Science.gov

Sample records for biotic interactions drive

  1. Complex biotic interactions drive long-term vegetation dynamics in a subarctic ecosystem

    PubMed Central

    Olofsson, Johan; te Beest, Mariska; Ericson, Lars

    2013-01-01

    Predicting impacts of global warming requires understanding of the extent to which plant biomass and production are controlled by bottom-up and top-down drivers. By annually monitoring community composition in grazed control plots and herbivore-free exclosures at an Arctic location for 15 years, we detected multiple biotic interactions. Regular rodent cycles acted as pulses driving synchronous fluctuations in the biomass of field-layer vegetation; reindeer influenced the biomass of taller shrubs, and the abundance of plant pathogenic fungi increased when densities of their host plants increased in exclosures. Two outbreaks of geometrid moths occurred during the study period, with contrasting effects on the field layer: one in 2004 had marginal effects, while one in 2012 severely reduced biomass in the control plots and eliminated biomass that had accumulated over 15 years in the exclosures. The latter was followed by a dramatic decline of the dominant understory dwarf-shrub Empetrum hermaphroditum, driven by an interaction between moth herbivory on top buds and leaves, and increased disease severity of a pathogenic fungus. We show that the climate has important direct and indirect effects on all these biotic interactions. We conclude that long time series are essential to identify key biotic interactions in ecosystems, since their importance will be influenced by climatic conditions, and that manipulative treatments are needed in order to obtain the mechanistic understanding needed for robust predictions of future ecosystem changes and their feedback effects. PMID:23836791

  2. Flow regime, temperature, and biotic interactions drive differential declines of trout species under climate change

    PubMed Central

    Wenger, Seth J.; Isaak, Daniel J.; Luce, Charles H.; Neville, Helen M.; Fausch, Kurt D.; Dunham, Jason B.; Dauwalter, Daniel C.; Young, Michael K.; Elsner, Marketa M.; Rieman, Bruce E.; Hamlet, Alan F.; Williams, Jack E.

    2011-01-01

    Broad-scale studies of climate change effects on freshwater species have focused mainly on temperature, ignoring critical drivers such as flow regime and biotic interactions. We use downscaled outputs from general circulation models coupled with a hydrologic model to forecast the effects of altered flows and increased temperatures on four interacting species of trout across the interior western United States (1.01 million km2), based on empirical statistical models built from fish surveys at 9,890 sites. Projections under the 2080s A1B emissions scenario forecast a mean 47% decline in total suitable habitat for all trout, a group of fishes of major socioeconomic and ecological significance. We project that native cutthroat trout Oncorhynchus clarkii, already excluded from much of its potential range by nonnative species, will lose a further 58% of habitat due to an increase in temperatures beyond the species’ physiological optima and continued negative biotic interactions. Habitat for nonnative brook trout Salvelinus fontinalis and brown trout Salmo trutta is predicted to decline by 77% and 48%, respectively, driven by increases in temperature and winter flood frequency caused by warmer, rainier winters. Habitat for rainbow trout, Oncorhynchus mykiss, is projected to decline the least (35%) because negative temperature effects are partly offset by flow regime shifts that benefit the species. These results illustrate how drivers other than temperature influence species response to climate change. Despite some uncertainty, large declines in trout habitat are likely, but our findings point to opportunities for strategic targeting of mitigation efforts to appropriate stressors and locations. PMID:21844354

  3. Flow regime, temperature, and biotic interactions drive differential declines of trout species under climate change

    USGS Publications Warehouse

    Wenger, S.J.; Isaak, D.J.; Luce, C.H.; Neville, H.M.; Fausch, K.D.; Dunham, J.B.; Dauwalter, D.C.; Young, M.K.; Elsner, M.M.; Rieman, B.E.; Hamlet, A.F.; Williams, J.E.

    2011-01-01

    Broad-scale studies of climate change effects on freshwater species have focused mainly on temperature, ignoring critical drivers such as flow regime and biotic interactions. We use downscaled outputs from general circulation models coupled with a hydrologic model to forecast the effects of altered flows and increased temperatures on four interacting species of trout across the interior western United States (1.01 million km2), based on empirical statistical models built from fish surveys at 9,890 sites. Projections under the 2080s A1B emissions scenario forecast a mean 47% decline in total suitable habitat for all trout, a group of fishes of major socioeconomic and ecological significance. We project that native cutthroat trout Oncorhynchus clarkii, already excluded from much of its potential range by nonnative species, will lose a further 58% of habitat due to an increase in temperatures beyond the species' physiological optima and continued negative biotic interactions. Habitat for nonnative brook trout Salvelinus fontinalis and brown trout Salmo trutta is predicted to decline by 77% and 48%, respectively, driven by increases in temperature and winter flood frequency caused by warmer, rainier winters. Habitat for rainbow trout, Oncorhynchus mykiss, is projected to decline the least (35%) because negative temperature effects are partly offset by flow regime shifts that benefit the species. These results illustrate how drivers other than temperature influence species response to climate change. Despite some uncertainty, large declines in trout habitat are likely, but our findings point to opportunities for strategic targeting of mitigation efforts to appropriate stressors and locations.

  4. Flow regime, temperature, and biotic interactions drive differential declines of trout species under climate change.

    PubMed

    Wenger, Seth J; Isaak, Daniel J; Luce, Charles H; Neville, Helen M; Fausch, Kurt D; Dunham, Jason B; Dauwalter, Daniel C; Young, Michael K; Elsner, Marketa M; Rieman, Bruce E; Hamlet, Alan F; Williams, Jack E

    2011-08-23

    Broad-scale studies of climate change effects on freshwater species have focused mainly on temperature, ignoring critical drivers such as flow regime and biotic interactions. We use downscaled outputs from general circulation models coupled with a hydrologic model to forecast the effects of altered flows and increased temperatures on four interacting species of trout across the interior western United States (1.01 million km(2)), based on empirical statistical models built from fish surveys at 9,890 sites. Projections under the 2080s A1B emissions scenario forecast a mean 47% decline in total suitable habitat for all trout, a group of fishes of major socioeconomic and ecological significance. We project that native cutthroat trout Oncorhynchus clarkii, already excluded from much of its potential range by nonnative species, will lose a further 58% of habitat due to an increase in temperatures beyond the species' physiological optima and continued negative biotic interactions. Habitat for nonnative brook trout Salvelinus fontinalis and brown trout Salmo trutta is predicted to decline by 77% and 48%, respectively, driven by increases in temperature and winter flood frequency caused by warmer, rainier winters. Habitat for rainbow trout, Oncorhynchus mykiss, is projected to decline the least (35%) because negative temperature effects are partly offset by flow regime shifts that benefit the species. These results illustrate how drivers other than temperature influence species response to climate change. Despite some uncertainty, large declines in trout habitat are likely, but our findings point to opportunities for strategic targeting of mitigation efforts to appropriate stressors and locations.

  5. Flow regime, temperature, and biotic interactions drive differential declines of trout species under climate change [includes Supporting Information

    Treesearch

    Seth J. Wenger; Daniel J. Isaak; Charlie Luce; Helen M. Neville; Kurt D. Fausch; Jason B. Dunham; Daniel C. Dauwalter; Michael K. Young; Marketa M. Elsner; Bruce E. Rieman; Alan F. Hamlet; Jack E. Williams

    2011-01-01

    Broad-scale studies of climate change effects on freshwater species have focused mainly on temperature, ignoring critical drivers such as flow regime and biotic interactions. We use downscaled outputs from general circulation models coupled with a hydrologic model to forecast the effects of altered flows and increased temperatures on four interacting species of trout...

  6. Inferring biotic interactions from proxies.

    PubMed

    Morales-Castilla, Ignacio; Matias, Miguel G; Gravel, Dominique; Araújo, Miguel B

    2015-06-01

    Inferring biotic interactions from functional, phylogenetic and geographical proxies remains one great challenge in ecology. We propose a conceptual framework to infer the backbone of biotic interaction networks within regional species pools. First, interacting groups are identified to order links and remove forbidden interactions between species. Second, additional links are removed by examination of the geographical context in which species co-occur. Third, hypotheses are proposed to establish interaction probabilities between species. We illustrate the framework using published food-webs in terrestrial and marine systems. We conclude that preliminary descriptions of the web of life can be made by careful integration of data with theory. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Biotic Interactions Shape the Ecological Distributions of Staphylococcus Species

    PubMed Central

    Kastman, Erik K.; Kamelamela, Noelani; Norville, Josh W.; Cosetta, Casey M.; Dutton, Rachel J.

    2016-01-01

    ABSTRACT Many metagenomic sequencing studies have observed the presence of closely related bacterial species or genotypes in the same microbiome. Previous attempts to explain these patterns of microdiversity have focused on the abiotic environment, but few have considered how biotic interactions could drive patterns of microbiome diversity. We dissected the patterns, processes, and mechanisms shaping the ecological distributions of three closely related Staphylococcus species in cheese rind biofilms. Paradoxically, the most abundant species (S. equorum) is the slowest colonizer and weakest competitor based on growth and competition assays in the laboratory. Through in vitro community reconstructions, we determined that biotic interactions with neighboring fungi help resolve this paradox. Species-specific stimulation of the poor competitor by fungi of the genus Scopulariopsis allows S. equorum to dominate communities in vitro as it does in situ. Results of comparative genomic and transcriptomic experiments indicate that iron utilization pathways, including a homolog of the S. aureus staphyloferrin B siderophore operon pathway, are potential molecular mechanisms underlying Staphylococcus-Scopulariopsis interactions. Our integrated approach demonstrates that fungi can structure the ecological distributions of closely related bacterial species, and the data highlight the importance of bacterium-fungus interactions in attempts to design and manipulate microbiomes. PMID:27795388

  8. Biotic Interactions Shape the Ecological Distributions of Staphylococcus Species.

    PubMed

    Kastman, Erik K; Kamelamela, Noelani; Norville, Josh W; Cosetta, Casey M; Dutton, Rachel J; Wolfe, Benjamin E

    2016-10-18

    Many metagenomic sequencing studies have observed the presence of closely related bacterial species or genotypes in the same microbiome. Previous attempts to explain these patterns of microdiversity have focused on the abiotic environment, but few have considered how biotic interactions could drive patterns of microbiome diversity. We dissected the patterns, processes, and mechanisms shaping the ecological distributions of three closely related Staphylococcus species in cheese rind biofilms. Paradoxically, the most abundant species (S. equorum) is the slowest colonizer and weakest competitor based on growth and competition assays in the laboratory. Through in vitro community reconstructions, we determined that biotic interactions with neighboring fungi help resolve this paradox. Species-specific stimulation of the poor competitor by fungi of the genus Scopulariopsis allows S. equorum to dominate communities in vitro as it does in situ Results of comparative genomic and transcriptomic experiments indicate that iron utilization pathways, including a homolog of the S. aureus staphyloferrin B siderophore operon pathway, are potential molecular mechanisms underlying Staphylococcus-Scopulariopsis interactions. Our integrated approach demonstrates that fungi can structure the ecological distributions of closely related bacterial species, and the data highlight the importance of bacterium-fungus interactions in attempts to design and manipulate microbiomes. Decades of culture-based studies and more recent metagenomic studies have demonstrated that bacterial species in agriculture, medicine, industry, and nature are unevenly distributed across time and space. The ecological processes and molecular mechanisms that shape these distributions are not well understood because it is challenging to connect in situ patterns of diversity with mechanistic in vitro studies in the laboratory. Using tractable cheese rind biofilms and a focus on coagulase-negative staphylococcus (CNS

  9. Nitric oxide and reactive oxygen species in plant biotic interactions.

    PubMed

    Scheler, Claudia; Durner, Jörg; Astier, Jeremy

    2013-08-01

    Nitric oxide (NO) and reactive oxygen species (ROS) are important signaling molecules in plants. Recent progress has been made in defining their role during plant biotic interactions. Over the last decade, their function in disease resistance has been highlighted and focused a lot of investigations. Moreover, NO and ROS have recently emerged as important players of defense responses after herbivore attacks. Besides their role in plant adaptive response development, NO and ROS have been demonstrated to be involved in symbiotic interactions between plants and microorganisms. Here we review recent data concerning these three sides of NO and ROS functions in plant biotic interactions.

