservoir fluid samples with a minimal growth medium was incubated under an N2 atmosphere in 40°C; 0.5 mL samples were transferred from the aqueous phase to agar plates after 72 hours of incubation; 100 mL cell cultures were prepared using the MSS-1 (mineral salt solution 1) liquid medium with 5% (w/v) NaCl. The time-course samples were analyzed by recording the absorbance at 600 nm using a spectrophotometer. Incubation was carried out in 40°C with mild shaking in aerobic conditions. Thermotolerance was evaluated by growing the isolates at 40, 50, 60 and 70°C with varying NaCl concentrations of 5% and 10% (w/v). Halotolerance was evaluated using NaCl concentrations of 5%, 10%, 12.5% and 15% (w/v) and incubating them at 40°C under aerobic and anaerobic conditions. Different phenotypic characteristics were evaluated, as outlined in Bergey's manual of determinative bacteriology. Comparing 16S rDNA sequences is one of the most powerful tools for classification of microorganisms. Results: Among 34 isolates, 10 demonstrated biosurfactant production and growth at temperatures between 40°C and 70°C in saline media containing 5%‐15% w/v NaCl. Using partial 16S rDNA sequencing (and amplified ribosomal DNA restriction analysis [ARDRA]) and biochemical tests (API tests 20E and 50 CHB), all the 10 isolates proved to be facultative anaerobic, Gram-positive moderate thermohalophiles of the genus Bacillus (B. thermoglucosidasius, B. thermodenitrificans, B. thermoleovorans, B. stearothermophilus and B. licheniformis

  11. Nutrients and neurodevelopment: lipids.

    PubMed

    González, Horacio F; Visentin, Silvana

    2016-10-01

    Nutrients, lipids in particular, make up the central nervous system structure and play major functional roles: they stimulate development, migration, and nerve cell differentiation. They are part of gray matter, white matter, nerve nuclei, and synaptogenesis. Breast milk contains lipids which are crucial for infant brain development. The lipid profile of breast milk was used as a guideline for the development of breast milk substitutes. However, to date, no substitute has matched it. Complementary feeding should include docosahexaenoic acid, arachidonic acid, other polyunsaturated fatty acids, saturated fatty acids, and complex lipids found in milk fat. The lipid composition of breast milk depends on maternal intake and nutritional status during pregnancy and breast-feeding. It has a great impact on development. Our goal is to review scientific literature regarding the role of lipids on infant brain development and the importance of breast milk lipid composition, maternal diet, and complementary feeding. PMID:27606648

  12. Nutrients and neurodevelopment: lipids.

    PubMed

    González, Horacio F; Visentin, Silvana

    2016-10-01

    Nutrients, lipids in particular, make up the central nervous system structure and play major functional roles: they stimulate development, migration, and nerve cell differentiation. They are part of gray matter, white matter, nerve nuclei, and synaptogenesis. Breast milk contains lipids which are crucial for infant brain development. The lipid profile of breast milk was used as a guideline for the development of breast milk substitutes. However, to date, no substitute has matched it. Complementary feeding should include docosahexaenoic acid, arachidonic acid, other polyunsaturated fatty acids, saturated fatty acids, and complex lipids found in milk fat. The lipid composition of breast milk depends on maternal intake and nutritional status during pregnancy and breast-feeding. It has a great impact on development. Our goal is to review scientific literature regarding the role of lipids on infant brain development and the importance of breast milk lipid composition, maternal diet, and complementary feeding.

  13. Epidermal surface lipids

    PubMed Central

    2009-01-01

    A layer of lipids, which are of both sebaceous and keratinocyte origin, covers the surface of the skin. The apparent composition of surface lipids varies depending on the selected method of sampling. Lipids produced by the epidermal cells are an insignificant fraction of the total extractable surface lipid on areas rich in sebaceous glands. Due to the holocrine activity of the sebaceous gland, its product of secretion (sebum) is eventually released to the surface of the skin and coats the fur as well. Lipids of epidermal origin fill the spaces between the cells, like mortar or cement. The sebaceous lipids are primarily non polar lipids as triglycerides, wax esters and squalene, while epidermal lipids are a mixture of ceramides, free fatty acids and cholesterol. The composition of the sebaceous lipids is unique and intriguing and elevated sebum excretion is a major factor involved in the pathophysiology of acne. Recent studies have elucidated the roles that epidermal surface lipids have on normal skin functions and acne. PMID:20224687

  14. Improvement of methyl orange dye biotreatment by a novel isolated strain, Aeromonas veronii GRI, by SPB1 biosurfactant addition.

    PubMed

    Mnif, Inès; Maktouf, Sameh; Fendri, Raouia; Kriaa, Mouna; Ellouze, Semia; Ghribi, Dhouha

    2016-01-01

    Aeromonas veronii GRI (KF964486), isolated from acclimated textile effluent after selective enrichment on azo dye, was assessed for methyl orange biodegradation potency. Results suggested the potential of this bacterium for use in effective treatment of azo-dye-contaminated wastewaters under static conditions at neutral and alkaline pH value, characteristic of typical textile effluents. The strain could tolerate higher doses of dyes as it was able to decolorize up to 1000 mg/l. When used as microbial surfactant to enhance methyl orange biodecolorization, Bacillus subtilis SPB1-derived lipopeptide accelerated the decolorization rate and maximized slightly the decolorization efficiency at an optimal concentration of about 0.025%. In order to enhance the process efficiency, a Taguchi design was conducted. Phytotoxicity bioassay using sesame and radish seeds were carried out to assess the biotreatment effectiveness. The bacterium was able to effectively decolorize the azo dye when inoculated with an initial optical density of about 0.5 with 0.25% sucrose, 0.125% yeast extract, 0.01% SPB1 biosurfactant, and when conducting an agitation phase of about 24 h after static incubation. Germination potency showed an increase toward the nonoptimized conditions indicating an improvement of the biotreatment. When comparing with synthetic surfactants, a drastic decrease and an inhibition of orange methyl decolorization were observed in the presence of CTAB and SDS. The nonionic surfactant Tween 80 had a positive effect on methyl orange biodecolorization. Also, studies ensured that methyl orange removal by this strain could be due to endocellular enzymatic activities. To conclude, the addition of SPB1 bioemulsifier reduced energy costs by reducing effective decolorization period, biosurfactant stimulated bacterial decolorization method may provide highly efficient, inexpensive, and time-saving procedure in treatment of textile effluents. PMID:26396008

  15. Improvement of methyl orange dye biotreatment by a novel isolated strain, Aeromonas veronii GRI, by SPB1 biosurfactant addition.

    PubMed

    Mnif, Inès; Maktouf, Sameh; Fendri, Raouia; Kriaa, Mouna; Ellouze, Semia; Ghribi, Dhouha

    2016-01-01

    Aeromonas veronii GRI (KF964486), isolated from acclimated textile effluent after selective enrichment on azo dye, was assessed for methyl orange biodegradation potency. Results suggested the potential of this bacterium for use in effective treatment of azo-dye-contaminated wastewaters under static conditions at neutral and alkaline pH value, characteristic of typical textile effluents. The strain could tolerate higher doses of dyes as it was able to decolorize up to 1000 mg/l. When used as microbial surfactant to enhance methyl orange biodecolorization, Bacillus subtilis SPB1-derived lipopeptide accelerated the decolorization rate and maximized slightly the decolorization efficiency at an optimal concentration of about 0.025%. In order to enhance the process efficiency, a Taguchi design was conducted. Phytotoxicity bioassay using sesame and radish seeds were carried out to assess the biotreatment effectiveness. The bacterium was able to effectively decolorize the azo dye when inoculated with an initial optical density of about 0.5 with 0.25% sucrose, 0.125% yeast extract, 0.01% SPB1 biosurfactant, and when conducting an agitation phase of about 24 h after static incubation. Germination potency showed an increase toward the nonoptimized conditions indicating an improvement of the biotreatment. When comparing with synthetic surfactants, a drastic decrease and an inhibition of orange methyl decolorization were observed in the presence of CTAB and SDS. The nonionic surfactant Tween 80 had a positive effect on methyl orange biodecolorization. Also, studies ensured that methyl orange removal by this strain could be due to endocellular enzymatic activities. To conclude, the addition of SPB1 bioemulsifier reduced energy costs by reducing effective decolorization period, biosurfactant stimulated bacterial decolorization method may provide highly efficient, inexpensive, and time-saving procedure in treatment of textile effluents.

  16. Clarified cashew apple juice as alternative raw material for biosurfactant production by Bacillus subtilis in a batch bioreactor.

    PubMed

    Giro, Maria Estela Aparecida; Martins, João Jeferson Lima; Rocha, Maria Valderez Ponte; Melo, Vânia Maria M; Gonçalves, Luciana Rocha Barros

    2009-05-01

    Clarified cashew apple juice was evaluated as carbon source for surfactin production by Bacillus subtilis LAMI005 isolated from the tank of chlorination at the Wastewater Treatment Plant on Campus do Pici (WWTP-PICI) in the Federal University of Ceará, Brazil. The highest surfactin concentration using clarified cashew apple juice (CCAJ) supplemented with mineral medium (MM-CCAJ) was 123 mg/L, achieved after 48 h of fermentation. Almost 2-fold less than the amount produced using mineral medium supplemented with 10 g/L of glucose and 8.7 g/L of fructose (MM-GF). However, critical micelle concentration of the biosurfactants produced using MM-CCAJ was 2.5-fold lower than the one produced using MM-GF, which indicates it is a more efficient biosurfactant. Surface tension decreased from 38.50 +/- 0.0 to 29.00 +/- 0.0 dyne/cm when B. subtilis was grown on MM-CCAJ media (24.68% of reduction on surface tension) and remained constant up to 72 h. Emulsification index was 51.15 and 66.70% using soybean oil and kerosene, respectively. Surfactin produced in MM-CCAJ showed an emulsifying activity of, respectively, 1.75 and 2.3 U when n-hexadecane or soybean oil was tested. However, when mineral medium supplemented with 10 g/L of glucose (MM-G) was used an emulsifying activity of 2.0 and 1.75 U, with n-hexadecane and soybean oil, respectively, was obtained. These results indicate that it is feasible to produce surfactin from CCAJ, a renewable and low-cost carbon source.

  17. Isolation of hydrocarbon-degrading and biosurfactant-producing bacteria and assessment their plant growth-promoting traits.

    PubMed

    Pacwa-Płociniczak, Magdalena; Płociniczak, Tomasz; Iwan, Joanna; Żarska, Monika; Chorążewski, Mirosław; Dzida, Marzena; Piotrowska-Seget, Zofia

    2016-03-01

    Forty-two hydrocarbon-degrading bacterial strains were isolated from the soil heavily contaminated with petroleum hydrocarbons. Forty-one strains were identified based on their whole-cell fatty acid profiles using the MIDI-MIS method. Thirty-three of them belong to species Rhodococcus erythropolis, while the others to the genera Rahnella (4), Serratia (3) and Proteus (1). Isolates were screened for their ability to produce biosurfactants/bioemulsifiers. For all of them the activity of several mechanisms characteristic for plant growth-promoting bacteria was also determined. In order to investigate surface active and emulsifying abilities of isolates following methods: oil-spreading, blood agar, methylene blue agar and determination of emulsification index, were used. Among studied bacteria 12 strains (CD 112, CD 126, CD 131, CD 132, CD 135, CD 147, CD 154, CD 155, CD 158, CD 161, CD 166 and CD 167) have been chosen as promising candidates for the production of biosurfactants and/or bioemulsifiers. Among them 2 strains (R. erythropolis CD 126 and Rahnella aquatilis CD 132) had the highest potential to be used in the bioaugmentation of PH-contaminated soil. Moreover, 15 of tested strains (CD 105, CD 106, CD 108, CD 111, CD 116, CD 120, CD 124, CD 125, CD 130, CD 132, CD 134, CD 154, CD 156, CD 161 and CD 170) showed the activity of four mechanisms (ACC deaminase activity, IAA and siderophore production, phosphate solubilization) considered to be characteristic for plant growth-promoting bacteria. Two of them (R. erythropolis CD 106 and R. erythropolis CD 111) showed the highest activity of above-mentioned mechanisms and thus are considered as promising agents in microbe assisted phytoremediation. PMID:26708648

  18. Evaluation of rhamnolipid (RL) as a biosurfactant for the removal of chromium from aqueous solutions by precipitate flotation.

    PubMed

    Salmani Abyaneh, Ali; Fazaelipoor, Mohammad Hassan

    2016-01-01

    Rhamnolipid (RL) is a biosurfactant which is produced by the bacterial species Pseudomonas aeruginosa. Although applications of this material have been examined in various fields, its applications in the flotation of heavy metals remain to be explored. In this research, rhamnolipid was applied as a collector in the flotation of Cr(III) from aqueous solutions. FeSO4 was used for the precipitation of Cr(VI) to Cr(III) which was subsequently removed by flotation. A two level full factorial design (with center points) was used to evaluate the effects of pH, air flow rate, RL/Cr and Fe/Cr molar ratios on the performance of the flotation system. The results showed that the biosurfactant was highly effective in the removal of chromium, and all of the factors had significant effects on the flotation performance. The chromium removal efficiencies of greater than 95% were obtained with the initial chromium concentration of 40 ppm within 5 min. Kinetic studies showed that a first order kinetic model was appropriate to describe the precipitate flotation of Cr(III) using rhamnolipid as a collector. The interference of NaCl, CaCl2, CaSO4, and CaCO3 on the Cr removal was also investigated, and it was demonstrated that CaSO4 and CaCO3 as sparingly water soluble salts, and CaCl2 as a contributor to water hardness had significant negative impacts on Cr removal efficiency of rhamnolipid.

  19. Structure and Characterization of Flavolipids, a Novel Class of Biosurfactants Produced by Flavobacterium sp. Strain MTN11

    PubMed Central

    Bodour, Adria A.; Guerrero-Barajas, Claudia; Jiorle, Beth V.; Malcomson, Mark E.; Paull, Amanda K.; Somogyi, Arpad; Trinh, Long N.; Bates, Robert B.; Maier, Raina M.

