Modeling central metabolism and energy biosynthesis across microbial life
Edirisinghe, Janaka N.; Weisenhorn, Pamela; Conrad, Neal; ...
2016-08-08
Here, automatically generated bacterial metabolic models, and even some curated models, lack accuracy in predicting energy yields due to poor representation of key pathways in energy biosynthesis and the electron transport chain (ETC). Further compounding the problem, complex interlinking pathways in genome-scale metabolic models, and the need for extensive gapfilling to support complex biomass reactions, often results in predicting unrealistic yields or unrealistic physiological flux profiles. As a result, to overcome this challenge, we developed methods and tools to build high quality core metabolic models (CMM) representing accurate energy biosynthesis based on a well studied, phylogenetically diverse set of modelmore » organisms. We compare these models to explore the variability of core pathways across all microbial life, and by analyzing the ability of our core models to synthesize ATP and essential biomass precursors, we evaluate the extent to which the core metabolic pathways and functional ETCs are known for all microbes. 6,600 (80 %) of our models were found to have some type of aerobic ETC, whereas 5,100 (62 %) have an anaerobic ETC, and 1,279 (15 %) do not have any ETC. Using our manually curated ETC and energy biosynthesis pathways with no gapfilling at all, we predict accurate ATP yields for nearly 5586 (70 %) of the models under aerobic and anaerobic growth conditions. This study revealed gaps in our knowledge of the central pathways that result in 2,495 (30 %) CMMs being unable to produce ATP under any of the tested conditions. We then established a methodology for the systematic identification and correction of inconsistent annotations using core metabolic models coupled with phylogenetic analysis. In conclusion, we predict accurate energy yields based on our improved annotations in energy biosynthesis pathways and the implementation of diverse ETC reactions across the microbial tree of life. We highlighted missing annotations that were essential to energy biosynthesis in our models. We examine the diversity of these pathways across all microbial life and enable the scientific community to explore the analyses generated from this large-scale analysis of over 8000 microbial genomes.« less
Modeling central metabolism and energy biosynthesis across microbial life
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edirisinghe, Janaka N.; Weisenhorn, Pamela; Conrad, Neal
Here, automatically generated bacterial metabolic models, and even some curated models, lack accuracy in predicting energy yields due to poor representation of key pathways in energy biosynthesis and the electron transport chain (ETC). Further compounding the problem, complex interlinking pathways in genome-scale metabolic models, and the need for extensive gapfilling to support complex biomass reactions, often results in predicting unrealistic yields or unrealistic physiological flux profiles. As a result, to overcome this challenge, we developed methods and tools to build high quality core metabolic models (CMM) representing accurate energy biosynthesis based on a well studied, phylogenetically diverse set of modelmore » organisms. We compare these models to explore the variability of core pathways across all microbial life, and by analyzing the ability of our core models to synthesize ATP and essential biomass precursors, we evaluate the extent to which the core metabolic pathways and functional ETCs are known for all microbes. 6,600 (80 %) of our models were found to have some type of aerobic ETC, whereas 5,100 (62 %) have an anaerobic ETC, and 1,279 (15 %) do not have any ETC. Using our manually curated ETC and energy biosynthesis pathways with no gapfilling at all, we predict accurate ATP yields for nearly 5586 (70 %) of the models under aerobic and anaerobic growth conditions. This study revealed gaps in our knowledge of the central pathways that result in 2,495 (30 %) CMMs being unable to produce ATP under any of the tested conditions. We then established a methodology for the systematic identification and correction of inconsistent annotations using core metabolic models coupled with phylogenetic analysis. In conclusion, we predict accurate energy yields based on our improved annotations in energy biosynthesis pathways and the implementation of diverse ETC reactions across the microbial tree of life. We highlighted missing annotations that were essential to energy biosynthesis in our models. We examine the diversity of these pathways across all microbial life and enable the scientific community to explore the analyses generated from this large-scale analysis of over 8000 microbial genomes.« less
Modeling central metabolism and energy biosynthesis across microbial life.
Edirisinghe, Janaka N; Weisenhorn, Pamela; Conrad, Neal; Xia, Fangfang; Overbeek, Ross; Stevens, Rick L; Henry, Christopher S
2016-08-08
Automatically generated bacterial metabolic models, and even some curated models, lack accuracy in predicting energy yields due to poor representation of key pathways in energy biosynthesis and the electron transport chain (ETC). Further compounding the problem, complex interlinking pathways in genome-scale metabolic models, and the need for extensive gapfilling to support complex biomass reactions, often results in predicting unrealistic yields or unrealistic physiological flux profiles. To overcome this challenge, we developed methods and tools ( http://coremodels.mcs.anl.gov ) to build high quality core metabolic models (CMM) representing accurate energy biosynthesis based on a well studied, phylogenetically diverse set of model organisms. We compare these models to explore the variability of core pathways across all microbial life, and by analyzing the ability of our core models to synthesize ATP and essential biomass precursors, we evaluate the extent to which the core metabolic pathways and functional ETCs are known for all microbes. 6,600 (80 %) of our models were found to have some type of aerobic ETC, whereas 5,100 (62 %) have an anaerobic ETC, and 1,279 (15 %) do not have any ETC. Using our manually curated ETC and energy biosynthesis pathways with no gapfilling at all, we predict accurate ATP yields for nearly 5586 (70 %) of the models under aerobic and anaerobic growth conditions. This study revealed gaps in our knowledge of the central pathways that result in 2,495 (30 %) CMMs being unable to produce ATP under any of the tested conditions. We then established a methodology for the systematic identification and correction of inconsistent annotations using core metabolic models coupled with phylogenetic analysis. We predict accurate energy yields based on our improved annotations in energy biosynthesis pathways and the implementation of diverse ETC reactions across the microbial tree of life. We highlighted missing annotations that were essential to energy biosynthesis in our models. We examine the diversity of these pathways across all microbial life and enable the scientific community to explore the analyses generated from this large-scale analysis of over 8000 microbial genomes.
Structural and Functional Analyses of the Proteins Involved in the Iron-Sulfur Cluster Biosynthesis
NASA Astrophysics Data System (ADS)
Wada, Kei
The iron-sulfur (Fe-S) clusters are ubiquitous prosthetic groups that are required to maintain such fundamental life processes as respiratory chain, photosynthesis and the regulation of gene expression. Assembly of intracellular Fe-S cluster requires the sophisticated biosynthetic systems called ISC and SUF machineries. To shed light on the molecular mechanism of Fe-S cluster assembly mediated by SUF machinery, several structures of the SUF components and their sub-complex were determined. The structural findings together with biochemical characterization of the core-complex (SufB-SufC-SufD complex) have led me to propose a working model for the cluster biosynthesis in the SUF machinery.
Biochemistry of Mitochondrial Coenzyme Q Biosynthesis.
Stefely, Jonathan A; Pagliarini, David J
2017-10-01
Coenzyme Q (CoQ, ubiquinone) is a redox-active lipid produced across all domains of life that functions in electron transport and oxidative phosphorylation and whose deficiency causes human diseases. Yet, CoQ biosynthesis has not been fully defined in any organism. Several proteins with unclear molecular functions facilitate CoQ biosynthesis through unknown means, and multiple steps in the pathway are catalyzed by currently unidentified enzymes. Here we highlight recent progress toward filling these knowledge gaps through both traditional biochemistry and cutting-edge 'omics' approaches. To help fill the remaining gaps, we present questions framed by the recently discovered CoQ biosynthetic complex and by putative biophysical barriers. Mapping CoQ biosynthesis, metabolism, and transport pathways has great potential to enhance treatment of numerous human diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.
Matuschewski, Kai; Haussig, Joana M.
2016-01-01
Malarial parasites have evolved complex regulation of heme supply and disposal to adjust to heme-rich and -deprived host environments. In addition to its own pathway for heme biosynthesis, Plasmodium likely harbors mechanisms for heme scavenging from host erythrocytes. Elaborate compartmentalization of de novo heme synthesis into three subcellular locations, including the vestigial plastid organelle, indicates critical roles in life cycle progression. In this study, we systematically profile the essentiality of heme biosynthesis by targeted gene deletion of enzymes in early steps of this pathway. We show that disruption of endogenous heme biosynthesis leads to a first detectable defect in oocyst maturation and sporogony in the Anopheles vector, whereas blood stage propagation, colonization of mosquito midguts, or initiation of oocyst development occurs indistinguishably from that of wild-type parasites. Although sporozoites are produced by parasites lacking an intact pathway for heme biosynthesis, they are absent from mosquito salivary glands, indicative of a vital role for heme biosynthesis only in sporozoite maturation. Rescue of the first defect in sporogony permitted analysis of potential roles in liver stages. We show that liver stage parasites benefit from but do not strictly depend upon their own aminolevulinic acid synthase and that they can scavenge aminolevulinic acid from the host environment. Together, our experimental genetics analysis of Plasmodium enzymes for heme biosynthesis exemplifies remarkable shifts between the use of endogenous and host resources during life cycle progression. PMID:27600503
Paralytic shellfish toxin biosynthesis in cyanobacteria and dinoflagellates: A molecular overview.
Wang, Da-Zhi; Zhang, Shu-Fei; Zhang, Yong; Lin, Lin
2016-03-01
Paralytic shellfish toxins (PSTs) are a group of water soluble neurotoxic alkaloids produced by two different kingdoms of life, prokaryotic cyanobacteria and eukaryotic dinoflagellates. Owing to the wide distribution of these organisms, these toxic secondary metabolites account for paralytic shellfish poisonings around the world. On the other hand, their specific binding to voltage-gated sodium channels makes these toxins potentially useful in pharmacological and toxicological applications. Much effort has been devoted to the biosynthetic mechanism of PSTs, and gene clusters encoding 26 proteins involved in PST biosynthesis have been unveiled in several cyanobacterial species. Functional analysis of toxin genes indicates that PST biosynthesis in cyanobacteria is a complex process including biosynthesis, regulation, modification and export. However, less is known about the toxin biosynthesis in dinoflagellates owing to our poor understanding of the massive genome and unique chromosomal characteristics [1]. So far, few genes involved in PST biosynthesis have been identified from dinoflagellates. Moreover, the proteins involved in PST production are far from being totally explored. Thus, the origin and evolution of PST biosynthesis in these two kingdoms are still controversial. In this review, we summarize the recent progress on the characterization of genes and proteins involved in PST biosynthesis in cyanobacteria and dinoflagellates, and discuss the standing evolutionary hypotheses concerning the origin of toxin biosynthesis as well as future perspectives in PST biosynthesis. Paralytic shellfish toxins (PSTs) are a group of potent neurotoxins which specifically block voltage-gated sodium channels in excitable cells and result in paralytic shellfish poisonings (PSPs) around the world. Two different kingdoms of life, cyanobacteria and dinoflagellates are able to produce PSTs. However, in contrast with cyanobacteria, our understanding of PST biosynthesis in dinoflagellates is extremely limited owing to their unique features. The origin and evolution of PST biosynthesis in these two kingdoms are still controversial. High-throughput omics technologies, such as genomics, transcriptomics and proteomics provide powerful tools for the study of PST biosynthesis in cyanobacteria and dinoflagellates, and have shown their powerful potential with regard to revealing genes and proteins involved in PST biosynthesis in two kingdoms. This review summarizes the recent progress in PST biosynthesis in cyanobacteria and dinoflagellates with focusing on the novel insights from omics technologies, and discusses the evolutionary relationship of toxin biosynthesis genes between these two kingdoms. Copyright © 2015 Elsevier B.V. All rights reserved.
NMR assignments of juvenile hormone binding protein in complex with JH III.
Suzuki, Rintaro; Tase, Akira; Fujimoto, Zui; Shiotsuki, Takahiro; Yamazaki, Toshimasa
2009-06-01
A hemolymph juvenile hormone binding protein (JHBP) shuttles hydrophobic JH, a key hormone in regulation of the insect life cycle, from the site of the JH biosynthesis to the cells of target organs. We report complete NMR chemical shift assignments of Bombyx mori JHBP in the JH III-bound state.
Zera, Anthony J; Clark, Rebecca; Behmer, Spence
2016-12-01
The influence of variable nutritional input on life history adaptation is a central, but incompletely understood aspect of life history physiology. The wing-polymorphic cricket, Gryllus firmus, has been extensively studied with respect to the biochemical basis of life history adaptation, in particular, modification of lipid metabolism that underlies the enhanced accumulation of lipid flight fuel in the dispersing morph [LW(f)=long wings with functional flight muscles] relative to the flightless (SW=short-winged) morph. To date, biochemical studies have been undertaken almost exclusively using a single laboratory diet. Thus, the extent to which nutritional heterogeneity, likely experienced in the field, influences this key morph adaptation is unknown. We used the experimental approach of the Geometric Framework for Nutrition and employed 13 diets that differed in the amounts and ratios of protein and carbohydrate to assess how nutrient amount and balance affects morph-specific lipid biosynthesis. Greater lipid biosynthesis and allocation to the soma in the LW(f) compared with the SW morph (1) occurred across the entire protein-carbohydrate landscape and (2) is likely an important contributor to elevated somatic lipid in the LW(f) morph across the entire protein-carbohydrate landscape. Nevertheless, dietary carbohydrate strongly affected lipid biosynthesis in a morph-specific manner (to a greater degree in the LW(f) morph). Lipogenesis in the SW morph may be constrained due to its more limited lipid storage capacity compared to the LW(f) morph. Elevated activity of NADP + -isocitrate dehydrogenase (NADP + -IDH), an enzyme that produces reducing equivalents for lipid biosynthesis, was correlated with and may be an important cause of the increased lipogenesis in the LW(f) morph across most, but not all regions of the protein-carbohydrate landscape. By contrast, ATP-citrate lyase (ACL), an enzyme that catalyzes the first step in the pathway of fatty acid biosynthesis, showed complex morph-specific patterns of activity that were strongly contingent upon diet. Morph-specific patterns of NADP + -IDH and ACL activities across the nutrient landscape were much more complex than expected from previous studies on a single diet. Collectively, our results indicate that the biochemical basis of an important life history adaptation, morph-specific lipogenesis, can be canalized in the face of substantial nutritional heterogeneity. However, in some regions of the protein-carbohydrate landscape, it is strongly modulated in a morph-specific manner. Copyright © 2016 Elsevier Ltd. All rights reserved.
Sacristan, Raquel
2016-01-01
Gibberellins (GAs) are plant hormones that regulate most plant life cycle aspects, including flowering and fruit development. Here, we demonstrate the implication of GAs in ovule development. DELLA proteins, negative GA response regulators, act as positive factors for ovule integument development in a mechanism that involves transcription factor ABERRANT TESTA SHAPE (ATS). The seeds of the della global mutant, a complete loss-of-function of DELLA, and the ats-1 mutant are remarkably similar, with a round shape, a disorganized testa, and viviparism. These defects are the result of an alteration in integuments that fail to fully develop and are shorter than in wild-type plants. ats-1 also shows some GA-related phenotypes, for example, higher germination rates and early flowering. In fact, ats-1 has elevated GA levels due to the activation of GA biosynthesis genes, which indicates that ATS inhibits GA biosynthesis. Moreover, DELLAs and ATS proteins interact, which suggests the formation of a transcriptional complex that regulates the expression of genes involved in integument growth. Therefore, the repression of GA biosynthesis by ATS would result in the stabilization of DELLAs to ensure correct ATS-DELLA complex formation. The requirement of both activities to coordinate proper ovule development strongly argues that the ATS-DELLA complex acts as a key molecular factor. This work provides the first evidence for a role of GAs in ovule and seed development. PMID:27794102
Cascajo, María V; Abdelmohsen, Kotb; Noh, Ji Heon; Fernández-Ayala, Daniel J M; Willers, Imke M; Brea, Gloria; López-Lluch, Guillermo; Valenzuela-Villatoro, Marina; Cuezva, José M; Gorospe, Myriam; Siendones, Emilio; Navas, Plácido
2016-07-02
Coenzyme Q (CoQ) is a key component of the mitochondrial respiratory chain carrying electrons from complexes I and II to complex III and it is an intrinsic component of the respirasome. CoQ concentration is highly regulated in cells in order to adapt the metabolism of the cell to challenges of nutrient availability and stress stimuli. At least 10 proteins have been shown to be required for CoQ biosynthesis in a multi-peptide complex and COQ7 is a central regulatory factor of this pathway. We found that the first 765 bp of the 3'-untranslated region (UTR) of COQ7 mRNA contains cis-acting elements of interaction with RNA-binding proteins (RBPs) HuR and hnRNP C1/C2. Binding of hnRNP C1/C2 to COQ7 mRNA was found to require the presence of HuR, and hnRNP C1/C2 silencing appeared to stabilize COQ7 mRNA modestly. By contrast, lowering HuR levels by silencing or depriving cells of serum destabilized and reduced the half-life of COQ7 mRNA, thereby reducing COQ7 protein and CoQ biosynthesis rate. Accordingly, HuR knockdown decreased oxygen consumption rate and mitochondrial production of ATP, and increased lactate levels. Taken together, our results indicate that a reduction in COQ7 mRNA levels by HuR depletion causes mitochondrial dysfunction and a switch toward an enhanced aerobic glycolysis, the characteristic phenotype exhibited by primary deficiency of CoQ10. Thus HuR contributes to efficient oxidative phosphorylation by regulating of CoQ10 biosynthesis.
Lipoic Acid Metabolism of Plasmodium - A Suitable Drug Target
Storm, Janet; Müller, Sylke
2012-01-01
α-Lipoic acid (6,8-thioctic acid; LA) is a vital co-factor of α-ketoacid dehydrogenase complexes and the glycine cleavage system. In recent years it was shown that biosynthesis and salvage of LA in Plasmodium are necessary for the parasites to complete their complex life cycle. LA salvage requires two lipoic acid protein ligases (LplA1 and LplA2). LplA1 is confined to the mitochondrion while LplA2 is located in both the mitochondrion and the apicoplast. LplA1 exclusively uses salvaged LA and lipoylates α-ketoglutarate dehydrogenase, branched chain α-ketoacid dehydrogenase and the H-protein of the glycine cleavage system. LplA2 cannot compensate for the loss of LplA1 function during blood stage development suggesting a specific function for LplA2 that has yet to be elucidated. LA salvage is essential for the intra-erythrocytic and liver stage development of Plasmodium and thus offers great potential for future drug or vaccine development. LA biosynthesis, comprising octanoyl-acyl carrier protein (ACP) : protein N-octanoyltransferase (LipB) and lipoate synthase (LipA), is exclusively found in the apicoplast of Plasmodium where it generates LA de novo from octanoyl-ACP, provided by the type II fatty acid biosynthesis (FAS II) pathway also present in the organelle. LA is the co-factor of the acetyltransferase subunit of the apicoplast located pyruvate dehydrogenase (PDH), which generates acetyl-CoA, feeding into FAS II. LA biosynthesis is not vital for intra-erythrocytic development of Plasmodium, but the deletion of several genes encoding components of FAS II or PDH was detrimental for liver stage development of the parasites indirectly suggesting that the same applies to LA biosynthesis. These data provide strong evidence that LA salvage and biosynthesis are vital for different stages of Plasmodium development and offer potential for drug and vaccine design against malaria. PMID:22607141
The Flavonoid Pathway Regulates the Petal Colors of Cotton Flower
Tan, Jiafu; Wang, Maojun; Tu, Lili; Nie, Yichun; Lin, Yongjun; Zhang, Xianlong
2013-01-01
Although biochemists and geneticists have studied the cotton flower for more than one century, little is known about the molecular mechanisms underlying the dramatic color change that occurs during its short developmental life following blooming. Through the analysis of world cotton germplasms, we found that all of the flowers underwent color changes post-anthesis, but there is a diverse array of petal colors among cotton species, with cream, yellow and red colors dominating the color scheme. Genetic and biochemical analyses indicated that both the original cream and red colors and the color changes post-anthesis were related to flavonoid content. The anthocyanin content and the expression of biosynthesis genes were both increased from blooming to one day post-anthesis (DPA) when the flower was withering and undergoing abscission. Our results indicated that the color changes and flavonoid biosynthesis of cotton flowers were precisely controlled and genetically regulated. In addition, flavonol synthase (FLS) genes involved in flavonol biosynthesis showed specific expression at 11 am when the flowers were fully opened. The anthocyanidin reductase (ANR) genes, which are responsible for proanthocyanidins biosynthesis, showed the highest expression at 6 pm on 0 DPA, when the flowers were withered. Light showed primary, moderate and little effects on flavonol, anthocyanin and proanthocyanidin biosynthesis, respectively. Flavonol biosynthesis was in response to light exposure, while anthocyanin biosynthesis was involved in flower color changes. Further expression analysis of flavonoid genes in flowers of wild type and a flavanone 3-hydroxylase (F3H) silenced line showed that the development of cotton flower color was controlled by a complex interaction between genes and light. These results present novel information regarding flavonoids metabolism and flower development. PMID:23951318
Kaufholdt, David; Baillie, Christin-Kirsty; Meinen, Rieke; Mendel, Ralf R; Hänsch, Robert
2017-01-01
Survival of plants and nearly all organisms depends on the pterin based molybdenum cofactor (Moco) as well as its effective biosynthesis and insertion into apo-enzymes. To this end, both the central Moco biosynthesis enzymes are characterized and the conserved four-step reaction pathway for Moco biosynthesis is well-understood. However, protection mechanisms to prevent degradation during biosynthesis as well as transfer of the highly oxygen sensitive Moco and its intermediates are not fully enlightened. The formation of protein complexes involving transient protein-protein interactions is an efficient strategy for protected metabolic channelling of sensitive molecules. In this review, Moco biosynthesis and allocation network is presented and discussed. This network was intensively studied based on two in vivo interaction methods: bimolecular fluorescence complementation (BiFC) and split-luciferase. Whereas BiFC allows localisation of interacting partners, split-luciferase assay determines interaction strengths in vivo . Results demonstrate (i) interaction of Cnx2 and Cnx3 within the mitochondria and (ii) assembly of a biosynthesis complex including the cytosolic enzymes Cnx5, Cnx6, Cnx7, and Cnx1, which enables a protected transfer of intermediates. The whole complex is associated with actin filaments via Cnx1 as anchor protein. After biosynthesis, Moco needs to be handed over to the specific apo-enzymes. A potential pathway was discovered. Molybdenum-containing enzymes of the sulphite oxidase family interact directly with Cnx1. In contrast, the xanthine oxidoreductase family acquires Moco indirectly via a Moco binding protein (MoBP2) and Moco sulphurase ABA3. In summary, the uncovered interaction matrix enables an efficient transfer for intermediate and product protection via micro-compartmentation.
Ridenour, John B; Smith, Jonathon E; Bluhm, Burton H
2016-09-01
Contamination of maize ( Zea mays ) with fumonisins produced by the fungus Fusarium verticillioides is a global concern for food safety. Fumonisins are a group of polyketide-derived secondary metabolites linked to esophageal cancer and neural tube birth defects in humans and numerous toxicoses in livestock. Despite the importance of fumonisins in global maize production, the regulation of fumonisin biosynthesis during kernel pathogenesis is poorly understood. The HAP complex is a conserved, heterotrimeric transcriptional regulator that binds the consensus sequence CCAAT to modulate gene expression. Recently, functional characterization of the Hap3 subunit linked the HAP complex to the regulation of secondary metabolism and stalk rot pathogenesis in F. verticillioides . Here, we determine the involvement of HAP3 in fumonisin biosynthesis and kernel pathogenesis. Deletion of HAP3 suppressed fumonisin biosynthesis on both nonviable and live maize kernels and impaired pathogenesis in living kernels. Transcriptional profiling via RNA sequencing indicated that the HAP complex regulates at least 1,223 genes in F. verticillioides , representing nearly 10% of all predicted genes. Disruption of the HAP complex caused the misregulation of biosynthetic gene clusters underlying the production of secondary metabolites, including fusarins. Taken together, these results reveal that the HAP complex is a central regulator of fumonisin biosynthesis and kernel pathogenesis and works as both a positive and negative regulator of secondary metabolism in F. verticillioides .
Valaviciute, Monika; Norkiene, Milda; Goda, Karolis; Slibinskas, Rimantas; Gedvilaite, Alma
2016-07-01
A number of viruses utilize molecular chaperones during various stages of their life cycle. It has been shown that members of the heat-shock protein 70 (Hsp70) chaperone family assist polyomavirus capsids during infection. However, the molecular chaperones that assist the formation of recombinant capsid viral protein 1 (VP1)-derived virus-like particles (VLPs) in yeast remain unclear. A panel of yeast strains with single chaperone gene deletions were used to evaluate the chaperones required for biosynthesis of recombinant hamster polyomavirus capsid protein VP1. The impact of deletion or mild overexpression of chaperone genes was determined in live cells by flow cytometry using enhanced green fluorescent protein (EGFP) fused with VP1. Targeted genetic analysis demonstrated that VP1-EGFP fusion protein levels were significantly higher in yeast strains in which the SSZ1 or ZUO1 genes encoding ribosome-associated complex components were deleted. The results confirmed the participation of cytosolic Hsp70 chaperones and suggested the potential involvement of the Ydj1 and Caj1 co-chaperones and the endoplasmic reticulum chaperones in the biosynthesis of VP1 VLPs in yeast. Likewise, the markedly reduced levels of VP1-EGFP in Δhsc82 and Δhsp82 yeast strains indicated that both Hsp70 and Hsp90 chaperones might assist VP1 VLPs during protein biosynthesis.
Self-Enhancement of Hepatitis C Virus Replication by Promotion of Specific Sphingolipid Biosynthesis
Hirata, Yuichi; Ikeda, Kazutaka; Sudoh, Masayuki; Tokunaga, Yuko; Suzuki, Akemi; Weng, Leiyun; Ohta, Masatoshi; Tobita, Yoshimi; Okano, Ken; Ozeki, Kazuhisa; Kawasaki, Kenichi; Tsukuda, Takuo; Katsume, Asao; Aoki, Yuko; Umehara, Takuya; Sekiguchi, Satoshi; Toyoda, Tetsuya; Shimotohno, Kunitada; Soga, Tomoyoshi; Nishijima, Masahiro; Taguchi, Ryo; Kohara, Michinori
2012-01-01
Lipids are key components in the viral life cycle that affect host-pathogen interactions. In this study, we investigated the effect of HCV infection on sphingolipid metabolism, especially on endogenous SM levels, and the relationship between HCV replication and endogenous SM molecular species. We demonstrated that HCV induces the expression of the genes (SGMS1 and 2) encoding human SM synthases 1 and 2. We observed associated increases of both total and individual sphingolipid molecular species, as assessed in human hepatocytes and in the detergent-resistant membrane (DRM) fraction in which HCV replicates. SGMS1 expression had a correlation with HCV replication. Inhibition of sphingolipid biosynthesis with a hepatotropic serine palmitoyltransferase (SPT) inhibitor, NA808, suppressed HCV-RNA production while also interfering with sphingolipid metabolism. Further, we identified the SM molecular species that comprise the DRM fraction and demonstrated that these endogenous SM species interacted with HCV nonstructural 5B polymerase to enhance viral replication. Our results reveal that HCV alters sphingolipid metabolism to promote viral replication, providing new insights into the formation of the HCV replication complex and the involvement of host lipids in the HCV life cycle. PMID:22916015
Hirata, Yuichi; Ikeda, Kazutaka; Sudoh, Masayuki; Tokunaga, Yuko; Suzuki, Akemi; Weng, Leiyun; Ohta, Masatoshi; Tobita, Yoshimi; Okano, Ken; Ozeki, Kazuhisa; Kawasaki, Kenichi; Tsukuda, Takuo; Katsume, Asao; Aoki, Yuko; Umehara, Takuya; Sekiguchi, Satoshi; Toyoda, Tetsuya; Shimotohno, Kunitada; Soga, Tomoyoshi; Nishijima, Masahiro; Taguchi, Ryo; Kohara, Michinori
2012-01-01
Lipids are key components in the viral life cycle that affect host-pathogen interactions. In this study, we investigated the effect of HCV infection on sphingolipid metabolism, especially on endogenous SM levels, and the relationship between HCV replication and endogenous SM molecular species. We demonstrated that HCV induces the expression of the genes (SGMS1 and 2) encoding human SM synthases 1 and 2. We observed associated increases of both total and individual sphingolipid molecular species, as assessed in human hepatocytes and in the detergent-resistant membrane (DRM) fraction in which HCV replicates. SGMS1 expression had a correlation with HCV replication. Inhibition of sphingolipid biosynthesis with a hepatotropic serine palmitoyltransferase (SPT) inhibitor, NA808, suppressed HCV-RNA production while also interfering with sphingolipid metabolism. Further, we identified the SM molecular species that comprise the DRM fraction and demonstrated that these endogenous SM species interacted with HCV nonstructural 5B polymerase to enhance viral replication. Our results reveal that HCV alters sphingolipid metabolism to promote viral replication, providing new insights into the formation of the HCV replication complex and the involvement of host lipids in the HCV life cycle.
Loiseau, Laurent; Fyfe, Cameron; Aussel, Laurent; Hajj Chehade, Mahmoud; Hernández, Sara B; Faivre, Bruno; Hamdane, Djemel; Mellot-Draznieks, Caroline; Rascalou, Bérengère; Pelosi, Ludovic; Velours, Christophe; Cornu, David; Lombard, Murielle; Casadesús, Josep; Pierrel, Fabien; Fontecave, Marc; Barras, Frédéric
2017-07-14
Ubiquinone (UQ), also referred to as coenzyme Q, is a widespread lipophilic molecule in both prokaryotes and eukaryotes in which it primarily acts as an electron carrier. Eleven proteins are known to participate in UQ biosynthesis in Escherichia coli , and we recently demonstrated that UQ biosynthesis requires additional, nonenzymatic factors, some of which are still unknown. Here, we report on the identification of a bacterial gene, yqiC , which is required for efficient UQ biosynthesis, and which we have renamed ubiK Using several methods, we demonstrated that the UbiK protein forms a complex with the C-terminal part of UbiJ, another UQ biogenesis factor we previously identified. We found that both proteins are likely to contribute to global UQ biosynthesis rather than to a specific biosynthetic step, because both ubiK and ubiJ mutants accumulated octaprenylphenol, an early intermediate of the UQ biosynthetic pathway. Interestingly, we found that both proteins are dispensable for UQ biosynthesis under anaerobiosis, even though they were expressed in the absence of oxygen. We also provide evidence that the UbiK-UbiJ complex interacts with palmitoleic acid, a major lipid in E. coli Last, in Salmonella enterica , ubiK was required for proliferation in macrophages and virulence in mice. We conclude that although the role of the UbiK-UbiJ complex remains unknown, our results support the hypothesis that UbiK is an accessory factor of Ubi enzymes and facilitates UQ biosynthesis by acting as an assembly factor, a targeting factor, or both. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Marelja, Zvonimir; Leimkühler, Silke; Missirlis, Fanis
2018-01-01
Iron sulfur (Fe-S) clusters and the molybdenum cofactor (Moco) are present at enzyme sites, where the active metal facilitates electron transfer. Such enzyme systems are soluble in the mitochondrial matrix, cytosol and nucleus, or embedded in the inner mitochondrial membrane, but virtually absent from the cell secretory pathway. They are of ancient evolutionary origin supporting respiration, DNA replication, transcription, translation, the biosynthesis of steroids, heme, catabolism of purines, hydroxylation of xenobiotics, and cellular sulfur metabolism. Here, Fe-S cluster and Moco biosynthesis in Drosophila melanogaster is reviewed and the multiple biochemical and physiological functions of known Fe-S and Moco enzymes are described. We show that RNA interference of Mocs3 disrupts Moco biosynthesis and the circadian clock. Fe-S-dependent mitochondrial respiration is discussed in the context of germ line and somatic development, stem cell differentiation and aging. The subcellular compartmentalization of the Fe-S and Moco assembly machinery components and their connections to iron sensing mechanisms and intermediary metabolism are emphasized. A biochemically active Fe-S core complex of heterologously expressed fly Nfs1, Isd11, IscU, and human frataxin is presented. Based on the recent demonstration that copper displaces the Fe-S cluster of yeast and human ferredoxin, an explanation for why high dietary copper leads to cytoplasmic iron deficiency in flies is proposed. Another proposal that exosomes contribute to the transport of xanthine dehydrogenase from peripheral tissues to the eye pigment cells is put forward, where the Vps16a subunit of the HOPS complex may have a specialized role in concentrating this enzyme within pigment granules. Finally, we formulate a hypothesis that (i) mitochondrial superoxide mobilizes iron from the Fe-S clusters in aconitase and succinate dehydrogenase; (ii) increased iron transiently displaces manganese on superoxide dismutase, which may function as a mitochondrial iron sensor since it is inactivated by iron; (iii) with the Krebs cycle thus disrupted, citrate is exported to the cytosol for fatty acid synthesis, while succinyl-CoA and the iron are used for heme biosynthesis; (iv) as iron is used for heme biosynthesis its concentration in the matrix drops allowing for manganese to reactivate superoxide dismutase and Fe-S cluster biosynthesis to reestablish the Krebs cycle.
Marelja, Zvonimir; Leimkühler, Silke; Missirlis, Fanis
2018-01-01
Iron sulfur (Fe-S) clusters and the molybdenum cofactor (Moco) are present at enzyme sites, where the active metal facilitates electron transfer. Such enzyme systems are soluble in the mitochondrial matrix, cytosol and nucleus, or embedded in the inner mitochondrial membrane, but virtually absent from the cell secretory pathway. They are of ancient evolutionary origin supporting respiration, DNA replication, transcription, translation, the biosynthesis of steroids, heme, catabolism of purines, hydroxylation of xenobiotics, and cellular sulfur metabolism. Here, Fe-S cluster and Moco biosynthesis in Drosophila melanogaster is reviewed and the multiple biochemical and physiological functions of known Fe-S and Moco enzymes are described. We show that RNA interference of Mocs3 disrupts Moco biosynthesis and the circadian clock. Fe-S-dependent mitochondrial respiration is discussed in the context of germ line and somatic development, stem cell differentiation and aging. The subcellular compartmentalization of the Fe-S and Moco assembly machinery components and their connections to iron sensing mechanisms and intermediary metabolism are emphasized. A biochemically active Fe-S core complex of heterologously expressed fly Nfs1, Isd11, IscU, and human frataxin is presented. Based on the recent demonstration that copper displaces the Fe-S cluster of yeast and human ferredoxin, an explanation for why high dietary copper leads to cytoplasmic iron deficiency in flies is proposed. Another proposal that exosomes contribute to the transport of xanthine dehydrogenase from peripheral tissues to the eye pigment cells is put forward, where the Vps16a subunit of the HOPS complex may have a specialized role in concentrating this enzyme within pigment granules. Finally, we formulate a hypothesis that (i) mitochondrial superoxide mobilizes iron from the Fe-S clusters in aconitase and succinate dehydrogenase; (ii) increased iron transiently displaces manganese on superoxide dismutase, which may function as a mitochondrial iron sensor since it is inactivated by iron; (iii) with the Krebs cycle thus disrupted, citrate is exported to the cytosol for fatty acid synthesis, while succinyl-CoA and the iron are used for heme biosynthesis; (iv) as iron is used for heme biosynthesis its concentration in the matrix drops allowing for manganese to reactivate superoxide dismutase and Fe-S cluster biosynthesis to reestablish the Krebs cycle. PMID:29491838
Wang, Xiaoyu; Wang, Xianling; Hu, Qingnan; ...
2015-06-17
In Arabidopsis, anthocyanin biosynthesis is controlled by a MYB-bHLH-WD40 (MBW) transcriptional activator complex. The MBW complex activates the transcription of late biosynthesis genes in the flavonoid pathway, leading to the production of anthocyanins. A similar MBW complex regulates epidermal cell fate by activating the transcription of GLABRA2 (GL2), a homeodomain transcription factor required for trichome formation in shoots and non-hair cell formation in roots. Here we provide experimental evidence to show that GL2 also plays a role in regulating anthocyanin biosynthesis in Arabidopsis. From an activation-tagged mutagenized population of Arabidopsis plants, we isolated a dominant, gain-of-function mutant with reduced anthocyanins.more » Molecular cloning revealed that this phenotype is caused by an elevated expression of GL2, thus the mutant was named gl2-1D. Consistent with the view that GL2 acts as a negative regulator of anthocyanin biosynthesis, gl2-1D seedlings accumulated less whereas gl2-3 seedlings accumulated more anthocyanins in response to sucrose. Gene expression analysis indicated that expression of late, but not early, biosynthesis genes in the flavonoid pathway was dramatically reduced in gl2-1D but elevated in gl2-3 mutants. Further analysis showed that expression of some MBW component genes involved in the regulation of late biosynthesis genes was reduced in gl2-1D but elevated in gl2-3 mutants, and chromatin immunoprecipitation results indicated that some MBW component genes are targets of GL2. We also showed that GL2 functions as a transcriptional repressor. Altogether, these results indicate that GL2 negatively regulates anthocyanin biosynthesis in Arabidopsis by directly repressing the expression of some MBW component genes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Xiaoyu; Wang, Xianling; Hu, Qingnan
In Arabidopsis, anthocyanin biosynthesis is controlled by a MYB-bHLH-WD40 (MBW) transcriptional activator complex. The MBW complex activates the transcription of late biosynthesis genes in the flavonoid pathway, leading to the production of anthocyanins. A similar MBW complex regulates epidermal cell fate by activating the transcription of GLABRA2 (GL2), a homeodomain transcription factor required for trichome formation in shoots and non-hair cell formation in roots. Here we provide experimental evidence to show that GL2 also plays a role in regulating anthocyanin biosynthesis in Arabidopsis. From an activation-tagged mutagenized population of Arabidopsis plants, we isolated a dominant, gain-of-function mutant with reduced anthocyanins.more » Molecular cloning revealed that this phenotype is caused by an elevated expression of GL2, thus the mutant was named gl2-1D. Consistent with the view that GL2 acts as a negative regulator of anthocyanin biosynthesis, gl2-1D seedlings accumulated less whereas gl2-3 seedlings accumulated more anthocyanins in response to sucrose. Gene expression analysis indicated that expression of late, but not early, biosynthesis genes in the flavonoid pathway was dramatically reduced in gl2-1D but elevated in gl2-3 mutants. Further analysis showed that expression of some MBW component genes involved in the regulation of late biosynthesis genes was reduced in gl2-1D but elevated in gl2-3 mutants, and chromatin immunoprecipitation results indicated that some MBW component genes are targets of GL2. We also showed that GL2 functions as a transcriptional repressor. Altogether, these results indicate that GL2 negatively regulates anthocyanin biosynthesis in Arabidopsis by directly repressing the expression of some MBW component genes.« less
Sleator, Roy D.; Gahan, Cormac G. M.; Hill, Colin
2001-01-01
Intracellular accumulation of the amino acid proline has previously been linked to the salt tolerance and virulence potential of a number of bacteria. Taking advantage of the proBA mutant Escherichia coli CSH26, we identified a listerial proBA operon coding for enzymes functionally similar to the glutamyl kinase (GK) and glutamylphosphate reductase (GPR) enzyme complex which catalyzes the first and second steps of proline biosynthesis in E. coli. The first gene of the operon, proB, is predicted to encode GK, a 276-residue protein with a calculated molecular mass of 30.03 kDa and pl of 5.2. Distal to the promoter and overlapping the 3′ end of proB by 17 bp is proA, which encodes GPR, a 415-residue protein with a calculated molecular mass of 45.50 kDa (pl 5.3). Using this information, we created a chromosomal deletion mutant by allelic exchange which is auxotrophic for proline. This mutant was used to assess the contribution of proline anabolism to osmotolerance and virulence. While inactivation of proBA had no significant effect on virulence in mouse assays (either perorally or intraperitoneally), growth at low (2 to 4% NaCl) and high (>6% NaCl) salt concentrations in complex media was significantly reduced in the absence of efficient proline synthesis. We conclude that while proline biosynthesis plays little, if any, role in the intracellular life cycle and infectious nature of Listeria monocytogenes, it can play an important role in survival in osmolyte-depleted environments of elevated osmolarity. PMID:11375165
Mechanism of pyranopterin ring formation in molybdenum cofactor biosynthesis
Hover, Bradley M.; Tonthat, Nam K.; Schumacher, Maria A.; ...
2015-05-04
The molybdenum cofactor (Moco) is essential for all kingdoms of life, plays central roles in various biological processes, and must be biosynthesized de novo. During Moco biosynthesis, the characteristic pyranopterin ring is constructed by a complex rearrangement of guanosine 5'-triphosphate (GTP) into cyclic pyranopterin (cPMP) through the action of two enzymes, MoaA and MoaC (molybdenum cofactor biosynthesis protein A and C, respectively). Conventionally, MoaA was considered to catalyze the majority of this transformation, with MoaC playing little or no role in the pyranopterin formation. Recently, this view was challenged by the isolation of 3',8-cyclo-7,8-dihydro-guanosine 5'-triphosphate (3',8-cH 2GTP) as the productmore » of in vitro MoaA reactions. To elucidate the mechanism of formation of Moco pyranopterin backbone, in this paper we performed biochemical characterization of 3',8-cH 2GTP and functional and X-ray crystallographic characterizations of MoaC. These studies revealed that 3',8-cH 2GTP is the only product of MoaA that can be converted to cPMP by MoaC. Our structural studies captured the specific binding of 3',8-cH 2GTP in the active site of MoaC. These observations provided strong evidence that the physiological function of MoaA is the conversion of GTP to 3',8-cH 2GTP (GTP 3',8-cyclase), and that of MoaC is to catalyze the rearrangement of 3',8-cH 2GTP into cPMP (cPMP synthase). Furthermore, our structure-guided studies suggest that MoaC catalysis involves the dynamic motions of enzyme active-site loops as a way to control the timing of interaction between the reaction intermediates and catalytically essential amino acid residues. In conclusion, these results reveal the previously unidentified mechanism behind Moco biosynthesis and provide mechanistic and structural insights into how enzymes catalyze complex rearrangement reactions.« less
Palaniappan, C; Taber, H; Meganathan, R
1994-01-01
The biosynthesis of o-succinylbenzoic acid (OSB), the first aromatic intermediate involved in the biosynthesis of menaquinone (vitamin K2) is demonstrated for the first time in the gram-positive bacterium Bacillus subtilis. Cell extracts were found to contain isochorismate synthase, 2-succinyl-6-hydroxy-2,4-cyclohexadiene-1-carboxylic acid (SHCHC) synthase-alpha-ketoglutarate decarboxylase and o-succinylbenzoic acid synthase activities. An odhA mutant which lacks the decarboxylase component (usually termed E1, EC 1.2.4.2, oxoglutarate dehydrogenase [lipoamide]) of the alpha-ketoglutarate dehydrogenase complex was found to synthesize SHCHC and form succinic semialdehyde-thiamine pyrophosphate. Thus, the presence of an alternate alpha-ketoglutarate decarboxylase activity specifically involved in menaquinone biosynthesis is established for B. subtilis. A number of OSB-requiring mutants were also assayed for the presence of the various enzymes involved in the biosynthesis of OSB. All mutants were found to lack only the SHCHC synthase activity. PMID:8169214
Spitzer-Rimon, Ben; Marhevka, Elena; Barkai, Oren; Marton, Ira; Edelbaum, Orit; Masci, Tania; Prathapani, Naveen-Kumar; Shklarman, Elena; Ovadis, Marianna; Vainstein, Alexander
2010-01-01
Floral scent, which is determined by a complex mixture of low molecular weight volatile molecules, plays a major role in the plant's life cycle. Phenylpropanoid volatiles are the main determinants of floral scent in petunia (Petunia hybrida). A screen using virus-induced gene silencing for regulators of scent production in petunia flowers yielded a novel R2R3-MYB–like regulatory factor of phenylpropanoid volatile biosynthesis, EMISSION OF BENZENOIDS II (EOBII). This factor was localized to the nucleus and its expression was found to be flower specific and temporally and spatially associated with scent production/emission. Suppression of EOBII expression led to significant reduction in the levels of volatiles accumulating in and emitted by flowers, such as benzaldehyde, phenylethyl alcohol, benzylbenzoate, and isoeugenol. Up/downregulation of EOBII affected transcript levels of several biosynthetic floral scent-related genes encoding enzymes from the phenylpropanoid pathway that are directly involved in the production of these volatiles and enzymes from the shikimate pathway that determine substrate availability. Due to its coordinated wide-ranging effect on the production of floral volatiles, and its lack of effect on anthocyanin production, a central regulatory role is proposed for EOBII in the biosynthesis of phenylpropanoid volatiles. PMID:20543029
Conservation of Bio synthetic pheromone pathways in honeybees Apis
NASA Astrophysics Data System (ADS)
Martin, Stephen J.; Jones, Graeme R.
Social insects use complex chemical communication systems to govern many aspects of their life. We studied chemical changes in Dufour's gland secretions associated with ovary development in several genotypes of honeybees. We found that C28-C38 esters were associated only with cavity nesting honeybee queens, while the alcohol eicosenol was associated only with their non-laying workers. In contrast, both egg-laying anarchistic workers and all parasitic Cape workers from queenright colonies showed the typical queen pattern (i.e. esters present and eicosenol absent), while egg-laying wild-type and anarchistic workers in queenless colonies showed an intermediate pattern, producing both esters and eicosenol but at intermediate levels. Furthermore, neither esters nor eicosenol were found in aerial nesting honeybee species. Both esters and eicosenol are biosynthetically similar compounds since both are recognizable products of fatty acid biosynthesis. Therefore, we propose that in honeybees the biosynthesis of esters and eicosenol in the Dufour's gland is caste-regulated and this pathway has been conserved over evolutionary time.
Wang, Peng; Grimm, Bernhard
2015-12-01
Oxygenic photosynthesis requires chlorophyll (Chl) for the absorption of light energy, and charge separation in the reaction center of photosystem I and II, to feed electrons into the photosynthetic electron transfer chain. Chl is bound to different Chl-binding proteins assembled in the core complexes of the two photosystems and their peripheral light-harvesting antenna complexes. The structure of the photosynthetic protein complexes has been elucidated, but mechanisms of their biogenesis are in most instances unknown. These processes involve not only the assembly of interacting proteins, but also the functional integration of pigments and other cofactors. As a precondition for the association of Chl with the Chl-binding proteins in both photosystems, the synthesis of the apoproteins is synchronized with Chl biosynthesis. This review aims to summarize the present knowledge on the posttranslational organization of Chl biosynthesis and current attempts to envision the proceedings of the successive synthesis and integration of Chl into Chl-binding proteins in the thylakoid membrane. Potential auxiliary factors, contributing to the control and organization of Chl biosynthesis and the association of Chl with the Chl-binding proteins during their integration into photosynthetic complexes, are discussed in this review.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bashline, Logan; Li, Shundai; Zhu, Xiaoyu
Here, cellulose biosynthesis is performed exclusively by plasma membrane-localized cellulose synthases (CESAs). Therefore, the trafficking of CESAs to and from the plasma membrane is an important mechanism for regulating cellulose biosynthesis. CESAs were recently identified as cargo proteins of the classic adaptor protein 2 (AP2) complex of the clathrin-mediated endocytosis (CME) pathway. The AP2 complex of the CME pathway is conserved in yeast, animals, and plants, and has been well-characterized in many systems. In contrast, the recently discovered TPLATE complex (TPC), which is proposed to function as a CME adaptor complex, is only conserved in plants and a few othermore » eukaryotes. In this study, we discovered that the TWD40-2 protein, a putative member of the TPC, is also important for the endocytosis of CESAs. Genetic analysis between TWD40-2 and AP2M of the AP2 complex revealed that the roles of TWD40-2 in CME are both distinct from and cooperative with the AP2 complex. Loss of efficient CME in twd40-2-3 resulted in the unregulated overaccumulation of CESAs at the plasma membrane. In seedlings of twd40-2-3 and other CME-deficient mutants, a direct correlation was revealed between endocytic deficiency and cellulose content deficiency, highlighting the importance of controlled CESA endocytosis in regulating cellulose biosynthesis.« less
Bashline, Logan; Li, Shundai; Zhu, Xiaoyu; ...
2015-09-28
Here, cellulose biosynthesis is performed exclusively by plasma membrane-localized cellulose synthases (CESAs). Therefore, the trafficking of CESAs to and from the plasma membrane is an important mechanism for regulating cellulose biosynthesis. CESAs were recently identified as cargo proteins of the classic adaptor protein 2 (AP2) complex of the clathrin-mediated endocytosis (CME) pathway. The AP2 complex of the CME pathway is conserved in yeast, animals, and plants, and has been well-characterized in many systems. In contrast, the recently discovered TPLATE complex (TPC), which is proposed to function as a CME adaptor complex, is only conserved in plants and a few othermore » eukaryotes. In this study, we discovered that the TWD40-2 protein, a putative member of the TPC, is also important for the endocytosis of CESAs. Genetic analysis between TWD40-2 and AP2M of the AP2 complex revealed that the roles of TWD40-2 in CME are both distinct from and cooperative with the AP2 complex. Loss of efficient CME in twd40-2-3 resulted in the unregulated overaccumulation of CESAs at the plasma membrane. In seedlings of twd40-2-3 and other CME-deficient mutants, a direct correlation was revealed between endocytic deficiency and cellulose content deficiency, highlighting the importance of controlled CESA endocytosis in regulating cellulose biosynthesis.« less
The Regulation of Coenzyme Q Biosynthesis in Eukaryotic Cells: All That Yeast Can Tell Us
González-Mariscal, Isabel; García-Testón, Elena; Padilla, Sergio; Martín-Montalvo, Alejandro; Pomares Viciana, Teresa; Vazquez-Fonseca, Luis; Gandolfo Domínguez, Pablo; Santos-Ocaña, Carlos
2014-01-01
Coenzyme Q (CoQ) is a mitochondrial lipid, which functions mainly as an electron carrier from complex I or II to complex III at the mitochondrial inner membrane, and also as antioxidant in cell membranes. CoQ is needed as electron acceptor in β-oxidation of fatty acids and pyridine nucleotide biosynthesis, and it is responsible for opening the mitochondrial permeability transition pore. The yeast model has been very useful to analyze the synthesis of CoQ, and therefore, most of the knowledge about its regulation was obtained from the Saccharomyces cerevisiae model. CoQ biosynthesis is regulated to support 2 processes: the bioenergetic metabolism and the antioxidant defense. Alterations of the carbon source in yeast, or in nutrient availability in yeasts or mammalian cells, upregulate genes encoding proteins involved in CoQ synthesis. Oxidative stress, generated by chemical or physical agents or by serum deprivation, modifies specifically the expression of some COQ genes by means of stress transcription factors such as Msn2/4p, Yap1p or Hsf1p. In general, the induction of COQ gene expression produced by metabolic changes or stress is modulated downstream by other regulatory mechanisms such as the protein import to mitochondria, the assembly of a multi-enzymatic complex composed by Coq proteins and also the existence of a phosphorylation cycle that regulates the last steps of CoQ biosynthesis. The CoQ biosynthetic complex assembly starts with the production of a nucleating lipid such as HHB by the action of the Coq2 protein. Then, the Coq4 protein recognizes the precursor HHB acting as the nucleus of the complex. The activity of Coq8p, probably as kinase, allows the formation of an initial pre-complex containing all Coq proteins with the exception of Coq7p. This pre-complex leads to the synthesis of 5-demethoxy-Q6 (DMQ6), the Coq7p substrate. When de novo CoQ biosynthesis is required, Coq7p becomes dephosphorylated by the action of Ptc7p increasing the synthesis rate of CoQ6. This critical model is needed for a better understanding of CoQ biosynthesis. Taking into account that patients with CoQ10 deficiency maintain to some extent the machinery to synthesize CoQ, new promising strategies for the treatment of CoQ10 deficiency will require a better understanding of the regulation of CoQ biosynthesis in the future. PMID:25126044
Yeap, Wan-Chin; Lee, Fong-Chin; Shabari Shan, Dilip Kumar; Musa, Hamidah; Appleton, David Ross; Kulaveerasingam, Harikrishna
2017-07-01
The oil biosynthesis pathway must be tightly controlled to maximize oil yield. Oil palm accumulates exceptionally high oil content in its mesocarp, suggesting the existence of a unique fruit-specific fatty acid metabolism transcriptional network. We report the complex fruit-specific network of transcription factors responsible for modulation of oil biosynthesis genes in oil palm mesocarp. Transcriptional activation of EgWRI1-1 encoding a key master regulator that activates expression of oil biosynthesis genes, is activated by three ABA-responsive transcription factors, EgNF-YA3, EgNF-YC2 and EgABI5. Overexpression of EgWRI1-1 and its activators in Arabidopsis accelerated flowering, increased seed size and oil content, and altered expression levels of oil biosynthesis genes. Protein-protein interaction experiments demonstrated that EgNF-YA3 interacts directly with EgWRI1-1, forming a transcription complex with EgNF-YC2 and EgABI5 to modulate transcription of oil biosynthesis pathway genes. Furthermore, EgABI5 acts downstream of EgWRKY40, a repressor that interacts with EgWRKY2 to inhibit the transcription of oil biosynthesis genes. We showed that expression of these activators and repressors in oil biosynthesis can be induced by phytohormones coordinating fruit development in oil palm. We propose a model highlighting a hormone signaling network coordinating fruit development and fatty acid biosynthesis. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.
Revealing Nature’s Synthetic Potential Through the Study of Ribosomal Natural Product Biosynthesis
Dunbar, Kyle L.; Mitchell, Douglas A.
2013-01-01
Ribosomally synthesized posttranslationally modified peptides (RiPPs) are a rapidly growing class of natural products with diverse structures and activities. In recent years, a great deal of progress has been made in elucidating the biosynthesis of various RiPP family members. As with the study of nonribosomal peptide and polyketide biosynthetic enzymes, these investigations have led to the discovery of entirely new biological chemistry. With each unique enzyme investigated, a more complex picture of Nature’s synthetic potential is revealed. This review focuses on recent reports (since 2008) that have changed the way that we think about ribosomal natural product biosynthesis and the enzymology of complex bond-forming reactions. PMID:23286465
Sadhukhan, Jhuma; Joshi, Nimisha; Shemfe, Mobolaji; Lloyd, Jonathan R
2017-09-01
Magnetite nanoparticles (MNPs) have several applications, including use in medical diagnostics, renewable energy production and waste remediation. However, the processes for MNP production from analytical-grade materials are resource intensive and can be environmentally damaging. This work for the first time examines the life cycle assessment (LCA) of four MNP production cases: (i) industrial MNP production system; (ii) a state-of-the-art MNP biosynthesis system; (iii) an optimal MNP biosynthesis system and (iv) an MNP biosynthesis system using raw materials sourced from wastewaters, in order to recommend a sustainable raw material acquisition pathway for MNP synthesis. The industrial production system was used as a benchmark to compare the LCA performances of the bio-based systems (cases ii-iv). A combination of appropriate life cycle impact assessment methods was employed to analyse environmental costs and benefits of the systems comprehensively. The LCA results revealed that the state-of-the-art MNP biosynthesis system, which utilises analytical grade ferric chloride and sodium hydroxide as raw materials, generated environmental costs rather than benefits compared to the industrial MNP production system. Nevertheless, decreases in environmental impacts by six-fold were achieved by reducing sodium hydroxide input from 11.28 to 1.55 in a mass ratio to MNPs and replacing ferric chloride with ferric sulphate (3.02 and 2.59, respectively, in a mass ratio to MNPs) in the optimal biosynthesis system. Thus, the potential adverse environmental impacts of MNP production via the biosynthesis system can be reduced by minimising sodium hydroxide and substituting ferric sulphate for ferric chloride. Moreover, considerable environmental benefits were exhibited in case (iv), where Fe(III) ions were sourced from metal-containing wastewaters and reduced to MNPs by electrons harvested from organic substrates. It was revealed that 14.4 kJ and 3.9 kJ of primary fossil resource savings could be achieved per g MNP and associated electricity recoveries from wastewaters, respectively. The significant environmental benefits exhibited by the wastewater-fed MNP biosynthesis system shows promise for the sustainable production of MNPs. Copyright © 2017 Elsevier Ltd. All rights reserved.
Sun, Liang; Sun, Yufei; Zhang, Mei; Wang, Ling; Ren, Jie; Cui, Mengmeng; Wang, Yanping; Ji, Kai; Li, Ping; Li, Qian; Chen, Pei; Dai, Shengjie; Duan, Chaorui; Wu, Yan; Leng, Ping
2012-01-01
Cell wall catabolism during fruit ripening is under complex control and is key for fruit quality and shelf life. To examine the role of abscisic acid (ABA) in tomato (Solanum lycopersicum) fruit ripening, we suppressed SlNCED1, which encodes 9-cis-epoxycarotenoid dioxygenase (NCED), a key enzyme in the biosynthesis of ABA. To suppress SlNCED1 specifically in tomato fruits, and thus avoid the pleiotropic phenotypes associated with ABA deficiency, we used an RNA interference construct driven by the fruit-specific E8 promoter. ABA accumulation and SlNCED1 transcript levels in the transgenic fruit were down-regulated to between 20% and 50% of the levels measured in the control fruit. This significant reduction in NCED activity led to a down-regulation in the transcription of genes encoding major cell wall catabolic enzymes, specifically polygalacturonase (SlPG), pectin methyl esterase (SlPME), β-galactosidase precursor mRNA (SlTBG), xyloglucan endotransglycosylase (SlXET), endo-1,4-β-cellulose (SlCels), and expansin (SlExp). This resulted in an increased accumulation of pectin during ripening. In turn, this led to a significant extension of the shelf life to 15 to 29 d compared with a shelf life of only 7 d for the control fruit and an enhancement of fruit firmness at the mature stage by 30% to 45%. In conclusion, ABA affects cell wall catabolism during tomato fruit ripening via down-regulation of the expression of major catabolic genes (SlPG, SlPME, SlTBG, SlXET, SlCels, and SlExp).
Pinske, Constanze; Jaroschinsky, Monique; Sawers, R Gary
2013-06-01
The membrane-associated formate hydrogenlyase (FHL) complex of bacteria like Escherichia coli is responsible for the disproportionation of formic acid into the gaseous products carbon dioxide and dihydrogen. It comprises minimally seven proteins including FdhF and HycE, the catalytic subunits of formate dehydrogenase H and hydrogenase 3, respectively. Four proteins of the FHL complex have iron-sulphur cluster ([Fe-S]) cofactors. Biosynthesis of [Fe-S] is principally catalysed by the Isc or Suf systems and each comprises proteins for assembly and for delivery of [Fe-S]. This study demonstrates that the Isc system is essential for biosynthesis of an active FHL complex. In the absence of the IscU assembly protein no hydrogen production or activity of FHL subcomponents was detected. A deletion of the iscU gene also resulted in reduced intracellular formate levels partially due to impaired synthesis of pyruvate formate-lyase, which is dependent on the [Fe-S]-containing regulator FNR. This caused reduced expression of the formate-inducible fdhF gene. The A-type carrier (ATC) proteins IscA and ErpA probably deliver [Fe-S] to specific apoprotein components of the FHL complex because mutants lacking either protein exhibited strongly reduced hydrogen production. Neither ATC protein could compensate for the lack of the other, suggesting that they had independent roles in [Fe-S] delivery to complex components. Together, the data indicate that the Isc system modulates FHL complex biosynthesis directly by provision of [Fe-S] as well as indirectly by influencing gene expression through the delivery of [Fe-S] to key regulators and enzymes that ultimately control the generation and oxidation of formate.
Wong, Fong T; Hotta, Kinya; Chen, Xi; Fang, Minyi; Watanabe, Kenji; Kim, Chu-Young
2015-01-14
Biosynthesis of some polyether natural products involves a kinetically disfavored epoxide-opening cyclic ether formation, a reaction termed anti-Baldwin cyclization. One such example is the biosynthesis of lasalocid A, an ionophore antibiotic polyether. During lasalocid A biosynthesis, an epoxide hydrolase, Lsd19, converts the bisepoxy polyketide intermediate into the tetrahydrofuranyl-tetrahydropyran product. We report the crystal structure of Lsd19 in complex with lasalocid A. The structure unambiguously shows that the C-terminal domain of Lsd19 catalyzes the intriguing anti-Baldwin cyclization. We propose a general mechanism for epoxide selection by ionophore polyether epoxide hydrolases.
The lipid biosynthesis hole in the rickettsiales
USDA-ARS?s Scientific Manuscript database
Using a complementation assay in E. coli, we have shown that the propionyl-CoA carboxylase complex (PCC) from Wolbachia pipientis wMel, order Rickettsiales, provides for lipid biosynthesis through malonyl-CoA production. Normally, the prototypical prokaryote fatty acid synthesis (FASII) initiation ...
Hüttel, Wolfgang; Spencer, Jonathan B; Leadlay, Peter F
2014-01-01
Polyether antibiotics such as monensin are biosynthesised via a cascade of directed ring expansions operating on a putative polyepoxide precursor. The resulting structures containing fused cyclic ethers and a lipophilic backbone can form strong ionophoric complexes with certain metal cations. In this work, we demonstrate for monensin biosynthesis that, as well as ether formation, a late-stage hydroxylation step is crucial for the correct formation of the sodium monensin complex. We have investigated the last two steps in monensin biosynthesis, namely hydroxylation catalysed by the P450 monooxygenase MonD and O-methylation catalysed by the methyl-transferase MonE. The corresponding genes were deleted in-frame in a monensin-overproducing strain of Streptomyces cinnamonensis. The mutants produced the expected monensin derivatives in excellent yields (ΔmonD: 1.13 g L(-1) dehydroxymonensin; ΔmonE: 0.50 g L(-1) demethylmonensin; and double mutant ΔmonDΔmonE: 0.34 g L(-1) dehydroxydemethylmonensin). Single crystals were obtained from purified fractions of dehydroxymonensin and demethylmonensin. X-ray structure analysis revealed that the conformation of sodium dimethylmonensin is very similar to that of sodium monensin. In contrast, the coordination of the sodium ion is significantly different in the sodium dehydroxymonensin complex. This shows that the final constitution of the sodium monensin complex requires this tailoring step as well as polyether formation.
Cerebellar Ataxia and Coenzyme Q Deficiency through Loss of Unorthodox Kinase Activity.
Stefely, Jonathan A; Licitra, Floriana; Laredj, Leila; Reidenbach, Andrew G; Kemmerer, Zachary A; Grangeray, Anais; Jaeg-Ehret, Tiphaine; Minogue, Catherine E; Ulbrich, Arne; Hutchins, Paul D; Wilkerson, Emily M; Ruan, Zheng; Aydin, Deniz; Hebert, Alexander S; Guo, Xiao; Freiberger, Elyse C; Reutenauer, Laurence; Jochem, Adam; Chergova, Maya; Johnson, Isabel E; Lohman, Danielle C; Rush, Matthew J P; Kwiecien, Nicholas W; Singh, Pankaj K; Schlagowski, Anna I; Floyd, Brendan J; Forsman, Ulrika; Sindelar, Pavel J; Westphall, Michael S; Pierrel, Fabien; Zoll, Joffrey; Dal Peraro, Matteo; Kannan, Natarajan; Bingman, Craig A; Coon, Joshua J; Isope, Philippe; Puccio, Hélène; Pagliarini, David J
2016-08-18
The UbiB protein kinase-like (PKL) family is widespread, comprising one-quarter of microbial PKLs and five human homologs, yet its biochemical activities remain obscure. COQ8A (ADCK3) is a mammalian UbiB protein associated with ubiquinone (CoQ) biosynthesis and an ataxia (ARCA2) through unclear means. We show that mice lacking COQ8A develop a slowly progressive cerebellar ataxia linked to Purkinje cell dysfunction and mild exercise intolerance, recapitulating ARCA2. Interspecies biochemical analyses show that COQ8A and yeast Coq8p specifically stabilize a CoQ biosynthesis complex through unorthodox PKL functions. Although COQ8 was predicted to be a protein kinase, we demonstrate that it lacks canonical protein kinase activity in trans. Instead, COQ8 has ATPase activity and interacts with lipid CoQ intermediates, functions that are likely conserved across all domains of life. Collectively, our results lend insight into the molecular activities of the ancient UbiB family and elucidate the biochemical underpinnings of a human disease. Copyright © 2016 Elsevier Inc. All rights reserved.
Soe, Cho Zin; Telfer, Thomas J; Levina, Aviva; Lay, Peter A; Codd, Rachel
2016-09-01
Cultures of Shewanella putrefaciens grown in medium containing 10mM 1,4-diamino-2-butanone (DBO) as an inhibitor of ornithine decarboxylase and 10mM 1,5-diaminopentane (cadaverine) showed the simultaneous biosynthesis of the macrocyclic dihydroxamic acids: putrebactin (pbH 2 ), avaroferrin (avH 2 ) and bisucaberin (bsH 2 ). The level of DBO did not completely repress the production of endogenous 1,4-diaminobutane (putrescine) as the native diamine substrate of pbH 2 . The relative concentration of pbH 2 :avH 2 :bsH 2 was 1:2:1, which correlated with the substrate selection of putrescine:cadaverine in a ratio of 1:1. The macrocycles were characterised using LC-MS as free ligands and as 1:1 complexes with Fe(III) of the form [Fe(pb)] + , [Fe(av)] + or [Fe(bs)] + , with labile ancillary ligands in six-coordinate complexes displaced during ESI-MS acquisition; or with Mo(VI) of the form [Mo(O) 2 (pb)], [Mo(O) 2 (av)] or [Mo(O) 2 (bs)]. Chromium(V) complexes of the form [CrO(pb)] + were detected from solutions of Cr(VI) and pbH 2 in DMF using X-band EPR spectroscopy. Supplementation of S. putrefaciens medium with DBO and 1,3-diaminopropane, 1,6-diaminohexane or 1,4-diamino-2(Z)-butene (Z-DBE) resulted only in the biosynthesis of pbH 2 . The work has identified a native system for the simultaneous biosynthesis of a suite of three macrocyclic dihydroxamic acid siderophores and highlights both the utility of precursor-directed biosynthesis for expanding the structural diversity of siderophores, and the breadth of their coordination chemistry. Copyright © 2015 Elsevier Inc. All rights reserved.
McRose, Darcy; Guo, Jian; Monier, Adam; ...
2014-08-29
Here, vitamin B 1 (thiamine pyrophosphate, TPP) is essential to all life but scarce in ocean surface waters. In many bacteria and a few eukaryotic groups thiamine biosynthesis genes are controlled by metabolite-sensing mRNA-based gene regulators known as riboswitches. Using available genome sequences and transcriptomes generated from ecologically important marine phytoplankton, we identified 31 new eukaryotic riboswitches. These were found in alveolate, cryptophyte, haptophyte and rhizarian phytoplankton as well as taxa from two lineages previously known to have riboswitches (green algae and stramenopiles). The predicted secondary structures bear hallmarks of TPP-sensing riboswitches. Surprisingly, most of the identified riboswitches are affiliatedmore » with genes of unknown function, rather than characterized thiamine biosynthesis genes. Using qPCR and growth experiments involving two prasinophyte algae, we show that expression of these genes increases significantly under vitamin B 1-deplete conditions relative to controls. Pathway analyses show that several algae harboring the uncharacterized genes lack one or more enzymes in the known TPP biosynthesis pathway. We demonstrate that one such alga, the major primary producer Emiliania huxleyi, grows on 4-amino-5-hydroxymethyl-2-methylpyrimidine (a thiamine precursor moiety) alone, although long thought dependent on exogenous sources of thiamine. Thus, overall, we have identified riboswitches in major eukaryotic lineages not known to undergo this form of gene regulation. In these phytoplankton groups, riboswitches are often affiliated with widespread thiamine-responsive genes with as yet uncertain roles in TPP pathways. Further, taxa with ‘incomplete’ TPP biosynthesis pathways do not necessarily require exogenous vitamin B 1, making vitamin control of phytoplankton blooms more complex than the current paradigm suggests.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
McRose, Darcy; Guo, Jian; Monier, Adam
Here, vitamin B 1 (thiamine pyrophosphate, TPP) is essential to all life but scarce in ocean surface waters. In many bacteria and a few eukaryotic groups thiamine biosynthesis genes are controlled by metabolite-sensing mRNA-based gene regulators known as riboswitches. Using available genome sequences and transcriptomes generated from ecologically important marine phytoplankton, we identified 31 new eukaryotic riboswitches. These were found in alveolate, cryptophyte, haptophyte and rhizarian phytoplankton as well as taxa from two lineages previously known to have riboswitches (green algae and stramenopiles). The predicted secondary structures bear hallmarks of TPP-sensing riboswitches. Surprisingly, most of the identified riboswitches are affiliatedmore » with genes of unknown function, rather than characterized thiamine biosynthesis genes. Using qPCR and growth experiments involving two prasinophyte algae, we show that expression of these genes increases significantly under vitamin B 1-deplete conditions relative to controls. Pathway analyses show that several algae harboring the uncharacterized genes lack one or more enzymes in the known TPP biosynthesis pathway. We demonstrate that one such alga, the major primary producer Emiliania huxleyi, grows on 4-amino-5-hydroxymethyl-2-methylpyrimidine (a thiamine precursor moiety) alone, although long thought dependent on exogenous sources of thiamine. Thus, overall, we have identified riboswitches in major eukaryotic lineages not known to undergo this form of gene regulation. In these phytoplankton groups, riboswitches are often affiliated with widespread thiamine-responsive genes with as yet uncertain roles in TPP pathways. Further, taxa with ‘incomplete’ TPP biosynthesis pathways do not necessarily require exogenous vitamin B 1, making vitamin control of phytoplankton blooms more complex than the current paradigm suggests.« less
Fromm, Steffanie; Senkler, Jennifer; Eubel, Holger; Peterhänsel, Christoph; Braun, Hans-Peter
2016-01-01
The mitochondrial NADH dehydrogenase complex (complex I) is of particular importance for the respiratory chain in mitochondria. It is the major electron entry site for the mitochondrial electron transport chain (mETC) and therefore of great significance for mitochondrial ATP generation. We recently described an Arabidopsis thaliana double-mutant lacking the genes encoding the carbonic anhydrases CA1 and CA2, which both form part of a plant-specific ‘carbonic anhydrase domain’ of mitochondrial complex I. The mutant lacks complex I completely. Here we report extended analyses for systematically characterizing the proteome of the ca1ca2 mutant. Using various proteomic tools, we show that lack of complex I causes reorganization of the cellular respiration system. Reduced electron entry into the respiratory chain at the first segment of the mETC leads to induction of complexes II and IV as well as alternative oxidase. Increased electron entry at later segments of the mETC requires an increase in oxidation of organic substrates. This is reflected by higher abundance of proteins involved in glycolysis, the tricarboxylic acid cycle and branched-chain amino acid catabolism. Proteins involved in the light reaction of photosynthesis, the Calvin cycle, tetrapyrrole biosynthesis, and photorespiration are clearly reduced, contributing to the significant delay in growth and development of the double-mutant. Finally, enzymes involved in defense against reactive oxygen species and stress symptoms are much induced. These together with previously reported insights into the function of plant complex I, which were obtained by analysing other complex I mutants, are integrated in order to comprehensively describe ‘life without complex I’. PMID:27122571
Pavlikova, Magdalena; Kamenik, Zdenek; Janata, Jiri; Kadlcik, Stanislav; Kuzma, Marek; Najmanova, Lucie
2018-05-17
Natural pyrrolobenzodiazepines (PBDs) form a large and structurally diverse group of antitumour microbial metabolites produced through complex pathways, which are encoded within biosynthetic gene clusters. We sequenced the gene cluster of limazepines and proposed their biosynthetic pathway based on comparison with five available gene clusters for the biosynthesis of other PBDs. Furthermore, we tested two recombinant proteins from limazepine biosynthesis, Lim5 and Lim6, with the expected substrates in vitro. The reactions monitored by LC-MS revealed that limazepine biosynthesis involves a new way of 3-hydroxyanthranilic acid formation, which we refer to as the chorismate/DHHA pathway and which represents an alternative to the kynurenine pathway employed for the formation of the same precursor in the biosynthesis of other PBDs. The chorismate/DHHA pathway is presumably also involved in the biosynthesis of PBD tilivalline, several natural products unrelated to PBDs, and its part is shared also with phenazine biosynthesis. The similarities between limazepine and phenazine biosynthesis indicate tight evolutionary links between these groups of compounds.
Ashikhmin, Aleksandr; Makhneva, Zoya; Moskalenko, Andrey
2014-03-01
The effect of the inhibitor of carotenoid (Car) biosynthesis, diphenylamine (DPA), on the cells of the purple sulfur bacterium Ectothiorhodospira (Ect.) haloalkaliphila has been studied. There occurs an inhibition of the biosynthesis of colored Cars (≥99 %) at 71 μM DPA. Considering "empty" Car pockets (Moskalenko and Makhneva 2012) the content of Cars in the DPA-treated samples is first calculated more correctly. The total content of the colored Cars in the sample at 71 μM DPA does not exceed 1 % of the wild type. In the DPA-treated cells (membranes) a complete set of pigment-protein complexes is retained. The LH2 complex at 71 μM DPA is isolated, which is identical to the LH2 complex of the wild type in near IR absorption spectra. This suggests that the principles for assembling this LH2 complex in vivo in the absence of colored Cars remain the same. These results are in full agreement with the data obtained earlier for Allochromatium (Alc.) minutissimum (Moskalenko and Makhneva 2012). They are as follows: (1) DPA almost entirely inhibits the biosynthesis of the colored Cars in Ect. haloalkaliphila cells. (2) In the DPA-treated samples non-colored Cars are detected at 53.25 μM DPA (as traces) and at 71 μM DPA. (3) DPA may affect both phytoene synthase (at ≤71 μM DPA) and phytoene desaturase (at ≥53.25 μM DPA). (4) The assembly of LH2 complex does occur without any colored Cars.
Chen, Hsi-Chuan; Li, Quanzi; Shuford, Christopher M.; Liu, Jie; Muddiman, David C.; Sederoff, Ronald R.; Chiang, Vincent L.
2011-01-01
The hydroxylation of 4- and 3-ring carbons of cinnamic acid derivatives during monolignol biosynthesis are key steps that determine the structure and properties of lignin. Individual enzymes have been thought to catalyze these reactions. In stem differentiating xylem (SDX) of Populus trichocarpa, two cinnamic acid 4-hydroxylases (PtrC4H1 and PtrC4H2) and a p-coumaroyl ester 3-hydroxylase (PtrC3H3) are the enzymes involved in these reactions. Here we present evidence that these hydroxylases interact, forming heterodimeric (PtrC4H1/C4H2, PtrC4H1/C3H3, and PtrC4H2/C3H3) and heterotrimeric (PtrC4H1/C4H2/C3H3) membrane protein complexes. Enzyme kinetics using yeast recombinant proteins demonstrated that the enzymatic efficiency (Vmax/km) for any of the complexes is 70–6,500 times greater than that of the individual proteins. The highest increase in efficiency was found for the PtrC4H1/C4H2/C3H3-mediated p-coumaroyl ester 3-hydroxylation. Affinity purification-quantitative mass spectrometry, bimolecular fluorescence complementation, chemical cross-linking, and reciprocal coimmunoprecipitation provide further evidence for these multiprotein complexes. The activities of the recombinant and SDX plant proteins demonstrate two protein-complex–mediated 3-hydroxylation paths in monolignol biosynthesis in P. trichocarpa SDX; one converts p-coumaric acid to caffeic acid and the other converts p-coumaroyl shikimic acid to caffeoyl shikimic acid. Cinnamic acid 4-hydroxylation is also mediated by the same protein complexes. These results provide direct evidence for functional involvement of membrane protein complexes in monolignol biosynthesis. PMID:22160716
Brown, R M; Montezinos, D
1976-01-01
Cellulose microfibril biosynthesis, assembly, and orientation in the unicellular green alga, Oocystis, is visualized in association with a linear enzyme complex embedded in the B face of the plasma membrane. Granule bands of the A face and complementary ridges of the B face are postulated to assist in the orientation of recently synthesized microfibrils. A model for microfibril synthesis and orientation is proposed and correlated with current hypotheses regarding cellulose biosynthesis in higher plants.
Synthesis of the sulfur amino acids: cysteine and methionine.
Wirtz, Markus; Droux, Michel
2005-12-01
This review will assess new features reported for the molecular and biochemical aspects of cysteine and methionine biosynthesis in Arabidopsis thaliana with regards to early published data from other taxa including crop plants and bacteria (Escherichia coli as a model). By contrast to bacteria and fungi, plant cells present a complex organization, in which the sulfur network takes place in multiple sites. Particularly, the impact of sulfur amino-acid biosynthesis compartmentalization will be addressed in respect to localization of sulfur reduction. To this end, the review will focus on regulation of sulfate reduction by synthesis of cysteine through the cysteine synthase complex and the synthesis of methionine and its derivatives. Finally, regulatory aspects of sulfur amino-acid biosynthesis will be explored with regards to interlacing processes such as photosynthesis, carbon and nitrogen assimilation.
Engineering microorganisms for improving polyhydroxyalkanoate biosynthesis.
Chen, Guo-Qiang; Jiang, Xiao-Ran
2017-11-20
Biosynthesis of polyhydroxyalkanoates (PHA) has been studied since the 1920s. The biosynthesis pathways have been well understood and various attempts have been made to improve the PHA biosynthesis efficiency. Recent progresses have been focused on systematic improvements on PHA biosynthesis including changing growth pattern for rapid proliferation, engineering to enlarge cell sizes for more PHA accumulation space, reprogramming the PHA synthesis pathways using optimized RBS and promoter, redirecting metabolic flux to PHA synthesis using CRISPR/Cas9 tools, and very importantly, the employment of non-traditional host such as halophiles for reduced complexity on PHA production. All of the efforts should lead to ultrahigh PHA accumulation, controllable PHA compositions and molecular weights, open and continuous PHA production with gravity separation processes, resulting in competitive PHA production cost. Copyright © 2017 Elsevier Ltd. All rights reserved.
Spencer, Jonathan B; Leadlay, Peter F
2014-01-01
Summary Polyether antibiotics such as monensin are biosynthesised via a cascade of directed ring expansions operating on a putative polyepoxide precursor. The resulting structures containing fused cyclic ethers and a lipophilic backbone can form strong ionophoric complexes with certain metal cations. In this work, we demonstrate for monensin biosynthesis that, as well as ether formation, a late-stage hydroxylation step is crucial for the correct formation of the sodium monensin complex. We have investigated the last two steps in monensin biosynthesis, namely hydroxylation catalysed by the P450 monooxygenase MonD and O-methylation catalysed by the methyl-transferase MonE. The corresponding genes were deleted in-frame in a monensin-overproducing strain of Streptomyces cinnamonensis. The mutants produced the expected monensin derivatives in excellent yields (ΔmonD: 1.13 g L−1 dehydroxymonensin; ΔmonE: 0.50 g L−1 demethylmonensin; and double mutant ΔmonDΔmonE: 0.34 g L−1 dehydroxydemethylmonensin). Single crystals were obtained from purified fractions of dehydroxymonensin and demethylmonensin. X-ray structure analysis revealed that the conformation of sodium dimethylmonensin is very similar to that of sodium monensin. In contrast, the coordination of the sodium ion is significantly different in the sodium dehydroxymonensin complex. This shows that the final constitution of the sodium monensin complex requires this tailoring step as well as polyether formation. PMID:24605157
Sun, Liang; Sun, Yufei; Zhang, Mei; Wang, Ling; Ren, Jie; Cui, Mengmeng; Wang, Yanping; Ji, Kai; Li, Ping; Li, Qian; Chen, Pei; Dai, Shengjie; Duan, Chaorui; Wu, Yan; Leng, Ping
2012-01-01
Cell wall catabolism during fruit ripening is under complex control and is key for fruit quality and shelf life. To examine the role of abscisic acid (ABA) in tomato (Solanum lycopersicum) fruit ripening, we suppressed SlNCED1, which encodes 9-cis-epoxycarotenoid dioxygenase (NCED), a key enzyme in the biosynthesis of ABA. To suppress SlNCED1 specifically in tomato fruits, and thus avoid the pleiotropic phenotypes associated with ABA deficiency, we used an RNA interference construct driven by the fruit-specific E8 promoter. ABA accumulation and SlNCED1 transcript levels in the transgenic fruit were down-regulated to between 20% and 50% of the levels measured in the control fruit. This significant reduction in NCED activity led to a down-regulation in the transcription of genes encoding major cell wall catabolic enzymes, specifically polygalacturonase (SlPG), pectin methyl esterase (SlPME), β-galactosidase precursor mRNA (SlTBG), xyloglucan endotransglycosylase (SlXET), endo-1,4-β-cellulose (SlCels), and expansin (SlExp). This resulted in an increased accumulation of pectin during ripening. In turn, this led to a significant extension of the shelf life to 15 to 29 d compared with a shelf life of only 7 d for the control fruit and an enhancement of fruit firmness at the mature stage by 30% to 45%. In conclusion, ABA affects cell wall catabolism during tomato fruit ripening via down-regulation of the expression of major catabolic genes (SlPG, SlPME, SlTBG, SlXET, SlCels, and SlExp). PMID:22108525
The Metabolic World: Sugars as an Energized Carbon Substrate for Prebiotic and Biotic Synthesis
NASA Technical Reports Server (NTRS)
Weber, Arthur L.
1996-01-01
To understand the origin of metabolism and biopolymer synthesis we investigated the energy sources that drive anabolic metabolism. We found that biosynthesis of amino acids and lipids from sugars is driven bz the free energy of redox disproportionation of carbon (see discussion or next page). The indispensable role of sugar disproportionation in the biosynthesis of amino acids and lipids suggests that the origin of life uses the same chemical engine, and was therefore based on nonenzymatic redox disproportionation reactions of sugars that occurred in the presence o ammonia and hydrogen sulfide. The chemistry of this 'metabolic' model of the origin of life is described.
Storbeck, Sonja; Rolfes, Sarah; Raux-Deery, Evelyne; Warren, Martin J; Jahn, Dieter; Layer, Gunhild
2010-12-13
Heme is an essential prosthetic group for many proteins involved in fundamental biological processes in all three domains of life. In Eukaryota and Bacteria heme is formed via a conserved and well-studied biosynthetic pathway. Surprisingly, in Archaea heme biosynthesis proceeds via an alternative route which is poorly understood. In order to formulate a working hypothesis for this novel pathway, we searched 59 completely sequenced archaeal genomes for the presence of gene clusters consisting of established heme biosynthetic genes and colocalized conserved candidate genes. Within the majority of archaeal genomes it was possible to identify such heme biosynthesis gene clusters. From this analysis we have been able to identify several novel heme biosynthesis genes that are restricted to archaea. Intriguingly, several of the encoded proteins display similarity to enzymes involved in heme d(1) biosynthesis. To initiate an experimental verification of our proposals two Methanosarcina barkeri proteins predicted to catalyze the initial steps of archaeal heme biosynthesis were recombinantly produced, purified, and their predicted enzymatic functions verified.
Storbeck, Sonja; Rolfes, Sarah; Raux-Deery, Evelyne; Warren, Martin J.; Jahn, Dieter; Layer, Gunhild
2010-01-01
Heme is an essential prosthetic group for many proteins involved in fundamental biological processes in all three domains of life. In Eukaryota and Bacteria heme is formed via a conserved and well-studied biosynthetic pathway. Surprisingly, in Archaea heme biosynthesis proceeds via an alternative route which is poorly understood. In order to formulate a working hypothesis for this novel pathway, we searched 59 completely sequenced archaeal genomes for the presence of gene clusters consisting of established heme biosynthetic genes and colocalized conserved candidate genes. Within the majority of archaeal genomes it was possible to identify such heme biosynthesis gene clusters. From this analysis we have been able to identify several novel heme biosynthesis genes that are restricted to archaea. Intriguingly, several of the encoded proteins display similarity to enzymes involved in heme d 1 biosynthesis. To initiate an experimental verification of our proposals two Methanosarcina barkeri proteins predicted to catalyze the initial steps of archaeal heme biosynthesis were recombinantly produced, purified, and their predicted enzymatic functions verified. PMID:21197080
Ant Trail Pheromone Biosynthesis Is Triggered by a Neuropeptide Hormone
Choi, Man-Yeon; Vander Meer, Robert K.
2012-01-01
Our understanding of insect chemical communication including pheromone identification, synthesis, and their role in behavior has advanced tremendously over the last half-century. However, endocrine regulation of pheromone biosynthesis has progressed slowly due to the complexity of direct and/or indirect hormonal activation of the biosynthetic cascades resulting in insect pheromones. Over 20 years ago, a neurohormone, pheromone biosynthesis activating neuropeptide (PBAN) was identified that stimulated sex pheromone biosynthesis in a lepidopteran moth. Since then, the physiological role, target site, and signal transduction of PBAN has become well understood for sex pheromone biosynthesis in moths. Despite that PBAN-like peptides (∼200) have been identified from various insect Orders, their role in pheromone regulation had not expanded to the other insect groups except for Lepidoptera. Here, we report that trail pheromone biosynthesis in the Dufour's gland (DG) of the fire ant, Solenopsis invicta, is regulated by PBAN. RNAi knock down of PBAN gene (in subesophageal ganglia) or PBAN receptor gene (in DG) expression inhibited trail pheromone biosynthesis. Reduced trail pheromone was documented analytically and through a behavioral bioassay. Extension of PBAN's role in pheromone biosynthesis to a new target insect, mode of action, and behavioral function will renew research efforts on the involvement of PBAN in pheromone biosynthesis in Insecta. PMID:23226278
MreB and MurG as scaffolds for the cytoplasmic steps of peptidoglycan biosynthesis.
Favini-Stabile, Sandy; Contreras-Martel, Carlos; Thielens, Nicole; Dessen, Andréa
2013-12-01
Peptidoglycan is a major determinant of cell shape in bacteria, and its biosynthesis involves the concerted action of cytoplasmic, membrane-associated and periplasmic enzymes. Within the cytoplasm, Mur enzymes catalyse the first steps leading to peptidoglycan precursor biosynthesis, and have been suggested as being part of a multicomponent complex that could also involve the transglycosylase MurG and the cytoskeletal protein MreB. In order to initialize the characterization of a potential Mur interaction network, we purified MurD, MurE, MurF, MurG and MreB from Thermotoga maritima and characterized their interactions using membrane blotting and surface plasmon resonance. MurD, MurE and MurF all recognize MurG and MreB, but not each other, while the two latter proteins interact. In addition, we solved the crystal structures of MurD, MurE and MurF, which indicate that their C-termini display high conformational flexibilities. The differences in Mur conformations could be important parameters for the stability of an intracytoplasmic murein biosynthesis complex. © 2013 Society for Applied Microbiology and John Wiley & Sons Ltd.
Biosynthesis and Metabolic Engineering of Anthocyanins in Arabidopsis thaliana
Shi, Ming-Zhu; Xie, De-Yu
2014-01-01
Arabidopsis thaliana is the first model plant, the genome of which has been sequenced. In general, intensive studies on this model plant over the past nearly 30 years have led to many new revolutionary understandings in every single aspect of plant biology. Here, we review the current understanding of anthocyanin biosynthesis in this model plant. Although the investigation of anthocyanin structures in this model plant was not performed until 2002, numerous studies over the past three decades have been conducted to understand the biosynthesis of anthocyanins. To date, it appears that all pathway genes of anthocyanins have been molecularly, genetically and biochemically characterized in this plant. These fundamental accomplishments have made Arabidopsis an ideal model to understand the regulatory mechanisms of anthocyanin pathway. Several studies have revealed that the biosynthesis of anthocyanins is controlled by WD40-bHLH-MYB (WBM) transcription factor complexes under lighting conditions. However, how different regulatory complexes coordinately and specifically regulate the pathway genes of anthocyanins remains unclear. In this review, we discuss current progresses and findings including structural diversity, regulatory properties and metabolic engineering of anthocyanins in Arabidopsis thaliana. PMID:24354533
Paleoproterozoic sterol biosynthesis and the rise of oxygen
NASA Astrophysics Data System (ADS)
Gold, David A.; Caron, Abigail; Fournier, Gregory P.; Summons, Roger E.