  10. The interactions of ants with their biotic environment

    PubMed Central

    Renner, Susanne S.

    2017-01-01

    This special feature results from the symposium ‘Ants 2016: ant interactions with their biotic environments’ held in Munich in May 2016 and deals with the interactions between ants and other insects, plants, microbes and fungi, studied at micro- and macroevolutionary levels with a wide range of approaches, from field ecology to next-generation sequencing, chemical ecology and molecular genetics. In this paper, we review key aspects of these biotic interactions to provide background information for the papers of this special feature. After listing the major types of biotic interactions that ants engage in, we present a brief overview of ant/ant communication, ant/plant interactions, ant/fungus symbioses, and recent insights about ants and their endosymbionts. Using a large molecular clock-dated Formicidae phylogeny, we map the evolutionary origins of different ant clades' interactions with plants, fungi and hemiptera. Ants' biotic interactions provide ideal systems to address fundamental ecological and evolutionary questions about mutualism, coevolution, adaptation and animal communication. PMID:28298352

  11. Experimental reduction in interaction intensity strongly affects biotic selection.

    PubMed

    Sletvold, Nina; Ågren, Jon

    2016-11-01

    The link between biotic interaction intensity and strength of selection is of fundamental interest for understanding biotically driven diversification and predicting the consequences of environmental change. The strength of selection resulting from biotic interactions is determined by the strength of the interaction and by the covariance between fitness and the trait under selection. When the relationship between trait and absolute fitness is constant, selection strength should be a direct function of mean population interaction intensity. To test this prediction, we excluded pollinators for intervals of different length to induce five levels of pollination intensity within a single plant population. Pollen limitation (PL) increased from 0 to 0.77 across treatments, accompanied by a fivefold increase in the opportunity for selection. Trait-fitness covariance declined with PL for number of flowers, but varied little for other traits. Pollinator-mediated selection on plant height, corolla size, and spur length increased by 91%, 34%, and 330%, respectively, in the most severely pollen-limited treatment compared to open-pollinated plants. The results indicate that realized biotic selection can be predicted from mean population interaction intensity when variation in trait-fitness covariance is limited, and that declines in pollination intensity will strongly increase selection on traits involved in the interaction. © 2016 by the Ecological Society of America.

  12. The role of biotic forces in driving macroevolution: beyond the Red Queen

    PubMed Central

    Voje, Kjetil L.; Holen, Øistein H.; Liow, Lee Hsiang; Stenseth, Nils Chr.

    2015-01-01

    A multitude of hypotheses claim that abiotic factors are the main drivers of macroevolutionary change. By contrast, Van Valen's Red Queen hypothesis is often put forward as the sole representative of the view that biotic forcing is the main evolutionary driver. This imbalance of hypotheses does not reflect our current knowledge: theoretical work demonstrates the plausibility of biotically driven long-term evolution, whereas empirical work suggests a central role for biotic forcing in macroevolution. We call for a more pluralistic view of how biotic forces may drive long-term evolution that is compatible with both phenotypic stasis in the fossil record and with non-constant extinction rates. Promising avenues of research include contrasting predictions from relevant theories within ecology and macroevolution, as well as embracing both abiotic and biotic proxies while modelling long-term evolutionary data. By fitting models describing hypotheses of biotically driven macroevolution to data, we could dissect their predictions and transcend beyond pattern description, possibly narrowing the divide between our current understanding of micro- and macroevolution. PMID:25948685

  13. Chemical ecology: The chemistry of biotic interaction

    SciTech Connect

    Eisner, T.; Meinwald, J.

    1995-12-31

    Chemical signals among organisms form `a vast communicative interplay, fundamental to the fabric of life,` in the words of one expert. Chemical ecology is the discipline that seeks to understand these interactions to use biology in the search for new substances of potential benefit to humankind. This book highlights selected research areas of medicinal and agricultural importance. Leading experts review the chemistry of: (1) insect defense and its applications to pest control; (2) Phyletic dominance--the survival success of insects; (3) Social regulation, with ant societies as a model of multicomponent signaling systems; (4) Eavesdropping, alarm, and deceit--the array of strategies used by insects to find and lure prey; (5) Reproduction--from the gamete attraction to courtship and sexual selection; (6) the chemistry of intracellular immunosuppression. Topics also include the appropriation of dietary factors for defense and communication; the use of chemical signals in the marine environment; the role of the olfactory system in chemical analysis; and the interaction of polydnaviruses, endoparasites, and the immune system of the host.

  14. EDP: A computer program for analysis of biotic interactions

    NASA Astrophysics Data System (ADS)

    Gibson, Michael A.; Bolton, James C.

    1992-07-01

    Analyzing fossils for evidence of biotic interactions such as parasitism, commensalism, and predation can be accomplished using skeletal relationships (e.g. overlapping growth) on individual specimens and statistical information on populations of specimens. The latter approach provides information for use in larger scale paleocommunity analyses. This approach requires a large data set and extensive amounts of information management. The types of information that are needed include data concerning the identity of host and epibiont species, orientation of epibionts on hosts, position of encrustation, growth directions, region of occurrence, and associated fauna. We have written the Epibiont Digitizing Program (EDP) to collect the data necessary to study biotic interactions in the fossil record. The program is operator-interactive at all stages and versatile enough to allow modification depending upon the specific needs of the researcher.

  15. Information on biotic interactions improves transferability of distribution models.

    PubMed

    Godsoe, William; Murray, Rua; Plank, Michael J

    2015-02-01

    Predicting changes in species' distributions is a crucial problem in ecology, with leading methods relying on information about species' putative climatic requirements. Empirical support for this approach relies on our ability to use observations of a species' distribution in one region to predict its range in other regions (model transferability). On the basis of this observation, ecologists have hypothesized that climate is the strongest determinant of species' distributions at large spatial scales. However, it is difficult to reconcile this claim with the pervasive effects of biotic interactions. Here, we resolve this apparent paradox by demonstrating how biotic interactions can affect species' range margins yet still be compatible with model transferability. We also identify situations where small changes in species' interactions dramatically shift range margins.

  16. Annual grass invasion in sagebrush steppe: the relative importance of climate, soil properties and biotic interactions.

    PubMed

    Bansal, Sheel; Sheley, Roger L

    2016-06-01

    The invasion by winter-annual grasses (AGs) such as Bromus tectorum into sagebrush steppe throughout the western USA is a classic example of a biological invasion with multiple, interacting climate, soil and biotic factors driving the invasion, although few studies have examined all components together. Across a 6000-km(2) area of the northern Great Basin, we conducted a field assessment of 100 climate, soil, and biotic (functional group abundances, diversity) factors at each of 90 sites that spanned an invasion gradient ranging from 0 to 100 % AG cover. We first determined which biotic and abiotic factors had the strongest correlative relationships with AGs and each resident functional group. We then used regression and structural equation modeling to explore how multiple ecological factors interact to influence AG abundance. Among biotic interactions, we observed negative relationships between AGs and biodiversity, perennial grass cover, resident species richness, biological soil crust cover and shrub density, whereas perennial and annual forb cover, tree cover and soil microbial biomass had no direct linkage to AG. Among abiotic factors, AG cover was strongly related to climate (increasing cover with increasing temperature and aridity), but had weak relationships with soil factors. Our structural equation model showed negative effects of perennial grasses and biodiversity on AG cover while integrating the negative effects of warmer climate and positive influence of belowground processes on resident functional groups. Our findings illustrate the relative importance of biotic interactions and climate on invasive abundance, while soil properties appear to have stronger relationships with resident biota than with invasives.

  17. Omic Relief for the Biotically Stressed: Metabolomics of Plant Biotic Interactions.

    PubMed

    Tenenboim, Hezi; Brotman, Yariv

    2016-09-01

    Many aspects of the way plants protect themselves against pathogen attack, or react upon such an attack, are realized by metabolites. The ambitious aim of metabolomics, namely the identification and annotation of the entire cellular metabolome, still poses a considerable challenge due to the high diversity of the metabolites in the cell. Recent advances in analytical methods and data analysis have resulted in improved sensitivity, accuracy, and capacity, allowing the analysis of several hundreds or even thousands of compounds within one sample. Investigators have only recently begun to acknowledge and harness the power of metabolomics to elucidate key questions in the study of plant biotic interactions; we review trends and developments in the field.

  18. Meta-analysis of interactions between arbuscular mycorrhizal fungi and biotic stressors of plants.

    PubMed

    Yang, Haishui; Dai, Yajun; Wang, Xiaohua; Zhang, Qian; Zhu, Liqun; Bian, Xinmin

    2014-01-01

    Naturally, simultaneous interactions occurred among plants, herbivores, and soil biota, that is, arbuscular mycorrhizal fungi (AMF), nematodes, and fungal pathogens. These multiple interactions play fundamental roles in driving process, structure, and functioning of ecosystems. In this study, we conducted a meta-analysis with 144 papers to investigate the interactions between AMF and plant biotic stressors and their effects on plant growth performance. We found that AMF enhanced plant tolerance to herbivores, nematodes, and fungal pathogens. We also found reciprocal inhibition between AMF and nematodes as well as fungal pathogens, but unidirectional inhibition for AMF on herbivores. Negative effects of AMF on biotic stressors of plants depended on herbivore feeding sites and actioning modes of fungal pathogens. More performance was reduced in root-feeding than in shoot-feeding herbivores and in rotting- than in wilt-fungal pathogens. However, no difference was found for AMF negative effects between migratory and sedentary nematodes. In return, nematodes and fungal pathogens generated more reduction of root colonization in Non-Glomeraceae than in Glomeraceae. Our results suggested that AMF positive effects on plants might be indirectly mediated by competitive inhibition with biotic stressors of plants. These positive and negative interactions make potential contributions to maintaining ecosystem stability and functioning.

  19. Biotic interactions as drivers of algal origin and evolution.

    PubMed

    Brodie, Juliet; Ball, Steven G; Bouget, François-Yves; Chan, Cheong Xin; De Clerck, Olivier; Cock, J Mark; Gachon, Claire; Grossman, Arthur R; Mock, Thomas; Raven, John A; Saha, Mahasweta; Smith, Alison G; Vardi, Assaf; Yoon, Hwan Su; Bhattacharya, Debashish

    2017-08-31

    Contents 1 I. 2 II. 2 III. 7 IV. 9 9 References 9 SUMMARY: Biotic interactions underlie life's diversity and are the lynchpin to understanding its complexity and resilience within an ecological niche. Algal biologists have embraced this paradigm, and studies building on the explosive growth in omics and cell biology methods have facilitated the in-depth analysis of nonmodel organisms and communities from a variety of ecosystems. In turn, these advances have enabled a major revision of our understanding of the origin and evolution of photosynthesis in eukaryotes, bacterial-algal interactions, control of massive algal blooms in the ocean, and the maintenance and degradation of coral reefs. Here, we review some of the most exciting developments in the field of algal biotic interactions and identify challenges for scientists in the coming years. We foresee the development of an algal knowledgebase that integrates ecosystem-wide omics data and the development of molecular tools/resources to perform functional analyses of individuals in isolation and in populations. These assets will allow us to move beyond mechanistic studies of a single species towards understanding the interactions amongst algae and other organisms in both the laboratory and the field. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  20. Location and foraging as basis for classification of biotic interactions.

    PubMed

    Khabibullin, Viner F

    2016-06-01

    Ecologists face an overwhelming diversity of ecological relationships in natural communities. In this paper, I propose to differentiate various types of the interspecific relations on the basis of two factors: relative localization and foraging activity of interacting partners. I advocate recognition of four types of environments: internal, surface, proximate external and distant external. Then I distinguish four types of synoikia-one partner lives in different degree of proximity to another; and four types of synmensalism: one partner forages in different degree of proximity to another. Intersection of localization-based (four subtypes of synoikia) and foraging-based (four subtypes of synmensalism) rows results in 16 types of interactions. This scheme can serve as a framework that manages diverse biotic interactions in a standardized way. I have made the first step to set up nomenclature standards for terms describing interspecific interactions and hope that this will facilitate research and communication.