    2004-01-01

    Herein we report the structure and selected properties of a new class of biosurfactants that we have named the flavolipids. The flavolipids exhibit a unique polar moiety that features citric acid and two cadaverine molecules. Flavolipids were produced by a soil isolate, Flavobacterium sp. strain MTN11 (accession number AY162137), during growth in mineral salts medium, with 2% glucose as the sole carbon and energy source. MTN11 produced a mixture of at least 37 flavolipids ranging from 584 to 686 in molecular weight (MW). The structure of the major component (23%; MW = 668) was determined to be 4-[[5-(7-methyl-(E)-2-octenoylhydroxyamino)pentyl]amino]-2-[2-[[5-(7-methyl-(E)-2-octenoylhydroxyamino)pentyl]amino]-2-oxoethyl]-2-hydroxy-4-oxobutanoic acid. The partially purified flavolipid mixture isolated from strain MTN11 exhibited a critical micelle concentration of 300 mg/liter and reduced surface tension to 26.0 mN/m, indicating strong surfactant activity. The flavolipid mixture was a strong and stable emulsifier even at concentrations as low as 19 mg/liter. It was also an effective solubilizing agent, and in a biodegradation study, it enhanced hexadecane mineralization by two isolates, MTN11 (100-fold) and Pseudomonas aeruginosa ATCC 9027 (2.5-fold), over an 8-day period. The flavolipid-cadmium stability constant was measured to be 3.61, which is comparable to that for organic ligands such as oxalic acid and acetic acid. In summary, the flavolipids represent a new class of biosurfactants that have potential for use in a variety of biotechnological and industrial applications. PMID:14711632

  20. Lipids of mitochondria.

    PubMed

    Horvath, Susanne E; Daum, Günther

    2013-10-01

    A unique organelle for studying membrane biochemistry is the mitochondrion whose functionality depends on a coordinated supply of proteins and lipids. Mitochondria are capable of synthesizing several lipids autonomously such as phosphatidylglycerol, cardiolipin and in part phosphatidylethanolamine, phosphatidic acid and CDP-diacylglycerol. Other mitochondrial membrane lipids such as phosphatidylcholine, phosphatidylserine, phosphatidylinositol, sterols and sphingolipids have to be imported. The mitochondrial lipid composition, the biosynthesis and the import of mitochondrial lipids as well as the regulation of these processes will be main issues of this review article. Furthermore, interactions of lipids and mitochondrial proteins which are highly important for various mitochondrial processes will be discussed. Malfunction or loss of enzymes involved in mitochondrial phospholipid biosynthesis lead to dysfunction of cell respiration, affect the assembly and stability of the mitochondrial protein import machinery and cause abnormal mitochondrial morphology or even lethality. Molecular aspects of these processes as well as diseases related to defects in the formation of mitochondrial membranes will be described.

  1. Analysis of Genes for Succinoyl Trehalose Lipid Production and Increasing Production in Rhodococcus sp. Strain SD-74

    PubMed Central

    Inaba, Tomohiro; Tokumoto, Yuta; Miyazaki, Yusuke; Inoue, Naoyuki; Maseda, Hideaki; Nakajima-Kambe, Toshiaki; Uchiyama, Hiroo

    2013-01-01

    Succinoyl trehalose lipids (STLs) are promising glycolipid biosurfactants produced from n-alkanes that are secreted by Rhodococcus species bacteria. These compounds not only exhibit unique interfacial properties but also demonstrate versatile biochemical actions. In this study, three novel types of genes involved in the biosynthesis of STLs, including a putative acyl coenzyme A (acyl-CoA) transferase (tlsA), fructose-bisphosphate aldolase (fda), and alkane monooxygenase (alkB), were identified. The predicted functions of these genes indicate that alkane metabolism, sugar synthesis, and the addition of acyl groups are important for the biosynthesis of STLs. Based on these results, we propose a biosynthesis pathway for STLs from alkanes in Rhodococcus sp. strain SD-74. By overexpressing tlsA, we achieved a 2-fold increase in the production of STLs. This study advances our understanding of bacterial glycolipid production in Rhodococcus species. PMID:24038682

  2. Oil spill remediation by using the remediation agent JE1058BS that contains a biosurfactant produced by Gordonia sp. strain JE-1058.

    PubMed

    Saeki, Hisashi; Sasaki, Masaru; Komatsu, Koei; Miura, Akira; Matsuda, Hitoshi

    2009-01-01

    A remediation agent containing a biosurfactant was prepared by spray drying the sterilized culture broth of Gordonia sp. strain JE-1058, and the agent was designated as JE1058BS. On subjection to the baffled flask test developed by the United States Environmental Protection Agency, JE1058BS showed a strong potential to be applied as an oil spill dispersant even in the absence of a solvent. It also proved to be an effective bioremediation agent for the remediation of oil spills at sea. The addition of JE1058BS to seawater stimulated the degradation of weathered crude oil (ANS 521) via the activity of the indigenous marine bacteria. Its addition also stimulated the removal of crude oil from the surface of contaminated sea sand. These results indicate that biosurfactant-containing JE1058BS has a strong potential to be applied as a remediation agent for the clean-up of oil spills at sea and on shorelines.

  3. Microalgae lipid characterization.

    PubMed

    Yao, Linxing; Gerde, Jose A; Lee, Show-Ling; Wang, Tong; Harrata, Kamel A

    2015-02-18

    To meet the growing interest of utilizing microalgae biomass in the production of biofuels and nutraceutical and pharmaceutical lipids, we need suitable analytical methods and a comprehensive database for their lipid components. The objective of the present work was to demonstrate methodology and provide data on fatty acid composition, lipid class content and composition, characteristics of the unsaponifiables, and type of chlorophylls of five microalgae. Microalgae lipids were fractionated into TAG, FFA, and polar lipids using TLC, and the composition of fatty acids in total lipids and in each lipid class, hydrocarbons, and sterols were determined by GC-MS. Glyco- and phospholipids were profiled by LC/ESI-MS. Chlorophylls and their related metabolites were qualified by LC/APCI-MS. The melting and crystallization profiles of microalgae total lipids and their esters were analyzed by DSC to evaluate their potential biofuel applications. Significant differences and complexities of lipid composition among the algae tested were observed. The compositional information is valuable for strain selection, downstream biomass fractionation, and utilization.

  4. Multifunctional lipid multilayer stamping.

    PubMed

    Nafday, Omkar A; Lowry, Troy W; Lenhert, Steven

    2012-04-10

    Nanostructured lipid multilayers on surfaces are a promising biofunctional nanomaterial. For example, surface-supported lipid multilayer diffraction gratings with optical properties that depend on the microscale spacing of the grating lines and the nanometer thickness of the lipid multilayers have been fabricated previously by dip-pen nanolithography (DPN), with immediate applications as label-free biosensors. The innate biocompatibility of such gratings makes them promising as biological sensor elements, model cellular systems, and construction materials for nanotechnology. Here a method is described that combines the lateral patterning capabilities and scalability of microcontact printing with the topographical control of nanoimprint lithography and the multimaterial integration aspects of dip-pen nanolithography in order to create nanostructured lipid multilayer arrays. This approach is denoted multilayer stamping. The distinguishing characteristic of this method is that it allows control of the lipid multilayer thickness, which is a crucial nanoscale dimension that determines the optical properties of lipid multilayer nanostructures. The ability to integrate multiple lipid materials on the same surface is also demonstrated by multi-ink spotting onto a polydimethoxysilane stamp, as well as higher-throughput patterning (on the order of 2 cm(2) s(-1) for grating fabrication) and the ability to pattern lipid materials that could not previously be patterned with high resolution by lipid DPN, for example, the gel-phase phospholipid 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) or the steroid cholesterol. PMID:22307810

  5. Lipid Droplets And Cellular Lipid Metabolism

    PubMed Central

    Walther, Tobias C.; Farese, Robert V.

    2013-01-01

    Among organelles, lipid droplets (LDs) uniquely constitute a hydrophobic phase in the aqueous environment of the cytosol. Their hydrophobic core of neutral lipids stores metabolic energy and membrane components, making LDs hubs for lipid metabolism. In addition, LDs are implicated in a number of other cellular functions, ranging from protein storage and degradation to viral replication. These processes are functionally linked to many physiological and pathological conditions, including obesity and related metabolic diseases. Despite their important functions and nearly ubiquitous presence in cells, many aspects of LD biology are unknown. In the past few years, the pace of LD investigation has increased, providing new insights. Here, we review the current knowledge of LD cell biology and its translation to physiology. PMID:22524315

  6. Biosorption of Congo Red from aqueous solution by Bacillus weihenstephanensis RI12; effect of SPB1 biosurfactant addition on biodecolorization potency.

    PubMed

    Mnif, Inès; Fendri, Raouia; Ghribi, Dhouha

    2015-01-01

    Bacillus weihenstephanensis RI12, isolated from hydrocarbon contaminated soil, was assessed for Congo Red bio-treatment potency. Results suggested the potential of this bacterium for use in effective treatment of Congo Red contaminated wastewaters under shaking conditions at acidic and neutral pH value. The strain could tolerate higher doses of dyes as it could decolorize up to 1,000 mg/l of Congo Red. When used as microbial surfactant to enhance Congo Red biodecolorization, Bacillus subtilis SPB1-derived lipopeptide accelerated the decolorization rate and maximized the decolorization efficiency at an optimal concentration of biosurfactant of about 0.075%. Studies ensured that Congo Red removal by this strain could be due to an adsorption phenomena. Germination potencies of tomato seeds using the treated dyes under different conditions showed the efficient biotreatment of the azo dye Congo Red especially with the addition of SPB1 biosurfactant. To conclude, the addition of SPB1 bioemulsifier reduced energy costs by reducing the effective decolorization period; the biosurfactant stimulated bacterial decolorization method may provide a highly efficient, inexpensive and time-saving procedure in the treatment of textile effluents.

  7. Bioremediation of petroleum contaminated soil to combat toxicity on Withania somnifera through seed priming with biosurfactant producing plant growth promoting rhizobacteria.

    PubMed

    Das, Amar Jyoti; Kumar, Rajesh

    2016-06-01

    Soil contaminated by Petroleum oil cannot be utilized for agricultural purposes due to hydrocarbon toxicity. Oil contaminated soil induces toxicity affecting germination, growth and productivity. Several technologies have been proposed for bioremediation of oil contaminated sites, but remediation through biosurfactant producing plant growth promontory rhizobacteria (PGPR) is considered to be most promising methods. In the present study the efficacy of seed priming on growth and pigment of Withania somnifera under petroleum toxicity is explored. Seeds of W. somnifera were primed with biosurfactant producing Pseudomonas sp. AJ15 with plant growth promoting traits having potentiality to utilized petroleum as carbon source. Results indicates that plant arose from priming seeds under various petroleum concentration expressed high values for all the parameters studied namely germination, shoot length, root length, fresh and dry weight and pigments (chlorophyll and carotenoid) as compared to non primed seed. Hence, the present study signifies that petroleum degrarding biosurfactant producing PGPR could be further used for management and detoxification of petroleum contaminated soils for growing economically important crops. PMID:27016896

  8. Bioremediation of petroleum contaminated soil to combat toxicity on Withania somnifera through seed priming with biosurfactant producing plant growth promoting rhizobacteria.

    PubMed

    Das, Amar Jyoti; Kumar, Rajesh

    2016-06-01

    Soil contaminated by Petroleum oil cannot be utilized for agricultural purposes due to hydrocarbon toxicity. Oil contaminated soil induces toxicity affecting germination, growth and productivity. Several technologies have been proposed for bioremediation of oil contaminated sites, but remediation through biosurfactant producing plant growth promontory rhizobacteria (PGPR) is considered to be most promising methods. In the present study the efficacy of seed priming on growth and pigment of Withania somnifera under petroleum toxicity is explored. Seeds of W. somnifera were primed with biosurfactant producing Pseudomonas sp. AJ15 with plant growth promoting traits having potentiality to utilized petroleum as carbon source. Results indicates that plant arose from priming seeds under various petroleum concentration expressed high values for all the parameters studied namely germination, shoot length, root length, fresh and dry weight and pigments (chlorophyll and carotenoid) as compared to non primed seed. Hence, the present study signifies that petroleum degrarding biosurfactant producing PGPR could be further used for management and detoxification of petroleum contaminated soils for growing economically important crops.

  9. Isolation of an extremely halophilic arhaeon Natrialba sp. C21 able to degrade aromatic compounds and to produce stable biosurfactant at high salinity.

    PubMed

    Khemili-Talbi, Souad; Kebbouche-Gana, Salima; Akmoussi-Toumi, Siham; Angar, Yassmina; Gana, Mohamed Lamine

    2015-11-01

    Natrialba sp. strain C21 was isolated from oil contaminated saline water in Ain Salah (Algeria) and has exhibited a good potential for degrading phenol (3% v/v), naphthalene (3% v/v), and pyrene (3% v/v) at high salinity with high growth, enzymatic activity and biosurfactant production. Successful metabolism of aromatic hydrocarbon compounds of the strain Natrialba sp. C21 appears to require the ortho-cleavage pathway. Indeed, assays of the key enzymes involved in the ring cleavage of catechol 1, 2-dioxygenase indicated that degradation of the phenol, naphthalene and pyrene by strain Natrialba sp. C21 was via the ortho-cleavage pathway. Cells grown on aromatic hydrocarbons displayed greater ortho-activities mainly towards catechol, while the meta-activity was very low. Besides, biosurfactants derived from the strain C21 were capable of effectively emulsifying both aromatic and aliphatic hydrocarbons and seem to be particularly promising since they have particular adaptations like the increased stability at high temperature and salinity conditions. This study clearly demonstrates for the first time that strain belonging to the genera Natrialba is able to grow at 25% (w/v) NaCl, utilizing phenol, naphthalene, and pyrene as the sole carbon sources. The results suggest that the isolated halophilic archaeon could be a good candidate for the remediation process in extreme environments polluted by aromatic hydrocarbons. Moreover, the produced biosurfactant offers a multitude of interesting potential applications in various fields of biotechnology.