2017-03-01
Natural products preserved in the geological record can function as ‘molecular fossils’, providing insight into organisms and physiologies that existed in the deep past. One important group of molecular fossils is the steroidal hydrocarbons (steranes), which are the diagenetic remains of sterol lipids. Complex sterols with modified side chains are unique to eukaryotes, although simpler sterols can also be synthesized by a few bacteria. Sterol biosynthesis is an oxygen-intensive process; thus, the presence of complex steranes in ancient rocks not only signals the presence of eukaryotes, but also aerobic metabolic processes. In 1999, steranes were reported in 2.7 billion year (Gyr)-old rocks from the Pilbara Craton in Australia, suggesting a long delay between photosynthetic oxygen production and its accumulation in the atmosphere (also known as the Great Oxidation Event) 2.45-2.32 Gyr ago. However, the recent reappraisal and rejection of these steranes as contaminants pushes the oldest reported steranes forward to around 1.64 Gyr ago (ref. 6). Here we use a molecular clock approach to improve constraints on the evolution of sterol biosynthesis. We infer that stem eukaryotes shared functionally modern sterol biosynthesis genes with bacteria via horizontal gene transfer. Comparing multiple molecular clock analyses, we find that the maximum marginal probability for the divergence time of bacterial and eukaryal sterol biosynthesis genes is around 2.31 Gyr ago, concurrent with the most recent geochemical evidence for the Great Oxidation Event. Our results therefore indicate that simple sterol biosynthesis existed well before the diversification of living eukaryotes, substantially predating the oldest detected sterane biomarkers (approximately 1.64 Gyr ago), and furthermore, that the evolutionary history of sterol biosynthesis is tied to the first widespread availability of molecular oxygen in the ocean-atmosphere system.
Paleoproterozoic sterol biosynthesis and the rise of oxygen.
Gold, David A; Caron, Abigail; Fournier, Gregory P; Summons, Roger E
2017-03-16
Natural products preserved in the geological record can function as 'molecular fossils', providing insight into organisms and physiologies that existed in the deep past. One important group of molecular fossils is the steroidal hydrocarbons (steranes), which are the diagenetic remains of sterol lipids. Complex sterols with modified side chains are unique to eukaryotes, although simpler sterols can also be synthesized by a few bacteria. Sterol biosynthesis is an oxygen-intensive process; thus, the presence of complex steranes in ancient rocks not only signals the presence of eukaryotes, but also aerobic metabolic processes. In 1999, steranes were reported in 2.7 billion year (Gyr)-old rocks from the Pilbara Craton in Australia, suggesting a long delay between photosynthetic oxygen production and its accumulation in the atmosphere (also known as the Great Oxidation Event) 2.45-2.32 Gyr ago. However, the recent reappraisal and rejection of these steranes as contaminants pushes the oldest reported steranes forward to around 1.64 Gyr ago (ref. 6). Here we use a molecular clock approach to improve constraints on the evolution of sterol biosynthesis. We infer that stem eukaryotes shared functionally modern sterol biosynthesis genes with bacteria via horizontal gene transfer. Comparing multiple molecular clock analyses, we find that the maximum marginal probability for the divergence time of bacterial and eukaryal sterol biosynthesis genes is around 2.31 Gyr ago, concurrent with the most recent geochemical evidence for the Great Oxidation Event. Our results therefore indicate that simple sterol biosynthesis existed well before the diversification of living eukaryotes, substantially predating the oldest detected sterane biomarkers (approximately 1.64 Gyr ago), and furthermore, that the evolutionary history of sterol biosynthesis is tied to the first widespread availability of molecular oxygen in the ocean-atmosphere system.
In Vitro Biosynthesis of Unnatural Enterocin and Wailupemycin Polyketides¥
Kalaitzis, John A.; Cheng, Qian; Thomas, Paul M.; Kelleher, Neil L.; Moore, Bradley S.
2009-01-01
Nature has evolved finely tuned strategies to synthesize rare and complex natural products such as the enterocin family of polyketides from the marine bacterium Streptomyces maritimus. Herein we report the directed ex vivo multienzyme syntheses of 24 unnatural 5-deoxyenterocin and wailupemycin F and G analogues, 18 of which are new. We have generated molecular diversity by priming the enterocin biosynthesis enzymes with unnatural substrates and have illustrated further the uniqueness of this type II polyketide synthase by way of exploiting its unusual starter unit biosynthesis pathways. PMID:19215142
In vitro biosynthesis of unnatural enterocin and wailupemycin polyketides.
Kalaitzis, John A; Cheng, Qian; Thomas, Paul M; Kelleher, Neil L; Moore, Bradley S
2009-03-27
Nature has evolved finely tuned strategies to synthesize rare and complex natural products such as the enterocin family of polyketides from the marine bacterium Streptomyces maritimus. Herein we report the directed ex vivo multienzyme syntheses of 24 unnatural 5-deoxyenterocin and wailupemycin F and G analogues, 18 of which are new. We have generated molecular diversity by priming the enterocin biosynthesis enzymes with unnatural substrates and have illustrated further the uniqueness of this type II polyketide synthase by way of exploiting its unusual starter unit biosynthesis pathways.
Tanaka, Shigeyuki; Brefort, Thomas; Neidig, Nina; Djamei, Armin; Kahnt, Jörg; Vermerris, Wilfred; Koenig, Stefanie; Feussner, Kirstin; Feussner, Ivo; Kahmann, Regine
2014-01-01
The biotrophic fungus Ustilago maydis causes smut disease in maize with characteristic tumor formation and anthocyanin induction. Here, we show that anthocyanin biosynthesis is induced by the virulence promoting secreted effector protein Tin2. Tin2 protein functions inside plant cells where it interacts with maize protein kinase ZmTTK1. Tin2 masks a ubiquitin–proteasome degradation motif in ZmTTK1, thus stabilizing the active kinase. Active ZmTTK1 controls activation of genes in the anthocyanin biosynthesis pathway. Without Tin2, enhanced lignin biosynthesis is observed in infected tissue and vascular bundles show strong lignification. This is presumably limiting access of fungal hyphae to nutrients needed for massive proliferation. Consistent with this assertion, we observe that maize brown midrib mutants affected in lignin biosynthesis are hypersensitive to U. maydis infection. We speculate that Tin2 rewires metabolites into the anthocyanin pathway to lower their availability for other defense responses. DOI: http://dx.doi.org/10.7554/eLife.01355.001 PMID:24473076
Phylogenomic reconstruction of archaeal fatty acid metabolism
Dibrova, Daria V.; Galperin, Michael Y.; Mulkidjanian, Armen Y.
2014-01-01
While certain archaea appear to synthesize and/or metabolize fatty acids, the respective pathways still remain obscure. By analyzing the genomic distribution of the key lipid-related enzymes, we were able to identify the likely components of the archaeal pathway of fatty acid metabolism, namely, a combination of the enzymes of bacterial-type β-oxidation of fatty acids (acyl-CoA-dehydrogenase, enoyl-CoA hydratase, and 3-hydroxyacyl-CoA dehydrogenase) with paralogs of the archaeal acetyl-CoA C-acetyltransferase, an enzyme of the mevalonate biosynthesis pathway. These three β-oxidation enzymes working in the reverse direction could potentially catalyze biosynthesis of fatty acids, with paralogs of acetyl-CoA C-acetyltransferase performing addition of C2 fragments. The presence in archaea of the genes for energy-transducing membrane enzyme complexes, such as cytochrome bc complex, cytochrome c oxidase, and diverse rhodopsins, was found to correlate with the presence of the proposed system of fatty acid biosynthesis. We speculate that because these membrane complexes functionally depend on fatty acid chains, their genes could have been acquired via lateral gene transfer from bacteria only by those archaea that already possessed a system of fatty acid biosynthesis. The proposed pathway of archaeal fatty acid metabolism operates in extreme conditions and therefore might be of interest in the context of biofuel production and other industrial applications. PMID:24818264
Ruan, Ruoxin; Chung, Kuang-Ren; Li, Hongye
2017-12-01
Sterol regulatory element binding proteins (SREBPs) are required for sterol homeostasis in eukaryotes. Activation of SREBPs is regulated by the Dsc E3 ligase complex in Schizosaccharomyces pombe and Aspergillus spp. Previous studies indicated that an SREBP-coding gene PdsreA is required for fungicide resistance and ergosterol biosynthesis in the citrus postharvest pathogen Penicillium digitatum. In this study, five genes, designated PddscA, PddscB, PddscC, PddscD, and PddscE encoding the Dsc E3 ligase complex were characterized to be required for fungicide resistance, ergosterol biosynthesis and CoCl 2 tolerance in P. digitatum. Each of the dsc genes was inactivated by target gene disruption and the resulted phenotypes were analyzed and compared. Genetic analysis reveals that, of five Dsc complex components, PddscB is the core subunit gene in P. digitatum. Although the resultant dsc mutants were able to infect citrus fruit and induce maceration lesions as the wild-type, the mutants rarely produced aerial mycelia on affected citrus fruit peels. P. digitatum Dsc proteins regulated not only the expression of genes involved in ergosterol biosynthesis but also that of PdsreA. Yeast two-hybrid assays revealed a direct interaction between the PdSreA protein and the Dsc proteins. Ectopic expression of the PdSreA N-terminus restored fungicide resistance in the dsc mutants. Our results provide important evidence to understand the mechanisms underlying SREBP activation and regulation of ergosterol biosynthesis in plant pathogenic fungi. Copyright © 2017 Elsevier GmbH. All rights reserved.
Antibacterial Targets in Fatty Acid Biosynthesis
Wright, H. Tonie; Reynolds, Kevin A.
2008-01-01
Summary The fatty acid biosynthesis pathway is an attractive but still largely unexploited target for development of new anti-bacterial agents. The extended use of the anti-tuberculosis drug isoniazid and the antiseptic triclosan, which are inhibitors of fatty acid biosynthesis, validates this pathway as a target for anti-bacterial development. Differences in subcellular organization of the bacterial and eukaryotic multi-enzyme fatty acid synthase systems offer the prospect of inhibitors with host vs. target specificity. Platensimycin, platencin, and phomallenic acids, newly discovered natural product inhibitors of the condensation steps in fatty acid biosynthesis, represent new classes of compounds with antibiotic potential. An almost complete catalogue of crystal structures for the enzymes of the type II fatty acid biosynthesis pathway can now be exploited in the rational design of new inhibitors, as well as the recently published crystal structures of type I FAS complexes. PMID:17707686
Liu, Joyce; Zhu, Xuejun; Seipke, Ryan F; Zhang, Wenjun
2015-05-15
Antimycins are a family of natural products generated from a hybrid nonribosomal peptide synthetase (NRPS)-polyketide synthase (PKS) assembly line. Although they possess an array of useful biological activities, their structural complexity makes chemical synthesis challenging, and their biosynthesis has thus far been dependent on slow-growing source organisms. Here, we reconstituted the biosynthesis of antimycins in Escherichia coli, a versatile host that is robust and easy to manipulate genetically. Along with Streptomyces genetic studies, the heterologous expression of different combinations of ant genes enabled us to systematically confirm the functions of the modification enzymes, AntHIJKL and AntO, in the biosynthesis of the 3-formamidosalicylate pharmacophore of antimycins. Our E. coli-based antimycin production system can not only be used to engineer the increased production of these bioactive compounds, but it also paves the way for the facile generation of novel and diverse antimycin analogues through combinatorial biosynthesis.
Constructing the wonders of the bacterial world: biosynthesis of complex enzymes.
Sargent, Frank
2007-03-01
The prokaryotic cytoplasmic membrane not only maintains cell integrity and forms a barrier between the cell and its outside environment, but is also the location for essential biochemical processes. Microbial model systems provide excellent bases for the study of fundamental problems in membrane biology including signal transduction, chemotaxis, solute transport and, as will be the topic of this review, energy metabolism. Bacterial respiration requires a diverse array of complex, multi-subunit, cofactor-containing redox enzymes, many of which are embedded within, or located on the extracellular side of, the membrane. The biosynthesis of these enzymes therefore requires carefully controlled expression, assembly, targeting and transport processes. Here, focusing on the molybdenum-containing respiratory enzymes central to anaerobic respiration in Escherichia coli, recent descriptions of a chaperone-mediated 'proofreading' system involved in coordinating assembly and export of complex extracellular enzymes will be discussed. The paradigm proofreading chaperones are members of a large group of proteins known as the TorD family, and recent research in this area highlights common principles that underpin biosynthesis of both exported and non-exported respiratory enzymes.
Enzyme-catalyzed cationic epoxide rearrangements in quinolone alkaloid biosynthesis.
Zou, Yi; Garcia-Borràs, Marc; Tang, Mancheng C; Hirayama, Yuichiro; Li, Dehai H; Li, Li; Watanabe, Kenji; Houk, K N; Tang, Yi
2017-03-01
Epoxides are highly useful synthons and biosynthons for the construction of complex natural products during total synthesis and biosynthesis, respectively. Among enzyme-catalyzed epoxide transformations, a reaction that is notably missing, in regard to the synthetic toolbox, is cationic rearrangement that takes place under strong acid. This is a challenging transformation for enzyme catalysis, as stabilization of the carbocation intermediate upon epoxide cleavage is required. Here, we discovered two Brønsted acid enzymes that can catalyze two unprecedented epoxide transformations in biology. PenF from the penigequinolone pathway catalyzes a cationic epoxide rearrangement under physiological conditions to generate a quaternary carbon center, while AsqO from the aspoquinolone pathway catalyzes a 3-exo-tet cyclization to forge a cyclopropane-tetrahydrofuran ring system. The discovery of these new epoxide-modifying enzymes further highlights the versatility of epoxides in complexity generation during natural product biosynthesis.
Characterization of Cellulose Synthesis in Plant Cells
Maleki, Samaneh Sadat; Mohammadi, Kourosh; Ji, Kong-shu
2016-01-01
Cellulose is the most significant structural component of plant cell wall. Cellulose, polysaccharide containing repeated unbranched β (1-4) D-glucose units, is synthesized at the plasma membrane by the cellulose synthase complex (CSC) from bacteria to plants. The CSC is involved in biosynthesis of cellulose microfibrils containing 18 cellulose synthase (CesA) proteins. Macrofibrils can be formed with side by side arrangement of microfibrils. In addition, beside CesA, various proteins like the KORRIGAN, sucrose synthase, cytoskeletal components, and COBRA-like proteins have been involved in cellulose biosynthesis. Understanding the mechanisms of cellulose biosynthesis is of great importance not only for improving wood production in economically important forest trees to mankind but also for plant development. This review article covers the current knowledge about the cellulose biosynthesis-related gene family. PMID:27314060
Yamashita, Satoshi; Yamaguchi, Haruhiko; Waki, Toshiyuki; Aoki, Yuichi; Mizuno, Makie; Yanbe, Fumihiro; Ishii, Tomoki; Funaki, Ayuta; Tozawa, Yuzuru; Miyagi-Inoue, Yukino; Fushihara, Kazuhisa; Nakayama, Toru; Takahashi, Seiji
2016-01-01
Natural rubber (NR) is stored in latex as rubber particles (RPs), rubber molecules surrounded by a lipid monolayer. Rubber transferase (RTase), the enzyme responsible for NR biosynthesis, is believed to be a member of the cis-prenyltransferase (cPT) family. However, none of the recombinant cPTs have shown RTase activity independently. We show that HRT1, a cPT from Heveabrasiliensis, exhibits distinct RTase activity in vitro only when it is introduced on detergent-washed HeveaRPs (WRPs) by a cell-free translation-coupled system. Using this system, a heterologous cPT from Lactucasativa also exhibited RTase activity, indicating proper introduction of cPT on RP is the key to reconstitute active RTase. RP proteomics and interaction network analyses revealed the formation of the protein complex consisting of HRT1, rubber elongation factor (REF) and HRT1-REF BRIDGING PROTEIN. The RTase activity enhancement observed for the complex assembled on WRPs indicates the HRT1-containing complex functions as the NR biosynthetic machinery. DOI: http://dx.doi.org/10.7554/eLife.19022.001 PMID:27790974
An Examination of the Carbon Isotope Effects Associated with Amino Acid Biosynthesis
NASA Astrophysics Data System (ADS)
Scott, James H.; O'Brien, Diane M.; Emerson, David; Sun, Henry; McDonald, Gene D.; Salgado, Antonio; Fogel, Marilyn L.
2006-12-01
Stable carbon isotope ratios (δ13C) were determined for alanine, proline, phenylalanine, valine, leucine, isoleucine, aspartate (aspartic acid and asparagine), glutamate (glutamic acid and glutamine), lysine, serine, glycine, and threonine from metabolically diverse microorganisms. The microorganisms examined included fermenting bacteria, organotrophic, chemolithotrophic, phototrophic, methylotrophic, methanogenic, acetogenic, acetotrophic, and naturally occurring cryptoendolithic communities from the Dry Valleys of Antarctica. Here we demonstrated that reactions involved in amino acid biosynthesis can be used to distinguish amino acids formed by life from those formed by nonbiological processes. The unique patterns of δ13C imprinted by life on amino acids produced a biological bias. We also showed that, by applying discriminant function analysis to the δ13C value of a pool of amino acids formed by biological activity, it was possible to identify key aspects of intermediary carbon metabolism in the microbial world. In fact, microorganisms examined in this study could be placed within one of three metabolic groups: (1) heterotrophs that grow by oxidizing compounds containing three or more carbon-to-carbon bonds (fermenters and organotrophs), (2) autotrophs that grow by taking up carbon dioxide (chemolitotrophs and phototrophs), and (3) acetoclastic microbes that grow by assimilation of formaldehyde or acetate (methylotrophs, methanogens, acetogens, and acetotrophs). Furthermore, we demonstrated that cryptoendolithic communities from Antarctica grouped most closely with the autotrophs, which indicates that the dominant metabolic pathways in these communities are likely those utilized for CO2 fixation. We propose that this technique can be used to determine the dominant metabolic types in a community and reveal the overall flow of carbon in a complex ecosystem.
Mutations in B4GALNT1 (GM2 synthase) underlie a new disorder of ganglioside biosynthesis.
Harlalka, Gaurav V; Lehman, Anna; Chioza, Barry; Baple, Emma L; Maroofian, Reza; Cross, Harold; Sreekantan-Nair, Ajith; Priestman, David A; Al-Turki, Saeed; McEntagart, Meriel E; Proukakis, Christos; Royle, Louise; Kozak, Radoslaw P; Bastaki, Laila; Patton, Michael; Wagner, Karin; Coblentz, Roselyn; Price, Joy; Mezei, Michelle; Schlade-Bartusiak, Kamilla; Platt, Frances M; Hurles, Matthew E; Crosby, Andrew H
2013-12-01
Glycosphingolipids are ubiquitous constituents of eukaryotic plasma membranes, and their sialylated derivatives, gangliosides, are the major class of glycoconjugates expressed by neurons. Deficiencies in their catabolic pathways give rise to a large and well-studied group of inherited disorders, the lysosomal storage diseases. Although many glycosphingolipid catabolic defects have been defined, only one proven inherited disease arising from a defect in ganglioside biosynthesis is known. This disease, because of defects in the first step of ganglioside biosynthesis (GM3 synthase), results in a severe epileptic disorder found at high frequency amongst the Old Order Amish. Here we investigated an unusual neurodegenerative phenotype, most commonly classified as a complex form of hereditary spastic paraplegia, present in families from Kuwait, Italy and the Old Order Amish. Our genetic studies identified mutations in B4GALNT1 (GM2 synthase), encoding the enzyme that catalyzes the second step in complex ganglioside biosynthesis, as the cause of this neurodegenerative phenotype. Biochemical profiling of glycosphingolipid biosynthesis confirmed a lack of GM2 in affected subjects in association with a predictable increase in levels of its precursor, GM3, a finding that will greatly facilitate diagnosis of this condition. With the description of two neurological human diseases involving defects in two sequentially acting enzymes in ganglioside biosynthesis, there is the real possibility that a previously unidentified family of ganglioside deficiency diseases exist. The study of patients and animal models of these disorders will pave the way for a greater understanding of the role gangliosides play in neuronal structure and function and provide insights into the development of effective treatment therapies.
Glutathione, Glutaredoxins, and Iron.
Berndt, Carsten; Lillig, Christopher Horst
2017-11-20
Glutathione (GSH) is the most abundant cellular low-molecular-weight thiol in the majority of organisms in all kingdoms of life. Therefore, functions of GSH and disturbed regulation of its concentration are associated with numerous physiological and pathological situations. Recent Advances: The function of GSH as redox buffer or antioxidant is increasingly being questioned. New functions, especially functions connected to the cellular iron homeostasis, were elucidated. Via the formation of iron complexes, GSH is an important player in all aspects of iron metabolism: sensing and regulation of iron levels, iron trafficking, and biosynthesis of iron cofactors. The variety of GSH coordinated iron complexes and their functions with a special focus on FeS-glutaredoxins are summarized in this review. Interestingly, GSH analogues that function as major low-molecular-weight thiols in organisms lacking GSH resemble the functions in iron homeostasis. Since these iron-related functions are most likely also connected to thiol redox chemistry, it is difficult to distinguish between mechanisms related to either redox or iron metabolisms. The ability of GSH to coordinate iron in different complexes with or without proteins needs further investigation. The discovery of new Fe-GSH complexes and their physiological functions will significantly advance our understanding of cellular iron homeostasis. Antioxid. Redox Signal. 27, 1235-1251.
Novel mutations in IBA57 are associated with leukodystrophy and variable clinical phenotypes.
Torraco, Alessandra; Ardissone, Anna; Invernizzi, Federica; Rizza, Teresa; Fiermonte, Giuseppe; Niceta, Marcello; Zanetti, Nadia; Martinelli, Diego; Vozza, Angelo; Verrigni, Daniela; Di Nottia, Michela; Lamantea, Eleonora; Diodato, Daria; Tartaglia, Marco; Dionisi-Vici, Carlo; Moroni, Isabella; Farina, Laura; Bertini, Enrico; Ghezzi, Daniele; Carrozzo, Rosalba
2017-01-01
Defects of the Fe/S cluster biosynthesis represent a subgroup of diseases affecting the mitochondrial energy metabolism. In the last years, mutations in four genes (NFU1, BOLA3, ISCA2 and IBA57) have been related to a new group of multiple mitochondrial dysfunction syndromes characterized by lactic acidosis, hyperglycinemia, multiple defects of the respiratory chain complexes, and impairment of four lipoic acid-dependent enzymes: α-ketoglutarate dehydrogenase complex, pyruvic dehydrogenase, branched-chain α-keto acid dehydrogenase complex and the H protein of the glycine cleavage system. Few patients have been reported with mutations in IBA57 and with variable clinical phenotype. Herein, we describe four unrelated patients carrying novel mutations in IBA57. All patients presented with combined or isolated defect of complex I and II. Clinical features varied widely, ranging from fatal infantile onset of the disease to acute and severe psychomotor regression after the first year of life. Brain MRI was characterized by cavitating leukodystrophy. The identified mutations were never reported previously and all had a dramatic effect on IBA57 stability. Our study contributes to expand the array of the genotypic variation of IBA57 and delineates the leukodystrophic pattern of IBA57 deficient patients.
Engineer Novel Anticancer Bioagents
2009-10-01
Nonribosomally by Bacteria Gene depH is depicted as one of the three post- nonribosomal peptide synthetase (NRPS; dark red)/ polyketide synthase (PKS... polyketide synthase -NRPS pathway for FK228 biosynthesis in C. violaceum no. 968 (Cheng et al., 2007). This pathway would lead to the production of an imme...biosynthesis revealing unprecedented architectural complexity for a hybrid polyketide synthase and nonribosomal peptide synthetase. Chem. Biol. 11, 33–45
Zim17/Tim15 links mitochondrial iron-sulfur cluster biosynthesis to nuclear genome stability.
Díaz de la Loza, María Del Carmen; Gallardo, Mercedes; García-Rubio, María Luisa; Izquierdo, Alicia; Herrero, Enrique; Aguilera, Andrés; Wellinger, Ralf Erik
2011-08-01
Genomic instability is related to a wide-range of human diseases. Here, we show that mitochondrial iron-sulfur cluster biosynthesis is important for the maintenance of nuclear genome stability in Saccharomyces cerevisiae. Cells lacking the mitochondrial chaperone Zim17 (Tim15/Hep1), a component of the iron-sulfur biosynthesis machinery, have limited respiration activity, mimic the metabolic response to iron starvation and suffer a dramatic increase in nuclear genome recombination. Increased oxidative damage or deficient DNA repair do not account for the observed genomic hyperrecombination. Impaired cell-cycle progression and genetic interactions of ZIM17 with components of the RFC-like complex involved in mitotic checkpoints indicate that replicative stress causes hyperrecombination in zim17Δ mutants. Furthermore, nuclear accumulation of pre-ribosomal particles in zim17Δ mutants reinforces the importance of iron-sulfur clusters in normal ribosome biosynthesis. We propose that compromised ribosome biosynthesis and cell-cycle progression are interconnected, together contributing to replicative stress and nuclear genome instability in zim17Δ mutants.
Nucleoside antibiotics: biosynthesis, regulation, and biotechnology.
Niu, Guoqing; Tan, Huarong
2015-02-01
The alarming rise in antibiotic-resistant pathogens has coincided with a decline in the supply of new antibiotics. It is therefore of great importance to find and create new antibiotics. Nucleoside antibiotics are a large family of natural products with diverse biological functions. Their biosynthesis is a complex process through multistep enzymatic reactions and is subject to hierarchical regulation. Genetic and biochemical studies of the biosynthetic machinery have provided the basis for pathway engineering and combinatorial biosynthesis to create new or hybrid nucleoside antibiotics. Dissection of regulatory mechanisms is leading to strategies to increase the titer of bioactive nucleoside antibiotics. Copyright © 2014. Published by Elsevier Ltd.
de Paiva, Jacqueline Boldrin; Penha Filho, Rafael Antonio Casarin; Arguello, Yuli Melisa Sierra; Berchieri Junior, Ângelo; Lemos, Manuel Victor Franco; Barrow, Paul A.
2009-01-01
Salmonella enterica serovar Gallinarum (SG) is a fowl typhoid agent in chickens and is a severe disease with worldwide economic impact as its mortality may reach up to 80%. It is one of a small group of serovars that typically produces typhoid-like infections in a narrow range of host species and which therefore represents a good model for human typhoid. The survival mechanisms are not considered to be virulent mechanisms but are essential for the life of the bacterium. Mutants of Salmonella Gallinarum containing defective genes, related to cobalamin biosynthesis and which Salmonella spp. has to be produced to survive when it is in an anaerobic environment, were produced in this study. Salmonella Gallinarum is an intracellular parasite. Therefore, this study could provide information about whether vitamin B12 biosynthesis might be essential to its survival in the host. The results showed that the singular deletion in cbiA or cobS genes did not interfere in the life of Salmonella Gallinarum in the host, perhaps because single deletion is not enough to impede vitamin B12 biosynthesis. It was noticed that diluted SG mutants with single deletion produced higher mortality than the wild strain of SG. When double mutation was carried out, the Salmonella Gallinarum mutant was unable to provoke mortality in susceptible chickens. This work showed that B12 biosynthesis is a very important step in the metabolism of Salmonella Gallinarum during the infection of the chickens. Further research on bacterium physiology should be carried out to elucidate the events described in this research and to assess the mutant as a vaccine strain. PMID:24031393
USDA-ARS?s Scientific Manuscript database
Serine acetyltransferase (SAT) catalyzes the limiting reaction in plant and microbial biosynthesis of cysteine. In addition to its enzymatic function, SAT forms a macromolecular complex with O-acetylserine sulfhydrylase (OASS). Formation of the cysteine regulatory complex (CRC) is a critical biochem...
Dendritic trafficking faces physiologically critical speed-precision tradeoffs
Williams, Alex H; O'Donnell, Cian; Sejnowski, Terrence J; O'Leary, Timothy
2016-01-01
Nervous system function requires intracellular transport of channels, receptors, mRNAs, and other cargo throughout complex neuronal morphologies. Local signals such as synaptic input can regulate cargo trafficking, motivating the leading conceptual model of neuron-wide transport, sometimes called the ‘sushi-belt model’ (Doyle and Kiebler, 2011). Current theories and experiments are based on this model, yet its predictions are not rigorously understood. We formalized the sushi belt model mathematically, and show that it can achieve arbitrarily complex spatial distributions of cargo in reconstructed morphologies. However, the model also predicts an unavoidable, morphology dependent tradeoff between speed, precision and metabolic efficiency of cargo transport. With experimental estimates of trafficking kinetics, the model predicts delays of many hours or days for modestly accurate and efficient cargo delivery throughout a dendritic tree. These findings challenge current understanding of the efficacy of nucleus-to-synapse trafficking and may explain the prevalence of local biosynthesis in neurons. DOI: http://dx.doi.org/10.7554/eLife.20556.001 PMID:28034367
Metabolic alterations in developing brain after injury – knowns and unknowns
McKenna, Mary C.; Scafidi, Susanna; Robertson, Courtney L.
2016-01-01
Brain development is a highly orchestrated complex process. The developing brain utilizes many substrates including glucose, ketone bodies, lactate, fatty acids and amino acids for energy, cell division and the biosynthesis of nucleotides, proteins and lipids. Metabolism is crucial to provide energy for all cellular processes required for brain development and function including ATP formation, synaptogenesis, synthesis, release and uptake of neurotransmitters, maintaining ionic gradients and redox status, and myelination. The rapidly growing population of infants and children with neurodevelopmental and cognitive impairments and life-long disability resulting from developmental brain injury is a significant public health concern. Brain injury in infants and children can have devastating effects because the injury is superimposed on the high metabolic demands of the developing brain. Acute injury in the pediatric brain can derail, halt or lead to dysregulation of the complex and highly regulated normal developmental processes. This paper provides a brief review of metabolism in developing brain and alterations found clinically and in animal models of developmental brain injury. The metabolic changes observed in three major categories of injury that can result in life-long cognitive and neurological disabilities, including neonatal hypoxia-ischemia, pediatric traumatic brain injury, and brain injury secondary to prematurity are reviewed. PMID:26148530
Human frataxin activates Fe-S cluster biosynthesis by facilitating sulfur transfer chemistry.
Bridwell-Rabb, Jennifer; Fox, Nicholas G; Tsai, Chi-Lin; Winn, Andrew M; Barondeau, David P
2014-08-05
Iron-sulfur clusters are ubiquitous protein cofactors with critical cellular functions. The mitochondrial Fe-S assembly complex, which consists of the cysteine desulfurase NFS1 and its accessory protein (ISD11), the Fe-S assembly protein (ISCU2), and frataxin (FXN), converts substrates l-cysteine, ferrous iron, and electrons into Fe-S clusters. The physiological function of FXN has received a tremendous amount of attention since the discovery that its loss is directly linked to the neurodegenerative disease Friedreich's ataxia. Previous in vitro results revealed a role for human FXN in activating the cysteine desulfurase and Fe-S cluster biosynthesis activities of the Fe-S assembly complex. Here we present radiolabeling experiments that indicate FXN accelerates the accumulation of sulfur on ISCU2 and that the resulting persulfide species is viable in the subsequent synthesis of Fe-S clusters. Additional mutagenesis, enzyme kinetic, UV-visible, and circular dichroism spectroscopic studies suggest conserved ISCU2 residue C104 is critical for FXN activation, whereas C35, C61, and C104 are all essential for Fe-S cluster formation on the assembly complex. These results cannot be fully explained by the hypothesis that FXN functions as an iron donor for Fe-S cluster biosynthesis, and further support an allosteric regulator role for FXN. Together, these results lead to an activation model in which FXN accelerates persulfide formation on NFS1 and favors a helix-to-coil interconversion on ISCU2 that facilitates the transfer of sulfur from NFS1 to ISCU2 as an initial step in Fe-S cluster biosynthesis.
Human Frataxin Activates Fe–S Cluster Biosynthesis by Facilitating Sulfur Transfer Chemistry
2015-01-01
Iron–sulfur clusters are ubiquitous protein cofactors with critical cellular functions. The mitochondrial Fe–S assembly complex, which consists of the cysteine desulfurase NFS1 and its accessory protein (ISD11), the Fe–S assembly protein (ISCU2), and frataxin (FXN), converts substrates l-cysteine, ferrous iron, and electrons into Fe–S clusters. The physiological function of FXN has received a tremendous amount of attention since the discovery that its loss is directly linked to the neurodegenerative disease Friedreich’s ataxia. Previous in vitro results revealed a role for human FXN in activating the cysteine desulfurase and Fe–S cluster biosynthesis activities of the Fe–S assembly complex. Here we present radiolabeling experiments that indicate FXN accelerates the accumulation of sulfur on ISCU2 and that the resulting persulfide species is viable in the subsequent synthesis of Fe–S clusters. Additional mutagenesis, enzyme kinetic, UV–visible, and circular dichroism spectroscopic studies suggest conserved ISCU2 residue C104 is critical for FXN activation, whereas C35, C61, and C104 are all essential for Fe–S cluster formation on the assembly complex. These results cannot be fully explained by the hypothesis that FXN functions as an iron donor for Fe–S cluster biosynthesis, and further support an allosteric regulator role for FXN. Together, these results lead to an activation model in which FXN accelerates persulfide formation on NFS1 and favors a helix-to-coil interconversion on ISCU2 that facilitates the transfer of sulfur from NFS1 to ISCU2 as an initial step in Fe–S cluster biosynthesis. PMID:24971490
NASA Astrophysics Data System (ADS)
Murray, A.
2014-04-01
Ice-entrained Lake Vida brine has provided an accessible natural habitat to study life in the slow lane - where cellular growth is limited, but not extinguished. We measured in situ stable isotopic signatures of N2O, SO42-, H2, conducted experiments utilizing stable isotope geochemical tracers to detect microbial transformations and employed radioisotopically-labeled amino acid precursors to detect cellular macromolecule biosynthesis. The results indicated a dominance of abiotic processes in the brine - yet support metabolically active life through detection of nominal rates of protein biosynthesis. At the same time, the brine has posed a challenge to our understanding of ecosystem energetics. Data collected thus far suggests that the brine is isolated from surfical processes and receives no new mass or energy from above. Calculations have estimated carbon remineralization rates, which indicate that resources should be depleted to the level of small molecules perhaps supporting a methanogenic ecosystem given the amount of time since encapsulation at the temperatures recorded - yet the brine is resource-rich harboring abundant bacteria and large molecules, in addition to a complex mixture of both reduced and oxidized compounds. This has motivated explorations into alternative sources of energy such as hydrogen - which was detected at levels 10 micromolar - that could be generated by brine-rock interactions and supply endogenous energy to this closed ecosystem. This cold, salty, anoxic and organically rich brine, provides insight into a new category of habitable earth ecosystems that may also give us food for thought when considering habitability of giant planet icy worlds or of icy exoplanets. However, the methods we use, and the framework of scientific inquiry applied, are limited by perception and familiarity of rates of change that are important in human time scales. The Vida-icy brine ecosystem provides a model for expansion of our understanding of habitability in which time scales need to be extended, and the role of intermingling abiotic and biotic processes need to be considered.
Deconvoluting heme biosynthesis to target blood-stage malaria parasites
Sigala, Paul A; Crowley, Jan R; Henderson, Jeffrey P; Goldberg, Daniel E
2015-01-01
Heme metabolism is central to blood-stage infection by the malaria parasite Plasmodium falciparum. Parasites retain a heme biosynthesis pathway but do not require its activity during infection of heme-rich erythrocytes, where they can scavenge host heme to meet metabolic needs. Nevertheless, heme biosynthesis in parasite-infected erythrocytes can be potently stimulated by exogenous 5-aminolevulinic acid (ALA), resulting in accumulation of the phototoxic intermediate protoporphyrin IX (PPIX). Here we use photodynamic imaging, mass spectrometry, parasite gene disruption, and chemical probes to reveal that vestigial host enzymes in the cytoplasm of Plasmodium-infected erythrocytes contribute to ALA-stimulated heme biosynthesis and that ALA uptake depends on parasite-established permeability pathways. We show that PPIX accumulation in infected erythrocytes can be harnessed for antimalarial chemotherapy using luminol-based chemiluminescence and combinatorial stimulation by low-dose artemisinin to photoactivate PPIX to produce cytotoxic reactive oxygen. This photodynamic strategy has the advantage of exploiting host enzymes refractory to resistance-conferring mutations. DOI: http://dx.doi.org/10.7554/eLife.09143.001 PMID:26173178
Extremophiles as sources of inorganic bio-nanoparticles.
Beeler, Erik; Singh, Om V
2016-09-01
Industrial use of nanotechnology in daily life has produced an emphasis on the safe and efficient production of nanoparticles (NPs). Traditional chemical oxidation and reduction methods are seen as inefficient, environmentally unsound, and often dangerous to those exposed and involved in NP manufacturing. However, utilizing microorganisms for biosynthesis of NPs allows efficient green production of a range of inorganic NPs, while maintaining specific size, shape, stability, and dispersity. Microorganisms living under harsh environmental conditions, called "Extremophiles," are one group of microorganisms being utilized for this biosynthesis. Extremophiles' unique living conditions have endowed them with various processes that enable NP biosynthesis. This includes a range of extremophiles: thermophiles, acidophilus, halophiles, psychrophiles, anaerobes, and some others. Fungi, bacteria, yeasts, and archaea, i.e. Ureibacillus thermosphaericus, and Geobacillus stearothermophilus, among others, have been established for NP biosynthesis. This article highlights the extremophiles and methods found to be viable candidates for the production of varying types of NPs, as well as interpreting selective methods used by the organisms to synthesize NPs.
NMR-based Structural Analysis of Threonylcarbamoyl-AMP Synthase and Its Substrate Interactions.
Harris, Kimberly A; Bobay, Benjamin G; Sarachan, Kathryn L; Sims, Alexis F; Bilbille, Yann; Deutsch, Christopher; Iwata-Reuyl, Dirk; Agris, Paul F
2015-08-14
The hypermodified nucleoside N(6)-threonylcarbamoyladenosine (t(6)A37) is present in many distinct tRNA species and has been found in organisms in all domains of life. This post-transcriptional modification enhances translation fidelity by stabilizing the anticodon/codon interaction in the ribosomal decoding site. The biosynthetic pathway of t(6)A37 is complex and not well understood. In bacteria, the following four proteins have been discovered to be both required and sufficient for t(6)A37 modification: TsaC, TsaD, TsaB, and TsaE. Of these, TsaC and TsaD are members of universally conserved protein families. Although TsaC has been shown to catalyze the formation of L-threonylcarbamoyl-AMP, a key intermediate in the biosynthesis of t(6)A37, the details of the enzymatic mechanism remain unsolved. Therefore, the solution structure of Escherichia coli TsaC was characterized by NMR to further study the interactions with ATP and L-threonine, both substrates of TsaC in the biosynthesis of L-threonylcarbamoyl-AMP. Several conserved amino acids were identified that create a hydrophobic binding pocket for the adenine of ATP. Additionally, two residues were found to interact with L-threonine. Both binding sites are located in a deep cavity at the center of the protein. Models derived from the NMR data and molecular modeling reveal several sites with considerable conformational flexibility in TsaC that may be important for L-threonine recognition, ATP activation, and/or protein/protein interactions. These observations further the understanding of the enzymatic reaction catalyzed by TsaC, a threonylcarbamoyl-AMP synthase, and provide structure-based insight into the mechanism of t(6)A37 biosynthesis. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Wang, Peng; Liang, Fu-Cheng; Wittmann, Daniel; Siegel, Alex; Shan, Shu-Ou; Grimm, Bernhard
2018-04-10
Assembly of light-harvesting complexes requires synchronization of chlorophyll (Chl) biosynthesis with biogenesis of light-harvesting Chl a/b-binding proteins (LHCPs). The chloroplast signal recognition particle (cpSRP) pathway is responsible for transport of nucleus-encoded LHCPs in the stroma of the plastid and their integration into the thylakoid membranes. Correct folding and assembly of LHCPs require the incorporation of Chls, whose biosynthesis must therefore be precisely coordinated with membrane insertion of LHCPs. How the spatiotemporal coordination between the cpSRP machinery and Chl biosynthesis is achieved is poorly understood. In this work, we demonstrate a direct interaction between cpSRP43, the chaperone that mediates LHCP targeting and insertion, and glutamyl-tRNA reductase (GluTR), a rate-limiting enzyme in tetrapyrrole biosynthesis. Concurrent deficiency for cpSRP43 and the GluTR-binding protein (GBP) additively reduces GluTR levels, indicating that cpSRP43 and GBP act nonredundantly to stabilize GluTR. The substrate-binding domain of cpSRP43 binds to the N-terminal region of GluTR, which harbors aggregation-prone motifs, and the chaperone activity of cpSRP43 efficiently prevents aggregation of these regions. Our work thus reveals a function of cpSRP43 in Chl biosynthesis and suggests a striking mechanism for posttranslational coordination of LHCP insertion with Chl biosynthesis.
From yellow rain to green wheat: 25 years of trichothecene biosynthesis research.
Desjardins, Anne E
2009-06-10
Trichothecene biosynthesis research at the U.S. Department of Agriculture in Peoria, IL, began in 1984 in response to concerns about the use of trichothecenes in biological warfare, but continued as a long-term research program on the intractable problem of trichothecene contamination of human foods and animal feeds. Over 25 years, the trichothecene biosynthesis research group integrated natural product chemistry with fungal genetics and plant pathology in the laboratory and in the field to understand how and why Fusarium species make these complex and highly toxic metabolites. This interdisciplinary research placed trichothecenes in the unique class of fungal metabolites that not only cause mycotoxicoses in animals but also are virulence factors in plant disease.
Biosynthesis of enediyne antitumor antibiotics.
Van Lanen, Steven G; Shen, Ben
2008-01-01
The enediyne polyketides are secondary metabolites isolated from a variety of Actinomycetes. All members share very potent anticancer and antibiotic activity, and prospects for the clinical application of the enediynes has been validated with the recent marketing of two enediyne derivatives as anticancer agents. The biosynthesis of these compounds is of interest because of the numerous structural features that are unique to the enediyne family. The gene cluster for five enediynes has now been cloned and sequenced, providing the foundation to understand natures' means to biosynthesize such complex, exotic molecules. Presented here is a review of the current progress in delineating the biosynthesis of the enediynes with an emphasis on the model enediyne, C-1027.
Garscha, Ulrike; Voelker, Susanna; Pace, Simona; Gerstmeier, Jana; Emini, Besa; Liening, Stefanie; Rossi, Antonietta; Weinigel, Christina; Rummler, Silke; Schubert, Ulrich S; Scriba, Gerhard K E; Çelikoğlu, Erşan; Çalışkan, Burcu; Banoglu, Erden; Sautebin, Lidia; Werz, Oliver
2016-11-01
The pro-inflammatory leukotrienes (LTs) are formed from arachidonic acid (AA) in activated leukocytes, where 5-lipoxygenase (5-LO) translocates to the nuclear envelope to assemble a functional complex with the integral nuclear membrane protein 5-LO-activating protein (FLAP). FLAP, a MAPEG family member, facilitates AA transfer to 5-LO for efficient conversion, and LT biosynthesis critically depends on FLAP. Here we show that the novel LT biosynthesis inhibitor BRP-187 prevents the 5-LO/FLAP interaction at the nuclear envelope of human leukocytes without blocking 5-LO nuclear redistribution. BRP-187 inhibited 5-LO product formation in human monocytes and polymorphonuclear leukocytes stimulated by lipopolysaccharide plus N-formyl-methionyl-leucyl-phenylalanine (IC 50 =7-10nM), and upon activation by ionophore A23187 (IC 50 =10-60nM). Excess of exogenous AA markedly impaired the potency of BRP-187. Direct 5-LO inhibition in cell-free assays was evident only at >35-fold higher concentrations, which was reversible and not improved under reducing conditions. BRP-187 prevented A23187-induced 5-LO/FLAP complex assembly in leukocytes but failed to block 5-LO nuclear translocation, features that were shared with the FLAP inhibitor MK886. Whereas AA release, cyclooxygenases and related LOs were unaffected, BRP-187 also potently inhibited microsomal prostaglandin E 2 synthase-1 (IC 50 =0.2μM), another MAPEG member. In vivo, BRP-187 (10mg/kg) exhibited significant effectiveness in zymosan-induced murine peritonitis, suppressing LT levels in peritoneal exudates as well as vascular permeability and neutrophil infiltration. Together, BRP-187 potently inhibits LT biosynthesis in vitro and in vivo, which seemingly is caused by preventing the 5-LO/FLAP complex assembly and warrants further preclinical evaluation. Copyright © 2016 Elsevier Inc. All rights reserved.
Dhayat, Nasser A; Dick, Bernhard; Frey, Brigitte M; d'Uscio, Claudia H; Vogt, Bruno; Flück, Christa E
2017-01-01
The steroid profile changes dramatically from prenatal to postnatal life. Recently, a novel backdoor pathway for androgen biosynthesis has been discovered. However, its role remains elusive. Therefore, we investigated androgen production from birth to one year of life with a focus on minipuberty and on production of androgens through the backdoor pathway. Additionally, we assessed the development of the specific steroid enzyme activities in early life. To do so, we collected urine specimens from diapers in 43 healthy newborns (22 females) at 13 time points from birth to one year of age in an ambulatory setting, and performed in house GC-MS steroid profiling for 67 steroid metabolites. Data were analyzed for androgen production through the classic and backdoor pathway and calculations of diagnostic ratios for steroid enzyme activities were performed. Analysis revealed that during minipuberty androgen production is much higher in boys than in girls (e.g. androsterone (An)), originates largely from the testis (An boys -An girls ), and uses predominantly the alternative backdoor pathway (An/Et; Δ5<Δ4 lyase activity). Modelling of steroid enzyme activities showed age-related effects for 21-, 11-, 17-hydroxylase and P450 oxidoreductase activities as well as 3β-hydroxysteroid dehydrogenase, 11β-hydroxylase type 1/2 and 5α-reductase activities. Sex-related characteristics were found for 21-hydroxylase and 5α-reductase activities. Overall, our study shows that androgen biosynthesis during minipuberty favors the backdoor pathway over the classic pathway. Calculations of specific diagnostic ratios for enzyme activities seem to allow the diagnosis of specific steroid disorders from the urinary steroid metabolome. Copyright © 2016 Elsevier Ltd. All rights reserved.
Yokoyama, Kenichi; Lilla, Edward A
2018-04-10
Covering: up to the end of 2017C-C bond formations are frequently the key steps in cofactor and natural product biosynthesis. Historically, C-C bond formations were thought to proceed by two electron mechanisms, represented by Claisen condensation in fatty acids and polyketide biosynthesis. These types of mechanisms require activated substrates to create a nucleophile and an electrophile. More recently, increasing number of C-C bond formations catalyzed by radical SAM enzymes are being identified. These free radical mediated reactions can proceed between almost any sp3 and sp2 carbon centers, allowing introduction of C-C bonds at unconventional positions in metabolites. Therefore, free radical mediated C-C bond formations are frequently found in the construction of structurally unique and complex metabolites. This review discusses our current understanding of the functions and mechanisms of C-C bond forming radical SAM enzymes and highlights their important roles in the biosynthesis of structurally complex, naturally occurring organic molecules. Mechanistic consideration of C-C bond formation by radical SAM enzymes identifies the significance of three key mechanistic factors: radical initiation, acceptor substrate activation and radical quenching. Understanding the functions and mechanisms of these characteristic enzymes will be important not only in promoting our understanding of radical SAM enzymes, but also for understanding natural product and cofactor biosynthesis.
Energy from Redox Disproportionation of Sugar Carbon Drives Biotic and Abiotic Synthesis
NASA Technical Reports Server (NTRS)
Weber, Arthur L.
1997-01-01
To identify the energy source that drives the biosynthesis of amino acids, lipids, and nucleotides from glucose, we calculated the free energy change due to redox disproportionation of the substrate carbon of: (1) 26-carbon fermentation reactions and (2) the biosynthesis of amino acids and lipids of E. coli from glucose. The free energy (cal/mmol of carbon) of these reactions was plotted as a function of the degree of redox disproportionation of carbon (disproportionative electron transfers (mmol)/mmol of carbon). The zero intercept and proportionality between energy yield and degree of redox disproportionation exhibited by this plot demonstrate that redox disproportionation is the principal energy source of these redox reactions (slope of linear fit = -10.4 cal/mmol of disproportionative electron transfers). The energy and disproportionation values of E. coli amino acid and lipid biosynthesis from glucose lie near this linear curve fit with redox disproportionation accounting for 84% and 96% (and ATP only 6% and 1 %) of the total energy of amino acid and lipid biosynthesis, respectively. These observations establish that redox disproportionation of carbon, and not ATP, is the primary energy source driving amino acid and lipid biosynthesis from glucose. In contrast, we found that nucteotide biosynthesis involves very little redox disproportionation, and consequently depends almost entirely on ATP for energy. The function of sugar redox disproportionation as the major source of free energy for the biosynthesis of amino acids and lipids suggests that sugar disproportionation played a central role in the origin of metabolism, and probably the origin of life.
Energy from Redox Disproportionation of Sugar Carbon Drives Biotic and Abiotic Synthesis
NASA Technical Reports Server (NTRS)
Weber, Arthur L.
1997-01-01
To identify the energy source that drives the biosynthesis of amino acids, lipids, and nucleotides from glucose, we calculated the free energy change due to redox disproportionation of the substrate carbon of: (1) 26-carbon fermentation reactions and (2) the biosynthesis of amino acids and lipids of E. coli from glucose. The free energy (cal/mmol of carbon) of these reactions was plotted as a function of the degree of redox disproportionation of carbon (disproportionative electron transfers (mmol)/mmol of carbon). The zero intercept and proportionality between energy yield and degree of redox disproportionation exhibited by this plot demonstrate that redox disproportionation is the principal energy source of these redox reactions (slope of linear fit = -10.4 cal/mmol of disproportionative electron transfers). The energy and disproportionation values of E. coli amino acid and lipid biosynthesis from glucose lie near this linear curve fit with redox disproportionation accounting for 84% and 96% (and ATP only 6% and 1%) of the total energy of amino acid and lipid biosynthesis, respectively. These observations establish that redox disproportionation of carbon, and not ATP, is the primary energy source driving amino acid and lipid biosynthesis from glucose. In contrast, we found that nucleotide biosynthesis involves very little redox disproportionation, and consequently depends almost entirely on ATP for energy. The function of sugar redox disproportionation as the major source of free energy for the biosynthesis of amino acids and lipids suggests that sugar disproportionation played a central role in the origin of metabolism, and probably the origin of life.
Advancing secondary metabolite biosynthesis in yeast with synthetic biology tools.
Siddiqui, Michael S; Thodey, Kate; Trenchard, Isis; Smolke, Christina D
2012-03-01
Secondary metabolites are an important source of high-value chemicals, many of which exhibit important pharmacological properties. These valuable natural products are often difficult to synthesize chemically and are commonly isolated through inefficient extractions from natural biological sources. As such, they are increasingly targeted for production by biosynthesis from engineered microorganisms. The budding yeast species Saccharomyces cerevisiae has proven to be a powerful microorganism for heterologous expression of biosynthetic pathways. S. cerevisiae's usefulness as a host organism is owed in large part to the wealth of knowledge accumulated over more than a century of intense scientific study. Yet many challenges are currently faced in engineering yeast strains for the biosynthesis of complex secondary metabolite production. However, synthetic biology is advancing the development of new tools for constructing, controlling, and optimizing complex metabolic pathways in yeast. Here, we review how the coupling between yeast biology and synthetic biology is advancing the use of S. cerevisiae as a microbial host for the construction of secondary metabolic pathways. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
Studies on the biosynthesis and intracellular transport of gangliosides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farrer, R.G.
1987-01-01
Ganglioside biosynthesis and transport to myelin was studied in brainstem of 17-21 day old rats. Brainstem slices were incubated for up to 2 hours with (/sup 3/H)glucosamine, and gangliosides were isolated by column chromatography and HPTLC. Results from these experiments showed that: (a) ganglioside synthesis was decreased in the slices compared to in vivo, and this decrease was greater in the more complex gangliosides than in the simpler ones; (b) label incorporation into gangliosides GM3 and GM2 increased in a linear fashion, whereas the rate of incorporation continuously increased over the 2 hour period for the more complex gangliosides; (c)more » label incorporated into gangliosides, which showed almost no effect of chase after 30 minutes; (d) monensin at 0.1 uM inhibited the synthesis of all gangliosides except GM3, GM2 and GD3. Compartmentation of ganglioside biosynthesis was examined by analyzing the subcellular location of two ganglioside synthesizing enzymes, lactosylceramide sialosyltransferase (LCST) and GDlb sialosyltransferase (GDlbST), acting early and late in the ganglioside pathway, respectively.« less
Formation of wood secondary cell wall may involve two type cellulose synthase complexes in Populus.
Xi, Wang; Song, Dongliang; Sun, Jiayan; Shen, Junhui; Li, Laigeng
2017-03-01
Cellulose biosynthesis is mediated by cellulose synthases (CesAs), which constitute into rosette-like cellulose synthase complexe (CSC) on the plasma membrane. Two types of CSCs in Arabidopsis are believed to be involved in cellulose synthesis in the primary cell wall and secondary cell walls, respectively. In this work, we found that the two type CSCs participated cellulose biosynthesis in differentiating xylem cells undergoing secondary cell wall thickening in Populus. During the cell wall thickening process, expression of one type CSC genes increased while expression of the other type CSC genes decreased. Suppression of different type CSC genes both affected the wall-thickening and disrupted the multilaminar structure of the secondary cell walls. When CesA7A was suppressed, crystalline cellulose content was reduced, which, however, showed an increase when CesA3D was suppressed. The CesA suppression also affected cellulose digestibility of the wood cell walls. The results suggest that two type CSCs are involved in coordinating the cellulose biosynthesis in formation of the multilaminar structure in Populus wood secondary cell walls.
INTERRELATION BETWEEN ACTIVATION AND POLYMERIZATION IN GRAMICIDIN S BIOSYNTHESIS*
Kleinkauf, Horst; Gevers, Wieland; Lipmann, Fritz
1969-01-01
The nucleic acid-independent biosynthesis of the peptide antibiotic gramicidin S results from the interaction of an enzyme bearing phenylalanine in activated form with a polyenzyme system charged with the other four component amino acids. After reaction with ATP, magnesium, and any or all of its amino acid substrates, the polyenzyme system (mol wt 280,000) yields complexes containing AMP and the respective amino acids in the proportion of 1 to 2. Similar complexes are formed by another enzyme (mol wt 100,000) on incubation with ATP, magnesium, and L- or D-phenylalanine. The amino acids are probably bound as aminoacyl adenylates and then transferred to another function on the enzyme. Initiation of polymerization is achieved by combination of the two complexes. No ATP is needed for completion of synthesis, and free intermediates are not released. Enzyme organization and specificity are responsible for the ordering of the amino acid sequence. PMID:5253659
Torre, José Carlos Pardo; Schmidt, Gregor W; Paetz, Christian; Reichelt, Michael; Schneider, Bernd; Gershenzon, Jonathan; D'Auria, John C
2013-07-01
Complexation of alkaloids is an important strategy plants utilize to facilitate storage in vacuoles and avoid autotoxicity. Previous studies have implicated hydroxycinnamoyl quinate esters in the complexation of purine alkaloids in Coffea arabica. The goal of this study was to determine if Erythroxylum coca uses similar complexation agents to store abundant tropane alkaloids, such as cocaine and cinnamoyl cocaine. Metabolite analysis of various E. coca organs established a close correlation between levels of coca alkaloids and those of two hydroxycinnamoyl esters of quinic acid, chlorogenic acid and 4-coumaroyl quinate. The BAHD acyltransferase catalyzing the final step in hydroxycinnamoyl quinate biosynthesis was isolated and characterized, and its gene expression found to correlate with tropane alkaloid accumulation. A physical interaction between chlorogenic acid and cocaine was observed and quantified in vitro using UV and NMR spectroscopic methods yielding similar values to those reported for a caffeine chlorogenate complex in C. arabica. These results suggest that storage of cocaine and other coca alkaloids in large quantities in E. coca involves hydroxycinnamoyl quinate esters as complexation partners. Copyright © 2012 Elsevier Ltd. All rights reserved.
Bchini, Raphaël; Vasiliou, Vasilis; Branlant, Guy; Talfournier, François; Rahuel-Clermont, Sophie
2012-01-01
Retinoic acid (RA), a metabolite of vitamin A, exerts pleiotropic effects throughout life in vertebrate organisms. Thus, RA action must be tightly regulated through the coordinated action of biosynthetic and degradating enzymes. The last step of retinoic acid biosynthesis is irreversibly catalyzed by the NAD-dependent retinal dehydrogenases (RALDH), which are members of the aldehyde dehydrogenase (ALDH) superfamily. Low intracellular retinal concentrations imply efficient substrate molecular recognition to ensure high affinity and specificity of RALDHs for retinal. This study addresses the molecular basis of retinal recognition in human ALDH1A1 (or RALDH1) and rat ALDH1A2 (or RALDH2), through the comparison of the catalytic behavior of retinal analogs and use of the fluorescence properties of retinol. We show that, in contrast to long chain unsaturated substrates, the rate-limiting step of retinal oxidation by RALDHs is associated with acylation. Use of the fluorescence resonance energy transfer upon retinol interaction with RALDHs provides evidence that retinal recognition occurs in two steps: binding into the substrate access channel, and a slower structural reorganization with a rate constant of the same magnitude as the kcat for retinal oxidation: 0.18 vs. 0.07 s−1 and 0.25 vs. 0.1 s−1 for ALDH1A1 and ALDH1A2, respectively. This suggests that the conformational transition of the RALDH-retinal complex significantly contributes to the rate-limiting step that controls the kinetics of retinal oxidation, as a prerequisite for the formation of a catalytically competent Michaelis complex. This conclusion is consistent with the general notion that structural flexibility within the active site of ALDH enzymes has been shown to be an integral component of catalysis. PMID:23220587
Matharu, A L; Cox, R J; Crosby, J; Byrom, K J; Simpson, T J
1998-12-01
It has been proposed that Streptomyces malonyl CoA: holo acyl carrier protein transacylases (MCATs) provide a link between fatty acid and polyketide biosynthesis. Two recent studies have provided evidence that the presence of MCAT is essential for polyketide synthesis to proceed in reconstituted minimal polyketide synthases (PKSs). In contrast to this, we previously showed that the holo acyl carrier proteins (ACPs) from type II PKSs are capable of catalytic self-malonylation in the presence of malonyl CoA, which suggests that MCAT might not be necessary for polyketide biosynthesis. We reconstituted a homologous actinorhodin (act) type II minimal PKS in vitro. When act holo-ACP is present in limiting concentrations, MCAT is required by the synthase complex in order for polyketide biosynthesis to proceed. When holo-ACP is present in excess, however, efficient polyketide synthesis proceeds without MCAT. The rate of polyketide production increases with holo-ACP concentration, but at low ACP concentration or equimolar AC:KS:CLF (KS, ketosynthase; CLF, chain length determining factor) concentrations this rate is significantly lower than expected, indicating that free holo-ACP is sequestered by the KS/CLF complex. The rate of polyketide biosynthesis is dictated by the ratio of holo-ACP to KS and CLF, as well as by the total protein concentration. There is no absolute requirement for MCAT in polyketide biosynthesis in vitro, although the role of MCAT during polyketide synthesis in vivo remains an open question. MCAT might be responsible for the rate enhancement of malonyl transfer at very low free holo-ACP concentrations or it could be required to catalyse the transfer of malonyl groups from malonyl CoA to sequestered holo-ACP.
Phosphatidic Acid and Lipid Sensing by mTOR
Foster, David A.
2013-01-01
Mammalian target of rapamycin (mTOR) has been implicated as a sensor of nutrient sufficiency for dividing cells and is activated by essential amino acids and glucose. However, cells also require lipids for membrane biosynthesis. A central metabolite in the synthesis of membrane phospholipids is phosphatidic acid (PA), which is required for the stability and activity of mTOR complexes. While PA is commonly generated by the phospholipase D-catalyzed hydrolysis of phosphatidylcholine, PA is also generated by diacylglycerol kinases and lysophosphatidic acid acyltransferases, which are at the center of phospholipid biosynthesis. It is proposed that the responsiveness of mTOR/TOR to PA evolved as a means for sensing lipid precursors for membrane biosynthesis prior to doubling the mass of a cell and dividing. PMID:23507202
Menke, Jon; Weber, Jakob; Broz, Karen; Kistler, H. Corby
2013-01-01
Several species of the filamentous fungus Fusarium colonize plants and produce toxic small molecules that contaminate agricultural products, rendering them unsuitable for consumption. Among the most destructive of these species is F. graminearum, which causes disease in wheat and barley and often infests the grain with harmful trichothecene mycotoxins. Synthesis of these secondary metabolites is induced during plant infection or in culture in response to chemical signals. Our results show that trichothecene biosynthesis involves a complex developmental process that includes dynamic changes in cell morphology and the biogenesis of novel subcellular structures. Two cytochrome P-450 oxygenases (Tri4p and Tri1p) involved in early and late steps in trichothecene biosynthesis were tagged with fluorescent proteins and shown to co-localize to vesicles we provisionally call “toxisomes.” Toxisomes, the inferred site of trichothecene biosynthesis, dynamically interact with motile vesicles containing a predicted major facilitator superfamily protein (Tri12p) previously implicated in trichothecene export and tolerance. The immediate isoprenoid precursor of trichothecenes is the primary metabolite farnesyl pyrophosphate. Changes occur in the cellular localization of the isoprenoid biosynthetic enzyme HMG CoA reductase when cultures non-induced for trichothecene biosynthesis are transferred to trichothecene biosynthesis inducing medium. Initially localized in the cellular endomembrane system, HMG CoA reductase, upon induction of trichothecene biosynthesis, increasingly is targeted to toxisomes. Metabolic pathways of primary and secondary metabolism thus may be coordinated and co-localized under conditions when trichothecene biosynthesis occurs. PMID:23667578
Control of biotin biosynthesis in mycobacteria by a pyruvate carboxylase dependent metabolic signal.
Lazar, Nathaniel; Fay, Allison; Nandakumar, Madhumitha; Boyle, Kerry E; Xavier, Joao; Rhee, Kyu; Glickman, Michael S
2017-12-01
Biotin is an essential cofactor utilized by all domains of life, but only synthesized by bacteria, fungi and plants, making biotin biosynthesis a target for antimicrobial development. To understand biotin biosynthesis in mycobacteria, we executed a genetic screen in Mycobacterium smegmatis for biotin auxotrophs and identified pyruvate carboxylase (Pyc) as required for biotin biosynthesis. The biotin auxotrophy of the pyc::tn strain is due to failure to transcriptionally induce late stage biotin biosynthetic genes in low biotin conditions. Loss of bioQ, the repressor of biotin biosynthesis, in the pyc::tn strain reverted biotin auxotrophy, as did reconstituting the last step of the pathway through heterologous expression of BioB and provision of its substrate DTB. The role of Pyc in biotin regulation required its catalytic activities and could be supported by M. tuberculosis Pyc. Quantitation of the kinetics of depletion of biotinylated proteins after biotin withdrawal revealed that Pyc is the most rapidly depleted biotinylated protein and metabolomics revealed a broad metabolic shift in wild type cells upon biotin withdrawal which was blunted in cell lacking Pyc. Our data indicate that mycobacterial cells monitor biotin sufficiency through a metabolic signal generated by dysfunction of a biotinylated protein of central metabolism. © 2017 John Wiley & Sons Ltd.
Two fatty acyl reductases involved in moth pheromone biosynthesis
Antony, Binu; Ding, Bao-Jian; Moto, Ken’Ichi; Aldosari, Saleh A.; Aldawood, Abdulrahman S.
2016-01-01
Fatty acyl reductases (FARs) constitute an evolutionarily conserved gene family found in all kingdoms of life. Members of the FAR gene family play diverse roles, including seed oil synthesis, insect pheromone biosynthesis, and mammalian wax biosynthesis. In insects, FAR genes dedicated to sex pheromone biosynthesis (pheromone-gland-specific fatty acyl reductase, pgFAR) form a unique clade that exhibits substantial modifications in gene structure and possesses unique specificity and selectivity for fatty acyl substrates. Highly selective and semi-selective ‘single pgFARs’ produce single and multicomponent pheromone signals in bombycid, pyralid, yponomeutid and noctuid moths. An intriguing question is how a ‘single reductase’ can direct the synthesis of several fatty alcohols of various chain lengths and isomeric forms. Here, we report two active pgFARs in the pheromone gland of Spodoptera, namely a semi-selective, C14:acyl-specific pgFAR and a highly selective, C16:acyl-specific pgFAR, and demonstrate that these pgFARs play a pivotal role in the formation of species-specific signals, a finding that is strongly supported by functional gene expression data. The study envisages a new area of research for disclosing evolutionary changes associated with C14- and C16-specific FARs in moth pheromone biosynthesis. PMID:27427355
Salaemae, Wanisa; Booker, Grant W; Polyak, Steven W
2016-04-01
Biotin is an essential cofactor for enzymes present in key metabolic pathways such as fatty acid biosynthesis, replenishment of the tricarboxylic acid cycle, and amino acid metabolism. Biotin is synthesized de novo in microorganisms, plants, and fungi, but this metabolic activity is absent in mammals, making biotin biosynthesis an attractive target for antibiotic discovery. In particular, biotin biosynthesis plays important metabolic roles as the sole source of biotin in all stages of the Mycobacterium tuberculosis life cycle due to the lack of a transporter for scavenging exogenous biotin. Biotin is intimately associated with lipid synthesis where the products form key components of the mycobacterial cell membrane that are critical for bacterial survival and pathogenesis. In this review we discuss the central role of biotin in bacterial physiology and highlight studies that demonstrate the importance of its biosynthesis for virulence. The structural biology of the known biotin synthetic enzymes is described alongside studies using structure-guided design, phenotypic screening, and fragment-based approaches to drug discovery as routes to new antituberculosis agents.
Niehaus, Eva-Maria; Münsterkötter, Martin; Proctor, Robert H.; Brown, Daren W.; Sharon, Amir; Idan, Yifat; Oren-Young, Liat; Sieber, Christian M.; Novák, Ondřej; Pěnčík, Aleš; Tarkowská, Danuše; Hromadová, Kristýna; Freeman, Stanley; Maymon, Marcel; Elazar, Meirav; Youssef, Sahar A.; El-Shabrawy, El Said M.; Shalaby, Abdel Baset A.; Houterman, Petra; Brock, Nelson L.; Burkhardt, Immo; Tsavkelova, Elena A.; Dickschat, Jeroen S.; Galuszka, Petr; Güldener, Ulrich; Tudzynski, Bettina
2016-01-01
Species of the Fusarium fujikuroi species complex (FFC) cause a wide spectrum of often devastating diseases on diverse agricultural crops, including coffee, fig, mango, maize, rice, and sugarcane. Although species within the FFC are difficult to distinguish by morphology, and their genes often share 90% sequence similarity, they can differ in host plant specificity and life style. FFC species can also produce structurally diverse secondary metabolites (SMs), including the mycotoxins fumonisins, fusarins, fusaric acid, and beauvericin, and the phytohormones gibberellins, auxins, and cytokinins. The spectrum of SMs produced can differ among closely related species, suggesting that SMs might be determinants of host specificity. To date, genomes of only a limited number of FFC species have been sequenced. Here, we provide draft genome sequences of three more members of the FFC: a single isolate of F. mangiferae, the cause of mango malformation, and two isolates of F. proliferatum, one a pathogen of maize and the other an orchid endophyte. We compared these genomes to publicly available genome sequences of three other FFC species. The comparisons revealed species-specific and isolate-specific differences in the composition and expression (in vitro and in planta) of genes involved in SM production including those for phytohormome biosynthesis. Such differences have the potential to impact host specificity and, as in the case of F. proliferatum, the pathogenic versus endophytic life style. PMID:28040774
Streit, W R; Entcheva, P
2003-03-01
Biotin (vitamin H) is one of the most fascinating cofactors involved in central pathways in pro- and eukaryotic cell metabolism. Since its original discovery in 1901, research has led to the discovery of the complete biotin biosynthesis pathways in many different microbes and much work has been done on the highly intriguing and complex biochemistry of biotin biosynthesis. While humans and animals require several hundred micrograms of biotin per day, most microbes, plants and fungi appear to be able to synthesize the cofactor themselves. Biotin is added to many food, feed and cosmetic products, creating a world market of 10-30 t/year. However, the majority of the biotin sold is synthesized in a chemical process. Since the chemical synthesis is linked with a high environmental burden, much effort has been put into the development of biotin-overproducing microbes. A summary of biotin biosynthesis and its biological role is presented; and current strategies for the improvement of microbial biotin production using modern biotechnological techniques are discussed.
Agarwal, Aditya Vikram; Singh, Deeksha; Dhar, Yogeshwar Vikram; Michael, Rahul; Gupta, Parul; Chandra, Deepak; Trivedi, Prabodh Kumar
2018-02-01
Withanolides are a collection of naturally occurring, pharmacologically active, secondary metabolites synthesized in the medicinally important plant, Withania somnifera. These bioactive molecules are C28-steroidal lactone triterpenoids and their synthesis is proposed to take place via the mevalonate (MVA) and 2-C-methyl-d-erythritol-4-phosphate (MEP) pathways through the sterol pathway using 24-methylene cholesterol as substrate flux. Although the phytochemical profiles as well as pharmaceutical activities of Withania extracts have been well studied, limited genomic information and difficult genetic transformation have been a major bottleneck towards understanding the participation of specific genes in withanolide biosynthesis. In this study, we used the Tobacco rattle virus (TRV)-mediated virus-induced gene silencing (VIGS) approach to study the participation of key genes from MVA, MEP and triterpenoid biosynthesis for their involvement in withanolide biosynthesis. TRV-infected W. somnifera plants displayed unique phenotypic characteristics and differential accumulation of total Chl as well as carotenoid content for each silenced gene suggesting a reduction in overall isoprenoid synthesis. Comprehensive expression analysis of putative genes of withanolide biosynthesis revealed transcriptional modulations conferring the presence of complex regulatory mechanisms leading to withanolide biosynthesis. In addition, silencing of genes exhibited modulated total and specific withanolide accumulation at different levels as compared with control plants. Comparative analysis also suggests a major role for the MVA pathway as compared with the MEP pathway in providing substrate flux for withanolide biosynthesis. These results demonstrate that transcriptional regulation of selected Withania genes of the triterpenoid biosynthetic pathway critically affects withanolide biosynthesis, providing new horizons to explore this process further, in planta.
Rosa, Gustavo Conrado Couto; Moda, Livia Maria; Martins, Juliana Ramos; Bitondi, Márcia Maria Gentile; Hartfelder, Klaus; Simões, Zilá Luz Paulino
2014-01-01
Juvenile hormone (JH) controls key events in the honey bee life cycle, viz. caste development and age polyethism. We quantified transcript abundance of 24 genes involved in the JH biosynthetic pathway in the corpora allata-corpora cardiaca (CA-CC) complex. The expression of six of these genes showing relatively high transcript abundance was contrasted with CA size, hemolymph JH titer, as well as JH degradation rates and JH esterase (jhe) transcript levels. Gene expression did not match the contrasting JH titers in queen and worker fourth instar larvae, but jhe transcript abundance and JH degradation rates were significantly lower in queen larvae. Consequently, transcriptional control of JHE is of importance in regulating larval JH titers and caste development. In contrast, the same analyses applied to adult worker bees allowed us inferring that the high JH levels in foragers are due to increased JH synthesis. Upon RNAi-mediated silencing of the methyl farnesoate epoxidase gene (mfe) encoding the enzyme that catalyzes methyl farnesoate-to-JH conversion, the JH titer was decreased, thus corroborating that JH titer regulation in adult honey bees depends on this final JH biosynthesis step. The molecular pathway differences underlying JH titer regulation in larval caste development versus adult age polyethism lead us to propose that mfe and jhe genes be assayed when addressing questions on the role(s) of JH in social evolution. PMID:24489805
Akhberdi, Oren; Zhang, Qian; Wang, Dan; Wang, Haichuan; Hao, Xiaoran; Liu, Yanjie; Wei, Dongsheng; Zhu, Xudong
2018-01-01
The velvet family proteins have been shown to play critical roles in fungal secondary metabolism and development. However, variations of the roles have been observed in different fungi. We report here the observation on the role of three velvet complex components VeA, VelB, and LaeA in Pestalotiopsis microspora, a formerly reported taxol-producing fungus. Deletion of individual members led to the retardation of vegetative growth and sporulation and pigmentation, suggesting critical roles in these processes. The mutant strain △velB appeared hypersensitive to osmotic stress and the dye Congo red, whereas △veA and △laeA were little affected by the pressures, suggesting only velB was required for the integrity of the cell wall. Importantly, we found that the genes played distinct roles in the biosynthesis of secondary metabolites in P. microspora. For instance, the production of pestalotiollide B, a previously characterized polyketide, required velB and laeA. In contrast, the veA gene appeared to inhibit the pestalotiollide B (PB) role in its biosynthesis. This study suggests that the three components of the velvet complex are important global regulators, but with distinct roles in hyphal growth, asexual production, and secondary metabolism in P. microspora. This work provides information for further understanding the biosynthesis of secondary metabolism in the fungus. PMID:29538316
Akhberdi, Oren; Zhang, Qian; Wang, Dan; Wang, Haichuan; Hao, Xiaoran; Liu, Yanjie; Wei, Dongsheng; Zhu, Xudong
2018-03-14
The velvet family proteins have been shown to play critical roles in fungal secondary metabolism and development. However, variations of the roles have been observed in different fungi. We report here the observation on the role of three velvet complex components VeA, VelB, and LaeA in Pestalotiopsis microspora , a formerly reported taxol-producing fungus. Deletion of individual members led to the retardation of vegetative growth and sporulation and pigmentation, suggesting critical roles in these processes. The mutant strain △velB appeared hypersensitive to osmotic stress and the dye Congo red, whereas △veA and △laeA were little affected by the pressures, suggesting only velB was required for the integrity of the cell wall. Importantly, we found that the genes played distinct roles in the biosynthesis of secondary metabolites in P. microspora . For instance, the production of pestalotiollide B, a previously characterized polyketide, required velB and laeA . In contrast, the veA gene appeared to inhibit the pestalotiollide B (PB) role in its biosynthesis. This study suggests that the three components of the velvet complex are important global regulators, but with distinct roles in hyphal growth, asexual production, and secondary metabolism in P. microspora . This work provides information for further understanding the biosynthesis of secondary metabolism in the fungus.
Ulrich, Veronika; Brieke, Clara; Cryle, Max J
2016-01-01
The chemical complexity and biological activity of the glycopeptide antibiotics (GPAs) stems from their unique crosslinked structure, which is generated by the actions of cytochrome P450 (Oxy) enzymes that affect the crosslinking of aromatic side chains of amino acid residues contained within the GPA heptapeptide precursor. Given the crucial role peptide cyclisation plays in GPA activity, the characterisation of this process is of great importance in understanding the biosynthesis of these important antibiotics. Here, we report the cyclisation activity and crystal structure of StaF, the D- O -E ring forming Oxy enzyme from A47934 biosynthesis. Our results show that the specificity of StaF is reduced when compared to Oxy enzymes catalysing C- O -D ring formation and that this activity relies on interactions with the non-ribosomal peptide synthetase via the X-domain. Despite the interaction of StaF with the A47934 X-domain being weaker than for the preceding Oxy enzyme StaH, StaF retains higher levels of in vitro activity: we postulate that this is due to the ability of the StaF/X-domain complex to allow substrate reorganisation after initial complex formation has occurred. These results highlight the importance of testing different peptide/protein carrier constructs for in vitro GPA cyclisation assays and show that different Oxy homologues can display significantly different catalytic propensities despite their overall similarities.
Ghareib, Mohamed; Tahon, Medhat Abu; Saif, Mona Mostafa; El-Sayed Abdallah, Wafaa
2016-01-01
The development of green approaches for the biosynthesis of silver nanoparticles (AgNPs) is of prime significance in the field of nanotechnology research. A fast and eco-friendly protocol for the biosynthesis of extracellular AgNPs using culture supernatant (CS) from the fungus Cunninghamella phaeospora was studied in this work. This CS was proved as a potential new source for the extracellular biosynthesis of AgNPs. The AgNPs were formed at 100 oC and pH 9 within four min of contact between CS and 1mM silver nitrate (AgNO3) solution. Nitrate reductase (NR) was confirmed to play a pivotal role in the biosynthesis of AgNPs. The enzyme expressed its highest activity at 80 oC and pH 9. At 100 oC the enzyme retained 70% of its original activity for one hour. The half-life (T1/2) of the enzyme activity was calculated to be 1.55 h confirming its thermostability. The produced AgNPs were characterized by UV-Vis spectroscopy, high resolution-transmission electron microscope (HR-TEM) and x-ray diffraction (XRD). These NPs showed an absorption peak at 415 nm in UV-Vis spectrum corresponding to the plasmon resonance of AgNPs. Transmission electron micrographs revealed the production of monodispersed spherical NPs with average particle size 14 nm. XRD spectrum of the NPs confirmed the formation of metallic crystalline silver. It was also suggested that the aromatic amino acids play a role in the biosynthesis process. The current research provided an insight on the green biosynthesis of AgNPs including some mechanistic aspects using a new mycogenic source. PMID:28243290
The inter-relationship of ascorbate transport, metabolism and mitochondrial, plastidic respiration.
Szarka, András; Bánhegyi, Gábor; Asard, Han
2013-09-20
Ascorbate, this multifaceted small molecular weight carbohydrate derivative, plays important roles in a range of cellular processes in plant cells, from the regulation of cell cycle, through cell expansion and senescence. Beyond these physiological functions, ascorbate has a critical role in responses to abiotic stresses, such as high light, high salinity, or drought. The biosynthesis, recycling, and intracellular transport are important elements of the balancing of ascorbate level to the always-changing conditions and demands. A bidirectional tight relationship was described between ascorbate biosynthesis and the mitochondrial electron transfer chain (mETC), since L-galactono-1,4-lactone dehydrogenase (GLDH), the enzyme catalyzing the ultimate step of ascorbate biosynthesis, uses oxidized cytochrome c as the only electron acceptor and has a role in the assembly of Complex I. A similar bidirectional relationship was revealed between the photosynthetic apparatus and ascorbate biosynthesis since the electron flux through the photosynthetic ETC affects the biosynthesis of ascorbate and the level of ascorbate could affect photosynthesis. The details of this regulatory network of photosynthetic electron transfer, respiratory electron transfer, and ascorbate biosynthesis are still not clear, as are the potential regulatory role and the regulation of intracellular ascorbate transport and fluxes. The elucidation of the role of ascorbate as an important element of the network of photosynthetic, respiratory ETC and tricarboxylic acid cycle will contribute to understanding plant cell responses to different stress conditions.
Liu, Shuai; Li, Meijuan; Su, Liangchen; Ge, Kui; Li, Limei; Li, Xiaoyun; Liu, Xu; Li, Ling
2016-01-01
Abscisic acid (ABA), a key plant stress-signaling hormone, is produced in response to drought and counteracts the effects of this stress. The accumulation of ABA is controlled by the enzyme 9-cis-epoxycarotenoid dioxygenase (NCED). In Arabidopsis, NCED3 is regulated by a positive feedback mechanism by ABA. In this study in peanut (Arachis hypogaea), we demonstrate that ABA biosynthesis is also controlled by negative feedback regulation, mediated by the inhibitory effect on AhNCED1 transcription of a protein complex between transcription factors AhNAC2 and AhAREB1. AhNCED1 was significantly down-regulated after PEG treatment for 10 h, at which time ABA content reached a peak. A ChIP-qPCR assay confirmed AhAREB1 and AhNAC2 binding to the AhNCED1 promoter in response to ABA. Moreover, the interaction between AhAREB1 and AhNAC2, and a transient expression assay showed that the protein complex could negatively regulate the expression of AhNCED1. The results also demonstrated that AhAREB1 was the key factor in AhNCED1 feedback regulation, while AhNAC2 played a subsidiary role. ABA reduced the rate of AhAREB1 degradation and enhanced both the synthesis and degradation rate of the AhNAC2 protein. In summary, the AhAREB1/AhNAC2 protein complex functions as a negative feedback regulator of drought-induced ABA biosynthesis in peanut. PMID:27892506
Elucidation of the biosynthesis of the methane catalyst coenzyme F430
Moore, Simon J.; Sowa, Sven T.; Schuchardt, Christopher; Deery, Evelyne; Lawrence, Andrew D.; Ramos, José Vazquez; Billig, Susan; Birkemeyer, Claudia; Chivers, Peter T.; Howard, Mark J.; Rigby, Stephen E. J.; Layer, Gunhild; Warren, Martin J.
2017-01-01
Summary Methane biogenesis in methanogens is mediated by methyl-coenzyme M reductase, an enzyme that is also responsible for the utilisation of methane through anaerobic methane oxidation. The enzyme employs an ancillary factor called coenzyme F430, a nickel-containing modified tetrapyrrole that promotes catalysis through a novel methyl radical/Ni(II)-thiolate intermediate. However, the biosynthesis of coenzyme F430 from the common primogenitor uroporphyrinoge III, incorporating 11 steric centres into the macrocycle, has remained poorly understood although the pathway must involve chelation, amidation, macrocyclic ring reduction, lactamisation and carbocyclic ring formation. We have now identified the proteins that catalyse coenzyme F430 biosynthesis from sirohydrochlorin, termed CfbA-E, and shown their activity. The research completes our understanding of how nature is able to construct its repertoire of tetrapyrrole-based life pigments, permitting the development of recombinant systems to utilise these metalloprosthetic groups more widely. PMID:28225763
The metabolism and biotechnological application of betaine in microorganism.
Zou, Huibin; Chen, Ningning; Shi, Mengxun; Xian, Mo; Song, Yimin; Liu, Junhong
2016-05-01
Glycine betaine (betaine) is widely distributed in nature and can be found in many microorganisms, including bacteria, archaea, and fungi. Due to its particular functions, many microorganisms utilize betaine as a functional chemical and have evolved different metabolic pathways for the biosynthesis and catabolism of betaine. As in animals and plants, the principle role of betaine is to protect microbial cells against drought, osmotic stress, and temperature stress. In addition, the role of betaine in methyl group metabolism has been observed in a variety of microorganisms. Recent studies have shown that betaine supplementation can improve the performance of microbial strains used for the fermentation of lactate, ethanol, lysine, pyruvate, and vitamin B12, during which betaine can act as stress protectant or methyl donor for the biosynthesis of structurally complex compounds. In this review, we summarize the transport, synthesis, catabolism, and functions of betaine in microorganisms and discuss potential engineering strategies that employ betaine as a methyl donor for the biosynthesis of complex secondary metabolites such as a variety of vitamins, coenzymes, and antibiotics. In conclusion, the biocompatibility, C/N ratio, abundance, and comprehensive metabolic information of betaine collectively indicate that this molecule has great potential for broad applications in microbial biotechnology.
Androgen-mediated sex bias impairs efficiency of leukotriene biosynthesis inhibitors in males
Pace, Simona; Pergola, Carlo; Dehm, Friederike; Rossi, Antonietta; Gerstmeier, Jana; Troisi, Fabiana; Pein, Helmut; Schaible, Anja M.; Weinigel, Christina; Rummler, Silke; Northoff, Hinnak; Laufer, Stefan; Maier, Thorsten J.; Rådmark, Olof; Samuelsson, Bengt; Sautebin, Lidia
2017-01-01
Proinflammatory leukotrienes (LTs) are produced by 5-lipoxygenase (5-LO) aided by 5-LO–activating protein (FLAP). LT biosynthesis inhibitors are currently under clinical investigation as treatments for respiratory and cardiovascular diseases. Here, we have revealed a sex bias in the efficiency of clinically relevant LT biosynthesis inhibitors, showing that their effects are superior in females. We found that androgens cause these sex differences by impeding the LT-biosynthetic 5-LO/FLAP complex assembly. Lower doses of the FLAP inhibitor MK886 were required to reduce LTB4 levels in exudates of female versus male mice and rats. Following platelet-activating factor–induced shock, MK886 increased survival exclusively in female mice, and this effect was abolished by testosterone administration. FLAP inhibitors and the novel-type 5-LO inhibitors licofelone and sulindac sulfide exhibited higher potencies in human blood from females, and bioactive 5-LO/FLAP complexes were formed in female, but not male, human and murine leukocytes. Supplementation of female blood or leukocytes with 5α-dihydrotestosterone abolished the observed sex differences. Our data suggest that females may benefit from anti-LT therapy to a greater extent than males, prompting consideration of sex issues in LT modifier development. PMID:28737505
Lapointe, Christopher P; Stefely, Jonathan A; Jochem, Adam; Hutchins, Paul D; Wilson, Gary M; Kwiecien, Nicholas W; Coon, Joshua J; Wickens, Marvin; Pagliarini, David J
2018-01-24
Coenzyme Q (CoQ) is a redox-active lipid required for mitochondrial oxidative phosphorylation (OxPhos). How CoQ biosynthesis is coordinated with the biogenesis of OxPhos protein complexes is unclear. Here, we show that the Saccharomyces cerevisiae RNA-binding protein (RBP) Puf3p regulates CoQ biosynthesis. To establish the mechanism for this regulation, we employed a multi-omic strategy to identify mRNAs that not only bind Puf3p but also are regulated by Puf3p in vivo. The CoQ biosynthesis enzyme Coq5p is a critical Puf3p target: Puf3p regulates the abundance of Coq5p and prevents its detrimental hyperaccumulation, thereby enabling efficient CoQ production. More broadly, Puf3p represses a specific set of proteins involved in mitochondrial protein import, translation, and OxPhos complex assembly (pathways essential to prime mitochondrial biogenesis). Our data reveal a mechanism for post-transcriptionally coordinating CoQ production with OxPhos biogenesis, and they demonstrate the power of multi-omics for defining genuine targets of RBPs. Copyright © 2017 Elsevier Inc. All rights reserved.
Effector role reversal during evolution: the case of frataxin in Fe-S cluster biosynthesis.
Bridwell-Rabb, Jennifer; Iannuzzi, Clara; Pastore, Annalisa; Barondeau, David P
2012-03-27
Human frataxin (FXN) has been intensively studied since the discovery that the FXN gene is associated with the neurodegenerative disease Friedreich's ataxia. Human FXN is a component of the NFS1-ISD11-ISCU2-FXN (SDUF) core Fe-S assembly complex and activates the cysteine desulfurase and Fe-S cluster biosynthesis reactions. In contrast, the Escherichia coli FXN homologue CyaY inhibits Fe-S cluster biosynthesis. To resolve this discrepancy, enzyme kinetic experiments were performed for the human and E. coli systems in which analogous cysteine desulfurase, Fe-S assembly scaffold, and frataxin components were interchanged. Surprisingly, our results reveal that activation or inhibition by the frataxin homologue is determined by which cysteine desulfurase is present and not by the identity of the frataxin homologue. These data are consistent with a model in which the frataxin-less Fe-S assembly complex exists as a mixture of functional and nonfunctional states, which are stabilized by binding of frataxin homologues. Intriguingly, this appears to be an unusual example in which modifications to an enzyme during evolution inverts or reverses the mode of control imparted by a regulatory molecule.
Crofts, Naoko; Nakamura, Yasunori; Fujita, Naoko
2017-09-01
Starch accounts for the majority of edible carbohydrate resources generated through photosynthesis. Amylopectin is the major component of starch and is one of highest-molecular-weight biopolymers. Rapid and systematic synthesis of frequently branched hydro-insoluble amylopectin and efficient accumulation into amyloplasts of cereal endosperm is crucial. The functions of multiple starch biosynthetic enzymes, including elongation, branching, and debranching enzymes, must be temporally and spatially coordinated. Accordingly, direct evidence of protein-protein interactions of starch biosynthetic enzymes were first discovered in developing wheat endosperm in 2004, and they have since been shown in the developing seeds of other cereals. This review article describes structural characteristics of starches as well as similarities and differences in protein complex formation among different plant species and among mutant plants that are deficient in specific starch biosynthetic enzymes. In addition, evidence for protein complexes that are involved in the initiation stages of starch biosynthesis is summarized. Finally, we discuss the significance of protein complexes and describe new methods that may elucidate the mechanisms and roles of starch biosynthetic enzyme complexes. Copyright © 2017 Elsevier B.V. All rights reserved.