  1. Microhabitat selection in the common lizard: implications of biotic interactions, age, sex, local processes, and model transferability among populations.

    PubMed

    Peñalver-Alcázar, Miguel; Aragón, Pedro; Breedveld, Merel C; Fitze, Patrick S

    2016-06-01

    Modeling species' habitat requirements are crucial to assess impacts of global change, for conservation efforts and to test mechanisms driving species presence. While the influence of abiotic factors has been widely examined, the importance of biotic factors and biotic interactions, and the potential implications of local processes are not well understood. Testing their importance requires additional knowledge and analyses at local habitat scale. Here, we recorded the locations of species presence at the microhabitat scale and measured abiotic and biotic parameters in three different common lizard (Zootoca vivipara) populations using a standardized sampling protocol. Thereafter, space use models and cross-evaluations among populations were run to infer local processes and estimate the importance of biotic parameters, biotic interactions, sex, and age. Biotic parameters explained more variation than abiotic parameters, and intraspecific interactions significantly predicted the spatial distribution. Significant differences among populations in the relationship between abiotic parameters and lizard distribution, and the greater model transferability within populations than between populations are in line with effects predicted by local adaptation and/or phenotypic plasticity. These results underline the importance of including biotic parameters and biotic interactions in space use models at the population level. There were significant differences in space use between sexes, and between adults and yearlings, the latter showing no association with the measured parameters. Consequently, predictive habitat models at the population level taking into account different sexes and age classes are required to understand a specie's ecological requirements and to allow for precise conservation strategies. Our study therefore stresses that future predictive habitat models at the population level and their transferability should take these parameters into account.

  2. Stress ecology in fucus: abiotic, biotic and genetic interactions.

    PubMed

    Wahl, Martin; Jormalainen, Veijo; Eriksson, Britas Klemens; Coyer, James A; Molis, Markus; Schubert, Hendrik; Dethier, Megan; Karez, Rolf; Kruse, Inken; Lenz, Mark; Pearson, Gareth; Rohde, Sven; Wikström, Sofia A; Olsen, Jeanine L

    2011-01-01

    Stress regimes defined as the synchronous or sequential action of abiotic and biotic stresses determine the performance and distribution of species. The natural patterns of stress to which species are more or less well adapted have recently started to shift and alter under the influence of global change. This was the motivation to review our knowledge on the stress ecology of a benthic key player, the macroalgal genus Fucus. We first provide a comprehensive review of the genus as an ecological model including what is currently known about the major lineages of Fucus species with respect to hybridization, ecotypic differentiation and speciation; as well as life history, population structure and geographic distribution. We then review our current understanding of both extrinsic (abiotic/biotic) and intrinsic (genetic) stress(es) on Fucus species and how they interact with each other. It is concluded that (i) interactive stress effects appear to be equally distributed over additive, antagonistic and synergistic categories at the level of single experiments, but are predominantly additive when averaged over all studies in a meta-analysis of 41 experiments; (ii) juvenile and adult responses to stress frequently differ and (iii) several species or particular populations of Fucus may be relatively unaffected by climate change as a consequence of pre-adapted ecotypes that collectively express wide physiological tolerences. Future research on Fucus should (i) include additional species, (ii) include marginal populations as models for responses to environmental stress; (iii) assess a wider range of stress combinations, including their temporal fluctuations; (iv) better differentiate between stress sensitivity of juvenile versus adult stages; (v) include a functional genomic component in order to better integrate Fucus' ecological and evolutionary responses to stress regimes and (vi) utilize a multivariate modelling approach in order to develop and understand interaction

  3. Elasticity of population growth with respect to the intensity of biotic or abiotic driving factors.

    PubMed

    Lee, Charlotte T

    2016-12-19

    Demographic analysis can elucidate how driving factors, such as climate or species interactions,affect populations. One important question is how growth would respond to future changes in the mean intensity of a driving factor or in its variability, such as might be expected in a fluctuating and shifting climate. Here I develop an approach to computing new stochastic elasticities to address this question. The linchpin of this novel approach is the multidimensional demographic difference that expresses how a population responds to change in the driving factor between two discrete levels of intensity. I use this difference to design a perturbation matrix that links data from common empirical sampling schemes with rigorous theory for stochastic elasticities. Although the starting point is a difference, the products of this synthesis are true derivatives: they are elasticity with respect to the mean intensity of a driving factor, and elasticity with respect to variability in a driving factor. Applying the methods to published data, I demonstrate how these new elasticities can shed light on growth rate response within and at the boundary of the previously observed range of the driving factor, thus helpfully indicating nonlinearity in the observed and in the potential future response. The stochastic approach simplifies in a fixed environment, yielding a compact formula for deterministic elasticity to a driving factor. This article is protected by copyright. All rights reserved.

  4. Ecosystem development in roadside grasslands: biotic control, plant–soil interactions and dispersal limitations

    PubMed Central

    García-Palacios, Pablo; Bowker, Matthew A.; Maestre, Fernando T.; Soliveres, Santiago; Valladares, Fernando; Papadopoulos, Jorge; Escudero, Adrián

    2015-01-01

    Roadside grasslands undergoing secondary succession are abundant, and represent ecologically meaningful examples of novel, human-created ecosystems. Interactions between plant and soil communities (hereafter plant–soil interactions) are of major importance in understanding the role of biotic control in ecosystem functioning, but little is known about these links in the context of ecosystem restoration and succession. The assessment of the key biotic communities and interactions driving ecosystem development will help practitioners to better allocate the limited resources devoted to roadside grassland restoration. We surveyed roadside grasslands from three successional stages (0–2, 7–9 and > 20 years) in two Mediterranean regions of Spain. Structural equation modeling was used to evaluate how interactions between plants, biological soil crusts [BSCs], and soil microbial functional diversity [soil microorganisms] affect indicators of ecosystem development and restoration: plant similarity to the reference ecosystem, erosion control and soil C storage and N accumulation. Changes in plant community composition along the successional gradient exerted the strongest influence on these indicators. High BSC cover was associated with high soil stability, and high soil microbial functional diversity from late-successional stages was associated with high soil fertility. Contrary to our expectations, the indirect effects of plants, mediated by either BSCs or soil microorganisms, were very weak in both regions, suggesting a minor role for plant–soil interactions upon ecosystem development indicators over long periods. Our results suggest that natural vegetation dynamics effectively improved ecosystem development within a time frame of 20 years in the grasslands evaluated. They also indicate that this time could be shortened if management actions focus on: 1) maintain well-conserved natural areas close to roadsides to enhance plant compositional changes towards late

  5. Ecosystem development in roadside grasslands: Biotic control, plant-soil interactions, and dispersal limitations

    USGS Publications Warehouse

    Garcia-Palacios, P.; Bowker, M.A.; Maestre, F.T.; Soliveres, S.; Valladares, F.; Papadopoulos, J.; Escudero, A.

    2011-01-01

    Roadside grasslands undergoing secondary succession are abundant, and represent ecologically meaningful examples of novel, human-created ecosystems. Interactions between plant and soil communities (hereafter plant-soil interactions) are of major importance in understanding the role of biotic control in ecosystem functioning, but little is known about these links in the context of ecosystem restoration and succession. The assessment of the key biotic communities and interactions driving ecosystem development will help practitioners to better allocate the limited resources devoted to roadside grassland restoration. We surveyed roadside grasslands from three successional stages (0-2, 7-9, and > 20 years) in two Mediterranean regions of Spain. Structural equation modeling was used to evaluate how interactions between plants, biological soil crusts (BSCs), and soil microbial functional diversity (soil microorganisms) affect indicators of ecosystem development and restoration: plant similarity to the reference ecosystem, erosion control, and soil C storage and N accumulation. Changes in plant community composition along the successional gradient exerted the strongest influence on these indicators. High BSC cover was associated with high soil stability, and high soil microbial functional diversity from late-successional stages was associated with high soil fertility. Contrary to our expectations, the indirect effects of plants, mediated by either BSCs or soil microorganisms, were very weak in both regions, suggesting a minor role for plant-soil interactions upon ecosystem development indicators over long periods. Our results suggest that natural vegetation dynamics effectively improved ecosystem development within a time frame of 20 years in the grasslands evaluated. They also indicate that this time could be shortened if management actions focus on: (1) maintaining wellconserved natural areas close to roadsides to enhance plant compositional changes towards late

  6. Annual grass invasion in sagebrush-steppe: The relative importance of climate, soil properties and biotic interactions

    USGS Publications Warehouse

    Bansal, Sheel; Sheley, Roger L.

    2016-01-01

    The invasion by winter-annual grasses (AGs) such as Bromus tectorum into sagebrush steppe throughout the western USA is a classic example of a biological invasion with multiple, interacting climate, soil and biotic factors driving the invasion, although few studies have examined all components together. Across a 6000-km2 area of the northern Great Basin, we conducted a field assessment of 100 climate, soil, and biotic (functional group abundances, diversity) factors at each of 90 sites that spanned an invasion gradient ranging from 0 to 100 % AG cover. We first determined which biotic and abiotic factors had the strongest correlative relationships with AGs and each resident functional group. We then used regression and structural equation modeling to explore how multiple ecological factors interact to influence AG abundance. Among biotic interactions, we observed negative relationships between AGs and biodiversity, perennial grass cover, resident species richness, biological soil crust cover and shrub density, whereas perennial and annual forb cover, tree cover and soil microbial biomass had no direct linkage to AG. Among abiotic factors, AG cover was strongly related to climate (increasing cover with increasing temperature and aridity), but had weak relationships with soil factors. Our structural equation model showed negative effects of perennial grasses and biodiversity on AG cover while integrating the negative effects of warmer climate and positive influence of belowground processes on resident functional groups. Our findings illustrate the relative importance of biotic interactions and climate on invasive abundance, while soil properties appear to have stronger relationships with resident biota than with invasives.

  7. Biotic interactions mediate soil microbial feedbacks to climate change.

    PubMed

    Crowther, Thomas W; Thomas, Stephen M; Maynard, Daniel S; Baldrian, Petr; Covey, Kristofer; Frey, Serita D; van Diepen, Linda T A; Bradford, Mark A

    2015-06-02

    Decomposition of organic material by soil microbes generates an annual global release of 50-75 Pg carbon to the atmosphere, ∼7.5-9 times that of anthropogenic emissions worldwide. This process is sensitive to global change factors, which can drive carbon cycle-climate feedbacks with the potential to enhance atmospheric warming. Although the effects of interacting global change factors on soil microbial activity have been a widespread ecological focus, the regulatory effects of interspecific interactions are rarely considered in climate feedback studies. We explore the potential of soil animals to mediate microbial responses to warming and nitrogen enrichment within a long-term, field-based global change study. The combination of global change factors alleviated the bottom-up limitations on fungal growth, stimulating enzyme production and decomposition rates in the absence of soil animals. However, increased fungal biomass also stimulated consumption rates by soil invertebrates, restoring microbial process rates to levels observed under ambient conditions. Our results support the contemporary theory that top-down control in soil food webs is apparent only in the absence of bottom-up limitation. As such, when global change factors alleviate the bottom-up limitations on microbial activity, top-down control becomes an increasingly important regulatory force with the capacity to dampen the strength of positive carbon cycle-climate feedbacks.