  10. Cross-species induction of antimicrobial compounds, biosurfactants and quorum-sensing inhibitors in tropical marine epibiotic bacteria by pathogens and biofouling microorganisms.

    PubMed

    Dusane, Devendra H; Matkar, Pratiek; Venugopalan, Valayam P; Kumar, Ameeta Ravi; Zinjarde, Smita S

    2011-03-01

    Enhancement or induction of antimicrobial, biosurfactant, and quorum-sensing inhibition property in marine bacteria due to cross-species and cross-genera interactions was investigated. Four marine epibiotic bacteria (Bacillus sp. S3, B. pumilus S8, B. licheniformis D1, and Serratia marcescens V1) displaying antimicrobial activity against pathogenic or biofouling fungi (Candida albicans CA and Yarrowia lipolytica YL), and bacteria (Pseudomonas aeruginosa PA and Bacillus pumilus BP) were chosen for this study. The marine epibiotic bacteria when co-cultivated with the aforementioned fungi or bacteria showed induction or enhancement in antimicrobial activity, biosurfactant production, and quorum-sensing inhibition. Antifungal activity against Y. lipolytica YL was induced by co-cultivation of the pathogens or biofouling strains with the marine Bacillus sp. S3, B. pumilus S8, or B. licheniformis D1. Antibacterial activity against Ps. aeruginosa PA or B. pumilus BP was enhanced in most of the marine isolates after co-cultivation. Biosurfactant activity was significantly increased when cells of B. pumilus BP were co-cultivated with S. marcescens V1, B. pumilus S8, or B. licheniformis D1. Pigment reduction in the quorum-sensing inhibition indicator strain Chromobacterium violaceum 12472 was evident when the marine strain of Bacillus sp. S3 was grown in the presence of the inducer strain Ps. aeruginosa PA, suggesting quorum-sensing inhibition. The study has important ecological and biotechnological implications in terms of microbial competition in natural environments and enhancement of secondary metabolite production.

  11. Lipid-absorbing Polymers

    NASA Technical Reports Server (NTRS)

    Marsh, H. E., Jr.; Wallace, C. J.

    1973-01-01

    The removal of bile acids and cholesterol by polymeric absorption is discussed in terms of micelle-polymer interaction. The results obtained with a polymer composed of 75 parts PEO and 25 parts PB plus curing ingredients show an absorption of 305 to 309%, based on original polymer weight. Particle size effects on absorption rate are analyzed. It is concluded that crosslinked polyethylene oxide polymers will absorb water, crosslinked polybutadiene polymers will absorb lipids; neither polymer will absorb appreciable amounts of lipids from micellar solutions of lipids in water.

  12. Metabolism. Part III: Lipids.

    ERIC Educational Resources Information Center

    Bodner, George M.

    1986-01-01

    Describes the metabolic processes of complex lipids, including saponification, activation and transport, and the beta-oxidation spiral. Discusses fatty acid degradation in regard to biochemical energy and ketone bodies. (TW)

  13. Acyl-Lipid Metabolism

    PubMed Central

    Li-Beisson, Yonghua; Shorrosh, Basil; Beisson, Fred; Andersson, Mats X.; Arondel, Vincent; Bates, Philip D.; Baud, Sébastien; Bird, David; DeBono, Allan; Durrett, Timothy P.; Franke, Rochus B.; Graham, Ian A.; Katayama, Kenta; Kelly, Amélie A.; Larson, Tony; Markham, Jonathan E.; Miquel, Martine; Molina, Isabel; Nishida, Ikuo; Rowland, Owen; Samuels, Lacey; Schmid, Katherine M.; Wada, Hajime; Welti, Ruth; Xu, Changcheng; Zallot, Rémi; Ohlrogge, John

    2013-01-01

    Acyl lipids in Arabidopsis and all other plants have a myriad of diverse functions. These include providing the core diffusion barrier of the membranes that separates cells and subcellular organelles. This function alone involves more than 10 membrane lipid classes, including the phospholipids, galactolipids, and sphingolipids, and within each class the variations in acyl chain composition expand the number of structures to several hundred possible molecular species. Acyl lipids in the form of triacylglycerol account for 35% of the weight of Arabidopsis seeds and represent their major form of carbon and energy storage. A layer of cutin and cuticular waxes that restricts the loss of water and provides protection from invasions by pathogens and other stresses covers the entire aerial surface of Arabidopsis. Similar functions are provided by suberin and its associated waxes that are localized in roots, seed coats, and abscission zones and are produced in response to wounding. This chapter focuses on the metabolic pathways that are associated with the biosynthesis and degradation of the acyl lipids mentioned above. These pathways, enzymes, and genes are also presented in detail in an associated website (ARALIP: http://aralip.plantbiology.msu.edu/). Protocols and methods used for analysis of Arabidopsis lipids are provided. Finally, a detailed summary of the composition of Arabidopsis lipids is provided in three figures and 15 tables. PMID:23505340

  14. Acyl-Lipid Metabolism

    PubMed Central

    Li-Beisson, Yonghua; Shorrosh, Basil; Beisson, Fred; Andersson, Mats X.; Arondel, Vincent; Bates, Philip D.; Baud, Sébastien; Bird, David; DeBono, Allan; Durrett, Timothy P.; Franke, Rochus B.; Graham, Ian A.; Katayama, Kenta; Kelly, Amélie A.; Larson, Tony; Markham, Jonathan E.; Miquel, Martine; Molina, Isabel; Nishida, Ikuo; Rowland, Owen; Samuels, Lacey; Schmid, Katherine M.; Wada, Hajime; Welti, Ruth; Xu, Changcheng; Zallot, Rémi; Ohlrogge, John

    2010-01-01

    Acyl lipids in Arabidopsis and all other plants have a myriad of diverse functions. These include providing the core diffusion barrier of the membranes that separates cells and subcellular organelles. This function alone involves more than 10 membrane lipid classes, including the phospholipids, galactolipids, and sphingolipids, and within each class the variations in acyl chain composition expand the number of structures to several hundred possible molecular species. Acyl lipids in the form of triacylglycerol account for 35% of the weight of Arabidopsis seeds and represent their major form of carbon and energy storage. A layer of cutin and cuticular waxes that restricts the loss of water and provides protection from invasions by pathogens and other stresses covers the entire aerial surface of Arabidopsis. Similar functions are provided by suberin and its associated waxes that are localized in roots, seed coats, and abscission zones and are produced in response to wounding. This chapter focuses on the metabolic pathways that are associated with the biosynthesis and degradation of the acyl lipids mentioned above. These pathways, enzymes, and genes are also presented in detail in an associated website (ARALIP: http://aralip.plantbiology.msu.edu/). Protocols and methods used for analysis of Arabidopsis lipids are provided. Finally, a detailed summary of the composition of Arabidopsis lipids is provided in three figures and 15 tables. PMID:22303259

  15. Acyl-lipid metabolism.

    PubMed

    Li-Beisson, Yonghua; Shorrosh, Basil; Beisson, Fred; Andersson, Mats X; Arondel, Vincent; Bates, Philip D; Baud, Sébastien; Bird, David; Debono, Allan; Durrett, Timothy P; Franke, Rochus B; Graham, Ian A; Katayama, Kenta; Kelly, Amélie A; Larson, Tony; Markham, Jonathan E; Miquel, Martine; Molina, Isabel; Nishida, Ikuo; Rowland, Owen; Samuels, Lacey; Schmid, Katherine M; Wada, Hajime; Welti, Ruth; Xu, Changcheng; Zallot, Rémi; Ohlrogge, John

    2013-01-01

    Acyl lipids in Arabidopsis and all other plants have a myriad of diverse functions. These include providing the core diffusion barrier of the membranes that separates cells and subcellular organelles. This function alone involves more than 10 membrane lipid classes, including the phospholipids, galactolipids, and sphingolipids, and within each class the variations in acyl chain composition expand the number of structures to several hundred possible molecular species. Acyl lipids in the form of triacylglycerol account for 35% of the weight of Arabidopsis seeds and represent their major form of carbon and energy storage. A layer of cutin and cuticular waxes that restricts the loss of water and provides protection from invasions by pathogens and other stresses covers the entire aerial surface of Arabidopsis. Similar functions are provided by suberin and its associated waxes that are localized in roots, seed coats, and abscission zones and are produced in response to wounding. This chapter focuses on the metabolic pathways that are associated with the biosynthesis and degradation of the acyl lipids mentioned above. These pathways, enzymes, and genes are also presented in detail in an associated website (ARALIP: http://aralip.plantbiology.msu.edu/). Protocols and methods used for analysis of Arabidopsis lipids are provided. Finally, a detailed summary of the composition of Arabidopsis lipids is provided in three figures and 15 tables. PMID:23505340

  16. Chemical structure, property and potential applications of biosurfactants produced by Bacillus subtilis in petroleum recovery and spill mitigation.

    PubMed

    Liu, Jin-Feng; Mbadinga, Serge Maurice; Yang, Shi-Zhong; Gu, Ji-Dong; Mu, Bo-Zhong

    2015-01-01

    Lipopeptides produced by microorganisms are one of the five major classes of biosurfactants known and they have received much attention from scientific and industrial communities due to their powerful interfacial and biological activities as well as environmentally friendly characteristics. Microbially produced lipopeptides are a series of chemical structural analogues of different families and, among them, 26 families covering about 90 lipopeptide compounds have been reported in the last two decades. This paper reviews the chemical structural characteristics and molecular behaviors of surfactin, one of the representative lipopeptides of the 26 families. In particular, two novel surfactin molecules isolated from cell-free cultures of Bacillus subtilis HSO121 are presented. Surfactins exhibit strong self-assembly ability to form sphere-like micelles and larger aggregates at very low concentrations. The amphipathic and surface properties of surfactins are related to the existence of the minor polar and major hydrophobic domains in the three 3-D conformations. In addition, the application potential of surfactin in bioremediation of oil spills and oil contaminants, and microbial enhanced oil recovery are discussed.

  17. Nonviral vectors with a biosurfactant MEL-A promote gene transfection into solid tumors in the mouse abdominal cavity.

    PubMed

    Inoh, Yoshikazu; Furuno, Tadahide; Hirashima, Naohide; Nakanishi, Mamoru

    2009-01-01

    Recently, we showed that a biosurfactatnt 4-O-[(4',6'-di-O-acethyl-2',3'-di-O-alkanoyl)-beta-D-mannopyranosyl] meso-erythritol A (MEL-A) greatly increased the efficiency of gene transfection mediated by cationic liposomes in vitro. We then studied whether the high transfection efficiency of these liposomes is maintained in vivo for tumor cells in the mouse abdominal cavity. When a complex of the liposomes and plasmid DNA was injected intraperitoneally into C57BL/6J mice bearing B16/BL6 tumors, we found that the biosurfactant significantly increased liposome-mediated gene transfection to the mouse tumor cells. The transfection efficiency of the plasmids into the solid tumors by the cationic liposomes of cholesteryl-3beta-carboxyamidoethylene-N-hydroxyethylamine (OH-Chol) with MEL-A increased by about 100-fold compared with that by the cationic liposomes of DC-Chol (commercially available) without MEL-A. The results suggest that nonviral vectors with MEL-A are very useful for gene transfection in vivo.

  18. Lipopeptide Biosurfactant Pseudofactin II Induced Apoptosis of Melanoma A 375 Cells by Specific Interaction with the Plasma Membrane

    PubMed Central

    Janek, Tomasz; Krasowska, Anna; Radwańska, Agata; Łukaszewicz, Marcin

    2013-01-01

    In the case of melanoma, advances in therapies are slow, which raises the need to evaluate new therapeutic strategies and natural products with potential cancer cell inhibiting effect. Pseudofactin II (PFII), a novel cyclic lipopeptide biosurfactant has been isolated from the Arctic strain of Pseudomonas fluorescens BD5. The aim of this study was to investigate the effect of PFII on A375 melanoma cells compared with the effect of PFII on Normal Human Dermis Fibroblast (NHDF) cells and elucidate the underlying mechanism of PFII cytotoxic activity. Melanoma A375 cells and NHDF cells were exposed to PFII or staurosporine and apoptotic death was assessed by monitoring caspase 3-like activity and DNA fragmentation. From time-dependent monitoring of lactate dehydrogenase (LDH) release, Ca2+ influx, and a correlation between Critical Micelle Concentration (CMC) we concluded that cell death is the consequence of plasma membrane permeabilisation by micelles. This finding suggests that pro-apoptotic mechanism of PFII is different from previously described cyclic lipopeptides. The mechanism of PFII specificity towards malignant cells remains to be discovered. The results of this study show that PFII could be a new promising anti-melanoma agent. PMID:23483962

  19. Chlorpyrifos-methyl solubilisation by humic acids used as bio-surfactants extracted from lignocelluloses and kitchen wastes.