Lado, Joanna; Rodrigo, María Jesús; Zacarías, Lorenzo
2015-10-01
Grapefruits are among the citrus species more sensitive to cold and develop chilling injury symptoms during prolonged postharvest storage at temperatures lower than 8 ℃-10 ℃. The plant hormone ethylene has been described either to protect or potentiate chilling injury development in citrus whereas little is known about transcriptional regulation of ethylene biosynthesis, perception and response during cold storage and how the hormone is regulating its own perception and signaling cascade. Then, the objective of the present study was to explore the transcriptional changes in the expression of ethylene biosynthesis, receptors and response genes during cold storage of the white Marsh and the red Star Ruby grapefruits. The effect of the ethylene action inhibitor, 1-MCP, was evaluated to investigate the involvement of ethylene in the regulation of the genes of its own biosynthesis and perception pathway. Ethylene production was very low at the harvest time in fruits of both varieties and experienced only minor changes during storage. By contrast, inhibition of ethylene perception by 1-MCP markedly induced ethylene production, and this increase was highly stimulated during shelf-life at 20 ℃, as well as transcription of ACS and ACO. These results support the auto-inhibitory regulation of ethylene in grapefruits, which acts mainly at the transcriptional level of ACS and ACO genes. Moreover, ethylene receptor1 and ethylene receptor3 were induced by cold while no clear role of ethylene was observed in the induction of ethylene receptors. However, ethylene appears to be implicated in the transcriptional regulation of ERFs both under cold storage and shelf-life. © The Author(s) 2014.
Mavangira, Vengai; Gandy, Jeffery C; Zhang, Chen; Ryman, Valerie E; Daniel Jones, A; Sordillo, Lorraine M
2015-09-01
Coliform mastitis is a severe and sometimes fatal disease characterized by an unregulated inflammatory response. The initiation, progression, and resolution of inflammatory responses are regulated, in part, by potent oxylipid metabolites derived from polyunsaturated fatty acids. The purpose of this study was to characterize the biosynthesis and diversity of oxylipid metabolites during acute bovine coliform mastitis. Eleven cows diagnosed with naturally occurring acute systemic coliform mastitis and 13 healthy control cows, matched for lactation number and days in milk, were selected for comparison of oxylipid and free fatty acid concentrations in both milk and plasma. Oxylipids and free fatty acids were quantified using liquid chromatography-tandem mass spectrometry. All polyunsaturated fatty acids quantified in milk were elevated during coliform mastitis with linoleic acid being the most abundant. Oxylipids synthesized through the lipoxygenase and cytochrome P450 pathways accounted for the majority of the oxylipid biosynthesis. This study demonstrated a complex and diverse oxylipid network, most pronounced at the level of the mammary gland. Substrate availability, biosynthetic pathways, and degree of metabolism influence the biosynthesis of oxylipids during bovine coliform mastitis. Further studies are required to identify targets for novel interventions that modulate oxylipid biosynthesis during coliform mastitis to optimize inflammation. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Gene Transfers Shaped the Evolution of De Novo NAD+ Biosynthesis in Eukaryotes
Ternes, Chad M.; Schönknecht, Gerald
2014-01-01
NAD+ is an essential molecule for life, present in each living cell. It can function as an electron carrier or cofactor in redox biochemistry and energetics, and serves as substrate to generate the secondary messenger cyclic ADP ribose and nicotinic acid adenine dinucleotide phosphate. Although de novo NAD+ biosynthesis is essential, different metabolic pathways exist in different eukaryotic clades. The kynurenine pathway starting with tryptophan was most likely present in the last common ancestor of all eukaryotes, and is active in fungi and animals. The aspartate pathway, detected in most photosynthetic eukaryotes, was probably acquired from the cyanobacterial endosymbiont that gave rise to chloroplasts. An evolutionary analysis of enzymes catalyzing de novo NAD+ biosynthesis resulted in evolutionary trees incongruent with established organismal phylogeny, indicating numerous gene transfers. Endosymbiotic gene transfers probably introduced the aspartate pathway into eukaryotes and may have distributed it among different photosynthetic clades. In addition, several horizontal gene transfers substituted eukaryotic genes with bacterial orthologs. Although horizontal gene transfer is accepted as a key mechanism in prokaryotic evolution, it is supposed to be rare in eukaryotic evolution. The essential metabolic pathway of de novo NAD+ biosynthesis in eukaryotes was shaped by numerous gene transfers. PMID:25169983
Gientka, Iwona; Błażejak, Stanisław; Stasiak-Różańska, Lidia; Chlebowska-Śmigiel, Anna
2015-01-01
xopolysaccharides (EPS) are not a well-established group of metabolites. An industrial scale of this EPS production is limited mainly by low yield biosynthesis. Until now, enzymes and biosynthesis pathways, as well as the role of regulatory genes, have not been described. Some of yeast EPS show antitumor, immunostimulatory and antioxidant activity. Others, absorb heavy metals and can function as bioactive components of food. Also, the potential of yeast EPS as thickeners or stabilizers can be found. Optimal conditions for the biosynthesis of yeast exopolysaccharides require strong oxygenation and low temperature of the culture, due to the physiology of the producer strains. The medium should contain sucrose as a carbon source and ammonium sulfate as inorganic nitrogen source, wherein the C:N ratio in the substrate should be 15:1. The cultures are long and the largest accumulation of polymers is observed after 4 or 5 days of culturing. The structure of yeast EPS is complex which affects the strain and culture condition. The EPS from yeast are linear mannans, pullulan, glucooligosaccharides, galactooligosaccharides and other heteropolysaccharides containing α-1,2; α-1,3; α-1,6; β-1,3; β-1,4 bonds. Mannose and glucose have the largest participation of carbohydrates for. t exopolysaccharides (EPS) are not a well-established group of metabolites. An industrial scale of this EPS production is limited mainly by low yield biosynthesis. Until now, enzymes and biosynthesis pathways, as well as the role of regulatory genes, have not been described. Some of yeast EPS show antitumor, immunostimulatory and antioxidant activity. Others, absorb heavy metals and can function as bioactive components of food. Also, the potential of yeast EPS as thickeners or stabilizers can be found. Optimal conditions for the biosynthesis of yeast exopolysaccharides require strong oxygenation and low temperature of the culture, due to the physiology of the producer strains. The medium should contain sucrose as a carbon source and ammonium sulfate as inorganic nitrogen source, wherein the C:N ratio in the substrate should be 15:1. The cultures are long and the largest accumulation of polymers is observed after 4 or 5 days of culturing. The structure of yeast EPS is complex which affects the strain and culture condition. The EPS from yeast are linear mannans, pullulan, glucooligosaccharides, galactooligosaccharides and other heteropolysaccharides containing α-1,2; α-1,3; α-1,6; β-1,3; β-1,4 bonds. Mannose and glucose have the largest participation of carbohydrates formin. t exopolysaccharides (EPS) are not a well-established group of metabolites. An industrial scale of this EPS production is limited mainly by low yield biosynthesis. Until now, enzymes and biosynthesis pathways, as well as the role of regulatory genes, have not been described. Some of yeast EPS show antitumor, immunostimulatory and antioxidant activity. Others, absorb heavy metals and can function as bioactive components of food. Also, the potential of yeast EPS as thickeners or stabilizers can be found. Optimal conditions for the biosynthesis of yeast exopolysaccharides require strong oxygenation and low temperature of the culture, due to the physiology of the producer strains. The medium should contain sucrose as a carbon source and ammonium sulfate as inorganic nitrogen source, wherein the C:N ratio in the substrate should be 15:1. The cultures are long and the largest accumulation of polymers is observed after 4 or 5 days of culturing. The structure of yeast EPS is complex which affects the strain and culture condition. The EPS from yeast are linear mannans, pullulan, glucooligosaccharides, galactooligosaccharides and other heteropolysaccharides containing α-1,2; α-1,3; α-1,6; β-1,3; β-1,4 bonds. Mannose and glucose have the largest participation of carbohydrates forming EPS.
Park, Je Won; Nam, Sang-Jip; Yoon, Yeo Joon
2017-06-15
Nature has a talent for inventing a vast number of natural products, including hybrids generated by blending different scaffolds, resulting in a myriad of bioactive chemical entities. Herein, we review the highlights and recent trends (2010-2016) in the combinatorial biosynthesis of sugar-containing antibiotics where nature's structural diversification capabilities are exploited to enable the creation of new anti-infective and anti-proliferative drugs. In this review, we describe the modern combinatorial biosynthetic approaches for polyketide synthase-derived complex and aromatic polyketides, non-ribosomal peptide synthetase-directed lipo-/glycopeptides, aminoglycosides, nucleoside antibiotics, and alkaloids, along with their therapeutic potential. Finally, we present the feasible nexus between combinatorial biosynthesis, systems biology, and synthetic biology as a toolbox to provide new antibiotics that will be indispensable in the post-antibiotic era. Copyright © 2016 Elsevier Inc. All rights reserved.
Synthesis, Delivery and Regulation of Eukaryotic Heme and Fe-S Cluster Cofactors
Barupala, Dulmini P.; Dzul, Stephen P.; Riggs-Gelasco, Pamela Jo; Stemmler, Timothy L.
2016-01-01
In humans, the bulk of iron in the body (over 75%) is directed towards heme- or Fe-S cluster cofactor synthesis, and the complex, highly regulated pathways in place to accomplish biosynthesis have evolved to safely assemble and load these cofactors into apoprotein partners. In eukaryotes, heme biosynthesis is both initiated and finalized within the mitochondria, while cellular Fe-S cluster assembly is controlled by correlated pathways both within the mitochondria and within the cytosol. Iron plays a vital role in a wide array of metabolic processes and defects in iron cofactor assembly leads to human diseases. This review describes progress towards our molecular-level understanding of cellular heme and Fe-S cluster biosynthesis, focusing on the regulation and mechanistic details that are essential for understanding human disorders related to the breakdown in these essential pathways. PMID:26785297
A directed-overflow and damage-control N -glycosidase in riboflavin biosynthesis
Frelin, Océane; Huang, Lili; Hasnain, Ghulam; ...
2015-02-15
Plants and bacteria synthesize the essential human micronutrient riboflavin (vitamin B2) via the same multistep pathway. The early intermediates of this pathway are notoriously reactive, and may be overproduced in vivo because riboflavin biosynthesis enzymes lack feedback controls. Here we demonstrate disposal of riboflavin intermediates by COG3236 (DUF1768), a protein of previously unknown function that is fused to two different riboflavin pathway enzymes in plants and bacteria (RIBR and RibA, respectively). We present cheminformatic, biochemical, genetic, and genomic evidence to show that: (i) plant and bacterial COG3236 proteins cleave the N-glycosidic bond of the first two intermediates of riboflavin biosynthesis,more » yielding relatively innocuous products; (ii) certain COG3236 proteins are in a multienzyme riboflavin biosynthesis complex that gives them privileged access to riboflavin intermediates; and (iii) COG3236 action in Arabidopsis thaliana and Escherichia coli helps maintain flavin levels. We find COG3236 proteins thus illustrate two emerging principles in chemical biology: directed overflow metabolism, in which excess flux is diverted out of a pathway, and the pre-emption of damage from reactive metabolites.« less
Driouich, Azeddine; Follet-Gueye, Marie-Laure; Bernard, Sophie; Kousar, Sumaira; Chevalier, Laurence; Vicré-Gibouin, Maïté; Lerouxel, Olivier
2012-01-01
The Golgi apparatus of eukaryotic cells is known for its central role in the processing, sorting, and transport of proteins to intra- and extra-cellular compartments. In plants, it has the additional task of assembling and exporting the non-cellulosic polysaccharides of the cell wall matrix including pectin and hemicelluloses, which are important for plant development and protection. In this review, we focus on the biosynthesis of complex polysaccharides of the primary cell wall of eudicotyledonous plants. We present and discuss the compartmental organization of the Golgi stacks with regards to complex polysaccharide assembly and secretion using immuno-electron microscopy and specific antibodies recognizing various sugar epitopes. We also discuss the significance of the recently identified Golgi-localized glycosyltransferases responsible for the biosynthesis of xyloglucan (XyG) and pectin. PMID:22639665
Driouich, Azeddine; Follet-Gueye, Marie-Laure; Bernard, Sophie; Kousar, Sumaira; Chevalier, Laurence; Vicré-Gibouin, Maïté; Lerouxel, Olivier
2012-01-01
The Golgi apparatus of eukaryotic cells is known for its central role in the processing, sorting, and transport of proteins to intra- and extra-cellular compartments. In plants, it has the additional task of assembling and exporting the non-cellulosic polysaccharides of the cell wall matrix including pectin and hemicelluloses, which are important for plant development and protection. In this review, we focus on the biosynthesis of complex polysaccharides of the primary cell wall of eudicotyledonous plants. We present and discuss the compartmental organization of the Golgi stacks with regards to complex polysaccharide assembly and secretion using immuno-electron microscopy and specific antibodies recognizing various sugar epitopes. We also discuss the significance of the recently identified Golgi-localized glycosyltransferases responsible for the biosynthesis of xyloglucan (XyG) and pectin.
Fe-S cluster biosynthesis controls uptake of aminoglycosides in a ROS-less death pathway.
Ezraty, Benjamin; Vergnes, Alexandra; Banzhaf, Manuel; Duverger, Yohann; Huguenot, Allison; Brochado, Ana Rita; Su, Shu-Yi; Espinosa, Leon; Loiseau, Laurent; Py, Béatrice; Typas, Athanasios; Barras, Frédéric
2013-06-28
All bactericidal antibiotics were recently proposed to kill by inducing reactive oxygen species (ROS) production, causing destabilization of iron-sulfur (Fe-S) clusters and generating Fenton chemistry. We find that the ROS response is dispensable upon treatment with bactericidal antibiotics. Furthermore, we demonstrate that Fe-S clusters are required for killing only by aminoglycosides. In contrast to cells, using the major Fe-S cluster biosynthesis machinery, ISC, cells using the alternative machinery, SUF, cannot efficiently mature respiratory complexes I and II, resulting in impendence of the proton motive force (PMF), which is required for bactericidal aminoglycoside uptake. Similarly, during iron limitation, cells become intrinsically resistant to aminoglycosides by switching from ISC to SUF and down-regulating both respiratory complexes. We conclude that Fe-S proteins promote aminoglycoside killing by enabling their uptake.
Beccari, G; Colasante, V; Tini, F; Senatore, M T; Prodi, A; Sulyok, M; Covarelli, L
2018-04-01
Durum wheat samples harvested in central Italy (Umbria) were analyzed to: evaluate the occurrence of the fungal community in the grains, molecularly identify the Fusarium spp. which are part of the Fusarium head blight (FHB) complex and characterize the in vitro secondary metabolite profiles of a subset of Fusarium strains. The Fusarium genus was one of the main components of the durum wheat fungal community. The FHB complex was composed of eight species: Fusarium avenaceum (61%), F. graminearum (22%), F. poae (9%), F. culmorum (4%), F. proliferatum (2%), F. sporotrichioides (1%), F. sambucinum (0.5%) and F. langsethiae (0.5%). F. graminearum population was mainly composed of the 15-acetyldeoxynivalenol chemotype, while, F. culmorum population was composed of the 3-acetyldeoxynivalenol chemotype. In vitro characterization of secondary metabolite biosynthesis was conducted for a wide spectrum of substances, showing the mycotoxigenic potential of the species complex. F. avenaceum strains were characterized by high enniantin and moniliformin production. F. graminearum strains were in prevalence deoxynivalenol producers. F. poae strains were characterized by a high biosynthesis of beauvericin like the F. sporotrichioides strain which was also found to be a high T-2/HT-2 toxins producer. Production of aurofusarin, butenolide, gibepyrone D, fusarin C, apicidin was also reported for the analyzed strains. Copyright © 2017 Elsevier Ltd. All rights reserved.
The proteomic complexity and rise of the primordial ancestor of diversified life
2011-01-01
Background The last universal common ancestor represents the primordial cellular organism from which diversified life was derived. This urancestor accumulated genetic information before the rise of organismal lineages and is considered to be either a simple 'progenote' organism with a rudimentary translational apparatus or a more complex 'cenancestor' with almost all essential biological processes. Recent comparative genomic studies support the latter model and propose that the urancestor was similar to modern organisms in terms of gene content. However, most of these studies were based on molecular sequences, which are fast evolving and of limited value for deep evolutionary explorations. Results Here we engage in a phylogenomic study of protein domain structure in the proteomes of 420 free-living fully sequenced organisms. Domains were defined at the highly conserved fold superfamily (FSF) level of structural classification and an iterative phylogenomic approach was used to reconstruct max_set and min_set FSF repertoires as upper and lower bounds of the urancestral proteome. While the functional make up of the urancestral sets was complex, they represent only 5-11% of the 1,420 FSFs of extant proteomes and their make up and reuse was at least 5 and 3 times smaller than proteomes of free-living organisms, repectively. Trees of proteomes reconstructed directly from FSFs or from molecular functions, which included the max_set and min_set as articial taxa, showed that urancestors were always placed at their base and rooted the tree of life in Archaea. Finally, a molecular clock of FSFs suggests the min_set reflects urancestral genetic make up more reliably and confirms diversified life emerged about 2.9 billion years ago during the start of planet oxygenation. Conclusions The minimum urancestral FSF set reveals the urancestor had advanced metabolic capabilities, was especially rich in nucleotide metabolism enzymes, had pathways for the biosynthesis of membrane sn1,2 glycerol ester and ether lipids, and had crucial elements of translation, including a primordial ribosome with protein synthesis capabilities. It lacked however fundamental functions, including transcription, processes for extracellular communication, and enzymes for deoxyribonucleotide synthesis. Proteomic history reveals the urancestor is closer to a simple progenote organism but harbors a rather complex set of modern molecular functions. PMID:21612591
Liu, Jiaqi; Cai, Junjun; Wang, Rui; Yang, Shihai
2016-01-01
As one of the model medicinal plants for exploration of biochemical pathways and molecular biological questions on complex metabolic pathways, Catharanthus roseus synthesizes more than 100 terpenoid indole alkaloids (TIAs) used for clinical treatment of various diseases and for new drug discovery. Given that extensive studies have revealed the major metabolic pathways and the spatial-temporal biosynthesis of TIA in C. roseus plant, little is known about subcellular and inter-cellular trafficking or long-distance transport of TIA end products or intermediates, as well as their regulation. While these transport processes are indispensable for multi-organelle, -tissue and -cell biosynthesis, storage and their functions, great efforts have been made to explore these dynamic cellular processes. Progress has been made in past decades on transcriptional regulation of TIA biosynthesis by transcription factors as either activators or repressors; recent studies also revealed several transporters involved in subcellular and inter-cellular TIA trafficking. However, many details and the regulatory network for controlling the tissue-or cell-specific biosynthesis, transport and storage of serpentine and ajmalicine in root, catharanthine in leaf and root, vindoline specifically in leaf and vinblastine and vincristine only in green leaf and their biosynthetic intermediates remain to be determined. This review is to summarize the progress made in biosynthesis, transcriptional regulation and transport of TIAs. Based on analysis of organelle, tissue and cell-type specific biosynthesis and progresses in transport and trafficking of similar natural products, the transporters that might be involved in transport of TIAs and their synthetic intermediates are discussed; according to transcriptome analysis and bioinformatic approaches, the transcription factors that might be involved in TIA biosynthesis are analyzed. Further discussion is made on a broad context of transcriptional and transport regulation in order to guide our future research. PMID:28036025
MYB5 and MYB14 Play Pivotal Roles in Seed Coat Polymer Biosynthesis in Medicago truncatula1[W][OPEN
Liu, Chenggang; Jun, Ji Hyung; Dixon, Richard A.
2014-01-01
In Arabidopsis (Arabidopsis thaliana), the major MYB protein regulating proanthocyanidin (PA) biosynthesis is TT2, named for the transparent testa phenotype of tt2 mutant seeds that lack PAs in their coats. In contrast, the MYB5 transcription factor mainly regulates seed mucilage biosynthesis and trichome branching, with only a minor role in PA biosynthesis. We here characterize MYB5 and MYB14 (a TT2 homolog) in the model legume Medicago truncatula. Overexpression of MtMYB5 or MtMYB14 strongly induces PA accumulation in M. truncatula hairy roots, and both myb5 and myb14 mutants of M. truncatula exhibit darker seed coat color than wild-type plants, with myb5 also showing deficiency in mucilage biosynthesis. myb5 mutant seeds have a much stronger seed color phenotype than myb14. The myb5 and myb14 mutants accumulate, respectively, about 30% and 50% of the PA content of wild-type plants, and PA levels are reduced further in myb5 myb14 double mutants. Transcriptome analyses of overexpressing hairy roots and knockout mutants of MtMYB5 and MtMYB14 indicate that MtMYB5 regulates a broader set of genes than MtMYB14. Moreover, we demonstrate that MtMYB5 and MtMYB14 physically interact and synergistically activate the promoters of anthocyanidin reductase and leucoanthocyanidin reductase, the key structural genes leading to PA biosynthesis, in the presence of MtTT8 and MtWD40-1. Our results provide new insights into the complex regulation of PA and mucilage biosynthesis in M. truncatula. PMID:24948832
Chiu, Li-Wei; Li, Li
2012-10-01
Purple cauliflower (Brassica oleracea L. var. botrytis) Graffiti represents a unique mutant in conferring ectopic anthocyanin biosynthesis, which is caused by the tissue-specific activation of BoMYB2, an ortholog of Arabidopsis PAP2 or MYB113. To gain a better understanding of the regulatory network of anthocyanin biosynthesis, we investigated the interaction among cauliflower MYB-bHLH-WD40 network proteins and examined the interplay of BoMYB2 with various bHLH transcription factors in planta. Yeast two-hybrid studies revealed that cauliflower BoMYBs along with the other regulators formed the MYB-bHLH-WD40 complexes and BobHLH1 acted as a bridge between BoMYB and BoWD40-1 proteins. Different BoMYBs exhibited different binding activity to BobHLH1. Examination of the BoMYB2 transgenic lines in Arabidopsis bHLH mutant backgrounds demonstrated that TT8, EGL3, and GL3 were all involved in the BoMYB2-mediated anthocyanin biosynthesis. Expression of BoMYB2 in Arabidopsis caused up-regulation of AtTT8 and AtEGL3 as well as a subset of anthocyanin structural genes encoding flavonoid 3'-hydroxylase, dihydroflavonol 4-reductase, and leucoanthocyanidin dioxygenase. Taken together, our results show that MYB-bHLH-WD40 network transcription factors regulated the bHLH gene expression, which may represent a critical feature in the control of anthocyanin biosynthesis. BoMYB2 together with various BobHLHs specifically regulated the late anthocyanin biosynthetic pathway genes for anthocyanin biosynthesis. Our findings provide additional information for the complicated regulatory network of anthocyanin biosynthesis and the transcriptional regulation of transcription factors in vegetable crops.
Secondary cell walls: biosynthesis, patterned deposition and transcriptional regulation.
Zhong, Ruiqin; Ye, Zheng-Hua
2015-02-01
Secondary walls are mainly composed of cellulose, hemicelluloses (xylan and glucomannan) and lignin, and are deposited in some specialized cells, such as tracheary elements, fibers and other sclerenchymatous cells. Secondary walls provide strength to these cells, which lend mechanical support and protection to the plant body and, in the case of tracheary elements, enable them to function as conduits for transporting water. Formation of secondary walls is a complex process that requires the co-ordinated expression of secondary wall biosynthetic genes, biosynthesis and targeted secretion of secondary wall components, and patterned deposition and assembly of secondary walls. Here, we provide a comprehensive review of genes involved in secondary wall biosynthesis and deposition. Most of the genes involved in the biosynthesis of secondary wall components, including cellulose, xylan, glucomannan and lignin, have been identified and their co-ordinated activation has been shown to be mediated by a transcriptional network encompassing the secondary wall NAC and MYB master switches and their downstream transcription factors. It has been demonstrated that cortical microtubules and microtubule-associated proteins play important roles in the targeted secretion of cellulose synthase complexes, the oriented deposition of cellulose microfibrils and the patterned deposition of secondary walls. Further investigation of many secondary wall-associated genes with unknown functions will provide new insights into the mechanisms controlling the formation of secondary walls that constitute the bulk of plant biomass. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Zorzoli, Azul; Grayczyk, James P; Alonzo, Francis
2016-10-01
To thrive in diverse environments, bacteria must shift their metabolic output in response to nutrient bioavailability. In many bacterial species, such changes in metabolic flux depend upon lipoic acid, a cofactor required for the activity of enzyme complexes involved in glycolysis, the citric acid cycle, glycine catabolism, and branched chain fatty acid biosynthesis. The requirement of lipoic acid for metabolic enzyme activity necessitates that bacteria synthesize the cofactor and/or scavenge it from environmental sources. Although use of lipoic acid is a conserved phenomenon, the mechanisms behind its biosynthesis and salvage can differ considerably between bacterial species. Furthermore, low levels of circulating free lipoic acid in mammals underscore the importance of lipoic acid acquisition for pathogenic microbes during infection. In this study, we used a genetic approach to characterize the mechanisms of lipoic acid biosynthesis and salvage in the bacterial pathogen Staphylococcus aureus and evaluated the requirements for both pathways during murine sepsis. We determined that S. aureus lipoic acid biosynthesis and salvage genes exist in an arrangement that directly links redox stress response and acetate biosynthesis genes. In addition, we found that lipoic acid salvage is dictated by two ligases that facilitate growth and lipoylation in distinct environmental conditions in vitro, but that are fully compensatory for survival in vivo. Upon infection of mice, we found that de novo biosynthesis or salvage promotes S. aureus survival in a manner that depends upon the infectious site. In addition, when both lipoic acid biosynthesis and salvage are blocked S. aureus is rendered avirulent, implying an inability to induce lipoic acid-independent metabolic programs to promote survival. Together, our results define the major pathways of lipoic acid biosynthesis and salvage in S. aureus and support the notion that bacterial nutrient acquisition schemes are instrumental in dictating pathogen proclivity for an infectious niche.
Alonzo, Francis
2016-01-01
To thrive in diverse environments, bacteria must shift their metabolic output in response to nutrient bioavailability. In many bacterial species, such changes in metabolic flux depend upon lipoic acid, a cofactor required for the activity of enzyme complexes involved in glycolysis, the citric acid cycle, glycine catabolism, and branched chain fatty acid biosynthesis. The requirement of lipoic acid for metabolic enzyme activity necessitates that bacteria synthesize the cofactor and/or scavenge it from environmental sources. Although use of lipoic acid is a conserved phenomenon, the mechanisms behind its biosynthesis and salvage can differ considerably between bacterial species. Furthermore, low levels of circulating free lipoic acid in mammals underscore the importance of lipoic acid acquisition for pathogenic microbes during infection. In this study, we used a genetic approach to characterize the mechanisms of lipoic acid biosynthesis and salvage in the bacterial pathogen Staphylococcus aureus and evaluated the requirements for both pathways during murine sepsis. We determined that S. aureus lipoic acid biosynthesis and salvage genes exist in an arrangement that directly links redox stress response and acetate biosynthesis genes. In addition, we found that lipoic acid salvage is dictated by two ligases that facilitate growth and lipoylation in distinct environmental conditions in vitro, but that are fully compensatory for survival in vivo. Upon infection of mice, we found that de novo biosynthesis or salvage promotes S. aureus survival in a manner that depends upon the infectious site. In addition, when both lipoic acid biosynthesis and salvage are blocked S. aureus is rendered avirulent, implying an inability to induce lipoic acid-independent metabolic programs to promote survival. Together, our results define the major pathways of lipoic acid biosynthesis and salvage in S. aureus and support the notion that bacterial nutrient acquisition schemes are instrumental in dictating pathogen proclivity for an infectious niche. PMID:27701474
Ma, Zhaoxue; Hu, Xupeng; Cai, Wenjuan; Huang, Weihua; Zhou, Xin; Luo, Qian; Yang, Hongquan; Wang, Jiawei; Huang, Jirong
2014-01-01
An extraordinarily precise regulation of chlorophyll biosynthesis is essential for plant growth and development. However, our knowledge on the complex regulatory mechanisms of chlorophyll biosynthesis is very limited. Previous studies have demonstrated that miR171-targeted scarecrow-like proteins (SCL6/22/27) negatively regulate chlorophyll biosynthesis via an unknown mechanism. Here we showed that SCLs inhibit the expression of the key gene encoding protochlorophyllide oxidoreductase (POR) in light-grown plants, but have no significant effect on protochlorophyllide biosynthesis in etiolated seedlings. Histochemical analysis of β-glucuronidase (GUS) activity in transgenic plants expressing pSCL27::rSCL27-GUS revealed that SCL27-GUS accumulates at high levels and suppresses chlorophyll biosynthesis at the leaf basal proliferation region during leaf development. Transient gene expression assays showed that the promoter activity of PORC is indeed regulated by SCL27. Consistently, chromatin immunoprecipitation and quantitative PCR assays showed that SCL27 binds to the promoter region of PORC in vivo. An electrophoretic mobility shift assay revealed that SCL27 is directly interacted with G(A/G)(A/T)AA(A/T)GT cis-elements of the PORC promoter. Furthermore, genetic analysis showed that gibberellin (GA)-regulated chlorophyll biosynthesis is mediated, at least in part, by SCLs. We demonstrated that SCL27 interacts with DELLA proteins in vitro and in vivo by yeast-two-hybrid and coimmunoprecipitation analysis and found that their interaction reduces the binding activity of SCL27 to the PORC promoter. Additionally, we showed that SCL27 activates MIR171 gene expression, forming a feedback regulatory loop. Taken together, our data suggest that the miR171-SCL module is critical for mediating GA-DELLA signaling in the coordinate regulation of chlorophyll biosynthesis and leaf growth in light. PMID:25101599
Alpermann, Tilman J.; Cembella, Allan D.; Collos, Yves; Masseret, Estelle; Montresor, Marina
2011-01-01
The dinoflagellate genus Alexandrium is one of the major harmful algal bloom (HAB) genera with respect to the diversity, magnitude and consequences of blooms. The ability of Alexandrium to colonize multiple habitats and to persist over large regions through time is testimony to the adaptability and resilience of this group of species. Three different families of toxins, as well as an as yet incompletely characterized suite of allelochemicals are produced among Alexandrium species. Nutritional strategies are equally diverse, including the ability to utilize a range of inorganic and organic nutrient sources, and feeding by ingestion of other organisms. Many Alexandrium species have complex life histories that include sexuality and often, but not always, cyst formation, which is characteristic of a meroplanktonic life strategy and offers considerable ecological advantages. Due to the public health and ecosystem impacts of Alexandrium blooms, the genus has been extensively studied, and there exists a broad knowledge base that ranges from taxonomy and phylogeny through genomics and toxin biosynthesis to bloom dynamics and modeling. Here we present a review of the genus Alexandrium, focusing on the major toxic and otherwise harmful species. PMID:22308102
Anderson, Donald M; Alpermann, Tilman J; Cembella, Allan D; Collos, Yves; Masseret, Estelle; Montresor, Marina
2012-02-01
The dinoflagellate genus Alexandrium is one of the major harmful algal bloom (HAB) genera with respect to the diversity, magnitude and consequences of blooms. The ability of Alexandrium to colonize multiple habitats and to persist over large regions through time is testimony to the adaptability and resilience of this group of species. Three different families of toxins, as well as an as yet incompletely characterized suite of allelochemicals are produced among Alexandrium species. Nutritional strategies are equally diverse, including the ability to utilize a range of inorganic and organic nutrient sources, and feeding by ingestion of other organisms. Many Alexandrium species have complex life histories that include sexuality and often, but not always, cyst formation, which is characteristic of a meroplanktonic life strategy and offers considerable ecological advantages. Due to the public health and ecosystem impacts of Alexandrium blooms, the genus has been extensively studied, and there exists a broad knowledge base that ranges from taxonomy and phylogeny through genomics and toxin biosynthesis to bloom dynamics and modeling. Here we present a review of the genus Alexandrium, focusing on the major toxic and otherwise harmful species.
Biosynthesis and processing of platelet GPIIb-IIIa in human megakaryocytes.
Duperray, A; Berthier, R; Chagnon, E; Ryckewaert, J J; Ginsberg, M; Plow, E; Marguerie, G
1987-06-01
Platelet membrane glycoprotein IIb-IIIa forms a calcium-dependent heterodimer and constitutes the fibrinogen receptor on stimulated platelets. GPIIb is a two-chain protein containing disulfide-linked alpha and beta subunits. GPIIIa is a single chain protein. These proteins are synthesized in the bone marrow by megakaryocytes, but the study of their synthesis has been hampered by the difficulty in obtaining enriched population of megakaryocytes in large numbers. To examine the biosynthesis and processing of GPIIb-IIIa, purified human megakaryocytes were isolated from liquid cultures of cryopreserved leukocytes stem cell concentrates from patients with chronic myelogenous leukemia. Immunoprecipitation of [35S]methionine pulse-chase-labeled cell extracts by antibodies specific for the alpha or beta subunits of GPIIb indicated that GPIIb was derived from a precursor of Mr 130,000 that contains the alpha and beta subunits. This precursor was converted to GPIIb with a half-life of 4-5 h. No precursor form of GPIIIa was detected. The glycosylation of GPIIb-IIIa was examined in megakaryocytes by metabolic labeling in the presence of tunicamycin, monensin, or treatment with endoglycosidase H. The polypeptide backbones of the GPIIb and the GPIIIa have molecular masses of 120 and 90 kD, respectively. High-mannose oligosaccharides are added to these polypeptide backbones co-translationally. The GPIIb precursor is then processed with conversion of high-mannose to complex type carbohydrates yielding the mature subunits GPIIb alpha (Mr 116,000) and GPIIb beta (Mr 25,000). No posttranslational processing of GPIIIa was detected.
Genomics of Secondary Metabolism in Populus: Interactions with Biotic and Abiotic Environments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, F.; Liu, C.; Tschaplinski, T. J.
2009-09-01
Populus trees face constant challenges from the environment during their life cycle. To ensure their survival and reproduction, Populus trees deploy various types of defenses, one of which is the production of a myriad of secondary metabolites. Compounds derived from the shikimate-phenylpropanoid pathway are the most abundant class of secondary metabolites synthesized in Populus. Among other major classes of secondary metabolites in Populus are terpenoids and fatty acid-derivatives. Some of the secondary metabolites made by Populus trees have been functionally characterized. Some others have been associated with certain biological/ecological processes, such as defense against insects and microbial pathogens or acclimationmore » or adaptation to abiotic stresses. Functions of many Populus secondary metabolites remain unclear. The advent of various novel genomic tools will enable us to explore in greater detail the complexity of secondary metabolism in Populus. Detailed data mining of the Populus genome sequence can unveil candidate genes of secondary metabolism. Metabolomic analysis will continue to identify new metabolites synthesized in Populus. Integrated genomics that combines various 'omics' tools will prove to be the most powerful approach in revealing the molecular and biochemical basis underlying the biosynthesis of secondary metabolites in Populus. Characterization of the biological/ecological functions of secondary metabolites as well as their biosynthesis will provide knowledge and tools for genetically engineering the production of seconday metabolites that can lead to the generation of novel, improved Populus varieties.« less
Adventures with Insulin in the Islets of Langerhans
Steiner, Donald F.
2011-01-01
Insulin is a small but beautifully organized protein with a unique two-chain structure, the first protein to be sequenced. The mechanism of its biosynthesis invited much initial speculation but was finally clarified by the discovery of proinsulin, its single-chain precursor. The rich present-day field of protein precursor processing via post-translational proteolysis within the secretory pathway arose in the early 1970s as an offshoot of studies on insulin biosynthesis, which provided a novel paradigm for the generation of many other small neuroendocrine peptides. Before long, this mechanism was also found to play a role in the production of a much wider spectrum of proteins traversing the secretory pathway (receptors, growth factors, blood-clotting components, and even many viral envelope proteins) occurring in almost all eukaryotic cells. Indeed, yeast provided a key clue in the search for the proprotein convertases, the endoproteases that work along with carboxypeptidases and other modifying enzymes, such as the amidating enzyme complex (PAM), in converting inactive or less active precursor proteins into their fully active peptide products. In this “Reflections” article, I have tried to recount the people and events in my life that led to my involvement first in basic biochemical research and then on to insulin, proinsulin, and many relevant related areas that continue to fascinate and challenge my colleagues and me, as well as many other biomedical scientists today, as diabetes mellitus increasingly threatens human health throughout our contemporary world. PMID:21454641
Pesticide Chemical Research in Toxicology: Lessons from Nature.
Casida, John E; Durkin, Kathleen A
2017-01-17
Pesticide researchers are students of nature, and each new compound and mechanism turns a page in the ever-expanding encyclopedia of life. Pesticides are both probes to learn about life processes and tools for pest management to facilitate food production and enhance health. In contrast to some household and industrial chemicals, pesticides are assumed to be hazardous to health and the environment until proven otherwise. About a thousand current pesticides working by more than 100 different mechanisms have helped understand many processes and coupled events. Pesticide chemical research is a major source of toxicology information on new natural products, novel targets or modes of action, resistance mechanisms, xenobiotic metabolism, selective toxicity, safety evaluations, and recommendations for safe and effective pest management. Target binding site models help define the effect of substituent changes and predict modifications for enhanced potency and safety and circumvention of resistance. The contribution of pesticide chemical research in toxicology is illustrated here with two each of the newer or most important insecticides, herbicides, and fungicides. The insecticides are imidacloprid and chlorantraniliprole acting on the nicotinic acetylcholine receptor and the ryanodine receptor Ca 2+ channel, respectively. The herbicides are glyphosate that inhibits aromatic amino acid biosynthesis and mesotrione that prevents plastoquinone and carotenoid formation. The fungicides are azoxystrobin inhibiting the Q o site of the cytochrome bc 1 complex and prothioconazole inhibiting the 14α-demethylase in ergosterol biosynthesis. The two target sites involved for each type of pesticide account for 27-40% of worldwide sales for all insecticides, herbicides, and fungicides. In each case, selection for resistance involving a single amino acid change in the binding site or detoxifying enzyme circumvents the pesticide chemists's structure optimization and guarantees survival of the pest and a continuing job for the design chemist. These lessons from nature are a continuing part of pest management and maintaining human and environmental health.
Enzymatic catalysis of anti-Baldwin ring closure in polyether biosynthesis.
Hotta, Kinya; Chen, Xi; Paton, Robert S; Minami, Atsushi; Li, Hao; Swaminathan, Kunchithapadam; Mathews, Irimpan I; Watanabe, Kenji; Oikawa, Hideaki; Houk, Kendall N; Kim, Chu-Young
2012-03-04
Polycyclic polyether natural products have fascinated chemists and biologists alike owing to their useful biological activity, highly complex structure and intriguing biosynthetic mechanisms. Following the original proposal for the polyepoxide origin of lasalocid and isolasalocid and the experimental determination of the origins of the oxygen and carbon atoms of both lasalocid and monensin, a unified stereochemical model for the biosynthesis of polyether ionophore antibiotics was proposed. The model was based on a cascade of nucleophilic ring closures of postulated polyepoxide substrates generated by stereospecific oxidation of all-trans polyene polyketide intermediates. Shortly thereafter, a related model was proposed for the biogenesis of marine ladder toxins, involving a series of nominally disfavoured anti-Baldwin, endo-tet epoxide-ring-opening reactions. Recently, we identified Lsd19 from the Streptomyces lasaliensis gene cluster as the epoxide hydrolase responsible for the epoxide-opening cyclization of bisepoxyprelasalocid A to form lasalocid A. Here we report the X-ray crystal structure of Lsd19 in complex with its substrate and product analogue to provide the first atomic structure-to our knowledge-of a natural enzyme capable of catalysing the disfavoured epoxide-opening cyclic ether formation. On the basis of our structural and computational studies, we propose a general mechanism for the enzymatic catalysis of polyether natural product biosynthesis. © 2012 Macmillan Publishers Limited. All rights reserved
Natural products from filamentous fungi and production by heterologous expression.
Alberti, Fabrizio; Foster, Gary D; Bailey, Andy M
2017-01-01
Filamentous fungi represent an incredibly rich and rather overlooked reservoir of natural products, which often show potent bioactivity and find applications in different fields. Increasing the naturally low yields of bioactive metabolites within their host producers can be problematic, and yield improvement is further hampered by such fungi often being genetic intractable or having demanding culturing conditions. Additionally, total synthesis does not always represent a cost-effective approach for producing bioactive fungal-inspired metabolites, especially when pursuing assembly of compounds with complex chemistry. This review aims at providing insights into heterologous production of secondary metabolites from filamentous fungi, which has been established as a potent system for the biosynthesis of bioactive compounds. Numerous advantages are associated with this technique, such as the availability of tools that allow enhanced production yields and directing biosynthesis towards analogues of the naturally occurring metabolite. Furthermore, a choice of hosts is available for heterologous expression, going from model unicellular organisms to well-characterised filamentous fungi, which has also been shown to allow the study of biosynthesis of complex secondary metabolites. Looking to the future, fungi are likely to continue to play a substantial role as sources of new pharmaceuticals and agrochemicals-either as producers of novel natural products or indeed as platforms to generate new compounds through synthetic biology.
Downstream reactions and engineering in the microbially reconstituted pathway for Taxol.
Jiang, Ming; Stephanopoulos, Gregory; Pfeifer, Blaine A
2012-05-01
Taxol (a trademarked product of Bristol-Myers Squibb) is a complex isoprenoid natural product which has displayed potent anticancer activity. Originally isolated from the Pacific yew tree (Taxus brevifolia), Taxol has been mass-produced through processes reliant on plant-derived biosynthesis. Recently, there have been alternative efforts to reconstitute the biosynthetic process through technically convenient microbial hosts, which offer unmatched growth kinetics and engineering potential. Such an approach is made challenging by the need to successfully introduce the significantly foreign enzymatic steps responsible for eventual biosynthesis. Doing so, however, offers the potential to engineer more efficient and economical production processes and the opportunity to design and produce tailored analog compounds with enhanced properties. This mini review will specifically focus on heterologous biosynthesis as it applies to Taxol with an emphasis on the challenges associated with introducing and reconstituting the downstream reaction steps needed for final bioactivity.
The seco-iridoid pathway from Catharanthus roseus
Miettinen, Karel; Dong, Lemeng; Navrot, Nicolas; Schneider, Thomas; Burlat, Vincent; Pollier, Jacob; Woittiez, Lotte; van der Krol, Sander; Lugan, Raphaël; Ilc, Tina; Verpoorte, Robert; Oksman-Caldentey, Kirsi-Marja; Martinoia, Enrico; Bouwmeester, Harro; Goossens, Alain; Memelink, Johan; Werck-Reichhart, Danièle
2014-01-01
The (seco)iridoids and their derivatives, the monoterpenoid indole alkaloids (MIAs), form two large families of plant-derived bioactive compounds with a wide spectrum of high-value pharmacological and insect-repellent activities. Vinblastine and vincristine, MIAs used as anticancer drugs, are produced by Catharanthus roseus in extremely low levels, leading to high market prices and poor availability. Their biotechnological production is hampered by the fragmentary knowledge of their biosynthesis. Here we report the discovery of the last four missing steps of the (seco)iridoid biosynthesis pathway. Expression of the eight genes encoding this pathway, together with two genes boosting precursor formation and two downstream alkaloid biosynthesis genes, in an alternative plant host, allows the heterologous production of the complex MIA strictosidine. This confirms the functionality of all enzymes of the pathway and highlights their utility for synthetic biology programmes towards a sustainable biotechnological production of valuable (seco)iridoids and alkaloids with pharmaceutical and agricultural applications. PMID:24710322
Synthesis, delivery and regulation of eukaryotic heme and Fe-S cluster cofactors.
Barupala, Dulmini P; Dzul, Stephen P; Riggs-Gelasco, Pamela Jo; Stemmler, Timothy L
2016-02-15
In humans, the bulk of iron in the body (over 75%) is directed towards heme- or Fe-S cluster cofactor synthesis, and the complex, highly regulated pathways in place to accomplish biosynthesis have evolved to safely assemble and load these cofactors into apoprotein partners. In eukaryotes, heme biosynthesis is both initiated and finalized within the mitochondria, while cellular Fe-S cluster assembly is controlled by correlated pathways both within the mitochondria and within the cytosol. Iron plays a vital role in a wide array of metabolic processes and defects in iron cofactor assembly leads to human diseases. This review describes progress towards our molecular-level understanding of cellular heme and Fe-S cluster biosynthesis, focusing on the regulation and mechanistic details that are essential for understanding human disorders related to the breakdown in these essential pathways. Copyright © 2016 Elsevier Inc. All rights reserved.
Recreating the synthesis of starch granules in yeast
Pfister, Barbara; Sánchez-Ferrer, Antoni; Diaz, Ana; Lu, Kuanjen; Otto, Caroline; Holler, Mirko; Shaik, Farooque Razvi; Meier, Florence; Mezzenga, Raffaele; Zeeman, Samuel C
2016-01-01
Starch, as the major nutritional component of our staple crops and a feedstock for industry, is a vital plant product. It is composed of glucose polymers that form massive semi-crystalline granules. Its precise structure and composition determine its functionality and thus applications; however, there is no versatile model system allowing the relationships between the biosynthetic apparatus, glucan structure and properties to be explored. Here, we expressed the core Arabidopsis starch-biosynthesis pathway in Saccharomyces cerevisiae purged of its endogenous glycogen-metabolic enzymes. Systematic variation of the set of biosynthetic enzymes illustrated how each affects glucan structure and solubility. Expression of the complete set resulted in dense, insoluble granules with a starch-like semi-crystalline organization, demonstrating that this system indeed simulates starch biosynthesis. Thus, the yeast system has the potential to accelerate starch research and help create a holistic understanding of starch granule biosynthesis, providing a basis for the targeted biotechnological improvement of crops. DOI: http://dx.doi.org/10.7554/eLife.15552.001 PMID:27871361
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kersten, Roland D.; Diedrich, Jolene K.; Yates, III, John R.
Terpenes are ubiquitous natural chemicals with diverse biological functions spanning all three domains of life. In specialized metabolism, the active sites of terpene synthases (TPSs) evolve in shape and reactivity to direct the biosynthesis of a myriad of chemotypes for organismal fitness. As most terpene biosynthesis mechanistically involves highly reactive carbocationic intermediates, the protein surfaces catalyzing these cascade reactions possess reactive regions possibly prone to premature carbocation capture and potentially enzyme inactivation. Here, we show using proteomic and X-ray crystallographic analyses that cationic intermediates undergo capture by conserved active site residues leading to inhibitory self-alkylation. Furthermore, the level of cation-mediatedmore » inactivation increases with mutation of the active site, upon changes in the size and structure of isoprenoid diphosphate substrates, and alongside increases in reaction temperatures. TPSs that individually synthesize multiple products are less prone to self-alkylation then TPSs possessing relatively high product specificity. In total, the results presented suggest that mechanism-based alkylation represents an overlooked mechanistic pressure during the evolution of cation-derived terpene biosynthesis.« less
Xiao, Yi; Jiang, Wen; Zhang, Fuzhong
2017-10-20
Responding to nitrogen status is essential for all living organisms. Bacteria have evolved various complex and exquisite regulatory systems to control nitrogen metabolism. However, natural nitrogen regulatory systems, owing to their complexity, often function only in their original hosts and do not respond properly when transferred to another species. By harnessing the Lactococcus GlnRA system, we developed a genetically encoded, cross-species ammonium biosensor that displays a dynamic range up to 9-fold upon detection of ammonium ion. We demonstrated applications of this ammonium biosensor in three different species (Escherichia coli, Pseudomonas putida, and Synechocystis sp.) to detect different nitrogen sources. This ammonium sensor was further used to regulate the biosynthesis of a nitrogen-rich polymer, cyanophycin, based on ammonium concentration. Given the importance of nitrogen responses, the developed biosensor should be broadly applicable to synthetic biology and bioengineering.
Chemical-genetic profile analysis of five inhibitory compounds in yeast.
Alamgir, Md; Erukova, Veronika; Jessulat, Matthew; Azizi, Ali; Golshani, Ashkan
2010-08-06
Chemical-genetic profiling of inhibitory compounds can lead to identification of their modes of action. These profiles can help elucidate the complex interactions between small bioactive compounds and the cell machinery, and explain putative gene function(s). Colony size reduction was used to investigate the chemical-genetic profile of cycloheximide, 3-amino-1,2,4-triazole, paromomycin, streptomycin and neomycin in the yeast Saccharomyces cerevisiae. These compounds target the process of protein biosynthesis. More than 70,000 strains were analyzed from the array of gene deletion mutant yeast strains. As expected, the overall profiles of the tested compounds were similar, with deletions for genes involved in protein biosynthesis being the major category followed by metabolism. This implies that novel genes involved in protein biosynthesis could be identified from these profiles. Further investigations were carried out to assess the activity of three profiled genes in the process of protein biosynthesis using relative fitness of double mutants and other genetic assays. Chemical-genetic profiles provide insight into the molecular mechanism(s) of the examined compounds by elucidating their potential primary and secondary cellular target sites. Our follow-up investigations into the activity of three profiled genes in the process of protein biosynthesis provided further evidence concerning the usefulness of chemical-genetic analyses for annotating gene functions. We termed these genes TAE2, TAE3 and TAE4 for translation associated elements 2-4.
Matilla, Miguel A; Leeper, Finian J; Salmond, George P C
2015-01-01
Polyketides represent an important class of bioactive natural products with a broad range of biological activities. We identified recently a large trans-acyltransferase (AT) polyketide synthase gene cluster responsible for the biosynthesis of the antifungal, anti-oomycete and antitumor haterumalide, oocydin A (ooc). Using genome sequencing and comparative genomics, we show that the ooc gene cluster is widespread within biocontrol and phytopathogenic strains of the enterobacteria, Serratia and Dickeya. The analysis of in frame deletion mutants confirmed the role of a hydroxymethylglutaryl-coenzyme A synthase cassette, three flavin-dependent tailoring enzymes, a free-standing acyl carrier protein and two hypothetical proteins in oocydin A biosynthesis. The requirement of the three trans-acting AT domains for the biosynthesis of the macrolide was also demonstrated. Expression of the ooc gene cluster was shown to be positively regulated by an N-acyl-L-homoserine lactone-based quorum sensing system, but operating in a strain-dependent manner. At a post-transcriptional level, the RNA chaperone, Hfq, plays a key role in oocydin A biosynthesis. The Hfq-dependent regulation is partially mediated by the stationary phase sigma factor, RpoS, which was also shown to positively regulate the synthesis of the macrolide. Our results reveal differential regulation of the divergently transcribed ooc transcriptional units, highlighting the complexity of oocydin A production. PMID:25753587
Chidgey, Jack W.; Linhartová, Markéta; Komenda, Josef; Jackson, Philip J.; Dickman, Mark J.; Canniffe, Daniel P.; Koník, Peter; Pilný, Jan; Hunter, C. Neil; Sobotka, Roman
2014-01-01
Macromolecular membrane assemblies of chlorophyll-protein complexes efficiently harvest and trap light energy for photosynthesis. To investigate the delivery of chlorophylls to the newly synthesized photosystem apoproteins, a terminal enzyme of chlorophyll biosynthesis, chlorophyll synthase (ChlG), was tagged in the cyanobacterium Synechocystis PCC 6803 (Synechocystis) and used as bait in pull-down experiments. We retrieved an enzymatically active complex comprising ChlG and the high-light-inducible protein HliD, which associates with the Ycf39 protein, a putative assembly factor for photosystem II, and with the YidC/Alb3 insertase. 2D electrophoresis and immunoblotting also provided evidence for the presence of SecY and ribosome subunits. The isolated complex contained chlorophyll, chlorophyllide, and carotenoid pigments. Deletion of hliD elevated the level of the ChlG substrate, chlorophyllide, more than 6-fold; HliD is apparently required for assembly of FLAG-ChlG into larger complexes with other proteins such as Ycf39. These data reveal a link between chlorophyll biosynthesis and the Sec/YidC-dependent cotranslational insertion of nascent photosystem polypeptides into membranes. We expect that this close physical linkage coordinates the arrival of pigments and nascent apoproteins to produce photosynthetic pigment-protein complexes with minimal risk of accumulating phototoxic unbound chlorophylls. PMID:24681617
Determination of the Glycogen Content in Cyanobacteria.
De Porcellinis, Alice; Frigaard, Niels-Ulrik; Sakuragi, Yumiko
2017-07-17
Cyanobacteria accumulate glycogen as a major intracellular carbon and energy storage during photosynthesis. Recent developments in research have highlighted complex mechanisms of glycogen metabolism, including the diel cycle of biosynthesis and catabolism, redox regulation, and the involvement of non-coding RNA. At the same time, efforts are being made to redirect carbon from glycogen to desirable products in genetically engineered cyanobacteria to enhance product yields. Several methods are used to determine the glycogen contents in cyanobacteria, with variable accuracies and technical complexities. Here, we provide a detailed protocol for the reliable determination of the glycogen content in cyanobacteria that can be performed in a standard life science laboratory. The protocol entails the selective precipitation of glycogen from the cell lysate and the enzymatic depolymerization of glycogen to generate glucose monomers, which are detected by a glucose oxidase-peroxidase (GOD-POD) enzyme coupled assay. The method has been applied to Synechocystis sp. PCC 6803 and Synechococcus sp. PCC 7002, two model cyanobacterial species that are widely used in metabolic engineering. Moreover, the method successfully showed differences in the glycogen contents between the wildtype and mutants defective in regulatory elements or glycogen biosynthetic genes.
Wirtz, M; Berkowitz, O; Droux, M; Hell, R
2001-02-01
Serine acetyltransferase (SAT) catalyzes the rate-limiting step of cysteine biosynthesis in bacteria and plants and functions in association with O-acetylserine (thiol) lyase (OAS-TL) in the cysteine synthase complex. Very little is known about the structure and catalysis of SATs except that they share a characteristic C-terminal hexapeptide-repeat domain with a number of enzymatically unrelated acyltransferases. Computational modeling of this domain was performed for the mitochondrial SAT isoform from Arabidopsis thaliana, based on crystal structures of bacterial acyltransferases. The results indicate a left-handed parallel beta-helix consisting of beta-sheets alternating with turns, resulting in a prism-like structure. This model was challenged by site-directed mutagenesis and tested for a suspected dual function of this domain in catalysis and hetero-oligomerization. The bifunctionality of the SAT C-terminus in transferase activity and interaction with OAS-TL is demonstrated and discussed with respect to the putative role of the cysteine synthase complex in regulation of cysteine biosynthesis.
Detoxification of Arsenic by Phytochelatins in Plants1
Schmöger, Marcus E.V.; Oven, Matjaz; Grill, Erwin
2000-01-01
As is a ubiquitous element present in the atmosphere as well as in the aquatic and terrestrial environments. Arsenite and arsenate are the major forms of As intoxication, and these anions are readily taken up by plants. Both anions efficiently induce the biosynthesis of phytochelatins (PCs) ([γ-glutamate-cysteine]n-glycine) in vivo and in vitro. The rapid induction of the metal-binding PCs has been observed in cell suspension cultures of Rauvolfia serpentina, in seedlings of Arabidopsis, and in enzyme preparations of Silene vulgaris upon challenge to arsenicals. The rate of PC formation in enzyme preparations was lower compared with Cd-induced biosynthesis, but was accompanied by a prolonged induction phase that resulted finally in higher peptide levels. An approximately 3:1 ratio of the sulfhydryl groups from PCs to As is compatible with reported As-glutathione complexes. The identity of the As-induced PCs and of reconstituted metal-peptide complexes has unequivocally been demonstrated by electrospray ionization mass spectroscopy. Gel filtration experiments and inhibitor studies also indicate a complexation and detoxification of As by the induced PCs. PMID:10712543
Chen, Xiao-Min; Feng, Ming-Jun; Shen, Cai-Jie; He, Bin; Du, Xian-Feng; Yu, Yi-Bo; Liu, Jing; Chu, Hui-Min
2017-07-01
The present study was designed to develop a novel method for identifying significant pathways associated with human hypertrophic cardiomyopathy (HCM), based on gene co‑expression analysis. The microarray dataset associated with HCM (E‑GEOD‑36961) was obtained from the European Molecular Biology Laboratory‑European Bioinformatics Institute database. Informative pathways were selected based on the Reactome pathway database and screening treatments. An empirical Bayes method was utilized to construct co‑expression networks for informative pathways, and a weight value was assigned to each pathway. Differential pathways were extracted based on weight threshold, which was calculated using a random model. In order to assess whether the co‑expression method was feasible, it was compared with traditional pathway enrichment analysis of differentially expressed genes, which were identified using the significance analysis of microarrays package. A total of 1,074 informative pathways were screened out for subsequent investigations and their weight values were also obtained. According to the threshold of weight value of 0.01057, 447 differential pathways, including folding of actin by chaperonin containing T‑complex protein 1 (CCT)/T‑complex protein 1 ring complex (TRiC), purine ribonucleoside monophosphate biosynthesis and ubiquinol biosynthesis, were obtained. Compared with traditional pathway enrichment analysis, the number of pathways obtained from the co‑expression approach was increased. The results of the present study demonstrated that this method may be useful to predict marker pathways for HCM. The pathways of folding of actin by CCT/TRiC and purine ribonucleoside monophosphate biosynthesis may provide evidence of the underlying molecular mechanisms of HCM, and offer novel therapeutic directions for HCM.
Tambasco-Studart, Marina; Tews, Ivo; Amrhein, Nikolaus; Fitzpatrick, Teresa B.
2007-01-01
Vitamin B6 is an essential metabolite in all organisms, being required as a cofactor for a wide variety of biochemical reactions. De novo biosynthesis of the vitamin occurs in microorganisms and plants, but animals must obtain it from their diet. Two distinct and mutually exclusive de novo pathways have been identified to date, namely deoxyxylulose 5-phosphate dependent, which is restricted to a subset of eubacteria, and deoxyxylulose 5-phosphate independent, present in archaea, fungi, plants, protista, and most eubacteria. In these organisms, pyridoxal 5′-phosphate (PLP) formation is catalyzed by a single glutamine amidotransferase (PLP synthase) composed of a glutaminase domain, PDX2, and a synthase domain, PDX1. Despite plants being an important source of vitamin B6, very little is known about its biosynthesis. Here, we provide information for Arabidopsis thaliana. The functionality of PDX2 is demonstrated, using both in vitro and in vivo analyses. The expression pattern of PDX2 is assessed at both the RNA and protein level, providing insight into the spatial and temporal pattern of vitamin B6 biosynthesis. We then provide a detailed biochemical analysis of the plant PLP synthase complex. While the active sites of PDX1 and PDX2 are remote from each other, coordination of catalysis is much more pronounced with the plant proteins than its bacterial counterpart, Bacillus subtilis. Based on a model of the PDX1/PDX2 complex, mutation of a single residue uncouples enzyme coordination and in turn provides tangible evidence for the existence of the recently proposed ammonia tunnel through the core of PDX1. PMID:17468224
YrdC exhibits properties expected of a subunit for a tRNA threonylcarbamoyl transferase.
Harris, Kimberly A; Jones, Victoria; Bilbille, Yann; Swairjo, Manal A; Agris, Paul F
2011-09-01
The post-transcriptional nucleoside modifications of tRNA's anticodon domain form the loop structure and dynamics required for effective and accurate recognition of synonymous codons. The N(6)-threonylcarbamoyladenosine modification at position 37 (t(6)A(37)), 3'-adjacent to the anticodon, of many tRNA species in all organisms ensures the accurate recognition of ANN codons by increasing codon affinity, enhancing ribosome binding, and maintaining the reading frame. However, biosynthesis of this complex modification is only partially understood. The synthesis requires ATP, free threonine, a single carbon source for the carbamoyl, and an enzyme yet to be identified. Recently, the universal protein family Sua5/YciO/YrdC was associated with t(6)A(37) biosynthesis. To further investigate the role of YrdC in t(6)A(37) biosynthesis, the interaction of the Escherichia coli YrdC with a heptadecamer anticodon stem and loop of lysine tRNA (ASL(Lys)(UUU)) was examined. YrdC bound the unmodified ASL(Lys)(UUU) with high affinity compared with the t(6)A(37)-modified ASL(Lys)(UUU) (K(d) = 0.27 ± 0.20 μM and 1.36 ± 0.39 μM, respectively). YrdC also demonstrated specificity toward the unmodified versus modified anticodon pentamer UUUUA and toward threonine and ATP. The protein did not significantly alter the ASL architecture, nor was it able to base flip A(37), as determined by NMR, circular dichroism, and fluorescence of 2-aminopuine at position 37. Thus, current data support the hypothesis that YrdC, with many of the properties of a putative threonylcarbamoyl transferase, most likely functions as a component of a heteromultimeric protein complex for t(6)A(37) biosynthesis.
Morvaridi, Susan; Saiki, Ryoichi; Johnson, Jarrett S.; Liau, Wei-Siang; Hirano, Kathleen; Kawashima, Tadashi; Ji, Ziming; Loo, Joseph A.; Shepherd, Jennifer N.; Clarke, Catherine F.
2014-01-01
Coenzyme Qn (ubiquinone or Qn) is a redox active lipid composed of a fully substituted benzoquinone ring and a polyisoprenoid tail of n isoprene units. Saccharomyces cerevisiae coq1-coq9 mutants have defects in Q biosynthesis, lack Q6, are respiratory defective, and sensitive to stress imposed by polyunsaturated fatty acids. The hallmark phenotype of the Q-less yeast coq mutants is that respiration in isolated mitochondria can be rescued by the addition of Q2, a soluble Q analog. Yeast coq10 mutants share each of these phenotypes, with the surprising exception that they continue to produce Q6. Structure determination of the Caulobacter crescentus Coq10 homolog (CC1736) revealed a steroidogenic acute regulatory protein-related lipid transfer (START) domain, a hydrophobic tunnel known to bind specific lipids in other START domain family members. Here we show that purified CC1736 binds Q2, Q3, Q10, or demethoxy-Q3 in an equimolar ratio, but fails to bind 3-farnesyl-4-hydroxybenzoic acid, a farnesylated analog of an early Q-intermediate. Over-expression of C. crescentus CC1736 or COQ8 restores respiratory electron transport and antioxidant function of Q6 in the yeast coq10 null mutant. Studies with stable isotope ring precursors of Q reveal that early Q-biosynthetic intermediates accumulate in the coq10 mutant and de novo Q-biosynthesis is less efficient than in the wild-type yeast or rescued coq10 mutant. The results suggest that the Coq10 polypeptide:Q (protein:ligand) complex may serve essential functions in facilitating de novo Q biosynthesis and in delivering newly synthesized Q to one or more complexes of the respiratory electron transport chain. PMID:23270816
Actions of placental and fetal adrenal steroid hormones in primate pregnancy.
Pepe, G J; Albrecht, E D
1995-10-01
It is clear that steroid hormones of placental and fetal adrenal origin have critically important roles in regulating key physiological events essential to the maintenance of pregnancy and development of the fetus for extrauterine life. Thus, progesterone has suppressive actions on lymphocyte proliferation and activity and on the immune system to prevent rejection of the developing fetus and placenta (see Fig. 9). Progesterone also suppresses the calcium-calmodulin-MLCK system and thus activity of uterine smooth muscle, thereby promoting myometrial quiescence to ensure the maintenance of pregnancy. Estrogen enhances uteroplacental blood flow and possibly placental neovascularization to provide optimal gas exchange and the nutrients required for the rapidly developing fetus and placenta. In turn, estrogen has specific stimulatory effects on the receptor-mediated uptake of LDL by, and P-450scc activity within, syncytiotrophoblasts, thus promoting the biosynthesis of progesterone. Moreover, there is an estrogen-dependent developmental regulation of expression of the LDL receptor and NAD-dependent 11 beta-HSD in the placenta, processes reflecting functional/biochemical differentiation of the trophoblast cells with advancing gestation. The increase in 11 beta-HSD causes a change in transplacental corticosteroid metabolism, which results in activation of the HPAA in the fetus. As a result of this cascade of events, there is an increase in expression of pituitary POMC/ACTH and key enzymes, e.g. 3 beta-HSD and P-450 17 alpha-hydroxylase, important for de novo cortisol formation by, and consequently maturation of, the fetal adrenal gland. In turn, cortisol has well defined actions on surfactant biosynthesis and consequently fetal lung maturation, as well as effects on placental CRH/POMC release, which may be important to the initiation of labor. At midgestation, estrogen also selectively feeds back on the fetal adrenal to suppress DHA and maintain physiologically normal levels of estrogen. Preparation of the breast for lactation and nourishment of the newborn appears to involve a multifactorial system of regulation that includes estrogen. It is apparent, therefore, that autocrine/paracrine, as well as endocrine, systems of regulation are operative within the fetoplacental unit during primate pregnancy. A major goal of this review has been to illustrate the critically close functional communication existing between the developing placenta and fetus in the biosynthesis and the actions of steroid hormones during primate pregnancy. The functional interaction of the human fetal adrenal and placenta with respect to the biosynthesis of estrogen was demonstrated many years ago. However, the recent studies presented in this review show that the endocrine interaction between the fetus and placenta is more extensive, involving complex physiological regulatory mechanisms. Thus, as illustrated in Fig. 9, estrogen, acting via its receptor within the placenta and other reproductive tissues, orchestrates the dynamic interchange between the placenta and fetus responsible for the developmental regulation of the biosynthesis of the various steroid and peptide hormones and their receptors necessary for the maintenance of pregnancy and development of a live newborn. It would appear, therefore, that the immediate and long range challenges in this area of reproductive endocrinology are to employ in vitro molecular and in vivo experimental approaches simultaneously to elucidate the nature of these complex interactions and define the cellular and molecular mechanisms underlying these important regulatory events.
Ruhal, Rohit; Kataria, Rashmi; Choudhury, Bijan
2013-01-01
Summary The current knowledge of trehalose biosynthesis under stress conditions is incomplete and needs further research. Since trehalose finds industrial and pharmaceutical applications, enhanced accumulation of trehalose in bacteria seems advantageous for commercial production. Moreover, physiological role of trehalose is a key to generate stress resistant bacteria by metabolic engineering. Although trehalose biosynthesis requires few metabolites and enzyme reactions, it appears to have a more complex metabolic regulation. Trehalose biosynthesis in bacteria is known through three pathways – OtsAB, TreYZ and TreS. The interconnections of in vivo synthesis of trehalose, glycogen or maltose were most interesting to investigate in recent years. Further, enzymes at different nodes (glucose-6-P, glucose-1-P and NDP-glucose) of metabolic pathways influence enhancement of trehalose accumulation. Most of the study of trehalose biosynthesis was explored in medically significant Mycobacterium, research model Escherichia coli, industrially applicable Corynebacterium and food and probiotic interest Propionibacterium freudenreichii. Therefore, the present review dealt with the trehalose metabolism in these bacteria. In addition, an effort was made to recognize how enzymes at different nodes of metabolic pathway can influence trehalose accumulation. PMID:23302511
Schmidt-Heydt, Markus; Abdel-Hadi, Ahmed; Magan, Naresh; Geisen, Rolf
2009-11-15
A microarray analysis was performed to study the effect of varying combinations of water activity and temperature on the activation of aflatoxin biosynthesis genes in Aspergillusflavus grown on YES medium. Generally A. flavus showed expression of the aflatoxin biosynthetic genes at all parameter combinations tested. Certain combinations of a(w) and temperature, especially combinations which imposed stress on the fungus resulted in a significant reduction of the growth rate. At these conditions induction of the whole aflatoxin biosynthesis gene cluster occurred, however the produced aflatoxin B(1) was low. At all other combinations (25 degrees C/0.95 and 0.99; 30 degrees C/0.95 and 0.99; 35 degrees C/0.95 and 0.99) a reduced basal level of cluster gene expression occurred. At these combinations a high growth rate was obtained as well as high aflatoxin production. When single genes were compared, two groups with different expression profiles in relation to water activity/temperature combinations occurred. These two groups were co-ordinately localized within the aflatoxin gene cluster. The ratio of aflR/aflJ expression was correlated with increased aflatoxin biosynthesis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lockhart, Ainsley; Zvenigorodsky, Natasha; Pedraza, Mary Ann
2011-08-11
The biosynthesis of chlorophyll and other tetrapyrroles is a vital but poorly understood process. Recent genomic advances with the unicellular green algae Chlamydomonas reinhardtii have created opportunity to more closely examine the mechanisms of the chlorophyll biosynthesis pathway via transcriptome analysis. Manganese is a nutrient of interest for complex reactions because of its multiple stable oxidation states and role in molecular oxygen coordination. C. reinhardtii was cultured in Manganese-deplete Tris-acetate-phosphate (TAP) media for 24 hours and used to create cDNA libraries for sequencing using Illumina TruSeq technology. Transcriptome analysis provided intriguing insight on possible regulatory mechanisms in the pathway. Evidencemore » supports similarities of GTR (Glutamyl-tRNA synthase) to its Chlorella vulgaris homolog in terms of Mn requirements. Data was also suggestive of Mn-related compensatory up-regulation for pathway proteins CHLH1 (Manganese Chelatase), GUN4 (Magnesium chelatase activating protein), and POR1 (Light-dependent protochlorophyllide reductase). Intriguingly, data suggests possible reciprocal expression of oxygen dependent CPX1 (coproporphyrinogen III oxidase) and oxygen independent CPX2. Further analysis using RT-PCR could provide compelling evidence for several novel regulatory mechanisms in the chlorophyll biosynthesis pathway.« less
Bao, Zeqing; Lan, Christopher Q
2018-06-04
This study investigated the role of chlorophyll and light in the biosynthesis of silver nanoparticles (AgNPs) using disrupted cell aqueous extract of Neochloris oleoabundans. It was found that, while increasing sonication time increased the percentage of disrupted cells and efficiency of aqueous cell extraction, over-sonication reduced AgNPs production. AgNPs biosynthesis required illumination of white, blue, or purple light while AgNPs formation was undetectable under dark condition or illumination of orange or red light, indicating only photons of high energy levels among the photosynthetic active radiations are capable of exciting the electrons of chlorophylls to a state that is sufficient for Ag + reduction. Chlorophylls were demonstrated to be an essential component mediating the reduction of Ag + and results of mass balance suggest that chlorophylls need to be recycled for the reaction to complete. The ultimate electron donor was hypothesized to be water, which supplemented electrons through water splitting catalyzed by photosynthetic enzyme complexes such as photosystem II. A hypothetical reaction mechanism is proposed for the light-dependent biosynthesis of AgNPs based on systematic experimental results and literature data for the first time. Copyright © 2018 Elsevier B.V. All rights reserved.
Engineering a microbial platform for de novo biosynthesis of diverse methylxanthines
McKeague, Maureen; Wang, Yen-Hsiang; Cravens, Aaron; Win, Maung Nyan; Smolke, Christina D.
2016-01-01
Engineered microbial biosynthesis of plant natural products can support manufacturing of complex bioactive molecules and enable discovery of non-naturally occurring derivatives. Purine alkaloids, including caffeine (coffee), theophylline (antiasthma drug), theobromine (chocolate), and other methylxanthines, play a significant role in pharmacology and food chemistry. Here, we engineered the eukaryotic microbial host Saccharomyces cerevisiae for the de novo biosynthesis of methylxanthines. We constructed a xanthine-to-xanthosine conversion pathway in native yeast central metabolism to increase endogenous purine flux for the production of 7-methylxanthine, a key intermediate in caffeine biosynthesis. Yeast strains were further engineered to produce caffeine through expression of several enzymes from the coffee plant. By expressing combinations of different N-methyltransferases, we were able to demonstrate re-direction of flux to an alternate pathway and develop strains that support the production of diverse methylxanthines. We achieved production of 270 μg/L, 61 μg/L, and 3700 μg/L of caffeine, theophylline, and 3-methylxanthine, respectively, in 0.3-L bench-scale batch fermentations. The constructed strains provide an early platform for de novo production of methylxanthines and with further development will advance the discovery and synthesis of xanthine derivatives. PMID:27519552
Pip, a Novel Activator of Phenazine Biosynthesis in Pseudomonas chlororaphis PCL1391▿ †
Girard, Geneviève; Barends, Sharief; Rigali, Sébastien; van Rij, E. Tjeerd; Lugtenberg, Ben J. J.; Bloemberg, Guido V.
2006-01-01
Secondary metabolites are important factors for interactions between bacteria and other organisms. Pseudomonas chlororaphis PCL1391 produces the antifungal secondary metabolite phenazine-1-carboxamide (PCN) that inhibits growth of Fusarium oxysporum f. sp. radius lycopersici the causative agent of tomato foot and root rot. Our previous work unraveled a cascade of genes regulating the PCN biosynthesis operon, phzABCDEFGH. Via a genetic screen, we identify in this study a novel TetR/AcrR regulator, named Pip (phenazine inducing protein), which is essential for PCN biosynthesis. A combination of a phenotypical characterization of a pip mutant, in trans complementation assays of various mutant strains, and electrophoretic mobility shift assays identified Pip as the fifth DNA-binding protein so far involved in regulation of PCN biosynthesis. In this regulatory pathway, Pip is positioned downstream of PsrA (Pseudomonas sigma factor regulator) and the stationary-phase sigma factor RpoS, while it is upstream of the quorum-sensing system PhzI/PhzR. These findings provide further evidence that the path leading to the expression of secondary metabolism gene clusters in Pseudomonas species is highly complex. PMID:16997957
Inhibition of eicosanoid signaling leads to increased lipid peroxidation in a host/parasitoid system
USDA-ARS?s Scientific Manuscript database
We posed the hypothesis that eicosanoids act in reduction of oxidative stress in insects. Here we report that inhibiting eicosanoid biosynthesis throughout the larval, pupal and adult life led to major alterations on some oxidative and antioxidative parameters of the greater wax moth, Galleria mello...
Requirement of siderophore biosynthesis for plant colonization by Salmonella enterica
USDA-ARS?s Scientific Manuscript database
Contaminated fresh produce has become the number one vector of non-typhoidal salmonellosis to humans. However, Salmonella enterica genes essential for the life cycle of this organism outside the mammalian host are for the most part unknown. Screening deletion mutants led to the discovery that an aro...
Bol'shakov, M A; Ashikhmin, A A; Makhneva, Z K; Moskalenko, A A
2015-09-01
The effect of carotenoids on the assembly of LH2 complex in cells of the purple nonsulfur bacterium Rhodoblastus acidophilus was investigated. For this purpose, the bacterial culture was cultivated with an inhibitor of carotenoid biosynthesis - 71 µM diphenylamine (DPA). The inhibitor decreased the level of biosynthesis of the colored carotenoids in membranes by ~58%. It was found that a large amount of phytoene was accumulated in them. This carotenoid precursor was bound nonspecifically to LH2 complex and did not stabilize its structure. Thermostability testing of the isolated LH2 complex together with analysis of carotenoid composition revealed that the population of this complex was heterogeneous with respect to carotenoid composition. One fraction of the LH2 complex with carotenoid content around 90% remains stable and was not destroyed under heating for 15 min at 50°C. The other fraction of LH2 complex containing on average less than one molecule of carotenoid per complex was destroyed under heating, forming a zone of free pigments (and polypeptides). The data suggest that a certain part of the LH2 complexes is assembled without carotenoids in cells of the nonsulfur bacterium Rbl. acidophilus grown with DPA. These data contradict the fact that the LH2 complex from nonsulfur bacteria cannot be assembled without carotenoids, but on the other hand, they are in good agreement with the results demonstrated in our earlier studies of the sulfur bacteria Allochromatium minutissimum and Ectothiorhodospira haloalkaliphila. Carotenoidless LH2 complex was obtained from these bacteria with the use of DPA (Moskalenko, A. A., and Makhneva, Z. K. (2012) J. Photochem. Photobiol., 108, 1-7; Ashikhmin, A., et al. (2014) Photosynth. Res., 119, 291-303).
Böttcher, Christine; Burbidge, Crista A; Boss, Paul K; Davies, Christopher
2013-12-23
Fruit development is controlled by plant hormones, but the role of hormone interactions during fruit ripening is poorly understood. Interactions between ethylene and the auxin indole-3-acetic acid (IAA) are likely to be crucial during the ripening process, since both hormones have been shown to be implicated in the control of ripening in a range of different fruit species. Grapevine (Vitis vinifera L.) homologues of the TRYPTOPHAN AMINOTRANSFERASE RELATED (TAR) and YUCCA families, functioning in the only characterized pathway of auxin biosynthesis, were identified and the expression of several TAR genes was shown to be induced by the pre-ripening application of the ethylene-releasing compound Ethrel. The induction of TAR expression was accompanied by increased IAA and IAA-Asp concentrations, indicative of an upregulation of auxin biosynthesis and conjugation. Exposure of ex planta, pre-ripening berries to the ethylene biosynthesis inhibitor aminoethoxyvinylglycine resulted in decreased IAA and IAA-Asp concentrations. The delayed initiation of ripening observed in Ethrel-treated berries might therefore represent an indirect ethylene effect mediated by increased auxin concentrations. During berry development, the expression of three TAR genes and one YUCCA gene was upregulated at the time of ripening initiation and/or during ripening. This increase in auxin biosynthesis gene expression was preceded by high expression levels of the ethylene biosynthesis genes 1-aminocyclopropane-1-carboxylate synthase and 1-aminocyclopropane-1-carboxylate oxidase. In grape berries, members of both gene families involved in the two-step pathway of auxin biosynthesis are expressed, suggesting that IAA is produced through the combined action of TAR and YUCCA proteins in developing berries. The induction of TAR expression by Ethrel applications and the developmental expression patterns of auxin and ethylene biosynthesis genes indicate that elevated concentrations of ethylene prior to the initiation of ripening might lead to an increased production of IAA, suggesting a complex involvement of this auxin and its conjugates in grape berry ripening.
Rosenbaum, Erica E.; Vasiljevic, Eva; Brehm, Kimberley S.; Colley, Nansi Jo
2014-01-01
As newly synthesized glycoproteins move through the secretory pathway, the asparagine-linked glycan (N-glycan) undergoes extensive modifications involving the sequential removal and addition of sugar residues. These modifications are critical for the proper assembly, quality control and transport of glycoproteins during biosynthesis. The importance of N-glycosylation is illustrated by a growing list of diseases that result from defects in the biosynthesis and processing of N-linked glycans. The major rhodopsin in Drosophila melanogaster photoreceptors, Rh1, is highly unique among glycoproteins, as the N-glycan appears to be completely removed during Rh1 biosynthesis and maturation. However, much of the deglycosylation pathway for Rh1 remains unknown. To elucidate the key steps in Rh1 deglycosylation in vivo, we characterized mutant alleles of four Drosophila glycosyl hydrolases, namely α-mannosidase-II (α-Man-II), α-mannosidase-IIb (α-Man-IIb), a β-N-acetylglucosaminidase called fused lobes (Fdl), and hexosaminidase 1 (Hexo1). We have demonstrated that these four enzymes play essential and unique roles in a highly coordinated pathway for oligosaccharide trimming during Rh1 biosynthesis. Our results reveal that α-Man-II and α-Man-IIb are not isozymes like their mammalian counterparts, but rather function at distinct stages in Rh1 maturation. Also of significance, our results indicate that Hexo1 has a biosynthetic role in N-glycan processing during Rh1 maturation. This is unexpected given that in humans, the hexosaminidases are typically lysosomal enzymes involved in N-glycan catabolism with no known roles in protein biosynthesis. Here, we present a genetic dissection of glycoprotein processing in Drosophila and unveil key steps in N-glycan trimming during Rh1 biosynthesis. Taken together, our results provide fundamental advances towards understanding the complex and highly regulated pathway of N-glycosylation in vivo and reveal novel insights into the functions of glycosyl hydrolases in the secretory pathway. PMID:24785692
2013-01-01
Background Fruit development is controlled by plant hormones, but the role of hormone interactions during fruit ripening is poorly understood. Interactions between ethylene and the auxin indole-3-acetic acid (IAA) are likely to be crucial during the ripening process, since both hormones have been shown to be implicated in the control of ripening in a range of different fruit species. Results Grapevine (Vitis vinifera L.) homologues of the TRYPTOPHAN AMINOTRANSFERASE RELATED (TAR) and YUCCA families, functioning in the only characterized pathway of auxin biosynthesis, were identified and the expression of several TAR genes was shown to be induced by the pre-ripening application of the ethylene-releasing compound Ethrel. The induction of TAR expression was accompanied by increased IAA and IAA-Asp concentrations, indicative of an upregulation of auxin biosynthesis and conjugation. Exposure of ex planta, pre-ripening berries to the ethylene biosynthesis inhibitor aminoethoxyvinylglycine resulted in decreased IAA and IAA-Asp concentrations. The delayed initiation of ripening observed in Ethrel-treated berries might therefore represent an indirect ethylene effect mediated by increased auxin concentrations. During berry development, the expression of three TAR genes and one YUCCA gene was upregulated at the time of ripening initiation and/or during ripening. This increase in auxin biosynthesis gene expression was preceded by high expression levels of the ethylene biosynthesis genes 1-aminocyclopropane-1-carboxylate synthase and 1-aminocyclopropane-1-carboxylate oxidase. Conclusions In grape berries, members of both gene families involved in the two-step pathway of auxin biosynthesis are expressed, suggesting that IAA is produced through the combined action of TAR and YUCCA proteins in developing berries. The induction of TAR expression by Ethrel applications and the developmental expression patterns of auxin and ethylene biosynthesis genes indicate that elevated concentrations of ethylene prior to the initiation of ripening might lead to an increased production of IAA, suggesting a complex involvement of this auxin and its conjugates in grape berry ripening. PMID:24364881
Natural and engineered biosynthesis of nucleoside antibiotics in Actinomycetes.
Chen, Wenqing; Qi, Jianzhao; Wu, Pan; Wan, Dan; Liu, Jin; Feng, Xuan; Deng, Zixin
2016-03-01
Nucleoside antibiotics constitute an important family of microbial natural products bearing diverse bioactivities and unusual structural features. Their biosynthetic logics are unique with involvement of complex multi-enzymatic reactions leading to the intricate molecules from simple building blocks. Understanding how nature builds this family of antibiotics in post-genomic era sets the stage for rational enhancement of their production, and also paves the way for targeted persuasion of the cell factories to make artificial designer nucleoside drugs and leads via synthetic biology approaches. In this review, we discuss the recent progress and perspectives on the natural and engineered biosynthesis of nucleoside antibiotics.
Chlubnova, Ilona; Legentil, Laurent; Dureau, Rémy; Pennec, Alizé; Almendros, Mélanie; Daniellou, Richard; Nugier-Chauvin, Caroline; Ferrières, Vincent
2012-07-15
There is no doubt now that the synthesis of compounds of varying complexity such as saccharides and derivatives thereof continuously grows with enzymatic methods. This review focuses on recent basic knowledge on enzymes specifically involved in the biosynthesis and degradation of furanosyl-containing polysaccharides and conjugates. Moreover, and when possible, biocatalyzed approaches, alternative to standard synthesis, will be detailed in order to strengthen the high potential of these biocatalysts to go further with the preparation of rare furanosides. Interesting results will be also proposed with chemo-enzymatic processes based on nonfuranosyl-specific enzymes. Copyright © 2012 Elsevier Ltd. All rights reserved.
Wüst, Matthias
2018-04-11
Recent research has shown that the biosynthesis of several key odorants is controlled by genes whose expression is altered or even induced by biotic or abiotic stress. These new findings provide a roadmap for improvement of flavor quality by the application of moderate, well-controlled stress. This strategy aims at reducing the flavor deficiencies in modern commercial varieties as a "green" alternative to genetic engineering. The workflow for a successful implementation of this approach, from the identification of key odorants by molecular science techniques to the investigation of mechanisms controlling their biosynthesis, is complex and calls for interdisciplinary research.
(-)-Menthol biosynthesis and molecular genetics
NASA Astrophysics Data System (ADS)
Croteau, Rodney B.; Davis, Edward M.; Ringer, Kerry L.; Wildung, Mark R.
2005-12-01
(-)-Menthol is the most familiar of the monoterpenes as both a pure natural product and as the principal and characteristic constituent of the essential oil of peppermint ( Mentha x piperita). In this paper, we review the biosynthesis and molecular genetics of (-)-menthol production in peppermint. In Mentha species, essential oil biosynthesis and storage is restricted to the peltate glandular trichomes (oil glands) on the aerial surfaces of the plant. A mechanical method for the isolation of metabolically functional oil glands, has provided a system for precursor feeding studies to elucidate pathway steps, as well as a highly enriched source of the relevant biosynthetic enzymes and of their corresponding transcripts with which cDNA libraries have been constructed to permit cloning and characterization of key structural genes. The biosynthesis of (-)-menthol from primary metabolism requires eight enzymatic steps, and involves the formation and subsequent cyclization of the universal monoterpene precursor geranyl diphosphate to the parent olefin (-)-(4 S)-limonene as the first committed reaction of the sequence. Following hydroxylation at C3, a series of four redox transformations and an isomerization occur in a general “allylic oxidation-conjugate reduction” scheme that installs three chiral centers on the substituted cyclohexanoid ring to yield (-)-(1 R, 3 R, 4 S)-menthol. The properties of each enzyme and gene of menthol biosynthesis are described, as are their probable evolutionary origins in primary metabolism. The organization of menthol biosynthesis is complex in involving four subcellular compartments, and regulation of the pathway appears to reside largely at the level of gene expression. Genetic engineering to up-regulate a flux-limiting step and down-regulate a side route reaction has led to improvement in the composition and yield of peppermint oil.
Mertens, Jan; Pollier, Jacob; Vanden Bossche, Robin; Lopez-Vidriero, Irene; Franco-Zorrilla, José Manuel; Goossens, Alain
2016-01-01
Plants respond to stresses by producing a broad spectrum of bioactive specialized metabolites. Hormonal elicitors, such as jasmonates, trigger a complex signaling circuit leading to the concerted activation of specific metabolic pathways. However, for many specialized metabolic pathways, the transcription factors involved remain unknown. Here, we report on two homologous jasmonate-inducible transcription factors of the basic helix-loop-helix family, TRITERPENE SAPONIN BIOSYNTHESIS ACTIVATING REGULATOR1 (TSAR1) and TSAR2, which direct triterpene saponin biosynthesis in Medicago truncatula. TSAR1 and TSAR2 are coregulated with and transactivate the genes encoding 3-HYDROXY-3-METHYLGLUTARYL-COENZYME A REDUCTASE1 (HMGR1) and MAKIBISHI1, the rate-limiting enzyme for triterpene biosynthesis and an E3 ubiquitin ligase that controls HMGR1 levels, respectively. Transactivation is mediated by direct binding of TSARs to the N-box in the promoter of HMGR1. In transient expression assays in tobacco (Nicotiana tabacum) protoplasts, TSAR1 and TSAR2 exhibit different patterns of transactivation of downstream triterpene saponin biosynthetic genes, hinting at distinct functionalities within the regulation of the pathway. Correspondingly, overexpression of TSAR1 or TSAR2 in M. truncatula hairy roots resulted in elevated transcript levels of known triterpene saponin biosynthetic genes and strongly increased the accumulation of triterpene saponins. TSAR2 overexpression specifically boosted hemolytic saponin biosynthesis, whereas TSAR1 overexpression primarily stimulated nonhemolytic soyasaponin biosynthesis. Both TSARs also activated all genes of the precursor mevalonate pathway but did not affect sterol biosynthetic genes, pointing to their specific role as regulators of specialized triterpene metabolism in M. truncatula. © 2016 American Society of Plant Biologists. All Rights Reserved.