  8. Do Eukaryotic Species Interactions Drive Freshwater HAB ...

    EPA Pesticide Factsheets

    Harmful algal blooms (HABs) constitute an increasingly frequent and severe threat to human health and the environment worldwide. The US EPA’s research into how to anticipate and mitigate HABs emphasizes the important role of abiotic factors such as nutrient pollution and temperature. Though informative, these research efforts may be insufficient by themselves. Accounting for the influences of biotic interactions such as predation, disease, and competition on HAB formation/dissipation may improve the power of HAB prediction and mitigation strategies. In the present study, we use a metabarcoding approach to profile changes in the aquatic community of a multipurpose reservoir in southeastern Ohio, USA, that has recently become prone to summertime blooms of toxic cyanobacteria. Our preliminary data indicate a consistent pattern in which HAB formation coincides with conspicuous spikes in the abundance of herbivorous crustacean zooplankton and rapid declines of green algae. Ongoing analyses are intended to elucidate key community dynamics foretelling HAB formation/dissipation. In addition, controlled laboratory experiments will be used to test hypotheses regarding mechanisms driving these dynamics. Showcasing of the use of new analytical methods and preliminary results.

  9. Interactions between abiotic constraint, propagule pressure, and biotic resistance regulate plant invasion.

    PubMed

    Byun, Chaeho; de Blois, Sylvie; Brisson, Jacques

    2015-05-01

    With multiple species introductions and rapid global changes, there is a need for comprehensive invasion models that can predict community responses. Evidence suggests that abiotic constraint, propagule pressure, and biotic resistance of resident species each determine plant invasion success, yet their interactions are rarely tested. To understand these interactions, we conducted community assembly experiments simulating situations in which seeds of the invasive grass species Phragmites australis (Poaceae) land on bare soil along with seeds of resident wetland plant species. We used structural equation models to measure both direct abiotic constraint (here moist vs. flooded conditions) on invasion success and indirect constraint on the abundance and, therefore, biotic resistance of resident plant species. We also evaluated how propagule supply of P. australis interacts with the biotic resistance of resident species during invasion. We observed that flooding always directly reduced invasion success but had a synergistic or antagonistic effect on biotic resistance depending on the resident species involved. Biotic resistance of the most diverse resident species mixture remained strong even when abiotic conditions changed. Biotic resistance was also extremely effective under low propagule pressure of the invader. Moreover, the presence of a dense resident plant cover appeared to lower the threshold at which invasion success became stable even when propagule supply increased. Our study not only provides an analytical framework to quantify the effect of multiple interactions relevant to community assembly and species invasion, but it also proposes guidelines for innovative invasion management strategies based on a sound understanding of ecological processes.

  10. Local-scale biotic interactions embedded in macroscale climate drivers suggest Eltonian noise hypothesis distribution patterns for an invasive grass.

    PubMed

    Fraterrigo, Jennifer M; Wagner, Stephanie; Warren, Robert J

    2014-11-01

    A hierarchical view of niche relations reconciles the scale-dependent effects of abiotic and biotic processes on species distribution patterns and underlies most current approaches to distribution modeling. A key prediction of this framework is that the effects of biotic interactions will be averaged out at macroscales - an idea termed the Eltonian noise hypothesis (ENH). We test this prediction by quantifying regional variation in local abiotic and biotic niche relations and assess the role of macroclimate in structuring biotic interactions, using a non-native invasive grass, Microstegium vimineum, in its introduced range. Consistent with hierarchical niche relations and the ENH, macroclimate structures local biotic interactions, while local abiotic relations are regionally conserved. Biotic interactions suppress M. vimineum in drier climates but have little effect in wetter climates. A similar approach could be used to identify the macroclimatic conditions under which biotic interactions affect the accuracy of local predictions of species distributions.

  11. How will biotic interactions influence climate change-induced range shifts?

    PubMed

    HilleRisLambers, Janneke; Harsch, Melanie A; Ettinger, Ailene K; Ford, Kevin R; Theobald, Elinore J

    2013-09-01

    Biotic interactions present a challenge in determining whether species distributions will track climate change. Interactions with competitors, consumers, mutualists, and facilitators can strongly influence local species distributions, but few studies assess how and whether these interactions will impede or accelerate climate change-induced range shifts. In this paper, we explore how ecologists might move forward on this question. We first outline the conditions under which biotic interactions can result in range shifts that proceed faster or slower than climate velocity and result in ecological surprises. Next, we use our own work to demonstrate that experimental studies documenting the strength of biotic interactions across large environmental gradients are a critical first step for understanding whether they will influence climate change-induced range shifts. Further progress could be made by integrating results from these studies into modeling frameworks to predict how or generalize when biotic interactions mediate how changing climates influence range shifts. Finally, we argue that many more case studies like those described here are needed to explore the importance of biotic interactions during climate change-induced range shifts. © 2013 New York Academy of Sciences.

  12. Linking macroecology and community ecology: refining predictions of species distributions using biotic interaction networks.

    PubMed

    Staniczenko, Phillip P A; Sivasubramaniam, Prabu; Suttle, K Blake; Pearson, Richard G

    2017-06-01

    Macroecological models for predicting species distributions usually only include abiotic environmental conditions as explanatory variables, despite knowledge from community ecology that all species are linked to other species through biotic interactions. This disconnect is largely due to the different spatial scales considered by the two sub-disciplines: macroecologists study patterns at large extents and coarse resolutions, while community ecologists focus on small extents and fine resolutions. A general framework for including biotic interactions in macroecological models would help bridge this divide, as it would allow for rigorous testing of the role that biotic interactions play in determining species ranges. Here, we present an approach that combines species distribution models with Bayesian networks, which enables the direct and indirect effects of biotic interactions to be modelled as propagating conditional dependencies among species' presences. We show that including biotic interactions in distribution models for species from a California grassland community results in better range predictions across the western USA. This new approach will be important for improving estimates of species distributions and their dynamics under environmental change. © 2017 The Authors. Ecology Letters published by CNRS and John Wiley & Sons Ltd.

  13. Biotic Interactions in the Face of Climate Change: A Comparison of Three Modelling Approaches

    PubMed Central

    Jaeschke, Anja; Bittner, Torsten; Jentsch, Anke; Reineking, Björn; Schlumprecht, Helmut; Beierkuhnlein, Carl

    2012-01-01

    Climate change is expected to alter biotic interactions, and may lead to temporal and spatial mismatches of interacting species. Although the importance of interactions for climate change risk assessments is increasingly acknowledged in observational and experimental studies, biotic interactions are still rarely incorporated in species distribution models. We assessed the potential impacts of climate change on the obligate interaction between Aeshna viridis and its egg-laying plant Stratiotes aloides in Europe, based on an ensemble modelling technique. We compared three different approaches for incorporating biotic interactions in distribution models: (1) We separately modelled each species based on climatic information, and intersected the future range overlap (‘overlap approach’). (2) We modelled the potential future distribution of A. viridis with the projected occurrence probability of S. aloides as further predictor in addition to climate (‘explanatory variable approach’). (3) We calibrated the model of A. viridis in the current range of S. aloides and multiplied the future occurrence probabilities of both species (‘reference area approach’). Subsequently, all approaches were compared to a single species model of A. viridis without interactions. All approaches projected a range expansion for A. viridis. Model performance on test data and amount of range gain differed depending on the biotic interaction approach. All interaction approaches yielded lower range gains (up to 667% lower) than the model without interaction. Regarding the contribution of algorithm and approach to the overall uncertainty, the main part of explained variation stems from the modelling algorithm, and only a small part is attributed to the modelling approach. The comparison of the no-interaction model with the three interaction approaches emphasizes the importance of including obligate biotic interactions in projective species distribution modelling. We recommend the use of

  14. Biotic interactions in the face of climate change: a comparison of three modelling approaches.

    PubMed

    Jaeschke, Anja; Bittner, Torsten; Jentsch, Anke; Reineking, Björn; Schlumprecht, Helmut; Beierkuhnlein, Carl

    2012-01-01

    Climate change is expected to alter biotic interactions, and may lead to temporal and spatial mismatches of interacting species. Although the importance of interactions for climate change risk assessments is increasingly acknowledged in observational and experimental studies, biotic interactions are still rarely incorporated in species distribution models. We assessed the potential impacts of climate change on the obligate interaction between Aeshna viridis and its egg-laying plant Stratiotes aloides in Europe, based on an ensemble modelling technique. We compared three different approaches for incorporating biotic interactions in distribution models: (1) We separately modelled each species based on climatic information, and intersected the future range overlap ('overlap approach'). (2) We modelled the potential future distribution of A. viridis with the projected occurrence probability of S. aloides as further predictor in addition to climate ('explanatory variable approach'). (3) We calibrated the model of A. viridis in the current range of S. aloides and multiplied the future occurrence probabilities of both species ('reference area approach'). Subsequently, all approaches were compared to a single species model of A. viridis without interactions. All approaches projected a range expansion for A. viridis. Model performance on test data and amount of range gain differed depending on the biotic interaction approach. All interaction approaches yielded lower range gains (up to 667% lower) than the model without interaction. Regarding the contribution of algorithm and approach to the overall uncertainty, the main part of explained variation stems from the modelling algorithm, and only a small part is attributed to the modelling approach. The comparison of the no-interaction model with the three interaction approaches emphasizes the importance of including obligate biotic interactions in projective species distribution modelling. We recommend the use of the 'reference

  15. Evolution of Neogene Mammals in Eurasia: Environmental Forcing and Biotic Interactions

    NASA Astrophysics Data System (ADS)

    Fortelius, Mikael; Eronen, Jussi T.; Kaya, Ferhat; Tang, Hui; Raia, Pasquale; Puolamäki, Kai

    2014-05-01

    The relative weights of physical forcing and biotic interaction as drivers of evolutionary change have been debated in evolutionary theory. The recent finding that species, genera, clades, and chronofaunas all appear to exhibit a symmetrical pattern of waxing and waning lends support to the view that biotic interactions shape the history of life. Yet, there is similarly abundant evidence that these primary units of biological evolution arise and wane in coincidence with major climatic change. We review these patterns and the process-level explanations offered for them. We also propose a tentative synthesis, characterized by interdependence between physical forcing and biotic interactions. We suggest that species with evolutionary novelties arise predominantly in "species factories" that develop under harsh environmental conditions, under dominant physical forcing, whereas exceptionally mild environments give rise to "oases in the desert," characterized by strong competition and survival of relics.

  16. Biotic interactions mediate the expansion of black mangrove (Avicennia germinans) into salt marshes under climate change.

    PubMed

    Guo, Hongyu; Zhang, Yihui; Lan, Zhenjiang; Pennings, Steven C

    2013-09-01

    Many species are expanding their distributions to higher latitudes due to global warming. Understanding the mechanisms underlying these distribution shifts is critical for better understanding the impacts of climate changes. The climate envelope approach is widely used to model and predict species distribution shifts with changing climates. Biotic interactions between species, however, may also influence species distributions, and a better understanding of biotic interactions could improve predictions based solely on climate envelope models. Along the northern Gulf of Mexico coast, USA, subtropical black mangrove (Avicennia germinans) at the northern limit of its distribution grows sympatrically with temperate salt marsh plants in Florida, Louisiana, and Texas. In recent decades, freeze-free winters have led to an expansion of black mangrove into salt marshes. We examined how biotic interactions between black mangrove and salt marsh vegetation along the Texas coast varied across (i) a latitudinal gradient (associated with a winter-temperature gradient); (ii) the elevational gradient within each marsh (which creates different marsh habitats); and (iii) different life history stages of black mangroves (seedlings vs. juvenile trees). Each of these variables affected the strength or nature of biotic interactions between black mangrove and salt marsh vegetation: (i) Salt marsh vegetation facilitated black mangrove seedlings at their high-latitude distribution limit, but inhibited black mangrove seedlings at lower latitudes; (ii) mangroves performed well at intermediate elevations, but grew and survived poorly in high- and low-marsh habitats; and (iii) the effect of salt marsh vegetation on black mangroves switched from negative to neutral as black mangroves grew from seedlings into juvenile trees. These results indicate that the expansion of black mangroves is mediated by complex biotic interactions. A better understanding of the impacts of climate change on ecological

  17. Interactions of biotic and abiotic environmental factors in an ectomycorrhizal symbiosis, and the potential for selection mosaics

    PubMed Central

    Piculell, Bridget J; Hoeksema, Jason D; Thompson, John N

    2008-01-01

    Background Geographic selection mosaics, in which species exert different evolutionary impacts on each other in different environments, may drive diversification in coevolving species. We studied the potential for geographic selection mosaics in plant-mycorrhizal interactions by testing whether the interaction between bishop pine (Pinus muricata D. Don) and one of its common ectomycorrhizal fungi (Rhizopogon occidentalis Zeller and Dodge) varies in outcome, when different combinations of plant and fungal genotypes are tested under a range of different abiotic and biotic conditions. Results We used a 2 × 2 × 2 × 2 factorial experiment to test the main and interactive effects of plant lineage (two maternal seed families), fungal lineage (two spore collections), soil type (lab mix or field soil), and non-mycorrhizal microbes (with or without) on the performance of plants and fungi. Ecological outcomes, as assessed by plant and fungal performance, varied widely across experimental environments, including interactions between plant or fungal lineages and soil environmental factors. Conclusion These results show the potential for selection mosaics in plant-mycorrhizal interactions, and indicate that these interactions are likely to coevolve in different ways in different environments, even when initially the genotypes of the interacting species are the same across all environments. Hence, selection mosaics may be equally as effective as genetic differences among populations in driving divergent coevolution among populations of interacting species. PMID:18507825

  18. Tree invasion of a montane meadow complex: temporal trends, spatial patterns, and biotic interactions

    Treesearch

    Charles B. Halpern; Joseph A. Antos; Janine M. Rice; Ryan D. Haugo; Nicole L. Lang

    2010-01-01

    We combined spatial point pattern analysis, population age structures, and a time-series of stem maps to quantify spatial and temporal patterns of conifer invasion over a 200-yr period in three plots totaling 4 ha. In combination, spatial and temporal patterns of establishment suggest an invasion process shaped by biotic interactions, with facilitation promoting...