    PubMed

    Scaglia, Barbara; Baglieri, Andrea; Tambone, Fulvia; Gennari, Mara; Adani, Fabrizio

    2016-09-01

    Chlorpyrifos-methyl (CLP-m) is a widely used organophosphate insecticide that can accumulate in soil and become toxic to humans. CLP-m can be removed from soil by its solubilisation using synthetic surfactants. However, synthetic surfactants can accumulate in soil causing contamination phenomena themselves. Bio-surfactants can be used as an alternative to synthetic ones, reducing costs and environmental issues. In this work, humic acid (HA) extracted from raw biomasses, i.e. lignocelluloses (HAL) and lignocelluloses plus kitchen food waste (HALF), corresponding composts (C) (HALC and HALFC) and leonardite (HAc), were tested in comparison with commercial surfactants, i.e. SDS, Tween 20 and DHAB, to solubilize CLP-m. Results obtained indicated that only biomass-derived HA, composted biomass-derived HA, and SDS solubilized CLP-m: SDS = 0.006; HAL = 0.007; HALC = 0.009 g; HALF = 0.025; HALFC = 0.024) (g CLP-m g(-1) surfactant). Lignocelluloses HAs (HAL, HALF) solubilized CLP-m just as well as SDS while lignocellulosic plus kitchen food waste HA (HALF, HALFC) showed a three times higher CLP-m solubilisation capability. This difference was attributed to the higher concentration of alkyl-Carbon that creates strong links with CLP-m in the hydrophobic micelle-core of the surfactants. PMID:27289207

  20. Chemical Structure, Property and Potential Applications of Biosurfactants Produced by Bacillus subtilis in Petroleum Recovery and Spill Mitigation

    PubMed Central

    Liu, Jin-Feng; Mbadinga, Serge Maurice; Yang, Shi-Zhong; Gu, Ji-Dong; Mu, Bo-Zhong

    2015-01-01

    Lipopeptides produced by microorganisms are one of the five major classes of biosurfactants known and they have received much attention from scientific and industrial communities due to their powerful interfacial and biological activities as well as environmentally friendly characteristics. Microbially produced lipopeptides are a series of chemical structural analogues of different families and, among them, 26 families covering about 90 lipopeptide compounds have been reported in the last two decades. This paper reviews the chemical structural characteristics and molecular behaviors of surfactin, one of the representative lipopeptides of the 26 families. In particular, two novel surfactin molecules isolated from cell-free cultures of Bacillus subtilis HSO121 are presented. Surfactins exhibit strong self-assembly ability to form sphere-like micelles and larger aggregates at very low concentrations. The amphipathic and surface properties of surfactins are related to the existence of the minor polar and major hydrophobic domains in the three 3-D conformations. In addition, the application potential of surfactin in bioremediation of oil spills and oil contaminants, and microbial enhanced oil recovery are discussed. PMID:25741767

  1. Insights of biosurfactant producing Serratia marcescens strain W2.3 isolated from diseased tilapia fish: a draft genome analysis

    PubMed Central

    2013-01-01

    Background Serratia marcescens is an opportunistic bacterial pathogen with broad range of host ranging from vertebrates, invertebrates and plants. S. marcescens strain W2.3 was isolated from a diseased tilapia fish and it was suspected to be the causal agent for the fish disease as virulence genes were found within its genome. In this study, for the first time, the genome sequences of S. marcescens strain W2.3 were sequenced using the Illumina MiSeq platform. Result Several virulent factors of S. marcescens such as serrawettin, a biosurfactant, has been reported to be regulated by N-acyl homoserine lactone (AHL)-based quorum sensing (QS). In our previous studies, an unusual AHL with long acyl side chain was detected from this isolate suggesting the possibility of novel virulence factors regulation. This evokes our interest in the genome of this bacterial strain and hereby we present the draft genome of S. marcescens W2.3, which carries the serrawettin production gene, swrA and the AHL-based QS transcriptional regulator gene, luxR which is an orphan luxR. Conclusion With the availability of the whole genome sequences of S. marcescens W2.3, this will pave the way for the study of the QS-mediated genes expression in this bacterium. PMID:24148830

  2. Synthesis of silver nanoparticles by Bacillus subtilis T-1 growing on agro-industrial wastes and producing biosurfactant.

    PubMed

    Płaza, Grażyna Anna; Chojniak, Joanna; Mendrek, Barbara; Trzebicka, Barbara; Kvitek, Libor; Panacek, Ales; Prucek, Robert; Zboril, Radek; Paraszkiewicz, Katarzyna; Bernat, Przemysław

    2016-04-01

    In this study, culture supernatnats of Bacillus subtilis T-1 growing on brewery effluents and molasses was used for silver nanoparticles (Ag-NPs) synthesis. The biosurfactant production of B. subtilis T-1 was confirmed by the detection of genes in the genome and by the identification of the product in the supernatants. The genes for synthesis of surfactin (sfp, srfAA) and iturin (ituC) were noted by PCR reactions. Also, in examined culture supernatants the presence of C13, C14 and C15 surfactin homologues with the sodiated molecules [M + Na](+) at m/z 1030, 1044 and 1058 was confirmed using LC/MS/MS analysis. The formation of NPs in the culture supernatants was confirmed by UV-vis spectroscopy. The dynamic light scattering measurements and transmission electron microscopy images showed the nanometric sizes of the biosynthesised Ag-NPs which ranged from several nm to several tens of nm depending on the used culture supernatant. Biological properties of Ag-NPs were evaluated by binding of Ag-NPs with DNA isolated from the Escherichia coli ATCC 25922 and B. subtilis ATCC 6633. Biogenic Ag-NPs were actively bound to DNA in increased concentration which could be the one important mode of antibacterial action of the Ag-NPs. PMID:27074855

  3. [Effect of Cu2+ on synthesis of biosurfactants of Acinetobacter calcoaceticus IMV B-7241 and Rhodococcus erythropolis IMV Ac-5017].

    PubMed

    Pirog, T P; Konon, A D; Sofilkanich, A P; Shevchuk, T A; Parfeniuk, S A

    2013-01-01

    Synthesis of biosurfactants (surface-active substances, SAS) was investigated under the conditions of growth of Rhodococcus erythropolis IMV Ac-5017 and Acinetobacter calcoaceticus IMV B-7241 on hydrophobic (n-hexadecane, liquid paraffins, sunflower oil) and hydrophilic (ethanol) substrates depending on concentration (0.01-0.5 mM) and time of copper cations introduction in the medium. It is established that Cu2+ addition in the exponential phase of growth of the strains IMV B-7241 and IMV Ac-5017 on all studied substrates was accompanied by the increase of conventional concentration of SAS by 25-140% as compared with the indices in the medium without copper cations. Maximum synthesis intensification of SAS of A. calcoaceticus IMV B-7241 and R. erythropolis IMV Ac-5017 was observed in the case of Cu2+ introduction in the medium with hydrocarbons. The increase of SAS synthesis in the presence of copper cations is determined by their activating effect on activity of alkane hydroxylase of the both strains, as well as 4-nitroso-N,N-dimethylaniline-dependent alcohol dehydrogenase and enzymes of biosynthesis of surface active glyco-(phosphoenolpyruvate-synthetase) and aminolipids (NADP(+)-dependent glutamate dehydrogenase) in A. calcoaceticus IMV B-7241.

  4. Biliary lipid secretion.

    PubMed

    Hişmioğullari, Adnan Adil; Bozdayi, A Mithat; Rahman, Khalid

    2007-06-01

    The liver has many biochemical functions, of which one of the most important is bile formation. Bile is both a secretory and an excretory fluid and two of its most important functions are the delivery to the intestinal tract of: (i) bile acids to assist in fat digestion and absorption; and (ii) liver-derived metabolites of potentially toxic materials prior to their elimination from the body in the feces. Bile contains numerous solutes, including bile acids, phospholipids and cholesterol. Biliary lipids mainly consist of cholesterol and phospholipids and their secretion into bile is affected by the secretion of bile acids. Phospholipids and cholesterol are synthesized in the hepatocytes and are thought to be transferred via vesicle- and non-vesicle-mediated mechanisms into the bile canaliculus. Hepatocytes acquire biliary lipid by three pathways, which are biosynthesis, lipoproteins and existing molecules drawn from intracellular membranes, with the newly synthesized biliary lipid accounting for less than 20% of the total lipids. The hepatic determinants of biliary cholesterol elimination are not limited to total cholesterol homeostasis, but also concern biliary disease conditions, since excess biliary cholesterol secretion is involved in cholesterol gallstone formation, as well as being a major risk factor for gallbladder cancer. The purpose of this review was to highlight some of the major mechanisms involved in biliary lipid secretion.

  5. DEVELOPMENT OF IMPROVED ANAEROBIC GROWTH OF BACILLUS MOJAVENSIS STRAIN JF-2 FOR THE PURPOSE OF IMPROVED ANAEROBIC BIOSURFACTANT PRODUCTION FOR ENHANCED OIL RECOVERY

    SciTech Connect

    M.J. McInerney; M. Folmsbee; D. Nagle

    2004-05-31

    Our work focuses on the use of microorganisms to recover petroleum hydrocarbons that remain entrapped after current recovery technologies reach their economic limit. Capillary forces between the hydrocarbon and aqueous phases are largely responsible for trapping the hydrocarbons in the pores of the rock and large reductions in the interfacial tension between the hydrocarbon and aqueous phases are needed for hydrocarbon mobilization (1-3, 10, 11). Microorganisms produce a variety of biosurfactants (4), several of which generate the ultra low interfacial tensions needed for hydrocarbon mobilization (4, 5, 8). In particular, the lipopeptide biosurfactant produced by Bacillus mojavensis strain JF-2 reduces the interfacial tension between hydrocarbon and aqueous phases to very low levels (<0.016 mN/m) (8) (9). B. mojavensis JF-2 grows under the environmental conditions found in many oil reservoirs, i. e., anaerobic, NaCl concentrations up to 80 g l{sup -1}, and temperatures up to 45 C (6, 7), making it ideally suited for in situ applications. However, anaerobic growth of B. mojavensis JF-2 was inconsistent and difficult to replicate, which limited its use for in situ applications. Our initial studies revealed that enzymatic digests, such as Proteose Peptone, were required for anaerobic growth of Bacillus mojavensis JF-2. Subsequent purification of the growth-enhancing factor in Proteose Peptone resulted in the identification of the growth-enhancing factor as DNA or deoxyribonucleosides. The addition of salmon sperm DNA, herring sperm DNA, E. coli DNA or synthetic DNA (single or double stranded) to Medium E all supported anaerobic growth of JF-2. Further, we found that JF-2 required all four deoxyribonucleosides (deoxyadeonosine, deoxyguanosine, deoxycytidine and thymidine) for growth under strict anaerobic conditions. The requirement for the deoxyribonucleosides did not occur under aerobic growth conditions. DNA was not used as a sole energy source; sucrose was required

  6. Biodegradation of diesel/biodiesel blends by a consortium of hydrocarbon degraders: effect of the type of blend and the addition of biosurfactants.

    PubMed

    Owsianiak, Mikołaj; Chrzanowski, Łukasz; Szulc, Alicja; Staniewski, Jacek; Olszanowski, Andrzej; Olejnik-Schmidt, Agnieszka K; Heipieper, Hermann J

    2009-02-01

    Biodegradation experiments for diesel/biodiesel blends in liquid cultures by-petroleum degrading microbial consortium showed that for low amendments of biodiesel (10%) the overall biodegradation efficiency of the mixture after seven days was lower than for petroleum diesel fuel. Preferential usage of methyl esters in the broad biodiesel concentration range and diminished biodegradation of petroleum hydrocarbons for 10% biodiesel blend was confirmed. Rhamnolipids improved biodegradation efficiency only for blends with low content of biodiesel. Emulsion formation experiments showed that biodiesel amendments significantly affected dispersion of fuel mixtures in water. The presence of rhamnolipids biosurfactant affected stability of such emulsions and altered cell surface properties of tested consortium.

  7. Lipid Production from Nannochloropsis

    PubMed Central

    Ma, Xiao-Nian; Chen, Tian-Peng; Yang, Bo; Liu, Jin; Chen, Feng

    2016-01-01

    Microalgae are sunlight-driven green cell factories for the production of potential bioactive products and biofuels. Nannochloropsis represents a genus of marine microalgae with high photosynthetic efficiency and can convert carbon dioxide to storage lipids mainly in the form of triacylglycerols and to the ω-3 long-chain polyunsaturated fatty acid eicosapentaenoic acid (EPA). Recently, Nannochloropsis has received ever-increasing interests of both research and public communities. This review aims to provide an overview of biology and biotechnological potential of Nannochloropsis, with the emphasis on lipid production. The path forward for the further exploration of Nannochloropsis for lipid production with respect to both challenges and opportunities is also discussed. PMID:27023568

  8. Lipid Production from Nannochloropsis.

    PubMed

    Ma, Xiao-Nian; Chen, Tian-Peng; Yang, Bo; Liu, Jin; Chen, Feng

    2016-04-01

    Microalgae are sunlight-driven green cell factories for the production of potential bioactive products and biofuels. Nannochloropsis represents a genus of marine microalgae with high photosynthetic efficiency and can convert carbon dioxide to storage lipids mainly in the form of triacylglycerols and to the ω-3 long-chain polyunsaturated fatty acid eicosapentaenoic acid (EPA). Recently, Nannochloropsis has received ever-increasing interests of both research and public communities. This review aims to provide an overview of biology and biotechnological potential of Nannochloropsis, with the emphasis on lipid production. The path forward for the further exploration of Nannochloropsis for lipid production with respect to both challenges and opportunities is also discussed. PMID:27023568

  9. Ethanol and membrane lipids.

    PubMed

    Sun, G Y; Sun, A Y

    1985-01-01

    Although ethanol is known to exert its primary mode of action on the central nervous system, the exact molecular interaction underlying the behavioral and physiological manifestations of alcohol intoxication has not been elucidated. Chronic ethanol administration results in changes in organ functions. These changes are reflective of the adaptive mechanisms in response to the acute effects of ethanol. Biophysical studies have shown that ethanol in vitro disorders the membrane and perturbs the fine structural arrangement of the membrane lipids. In the chronic state, these membranes develop resistance to the disordering effects. Tolerance development is also accompanied by biochemical changes. Although ethanol-induced changes in membrane lipids have been implicated in both biophysical and biochemical studies, measurements of membrane lipids, such as cholesterol content, fatty acid unsaturation, phospholipid distribution, and ganglioside profiles, have not produced conclusive evidence that any of these parameters are directly involved in the action of ethanol. On the other hand, there is increasing evidence indicating that although ethanol in vitro produces a membrane-fluidizing effect, the chronic response to this effect is not to change the membrane bulk lipid composition. Instead, changes in membrane lipids may pertain to small metabolically active pools located in certain subcellular fractions. Most likely, these lipids are involved in important membrane functions. For example, the increase in PS in brain plasma membranes may provide an explanation for the adaptive increase in synaptic membrane ion transport activity, especially (Na,K)-ATPase. There is also evidence that the lipid pool involved in the deacylation-reacylation mechanism (i.e., PI and PC with 20:4 groups) is altered after ethanol administration. An increase in metabolic turnover of these phospholipid pools may have important implications for the membrane functional changes. Obviously, there are other

  10. Immobilized lipid-bilayer materials

    DOEpatents

    Sasaki, Darryl Y.; Loy, Douglas A.; Yamanaka, Stacey A.