Cellulose Biosynthesis: Current Views and Evolving Concepts
SAXENA, INDER M.; BROWN, R. MALCOLM
2005-01-01
• Aims To outline the current state of knowledge and discuss the evolution of various viewpoints put forth to explain the mechanism of cellulose biosynthesis. • Scope Understanding the mechanism of cellulose biosynthesis is one of the major challenges in plant biology. The simplicity in the chemical structure of cellulose belies the complexities that are associated with the synthesis and assembly of this polysaccharide. Assembly of cellulose microfibrils in most organisms is visualized as a multi-step process involving a number of proteins with the key protein being the cellulose synthase catalytic sub-unit. Although genes encoding this protein have been identified in almost all cellulose synthesizing organisms, it has been a challenge in general, and more specifically in vascular plants, to demonstrate cellulose synthase activity in vitro. The assembly of glucan chains into cellulose microfibrils of specific dimensions, viewed as a spontaneous process, necessitates the assembly of synthesizing sites unique to most groups of organisms. The steps of polymerization (requiring the specific arrangement and activity of the cellulose synthase catalytic sub-units) and crystallization (directed self-assembly of glucan chains) are certainly interlinked in the formation of cellulose microfibrils. Mutants affected in cellulose biosynthesis have been identified in vascular plants. Studies on these mutants and herbicide-treated plants suggest an interesting link between the steps of polymerization and crystallization during cellulose biosynthesis. • Conclusions With the identification of a large number of genes encoding cellulose synthases and cellulose synthase-like proteins in vascular plants and the supposed role of a number of other proteins in cellulose biosynthesis, a complete understanding of this process will necessitate a wider variety of research tools and approaches than was thought to be required a few years back. PMID:15894551
Cellulose biosynthesis: current views and evolving concepts.
Saxena, Inder M; Brown, R Malcolm
2005-07-01
To outline the current state of knowledge and discuss the evolution of various viewpoints put forth to explain the mechanism of cellulose biosynthesis. * Understanding the mechanism of cellulose biosynthesis is one of the major challenges in plant biology. The simplicity in the chemical structure of cellulose belies the complexities that are associated with the synthesis and assembly of this polysaccharide. Assembly of cellulose microfibrils in most organisms is visualized as a multi-step process involving a number of proteins with the key protein being the cellulose synthase catalytic sub-unit. Although genes encoding this protein have been identified in almost all cellulose synthesizing organisms, it has been a challenge in general, and more specifically in vascular plants, to demonstrate cellulose synthase activity in vitro. The assembly of glucan chains into cellulose microfibrils of specific dimensions, viewed as a spontaneous process, necessitates the assembly of synthesizing sites unique to most groups of organisms. The steps of polymerization (requiring the specific arrangement and activity of the cellulose synthase catalytic sub-units) and crystallization (directed self-assembly of glucan chains) are certainly interlinked in the formation of cellulose microfibrils. Mutants affected in cellulose biosynthesis have been identified in vascular plants. Studies on these mutants and herbicide-treated plants suggest an interesting link between the steps of polymerization and crystallization during cellulose biosynthesis. * With the identification of a large number of genes encoding cellulose synthases and cellulose synthase-like proteins in vascular plants and the supposed role of a number of other proteins in cellulose biosynthesis, a complete understanding of this process will necessitate a wider variety of research tools and approaches than was thought to be required a few years back.
Buján, Nuria; Arias, Angela; Montero, Raquel; García-Villoria, Judit; Lissens, Willy; Seneca, Sara; Espinós, Carmen; Navas, Plácido; De Meirleir, Linda; Artuch, Rafael; Briones, Paz; Ribes, Antonia
2014-01-01
Primary coenzyme Q₁₀ (CoQ₁₀) deficiencies are associated with mutations in genes encoding enzymes important for its biosynthesis and patients are responsive to CoQ₁₀ supplementation. Early treatment allows better prognosis of the disease and therefore, early diagnosis is desirable. The complex phenotype and genotype and the frequent secondary CoQ₁₀ deficiencies make it difficult to achieve a definitive diagnosis by direct quantification of CoQ₁₀. We developed a non-radioactive methodology for the quantification of CoQ₁₀ biosynthesis in fibroblasts that allows the identification of primary deficiencies. Fibroblasts were incubated 72 h with 28 μmol/L (2)H₃-mevalonate or 1.65 mmol/L (13)C₆-p-hydroxybenzoate. The newly synthesized (2)H₃- and (13)C₆- labelled CoQ₁₀ were analysed by high performance liquid chromatography-tandem mass spectrometry. The mean and the reference range for (13)C₆-CoQ₁₀ and (2)H₃-CoQ₁₀ biosynthesis were 0.97 (0.83-1.1) and 0.13 (0.09-0.17) nmol/Unit of citrate synthase, respectively. We validated the methodology through the study of one patient with COQ2 mutations and six patients with CoQ₁₀ deficiency secondary to other inborn errors of metabolism. Afterwards we investigated 16 patients' fibroblasts and nine showed decreased CoQ₁₀ biosynthesis. Therefore, the next step is to study the COQ genes in order to reach a definitive diagnosis in these nine patients. In the patients with normal rates the deficiency is probably secondary. In conclusion, we have developed a non-invasive non-radioactive method suitable for the detection of defects in CoQ₁₀ biosynthesis, which offers a good tool for the stratification of patients with these treatable mitochondrial diseases.
Zera, Anthony J; Zhao, Zhangwu
2003-03-01
Although a considerable amount of information is available on the ecology, genetics, and physiology of life-history traits, much more limited data are available on the biochemical and genetic correlates of life-history variation within species. Specific activities of five enzymes of lipid biosynthesis and two enzymes of amino acid catabolism were compared among lines selected for flight-capable (LW[f]) versus flightless (SW) morphs of the cricket Gryllus firmus. These morphs, which exist in natural populations, differ genetically in ovarian growth (100-400% higher in SW) and aspects of flight capability including the size of wings and flight muscles, and the concentration of triglyceride flight fuel (40% greater in LW[f]). Consistently higher activity of each enzyme in LW(f) versus SW-selected lines, and strong co-segregation between morph and enzyme activity, demonstrated genetically based co-variance between wing morph and enzyme activity. Developmental profiles of enzyme activities strongly paralleled profiles of triglyceride accumulation during adulthood and previous measures of in vivo lipid biosynthesis. These data strongly imply that genetically based elevation in activities of lipogenic enzymes, and enzymes controlling the conversion of amino acids into lipids, is an important cause underlying the elevated accumulation of triglyceride in the LW(f) morph, a key biochemical component of the trade-off between elevated early fecundity and flight capability. Global changes in lipid and amino-acid metabolism appear to have resulted from microevolutionary alteration of regulators of metabolism. Finally, strong genotype x environment (diet) interactions were observed for most enzyme activities. Future progress in understanding the functional causes of life-history evolution requires a more detailed synthesis of the fields of life-history evolution and metabolic biochemistry. Wing polymorphism is a powerful experimental model in such integrative studies.
Chen, Min; Wang, Panning; Xie, Zhixiong
2018-04-23
7-Hydroxytropolone (7-HT) is a symmetrical, seven-membered heteroatomic ring with a carboxyl group and two hydroxyl groups and was recently reported to be an iron scavenger of Pseudomonas donghuensis HYS. Cluster 1 encodes 12 genes related to the synthesis of 7-HT; among these genes, two regulators, ORF1 and ORF12, were predicted to regulate 7-HT biosynthesis and to be LysR-type transcriptional regulators (LTTRs) and TetR/AcrR family transcriptional regulators, respectively. Data from real-time quantitative PCR, β-galactosidase and classical siderophore assays indicated that the transcription levels of orf1 and orf12, as well as those of crucial genes orf6-orf9, were repressed under high-iron conditions. The deletion of orf1 and orf12 led to an absence of 7-HT and a decrease in orf6-orf9 expression. ORF1 and ORF12 were essential for the production of 7-HT through orf6-orf9 These two regulators are regulated by the Gac/Rsm system; ORF1 facilitates the expression of ORF12, and ORF12 concomitantly stimulates the expression of orf6-orf9 to synthesize 7-HT. Overexpression of ORF12 decreased 7-HT yields possibly through decreased orf6-orf9 expression. This work thus outlines a complex mechanism regulating the biosynthesis of the iron scavenger 7-HT in P. donghuensis HYS. The synergy between ORF1 and ORF12 ensures that 7-HT acts as an iron chelator despite being toxic to bacteria and provides new ideas for the novel regulation of dual-functional secondary metabolism and research on 7-HT and its derivates in other bacteria. IMPORTANCE A complex regulation mechanism including two regulators, LysR and TetR/AcrR, of the biosynthesis of the novel iron scavenger 7-HT was verified in Pseudomonas donghuensis HYS. The coaction of LysR ORF1 and TetR/AcrR ORF12 may balance the toxicity and iron chelation of 7-HT in P. donghuensis HYS to overcome iron deficiency, as well as improve the bacterial competitiveness in iron-scarce conditions because of the toxicity of 7-HT toward other bacteria, making the accurate regulation of 7-HT biosynthesis indispensable. This regulation mechanism may be ubiquitous in the Pseudomonas putida group but may better explain the group's strong adaptability. Copyright © 2018 American Society for Microbiology.
Thati, Bhumika; Noble, Andy; Rowan, Raymond; Creaven, Bernadette S; Walsh, Maureen; McCann, Malachy; Egan, Denise; Kavanagh, Kevin
2007-08-01
The anti-fungal activity and mode of action of a range of silver(I)-coumarin complexes was examined. The most potent silver(I)-coumarin complexes, namely 7-hydroxycoumarin-3-carboxylatosilver(I), 6-hydroxycoumarin-3-carboxylatosilver(I) and 4-oxy-3-nitrocoumarinbis(1,10-phenanthroline)silver(I), had MIC80 values of between 69.1 and 4.6 microM against the pathogenic yeast Candida albicans. These compounds also reduced respiration, lowered the ergosterol content of cells and increased the trans-membrane leakage of amino acids. A number of the complexes disrupted cytochrome synthesis in the cell and induced the appearance of morphological features consistent with cell death by apoptosis. These compounds appear to act by disrupting the synthesis of cytochromes which directly affects the cell's ability to respire. A reduction in respiration leads to a depletion in ergosterol biosynthesis and a consequent disruption of the integrity of the cell membrane. Disruption of cytochrome biosynthesis may induce the onset of apoptosis which has been shown previously to be triggered by alteration in the location of cytochrome c. Silver(I)-coumarin complexes demonstrate good anti-fungal activity and manifest a mode of action distinct to that of the conventional azole and polyene drugs thus raising the possibility of their use when resistance to conventional drug has emerged or in combination with such drugs.
Silencing of tryptamine biosynthesis for production of nonnatural alkaloids in plant culture.
Runguphan, Weerawat; Maresh, Justin J; O'Connor, Sarah E
2009-08-18
Natural products have long served as both a source and inspiration for pharmaceuticals. Modifying the structure of a natural product often improves the biological activity of the compound. Metabolic engineering strategies to ferment "unnatural" products have been enormously successful in microbial organisms. However, despite the importance of plant derived natural products, metabolic engineering strategies to yield unnatural products from complex, lengthy plant pathways have not been widely explored. Here, we show that RNA mediated suppression of tryptamine biosynthesis in Catharanthus roseus hairy root culture eliminates all production of monoterpene indole alkaloids, a class of natural products derived from two starting substrates, tryptamine and secologanin. To exploit this chemically silent background, we introduced an unnatural tryptamine analog to the production media and demonstrated that the silenced plant culture could produce a variety of novel products derived from this unnatural starting substrate. The novel alkaloids were not contaminated by the presence of the natural alkaloids normally present in C. roseus. Suppression of tryptamine biosynthesis therefore did not appear to adversely affect expression of downstream biosynthetic enzymes. Targeted suppression of substrate biosynthesis therefore appears to be a viable strategy for programming a plant alkaloid pathway to more effectively produce desirable unnatural products. Moreover, although tryptamine is widely found among plants, this silenced line demonstrates that tryptamine does not play an essential role in growth or development in C. roseus root culture. Silencing the biosynthesis of an early starting substrate enhances our ability to harness the rich diversity of plant based natural products.
Origin of the Allyl Group in FK506 Biosynthesis*
Goranovič, Dušan; Kosec, Gregor; Mrak, Peter; Fujs, Štefan; Horvat, Jaka; Kuščer, Enej; Kopitar, Gregor; Petković, Hrvoje
2010-01-01
FK506 (tacrolimus) is a secondary metabolite with a potent immunosuppressive activity, currently registered for use as immunosuppressant after organ transplantation. FK506 and FK520 are biogenetically related natural products that are synthesized by combined polyketide synthase/nonribosomal peptide synthetase systems. The entire gene cluster for biosynthesis of FK520 from Streptomyces hygroscopicus var. ascomyceticus has been cloned and sequenced. On the other hand, the FK506 gene cluster from Streptomyces sp. MA6548 (ATCC55098) was sequenced only partially, and it was reasonable to expect that additional genes would be required for the provision of substrate supply. Here we report the identification of a previously unknown region of the FK506 gene cluster from Streptomyces tsukubaensis NRRL 18488 containing genes encoding the provision of unusual building blocks for FK506 biosynthesis as well as a regulatory gene. Among others, we identified a group of genes encoding biosynthesis of the extender unit that forms the allyl group at carbon 21 of FK506. Interestingly, we have identified a small independent diketide synthase system involved in the biosynthesis of the allyl group. Inactivation of one of these genes, encoding an unusual ketosynthase domain, resulted in an FK506 nonproducing strain, and the production was restored when a synthetic analog of the allylmalonyl-CoA extender unit was added to the cultivation medium. Based on our results, we propose a biosynthetic pathway for the provision of an unusual five-carbon extender unit, which is carried out by a novel diketide synthase complex. PMID:20194504
McCulloch, Kathryn M.; McCranie, Emilianne K.; Smith, Jarrod A.; ...
2015-08-03
Orthosomycins are oligosaccharide antibiotics that include avilamycin, everninomicin, and hygromycin B and are hallmarked by a rigidifying interglycosidic spirocyclic ortho-δ-lactone (orthoester) linkage between at least one pair of carbohydrates. A subset of orthosomycins additionally contain a carbohydrate capped by a methylenedioxy bridge. The orthoester linkage is necessary for antibiotic activity but rarely observed in natural products. Orthoester linkage and methylenedioxy bridge biosynthesis require similar oxidative cyclizations adjacent to a sugar ring. In this paper, we have identified a conserved group of nonheme iron, α-ketoglutarate–dependent oxygenases likely responsible for this chemistry. High-resolution crystal structures of the EvdO1 and EvdO2 oxygenases ofmore » everninomicin biosynthesis, the AviO1 oxygenase of avilamycin biosynthesis, and HygX of hygromycin B biosynthesis show how these enzymes accommodate large substrates, a challenge that requires a variation in metal coordination in HygX. Excitingly, the ternary complex of HygX with cosubstrate α-ketoglutarate and putative product hygromycin B identified an orientation of one glycosidic linkage of hygromycin B consistent with metal-catalyzed hydrogen atom abstraction from substrate. These structural results are complemented by gene disruption of the oxygenases evdO1 and evdMO1 from the everninomicin biosynthetic cluster, which demonstrate that functional oxygenase activity is critical for antibiotic production. Finally, our data therefore support a role for these enzymes in the production of key features of the orthosomycin antibiotics.« less
Ariyawutthiphan, Orapin; Ose, Toyoyuki; Minami, Atsushi; Shinde, Sandip; Sinde, Sandip; Tsuda, Muneya; Gao, Yong-Gui; Yao, Min; Oikawa, Hideaki; Tanaka, Isao
2012-11-01
In the typical isoprenoid-biosynthesis pathway, condensation of the universal C(5)-unit precursors isopentenyl pyrophosphate (IPP) and dimethylallyl pyrophosphate (DMAPP) occurs via the common intermediates prenyl pyrophosphates (C(10)-C(20)). The diversity of isoprenoids reflects differences in chain length, cyclization and further additional modification after cyclization. In contrast, the biosynthesis of 2-methylisonorneol (2-MIB), which is responsible for taste and odour problems in drinking water, is unique in that it primes the enzymatic methylation of geranyl pyrophosphate (GPP) before cyclization, which is catalyzed by an S-adenosyl-L-methionine-dependent methyltransferase (GPPMT). The substrate of GPPMT contains a nonconjugated olefin and the reaction mechanism is expected to be similar to that of the steroid methyltransferase (SMT) family. Here, structural analysis of GPPMT in complex with its cofactor and substrate revealed the mechanisms of substrate recognition and possible enzymatic reaction. Using the structures of these complexes, methyl-group transfer and the subsequent proton-abstraction mechanism are discussed. GPPMT and SMTs contain a conserved glutamate residue that is likely to play a role as a general base. Comparison with the reaction mechanism of the mycolic acid cyclopropane synthase (MACS) family also supports this result. This enzyme represented here is the first model of the enzymatic C-methylation of a nonconjugated olefin in the isoprenoid-biosynthesis pathway. In addition, an elaborate system to avoid methylation of incorrect substrates is proposed.
Enzymatic catalysis of anti-Baldwin ring closure in polyether biosynthesis
Hotta, Kinya; Chen, Xi; Paton, Robert S.; Minami, Atsushi; Li, Hao; Swaminathan, Kunchithapadam; Mathews, Irimpan I.; Watanabe, Kenji; Oikawa, Hideaki; Houk, Kendall N.; Kim, Chu-Young
2012-01-01
Polycyclic polyether natural products have fascinated chemists and biologists alike owing to their useful biological activity, highly complex structure and intriguing biosynthetic mechanisms. Following the original proposal for the polyepoxide origin of lasalocid and isolasalocid1 and the experimental determination of the origins of the oxygen and carbon atoms of both lasalocid and monensin, a unified stereochemical model for the biosynthesis of polyether ionophore antibiotics was proposed2. The model was based on a cascade of nucleophilic ring closures of postulated polyepoxide substrates generated by stereospecific oxidation of all-trans polyene polyketide intermediates2. Shortly thereafter, a related model was proposed for the biogenesis of marine ladder toxins, involving a series of nominally disfavoured anti-Baldwin, endo-tet epoxide-ring-opening reactions3–5. Recently, we identified Lsd19 from the Streptomyces lasaliensis gene cluster as the epoxide hydrolase responsible for the epoxide-opening cyclization of bisepoxyprelasalocid A6 to form lasalocid A7,8. Here we report the X-ray crystal structure of Lsd19 in complex with its substrate and product analogue9 to provide the first atomic structure—to our knowledge—of a natural enzyme capable of catalysing the disfavoured epoxide-opening cyclic ether formation. On the basis of our structural and computational studies, we propose a general mechanism for the enzymatic catalysis of polyether natural product biosynthesis. PMID:22388816
González-López, Lorena; Carballar-Lejarazú, Rebeca; Arrevillaga Boni, Gerardo; Cortés-Martínez, Leticia; Cázares-Raga, Febe Elena; Trujillo-Ocampo, Abel; Rodríguez, Mario H; James, Anthony A; Hernández-Hernández, Fidel de la Cruz
2017-01-01
Ubiquitination tags proteins for different functions within the cell. One of the most abundant and studied ubiquitin modification is the Lys48 polyubiquitin chain that modifies proteins for their destruction by proteasome. In Plasmodium is proposed that post-translational regulation is fundamental for parasite development during its complex life-cycle; thus, the objective of this work was to analyze the ubiquitination during Plasmodium chabaudi intraerythrocytic stages. Ubiquitinated proteins were detected during intraerythrocytic stages of Plasmodium chabaudi by immunofluorescent microscopy, bidimensional electrophoresis (2-DE) combined with immunoblotting and mass spectrometry. All the studied stages presented protein ubiquitination and Lys48 polyubiquitination with more abundance during the schizont stage. Three ubiquitinated proteins were identified for rings, five for trophozoites and twenty for schizonts. Only proteins detected with a specific anti- Lys48 polyubiquitin antibody were selected for Mass Spectrometry analysis and two of these identified proteins were selected in order to detect the specific amino acid residues where ubiquitin is placed. Ubiquitinated proteins during the ring and trophozoite stages were related with the invasion process and in schizont proteins were related with nucleic acid metabolism, glycolysis and protein biosynthesis. Most of the ubiquitin detection was during the schizont stage and the Lys48 polyubiquitination during this stage was related to proteins that are expected to be abundant during the trophozoite stage. The evidence that these Lys48 polyubiquitinated proteins are tagged for destruction by the proteasome complex suggests that this type of post-translational modification is important in the regulation of protein abundance during the life-cycle and may also contribute to the parasite cell-cycle progression.
Total biosynthesis of the cyclic AMP booster forskolin from Coleus forskohlii
Pateraki, Irini; Andersen-Ranberg, Johan; Jensen, Niels Bjerg; Wubshet, Sileshi Gizachew; Heskes, Allison Maree; Forman, Victor; Hallström, Björn; Hamberger, Britta; Motawia, Mohammed Saddik; Olsen, Carl Erik; Staerk, Dan; Hansen, Jørgen; Møller, Birger Lindberg; Hamberger, Björn
2017-01-01
Forskolin is a unique structurally complex labdane-type diterpenoid used in the treatment of glaucoma and heart failure based on its activity as a cyclic AMP booster. Commercial production of forskolin relies exclusively on extraction from its only known natural source, the plant Coleus forskohlii, in which forskolin accumulates in the root cork. Here, we report the discovery of five cytochrome P450s and two acetyltransferases which catalyze a cascade of reactions converting the forskolin precursor 13R-manoyl oxide into forskolin and a diverse array of additional labdane-type diterpenoids. A minimal set of three P450s in combination with a single acetyl transferase was identified that catalyzes the conversion of 13R-manoyl oxide into forskolin as demonstrated by transient expression in Nicotiana benthamiana. The entire pathway for forskolin production from glucose encompassing expression of nine genes was stably integrated into Saccharomyces cerevisiae and afforded forskolin titers of 40 mg/L. DOI: http://dx.doi.org/10.7554/eLife.23001.001 PMID:28290983
Moeys, Sara; Frenkel, Johannes; Lembke, Christine; Gillard, Jeroen T. F.; Devos, Valerie; Van den Berge, Koen; Bouillon, Barbara; Huysman, Marie J. J.; De Decker, Sam; Scharf, Julia; Bones, Atle; Brembu, Tore; Winge, Per; Sabbe, Koen; Vuylsteke, Marnik; Clement, Lieven; De Veylder, Lieven; Pohnert, Georg; Vyverman, Wim
2016-01-01
Although sexual reproduction is believed to play a major role in the high diversification rates and species richness of diatoms, a mechanistic understanding of diatom life cycle control is virtually lacking. Diatom sexual signalling is controlled by a complex, yet largely unknown, pheromone system. Here, a sex-inducing pheromone (SIP+) of the benthic pennate diatom Seminavis robusta was identified by comparative metabolomics, subsequently purified, and physicochemically characterized. Transcriptome analysis revealed that SIP+ triggers the switch from mitosis-to-meiosis in the opposing mating type, coupled with the transcriptional induction of proline biosynthesis genes, and the release of the proline-derived attraction pheromone. The induction of cell cycle arrest by a pheromone, chemically distinct from the one used to attract the opposite mating type, highlights the existence of a sophisticated mechanism to increase chances of mate finding, while keeping the metabolic losses associated with the release of an attraction pheromone to a minimum. PMID:26786712
Chen, Shawn; Kinney, William A; Van Lanen, Steven
2017-04-01
Modified nucleosides produced by Streptomyces and related actinomycetes are widely used in agriculture and medicine as antibacterial, antifungal, anticancer and antiviral agents. These specialized small-molecule metabolites are biosynthesized by complex enzymatic machineries encoded within gene clusters in the genome. The past decade has witnessed a burst of reports defining the key metabolic processes involved in the biosynthesis of several distinct families of nucleoside antibiotics. Furthermore, genome sequencing of various Streptomyces species has dramatically increased over recent years. Potential biosynthetic gene clusters for novel nucleoside antibiotics are now apparent by analysis of these genomes. Here we revisit strategies for production improvement of nucleoside antibiotics that have defined mechanisms of action, and are in clinical or agricultural use. We summarize the progress for genetically manipulating biosynthetic pathways for structural diversification of nucleoside antibiotics. Microorganism-based biosynthetic examples are provided and organized under genetic principles and metabolic engineering guidelines. We show perspectives on the future of combinatorial biosynthesis, and present a working model for discovery of novel nucleoside natural products in Streptomyces.
Moccand, Cyril; Boycheva, Svetlana; Surriabre, Pedro; Tambasco-Studart, Marina; Raschke, Maja; Kaufmann, Markus; Fitzpatrick, Teresa B.
2014-01-01
Vitamin B6 is an indispensable compound for survival, well known as a cofactor for numerous central metabolic enzymes and more recently for playing a role in several stress responses, particularly in association with oxidative stress. Regulatory aspects for the use of the vitamin in these roles are not known. Here we show that certain plants carry a pseudoenzyme (PDX1.2), which is involved in regulating vitamin B6 biosynthesis de novo under stress conditions. Specifically, we demonstrate that Arabidopsis PDX1.2 enhances the activity of its catalytic paralogs by forming a heterododecameric complex. PDX1.2 is strongly induced by heat as well as singlet oxygen stress, concomitant with an enhancement of vitamin B6 production. Analysis of pdx1.2 knockdown lines demonstrates that boosting vitamin B6 content is dependent on PDX1.2, revealing that this pseudoenzyme acts as a positive regulator of vitamin B6 biosynthesis during such stress conditions in plants. PMID:24505140
Zara, Giacomo; Goffrini, Paola; Lodi, Tiziana; Zara, Severino; Mannazzu, Ilaria; Budroni, Marilena
2012-11-01
Air-liquid biofilm formation is largely dependent on Flo11p and seems related to cell lipid content and composition. Here, it is shown that in the presence of cerulenin, a known inhibitor of the fatty acid synthase complex, biofilm formation is inhibited together with FLO11 transcription in a flor strain of Saccharomyces cerevisiae, while the administration of saturated fatty acids to cerulenin-containing medium restores biofilm formation and FLO11 transcription. It is also shown that, in biofilm cells, the FLO11 transcription is accompanied by the transcription of ACC1, ACS1 and INO1 key genes in lipid biosynthesis and that biofilm formation is affected by the lack of inositol in flor medium. These results are compatible with the hypothesis that the air-liquid biofilm formation depends on FLO11 transcription levels as well as on fatty acids biosynthesis. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
Moores, J C; Magazin, M; Ditta, G S; Leong, J
1984-01-01
A gene bank of DNA from plant growth-promoting Pseudomonas sp. strain B10 was constructed using the broad host-range conjugative cosmid pLAFR1. The recombinant cosmids contained insert DNA averaging 21.5 kilobase pairs in length. Nonfluorescent mutants of Pseudomonas sp. strain B10 were obtained by mutagenesis with N-methyl-N'-nitro-N-nitrosoguanidine, ethyl methanesulfonate, or UV light and were defective in the biosynthesis of its yellow-green, fluorescent siderophore (microbial iron transport agent) pseudobactin. No yellow-green, fluorescent mutants defective in the production of pseudobactin were identified. Nonfluorescent mutants were individually complemented by mating the gene bank en masse and identifying fluorescent transconjugants. Eight recombinant cosmids were sufficient to complement 154 nonfluorescent mutants. The pattern of complementation suggests that a minimum of 12 genes arranged in four gene clusters is required for the biosynthesis of pseudobactin. This minimum number of genes seems reasonable considering the structural complexity of pseudobactin. Images PMID:6690426
Structural Insight into Amino Group-carrier Protein-mediated Lysine Biosynthesis
Yoshida, Ayako; Tomita, Takeo; Fujimura, Tsutomu; Nishiyama, Chiharu; Kuzuyama, Tomohisa; Nishiyama, Makoto
2015-01-01
In the biosynthesis of lysine by Thermus thermophilus, the metabolite α-ketoglutarate is converted to the intermediate α-aminoadipate (AAA), which is protected by the 54-amino acid acidic protein LysW. In this study, we determined the crystal structure of LysZ from T. thermophilus (TtLysZ), an amino acid kinase that catalyzes the second step in the AAA to lysine conversion, which was in a complex with LysW at a resolution of 1.85 Å. A crystal analysis coupled with isothermal titration calorimetry of the TtLysZ mutants for TtLysW revealed tight interactions between LysZ and the globular and C-terminal extension domains of the LysW protein, which were mainly attributed to electrostatic forces. These results provided structural evidence for LysW acting as a protecting molecule for the α-amino group of AAA and also as a carrier protein to guarantee better recognition by biosynthetic enzymes for the efficient biosynthesis of lysine. PMID:25392000
Genome-Wide Association Study of Genetic Control of Seed Fatty Acid Biosynthesis in Brassica napus
Gacek, Katarzyna; Bayer, Philipp E.; Bartkowiak-Broda, Iwona; Szala, Laurencja; Bocianowski, Jan; Edwards, David; Batley, Jacqueline
2017-01-01
Fatty acids and their composition in seeds determine oil value for nutritional or industrial purposes and also affect seed germination as well as seedling establishment. To better understand the genetic basis of seed fatty acid biosynthesis in oilseed rape (Brassica napus L.) we applied a genome-wide association study, using 91,205 single nucleotide polymorphisms (SNPs) characterized across a mapping population with high-resolution skim genotyping by sequencing (SkimGBS). We identified a cluster of loci on chromosome A05 associated with oleic and linoleic seed fatty acids. The delineated genomic region contained orthologs of the Arabidopsis thaliana genes known to play a role in regulation of seed fatty acid biosynthesis such as Fatty acyl-ACP thioesterase B (FATB) and Fatty Acid Desaturase (FAD5). This approach allowed us to identify potential functional genes regulating fatty acid composition in this important oil producing crop and demonstrates that this approach can be used as a powerful tool for dissecting complex traits for B. napus improvement programs. PMID:28163710
Zhang, Yu; Peng, Lifang; Wu, Ya; Shen, Yanyue; Wu, Xiaoming; Wang, Jianbo
2014-11-01
Embryo development represents a crucial developmental period in the life cycle of flowering plants. To gain insights into the genetic programs that control embryo development in Brassica rapa L., RNA sequencing technology was used to perform transcriptome profiling analysis of B. rapa developing embryos. The results generated 42,906,229 sequence reads aligned with 32,941 genes. In total, 27,760, 28,871, 28,384, and 25,653 genes were identified from embryos at globular, heart, early cotyledon, and mature developmental stages, respectively, and analysis between stages revealed a subset of stage-specific genes. We next investigated 9,884 differentially expressed genes with more than fivefold changes in expression and false discovery rate ≤ 0.001 from three adjacent-stage comparisons; 1,514, 3,831, and 6,633 genes were detected between globular and heart stage embryo libraries, heart stage and early cotyledon stage, and early cotyledon and mature stage, respectively. Large numbers of genes related to cellular process, metabolism process, response to stimulus, and biological process were expressed during the early and middle stages of embryo development. Fatty acid biosynthesis, biosynthesis of secondary metabolites, and photosynthesis-related genes were expressed predominantly in embryos at the middle stage. Genes for lipid metabolism and storage proteins were highly expressed in the middle and late stages of embryo development. We also identified 911 transcription factor genes that show differential expression across embryo developmental stages. These results increase our understanding of the complex molecular and cellular events during embryo development in B. rapa and provide a foundation for future studies on other oilseed crops.
Liu, Shouan; Kracher, Barbara; Ziegler, Jörg; Birkenbihl, Rainer P; Somssich, Imre E
2015-01-01
The Arabidopsis mutant wrky33 is highly susceptible to Botrytis cinerea. We identified >1680 Botrytis-induced WRKY33 binding sites associated with 1576 Arabidopsis genes. Transcriptional profiling defined 318 functional direct target genes at 14 hr post inoculation. Comparative analyses revealed that WRKY33 possesses dual functionality acting either as a repressor or as an activator in a promoter-context dependent manner. We confirmed known WRKY33 targets involved in hormone signaling and phytoalexin biosynthesis, but also uncovered a novel negative role of abscisic acid (ABA) in resistance towards B. cinerea 2100. The ABA biosynthesis genes NCED3 and NCED5 were identified as direct targets required for WRKY33-mediated resistance. Loss-of-WRKY33 function resulted in elevated ABA levels and genetic studies confirmed that WRKY33 acts upstream of NCED3/NCED5 to negatively regulate ABA biosynthesis. This study provides the first detailed view of the genome-wide contribution of a specific plant transcription factor in modulating the transcriptional network associated with plant immunity. DOI: http://dx.doi.org/10.7554/eLife.07295.001 PMID:26076231
Mechanism-based post-translational modification and inactivation in terpene synthases
Kersten, Roland D.; Diedrich, Jolene K.; Yates, III, John R.; ...
2015-09-17
Terpenes are ubiquitous natural chemicals with diverse biological functions spanning all three domains of life. In specialized metabolism, the active sites of terpene synthases (TPSs) evolve in shape and reactivity to direct the biosynthesis of a myriad of chemotypes for organismal fitness. As most terpene biosynthesis mechanistically involves highly reactive carbocationic intermediates, the protein surfaces catalyzing these cascade reactions possess reactive regions possibly prone to premature carbocation capture and potentially enzyme inactivation. Here, we show using proteomic and X-ray crystallographic analyses that cationic intermediates undergo capture by conserved active site residues leading to inhibitory self-alkylation. Furthermore, the level of cation-mediatedmore » inactivation increases with mutation of the active site, upon changes in the size and structure of isoprenoid diphosphate substrates, and alongside increases in reaction temperatures. TPSs that individually synthesize multiple products are less prone to self-alkylation then TPSs possessing relatively high product specificity. In total, the results presented suggest that mechanism-based alkylation represents an overlooked mechanistic pressure during the evolution of cation-derived terpene biosynthesis.« less
Inhibitors of Ethylene Biosynthesis and Signaling.
Schaller, G Eric; Binder, Brad M
2017-01-01
Ethylene is a gas biosynthesized by plants which has many physiological and developmental effects on their growth. Ethylene affects agriculturally and horticulturally important traits such as fruit ripening, post-harvest physiology, senescence, and abscission, and so ethylene action is often inhibited to improve the shelf life of fruits, vegetables, and cut flowers. Chemical inhibitors of ethylene action are also useful for research to characterize the mechanisms of ethylene biosynthesis and signal transduction, and the role that ethylene plays in various physiological processes. Here, we describe the use of three inhibitors commonly used for the study of ethylene action in plants: 2-aminoethoxyvinyl glycine (AVG), silver ions (Ag), and the gaseous compound 1-methylcyclopropene (1-MCP). AVG is an inhibitor of 1-aminocyclopropane-1-carboxylic acid (ACC) synthase, a key enzyme involved in ethylene biosynthesis. Silver and 1-MCP are both inhibitors of the ethylene receptors. Inhibitor use as well as off-target effects are described with a focus on ethylene responses in dark-grown Arabidopsis seedlings. Methods for the use of these inhibitors can be applied to other plant growth assays.
The family of berberine bridge enzyme-like enzymes: A treasure-trove of oxidative reactions.
Daniel, Bastian; Konrad, Barbara; Toplak, Marina; Lahham, Majd; Messenlehner, Julia; Winkler, Andreas; Macheroux, Peter
2017-10-15
Biological oxidations form the basis of life on earth by utilizing organic compounds as electron donors to drive the generation of metabolic energy carriers, such as ATP. Oxidative reactions are also important for the biosynthesis of complex compounds, i.e. natural products such as alkaloids that provide vital benefits for organisms in all kingdoms of life. The vitamin B 2 -derived cofactors flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) enable an astonishingly diverse array of oxidative reactions that is based on the versatility of the redox-active isoalloxazine ring. The family of FAD-linked oxidases can be divided into subgroups depending on specific sequence features in an otherwise very similar structural context. The sub-family of berberine bridge enzyme (BBE)-like enzymes has recently attracted a lot of attention due to the challenging chemistry catalyzed by its members and the unique and unusual bi-covalent attachment of the FAD cofactor. This family is the focus of the present review highlighting recent advancements into the structural and functional aspects of members from bacteria, fungi and plants. In view of the unprecedented reaction catalyzed by the family's namesake, BBE from the California poppy, recent studies have provided further insights into nature's treasure chest of oxidative reactions. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Bacterial cellulose biosynthesis: diversity of operons, subunits, products, and functions.
Römling, Ute; Galperin, Michael Y
2015-09-01
Recent studies of bacterial cellulose biosynthesis, including structural characterization of a functional cellulose synthase complex, provided the first mechanistic insight into this fascinating process. In most studied bacteria, just two subunits, BcsA and BcsB, are necessary and sufficient for the formation of the polysaccharide chain in vitro. Other subunits - which differ among various taxa - affect the enzymatic activity and product yield in vivo by modulating (i) the expression of the biosynthesis apparatus, (ii) the export of the nascent β-D-glucan polymer to the cell surface, and (iii) the organization of cellulose fibers into a higher-order structure. These auxiliary subunits play key roles in determining the quantity and structure of resulting biofilms, which is particularly important for the interactions of bacteria with higher organisms - leading to rhizosphere colonization and modulating the virulence of cellulose-producing bacterial pathogens inside and outside of host cells. We review the organization of four principal types of cellulose synthase operon found in various bacterial genomes, identify additional bcs genes that encode components of the cellulose biosynthesis and secretion machinery, and propose a unified nomenclature for these genes and subunits. We also discuss the role of cellulose as a key component of biofilms and in the choice between acute infection and persistence in the host. Copyright © 2015 Elsevier Ltd. All rights reserved.
Elucidation and chemical modulation of sulfolipid-1 biosynthesis in Mycobacterium tuberculosis.
Seeliger, Jessica C; Holsclaw, Cynthia M; Schelle, Michael W; Botyanszki, Zsofia; Gilmore, Sarah A; Tully, Sarah E; Niederweis, Michael; Cravatt, Benjamin F; Leary, Julie A; Bertozzi, Carolyn R
2012-03-09
Mycobacterium tuberculosis possesses unique cell-surface lipids that have been implicated in virulence. One of the most abundant is sulfolipid-1 (SL-1), a tetraacyl-sulfotrehalose glycolipid. Although the early steps in SL-1 biosynthesis are known, the machinery underlying the final acylation reactions is not understood. We provide genetic and biochemical evidence for the activities of two proteins, Chp1 and Sap (corresponding to gene loci rv3822 and rv3821), that complete this pathway. The membrane-associated acyltransferase Chp1 accepts a synthetic diacyl sulfolipid and transfers an acyl group regioselectively from one donor substrate molecule to a second acceptor molecule in two successive reactions to yield a tetraacylated product. Chp1 is fully active in vitro, but in M. tuberculosis, its function is potentiated by the previously identified sulfolipid transporter MmpL8. We also show that the integral membrane protein Sap and MmpL8 are both essential for sulfolipid transport. Finally, the lipase inhibitor tetrahydrolipstatin disrupts Chp1 activity in M. tuberculosis, suggesting an avenue for perturbing SL-1 biosynthesis in vivo. These data complete the SL-1 biosynthetic pathway and corroborate a model in which lipid biosynthesis and transmembrane transport are coupled at the membrane-cytosol interface through the activity of multiple proteins, possibly as a macromolecular complex.
New regulatory tricks for an old toxin cluster
USDA-ARS?s Scientific Manuscript database
Trichothecenes are among the mycotoxins of greatest concern to food and feed safety and are produced by at least two lineages of Fusarium: F. sambucinum (FSAMSC) and F. incarnatum-equiseti (FIESC) species complexes. Trichothecene biosynthesis begins with the formation of a cyclic sesquiterpene follo...
Enzyme catalysis: C-H activation is a Reiske business
NASA Astrophysics Data System (ADS)
Bruner, Steven D.
2011-05-01
Enzymes that selectively oxidize unactivated C-H bonds are capable of constructing complex molecules with high efficiency. A new member of this enzyme family is RedG, a Reiske-type oxygenase that catalyses chemically challenging cyclizations in the biosynthesis of prodiginine natural products.
Asai, Teigo; Tsukada, Kento; Ise, Satomi; Shirata, Naoki; Hashimoto, Makoto; Fujii, Isao; Gomi, Katsuya; Nakagawara, Kosuke; Kodama, Eiichi N; Oshima, Yoshiteru
2015-09-01
The structural complexity and diversity of natural products make them attractive sources for potential drug discovery, with their characteristics being derived from the multi-step combination of enzymatic and non-enzymatic conversions of intermediates in each biosynthetic pathway. Intermediates that exhibit multipotent behaviour have great potential for use as starting points in diversity-oriented synthesis. Inspired by the biosynthetic pathways that form complex metabolites from simple intermediates, we developed a semi-synthetic process that combines heterologous biosynthesis and artificial diversification. The heterologous biosynthesis of fungal polyketide intermediates led to the isolation of novel oligomers and provided evidence for ortho-quinonemethide equivalency in their isochromene form. The intrinsic reactivity of the isochromene polyketide enabled us to access various new chemical entities by modifying and remodelling the polyketide core and through coupling with indole molecules. We thus succeeded in generating exceptionally diverse pseudo-natural polyketides through this process and demonstrated an advanced method of using biosynthetic intermediates.
NASA Astrophysics Data System (ADS)
Asai, Teigo; Tsukada, Kento; Ise, Satomi; Shirata, Naoki; Hashimoto, Makoto; Fujii, Isao; Gomi, Katsuya; Nakagawara, Kosuke; Kodama, Eiichi N.; Oshima, Yoshiteru
2015-09-01
The structural complexity and diversity of natural products make them attractive sources for potential drug discovery, with their characteristics being derived from the multi-step combination of enzymatic and non-enzymatic conversions of intermediates in each biosynthetic pathway. Intermediates that exhibit multipotent behaviour have great potential for use as starting points in diversity-oriented synthesis. Inspired by the biosynthetic pathways that form complex metabolites from simple intermediates, we developed a semi-synthetic process that combines heterologous biosynthesis and artificial diversification. The heterologous biosynthesis of fungal polyketide intermediates led to the isolation of novel oligomers and provided evidence for ortho-quinonemethide equivalency in their isochromene form. The intrinsic reactivity of the isochromene polyketide enabled us to access various new chemical entities by modifying and remodelling the polyketide core and through coupling with indole molecules. We thus succeeded in generating exceptionally diverse pseudo-natural polyketides through this process and demonstrated an advanced method of using biosynthetic intermediates.
Human frataxin is an allosteric switch that activates the Fe-S cluster biosynthetic complex.
Tsai, Chi-Lin; Barondeau, David P
2010-11-02
Cellular depletion of the human protein frataxin is correlated with the neurodegenerative disease Friedreich's ataxia and results in the inactivation of Fe-S cluster proteins. Most researchers agree that frataxin functions in the biogenesis of Fe-S clusters, but its precise role in this process is unclear. Here we provide in vitro evidence that human frataxin binds to a Nfs1, Isd11, and Isu2 complex to generate the four-component core machinery for Fe-S cluster biosynthesis. Frataxin binding dramatically changes the K(M) for cysteine from 0.59 to 0.011 mM and the catalytic efficiency (k(cat)/K(M)) of the cysteine desulfurase from 25 to 7900 M⁻¹s⁻¹. Oxidizing conditions diminish the levels of both complex formation and frataxin-based activation, whereas ferrous iron further stimulates cysteine desulfurase activity. Together, these results indicate human frataxin functions with Fe(2+) as an allosteric activator that triggers sulfur delivery and Fe-S cluster assembly. We propose a model in which cellular frataxin levels regulate human Fe-S cluster biosynthesis that has implications for mitochondrial dysfunction, oxidative stress response, and both neurodegenerative and cardiovascular disease.
Gomez, Fernando; Saiki, Ryoichi; Chin, Randall; Srinivasan, Chandra; Clarke, Catherine F.
2012-01-01
Coenzyme Q (ubiquinone or Q) is an essential lipid component of the mitochondrial electron transport chain. In Caenorhabditis elegans Q biosynthesis involves at least nine steps, including the hydroxylation of the hydroquinone ring by CLK-1 and two O-methylation steps mediated by COQ-3. We characterize two C. elegans coq-3 deletion mutants, and show that while each has defects in Q synthesis, their phenotypes are distinct. First generation homozygous coq-3(ok506) mutants are fertile when fed the standard lab diet of Q-replete OP50 E. coli, but their second generation homozygous progeny do not reproduce. In contrast, the coq-3(qm188) deletion mutant remains sterile when fed Q-replete OP50. Quantitative PCR analyses suggest that the longer qm188 deletion may alter expression of the flanking nuo-3 and gdi-1 genes, located 5′ and 3′, respectively of coq-3 within an operon. We surmise that variable expression of nuo-3, a subunit of complex I, or of gdi-1, a guanine nucleotide dissociation inhibitor, may act in combination with defects in Q biosynthesis to produce a more severe phenotype. The phenotypes of both coq-3 mutants are more drastic as compared to the C. elegans clk-1 mutants. When fed OP50, clk-1 mutants reproduce for many generations, but show reduced fertility, slow behaviors, and enhanced life span. The coq-3 and clk-1 mutants all show arrested development and are sterile when fed the Q-deficient E. coli strain GD1 (harboring a mutation in the ubiG gene). However, unlike clk-1 mutant worms, neither coq-3 mutant strain responded to dietary supplementation with purified exogenous Q10. Here we show that the Q9 content can be determined in lipid extracts from just 200 individual worms, enabling the determination of Q content in the coq-3 mutants unable to reproduce. An extra-chromosomal array expressing wild-type C. elegans coq-3 rescued fertility of both coq-3 mutants and partially restored steady-state levels of COQ-3 polypeptide and Q9 content, indicating that primary defect in both is limited to coq-3. The limited response of the coq-3 mutants to dietary supplementation with Q provides a powerful model to probe the effectiveness of exogenous Q supplementation as compared to restoration of de novo Q biosynthesis. PMID:22735617
Gomez, Fernando; Saiki, Ryoichi; Chin, Randall; Srinivasan, Chandra; Clarke, Catherine F
2012-09-10
Coenzyme Q (ubiquinone or Q) is an essential lipid component of the mitochondrial electron transport chain. In Caenorhabditis elegans Q biosynthesis involves at least nine steps, including the hydroxylation of the hydroquinone ring by CLK-1 and two O-methylation steps mediated by COQ-3. We characterize two C. elegans coq-3 deletion mutants, and show that while each has defects in Q synthesis, their phenotypes are distinct. First generation homozygous coq-3(ok506) mutants are fertile when fed the standard lab diet of Q-replete OP50 Escherichia coli, but their second generation homozygous progeny does not reproduce. In contrast, the coq-3(qm188) deletion mutant remains sterile when fed Q-replete OP50. Quantitative PCR analyses suggest that the longer qm188 deletion may alter expression of the flanking nuo-3 and gdi-1 genes, located 5' and 3', respectively of coq-3 within an operon. We surmise that variable expression of nuo-3, a subunit of complex I, or of gdi-1, a guanine nucleotide dissociation inhibitor, may act in combination with defects in Q biosynthesis to produce a more severe phenotype. The phenotypes of both coq-3 mutants are more drastic as compared to the C. elegans clk-1 mutants. When fed OP50, clk-1 mutants reproduce for many generations, but show reduced fertility, slow behaviors, and enhanced life span. The coq-3 and clk-1 mutants all show arrested development and are sterile when fed the Q-deficient E. coli strain GD1 (harboring a mutation in the ubiG gene). However, unlike clk-1 mutant worms, neither coq-3 mutant strain responded to dietary supplementation with purified exogenous Q(10). Here we show that the Q(9) content can be determined in lipid extracts from just 200 individual worms, enabling the determination of Q content in the coq-3 mutants unable to reproduce. An extra-chromosomal array expressing wild-type C. elegans coq-3 rescued fertility of both coq-3 mutants and partially restored steady-state levels of COQ-3 polypeptide and Q(9) content, indicating that primary defect in both is limited to coq-3. The limited response of the coq-3 mutants to dietary supplementation with Q provides a powerful model to probe the effectiveness of exogenous Q supplementation as compared to restoration of de novo Q biosynthesis. Copyright © 2012 Elsevier B.V. All rights reserved.
TRANSPARENT TESTA GLABRA 1-Dependent Regulation of Flavonoid Biosynthesis
Zhang, Bipei
2017-01-01
The flavonoid composition of various tissues throughout plant development is of biological relevance and particular interest for breeding. Arabidopsis thaliana TRANSPARENT TESTA GLABRA 1 (AtTTG1) is an essential regulator of late structural genes in flavonoid biosynthesis. Here, we provide a review of the regulation of the pathway’s core enzymes through AtTTG1-containing R2R3-MYELOBLASTOSIS-basic HELIX-LOOP-HELIX-WD40 repeat (MBW(AtTTG1)) complexes embedded in an evolutionary context. We present a comprehensive collection of A. thaliana ttg1 mutants and AtTTG1 orthologs. A plethora of MBW(AtTTG1) mechanisms in regulating the five major TTG1-dependent traits is highlighted. PMID:29261137
Problem-Solving Test: Attenuation--A Mechanism to Regulate Bacterial Tryptophan Biosynthesis
ERIC Educational Resources Information Center
Szeberenyi, Jozsef
2010-01-01
Terms to be familiar with before you start to solve the test: tryptophan, transcription unit, operon, "trp" repressor, corepressor, operator, promoter, palindrome, initiation, elongation, and termination of transcription, open reading frame, coupled transcription/translation, chromosome-polysome complex. (Contains 2 figures and 1 footnote.)
Fujita, Yuichi; Tsujimoto, Ryoma; Aoki, Rina
2015-01-01
Chlorophyll a (Chl) is a light-absorbing tetrapyrrole pigment that is essential for photosynthesis. The molecule is produced from glutamate via a complex biosynthetic pathway comprised of at least 15 enzymatic steps. The first half of the Chl pathway is shared with heme biosynthesis, and the latter half, called the Mg-branch, is specific to Mg-containing Chl a. Bilin pigments, such as phycocyanobilin, are additionally produced from heme, so these light-harvesting pigments also share many common biosynthetic steps with Chl biosynthesis. Some of these common steps in the biosynthetic pathways of heme, Chl and bilins require molecular oxygen for catalysis, such as oxygen-dependent coproporphyrinogen III oxidase. Cyanobacteria thrive in diverse environments in terms of oxygen levels. To cope with Chl deficiency caused by low-oxygen conditions, cyanobacteria have developed elaborate mechanisms to maintain Chl production, even under microoxic environments. The use of enzymes specialized for low-oxygen conditions, such as oxygen-independent coproporphyrinogen III oxidase, constitutes part of a mechanism adapted to low-oxygen conditions. Another mechanism adaptive to hypoxic conditions is mediated by the transcriptional regulator ChlR that senses low oxygen and subsequently activates the transcription of genes encoding enzymes that work under low-oxygen tension. In diazotrophic cyanobacteria, this multilayered regulation also contributes in Chl biosynthesis by supporting energy production for nitrogen fixation that also requires low-oxygen conditions. We will also discuss the evolutionary implications of cyanobacterial tetrapyrrole biosynthesis and regulation, because low oxygen-type enzymes also appear to be evolutionarily older than oxygen-dependent enzymes. PMID:25830590
A novel deficiency of mitochondrial ATPase of nuclear origin.
Houstek, J; Klement, P; Floryk, D; Antonická, H; Hermanská, J; Kalous, M; Hansíková, H; Hout'ková, H; Chowdhury, S K; Rosipal, T; Kmoch, S; Stratilová, L; Zeman, J
1999-10-01
We report a new type of fatal mitochondrial disorder caused by selective deficiency of mitochondrial ATP synthase (ATPase). A hypotrophic newborn from a consanguineous marriage presented severe lactic acidosis, cardiomegaly and hepatomegaly and died from heart failure after 2 days. The activity of oligomycin-sensitive ATPase was only 31-34% of the control, both in muscle and heart, but the activities of cytochrome c oxidase, citrate synthase and pyruvate dehydrogenase were normal. Electrophoretic and western blot analysis revealed selective reduction of ATPase complex but normal levels of the respiratory chain complexes I, III and IV. The same selective deficiency of ATPase was found in cultured skin fibroblasts which showed similar decreases in ATPase content, ATPase hydrolytic activity and level of substrate-dependent ATP synthesis (20-25, 18 and 29-33% of the control, respectively). Pulse-chase labelling of patient fibroblasts revealed low incorporation of [(35)S]methionine into assembled ATPase complexes, but increased incorporation into immunoprecipitated ATPase subunit beta, which had a very short half-life. In contrast, no difference was found in the size and subunit composition of the assembled and newly produced ATPase complex. Transmitochondrial cybrids prepared from enucleated fibroblasts of the patient and rho degrees cells derived from 143B. TK(-)human osteosarcoma cells fully restored the ATPase activity, ATP synthesis and ATPase content, when compared with control cybrids. Likewise, the pattern of [(35)S]methionine labelling of ATPase was found to be normal in patient cybrids. We conclude that the generalized deficiency of mitochondrial ATPase described is of nuclear origin and is caused by altered biosynthesis of the enzyme.
Kolossov, Vladimir L; Kopetz, Karen J; Rebeiz, Constantin A
2003-08-01
The thorough understanding of photosynthetic membrane assembly requires a deeper knowledge of the coordination of chlorophyll (Chl) and thylakoid apoprotein biosynthesis. As a working model for future investigations, we have proposed three Chl-thylakoid apoprotein biosynthesis models, namely, a single-branched Chl biosynthetic pathway (SBP) single-location model, an SBP multilocation model and a multibranched Chl biosynthetic pathway (MBP) sublocation model. Rejection or validation of these models can be probed by determination of resonance excitation energy transfer between various tetrapyrrole intermediates of the Chl biosynthetic pathway and various thylakoid Chl-protein complexes. In this study we describe the detection of resonance energy transfer between protoporphyrin IX (Proto), Mg-Proto and its monomethyl ester (Mp(e)) and divinyl and monovinyl protochlorophyllide a (Pchlide a) and several Chl-protein complexes. Induction of various amounts of tetrapyrrole accumulation in green photoperiodically grown cucumber cotyledons and barley leaves was achieved by dark incubation of excised tissues with delta-aminolevulinic acid (ALA) and various concentrations of 2,2'-dipyridyl for various periods of time. Controls were incubated in distilled water. After plastid isolation, treated and control plastids were diluted in buffered glycerol to the same Chl concentration. Excitation spectra were then recorded at 77 K at emission maxima of about 686, 694 and 738 nm. Resonance excitation energy transfer from Proto, Mp(e) and Pchlide a to Chl-protein complexes emitting at 686, 694 and 738 nm was observed by calculation of treated minus control difference excitation spectra. The occurrence of resonance excitation energy transfer between anabolic tetrapyrroles and Chl-protein complexes appeared as well-defined excitation bands with excitation maxima corresponding to those of Proto, Mp(e) and Pchlide a. Furthermore, it appeared that resonance excitation energy transfer from multiple short-wavelength, medium-wavelength and long-wavelength Proto, Mp(e) and Chlide a sites to various Chl-protein complexes took place. Because resonance excitation transfer from donors to acceptors cannot take place at distances larger than 100 A, it is proposed that the observed resonance excitation energy transfers are not compatible with the SBP single-location Chl biosynthesis thylakoid membrane biogenesis model. The latter assumes that a single-branched Chl biosynthetic pathway located in the center of a 450 x 130 A photosynthetic unit generates all of the Chl needed for the assembly of all Chl-protein complexes.
Kirm, Benjamin; Magdevska, Vasilka; Tome, Miha; Horvat, Marinka; Karničar, Katarina; Petek, Marko; Vidmar, Robert; Baebler, Spela; Jamnik, Polona; Fujs, Štefan; Horvat, Jaka; Fonovič, Marko; Turk, Boris; Gruden, Kristina; Petković, Hrvoje; Kosec, Gregor
2013-12-17
Erythromycin is a medically important antibiotic, biosynthesized by the actinomycete Saccharopolyspora erythraea. Genes encoding erythromycin biosynthesis are organized in a gene cluster, spanning over 60 kbp of DNA. Most often, gene clusters encoding biosynthesis of secondary metabolites contain regulatory genes. In contrast, the erythromycin gene cluster does not contain regulatory genes and regulation of its biosynthesis has therefore remained poorly understood, which has for a long time limited genetic engineering approaches for erythromycin yield improvement. We used a comparative proteomic approach to screen for potential regulatory proteins involved in erythromycin biosynthesis. We have identified a putative regulatory protein SACE_5599 which shows significantly higher levels of expression in an erythromycin high-producing strain, compared to the wild type S. erythraea strain. SACE_5599 is a member of an uncharacterized family of putative regulatory genes, located in several actinomycete biosynthetic gene clusters. Importantly, increased expression of SACE_5599 was observed in the complex fermentation medium and at controlled bioprocess conditions, simulating a high-yield industrial fermentation process in the bioreactor. Inactivation of SACE_5599 in the high-producing strain significantly reduced erythromycin yield, in addition to drastically decreasing sporulation intensity of the SACE_5599-inactivated strains when cultivated on ABSM4 agar medium. In contrast, constitutive overexpression of SACE_5599 in the wild type NRRL23338 strain resulted in an increase of erythromycin yield by 32%. Similar yield increase was also observed when we overexpressed the bldD gene, a previously identified regulator of erythromycin biosynthesis, thereby for the first time revealing its potential for improving erythromycin biosynthesis. SACE_5599 is the second putative regulatory gene to be identified in S. erythraea which has positive influence on erythromycin yield. Like bldD, SACE_5599 is involved in morphological development of S. erythraea, suggesting a very close relationship between secondary metabolite biosynthesis and morphological differentiation in this organism. While the mode of action of SACE_5599 remains to be elucidated, the manipulation of this gene clearly shows potential for improvement of erythromycin production in S. erythraea in industrial setting. We have also demonstrated the applicability of the comparative proteomics approach for identifying new regulatory elements involved in biosynthesis of secondary metabolites in industrial conditions.
2013-01-01
Background Erythromycin is a medically important antibiotic, biosynthesized by the actinomycete Saccharopolyspora erythraea. Genes encoding erythromycin biosynthesis are organized in a gene cluster, spanning over 60 kbp of DNA. Most often, gene clusters encoding biosynthesis of secondary metabolites contain regulatory genes. In contrast, the erythromycin gene cluster does not contain regulatory genes and regulation of its biosynthesis has therefore remained poorly understood, which has for a long time limited genetic engineering approaches for erythromycin yield improvement. Results We used a comparative proteomic approach to screen for potential regulatory proteins involved in erythromycin biosynthesis. We have identified a putative regulatory protein SACE_5599 which shows significantly higher levels of expression in an erythromycin high-producing strain, compared to the wild type S. erythraea strain. SACE_5599 is a member of an uncharacterized family of putative regulatory genes, located in several actinomycete biosynthetic gene clusters. Importantly, increased expression of SACE_5599 was observed in the complex fermentation medium and at controlled bioprocess conditions, simulating a high-yield industrial fermentation process in the bioreactor. Inactivation of SACE_5599 in the high-producing strain significantly reduced erythromycin yield, in addition to drastically decreasing sporulation intensity of the SACE_5599-inactivated strains when cultivated on ABSM4 agar medium. In contrast, constitutive overexpression of SACE_5599 in the wild type NRRL23338 strain resulted in an increase of erythromycin yield by 32%. Similar yield increase was also observed when we overexpressed the bldD gene, a previously identified regulator of erythromycin biosynthesis, thereby for the first time revealing its potential for improving erythromycin biosynthesis. Conclusions SACE_5599 is the second putative regulatory gene to be identified in S. erythraea which has positive influence on erythromycin yield. Like bldD, SACE_5599 is involved in morphological development of S. erythraea, suggesting a very close relationship between secondary metabolite biosynthesis and morphological differentiation in this organism. While the mode of action of SACE_5599 remains to be elucidated, the manipulation of this gene clearly shows potential for improvement of erythromycin production in S. erythraea in industrial setting. We have also demonstrated the applicability of the comparative proteomics approach for identifying new regulatory elements involved in biosynthesis of secondary metabolites in industrial conditions. PMID:24341557
Adhikari, Neil D.; Froehlich, John E.; Strand, Deserah D.; Buck, Stephanie M.; Kramer, David M.; Larkin, Robert M.
2011-01-01
The GENOMES UNCOUPLED4 (GUN4) protein stimulates chlorophyll biosynthesis by activating Mg-chelatase, the enzyme that commits protoporphyrin IX to chlorophyll biosynthesis. This stimulation depends on GUN4 binding the ChlH subunit of Mg-chelatase and the porphyrin substrate and product of Mg-chelatase. After binding porphyrins, GUN4 associates more stably with chloroplast membranes and was proposed to promote interactions between ChlH and chloroplast membranes—the site of Mg-chelatase activity. GUN4 was also proposed to attenuate the production of reactive oxygen species (ROS) by binding and shielding light-exposed porphyrins from collisions with O2. To test these proposals, we first engineered Arabidopsis thaliana plants that express only porphyrin binding–deficient forms of GUN4. Using these transgenic plants and particular mutants, we found that the porphyrin binding activity of GUN4 and Mg-chelatase contribute to the accumulation of chlorophyll, GUN4, and Mg-chelatase subunits. Also, we found that the porphyrin binding activity of GUN4 and Mg-chelatase affect the associations of GUN4 and ChlH with chloroplast membranes and have various effects on the expression of ROS-inducible genes. Based on our findings, we conclude that ChlH and GUN4 use distinct mechanisms to associate with chloroplast membranes and that mutant alleles of GUN4 and Mg-chelatase genes cause sensitivity to intense light by a mechanism that is potentially complex. PMID:21467578
Perez, Rodney H; Sugino, Haruki; Ishibashi, Naoki; Zendo, Takeshi; Wilaipun, Pongtep; Leelawatcharamas, Vichien; Nakayama, Jiro; Sonomoto, Kenji
2017-04-01
Enterocin NKR-5-3B (Ent53B) is a 64-residue novel circular bacteriocin synthesized from an 87-residue prepeptide. Albeit through a still unknown mechanism, the EnkB1234 biosynthetic enzyme complex processes the prepeptide to yield its mature active, circular form. To gain insights into the key region/residue that plays a role in Ent53 maturation, several mutations near the cleavage site on the precursor peptide were generated. The interaction of the precursor peptide and EnkB1234 appeared to be hydrophobic in nature. At the Leu1 position, only mutations with helix structure-promoting hydrophobic residues (Ala, Ile, Val or Phe) were able to yield the mature Ent53B derivative. In this study, we also highlight the possible conformation-stabilizing role of the Ent53B leader peptide on the precursor peptide for its interaction with its biosynthetic enzyme complex. Any truncations of the leader peptide moiety interfered in the processing of the prepeptide. However, when propeptides of other circular bacteriocins (circularin A, leucocyclicin Q or lactocyclicin Q) were cloned at the C-terminus of the leader peptide, EnkB1234 could not process them to yield a mature bacteriocin. Taken together, these findings offer new perspectives in our understanding of the possible molecular mechanism of the biosynthesis of this circular bacteriocin. These new perspectives will help advance our current understanding to eventually elucidate circular bacteriocin biosynthesis. Understanding the biosynthetic mechanism of circular bacteriocins will materialize their application potential.
Silva, A R; Silva, C G; Ruschel, C; Helegda, C; Wyse, A T; Wannmacher, C M; Wajner, M; Dutra-Filho, C S
2001-12-01
In the present study we investigated the effects of L-pyroglutamic acid (PGA), which predominantly accumulates in the inherited metabolic diseases glutathione synthetase deficiency (GSD) and gamma-glutamylcysteine synthetase deficiency (GCSD), on some in vitro parameters of energy metabolism and lipid biosynthesis. We evaluated the rates of CO2 production and lipid synthesis from [U-14C]acetate, as well as ATP levels and the activities of creatine kinase and of the respiratory chain complexes I-IV in cerebral cortex of young rats in the presence of PGA at final concentrations ranging from 0.5 to 3 mM. PGA significantly reduced brain CO2 production by 50% at the concentrations of 0.5 to 3 mM, lipid biosynthesis by 20% at concentrations of 0.5 to 3 mM and ATP levels by 52% at the concentration of 3 mM. Regarding the enzyme activities, PGA significantly decreased NADH:cytochrome c oxireductase (complex I plus CoQ plus complex III) by 40% at concentrations of 0.5-3.0 mM and cytochrome c oxidase activity by 22-30% at the concentration of 3.0 mM, without affecting the activities of succinate dehydrogenase, succinate:DCPIP oxireductase (complex II), succinate:cytochrome c oxireductase (complex II plus CoQ plus complex III) or creatine kinase. The results strongly indicate that PGA impairs brain energy production. If these effects also occur in humans, it is possible that they may contribute to the neuropathology of patients affected by these diseases.
Bartholdson, S Josefin; Brown, Alan R; Mewburn, Ben R; Clarke, David J; Fry, Stephen C; Campopiano, Dominic J; Govan, John R W
2008-08-01
The species that presently constitute the Burkholderia cepacia complex (Bcc) have multiple roles; they include soil and water saprophytes, bioremediators, and plant, animal and human pathogens. Since the first description of pathogenicity in the Bcc was based on sour skin rot of onion bulbs, this study returned to this plant host to investigate the onion-associated phenotype of the Bcc. Many Bcc isolates, which were previously considered to be non-mucoid, produced copious amounts of exopolysaccharide (EPS) when onion tissue was provided as the sole nutrient. EPS production was not species-specific, was observed in isolates from both clinical and environmental sources, and did not correlate with the ability to cause maceration of onion tissue. Chemical analysis suggested that the onion components responsible for EPS induction were primarily the carbohydrates sucrose, fructose and fructans. Additional sugars were investigated, and all alcohol sugars tested were able to induce EPS production, in particular mannitol and glucitol. To investigate the molecular basis for EPS biosynthesis, we focused on the highly conserved bce gene cluster thought to be involved in cepacian biosynthesis. We demonstrated induction of the bce gene cluster by mannitol, and found a clear correlation between the inability of representatives of the Burkholderia cenocepacia ET12 lineage to produce EPS and the presence of an 11 bp deletion within the bceB gene, which encodes a glycosyltransferase. Insertional inactivation of bceB in Burkholderia ambifaria AMMD results in loss of EPS production on sugar alcohol media. These novel and surprising insights into EPS biosynthesis highlight the metabolic potential of the Bcc and show that a potential virulence factor may not be detected by routine laboratory culture. Our results also highlight a potential hazard in the use of inhaled mannitol as an osmolyte to improve mucociliary clearance in individuals with cystic fibrosis.
Allan, Christopher M; Hill, Shauna; Morvaridi, Susan; Saiki, Ryoichi; Johnson, Jarrett S; Liau, Wei-Siang; Hirano, Kathleen; Kawashima, Tadashi; Ji, Ziming; Loo, Joseph A; Shepherd, Jennifer N; Clarke, Catherine F
2013-04-01
Coenzyme Qn (ubiquinone or Qn) is a redox active lipid composed of a fully substituted benzoquinone ring and a polyisoprenoid tail of n isoprene units. Saccharomyces cerevisiae coq1-coq9 mutants have defects in Q biosynthesis, lack Q6, are respiratory defective, and sensitive to stress imposed by polyunsaturated fatty acids. The hallmark phenotype of the Q-less yeast coq mutants is that respiration in isolated mitochondria can be rescued by the addition of Q2, a soluble Q analog. Yeast coq10 mutants share each of these phenotypes, with the surprising exception that they continue to produce Q6. Structure determination of the Caulobacter crescentus Coq10 homolog (CC1736) revealed a steroidogenic acute regulatory protein-related lipid transfer (START) domain, a hydrophobic tunnel known to bind specific lipids in other START domain family members. Here we show that purified CC1736 binds Q2, Q3, Q10, or demethoxy-Q3 in an equimolar ratio, but fails to bind 3-farnesyl-4-hydroxybenzoic acid, a farnesylated analog of an early Q-intermediate. Over-expression of C. crescentus CC1736 or COQ8 restores respiratory electron transport and antioxidant function of Q6 in the yeast coq10 null mutant. Studies with stable isotope ring precursors of Q reveal that early Q-biosynthetic intermediates accumulate in the coq10 mutant and de novo Q-biosynthesis is less efficient than in the wild-type yeast or rescued coq10 mutant. The results suggest that the Coq10 polypeptide:Q (protein:ligand) complex may serve essential functions in facilitating de novo Q biosynthesis and in delivering newly synthesized Q to one or more complexes of the respiratory electron transport chain. Copyright © 2012 Elsevier B.V. All rights reserved.
Europa: Prospects for an ocean and exobiological implications
NASA Technical Reports Server (NTRS)
Oro, John; Squyres, Steven W.; Reynolds, Ray T.; Mills, Thomas M.
1992-01-01
As far as we know, Earth is the only planet in our solar system that supports life. It is natural, therefore, that our understanding of life as a planetary phenomenon is based upon Earth-like planets. There are environments in the solar system where liquid water, commonly believed to be a prerequisite for biological activity, may exist in a distinctly non-Earth-like environment. One such location is Europa, one of the Galilean satellites of Jupiter. The possibility that liquid water exists on Europa presents us with some interesting exobiological implications concerning the potential of the satellite to support life. Topics include the following: an ocean on Europa; thermal evolution of Europa; Europa's three models; exobiological implications; early conditions of Europa; low-temperature abiotic chemistry; possibility of the emergence of life on Europa; prerequisites for the habitability of Europa; energy sources for biosynthesis and metabolic activity; habitability of Europa by anaerobic life; and habitability by aerobic life.
Lim, Sun-Hyung; Kim, Da-Hye; Kim, Jae K.; Lee, Jong-Yeol; Ha, Sun-Hwa
2017-01-01
The MYB-bHLH-WDR (MBW) complex activates anthocyanin biosynthesis through the transcriptional regulation. RsMYB1 has been identified as a key player in anthocyanin biosynthesis in red radish (Raphanus sativus L.), but its partner bHLH transcription factor (TF) remains to be determined. In this study, we isolated a bHLH TF gene from red radish. Phylogenetic analysis indicated that this gene belongs to the TT8 clade of the IIIF subgroup of bHLH TFs, and we thus designated this gene RsTT8. Subcellular localization analysis showed that RsTT8-sGFP was localized to the nuclei of Arabidopsis thaliana protoplasts harboring the RsTT8-sGFP construct. We evaluated anthocyanin biosynthesis and RsTT8 expression levels in three radish varieties (N, C, and D) that display different red phenotypes in the leaves, root flesh, and root skins. The root flesh of the C variety and the leaves and skins of the D variety exhibit intense red pigmentation; in these tissues, RsTT8 expression showed totally positive association with the expression of RsMYB1 TF and of five of eight tested anthocyanin biosynthesis genes (i.e., RsCHS, RsCHI, RsF3H, RsDFR, and RsANS). Heterologous co-expression of both RsTT8 and RsMYB1 in tobacco leaves dramatically increased the expression of endogenous anthocyanin biosynthesis genes and anthocyanin accumulation. Furthermore, a yeast two-hybrid assay showed that RsTT8 interacts with RsMYB1 at the MYB-interacting region (MIR), and a transient transactivation assay indicated that RsTT8 activates the RsCHS and RsDFR promoters when co-expressed with RsMYB1. Complementation of the Arabidopsis tt8-1 mutant, which lacks red pigmentation in the leaves and seeds, with RsTT8 restored red pigmentation, and resulted in high anthocyanin and proanthocyanidin contents in the leaves and seeds, respectively. Together, these results show that RsTT8 functions as a regulatory partner with RsMYB1 during anthocyanin biosynthesis. PMID:29167678
Chemiluminescence enzyme immunoassay using ProteinA-bacterial magnetite complex
NASA Astrophysics Data System (ADS)
Matsunaga, Tadashi; Sato, Rika; Kamiya, Shinji; Tanaka, Tsuyosi; Takeyama, Haruko
1999-04-01
Bacterial magnetic particles (BMPs) which have ProteinA expressed on their surface were constructed using magA which is a key gene in BMP biosynthesis in the magnetic bacterium Magnetospirillum sp. AMB-1. Homogenous chemiluminescence enzyme immunoassay using antibody bound ProteinA-BMP complexes was developed for detection of human IgG. A good correlation between the luminescence yield and the concentration of human IgG was obtained in the range of 1-10 3 ng/ml.
Natural products as inspiration for the development of new synthetic methods.
Ma, Zhiqiang; Chen, Chuo
2018-01-01
Natural products have played an important role in shaping modern synthetic organic chemistry. In particular, their complex molecular skeletons have stimulated the development of many new synthetic methods. We highlight in this article some recent examples of synthetic design inspired by the biosynthesis of natural products.
Application of chirally-deuterated (S)-D-(6-2H1)glucose to conformational studies
USDA-ARS?s Scientific Manuscript database
Deuterated sugars are widely used to elucidate mechanisms of biosynthesis and of chemical reactions, and to confirm assignments of complex NMR or mass spectra. To date, however, there are few reported syntheses for regio and stereospecifically deuterated pyranoses. Chirally-deuterated (S)-D-(6-**2...
USDA-ARS?s Scientific Manuscript database
Sorghum is commonly infected by multiple members of the Gibberella fujikuroi and Fusarium incarnatum-F. equiseti species complexes (GFSC and FIESC, respectively). We had developed reduced lignin sorghum lines, usable for bioenergy feedstock, by incorporating two mutations in genes in the lignin bios...
Cory, Seth A; Van Vranken, Jonathan G; Brignole, Edward J; Patra, Shachin; Winge, Dennis R; Drennan, Catherine L; Rutter, Jared; Barondeau, David P
2017-07-03
In eukaryotes, sulfur is mobilized for incorporation into multiple biosynthetic pathways by a cysteine desulfurase complex that consists of a catalytic subunit (NFS1), LYR protein (ISD11), and acyl carrier protein (ACP). This NFS1-ISD11-ACP (SDA) complex forms the core of the iron-sulfur (Fe-S) assembly complex and associates with assembly proteins ISCU2, frataxin (FXN), and ferredoxin to synthesize Fe-S clusters. Here we present crystallographic and electron microscopic structures of the SDA complex coupled to enzyme kinetic and cell-based studies to provide structure-function properties of a mitochondrial cysteine desulfurase. Unlike prokaryotic cysteine desulfurases, the SDA structure adopts an unexpected architecture in which a pair of ISD11 subunits form the dimeric core of the SDA complex, which clarifies the critical role of ISD11 in eukaryotic assemblies. The different quaternary structure results in an incompletely formed substrate channel and solvent-exposed pyridoxal 5'-phosphate cofactor and provides a rationale for the allosteric activator function of FXN in eukaryotic systems. The structure also reveals the 4'-phosphopantetheine-conjugated acyl-group of ACP occupies the hydrophobic core of ISD11, explaining the basis of ACP stabilization. The unexpected architecture for the SDA complex provides a framework for understanding interactions with acceptor proteins for sulfur-containing biosynthetic pathways, elucidating mechanistic details of eukaryotic Fe-S cluster biosynthesis, and clarifying how defects in Fe-S cluster assembly lead to diseases such as Friedreich's ataxia. Moreover, our results support a lock-and-key model in which LYR proteins associate with acyl-ACP as a mechanism for fatty acid biosynthesis to coordinate the expression, Fe-S cofactor maturation, and activity of the respiratory complexes.
Ziemons, Sandra; Koutsantas, Katerina; Becker, Kordula; Dahlmann, Tim; Kück, Ulrich
2017-02-16
Multi-copy gene integration into microbial genomes is a conventional tool for obtaining improved gene expression. For Penicillium chrysogenum, the fungal producer of the beta-lactam antibiotic penicillin, many production strains carry multiple copies of the penicillin biosynthesis gene cluster. This discovery led to the generally accepted view that high penicillin titers are the result of multiple copies of penicillin genes. Here we investigated strain P2niaD18, a production line that carries only two copies of the penicillin gene cluster. We performed pulsed-field gel electrophoresis (PFGE), quantitative qRT-PCR, and penicillin bioassays to investigate production, deletion and overexpression strains generated in the P. chrysogenum P2niaD18 background, in order to determine the copy number of the penicillin biosynthesis gene cluster, and study the expression of one penicillin biosynthesis gene, and the penicillin titer. Analysis of production and recombinant strain showed that the enhanced penicillin titer did not depend on the copy number of the penicillin gene cluster. Our assumption was strengthened by results with a penicillin null strain lacking pcbC encoding isopenicillin N synthase. Reintroduction of one or two copies of the cluster into the pcbC deletion strain restored transcriptional high expression of the pcbC gene, but recombinant strains showed no significantly different penicillin titer compared to parental strains. Here we present a molecular genetic analysis of production and recombinant strains in the P2niaD18 background carrying different copy numbers of the penicillin biosynthesis gene cluster. Our analysis shows that the enhanced penicillin titer does not strictly depend on the copy number of the cluster. Based on these overall findings, we hypothesize that instead, complex regulatory mechanisms are prominently implicated in increased penicillin biosynthesis in production strains.
Kwan, Grace; Plagenz, Brett; Cowles, Kimberly; Pisithkul, Tippapha; Amador-Noguez, Daniel; Barak, Jeri D
2018-01-01
The human enteric pathogen Salmonella enterica leads a cross-kingdom lifestyle, actively colonizing and persisting on plants in between animal hosts. One of the questions that arises from this dual lifestyle is how S. enterica is able to adapt to such divergent hosts. Metabolic pathways required for S. enterica animal colonization and virulence have been previously identified, but the metabolism of this bacterium on plants is poorly understood. To determine the requirements for plant colonization by S. enterica , we first screened a library of metabolic mutants, previously examined in a systemic mouse typhoidal model, for competitive plant colonization fitness on alfalfa seedlings. By comparing our results to those reported in S. enterica -infected murine spleens, we found that the presence of individual nutrients differed between the two host niches. Yet, similar metabolic pathways contributed to S. enterica colonization of both plants and animals, such as the biosynthesis of amino acids, purines, and vitamins and the catabolism of glycerol and glucose. However, utilization of at least three metabolic networks differed during the bacterium's plant- and animal-associated lifestyles. Whereas both fatty acid biosynthesis and degradation contributed to S. enterica animal colonization, only fatty acid biosynthesis was required during plant colonization. Though serine biosynthesis was required in both hosts, S. enterica used different pathways within the serine metabolic network to achieve this outcome. Lastly, the metabolic network surrounding manA played different roles during colonization of each host. In animal models of infection, O-antigen production downstream of manA facilitates immune evasion. We discovered that manA contributed to S. enterica attachment, to seeds and germinated seedlings, and was essential for growth in early seedling exudates, when mannose is limited. However, only seedling attachment was linked to O-antigen production, indicating that manA played additional roles critical for plant colonization that were independent of surface polysaccharide production. The integrated view of S. enterica metabolism throughout its life cycle presented here provides insight on how metabolic versatility and adaption of known physiological pathways for alternate functions enable a zoonotic pathogen to thrive in niches spanning across multiple kingdoms of life.
Delgado, Laura D; Zúñiga, Paz E; Figueroa, Nicolás E; Pastene, Edgar; Escobar-Sepúlveda, Hugo F; Figueroa, Pablo M; Garrido-Bigotes, Adrián; Figueroa, Carlos R
2018-06-13
Fleshy fruits are an important source of anthocyanins and proanthocyanidins (PAs), which protect plants against stress, and their consumption provides beneficial effects for human health. In strawberry fruit, the application of exogenous methyl jasmonate (MeJA) upregulates anthocyanin accumulation, although the relationship between the jasmonate pathway and anthocyanin and PA biosynthesis in fruits remains to be understood. Anthocyanin and PA accumulation is mainly regulated at the transcriptional level through R2R3-MYB and bHLH transcription factors in different plant species and organs. Here, the effect of jarin-1, a specific inhibitor of bioactive JA (jasmonoyl-isoleucine, JA-Ile) biosynthesis, on anthocyanin and PA accumulation was evaluated during strawberry ( Fragaria × ananassa ) fruit development using an in vitro ripening system for 48 h. Also, we observed the effects of MeJA and the application of jarin-1 to MeJA-treated fruits (MeJA + jarin-1 treatment). We assessed changes of expression levels for the JA-Ile and MeJA biosynthetic ( FaJAR1.2 and FaJMT ), JA signaling-related ( FaMYC2 and FaJAZ1 ), MYB-bHLH-WD40 (MBW) complex-related ( FabHLH3/33 , FaMYB9/10/11 , and repressor FaMYB1 ), and anthocyanin and PA biosynthetic (FaANS , FaUFGT , FaANR , and FaLAR ) genes. In addition, the promoter region of MBW complex-related MYB genes was isolated and sequenced. We found a higher redness of strawberry fruit skin and anthocyanin content in MeJA-treated fruits with respect to jarin-1-treated ones concomitant with an upregulation of FaANS and FaUFGT genes. Inversely, the PA content was higher in jarin-1- and MeJA + jarin-1-treated than in MeJA-treated fruits. MeJA + jarin-1 treatment resulted in an upregulation of FaANR and associated transcription factors such as FabHLH33 and FaMYB9/11 along with FaJMT and FaJAR1.2 . Finally, we found JA-responsive elements in the promoter regions of FaMYB1/9/10/11 genes. It is proposed that PA biosynthesis-related genes can be upregulated by the application of jarin-1 to MeJA-treated fruit, thus increasing PA accumulation in strawberry.
USDA-ARS?s Scientific Manuscript database
Eicosanoids are oxygenated metabolites of three C20 polyunsaturated fatty acids, mainly arachidonic acid (AA; 20:4n-6), but also 20:3n-6 and 20:5n-3. Aside from their importance in biomedicine, eicosanoids act in invertebrate biology. Prostaglandins (PGs) influence salt and water transport physiol...
Sugars as the Optimal Biosynthetic Carbon Substrate of Aqueous Life throughout the Universe
NASA Technical Reports Server (NTRS)
Weber, Arthur L.
1999-01-01
Our previous analysis of the energetics of metabolism showed that both the biosynthesis of amino acids and lipids from sugars, and the fermentation of organic substrates, were energetically driven by electron transfer reactions resulting in carbon redox disproportionation (Weber 1997). Redox disproportionation -- the spontaneous (energetically favorable) direction of carbon group transformation in biosynthesis -- is brought about and driven by the energetically downhill transfer of electron pairs from more oxidized carbon groups (with lower half-cell reduction potentials) to more reduced carbon groups (with higher half-cell reduction potentials). In this report, we compare the redox and kinetic properties of carbon groups in order to evaluate the relative biosynthetic capability of organic substrates, and to identify the optimal biosubstrate. This analysis revealed that sugars (monocarbonyl alditols) are the optimal biosynthetic substrate because they contain the maximum number of biosynthetically useful .high energy electrons/carbon atom , while still containing a single carbonyl group needed to kinetically facilitate their conversion to useful biosynthetic intermediates. This conclusion applies to aqueous life throughout the Universe because it is based on invariant aqueous carbon chemistry -- primarily, the universal reduction potentials of carbon groups.
Sugars as the optimal biosynthetic carbon substrate of aqueous life throughout the universe
NASA Technical Reports Server (NTRS)
Weber, A. L.
2000-01-01
Our previous analysis of the energetics of metabolism showed that both the biosynthesis of amino acids and lipids from sugars, and the fermentation of organic substrates, were energetically driven by electron transfer reactions resulting in carbon redox disproportionation (Weber, 1997). Redox disproportionation--the spontaneous (energetically favorable) direction of carbon group transformation in biosynthesis--is brought about and driven by the energetically downhill transfer of electron pairs from more oxidized carbon groups (with lower half-cell reduction potentials) to more reduced carbon groups (with higher half-cell reduction potentials). In this report, we compare the redox and kinetic properties of carbon groups in order to evaluate the relative biosynthetic capability of organic substrates, and to identify the optimal biosubstrate. This analysis revealed that sugars (monocarbonyl alditols) are the optimal biosynthetic substrate because they contain the maximum number of biosynthetically useful high energy electrons/carbon atom while still containing a single carbonyl group needed to kinetically facilitate their conversion to useful biosynthetic intermediates. This conclusion applies to aqueous life throughout the Universe because it is based on invariant aqueous carbon chemistry--primarily, the universal reduction potentials of carbon groups.
Influence of Environmental Factors on the Production of Penitrems A-F by Penicillium crustosum.
Kalinina, Svetlana A; Jagels, Annika; Cramer, Benedikt; Geisen, Rolf; Humpf, Hans-Ulrich
2017-07-01
Filamentous fungi produce a multitude of secondary metabolites, some of them known as mycotoxins, which are toxic to vertebrates and other animal groups in low concentrations. Among them, penitrems, which belong to the group of indole-diterpene mycotoxins, are synthesized by Penicillium and Aspergillus genera and exhibit potent tremorgenic effects. This is the first complex study of the penitrems A-F production under the influence of different abiotic factors, e.g., media, incubation time, temperature, pH, light, water activity, and carbon and nitrogen source as well as oxidative and salt stress. For this purpose, penitrems A-F were isolated from Penicillium crustosum cultures and used as analytical standards. Among the carbon sources, glucose supplemented to the media at the concentration of 50 g/L, showed the strongest inducing effect on the biosynthesis of penitrems. Among nitrogen sources, glutamate was found to be the most favorable supplement, significantly increasing production of these secondary metabolites. CuSO4-promoted oxidative stress was also shown to remarkably stimulate biosynthesis of all penitrems. In contrast, the salt stress, caused by the elevated concentrations of NaCl, showed an inhibitory effect on the penitrem biosynthesis. Finally, cheese model medium elicited exceptionally high production of all members of the penitrems family. Obtained results give insides into the biosynthesis of toxicologically relevant penitrems A-F under different environmental factors and can be utilized to prevent food contamination.
Browse, John
2016-01-01
The first step in the biosynthesis of nearly all plant membrane phospholipids and storage triacylglycerols is catalyzed by a glycerol-3-phosphate acyltransferase (GPAT). The requirement for an endoplasmic reticulum (ER)-localized GPAT for both of these critical metabolic pathways was recognized more than 60 years ago. However, identification of the gene(s) encoding this GPAT activity has remained elusive. Here, we present the results of a series of in vivo, in vitro, and in silico experiments in Arabidopsis (Arabidopsis thaliana) designed to assign this essential function to AtGPAT9. This gene has been highly conserved throughout evolution and is largely present as a single copy in most plants, features consistent with essential housekeeping functions. A knockout mutant of AtGPAT9 demonstrates both male and female gametophytic lethality phenotypes, consistent with the role in essential membrane lipid synthesis. Significant expression of developing seed AtGPAT9 is required for wild-type levels of triacylglycerol accumulation, and the transcript level is directly correlated to the level of microsomal GPAT enzymatic activity in seeds. Finally, the AtGPAT9 protein interacts with other enzymes involved in ER glycerolipid biosynthesis, suggesting the possibility of ER-localized lipid biosynthetic complexes. Together, these results suggest that GPAT9 is the ER-localized GPAT enzyme responsible for plant membrane lipid and oil biosynthesis. PMID:26586834
Bacterial cellulose biosynthesis: diversity of operons, subunits, products and functions
Römling, Ute; Galperin, Michael Y.