  19. Spatially dependent biotic and abiotic factors drive survivorship and physical structure of green roof vegetation.

    PubMed

    Aloisio, Jason M; Palmer, Matthew I; Giampieri, Mario A; Tuininga, Amy R; Lewis, James D

    2017-01-01

    Plant survivorship depends on biotic and abiotic factors that vary at local and regional scales. This survivorship, in turn, has cascading effects on community composition and the physical structure of vegetation. Survivorship of native plant species is variable among populations planted in environmentally stressful habitats like urban roofs, but the degree to which factors at different spatial scales affect survivorship in urban systems is not well understood. We evaluated the effects of biotic and abiotic factors on survivorship, composition, and physical structure of two native perennial species assemblages, one characterized by a mixture of C4 grasses and forbs (Hempstead Plains, HP) and one characterized by a mixture of C3 grasses and forbs (Rocky Summit, RS), that were initially sown at equal ratios of growth forms (5:1:4; grass, N-fixing forb and non-N-fixing forb) in replicate 2-m(2) plots planted on 10 roofs in New York City (New York, USA). Of 24 000 installed plants, 40% survived 23 months after planting. Within-roof factors explained 71% of variation in survivorship, with biotic (species identity and assemblage) factors accounting for 54% of the overall variation, and abiotic (growing medium depth and plot location) factors explaining 17% of the variation. Among-roof factors explained 29% of variation in survivorship and increased solar radiation correlated with decreased survivorship. While growing medium properties (pH, nutrients, metals) differed among roofs there was no correlation with survivorship. Percent cover and sward height increased with increasing survivorship. At low survivorship, cover of the HP assemblage was greater compared to the RS assemblage. Sward height of the HP assemblage was about two times greater compared to the RS assemblage. These results highlight the effects of local biotic and regional abiotic drivers on community composition and physical structure of green roof vegetation. As a result, initial green roof plant

  20. The importance of disturbance by fire and other abiotic and biotic factors in driving cheatgrass invasion varies based on invasion stage

    Treesearch

    Becky K. Kerns; Michelle A. Day

    2017-01-01

    Disturbances create fluctuations in resource availability that alter abiotic and biotic constraints. Exotic invader response may be due to multiple factors related to disturbance regimes and complex interactions between other small- and largescale abiotic and biotic processes that may vary across invasion stages. We explore how cheatgrass responds to both frequency and...

  1. Moving forward: dispersal and species interactions determine biotic responses to climate change.

    PubMed

    Urban, Mark C; Zarnetske, Phoebe L; Skelly, David K

    2013-09-01

    We need accurate predictions about how climate change will alter species distributions and abundances around the world. Most predictions assume simplistic dispersal scenarios and ignore biotic interactions. We argue for incorporating the complexities of dispersal and species interactions. Range expansions depend not just on mean dispersal, but also on the shape of the dispersal kernel and the population's growth rate. We show how models using species-specific dispersal can produce more accurate predictions than models applying all-or-nothing dispersal scenarios. Models that additionally include species interactions can generate distinct outcomes. For example, species interactions can slow climate tracking and produce more extinctions than models assuming no interactions. We conclude that (1) just knowing mean dispersal is insufficient to predict biotic responses to climate change, and (2) considering interspecific dispersal variation and species interactions jointly will be necessary to anticipate future changes to biological diversity. We advocate for collecting key information on interspecific dispersal differences and strong biotic interactions so that we can build the more robust predictive models that will be necessary to inform conservation efforts as climates continue to change.

  2. Biotic Interactions Overrule Plant Responses to Climate, Depending on the Species' Biogeography

    PubMed Central

    Welk, Astrid; Welk, Erik; Bruelheide, Helge

    2014-01-01

    This study presents an experimental approach to assess the relative importance of climatic and biotic factors as determinants of species' geographical distributions. We asked to what extent responses of grassland plant species to biotic interactions vary with climate, and to what degree this variation depends on the species' biogeography. Using a gradient from oceanic to continental climate represented by nine common garden transplant sites in Germany, we experimentally tested whether congeneric grassland species of different geographic distribution (oceanic vs. continental plant range type) responded differently to combinations of climate, competition and mollusc herbivory. We found the relative importance of biotic interactions and climate to vary between the different components of plant performance. While survival and plant height increased with precipitation, temperature had no effect on plant performance. Additionally, species with continental plant range type increased their growth in more benign climatic conditions, while those with oceanic range type were largely unable to take a similar advantage of better climatic conditions. Competition generally caused strong reductions of aboveground biomass and growth. In contrast, herbivory had minor effects on survival and growth. Against expectation, these negative effects of competition and herbivory were not mitigated under more stressful continental climate conditions. In conclusion we suggest variation in relative importance of climate and biotic interactions on broader scales, mediated via species-specific sensitivities and factor-specific response patterns. Our results have important implications for species distribution models, as they emphasize the large-scale impact of biotic interactions on plant distribution patterns and the necessity to take plant range types into account. PMID:25356912

  3. Biotic interactions overrule plant responses to climate, depending on the species' biogeography.

    PubMed

    Welk, Astrid; Welk, Erik; Bruelheide, Helge

    2014-01-01

    This study presents an experimental approach to assess the relative importance of climatic and biotic factors as determinants of species' geographical distributions. We asked to what extent responses of grassland plant species to biotic interactions vary with climate, and to what degree this variation depends on the species' biogeography. Using a gradient from oceanic to continental climate represented by nine common garden transplant sites in Germany, we experimentally tested whether congeneric grassland species of different geographic distribution (oceanic vs. continental plant range type) responded differently to combinations of climate, competition and mollusc herbivory. We found the relative importance of biotic interactions and climate to vary between the different components of plant performance. While survival and plant height increased with precipitation, temperature had no effect on plant performance. Additionally, species with continental plant range type increased their growth in more benign climatic conditions, while those with oceanic range type were largely unable to take a similar advantage of better climatic conditions. Competition generally caused strong reductions of aboveground biomass and growth. In contrast, herbivory had minor effects on survival and growth. Against expectation, these negative effects of competition and herbivory were not mitigated under more stressful continental climate conditions. In conclusion we suggest variation in relative importance of climate and biotic interactions on broader scales, mediated via species-specific sensitivities and factor-specific response patterns. Our results have important implications for species distribution models, as they emphasize the large-scale impact of biotic interactions on plant distribution patterns and the necessity to take plant range types into account.

  4. The interaction of plant biotic and abiotic stresses: from genes to the field.

    PubMed

    Atkinson, Nicky J; Urwin, Peter E

    2012-06-01

    Plant responses to different stresses are highly complex and involve changes at the transcriptome, cellular, and physiological levels. Recent evidence shows that plants respond to multiple stresses differently from how they do to individual stresses, activating a specific programme of gene expression relating to the exact environmental conditions encountered. Rather than being additive, the presence of an abiotic stress can have the effect of reducing or enhancing susceptibility to a biotic pest or pathogen, and vice versa. This interaction between biotic and abiotic stresses is orchestrated by hormone signalling pathways that may induce or antagonize one another, in particular that of abscisic acid. Specificity in multiple stress responses is further controlled by a range of molecular mechanisms that act together in a complex regulatory network. Transcription factors, kinase cascades, and reactive oxygen species are key components of this cross-talk, as are heat shock factors and small RNAs. This review aims to characterize the interaction between biotic and abiotic stress responses at a molecular level, focusing on regulatory mechanisms important to both pathways. Identifying master regulators that connect both biotic and abiotic stress response pathways is fundamental in providing opportunities for developing broad-spectrum stress-tolerant crop plants.

  5. Black Carbon - Soil Organic Matter abiotic and biotic interactions

    NASA Astrophysics Data System (ADS)

    Cotrufo, Francesca; Boot, Claudia; Denef, Karolien; Foster, Erika; Haddix, Michelle; Jiang, Xinyu; Soong, Jennifer; Stewart, Catherine

    2014-05-01

    Wildfires, prescribed burns and the use of char as a soil amendment all add large quantities of black carbon to soils, with profound, yet poorly understood, effects on soil biology and chemical-physical structure. We will present results emerging from our black carbon program, which addresses questions concerning: 1) black carbon-soil organic matter interactions, 2) char decomposition and 3) impacts on microbial community structure and activities. Our understanding derives from a complementary set of post-fire black carbon field surveys and laboratory and field experiments with grass and wood char amendments, in which we used molecular (i.e., BPCA, PLFA) and isotopic (i.e., 13C and 15N labelled char) tracers. Overall, emerging results demonstrate that char additions to soil are prone to fast erosion, but a fraction remains that increases water retention and creates a better environment for the microbial community, particularly favoring gram negative bacteria. However, microbial decomposition of black carbon only slowly consumes a small fraction of it, thus char still significantly contributes to soil carbon sequestration. This is especially true in soils with little organic matter, where black carbon additions may even induce negative priming.

  6. How do Humans interact with the Biotic Pump of South America?

    NASA Astrophysics Data System (ADS)

    Sharma, Ajar; Pande, Saket; Renata Cordeiro Ortigara, Angela; Uhlenbrook, Stefan

    2017-04-01

    The negative effects of the deforestation have been both advertised and down played. However, the effects are far more tangible than what they seem to be. It has been shown that the change in forest cover causes the rainfall patterns to change as the forests work as so-called Biotic Pumps. This changes the water availability in the area by modifying the water balance. Local water balances affect the changes that may take longer to be visible on the larger scales. The Amazon rain forest, one of the most bio-diverse areas worldwide, is an essential part of the biosphere of South America. However, there are clear links between deforestation carried out for agricultural purposes, specifically, Soybean and Sugarcane and the variability in global food prices. Here we analyse the anthropogenic actions that may influence the biotic pump. Variables such as volatility in commodity prices, risk taking capacities, land availability, government subsidies are used to drive the decision making of farmers. These variables are embedded in a lumped biotic pump model made for Brazil, utilizing data from different sources including MODIS, Centro de Previsão do Tempo e Estudos Climáticos (CPTEC), European Centre for Medium-Range Weather Forecasts (ECMWF). The biotic pump model essentially transports atmospheric moisture downwind, part of which falls as rain. The atmospheric moisture 'upwind' accounts for evaporation, incorporating land cover changes in response to land use decisions made by farmers and rainfall. The model is run for scenarios to demonstrate how rain downwind is affected by upwind land cover and provides first insights in to how much rain and productivity (agriculture) downwind is caused by the Amazonian rain forest upwind We then discuss the value of environmental conservation based on marginal productivity analysis, i.e., finding harmony between the conservation of rainforest and the economic growth of the country.