    2000-01-01

    A method for preparing encapsulated lipid-bilayer materials in a silica matrix comprising preparing a silica sol, mixing a lipid-bilayer material in the silica sol and allowing the mixture to gel to form the encapsulated lipid-bilayer material. The mild processing conditions allow quantitative entrapment of pre-formed lipid-bilayer materials without modification to the material's spectral characteristics. The method allows for the immobilization of lipid membranes to surfaces. The encapsulated lipid-bilayer materials perform as sensitive optical sensors for the detection of analytes such as heavy metal ions and can be used as drug delivery systems and as separation devices.

  11. The challenge of lipid rafts.

    PubMed

    Pike, Linda J

    2009-04-01

    The Singer-Nicholson model of membranes postulated a uniform lipid bilayer randomly studded with floating proteins. However, it became clear almost immediately that membranes were not uniform and that clusters of lipids in a more ordered state existed within the generally disorder lipid milieu of the membrane. These clusters of ordered lipids are now referred to as lipid rafts. This review summarizes current thinking on the nature of lipid rafts focusing on the role of proteomics and lipidomics in understanding the structure of these domains. It also outlines the contribution of single-molecule methods in defining the forces that drive the formation and dynamics of these membrane domains. PMID:18955730

  12. Expanding roles for lipid droplets

    PubMed Central

    Welte, Michael A.

    2015-01-01

    Summary Lipid droplets are the intracellular sites for neutral lipid storage. They are critical for lipid metabolism and energy homeostasis, and their dysfunction has been linked to many diseases. Accumulating evidence suggests that the roles lipid droplets play in biology are significantly broader than previously anticipated. Lipid droplets are the source of molecules important in the nucleus: they can sequester transcription factors and chromatin components and generate the lipid ligands for certain nuclear receptors. Lipid droplets have also emerged as important nodes for fatty acid trafficking, both inside the cell and between cells. In immunity, new roles for droplets, not directly linked to lipid metabolism, have been uncovered, as assembly platforms for specific viruses and as reservoirs for proteins that fight intracellular pathogens. Until recently, knowledge about droplets in the nervous system has been minimal, but now there are multiple links between lipid droplets and neurodegeneration: Many candidate genes for Hereditary Spastic Paraplegia also have central roles in lipid-droplet formation and maintenance, and mitochondrial dysfunction in neurons can lead to transient accumulating of lipid droplets in neighboring glial cells, an event that may, in turn, contribute to neuronal damage. As the cell biology and biochemistry of lipid droplets are increasingly well understood, the next few years should yield many new mechanistic insights into these novel functions of lipid droplets. PMID:26035793

  13. Fluorescent pseudomonads isolated from Hebridean cloud and rain water produce biosurfactants but do not cause ice nucleation

    NASA Astrophysics Data System (ADS)

    Ahern, H. E.; Walsh, K. A.; Hill, T. C. J.; Moffett, B. F.

    2007-02-01

    Microorganisms were discovered in clouds over 100 years ago but information on bacterial community structure and function is limited. Clouds may not only be a niche within which bacteria could thrive but they might also influence dynamic processes using ice nucleating and cloud condensing abilities. Cloud and rain samples were collected from two mountains in the Outer Hebrides, NW Scotland, UK. Community composition was determined using a combination of amplified 16S ribosomal DNA restriction analysis and sequencing. 256 clones yielded 100 operational taxonomic units (OTUs) of which half were related to bacteria from terrestrial psychrophilic environments. Cloud samples were dominated by a mixture of fluorescent Pseudomonas spp., some of which have been reported to be ice nucleators. It was therefore possible that these bacteria were using the ice nucleation (IN) gene to trigger the Bergeron-Findeisen process of raindrop formation as a mechanism for dispersal. In this study the IN gene was not detected in any of the isolates using both polymerase chain reaction (PCR) and differential scanning calorimetry (DSC). Instead 55% of the total isolates from both cloud and rain samples displayed significant biosurfactant activity when analyzed using the drop-collapse technique. All isolates were characterised as fluorescent pseudomonads. Surfactants have been found to be very important in lowering atmospheric critical supersaturations required for the activation of aerosols into cloud condensation nuclei (CCN). It is also known that surfactants influence cloud droplet size and increase cloud lifetime and albedo. Some bacteria are known to act as CCN and so it is conceivable that these fluorescent pseudomonads are using surfactants to facilitate their activation from aerosols into CCN. This would allow water scavenging,~countering desiccation, and assist in their widespread dispersal.

  14. Lipids: Absorption and transport

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Due to the hydrophobic nature of lipids, dietary fat is handled differently than protein or carbohydrate with respect with digestion and absorption. Dietary fats are broken down throughout the gastrointestinal system. A unique group of enzymes and cofactors allows this process to proceed in an eff...

  15. Lipids in cheese

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lipids are present in cheese at levels above 20 percent and are analyzed by several techniques. Scanning electron microscopy and confocal laser scanning microscopy are used to examine the microstructure, gas chromatography is employed to look at fatty acid composition, and differential scanning cal...

  16. Lipid droplets go nuclear.

    PubMed

    Farese, Robert V; Walther, Tobias C

    2016-01-01

    Lipid droplets (LDs) are sometimes found in the nucleus of some cells. In this issue, Ohsaki et al. (2016. J. Cell Biol. http://dx.doi.org/10.1083/jcb.201507122) show that the nuclear membrane, promyelocytic leukemia bodies, and the protein PML-II play a role in nuclear LD formation, suggesting functional relationships between these structures. PMID:26728852

  17. Behavior and Distribution of Heavy Metals Including Rare Earth Elements, Thorium, and Uranium in Sludge from Industry Water Treatment Plant and Recovery Method of Metals by Biosurfactants Application

    PubMed Central

    Gao, Lidi; Kano, Naoki; Sato, Yuichi; Li, Chong; Zhang, Shuang; Imaizumi, Hiroshi

    2012-01-01

    In order to investigate the behavior, distribution, and characteristics of heavy metals including rare earth elements (REEs), thorium (Th), and uranium (U) in sludge, the total and fractional concentrations of these elements in sludge collected from an industry water treatment plant were determined and compared with those in natural soil. In addition, the removal/recovery process of heavy metals (Pb, Cr, and Ni) from the polluted sludge was studied with biosurfactant (saponin and sophorolipid) elution by batch and column experiments to evaluate the efficiency of biosurfactant for the removal of heavy metals. Consequently, the following matters have been largely clarified. (1) Heavy metallic elements in sludge have generally larger concentrations and exist as more unstable fraction than those in natural soil. (2) Nonionic saponin including carboxyl group is more efficient than sophorolipid for the removal of heavy metals in polluted sludge. Saponin has selectivity for the mobilization of heavy metals and mainly reacts with heavy metals in F3 (the fraction bound to carbonates) and F5 (the fraction bound to Fe-Mn oxides). (3) The recovery efficiency of heavy metals (Pb, Ni, and Cr) reached about 90–100% using a precipitation method with alkaline solution. PMID:22693485

  18. Behavior and distribution of heavy metals including rare Earth elements, thorium, and uranium in sludge from industry water treatment plant and recovery method of metals by biosurfactants application.

    PubMed

    Gao, Lidi; Kano, Naoki; Sato, Yuichi; Li, Chong; Zhang, Shuang; Imaizumi, Hiroshi

    2012-01-01

    In order to investigate the behavior, distribution, and characteristics of heavy metals including rare earth elements (REEs), thorium (Th), and uranium (U) in sludge, the total and fractional concentrations of these elements in sludge collected from an industry water treatment plant were determined and compared with those in natural soil. In addition, the removal/recovery process of heavy metals (Pb, Cr, and Ni) from the polluted sludge was studied with biosurfactant (saponin and sophorolipid) elution by batch and column experiments to evaluate the efficiency of biosurfactant for the removal of heavy metals. Consequently, the following matters have been largely clarified. (1) Heavy metallic elements in sludge have generally larger concentrations and exist as more unstable fraction than those in natural soil. (2) Nonionic saponin including carboxyl group is more efficient than sophorolipid for the removal of heavy metals in polluted sludge. Saponin has selectivity for the mobilization of heavy metals and mainly reacts with heavy metals in F3 (the fraction bound to carbonates) and F5 (the fraction bound to Fe-Mn oxides). (3) The recovery efficiency of heavy metals (Pb, Ni, and Cr) reached about 90-100% using a precipitation method with alkaline solution.

  19. Lipid nanotube or nanowire sensor

    DOEpatents

    Noy, Aleksandr; Bakajin, Olgica; Letant, Sonia; Stadermann, Michael; Artyukhin, Alexander B.

    2009-06-09

    A sensor apparatus comprising a nanotube or nanowire, a lipid bilayer around the nanotube or nanowire, and a sensing element connected to the lipid bilayer. Also a biosensor apparatus comprising a gate electrode; a source electrode; a drain electrode; a nanotube or nanowire operatively connected to the gate electrode, the source electrode, and the drain electrode; a lipid bilayer around the nanotube or nanowire, and a sensing element connected to the lipid bilayer.

  20. Lipid nanotube or nanowire sensor

    DOEpatents

    Noy, Aleksandr; Bakajin, Olgica; Letant, Sonia; Stadermann, Michael; Artyukhin, Alexander B.

    2010-06-29

    A sensor apparatus comprising a nanotube or nanowire, a lipid bilayer around the nanotube or nanowire, and a sensing element connected to the lipid bilayer. Also a biosensor apparatus comprising a gate electrode; a source electrode; a drain electrode; a nanotube or nanowire operatively connected to the gate electrode, the source electrode, and the drain electrode; a lipid bilayer around the nanotube or nanowire, and a sensing element connected to the lipid bilayer.

  1. The 'LipoYeasts' project: using the oleaginous yeast Yarrowia lipolytica in combination with specific bacterial genes for the bioconversion of lipids, fats and oils into high-value products.

    PubMed

    Sabirova, Julia S; Haddouche, R; Van Bogaert, I N; Mulaa, F; Verstraete, W; Timmis, K N; Schmidt-Dannert, C; Nicaud, J M; Soetaert, W

    2011-01-01

    The oleochemical industry is currently still dominated by conventional chemistry, with biotechnology only starting to play a more prominent role, primarily with respect to the biosurfactants or lipases, e.g. as detergents, or for biofuel production. A major bottleneck for all further biotechnological applications is the problem of the initial mobilization of cheap and vastly available lipid and oil substrates, which are then to be transformed into high-value biotechnological, nutritional or pharmacological products. Under the EU-sponsored LipoYeasts project we are developing the oleaginous yeast Yarrowia lipolytica into a versatile and high-throughput microbial factory that, by use of specific enzymatic pathways from hydrocarbonoclastic bacteria, efficiently mobilizes lipids by directing its versatile lipid metabolism towards the production of industrially valuable lipid-derived compounds like wax esters (WE), isoprenoid-derived compounds (carotenoids, polyenic carotenoid ester), polyhydroxyalkanoates (PHAs) and free hydroxylated fatty acids (HFAs). Different lipid stocks (petroleum, alkane, vegetable oil, fatty acid) and combinations thereof are being assessed as substrates in combination with different mutant and recombinant strains of Y. lipolytica, in order to modulate the composition and yields of the produced added-value products. PMID:21255371

  2. Lipids, fatty acids, and more

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Energy is the most expensive component in livestock diets. Lipids are concentrated energy sources and are known to affect growth, feed efficiency, feed dust, and diet palatability. A large majority of research evaluating lipids in livestock has utilized lipids of high quality, dealt mainly with anim...

  3. The SwissLipids knowledgebase for lipid biology

    PubMed Central

    Liechti, Robin; Hyka-Nouspikel, Nevila; Niknejad, Anne; Gleizes, Anne; Götz, Lou; Kuznetsov, Dmitry; David, Fabrice P.A.; van der Goot, F. Gisou; Riezman, Howard; Bougueleret, Lydie; Xenarios, Ioannis; Bridge, Alan

    2015-01-01

    Motivation: Lipids are a large and diverse group of biological molecules with roles in membrane formation, energy storage and signaling. Cellular lipidomes may contain tens of thousands of structures, a staggering degree of complexity whose significance is not yet fully understood. High-throughput mass spectrometry-based platforms provide a means to study this complexity, but the interpretation of lipidomic data and its integration with prior knowledge of lipid biology suffers from a lack of appropriate tools to manage the data and extract knowledge from it. Results: To facilitate the description and exploration of lipidomic data and its integration with prior biological knowledge, we have developed a knowledge resource for lipids and their biology—SwissLipids. SwissLipids provides curated knowledge of lipid structures and metabolism which is used to generate an in silico library of feasible lipid structures. These are arranged in a hierarchical classification that links mass spectrometry analytical outputs to all possible lipid structures, metabolic reactions and enzymes. SwissLipids provides a reference namespace for lipidomic data publication, data exploration and hypothesis generation. The current version of SwissLipids includes over 244 000 known and theoretically possible lipid structures, over 800 proteins, and curated links to published knowledge from over 620 peer-reviewed publications. We are continually updating the SwissLipids hierarchy with new lipid categories and new expert curated knowledge. Availability: SwissLipids is freely available at http://www.swisslipids.org/. Contact: alan.bridge@isb-sib.ch Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25943471

  4. Tear Film Lipids

    PubMed Central

    Butovich, Igor A.