2015-01-01
Summary Recent studies of bacterial cellulose biosynthesis, including structural characterization of a functional cellulose synthase complex, provided the first mechanistic insight into this fascinating process. In most studied bacteria, just two subunits, BcsA and BcsB, are necessary and sufficient for the formation of the polysaccharide chain in vitro. Other subunits – which differ among various taxa – affect the enzymatic activity and product yield in vivo by modulating expression of biosynthesis apparatus, export of the nascent β-D-glucan polymer to the cell surface, and the organization of cellulose fibers into a higher-order structure. These auxiliary subunits play key roles in determining the quantity and structure of the resulting biofilm, which is particularly important for interactions of bacteria with higher organisms that lead to rhizosphere colonization and modulate virulence of cellulose-producing bacterial pathogens inside and outside of host cells. Here we review the organization of four principal types of cellulose synthase operons found in various bacterial genomes, identify additional bcs genes that encode likely components of the cellulose biosynthesis and secretion machinery, and propose a unified nomenclature for these genes and subunits. We also discuss the role of cellulose as a key component of biofilms formed by a variety of free-living and pathogenic bacteria and, for the latter, in the choice between acute infection and persistence in the host. PMID:26077867
Shockey, Jay; Regmi, Anushobha; Cotton, Kimberly; Adhikari, Neil; Browse, John; Bates, Philip D
2016-01-01
The first step in the biosynthesis of nearly all plant membrane phospholipids and storage triacylglycerols is catalyzed by a glycerol-3-phosphate acyltransferase (GPAT). The requirement for an endoplasmic reticulum (ER)-localized GPAT for both of these critical metabolic pathways was recognized more than 60 years ago. However, identification of the gene(s) encoding this GPAT activity has remained elusive. Here, we present the results of a series of in vivo, in vitro, and in silico experiments in Arabidopsis (Arabidopsis thaliana) designed to assign this essential function to AtGPAT9. This gene has been highly conserved throughout evolution and is largely present as a single copy in most plants, features consistent with essential housekeeping functions. A knockout mutant of AtGPAT9 demonstrates both male and female gametophytic lethality phenotypes, consistent with the role in essential membrane lipid synthesis. Significant expression of developing seed AtGPAT9 is required for wild-type levels of triacylglycerol accumulation, and the transcript level is directly correlated to the level of microsomal GPAT enzymatic activity in seeds. Finally, the AtGPAT9 protein interacts with other enzymes involved in ER glycerolipid biosynthesis, suggesting the possibility of ER-localized lipid biosynthetic complexes. Together, these results suggest that GPAT9 is the ER-localized GPAT enzyme responsible for plant membrane lipid and oil biosynthesis. © 2016 American Society of Plant Biologists. All Rights Reserved.
Höll, Janine; Vannozzi, Alessandro; Czemmel, Stefan; D'Onofrio, Claudio; Walker, Amanda R.; Rausch, Thomas; Lucchin, Margherita; Boss, Paul K.; Dry, Ian B.; Bogs, Jochen
2013-01-01
Plant stilbenes are phytoalexins that accumulate in a small number of plant species, including grapevine (Vitis vinifera), in response to biotic and abiotic stresses and have been implicated in many beneficial effects on human health. In particular, resveratrol, the basic unit of all other complex stilbenes, has received widespread attention because of its cardio-protective, anticarcinogenic, and antioxidant properties. Although stilbene synthases (STSs), the key enzymes responsible for resveratrol biosynthesis, have been isolated and characterized from several plant species, the transcriptional regulation underlying stilbene biosynthesis is unknown. Here, we report the identification and functional characterization of two R2R3-MYB–type transcription factors (TFs) from grapevine, which regulate the stilbene biosynthetic pathway. These TFs, designated MYB14 and MYB15, strongly coexpress with STS genes, both in leaf tissues under biotic and abiotic stress and in the skin and seed of healthy developing berries during maturation. In transient gene reporter assays, MYB14 and MYB15 were demonstrated to specifically activate the promoters of STS genes, and the ectopic expression of MYB15 in grapevine hairy roots resulted in increased STS expression and in the accumulation of glycosylated stilbenes in planta. These results demonstrate the involvement of MYB14 and MYB15 in the transcriptional regulation of stilbene biosynthesis in grapevine. PMID:24151295
Biosignatures in the Context of Low Energy Flux
NASA Technical Reports Server (NTRS)
Hoehler, T. M.
2017-01-01
Many of the features that are thought of as biosignatures - including the mediation of chemical and physical processes with speed, specificity, and selectivity - result directly or indirectly from life's unique capability to mediate and direct energy flux. As such, it is important to consider the impact that differences in energy flux may have on the quantity and quality of evidence for life. Earth differs from every other body in our solar system in the magnitude of biologically-usable energy flux into a liquid water environment. On a global basis, the capture of light energy into photosynthesis and the flux of chemical energy represented in the products of that photosynthesis (organic material + O2) are about six and four orders of magnitude larger, respectively, than the flux of energy represented in geochemical sources. Our conception of what an inhabited world "looks like" and our intuition about how to search for life are based in this high-energy context. Energy fluxes on worlds beyond Earth may be better approximated by the million-fold smaller flux provided to Earth's biosphere by geochemical sources. As a result, the nature, abundance, and quality of evidence for life that could be expected on an inhabited extraterrestrial world within our solar system may differ profoundly from that found on Earth. Understanding this potential difference in quantitative terms provides important context for the formulation of life detection strategies. The influence of energy flux on biosignatures can be evaluated through reference to the two basic purposes into which life partitions energy flux: (1) Life expends energy to sustain existing biomass in a metabolic steady state (metabolically functional but non-growing). The formal representation of this relationship in the traditional microbiology literature equates biomass directly with energy flux. The direct implication is that worlds having lower energy flux will have correspondingly lower potential to support biomass. Life detection strategies that directly target extant organisms should therefore be prepared to encounter average biomass densities that may be many orders of magnitude smaller than those found in most of Earth's surface environments (2) Life expends energy to synthesize new biomass. An end-member case in which new biomass is created at the energy-limited rate and the corresponding cells are immediately destroyed (so that the energy partitioned to cell maintenance is minimized) establishes an upper bound on the rate at which biological material can enter a bulk global pool. For a specified bulk concentration [i] of any particular biological compound, i, or for biologically produced matter overall, this synthesis rate, R (sub i), defines a characteristic time scale tau (sub i) equals [i] divided by R (sub i). tau (sub i) can be thought of as (a) the minimum time required for biosynthesis to yield a specific bulk concentration (e.g., a detection threshold) of i, and (b) the average residence time of i within a bulk pool when [i] is held in steady state through a balance between biosynthesis and attrition by physical, chemical, or biological consumption. tau (sub i) becomes an important quantity in considering the potential utility of enantiomeric excess (as a product of homochiral biosynthesis) as a biosignature. Spontaneous racemization of amino acids acts to "erase" the signature of homochiral synthesis over time scales that may range from hundreds to hundreds of thousands of years, depending on temperature. For environments in which low energy flux translates to low rates of biosynthesis, including the synthesis of homochiral amino acids, amino acid residence times in pools having detectable concentrations may compare to or significantly exceed the time scale for racemization. This and similar consequences of long residence times should be considered in the formulation of life detection strategies based on detection of biologically-produced species. Fluxes of biologically-useful energy on potentially habitable worlds within our solar system are, at present, not well constrained. Improving such constraint has the potential to inform priorities in the formulation and targeting of search-for-life strategies, based on the implications of energy flux for the abundance and quality of biosignatures overall, and in specific categories.
Biosynthesis in vitro of Caenorhabditis elegans phosphorylcholine oligosaccharides
Cipollo, John F.; Awad, Antoine; Costello, Catherine E.; Robbins, Phillips W.; Hirschberg, Carlos B.
2004-01-01
The biosynthesis in vitro of phosphorylcholine oligosaccharides in Caenorhabditis elegans has been investigated. Here we show that extracts of C. elegans' microsomes transfer phosphorylcholine from L-α-dipalmitoyl phosphatidylcholine to hybrid and complex type N-linked oligosaccharides containing mannose residues disubstituted with N-acetylglucosamine. The reaction products are consistent with structures reported for C. elegans as well those found in the filarial nematodes Acanthocheilonema viteae, Onchocerca volvulus, and Brugia malayi, strongly supporting the concept that the phosphorylcholine oligosaccharide biosynthetic enzymes are conserved in this group of organisms. Because it is thought that phosphorylcholine substitution of oligosaccharides modulates host immune response in filarial infections, this in vitro system may help in gaining an understanding of the basis for this response. PMID:14993596
Zhu, Bao-Qing; Cai, Jian; Wang, Zhi-Qun; Xu, Xiao-Qing; Duan, Chang-Qing; Pan, Qiu-Hong
2014-01-01
Monoterpenoids are a diverse class of natural products and contribute to the important varietal aroma of certain Vitis vinifera grape cultivars. Among the typical monoterpenoids, linalool exists in almost all grape varieties. A gene coding for a nerolidol/linalool (NES/LINS) synthase was evaluated in the role of linalool biosynthesis in grape berries. Enzyme activity assay of this recombinant protein revealed that it could convert geranyl diphosphate and farnesyl diphosphate into linalool and nerolidol in vitro, respectively, and thus it was named VvRILinNer. However, localization experiment showed that this enzyme was only localized to chloroplasts, which indicates that VvRILinNer functions in the linalool production in vivo. The patterns of gene expression and linalool accumulation were analyzed in the berries of three grape cultivars (“Riesling”, “Cabernet Sauvignon”, “Gewurztraminer”) with significantly different levels of monoterpenoids. The VvRILinNer was considered to be mainly responsible for the synthesis of linalool at the early developmental stage. This finding has provided us with new knowledge to uncover the complex monoterpene biosynthesis in grapes. PMID:25470020
Hernandez, Jose A.; Curatti, Leonardo; Aznar, Constantino P.; Perova, Zinaida; Britt, R. David; Rubio, Luis M.
2008-01-01
The molybdenum nitrogenase, present in a diverse group of bacteria and archea, is the major contributor to biological nitrogen fixation. The nitrogenase active site contains an iron–molybdenum cofactor (FeMo-co) composed of 7Fe, 9S, 1Mo, one unidentified light atom, and homocitrate. The nifQ gene was known to be involved in the incorporation of molybdenum into nitrogenase. Here we show direct biochemical evidence for the role of NifQ in FeMo-co biosynthesis. As-isolated NifQ was found to carry a molybdenum–iron–sulfur cluster that serves as a specific molybdenum donor for FeMo-co biosynthesis. Purified NifQ supported in vitro FeMo-co synthesis in the absence of an additional molybdenum source. The mobilization of molybdenum from NifQ required the simultaneous participation of NifH and NifEN in the in vitro FeMo-co synthesis assay, suggesting that NifQ would be the physiological molybdenum donor to a hypothetical NifEN/NifH complex. PMID:18697927
Zhang, Huili; Zhu, Jianzhong; Zhu, Xiangcheng; Cai, Jin; Zhang, Anyi; Hong, Yizhi; Huang, Jin; Huang, Lei; Xu, Zhinan
2012-07-01
A new exogenous glutamic acid-independent γ-PGA producing strain was isolated and characterized as Bacillus subtilis C10. The factors influencing the endogenous glutamic acid supply and the biosynthesis of γ-PGA in this strain were investigated. The results indicated that citric acid and oxalic acid showed the significant capability to support the overproduction of γ-PGA. This stimulated increase of γ-PGA biosynthesis by citric acid or oxalic acid was further proved in the 10 L fermentor. To understand the possible mechanism contributing to the improved γ-PGA production, the activities of four key intracellular enzymes were measured, and the possible carbon fluxes were proposed. The result indicated that the enhanced level of pyruvate dehydrogenase (PDH) activity caused by oxalic acid was important for glutamic acid synthesized de novo from glucose. Moreover, isocitrate dehydrogenase (ICDH) and glutamate dehydrogenase (GDH) were the positive regulators of glutamic acid biosynthesis, while 2-oxoglutarate dehydrogenase complex (ODHC) was the negative one. Copyright © 2012 Elsevier Ltd. All rights reserved.
Grunewald, Wim; De Smet, Ive; Lewis, Daniel R; Löfke, Christian; Jansen, Leentje; Goeminne, Geert; Vanden Bossche, Robin; Karimi, Mansour; De Rybel, Bert; Vanholme, Bartel; Teichmann, Thomas; Boerjan, Wout; Van Montagu, Marc C E; Gheysen, Godelieve; Muday, Gloria K; Friml, Jirí; Beeckman, Tom
2012-01-31
Gradients of the plant hormone auxin, which depend on its active intercellular transport, are crucial for the maintenance of root meristematic activity. This directional transport is largely orchestrated by a complex interaction of specific influx and efflux carriers that mediate the auxin flow into and out of cells, respectively. Besides these transport proteins, plant-specific polyphenolic compounds known as flavonols have been shown to act as endogenous regulators of auxin transport. However, only limited information is available on how flavonol synthesis is developmentally regulated. Using reduction-of-function and overexpression approaches in parallel, we demonstrate that the WRKY23 transcription factor is needed for proper root growth and development by stimulating the local biosynthesis of flavonols. The expression of WRKY23 itself is controlled by auxin through the Auxin Response Factor 7 (ARF7) and ARF19 transcriptional response pathway. Our results suggest a model in which WRKY23 is part of a transcriptional feedback loop of auxin on its own transport through local regulation of flavonol biosynthesis.
Leimkühler, Silke; Bühning, Martin; Beilschmidt, Lena
2017-01-01
Modifications of transfer RNA (tRNA) have been shown to play critical roles in the biogenesis, metabolism, structural stability and function of RNA molecules, and the specific modifications of nucleobases with sulfur atoms in tRNA are present in pro- and eukaryotes. Here, especially the thiomodifications xm5s2U at the wobble position 34 in tRNAs for Lys, Gln and Glu, were suggested to have an important role during the translation process by ensuring accurate deciphering of the genetic code and by stabilization of the tRNA structure. The trafficking and delivery of sulfur nucleosides is a complex process carried out by sulfur relay systems involving numerous proteins, which not only deliver sulfur to the specific tRNAs but also to other sulfur-containing molecules including iron–sulfur clusters, thiamin, biotin, lipoic acid and molybdopterin (MPT). Among the biosynthesis of these sulfur-containing molecules, the biosynthesis of the molybdenum cofactor (Moco) and the synthesis of thio-modified tRNAs in particular show a surprising link by sharing protein components for sulfur mobilization in pro- and eukaryotes. PMID:28098827
Kopetz, Karen J; Kolossov, Vladimir L; Rebeiz, Constantin A
2004-06-15
The thorough understanding of photosynthetic membrane assembly requires a deeper knowledge of the coordination and regulation of the chlorophyll (Chl) and thylakoid apoprotein biosynthetic pathways. As a working hypothesis we have recently proposed three different Chl-thylakoid apoprotein biosynthesis models: a single-branched Chl biosynthetic pathway (SBP)-single location model, a SBP-multilocation model, and a multibranched Chl biosynthetic pathway (MBP)-sublocation model. The detection of resonance excitation energy transfer between tetrapyrrole precursors of Chl, and several Chl-protein complexes, has made it possible to test the validity of the proposed Chl-thylakoid apoprotein biosynthesis models by resonance excitation energy transfer determinations. In this work, resonance excitation energy transfer techniques that allow the determination of distances separating tetrapyrrole donors from Chl-protein acceptors in green plants by using readily available electronic spectroscopic instrumentation are developed. It is concluded that the calculated distances are compatible with the MBP-sublocation model and incompatible with the operation of the SBP-single location Chl-protein biosynthesis model.
Neuronal Cbl Controls Biosynthesis of Insulin-Like Peptides in Drosophila melanogaster
Yu, Yue; Sun, Ying; He, Shengqi; Yan, Cheng; Rui, Liangyou; Li, Wenjun
2012-01-01
The Cbl family proteins function as both E3 ubiquitin ligases and adaptor proteins to regulate various cellular signaling events, including the insulin/insulin-like growth factor 1 (IGF1) and epidermal growth factor (EGF) pathways. These pathways play essential roles in growth, development, metabolism, and survival. Here we show that in Drosophila melanogaster, Drosophila Cbl (dCbl) regulates longevity and carbohydrate metabolism through downregulating the production of Drosophila insulin-like peptides (dILPs) in the brain. We found that dCbl was highly expressed in the brain and knockdown of the expression of dCbl specifically in neurons by RNA interference increased sensitivity to oxidative stress or starvation, decreased carbohydrate levels, and shortened life span. Insulin-producing neuron-specific knockdown of dCbl resulted in similar phenotypes. dCbl deficiency in either the brain or insulin-producing cells upregulated the expression of dilp genes, resulting in elevated activation of the dILP pathway, including phosphorylation of Drosophila Akt and Drosophila extracellular signal-regulated kinase (dERK). Genetic interaction analyses revealed that blocking Drosophila epidermal growth factor receptor (dEGFR)-dERK signaling in pan-neurons or insulin-producing cells by overexpressing a dominant-negative form of dEGFR abolished the effect of dCbl deficiency on the upregulation of dilp genes. Furthermore, knockdown of c-Cbl in INS-1 cells, a rat β-cell line, also increased insulin biosynthesis and glucose-stimulated secretion in an ERK-dependent manner. Collectively, these results suggest that neuronal dCbl regulates life span, stress responses, and metabolism by suppressing dILP production and the EGFR-ERK pathway mediates the dCbl action. Cbl suppression of insulin biosynthesis is evolutionarily conserved, raising the possibility that Cbl may similarly exert its physiological actions through regulating insulin production in β cells. PMID:22778134
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lei, Lei; Singh, Abhishek; Bashline, Logan
Plants are constantly subjected to various biotic and abiotic stresses and have evolved complex strategies to cope with these stresses. For example, plant cells endocytose plasma membrane material under stress and subsequently recycle it back when the stress conditions are relieved. Cellulose biosynthesis is a tightly regulated process that is performed by plasma membrane-localized cellulose synthase (CESA) complexes (CSCs). However, the regulatory mechanism of cellulose biosynthesis under abiotic stress has not been well explored. In this study, we show that small CESA compartments (SmaCCs) or microtubule-associated cellulose synthase compartments (MASCs) are critical for fast recovery of CSCs to the plasmamore » membrane after stress is relieved in Arabidopsis thaliana. This SmaCC/MASC-mediated fast recovery of CSCs is dependent on CELLULOSE SYNTHASE INTERACTIVE1 (CSI1), a protein previously known to represent the link between CSCs and cortical microtubules. Independently, AP2M, a core component in clathrin-mediated endocytosis, plays a role in the formation of SmaCCs/MASCs. Together, our study establishes a model in which CSI1-dependent SmaCCs/MASCs are formed through a process that involves endocytosis, which represents an important mechanism for plants to quickly regulate cellulose synthesis under abiotic stress.« less
Hu, Xueyun; Page, Mike T; Sumida, Akihiro; Tanaka, Ayumi; Terry, Matthew J; Tanaka, Ryouichi
2017-03-01
Proteins that contain iron-sulfur (Fe-S) clusters play pivotal roles in various metabolic processes such as photosynthesis and redox metabolism. Among the proteins involved in the biosynthesis of Fe-S clusters in plants, the SUFB subunit of the SUFBCD complex appears to be unique because SUFB has been reported to be involved in chlorophyll metabolism and phytochrome-mediated signaling. To gain insights into the function of the SUFB protein, we analyzed the phenotypes of two SUFB mutants, laf6 and hmc1, and RNA interference (RNAi) lines with reduced SUFB expression. When grown in the light, the laf6 and hmc1 mutants and the SUFB RNAi lines accumulated higher levels of the chlorophyll biosynthesis intermediate Mg-protoporphyrin IX monomethylester (Mg-proto MME), consistent with the impairment of Mg-proto MME cyclase activity. Both SUFC- and SUFD-deficient RNAi lines accumulated the same intermediate, suggesting that inhibition of Fe-S cluster synthesis is the primary cause of this impairment. Dark-grown laf6 seedlings also showed an increase in protoporphyrin IX (Proto IX), Mg-proto, Mg-proto MME and 3,8-divinyl protochlorophyllide a (DV-Pchlide) levels, but this was not observed in hmc1 or the SUFB RNAi lines, nor was it complemented by SUFB overexpression. In addition, the long hypocotyl in far-red light phenotype of the laf6 mutant could not be rescued by SUFB overexpression and segregated from the pale-green SUFB-deficient phenotype, indicating it is not caused by mutation at the SUFB locus. These results demonstrate that biosynthesis of Fe-S clusters is important for chlorophyll biosynthesis, but that the laf6 phenotype is not due to a SUFB mutation. © 2016 The Authors. The Plant Journal published by John Wiley & Sons Ltd and Society for Experimental Biology.
Stonebloom, Solomon; Ebert, Berit; Xiong, Guangyan; ...
2016-04-18
We report pectins are a group of structurally complex plant cell wall polysaccharides whose biosynthesis and function remain poorly understood. The pectic polysaccharide rhamnogalacturonan-I (RG-I) has two types of arabinogalactan side chains, type-I and type-II arabinogalactans. To date few enzymes involved in the biosynthesis of pectin have been described. Here we report the identification of a highly conserved putative glycosyltransferase encoding gene, Pectic ArabinoGalactan synthesis-Related (PAGR), affecting the biosynthesis of RG-I arabinogalactans and critical for pollen tube growth. T-DNA insertions in PAGR were identified in Arabidopsis thaliana and were found to segregate at a 1:1 ratio of heterozygotes to wildmore » type. We were unable to isolate homozygous pagr mutants as pagr mutant alleles were not transmitted via pollen. In vitro pollen germination assays revealed reduced rates of pollen tube formation in pollen from pagr heterozygotes. To characterize a loss-of-function phenotype for PAGR, the Nicotiana benthamiana orthologs, NbPAGR-A and B, were transiently silenced using Virus Induced Gene Silencing. NbPAGR-silenced plants exhibited reduced internode and petiole expansion. Cell wall materials from NbPAGR-silenced plants had reduced galactose content compared to the control. Immunological and linkage analyses support that RG-I has reduced type-I arabinogalactan content and reduced branching of the RG-I backbone in NbPAGR-silenced plants. Arabidopsis lines overexpressing PAGR exhibit pleiotropic developmental phenotypes and the loss of apical dominance as well as an increase in RG-I type-II arabinogalactan content. Together, results support a function for PAGR in the biosynthesis of RG-I arabinogalactans and illustrate the essential roles of these polysaccharides in vegetative and reproductive plant growth.« less
Viola, Manuela; Brüggemann, Kathrin; Karousou, Evgenia; Caon, Ilaria; Caravà, Elena; Vigetti, Davide; Greve, Burkhard; Stock, Christian; De Luca, Giancarlo; Passi, Alberto; Götte, Martin
2017-06-01
Proteoglycans and glycosaminoglycans modulate numerous cellular processes relevant to tumour progression, including cell proliferation, cell-matrix interactions, cell motility and invasive growth. Among the glycosaminoglycans with a well-documented role in tumour progression are heparan sulphate, chondroitin/dermatan sulphate and hyaluronic acid/hyaluronan. While the mode of biosynthesis differs for sulphated glycosaminoglycans, which are synthesised in the ER and Golgi compartments, and hyaluronan, which is synthesized at the plasma membrane, these polysaccharides partially compete for common substrates. In this study, we employed a siRNA knockdown approach for heparan sulphate (EXT1) and heparan/chondroitin/dermatan sulphate-biosynthetic enzymes (β4GalT7) in the aggressive human breast cancer cell line MDA-MB-231 to study the impact on cell behaviour and hyaluronan biosynthesis. Knockdown of β4GalT7 expression resulted in a decrease in cell viability, motility and adhesion to fibronectin, while these parameters were unchanged in EXT1-silenced cells. Importantly, these changes were associated with a decreased expression of syndecan-1, decreased signalling response to HGF and an increase in the synthesis of hyaluronan, due to an upregulation of the hyaluronan synthases HAS2 and HAS3. Interestingly, EXT1-depleted cells showed a downregulation of the UDP-sugar transporter SLC35D1, whereas SLC35D2 was downregulated in β4GalT7-depleted cells, indicating an intricate regulatory network that connects all glycosaminoglycans synthesis. The results of our in vitro study suggest that a modulation of breast cancer cell behaviour via interference with heparan sulphate biosynthesis may result in a compensatory upregulation of hyaluronan biosynthesis. These findings have important implications for the development of glycosaminoglycan-targeted therapeutic approaches for malignant diseases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stonebloom, Solomon; Ebert, Berit; Xiong, Guangyan
We report pectins are a group of structurally complex plant cell wall polysaccharides whose biosynthesis and function remain poorly understood. The pectic polysaccharide rhamnogalacturonan-I (RG-I) has two types of arabinogalactan side chains, type-I and type-II arabinogalactans. To date few enzymes involved in the biosynthesis of pectin have been described. Here we report the identification of a highly conserved putative glycosyltransferase encoding gene, Pectic ArabinoGalactan synthesis-Related (PAGR), affecting the biosynthesis of RG-I arabinogalactans and critical for pollen tube growth. T-DNA insertions in PAGR were identified in Arabidopsis thaliana and were found to segregate at a 1:1 ratio of heterozygotes to wildmore » type. We were unable to isolate homozygous pagr mutants as pagr mutant alleles were not transmitted via pollen. In vitro pollen germination assays revealed reduced rates of pollen tube formation in pollen from pagr heterozygotes. To characterize a loss-of-function phenotype for PAGR, the Nicotiana benthamiana orthologs, NbPAGR-A and B, were transiently silenced using Virus Induced Gene Silencing. NbPAGR-silenced plants exhibited reduced internode and petiole expansion. Cell wall materials from NbPAGR-silenced plants had reduced galactose content compared to the control. Immunological and linkage analyses support that RG-I has reduced type-I arabinogalactan content and reduced branching of the RG-I backbone in NbPAGR-silenced plants. Arabidopsis lines overexpressing PAGR exhibit pleiotropic developmental phenotypes and the loss of apical dominance as well as an increase in RG-I type-II arabinogalactan content. Together, results support a function for PAGR in the biosynthesis of RG-I arabinogalactans and illustrate the essential roles of these polysaccharides in vegetative and reproductive plant growth.« less
Jaegle, Benjamin; Uroic, Miran Kalle; Holtkotte, Xu; Lucas, Christina; Termath, Andreas Ole; Schmalz, Hans-Günther; Bucher, Marcel; Hoecker, Ute; Hülskamp, Martin; Schrader, Andrea
2016-09-01
(Pro)anthocyanidins are synthesized by the flavonoid biosynthesis pathway with multi-layered regulatory control. Methods for the analysis of the flavonoid composition in plants are well established for different purposes. However, they typically compromise either on speed or on depth of analysis. In this work we combined and optimized different protocols to enable the analysis of the flavonoid biosynthesis pathway with as little as possible biological material. We chose core substances of this metabolic pathway that serve as a fingerprint to recognize alterations in the main branches of the pathway. We used a simplified sample preparation, two deuterated internal standards, a short and efficient LC separation, highly sensitive detection with tandem MS in multiple reaction monitoring (MRM) mode and hydrolytic release of the core substances to reduce complexity. The method was optimized for Arabidopsis thaliana seeds and seedlings. We demonstrate that one Col-0 seed/seedling is sufficient to obtain a fingerprint of the core substances of the flavonoid biosynthesis pathway. For comparative analysis of different genotypes, we suggest the use of 10 seed(lings). The analysis of Arabidopsis thaliana mutants affecting steps in the pathway revealed foreseen and unexpected alterations of the pathway. For example, HY5 was found to differentially regulate kaempferol in seeds vs. seedlings. Furthermore, our results suggest that COP1 is a master regulator of flavonoid biosynthesis in seedlings but not of flavonoid deposition in seeds. When sample numbers are high and the plant material is limited, this method effectively facilitates metabolic fingerprinting with one seed(ling), revealing shifts and differences in the pathway. Moreover the combination of extracted non-hydrolysed, extracted hydrolysed and non-extracted hydrolysed samples proved useful to deduce the class of derivative from which the individual flavonoids have been released.
Fini, Alessio; Brunetti, Cecilia; Loreto, Francesco; Centritto, Mauro; Ferrini, Francesco; Tattini, Massimiliano
2017-01-01
The functional reasons for isoprene emission are still a matter of hot debate. It was hypothesized that isoprene biosynthesis evolved as an ancestral mechanism in plants adapted to high water availability, to cope with transient and recurrent oxidative stresses during their water-to-land transition. There is a tight association between isoprene emission and species hygrophily, suggesting that isoprene emission may be a favorable trait to cope with occasional exposure to stresses in mesic environments. The suite of morpho-anatomical traits does not allow a conservative water use in hygrophilic mesophytes challenged by the environmental pressures imposed or exacerbated by drought and heat stress. There is evidence that in stressed plants the biosynthesis of isoprene is uncoupled from photosynthesis. Because the biosynthesis of isoprene is costly, the great investment of carbon and energy into isoprene must have relevant functional reasons. Isoprene is effective in preserving the integrity of thylakoid membranes, not only through direct interaction with their lipid acyl chains, but also by up-regulating proteins associated with photosynthetic complexes and enhancing the biosynthesis of relevant membrane components, such as mono- and di-galactosyl-diacyl glycerols and unsaturated fatty acids. Isoprene may additionally protect photosynthetic membranes by scavenging reactive oxygen species. Here we explore the mode of actions and the potential significance of isoprene in the response of hygrophilic plants when challenged by severe stress conditions associated to rapid climate change in temperate climates, with special emphasis to the concomitant effect of drought and heat. We suggest that isoprene emission may be not a good estimate for its biosynthesis and concentration in severely droughted leaves, being the internal concentration of isoprene the important trait for stress protection.
Marine Microbial Secondary Metabolites: Pathways, Evolution and Physiological Roles.
Giordano, Daniela; Coppola, Daniela; Russo, Roberta; Denaro, Renata; Giuliano, Laura; Lauro, Federico M; di Prisco, Guido; Verde, Cinzia
2015-01-01
Microbes produce a huge array of secondary metabolites endowed with important ecological functions. These molecules, which can be catalogued as natural products, have long been exploited in medical fields as antibiotics, anticancer and anti-infective agents. Recent years have seen considerable advances in elucidating natural-product biosynthesis and many drugs used today are natural products or natural-product derivatives. The major contribution to recent knowledge came from application of genomics to secondary metabolism and was facilitated by all relevant genes being organised in a contiguous DNA segment known as gene cluster. Clustering of genes regulating biosynthesis in bacteria is virtually universal. Modular gene clusters can be mixed and matched during evolution to generate structural diversity in natural products. Biosynthesis of many natural products requires the participation of complex molecular machines known as polyketide synthases and non-ribosomal peptide synthetases. Discovery of new evolutionary links between the polyketide synthase and fatty acid synthase pathways may help to understand the selective advantages that led to evolution of secondary-metabolite biosynthesis within bacteria. Secondary metabolites confer selective advantages, either as antibiotics or by providing a chemical language that allows communication among species, with other organisms and their environment. Herewith, we discuss these aspects focusing on the most clinically relevant bioactive molecules, the thiotemplated modular systems that include polyketide synthases, non-ribosomal peptide synthetases and fatty acid synthases. We begin by describing the evolutionary and physiological role of marine natural products, their structural/functional features, mechanisms of action and biosynthesis, then turn to genomic and metagenomic approaches, highlighting how the growing body of information on microbial natural products can be used to address fundamental problems in environmental evolution and biotechnology. © 2015 Elsevier Ltd. All rights reserved.
A Non-photosynthetic Diatom Reveals Early Steps of Reductive Evolution in Plastids.
Kamikawa, Ryoma; Moog, Daniel; Zauner, Stefan; Tanifuji, Goro; Ishida, Ken-Ichiro; Miyashita, Hideaki; Mayama, Shigeki; Hashimoto, Tetsuo; Maier, Uwe G; Archibald, John M; Inagaki, Yuji
2017-09-01
Nonphotosynthetic plastids retain important biological functions and are indispensable for cell viability. However, the detailed processes underlying the loss of plastidal functions other than photosynthesis remain to be fully understood. In this study, we used transcriptomics, subcellular localization, and phylogenetic analyses to characterize the biochemical complexity of the nonphotosynthetic plastids of the apochlorotic diatom Nitzschia sp. NIES-3581. We found that these plastids have lost isopentenyl pyrophosphate biosynthesis and ribulose-1,5-bisphosphate carboxylase/oxygenase-based carbon fixation but have retained various proteins for other metabolic pathways, including amino acid biosynthesis, and a portion of the Calvin-Benson cycle comprised only of glycolysis/gluconeogenesis and the reductive pentose phosphate pathway (rPPP). While most genes for plastid proteins involved in these reactions appear to be phylogenetically related to plastid-targeted proteins found in photosynthetic relatives, we also identified a gene that most likely originated from a cytosolic protein gene. Based on organellar metabolic reconstructions of Nitzschia sp. NIES-3581 and the presence/absence of plastid sugar phosphate transporters, we propose that plastid proteins for glycolysis, gluconeogenesis, and rPPP are retained even after the loss of photosynthesis because they feed indispensable substrates to the amino acid biosynthesis pathways of the plastid. Given the correlated retention of the enzymes for plastid glycolysis, gluconeogenesis, and rPPP and those for plastid amino acid biosynthesis pathways in distantly related nonphotosynthetic plastids and cyanobacteria, we suggest that this substrate-level link with plastid amino acid biosynthesis is a key constraint against loss of the plastid glycolysis/gluconeogenesis and rPPP proteins in multiple independent lineages of nonphotosynthetic algae/plants. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
USDA-ARS?s Scientific Manuscript database
Tunicamycins are a heterologous family of nucleoside antibiotics that target the biosynthesis of bacterial peptidoglycan and eukaryotic N-glycoproteins. The mechanism of action is known, with the tunicamycin-Mg2+ complex established as a transition state analog for hexosamine-1-phosphate: prenol pho...
USDA-ARS?s Scientific Manuscript database
Fungi possess genetic systems to regulate the expression of genes involved in complex processes such as development and secondary metabolite biosynthesis. The product of the velvet gene veA, first identified and characterized in Aspergillus nidulans, is a key player in the regulation of both of thes...
USDA-ARS?s Scientific Manuscript database
Methyl anthranilate (MA) contributes an attractive fruity note to the complex flavor and aroma of strawberry (Fragaria spp.), yet it is rarely found in modern cultivars. The genetic basis for its biosynthesis has not been elucidated. Understanding the specific genes required for its synthesis could ...
Philmus, Benjamin; Decamps, Laure; Berteau, Olivier; Begley, Tadhg P
2015-04-29
Coenzyme F420 is a redox cofactor found in methanogens and in various actinobacteria. Despite the major biological importance of this cofactor, the biosynthesis of its deazaflavin core (8-hydroxy-5-deazaflavin, F(o)) is still poorly understood. F(o) synthase, the enzyme involved, is an unusual multidomain radical SAM enzyme that uses two separate 5'-deoxyadenosyl radicals to catalyze F(o) formation. In this paper, we report a detailed mechanistic study on this complex enzyme that led us to identify (1) the hydrogen atoms abstracted from the substrate by the two radical SAM domains, (2) the second tyrosine-derived product, (3) the reaction product of the CofH-catalyzed reaction, (4) the demonstration that this product is a substrate for CofG, and (5) a stereochemical study that is consistent with the formation of a p-hydroxybenzyl radical at the CofH active site. These results enable us to propose a mechanism for F(o) synthase and uncover a new catalytic motif in radical SAM enzymology involving the use of two 5'-deoxyadenosyl radicals to mediate the formation of a complex heterocycle.
Biosynthesis of plant cell wall polysaccharides.
Gibeaut, D M; Carpita, N C
1994-09-01
The cell wall is the principal structural element of plant form. Cellulose, long crystals of several dozen glucan chains, forms the microfibrillar foundation of plant cell walls and is synthesized at the plasma membrane. Except for callose, all other noncellulosic components are secreted to the cell surface and form a porous matrix assembled around the cellulose microfibrils. These diverse noncellulosic polysaccharides and proteins are made in the endomembrane system. Many questions about the biosynthesis and modification within the Golgi apparatus and integration of cell components at the cell surface remain unanswered. The lability of synthetic complexes upon isolation is one reason for slow progress. However, with new methods of membrane isolation and analysis of products in vitro, recent advances have been made in purifying active synthases from plasma membrane and Golgi apparatus. Likely synthase polypeptides have been identified by affinity-labeling techniques, but we are just beginning to understand the unique features of the coordinated assembly of complex polysaccharides. Nevertheless, such progress renews hope that the first gene of a synthase for a wall polysaccharide from higher plants is within our grasp.
Urbanowicz, Breeanna R.; Bharadwaj, Vivek S.; Alahuhta, Markus; ...
2017-07-03
The mechanistic underpinnings of the complex process of plant polysaccharide biosynthesis are poorly understood, largely due to the resistance of glycosyltransferase (GT) enzymes to structural characterization. In Arabidopsis thaliana, a glycosyl transferase family 37 (GT37) fucosyltransferase-1 (AtFUT1) catalyzes the regiospecific transfer of terminal 1,2-fucosyl residues to xyloglucan side chains - a key step in the biosynthesis of fucosylated sidechains of galactoxyloglucan. We unravel the mechanistic basis for fucosylation by AtFUT1 with a multipronged approach involving protein expression, X-ray crystallography, mutagenesis experiments and molecular simulations. Mammalian cell culture expressions enable sufficient production of the enzyme for X-ray crystallography, which reveals themore » structural architecture of AtFUT1 in complex with bound donor and acceptor substrate analogs. Here, the lack of an appropriately positioned active site residue as a catalytic base leads us to propose an atypical water-mediated fucosylation mechanism facilitated by an H-bonded network, which is corroborated by mutagenesis experiments as well as detailed atomistic simulations.« less
Morgado, Gaspar; Gerngross, Daniel; Roberts, Tania M; Panke, Sven
Cell-free biosynthesis in the form of in vitro multi-enzyme reaction networks or enzyme cascade reactions emerges as a promising tool to carry out complex catalysis in one-step, one-vessel settings. It combines the advantages of well-established in vitro biocatalysis with the power of multi-step in vivo pathways. Such cascades have been successfully applied to the synthesis of fine and bulk chemicals, monomers and complex polymers of chemical importance, and energy molecules from renewable resources as well as electricity. The scale of these initial attempts remains small, suggesting that more robust control of such systems and more efficient optimization are currently major bottlenecks. To this end, the very nature of enzyme cascade reactions as multi-membered systems requires novel approaches for implementation and optimization, some of which can be obtained from in vivo disciplines (such as pathway refactoring and DNA assembly), and some of which can be built on the unique, cell-free properties of cascade reactions (such as easy analytical access to all system intermediates to facilitate modeling).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Urbanowicz, Breeanna R.; Bharadwaj, Vivek S.; Alahuhta, Markus
The mechanistic underpinnings of the complex process of plant polysaccharide biosynthesis are poorly understood, largely due to the resistance of glycosyltransferase (GT) enzymes to structural characterization. In Arabidopsis thaliana, a glycosyl transferase family 37 (GT37) fucosyltransferase-1 (AtFUT1) catalyzes the regiospecific transfer of terminal 1,2-fucosyl residues to xyloglucan side chains - a key step in the biosynthesis of fucosylated sidechains of galactoxyloglucan. We unravel the mechanistic basis for fucosylation by AtFUT1 with a multipronged approach involving protein expression, X-ray crystallography, mutagenesis experiments and molecular simulations. Mammalian cell culture expressions enable sufficient production of the enzyme for X-ray crystallography, which reveals themore » structural architecture of AtFUT1 in complex with bound donor and acceptor substrate analogs. Here, the lack of an appropriately positioned active site residue as a catalytic base leads us to propose an atypical water-mediated fucosylation mechanism facilitated by an H-bonded network, which is corroborated by mutagenesis experiments as well as detailed atomistic simulations.« less
Niles, Brad J; Powers, Ted
2012-10-15
The PH domain-containing proteins Slm1 and Slm2 were originally identified as substrates of the rapamycin-insensitive TOR complex 2 (TORC2) and as mediators of signaling by the lipid second messenger phosphatidyl-inositol-4,5-bisphosphate (PI4,5P2) in budding yeast S. cerevisiae. More recently, these proteins have been identified as critical effectors that facilitate phosphorylation and activation of the AGC kinases Ypk1 and Ypk2 by TORC2. Here, we review the molecular basis for this regulation as well as place it within the context of recent findings that have revealed Slm1/2 and TORC2-dependent phosphorylation of Ypk1 is coupled to the biosynthesis of complex sphingolipids and to their levels within the plasma membrane (PM) as well as other forms of PM stress. Together, these studies reveal the existence of an intricate homeostatic feedback mechanism, whereby the activity of these signaling components is linked to the biosynthesis of PM lipids according to cellular need.
Srivastava, Smriti; Singh, Rajesh K.; Pathak, Garima; Goel, Ridhi; Asif, Mehar Hasan; Sane, Aniruddha P.; Sane, Vidhu A.
2016-01-01
Ripening in mango is under a complex control of ethylene. In an effort to understand the complex spatio-temporal control of ripening we have made use of a popular N. Indian variety “Dashehari” This variety ripens from the stone inside towards the peel outside and forms jelly in the pulp in ripe fruits. Through a combination of 454 and Illumina sequencing, a transcriptomic analysis of gene expression from unripe and midripe stages have been performed in triplicates. Overall 74,312 unique transcripts with ≥1 FPKM were obtained. The transcripts related to 127 pathways were identified in “Dashehari” mango transcriptome by the KEGG analysis. These pathways ranged from detoxification, ethylene biosynthesis, carbon metabolism and aromatic amino acid degradation. The transcriptome study reveals differences not only in expression of softening associated genes but also those that govern ethylene biosynthesis and other nutritional characteristics. This study could help to develop ripening related markers for selective breeding to reduce the problems of excess jelly formation during softening in the “Dashehari” variety. PMID:27586495
The sugar code: Why glycans are so important.
Gabius, Hans-Joachim
2018-02-01
The cell surface is the platform for presentation of biochemical signals that are required for intercellular communication. Their profile necessarily needs to be responsive to internal and external factors in a highly dynamic manner. The structural features of the signals must meet the criterion of high-density information coding in a minimum of space. Thus, only biomolecules that can generate many different oligomers ('words') from few building blocks ('letters') qualify to meet this challenge. Examining the respective properties of common biocompounds that form natural oligo- and polymers comparatively, starting with nucleotides and amino acids (the first and second alphabets of life), comes up with sugars as clear frontrunner. The enzymatic machinery for the biosynthesis of sugar chains can indeed link monosaccharides, the letters of the third alphabet of life, in a manner to reach an unsurpassed number of oligomers (complex carbohydrates or glycans). Fittingly, the resulting glycome of a cell can be likened to a fingerprint. Conjugates of glycans with proteins and sphingolipids (glycoproteins and glycolipids) are ubiquitous in Nature. This implies a broad (patho)physiologic significance. By looking at the signals, at the writers and the erasers of this information as well as its readers and ensuing consequences, this review intends to introduce a broad readership to the principles of the concept of the sugar code. Copyright © 2017 Elsevier B.V. All rights reserved.
Molecular Evolution of Aminoacyl tRNA Synthetase Proteins in the Early History of Life
NASA Astrophysics Data System (ADS)
Fournier, Gregory P.; Andam, Cheryl P.; Alm, Eric J.; Gogarten, J. Peter
2011-12-01
Aminoacyl-tRNA synthetases (aaRS) consist of several families of functionally conserved proteins essential for translation and protein synthesis. Like nearly all components of the translation machinery, most aaRS families are universally distributed across cellular life, being inherited from the time of the Last Universal Common Ancestor (LUCA). However, unlike the rest of the translation machinery, aaRS have undergone numerous ancient horizontal gene transfers, with several independent events detected between domains, and some possibly involving lineages diverging before the time of LUCA. These transfers reveal the complexity of molecular evolution at this early time, and the chimeric nature of genomes within cells that gave rise to the major domains. Additionally, given the role of these protein families in defining the amino acids used for protein synthesis, sequence reconstruction of their pre-LUCA ancestors can reveal the evolutionary processes at work in the origin of the genetic code. In particular, sequence reconstructions of the paralog ancestors of isoleucyl- and valyl- RS provide strong empirical evidence that at least for this divergence, the genetic code did not co-evolve with the aaRSs; rather, both amino acids were already part of the genetic code before their cognate aaRSs diverged from their common ancestor. The implications of this observation for the early evolution of RNA-directed protein biosynthesis are discussed.
Markov, Gabriel V; Meyer, Jan M; Panda, Oishika; Artyukhin, Alexander B; Claaßen, Marc; Witte, Hanh; Schroeder, Frank C; Sommer, Ralf J
2016-10-01
Small-molecule signaling in nematode dauer formation has emerged as a major model to study chemical communication in development and evolution. Developmental arrest as nonfeeding and stress-resistant dauer larvae represents the major survival and dispersal strategy. Detailed studies in Caenorhabditis elegans and Pristionchus pacificus revealed that small-molecule communication changes rapidly in evolution resulting in extreme structural diversity of small-molecule compounds. In C. elegans, a blend of ascarosides constitutes the dauer pheromone, whereas the P. pacificus dauer pheromone includes additional paratosides and integrates building blocks from diverse primary metabolic pathways. Despite this complexity of small-molecule structures and functions, little is known about the biosynthesis of small molecules in nematodes outside C. elegans Here, we show that the genes encoding enzymes of the peroxisomal β-oxidation pathway involved in small-molecule biosynthesis evolve rapidly, including gene duplications and domain switching. The thiolase daf-22, the most downstream factor in C. elegans peroxisomal β-oxidation, has duplicated in P. pacificus, resulting in Ppa-daf-22.1, which still contains the sterol-carrier-protein (SCP) domain that was lost in C. elegans daf-22, and Ppa-daf-22.2. Using the CRISPR/Cas9 system, we induced mutations in both P. pacificus daf-22 genes and identified an unexpected complexity of functional conservation and divergence. Under well-fed conditions, ascaroside biosynthesis proceeds exclusively via Ppa-daf-22.1 In contrast, starvation conditions induce Ppa-daf-22.2 activity, resulting in the production of a specific subset of ascarosides. Gene expression studies indicate a reciprocal up-regulation of both Ppa-daf-22 genes, which is, however, independent of starvation. Thus, our study reveals an unexpected functional complexity of dauer development and evolution. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Wise, Courtney E; Makris, Thomas M
2017-05-19
The β-hydroxylation of l-histidine is the first step in the biosynthesis of the imidazolone base of the antifungal drug nikkomycin. The cytochrome P450 (NikQ) hydroxylates the amino acid while it is appended via a phosphopantetheine linker to the non-ribosomal peptide synthetase (NRPS) NikP1. The latter enzyme is comprised of an MbtH and single adenylation and thiolation domains, a minimal composition that allows for detailed binding and kinetics studies using an intact and homogeneous NRPS substrate. Electron paramagnetic resonance studies confirm that a stable complex is formed with NikQ and NikP1 when the amino acid is tethered. Size exclusion chromatography is used to further refine the principal components that are required for this interaction. NikQ binds NikP1 in the fully charged state, but binding also occurs when NikP1 is lacking both the phosphopantetheine arm and appended amino acid. This demonstrates that the interaction is mainly guided by presentation of the thiolation domain interface, rather than the attached amino acid. Electrochemistry and transient kinetics have been used to probe the influence of l-His-NikP1 binding on catalysis by NikQ. Unlike many P450s, the binding of substrate fails to induce significant changes on the redox potential and autoxidation properties of NikQ and slows down the binding of dioxygen to the ferrous enzyme to initiate catalysis. Collectively, these studies demonstrate a complex interplay between the NRPS maturation process and the recruitment and regulation of an auxiliary tailoring enzyme required for natural product biosynthesis.
Awasthi, Manika; Jaiswal, Nivedita; Singh, Swati; Pandey, Veda P; Dwivedi, Upendra N
2015-09-01
Laccase, widely distributed in bacteria, fungi, and plants, catalyzes the oxidation of wide range of compounds. With regards to one of the important physiological functions, plant laccases are considered to catalyze lignin biosynthesis while fungal laccases are considered for lignin degradation. The present study was undertaken to explain this dual function of laccases using in-silico molecular docking and dynamics simulation approaches. Modeling and superimposition analyses of one each representative of plant and fungal laccases, namely, Populus trichocarpa and Trametes versicolor, respectively, revealed low level of similarity in the folding of two laccases at 3D levels. Docking analyses revealed significantly higher binding efficiency for lignin model compounds, in proportion to their size, for fungal laccase as compared to that of plant laccase. Residues interacting with the model compounds at the respective enzyme active sites were found to be in conformity with their role in lignin biosynthesis and degradation. Molecular dynamics simulation analyses for the stability of docked complexes of plant and fungal laccases with lignin model compounds revealed that tetrameric lignin model compound remains attached to the active site of fungal laccase throughout the simulation period, while it protrudes outwards from the active site of plant laccase. Stability of these complexes was further analyzed on the basis of binding energy which revealed significantly higher stability of fungal laccase with tetrameric compound than that of plant. The overall data suggested a situation favorable for the degradation of lignin polymer by fungal laccase while its synthesis by plant laccase.
Protein Biosynthesis and Maturation in the ER.
Pedrazzini, Emanuela; Vitale, Alessandro
2018-01-01
The endoplasmic reticulum takes care of the folding, assembly, and quality control of thousands of proteins destined to the different compartments of the endomembrane system, or to be secreted in the apoplast. Here we describe how these early events in the life of all these proteins can be followed biochemically by using velocity or isopycnic ultracentrifugation, metabolic labeling with radioactive amino acids, and immunoprecipitation in various conditions.
Prebiotic Polymer Synthesis and the Origin of Glycolytic Metabolism
NASA Technical Reports Server (NTRS)
Weber, Arthur L.
1998-01-01
Our research resulted in several discoveries which contributed to understanding the origin and operation of life. (1) Most importantly, we discovered a new pathway of prebiotic amino acid synthesis in which formaldehyde and glycolaldehyde (formose reaction substrates) react with ammonia to give alanine and homoserine in the presence of thiol catalysts. The thiol-dependent synthesis of amino acids undoubtedly occurs via amino acid thioester intermediates capable of forming peptides. This 'one-pot' reaction system operates under mild aqueous conditions, and like modern amino acid biosynthesis, uses sugar intermediates which are converted to amino acids by energy-yielding redox disproportionation. Preliminary evidence suggests that this type of process can be "evolved" by a serial transfer methods that lead to enrichment of autocatalytic molecules. (2) We established that prebiotic peptide polymers can be made by condensation of amino acid thioesters (homocysteine thiolactone and S-(N-beta-orotidyl- diaminopropionic acid) ethanethiol), and that prebiotic polydisulfide polymers can be generated by oxidation of dithiols with iron(III) in minerals. (3) In our analysis of metabolism we discovered the primary energy source of biosynthesis -- chemical energy made available by the redox disproportionation of substrate carbon groups. We concluded that the energy and reactivity of sugars make them the optimal substrate for the origin and operation of terrestrial (or extraterrestrial) life. (4) Since it is likely that the use of optimal sugar substrates in biosynthesis sets the average oxidation number of functional biocarbon throughout the Universe near 0.0 (the reduction level of formaldehyde), we proposed that a line(s) in the microwave spectrum of formaldehyde could be rationally selected as a frequency for interstellar communication that symbolizes life. (5) Finally, in preparation for the analysis of Martian meteorite samples, we upgraded our HPLC system to one femtomole sensitivity, and developed a new electrophoretic method of sample preparation for HPLC analysis of the meteoritic amino acids. In a sample of the KT boundary layer from Sussex Wyoming, we found about 300 picomoles per gram of meteoritic alpha-aminoisobutyric acid per gram of KT layer.
Androgens and polycystic ovary syndrome.
Nisenblat, Vicki; Norman, Robert J
2009-06-01
Polycystic ovary syndrome (PCOS) is a common complex endocrine genetic disorder, which involves overproduction of androgens, leading to heterogeneous range of symptoms and associated with increased metabolic and cardiovascular morbidity. This review focuses on androgen biosynthesis, use, metabolism in PCOS and clinical consequences of hyperandrogenism. Controversial definition of the disorder and different phenotypic subgroups present a challenge for clinical and basic research. Further investigation of different phenotypes highlights the fact that PCOS probably represents a group of disorders with different etiologies. Prenatal androgen exposure and adolescent studies suggest early in life androgen excess as initiating factor of PCOS, but insufficient evidence available to confirm this hypothesis. Various intracellular signaling pathways implicated in PCOS steroidogenesis and in androgen action have been studied, however, PCOS pathogenesis remains obscure. Growing evidence links androgens with pathophysiology of PCOS and metabolic derangements. Despite intensive investigation, etiology and underlying mechanisms of PCOS remain unclear, warranting further investigation. Better understanding of molecular and genetic basis might lead to invention of novel therapeutic approaches. Long-term interventional studies that lower androgen levels in women with hyperandrogenism might protect against metabolic and cardiovascular comorbidities are needed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lepesheva, Galina I.; Hargrove, Tatiana Y.; Anderson, Spencer
2010-09-02
Trypanosoma cruzi causes Chagas disease (American trypanosomiasis), which threatens the lives of millions of people and remains incurable in its chronic stage. The antifungal drug posaconazole that blocks sterol biosynthesis in the parasite is the only compound entering clinical trials for the chronic form of this infection. Crystal structures of the drug target enzyme, Trypanosoma cruzi sterol 14{alpha}-demethylase (CYP51), complexed with posaconazole, another antifungal agent fluconazole and an experimental inhibitor, (R)-4{prime}-chloro-N-(1-(2,4-dichlorophenyl)-2-(1H-imid-azol-1-yl)ethyl)biphenyl-4-carboxamide (VNF), allow prediction of important chemical features that enhance the drug potencies. Combined with comparative analysis of inhibitor binding parameters, influence on the catalytic activity of the trypanosomal enzymemore » and its human counterpart, and their cellular effects at different stages of the Trypanosoma cruzi life cycle, the structural data provide a molecular background to CYP51 inhibition and azole resistance and enlighten the path for directed design of new, more potent and selective drugs to develop an efficient treatment for Chagas disease.« less
Fuentes, Paulina; Zhou, Fei; Erban, Alexander; Karcher, Daniel; Kopka, Joachim; Bock, Ralph
2016-01-01
Artemisinin-based therapies are the only effective treatment for malaria, the most devastating disease in human history. To meet the growing demand for artemisinin and make it accessible to the poorest, an inexpensive and rapidly scalable production platform is urgently needed. Here we have developed a new synthetic biology approach, combinatorial supertransformation of transplastomic recipient lines (COSTREL), and applied it to introduce the complete pathway for artemisinic acid, the precursor of artemisinin, into the high-biomass crop tobacco. We first introduced the core pathway of artemisinic acid biosynthesis into the chloroplast genome. The transplastomic plants were then combinatorially supertransformed with cassettes for all additional enzymes known to affect flux through the artemisinin pathway. By screening large populations of COSTREL lines, we isolated plants that produce more than 120 milligram artemisinic acid per kilogram biomass. Our work provides an efficient strategy for engineering complex biochemical pathways into plants and optimizing the metabolic output. DOI: http://dx.doi.org/10.7554/eLife.13664.001 PMID:27296645
Systems Level Engineering of Plant Cell Wall Biosynthesis to Improve Biofuel Feedstock Quality
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hazen, Samuel
2013-09-27
Our new regulatory model of cell wall biosynthesis proposes original network architecture with several newly incorporated components. The mapped set of protein-DNA interactions will serve as a foundation for 1) understanding the regulation of a complex and integral plant component and 2) the manipulation of crop species for biofuel and biotechnology purposes. This study revealed interesting and novel aspects of grass growth and development and further enforce the importance of a grass model system. By functionally characterizing a suite of genes, we have begun to improve the sparse model for transcription regulation of biomass accumulation in grasses. In the process,more » we have advanced methodology and brachy molecular genetic tools that will serve as valuable community resource.« less
Polyketide biosynthesis in dinoflagellates: what makes it different?
Van Wagoner, Ryan M; Satake, Masayuki; Wright, Jeffrey L C
2014-09-01
Dinoflagellates produce unique polyketides characterized by their size and complexity. The biosynthesis of a limited number of such metabolites has been reported, with studies largely hampered by the low yield of compounds and the severe scrambling of label in the isotopically-labeled precursors. Nonetheless, of the successful biosynthetic experiments that have been reported, many surprising and unique processes have been discovered. This knowledge has been accessed through a series of biochemical labeling studies, and while limited molecular genetic data has been amassed, it is still in the early stages of development. In an attempt to meet this challenge, this review has compared some of the biosynthetic processes with similar ones identified in other microbes such as bacteria and myxobacteria, with the idea that similar genes and enzymes are employed by dinoflagellates.
Agmatine: clinical applications after 100 years in translation.
Piletz, John E; Aricioglu, Feyza; Cheng, Juei-Tang; Fairbanks, Carolyn A; Gilad, Varda H; Haenisch, Britta; Halaris, Angelos; Hong, Samin; Lee, Jong Eun; Li, Jin; Liu, Ping; Molderings, Gerhard J; Rodrigues, Ana Lúcia S; Satriano, Joseph; Seong, Gong Je; Wilcox, George; Wu, Ning; Gilad, Gad M
2013-09-01
Agmatine (decarboxylated arginine) has been known as a natural product for over 100 years, but its biosynthesis in humans was left unexplored owing to long-standing controversy. Only recently has the demonstration of agmatine biosynthesis in mammals revived research, indicating its exceptional modulatory action at multiple molecular targets, including neurotransmitter systems, nitric oxide (NO) synthesis and polyamine metabolism, thus providing bases for broad therapeutic applications. This timely review, a concerted effort by 16 independent research groups, draws attention to the substantial preclinical and initial clinical evidence, and highlights challenges and opportunities, for the use of agmatine in treating a spectrum of complex diseases with unmet therapeutic needs, including diabetes mellitus, neurotrauma and neurodegenerative diseases, opioid addiction, mood disorders, cognitive disorders and cancer. Copyright © 2013 Elsevier Ltd. All rights reserved.
Engineering Biosynthesis of Non-ribosomal Peptides and Polyketides by Directed Evolution.
Rui, Zhe; Zhang, Wenjun
2016-01-01
Non-ribosomal peptides (NRPs) and polyketides (PKs) play key roles in pharmaceutical industry due to their promising biological activities. The structural complexity of NRPs and PKs, however, creates significant synthetic challenges for producing these natural products and their analogues by purely chemical means. Alternatively, difficult syntheses can be achieved by using biosynthetic enzymes with improved efficiency and altered selectivity that are acquired from directed evolution. Key to the successful directed evolution is the methodology of screening/selection. This review summarizes the screening/selection strategies that have been employed to improve or modify the functions of non-ribosomal peptide synthetases (NRPSs) and polyketide synthases (PKSs), in the hope of triggering the wide adoption of the directed evolution approaches in the engineered biosynthesis of NRPs and PKs for drug discovery.
A transgene design for enhancing oil content in Arabidopsis and Camelina seeds
Zhu, Yerong; Xie, Linan; Chen, Grace Q.; ...
2018-02-21
Background: Increasing the oil yield is a major objective for oilseed crop improvement. Oil biosynthesis and accumulation are influenced by multiple genes involved in embryo and seed development. The leafy cotyledon1 (LEC1) is a master regulator of embryo development that also enhances the expression of genes involved in fatty acid biosynthesis. We speculated that seed oil could be increased by targeted overexpression of a master regulating transcription factor for oil biosynthesis, using a downstream promoter for a gene in the oil biosynthesis pathway. To verify the effect of such a combination on seed oil content, we made constructs with maizemore » (Zea mays) ZmLEC1 driven by serine carboxypeptidase-like (SCPL17) and acyl carrier protein (ACP5) promoters, respectively, for expression in transgenic Arabidopsis thaliana and Camelina sativa. Results: Agrobacterium-mediated transformation successfully generated Arabidopsis and Camelina lines that overexpressed ZmLEC1 under the control of a seed-specific promoter. This overexpression does not appear to be detrimental to seed vigor under laboratory conditions and did not cause observable abnormal growth phenotypes throughout the life cycle of the plants. Overexpression of ZmLEC1 increased the oil content in mature seeds by more than 20% in Arabidopsis and 26% in Camelina. In conclusion: The findings suggested that the maize master regulator, ZmLEC1, driven by a downstream seed-specific promoter, can be used to increase oil production in Arabidopsis and Camelina and might be a promising target for increasing oil yield in oilseed crops.0« less
Chirality and protein biosynthesis.
Banik, Sindrila Dutta; Nandi, Nilashis
2013-01-01
Chirality is present at all levels of structural hierarchy of protein and plays a significant role in protein biosynthesis. The macromolecules involved in protein biosynthesis such as aminoacyl tRNA synthetase and ribosome have chiral subunits. Despite the omnipresence of chirality in the biosynthetic pathway, its origin, role in current pathway, and importance is far from understood. In this review we first present an introduction to biochirality and its relevance to protein biosynthesis. Major propositions about the prebiotic origin of biomolecules are presented with particular reference to proteins and nucleic acids. The problem of the origin of homochirality is unresolved at present. The chiral discrimination by enzymes involved in protein synthesis is essential for keeping the life process going. However, questions remained pertaining to the mechanism of chiral discrimination and concomitant retention of biochirality. We discuss the experimental evidence which shows that it is virtually impossible to incorporate D-amino acids in protein structures in present biosynthetic pathways via any of the two major steps of protein synthesis, namely aminoacylation and peptide bond formation reactions. Molecular level explanations of the stringent chiral specificity in each step are extended based on computational analysis. A detailed account of the current state of understanding of the mechanism of chiral discrimination during aminoacylation in the active site of aminoacyl tRNA synthetase and peptide bond formation in ribosomal peptidyl transferase center is presented. Finally, it is pointed out that the understanding of the mechanism of retention of enantiopurity has implications in developing novel enzyme mimetic systems and biocatalysts and might be useful in chiral drug design.
Thammahong, Arsa; Puttikamonkul, Srisombat; Perfect, John R.; Brennan, Richard G.
2017-01-01
SUMMARY Invasive fungal infections cause significant morbidity and mortality in part due to a limited antifungal drug arsenal. One therapeutic challenge faced by clinicians is the significant host toxicity associated with antifungal drugs. Another challenge is the fungistatic mechanism of action of some drugs. Consequently, the identification of fungus-specific drug targets essential for fitness in vivo remains a significant goal of medical mycology research. The trehalose biosynthetic pathway is found in a wide variety of organisms, including human-pathogenic fungi, but not in humans. Genes encoding proteins involved in trehalose biosynthesis are mechanistically linked to the metabolism, cell wall homeostasis, stress responses, and virulence of Candida albicans, Cryptococcus neoformans, and Aspergillus fumigatus. While there are a number of pathways for trehalose production across the tree of life, the TPS/TPP (trehalose-6-phosphate synthase/trehalose-6-phosphate phosphatase) pathway is the canonical pathway found in human-pathogenic fungi. Importantly, data suggest that proteins involved in trehalose biosynthesis play other critical roles in fungal metabolism and in vivo fitness that remain to be fully elucidated. By further defining the biology and functions of trehalose and its biosynthetic pathway components in pathogenic fungi, an opportunity exists to leverage this pathway as a potent antifungal drug target. The goal of this review is to cover the known roles of this important molecule and its associated biosynthesis-encoding genes in the human-pathogenic fungi studied to date and to employ these data to critically assess the opportunities and challenges facing development of this pathway as a therapeutic target. PMID:28298477
Al-Bader, Nadia; Vanier, Ghyslaine; Liu, Hong; Gravelat, Fabrice N.; Urb, Mirjam; Hoareau, Christopher M.-Q.; Campoli, Paolo; Chabot, Joseé; Filler, Scott G.; Sheppard, Donald C.
2010-01-01
Aspergillus fumigatus is a pathogenic mold which causes invasive, often fatal, pulmonary disease in immunocompromised individuals. Recently, proteins involved in the biosynthesis of trehalose have been linked with virulence in other pathogenic fungi. We found that the trehalose content increased during the developmental life cycle of A. fumigatus, throughout which putative trehalose synthase genes tpsA and tpsB were significantly expressed. The trehalose content of A. fumigatus hyphae also increased after heat shock but not in response to other stressors. This increase in trehalose directly correlated with an increase in expression of tpsB but not tpsA. However, deletion of both tpsA and tpsB was required to block trehalose accumulation during development and heat shock. The ΔtpsAB double mutant had delayed germination at 37°C, suggesting a developmental defect. At 50°C, the majority of ΔtpsAB spores were found to be nonviable, and those that were viable had severely delayed germination, growth, and subsequent sporulation. ΔtpsAB spores were also susceptible to oxidative stress. Surprisingly, the ΔtpsAB double mutant was hypervirulent in a murine model of invasive aspergillosis, and this increased virulence was associated with alterations in the cell wall and resistance to macrophage phagocytosis. Thus, while trehalose biosynthesis is required for a number of biological processes that both promote and inhibit virulence, in A. fumigatus the predominant effect is a reduction in pathogenicity. This finding contrasts sharply with those for other fungi, in which trehalose biosynthesis acts to enhance virulence. PMID:20439478
A transgene design for enhancing oil content in Arabidopsis and Camelina seeds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Yerong; Xie, Linan; Chen, Grace Q.
Background: Increasing the oil yield is a major objective for oilseed crop improvement. Oil biosynthesis and accumulation are influenced by multiple genes involved in embryo and seed development. The leafy cotyledon1 (LEC1) is a master regulator of embryo development that also enhances the expression of genes involved in fatty acid biosynthesis. We speculated that seed oil could be increased by targeted overexpression of a master regulating transcription factor for oil biosynthesis, using a downstream promoter for a gene in the oil biosynthesis pathway. To verify the effect of such a combination on seed oil content, we made constructs with maizemore » (Zea mays) ZmLEC1 driven by serine carboxypeptidase-like (SCPL17) and acyl carrier protein (ACP5) promoters, respectively, for expression in transgenic Arabidopsis thaliana and Camelina sativa. Results: Agrobacterium-mediated transformation successfully generated Arabidopsis and Camelina lines that overexpressed ZmLEC1 under the control of a seed-specific promoter. This overexpression does not appear to be detrimental to seed vigor under laboratory conditions and did not cause observable abnormal growth phenotypes throughout the life cycle of the plants. Overexpression of ZmLEC1 increased the oil content in mature seeds by more than 20% in Arabidopsis and 26% in Camelina. In conclusion: The findings suggested that the maize master regulator, ZmLEC1, driven by a downstream seed-specific promoter, can be used to increase oil production in Arabidopsis and Camelina and might be a promising target for increasing oil yield in oilseed crops.0« less
The Azotobacter vinelandii NifEN complex contains two identical [4Fe-4S] clusters.
Goodwin, P J; Agar, J N; Roll, J T; Roberts, G P; Johnson, M K; Dean, D R
1998-07-21
The nifE and nifN gene products from Azotobacter vinelandii form an alpha2beta2 tetramer (NifEN complex) that is required for the biosynthesis of the nitrogenase FeMo cofactor. In the current model for NifEN complex organization and function, the complex is structurally analogous to the nitrogenase MoFe protein and provides an assembly site for a portion of FeMo cofactor biosynthesis. In this work, gene fusion and immobilized metal-affinity chromatography strategies were used to elevate the in vivo production of the NifEN complex and to facilitate its rapid and efficient purification. The NifEN complex produced and purified in this way exhibits an FeMo cofactor biosynthetic activity similar to that previously described for the NifEN complex purified by traditional chromatography methods. UV-visible, EPR, variable-temperature magnetic circular dichroism, and resonance Raman spectroscopies were used to show that the NifEN complex contains two identical [4Fe-4S]2+ clusters. These clusters have a predominantly S = 1/2 ground state in the reduced form, exhibit a reduction potential of -350 mV, and are likely to be coordinated entirely by cysteinyl residues on the basis of spectroscopic properties and sequence comparisons. A model is proposed where each NifEN complex [4Fe-4S] cluster is bridged between a NifE-NifN subunit interface at a position analogous to that occupied by the P clusters in the nitrogenase MoFe protein. In contrast to the MoFe protein P clusters, the NifEN complex [4Fe-4S] clusters are proposed to be asymmetrically coordinated to the NifEN complex where NifE cysteines-37, -62, and -124 and NifN cysteine-44 are the coordinating ligands. On the basis of a homology model of the three-dimensional structure of the NifEN complex, the [4Fe-4S] cluster sites are likely to be remote from the proposed FeMo cofactor assembly site and are unlikely to become incorporated into the FeMo cofactor during its assembly.
Bender, Carol L.; Alarcón-Chaidez, Francisco; Gross, Dennis C.
1999-01-01
Coronatine, syringomycin, syringopeptin, tabtoxin, and phaseolotoxin are the most intensively studied phytotoxins of Pseudomonas syringae, and each contributes significantly to bacterial virulence in plants. Coronatine functions partly as a mimic of methyl jasmonate, a hormone synthesized by plants undergoing biological stress. Syringomycin and syringopeptin form pores in plasma membranes, a process that leads to electrolyte leakage. Tabtoxin and phaseolotoxin are strongly antimicrobial and function by inhibiting glutamine synthetase and ornithine carbamoyltransferase, respectively. Genetic analysis has revealed the mechanisms responsible for toxin biosynthesis. Coronatine biosynthesis requires the cooperation of polyketide and peptide synthetases for the assembly of the coronafacic and coronamic acid moieties, respectively. Tabtoxin is derived from the lysine biosynthetic pathway, whereas syringomycin, syringopeptin, and phaseolotoxin biosynthesis requires peptide synthetases. Activation of phytotoxin synthesis is controlled by diverse environmental factors including plant signal molecules and temperature. Genes involved in the regulation of phytotoxin synthesis have been located within the coronatine and syringomycin gene clusters; however, additional regulatory genes are required for the synthesis of these and other phytotoxins. Global regulatory genes such as gacS modulate phytotoxin production in certain pathovars, indicating the complexity of the regulatory circuits controlling phytotoxin synthesis. The coronatine and syringomycin gene clusters have been intensively characterized and show potential for constructing modified polyketides and peptides. Genetic reprogramming of peptide and polyketide synthetases has been successful, and portions of the coronatine and syringomycin gene clusters could be valuable resources in developing new antimicrobial agents. PMID:10357851
Pauwels, Laurens; Morreel, Kris; De Witte, Emilie; Lammertyn, Freya; Van Montagu, Marc; Boerjan, Wout; Inzé, Dirk; Goossens, Alain
2008-01-01
Jasmonates (JAs) are plant-specific signaling molecules that steer a diverse set of physiological and developmental processes. Pathogen attack and wounding inflicted by herbivores induce the biosynthesis of these hormones, triggering defense responses both locally and systemically. We report on alterations in the transcriptome of a fast-dividing cell culture of the model plant Arabidopsis thaliana after exogenous application of methyl JA (MeJA). Early MeJA response genes encoded the JA biosynthesis pathway proteins and key regulators of MeJA responses, including most JA ZIM domain proteins and MYC2, together with transcriptional regulators with potential, but yet unknown, functions in MeJA signaling. In a second transcriptional wave, MeJA reprogrammed cellular metabolism and cell cycle progression. Up-regulation of the monolignol biosynthesis gene set resulted in an increased production of monolignols and oligolignols, the building blocks of lignin. Simultaneously, MeJA repressed activation of M-phase genes, arresting the cell cycle in G2. MeJA-responsive transcription factors were screened for their involvement in early signaling events, in particular the regulation of JA biosynthesis. Parallel screens based on yeast one-hybrid and transient transactivation assays identified both positive (MYC2 and the AP2/ERF factor ORA47) and negative (the C2H2 Zn finger proteins STZ/ZAT10 and AZF2) regulators, revealing a complex control of the JA autoregulatory loop and possibly other MeJA-mediated downstream processes. PMID:18216250
Castiblanco, Luisa F; Sundin, George W
2018-01-01
Bacterial biofilms are multicellular aggregates encased in an extracellular matrix mainly composed of exopolysaccharides (EPSs), protein and nucleic acids, which determines the architecture of the biofilm. Erwinia amylovora Ea1189 forms a biofilm inside the xylem of its host, which results in vessel plugging and water transport impairment. The production of the EPSs amylovoran and levan is critical for the formation of a mature biofilm. In addition, cyclic dimeric GMP (c-di-GMP) has been reported to positively regulate amylovoran biosynthesis and biofilm formation in E. amylovora Ea1189. In this study, we demonstrate that cellulose is synthesized by E. amylovora Ea1189 and is a major modulator of the three-dimensional characteristics of biofilms formed by this bacterium, and also contributes to virulence during systemic host invasion. In addition, we demonstrate that the activation of cellulose biosynthesis in E. amylovora is a c-di-GMP-dependent process, through allosteric binding to the cellulose catalytic subunit BcsA. We also report that the endoglucanase BcsZ is a key player in c-di-GMP activation of cellulose biosynthesis. Our results provide evidence of the complex composition of the extracellular matrix produced by E. amylovora and the implications of cellulose biosynthesis in shaping the architecture of the biofilm and in the expression of one of the main virulence phenotypes of this pathogen. © 2016 BSPP AND JOHN WILEY & SONS LTD.
Yang, Yang; Zienkiewicz, Agnieszka; Lavell, Anastasiya; Benning, Christoph
2017-06-01
The import of lipids into the chloroplast is essential for photosynthetic membrane biogenesis. This process requires an ABC transporter in the inner envelope membrane with three subunits, TRIGALACTOSYLDIACYLGLYCEROL (TGD) 1, 2, and 3, named after the oligogalactolipids that accumulate in the respective Arabidopsis thaliana mutants. Unlike Arabidopsis, in the model grass Brachypodium distachyon , chloroplast lipid biosynthesis is largely dependent on imported precursors, resulting in a characteristic difference in chloroplast lipid acyl composition between the two plants. Accordingly, Arabidopsis is designated as a 16:3 (acyl carbons:double bounds) plant and Brachypodium as an 18:3 plant. Repression of TGD1 (Bd TGD1 ) in Brachypodium affected growth without triggering oligogalactolipid biosynthesis. Moreover, expressing Bd TGD1 in the Arabidopsis tgd1-1 mutant restored some phenotypes but did not reverse oligogalactolipid biosynthesis. A 27-amino acid loop (L45) is solely responsible for the incomplete functioning of BdTGD1 in Arabidopsis tgd1-1 Coevolutionary analysis and coimmunoprecipitation assays showed that the TGD1 L45 loop interacts with the mycobacterial cell entry domain of TGD2. To explain the observed differences in oligogalactolipid biosynthesis between the two species, we suggest that excess monogalactosyldiacylglycerol derived from chloroplast-derived precursors in Arabidopsis tgd1-1 is converted into oligogalactolipids, a process absent from Brachypodium with reduced TGD1 levels, which assembles monogalactosyldiacylglycerol exclusively from imported precursors. © 2017 American Society of Plant Biologists. All rights reserved.
Kim, Eun-Ha; Lee, Yongjik
2015-01-01
Fibrillins are lipid-associated proteins in plastids and are ubiquitous in plants. They accumulate in chromoplasts and sequester carotenoids during the development of flowers and fruits. However, little is known about the functions of fibrillins in leaf tissues. Here, we identified fibrillin 5 (FBN5), which is essential for plastoquinone-9 (PQ-9) biosynthesis in Arabidopsis thaliana. Homozygous fbn5-1 mutations were seedling-lethal, and XVE:FBN5-B transgenic plants expressing low levels of FBN5-B had a slower growth rate and were smaller than wild-type plants. In chloroplasts, FBN5-B specifically interacted with solanesyl diphosphate synthases (SPSs) 1 and 2, which biosynthesize the solanesyl moiety of PQ-9. Plants containing defective FBN5-B accumulated less PQ-9 and its cyclized product, plastochromanol-8, but the levels of tocopherols were not affected. The reduced PQ-9 content of XVE:FBN5-B transgenic plants was consistent with their lower photosynthetic performance and higher levels of hydrogen peroxide under cold stress. These results indicate that FBN5-B is required for PQ-9 biosynthesis through its interaction with SPS. Our study adds FBN5 as a structural component involved in the biosynthesis of PQ-9. FBN5 binding to the hydrophobic solanesyl moiety, which is generated by SPS1 and SPS2, in FBN5-B/SPS homodimeric complexes stimulates the enzyme activity of SPS1 and SPS2. PMID:26432861
Yang, Yang; Lavell, Anastasiya
2017-01-01
The import of lipids into the chloroplast is essential for photosynthetic membrane biogenesis. This process requires an ABC transporter in the inner envelope membrane with three subunits, TRIGALACTOSYLDIACYLGLYCEROL (TGD) 1, 2, and 3, named after the oligogalactolipids that accumulate in the respective Arabidopsis thaliana mutants. Unlike Arabidopsis, in the model grass Brachypodium distachyon, chloroplast lipid biosynthesis is largely dependent on imported precursors, resulting in a characteristic difference in chloroplast lipid acyl composition between the two plants. Accordingly, Arabidopsis is designated as a 16:3 (acyl carbons:double bounds) plant and Brachypodium as an 18:3 plant. Repression of TGD1 (BdTGD1) in Brachypodium affected growth without triggering oligogalactolipid biosynthesis. Moreover, expressing BdTGD1 in the Arabidopsis tgd1-1 mutant restored some phenotypes but did not reverse oligogalactolipid biosynthesis. A 27-amino acid loop (L45) is solely responsible for the incomplete functioning of BdTGD1 in Arabidopsis tgd1-1. Coevolutionary analysis and coimmunoprecipitation assays showed that the TGD1 L45 loop interacts with the mycobacterial cell entry domain of TGD2. To explain the observed differences in oligogalactolipid biosynthesis between the two species, we suggest that excess monogalactosyldiacylglycerol derived from chloroplast-derived precursors in Arabidopsis tgd1-1 is converted into oligogalactolipids, a process absent from Brachypodium with reduced TGD1 levels, which assembles monogalactosyldiacylglycerol exclusively from imported precursors. PMID:28526713
USDA-ARS?s Scientific Manuscript database
Trichothecenes are among the mycotoxins of greatest concern to food and feed safety and are produced by at least two lineages of Fusarium: the F. sambucinum (FSAMSC) and F. incarnatum-equiseti (FIESC) species complexes. Trichothecene biosynthesis begins with the formation of a cyclic sesquiterpene f...
Xu, Zhaofa; Luo, Jintao; Li, Yu; Ma, Long
2014-01-01
Iodine is an essential trace element for life. Iodide deficiency can lead to defective biosynthesis of thyroid hormones and is a major cause of hypothyroidism and mental retardation. Excess iodide intake, however, has been linked to different thyroidal diseases. How excess iodide causes harmful effects is not well understood. Here, we found that the nematode Caenorhabditis elegans exhibits developmental arrest and other pleiotropic defects when exposed to excess iodide. To identify the responsible genes, we performed a forward genetic screen and isolated 12 mutants that can survive in excess iodide. These mutants define at least four genes, two of which we identified as bli-3 and tsp-15. bli-3 encodes the C. elegans ortholog of the mammalian dual oxidase DUOX1 and tsp-15 encodes the tetraspanin protein TSP-15, which was previously shown to interact with BLI-3. The C. elegans dual oxidase maturation factor DOXA-1 is also required for the arresting effect of excess iodide. Finally, we detected a dramatically increased biogenesis of reactive oxygen species in animals treated with excess iodide, and this effect can be partially suppressed by bli-3 and tsp-15 mutations. We propose that the BLI-3/TSP-15/DOXA-1 dual oxidase complex is required for the toxic pleiotropic effects of excess iodide. PMID:25480962
Engineering redox homeostasis to develop efficient alcohol-producing microbial cell factories.
Zhao, Chunhua; Zhao, Qiuwei; Li, Yin; Zhang, Yanping
2017-06-24
The biosynthetic pathways of most alcohols are linked to intracellular redox homeostasis, which is crucial for life. This crucial balance is primarily controlled by the generation of reducing equivalents, as well as the (reduction)-oxidation metabolic cycle and the thiol redox homeostasis system. As a main oxidation pathway of reducing equivalents, the biosynthesis of most alcohols includes redox reactions, which are dependent on cofactors such as NADH or NADPH. Thus, when engineering alcohol-producing strains, the availability of cofactors and redox homeostasis must be considered. In this review, recent advances on the engineering of cellular redox homeostasis systems to accelerate alcohol biosynthesis are summarized. Recent approaches include improving cofactor availability, manipulating the affinity of redox enzymes to specific cofactors, as well as globally controlling redox reactions, indicating the power of these approaches, and opening a path towards improving the production of a number of different industrially-relevant alcohols in the near future.
Pirie, Christopher M; De Mey, Marjan; Jones Prather, Kristala L; Ajikumar, Parayil Kumaran
2013-04-19
Through microbial engineering, biosynthesis has the potential to produce thousands of chemicals used in everyday life. Metabolic engineering and synthetic biology are fields driven by the manipulation of genes, genetic regulatory systems, and enzymatic pathways for developing highly productive microbial strains. Fundamentally, it is the biochemical characteristics of the enzymes themselves that dictate flux through a biosynthetic pathway toward the product of interest. As metabolic engineers target sophisticated secondary metabolites, there has been little recognition of the reduced catalytic activity and increased substrate/product promiscuity of the corresponding enzymes compared to those of central metabolism. Thus, fine-tuning these enzymatic characteristics through protein engineering is paramount for developing high-productivity microbial strains for secondary metabolites. Here, we describe the importance of protein engineering for advancing metabolic engineering of secondary metabolism pathways. This pathway integrated enzyme optimization can enhance the collective toolkit of microbial engineering to shape the future of chemical manufacturing.
Structural elements and organization of the ancestral translational machinery
NASA Technical Reports Server (NTRS)
Rein, R.; Srinivasan, S.; Mcdonald, J.; Raghunathan, G.; Shibata, M.
1987-01-01
The molecular mechanisms of the primitive translational apparatus are discussed in the framework of present-day protein biosynthesis. The structural necessities of an early adaptor and the multipoint recognition properties of such an adaptor are investigated on the basis of structure/function relationships found in a contemporary system and a molecular model of the contemporary transpeptidation complex. A model of the tRNA(Tyr)-tyrosyl tRNA synthetase complex including the positioning of the disordered region is proposed; the model is used to illustrate the required recognition properties of the ancestor aminoacyl synthetase.
Song, Yongcheng; Liu, Chia-I; Lin, Fu-Yang; No, Joo Hwan; Hensler, Mary; Liu, Yi-Liang; Jeng, Wen-Yih; Low, Jennifer; Liu, George Y.; Nizet, Victor; Wang, Andrew H.-J.; Oldfield, Eric
2009-01-01
The gold color of Staphylococcus aureus is derived from the carotenoid staphyloxanthin, a virulence factor for the organism. Here, we report the synthesis and activity of a broad variety of staphyloxanthin biosynthesis inhibitors that inhibit the first committed step in its biosynthesis, condensation of two farnesyl diphosphate (FPP) molecules to dehydrosqualene, catalyzed by the enzyme dehydrosqualene synthase (CrtM). The most active compounds are phosphonoacetamides that have low nanomolar Ki values for CrtM inhibition and are active in whole bacterial cells and in mice, where they inhibit S. aureus disease progression. We also report the X-ray crystallographic structure of the most active compound, N-3-(3-phenoxyphenyl)propylphosphonoacetamide (IC50 = 8 nM, in cells), bound to CrtM. The structure exhibits a complex network of hydrogen bonds between the polar headgroup and the protein, while the 3-phenoxyphenyl side chain is located in a hydrophobic pocket previously reported to bind farnesyl thiodiphosphate (FsPP), as well as biphenyl phosphonosulfonate inhibitors. Given the good enzymatic, whole cell, and in vivo pharmacologic activities, these results should help guide the further development of novel antivirulence factor-based therapies for S. aureus infections. PMID:19456099
Widespread occurrence of secondary lipid biosynthesis potential in microbial lineages.
Shulse, Christine N; Allen, Eric E
2011-01-01
Bacterial production of long-chain omega-3 polyunsaturated fatty acids (PUFAs), such as eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3), is constrained to a narrow subset of marine γ-proteobacteria. The genes responsible for de novo bacterial PUFA biosynthesis, designated pfaEABCD, encode large, multi-domain protein complexes akin to type I iterative fatty acid and polyketide synthases, herein referred to as "Pfa synthases". In addition to the archetypal Pfa synthase gene products from marine bacteria, we have identified homologous type I FAS/PKS gene clusters in diverse microbial lineages spanning 45 genera representing 10 phyla, presumed to be involved in long-chain fatty acid biosynthesis. In total, 20 distinct types of gene clusters were identified. Collectively, we propose the designation of "secondary lipids" to describe these biosynthetic pathways and products, a proposition consistent with the "secondary metabolite" vernacular. Phylogenomic analysis reveals a high degree of functional conservation within distinct biosynthetic pathways. Incongruence between secondary lipid synthase functional clades and taxonomic group membership combined with the lack of orthologous gene clusters in closely related strains suggests horizontal gene transfer has contributed to the dissemination of specialized lipid biosynthetic activities across disparate microbial lineages.
Leke, Renata; Bak, Lasse K; Schousboe, Arne; Waagepetersen, Helle S
2008-12-01
Co-cultures of neurons and astrocytes were prepared from dissociated embryonic mouse cerebral cortex and cultured for 7 days. To investigate if these cultures may serve as a functional model system to study neuron-glia interaction with regard to GABA biosynthesis, the cells were incubated either in media containing [U-(13)C]glutamine (0.1, 0.3 and 0.5 mM) or 1 mM acetate plus 2.5 mM glucose plus 1 mM lactate. In the latter case one of the 3 substrates was uniformly (13)C labeled. Cellular contents and (13)C labeling of glutamate, GABA, aspartate and glutamine were determined in the cells after an incubation period of 2.5 h. The GABA biosynthetic machinery exhibited the expected complexity with regard to metabolic compartmentation and involvement of TCA cycle activity as seen in other culture systems containing GABAergic neurons. Metabolism of acetate clearly demonstrated glial synthesis of glutamine and its transfer to the neuronal compartment. It is concluded that this co-culture system serves as a reliable model in which functional and pharmacological aspects of GABA biosynthesis can be investigated.
Schorn, Michelle; Zettler, Judith; Noel, Joseph P.; Dorrestein, Pieter C.; Moore, Bradley S.; Kaysser, Leonard
2013-01-01
The epoxyketone proteasome inhibitors are an established class of therapeutic agents for the treatment of cancer. Their unique α′,β′-epoxyketone pharmacophore allows binding to the catalytic β-subunits of the proteasome with extraordinary specificity. Here we report the characterization of the first gene clusters for the biosynthesis of natural peptidyl-epoxyketones. The clusters for epoxomicin, the lead compound for the anti-cancer drug Kyprolis™, and for eponemycin were identified in the actinobacterial producer strains ATCC 53904 and Streptomyces hygroscopicus ATCC 53709, respectively, using a modified protocol for Ion Torrent PGM genome sequencing. Both gene clusters code for a hybrid non-ribosomal peptide synthetase/polyketide synthase multifunctional enzyme complex and homologous redox enzymes. Epoxomicin and eponemycin were heterologously produced in Streptomyces albus J1046 via whole pathway expression. Moreover, we employed mass spectral molecular networking for a new comparative metabolomics approach in a heterologous system and discovered a number of putative epoxyketone derivatives. With this study we have definitively linked epoxyketone proteasome inhibitors and their biosynthesis genes for the first time in any organism, which will now allow for their detailed biochemical investigation. PMID:24168704
Chowdhury, Jamil; Lück, Stefanie; Rajaraman, Jeyaraman; Douchkov, Dimitar; Shirley, Neil J; Schwerdt, Julian G; Schweizer, Patrick; Fincher, Geoffrey B; Burton, Rachel A; Little, Alan
2017-01-01
Heteroxylan has recently been identified as an important component of papillae, which are formed during powdery mildew infection of barley leaves. Deposition of heteroxylan near the sites of attempted fungal penetration in the epidermal cell wall is believed to enhance the physical resistance to the fungal penetration peg and hence to improve pre-invasion resistance. Several glycosyltransferase (GT) families are implicated in the assembly of heteroxylan in the plant cell wall, and are likely to work together in a multi-enzyme complex. Members of key GT families reported to be involved in heteroxylan biosynthesis are up-regulated in the epidermal layer of barley leaves during powdery mildew infection. Modulation of their expression leads to altered susceptibility levels, suggesting that these genes are important for penetration resistance. The highest level of resistance was achieved when a GT43 gene was co-expressed with a GT47 candidate gene, both of which have been predicted to be involved in xylan backbone biosynthesis. Altering the expression level of several candidate heteroxylan synthesis genes can significantly alter disease susceptibility. This is predicted to occur through changes in the amount and structure of heteroxylan in barley papillae.