  7. Using Biotic Interaction Networks for Prediction in Biodiversity and Emerging Diseases

    PubMed Central

    Stephens, Christopher R.; Heau, Joaquín Giménez; González, Camila; Ibarra-Cerdeña, Carlos N.; Sánchez-Cordero, Victor; González-Salazar, Constantino

    2009-01-01

    Networks offer a powerful tool for understanding and visualizing inter-species ecological and evolutionary interactions. Previously considered examples, such as trophic networks, are just representations of experimentally observed direct interactions. However, species interactions are so rich and complex it is not feasible to directly observe more than a small fraction. In this paper, using data mining techniques, we show how potential interactions can be inferred from geographic data, rather than by direct observation. An important application area for this methodology is that of emerging diseases, where, often, little is known about inter-species interactions, such as between vectors and reservoirs. Here, we show how using geographic data, biotic interaction networks that model statistical dependencies between species distributions can be used to infer and understand inter-species interactions. Furthermore, we show how such networks can be used to build prediction models. For example, for predicting the most important reservoirs of a disease, or the degree of disease risk associated with a geographical area. We illustrate the general methodology by considering an important emerging disease - Leishmaniasis. This data mining methodology allows for the use of geographic data to construct inferential biotic interaction networks which can then be used to build prediction models with a wide range of applications in ecology, biodiversity and emerging diseases. PMID:19478956

  8. Untangling interactions: do temperature and habitat fragmentation gradients simultaneously impact biotic relationships?

    PubMed

    Lakeman-Fraser, Poppy; Ewers, Robert M

    2014-07-22

    Gaining insight into the impact of anthropogenic change on ecosystems requires investigation into interdependencies between multiple drivers of ecological change and multiple biotic responses. Global environmental change drivers can act simultaneously to impact the abundance and diversity of biota, but few studies have also measured the impact across trophic levels. We firstly investigated whether climate (using temperature differences across a latitudinal gradient as a surrogate) interacts with habitat fragmentation (measured according to fragment area and distance to habitat edges) to impact a New Zealand tri-trophic food chain (plant, herbivore and natural enemy). Secondly, we examined how these interactions might differentially impact both the density and biotic processes of species at each of the three trophic levels. We found evidence to suggest that these drivers act non-additively across trophic levels. The nature of these interactions however varied: location synergistically interacted with fragmentation measures to exacerbate the detrimental effects on consumer density; and antagonistically interacted to ameliorate the impact on plant density and on the interactions between trophic levels (herbivory and parasitoid attack rate). Our findings indicate that the ecological consequences of multiple global change drivers are strongly interactive and vary according to the trophic level studied and whether density or ecological processes are investigated. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  9. Untangling interactions: do temperature and habitat fragmentation gradients simultaneously impact biotic relationships?

    PubMed Central

    Lakeman-Fraser, Poppy; Ewers, Robert M.

    2014-01-01

    Gaining insight into the impact of anthropogenic change on ecosystems requires investigation into interdependencies between multiple drivers of ecological change and multiple biotic responses. Global environmental change drivers can act simultaneously to impact the abundance and diversity of biota, but few studies have also measured the impact across trophic levels. We firstly investigated whether climate (using temperature differences across a latitudinal gradient as a surrogate) interacts with habitat fragmentation (measured according to fragment area and distance to habitat edges) to impact a New Zealand tri-trophic food chain (plant, herbivore and natural enemy). Secondly, we examined how these interactions might differentially impact both the density and biotic processes of species at each of the three trophic levels. We found evidence to suggest that these drivers act non-additively across trophic levels. The nature of these interactions however varied: location synergistically interacted with fragmentation measures to exacerbate the detrimental effects on consumer density; and antagonistically interacted to ameliorate the impact on plant density and on the interactions between trophic levels (herbivory and parasitoid attack rate). Our findings indicate that the ecological consequences of multiple global change drivers are strongly interactive and vary according to the trophic level studied and whether density or ecological processes are investigated. PMID:24898374

  10. Accounting for dispersal and biotic interactions to disentangle the drivers of species distributions and their abundances

    PubMed Central

    Boulangeat, Isabelle; Gravel, Dominique; Thuiller, Wilfried

    2014-01-01

    Although abiotic factors, together with dispersal and biotic interactions, are often suggested to explain the distribution of species and their abundances, species distribution models usually focus on abiotic factors only. We propose an integrative framework linking ecological theory, empirical data and statistical models to understand the distribution of species and their abundances together with the underlying community assembly dynamics. We illustrate our approach with 21 plant species in the French Alps. We show that a spatially nested modelling framework significantly improves the model’s performance and that the spatial variations of species presence–absence and abundances are predominantly explained by different factors. We also show that incorporating abiotic, dispersal and biotic factors into the same model bring new insights to our understanding of community assembly. This approach, at the crossroads between community ecology and biogeography, is a promising avenue for a better understanding of species co-existence and biodiversity distribution. PMID:22462813

  11. Contrasting the effects of environment, dispersal and biotic interactions to explain the distribution of invasive plants in alpine communities

    PubMed Central

    GALLIEN, Laure; MAZEL, Florent; LAVERGNE, Sébastien; RENAUD, Julien; DOUZET, Rolland; THUILLER, Wilfried

    2015-01-01

    Despite considerable efforts devoted to investigate the community assembly processes driving plant invasions, few general conclusions have been drawn so far. Three main processes, generally acting as successive filters, are thought to be of prime importance. The invader has to disperse (1st filter) into a suitable environment (2nd filter) and succeed in establishing in recipient communities through competitive interactions (3rd filter) using two strategies: competition avoidance by the use of different resources (resource opportunity), or competitive exclusion of native species. Surprisingly, despite the general consensus on the importance of investigating these three processes and their interplay, they are usually studied independently. Here we aim to analyse these three filters together, by including them all: abiotic environment, dispersal and biotic interactions, into models of invasive species distributions. We first propose a suite of indices (based on species functional dissimilarities) supposed to reflect the two competitive strategies (resource opportunity and competition exclusion). Then, we use a set of generalised linear models to explain the distribution of seven herbaceous invaders in natural communities (using a large vegetation database for the French Alps containing 5,000 community-plots). Finally, we measure the relative importance of competitive interaction indices, identify the type of coexistence mechanism involved and how this varies along environmental gradients. Adding competition indices significantly improved model’s performance, but neither resource opportunity nor competitive exclusion were common strategies among the seven species. Overall, we show that combining environmental, dispersal and biotic information to model invasions has excellent potential for improving our understanding of invader success. PMID:26290653

  12. Energy from Redox Disproportionation of Sugar Carbon Drives Biotic and Abiotic Synthesis

    NASA Technical Reports Server (NTRS)

    Weber, Arthur L.

    1997-01-01

    To identify the energy source that drives the biosynthesis of amino acids, lipids, and nucleotides from glucose, we calculated the free energy change due to redox disproportionation of the substrate carbon of: (1) 26-carbon fermentation reactions and (2) the biosynthesis of amino acids and lipids of E. coli from glucose. The free energy (cal/mmol of carbon) of these reactions was plotted as a function of the degree of redox disproportionation of carbon (disproportionative electron transfers (mmol)/mmol of carbon). The zero intercept and proportionality between energy yield and degree of redox disproportionation exhibited by this plot demonstrate that redox disproportionation is the principal energy source of these redox reactions (slope of linear fit = -10.4 cal/mmol of disproportionative electron transfers). The energy and disproportionation values of E. coli amino acid and lipid biosynthesis from glucose lie near this linear curve fit with redox disproportionation accounting for 84% and 96% (and ATP only 6% and 1 %) of the total energy of amino acid and lipid biosynthesis, respectively. These observations establish that redox disproportionation of carbon, and not ATP, is the primary energy source driving amino acid and lipid biosynthesis from glucose. In contrast, we found that nucteotide biosynthesis involves very little redox disproportionation, and consequently depends almost entirely on ATP for energy. The function of sugar redox disproportionation as the major source of free energy for the biosynthesis of amino acids and lipids suggests that sugar disproportionation played a central role in the origin of metabolism, and probably the origin of life.

  13. Energy from Redox Disproportionation of Sugar Carbon Drives Biotic and Abiotic Synthesis

    NASA Technical Reports Server (NTRS)

    Weber, Arthur L.

    1997-01-01

    To identify the energy source that drives the biosynthesis of amino acids, lipids, and nucleotides from glucose, we calculated the free energy change due to redox disproportionation of the substrate carbon of: (1) 26-carbon fermentation reactions and (2) the biosynthesis of amino acids and lipids of E. coli from glucose. The free energy (cal/mmol of carbon) of these reactions was plotted as a function of the degree of redox disproportionation of carbon (disproportionative electron transfers (mmol)/mmol of carbon). The zero intercept and proportionality between energy yield and degree of redox disproportionation exhibited by this plot demonstrate that redox disproportionation is the principal energy source of these redox reactions (slope of linear fit = -10.4 cal/mmol of disproportionative electron transfers). The energy and disproportionation values of E. coli amino acid and lipid biosynthesis from glucose lie near this linear curve fit with redox disproportionation accounting for 84% and 96% (and ATP only 6% and 1%) of the total energy of amino acid and lipid biosynthesis, respectively. These observations establish that redox disproportionation of carbon, and not ATP, is the primary energy source driving amino acid and lipid biosynthesis from glucose. In contrast, we found that nucleotide biosynthesis involves very little redox disproportionation, and consequently depends almost entirely on ATP for energy. The function of sugar redox disproportionation as the major source of free energy for the biosynthesis of amino acids and lipids suggests that sugar disproportionation played a central role in the origin of metabolism, and probably the origin of life.

  14. Energy from Redox Disproportionation of Sugar Carbon Drives Biotic and Abiotic Synthesis

    NASA Technical Reports Server (NTRS)

    Weber, Arthur L.

    1997-01-01

    To identify the energy source that drives the biosynthesis of amino acids, lipids, and nucleotides from glucose, we calculated the free energy change due to redox disproportionation of the substrate carbon of: (1) 26-carbon fermentation reactions and (2) the biosynthesis of amino acids and lipids of E. coli from glucose. The free energy (cal/mmol of carbon) of these reactions was plotted as a function of the degree of redox disproportionation of carbon (disproportionative electron transfers (mmol)/mmol of carbon). The zero intercept and proportionality between energy yield and degree of redox disproportionation exhibited by this plot demonstrate that redox disproportionation is the principal energy source of these redox reactions (slope of linear fit = -10.4 cal/mmol of disproportionative electron transfers). The energy and disproportionation values of E. coli amino acid and lipid biosynthesis from glucose lie near this linear curve fit with redox disproportionation accounting for 84% and 96% (and ATP only 6% and 1 %) of the total energy of amino acid and lipid biosynthesis, respectively. These observations establish that redox disproportionation of carbon, and not ATP, is the primary energy source driving amino acid and lipid biosynthesis from glucose. In contrast, we found that nucteotide biosynthesis involves very little redox disproportionation, and consequently depends almost entirely on ATP for energy. The function of sugar redox disproportionation as the major source of free energy for the biosynthesis of amino acids and lipids suggests that sugar disproportionation played a central role in the origin of metabolism, and probably the origin of life.

  15. Energy from Redox Disproportionation of Sugar Carbon Drives Biotic and Abiotic Synthesis

    NASA Technical Reports Server (NTRS)

    Weber, Arthur L.