    2013-01-01

    Human meibomian gland secretions (MGS, or meibum) are formed from a complex mixture of lipids of different classes such as wax esters, cholesteryl esters, (O-acyl)-ω-hydroxy fatty acids (OAHFA) and their esters, acylglycerols, diacylated diols, free fatty acids, cholesterol, and a smaller amount of other polar and nonpolar lipids, whose chemical nature and the very presence in MGS have been a matter of intense debates. The purpose of this review is to discuss recent results that were obtained using different experimental techniques, estimate limitations of their usability, and discuss their biochemical, biophysical, and physiological implications. To create a lipid map of MGS and tears, the results obtained in the author’s laboratory were integrated with available information on chemical composition of MGS and tears. The most informative approaches that are available today to researchers, such as HPLC-MS, GC-MS, and proton NMR, are discussed in details. A map of the meibomian lipidome (as it is seen in reverse phase liquid chromatography/mass spectrometry experiments) is presented. Directions of future efforts in the area are outlined. PMID:23769846

  5. Painted supported lipid membranes

    PubMed Central

    Florin, E.-L.; Gaub, H. E.

    1993-01-01

    We report herein measurements on a novel type of supported lipid films, which we call painted supported membranes (PSM). These membranes are formed in a self-assembly process on alkylated gold films from an organic solution. The formation process was investigated with surface plasmon resonance microscopy. The optical and electrical properties of the films were determined for various types of lipids and as a function of temperature by means of cyclic voltammetry and potential relaxation after charge injection. We could show that these films exhibit an extraordinarily high specific resistivity which, depending on the lipid, may be as high as 109 ohm/cm2. We could also show that due to this low conductivity, an electrical polarization across the PSM relaxes with characteristic time constants of up to 20 min. The electrical properties together with their high mechanical stability and accessibility to surface sensitive techniques make these films well suitable model membranes for optical and electrical investigations. Examples for such applications are given in the subsequent article by Seifert et al. ImagesFIGURE 3FIGURE 4 PMID:19431873

  6. Ultrasound-assisted/biosurfactant-templated size-tunable synthesis of nano-calcium sulfate with controllable crystal morphology.

    PubMed

    Hazra, Chinmay; Bari, Sarang; Kundu, Debasree; Chaudhari, Ambalal; Mishra, Satyendra; Chatterjee, Aniruddha

    2014-05-01

    Nano-sized crystals of alpha calcium sulfate hemihydrate (α-HH) with considerable morphology-dependent properties find promising applications in the clinical fields as a cementitious material. Towards this end, ultrasound-assisted rhamnolipid and surfactin biosurfactant-template route is explored to control the morphology and aspect ratio of nano-CaSO4 by adjusting the mass ratio of rhamnolipid/H2O, surfactin/H2O and rhamnolipid/surfactin. The change in the molar ratio of [SO4(2-)]:[Ca(2+)] results in modification in variable morphology and size of nano-CaSO4 including long, short rods and nanoplates. With increase in the rhamnolipid/H2O ratio from 1.3 to 4.5, the crystal length decreases from 3 μm to 600 nm with the corresponding aspect ratio reduced sharply from 10 to 3. Similarly, the crystal morphology gradually changes from submicrometer-sized long rod to hexagonal plate, and then plate-like appearance with increase in surfactin concentration. The preferential adsorption of rhamnolipid on the side facets and surfactin on the top facets contributes to the morphology control. The process using 50% amplitude with a power input of 45.5 W was found to be the most ideal as observed from the high yields and lower average l/w aspect ratio, leading to more than 94% energy savings as compared to that utilized by the conventional process. As a morphology and crystal habit modifier, effects of Mg(2+) and K(+) ions on α-HH growth were investigated to find an optimal composition of solution for α-HH preparation. Mg(2+) ions apparently show an accelerating effect on the α-HH growth; however, the nucleation of α-HH is probably retarded by K(+) ions. Thus, the present work is a simple, versatile, highly efficient approach to controlling the morphology of α-HH and thereby, offers more opportunities for α-HH multiple applications.

  7. Rhamnolipid biosurfactant and soy protein act as effective stabilizers in the aggregation and transport of palladium-doped zerovalent iron nanoparticles in saturated porous media.

    PubMed

    Basnet, Mohan; Ghoshal, Subhasis; Tufenkji, Nathalie

    2013-01-01

    Palladium-doped nanosized zerovalent iron (Pd-NZVI) particles can contribute to the transformation of chlorinated solvents and various other contaminants into innocuous products. To make Pd-NZVI an effective in situ subsurface remediation agent, these particles need to migrate through a targeted contaminated area. However, previous studies have reported very limited mobility of these particles in the groundwater environment and attributed it to rapid aggregation and subsequent pore plugging. In this study, we systematically investigated the influence of selected natural and nontoxic organic macromolecules (carboxymethyl cellulose, rhamnolipid biosurfactants, and soy protein) on the aggregation and transport behavior of bare and coated Pd-NZVI. Aggregation behavior was investigated using dynamic light scattering by monitoring the evolution of hydrodynamic diameter as a function of time, whereas transport behavior was investigated by conducting water-saturated sand-packed column experiments. While bare Pd-NZVI is prone to rapid aggregation, we observed good colloidal stability and concurrent enhanced transport of Pd-NZVI coated with carboxymethyl cellulose, rhamnolipid biosurfactants, and soy protein. Each surface modifier performed well at lower ionic strength (IS) (10 mM NaHCO3), and one of the rhamnolipid surface modifiers (JBR215) significantly enhanced transport of 150 mg/L Pd-NZVI at concentrations as low as 10 mg/L total organic carbon. However, an increase in the solution IS induced significant Pd-NZVI aggregation with a simultaneous decrease in the transport potential in accordance with the DLVO (Derjaguin, Landau, Verwey, and Overbeek) theory of colloidal stability. Nonetheless, at the highest IS (300 mM NaHCO3) investigated, the mobility of rhamnolipid-coated Pd-NZVI is significantly higher than that of Pd-NZVI coated with the other surface modifiers, suggesting that biosurfactants may be the most suitable surface modifiers in field application. Overall

  8. Rhamnolipid biosurfactant and soy protein act as effective stabilizers in the aggregation and transport of palladium-doped zerovalent iron nanoparticles in saturated porous media.

    PubMed

    Basnet, Mohan; Ghoshal, Subhasis; Tufenkji, Nathalie

    2013-01-01

    Palladium-doped nanosized zerovalent iron (Pd-NZVI) particles can contribute to the transformation of chlorinated solvents and various other contaminants into innocuous products. To make Pd-NZVI an effective in situ subsurface remediation agent, these particles need to migrate through a targeted contaminated area. However, previous studies have reported very limited mobility of these particles in the groundwater environment and attributed it to rapid aggregation and subsequent pore plugging. In this study, we systematically investigated the influence of selected natural and nontoxic organic macromolecules (carboxymethyl cellulose, rhamnolipid biosurfactants, and soy protein) on the aggregation and transport behavior of bare and coated Pd-NZVI. Aggregation behavior was investigated using dynamic light scattering by monitoring the evolution of hydrodynamic diameter as a function of time, whereas transport behavior was investigated by conducting water-saturated sand-packed column experiments. While bare Pd-NZVI is prone to rapid aggregation, we observed good colloidal stability and concurrent enhanced transport of Pd-NZVI coated with carboxymethyl cellulose, rhamnolipid biosurfactants, and soy protein. Each surface modifier performed well at lower ionic strength (IS) (10 mM NaHCO3), and one of the rhamnolipid surface modifiers (JBR215) significantly enhanced transport of 150 mg/L Pd-NZVI at concentrations as low as 10 mg/L total organic carbon. However, an increase in the solution IS induced significant Pd-NZVI aggregation with a simultaneous decrease in the transport potential in accordance with the DLVO (Derjaguin, Landau, Verwey, and Overbeek) theory of colloidal stability. Nonetheless, at the highest IS (300 mM NaHCO3) investigated, the mobility of rhamnolipid-coated Pd-NZVI is significantly higher than that of Pd-NZVI coated with the other surface modifiers, suggesting that biosurfactants may be the most suitable surface modifiers in field application. Overall

  9. Lipid nanocarriers: influence of lipids on product development and pharmacokinetics.

    PubMed

    Pathak, Kamla; Keshri, Lav; Shah, Mayank

    2011-01-01

    Lipid nanocarriers are on the forefront of the rapidly developing field of nanotechnology with several potential applications in drug delivery. Owing to their size-dependent properties, lipid nanoparticles offer the possibility for development of new therapeutics and an alternative system to other colloidal counterparts for drug administration. An important point to be considered in the selection of a lipid for the carrier system is its effect on the properties of the nanocarrier and also its intended use, as different types of lipids differ in their nature. Researchers around the globe have tapped the potential of solid lipid nanoparticles (SLNs) in developing formulation(s) that can be administered by various routes such as oral, ocular, parenteral, topical, and pulmonary. Since the start of this millennium, a new generation of lipid nanoparticles, namely nanostructured lipid carriers (NLCs), lipid drug conjugates (LDCs), and pharmacosomes, has evolved that have the potential to overcome the limitations of SLNs. The current review article presents broad considerations on the influence of various types of lipids on the diverse characteristics of nanocarriers, encompassing their physicochemical, formulation, pharmacokinetic, and cytotoxic aspects. PMID:21967401

  10. Lipid classification, structures and tools☆

    PubMed Central

    Fahy, Eoin; Cotter, Dawn; Sud, Manish; Subramaniam, Shankar

    2012-01-01

    The study of lipids has developed into a research field of increasing importance as their multiple biological roles in cell biology, physiology and pathology are becoming better understood. The Lipid Metabolites and Pathways Strategy (LIPID MAPS) consortium is actively involved in an integrated approach for the detection, quantitation and pathway reconstruction of lipids and related genes and proteins at a systems-biology level. A key component of this approach is a bioinformatics infrastructure involving a clearly defined classification of lipids, a state-of-the-art database system for molecular species and experimental data and a suite of user-friendly tools to assist lipidomics researchers. Herein, we discuss a number of recent developments by the LIPID MAPS bioinformatics core in pursuit of these objectives. This article is part of a Special Issue entitled Lipodomics and Imaging Mass Spectrometry. PMID:21704189

  11. Lipid Biomembrane in Ionic Liquids

    NASA Astrophysics Data System (ADS)

    Yoo, Brian; Jing, Benxin; Shah, Jindal; Maginn, Ed; Zhu, Y. Elaine; Department of Chemical and Biomolecular Engineering Team

    2014-03-01

    Ionic liquids (ILs) have been recently explored as new ``green'' chemicals in several chemical and biomedical processes. In our pursuit of understanding their toxicities towards aquatic and terrestrial organisms, we have examined the IL interaction with lipid bilayers as model cell membranes. Experimentally by fluorescence microscopy, we have directly observed the disruption of lipid bilayer by added ILs. Depending on the concentration, alkyl chain length, and anion hydrophobicity of ILs, the interaction of ILs with lipid bilayers leads to the formation of micelles, fibrils, and multi-lamellar vesicles for IL-lipid complexes. By MD computer simulations, we have confirmed the insertion of ILs into lipid bilayers to modify the spatial organization of lipids in the membrane. The combined experimental and simulation results correlate well with the bioassay results of IL-induced suppression in bacteria growth, thereby suggesting a possible mechanism behind the IL toxicity. National Science Foundation, Center for Research Computing at Notre Dame.

  12. Lipid-transfer proteins.

    PubMed

    Ng, Tzi Bun; Cheung, Randy Chi Fai; Wong, Jack Ho; Ye, Xiujuan

    2012-01-01

    Lipid-transfer proteins (LTPs) are basic proteins found in abundance in higher plants. LTPs play lots of roles in plants such as participation in cutin formation, embryogenesis, defense reactions against phytopathogens, symbiosis, and the adaptation of plants to various environmental conditions. In addition, LTPs from field mustard and Chinese daffodil exhibit antiproliferative activity against human cancer cells. LTPs from chili pepper and coffee manifest inhibitory activity against fungi pathogenic to humans such as Candida species. The intent of this article is to review LTPs in the plant kingdom. PMID:23193591

  13. Lipids and Membrane Lateral Organization

    PubMed Central

    Sonnino, Sandro; Prinetti, Alessandro

    2010-01-01

    Shortly after the elucidation of the very basic structure and properties of cellular membranes, it became evident that cellular membranes are highly organized structures with multiple and multi-dimensional levels of order. Very early observations suggested that the lipid components of biological membranes might be active players in the creation of these levels of order. In the late 1980s, several different and diverse experimental pieces of evidence coalesced together giving rise to the lipid raft hypothesis. Lipid rafts became enormously (and, in the opinion of these authors, sometimes acritically) popular, surprisingly not just within the lipidologist community (who is supposed to be naturally sensitive to the fascination of lipid rafts). Today, a PubMed search using the key word “lipid rafts” returned a list of 3767 papers, including 690 reviews (as a term of comparison, searching over the same time span for a very hot lipid-related key word, “ceramide” returned 6187 hits with 799 reviews), and a tremendous number of different cellular functions have been described as “lipid raft-dependent.” However, a clear consensus definition of lipid raft has been proposed only in recent times, and the basic properties, the ruling forces, and even the existence of lipid rafts in living cells has been recently matter of intense debate. The scenario that is gradually emerging from the controversies elicited by the lipid raft hypothesis emphasizes multiple roles for membrane lipids in determining membrane order, that encompass their tendency to phase separation but are clearly not limited to this. In this review, we would like to re-focus the attention of the readers on the importance of lipids in organizing the fine structure of cellular membranes. PMID:21423393

  14. Lipid-lowering agents.

    PubMed

    Ewang-Emukowhate, Mfon; Wierzbicki, Anthony S

    2013-09-01

    The role of lipid lowering in reducing the risk of mortality and morbidity from cardiovascular disease (CVD) is well established. Treatment particularly aimed at decreasing low-density lipoprotein cholesterol (LDL-C) is effective in reducing the risk of death from coronary heart disease and stroke. Statins form the cornerstone of treatment. However, in some individuals with a high risk of CVD who are unable to achieve their target LDL-C due to either intolerance or lack of efficacy, there is the need for alternative therapies. This review provides an overview of the different classes of currently available lipid-lowering medications including statins, fibrates, bile acid sequestrants (resins), and omega-3 fatty acids. Data are presented on their indications, pharmacology, and the relevant end point clinical trial data with these drugs. It also discusses the human trial data on some novel therapeutic agents that are being developed including those for homozygous familial hypercholesterolemia--the antisense oligonucleotide mipomersen and the microsomal transfer protein inhibitor lomitapide. Data are presented on phase II and III trials on agents with potentially wider applications, cholesterol ester transfer protein inhibitors and proprotein convertase subtilisin kexin 9 inhibitors. The data on a licensed gene therapy for lipoprotein lipase deficiency are also presented. PMID:23811423

  15. Lipid-lowering agents.

    PubMed

    Ewang-Emukowhate, Mfon; Wierzbicki, Anthony S

    2013-09-01

    The role of lipid lowering in reducing the risk of mortality and morbidity from cardiovascular disease (CVD) is well established. Treatment particularly aimed at decreasing low-density lipoprotein cholesterol (LDL-C) is effective in reducing the risk of death from coronary heart disease and stroke. Statins form the cornerstone of treatment. However, in some individuals with a high risk of CVD who are unable to achieve their target LDL-C due to either intolerance or lack of efficacy, there is the need for alternative therapies. This review provides an overview of the different classes of currently available lipid-lowering medications including statins, fibrates, bile acid sequestrants (resins), and omega-3 fatty acids. Data are presented on their indications, pharmacology, and the relevant end point clinical trial data with these drugs. It also discusses the human trial data on some novel therapeutic agents that are being developed including those for homozygous familial hypercholesterolemia--the antisense oligonucleotide mipomersen and the microsomal transfer protein inhibitor lomitapide. Data are presented on phase II and III trials on agents with potentially wider applications, cholesterol ester transfer protein inhibitors and proprotein convertase subtilisin kexin 9 inhibitors. The data on a licensed gene therapy for lipoprotein lipase deficiency are also presented.