The site of water stress governs the pattern of ABA synthesis and transport in peanut
Hu, Bo; Cao, Jiajia; Ge, Kui; Li, Ling
2016-01-01
Abscisic acid (ABA) is one of the most important phytohormones involved in stress responses in plants. However, knowledge of the effect on ABA distribution and transport of water stress at different sites on the plant is limited. In this study, water stress imposed on peanut leaves or roots by treatment with PEG 6000 is termed “leaf stress” or “root stress”, respectively. Immunoenzyme localization technolony was first used to detect ABA distribution in peanut. Under root stress, ABA biosynthesis and distribution level were all more pronounced in root than in leaf. However, ABA transport and the ability to induce stomatal closure were still better in leaf than in root during root stress; However, ABA biosynthesis initially increased in leaf, then rapidly accumulated in the vascular cambium of leaves and induced stomatal closure under leaf stress; ABA produced in root tissues was also transported to leaf tissues to maintain stomatal closure. The vascular system was involved in the coordination and integration of this complex regulatory mechanism for ABA signal accumulation. Water stress subject to root or leaf results in different of ABA biosynthesis and transport ability that trigger stoma close in peanut. PMID:27694957
Molecular Regulation of Antibiotic Biosynthesis in Streptomyces
Liu, Gang; Chandra, Govind; Niu, Guoqing
2013-01-01
SUMMARY Streptomycetes are the most abundant source of antibiotics. Typically, each species produces several antibiotics, with the profile being species specific. Streptomyces coelicolor, the model species, produces at least five different antibiotics. We review the regulation of antibiotic biosynthesis in S. coelicolor and other, nonmodel streptomycetes in the light of recent studies. The biosynthesis of each antibiotic is specified by a large gene cluster, usually including regulatory genes (cluster-situated regulators [CSRs]). These are the main point of connection with a plethora of generally conserved regulatory systems that monitor the organism's physiology, developmental state, population density, and environment to determine the onset and level of production of each antibiotic. Some CSRs may also be sensitive to the levels of different kinds of ligands, including products of the pathway itself, products of other antibiotic pathways in the same organism, and specialized regulatory small molecules such as gamma-butyrolactones. These interactions can result in self-reinforcing feed-forward circuitry and complex cross talk between pathways. The physiological signals and regulatory mechanisms may be of practical importance for the activation of the many cryptic secondary metabolic gene cluster pathways revealed by recent sequencing of numerous Streptomyces genomes. PMID:23471619
Mazmouz, Rabia; Pickford, Russell; Puranik, Pravin R.
2016-01-01
ABSTRACT The mycosporine-like amino acids (MAAs) are a group of small molecules with a diverse ecological distribution among microorganisms. MAAs have a range of physiological functions, including protection against UV radiation, making them important from a biotechnological perspective. In the present study, we identified a putative MAA (mys) gene cluster in two New Zealand isolates of Scytonema cf. crispum (UCFS10 and UCFS15). Homology to “Anabaena-type” mys clusters suggested that this cluster was likely to be involved in shinorine biosynthesis. Surprisingly, high-performance liquid chromatography analysis of S. cf. crispum cell extracts revealed a complex MAA profile, including shinorine, palythine-serine, and their hexose-bound variants. It was hypothesized that a short-chain dehydrogenase (UCFS15_00405) encoded by a gene adjacent to the S. cf. crispum mys cluster was responsible for the conversion of shinorine to palythine-serine. Heterologous expression of MysABCE and UCFS15_00405 in Escherichia coli resulted in the exclusive production of the parent compound shinorine. Taken together, these results suggest that shinorine biosynthesis in S. cf. crispum proceeds via an Anabaena-type mechanism and that the genes responsible for the production of other MAA analogues, including palythine-serine and glycosylated analogues, may be located elsewhere in the genome. IMPORTANCE Recently, New Zealand isolates of S. cf. crispum were linked to the production of paralytic shellfish toxins for the first time, but no other natural products from this species have been reported. Thus, the species was screened for important natural product biosynthesis. The mycosporine-like amino acids (MAAs) are among the strongest absorbers of UV radiation produced in nature. The identification of novel MAAs is important from a biotechnology perspective, as these molecules are able to be utilized as sunscreens. This study has identified two novel MAAs that have provided several new avenues of future research related to MAA genetics and biosynthesis. Further, we have revealed that the genetic basis of MAA biosynthesis may not be clustered on the genome. The identification of the genes responsible for MAA biosynthesis is vital for future genetic engineering. PMID:27474710
Glagoleva, Anastasiya Y; Shmakov, Nikolay A; Shoeva, Olesya Y; Vasiliev, Gennady V; Shatskaya, Natalia V; Börner, Andreas; Afonnikov, Dmitry A; Khlestkina, Elena K
2017-11-14
Some plant species have 'melanin-like' black seed pigmentation. However, the chemical and genetic nature of this 'melanin-like' black pigment have not yet been fully explored due to its complex structure and ability to withstand almost all solvents. Nevertheless, identification of genetic networks participating in trait formation is key to understanding metabolic processes involved in the expression of 'melanin-like' black seed pigmentation. The aim of the current study was to identify differentially expressed genes (DEGs) in barley near-isogenic lines (NILs) differing by allelic state of the Blp (black lemma and pericarp) locus. RNA-seq analysis of six libraries (three replicates for each line) was performed. A total of 957 genome fragments had statistically significant changes in expression levels between lines BLP and BW, with 632 fragments having increased expression levels in line BLP and 325 genome fragments having decreased expression. Among identified DEGs, 191 genes were recognized as participating in known pathways. Among these were metabolic pathways including 'suberin monomer biosynthesis', 'diterpene phytoalexins precursors biosynthesis', 'cutin biosynthesis', 'cuticular wax biosynthesis', and 'phenylpropanoid biosynthesis, initial reactions'. Differential expression was confirmed by real-time PCR analysis of selected genes. Metabolic pathways and genes presumably associated with black lemma and pericarp colour as well as Blp-associated resistance to oxidative stress and pathogens, were revealed. We suggest that the black pigmentation of lemmas and pericarps is related to increased level of phenolic compounds and their oxidation. The effect of functional Blp on the synthesis of ferulic acid and other phenolic compounds can explain the increased antioxidant capacity and biotic and abiotic stress tolerance of black-grained cereals. Their drought tolerance and resistance to diseases affecting the spike may also be related to cuticular wax biosynthesis. In addition, upregulated synthesis of phytoalexins, suberin and universal stress protein (USP) in lemmas and pericarps of the Blp carriers may contribute to their increased disease resistance. Further description of the DEGs haplotypes and study of their association with physiological characteristics may be useful for future application in barley pre-breeding.
Mutagenesis of NosM Leader Peptide Reveals Important Elements in Nosiheptide Biosynthesis
Jin, Liang; Wu, Xuri; Xue, Yanjiu; Jin, Yue; Wang, Shuzhen
2016-01-01
ABSTRACT Nosiheptide, a typical member of the ribosomally synthesized and posttranslationally modified peptides (RiPPs), exhibits potent activity against multidrug-resistant Gram-positive bacterial pathogens. The precursor peptide of nosiheptide (NosM) is comprised of a leader peptide with 37 amino acids and a core peptide containing 13 amino acids. To pinpoint elements in the leader peptide that are essential for nosiheptide biosynthesis, a collection of mutants with unique sequence features, including N- and C-terminal motifs, peptide length, and specific sites in the leader peptide, was generated by mutagenesis in vivo. The effects of various mutants on nosiheptide biosynthesis were evaluated. In addition to the necessity of a conserved motif LEIS box, native length and the N-terminal 12 amino acid residues were indispensable, and single-site substitutions of these 12 amino acid residues resulted in changes ranging from a greater-than-5-fold decrease to a 2-fold increase of nosiheptide production, depending on the sites and substituted residues. Moreover, although the C-terminal motif is not conservative, significant effects of this portion on nosiheptide production were also evident. Taken together, the present results further highlight the importance of the leader peptide in nosiheptide biosynthesis, and provide new insights into the diversity and specificity of leader peptides in the biosynthesis of various RiPPs. IMPORTANCE As a representative thiopeptide, nosiheptide exhibits excellent antibacterial activity. Although the biosynthetic gene cluster and several modification steps have been revealed, the presence and roles of the leader peptide within the precursor peptide of the nosiheptide gene cluster remain elusive. Thus, identification of specific elements in the leader peptide can significantly facilitate the genetic manipulation of the gene cluster for increasing nosiheptide production or generating diverse analogues. Given the complexity of the biosynthetic process, the instability of the leader peptide, and the unavailability of intermediates, cocrystallization of intermediates, leader peptide, and modification enzymes is currently not feasible. Therefore, a mutagenesis approach was used to construct a series of leader peptide mutants to uncover a number of crucial and characteristic elements affecting nosiheptide biosynthesis, which moves a considerable distance toward a thorough understanding of the biosynthetic machinery for thiopeptides. PMID:27913416
Ferriols, Victor Marco Emmanuel N; Yaginuma, Ryoko; Adachi, Masao; Takada, Kentaro; Matsunaga, Shigeki; Okada, Shigeru
2015-05-21
The diatom Rhizosolenia setigera Brightwell produces highly branched isoprenoid (HBI) hydrocarbons that are ubiquitously present in marine environments. The hydrocarbon composition of R. setigera varies between C25 and C30 HBIs depending on the life cycle stage with regard to auxosporulation. To better understand how these hydrocarbons are biosynthesized, we characterized the farnesyl pyrophosphate (FPP) synthase (FPPS) enzyme of R. setigera. An isolated 1465-bp cDNA clone contained an open reading frame spanning 1299-bp encoding a protein with 432 amino acid residues. Expression of the RsFPPS cDNA coding region in Escherichia coli produced a protein that exhibited FPPS activity in vitro. A reduction in HBI content from diatoms treated with an FPPS inhibitor, risedronate, suggested that RsFPPS supplies precursors for HBI biosynthesis. Product analysis by gas chromatography-mass spectrometry also revealed that RsFPPS produced small amounts of the cis-isomers of geranyl pyrophosphate and FPP, candidate precursors for the cis-isomers of HBIs previously characterized. Furthermore, RsFPPS gene expression at various life stages of R. setigera in relation to auxosporulation were also analyzed. Herein, we present data on the possible role of RsFPPS in HBI biosynthesis, and it is to our knowledge the first instance that an FPPS was cloned and characterized from a diatom.
The biosynthesis of human hemoglobin A1c. Slow glycosylation of hemoglobin in vivo.
Bunn, H F; Haney, D N; Kamin, S; Gabbay, K H; Gallop, P M
1976-01-01
Hemoglobin A1c, the most abundant minor hemoglobin component in human erythrocytes, is formed by the condensation of glucose with the N-terminal amino groups of the beta-chains of Hb A. The biosynthesis of this glycosylated hemoglobin was studied in vitro by incubating suspensions of reticulocytes and bone marrow cells with [3H]leucine or 59Fe-bound transferrin. In all experiments, the specific activity of Hb A1c was significantly lower than that of Hb A, suggesting that the formation of Hb A1c is a posttranslational modification. The formation of Hb A1c in vivo was determined in two individuals who were given an infusion of 59Fe-labeled transferrin. As expected, the specific activity of Hb A rose promptly to a maximum during the 1st week and remained nearly constant thereafter. In contrast, the specific activity of Hb A1c and also of Hbs A1a and A1b rose slowly, reaching that of Hb A by about day 60. These results indicate that Hb A1c is slowly formed during the 120-day life-span of the erythrocyte, probably by a nonenzymatic process. Patients with shortened erythrocyte life-span due to hemolysis had markedly decreased levels of Hb A1c. PMID:932199
Deshpande, Ashish B; Anamika, Krishanpal; Jha, Vineet; Chidley, Hemangi G; Oak, Pranjali S; Kadoo, Narendra Y; Pujari, Keshav H; Giri, Ashok P; Gupta, Vidya S
2017-08-18
Alphonso is known as the "King of mangos" due to its unique flavor, attractive color, low fiber pulp and long shelf life. We analyzed the transcriptome of Alphonso mango through Illumina sequencing from seven stages of fruit development and ripening as well as flower. Total transcriptome data from these stages ranged between 65 and 143 Mb. Importantly, 20,755 unique transcripts were annotated and 4,611 were assigned enzyme commission numbers, which encoded 142 biological pathways. These included ethylene and flavor related secondary metabolite biosynthesis pathways, as well as those involved in metabolism of starch, sucrose, amino acids and fatty acids. Differential regulation (p-value ≤ 0.05) of thousands of transcripts was evident in various stages of fruit development and ripening. Novel transcripts for biosynthesis of mono-terpenes, sesqui-terpenes, di-terpenes, lactones and furanones involved in flavor formation were identified. Large number of transcripts encoding cell wall modifying enzymes was found to be steady in their expression, while few were differentially regulated through these stages. Novel 79 transcripts of inhibitors of cell wall modifying enzymes were simultaneously detected throughout Alphonso fruit development and ripening, suggesting controlled activity of these enzymes involved in fruit softening.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bulfer, Stacie L.; Scott, Erin M.; Couture, Jean-François
2010-01-12
Homocitrate synthase (HCS) catalyzes the first and committed step in lysine biosynthesis in many fungi and certain Archaea and is a potential target for antifungal drugs. Here we report the crystal structure of the HCS apoenzyme from Schizosaccharomyces pombe and two distinct structures of the enzyme in complex with the substrate 2-oxoglutarate (2-OG). The structures reveal that HCS forms an intertwined homodimer stabilized by domain-swapping between the N- and C-terminal domains of each monomer. The N-terminal catalytic domain is composed of a TIM barrel fold in which 2-OG binds via hydrogen bonds and coordination to the active site divalent metalmore » ion, whereas the C-terminal domain is composed of mixed {alpha}/{beta} topology. In the structures of the HCS apoenzyme and one of the 2-OG binary complexes, a lid motif from the C-terminal domain occludes the entrance to the active site of the neighboring monomer, whereas in the second 2-OG complex the lid is disordered, suggesting that it regulates substrate access to the active site through its apparent flexibility. Mutations of the active site residues involved in 2-OG binding or implicated in acid-base catalysis impair or abolish activity in vitro and in vivo. Together, these results yield new insights into the structure and catalytic mechanism of HCSs and furnish a platform for developing HCS-selective inhibitors.« less
Dolan, Whitney L; Dilkes, Brian P; Stout, Jake M; Bonawitz, Nicholas D; Chapple, Clint
2017-12-01
The phenylpropanoid pathway is a major global carbon sink and is important for plant fitness and the engineering of bioenergy feedstocks. In Arabidopsis thaliana , disruption of two subunits of the transcriptional regulatory Mediator complex, MED5a and MED5b, results in an increase in phenylpropanoid accumulation. By contrast, the semidominant MED5b mutation reduced epidermal fluorescence4-3 ( ref4-3 ) results in dwarfism and constitutively repressed phenylpropanoid accumulation. Here, we report the results of a forward genetic screen for suppressors of ref4-3. We identified 13 independent lines that restore growth and/or phenylpropanoid accumulation in the ref4-3 background. Two of the suppressors restore growth without restoring soluble phenylpropanoid accumulation, indicating that the growth and metabolic phenotypes of the ref4-3 mutant can be genetically disentangled. Whole-genome sequencing revealed that all but one of the suppressors carry mutations in MED5b or other Mediator subunits. RNA-seq analysis showed that the ref4-3 mutation causes widespread changes in gene expression, including the upregulation of negative regulators of the phenylpropanoid pathway, and that the suppressors reverse many of these changes. Together, our data highlight the interdependence of individual Mediator subunits and provide greater insight into the transcriptional regulation of phenylpropanoid biosynthesis by the Mediator complex. © 2017 American Society of Plant Biologists. All rights reserved.
Storbeck, Sonja; Saha, Sayantan; Krausze, Joern; Klink, Björn U.; Heinz, Dirk W.; Layer, Gunhild
2011-01-01
During the biosynthesis of heme d1, the essential cofactor of cytochrome cd1 nitrite reductase, the NirE protein catalyzes the methylation of uroporphyrinogen III to precorrin-2 using S-adenosyl-l-methionine (SAM) as the methyl group donor. The crystal structure of Pseudomonas aeruginosa NirE in complex with its substrate uroporphyrinogen III and the reaction by-product S-adenosyl-l-homocysteine (SAH) was solved to 2.0 Å resolution. This represents the first enzyme-substrate complex structure for a SAM-dependent uroporphyrinogen III methyltransferase. The large substrate binds on top of the SAH in a “puckered” conformation in which the two pyrrole rings facing each other point into the same direction either upward or downward. Three arginine residues, a histidine, and a methionine are involved in the coordination of uroporphyrinogen III. Through site-directed mutagenesis of the nirE gene and biochemical characterization of the corresponding NirE variants the amino acid residues Arg-111, Glu-114, and Arg-149 were identified to be involved in NirE catalysis. Based on our structural and biochemical findings, we propose a potential catalytic mechanism for NirE in which the methyl transfer reaction is initiated by an arginine catalyzed proton abstraction from the C-20 position of the substrate. PMID:21632530
DOE Office of Scientific and Technical Information (OSTI.GOV)
Inaoka, Daniel Ken; Takashima, Eizo; Osanai, Arihiro
2005-10-01
The Trypanosoma cruzi dihydroorotate dehydrogenase, a key enzyme in pyrimidine de novo biosynthesis and redox homeostasis, was crystallized in complex with its first reaction product, orotate. Dihydroorotate dehydrogenase (DHOD) catalyzes the oxidation of dihydroorotate to orotate, the fourth step and the only redox reaction in the de novo biosynthesis of pyrimidine. DHOD from Trypanosoma cruzi (TcDHOD) has been expressed as a recombinant protein in Escherichia coli and purified to homogeneity. Crystals of the TcDHOD–orotate complex were grown at 277 K by the sitting-drop vapour-diffusion technique using polyethylene glycol 3350 as a precipitant. The crystals diffract to better than 1.8 Åmore » resolution using synchrotron radiation (λ = 0.900 Å). X-ray diffraction data were collected at 100 K and processed to 1.9 Å resolution with 98.2% completeness and an overall R{sub merge} of 7.8%. The TcDHOD crystals belong to the orthorhombic space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 67.87, b = 71.89, c = 123.27 Å. The presence of two molecules in the asymmetric unit (2 × 34 kDa) gives a crystal volume per protein weight (V{sub M}) of 2.2 Å{sup 3} Da{sup −1} and a solvent content of 44%.« less
The SUFBC2 D complex is required for the biogenesis of all major classes of plastid Fe-S proteins.
Hu, Xueyun; Kato, Yukako; Sumida, Akihiro; Tanaka, Ayumi; Tanaka, Ryouichi
2017-04-01
Iron-sulfur (Fe-S) proteins play crucial roles in plastids, participating in photosynthesis and other metabolic pathways. Fe-S clusters are thought to be assembled on a scaffold complex composed of SUFB, SUFC and SUFD proteins. However, several additional proteins provide putative scaffold functions in plastids, and, therefore, the contribution of SUFB, C and D proteins to overall Fe-S assembly still remains unclear. In order to gain insights regarding Fe-S cluster biosynthesis in plastids, we analyzed the complex composed of SUFB, C and D in Arabidopsis by blue native-polyacrylamide gel electrophoresis. Using this approach, a major complex of 170 kDa containing all subunits was detected, indicating that these proteins constitute a SUFBC 2 D complex similar to their well characterized bacterial counterparts. The functional effects of SUFB, SUFC or SUFD depletion were analyzed using an inducible RNAi silencing system to specifically target the aforementioned components; resulting in a decrease of various plastidic Fe-S proteins including the PsaA/B and PsaC subunits of photosystem I, ferredoxin and glutamine oxoglutarate aminotransferase. In contrast, the knockout of potential Fe-S scaffold proteins, NFU2 and HCF101, resulted in a specific decrease in the PsaA/B and PsaC levels. These results indicate that the functions of SUFB, SUFC and SUFD for Fe-S cluster biosynthesis cannot be replaced by other scaffold proteins and that SUFBC 2 D, NFU2 and HCF101 are involved in the same pathway for the biogenesis of PSI. Taken together, our results provide in vivo evidence supporting the hypothesis that SUFBC 2 D is the major, and possibly sole scaffold in plastids. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.
Dacquay, Louis; Flint, Annika; Butcher, James; Salem, Danny; Kennedy, Michael; Kaern, Mads; Stintzi, Alain; Baetz, Kristin
2017-06-07
Actively proliferating cells constantly monitor and readjust their metabolic pathways to ensure the replenishment of phospholipids necessary for membrane biogenesis and intracellular trafficking. In Saccharomyces cerevisiae , multiple studies have suggested that the lysine acetyltransferase complex NuA4 plays a role in phospholipid homeostasis. For one, NuA4 mutants induce the expression of the inositol-3-phosphate synthase gene, INO1 , which leads to excessive accumulation of inositol, a key metabolite used for phospholipid biosynthesis. Additionally, NuA4 mutants also display negative genetic interactions with sec14-1 ts , a mutant of a lipid-binding gene responsible for phospholipid remodeling of the Golgi. Here, using a combination of genetics and transcriptional profiling, we explore the connections between NuA4, inositol, and Sec14 Surprisingly, we found that NuA4 mutants did not suppress but rather exacerbated the growth defects of sec14-1 ts under inositol-depleted conditions. Transcriptome studies reveal that while loss of the NuA4 subunit EAF1 in sec14-1 ts does derepress INO1 expression, it does not derepress all inositol/choline-responsive phospholipid genes, suggesting that the impact of Eaf1 on phospholipid homeostasis extends beyond inositol biosynthesis. In fact, we find that NuA4 mutants have impaired lipid droplet levels and through genetic and chemical approaches, we determine that the genetic interaction between sec14-1 ts and NuA4 mutants potentially reflects a role for NuA4 in fatty acid biosynthesis. Altogether, our work identifies a new role for NuA4 in phospholipid homeostasis. Copyright © 2017 Dacquay et al.
Li, Yueqing; Shan, Xiaotong; Gao, Ruifang; Yang, Song; Wang, Shucai; Gao, Xiang; Wang, Li
2016-01-01
The MBW complex, comprised by R2R3-MYB, basic helix-loop-helix (bHLH) and WD40, is a single regulatory protein complex that drives the evolution of multiple traits such as flavonoid biosynthesis and epidermal cell differentiation in plants. In this study, two IIIf Clade-bHLH regulator genes, FhGL3L and FhTT8L, were isolated and functionally characterized from Freesia hybrida. Different spatio-temporal transcription patterns were observed showing diverse correlation with anthocyanin and proanthocyanidin accumulation. When overexpressed in Arabidopsis, FhGL3L could enhance the anthocyanin accumulation through up-regulating endogenous regulators and late structural genes. Unexpectedly, trichome formation was inhibited associating with the down-regulation of AtGL2. Comparably, only the accumulation of anthocyanins and proanthocyanidins was strengthened in FhTT8L transgenic lines. Furthermore, transient expression assays demonstrated that FhGL3L interacted with AtPAP1, AtTT2 and AtGL1, while FhTT8L only showed interaction with AtPAP1 and AtTT2. In addition, similar activation of the AtDFR promoter was found between AtPAP1-FhGL3L/FhTT8L and AtPAP1- AtGL3/AtTT8 combinations. When FhGL3L was fused with a strong activation domain VP16, it could activate the AtGL2 promoter when co-transfected with AtGL1. Therefore, it can be concluded that the functionality of bHLH factors may have diverged, and a sophisticated interaction and hierarchical network might exist in the regulation of flavonoid biosynthesis and trichome formation. PMID:27465838
Li, Yueqing; Shan, Xiaotong; Gao, Ruifang; Yang, Song; Wang, Shucai; Gao, Xiang; Wang, Li
2016-07-28
The MBW complex, comprised by R2R3-MYB, basic helix-loop-helix (bHLH) and WD40, is a single regulatory protein complex that drives the evolution of multiple traits such as flavonoid biosynthesis and epidermal cell differentiation in plants. In this study, two IIIf Clade-bHLH regulator genes, FhGL3L and FhTT8L, were isolated and functionally characterized from Freesia hybrida. Different spatio-temporal transcription patterns were observed showing diverse correlation with anthocyanin and proanthocyanidin accumulation. When overexpressed in Arabidopsis, FhGL3L could enhance the anthocyanin accumulation through up-regulating endogenous regulators and late structural genes. Unexpectedly, trichome formation was inhibited associating with the down-regulation of AtGL2. Comparably, only the accumulation of anthocyanins and proanthocyanidins was strengthened in FhTT8L transgenic lines. Furthermore, transient expression assays demonstrated that FhGL3L interacted with AtPAP1, AtTT2 and AtGL1, while FhTT8L only showed interaction with AtPAP1 and AtTT2. In addition, similar activation of the AtDFR promoter was found between AtPAP1-FhGL3L/FhTT8L and AtPAP1- AtGL3/AtTT8 combinations. When FhGL3L was fused with a strong activation domain VP16, it could activate the AtGL2 promoter when co-transfected with AtGL1. Therefore, it can be concluded that the functionality of bHLH factors may have diverged, and a sophisticated interaction and hierarchical network might exist in the regulation of flavonoid biosynthesis and trichome formation.
Rothbart, Maxi; Herbst, Josephine; Wittmann, Daniel; Gruhl, Kirsten
2017-01-01
The LIL3 protein of Arabidopsis (Arabidopsis thaliana) belongs to the light-harvesting complex (LHC) protein family, which also includes the light-harvesting chlorophyll-binding proteins of photosystems I and II, the early-light-inducible proteins, PsbS involved in nonphotochemical quenching, and the one-helix proteins and their cyanobacterial homologs designated high-light-inducible proteins. Each member of this family is characterized by one or two LHC transmembrane domains (referred to as the LHC motif) to which potential functions such as chlorophyll binding, protein interaction, and integration of interacting partners into the plastid membranes have been attributed. Initially, LIL3 was shown to interact with geranylgeranyl reductase (CHLP), an enzyme of terpene biosynthesis that supplies the hydrocarbon chain for chlorophyll and tocopherol. Here, we show another function of LIL3 for the stability of protochlorophyllide oxidoreductase (POR). Multiple protein-protein interaction analyses suggest the direct physical interaction of LIL3 with POR but not with chlorophyll synthase. Consistently, LIL3-deficient plants exhibit substantial loss of POR as well as CHLP, which is not due to defective transcription of the POR and CHLP genes but to the posttranslational modification of their protein products. Interestingly, in vitro biochemical analyses provide novel evidence that LIL3 shows high binding affinity to protochlorophyllide, the substrate of POR. Taken together, this study suggests a critical role for LIL3 in the organization of later steps in chlorophyll biosynthesis. We suggest that LIL3 associates with POR and CHLP and thus contributes to the supply of the two metabolites, chlorophyllide and phytyl pyrophosphate, required for the final step in chlorophyll a synthesis. PMID:28432258
He, Cuiwen H.; Black, Dylan S.; Allan, Christopher M.; Meunier, Brigitte; Rahman, Shamima; Clarke, Catherine F.
2017-01-01
Coq9 is required for the stability of a mitochondrial multi-subunit complex, termed the CoQ-synthome, and the deamination step of Q intermediates that derive from para-aminobenzoic acid (pABA) in yeast. In human, mutations in the COQ9 gene cause neonatal-onset primary Q10 deficiency. In this study, we determined whether expression of human COQ9 could complement yeast coq9 point or null mutants. We found that expression of human COQ9 rescues the growth of the temperature-sensitive yeast mutant, coq9-ts19, on a non-fermentable carbon source and increases the content of Q6, by enhancing Q biosynthesis from 4-hydroxybenzoic acid (4HB). To study the mechanism for the rescue by human COQ9, we determined the steady-state levels of yeast Coq polypeptides in the mitochondria of the temperature-sensitive yeast coq9 mutant expressing human COQ9. We show that the expression of human COQ9 significantly increased steady-state levels of yeast Coq4, Coq6, Coq7, and Coq9 at permissive temperature. Human COQ9 polypeptide levels persisted at non-permissive temperature. A small amount of the human COQ9 co-purified with tagged Coq6, Coq6-CNAP, indicating that human COQ9 interacts with the yeast Q-biosynthetic complex. These findings suggest that human COQ9 rescues the yeast coq9 temperature-sensitive mutant by stabilizing the CoQ-synthome and increasing Q biosynthesis from 4HB. This finding provides a powerful approach to studying the function of human COQ9 using yeast as a model. PMID:28736527
Hey, Daniel; Rothbart, Maxi; Herbst, Josephine; Wang, Peng; Müller, Jakob; Wittmann, Daniel; Gruhl, Kirsten; Grimm, Bernhard
2017-06-01
The LIL3 protein of Arabidopsis ( Arabidopsis thaliana ) belongs to the light-harvesting complex (LHC) protein family, which also includes the light-harvesting chlorophyll-binding proteins of photosystems I and II, the early-light-inducible proteins, PsbS involved in nonphotochemical quenching, and the one-helix proteins and their cyanobacterial homologs designated high-light-inducible proteins. Each member of this family is characterized by one or two LHC transmembrane domains (referred to as the LHC motif) to which potential functions such as chlorophyll binding, protein interaction, and integration of interacting partners into the plastid membranes have been attributed. Initially, LIL3 was shown to interact with geranylgeranyl reductase (CHLP), an enzyme of terpene biosynthesis that supplies the hydrocarbon chain for chlorophyll and tocopherol. Here, we show another function of LIL3 for the stability of protochlorophyllide oxidoreductase (POR). Multiple protein-protein interaction analyses suggest the direct physical interaction of LIL3 with POR but not with chlorophyll synthase. Consistently, LIL3-deficient plants exhibit substantial loss of POR as well as CHLP, which is not due to defective transcription of the POR and CHLP genes but to the posttranslational modification of their protein products. Interestingly, in vitro biochemical analyses provide novel evidence that LIL3 shows high binding affinity to protochlorophyllide, the substrate of POR. Taken together, this study suggests a critical role for LIL3 in the organization of later steps in chlorophyll biosynthesis. We suggest that LIL3 associates with POR and CHLP and thus contributes to the supply of the two metabolites, chlorophyllide and phytyl pyrophosphate, required for the final step in chlorophyll a synthesis. © 2017 American Society of Plant Biologists. All Rights Reserved.
Poupin, María J.; Greve, Macarena; Carmona, Vicente; Pinedo, Ignacio
2016-01-01
Modulation of phytohormones homeostasis is one of the proposed mechanisms to explain plant growth promotion induced by beneficial rhizobacteria (PGPR). However, there is still limited knowledge about the molecular signals and pathways underlying these beneficial interactions. Even less is known concerning the interplay between phytohormones in plants inoculated with PGPR. Auxin and ethylene are crucial hormones in the control of plant growth and development, and recent studies report an important and complex crosstalk between them in the regulation of different plant developmental processes. The objective of this work was to study the role of both hormones in the growth promotion of Arabidopsis thaliana plants induced by the well-known PGPR Burkholderia phytofirmans PsJN. For this, the spatiotemporal expression patterns of several genes related to auxin biosynthesis, perception and response and ethylene biosynthesis were studied, finding that most of these genes showed specific transcriptional regulations after inoculation in roots and shoots. PsJN-growth promotion was not observed in Arabidopsis mutants with an impaired ethylene (ein2-1) or auxin (axr1–5) signaling. Even, PsJN did not promote growth in an ethylene overproducer (eto2), indicating that a fine regulation of both hormones signaling and homeostasis is necessary to induce growth of the aerial and root tissues. Auxin polar transport is also involved in growth promotion, since PsJN did not promote primary root growth in the pin2 mutant or under chemical inhibition of transport in wild type plants. Finally, a key role for ethylene biosynthesis was found in the PsJN-mediated increase in root hair number. These results not only give new insights of PGPR regulation of plant growth but also are also useful to understand key aspects of Arabidopsis growth control. PMID:27148317
Biosynthesis and processing of a human T lymphocyte antigen.
Bergman, Y; Levy, R
1982-03-01
The biosynthesis and processing of Leu-1, a human T lymphocyte antigen, has been studied with the use of a monoclonal antibody. This molecule exists on the cell surface as a 67,000 m.w. glycoprotein. Through a series of pulse-labeling studies, in conjunction with the use of the antibiotic tunicamycin and the enzyme Endo-H, the details of glycosylation, processing, and deposition at the cell membrane were examined. The protein backbone of the molecule is 58,000 m.w. High-mannose sugars are added to asparagine residues during synthesis. Within 20 min, these high mannose sugars are converted to complex type carbohydrates, including fucose. The fully processed glycoprotein appears at the cell surface within 30 min after synthesis. This sequence of events is similar to that for other cell surface glycoproteins, including HLA and vesicular stomatitus virus glycoprotein.
Wang, Mingxuan; Chen, Haiqin; Gu, Zhennan; Zhang, Hao; Chen, Wei; Chen, Yong Q
2013-12-01
The biosynthesis of very-long-chain polyunsaturated fatty acids involves an alternating process of fatty acid desaturation and elongation catalyzed by complex series of enzymes. ω3 desaturase plays an important role in converting ω6 fatty acids into ω3 fatty acids. Genes for this desaturase have been identified and characterized in a wide range of microorganisms, including cyanobacteria, yeasts, molds, and microalgae. Like all fatty acid desaturases, ω3 desaturase is structurally characterized by the presence of three highly conserved histidine-rich motifs; however, unlike some desaturases, it lacks a cytochrome b5-like domain. Understanding the structure, function, and evolution of ω3 desaturases, particularly their substrate specificities in the biosynthesis of very-long-chain polyunsaturated fatty acids, lays the foundation for potential production of various ω3 fatty acids in transgenic microorganisms.
Cao, Hongnan; Tan, Kemin; Wang, Fengbin; ...
2016-04-29
CalE6 from Micromonospora echinospora is a (pyridoxal 50 phosphate) PLP-dependent methionine γ-lyase involved in the biosynthesis of calicheamicins. Here, we report the crystal structure of a CalE6 2-(N-morpholino)ethanesulfonic acid complex showing ligand-induced rotation of Tyr100, which stacks with PLP, resembling the corresponding tyrosine rotation of true catalytic intermediates of CalE6 homologs. Elastic network modeling and crystallographic ensemble refinement reveal mobility of the N-terminal loop, which involves both tetrameric assembly and PLP binding. Modeling and comparative structural analysis of PLP-dependent enzymes involved in Cys/Met metabolism shine light on the functional implications of the intrinsic dynamic properties of CalE6 in catalysis andmore » holoenzyme maturation.« less
Prabhu, V; Chatson, K B; Abrams, G D; King, J
1996-01-01
In C3 plants, serine synthesis is associated with photorespiratory glycine metabolism involving the tetrahydrofolate (THF)-dependent activities of the glycine decarboxylase complex (GDC) and serine hydroxymethyl transferase (SHMT). Alternatively, THF-dependent serine synthesis can occur via the C1-THF synthase/SHMT pathway. We used 13C nuclear magnetic resonance to examine serine biosynthesis by these two pathways in Arabidopsis thaliana (L.) Heynh. Columbia wild type. We confirmed the tight coupling of the GDC/ SHMT system and observed directly in a higher plant the flux of formate through the C1-THF synthase/SHMT system. The accumulation of 13C-enriched serine over 24 h from the GDC/SHMT activities was 4-fold greater than that from C1-THF synthase/SHMT activities. Our experiments strongly suggest that the two pathways operate independently in Arabidopsis. Plants exposed to methotrexate and sulfanilamide, powerful inhibitors of THF biosynthesis, reduced serine synthesis by both pathways. The results suggest that continuous supply of THF is essential to maintain high rates of serine metabolism. Nuclear magnetic resonance is a powerful tool for the examination of THF-mediated metabolism in its natural cellular environment. PMID:8819325
Temple, Henry; Saez-Aguayo, Susana; Reyes, Francisca C; Orellana, Ariel
2016-09-01
The cell wall is a complex extracellular matrix composed primarily of polysaccharides. Noncellulosic polysaccharides, glycoproteins and proteoglycans are synthesized in the Golgi apparatus by glycosyltransferases (GTs), which use nucleotide sugars as donors to glycosylate nascent glycan and glycoprotein acceptors that are subsequently exported to the extracellular space. Many nucleotide sugars are synthesized in the cytosol, leading to a topological issue because the active sites of most GTs are located in the Golgi lumen. Nucleotide sugar transporters (NSTs) overcome this problem by translocating nucleoside diphosphate sugars from the cytosol into the lumen of the organelle. The structures of the cell wall components synthesized in the Golgi are diverse and complex; therefore, transporter activities are necessary so that the nucleotide sugars can provide substrates for the GTs. In this review, we describe the topology of reactions involved in polysaccharide biosynthesis in the Golgi and focus on the roles of NSTs as well as their impacts on cell wall structure when they are altered. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Effector role reversal during evolution: the case of frataxin in Fe-S cluster biosynthesis†
Bridwell-Rabb, Jennifer; Iannuzzi, Clara; Pastore, Annalisa; Barondeau, David P.
2012-01-01
Human frataxin (FXN) has been intensively studied since the discovery that the FXN gene is associated with the neurodegenerative disease Friedreich’s ataxia. Human FXN is a component of the NFS1-ISD11-ISCU2-FXN (SDUF) core Fe-S assembly complex and activates the cysteine desulfurase and Fe-S cluster biosynthesis reactions. In contrast, the Escherichia coli FXN homolog CyaY inhibits Fe-S cluster biosynthesis. To resolve this discrepancy, enzyme kinetic experiments were performed for the human and E. coli systems in which analogous cysteine desulfurase, Fe-S assembly scaffold, and frataxin components were interchanged. Surprisingly, our results reveal that activation or inhibition by the frataxin homolog is determined by which cysteine desulfurase is present and not by the identity of the frataxin homolog. These data are consistent with a model in which the frataxin-less Fe-S assembly complex exists as a mixture of functional and nonfunctional states, which are stabilized by binding of frataxin homologs. Intriguingly, this appears to be an unusual example in which modifications to an enzyme during evolution inverts or reverses the mode of control imparted by a regulatory molecule. PMID:22352884
Toume, Moeko; Tani, Motohiro
2014-09-01
Syringomycin E is a cyclic lipodepsipeptide produced by strains of the plant bacterium Pseudomonas syringae pv. syringae. Genetic studies involving the yeast Saccharomyces cerevisiae have revealed that complex sphingolipids play important roles in the action of syringomycin E. Here, we found a novel mutation that confers resistance to syringomycin E on yeast; that is, a deletion mutant of ORM1 and ORM2, which encode negative regulators of serine palmitoyltransferase catalyzing the initial step of sphingolipid biosynthesis, exhibited resistance to syringomycin E. On the contrary, overexpression of Orm2 resulted in high sensitivity to the toxin. Moreover, overexpression of Lcb1 and Lcb2, catalytic subunits of serine palmitoyltransferase, causes resistance to the toxin, whereas partial repression of expression of Lcb1 had the opposite effect. Partial reduction of complex sphingolipids by repression of expression of Aur1, an inositol phosphorylceramide synthase, also resulted in high sensitivity to the toxin. These results suggested that an increase in sphingolipid biosynthesis caused by a change in the activity of serine palmitoyltransferase causes resistance to syringomycin E. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.
Cryptic Production of trans-3-Hydroxyproline in Echinocandin B Biosynthesis.
Mattay, Johanna; Houwaart, Stefanie; Hüttel, Wolfgang
2018-04-01
Echinocandins are antifungal nonribosomal hexapeptides produced by fungi. Two of the amino acids are hydroxy-l-prolines: trans -4-hydroxy-l-proline and, in most echinocandin structures, ( trans -2,3)-3-hydroxy-( trans -2,4)-4-methyl-l-proline. In the case of echinocandin biosynthesis by Glarea lozoyensis , both amino acids are found in pneumocandin A 0 , while in pneumocandin B 0 the latter residue is replaced by trans -3-hydroxy-l-proline (3-Hyp). We have recently reported that all three amino acids are generated by the 2-oxoglutarate-dependent proline hydroxylase GloF. In echinocandin B biosynthesis by Aspergillus species, 3-Hyp derivatives have not been reported. Here we describe the heterologous production and kinetic characterization of HtyE, the 2-oxoglutarate-dependent proline hydroxylase from the echinocandin B biosynthetic cluster in Aspergillus pachycristatus Surprisingly, l-proline hydroxylation with HtyE resulted in an even higher proportion (∼30%) of 3-Hyp than that with GloF. This suggests that the selectivity for methylated 3-Hyp in echinocandin B biosynthesis is due solely to a substrate-specific adenylation domain of the nonribosomal peptide synthetase. Moreover, we observed that one product of HtyE catalysis, 3-hydroxy-4-methyl-l-proline, is slowly further oxidized at the methyl group, giving 3-hydroxy-4-hydroxymethyl-l-proline, upon prolonged incubation with HtyE. This dihydroxylated amino acid has been reported as a building block of cryptocandin, an echinocandin produced by Cryptosporiopsis IMPORTANCE Secondary metabolites from bacteria and fungi are often produced by sets of biosynthetic enzymes encoded in distinct gene clusters. Usually, each enzyme catalyzes one biosynthetic step, but multiple reactions are also possible. Pneumocandins A 0 and B 0 are produced by the fungus Glarea lozoyensis They belong to the echinocandin family, a group of nonribosomal cyclic lipopeptides that exhibit a strong antifungal activity. Chemical derivatives are important drugs for the treatment of systemic fungal infections. We have recently shown that in the biosynthesis of pneumocandins A 0 and B 0 , three hydroxyproline building blocks are provided by one proline hydroxylase. Here we demonstrate that the proline hydroxylase from echinocandin B biosynthesis in Aspergillus pachycristatus produces the same hydroxyprolines, with an increased proportion of trans -3-hydroxyproline. However, echinocandin B biosynthesis does not require trans -3-hydroxyproline; its formation remains cryptic. While one can only speculate on the evolutionary background of this unexpected finding, proline hydroxylation in G. lozoyensis and A. pachycristatus provides an unusual insight into peptide antibiotic biosynthesis-namely, the complex interplay between the selectivity of a hydroxylase and the substrate specificity of a nonribosomal peptide synthetase. Copyright © 2018 American Society for Microbiology.
Accumulation of anthocyanins in tomato skin extends shelf life.
Bassolino, Laura; Zhang, Yang; Schoonbeek, Henk-Jan; Kiferle, Claudia; Perata, Pierdomenico; Martin, Cathie
2013-11-01
Shelf life is one of the most important traits for the tomato (Solanum lycopersicum) industry. Two key factors, post-harvest over-ripening and susceptibility to post-harvest pathogen infection, determine tomato shelf life. Anthocyanins accumulate in the skin of Aft/Aft atv/atv tomatoes, the result of introgressing alleles affecting anthocyanin biosynthesis in fruit from two wild relatives of tomato, which results in extended fruit shelf life. Compared with ordinary, anthocyanin-less tomatoes, the fruits of Aft/Aft atv/atv keep longer during storage and are less susceptible to Botrytis cinerea, a major tomato pathogen, post-harvest. Using genetically modified tomatoes over-producing anthocyanins, we confirmed that skin-specific accumulation of anthocyanins in tomato is sufficient to reduce the susceptibility of fruit to Botrytis cinerea. Our data indicate that accumulation of anthocyanins in tomato fruit, achieved either by traditional breeding or genetic engineering can be an effective way to extend tomato shelf life. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.
Hao, Suxiao; Ma, Yiyi; Zhao, Shuang; Ji, Qianlong; Zhang, Kezhong; Yang, Mingfeng; Yao, Yuncong
2017-01-01
Cuticular waxes of plant and organ surfaces play an important role in protecting plants from biotic and abiotic stress and extending the freshness, storage time and shelf life in the post-harvest agricultural products. WRI1, a transcription factor of AP2/SHEN families, had been found to trigger the related genes taking part in the biosynthesis of seed oil in many plants. But whether WRI1 is involved in the biosynthesis of the cuticular waxes on the Malus fruits surface has been unclear. We investigated the changes of wax composition and structure, the related genes and WRI1 expression on Malus asiatica Nakai and sieversii fruits with the low temperature treatments, found that low temperature induced the up-regulated expression of McWRI1, which promoted gene expression of McKCS, McLACs and McWAX in very-long-chain fatty acid biosynthesis pathway, resulting in the accumulation of alkanes component and alteration of wax structure on the fruit surface. Corresponding results were verified in McWRI1 silenced by VIGS, and WRI1 silenced down-regulated the related genes on two kinds of fruits, it caused the diversity alteration in content of some alkanes, fatty acid and ester component in two kinds of fruits. We further conducted Y1H assay to find that McWRI1 transcription factor activated the promoter of McKCS, McLAC and McWAX to regulate their expression. These results demonstrated that McWRI1 is involved in regulating the genes related synthesis of very long chain fatty acid on surface of apple fruits in storage process, providing a highlight for improvement of the modified atmosphere storage of apple fruits.
Ji, Qianlong; Zhang, Kezhong; Yang, Mingfeng
2017-01-01
Cuticular waxes of plant and organ surfaces play an important role in protecting plants from biotic and abiotic stress and extending the freshness, storage time and shelf life in the post-harvest agricultural products. WRI1, a transcription factor of AP2/SHEN families, had been found to trigger the related genes taking part in the biosynthesis of seed oil in many plants. But whether WRI1 is involved in the biosynthesis of the cuticular waxes on the Malus fruits surface has been unclear. We investigated the changes of wax composition and structure, the related genes and WRI1 expression on Malus asiatica Nakai and sieversii fruits with the low temperature treatments, found that low temperature induced the up-regulated expression of McWRI1, which promoted gene expression of McKCS, McLACs and McWAX in very-long-chain fatty acid biosynthesis pathway, resulting in the accumulation of alkanes component and alteration of wax structure on the fruit surface. Corresponding results were verified in McWRI1 silenced by VIGS, and WRI1 silenced down-regulated the related genes on two kinds of fruits, it caused the diversity alteration in content of some alkanes, fatty acid and ester component in two kinds of fruits. We further conducted Y1H assay to find that McWRI1 transcription factor activated the promoter of McKCS, McLAC and McWAX to regulate their expression. These results demonstrated that McWRI1 is involved in regulating the genes related synthesis of very long chain fatty acid on surface of apple fruits in storage process, providing a highlight for improvement of the modified atmosphere storage of apple fruits. PMID:29073205
Genome information of Methylobacterium oryzae, a plant-probiotic methylotroph in the phyllosphere.
Kwak, Min-Jung; Jeong, Haeyoung; Madhaiyan, Munusamy; Lee, Yi; Sa, Tong-Min; Oh, Tae Kwang; Kim, Jihyun F
2014-01-01
Pink-pigmented facultative methylotrophs in the Rhizobiales are widespread in the environment, and many Methylobacterium species associated with plants produce plant growth-promoting substances. To gain insights into the life style at the phyllosphere and the genetic bases of plant growth promotion, we determined and analyzed the complete genome sequence of Methylobacterium oryzae CBMB20T, a strain isolated from rice stem. The genome consists of a 6.29-Mb chromosome and four plasmids, designated as pMOC1 to pMOC4. Among the 6,274 coding sequences in the chromosome, the bacterium has, besides most of the genes for the central metabolism, all of the essential genes for the assimilation and dissimilation of methanol that are either located in methylotrophy islands or dispersed. M. oryzae is equipped with several kinds of genes for adaptation to plant surfaces such as defense against UV radiation, oxidative stress, desiccation, or nutrient deficiency, as well as high proportion of genes related to motility and signaling. Moreover, it has an array of genes involved in metabolic pathways that may contribute to promotion of plant growth; they include auxin biosynthesis, cytokine biosynthesis, vitamin B12 biosynthesis, urea metabolism, biosorption of heavy metals or decrease of metal toxicity, pyrroloquinoline quinone biosynthesis, 1-aminocyclopropane-1-carboxylate deamination, phosphate solubilization, and thiosulfate oxidation. Through the genome analysis of M. oryzae, we provide information on the full gene complement of M. oryzae that resides in the aerial parts of plants and enhances plant growth. The plant-associated lifestyle of M. oryzae pertaining to methylotrophy and plant growth promotion, and its potential as a candidate for a bioinoculant targeted to the phyllosphere and focused on phytostimulation are illuminated.
Thammahong, Arsa; Puttikamonkul, Srisombat; Perfect, John R; Brennan, Richard G; Cramer, Robert A
2017-06-01
Invasive fungal infections cause significant morbidity and mortality in part due to a limited antifungal drug arsenal. One therapeutic challenge faced by clinicians is the significant host toxicity associated with antifungal drugs. Another challenge is the fungistatic mechanism of action of some drugs. Consequently, the identification of fungus-specific drug targets essential for fitness in vivo remains a significant goal of medical mycology research. The trehalose biosynthetic pathway is found in a wide variety of organisms, including human-pathogenic fungi, but not in humans. Genes encoding proteins involved in trehalose biosynthesis are mechanistically linked to the metabolism, cell wall homeostasis, stress responses, and virulence of Candida albicans , Cryptococcus neoformans , and Aspergillus fumigatus . While there are a number of pathways for trehalose production across the tree of life, the TPS/TPP (trehalose-6-phosphate synthase/trehalose-6-phosphate phosphatase) pathway is the canonical pathway found in human-pathogenic fungi. Importantly, data suggest that proteins involved in trehalose biosynthesis play other critical roles in fungal metabolism and in vivo fitness that remain to be fully elucidated. By further defining the biology and functions of trehalose and its biosynthetic pathway components in pathogenic fungi, an opportunity exists to leverage this pathway as a potent antifungal drug target. The goal of this review is to cover the known roles of this important molecule and its associated biosynthesis-encoding genes in the human-pathogenic fungi studied to date and to employ these data to critically assess the opportunities and challenges facing development of this pathway as a therapeutic target. Copyright © 2017 American Society for Microbiology.
Wu, Jiahe; Zhu, Chuanfeng; Pang, Jinhuan; Zhang, Xiangrong; Yang, Chunlin; Xia, Guixian; Tian, Yingchuan; He, Chaozu
2014-12-01
Seed germination is a key developmental process in the plant life cycle that is influenced by various environmental cues and phytohormones through gene expression and a series of metabolism pathways. In the present study, we investigated a C2C2-type finger protein, OsLOL1, which promotes gibberellin (GA) biosynthesis and affects seed germination in Oryza sativa (rice). We used OsLOL1 antisense and sense transgenic lines to explore OsLOL1 functions. Seed germination timing in antisense plants was restored to wild type when exogenous GA3 was applied. The reduced expression of the GA biosynthesis gene OsKO2 and the accumulation of ent-kaurene were observed during germination in antisense plants. Based on yeast two-hybrid and firefly luciferase complementation analyses, OsLOL1 interacted with the basic leucine zipper protein OsbZIP58. The results from electrophoretic mobility shift and dual-luciferase reporter assays showed that OsbZIP58 binds the G-box cis-element of the OsKO2 promoter and activates LUC reporter gene expression, and that interaction between OsLOL1 and OsbZIP58 activates OsKO2 gene expression. In addition, OsLOL1 decreased SOD1 gene expression and accelerated programmed cell death (PCD) in the aleurone layer of rice grains. These findings demonstrate that the interaction between OsLOL1 and OsbZIP58 influences GA biosynthesis through the activation of OsKO2 via OsbZIP58, thereby stimulating aleurone PCD and seed germination. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.
Genome Information of Methylobacterium oryzae, a Plant-Probiotic Methylotroph in the Phyllosphere
Madhaiyan, Munusamy; Lee, Yi; Sa, Tong-Min; Oh, Tae Kwang; Kim, Jihyun F.
2014-01-01
Pink-pigmented facultative methylotrophs in the Rhizobiales are widespread in the environment, and many Methylobacterium species associated with plants produce plant growth-promoting substances. To gain insights into the life style at the phyllosphere and the genetic bases of plant growth promotion, we determined and analyzed the complete genome sequence of Methylobacterium oryzae CBMB20T, a strain isolated from rice stem. The genome consists of a 6.29-Mb chromosome and four plasmids, designated as pMOC1 to pMOC4. Among the 6,274 coding sequences in the chromosome, the bacterium has, besides most of the genes for the central metabolism, all of the essential genes for the assimilation and dissimilation of methanol that are either located in methylotrophy islands or dispersed. M. oryzae is equipped with several kinds of genes for adaptation to plant surfaces such as defense against UV radiation, oxidative stress, desiccation, or nutrient deficiency, as well as high proportion of genes related to motility and signaling. Moreover, it has an array of genes involved in metabolic pathways that may contribute to promotion of plant growth; they include auxin biosynthesis, cytokine biosynthesis, vitamin B12 biosynthesis, urea metabolism, biosorption of heavy metals or decrease of metal toxicity, pyrroloquinoline quinone biosynthesis, 1-aminocyclopropane-1-carboxylate deamination, phosphate solubilization, and thiosulfate oxidation. Through the genome analysis of M. oryzae, we provide information on the full gene complement of M. oryzae that resides in the aerial parts of plants and enhances plant growth. The plant-associated lifestyle of M. oryzae pertaining to methylotrophy and plant growth promotion, and its potential as a candidate for a bioinoculant targeted to the phyllosphere and focused on phytostimulation are illuminated. PMID:25211235
Singh, Kuljit; Singh, Krishn Pratap; Equbal, Asif; Suman, Shashi S; Zaidi, Amir; Garg, Gaurav; Pandey, Krishna; Das, Pradeep; Ali, Vahab
2016-12-01
Leishmania possess a unique trypanothione redox metabolism with undebated roles in protection from oxidative damage and drug resistance. The biosynthesis of trypanothione depends on l-cysteine bioavailability which is regulated by cysteine biosynthesis pathway. The de novo cysteine biosynthesis pathway is comprised of serine O-acetyltransferase (SAT) and cysteine synthase (CS) enzymes which sequentially mediate two consecutive steps of cysteine biosynthesis, and is absent in mammalian host. However, despite the apparent dependency of redox metabolism on cysteine biosynthesis pathway, the role of SAT and CS in redox homeostasis has been unexplored in Leishmania parasites. Herein, we have characterized CS and SAT to investigate their interaction and relative abundance of these proteins in promastigote vs. amastigote growth stages of L. donovani. CS and SAT genes of L. donovani (LdCS and LdSAT) were cloned, expressed, and fusion proteins purified to homogeneity with affinity column chromatography. Purified LdCS contains PLP as cofactor and showed optimum enzymatic activity at pH 7.5. Enzyme kinetics showed that LdCS catalyses the synthesis of cysteine using O-acetylserine and sulfide with a K m of 15.86 mM and 0.17 mM, respectively. Digitonin fractionation and indirect immunofluorescence microscopy showed that LdCS and LdSAT are localized in the cytoplasm of promastigotes. Size exclusion chromatography, co-purification, pull down and immuno-precipitation assays demonstrated a stable complex formation between LdCS and LdSAT proteins. Furthermore, LdCS and LdSAT proteins expression/activity was upregulated in amastigote growth stage of the parasite. Thus, the stage specific differential expression of LdCS and LdSAT suggests that it may have a role in the redox homeostasis of Leishmania. Copyright © 2016 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.
Xiao, Qianlin; Wang, Yayun; Du, Jia; Li, Hui; Wei, Bin; Wang, Yongbin; Li, Yangping; Yu, Guowu; Liu, Hanmei; Zhang, Junjie; Liu, Yinghong; Hu, Yufeng; Huang, Yubi
2017-09-01
The biosynthesis of starch is a complex process that depends on the regulatory mechanisms of different functional enzymes, and transcriptional regulation plays an important role in this process. Brittle 1, encoded by BT1, is a transporter of adenosine diphosphate-glucose, which plays an important role in the biosynthesis of starch in the endosperm of cereals. Here, we report that the promoter (pZmBT1) of the maize BT1 homolog, ZmBT1, contains an MBSI site (TAACTG), which is important for its activity. Moreover, high expression level of the gene for ZmMYB14 transcription factor was observed in the maize endosperm; its expression pattern was similar to those of the starch synthesis-related genes in maize seeds. ZmMYB14 is a typical 2R-MYB transcription factor localized in the nucleus and possessed transcriptional activation activity. ZmMYB14 could bind to the region of pZmBT1 from -280 to -151 bp and promote its activity through the TAACTG site. It was also observed to promote the activity of pZmSh2, pZmBt2, pZmGBSSI, pZmSSI, and pZmSBE1 in the maize endosperm in transient gene overexpression assays. Furthermore, ZmMYB14 was also shown to bind directly to the promoters of six starch-synthesizing genes, ZmGBSSI, ZmSSI, ZmSSIIa, ZmSBE1, ZmISA1, and ZmISA2 in yeast. These findings indicate that ZmMYB14 functions as a key regulator of ZmBT1 and is closely related to the biosynthesis of starch. Our results provide crucial information related to the regulation of starch biosynthesis in maize and would be helpful in devising strategies for modulating starch production in maize endosperm. © 2017 Federation of European Biochemical Societies.
Ben-Simhon, Zohar; Judeinstein, Sylvie; Nadler-Hassar, Talia; Trainin, Taly; Bar-Ya'akov, Irit; Borochov-Neori, Hamutal; Holland, Doron
2011-11-01
Anthocyanins are the major pigments responsible for the pomegranate (Punica granatum L.) fruit skin color. The high variability in fruit external color in pomegranate cultivars reflects variations in anthocyanin composition. To identify genes involved in the regulation of anthocyanin biosynthesis pathway in the pomegranate fruit skin we have isolated, expressed and characterized the pomegranate homologue of the Arabidopsis thaliana TRANSPARENT TESTA GLABRA1 (TTG1), encoding a WD40-repeat protein. The TTG1 protein is a regulator of anthocyanins and proanthocyanidins (PAs) biosynthesis in Arabidopsis, and acts by the formation of a transcriptional regulatory complex with two other regulatory proteins: bHLH and MYB. Our results reveal that the pomegranate gene, designated PgWD40, recovered the anthocyanin, PAs, trichome and seed coat mucilage phenotype in Arabidopsis ttg1 mutant. PgWD40 expression and anthocyanin composition in the skin were analyzed during pomegranate fruit development, in two accessions that differ in skin color intensity and timing of appearance. The results indicate high positive correlation between the total cyanidin derivatives quantity (red pigments) and the expression level of PgWD40. Furthermore, strong correlation was found between the steady state levels of PgWD40 transcripts and the transcripts of pomegranate homologues of the structural genes PgDFR and PgLDOX. PgWD40, PgDFR and PgLDOX expression also correlated with the expression of pomegranate homologues of the regulatory genes PgAn1 (bHLH) and PgAn2 (MYB). On the basis of our results we propose that PgWD40 is involved in the regulation of anthocyanin biosynthesis during pomegranate fruit development and that expression of PgWD40, PgAn1 and PgAn2 in the pomegranate fruit skin is required to regulate the expression of downstream structural genes involved in the anthocyanin biosynthesis.
Greif, Gonzalo; Rodriguez, Matias; Alvarez-Valin, Fernando
2017-01-01
American trypanosomiasis is a chronic and endemic disease which affects millions of people. Trypanosoma cruzi, its causative agent, has a life cycle that involves complex morphological and functional transitions, as well as a variety of environmental conditions. This requires a tight regulation of gene expression, which is achieved mainly by post-transcriptional regulation. In this work we conducted an RNAseq analysis of the three major life cycle stages of T. cruzi: amastigotes, epimastigotes and trypomastigotes. This analysis allowed us to delineate specific transcriptomic profiling for each stage, and also to identify those biological processes of major relevance in each state. Stage specific expression profiling evidenced the plasticity of T. cruzi to adapt quickly to different conditions, with particular focus on membrane remodeling and metabolic shifts along the life cycle. Epimastigotes, which replicate in the gut of insect vectors, showed higher expression of genes related to energy metabolism, mainly Krebs cycle, respiratory chain and oxidative phosphorylation related genes, and anabolism related genes associated to nucleotide and steroid biosynthesis; also, a general down-regulation of surface glycoprotein coding genes was seen at this stage. Trypomastigotes, living extracellularly in the bloodstream of mammals, express a plethora of surface proteins and signaling genes involved in invasion and evasion of immune response. Amastigotes mostly express membrane transporters and genes involved in regulation of cell cycle, and also express a specific subset of surface glycoprotein coding genes. In addition, these results allowed us to improve the annotation of the Dm28c genome, identifying new ORFs and set the stage for construction of networks of co-expression, which can give clues about coded proteins of unknown functions. PMID:28286708
Hu, Qian-Nan; Deng, Zhe; Hu, Huanan; Cao, Dong-Sheng; Liang, Yi-Zeng
2011-09-01
Biochemical reactions play a key role to help sustain life and allow cells to grow. RxnFinder was developed to search biochemical reactions from KEGG reaction database using three search criteria: molecular structures, molecular fragments and reaction similarity. RxnFinder is helpful to get reference reactions for biosynthesis and xenobiotics metabolism. RxnFinder is freely available via: http://sdd.whu.edu.cn/rxnfinder. qnhu@whu.edu.cn.
Berg, Matthew D; Genereaux, Julie; Karagiannis, Jim; Brandl, Christopher J
2018-05-31
Tra1 is an essential component of the SAGA/SLIK and NuA4 complexes in S. cerevisiae , recruiting these co-activator complexes to specific promoters. As a PIKK family member, Tra1 is characterized by a C-terminal phosphoinositide 3-kinase (PI3K) domain. Unlike other PIKK family members ( e.g. , Tor1, Tor2, Mec1, Tel1), Tra1 has no demonstrable kinase activity. We identified three conserved arginine residues in Tra1 that reside proximal or within the cleft between the N- and C-terminal subdomains of the PI3K domain. To establish a function for Tra1's PI3K domain and specifically the cleft region, we characterized a tra1 allele where these three arginine residues are mutated to glutamine. The half-life of the Tra1[Formula: see text] protein is reduced but its steady state level is maintained at near wild-type levels by a transcriptional feedback mechanism. The tra1 [Formula: see text] allele results in slow growth under stress and alters the expression of genes also regulated by other components of the SAGA complex. Tra1[Formula: see text] is less efficiently transported to the nucleus than the wild-type protein. Likely related to this, Tra1[Formula: see text] associates poorly with SAGA/SLIK and NuA4. The ratio of Spt7 SLIK to Spt7 SAGA increases in the tra1 [Formula: see text] strain and truncated forms of Spt20 become apparent upon isolation of SAGA/SLIK. Intragenic suppressor mutations of tra1 [Formula: see text] map to the cleft region further emphasizing its importance. We propose that the PI3K domain of Tra1 is directly or indirectly important for incorporating Tra1 into SAGA and NuA4 and thus the biosynthesis and/or stability of the intact complexes. Copyright © 2018 Berg et al.
Pontier, Dominique; Albrieux, Catherine; Joyard, Jacques; Lagrange, Thierry; Block, Maryse
2007-01-01
Protoporphyrin IX is the last common intermediate between the haem and chlorophyll biosynthesis pathways. The addition of Mg directs this molecule toward chlorophyll biosynthesis. The first step downstream from the branchpoint is catalyzed by the Mg chelatase and is a highly regulated process. The corresponding product, Mg protoporphyrin IX, has been proposed to play an important role as a signaling molecule implicated in plastid-to-nucleus communication. In order to get more information on the chlorophyll biosynthesis pathway and on Mg protoporphyrin IX derivative functions, we have identified an Mg protoporphyrin IX methyltransferase (CHLM) knock-out mutant in Arabidopsis in which the mutation induces a blockage downstream from Mg protoporphyrin IX and an accumulation of this chlorophyll biosynthesis intermediate. Our results demonstrate that the CHLM gene is essential for the formation of chlorophyll and subsequently for the formation of photosystems I and II and cyt b6f complexes. Analysis of gene expression in the chlm mutant provides an independent indication that Mg protoporphyrin IX is a negative effector of nuclear photosynthetic gene expression, as previously reported. Moreover, it suggests the possible implication of Mg protoporphyrin IX methylester, the product of CHLM, in chloroplast-to-nucleus signaling. Finally, post-transcriptional up-regulation of the level of the CHLH subunit of the Mg chelatase has been detected in the chlm mutant and most likely corresponds to specific accumulation of this protein inside plastids. This result suggests that the CHLH subunit might play an important regulatory role when the chlorophyll biosynthetic pathway is disrupted at this particular step. PMID:17135235
Bunet, Robert; Riclea, Ramona; Laureti, Luisa; Hôtel, Laurence; Paris, Cédric; Girardet, Jean-Michel; Spiteller, Dieter; Dickschat, Jeroen S.; Leblond, Pierre; Aigle, Bertrand
2014-01-01
The phosphopantetheinyl transferases (PPTases) are responsible for the activation of the carrier protein domains of the polyketide synthases (PKS), non ribosomal peptide synthases (NRPS) and fatty acid synthases (FAS). The analysis of the Streptomyces ambofaciens ATCC23877 genome has revealed the presence of four putative PPTase encoding genes. One of these genes appears to be essential and is likely involved in fatty acid biosynthesis. Two other PPTase genes, samT0172 (alpN) and samL0372, are located within a type II PKS gene cluster responsible for the kinamycin production and an hybrid NRPS-PKS cluster involved in antimycin production, respectively, and their products were shown to be specifically involved in the biosynthesis of these secondary metabolites. Surprisingly, the fourth PPTase gene, which is not located within a secondary metabolite gene cluster, appears to play a pleiotropic role. Its product is likely involved in the activation of the acyl- and peptidyl-carrier protein domains within all the other PKS and NRPS complexes encoded by S. ambofaciens. Indeed, the deletion of this gene affects the production of the spiramycin and stambomycin macrolide antibiotics and of the grey spore pigment, all three being PKS-derived metabolites, as well as the production of the nonribosomally produced compounds, the hydroxamate siderophore coelichelin and the pyrrolamide antibiotic congocidine. In addition, this PPTase seems to act in concert with the product of samL0372 to activate the ACP and/or PCP domains of the antimycin biosynthesis cluster which is also responsible for the production of volatile lactones. PMID:24498152
Kang, Hong Soon; Kumar, Dhirendra; Liao, Grace; Lichti-Kaiser, Kristin; Gerrish, Kevin; Liao, Xiao-Hui; Refetoff, Samuel; Jothi, Raja; Jetten, Anton M.
2017-01-01
Deficiency in Krüppel-like zinc finger transcription factor GLI-similar 3 (GLIS3) in humans is associated with the development of congenital hypothyroidism. However, the functions of GLIS3 in the thyroid gland and the mechanism by which GLIS3 dysfunction causes hypothyroidism are unknown. In the current study, we demonstrate that GLIS3 acts downstream of thyroid-stimulating hormone (TSH) and TSH receptor (TSHR) and is indispensable for TSH/TSHR-mediated proliferation of thyroid follicular cells and biosynthesis of thyroid hormone. Using ChIP-Seq and promoter analysis, we demonstrate that GLIS3 is critical for the transcriptional activation of several genes required for thyroid hormone biosynthesis, including the iodide transporters Nis and Pds, both of which showed enhanced GLIS3 binding at their promoters. The repression of cell proliferation of GLIS3-deficient thyroid follicular cells was due to the inhibition of TSH-mediated activation of the mTOR complex 1/ribosomal protein S6 (mTORC1/RPS6) pathway as well as the reduced expression of several cell division–related genes regulated directly by GLIS3. Consequently, GLIS3 deficiency in a murine model prevented the development of goiter as well as the induction of inflammatory and fibrotic genes during chronic elevation of circulating TSH. Our study identifies GLIS3 as a key regulator of TSH/TSHR-mediated thyroid hormone biosynthesis and proliferation of thyroid follicular cells and uncovers a mechanism by which GLIS3 deficiency causes neonatal hypothyroidism and prevents goiter development. PMID:29083325
Systems Biology of Microbial Exopolysaccharides Production
Ates, Ozlem
2015-01-01
Exopolysaccharides (EPSs) produced by diverse group of microbial systems are rapidly emerging as new and industrially important biomaterials. Due to their unique and complex chemical structures and many interesting physicochemical and rheological properties with novel functionality, the microbial EPSs find wide range of commercial applications in various fields of the economy such as food, feed, packaging, chemical, textile, cosmetics and pharmaceutical industry, agriculture, and medicine. EPSs are mainly associated with high-value applications, and they have received considerable research attention over recent decades with their biocompatibility, biodegradability, and both environmental and human compatibility. However, only a few microbial EPSs have achieved to be used commercially due to their high production costs. The emerging need to overcome economic hurdles and the increasing significance of microbial EPSs in industrial and medical biotechnology call for the elucidation of the interrelations between metabolic pathways and EPS biosynthesis mechanism in order to control and hence enhance its microbial productivity. Moreover, a better understanding of biosynthesis mechanism is a significant issue for improvement of product quality and properties and also for the design of novel strains. Therefore, a systems-based approach constitutes an important step toward understanding the interplay between metabolism and EPS biosynthesis and further enhances its metabolic performance for industrial application. In this review, primarily the microbial EPSs, their biosynthesis mechanism, and important factors for their production will be discussed. After this brief introduction, recent literature on the application of omics technologies and systems biology tools for the improvement of production yields will be critically evaluated. Special focus will be given to EPSs with high market value such as xanthan, levan, pullulan, and dextran. PMID:26734603
Douris, Vassilis; Steinbach, Denise; Panteleri, Rafaela; Livadaras, Ioannis; Pickett, John Anthony; Van Leeuwen, Thomas; Nauen, Ralf; Vontas, John
2016-12-20
Despite the major role of chitin biosynthesis inhibitors such as benzoylureas (BPUs) in the control of pests in agricultural and public health for almost four decades, their molecular mode of action (MoA) has in most cases remained elusive. BPUs interfere with chitin biosynthesis and were thought to interact with sulfonylurea receptors that mediate chitin vesicle transport. Here, we uncover a mutation (I1042M) in the chitin synthase 1 (CHS1) gene of BPU-resistant Plutella xylostella at the same position as the I1017F mutation reported in spider mites that confers etoxazole resistance. Using a genome-editing CRISPR/Cas9 approach coupled with homology-directed repair (HDR) in Drosophila melanogaster, we introduced both substitutions (I1056M/F) in the corresponding fly CHS1 gene (kkv). Homozygous lines bearing either of these mutations were highly resistant to etoxazole and all tested BPUs, as well as buprofezin-an important hemipteran chitin biosynthesis inhibitor. This provides compelling evidence that BPUs, etoxazole, and buprofezin share in fact the same molecular MoA and directly interact with CHS. This finding has immediate effects on resistance management strategies of major agricultural pests but also on mosquito vectors of serious human diseases such as Dengue and Zika, as diflubenzuron, the standard BPU, is one of the few effective larvicides in use. The study elaborates on how genome editing can directly, rapidly, and convincingly elucidate the MoA of bioactive molecules, especially when target sites are complex and hard to reconstitute in vitro.
Steinbach, Denise; Panteleri, Rafaela; Livadaras, Ioannis; Van Leeuwen, Thomas; Nauen, Ralf; Vontas, John
2016-01-01
Despite the major role of chitin biosynthesis inhibitors such as benzoylureas (BPUs) in the control of pests in agricultural and public health for almost four decades, their molecular mode of action (MoA) has in most cases remained elusive. BPUs interfere with chitin biosynthesis and were thought to interact with sulfonylurea receptors that mediate chitin vesicle transport. Here, we uncover a mutation (I1042M) in the chitin synthase 1 (CHS1) gene of BPU-resistant Plutella xylostella at the same position as the I1017F mutation reported in spider mites that confers etoxazole resistance. Using a genome-editing CRISPR/Cas9 approach coupled with homology-directed repair (HDR) in Drosophila melanogaster, we introduced both substitutions (I1056M/F) in the corresponding fly CHS1 gene (kkv). Homozygous lines bearing either of these mutations were highly resistant to etoxazole and all tested BPUs, as well as buprofezin—an important hemipteran chitin biosynthesis inhibitor. This provides compelling evidence that BPUs, etoxazole, and buprofezin share in fact the same molecular MoA and directly interact with CHS. This finding has immediate effects on resistance management strategies of major agricultural pests but also on mosquito vectors of serious human diseases such as Dengue and Zika, as diflubenzuron, the standard BPU, is one of the few effective larvicides in use. The study elaborates on how genome editing can directly, rapidly, and convincingly elucidate the MoA of bioactive molecules, especially when target sites are complex and hard to reconstitute in vitro. PMID:27930336
Nguyen, Thi-Kieu-Oanh; Jamali, Arash; Lanoue, Arnaud; Gontier, Eric; Dauwe, Rebecca
2015-08-01
The tropane alkaloid spectrum in Solanaceae is highly variable within and between species. Little is known about the topology and the coordination of the biosynthetic pathways leading to the variety of tropine and pseudotropine derived esters in the alkaloid spectrum, or about the metabolic dynamics induced by tropane alkaloid biosynthesis stimulating conditions. A good understanding of the metabolism, including all ramifications, is however necessary for the development of strategies to increase the abundance of pharmacologically interesting compounds such as hyoscyamine and scopolamine. The present study explores the tropane alkaloid metabolic pathways in an untargeted approach involving a correlation-based network analysis. Using GC-MS metabolite profiling, the variation and co-variation among tropane alkaloids and primary metabolites was monitored in 60 Datura innoxia Mill. individuals, of which half were exposed to tropane alkaloid biosynthesis stimulating conditions by co-culture with Agrobacterium rhizogenes. Considerable variation was evident in the relative proportions of the tropane alkaloids. Remodeling of the tropane alkaloid spectrum under co-culture with A. rhizogenes involved a specific and strong increase of hyoscyamine production and revealed that the accumulation of hyoscyamine, 3-tigloyloxy-6,7-epoxytropane, and 3-methylbutyryloxytropane was controlled independently of the majority of tropane alkaloids. Based on correlations between metabolites, we propose a biosynthetic origin of hygrine, the order of esterification of certain di-oxygenated tropanes, and that the rate of acetoxylation contributes to control of hyoscyamine production. Overall, this study shows that the biosynthesis of tropane alkaloids may be far more complex and finely controlled than previously expected. Copyright © 2015 Elsevier Ltd. All rights reserved.
Systems Biology of Microbial Exopolysaccharides Production.
Ates, Ozlem
2015-01-01
Exopolysaccharides (EPSs) produced by diverse group of microbial systems are rapidly emerging as new and industrially important biomaterials. Due to their unique and complex chemical structures and many interesting physicochemical and rheological properties with novel functionality, the microbial EPSs find wide range of commercial applications in various fields of the economy such as food, feed, packaging, chemical, textile, cosmetics and pharmaceutical industry, agriculture, and medicine. EPSs are mainly associated with high-value applications, and they have received considerable research attention over recent decades with their biocompatibility, biodegradability, and both environmental and human compatibility. However, only a few microbial EPSs have achieved to be used commercially due to their high production costs. The emerging need to overcome economic hurdles and the increasing significance of microbial EPSs in industrial and medical biotechnology call for the elucidation of the interrelations between metabolic pathways and EPS biosynthesis mechanism in order to control and hence enhance its microbial productivity. Moreover, a better understanding of biosynthesis mechanism is a significant issue for improvement of product quality and properties and also for the design of novel strains. Therefore, a systems-based approach constitutes an important step toward understanding the interplay between metabolism and EPS biosynthesis and further enhances its metabolic performance for industrial application. In this review, primarily the microbial EPSs, their biosynthesis mechanism, and important factors for their production will be discussed. After this brief introduction, recent literature on the application of omics technologies and systems biology tools for the improvement of production yields will be critically evaluated. Special focus will be given to EPSs with high market value such as xanthan, levan, pullulan, and dextran.
González-Mellado, Damián; von Wettstein-Knowles, Penny; Garcés, Rafael; Martínez-Force, Enrique
2010-05-01
The beta-ketoacyl-acyl carrier protein synthase III (KAS III; EC 2.3.1.180) is a condensing enzyme catalyzing the initial step of fatty acid biosynthesis using acetyl-CoA as primer. To determine the mechanisms involved in the biosynthesis of fatty acids in sunflower (Helianthus annuus L.) developing seeds, a cDNA coding for HaKAS III (EF514400) was isolated, cloned and sequenced. Its protein sequence is as much as 72% identical to other KAS III-like ones such as those from Perilla frutescens, Jatropha curcas, Ricinus communis or Cuphea hookeriana. Phylogenetic study of the HaKAS III homologous proteins infers its origin from cyanobacterial ancestors. A genomic DNA gel blot analysis revealed that HaKAS III is a single copy gene. Expression levels of this gene, examined by Q-PCR, revealed higher levels in developing seeds storing oil than in leaves, stems, roots or seedling cotyledons. Heterologous expression of HaKAS III in Escherichia coli altered their fatty acid content and composition implying an interaction of HaKAS III with the bacterial FAS complex. Testing purified HaKAS III recombinant protein by adding to a reconstituted E. coli FAS system lacking condensation activity revealed a novel substrate specificity. In contrast to all hitherto characterized plant KAS IIIs, the activities of which are limited to the first cycles of intraplastidial fatty acid biosynthesis yielding C6 chains, HaKAS III participates in at least four cycles resulting in C10 chains.
Palanisamy, Satheesh Kumar; Arumugam, Velusamy; Peter, Magesh D; Sundaresan, Umamaheswari
2018-05-01
The complex nature of marine biodiversity is partially responsible for the lack of studies in Indian ascidian species, which often target a small number of novel biomolecules. We performed untargeted metabolomics using gas chromatography-mass spectrometry (GC-MS) in two invasive ascidian species to investigate the inter-specific chemical diversity of Phallusia nigra and P. arabica in search of drug-like properties and metabolic pathways. The chemical profiling of individual ascidian species was obtained using GC-MS, and the metabolites were determined by searching in NIST library and literature data. The principal component analysis of GC-MS mass spectral variables showed a clear discrimination of these two ascidian species based on the chemical composition and taxonomy. The metabolites, lipids, macrolides, and steroids contributed strongly to the discrimination of these two species. Results of this study confirmed that GC-MS-based chemical profiling could be utilized as a tool for chemotaxonomic classification of ascidian species. The extract of P. nigra showed promising anti-tumor activity against HT29 colon cancer 35 µM and MCF7-breast cancer (34.76 µM) cells compared to P. arabica . Of the more than 70 metabolites measured, 18 metabolites that mapped various pathways linked to three metabolic pathways being impacted and altered in steroid biosynthesis, primary bile acid biosynthesis, and steroid hormone biosynthesis were observed to have changed significantly ( p > 0.004, FDR < 0.01). Also, higher expression of this pathway was associated with more significant cytotoxicity in breast and colon carcinoma cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miao, Yi; Tenor, Jennifer L.; Toffaletti, Dena L.
ABSTRACT The disaccharide trehalose is critical to the survival of pathogenic fungi in their human host. Trehalose-6-phosphate synthase (Tps1) catalyzes the first step of trehalose biosynthesis in fungi. Here, we report the first structures of eukaryotic Tps1s in complex with substrates or substrate analogues. The overall structures of Tps1 fromCandida albicansandAspergillus fumigatusare essentially identical and reveal N- and C-terminal Rossmann fold domains that form the glucose-6-phosphate and UDP-glucose substrate binding sites, respectively. These Tps1 structures with substrates or substrate analogues reveal key residues involved in recognition and catalysis. Disruption of these key residues severely impaired Tps1 enzymatic activity. Subsequent cellularmore » analyses also highlight the enzymatic function of Tps1 in thermotolerance, yeast-hypha transition, and biofilm development. These results suggest that Tps1 enzymatic functionality is essential for the fungal stress response and virulence. Furthermore, structures of Tps1 in complex with the nonhydrolyzable inhibitor, validoxylamine A, visualize the transition state and support an internal return-like catalytic mechanism that is generalizable to other GT-B-fold retaining glycosyltransferases. Collectively, our results depict key Tps1-substrate interactions, unveil the enzymatic mechanism of these fungal proteins, and pave the way for high-throughput inhibitor screening buttressed and guided by the current structures and those of high-affinity ligand-Tps1 complexes. IMPORTANCEInvasive fungal diseases have emerged as major threats, resulting in more than 1.5 million deaths annually worldwide. This epidemic has been further complicated by increasing resistance to all major classes of antifungal drugs in the clinic. Trehalose biosynthesis is essential for the fungal stress response and virulence. Critically, this biosynthetic pathway is absent in mammals, and thus, the two enzymes that carry out trehalose biosynthesis, namely, trehalose-6-phosphate synthase (Tps1) and trehalose-6-phosphate phosphatase (Tps2), are prominent targets for antifungal intervention. Here, we report the first eukaryotic Tps1 structures from the pathogenic fungiCandida albicansandAspergillus fumigatusin complex with substrates, substrate analogues, and inhibitors. These structures reveal key protein-substrate interactions, providing atomic-level scaffolds for structure-guided drug design of novel antifungals that target Tps1.« less
Miao, Yi; Tenor, Jennifer L; Toffaletti, Dena L; Maskarinec, Stacey A; Liu, Jiuyu; Lee, Richard E; Perfect, John R; Brennan, Richard G
2017-07-25
The disaccharide trehalose is critical to the survival of pathogenic fungi in their human host. Trehalose-6-phosphate synthase (Tps1) catalyzes the first step of trehalose biosynthesis in fungi. Here, we report the first structures of eukaryotic Tps1s in complex with substrates or substrate analogues. The overall structures of Tps1 from Candida albicans and Aspergillus fumigatus are essentially identical and reveal N- and C-terminal Rossmann fold domains that form the glucose-6-phosphate and UDP-glucose substrate binding sites, respectively. These Tps1 structures with substrates or substrate analogues reveal key residues involved in recognition and catalysis. Disruption of these key residues severely impaired Tps1 enzymatic activity. Subsequent cellular analyses also highlight the enzymatic function of Tps1 in thermotolerance, yeast-hypha transition, and biofilm development. These results suggest that Tps1 enzymatic functionality is essential for the fungal stress response and virulence. Furthermore, structures of Tps1 in complex with the nonhydrolyzable inhibitor, validoxylamine A, visualize the transition state and support an internal return-like catalytic mechanism that is generalizable to other GT-B-fold retaining glycosyltransferases. Collectively, our results depict key Tps1-substrate interactions, unveil the enzymatic mechanism of these fungal proteins, and pave the way for high-throughput inhibitor screening buttressed and guided by the current structures and those of high-affinity ligand-Tps1 complexes. IMPORTANCE Invasive fungal diseases have emerged as major threats, resulting in more than 1.5 million deaths annually worldwide. This epidemic has been further complicated by increasing resistance to all major classes of antifungal drugs in the clinic. Trehalose biosynthesis is essential for the fungal stress response and virulence. Critically, this biosynthetic pathway is absent in mammals, and thus, the two enzymes that carry out trehalose biosynthesis, namely, trehalose-6-phosphate synthase (Tps1) and trehalose-6-phosphate phosphatase (Tps2), are prominent targets for antifungal intervention. Here, we report the first eukaryotic Tps1 structures from the pathogenic fungi Candida albicans and Aspergillus fumigatus in complex with substrates, substrate analogues, and inhibitors. These structures reveal key protein-substrate interactions, providing atomic-level scaffolds for structure-guided drug design of novel antifungals that target Tps1. Copyright © 2017 Miao et al.
The Assembly Pathway of Mitochondrial Respiratory Chain Complex I.
Guerrero-Castillo, Sergio; Baertling, Fabian; Kownatzki, Daniel; Wessels, Hans J; Arnold, Susanne; Brandt, Ulrich; Nijtmans, Leo
2017-01-10
Mitochondrial complex I is the largest integral membrane enzyme of the respiratory chain and consists of 44 different subunits encoded in the mitochondrial and nuclear genome. Its biosynthesis is a highly complicated and multifaceted process involving at least 14 additional assembly factors. How these subunits assemble into a functional complex I and where the assembly factors come into play is largely unknown. Here, we applied a dynamic complexome profiling approach to elucidate the assembly of human mitochondrial complex I and its further incorporation into respiratory chain supercomplexes. We delineate the stepwise incorporation of all but one subunit into a series of distinct assembly intermediates and their association with known and putative assembly factors, which had not been implicated in this process before. The resulting detailed and comprehensive model of complex I assembly is fully consistent with recent structural data and the remarkable modular architecture of this multiprotein complex. Copyright © 2017 Elsevier Inc. All rights reserved.
Lenz, Petra H.; Roncalli, Vittoria; Hassett, R. Patrick; Wu, Le-Shin; Cieslak, Matthew C.; Hartline, Daniel K.; Christie, Andrew E.
2014-01-01
Assessing the impact of global warming on the food web of the North Atlantic will require difficult-to-obtain physiological data on a key copepod crustacean, Calanus finmarchicus. The de novo transcriptome presented here represents a new resource for acquiring such data. It was produced from multiplexed gene libraries using RNA collected from six developmental stages: embryo, early nauplius (NI-II), late nauplius (NV-VI), early copepodite (CI-II), late copepodite (CV) and adult (CVI) female. Over 400,000,000 paired-end reads (100 base-pairs long) were sequenced on an Illumina instrument, and assembled into 206,041 contigs using Trinity software. Coverage was estimated to be at least 65%. A reference transcriptome comprising 96,090 unique components (“comps”) was annotated using Blast2GO. 40% of the comps had significant blast hits. 11% of the comps were successfully annotated with gene ontology (GO) terms. Expression of many comps was found to be near zero in one or more developmental stages suggesting that 35 to 48% of the transcriptome is “silent” at any given life stage. Transcripts involved in lipid biosynthesis pathways, critical for the C. finmarchicus life cycle, were identified and their expression pattern during development was examined. Relative expression of three transcripts suggests wax ester biosynthesis in late copepodites, but triacylglyceride biosynthesis in adult females. Two of these transcripts may be involved in the preparatory phase of diapause. A key environmental challenge for C. finmarchicus is the seasonal exposure to the dinoflagellate Alexandrium fundyense with high concentrations of saxitoxins, neurotoxins that block voltage-gated sodium channels. Multiple contigs encoding putative voltage-gated sodium channels were identified. They appeared to be the result of both alternate splicing and gene duplication. This is the first report of multiple NaV1 genes in a protostome. These data provide new insights into the transcriptome and physiology of this environmentally important zooplankter. PMID:24586345
Abscisic Acid Biosynthesis in Leaves and Roots of Xanthium strumarium.
Creelman, R A; Gage, D A; Stults, J T; Zeevaart, J A
1987-11-01
RESEARCH ON THE BIOSYNTHESIS OF ABSCISIC ACID (ABA) HAS FOCUSED PRIMARILY ON TWO PATHWAYS: (a) the direct pathway from farnesyl pyrophosphate, and (b) the indirect pathway involving a carotenoid precursor. We have investigated which biosynthetic pathway is operating in turgid and stressed Xanthium leaves, and in stressed Xanthium roots using long-term incubations in (18)O(2). It was found that in stressed leaves three atoms of (18)O from (18)O(2) are incorporated into the ABA molecule, and that the amount of (18)O incorporated increases with time. One (18)O atom is incorporated rapidly into the carboxyl group of ABA, whereas the other two atoms are very slowly incorporated into the ring oxygens. The fourth oxygen atom in the carboxyl group of ABA is derived from water. ABA from stressed roots of Xanthium incubated in (18)O(2) shows a labeling pattern similar to that of ABA in stressed leaves, but with incorporation of more (18)O into the tertiary hydroxyl group at C-1' after 6 and 12 hours than found in ABA from stressed leaves. It is proposed that the precursors to stress-induced ABA are xanthophylls, and that a xanthophyll lacking an oxygen function at C-6 (carotenoid numbering scheme) plays a crucial role in ABA biosynthesis in Xanthium roots. In turgid Xanthium leaves, (18)O is incorporated into ABA to a much lesser extent than it is in stressed leaves, whereas exogenously applied (14)C-ABA is completely catabolized within 48 hours. This suggests that ABA in turgid leaves is either (a) made via a biosynthetic pathway which is different from the one in stressed leaves, or (b) has a half-life on the order of days as compared with a half-life of 15.5 hours in water-stressed Xanthium leaves. Phaseic acid showed a labeling pattern similar to that of ABA, but with an additional (18)O incorporated during 8'-hydroxylation of ABA to phaseic acid.
Abscisic Acid Biosynthesis in Leaves and Roots of Xanthium strumarium1
Creelman, Robert A.; Gage, Douglas A.; Stults, John T.; Zeevaart, Jan A. D.