    1997-01-01

    To identify the energy source that drives the biosynthesis of amino acids, lipids, and nucleotides from glucose, we calculated the free energy change due to redox disproportionation of the substrate carbon of: (1) 26-carbon fermentation reactions and (2) the biosynthesis of amino acids and lipids of E. coli from glucose. The free energy (cal/mmol of carbon) of these reactions was plotted as a function of the degree of redox disproportionation of carbon (disproportionative electron transfers (mmol)/mmol of carbon). The zero intercept and proportionality between energy yield and degree of redox disproportionation exhibited by this plot demonstrate that redox disproportionation is the principal energy source of these redox reactions (slope of linear fit = -10.4 cal/mmol of disproportionative electron transfers). The energy and disproportionation values of E. coli amino acid and lipid biosynthesis from glucose lie near this linear curve fit with redox disproportionation accounting for 84% and 96% (and ATP only 6% and 1%) of the total energy of amino acid and lipid biosynthesis, respectively. These observations establish that redox disproportionation of carbon, and not ATP, is the primary energy source driving amino acid and lipid biosynthesis from glucose. In contrast, we found that nucleotide biosynthesis involves very little redox disproportionation, and consequently depends almost entirely on ATP for energy. The function of sugar redox disproportionation as the major source of free energy for the biosynthesis of amino acids and lipids suggests that sugar disproportionation played a central role in the origin of metabolism, and probably the origin of life.

  16. Effects of biotic and abiotic factors on the temporal dynamic of bat-fruit interactions

    NASA Astrophysics Data System (ADS)

    Laurindo, Rafael de Souza; Gregorin, Renato; Tavares, Davi Castro

    2017-08-01

    Mutualistic interactions between animals and plants vary over time and space based on the abundance of fruits or animals and seasonality. Little is known about this temporal dynamic and the influence of biotic and abiotic factors on the structure of interaction networks. We evaluated changes in the structure of network interactions between bats and fruits in relation to variations in rainfall. Our results suggest that fruit abundance is the main variable responsible for temporal changes in network attributes, such as network size, connectance, and number of interactions. In the same way, temperature positively affected the abundance of fruits and bats. An increase in temperature and alterations in rainfall patterns, due to human induced climate change, can cause changes in phenological patterns and fruit production, with negative consequences to biodiversity maintenance, ecological interactions, and ecosystem functioning.

  17. Effects of biotic interactions on modeled species' distribution can be masked by environmental gradients.

    PubMed

    Godsoe, William; Franklin, Janet; Blanchet, F Guillaume

    2017-01-01

    A fundamental goal of ecology is to understand the determinants of species' distributions (i.e., the set of locations where a species is present). Competition among species (i.e., interactions among species that harms each of the species involved) is common in nature and it would be tremendously useful to quantify its effects on species' distributions. An approach to studying the large-scale effects of competition or other biotic interactions is to fit species' distributions models (SDMs) and assess the effect of competitors on the distribution and abundance of the species of interest. It is often difficult to validate the accuracy of this approach with available data. Here, we simulate virtual species that experience competition. In these simulated datasets, we can unambiguously identify the effects that competition has on a species' distribution. We then fit SDMs to the simulated datasets and test whether we can use the outputs of the SDMs to infer the true effect of competition in each simulated dataset. In our simulations, the abiotic environment influenced the effects of competition. Thus, our SDMs often inferred that the abiotic environment was a strong predictor of species abundance, even when the species' distribution was strongly affected by competition. The severity of this problem depended on whether the competitor excluded the focal species from highly suitable sites or marginally suitable sites. Our results highlight how correlations between biotic interactions and the abiotic environment make it difficult to infer the effects of competition using SDMs.

  18. Biotic interactions at hydrothermal vents: Recruitment inhibition by the mussel Bathymodiolus thermophilus

    NASA Astrophysics Data System (ADS)

    Lenihan, H. S.; Mills, S. W.; Mullineaux, L. S.; Peterson, C. H.; Fisher, C. R.; Micheli, F.

    2008-12-01

    The structure and dynamics of marine communities are regulated in part by variation in recruitment. As in other ecosystems, recruitment at deep-sea hydrothermal vents is controlled by the interplay of propagule supply and behavior, gradients in physical-chemical conditions, and biotic interactions during pre- and post-settlement periods. Recent research along the East Pacific Rise indicates that inhibition of recently settled larvae by mobile predators (mainly limpets) influences patterns of recruitment and subsequent community succession. We conducted a manipulative experiment at the same sites (˜2510 m water depth) to test whether high-density assemblages of the mussel Bathymodiolus thermophilus also inhibit recruitment. In a preliminary study, recruitment of vent invertebrates within the faunal zone dominated by B. thermophilus was strikingly different at two sites, East Wall and Worm Hole. East Wall had high densities of mussels but very low total recruitment. In contrast, Worm Hole had few mussels but high recruitment. Using the submersible Alvin, we transplanted a large number of mussels from East Wall to Worm Hole and quantified recruitment on basalt blocks placed in three treatments: (1) naturally high densities of mussels at East Wall; (2) naturally low densities of mussels at Worm Hole; and (3) high densities of transplanted mussels at Worm Hole. After 11 months, a total of 24 taxa had recruited to the basalt blocks. Recruitment was 44-60% lower in the transplanted high-density mussel patch at Worm Hole and the natural high-density patch at East Wall than within the natural low-density patch at Worm Hole. Biotic processes that may have caused the pattern of recruitment observed included predation of larvae via water filtration by mussels, larval avoidance of superior competitors, interference competition, and enhanced predation by species within the mussel-bed community. Our results indicate that biotic interactions affecting recruitment must be

  19. Aboveground-belowground linkages: Biotic interactions, ecosystem processes, and global change

    NASA Astrophysics Data System (ADS)

    Anderson, Laurel J.

    2011-06-01

    The discovery of unexpected connections among organisms that seemingly have nothing to do with one another is one of the most exciting aspects of ecological science. Aboveground-Belowground Linkages: Biotic Interactions, Ecosystem Processes, and Global Change, by Richard Bardgett and David Wardle, reminds readers that interactions among soil microbes, plants, herbivores, predators, and the physical environment represent some of the most fascinating of these discoveries and that much remains to be revealed. Indeed, given the known influences of soils on plant productivity and the global carbon and nitrogen cycles, understanding the mechanisms that link aboveground and belowground processes is critical for accurate assessments of how climate change may affect ecosystem goods and services that support humans. Bardgett and Wardle make the need for further work in this area abundantly clear as they synthesize the current state of knowledge on aboveground and belowground interactions using diverse and interesting examples drawn from an extensive review of the literature.

  20. Differential responses of Oryza sativa secondary metabolism to biotic interactions with cooperative, commensal and phytopathogenic bacteria.

    PubMed

    Chamam, Amel; Wisniewski-Dyé, Florence; Comte, Gilles; Bertrand, Cédric; Prigent-Combaret, Claire

    2015-12-01

    Profiling of plant secondary metabolite allows to differentiate the different types of ecological interactions established between rice and bacteria. Rice responds to ecologically distinct bacteria by altering its content of flavonoids and hydroxycinnamic acid derivatives. Plants' growth and physiology are strongly influenced by the biotic interactions that plants establish with soil bacterial populations. Plants are able to sense and to respond accordingly to ecologically distinct bacteria, by inducing defense pathways against pathogens to prevent parasitic interactions, and by stimulating the growth of root-associated beneficial or commensal bacteria through root exudation. Plant secondary metabolism is expected to play a major role in this control. However, secondary metabolite responses of a same plant to cooperative, commensal and deleterious bacteria have so far never been compared. The impact of the plant growth-promoting rhizobacteria (PGPR) Azospirillum lipoferum 4B on the secondary metabolite profiles of two Oryza sativa L. cultivars (Cigalon and Nipponbare) was compared to that of a rice pathogen Burkholderia glumae AU6208, the causing agent of bacterial panicle blight and of a commensal environmental bacteria Escherichia coli B6. Root and shoot rice extracts were analyzed by reversed-phase high-performance liquid chromatography (RP-HPLC). Principal component analyses (PCAs) pinpointed discriminant secondary metabolites, which were characterized by mass spectrometry. Direct comparison of metabolic profiles evidenced that each bacterial ecological interaction induced distinct qualitative and quantitative modifications of rice secondary metabolism, by altering the content of numerous flavonoid compounds and hydroxycinnamic acid (HCA) derivatives. Secondary metabolism varied according to the cultivars and the interaction types, demonstrating the relevance of secondary metabolic profiling for studying plant-bacteria biotic interactions.

  1. 'Trophic whales' as biotic buffers: weak interactions stabilize ecosystems against nutrient enrichment.

    PubMed

    Schwarzmüller, Florian; Eisenhauer, Nico; Brose, Ulrich

    2015-05-01

    Human activities may compromise biodiversity if external stressors such as nutrient enrichment endanger overall network stability by inducing unstable dynamics. However, some ecosystems maintain relatively high diversity levels despite experiencing continuing disturbances. This indicates that some intrinsic properties prevent unstable dynamics and resulting extinctions. Identifying these 'ecosystem buffers' is crucial for our understanding of the stability of ecosystems and an important tool for environmental and conservation biologists. In this vein, weak interactions have been suggested as stabilizing elements of complex systems, but their relevance has rarely been tested experimentally. Here, using network and allometric theory, we present a novel concept for a priori identification of species that buffer against externally induced instability of increased population oscillations via weak interactions. We tested our model in a microcosm experiment using a soil food-web motif. Our results show that large-bodied species feeding at the food web's base, so called 'trophic whales', can buffer ecosystems against unstable dynamics induced by nutrient enrichment. Similar to the functionality of chemical or mechanical buffers, they serve as 'biotic buffers' that take up stressor effects and thus protect fragile systems from instability. We discuss trophic whales as common functional building blocks across ecosystems. Considering increasing stressor effects under anthropogenic global change, conservation of these network-intrinsic biotic buffers may help maintain the stability and diversity of natural ecosystems.

  2. Separating the role of biotic interactions and climate in determining adaptive response of plants to climate change.

    PubMed

    Tomiolo, Sara; Van der Putten, Wim H; Tielbörger, Katja

    2015-05-01

    Altered rainfall regimes will greatly affect the response of plant species to climate change. However, little is known about how direct effects of changing precipitation on plant performance may depend on other abiotic factors and biotic interactions. We used reciprocal transplants between climatically very different sites with simultaneous manipulation of soil, plant population origin, and neighbor conditions to evaluate local adaptation and possible adaptive response of four Eastern Mediterranean annual plant species to climate change. The effect of site on plant performance was negligible, but soil origin had a strong effect on fecundity, most likely due to differential water retaining ability. Competition by neighbors strongly reduced fitness. We separated the effects of the abiotic and biotic soil properties on plant performance by repeating the field experiment in a greenhouse under homogenous environmental conditions and including a soil biota manipulation treatment. As in the field, plant performance differed among soil origins and neighbor treatments. Moreover, we found plant species-specific responses to soil biota that may be best explained by the differential sensitivity to negative and positive soil biota effects. Overall, under the conditions of our experiment with two contrasting sites, biotic interactions had a strong effect on plant fitness that interacted with and eventually overrode climate. Because climate and biotic interactions covary, reciprocal transplants and climate gradient studies should consider soil biotic interactions and abiotic conditions when evaluating climate change effects on plant performance.