  16. Lipid mobility in supported lipid bilayers by single molecule tracking

    NASA Astrophysics Data System (ADS)

    Kohram, Maryam; Shi, Xiaojun; Smith, Adam

    2015-03-01

    Phospholipid bilayers are the main component of cell membranes and their interaction with biomolecules in their immediate environment is critical for cellular functions. These interactions include the binding of polycationic polymers to lipid bilayers which affects many cell membrane events. As an alternative method of studying live cell membranes, we assemble a supported lipid bilayer and investigate its binding with polycationic polymers in vitro by fluorescently labeling the molecules of the supported lipid bilayer and tracking their mobility. In this work, we use single molecule tracking total internal reflection fluorescence microscopy (TIRF) to study phosphatidylinositol phosphate (PIP) lipids with and without an adsorbed polycationic polymer, quaternized polyvinylpyridine (QPVP). Individual molecular trajectories are obtained from the experiment, and a Brownian diffusion model is used to determine diffusion coefficients through mean square displacements. Our results indicate a smaller diffusion coefficient for the supported lipid bilayers in the presence of QPVP in comparison to its absence, revealing that their binding causes a decrease in lateral mobility.

  17. Analysis of lipid profile in lipid storage myopathy.

    PubMed

    Aguennouz, M'hammed; Beccaria, Marco; Purcaro, Giorgia; Oteri, Marianna; Micalizzi, Giuseppe; Musumesci, Olimpia; Ciranni, Annmaria; Di Giorgio, Rosa Maria; Toscano, Antonio; Dugo, Paola; Mondello, Luigi

    2016-09-01

    Lipid dysmetabolism disease is a condition in which lipids are stored abnormally in organs and tissues throughout the body, causing muscle weakness (myopathy). Usually, the diagnosis of this disease and its characterization goes through dosage of Acyl CoA in plasma accompanied with evidence of droplets of intra-fibrils lipids in the patient muscle biopsy. However, to understand the pathophysiological mechanisms of lipid storage diseases, it is useful to identify the nature of lipids deposited in muscle fiber. In this work fatty acids and triglycerides profile of lipid accumulated in the muscle of people suffering from myopathies syndromes was characterized. In particular, the analyses were carried out on the muscle biopsy of people afflicted by lipid storage myopathy, such as multiple acyl-coenzyme A dehydrogenase deficiency, and neutral lipid storage disease with myopathy, and by the intramitochondrial lipid storage dysfunctions, such as deficiencies of carnitine palmitoyltransferase II enzyme. A single step extraction and derivatization procedure was applied to analyze fatty acids from muscle tissues by gas chromatography with a flame ionization detector and with an electronic impact mass spectrometer. Triglycerides, extracted by using n-hexane, were analyzed by high performance liquid chromatography coupled to mass spectrometer equipped with an atmospheric pressure chemical ionization interface. The most representative fatty acids in all samples were: C16:0 in the 13-24% range, C18:1n9 in the 20-52% range, and C18:2n6 in the 10-25% range. These fatty acids were part of the most representative triglycerides in all samples. The data obtained was statistically elaborated performing a principal component analysis. A satisfactory discrimination was obtained among the different diseases. Using component 1 vs component 3 a 43.3% of total variance was explained. Such results suggest the important role that lipid profile characterization can have in supporting a correct

  18. Variable tilt on lipid membranes

    PubMed Central

    Rangamani, P.; Steigmann, D. J.

    2014-01-01

    A continuum theory for lipid membranes is developed that accounts for mechanical interactions between lipid tilt and membrane shape. For planar membranes, a linear version of the theory is used to predict tilt variations similar to those observed in experiments and molecular dynamics simulations. PMID:25484606

  19. Lipid mediators in life science.

    PubMed

    Murakami, Makoto

    2011-01-01

    "Lipid mediators" represent a class of bioactive lipids that are produced locally through specific biosynthetic pathways in response to extracellular stimuli. They are exported extracellularly, bind to their cognate G protein-coupled receptors (GPCRs) to transmit signals to target cells, and are then sequestered rapidly through specific enzymatic or non-enzymatic processes. Because of these properties, lipid mediators can be regarded as local hormones or autacoids. Unlike proteins, whose information can be readily obtained from the genome, we cannot directly read out the information of lipids from the genome since they are not genome-encoded. However, we can indirectly follow up the dynamics and functions of lipid mediators by manipulating the genes encoding a particular set of proteins that are essential for their biosynthesis (enzymes), transport (transporters), and signal transduction (receptors). Lipid mediators are involved in many physiological processes, and their dysregulations have been often linked to various diseases such as inflammation, infertility, atherosclerosis, ischemia, metabolic syndrome, and cancer. In this article, I will give an overview of the basic knowledge of various lipid mediators, and then provide an example of how research using mice, gene-manipulated for a lipid mediator-biosynthetic enzyme, contributes to life science and clinical applications.

  20. The Flexibility of Ectopic Lipids

    PubMed Central

    Loher, Hannah; Kreis, Roland; Boesch, Chris; Christ, Emanuel

    2016-01-01

    In addition to the subcutaneous and the visceral fat tissue, lipids can also be stored in non-adipose tissue such as in hepatocytes (intrahepatocellular lipids; IHCL), skeletal (intramyocellular lipids; IMCL) or cardiac muscle cells (intracardiomyocellular lipids; ICCL). Ectopic lipids are flexible fuel stores that can be depleted by physical exercise and repleted by diet. They are related to obesity and insulin resistance. Quantification of IMCL was initially performed invasively, using muscle biopsies with biochemical and/or histological analysis. 1H-magnetic resonance spectroscopy (1H-MRS) is now a validated method that allows for not only quantifying IMCL non-invasively and repeatedly, but also assessing IHCL and ICCL. This review summarizes the current available knowledge on the flexibility of ectopic lipids. The available evidence suggests a complex interplay between quantitative and qualitative diet, fat availability (fat mass), insulin action, and physical exercise, all important factors that influence the flexibility of ectopic lipids. Furthermore, the time frame of the intervention on these parameters (short-term vs. long-term) appears to be critical. Consequently, standardization of physical activity and diet are critical when assessing ectopic lipids in predefined clinical situations. PMID:27649157

  1. Lipids in liver transplant recipients

    PubMed Central

    Hüsing, Anna; Kabar, Iyad; Schmidt, Hartmut H

    2016-01-01

    Hyperlipidemia is very common after liver transplantation and can be observed in up to 71% of patients. The etiology of lipid disorders in these patients is multifactorial, with different lipid profiles observed depending on the immunosuppressive agents administered and the presence of additional risk factors, such as obesity, diabetes mellitus and nutrition. Due to recent improvements in survival of liver transplant recipients, the prevention of cardiovascular events has become more important, especially as approximately 64% of liver transplant recipients present with an increased risk of cardiovascular events. Management of dyslipidemia and of other modifiable cardiovascular risk factors, such as hypertension, diabetes and smoking, has therefore become essential in these patients. Treatment of hyperlipidemia after liver transplantation consists of life style modification, modifying the dose or type of immunosuppressive agents and use of lipid lowering agents. At the start of administration of lipid lowering medications, it is important to monitor drug-drug interactions, especially between lipid lowering agents and immunosuppressive drugs. Furthermore, as combinations of various lipid lowering drugs can lead to severe side effects, such as myopathies and rhabdomyolysis, these combinations should therefore be avoided. To our knowledge, there are no current guidelines targeting the management of lipid metabolism disorders in liver transplant recipients. This paper therefore recommends an approach of managing lipid abnormalities occurring after liver transplantation. PMID:27022213

  2. Amphotericin B Lipid Complex Injection

    MedlinePlus

    Amphotericin B lipid complex injection is used to treat serious, possibly life-threatening fungal infections in people who did not respond or are ... tolerate conventional amphotericin B therapy. Amphotericin B lipid complex injection is in a class of medications called ...

  3. Neuroimaging of Lipid Storage Disorders

    ERIC Educational Resources Information Center

    Rieger, Deborah; Auerbach, Sarah; Robinson, Paul; Gropman, Andrea

    2013-01-01

    Lipid storage diseases, also known as the lipidoses, are a group of inherited metabolic disorders in which there is lipid accumulation in various cell types, including the central nervous system, because of the deficiency of a variety of enzymes. Over time, excessive storage can cause permanent cellular and tissue damage. The brain is particularly…

  4. The Flexibility of Ectopic Lipids.

    PubMed

    Loher, Hannah; Kreis, Roland; Boesch, Chris; Christ, Emanuel

    2016-01-01

    In addition to the subcutaneous and the visceral fat tissue, lipids can also be stored in non-adipose tissue such as in hepatocytes (intrahepatocellular lipids; IHCL), skeletal (intramyocellular lipids; IMCL) or cardiac muscle cells (intracardiomyocellular lipids; ICCL). Ectopic lipids are flexible fuel stores that can be depleted by physical exercise and repleted by diet. They are related to obesity and insulin resistance. Quantification of IMCL was initially performed invasively, using muscle biopsies with biochemical and/or histological analysis. ¹H-magnetic resonance spectroscopy (¹H-MRS) is now a validated method that allows for not only quantifying IMCL non-invasively and repeatedly, but also assessing IHCL and ICCL. This review summarizes the current available knowledge on the flexibility of ectopic lipids. The available evidence suggests a complex interplay between quantitative and qualitative diet, fat availability (fat mass), insulin action, and physical exercise, all important factors that influence the flexibility of ectopic lipids. Furthermore, the time frame of the intervention on these parameters (short-term vs. long-term) appears to be critical. Consequently, standardization of physical activity and diet are critical when assessing ectopic lipids in predefined clinical situations. PMID:27649157

  5. Roles of Lipids in Photosynthesis.

    PubMed

    Kobayashi, Koichi; Endo, Kaichiro; Wada, Hajime

    2016-01-01

    Thylakoid membranes in cyanobacterial cells and chloroplasts of algae and higher plants are the sites of oxygenic photosynthesis. The lipid composition of the thylakoid membrane is unique and highly conserved among oxygenic photosynthetic organisms. Major lipids in thylakoid membranes are glycolipids, monogalactosyldiacylglycerol, digalactosyldiacylglycerol and sulfoquinovosyldiacylglycerol, and the phospholipid, phosphatidylglycerol. The identification of almost all genes involved in the biosynthesis of each lipid class over the past decade has allowed the generation and isolation of mutants of various photosynthetic organisms incapable of synthesizing specific lipids. Numerous studies using such mutants have revealed that these lipids play important roles not only in the formation of the lipid bilayers of thylakoid membranes but also in the folding and assembly of the protein subunits in photosynthetic complexes. In addition to the studies with the mutants, recent X-ray crystallography studies of photosynthetic complexes in thylakoid membranes have also provided critical information on the association of lipids with photosynthetic complexes and their activities. In this chapter, we summarize our current understanding about the structural and functional involvement of thylakoid lipids in oxygenic photosynthesis.