1987-01-01
Research on the biosynthesis of abscisic acid (ABA) has focused primarily on two pathways: (a) the direct pathway from farnesyl pyrophosphate, and (b) the indirect pathway involving a carotenoid precursor. We have investigated which biosynthetic pathway is operating in turgid and stressed Xanthium leaves, and in stressed Xanthium roots using long-term incubations in 18O2. It was found that in stressed leaves three atoms of 18O from 18O2 are incorporated into the ABA molecule, and that the amount of 18O incorporated increases with time. One 18O atom is incorporated rapidly into the carboxyl group of ABA, whereas the other two atoms are very slowly incorporated into the ring oxygens. The fourth oxygen atom in the carboxyl group of ABA is derived from water. ABA from stressed roots of Xanthium incubated in 18O2 shows a labeling pattern similar to that of ABA in stressed leaves, but with incorporation of more 18O into the tertiary hydroxyl group at C-1′ after 6 and 12 hours than found in ABA from stressed leaves. It is proposed that the precursors to stress-induced ABA are xanthophylls, and that a xanthophyll lacking an oxygen function at C-6 (carotenoid numbering scheme) plays a crucial role in ABA biosynthesis in Xanthium roots. In turgid Xanthium leaves, 18O is incorporated into ABA to a much lesser extent than it is in stressed leaves, whereas exogenously applied 14C-ABA is completely catabolized within 48 hours. This suggests that ABA in turgid leaves is either (a) made via a biosynthetic pathway which is different from the one in stressed leaves, or (b) has a half-life on the order of days as compared with a half-life of 15.5 hours in water-stressed Xanthium leaves. Phaseic acid showed a labeling pattern similar to that of ABA, but with an additional 18O incorporated during 8′-hydroxylation of ABA to phaseic acid. PMID:16665768
Evolution of Cuticular Hydrocarbons in the Hymenoptera: a Meta-Analysis.
Kather, Ricarda; Martin, Stephen J
2015-10-01
Chemical communication is the oldest form of communication, spreading across all forms of life. In insects, cuticular hydrocarbons (CHC) function as chemical cues for the recognition of mates, species, and nest-mates in social insects. Although much is known about the function of individual hydrocarbons and their biosynthesis, a phylogenetic overview is lacking. Here, we review the CHC profiles of 241 species of Hymenoptera, one of the largest and most important insect orders, which includes the Symphyta (sawflies), the polyphyletic Parasitica (parasitoid wasps), and the Aculeata (wasps, bees, and ants). We investigated whether these taxonomic groups differed in the presence and absence of CHC classes and whether the sociality of a species (solitarily vs. social) had an effect on CHC profile complexity. We found that the main CHC classes (i.e., n-alkanes, alkenes, and methylalkanes) were all present early in the evolutionary history of the Hymenoptera, as evidenced by their presence in ancient Symphyta and primitive Parasitica wasps. Throughout all groups within the Hymenoptera, the more complex a CHC the fewer species that produce it, which may reflect the Occam's razor principle that insects' only biosynthesize the most simple compound that fulfil its needs. Surprisingly, there was no difference in the complexity of CHC profiles between social and solitary species, with some of the most complex CHC profiles belonging to the Parasitica. This profile complexity has been maintained in the ants, but some specialization in biosynthetic pathways has led to a simplification of profiles in the aculeate wasps and bees. The absence of CHC classes in some taxa or species may be due to gene silencing or down-regulation rather than gene loss, as demonstrated by sister species having highly divergent CHC profiles, and cannot be predicted by their phylogenetic history. The presence of highly complex CHC profiles prior to the vast radiation of the social Hymenoptera indicates a 'spring-loaded' system where the diversity of CHC needed for the complex communication systems of social insects were already present for natural selection to act upon, rather than having evolved independently. This diversity may have aided the multiple independent evolution of sociality within the Aculeata.
The evolution of life cycle complexity in aphids: Ecological optimization or historical constraint?
Hardy, Nate B; Peterson, Daniel A; von Dohlen, Carol D
2015-06-01
For decades, biologists have debated why many parasites have obligate multihost life cycles. Here, we use comparative phylogenetic analyses of aphids to evaluate the roles of ecological optimization and historical constraint in the evolution of life cycle complexity. If life cycle complexity is adaptive, it should be evolutionarily labile, that is, change in response to selection. We provide evidence that this is true in some aphids (aphidines), but not others (nonaphidines)-groups that differ in the intensity of their relationships with primary hosts. Next, we test specific mechanisms by which life cycle complexity could be adaptive or a constraint. We find that among aphidines there is a strong association between complex life cycles and polyphagy but only a weak correlation between life cycle complexity and reproductive mode. In contrast, among nonaphidines the relationship between life cycle complexity and host breadth is weak but the association between complex life cycles and sexual reproduction is strong. Thus, although the adaptiveness of life cycle complexity appears to be lineage specific, across aphids, life cycle evolution appears to be tightly linked with the evolution of other important natural history traits. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.
Interstellar Communication Channel Based on a Biological Universal
NASA Technical Reports Server (NTRS)
Weber, Arthur L.; DeVincenzi, Donald L. (Technical Monitor)
1999-01-01
Cellular biosynthesis starts with sugar substrates and continues energetically downhill to yield amino acid, rapid, and nucleotide products. To understand the energetics of these processes, we calculated the energy for biosynthesis from sugars of E. cali's amino acids, nucleotides, and lipids. We found that the biosynthesis of amino acids and lipids from sugar substrates proceeds by redox disproportionation. of sugar carbon with a favorable energy of about -11 kcal/mole of carbon. Overall, redox disproportion of sugar carbon accounted for 84% and 96% (ATP only 6% and 1%) of the total biosynthetic energy of amino acids and lipids (the major cellular constituents). Next, we calculated for all 48 possible 3-carbon substrates the energy of maximal disproportionation to carbon dioxide and methane. We found no other carbon substrates than matched sugars in biosynthetic energy, efficiency, and simplicity. From this, we concluded that sugars are the optimal biosynthetic substrate. Since this conclusion is based on universal properties of carbon chemistry, other carbon-based life throughout the Universe would also use optimal sugar substrates. Furthermore, this rather obvious universal role of sugars as the optimal biosubstrate would probably be common knowledge of technological civilizations throughout the Universe. Since the elemental building block of all sugars is formaldehyde, the common knowledge that sugars are the universal optimal biosubstrate could reasonably lead to the selection of a line(s) in the microwave spectrum of formaldehyde as a frequency for interstellar communication.
Roth, Udo; Razawi, Hanieh; Hommer, Julia; Engelmann, Katja; Schwientek, Tilo; Müller, Stefan; Baldus, Stephan E; Patsos, Georgios; Corfield, Anthony P; Paraskeva, Christos; Hanisch, Franz-Georg
2010-01-01
This is the first differential expression proteomics study on a human syngeneic cellular in vitro progression model of the colorectal adenoma-to-carcinoma sequence, the anchorage-dependent non-tumorigenic adenoma derived cell line AA/C1 and the derived anchorage-independent and tumorigenic carcinoma cell line AA/C1/SB10C. The study is based on quantitative 2-DE and is complemented by Western blot validation. Excluding redundancies due to proteolysis and post-translational modified isoforms of over 2000 protein spots, 13 proteins were revealed as regulated with statistical variance being within the 95th confidence level and were identified by peptide mass fingerprinting in MALDI MS. Progression-associated proteins belong to the functional complexes of anaerobic glycolysis/gluconeogenesis, steroid biosynthesis, prostaglandin biosynthesis, the regulation and maintenance of the cytoskeleton, protein biosynthesis and degradation, the regulation of apoptosis or other functions. Partial but significant overlap was revealed with previous proteomics and transcriptomics studies in colorectal carcinoma. Among upregulated proteins we identified 3-HMG-CoA synthase, protein phosphatase 1, prostaglandin E synthase 2, villin 1, annexin A1, triosephosphate isomerase, phosphoserine aminotransferase 1, fumarylacetoacetate hydrolase and pyrroline-5-carboxylate reductase 1 (PYCR1), while glucose-regulated protein 78, cathepsin D, lamin A/C and quinolate phosphoribosyltransferase were downregulated.
Acetobixan, an Inhibitor of Cellulose Synthesis Identified by Microbial Bioprospecting
Xia, Ye; Lei, Lei; Brabham, Chad; Stork, Jozsef; Strickland, James; Ladak, Adam; Gu, Ying; Wallace, Ian; DeBolt, Seth
2014-01-01
In plants, cellulose biosynthesis is an essential process for anisotropic growth and therefore is an ideal target for inhibition. Based on the documented utility of small-molecule inhibitors to dissect complex cellular processes we identified a cellulose biosynthesis inhibitor (CBI), named acetobixan, by bio-prospecting among compounds secreted by endophytic microorganisms. Acetobixan was identified using a drug-gene interaction screen to sift through hundreds of endophytic microbial secretions for one that caused synergistic reduction in root expansion of the leaky AtcesA6prc1-1 mutant. We then mined this microbial secretion for compounds that were differentially abundant compared with Bacilli that failed to mimic CBI action to isolate a lead pharmacophore. Analogs of this lead compound were screened for CBI activity, and the most potent analog was named acetobixan. In living Arabidopsis cells visualized by confocal microscopy, acetobixan treatment caused CESA particles localized at the plasma membrane (PM) to rapidly re-localize to cytoplasmic vesicles. Acetobixan inhibited 14C-Glc uptake into crystalline cellulose. Moreover, cortical microtubule dynamics were not disrupted by acetobixan, suggesting specific activity towards cellulose synthesis. Previous CBI resistant mutants such as ixr1-2, ixr2-1 or aegeus were not cross resistant to acetobixan indicating that acetobixan targets a different aspect of cellulose biosynthesis. PMID:24748166
De novo GTP Biosynthesis Is Critical for Virulence of the Fungal Pathogen Cryptococcus neoformans
Morrow, Carl A.; Valkov, Eugene; Stamp, Anna; Chow, Eve W. L.; Lee, I. Russel; Wronski, Ania; Williams, Simon J.; Hill, Justine M.; Djordjevic, Julianne T.; Kappler, Ulrike; Kobe, Bostjan; Fraser, James A.
2012-01-01
We have investigated the potential of the GTP synthesis pathways as chemotherapeutic targets in the human pathogen Cryptococcus neoformans, a common cause of fatal fungal meningoencephalitis. We find that de novo GTP biosynthesis, but not the alternate salvage pathway, is critical to cryptococcal dissemination and survival in vivo. Loss of inosine monophosphate dehydrogenase (IMPDH) in the de novo pathway results in slow growth and virulence factor defects, while loss of the cognate phosphoribosyltransferase in the salvage pathway yielded no phenotypes. Further, the Cryptococcus species complex displays variable sensitivity to the IMPDH inhibitor mycophenolic acid, and we uncover a rare drug-resistant subtype of C. gattii that suggests an adaptive response to microbial IMPDH inhibitors in its environmental niche. We report the structural and functional characterization of IMPDH from Cryptococcus, revealing insights into the basis for drug resistance and suggesting strategies for the development of fungal-specific inhibitors. The crystal structure reveals the position of the IMPDH moveable flap and catalytic arginine in the open conformation for the first time, plus unique, exploitable differences in the highly conserved active site. Treatment with mycophenolic acid led to significantly increased survival times in a nematode model, validating de novo GTP biosynthesis as an antifungal target in Cryptococcus. PMID:23071437
Ethnobotany and Medicinal Plant Biotechnology: From Tradition to Modern Aspects of Drug Development.
Kayser, Oliver
2018-05-24
Secondary natural products from plants are important drug leads for the development of new drug candidates for rational clinical therapy and exhibit a variety of biological activities in experimental pharmacology and serve as structural template in medicinal chemistry. The exploration of plants and discovery of natural compounds based on ethnopharmacology in combination with high sophisticated analytics is still today an important drug discovery to characterize and validate potential leads. Due to structural complexity, low abundance in biological material, and high costs in chemical synthesis, alternative ways in production like plant cell cultures, heterologous biosynthesis, and synthetic biotechnology are applied. The basis for any biotechnological process is deep knowledge in genetic regulation of pathways and protein expression with regard to todays "omics" technologies. The high number genetic techniques allowed the implementation of combinatorial biosynthesis and wide genome sequencing. Consequently, genetics allowed functional expression of biosynthetic cascades from plants and to reconstitute low-performing pathways in more productive heterologous microorganisms. Thus, de novo biosynthesis in heterologous hosts requires fundamental understanding of pathway reconstruction and multitude of genes in a foreign organism. Here, actual concepts and strategies are discussed for pathway reconstruction and genome sequencing techniques cloning tools to bridge the gap between ethnopharmaceutical drug discovery to industrial biotechnology. Georg Thieme Verlag KG Stuttgart · New York.
ABC Transporters Involved in Export of Cell Surface Glycoconjugates
Cuthbertson, Leslie; Kos, Veronica; Whitfield, Chris
2010-01-01
Summary: Complex glycoconjugates play critical roles in the biology of microorganisms. Despite the remarkable diversity in glycan structures and the bacteria that produce them, conserved themes are evident in the biosynthesis-export pathways. One of the primary pathways involves representatives of the ATP-binding cassette (ABC) transporter superfamily. These proteins are responsible for the export of a wide variety of cell surface oligo- and polysaccharides in both Gram-positive and Gram-negative bacteria. Recent investigations of the structure and function of ABC transporters involved in the export of lipopolysaccharide O antigens have revealed two fundamentally different strategies for coupling glycan polymerization to export. These mechanisms are distinguished by the presence (or absence) of characteristic nonreducing terminal modifications on the export substrates, which serve as chain termination and/or export signals, and by the presence (or absence) of a discrete substrate-binding domain in the nucleotide-binding domain polypeptide of the ABC transporter. A bioinformatic survey examining ABC exporters from known oligo- and polysaccharide biosynthesis loci identifies conserved nucleotide-binding domain protein families that correlate well with themes in the structures and assembly of glycans. The familial relationships among the ABC exporters generate hypotheses concerning the biosynthesis of structurally diverse oligo- and polysaccharides, which play important roles in the biology of bacteria with different lifestyles. PMID:20805402
Identification of a non-competitive inhibitor of Plasmodium falciparum aspartate transcarbamoylase.
Lunev, Sergey; Bosch, Soraya S; Batista, Fernando A; Wang, Chao; Li, Jingyao; Linzke, Marleen; Kruithof, Paul; Chamoun, George; Dömling, Alexander S S; Wrenger, Carsten; Groves, Matthew R
2018-03-11
Aspartate transcarbamoylase catalyzes the second step of de-novo pyrimidine biosynthesis. As malarial parasites lack pyrimidine salvage machinery and rely on de-novo production for growth and proliferation, this pathway is a target for drug discovery. Previously, an apo crystal structure of aspartate transcarbamoylase from Plasmodium falciparum (PfATC) in its T-state has been reported. Here we present crystal structures of PfATC in the liganded R-state as well as in complex with the novel inhibitor, 2,3-napthalenediol, identified by high-throughput screening. Our data shows that 2,3-napthalediol binds in close proximity to the active site, implying an allosteric mechanism of inhibition. Furthermore, we report biophysical characterization of 2,3-napthalenediol. These data provide a promising starting point for structure based drug design targeting PfATC and malarial de-novo pyrimidine biosynthesis. Copyright © 2018 Elsevier Inc. All rights reserved.
[Molecular regulation of microbial secondary metabolites--a review].
Wang, Linqi; Tan, Huarong
2009-04-01
Microbial secondary metabolites play an important role in the field of industry, agriculture, medicine and human health. The molecular regulation of secondary metabolites is gradually becoming noticeable and intriguing. In recent years, many researches have demonstrated that secondary metabolite biosynthesis is tightly linked to the physiological and developmental status in its producer. It is suggested that the biosynthesis of secondary metabolites involves in complex process concerning multi-level regulation. Here we reviewed the recent research progress on the molecular regulation of secondary metabolites in microorganisms. In known about ten thousand kinds of natural secondary metabolites, most of them (about 60%) were produced by Streptomycete. Therefore, the regulation of secondary metabolites in Streptomyces is chosen as the mainline in this review. Additionally, several well-studied antibiotics as the representative members were targeted. Finally, some suggestions, in response to the issues at present, have been presented in this paper.
We be jammin’: an update on pectin biosynthesis, trafficking and dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, Charles T.
2015-11-20
Pectins are complex polysaccharides that contain acidic sugars and are major determinants of the cohesion, adhesion, extensibility, porosity and electrostatic potential of plant cell walls. Recent evidence has solidified their positions as key regulators of cellular growth and tissue morphogenesis, although important details of how they achieve this regulation are still missing. Pectins are also hypothesized to function as ligands for wall integrity sensors that enable plant cells to respond to intrinsic defects in wall biomechanics and to wall degradation by attacking pathogens. This update highlights recent advances in our understanding of the biosynthesis of pectins, how they are deliveredmore » to the cell surface and become incorporated into the cell wall matrix and how pectins are modified over time in the apoplast. It also poses unanswered questions for further research into this enigmatic but essential class of carbohydrate polymers.« less
Seven enzymes create extraordinary molecular complexity in an uncultivated bacterium
NASA Astrophysics Data System (ADS)
Freeman, Michael F.; Helf, Maximilian J.; Bhushan, Agneya; Morinaka, Brandon I.; Piel, Jörn
2017-04-01
Uncultivated bacteria represent a massive resource of new enzymes and bioactive metabolites, but such bacteria remain functionally enigmatic. Polytheonamides are potent peptide cytotoxins produced by uncultivated bacteria that exist as symbionts in a marine sponge. Outside glycobiology, polytheonamides represent the most heavily post-translationally modified biomolecules that are derived from amino acids. The biosynthesis of polytheonamides involves up to 50 site-specific modifications to create a membrane-spanning β-helical structure. Here, we provide functional evidence that only seven enzymes are necessary for this process. They iteratively catalyse epimerization, methylation and hydroxylation of diverse amino acids. To reconstitute C-methylation, we employed the rarely used heterologous host Rhizobium leguminosarum to invoke the activities of two cobalamin-dependent C-methyltransferases. We observed 44 of the modifications to systematically unravel the biosynthesis of one of the most densely modified and metabolically obscure ribosome-derived molecules found in nature.
Singh, Sudhir P; Jadaun, Jyoti Singh; Narnoliya, Lokesh K; Pandey, Ashok
2017-10-01
The bacterial groups in the gut ecosystem play key role in the maintenance of host's metabolic and structural functionality. The gut microbiota enhances digestion processing, helps in digestion of complex substances, synthesizes beneficial bioactive compounds, enhances bioavailability of minerals, impedes growth of pathogenic microbes, and prevents various diseases. It is, therefore, desirable to have an adequate intake of prebiotic biomolecules, which promote favorable modulation of intestinal microflora. Prebiotics are non-digestible and chemically stable structures that significantly enhance growth and functionality of gut microflora. The non-digestible carbohydrate, mainly oligosaccharides, covers a major part of total available prebiotics as dietary additives. The review describes the types of prebiotic low molecular weight carbohydrates, i.e., oligosaccharides, their structure, biosynthesis, functionality, and applications, with a special focus given to fructooligosaccharides (FOSs). The review provides an update on enzymes executing hydrolytic and fructosyltransferase activities producing prebiotic FOS biomolecules, and future perspectives.
NASA Astrophysics Data System (ADS)
Bisson, Melanie M. A.; Kessenbrock, Mareike; Müller, Lena; Hofmann, Alexander; Schmitz, Florian; Cristescu, Simona M.; Groth, Georg
2016-08-01
The plant hormone ethylene is involved in the regulation of several processes with high importance for agricultural applications, e.g. ripening, aging and senescence. Previous work in our group has identified a small peptide (NOP-1) derived from the nuclear localization signal of the Arabidopsis ethylene regulator ETHYLENE INSENSITIVE-2 (EIN2) C-terminal part as efficient inhibitor of ethylene responses. Here, we show that NOP-1 is also able to efficiently disrupt EIN2-ETR1 complex formation in tomato, indicating that the NOP-1 inhibition mode is conserved across plant species. Surface application of NOP-1 on green tomato fruits delays ripening similar to known inhibitors of ethylene perception (MCP) and ethylene biosynthesis (AVG). Fruits treated with NOP-1 showed similar ethylene production as untreated controls underlining that NOP-1 blocks ethylene signaling by targeting an essential interaction in this pathway, while having no effect on ethylene biosynthesis.
Collagens--structure, function, and biosynthesis.
Gelse, K; Pöschl, E; Aigner, T
2003-11-28
The extracellular matrix represents a complex alloy of variable members of diverse protein families defining structural integrity and various physiological functions. The most abundant family is the collagens with more than 20 different collagen types identified so far. Collagens are centrally involved in the formation of fibrillar and microfibrillar networks of the extracellular matrix, basement membranes as well as other structures of the extracellular matrix. This review focuses on the distribution and function of various collagen types in different tissues. It introduces their basic structural subunits and points out major steps in the biosynthesis and supramolecular processing of fibrillar collagens as prototypical members of this protein family. A final outlook indicates the importance of different collagen types not only for the understanding of collagen-related diseases, but also as a basis for the therapeutical use of members of this protein family discussed in other chapters of this issue.
Architecture and Biosynthesis of the Saccharomyces cerevisiae Cell Wall
Orlean, Peter
2012-01-01
The wall gives a Saccharomyces cerevisiae cell its osmotic integrity; defines cell shape during budding growth, mating, sporulation, and pseudohypha formation; and presents adhesive glycoproteins to other yeast cells. The wall consists of β1,3- and β1,6-glucans, a small amount of chitin, and many different proteins that may bear N- and O-linked glycans and a glycolipid anchor. These components become cross-linked in various ways to form higher-order complexes. Wall composition and degree of cross-linking vary during growth and development and change in response to cell wall stress. This article reviews wall biogenesis in vegetative cells, covering the structure of wall components and how they are cross-linked; the biosynthesis of N- and O-linked glycans, glycosylphosphatidylinositol membrane anchors, β1,3- and β1,6-linked glucans, and chitin; the reactions that cross-link wall components; and the possible functions of enzymatic and nonenzymatic cell wall proteins. PMID:23135325
The aroma volatile repertoire in strawberry fruit: a review.
Yan, Jia-Wei; Ban, Zhao-Jun; Lu, Hong-Yan; Li, Dong; Poverenov, Elena; Li, Li; Luo, Zi-Sheng
2018-03-30
Aroma significantly contributes to flavor, which directly affects commercial quality of strawberry. Strawberry aroma is complex as many kinds of volatile compounds are found in strawberries. In this review, we describe the current knowledge of constituents and biosynthesis of strawberry volatile compounds, and the effect of postharvest treatments on aroma profiles. The characteristic strawberry volatile compounds consist of furanones, such as 2,5-dimethyl-4-hydroxy-3(2H)-furanone and 4-methoxy-2,5-dimethyl-3(2H)-furanone; esters including ethyl butanoate, ethyl hexanoate, methyl butanoate, and methyl hexanoate; sulfur compounds such as methanethiol, and terpenoids including linalool and nerolidol. As for postharvest treatment, the present review discusses the overview of aroma volatiles in response to temperature, atmosphere, and exogenous hormone as well as other treatments including ozone, edible coating and ultraviolet radiation. In addition, the future prospects for strawberry volatile biosynthesis and metabolism are presented. This article is protected by copyright. All rights reserved.
Raspoet, R; Shearer, N; Appia-Ayme, C; Haesebrouck, F; Ducatelle, R; Thompson, A; Van Immerseel, F
2014-05-01
Eggs contaminated with Salmonella Enteritidis are an important source of human foodborne Salmonella infections. Salmonella Enteritidis is able to contaminate egg white during formation of the egg within the chicken oviduct, and it has developed strategies to withstand the antimicrobial properties of egg white to survive in this hostile environment. The mechanisms involved in the persistence of Salmonella Enteritidis in egg white are likely to be complex. To address this issue, a microarray-based transposon library screen was performed to identify genes necessary for survival of Salmonella Enteritidis in egg white at chicken body temperature. The majority of identified genes belonged to the lipopolysaccharide biosynthesis pathway. Additionally, we provide evidence that the serine protease/heat shock protein (HtrA) appears essential for the survival of Salmonella Enteritidis in egg white at chicken body temperature.
Bisson, Melanie M A; Kessenbrock, Mareike; Müller, Lena; Hofmann, Alexander; Schmitz, Florian; Cristescu, Simona M; Groth, Georg
2016-08-01
The plant hormone ethylene is involved in the regulation of several processes with high importance for agricultural applications, e.g. ripening, aging and senescence. Previous work in our group has identified a small peptide (NOP-1) derived from the nuclear localization signal of the Arabidopsis ethylene regulator ETHYLENE INSENSITIVE-2 (EIN2) C-terminal part as efficient inhibitor of ethylene responses. Here, we show that NOP-1 is also able to efficiently disrupt EIN2-ETR1 complex formation in tomato, indicating that the NOP-1 inhibition mode is conserved across plant species. Surface application of NOP-1 on green tomato fruits delays ripening similar to known inhibitors of ethylene perception (MCP) and ethylene biosynthesis (AVG). Fruits treated with NOP-1 showed similar ethylene production as untreated controls underlining that NOP-1 blocks ethylene signaling by targeting an essential interaction in this pathway, while having no effect on ethylene biosynthesis.
Terpenoid-Alkaloids: Their Biosynthetic Twist of Fate and Total Synthesis.
Cherney, Emily C; Baran, Phil S
2011-04-01
Terpenes and alkaloids are ever-growing classes of natural products that provide new molecular structures which inspire chemists and possess a broad range of biological activity. Terpenoid-alkaloids originate from the same prenyl units that construct terpene skeletons. However, during biosynthesis, a nitrogen atom (or atoms) is introduced in the form of β-aminoethanol, ethylamine, or methylamine. Nitrogen incorporation can occur either before, during, or after the cyclase phase. The outcome of this unique biosynthesis is the formation of natural products containing unprecedented structures. These complex structural motifs expose current limitations in organic chemistry, thus providing opportunities for invention. This review focuses on total syntheses of terpenoid-alkaloids and unique issues presented by this class of natural products. More specifically, it examines how these syntheses relate to the way terpenoid-alkaloids are made in Nature. Developments in chemistry that have facilitated these syntheses are emphasized, as well as chemical technology needed to conquer those that evade synthesis.
Pan, Yuanyuan; Liu, Ling; Guan, Feifei; Li, Erwei; Jin, Jin; Li, Jinyang; Che, Yongsheng; Liu, Gang
2018-03-16
Chloropupukeananin and chloropestolides are novel metabolites of the plant endophyte Pestalotiopsis fici, showing antimicrobial, antitumor, and anti-HIV activities. Their highly complex and unique skeletons were generated from the coisolated pestheic acid (1) and iso-A82775C (10) based on our previous studies. Here, we identified the biosynthetic gene cluster iac of 10 and characterized an iacE encoded prenyltransferase. Deletion of iacE abolished iso-A82775C production, accumulated the prenyl group-lacking siccayne (2), and generated four new chloropestolides (3-6). Compounds 5 and 6 showed antibacterial effects against Staphylococcus aureus and Bacillus subtilis, and 5 was also cytotoxic to human tumor cell lines HeLa, MCF-7, and SW480. These results provided the first genetic and biochemical insights into the biosynthesis of natural prenylepoxycyclohexanes and demonstrated the feasibility for generation of diversified congeners by manipulating the biosynthetic genes of 10.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sawant, Shailesh S.; Salunke, Bipinchandra K.; Taylor, II, Larry E.
Over reliance on energy or petroleum products has raised concerns both in regards to the depletion of their associated natural resources as well as their increasing costs. Bioplastics derived from microbes are emerging as promising alternatives to fossil fuel derived petroleum plastics. The development of a simple and eco-friendly strategy for bioplastic production with high productivity and yield, which is produced in a cost effective manner utilising abundantly available renewable carbon sources, would have the potential to result in an inexhaustible global energy source. Here we report the biosynthesis of bioplastic polyhydroxyalkanoates (PHAs) in pure cultures of marine bacterium, Saccharophagusmore » degradans 2-40 ( Sde 2-40), its contaminant, Bacillus cereus, and a co-culture of these bacteria ( Sde 2-40 and B. cereus) degrading plant and algae derived complex polysaccharides. Sde 2-40 degraded the complex polysaccharides agarose and xylan as sole carbon sources for biosynthesis of PHAs. The ability of Sde 2-40 to degrade agarose increased after co-culturing with B. cereus. The association of Sde 2-40 with B. cereus resulted in increased cell growth and higher PHA production (34.5% of dry cell weight) from xylan as a carbon source in comparison to Sde 2-40 alone (22.7% of dry cell weight). Lastly, the present study offers an innovative prototype for production of PHA through consolidated bioprocessing of complex carbon sources by pure and co-culture of microorganisms.« less
Sawant, Shailesh S.; Salunke, Bipinchandra K.; Taylor, II, Larry E.; ...
2017-02-28
Over reliance on energy or petroleum products has raised concerns both in regards to the depletion of their associated natural resources as well as their increasing costs. Bioplastics derived from microbes are emerging as promising alternatives to fossil fuel derived petroleum plastics. The development of a simple and eco-friendly strategy for bioplastic production with high productivity and yield, which is produced in a cost effective manner utilising abundantly available renewable carbon sources, would have the potential to result in an inexhaustible global energy source. Here we report the biosynthesis of bioplastic polyhydroxyalkanoates (PHAs) in pure cultures of marine bacterium, Saccharophagusmore » degradans 2-40 ( Sde 2-40), its contaminant, Bacillus cereus, and a co-culture of these bacteria ( Sde 2-40 and B. cereus) degrading plant and algae derived complex polysaccharides. Sde 2-40 degraded the complex polysaccharides agarose and xylan as sole carbon sources for biosynthesis of PHAs. The ability of Sde 2-40 to degrade agarose increased after co-culturing with B. cereus. The association of Sde 2-40 with B. cereus resulted in increased cell growth and higher PHA production (34.5% of dry cell weight) from xylan as a carbon source in comparison to Sde 2-40 alone (22.7% of dry cell weight). Lastly, the present study offers an innovative prototype for production of PHA through consolidated bioprocessing of complex carbon sources by pure and co-culture of microorganisms.« less
Li, Ao; Wang, Ruyi; Li, Xianliang; Liu, Mingyong; Fan, Jian; Guo, Kai; Luo, Bing; Chen, Tingting; Feng, Shengqiu; Wang, Yanting; Wang, Bingrui; Peng, Liangcai; Xia, Tao
2016-05-19
Cotton fibers are an excellent model for understanding of cellulose biosynthesis in higher plants. In this study, we determined a high cellulose biosynthesis activity in vitro by optimizing biochemical reaction conditions in cotton fibers. By adding a commercial cellulase enzyme into fibers extraction process, we extracted markedly higher levels of GhCESA1 and GhCESA8 proteins and observed an increase in β-1,4-glucan and β-1,3-glucan products in vitro. LC-MS/MS analysis of anti-GhCESA8-immunoprecipitated proteins showed that 19 proteins could be found in three independent experiments including four CESAs (GhCESA1,2,7,8), five well-known non-CESA proteins, one callose synthase (CALS) and nine novel proteins. Notably, upon the cellulase treatment, four CESAs, one CALS and four novel proteins were measured at relatively higher levels by calculating total peptide counts and distinct peptide numbers, indicating that the cellulase-aid-extracted proteins most likely contribute to the increase in β-glucan products in vitro. These results suggest that the cellulase treatment may aid to release active cellulose synthases complexes from growing glucan chains and make them more amenable to extraction. To our knowledge, it is the first time report about the functional identification of the potential proteins that were associated with plant cellulose and callose synthases complexes by using the cellulase-aided protein extraction.
Ferriols, Victor Marco Emmanuel N.; Yaginuma, Ryoko; Adachi, Masao; Takada, Kentaro; Matsunaga, Shigeki; Okada, Shigeru
2015-01-01
The diatom Rhizosolenia setigera Brightwell produces highly branched isoprenoid (HBI) hydrocarbons that are ubiquitously present in marine environments. The hydrocarbon composition of R. setigera varies between C25 and C30 HBIs depending on the life cycle stage with regard to auxosporulation. To better understand how these hydrocarbons are biosynthesized, we characterized the farnesyl pyrophosphate (FPP) synthase (FPPS) enzyme of R. setigera. An isolated 1465-bp cDNA clone contained an open reading frame spanning 1299-bp encoding a protein with 432 amino acid residues. Expression of the RsFPPS cDNA coding region in Escherichia coli produced a protein that exhibited FPPS activity in vitro. A reduction in HBI content from diatoms treated with an FPPS inhibitor, risedronate, suggested that RsFPPS supplies precursors for HBI biosynthesis. Product analysis by gas chromatography-mass spectrometry also revealed that RsFPPS produced small amounts of the cis-isomers of geranyl pyrophosphate and FPP, candidate precursors for the cis-isomers of HBIs previously characterized. Furthermore, RsFPPS gene expression at various life stages of R. setigera in relation to auxosporulation were also analyzed. Herein, we present data on the possible role of RsFPPS in HBI biosynthesis, and it is to our knowledge the first instance that an FPPS was cloned and characterized from a diatom. PMID:25996801
Growth-related Metabolism of the Carbon Storage Poly-3-hydroxybutyrate in Legionella pneumophila.
Gillmaier, Nadine; Schunder, Eva; Kutzner, Erika; Tlapák, Hana; Rydzewski, Kerstin; Herrmann, Vroni; Stämmler, Maren; Lasch, Peter; Eisenreich, Wolfgang; Heuner, Klaus
2016-03-18
Legionella pneumophila, the causative agent of Legionnaires disease, has a biphasic life cycle with a switch from a replicative to a transmissive phenotype. During the replicative phase, the bacteria grow within host cells in Legionella-containing vacuoles. During the transmissive phenotype and the postexponential (PE) growth phase, the pathogens express virulence factors, become flagellated, and leave the Legionella-containing vacuoles. Using (13)C labeling experiments, we now show that, under in vitro conditions, serine is mainly metabolized during the replicative phase for the biosynthesis of some amino acids and for energy generation. During the PE phase, these carbon fluxes are reduced, and glucose also serves as an additional carbon substrate to feed the biosynthesis of poly-3-hydroxybuyrate (PHB), an essential carbon source for transmissive L. pneumophila. Whole-cell FTIR analysis and comparative isotopologue profiling further reveal that a putative 3-ketothiolase (Lpp1788) and a PHB polymerase (Lpp0650), but not enzymes of the crotonyl-CoA pathway (Lpp0931-0933) are involved in PHB metabolism during the PE phase. However, the data also reflect that additional bypassing reactions for PHB synthesis exist in agreement with in vivo competition assays using Acanthamoeba castellannii or human macrophage-like U937 cells as host cells. The data suggest that substrate usage and PHB metabolism are coordinated during the life cycle of the pathogen. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Curatti, Leonardo; Hernandez, Jose A.; Igarashi, Robert Y.; Soboh, Basem; Zhao, Dehua; Rubio, Luis M.
2007-01-01
Biological nitrogen fixation, the conversion of atmospheric N2 to NH3, is an essential process in the global biogeochemical cycle of nitrogen that supports life on Earth. Most of the biological nitrogen fixation is catalyzed by the molybdenum nitrogenase, which contains at its active site one of the most complex metal cofactors known to date, the iron–molybdenum cofactor (FeMo-co). FeMo-co is composed of 7Fe, 9S, Mo, R-homocitrate, and one unidentified light atom. Here we demonstrate the complete in vitro synthesis of FeMo-co from Fe2+, S2−, MoO42−, and R-homocitrate using only purified Nif proteins. This synthesis provides direct biochemical support to the current model of FeMo-co biosynthesis. A minimal in vitro system, containing NifB, NifEN, and NifH proteins, together with Fe2+, S2−, MoO42−, R-homocitrate, S-adenosyl methionine, and Mg-ATP, is sufficient for the synthesis of FeMo-co and the activation of apo-dinitrogenase under anaerobic-reducing conditions. This in vitro system also provides a biochemical approach to further study the function of accessory proteins involved in nitrogenase maturation (as shown here for NifX and NafY). The significance of these findings in the understanding of the complete FeMo-co biosynthetic pathway and in the study of other complex Fe-S cluster biosyntheses is discussed. PMID:17978192
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kozubal, Mark; Romine, Margaret F.; Jennings, Ryan
Geothermal systems in Yellowstone National Park (YNP) provide an outstanding opportunity to understand the origin and evolution of metabolic processes necessary for life in extreme environments including low pH, high temperature, low oxygen and elevated concentrations of reduced iron. Previous phylogenetic studies of acidic ferric iron mats from YNP have revealed considerable diversity of uncultivated and undescribed archaea. The goal of this study was to obtain replicate de novo genome assemblies for a dominant archaeal population inhabiting acidic iron oxide mats in YNP. Detailed analysis of conserved ribosomal and informational processing genes indicate that the replicate assemblies represent a newmore » phylum-level lineage referred to here as 'novel archaeal group 1 (NAG1)'. The NAG1 organisms contain pathways necessary for the catabolism of peptides and complex carbohydrates as well as a bacterial-like Form I CO dehydrogenase complex likely used for energy conservation. Moreover, this novel population contains genes involved in metabolism of oxygen including a Type A heme copper oxidase, a bd-type terminal oxidase and a putative oxygen sensing protoglobin. NAG1 has a variety of unique bacterial-like cofactor biosynthesis and transport genes and a Type3-like CRISPR system. Discovery of NAG1 is critical to our understanding of microbial community structure and function in extant thermophilic iron mats of YNP, and will provide insight regarding the evolution of Archaea in early Earth environments that may have important analogues active in YNP today.« less
Wang, Hao; Fewer, David P; Holm, Liisa; Rouhiainen, Leo; Sivonen, Kaarina
2014-06-24
Nonribosomal peptides and polyketides are a diverse group of natural products with complex chemical structures and enormous pharmaceutical potential. They are synthesized on modular nonribosomal peptide synthetase (NRPS) and polyketide synthase (PKS) enzyme complexes by a conserved thiotemplate mechanism. Here, we report the widespread occurrence of NRPS and PKS genetic machinery across the three domains of life with the discovery of 3,339 gene clusters from 991 organisms, by examining a total of 2,699 genomes. These gene clusters display extraordinarily diverse organizations, and a total of 1,147 hybrid NRPS/PKS clusters were found. Surprisingly, 10% of bacterial gene clusters lacked modular organization, and instead catalytic domains were mostly encoded as separate proteins. The finding of common occurrence of nonmodular NRPS differs substantially from the current classification. Sequence analysis indicates that the evolution of NRPS machineries was driven by a combination of common descent and horizontal gene transfer. We identified related siderophore NRPS gene clusters that encoded modular and nonmodular NRPS enzymes organized in a gradient. A higher frequency of the NRPS and PKS gene clusters was detected from bacteria compared with archaea or eukarya. They commonly occurred in the phyla of Proteobacteria, Actinobacteria, Firmicutes, and Cyanobacteria in bacteria and the phylum of Ascomycota in fungi. The majority of these NRPS and PKS gene clusters have unknown end products highlighting the power of genome mining in identifying novel genetic machinery for the biosynthesis of secondary metabolites.
Liu, Tongjin; Zhang, Xiaohui; Yang, Haohui; Agerbirk, Niels; Qiu, Yang; Wang, Haiping; Shen, Di; Song, Jiangping; Li, Xixiang
2016-01-01
The inducibility of the glucosinolate resistance mechanism is an energy-saving strategy for plants, but whether induction would still be triggered by glucosinolate-tolerant Plutella xylostella (diamondback moth, DBM) after a plant had evolved a new resistance mechanism (e.g., saponins in Barbara vulgaris) was unknown. In B. vulgaris, aromatic glucosinolates derived from homo-phenylalanine are the dominant glucosinolates, but their biosynthesis pathway was unclear. In this study, we used G-type (pest-resistant) and P-type (pest-susceptible) B. vulgaris to compare glucosinolate levels and the expression profiles of their biosynthesis genes before and after infestation by DBM larvae. Two different stereoisomers of hydroxylated aromatic glucosinolates are dominant in G- and P-type B. vulgaris, respectively, and are induced by DBM. The transcripts of genes in the glucosinolate biosynthesis pathway and their corresponding transcription factors were identified from an Illumina dataset of G- and P-type B. vulgaris. Many genes involved or potentially involved in glucosinolate biosynthesis were induced in both plant types. The expression patterns of six DBM induced genes were validated by quantitative PCR (qPCR), while six long-fragment genes were validated by molecular cloning. The core structure biosynthetic genes showed high sequence similarities between the two genotypes. In contrast, the sequence identity of two apparent side chain modification genes, the SHO gene in the G-type and the RHO in P-type plants, showed only 77.50% identity in coding DNA sequences and 65.48% identity in deduced amino acid sequences. The homology to GS-OH in Arabidopsis, DBM induction of the transcript and a series of qPCR and glucosinolate analyses of G-type, P-type and F1 plants indicated that these genes control the production of S and R isomers of 2-hydroxy-2-phenylethyl glucosinolate. These glucosinolates were significantly induced by P. xylostella larvae in both the susceptiple P-type and the resistant G-type, even though saponins are the main DBM-resistance causing metabolites in G-type plants. Indol-3-ylmethylglucosinolate was induced in the G-type only. These data will aid our understanding of the biosynthesis and induction of aromatic glucosinolates at the molecular level and also increase our knowledge of the complex mechanisms underpinning defense induction in plants. PMID:26904055
Lipid transfer from plants to arbuscular mycorrhiza fungi
Keymer, Andreas; Pimprikar, Priya; Wewer, Vera; Huber, Claudia; Brands, Mathias; Bucerius, Simone L; Delaux, Pierre-Marc; Klingl, Verena; von Röpenack-Lahaye, Edda; Wang, Trevor L; Eisenreich, Wolfgang; Dörmann, Peter; Parniske, Martin; Gutjahr, Caroline
2017-01-01
Arbuscular mycorrhiza (AM) symbioses contribute to global carbon cycles as plant hosts divert up to 20% of photosynthate to the obligate biotrophic fungi. Previous studies suggested carbohydrates as the only form of carbon transferred to the fungi. However, de novo fatty acid (FA) synthesis has not been observed in AM fungi in absence of the plant. In a forward genetic approach, we identified two Lotus japonicus mutants defective in AM-specific paralogs of lipid biosynthesis genes (KASI and GPAT6). These mutants perturb fungal development and accumulation of emblematic fungal 16:1ω5 FAs. Using isotopolog profiling we demonstrate that 13C patterns of fungal FAs recapitulate those of wild-type hosts, indicating cross-kingdom lipid transfer from plants to fungi. This transfer of labelled FAs was not observed for the AM-specific lipid biosynthesis mutants. Thus, growth and development of beneficial AM fungi is not only fueled by sugars but depends on lipid transfer from plant hosts. DOI: http://dx.doi.org/10.7554/eLife.29107.001 PMID:28726631
Formation of polarity convergences underlying shoot outgrowths
Abley, Katie; Sauret-Güeto, Susanna; Marée, Athanasius FM; Coen, Enrico
2016-01-01
The development of outgrowths from plant shoots depends on formation of epidermal sites of cell polarity convergence with high intracellular auxin at their centre. A parsimonious model for generation of convergence sites is that cell polarity for the auxin transporter PIN1 orients up auxin gradients, as this spontaneously generates convergent alignments. Here we test predictions of this and other models for the patterns of auxin biosynthesis and import. Live imaging of outgrowths from kanadi1 kanadi2 Arabidopsis mutant leaves shows that they arise by formation of PIN1 convergence sites within a proximodistal polarity field. PIN1 polarities are oriented away from regions of high auxin biosynthesis enzyme expression, and towards regions of high auxin importer expression. Both expression patterns are required for normal outgrowth emergence, and may form part of a common module underlying shoot outgrowths. These findings are more consistent with models that spontaneously generate tandem rather than convergent alignments. DOI: http://dx.doi.org/10.7554/eLife.18165.001 PMID:27478985
Elucidation of the biosynthesis of carnosic acid and its reconstitution in yeast
NASA Astrophysics Data System (ADS)
Scheler, Ulschan; Brandt, Wolfgang; Porzel, Andrea; Rothe, Kathleen; Manzano, David; Božić, Dragana; Papaefthimiou, Dimitra; Balcke, Gerd Ulrich; Henning, Anja; Lohse, Swanhild; Marillonnet, Sylvestre; Kanellis, Angelos K.; Ferrer, Albert; Tissier, Alain
2016-10-01
Rosemary extracts containing the phenolic diterpenes carnosic acid and its derivative carnosol are approved food additives used in an increasingly wide range of products to enhance shelf-life, thanks to their high anti-oxidant activity. We describe here the elucidation of the complete biosynthetic pathway of carnosic acid and its reconstitution in yeast cells. Cytochrome P450 oxygenases (CYP76AH22-24) from Rosmarinus officinalis and Salvia fruticosa already characterized as ferruginol synthases are also able to produce 11-hydroxyferruginol. Modelling-based mutagenesis of three amino acids in the related ferruginol synthase (CYP76AH1) from S. miltiorrhiza is sufficient to convert it to a 11-hydroxyferruginol synthase (HFS). The three sequential C20 oxidations for the conversion of 11-hydroxyferruginol to carnosic acid are catalysed by the related CYP76AK6-8. The availability of the genes for the biosynthesis of carnosic acid opens opportunities for the metabolic engineering of phenolic diterpenes, a class of compounds with potent anti-oxidant, anti-inflammatory and anti-tumour activities.
Kim, Gyu-Lee; Lee, Seungyeop; Luong, Truc Thanh; Nguyen, Cuong Thach; Park, Sang-Sang; Pyo, Suhkneung; Rhee, Dong-Kwon
2017-08-01
Streptococcus pneumoniae (pneumococcus) is responsible for significant morbidity and mortality worldwide. It causes a variety of life-threatening infections such as pneumonia, bacteremia, and meningitis. In bacterial physiology, the metabolic pathway of branched-chain amino acids (BCAAs) plays an important role in virulence. Nonetheless, the function of IlvC, one of the enzymes involved in the biosynthesis of BCAAs, in S. pneumoniae remains unclear. Here, we demonstrated that downregulation of BCAA biosynthesis by ilvC ablation can diminish BCAA concentration and expression of pneumolysin (Ply) and LytA, and subsequently attenuate virulence. Infection with an ilvC mutant showed significantly reduced mortality and colonization in comparison with strain D39 (serotype 2, wild type), suggesting that ilvC can potentiate S. pneumoniae virulence due to adequate BCAA synthesis. Taken together, these results suggest that the function of ilvC in BCAA synthesis is essential for virulence factor and could play an important role in the pathogenesis of respiratory infections.
Role of Nfu1 and Bol3 in iron-sulfur cluster transfer to mitochondrial clients
Melber, Andrew; Na, Un; Vashisht, Ajay; Weiler, Benjamin D; Lill, Roland; Wohlschlegel, James A; Winge, Dennis R
2016-01-01
Iron-sulfur (Fe-S) clusters are essential for many cellular processes, ranging from aerobic respiration, metabolite biosynthesis, ribosome assembly and DNA repair. Mutations in NFU1 and BOLA3 have been linked to genetic diseases with defects in mitochondrial Fe-S centers. Through genetic studies in yeast, we demonstrate that Nfu1 functions in a late step of [4Fe-4S] cluster biogenesis that is of heightened importance during oxidative metabolism. Proteomic studies revealed Nfu1 physical interacts with components of the ISA [4Fe-4S] assembly complex and client proteins that need [4Fe-4S] clusters to function. Additional studies focused on the mitochondrial BolA proteins, Bol1 and Bol3 (yeast homolog to human BOLA3), revealing that Bol1 functions earlier in Fe-S biogenesis with the monothiol glutaredoxin, Grx5, and Bol3 functions late with Nfu1. Given these observations, we propose that Nfu1, assisted by Bol3, functions to facilitate Fe-S transfer from the biosynthetic apparatus to the client proteins preventing oxidative damage to [4Fe-4S] clusters. DOI: http://dx.doi.org/10.7554/eLife.15991.001 PMID:27532773
Comparative genetic screens in human cells reveal new regulatory mechanisms in WNT signaling
Lebensohn, Andres M; Dubey, Ramin; Neitzel, Leif R; Tacchelly-Benites, Ofelia; Yang, Eungi; Marceau, Caleb D; Davis, Eric M; Patel, Bhaven B; Bahrami-Nejad, Zahra; Travaglini, Kyle J; Ahmed, Yashi; Lee, Ethan; Carette, Jan E; Rohatgi, Rajat
2016-01-01
The comprehensive understanding of cellular signaling pathways remains a challenge due to multiple layers of regulation that may become evident only when the pathway is probed at different levels or critical nodes are eliminated. To discover regulatory mechanisms in canonical WNT signaling, we conducted a systematic forward genetic analysis through reporter-based screens in haploid human cells. Comparison of screens for negative, attenuating and positive regulators of WNT signaling, mediators of R-spondin-dependent signaling and suppressors of constitutive signaling induced by loss of the tumor suppressor adenomatous polyposis coli or casein kinase 1α uncovered new regulatory features at most levels of the pathway. These include a requirement for the transcription factor AP-4, a role for the DAX domain of AXIN2 in controlling β-catenin transcriptional activity, a contribution of glycophosphatidylinositol anchor biosynthesis and glypicans to R-spondin-potentiated WNT signaling, and two different mechanisms that regulate signaling when distinct components of the β-catenin destruction complex are lost. The conceptual and methodological framework we describe should enable the comprehensive understanding of other signaling systems. DOI: http://dx.doi.org/10.7554/eLife.21459.001 PMID:27996937
Mironova, Yevgeniya A; Lenk, Guy M; Lin, Jing-Ping; Lee, Seung Joon; Twiss, Jeffery L; Vaccari, Ilaria; Bolino, Alessandra; Havton, Leif A; Min, Sang H; Abrams, Charles S; Shrager, Peter; Meisler, Miriam H; Giger, Roman J
2016-01-01
Proper development of the CNS axon-glia unit requires bi-directional communication between axons and oligodendrocytes (OLs). We show that the signaling lipid phosphatidylinositol-3,5-bisphosphate [PI(3,5)P2] is required in neurons and in OLs for normal CNS myelination. In mice, mutations of Fig4, Pikfyve or Vac14, encoding key components of the PI(3,5)P2 biosynthetic complex, each lead to impaired OL maturation, severe CNS hypomyelination and delayed propagation of compound action potentials. Primary OLs deficient in Fig4 accumulate large LAMP1+ and Rab7+ vesicular structures and exhibit reduced membrane sheet expansion. PI(3,5)P2 deficiency leads to accumulation of myelin-associated glycoprotein (MAG) in LAMP1+perinuclear vesicles that fail to migrate to the nascent myelin sheet. Live-cell imaging of OLs after genetic or pharmacological inhibition of PI(3,5)P2 synthesis revealed impaired trafficking of plasma membrane-derived MAG through the endolysosomal system in primary cells and brain tissue. Collectively, our studies identify PI(3,5)P2 as a key regulator of myelin membrane trafficking and myelinogenesis. DOI: http://dx.doi.org/10.7554/eLife.13023.001 PMID:27008179
The molecular genetics of von Willebrand disease.
Berber, Ergül
2012-12-01
Quantitative and/or qualitative deficiency of von Willebrand factor (vWF) is associated with the most common inherited bleeding disease von Willebrand disease (vWD). vWD is a complex disease with clinical and genetic heterogeneity. Incomplete penetrance and variable expression due to genetic and environmental factors contribute to its complexity. vWD also has a complex molecular pathogenesis. Some vWF gene mutations are associated with the affected vWF biosynthesis and multimerization, whereas others are associated with increased clearance and functional impairment. Moreover, in addition to a particular mutation, type O blood may result in the more severe phenotype. The present review aimed to provide a summary of the current literature on the molecular genetics of vWD. None declared.
Bazet Lyonnet, Bernardo; Diacovich, Lautaro; Gago, Gabriela; Spina, Lucie; Bardou, Fabienne; Lemassu, Anne; Quémard, Annaïk; Gramajo, Hugo
2017-04-01
Mycobacterium tuberculosis produces a large number of structurally diverse lipids that have been implicated in the pathogenicity, persistence and antibiotic resistance of this organism. Most building blocks involved in the biosynthesis of all these lipids are generated by acyl-CoA carboxylases whose subunit composition and physiological roles have not yet been clearly established. Inconclusive data in the literature refer to the exact protein composition and substrate specificity of the enzyme complex that produces the long-chain α-carboxy-acyl-CoAs, which are substrates involved in the last step of condensation mediated by the polyketide synthase 13 to synthesize mature mycolic acids. Here we have successfully reconstituted the long-chain acyl-CoA carboxylase (LCC) complex from its purified components, the α subunit (AccA3), the ε subunit (AccE5) and the two β subunits (AccD4 and AccD5), and demonstrated that the four subunits are essential for its activity. Furthermore, we also showed by substrate competition experiments and the use of a specific inhibitor that the AccD5 subunit's role in the carboxylation of the long acyl-CoAs, as part of the LCC complex, was structural rather than catalytic. Moreover, AccD5 was also able to carboxylate its natural substrates, acetyl-CoA and propionyl-CoA, in the context of the LCC enzyme complex. Thus, the supercomplex formed by these four subunits has the potential to generate the main substrates, malonyl-CoA, methylmalonyl-CoA and α-carboxy-C 24-26 -CoA, used as condensing units for the biosynthesis of all the lipids present in this pathogen. © 2017 Federation of European Biochemical Societies.
Pleiotropic and Epistatic Network-Based Discovery: Integrated Networks for Target Gene Discovery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weighill, Deborah; Jones, Piet; Shah, Manesh
Biological organisms are complex systems that are composed of functional networks of interacting molecules and macro-molecules. Complex phenotypes are the result of orchestrated, hierarchical, heterogeneous collections of expressed genomic variants. However, the effects of these variants are the result of historic selective pressure and current environmental and epigenetic signals, and, as such, their co-occurrence can be seen as genome-wide correlations in a number of different manners. Biomass recalcitrance (i.e., the resistance of plants to degradation or deconstruction, which ultimately enables access to a plant's sugars) is a complex polygenic phenotype of high importance to biofuels initiatives. This study makes usemore » of data derived from the re-sequenced genomes from over 800 different Populus trichocarpa genotypes in combination with metabolomic and pyMBMS data across this population, as well as co-expression and co-methylation networks in order to better understand the molecular interactions involved in recalcitrance, and identify target genes involved in lignin biosynthesis/degradation. A Lines Of Evidence (LOE) scoring system is developed to integrate the information in the different layers and quantify the number of lines of evidence linking genes to target functions. This new scoring system was applied to quantify the lines of evidence linking genes to lignin-related genes and phenotypes across the network layers, and allowed for the generation of new hypotheses surrounding potential new candidate genes involved in lignin biosynthesis in P. trichocarpa, including various AGAMOUS-LIKE genes. Lastly, the resulting Genome Wide Association Study networks, integrated with Single Nucleotide Polymorphism (SNP) correlation, co-methylation, and co-expression networks through the LOE scores are proving to be a powerful approach to determine the pleiotropic and epistatic relationships underlying cellular functions and, as such, the molecular basis for complex phenotypes, such as recalcitrance.« less
Pleiotropic and Epistatic Network-Based Discovery: Integrated Networks for Target Gene Discovery
Weighill, Deborah; Jones, Piet; Shah, Manesh; ...
2018-05-11
Biological organisms are complex systems that are composed of functional networks of interacting molecules and macro-molecules. Complex phenotypes are the result of orchestrated, hierarchical, heterogeneous collections of expressed genomic variants. However, the effects of these variants are the result of historic selective pressure and current environmental and epigenetic signals, and, as such, their co-occurrence can be seen as genome-wide correlations in a number of different manners. Biomass recalcitrance (i.e., the resistance of plants to degradation or deconstruction, which ultimately enables access to a plant's sugars) is a complex polygenic phenotype of high importance to biofuels initiatives. This study makes usemore » of data derived from the re-sequenced genomes from over 800 different Populus trichocarpa genotypes in combination with metabolomic and pyMBMS data across this population, as well as co-expression and co-methylation networks in order to better understand the molecular interactions involved in recalcitrance, and identify target genes involved in lignin biosynthesis/degradation. A Lines Of Evidence (LOE) scoring system is developed to integrate the information in the different layers and quantify the number of lines of evidence linking genes to target functions. This new scoring system was applied to quantify the lines of evidence linking genes to lignin-related genes and phenotypes across the network layers, and allowed for the generation of new hypotheses surrounding potential new candidate genes involved in lignin biosynthesis in P. trichocarpa, including various AGAMOUS-LIKE genes. Lastly, the resulting Genome Wide Association Study networks, integrated with Single Nucleotide Polymorphism (SNP) correlation, co-methylation, and co-expression networks through the LOE scores are proving to be a powerful approach to determine the pleiotropic and epistatic relationships underlying cellular functions and, as such, the molecular basis for complex phenotypes, such as recalcitrance.« less
Hey, Daniel; Grimm, Bernhard
2018-06-21
The members of the light-harvesting-complex protein (LHCP) family, which include the one-helix proteins (OHPs), are characterized by one to four membrane-spanning helices. These pro-teins function in light absorption and energy dissipation, sensing light intensity, and triggering photomorphogenesis or binding of chlorophyll and intermediates of chlorophyll biosynthesis. Arabidopsis thaliana contains two OHPs, while four homologs (named high-light-induced pro-teins, Hlips) exist in Synechocystis PCC6803. Various functions have been assigned to Hlips, ranging from photoprotection and assembly of photosystem (PS) I and PSII to regulation of the early steps of chlorophyll biosynthesis, but little is known about the function of the two plant OHPs. Here, we show that the two Arabidopsis OHPs form heterodimers and that the stromal part of OHP2 interacts with the plastid-localized PSII assembly factor HIGH CHLOROPHYLL FLUORESCENCE 244 (HCF244). Moreover, concurrent accumulation of the two OHPs and HCF244 is critical for the stability of all three proteins. In particular, the absence of OHP2 leads to the complete loss of OHP1 and HCF244. We used a virus-induced gene silencing approach to minimize the expression of OHP1 or OHP2 in adult Arabidopsis plants and revealed that OHP2 is essential for the accumulation of the PSII core subunits, while the other photosynthetic com-plexes and the major LHCPs remained unaffected. We examined the potential functions of the OHP1-OHP2-HCF244 complex in the assembly and/or repair of PSII and propose a role for this heterotrimeric complex in thylakoid membrane biogenesis. {copyright, serif} 2018 American Society of Plant Biologists. All rights reserved.
Guerreiro, Joana F.; Muir, Alexander; Ramachandran, Subramaniam; Thorner, Jeremy; Sá-Correia, Isabel
2016-01-01
Acetic acid-induced inhibition of yeast growth and metabolism limits the productivity of industrial fermentation processes, especially when lignocellulosic hydrolysates are used as feedstock in industrial biotechnology. Tolerance to acetic acid of food spoilage yeasts is also a problem in the preservation of acidic foods and beverages. Thus, understanding the molecular mechanisms underlying adaptation and tolerance to acetic acid stress is increasingly important in industrial biotechnology and the food industry. Prior genetic screens for S. cerevisiae mutants with increased sensitivity to acetic acid identified loss-of-function mutations in the YPK1 gene, which encodes a protein kinase activated by the Target of Rapamycin (TOR) Complex 2 (TORC2). We show here by several independent criteria that TORC2-Ypk1 signaling is stimulated in response to acetic acid stress. Moreover, we demonstrate that TORC2-mediated Ypk1 phosphorylation and activation is necessary for acetic acid tolerance, and occurs independently of Hrk1, a protein kinase previously implicated in the cellular response to acetic acid. In addition, we show that TORC2-Ypk1-mediated activation of L-serine: palmitoyl-CoA acyltransferase, the enzyme complex that catalyzes the first committed step of sphingolipid biosynthesis, is required for acetic acid tolerance. Furthermore, analysis of the sphingolipid pathway using inhibitors and mutants indicates that it is production of certain complex sphingolipids that contributes to conferring acetic acid tolerance. Consistent with that conclusion, promoting sphingolipid synthesis by adding exogenous long-chain base precursor phytosphingosine to the growth medium enhanced acetic acid tolerance. Thus, appropriate modulation of the TORC2-Ypk1-sphingolipid axis in industrial yeast strains may have utility in improving fermentations of acetic acid-containing feedstocks. PMID:27671892
FK506 biosynthesis is regulated by two positive regulatory elements in Streptomyces tsukubaensis
2012-01-01
Background FK506 (Tacrolimus) is an important immunosuppressant, produced by industrial biosynthetic processes using various Streptomyces species. Considering the complex structure of FK506, it is reasonable to expect complex regulatory networks controlling its biosynthesis. Regulatory elements, present in gene clusters can have a profound influence on the final yield of target product and can play an important role in development of industrial bioprocesses. Results Three putative regulatory elements, namely fkbR, belonging to the LysR-type family, fkbN, a large ATP-binding regulator of the LuxR family (LAL-type) and allN, a homologue of AsnC family regulatory proteins, were identified in the FK506 gene cluster from Streptomyces tsukubaensis NRRL 18488, a progenitor of industrial strains used for production of FK506. Inactivation of fkbN caused a complete disruption of FK506 biosynthesis, while inactivation of fkbR resulted in about 80% reduction of FK506 yield. No functional role in the regulation of the FK506 gene cluster has been observed for the allN gene. Using RT-PCR and a reporter system based on a chalcone synthase rppA, we demonstrated, that in the wild type as well as in fkbN- and fkbR-inactivated strains, fkbR is transcribed in all stages of cultivation, even before the onset of FK506 production, whereas fkbN expression is initiated approximately with the initiation of FK506 production. Surprisingly, inactivation of fkbN (or fkbR) does not abolish the transcription of the genes in the FK506 gene cluster in general, but may reduce expression of some of the tested biosynthetic genes. Finally, introduction of a second copy of the fkbR or fkbN genes under the control of the strong ermE* promoter into the wild type strain resulted in 30% and 55% of yield improvement, respectively. Conclusions Our results clearly demonstrate the positive regulatory role of fkbR and fkbN genes in FK506 biosynthesis in S. tsukubaensis NRRL 18488. We have shown that regulatory mechanisms can differ substantially from other, even apparently closely similar FK506-producing strains, reported in literature. Finally, we have demonstrated the potential of these genetically modified strains of S. tsukubaensis for improving the yield of fermentative processes for production of FK506. PMID:23083511
Razmilic, Valeria; Castro, Jean F; Andrews, Barbara; Asenjo, Juan A
2018-07-01
The first genome scale model (GSM) for Streptomyces leeuwenhoekii C34 was developed to study the biosynthesis pathways of specialized metabolites and to find metabolic engineering targets for enhancing their production. The model, iVR1007, consists of 1,722 reactions, 1,463 metabolites, and 1,007 genes, it includes the biosynthesis pathways of chaxamycins, chaxalactins, desferrioxamines, ectoine, and other specialized metabolites. iVR1007 was validated using experimental information of growth on 166 different sources of carbon, nitrogen and phosphorous, showing an 83.7% accuracy. The model was used to predict metabolic engineering targets for enhancing the biosynthesis of chaxamycins and chaxalactins. Gene knockouts, such as sle03600 (L-homoserine O-acetyltransferase), and sle39090 (trehalose-phosphate synthase), that enhance the production of the specialized metabolites by increasing the pool of precursors were identified. Using the algorithm of flux scanning based on enforced objective flux (FSEOF) implemented in python, 35 and 25 over-expression targets for increasing the production of chaxamycin A and chaxalactin A, respectively, that were not directly associated with their biosynthesis routes were identified. Nineteen over-expression targets that were common to the two specialized metabolites studied, like the over-expression of the acetyl carboxylase complex (sle47660 (accA) and any of the following genes: sle44630 (accA_1) or sle39830 (accA_2) or sle27560 (bccA) or sle59710) were identified. The predicted knockouts and over-expression targets will be used to perform metabolic engineering of S. leeuwenhoekii C34 and obtain overproducer strains. © 2018 Wiley Periodicals, Inc.
Nahar, Kamrun; Kyndt, Tina; De Vleesschauwer, David; Höfte, Monica; Gheysen, Godelieve
2011-01-01
Complex defense signaling pathways, controlled by different hormones, are involved in the reaction of plants to a wide range of biotic and abiotic stress factors. We studied the ability of salicylic acid, jasmonate (JA), and ethylene (ET) to induce systemic defense in rice (Oryza sativa) against the root knot nematode Meloidogyne graminicola. Exogenous ET (ethephon) and JA (methyl jasmonate) supply on the shoots induced a strong systemic defense response in the roots, exemplified by a major up-regulation of pathogenesis-related genes OsPR1a and OsPR1b, while the salicylic acid analog BTH (benzo-1,2,3-thiadiazole-7-carbothioic acid S-methyl ester) was a less potent systemic defense inducer from shoot to root. Experiments with JA biosynthesis mutants and ET-insensitive transgenics showed that ET-induced defense requires an intact JA pathway, while JA-induced defense was still functional when ET signaling was impaired. Pharmacological inhibition of JA and ET biosynthesis confirmed that JA biosynthesis is needed for ET-induced systemic defense, and quantitative real-time reverse transcription-polymerase chain reaction data revealed that ET application onto the shoots strongly activates JA biosynthesis and signaling genes in the roots. All data provided in this study point to the JA pathway to play a pivotal role in rice defense against root knot nematodes. The expression of defense-related genes was monitored in root galls caused by M. graminicola. Different analyzed defense genes were attenuated in root galls caused by the nematode at early time points after infection. However, when the exogenous defense inducers ethephon and methyl jasmonate were supplied to the plant, the nematode was less effective in counteracting root defense pathways, hence making the plant more resistant to nematode infection. PMID:21715672
Rhythms of glycerophospholipid synthesis in retinal inner nuclear layer cells.
Garbarino-Pico, Eduardo; Valdez, Diego J; Contín, María A; Pasquaré, Susana J; Castagnet, Paula I; Giusto, Norma M; Caputto, Beatriz L; Guido, Mario E
2005-09-01
The present study demonstrates that the biosynthesis of phospholipids in the inner nuclear layer cells of the chicken retina displays daily rhythms under constant illumination conditions. The vertebrate retina contains circadian oscillators and photoreceptors (PRCs) that temporally regulate its own physiology and synchronize the whole organism to the daily environmental changes. We have previously reported that chicken photoreceptors and retinal ganglion cells (RGCs) present significant daily variations in their phospholipid biosynthesis under constant illumination conditions. Herein, we demonstrate that cell preparations highly enriched in inner nuclear layer cells also exhibit a circadian-regulated phospholipid labeling after the in vivo administration of [(32)P]phosphate or [(3)H]glycerol both in animals maintained under constant darkness or light for at least 48h. In constant darkness, there was a significant incorporation of both precursors into phospholipids with the highest levels of labeling around midday and dusk. In constant light, the labeling of (32)P-phospholipids was also significantly higher during the day and early night whereas the incorporation of [(3)H]glycerol into phospholipids, that indicates de novo biosynthesis, was greater during the day but probably reflecting a higher precursor availability at those phases. We also measured the in vitro activity of phosphatidate phosphohydrolase and diacylglycerol lipase in preparations obtained from the dark condition. The two enzymes exhibited the highest activity levels late in the day. When we assessed the in vitro incorporation of [(14)C]oleate into different lysophospholipids from samples collected at different phases in constant darkness, reaction catalyzed by lysophospholipid acyltransferases II, labeling showed a complex pattern of daily activity. Taken together, these results demonstrate that the biosynthesis of phospholipids in cells of the chicken retinal inner nuclear layer exhibits a daily rhythmicity under constant illumination conditions, which is controlled by a circadian clock.
Zang, Guangchao; Zou, Hanyan; Zhang, Yuchan; Xiang, Zheng; Huang, Junli; Luo, Li; Wang, Chunping; Lei, Kairong; Li, Xianyong; Song, Deming; Din, Ahmad Ud; Wang, Guixue
2016-01-01
DEETIOLATED1 (DET1) plays a critical role in developmental and environmental responses in many plants. To date, the functions of OsDET1 in rice (Oryza sativa) have been largely unknown. OsDET1 is an ortholog of Arabidopsis (Arabidopsis thaliana) DET1. Here, we found that OsDET1 is essential for maintaining normal rice development. The repression of OsDET1 had detrimental effects on plant development, and leaded to contradictory phenotypes related to abscisic acid (ABA) in OsDET1 interference (RNAi) plants. We found that OsDET1 is involved in modulating ABA signaling in rice. OsDET1 RNAi plants exhibited an ABA hypersensitivity phenotype. Using yeast two-hybrid (Y2H) and bimolecular fluorescence complementation assays, we determined that OsDET1 interacts physically with DAMAGED-SPECIFIC DNA-BINDING PROTEIN1 (OsDDB1) and CONSTITUTIVE PHOTOMORPHOGENIC10 (COP10); DET1- and DDB1-ASSOCIATED1 binds to the ABA receptors OsPYL5 and OsDDB1. We found that the degradation of OsPYL5 was delayed in OsDET1 RNAi plants. These findings suggest that OsDET1 deficiency disturbs the COP10-DET1-DDB1 complex, which is responsible for ABA receptor (OsPYL) degradation, eventually leading to ABA sensitivity in rice. Additionally, OsDET1 also modulated ABA biosynthesis, as ABA biosynthesis was inhibited in OsDET1 RNAi plants and promoted in OsDET1-overexpressing transgenic plants. In conclusion, our data suggest that OsDET1 plays an important role in maintaining normal development in rice and mediates the cross talk between ABA biosynthesis and ABA signaling pathways in rice. PMID:27208292
Characterization of the biosynthesis, processing, and sorting of human HBP/CAP37/azurocidin.
Lindmark, A; Garwicz, D; Rasmussen, P B; Flodgaard, H; Gullberg, U
1999-10-01
Azurocidin is a multifunctional endotoxin-binding serine protease homolog synthesized during the promyelocytic stage of neutrophil development. To characterize the biosynthesis and processing of azurocidin, cDNA encoding human preproazurocidin was stably transfected to the rat basophilic leukemia cell line RBL-1 and the murine myeloblast-like cell line 32D cl3; cell lines previously utilized to study the related proteins cathepsin G and proteinase 3. After 30 min of pulse radiolabeling, two forms of newly synthesized proazurocidin (34.5 and 37 kDa), differing in carbohydrate content but with protein cores of identical sizes, were recognized. With time, the 34.5-kDa form disappeared, while the 37-kDa form was further processed proteolytically, as judged by digestion with N-glycosidase F. Conversion of high-mannose oligosaccharides into complex forms was shown by acquisition of complete resistance to endoglycosidase H. Radiosequence analysis demonstrated that the amino-terminal seven amino acid propeptide of proazurocidin was removed in a stepwise manner during processing; initial removal of five amino acids was followed by cleavage of a dipeptide. Presence of the protease inhibitors Gly-Phe-diazomethyl ketone, bestatin, or leupeptin inhibited only the cleavage of the dipeptide, thus indicating the involvement of at least two amino-terminal processing enzymes. Translocation of azurocidin to granules was shown by subcellular fractionation. Similar results, with efficient biosynthesis, processing, and targeting to granules in both cell lines, were obtained with a mutant form of human preproazurocidin lacking the amino-terminal heptapropeptide. In conclusion, this investigation is an important addition to our previous studies on related azurophil granule proteins, and provides novel information concerning the biosynthesis and distinctive amino-terminal processing of human azurocidin.
Janevska, Slavica; Arndt, Birgit; Niehaus, Eva-Maria; Burkhardt, Immo; Rösler, Sarah M.; Brock, Nelson L.; Humpf, Hans-Ulrich; Dickschat, Jeroen S.; Tudzynski, Bettina
2016-01-01
The 2H-pyran-2-one gibepyrone A and its oxidized derivatives gibepyrones B–F have been isolated from the rice pathogenic fungus Fusarium fujikuroi already more than 20 years ago. However, these products have not been linked to the respective biosynthetic genes, and therefore, their biosynthesis has not yet been analyzed on a molecular level. Feeding experiments with isotopically labeled precursors clearly supported a polyketide origin for the formal monoterpenoid gibepyrone A, whereas the terpenoid pathway could be excluded. Targeted gene deletion verified that the F. fujikuroi polyketide synthase PKS13, designated Gpy1, is responsible for gibepyrone A biosynthesis. Next to Gpy1, the ATP-binding cassette transporter Gpy2 is encoded by the gibepyrone gene cluster. Gpy2 was shown to have only a minor impact on the actual efflux of gibepyrone A out of the cell. Instead, we obtained evidence that Gpy2 is involved in gene regulation as it represses GPY1 gene expression. Thus, GPY1 was up-regulated and gibepyrone A production was enhanced both extra- and intracellularly in Δgpy2 mutants. Furthermore, expression of GPY genes is strictly repressed by members of the fungus-specific velvet complex, Vel1, Vel2, and Lae1, whereas Sge1, a major regulator of secondary metabolism in F. fujikuroi, affects gibepyrone biosynthesis in a positive manner. The gibepyrone A derivatives gibepyrones B and D were shown to be produced by cluster-independent P450 monooxygenases, probably to protect the fungus from the toxic product. In contrast, the formation of gibepyrones E and F from gibepyrone A is a spontaneous process and independent of enzymatic activity. PMID:27856636
Jiang, Bei; Xiao, Bo; Liu, Linde; Ge, Yihe; Hu, Xiaomei
2016-01-01
Gene duplication often provides selective advantages for the survival of microorganisms in adapting to varying environmental conditions. P. aeruginosa PAO1 possesses two seven-gene operons [phz1 (phzA1B1C1D1E1F1G1) and phz2 (phzA2B2C2D2E2F2G2)] that are involved in the biosynthesis of phenazine-1-carboxylic acid and its derivatives. Although the two operons are highly homologous and their functions are well known, it is unclear how the two phz operons coordinate their expressions to maintain the phenazine biosynthesis. By constructing single and double deletion mutants of the two phz operons, we found that the phz1-deletion mutant produced the same or less amount of phenazine-1-carboxylic acid and pyocyanin in GA medium than the phz2-knockout mutant while the phz1-phz2 double knockout mutant did not produce any phenazines. By generating phzA1 and phzA2 translational and transcriptional fusions with a truncated lacZ reporter, we found that the expression of the phz1 operon increased significantly at the post-transcriptional level and did not alter at the transcriptional level in the absence of the phz2 operon. Surprisingly, the expression the phz2 operon increased significantly at the post-transcriptional level and only moderately at the transcriptional level in the absence of the phz1 operon. Our findings suggested that a complex cross-regulation existed between the phz1 and phz2 operons. By mediating the upregulation of one phz operon expression while the other was deleted, this crosstalk would maintain the homeostatic balance of phenazine biosynthesis in P. aeruginosa PAO1. PMID:26735915
Diniz, Simone Cardoso; Voss, Ingo; Steinbüchel, Alexander
2006-03-05
Elementary mode analysis was applied to simulate conditions for cyanophycin (CGP) biosynthesis and to optimize its production in bacteria. The conclusions from these simulations were confirmed by experiments with recombinant strains of the wild types and polyhydroxyalkanoate (PHA)-negative mutants of Ralstonia eutropha and Pseudomonas putida expressing CGP synthetase genes (cphA) of Synechocystis sp. strain PCC6308 or Anabaena sp. strain PCC7120. In particular, the effects of suitable precursor substrates and of oxygen supply as well as of the capability to accumulate PHA in addition to CGP biosynthesis were investigated. Since CGP consists of the amino acids aspartate and arginine, the tricarboxylic acid cycle (TCC), which provides intermediates for biosynthesis of these amino acids, seems to be important. Excretion of intermediates of the TCC upon cultivation at restricted oxygen supply and conversion of fumarate mainly to malate and to only little succinate in the absence of oxygen indicated that TCC intermediates for arginine and aspartate biosynthesis were provided by the oxidative or reductive parts of the TCC, respectively. The following important conclusions were made from the experiments and the simulations: (i) external arginine additionally supplied to the medium, (ii) oxygen limitation, and (iii) absence of PHA accumulation exerted positive effects on CGP accumulation. These conclusions were utilized to obtain CGP contents in the cells of as high as 17.9% (w x w(-1)) during cultivation of the investigated bacteria at the 30-L scale using mineral salts medium. Such high CGP contents were previously not obtained with these bacteria at a 30-L scale, even if complex media were used.
Liu, Xuemei; Wang, Qiuyu; Chen, Pengfei; Song, Funan; Guan, Minxiao; Jin, Lihua; Wang, Yucheng; Yang, Chuanping
2012-01-01
Cellulose synthase (CESA), which is an essential catalyst for the generation of plant cell wall biomass, is mainly encoded by the CesA gene family that contains ten or more members. In this study; four full-length cDNAs encoding CESA were isolated from Betula platyphylla Suk., which is an important timber species, using RT-PCR combined with the RACE method and were named as BplCesA3, −4, −7 and −8. These deduced CESAs contained the same typical domains and regions as their Arabidopsis homologs. The cDNA lengths differed among these four genes, as did the locations of the various protein domains inferred from the deduced amino acid sequences, which shared amino acid sequence identities ranging from only 63.8% to 70.5%. Real-time RT-PCR showed that all four BplCesAs were expressed at different levels in diverse tissues. Results indicated that BplCESA8 might be involved in secondary cell wall biosynthesis and floral development. BplCESA3 appeared in a unique expression pattern and was possibly involved in primary cell wall biosynthesis and seed development; it might also be related to the homogalacturonan synthesis. BplCESA7 and BplCESA4 may be related to the formation of a cellulose synthase complex and participate mainly in secondary cell wall biosynthesis. The extremely low expression abundance of the four BplCESAs in mature pollen suggested very little involvement of them in mature pollen formation in Betula. The distinct expression pattern of the four BplCesAs suggested they might participate in developments of various tissues and that they are possibly controlled by distinct mechanisms in Betula. PMID:23202892
Bushley, Kathryn E.; Raja, Rajani; Jaiswal, Pankaj; Cumbie, Jason S.; Nonogaki, Mariko; Boyd, Alexander E.; Owensby, C. Alisha; Knaus, Brian J.; Elser, Justin; Miller, Daniel; Di, Yanming; McPhail, Kerry L.; Spatafora, Joseph W.
2013-01-01
The ascomycete fungus Tolypocladium inflatum, a pathogen of beetle larvae, is best known as the producer of the immunosuppressant drug cyclosporin. The draft genome of T. inflatum strain NRRL 8044 (ATCC 34921), the isolate from which cyclosporin was first isolated, is presented along with comparative analyses of the biosynthesis of cyclosporin and other secondary metabolites in T. inflatum and related taxa. Phylogenomic analyses reveal previously undetected and complex patterns of homology between the nonribosomal peptide synthetase (NRPS) that encodes for cyclosporin synthetase (simA) and those of other secondary metabolites with activities against insects (e.g., beauvericin, destruxins, etc.), and demonstrate the roles of module duplication and gene fusion in diversification of NRPSs. The secondary metabolite gene cluster responsible for cyclosporin biosynthesis is described. In addition to genes necessary for cyclosporin biosynthesis, it harbors a gene for a cyclophilin, which is a member of a family of immunophilins known to bind cyclosporin. Comparative analyses support a lineage specific origin of the cyclosporin gene cluster rather than horizontal gene transfer from bacteria or other fungi. RNA-Seq transcriptome analyses in a cyclosporin-inducing medium delineate the boundaries of the cyclosporin cluster and reveal high levels of expression of the gene cluster cyclophilin. In medium containing insect hemolymph, weaker but significant upregulation of several genes within the cyclosporin cluster, including the highly expressed cyclophilin gene, was observed. T. inflatum also represents the first reference draft genome of Ophiocordycipitaceae, a third family of insect pathogenic fungi within the fungal order Hypocreales, and supports parallel and qualitatively distinct radiations of insect pathogens. The T. inflatum genome provides additional insight into the evolution and biosynthesis of cyclosporin and lays a foundation for further investigations of the role of secondary metabolite gene clusters and their metabolites in fungal biology. PMID:23818858
Lee, Jisun; Choi, Tae Gyu; Ha, Joohun; Kim, Sung Soo
2012-01-01
Immunoglubulin G (IgG) is a major isotype of antibody, which is predominantly involved in immune response. The complete tetramer is needed to fold and assemble in endoplasmic reticulum (ER) prior to secretion from cells. Protein quality control guided by ER chaperons is most essential for full biological activity. Cyclophilin B (CypB) was initially identified as a high-affinity binding protein for the immunosuppressive drug Cyclosporine A (CsA). CsA suppresses organ rejection by halting productions of pro-inflammatory molecules in T cell and abolishes the enzymatic property of CypB that accelerates the folding of proteins by catalysing the isomerization of peptidyl-proline bonds in ER. Here, we reported that CsA significantly inhibited IgG biosynthesis at posttranslational level in antibody secreting cells. Moreover, CsA stimulated the extracellular secretion of CypB and induced ROS generation, leading to expressions of ER stress markers. In addition, the absence of intracellular CypB impaired the formation of ER multiprotein complex, which is most important for resisting ER stress. Interestingly, CsA interrupted IgG folding via occupying the PPIase domain of CypB in ER. Eventually, unfolded IgG is degraded via Herp-dependent ERAD pathway. Furthermore, IgG biosynthesis was really abrogated by inhibition of CypB in primary B cells. We established for the first time the immunosuppressive effect of CsA on B cells. Conclusively, the combined results of the current study suggest that CypB is a pivotal molecule for IgG biosynthesis in ER quality control. Copyright © 2011 Elsevier B.V. All rights reserved.
Ethylene Control Technologies in Extending Postharvest Shelf Life of Climacteric Fruit.
Zhang, Junhua; Cheng, Dong; Wang, Baobin; Khan, Iqbal; Ni, Yonghao
2017-08-30
Fresh fruit is important for a healthy diet. However, because of their seasonal production, regional specific cultivation, and perishable nature, it is essential to develop preservation technologies to extend the postharvest shelf life of fresh fruits. Climacteric fruit adopt spoilage because of ethylene, a key hormone associated with the ripening process. Therefore, controlling ethylene activity by following safe and effective approaches is a key to extend the postharvest shelf life of fruit. In this review, ethylene control technologies will be discussed aiming for the need of developing more innovative and effective approaches. The biosynthesis pathway will be given first. Then, the technologies determining the postharvest shelf life of climacteric fruit will be described with special attention to the latest and significant published works in this field. Special attention is given to 1-methylcyclopropene (1-MCP), which is effective in fruit preservation technologies. Finally, the encapsulation technology to improve the stability of 1-MCP will be proposed, using a potential encapsulation agent of 1-MCP, calixarene.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hai, Yang; Christianson, David W.
Leishmaniaarginase is a potential drug target for the treatment of leishmaniasis because this binuclear manganese metalloenzyme initiatesde novopolyamine biosynthesis by catalyzing the hydrolysis of L-arginine to generate L-ornithine and urea. The product L-ornithine subsequently undergoes decarboxylation to yield putrescine, which in turn is utilized for spermidine biosynthesis. Polyamines such as spermidine are essential for the growth and survival of the parasite, so inhibition of enzymes in the polyamine-biosynthetic pathway comprises an effective strategy for treating parasitic infections. To this end, two X-ray crystal structures ofL. mexicanaarginase complexed with α,α-disubstituted boronic amino-acid inhibitors based on the molecular scaffold of 2-(S)-amino-6-boronohexanoic acidmore » are now reported. Structural comparisons with human and parasitic arginase complexes reveal interesting differences in the binding modes of the additional α-substituents,i.e.the D side chains, of these inhibitors. Subtle differences in the three-dimensional contours of the outer active-site rims among arginases from different species lead to different conformations of the D side chains and thus different inhibitor-affinity trends. The structures suggest that it is possible to maintain affinity while fine-tuning intermolecular interactions of the D side chain of α,α-disubstituted boronic amino-acid inhibitors in the search for isozyme-specific and species-specific arginase inhibitors.« less
Yu, Yiyang; Yan, Fang; Chen, Yun; Jin, Christopher; Guo, Jian-Hua; Chai, Yunrong
2016-01-01
Bacillus subtilis is long known to produce poly-γ-glutamic acids (γ-PGA) as one of the major secreted polymeric substances. In B. subtilis, the regulation of γ-PGA production and its physiological role are still unclear. B. subtilis is also capable of forming structurally complex multicellular communities, or biofilms, in which an extracellular matrix consisting of secreted proteins and polysaccharides holds individual cells together. Biofilms were shown to facilitate B. subtilis–plant interactions. In this study, we show that different environmental isolates of B. subtilis, all capable of forming biofilms, vary significantly in γ-PGA production. This is possibly due to differential regulation of γ-PGA biosynthesis genes. In many of those environmental isolates, γ-PGA seems to contribute to robustness and complex morphology of the colony biofilms, suggesting a role of γ-PGA in biofilm formation. Our evidence further shows that in selected B. subtilis strains, γ-PGA also plays a role in root colonization by the bacteria, pinpointing a possible function of γ-PGA in B. subtilis–plant interactions. Finally, we found that several pathways co-regulate both γ-PGA biosynthesis genes and genes for the biofilm matrix in B. subtilis, but in an opposing fashion. We discussed potential biological significance of that. PMID:27891125
Fujita, Satomi; Cho, Su-Hee; Yoshida, Ayako; Hasebe, Fumihito; Tomita, Takeo; Kuzuyama, Tomohisa; Nishiyama, Makoto
2017-09-16
LysK is an M20 peptidase family enzyme that hydrolyzes the isopeptide bond between the carrier protein LysW and lysine in order to release lysine, which is the last step of lysine biosynthesis in Thermus thermophilus. In the present study, we determined the crystal structure of LysK in complex with lysine at a resolution of 2.4 Å. The α-amino group of the bound lysine was oriented toward the catalytic center, which was composed of the residues coordinating divalent metal ions for the hydrolysis of the isopeptide bond. An 11 Å-long path was observed from the active site binding lysine to the protein surface, which may be responsible for recognizing the C-terminal extension domain of LysW with the conserved EDWGE sequence. A positively-charged surface region was detected around the exit of the path, similar to other lysine biosynthetic enzymes using LysW as the carrier protein. Mutational studies of the surface residues provided a plausible model for the electrostatic interaction with LysW. Copyright © 2017 Elsevier Inc. All rights reserved.
Casañal, Ana; Zander, Ulrich; Muñoz, Cristina; Dupeux, Florine; Luque, Irene; Botella, Miguel Angel; Schwab, Wilfried; Valpuesta, Victoriano; Marquez, José A.
2013-01-01
Pathogenesis-related 10 (PR-10) proteins are involved in many aspects of plant biology but their molecular function is still unclear. They are related by sequence and structural homology to mammalian lipid transport and plant abscisic acid receptor proteins and are predicted to have cavities for ligand binding. Recently, three new members of the PR-10 family, the Fra a proteins, have been identified in strawberry, where they are required for the activity of the flavonoid biosynthesis pathway, which is essential for the development of color and flavor in fruits. Here, we show that Fra a proteins bind natural flavonoids with different selectivity and affinities in the low μm range. The structural analysis of Fra a 1 E and a Fra a 3-catechin complex indicates that loops L3, L5, and L7 surrounding the ligand-binding cavity show significant flexibility in the apo forms but close over the ligand in the Fra a 3-catechin complex. Our findings provide mechanistic insight on the function of Fra a proteins and suggest that PR-10 proteins, which are widespread in plants, may play a role in the control of secondary metabolic pathways by binding to metabolic intermediates. PMID:24133217
Sulfoquinovose in the biosphere: occurrence, metabolism and functions.
Goddard-Borger, Ethan D; Williams, Spencer J
2017-02-20
The sulfonated carbohydrate sulfoquinovose (SQ) is produced in quantities estimated at some 10 billion tonnes annually and is thus a major participant in the global sulfur biocycle. SQ is produced by most photosynthetic organisms and incorporated into the sulfolipid sulfoquinovosyl diacylglycerol (SQDG), as well as within some archaea for incorporation into glycoprotein N-glycans. SQDG is found mainly within the thylakoid membranes of the chloroplast, where it appears to be important for membrane structure and function and for optimal activity of photosynthetic protein complexes. SQDG metabolism within the sulfur cycle involves complex biosynthetic and catabolic processes. SQDG biosynthesis is largely conserved within plants, algae and bacteria. On the other hand, two major sulfoglycolytic pathways have been discovered for SQDG degradation, the sulfo-Embden-Meyerhof-Parnas (sulfo-EMP) and sulfo-Entner-Doudoroff (sulfo-ED) pathways, which mirror the major steps in the glycolytic EMP and ED pathways. Sulfoglycolysis produces C3-sulfonates, which undergo biomineralization to inorganic sulfur species, completing the sulfur cycle. This review discusses the discovery and structural elucidation of SQDG and archaeal N-glycans, the occurrence, distribution, and speciation of SQDG, and metabolic pathways leading to the biosynthesis of SQDG and its catabolism through sulfoglycolytic and biomineralization pathways to inorganic sulfur. © 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.