  6. Lipids in liver transplant recipients.

    PubMed

    Hüsing, Anna; Kabar, Iyad; Schmidt, Hartmut H

    2016-03-28

    Hyperlipidemia is very common after liver transplantation and can be observed in up to 71% of patients. The etiology of lipid disorders in these patients is multifactorial, with different lipid profiles observed depending on the immunosuppressive agents administered and the presence of additional risk factors, such as obesity, diabetes mellitus and nutrition. Due to recent improvements in survival of liver transplant recipients, the prevention of cardiovascular events has become more important, especially as approximately 64% of liver transplant recipients present with an increased risk of cardiovascular events. Management of dyslipidemia and of other modifiable cardiovascular risk factors, such as hypertension, diabetes and smoking, has therefore become essential in these patients. Treatment of hyperlipidemia after liver transplantation consists of life style modification, modifying the dose or type of immunosuppressive agents and use of lipid lowering agents. At the start of administration of lipid lowering medications, it is important to monitor drug-drug interactions, especially between lipid lowering agents and immunosuppressive drugs. Furthermore, as combinations of various lipid lowering drugs can lead to severe side effects, such as myopathies and rhabdomyolysis, these combinations should therefore be avoided. To our knowledge, there are no current guidelines targeting the management of lipid metabolism disorders in liver transplant recipients. This paper therefore recommends an approach of managing lipid abnormalities occurring after liver transplantation. PMID:27022213

  7. Membrane lipid alterations in hemoglobinopathies.

    PubMed

    Kuypers, Frans A

    2007-01-01

    The red blood cell (RBC) membrane is a complex mixture of lipids and proteins. Hundreds of phospholipid molecular species spontaneously arrange themselves in a lipid bilayer and move rapidly in the plane as well as across the bilayer in a dynamic but highly organized fashion. Areas enriched in certain lipids determine proper protein function. Phospholipids are asymmetrically distributed across the lipid bilayer with phosphatidylserine (PS) exclusively on the inside. Both the composition and organization of the RBC membrane is well maintained. Alterations lead to apoptosis during erythropoiesis or early demise of the cell in the circulation. The mechanisms that govern the maintenance of the lipid bilayer are only recently being unraveled at the individual protein level. Oxidized lipids are rapidly repaired using fatty acids taken up from plasma to maintain membrane integrity. Several isoforms of a RBC acyl-Coenzyme A (CoA) synthase have been reported, as well as the first member of a family of lysophospholipid acylCoA acyltransferases. Phospholipid asymmetry is maintained by the recently identified RBC amino-phospholipid translocase. These enzymes, essential in maintaining membrane lipid organization, are affected by oxidant stress or an increase in cytosolic calcium. Normal lipid composition and organization is lost in subpopulations of RBC in hemoglobinopathies such as sickle cell disease and thalassemia. Despite elaborate antioxidant systems, lipids and membrane proteins, including those that maintain lipid organization, are damaged in these cells. This in turn leads to improper repair of damaged RBC membranes and altered interactions of RBCs with other blood cells and plasma components that play a role in the pathology that defines these disorders. The altered lipid bilayer in RBCs in hemoglobinopathies leads to premature removal (anemia) and imbalance in hemostasis, and plays a role in vaso-occlusive crisis in sickle cell disease. Lipid breakdown products of PS

  8. Lipid Regulation of Sodium Channels.

    PubMed

    D'Avanzo, N

    2016-01-01

    The lipid landscapes of cellular membranes are complex and dynamic, are tissue dependent, and can change with the age and the development of a variety of diseases. Researchers are now gaining new appreciation for the regulation of ion channel proteins by the membrane lipids in which they are embedded. Thus, as membrane lipids change, for example, during the development of disease, it is likely that the ionic currents that conduct through the ion channels embedded in these membranes will also be altered. This chapter provides an overview of the complex regulation of prokaryotic and eukaryotic voltage-dependent sodium (Nav) channels by fatty acids, sterols, glycerophospholipids, sphingolipids, and cannabinoids. The impact of lipid regulation on channel gating kinetics, voltage-dependence, trafficking, toxin binding, and structure are explored for Nav channels that have been examined in heterologous expression systems, native tissue, and reconstituted into artificial membranes. Putative mechanisms for Nav regulation by lipids are also discussed. PMID:27586290

  9. Lipids changes in liver cancer*

    PubMed Central

    Jiang, Jing-ting; Xu, Ning; Zhang, Xiao-ying; Wu, Chang-ping

    2007-01-01

    Liver is one of the most important organs in energy metabolism. Most plasma apolipoproteins and endogenous lipids and lipoproteins are synthesized in the liver. It depends on the integrity of liver cellular function, which ensures homeostasis of lipid and lipoprotein metabolism. When liver cancer occurs, these processes are impaired and the plasma lipid and lipoprotein patterns may be changed. Liver cancer is the fifth common malignant tumor worldwide, and is closely related to the infections of hepatitis B virus (HBV) and hepatitis C virus (HCV). HBV and HCV infections are quite common in China and other Southeast Asian countries. In addition, liver cancer is often followed by a procession of chronic hepatitis or cirrhosis, so that hepatic function is damaged obviously on these bases, which may significantly influence lipid and lipoprotein metabolism in vivo. In this review we summarize the clinical significance of lipid and lipoprotein metabolism under liver cancer. PMID:17565510

  10. Immunopharmacology of lipid A mimetics.

    PubMed

    Bowen, William S; Gandhapudi, Siva K; Kolb, Joseph P; Mitchell, Thomas C

    2013-01-01

    The structural core of bacterial lipopolysaccharide, lipid A, has played a role in medicine since the 1890s when William Coley sought to harness its immunostimulatory properties in the form of a crude bacterial extract. Recent decades have brought remarkable clarity to the structure of lipid A and the multicomponent endotoxin receptor system that evolved to detect it. A range of therapeutically useful versions of lipid A now exists, including preparations of detoxified lipid A, synthetic copies of naturally occurring biological intermediates such as lipid IVa, and synthetic mimetics. These agents are finding use as vaccine adjuvants, antagonists and immunostimulants whose structural features have been refined to potentiate efficacy while decreasing the risk of inflammatory side effects.

  11. Lipid Informed Quantitation and Identification

    SciTech Connect

    Kevin Crowell, PNNL

    2014-07-21

    LIQUID (Lipid Informed Quantitation and Identification) is a software program that has been developed to enable users to conduct both informed and high-throughput global liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based lipidomics analysis. This newly designed desktop application can quickly identify and quantify lipids from LC-MS/MS datasets while providing a friendly graphical user interface for users to fully explore the data. Informed data analysis simply involves the user specifying an electrospray ionization mode, lipid common name (i.e. PE(16:0/18:2)), and associated charge carrier. A stemplot of the isotopic profile and a line plot of the extracted ion chromatogram are also provided to show the MS-level evidence of the identified lipid. In addition to plots, other information such as intensity, mass measurement error, and elution time are also provided. Typically, a global analysis for 15,000 lipid targets

  12. Crystallizing Membrane Proteins in Lipidic Mesophases. A Host Lipid Screen

    SciTech Connect

    Li, Dianfan; Lee, Jean; Caffrey, Martin

    2011-11-30

    The default lipid for the bulk of the crystallogenesis studies performed to date using the cubic mesophase method is monoolein. There is no good reason, however, why this 18-carbon, cis-monounsaturated monoacylglycerol should be the preferred lipid for all target membrane proteins. The latter come from an array of biomembrane types with varying properties that include hydrophobic thickness, intrinsic curvature, lateral pressure profile, lipid and protein makeup, and compositional asymmetry. Thus, it seems reasonable that screening for crystallizability based on the identity of the lipid creating the hosting mesophase would be worthwhile. For this, monoacylglycerols with differing acyl chain characteristics, such as length and olefinic bond position, must be available. A lipid synthesis and purification program is in place in the author's laboratory to serve this need. In the current study with the outer membrane sugar transporter, OprB, we demonstrate the utility of host lipid screening as a means for generating diffraction-quality crystals. Host lipid screening is likely to prove a generally useful strategy for mesophase-based crystallization of membrane proteins.

  13. Lipid mediators in diabetic nephropathy

    PubMed Central

    2014-01-01

    The implications of lipid lowering drugs in the treatment of diabetic nephropathy have been considered. At the same time, the clinical efficacy of lipid lowering drugs has resulted in improvement in the cardiovascular functions of chronic kidney disease (CKD) patients with or without diabetes, but no remarkable improvement has been observed in the kidney outcome. Earlier lipid mediators have been shown to cause accumulative effects in diabetic nephropathy (DN). Here, we attempt to analyze the involvement of lipid mediators in DN. The hyperglycemia-induced overproduction of diacyglycerol (DAG) is one of the causes for the activation of protein kinase C (PKCs), which is responsible for the activation of pathways, including the production of VEGF, TGFβ1, PAI-1, NADPH oxidases, and NFҟB signaling, accelerating the development of DN. Additionally, current studies on the role of ceramide are one of the major fields of study in DN. Researchers have reported excessive ceramide formation in the pathobiological conditions of DN. There is less report on the effect of lipid lowering drugs on the reduction of PKC activation and ceramide synthesis. Regulating PKC activation and ceramide biosynthesis could be a protective measure in the therapeutic potential of DN. Lipid lowering drugs also upregulate anti-fibrotic microRNAs, which could hint at the effects of lipid lowering drugs in DN. PMID:25206927

  14. Lipid synthesis in chick epidermis.

    PubMed

    Lavker, R M

    1975-07-01

    Lipid synthesis in newborn chick epidermis was studied by electron microscopic autoradiography after injection of tritiated palmitate. The labeled lipid product in the tissue was identified as mostly triglyceride. At the earliest time after injection (6 hr), the radioactive precursor was taken up by all viable cells of the epidermis. Grain density was heaviest over basal cells, moderate over spinous cells, and slight over granular cells; thus lipid incorporation is highest in the basal and spinous regions of the chick epidermis. As time after injection progressed, the increasing amounts of grains over the granular and horny cells and decreasing amounts over the basal and spinous cells reflected the continuous upward displacement of cells from one layer into the next. From the distribution of silver grains within the epidermal cells, it has been concluded that, with the passage of time, triglycerides synthesized by the epidermal cells were mainly located in lipid droplets. The numerous grains associated with the elements of the endoplasmic reticulum indicated that this organelle is involved in aggregating triglyceride molecules into lipid droplets. The fact that grains were seen within the horny cells indicated that part of the horny cell consists of lipid probably derived from the lipid droplets retained by the cells during keratinization. PMID:1151110

  15. Neuroimaging of lipid storage disorders.

    PubMed

    Rieger, Deborah; Auerbach, Sarah; Robinson, Paul; Gropman, Andrea

    2013-01-01

    Lipid storage diseases, also known as the lipidoses, are a group of inherited metabolic disorders in which there is lipid accumulation in various cell types, including the central nervous system, because of the deficiency of a variety of enzymes. Over time, excessive storage can cause permanent cellular and tissue damage. The brain is particularly sensitive to lipid storage as the contents of the central nervous system must occupy uniform volume, and any increases in fluids or deposits will lead to pressure changes and interference with normal neurological function. In addition to primary lipid storage diseases, lysosomal storage diseases include the mucolipidoses (in which excessive amounts of lipids and carbohydrates are stored in the cells and tissues) and the mucopolysaccharidoses (in which abnormal glycosylated proteins cannot be broken down because of enzyme deficiency). Neurological dysfunction can be a manifestation of these conditions due to substrate deposition as well. This review will explore the modalities of neuroimaging that may have particular relevance to the study of the lipid storage disorder and their impact on elucidating aspects of brain function. First, the techniques will be reviewed. Next, the neuropathology of a few selected lipid storage disorders will be reviewed and the use of neuroimaging to define disease characteristics discussed in further detail. Examples of studies using these techniques will be discussed in the text.

  16. Lipid metabolism in Trypanosoma brucei

    PubMed Central

    Smith, Terry K.; Bütikofer, Peter

    2013-01-01

    Trypanosoma brucei membranes consist of all major eukaryotic glycerophospholipid and sphingolipid classes. These are de novo synthesized from precursors obtained either from the host or from catabolised endocytosed lipids. In recent years, substantial progress has been made in the molecular and biochemical characterisation of several of these lipid biosynthetic pathways, using gene knockout or RNA interference strategies or by enzymatic characterization of individual reactions. Together with the completed genome, these studies have highlighted several possible differences between mammalian and trypanosome lipid biosynthesis that could be exploited for the development of drugs against the diseases caused by these parasites. PMID:20382188

  17. Hybrid lipid-based nanostructures

    NASA Astrophysics Data System (ADS)

    Dayani, Yasaman

    Biological membranes serve several important roles, such as structural support of cells and organelles, regulation of ionic and molecular transport, barriers to non-mediated transport, contact between cells within tissues, and accommodation of membrane proteins. Membrane proteins and other vital biomolecules incorporated into the membrane need a lipid membrane to function. Due to importance of lipid bilayers and their vital function in governing many processes in the cell, the development of various models as artificial lipid membranes that can mimic cell membranes has become a subject of great interest. Using different models of artificial lipid membranes, such as liposomes, planar lipid bilayers and supported or tethered lipid bilayers, we are able to study many biophysical processes in biological membranes. The ability of different molecules to interact with and change the structure of lipid membranes can be also investigated in artificial lipid membranes. An important application of lipid bilayer-containing interfaces is characterization of novel membrane proteins for high throughput drug screening studies to investigate receptor-drug interactions and develop biosensor systems. Membrane proteins need a lipid bilayer environment to preserve their stability and functionality. Fabrication of materials that can interact with biomolecules like proteins necessitates the use of lipid bilayers as a mimic of cell membranes. The objective of this research is to develop novel hybrid lipid-based nanostructures mimicking biological membranes. Toward this aim, two hybrid biocompatible structures are introduced: lipid bilayer-coated multi-walled carbon nanotubes (MWCNTs) and hydrogel-anchored liposomes with double-stranded DNA anchors. These structures have potential applications in biosensing, drug targeting, drug delivery, and biophysical studies of cell membranes. In the first developed nanostructure, lipid molecules are covalently attached to the surfaces of MWCNTs, and

  18. Lipid exchange between membranes.

    PubMed Central

    Jähnig, F

    1984-01-01

    The exchange of lipid molecules between vesicle bilayers in water and a monolayer forming at the water surface was investigated theoretically within the framework of thermodynamics. The total number of exchanged molecules was found to depend on the bilayer curvature as expressed by the vesicle radius and on the boundary condition for exchange, i.e., whether during exchange the radius or the packing density of the vesicles remains constant. The boundary condition is determined by the rate of flip-flop within the bilayer relative to the rate of exchange between bi- and monolayer. If flip-flop is fast, exchange is independent of the vesicle radius; if flip-flop is slow, exchange increases with the vesicle radius. Available experimental results agree with the detailed form of this dependence. When the theory was extended to exchange between two bilayers of different curvature, the direction of exchange was also determined by the curvatures and the boundary conditions for exchange. Due to the dependence of the boun