Disruption of Mediator rescues the stunted growth of a lignin-deficient Arabidopsis mutant.
Bonawitz, Nicholas D; Kim, Jeong Im; Tobimatsu, Yuki; Ciesielski, Peter N; Anderson, Nickolas A; Ximenes, Eduardo; Maeda, Junko; Ralph, John; Donohoe, Bryon S; Ladisch, Michael; Chapple, Clint
2014-05-15
Lignin is a phenylpropanoid-derived heteropolymer important for the strength and rigidity of the plant secondary cell wall. Genetic disruption of lignin biosynthesis has been proposed as a means to improve forage and bioenergy crops, but frequently results in stunted growth and developmental abnormalities, the mechanisms of which are poorly understood. Here we show that the phenotype of a lignin-deficient Arabidopsis mutant is dependent on the transcriptional co-regulatory complex, Mediator. Disruption of the Mediator complex subunits MED5a (also known as REF4) and MED5b (also known as RFR1) rescues the stunted growth, lignin deficiency and widespread changes in gene expression seen in the phenylpropanoid pathway mutant ref8, without restoring the synthesis of guaiacyl and syringyl lignin subunits. Cell walls of rescued med5a/5b ref8 plants instead contain a novel lignin consisting almost exclusively of p-hydroxyphenyl lignin subunits, and moreover exhibit substantially facilitated polysaccharide saccharification. These results demonstrate that guaiacyl and syringyl lignin subunits are largely dispensable for normal growth and development, implicate Mediator in an active transcriptional process responsible for dwarfing and inhibition of lignin biosynthesis, and suggest that the transcription machinery and signalling pathways responding to cell wall defects may be important targets to include in efforts to reduce biomass recalcitrance.
Mode of Action and Heterologous Expression of the Natural Product Antibiotic Vancoresmycin.
Kepplinger, Bernhard; Morton-Laing, Stephanie; Seistrup, Kenneth Holst; Marrs, Emma Claire Louise; Hopkins, Adam Paul; Perry, John David; Strahl, Henrik; Hall, Michael John; Errington, Jeff; Ellis Allenby, Nicholas Edward
2018-01-19
Antibiotics that interfere with the bacterial cytoplasmic membrane have long-term potential for the treatment of infectious diseases as this mode of action is anticipated to result in low resistance frequency. Vancoresmycin is an understudied natural product antibiotic consisting of a terminal tetramic acid moiety fused to a linear, highly oxygenated, stereochemically complex polyketide chain. Vancoresmycin shows minimum inhibitory concentrations (MICs) from 0.125 to 2 μg/mL against a range of clinically relevant, antibiotic-resistant Gram-positive bacteria. Through a comprehensive mode-of-action study, utilizing Bacillus subtilis reporter strains, DiSC 3 (5) depolarization assays, and fluorescence microscopy, we have shown that vancoresmycin selectively targets the cytoplasmic membrane of Gram-positive bacteria via a non-pore-forming, concentration-dependent depolarization mechanism. Whole genome sequencing of the producing strain allowed identification of the 141 kbp gene cluster encoding for vancoresmycin biosynthesis and a preliminary model for its biosynthesis. The size and complex structure of vancoresmycin could confound attempts to generate synthetic analogues. To overcome this problem and facilitate future studies, we identified, cloned, and expressed the 141 kbp biosynthetic gene cluster in Streptomyces coelicolor M1152. Elucidation of the mode-of-action of vancoresmycin, together with the heterologous expression system, will greatly facilitate further studies of this and related molecules.
Casein kinase 2 and the cell response to growth factors.
Filhol-Cochet, O; Loue-Mackenbach, P; Cochet, C; Chambaz, E M
1994-01-01
Different approaches have been followed with the aim of delineating a possible role of casein kinase 2 (CK2) in the mitogenic signalling in response to cell growth factors. (a) Immunocytochemical detection of CK2 showed that while the kinase is evenly distributed throughout cycle arrested cells, it becomes preferentially associated with the nuclear compartment in activity growing cells; (b) CK2 biosynthesis is activated as an early response of quiescent cells to growth factors. The newly synthesized CK2 steadily accumulates as the cells progress through the G1 phase. This growth factor-induced CK2 biosynthesis involves in parallel the two alpha and beta subunits of the kinase, with no detectable preferential subcellular localization of the newly synthesized enzyme; and (c) In addition to substrate phosphorylation, CK2 may form molecular complexes with cell components of functional significance. Such is the case with the protein p53, a major negative regulator of the cell cycle. CK2 forms a high affinity association (Kd 70 nM) with p53, through its beta subunit. The complex dissociates in the presence of adenosine triphosphate (ATP). These observations suggest that CK2 and p53 may play a coordinated regulatory role in the cell response to growth factors.
Awad, Agape M; Venkataramanan, Srivats; Nag, Anish; Galivanche, Anoop Raj; Bradley, Michelle C; Neves, Lauren T; Douglass, Stephen; Clarke, Catherine F; Johnson, Tracy L
2017-09-08
Despite its relatively streamlined genome, there are many important examples of regulated RNA splicing in Saccharomyces cerevisiae Here, we report a role for the chromatin remodeler SWI/SNF in respiration, partially via the regulation of splicing. We find that a nutrient-dependent decrease in Snf2 leads to an increase in splicing of the PTC7 transcript. The spliced PTC7 transcript encodes a mitochondrial phosphatase regulator of biosynthesis of coenzyme Q 6 (ubiquinone or CoQ 6 ) and a mitochondrial redox-active lipid essential for electron and proton transport in respiration. Increased splicing of PTC7 increases CoQ 6 levels. The increase in PTC7 splicing occurs at least in part due to down-regulation of ribosomal protein gene expression, leading to the redistribution of spliceosomes from this abundant class of intron-containing RNAs to otherwise poorly spliced transcripts. In contrast, a protein encoded by the nonspliced isoform of PTC7 represses CoQ 6 biosynthesis. Taken together, these findings uncover a link between Snf2 expression and the splicing of PTC7 and establish a previously unknown role for the SWI/SNF complex in the transition of yeast cells from fermentative to respiratory modes of metabolism. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Dolan, Stephen K; Bock, Tobias; Hering, Vanessa; Owens, Rebecca A; Jones, Gary W; Blankenfeldt, Wulf; Doyle, Sean
2017-02-01
Gliotoxin is an epipolythiodioxopiperazine (ETP) class toxin, contains a disulfide bridge that mediates its toxic effects via redox cycling and is produced by the opportunistic fungal pathogen Aspergillus fumigatus Self-resistance against gliotoxin is effected by the gliotoxin oxidase GliT, and attenuation of gliotoxin biosynthesis is catalysed by gliotoxin S -methyltransferase GtmA. Here we describe the X-ray crystal structures of GtmA-apo (1.66 Å), GtmA complexed to S -adenosylhomocysteine (1.33 Å) and GtmA complexed to S -adenosylmethionine (2.28 Å), providing mechanistic insights into this important biotransformation. We further reveal that simultaneous elimination of the ability of A. fumigatus to dissipate highly reactive dithiol gliotoxin, via deletion of GliT and GtmA, results in the most significant hypersensitivity to exogenous gliotoxin observed to date. Indeed, quantitative proteomic analysis of Δ gliT ::Δ gtmA reveals an uncontrolled over-activation of the gli -cluster upon gliotoxin exposure. The data presented herein reveal, for the first time, the extreme risk associated with intracellular dithiol gliotoxin biosynthesis-in the absence of an efficient dismutation capacity. Significantly, a previously concealed protective role for GtmA and functionality of ETP bis -thiomethylation as an ancestral protection strategy against dithiol compounds is now evident. © 2017 The Authors.
Tödter, Dominik; Gunka, Katrin; Stülke, Jörg
2017-01-01
In most bacteria, fatty acid biosynthesis is an essential process that must be controlled by the availability of precursors and by the needs of cell division. So far, no mechanisms controlling synthesis of malonyl-coenzyme A (CoA), the committed step in fatty acid synthesis, have been identified in the Gram-positive model bacterium Bacillus subtilis. We have studied the localization and function of two highly expressed proteins of unknown function, YqhY and YloU. Both proteins are members of the conserved and widespread Asp23 family. While the deletion of yloU had no effect, loss of the yqhY gene induced the rapid acquisition of suppressor mutations. The vast majority of these mutations affect subunits of the acetyl-CoA carboxylase (ACCase) complex, the enzyme that catalyzes the formation of malonyl-CoA. Moreover, lack of yqhY is accompanied by the formation of lipophilic clusters in the polar regions of the cells indicating an increased activity of ACCase. Our results suggest that YqhY controls the activity of ACCase and that this control results in inhibition of ACCase activity. Hyperactivity of the enzyme complex in the absence of YqhY does then provoke mutations that cause reduced ACCase activity. PMID:28579978
Böttcher, Thomas
2018-01-01
Life is a complex phenomenon and much research has been devoted to both understanding its origins from prebiotic chemistry and discovering life beyond Earth. Yet, it has remained elusive how to quantify this complexity and how to compare chemical and biological units on one common scale. Here, a mathematical description of molecular complexity was applied allowing to quantitatively assess complexity of chemical structures. This in combination with the orthogonal measure of information complexity resulted in a two-dimensional complexity space ranging over the entire spectrum from molecules to organisms. Entities with a certain level of information complexity directly require a functionally complex mechanism for their production or replication and are hence indicative for life-like systems. In order to describe entities combining molecular and information complexity, the term biogenic unit was introduced. Exemplified biogenic unit complexities were calculated for ribozymes, protein enzymes, multimeric protein complexes, and even an entire virus particle. Complexities of prokaryotic and eukaryotic cells, as well as multicellular organisms, were estimated. Thereby distinct evolutionary stages in complexity space were identified. The here developed approach to compare the complexity of biogenic units allows for the first time to address the gradual characteristics of prebiotic and life-like systems without the need for a definition of life. This operational concept may guide our search for life in the Universe, and it may direct the investigations of prebiotic trajectories that lead towards the evolution of complexity at the origins of life.
Coevolution Theory of the Genetic Code at Age Forty: Pathway to Translation and Synthetic Life
Wong, J. Tze-Fei; Ng, Siu-Kin; Mat, Wai-Kin; Hu, Taobo; Xue, Hong
2016-01-01
The origins of the components of genetic coding are examined in the present study. Genetic information arose from replicator induction by metabolite in accordance with the metabolic expansion law. Messenger RNA and transfer RNA stemmed from a template for binding the aminoacyl-RNA synthetase ribozymes employed to synthesize peptide prosthetic groups on RNAs in the Peptidated RNA World. Coevolution of the genetic code with amino acid biosynthesis generated tRNA paralogs that identify a last universal common ancestor (LUCA) of extant life close to Methanopyrus, which in turn points to archaeal tRNA introns as the most primitive introns and the anticodon usage of Methanopyrus as an ancient mode of wobble. The prediction of the coevolution theory of the genetic code that the code should be a mutable code has led to the isolation of optional and mandatory synthetic life forms with altered protein alphabets. PMID:26999216
Do Trees Grow on Money? Auxin as the Currency of the Cellular Economy
Stewart, Jodi L.; Nemhauser, Jennifer L.
2010-01-01
Auxin plays a role in nearly every aspect of a plant's life. Signals from the developmental program, physiological status, and encounters with other organisms all converge on the auxin pathway. The molecular mechanisms facilitating these interactions are diverse; yet, common themes emerge. Auxin can be regulated by modulating rates of biosynthesis, conjugation, and transport, as well as sensitivity of a cell to the auxin signal. In this article, we describe some well-studied examples of auxin's interactions with other pathways. PMID:20182619
Efinaconazole in the treatment of onychomycosis
Lipner, Shari R; Scher, Richard K
2015-01-01
Efinaconazole 10% topical solution is a new triazole recently approved for the treatment of onychomycosis. It inhibits fungal lanosterol 14α-demethylase in the ergosterol biosynthesis pathway, has potent antifungal activity against dermatophytes, as well as activity against Candida spp. and non-dermatophyte molds, and showed promising results in clinical trials. This review summarizes the mechanism of action, in vitro and in vivo data, clinical trials, safety, and quality-of-life data of efinaconazole as it applies to the treatment of onychomycosis. PMID:26082652
Probing biological redox chemistry with large amplitude Fourier transformed ac voltammetry
Adamson, Hope
2017-01-01
Biological electron-exchange reactions are fundamental to life on earth. Redox reactions underpin respiration, photosynthesis, molecular biosynthesis, cell signalling and protein folding. Chemical, biomedical and future energy technology developments are also inspired by these natural electron transfer processes. Further developments in techniques and data analysis are required to gain a deeper understanding of the redox biochemistry processes that power Nature. This review outlines the new insights gained from developing Fourier transformed ac voltammetry as a tool for protein film electrochemistry. PMID:28804798
Deciphering the glycosaminoglycan code with the help of microarrays.
de Paz, Jose L; Seeberger, Peter H
2008-07-01
Carbohydrate microarrays have become a powerful tool to elucidate the biological role of complex sugars. Microarrays are particularly useful for the study of glycosaminoglycans (GAGs), a key class of carbohydrates. The high-throughput chip format enables rapid screening of large numbers of potential GAG sequences produced via a complex biosynthesis while consuming very little sample. Here, we briefly highlight the most recent advances involving GAG microarrays built with synthetic or naturally derived oligosaccharides. These chips are powerful tools for characterizing GAG-protein interactions and determining structure-activity relationships for specific sequences. Thereby, they contribute to decoding the information contained in specific GAG sequences.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noel, K. Dale
This project dealt with the plant-bacterial symbiosis that gives rise to root nodules on leguminous plants in which the bacteria carry out nitrogen fixation. Nitrogen fixation, like carbon dioxide fixation, is essential for life on planet earth, and this symbiosis is estimated to account for half of all nitrogen fixed on land. Aside from being important for the sustenance of global life, this ability allows legumes to grow without nitrogen fertilizers. Basic studies such as this project are aimed at understanding the symbiosis well enough that eventually it can be engineered into important crop species so that they no longermore » depend on nitrogen fertilizer for growth. The production and distribution of excessive fertilizer needed for optimal crop yields is responsible for a significant portion of the energy costs in agriculture. The specific aims of this work were to further the understanding of a bacterial factor that is essential for the symbiotic infection process. This factor is a bacterial surface molecule, lipopolysaccharide O antigen. In this project we showed that, not only the presence, but the specific structure of this molecule is crucial for infection. Although the success of bacterial infections in many pathogenic and mutualistic interactions have been shown to depend on intact O antigen, it has been very rare to establish that specific features of the structure are important. One of the features in this case is the presence of one additional methyl group on one sugar in the O antigen. It is very surprising that such a minor change should have an observable effect. This work sets the stage for biochemical studies of possible plant receptors that may be involved. During the course of this grant period, we developed a method of testing the importance of this bacterial component at stages of nodule development beyond the step that is blocked by null mutation. The method works adequately for this purpose and is being improved. It has implications for testing the roles of other important bacterial factors at multiple stages of nodule development. The project also investigated the biosynthesis of this bacterial factor. It has a complex structure and the first accomplishment was the determination of the sequences of genetic regions known to be important. Next the discovered genes were mutated to identify the 26 that are required for its synthesis. In addition, six others were discovered that are believed to change its structure under various environmental conditions. By studying mutants affected in specific genes, genes were associated with each of the predicted steps in the biosynthesis. Current work is testing the predicted biosynthetic model with studies conducted in vitro with bacterial extracts. Overall, the work funded by this grant establishes this system as a model for host-bacterial interactions based on specific polysaccharide structure. All areas that are needed for a comprehensive model have been significantly advanced: the biological function, the structural features that are crucial, the complete set of bacterial genes involved, and a model for the biosynthesis.« less
Campe, Ruth; Hollenbach, Eva; Kämmerer, Lara; Hendriks, Janneke; Höffken, Hans Wolfgang; Kraus, Helmut; Lerchl, Jens; Mietzner, Thomas; Tresch, Stefan; Witschel, Matthias; Hutzler, Johannes
2018-06-01
The prevalent occurrence of herbicide resistant weeds increases the necessity for new site of action herbicides for effective control as well as to relax selection pressure on the known sites of action. As a consequence, interest increased in the unexploited molecule cinmethylin as a new solution for the control of weedy grasses in cereals. Therefore, the mechanism of action of cinmethylin was reevaluated. We applied the chemoproteomic approach cellular Target Profiling™ from Evotec to identify the cinmethylin target in Lemna paucicostata protein extracts. We found three potential targets belonging to the same protein family of fatty acid thioesterases (FAT) to bind to cinmethylin with high affinity. Binding of cinmethylin to FAT proteins from Lemna and Arabidopsis was confirmed by fluorescence-based thermal shift assay. The plastid localized enzyme FAT plays a crucial role in plant lipid biosynthesis, by mediating the release of fatty acids (FA) from its acyl carrier protein (ACP) which is necessary for FA export to the endoplasmic reticulum. GC-MS analysis of free FA composition in Lemna extracts revealed strong reduction of unsaturated C18 as well as saturated C14, and C16 FAs upon treatment with cinmethylin, indicating that FA release for subsequent lipid biosynthesis is the primary target of cinmethylin. Lipid biosynthesis is a prominent target of different herbicide classes. To assess whether FAT inhibition constitutes a new mechanism of action within this complex pathway, we compared physiological effects of cinmethylin to different ACCase and VLCFA synthesis inhibitors and identified characteristic differences in plant symptomology and free FA composition upon treatment with the three herbicide classes. Also, principal component analysis of total metabolic profiling of treated Lemna plants showed strong differences in overall metabolic changes after cinmethylin, ACCase or VLCFA inhibitor treatments. Our results identified and confirmed FAT as the cinmethylin target and validate FAT inhibition as a new site of action different from other lipid biosynthesis inhibitor classes. Copyright © 2018 BASF SE. Published by Elsevier Inc. All rights reserved.
2010-01-01
Background Filamentous fungi in the genus Aspergillus produce a variety of natural products, including aflatoxin, the most potent naturally occurring carcinogen known. Aflatoxin biosynthesis, one of the most highly characterized secondary metabolic pathways, offers a model system to study secondary metabolism in eukaryotes. To control or customize biosynthesis of natural products we must understand how secondary metabolism integrates into the overall cellular metabolic network. By applying a metabolomics approach we analyzed volatile compounds synthesized by Aspergillus parasiticus in an attempt to define the association of secondary metabolism with other metabolic and cellular processes. Results Volatile compounds were examined using solid phase microextraction - gas chromatography/mass spectrometry. In the wild type strain Aspergillus parasiticus SU-1, the largest group of volatiles included compounds derived from catabolism of branched chain amino acids (leucine, isoleucine, and valine); we also identified alcohols, esters, aldehydes, and lipid-derived volatiles. The number and quantity of the volatiles produced depended on media composition, time of incubation, and light-dark status. A block in aflatoxin biosynthesis or disruption of the global regulator veA affected the volatile profile. In addition to its multiple functions in secondary metabolism and development, VeA negatively regulated catabolism of branched chain amino acids and synthesis of ethanol at the transcriptional level thus playing a role in controlling carbon flow within the cell. Finally, we demonstrated that volatiles generated by a veA disruption mutant are part of the complex regulatory machinery that mediates the effects of VeA on asexual conidiation and sclerotia formation. Conclusions 1) Volatile profiling provides a rapid, effective, and powerful approach to identify changes in intracellular metabolic networks in filamentous fungi. 2) VeA coordinates the biosynthesis of secondary metabolites with catabolism of branched chain amino acids, alcohol biosynthesis, and β-oxidation of fatty acids. 3) Intracellular chemical development in A. parasiticus is linked to morphological development. 4) Understanding carbon flow through secondary metabolic pathways and catabolism of branched chain amino acids is essential for controlling and customizing production of natural products. PMID:20735852
Fritsch, Johannes; Siebert, Elisabeth; Priebe, Jacqueline; Zebger, Ingo; Lendzian, Friedhelm; Teutloff, Christian; Friedrich, Bärbel; Lenz, Oliver
2014-01-01
The membrane-bound [NiFe] hydrogenase (MBH) supports growth of Ralstonia eutropha H16 with H2 as the sole energy source. The enzyme undergoes a complex biosynthesis process that proceeds during cell growth even at ambient O2 levels and involves 14 specific maturation proteins. One of these is a rubredoxin-like protein, which is essential for biosynthesis of active MBH at high oxygen concentrations but dispensable under microaerobic growth conditions. To obtain insights into the function of HoxR, we investigated the MBH protein purified from the cytoplasmic membrane of hoxR mutant cells. Compared with wild-type MBH, the mutant enzyme displayed severely decreased hydrogenase activity. Electron paramagnetic resonance and infrared spectroscopic analyses revealed features resembling those of O2-sensitive [NiFe] hydrogenases and/or oxidatively damaged protein. The catalytic center resided partially in an inactive Niu-A-like state, and the electron transfer chain consisting of three different Fe-S clusters showed marked alterations compared with wild-type enzyme. Purification of HoxR protein from its original host, R. eutropha, revealed only low protein amounts. Therefore, recombinant HoxR protein was isolated from Escherichia coli. Unlike common rubredoxins, the HoxR protein was colorless, rather unstable, and essentially metal-free. Conversion of the atypical iron-binding motif into a canonical one through genetic engineering led to a stable reddish rubredoxin. Remarkably, the modified HoxR protein did not support MBH-dependent growth at high O2. Analysis of MBH-associated protein complexes points toward a specific interaction of HoxR with the Fe-S cluster-bearing small subunit. This supports the previously made notion that HoxR avoids oxidative damage of the metal centers of the MBH, in particular the unprecedented Cys6[4Fe-3S] cluster. PMID:24448806
Čavužić, Mirela; Liu, Yuchen
2017-01-01
Post-translational tRNA modifications have very broad diversity and are present in all domains of life. They are important for proper tRNA functions. In this review, we emphasize the recent advances on the biosynthesis of sulfur-containing tRNA nucleosides including the 2-thiouridine (s2U) derivatives, 4-thiouridine (s4U), 2-thiocytidine (s2C), and 2-methylthioadenosine (ms2A). Their biosynthetic pathways have two major types depending on the requirement of iron–sulfur (Fe–S) clusters. In all cases, the first step in bacteria and eukaryotes is to activate the sulfur atom of free l-cysteine by cysteine desulfurases, generating a persulfide (R-S-SH) group. In some archaea, a cysteine desulfurase is missing. The following steps of the bacterial s2U and s4U formation are Fe–S cluster independent, and the activated sulfur is transferred by persulfide-carrier proteins. By contrast, the biosynthesis of bacterial s2C and ms2A require Fe–S cluster dependent enzymes. A recent study shows that the archaeal s4U synthetase (ThiI) and the eukaryotic cytosolic 2-thiouridine synthetase (Ncs6) are Fe–S enzymes; this expands the role of Fe–S enzymes in tRNA thiolation to the Archaea and Eukarya domains. The detailed reaction mechanisms of Fe–S cluster depend s2U and s4U formation await further investigations. PMID:28287455
Plant Sterols: Diversity, Biosynthesis, and Physiological Functions.
Valitova, J N; Sulkarnayeva, A G; Minibayeva, F V
2016-08-01
Sterols, which are isoprenoid derivatives, are structural components of biological membranes. Special attention is now being given not only to their structure and function, but also to their regulatory roles in plants. Plant sterols have diverse composition; they exist as free sterols, sterol esters with higher fatty acids, sterol glycosides, and acylsterol glycosides, which are absent in animal cells. This diversity of types of phytosterols determines a wide spectrum of functions they play in plant life. Sterols are precursors of a group of plant hormones, the brassinosteroids, which regulate plant growth and development. Furthermore, sterols participate in transmembrane signal transduction by forming lipid microdomains. The predominant sterols in plants are β-sitosterol, campesterol, and stigmasterol. These sterols differ in the presence of a methyl or an ethyl group in the side chain at the 24th carbon atom and are named methylsterols or ethylsterols, respectively. The balance between 24-methylsterols and 24-ethylsterols is specific for individual plant species. The present review focuses on the key stages of plant sterol biosynthesis that determine the ratios between the different types of sterols, and the crosstalk between the sterol and sphingolipid pathways. The main enzymes involved in plant sterol biosynthesis are 3-hydroxy-3-methylglutaryl-CoA reductase, C24-sterol methyltransferase, and C22-sterol desaturase. These enzymes are responsible for maintaining the optimal balance between sterols. Regulation of the ratios between the different types of sterols and sterols/sphingolipids can be of crucial importance in the responses of plants to stresses.
Zhang, Yong; Zhang, Shu-Fei; Lin, Lin; Wang, Da-Zhi
2014-01-01
The dinoflagellates and cyanobacteria are two major kingdoms of life producing paralytic shellfish toxins (PSTs), a large group of neurotoxic alkaloids causing paralytic shellfish poisonings around the world. In contrast to the well elucidated PST biosynthetic genes in cyanobacteria, little is known about the dinoflagellates. This study compared transcriptome profiles of a toxin-producing dinoflagellate, Alexandrium catenella (ACHK-T), and its non-toxic mutant form (ACHK-NT) using RNA-seq. All clean reads were assembled de novo into a total of 113,674 unigenes, and 66,812 unigenes were annotated in the known databases. Out of them, 35 genes were found to express differentially between the two strains. The up-regulated genes in ACHK-NT were involved in photosynthesis, carbon fixation and amino acid metabolism processes, indicating that more carbon and energy were utilized for cell growth. Among the down-regulated genes, expression of a unigene assigned to the long isoform of sxtA, the initiator of toxin biosynthesis in cyanobacteria, was significantly depressed, suggesting that this long transcript of sxtA might be directly involved in toxin biosynthesis and its depression resulted in the loss of the ability to synthesize PSTs in ACHK-NT. In addition, 101 putative homologs of 12 cyanobacterial sxt genes were identified, and the sxtO and sxtZ genes were identified in dinoflagellates for the first time. The findings of this study should shed light on the biosynthesis of PSTs in the dinoflagellates. PMID:25421324
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mishra, Vidhi; Ronning, Donald R.
2012-11-13
The bacterial 5'-methylthioadenosine/S-adenosylhomocysteine nucleosidase (MTAN) enzyme is a multifunctional enzyme that catalyzes the hydrolysis of the N-ribosidic bond of at least four different adenosine-based metabolites: S-adenosylhomocysteine (SAH), 5'-methylthioadenosine (MTA), 5'-deoxyadenosine (5'-DOA), and 6-amino-6-deoxyfutalosine. These activities place the enzyme at the hub of seven fundamental bacterial metabolic pathways: S-adenosylmethionine (SAM) utilization, polyamine biosynthesis, the purine salvage pathway, the methionine salvage pathway, the SAM radical pathways, autoinducer-2 biosynthesis, and menaquinone biosynthesis. The last pathway makes MTAN essential for Helicobacter pylori viability. Although structures of various bacterial and plant MTANs have been described, the interactions between the homocysteine moiety of SAH and themore » 5'-alkylthiol binding site of MTAN have never been resolved. We have determined crystal structures of an inactive mutant form of H. pylori MTAN bound to MTA and SAH to 1.63 and 1.20 Å, respectively. The active form of MTAN was also crystallized in the presence of SAH, allowing the determination of the structure of a ternary enzyme–product complex resolved at 1.50 Å. These structures identify interactions between the homocysteine moiety and the 5'-alkylthiol binding site of the enzyme. This information can be leveraged for the development of species-specific MTAN inhibitors that prevent the growth of H. pylori.« less
Sun, Di; Zhu, Jianya; Chen, Zhi; Li, Jilun; Wen, Ying
2016-11-14
Avermectins are useful anthelmintic antibiotics produced by Streptomyces avermitilis. We demonstrated that a novel AraC-family transcriptional regulator in this species, SAV742, is a global regulator that negatively controls avermectin biosynthesis and cell growth, but positively controls morphological differentiation. Deletion of its gene, sav_742, increased avermectin production and dry cell weight, but caused delayed formation of aerial hyphae and spores. SAV742 directly inhibited avermectin production by repressing transcription of ave structural genes, and also directly regulated its own gene (sav_742) and adjacent gene sig8 (sav_741). The precise SAV742-binding site on its own promoter region was determined by DNase I footprinting assay coupled with site-directed DNA mutagenesis, and 5-nt inverted repeats (GCCGA-n 10 /n 12 -TCGGC) were found to be essential for SAV742 binding. Similar 5-nt inverted repeats separated by 3, 10 or 15 nt were found in the promoter regions of target ave genes and sig8. The SAV742 regulon was predicted based on bioinformatic analysis. Twenty-six new SAV742 targets were identified and experimentally confirmed, including genes involved in primary metabolism, secondary metabolism and development. Our findings indicate that SAV742 plays crucial roles in not only avermectin biosynthesis but also coordination of complex physiological processes in S. avermitilis.
Kinetic Modeling of Sunflower Grain Filling and Fatty Acid Biosynthesis
Durruty, Ignacio; Aguirrezábal, Luis A. N.; Echarte, María M.
2016-01-01
Grain growth and oil biosynthesis are complex processes that involve various enzymes placed in different sub-cellular compartments of the grain. In order to understand the mechanisms controlling grain weight and composition, we need mathematical models capable of simulating the dynamic behavior of the main components of the grain during the grain filling stage. In this paper, we present a non-structured mechanistic kinetic model developed for sunflower grains. The model was first calibrated for sunflower hybrid ACA855. The calibrated model was able to predict the theoretical amount of carbohydrate equivalents allocated to the grain, grain growth and the dynamics of the oil and non-oil fraction, while considering maintenance requirements and leaf senescence. Incorporating into the model the serial-parallel nature of fatty acid biosynthesis permitted a good representation of the kinetics of palmitic, stearic, oleic, and linoleic acids production. A sensitivity analysis showed that the relative influence of input parameters changed along grain development. Grain growth was mostly affected by the specific growth parameter (μ′) while fatty acid composition strongly depended on their own maximum specific rate parameters. The model was successfully applied to two additional hybrids (MG2 and DK3820). The proposed model can be the first building block toward the development of a more sophisticated model, capable of predicting the effects of environmental conditions on grain weight and composition, in a comprehensive and quantitative way. PMID:27242809
Elevated CO2 improves lipid accumulation by increasing carbon metabolism in Chlorella sorokiniana.
Sun, Zhilan; Chen, Yi-Feng; Du, Jianchang
2016-02-01
Supplying microalgae with extra CO2 is a promising means for improving lipid production. The molecular mechanisms involved in lipid accumulation under conditions of elevated CO2, however, remain to be fully elucidated. To understand how elevated CO2 improves lipid production, we performed sequencing of Chlorella sorokiniana LS-2 cellular transcripts during growth and compared transcriptional dynamics of genes involved in carbon flow from CO2 to triacylglycerol. These analyses identified the majority genes of carbohydrate metabolism and lipid biosynthesis pathways in C. sorokiniana LS-2. Under high doses of CO2 , despite down-regulation of most de novo fatty acid biosynthesis genes, genes involved in carbohydrate metabolic pathways including carbon fixation, chloroplastic glycolysis, components of the pyruvate dehydrogenase complex (PDHC) and chloroplastic membrane transporters were upexpressed at the prolonged lipid accumulation phase. The data indicate that lipid production is largely independent of de novo fatty acid synthesis. Elevated CO2 might push cells to channel photosynthetic carbon precursors into fatty acid synthesis pathways, resulting in an increase of overall triacylglycerol generation. In support of this notion, genes involved in triacylglycerol biosynthesis were substantially up-regulated. Thus, elevated CO2 may influence regulatory dynamics and result in increased carbon flow to triacylglycerol, thereby providing a feasible approach to increase lipid production in microalgae. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.
Rascher, Andreas; Hu, Zhihao; Buchanan, Greg O.; Reid, Ralph; Hutchinson, C. Richard
2005-01-01
Geldanamycin and the closely related herbimycins A, B, and C were the first benzoquinone ansamycins to be extensively studied for their antitumor properties as small-molecule inhibitors of the Hsp90 protein chaperone complex. These compounds are produced by two different Streptomyces hygroscopicus strains and have the same modular polyketide synthase (PKS)-derived carbon skeleton but different substitution patterns at C-11, C-15, and C-17. To set the stage for structural modification by genetic engineering, we previously identified the gene cluster responsible for geldanamycin biosynthesis. We have now cloned and sequenced a 115-kb segment of the herbimycin biosynthetic gene cluster from S. hygroscopicus AM 3672, including the genes for the PKS and most of the post-PKS tailoring enzymes. The similarities and differences between the gene clusters and biosynthetic pathways for these closely related ansamycins are interpreted with support from the results of gene inactivation experiments. In addition, the organization and functions of genes involved in the biosynthesis of the 3-amino-5-hydroxybenzoic acid (AHBA) starter unit and the post-PKS modifications of progeldanamycin were assessed by inactivating the subclusters of AHBA biosynthetic genes and two oxygenase genes (gdmM and gdmL) that were proposed to be involved in formation of the geldanamycin benzoquinoid system. A resulting novel geldanamycin analog, KOS-1806, was isolated and characterized. PMID:16085885
Nogellova, Veronika; Morel, Bertrand; Krell, Tino
2016-01-01
Summary Infections due to multidrug‐resistant bacteria represent a major global health challenge. To combat this problem, new antibiotics are urgently needed and some plant‐associated bacteria are a promising source. The rhizobacterium Serratia plymuthica A153 produces several bioactive secondary metabolites, including the anti‐oomycete and antifungal haterumalide, oocydin A and the broad spectrum polyamine antibiotic, zeamine. In this study, we show that A153 produces a second broad spectrum antibiotic, andrimid. Using genome sequencing, comparative genomics and mutagenesis, we defined new genes involved in andrimid (adm) biosynthesis. Both the expression of the adm gene cluster and regulation of andrimid synthesis were investigated. The biosynthetic cluster is operonic and its expression is modulated by various environmental cues, including temperature and carbon source. Analysis of the genome context of the adm operon revealed a gene encoding a predicted LysR‐type regulator, AdmX, apparently unique to Serratia strains. Mutagenesis and gene expression assays demonstrated that AdmX is a transcriptional activator of the adm gene cluster. At the post‐transcriptional level, the expression of the adm cluster is positively regulated by the RNA chaperone, Hfq, in an RpoS‐independent manner. Our results highlight the complexity of andrimid biosynthesis – an antibiotic with potential clinical and agricultural utility. PMID:26914969
Fitness and Individuality in Complex Life Cycles.
Herron, Matthew D
2016-12-01
Complex life cycles are common in the eukaryotic world, and they complicate the question of how to define individuality. Using a bottom-up, gene-centric approach, I consider the concept of fitness in the context of complex life cycles. I analyze the fitness effects of an allele (or a trait) on different biological units within a complex life history and how these effects drive evolutionary change within populations. Based on these effects, I attempt to construct a concept of fitness that accurately predicts evolutionary change in the context of complex life cycles.
The evolution of complex life.
Billingham, J
1989-01-01
In considering the probabilities that intelligent life might exist elsewhere in the Universe, it is important to ask questions about the factors governing the emergence of complex living organisms in the context of evolutionary biology, planetary environments and events in space. Two important problems arise. First, what can be learned about the general laws governing the evolution of complex life anywhere in space by studying its history on the Earth? Second, how is the evolution of complex life affected by events in space? To address these problems, a series of Science Workshops on the Evolution of Complex Life was held at the Ames Research Center. Included in this paper are highlights of those workshops, with particular emphasis on the first question, namely the evolution of complex extraterrestrial life.
Identifying apparent local stable isotope equilibrium in a complex non-equilibrium system.
He, Yuyang; Cao, Xiaobin; Wang, Jianwei; Bao, Huiming
2018-02-28
Although being out of equilibrium, biomolecules in organisms have the potential to approach isotope equilibrium locally because enzymatic reactions are intrinsically reversible. A rigorous approach that can describe isotope distribution among biomolecules and their apparent deviation from equilibrium state is lacking, however. Applying the concept of distance matrix in graph theory, we propose that apparent local isotope equilibrium among a subset of biomolecules can be assessed using an apparent fractionation difference (|Δα|) matrix, in which the differences between the observed isotope composition (δ') and the calculated equilibrium fractionation factor (1000lnβ) can be more rigorously evaluated than by using a previous approach for multiple biomolecules. We tested our |Δα| matrix approach by re-analyzing published data of different amino acids (AAs) in potato and in green alga. Our re-analysis shows that biosynthesis pathways could be the reason for an apparently close-to-equilibrium relationship inside AA families in potato leaves. Different biosynthesis/degradation pathways in tubers may have led to the observed isotope distribution difference between potato leaves and tubers. The analysis of data from green algae does not support the conclusion that AAs are further from equilibrium in glucose-cultured green algae than in the autotrophic ones. Application of the |Δα| matrix can help us to locate potential reversible reactions or reaction networks in a complex system such as a metabolic system. The same approach can be broadly applied to all complex systems that have multiple components, e.g. geochemical or atmospheric systems of early Earth or other planets. Copyright © 2017 John Wiley & Sons, Ltd.
Cassaignau, Anaïs M E; Launay, Hélène M M; Karyadi, Maria-Evangelia; Wang, Xiaolin; Waudby, Christopher A; Deckert, Annika; Robertson, Amy L; Christodoulou, John; Cabrita, Lisa D
2016-08-01
During biosynthesis on the ribosome, an elongating nascent polypeptide chain can begin to fold, in a process that is central to all living systems. Detailed structural studies of co-translational protein folding are now beginning to emerge; such studies were previously limited, at least in part, by the inherently dynamic nature of emerging nascent chains, which precluded most structural techniques. NMR spectroscopy is able to provide atomic-resolution information for ribosome-nascent chain complexes (RNCs), but it requires large quantities (≥10 mg) of homogeneous, isotopically labeled RNCs. Further challenges include limited sample working concentration and stability of the RNC sample (which contribute to weak NMR signals) and resonance broadening caused by attachment to the large (2.4-MDa) ribosomal complex. Here, we present a strategy to generate isotopically labeled RNCs in Escherichia coli that are suitable for NMR studies. Uniform translational arrest of the nascent chains is achieved using a stalling motif, and isotopically labeled RNCs are produced at high yield using high-cell-density E. coli growth conditions. Homogeneous RNCs are isolated by combining metal affinity chromatography (to isolate ribosome-bound species) with sucrose density centrifugation (to recover intact 70S monosomes). Sensitivity-optimized NMR spectroscopy is then applied to the RNCs, combined with a suite of parallel NMR and biochemical analyses to cross-validate their integrity, including RNC-optimized NMR diffusion measurements to report on ribosome attachment in situ. Comparative NMR studies of RNCs with the analogous isolated proteins permit a high-resolution description of the structure and dynamics of a nascent chain during its progressive biosynthesis on the ribosome.
Zeng, Wei; Picard, Kelsey L.; Song, Lili; Wu, Ai-Min; Farion, Isabela M.; Zhao, Jia; Ford, Kris; Bacic, Antony
2016-01-01
Heteroxylans are abundant components of plant cell walls and provide important raw materials for the food, pharmaceutical, and biofuel industries. A number of studies in Arabidopsis (Arabidopsis thaliana) have suggested that the IRREGULAR XYLEM9 (IRX9), IRX10, and IRX14 proteins, as well as their homologs, are involved in xylan synthesis via a Golgi-localized complex termed the xylan synthase complex (XSC). However, both the biochemical and cell biological research lags the genetic and molecular evidence. In this study, we characterized garden asparagus (Asparagus officinalis) stem xylan biosynthesis genes (AoIRX9, AoIRX9L, AoIRX10, AoIRX14A, and AoIRX14B) by heterologous expression in Nicotiana benthamiana. We reconstituted and partially purified an active XSC and showed that three proteins, AoIRX9, AoIRX10, and AoIRX14A, are necessary for xylan xylosyltranferase activity in planta. To better understand the XSC structure and its composition, we carried out coimmunoprecipitation and bimolecular fluorescence complementation analysis to show the molecular interactions between these three IRX proteins. Using a site-directed mutagenesis approach, we showed that the DxD motifs of AoIRX10 and AoIRX14A are crucial for the catalytic activity. These data provide, to our knowledge, the first lines of biochemical and cell biological evidence that AoIRX9, AoIRX10, and AoIRX14A are core components of a Golgi-localized XSC, each with distinct roles for effective heteroxylan biosynthesis. PMID:26951434
EPR spectroscopy of complex biological iron-sulfur systems.
Hagen, Wilfred R
2018-02-21
From the very first discovery of biological iron-sulfur clusters with EPR, the spectroscopy has been used to study not only purified proteins but also complex systems such as respiratory complexes, membrane particles and, later, whole cells. In recent times, the emphasis of iron-sulfur biochemistry has moved from characterization of individual proteins to the systems biology of iron-sulfur biosynthesis, regulation, degradation, and implications for human health. Although this move would suggest a blossoming of System-EPR as a specific, non-invasive monitor of Fe/S (dys)homeostasis in whole cells, a review of the literature reveals limited success possibly due to technical difficulties in adherence to EPR spectroscopic and biochemical standards. In an attempt to boost application of System-EPR the required boundary conditions and their practical applications are explicitly and comprehensively formulated.
Network-level fossil of a phosphate-free biosphere
NASA Astrophysics Data System (ADS)
Goldford, J.; Hartman, H.; Smith, T. F.; Segre, D.
2017-12-01
The emergence of a metabolism capable of sustaining cellular life on early Earth is a major unresolved enigma. Such a transition from prebiotic chemistry to an organized biochemical network seemingly required the concurrent availability of multiple molecular components. One of these components, phosphate, carries several essential functions in present-day metabolism, most notably energy transduction through ATP. However, the ubiquity of phosphate in living systems today stands in sharp contrast with its poor geochemical availability, prompting previous efforts to search for plausible prebiotic sources. The alternative, intriguing possibility is that primitive life did not require phosphate. Here we explore this possibility by determining the feasibility and functional potential of a phosphate-independent metabolism amongst the set of all known biochemical reactions in the biosphere. Surprisingly, we identified a cryptic phosphate-independent core metabolism that can be generated from simple sets of compounds thought to be available on early Earth. This network can support the biosynthesis of a broad category of key biomolecules. The enzymes contained in this network display a striking enrichment for dependence on iron-sulfur and transition metal coenzymes, a fundamental cornerstone of early biochemistry. We furthermore show that phosphate-independent precursors of present-day cofactors could have helped overcome thermodynamic energy barriers, enabling the production of a rich set of biomolecules, including 15 out of the 20 amino acids, vitamins, pentoses and nucleobases. Altogether, our results suggest that present-day biochemical networks may contain vestiges of a very ancient past, and that a complex thioester-based metabolism could have predated the incorporation of phosphate and an RNA-based genetic system.
Bagwell, Christopher E.; Bhat, Swapna; Hawkins, Gary M.; Smith, Bryan W.; Biswas, Tapan; Hoover, Timothy R.; Saunders, Elizabeth; Han, Cliff S.; Tsodikov, Oleg V.; Shimkets, Lawrence J.
2008-01-01
Kineococcus radiotolerans SRS30216 was isolated from a high-level radioactive environment at the Savannah River Site (SRS) and exhibits γ-radiation resistance approaching that of Deinococcus radiodurans. The genome was sequenced by the U.S. Department of Energy's Joint Genome Institute which suggested the existence of three replicons, a 4.76 Mb linear chromosome, a 0.18 Mb linear plasmid, and a 12.92 Kb circular plasmid. Southern hybridization confirmed that the chromosome is linear. The K. radiotolerans genome sequence was examined to learn about the physiology of the organism with regard to ionizing radiation resistance, the potential for bioremediation of nuclear waste, and the dimorphic life cycle. K. radiotolerans may have a unique genetic toolbox for radiation protection as it lacks many of the genes known to confer radiation resistance in D. radiodurans. Additionally, genes involved in the detoxification of reactive oxygen species and the excision repair pathway are overrepresented. K. radiotolerans appears to lack degradation pathways for pervasive soil and groundwater pollutants. However, it can respire on two organic acids found in SRS high-level nuclear waste, formate and oxalate, which promote the survival of cells during prolonged periods of starvation. The dimorphic life cycle involves the production of motile zoospores. The flagellar biosynthesis genes are located on a motility island, though its regulation could not be fully discerned. These results highlight the remarkable ability of K radiotolerans to withstand environmental extremes and suggest that in situ bioremediation of organic complexants from high level radioactive waste may be feasible. PMID:19057647
Co-opting sulphur-carrier proteins from primary metabolic pathways for 2-thiosugar biosynthesis.
Sasaki, Eita; Zhang, Xuan; Sun, He G; Lu, Mei-yeh Jade; Liu, Tsung-lin; Ou, Albert; Li, Jeng-yi; Chen, Yu-hsiang; Ealick, Steven E; Liu, Hung-wen
2014-06-19
Sulphur is an essential element for life and is ubiquitous in living systems. Yet how the sulphur atom is incorporated into many sulphur-containing secondary metabolites is poorly understood. For bond formation between carbon and sulphur in primary metabolites, the major ionic sulphur sources are the persulphide and thiocarboxylate groups on sulphur-carrier (donor) proteins. Each group is post-translationally generated through the action of a specific activating enzyme. In all reported bacterial cases, the gene encoding the enzyme that catalyses the carbon-sulphur bond formation reaction and that encoding the cognate sulphur-carrier protein exist in the same gene cluster. To study the production of the 2-thiosugar moiety in BE-7585A, an antibiotic from Amycolatopsis orientalis, we identified a putative 2-thioglucose synthase, BexX, whose protein sequence and mode of action seem similar to those of ThiG, the enzyme that catalyses thiazole formation in thiamine biosynthesis. However, no gene encoding a sulphur-carrier protein could be located in the BE-7585A cluster. Subsequent genome sequencing uncovered a few genes encoding sulphur-carrier proteins that are probably involved in the biosynthesis of primary metabolites but only one activating enzyme gene in the A. orientalis genome. Further experiments showed that this activating enzyme can adenylate each of these sulphur-carrier proteins and probably also catalyses the subsequent thiolation, through its rhodanese domain. A proper combination of these sulphur-delivery systems is effective for BexX-catalysed 2-thioglucose production. The ability of BexX to selectively distinguish sulphur-carrier proteins is given a structural basis using X-ray crystallography. This study is, to our knowledge, the first complete characterization of thiosugar formation in nature and also demonstrates the receptor promiscuity of the A. orientalis sulphur-delivery system. Our results also show that co-opting the sulphur-delivery machinery of primary metabolism for the biosynthesis of sulphur-containing natural products is probably a general strategy found in nature.
Exploring the Role of Carbonate in the Formation of an Organomanganese Tetramer.
Kadassery, Karthika J; Dey, Suman Kr; Friedman, Alan E; Lacy, David C
2017-08-07
The formation of metal-oxygen clusters is an important chemical transformation in biology and catalysis. For example, the biosynthesis of the oxygen-evolving complex in the enzyme photosystem II is a complicated stepwise process that assembles a catalytically active cluster. Herein we describe the role that carbonato ligands have in the formation of the known tetrameric complex [Mn(CO) 3 (μ 3 -OH)] 4 (1). Complex 1 is synthesized in one step via the treatment of Mn 2 (CO) 10 with excess Me 3 NO·2H 2 O. Alternatively, when anhydrous Me 3 NO is used, an OH-free synthetic intermediate (2) with carbonato ligands is produced. Complex 2 produces carbon dioxide, Me 3 NO·2H 2 O, and 1 when treated with water. Labeling studies reveal that the μ 3 -OH ligands in 1 are derived from the water and possibly the carbonato ligands in 2.
Intelligibility in microbial complex systems: Wittgenstein and the score of life.
Baquero, Fernando; Moya, Andrés
2012-01-01
Knowledge in microbiology is reaching an extreme level of diversification and complexity, which paradoxically results in a strong reduction in the intelligibility of microbial life. In our days, the "score of life" metaphor is more accurate to express the complexity of living systems than the classic "book of life." Music and life can be represented at lower hierarchical levels by music scores and genomic sequences, and such representations have a generational influence in the reproduction of music and life. If music can be considered as a representation of life, such representation remains as unthinkable as life itself. The analysis of scores and genomic sequences might provide mechanistic, phylogenetic, and evolutionary insights into music and life, but not about their real dynamics and nature, which is still maintained unthinkable, as was proposed by Wittgenstein. As complex systems, life or music is composed by thinkable and only showable parts, and a strategy of half-thinking, half-seeing is needed to expand knowledge. Complex models for complex systems, based on experiences on trans-hierarchical integrations, should be developed in order to provide a mixture of legibility and imageability of biological processes, which should lead to higher levels of intelligibility of microbial life.
Martín, Juan F
2017-05-01
Penicillium chrysogenum is an excellent model fungus to study the molecular mechanisms of control of expression of secondary metabolite genes. A key global regulator of the biosynthesis of secondary metabolites is the LaeA protein that interacts with other components of the velvet complex (VelA, VelB, VelC, VosA). These components interact with LaeA and regulate expression of penicillin and PR-toxin biosynthetic genes in P. chrysogenum. Both LaeA and VelA are positive regulators of the penicillin and PR-toxin biosynthesis, whereas VelB acts as antagonist of the effect of LaeA and VelA. Silencing or deletion of the laeA gene has a strong negative effect on penicillin biosynthesis and overexpression of laeA increases penicillin production. Expression of the laeA gene is enhanced by the P. chrysogenum autoinducers 1,3 diaminopropane and spermidine. The PR-toxin gene cluster is very poorly expressed in P. chrysogenum under penicillin-production conditions (i.e. it is a near-silent gene cluster). Interestingly, the downregulation of expression of the PR-toxin gene cluster in the high producing strain P. chrysogenum DS17690 was associated with mutations in both the laeA and velA genes. Analysis of the laeA and velA encoding genes in this high penicillin producing strain revealed that both laeA and velA acquired important mutations during the strain improvement programs thus altering the ratio of different secondary metabolites (e.g. pigments, PR-toxin) synthesized in the high penicillin producing mutants when compared to the parental wild type strain. Cross-talk of different secondary metabolite pathways has also been found in various Penicillium spp.: P. chrysogenum mutants lacking the penicillin gene cluster produce increasing amounts of PR-toxin, and mutants of P. roqueforti silenced in the PR-toxin genes produce large amounts of mycophenolic acid. The LaeA-velvet complex mediated regulation and the pathway cross-talk phenomenon has great relevance for improving the production of novel secondary metabolites, particularly of those secondary metabolites which are produced in trace amounts encoded by silent or near-silent gene clusters.
Peifer, Susanne; Schneider, Konstantin; Nürenberg, Gudrun; Volmer, Dietrich A; Heinzle, Elmar
2012-11-01
Intermediates of the purine biosynthesis pathway play key roles in cellular metabolism including nucleic acid synthesis and signal mediation. In addition, they are also of major interest to the biotechnological industry as several intermediates either possess flavor-enhancing characteristics or are applied in medical therapy. In this study, we have developed an analytical method for quantitation of 12 intermediates from the purine biosynthesis pathway including important nucleotides and their corresponding nucleosides and nucleobases. The approach comprised a single-step acidic extraction/quenching procedure, followed by quantitative electrospray LC-MS/MS analysis. The assay was validated in terms of accuracy, precision, reproducibility, and applicability for complex biological matrices. The method was subsequently applied for determination of free intracellular pool sizes of purine biosynthetic pathway intermediates in the two Gram-positive bacteria Corynebacterium glutamicum and Corynebacterium ammoniagenes. Importantly, no ion pair reagents were applied in this approach as usually required for liquid chromatography analysis of large classes of diverse metabolites.
A cadmium-sensitive, glutathione-deficient mutant of Arabidopsis thaliana.
Howden, R; Andersen, C R; Goldsbrough, P B; Cobbett, C S
1995-01-01
The roots of the cadmium-sensitive mutant of Arabidopsis thaliana, cad1-1, become brown in the presence of cadmium. A new cadmium-sensitive mutant affected at a second locus, cad2, has been identified using this phenotype. Genetic analysis has grown that the sensitive phenotype is recessive to the wild type and segregates as a single Mendelian locus. Assays of cadmium accumulation by intact plants indicated that the mutant is deficient in its ability to sequester cadmium. Undifferentiated callus tissue was also cadmium sensitive, suggesting that the mutant phenotype is expressed at the cellular level. The level of cadmium-binding complexes formed in vivo was decreased compared with the wild type and accumulation of phytochelatins was about 10% of that in the wild type. The level of glutathione, the substrate for phytochelatin biosynthesis, in tissues of the mutant was decreased to about 15 to 30% of that in the wild type. Thus, the deficiency in phytochelatin biosynthesis can be explained by a deficiency in glutathione. PMID:7770518
Inhibition and Regulation of the Ergothioneine Biosynthetic Methyltransferase EgtD.
Misson, Laëtitia; Burn, Reto; Vit, Allegra; Hildesheim, Julia; Beliaeva, Mariia A; Blankenfeldt, Wulf; Seebeck, Florian P
2018-05-18
Ergothioneine is an emerging factor in cellular redox homeostasis in bacteria, fungi, plants, and animals. Reports that ergothioneine biosynthesis may be important for the pathogenicity of bacteria and fungi raise the question as to how this pathway is regulated and whether the corresponding enzymes may be therapeutic targets. The first step in ergothioneine biosynthesis is catalyzed by the methyltransferase EgtD that converts histidine into N-α-trimethylhistidine. This report examines the kinetic, thermodynamic and structural basis for substrate, product, and inhibitor binding by EgtD from Mycobacterium smegmatis. This study reveals an unprecedented substrate binding mechanism and a fine-tuned affinity landscape as determinants for product specificity and product inhibition. Both properties are evolved features that optimize the function of EgtD in the context of cellular ergothioneine production. On the basis of these findings, we developed a series of simple histidine derivatives that inhibit methyltransferase activity at low micromolar concentrations. Crystal structures of inhibited complexes validate this structure- and mechanism-based design strategy.
Action of diclofenac on kidney mitochondria and cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ng, Lin Eng; Vincent, Annette S.; Halliwell, Barry
2006-09-22
The mitochondrial membrane potential measured in isolated rat kidney mitochondria and in digitonin-permeabilized MDCK type II cells pre-energized with succinate, glutamate, and/or malate was reduced by micromolar diclofenac dose-dependently. However, ATP biosynthesis from glutamate/malate was significantly more compromised compared to that from succinate. Inhibition of the malate-aspartate shuttle by diclofenac with a resultant decrease in the ability of mitochondria to generate NAD(P)H was demonstrated. Diclofenac however had no effect on the activities of NADH dehydrogenase, glutamate dehydrogenase, and malate dehydrogenase. In conclusion, decreased NAD(P)H production due to an inhibition of the entry of malate and glutamate via the malate-aspartate shuttlemore » explained the more pronounced decreased rate of ATP biosynthesis from glutamate and malate by diclofenac. This drug, therefore affects the bioavailability of two major respiratory complex I substrates which would normally contribute substantially to supplying the reducing equivalents for mitochondrial electron transport for generation of ATP in the renal cell.« less
Structure and function of enzymes in heme biosynthesis.
Layer, Gunhild; Reichelt, Joachim; Jahn, Dieter; Heinz, Dirk W
2010-06-01
Tetrapyrroles like hemes, chlorophylls, and cobalamin are complex macrocycles which play essential roles in almost all living organisms. Heme serves as prosthetic group of many proteins involved in fundamental biological processes like respiration, photosynthesis, and the metabolism and transport of oxygen. Further, enzymes such as catalases, peroxidases, or cytochromes P450 rely on heme as essential cofactors. Heme is synthesized in most organisms via a highly conserved biosynthetic route. In humans, defects in heme biosynthesis lead to severe metabolic disorders called porphyrias. The elucidation of the 3D structures for all heme biosynthetic enzymes over the last decade provided new insights into their function and elucidated the structural basis of many known diseases. In terms of structure and function several rather unique proteins were revealed such as the V-shaped glutamyl-tRNA reductase, the dipyrromethane cofactor containing porphobilinogen deaminase, or the "Radical SAM enzyme" coproporphyrinogen III dehydrogenase. This review summarizes the current understanding of the structure-function relationship for all heme biosynthetic enzymes and their potential interactions in the cell.
Delfino, Giovanni; Brizzi, Rossana; Nosi, Daniele; Terreni, Alessandro
2002-08-01
Transmission electron microscope investigations of the serous (poison) skin glands in the New World tree frogs Osteopilus septentrionalis and Phrynohyas venulosa revealed that they produce granules with closely similar substructures, namely, a dense cortex and pale medulla. In both species these features, that contrast the complex, sometimes repeating patterns described in other hylid frogs, derive from similar secretory and maturational processes starting from the Golgi phase of poison biosynthesis. Observations on secretory discharge showed that the two species share common release mechanisms, based on bulk discharge (holocrine) processes. Our data provide novel evidence of the extensive ultrastructural polymorphism of serous skin products in Hylidae and agree with phylogenies that regard this family as polyphyletic in origin. Assuming that ultrastructural features of cutaneous poison biosynthesis and maturation are adequate clues for tracking anuran phylogeny, the present findings also support a close relationship between Osteopilus and Phrynohyas taxa as previously suggested by osteological evidence. Copyright 2002 Wiley-Liss, Inc.
Mycolic acids: deciphering and targeting the Achilles' heel of the tubercle bacillus
Nataraj, Vijayashankar; Varela, Cristian; Javid, Asma; Singh, Albel; Besra, Gurdyal S.
2015-01-01
Summary Mycolic acids are unique long chain fatty acids found in the lipid‐rich cell walls of mycobacteria including the tubercle bacillus M ycobacterium tuberculosis. Essential for viability and virulence, enzymes involved in the biosynthesis of mycolic acids represent novel targets for drug development. This is particularly relevant to the impact on global health given the rise of multidrug resistant and extensively drug resistant strains of M . tuberculosis. In this review, we discuss recent advances in our understanding of how mycolic acid are synthesised, especially the potential role of specialised fatty acid synthase complexes. Also, we examine the role of a recently reported mycolic acid transporter MmpL3 with reference to several reports of the targeting of this transporter by diverse compounds with anti‐M . tuberculosis activity. Additionally, we consider recent findings that place mycolic acid biosynthesis in the context of the cell biology of the bacterium, viz its localisation and co‐ordination with the bacterial cytoskeleton, and its role beyond maintaining cell envelope integrity. PMID:26135034
Lin, Ruiting; Elf, Shannon; Shan, Changliang; Kang, Hee-Bum; Ji, Quanjiang; Zhou, Lu; Hitosugi, Taro; Zhang, Liang; Zhang, Shuai; Seo, Jae Ho; Xie, Jianxin; Tucker, Meghan; Gu, Ting-Lei; Sudderth, Jessica; Jiang, Lei; Mitsche, Matthew; DeBerardinis, Ralph J; Wu, Shaoxiong; Li, Yuancheng; Mao, Hui; Chen, Peng R; Wang, Dongsheng; Chen, Georgia Zhuo; Hurwitz, Selwyn J; Lonial, Sagar; Arellano, Martha L; Khoury, Hanna J; Khuri, Fadlo R; Lee, Benjamin H; Lei, Qunying; Brat, Daniel J; Ye, Keqiang; Boggon, Titus J; He, Chuan; Kang, Sumin; Fan, Jun; Chen, Jing
2015-11-01
The oxidative pentose phosphate pathway (PPP) contributes to tumour growth, but the precise contribution of 6-phosphogluconate dehydrogenase (6PGD), the third enzyme in this pathway, to tumorigenesis remains unclear. We found that suppression of 6PGD decreased lipogenesis and RNA biosynthesis and elevated ROS levels in cancer cells, attenuating cell proliferation and tumour growth. 6PGD-mediated production of ribulose-5-phosphate (Ru-5-P) inhibits AMPK activation by disrupting the active LKB1 complex, thereby activating acetyl-CoA carboxylase 1 and lipogenesis. Ru-5-P and NADPH are thought to be precursors in RNA biosynthesis and lipogenesis, respectively; thus, our findings provide an additional link between the oxidative PPP and lipogenesis through Ru-5-P-dependent inhibition of LKB1-AMPK signalling. Moreover, we identified and developed 6PGD inhibitors, physcion and its derivative S3, that effectively inhibited 6PGD, cancer cell proliferation and tumour growth in nude mice xenografts without obvious toxicity, suggesting that 6PGD could be an anticancer target.
Ajitha, V S; Muraleedharan, D
2005-03-01
Female sex pheromone production in certain moth species have been shown to be regulated by a cephalic endocrine peptidic factor: pheromone biosynthesis activating neuropeptide (PBAN), having 33 amino acid residues. Antisera against synthetic Heliothis zea-PBAN were developed. Using these polyclonals, immunoreactivity was mapped in the nervous system of Achaea janata. Three distinct groups of immunopositive secretory neurons were identified in the suboesophageal ganglion; and immunoreactivity was observed in the corpora cardiaca, thoracic and in the abdominal ganglia. From about 6000 brain sub-oesophageal ganglion complexes, the neuropeptide was isolated; and purified sequentially by Sep-pak and reversed phase high performance liquid chromatographic methods. Identity of purified PBAN fraction was confirmed with polyclonal antibody by immunoblotting. Molecular mass of the isolated peptide was determined by matrix-assisted laser desorption/ionization mass spectrometry, and was found to be 3900 Da, same as that of known H. zea-PBAN. Radiochemical bioassay confirmed the pheromonotropic effect of the isolated neuropeptide in this insect.
Coenzyme Q10 deficiencies in neuromuscular diseases.
Artuch, Rafael; Salviati, Leonardo; Jackson, Sandra; Hirano, Michio; Navas, Plácido
2009-01-01
Coenzyme Q (CoQ) is an essential component of the respiratory chain but also participates in other mitochondrial functions such as regulation of the transition pore and uncoupling proteins. Furthermore, this compound is a specific substrate for enzymes of the fatty acids beta-oxidation pathway and pyrimidine nucleotide biosynthesis. Furthermore, CoQ is an antioxidant that acts in all cellular membranes and lipoproteins. A complex of at least ten nuclear (COQ) genes encoded proteins synthesizes CoQ but its regulation is unknown. Since 1989, a growing number of patients with multisystemic mitochondrial disorders and neuromuscular disorders showing deficiencies of CoQ have been identified. CoQ deficiency caused by mutation(s) in any of the COQ genes is designated primary deficiency. Other patients have displayed other genetic defects independent on the CoQ biosynthesis pathway, and are considered to have secondary deficiencies. This review updates the clinical and molecular aspects of both types of CoQ deficiencies and proposes new approaches to understanding their molecular bases.
Asamizu, Shumpei
2017-05-01
Actinomycetes are a major source of bioactive natural products with important pharmaceutical properties. Understanding the natural enzymatic assembly of complex small molecules is important for rational metabolic pathway design to produce "artificial" natural products in bacterial cells. This review will highlight current research on the biosynthetic mechanisms of two classes of nitrogen-containing natural products, C 7 N aminocyclitols and bis-indoles. Validamycin A is a member of C 7 N aminocyclitol natural products from Streptomyces hygroscopicus. Here, two important biosynthetic steps, pseudoglycosyltranferase-catalyzed C-N bond formation, and C 7 -sugar phosphate cyclase-catalyzed divergent carbasugar formation, will be reviewed. In addition, the bis-indolic natural products indolocarbazole, staurosporine from Streptomyces sp. TP-A0274, and rearranged bis-indole violacein from Chromobacterium violaceum are reviewed including the oxidative course of the assembly pathway for the bis-indolic scaffold. The identified biosynthesis mechanisms will be useful to generating new biocatalytic tools and bioactive compounds.
Paszkiewicz-Gadek, A; Chlabicz, J; Gałasiński, W
1988-01-01
Five potential oncostatics of plant origin (reserpine, amphotericin B, rutoside, digoxin, dry aloe extract), and cyclic AMP were investigated for their effect on protein synthesis. The solutions of digoxin and dry aloe extract inhibited protein biosynthesis in vitro. The direct inhibiting effect of digoxin on the ribosomes suggests that this drug forms an inactive complex with this organelle. Therefore it can be concluded that ribosome is the target site of digoxin action. Aloin and aloeemodin are responsible for the inhibitory effect of the solution of dry aloe extract. They inhibit markedly [14C]-leucine incorporation into proteins. Aloin and aloeemodin do not influence directly the ribosomes, but they inhibit elongation factors and peptidyltransferase activities in the complete elongation system. Some preliminary experiments have shown that direct interaction between these substances and elongation factor EF-2 should be taken in account. This observation is the subject of further experiments, in which the characteristics of the inhibitory effect of the components isolated from dry aloe extract will be performed.
Moreno-Morcillo, María; Grande-García, Araceli; Ruiz-Ramos, Alba; Del Caño-Ochoa, Francisco; Boskovic, Jasminka; Ramón-Maiques, Santiago
2017-06-06
CAD, the multifunctional protein initiating and controlling de novo biosynthesis of pyrimidines in animals, self-assembles into ∼1.5 MDa hexamers. The structures of the dihydroorotase (DHO) and aspartate transcarbamoylase (ATC) domains of human CAD have been previously determined, but we lack information on how these domains associate and interact with the rest of CAD forming a multienzymatic unit. Here, we prove that a construct covering human DHO and ATC oligomerizes as a dimer of trimers and that this arrangement is conserved in CAD-like from fungi, which holds an inactive DHO-like domain. The crystal structures of the ATC trimer and DHO-like dimer from the fungus Chaetomium thermophilum confirm the similarity with the human CAD homologs. These results demonstrate that, despite being inactive, the fungal DHO-like domain has a conserved structural function. We propose a model that sets the DHO and ATC complex as the central element in the architecture of CAD. Copyright © 2017 Elsevier Ltd. All rights reserved.
Observing cellulose biosynthesis and membrane translocation in crystallo
Morgan, Jacob L.W.; McNamara, Joshua T.; Fischer, Michael; Rich, Jamie; Chen, Hong-Ming; Withers, Stephen G.; Zimmer, Jochen
2016-01-01
Many biopolymers, including polysaccharides, must be translocated across at least one membrane to reach their site of biological function. Cellulose is a linear glucose polymer synthesized and secreted by a membrane-integrated cellulose synthase. In crystallo enzymology with the catalytically-active bacterial cellulose synthase BcsA-B complex reveals structural snapshots of a complete cellulose biosynthesis cycle, from substrate binding to polymer translocation. Substrate and product-bound structures of BcsA provide the basis for substrate recognition and demonstrate the stepwise elongation of cellulose. Furthermore, the structural snapshots show that BcsA translocates cellulose via a ratcheting mechanism involving a “finger helix” that contacts the polymer's terminal glucose. Cooperating with BcsA's gating loop, the finger helix moves ‘up’ and ‘down’ in response to substrate binding and polymer elongation, respectively, thereby pushing the elongated polymer into BcsA’s transmembrane channel. This mechanism is validated experimentally by tethering BcsA's finger helix, which inhibits polymer translocation but not elongation. PMID:26958837
The N-end rule pathway regulates pathogen responses in plants
de Marchi, Rémi; Sorel, Maud; Mooney, Brian; Fudal, Isabelle; Goslin, Kevin; Kwaśniewska, Kamila; Ryan, Patrick T.; Pfalz, Marina; Kroymann, Juergen; Pollmann, Stephan; Feechan, Angela; Wellmer, Frank; Rivas, Susana; Graciet, Emmanuelle
2016-01-01
To efficiently counteract pathogens, plants rely on a complex set of immune responses that are tightly regulated to allow the timely activation, appropriate duration and adequate amplitude of defense programs. The coordination of the plant immune response is known to require the activity of the ubiquitin/proteasome system, which controls the stability of proteins in eukaryotes. Here, we demonstrate that the N-end rule pathway, a subset of the ubiquitin/proteasome system, regulates the defense against a wide range of bacterial and fungal pathogens in the model plant Arabidopsis thaliana. We show that this pathway positively regulates the biosynthesis of plant-defense metabolites such as glucosinolates, as well as the biosynthesis and response to the phytohormone jasmonic acid, which plays a key role in plant immunity. Our results also suggest that the arginylation branch of the N-end rule pathway regulates the timing and amplitude of the defense program against the model pathogen Pseudomonas syringae AvrRpm1. PMID:27173012
Salah Ud-Din, Abu Iftiaf Md; Roujeinikova, Anna
2018-04-01
Many pathogenic bacteria require flagella-mediated motility to colonise and persist in their hosts. Helicobacter pylori and Campylobacter jejuni are flagellated epsilonproteobacteria associated with several human pathologies, including gastritis, acute diarrhea, gastric carcinoma and neurological disorders. In both species, glycosylation of flagellin with an unusual sugar pseudaminic acid (Pse) plays a crucial role in the biosynthesis of functional flagella, and thereby in bacterial motility and pathogenesis. Pse is found only in pathogenic bacteria. Its biosynthesis via six consecutive enzymatic steps has been extensively studied in H. pylori and C. jejuni. This review highlights the importance of flagella glycosylation and details structural insights into the enzymes in the Pse pathway obtained via a combination of biochemical, crystallographic, and mutagenesis studies of the enzyme-substrate and -inhibitor complexes. It is anticipated that understanding the underlying structural and molecular basis of the catalytic mechanisms of the Pse-synthesising enzymes will pave the way for the development of novel antimicrobials.
Sogi, Kimberly M; Holsclaw, Cynthia M; Fragiadakis, Gabriela K; Nomura, Daniel K; Leary, Julie A; Bertozzi, Carolyn R
2016-11-11
Sulfomenaquinone (SMK) is a recently identified metabolite that is unique to the Mycobacterium tuberculosis (M. tuberculosis) complex and is shown to modulate its virulence. Here, we report the identification of the SMK biosynthetic operon that, in addition to a previously identified sulfotransferase stf3, includes a putative cytochrome P450 gene (cyp128) and a gene of unknown function, rv2269c. We demonstrate that cyp128 and stf3 are sufficient for the biosynthesis of SMK from menaquinone and rv2269c exhibits promoter activity in M. tuberculosis. Loss of Stf3 expression, but not that of Cyp128, is correlated with elevated levels of menaquinone-9, an essential component in the electron-transport chain in M. tuberculosis. Finally, we showed in a mouse model of infection that the loss of cyp128 exhibits a hypervirulent phenotype similar to that in previous studies of the stf3 mutant. These findings provide a platform for defining the molecular basis of SMK's role in M. tuberculosis pathogenesis.
Pathway engineering strategies for production of beneficial carotenoids in microbial hosts.
Ye, Victor M; Bhatia, Sujata K
2012-08-01
Carotenoids, such as lycopene, β-carotene, zeaxanthin, canthaxanthin and astaxanthin have many benefits for human health. In addition to the functional role of carotenoids as vitamin A precursors, adequate consumption of carotenoids prevents the development of a variety of serious diseases. Biosynthesis of carotenoids is a complex process and it starts with the common isoprene precursors. Condensation of these precursors and subsequent modifications, by introducing hydroxyl- and keto-groups, leads to the generation of diversified carotenoid structures. To improve carotenoid production, metabolic engineering has been explored in bacteria, yeast, and algae. The success of the pathway engineering effort depends on the host metabolism, specific enzymes used, the enzyme expression levels, and the strategies employed. Despite the difficulty of pathway engineering for carotenoid production, great progress has been made over the past decade. We review metabolic engineering approaches used in a variety of microbial hosts for carotenoid biosynthesis. These advances will greatly expedite our efforts to bring the health benefits of carotenoids and other nutritional compounds to our diet.
Li, Zhongjian; Li, Gang; Chen, Xinlu; Xia, Zheng; Yao, Jiani; Yang, Bin; Lei, Lecheng; Hou, Yang
2018-05-29
CO2 reduction has drawn increasing attention due to the concern of global warming. Water splitting-biosynthetic hybrid systems are novel and efficient approaches for CO2 conversion. Intimate coupling of electrocatalysts and biosynthesis requires the catalysts possess both high catalytic performance and excellent biocompatibility, which is a bottleneck of developing such catalysts. Here, a novel Ni nanoparticles-embedded N-doped carbon nanotubes (Ni@N-C) complex was synthesized as a hydrogen evolution reaction electrocatalyst and was coupled with a hydrogen-oxidizing autotroph, Cupriavidus necator H16, to convert CO2 to poly-β-hydroxybutyrate. In the Ni@N-C, the Ni nanoparticles were encapsulated in N-C nanotubes, which prevented bacteria from direct contact with Ni and inhibited Ni2+ leaching. As a result, Ni@N-C exhibited excellent biocompatibility and stability. This work demonstrates electrocatalysts and biosynthesis can be intimately coupled via rational catalyst design. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hudec, Jozef; Bakos, Dusan; Mravec, Dusan; Kobida, L'ubomír; Burdová, Maria; Turianica, Ivan; Hlusek, Jaroslav
2006-05-17
The total contents of anthocyanins, flavonoids, and phenolics in 60 samples of black chokeberries (Aronia melanocarpa), after treating with catabolites of polyamine biosynthesis (KPAb) and ornithine decarboxylase inhibitor, were analyzed spectrophotometrically, and quercetin and free polyamine contents were analyzed by RP-HPLC with UV detection. The average total contents of the individual substances and phenolic subgroups in control berries were as follows (mg x kg(-1)): anthocyanines, 6408; flavonoids, 664; phenolics, 37,600; quercetin, 349. KPAb decreased total contents of anthocyanines and phenolics only slightly but significantly increased the content of flavonoids. This caused an important change in the abundance of flavonoids in the pigment complex. The absolute content of quercetin was increased, but its ratio to flavonoids content was decreased. Ornithine decarboxylase inhibitor had a markedly different effect as it significantly increased total content of anthocyanins and total phenolics, inhibited the total content of free polyamines, and stimulated the processes of saccharides transformation to phenolic pigments.
Kozubal, Mark A; Romine, Margaret; Jennings, Ryan deM; Jay, Zack J; Tringe, Susannah G; Rusch, Doug B; Beam, Jacob P; McCue, Lee Ann; Inskeep, William P
2013-01-01
Geothermal systems in Yellowstone National Park (YNP) provide an outstanding opportunity to understand the origin and evolution of metabolic processes necessary for life in extreme environments including low pH, high temperature, low oxygen and elevated concentrations of reduced iron. Previous phylogenetic studies of acidic ferric iron mats from YNP have revealed considerable diversity of uncultivated and undescribed archaea. The goal of this study was to obtain replicate de novo genome assemblies for a dominant archaeal population inhabiting acidic iron-oxide mats in YNP. Detailed analysis of conserved ribosomal and informational processing genes indicates that the replicate assemblies represent a new candidate phylum within the domain Archaea referred to here as ‘Geoarchaeota' or ‘novel archaeal group 1 (NAG1)'. The NAG1 organisms contain pathways necessary for the catabolism of peptides and complex carbohydrates as well as a bacterial-like Form I carbon monoxide dehydrogenase complex likely used for energy conservation. Moreover, this novel population contains genes involved in the metabolism of oxygen including a Type A heme copper oxidase, a bd-type terminal oxidase and a putative oxygen-sensing protoglobin. NAG1 has a variety of unique bacterial-like cofactor biosynthesis and transport genes and a Type3-like CRISPR system. Discovery of NAG1 is critical to our understanding of microbial community structure and function in extant thermophilic iron-oxide mats of YNP, and will provide insight regarding the evolution of Archaea in early Earth environments that may have important analogs active in YNP today. PMID:23151644
Ties that bind: the integration of plastid signalling pathways in plant cell metabolism.
Brunkard, Jacob O; Burch-Smith, Tessa M
2018-04-13
Plastids are critical organelles in plant cells that perform diverse functions and are central to many metabolic pathways. Beyond their major roles in primary metabolism, of which their role in photosynthesis is perhaps best known, plastids contribute to the biosynthesis of phytohormones and other secondary metabolites, store critical biomolecules, and sense a range of environmental stresses. Accordingly, plastid-derived signals coordinate a host of physiological and developmental processes, often by emitting signalling molecules that regulate the expression of nuclear genes. Several excellent recent reviews have provided broad perspectives on plastid signalling pathways. In this review, we will highlight recent advances in our understanding of chloroplast signalling pathways. Our discussion focuses on new discoveries illuminating how chloroplasts determine life and death decisions in cells and on studies elucidating tetrapyrrole biosynthesis signal transduction networks. We will also examine the role of a plastid RNA helicase, ISE2, in chloroplast signalling, and scrutinize intriguing results investigating the potential role of stromules in conducting signals from the chloroplast to other cellular locations. © 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.
Li, Ran; Zhang, Jin; Li, Jiancai; Zhou, Guoxin; Wang, Qi; Bian, Wenbo; Erb, Matthias; Lou, Yonggen
2015-01-01
Plants generally respond to herbivore attack by increasing resistance and decreasing growth. This prioritization is achieved through the regulation of phytohormonal signaling networks. However, it remains unknown how this prioritization affects resistance against non-target herbivores. In this study, we identify WRKY70 as a specific herbivore-induced, mitogen-activated protein kinase-regulated rice transcription factor that physically interacts with W-box motifs and prioritizes defence over growth by positively regulating jasmonic acid (JA) and negatively regulating gibberellin (GA) biosynthesis upon attack by the chewing herbivore Chilo suppressalis. WRKY70-dependent JA biosynthesis is required for proteinase inhibitor activation and resistance against C. suppressalis. In contrast, WRKY70 induction increases plant susceptibility against the rice brown planthopper Nilaparvata lugens. Experiments with GA-deficient rice lines identify WRKY70-dependent GA signaling as the causal factor in N. lugens susceptibility. Our study shows that prioritizing defence over growth leads to a significant resistance trade-off with important implications for the evolution and agricultural exploitation of plant immunity. DOI: http://dx.doi.org/10.7554/eLife.04805.001 PMID:26083713
Brucella, nitrogen and virulence.
Ronneau, Severin; Moussa, Simon; Barbier, Thibault; Conde-Álvarez, Raquel; Zuniga-Ripa, Amaia; Moriyon, Ignacio; Letesson, Jean-Jacques
2016-08-01
The brucellae are α-Proteobacteria causing brucellosis, an important zoonosis. Although multiplying in endoplasmic reticulum-derived vacuoles, they cause no cell death, suggesting subtle but efficient use of host resources. Brucellae are amino-acid prototrophs able to grow with ammonium or use glutamate as the sole carbon-nitrogen source in vitro. They contain more than twice amino acid/peptide/polyamine uptake genes than the amino-acid auxotroph Legionella pneumophila, which multiplies in a similar vacuole, suggesting a different nutritional strategy. During these two last decades, many mutants of key actors in nitrogen metabolism (transporters, enzymes, regulators, etc.) have been described to be essential for full virulence of brucellae. Here, we review the genomic and experimental data on Brucella nitrogen metabolism and its connection with virulence. An analysis of various aspects of this metabolism (transport, assimilation, biosynthesis, catabolism, respiration and regulation) has highlighted differences and similarities in nitrogen metabolism with other α-Proteobacteria. Together, these data suggest that, during their intracellular life cycle, the brucellae use various nitrogen sources for biosynthesis, catabolism and respiration following a strategy that requires prototrophy and a tight regulation of nitrogen use.
Intelligibility in microbial complex systems: Wittgenstein and the score of life
Baquero, Fernando; Moya, Andrés
2012-01-01
Knowledge in microbiology is reaching an extreme level of diversification and complexity, which paradoxically results in a strong reduction in the intelligibility of microbial life. In our days, the “score of life” metaphor is more accurate to express the complexity of living systems than the classic “book of life.” Music and life can be represented at lower hierarchical levels by music scores and genomic sequences, and such representations have a generational influence in the reproduction of music and life. If music can be considered as a representation of life, such representation remains as unthinkable as life itself. The analysis of scores and genomic sequences might provide mechanistic, phylogenetic, and evolutionary insights into music and life, but not about their real dynamics and nature, which is still maintained unthinkable, as was proposed by Wittgenstein. As complex systems, life or music is composed by thinkable and only showable parts, and a strategy of half-thinking, half-seeing is needed to expand knowledge. Complex models for complex systems, based on experiences on trans-hierarchical integrations, should be developed in order to provide a mixture of legibility and imageability of biological processes, which should lead to higher levels of intelligibility of microbial life. PMID:22919679
Luna-Sánchez, Marta; Díaz-Casado, Elena; Barca, Emanuele; Tejada, Miguel Ángel; Montilla-García, Ángeles; Cobos, Enrique Javier; Escames, Germaine; Acuña-Castroviejo, Dario; Quinzii, Catarina M; López, Luis Carlos
2015-01-01
Primary coenzyme Q10 (CoQ10) deficiency is due to mutations in genes involved in CoQ biosynthesis. The disease has been associated with five major phenotypes, but a genotype–phenotype correlation is unclear. Here, we compare two mouse models with a genetic modification in Coq9 gene (Coq9Q95X and Coq9R239X), and their responses to 2,4-dihydroxybenzoic acid (2,4-diHB). Coq9R239X mice manifest severe widespread CoQ deficiency associated with fatal encephalomyopathy and respond to 2,4-diHB increasing CoQ levels. In contrast, Coq9Q95X mice exhibit mild CoQ deficiency manifesting with reduction in CI+III activity and mitochondrial respiration in skeletal muscle, and late-onset mild mitochondrial myopathy, which does not respond to 2,4-diHB. We show that these differences are due to the levels of COQ biosynthetic proteins, suggesting that the presence of a truncated version of COQ9 protein in Coq9R239X mice destabilizes the CoQ multiprotein complex. Our study points out the importance of the multiprotein complex for CoQ biosynthesis in mammals, which may provide new insights to understand the genotype–phenotype heterogeneity associated with human CoQ deficiency and may have a potential impact on the treatment of this mitochondrial disorder. PMID:25802402
Zhang, Lin; Xiao, Jianfeng; Xu, Jianrong; Fu, Tianran; Cao, Zhiwei; Zhu, Liang; Chen, Hong-Zhuan; Shen, Xu; Jiang, Hualiang; Zhang, Liang
2016-12-01
Fatty acid biosynthesis (FAS) is a vital process in cells. Fatty acids are essential for cell assembly and cellular metabolism. Abnormal FAS directly correlates with cell growth delay and human diseases, such as metabolic syndromes and various cancers. The FAS system utilizes an acyl carrier protein (ACP) as a transporter to stabilize and shuttle the growing fatty acid chain throughout enzymatic modules for stepwise catalysis. Studying the interactions between enzymatic modules and ACP is, therefore, critical for understanding the biological function of the FAS system. However, the information remains unclear due to the high flexibility of ACP and its weak interaction with enzymatic modules. We present here a 2.55 Å crystal structure of type II FAS dehydratase FabZ in complex with holo-ACP, which exhibits a highly symmetrical FabZ hexamer-ACP 3 stoichiometry with each ACP binding to a FabZ dimer subunit. Further structural analysis, together with biophysical and computational results, reveals a novel dynamic seesaw-like ACP binding and catalysis mechanism for the dehydratase module in the FAS system, which is regulated by a critical gatekeeper residue (Tyr100 in FabZ) that manipulates the movements of the β-sheet layer. These findings improve the general understanding of the dehydration process in the FAS system and will potentially facilitate drug and therapeutic design for diseases associated with abnormalities in FAS.
His86 from the N-terminus of frataxin coordinates iron and is required for Fe-S cluster synthesis.
Gentry, Leslie E; Thacker, Matthew A; Doughty, Reece; Timkovich, Russell; Busenlehner, Laura S
2013-09-03
Human frataxin has a vital role in the biosynthesis of iron-sulfur (Fe-S) clusters in mitochondria, and its deficiency causes the neurodegenerative disease Friedreich's ataxia. Proposed functions for frataxin in the Fe-S pathway include iron donation to the Fe-S cluster machinery and regulation of cysteine desulfurase activity to control the rate of Fe-S production, although further molecular detail is required to distinguish these two possibilities. It is well established that frataxin can coordinate iron using glutamate and aspartate side chains on the protein surface; however, in this work we identify a new iron coordinating residue in the N-terminus of human frataxin using complementary spectroscopic and structural approaches. Further, we demonstrate that His86 in this N-terminal region is required for high affinity iron coordination and iron assembly of Fe-S clusters by ISCU as part of the Fe-S cluster biosynthetic complex. If a binding site that includes His86 is important for Fe-S cluster synthesis as part of its chaperone function, this raises the possibility that either iron binding at the acidic surface of frataxin may be spurious or that it is required for protein-protein interactions with the Fe-S biosynthetic quaternary complex. Our data suggest that iron coordination to frataxin may be significant to the Fe-S cluster biosynthesis pathway in mitochondria.
Editorial: from plant biotechnology to bio-based products.
Stöger, Eva
2013-10-01
From plant biotechnology to bio-based products - this Special Issue of Biotechnology Journal is dedicated to plant biotechnology and is edited by Prof. Eva Stöger (University of Natural Resources and Life Sciences, Vienna, Austria). The Special Issue covers a wide range of topics in plant biotechnology, including metabolic engineering of biosynthesis pathways in plants; taking advantage of the scalability of the plant system for the production of innovative materials; as well as the regulatory challenges and society acceptance of plant biotechnology. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
How rare is complex life in the Milky Way?
Bounama, Christine; von Bloh, Werner; Franck, Siegfried
2007-10-01
An integrated Earth system model was applied to calculate the number of habitable Earth-analog planets that are likely to have developed primitive (unicellular) and complex (multicellular) life in extrasolar planetary systems. The model is based on the global carbon cycle mediated by life and driven by increasing stellar luminosity and plate tectonics. We assumed that the hypothetical primitive and complex life forms differed in their temperature limits and CO(2) tolerances. Though complex life would be more vulnerable to environmental stress, its presence would amplify weathering processes on a terrestrial planet. The model allowed us to calculate the average number of Earth-analog planets that may harbor such life by using the formation rate of Earth-like planets in the Milky Way as well as the size of a habitable zone that could support primitive and complex life forms. The number of planets predicted to bear complex life was found to be approximately 2 orders of magnitude lower than the number predicted for primitive life forms. Our model predicted a maximum abundance of such planets around 1.8 Ga ago and allowed us to calculate the average distance between potentially habitable planets in the Milky Way. If the model predictions are accurate, the future missions DARWIN (up to a probability of 65%) and TPF (up to 20%) are likely to detect at least one planet with a biosphere composed of complex life.
Alternative assembly of respiratory complex II connects energy stress to metabolic checkpoints.
Bezawork-Geleta, Ayenachew; Wen, He; Dong, LanFeng; Yan, Bing; Vider, Jelena; Boukalova, Stepana; Krobova, Linda; Vanova, Katerina; Zobalova, Renata; Sobol, Margarita; Hozak, Pavel; Novais, Silvia Magalhaes; Caisova, Veronika; Abaffy, Pavel; Naraine, Ravindra; Pang, Ying; Zaw, Thiri; Zhang, Ping; Sindelka, Radek; Kubista, Mikael; Zuryn, Steven; Molloy, Mark P; Berridge, Michael V; Pacak, Karel; Rohlena, Jakub; Park, Sunghyouk; Neuzil, Jiri
2018-06-07
Cell growth and survival depend on a delicate balance between energy production and synthesis of metabolites. Here, we provide evidence that an alternative mitochondrial complex II (CII) assembly, designated as CII low , serves as a checkpoint for metabolite biosynthesis under bioenergetic stress, with cells suppressing their energy utilization by modulating DNA synthesis and cell cycle progression. Depletion of CII low leads to an imbalance in energy utilization and metabolite synthesis, as evidenced by recovery of the de novo pyrimidine pathway and unlocking cell cycle arrest from the S-phase. In vitro experiments are further corroborated by analysis of paraganglioma tissues from patients with sporadic, SDHA and SDHB mutations. These findings suggest that CII low is a core complex inside mitochondria that provides homeostatic control of cellular metabolism depending on the availability of energy.