  3. Biotic interactions modify multiple-stressor effects on juvenile brown trout in an experimental stream food web.

    PubMed

    Bruder, Andreas; Salis, Romana K; Jones, Peter E; Matthaei, Christoph D

    2017-03-21

    Agricultural land use results in multiple stressors affecting stream ecosystems. Flow reduction due to water abstraction, elevated levels of nutrients and chemical contaminants are common agricultural stressors worldwide. Concurrently, stream ecosystems are also increasingly affected by climate change. Interactions among multiple co-occurring stressors result in biological responses that cannot be predicted from single-stressor effects (i.e. synergisms and antagonisms). At the ecosystem level, multiple-stressor effects can be further modified by biotic interactions (e.g. trophic interactions). We conducted a field experiment using 128 flow-through stream mesocosms to examine the individual and combined effects of water abstraction, nutrient enrichment and elevated levels of the nitrification inhibitor dicyandiamide (DCD) on survival, condition and gut content of juvenile brown trout, and on benthic abundance of their invertebrate prey. Flow velocity reduction decreased fish survival (-12% compared to controls) and condition (-8% compared to initial condition), whereas effects of nutrient and DCD additions and interactions among these stressors were not significant. Negative effects of flow velocity reduction on fish survival and condition were consistent with effects on fish gut content (-25% compared to controls) and abundance of dominant invertebrate prey (-30%), suggesting a negative metabolic balance driving fish mortality and condition decline, which was confirmed by structural equation modelling. Fish mortality under reduced flow velocity increased as maximal daily water temperatures approached the upper limit of their tolerance range, reflecting synergistic interactions between these stressors. Our study highlights the importance of indirect stressor effects such as those transferred through trophic interactions, which need to be considered when assessing and managing fish populations and stream food webs in multiple-stressor situations. However, in real

  4. The role of biotic interactions in shaping distributions and realised assemblages of species: implications for species distribution modelling

    PubMed Central

    Wisz, Mary Susanne; Pottier, Julien; Kissling, W Daniel; Pellissier, Loïc; Lenoir, Jonathan; Damgaard, Christian F; Dormann, Carsten F; Forchhammer, Mads C; Grytnes, John-Arvid; Guisan, Antoine; Heikkinen, Risto K; Høye, Toke T; Kühn, Ingolf; Luoto, Miska; Maiorano, Luigi; Nilsson, Marie-Charlotte; Normand, Signe; Öckinger, Erik; Schmidt, Niels M; Termansen, Mette; Timmermann, Allan; Wardle, David A; Aastrup, Peter; Svenning, Jens-Christian

    2013-01-01

    Predicting which species will occur together in the future, and where, remains one of the greatest challenges in ecology, and requires a sound understanding of how the abiotic and biotic environments interact with dispersal processes and history across scales. Biotic interactions and their dynamics influence species' relationships to climate, and this also has important implications for predicting future distributions of species. It is already well accepted that biotic interactions shape species' spatial distributions at local spatial extents, but the role of these interactions beyond local extents (e.g. 10 km2 to global extents) are usually dismissed as unimportant. In this review we consolidate evidence for how biotic interactions shape species distributions beyond local extents and review methods for integrating biotic interactions into species distribution modelling tools. Drawing upon evidence from contemporary and palaeoecological studies of individual species ranges, functional groups, and species richness patterns, we show that biotic interactions have clearly left their mark on species distributions and realised assemblages of species across all spatial extents. We demonstrate this with examples from within and across trophic groups. A range of species distribution modelling tools is available to quantify species environmental relationships and predict species occurrence, such as: (i) integrating pairwise dependencies, (ii) using integrative predictors, and (iii) hybridising species distribution models (SDMs) with dynamic models. These methods have typically only been applied to interacting pairs of species at a single time, require a priori ecological knowledge about which species interact, and due to data paucity must assume that biotic interactions are constant in space and time. To better inform the future development of these models across spatial scales, we call for accelerated collection of spatially and temporally explicit species data. Ideally

  5. Biotic Interactions in Microbial Communities as Modulators of Biogeochemical Processes: Methanotrophy as a Model System

    PubMed Central

    Ho, Adrian; Angel, Roey; Veraart, Annelies J.; Daebeler, Anne; Jia, Zhongjun; Kim, Sang Yoon; Kerckhof, Frederiek-Maarten; Boon, Nico; Bodelier, Paul L. E.

    2016-01-01

    Microbial interaction is an integral component of microbial ecology studies, yet the role, extent, and relevance of microbial interaction in community functioning remains unclear, particularly in the context of global biogeochemical cycles. While many studies have shed light on the physico-chemical cues affecting specific processes, (micro)biotic controls and interactions potentially steering microbial communities leading to altered functioning are less known. Yet, recent accumulating evidence suggests that the concerted actions of a community can be significantly different from the combined effects of individual microorganisms, giving rise to emergent properties. Here, we exemplify the importance of microbial interaction for ecosystem processes by analysis of a reasonably well-understood microbial guild, namely, aerobic methane-oxidizing bacteria (MOB). We reviewed the literature which provided compelling evidence for the relevance of microbial interaction in modulating methane oxidation. Support for microbial associations within methane-fed communities is sought by a re-analysis of literature data derived from stable isotope probing studies of various complex environmental settings. Putative positive interactions between active MOB and other microbes were assessed by a correlation network-based analysis with datasets covering diverse environments where closely interacting members of a consortium can potentially alter the methane oxidation activity. Although, methanotrophy is used as a model system, the fundamentals of our postulations may be applicable to other microbial guilds mediating other biogeochemical processes. PMID:27602021

  6. Surface-atmosphere interactions on Titan compared with those on the pre-biotic Earth.

    PubMed

    Lunine, J I; McKay, C P

    1995-03-01

    The surface and atmosphere of Titan constitute a system which is potentially as complex as that of the Earth, with the possibility of precipitation, surface erosion due to liquids, chemistry in large surface or subsurface hydrocarbon reservoirs, surface expressions of internal activity, and occasional major impacts leading to crustal melting. While none of the above have been observed as yet, the composition, density and thermal properties of Titan's atmosphere make it uniquely suited in the outer solar system as a place where such processes may occur. The one attribute of the Earth not expected on Titan is biological activity, which has had a profound effect on the evolution of the Earth's surface-atmosphere system. The earliest environment of Titan could have been warm enough for liquid ammonia-water solutions to exist on or near surface; pre-biotic organic processes may have taken place in such an environment. After a few hundred million years surface ammonia-water would have disappeared. Therefore, study of Titan through the Cassini-Huygens mission, planned for launch in 1997, primarily affords the opportunity to understand planet-wide surface-atmosphere interactions in the presence of fluids but in the absence of life. More speculative is the possibility that endogenic and exogenic heating continue to provide short-lived environments on Titan wherein pre-biotic organic processes in the presence of water happen.

  7. Surface-atmosphere interactions on Titan compared with those on the pre-biotic Earth

    NASA Technical Reports Server (NTRS)

    Lunine, J. I.; Mckay, C. P.

    1995-01-01

    The surface and atmosphere of Titan constitute a system which is potentially as complex as that of the Earth, with the possibility of precipitation, surface erosion due to liquids, chemistry in large surface or subsurface hydrocarbon resevoirs, surface expressions of internal activity, and occasional major impacts leading to crustal melting. While none of the above have been observed as yet, the composition, density and thermal properties of Titan's atmosphere make it uniquely suited in the outer solar system as a place where such processes may occur. The one attribute of the Earth not expected on Titan is biological activity, which has had a profound effect on the evolution of the Earth's surface-atmosphere system. The earliest environment of Titan could have been warm enough for liquid ammonia-water solutions to exist on or near surface; pre-biotic organic processes may have taken place in such an environment. After a few hundred million years surface ammonia-water would have disappeard. Therefore, study of Titan through Cassini/Huygens mission, planned for launch in 1997, primarily affords the opportunity to understand planet-side surface-atmophsre interactions in the presence of fluids but in the absence of life. More speculative is the possibility that endogenic and exogenic heating continue to provide short-lived environments on Titan wherein pre-biotic organic processes in the presence of water happen.

  8. Biotic interactions as determinants of ecosystem structure in prairie wetlands: An example using fish

    USGS Publications Warehouse

    Hanson, M.A.; Zimmer, K.D.; Butler, Malcolm G.; Tangen, B.A.; Herwig, B.R.; Euliss, N.H.

    2005-01-01

    Wetlands are abundant throughout the prairie pothole region (PPR), an area comprising over 700,000 km2 in central North America. Prairie wetland communities are strongly influenced by regional physiography and climate, resulting in extreme spatial and temporal variability relative to other aquatic ecosystems. Given the strong influence of abiotic factors, PPR wetland communities have been viewed traditionally in the context of their responses to chemical and physical features of landscape and climate. Although useful, this physical-chemical paradigm may fail to account for ecosystem variability due to biotic influences, particularly those associated with presence of fish. Spatial and temporal variability in fish populations, in turn, may reflect anthropogenic activities, landscape characteristics, and climate-mediated effects on water levels, surface connectivity, and hydroperiods. We reviewed studies assessing influences of fish on prairie wetlands and examined precipitation patterns and biological data from PPR wetlands in east-central North Dakota and western Minnesota, USA. Our review and analysis indicated that native fish influence many characteristics of permanently flooded prairie wetlands, including water clarity and abundance of phytoplankton, submerged macrophytes, and aquatic invertebrates. We suggest that ecologists and managers will benefit from conceptual paradigms that better meld biotic interactions associated with fish, and perhaps other organisms, with chemical and physical influences on prairie wetland communities. ?? 2005, The Society of Wetland Scientists.

  9. Evolution in agriculture: the application of evolutionary approaches to the management of biotic interactions in agro-ecosystems

    PubMed Central

    Thrall, Peter H; Oakeshott, John G; Fitt, Gary; Southerton, Simon; Burdon, Jeremy J; Sheppard, Andy; Russell, Robyn J; Zalucki, Myron; Heino, Mikko; Ford Denison, R

    2011-01-01

    Anthropogenic impacts increasingly drive ecological and evolutionary processes at many spatio-temporal scales, demanding greater capacity to predict and manage their consequences. This is particularly true for agro-ecosystems, which not only comprise a significant proportion of land use, but which also involve conflicting imperatives to expand or intensify production while simultaneously reducing environmental impacts. These imperatives reinforce the likelihood of further major changes in agriculture over the next 30–40 years. Key transformations include genetic technologies as well as changes in land use. The use of evolutionary principles is not new in agriculture (e.g. crop breeding, domestication of animals, management of selection for pest resistance), but given land-use trends and other transformative processes in production landscapes, ecological and evolutionary research in agro-ecosystems must consider such issues in a broader systems context. Here, we focus on biotic interactions involving pests and pathogens as exemplars of situations where integration of agronomic, ecological and evolutionary perspectives has practical value. Although their presence in agro-ecosystems may be new, many traits involved in these associations evolved in natural settings. We advocate the use of predictive frameworks based on evolutionary models as pre-emptive management tools and identify some specific research opportunities to facilitate this. We conclude with a brief discussion of multidisciplinary approaches in applied evolutionary problems. PMID:25567968

  10. The interactive biotic and abiotic processes of DDT transformation under dissimilatory iron-reducing conditions.

    PubMed

    Jin, Xin; Wang, Fang; Gu, Chenggang; Yang, Xinglun; Kengara, Fredrick O; Bian, Yongrong; Song, Yang; Jiang, Xin

    2015-11-01

    The objective of the study was to elucidate the biotic and abiotic processes under dissimilatory iron reducing conditions involved in reductive dechlorination and iron reduction. DDT transformation was investigated in cultures of Shewanella putrefaciens 200 with/without α-FeOOH. A modified first-order kinetics model was developed and described DDT transformation well. Both the α-FeOOH reduction rate and the dechlorination rate of DDT were positively correlated to the biomass. Addition of α-FeOOH enhanced reductive dechlorination of DDT by favoring the cell survival and generating Fe(II) which was absorbed on the surface of bacteria and iron oxide. 92% of the absorbed Fe(II) was Na-acetate (1M) extractable. However, α-FeOOH also played a negative role of competing for electrons as reflected by the dechlorination rate of DDT was inhibited when increasing the α-FeOOH from 1 g L(-1) to 5 g L(-1). DDT was measured to be toxic to S. putrefaciens 200. The metabolites DDD, DDE and DDMU were recalcitrant to S. putrefaciens 200. The results suggested that iron oxide was not the key factor to promote the dissipation of DDX (DDT and the metabolites), whereas the one-electron reduction potential (E1) of certain organochlorines is the main factor and that the E1 higher than the threshold of the reductive driving forces of DIRB probably ensures the occur of reductive dechlorination.

  11. Untangling positive and negative biotic interactions: views from above and below ground in a forest ecosystem.

    PubMed

    Montgomery, Rebecca A; Reich, Peter B; Palik, Brian J

    2010-12-01

    In ecological communities, the outcome of plant-plant interactions represents the net effect of positive and negative interactions occurring above and below ground. Untangling these complex relationships can provide a better understanding of mechanisms that underlie plant-plant interactions and enhance our ability to predict population, community, and ecosystem effects of biotic interactions. In forested ecosystems, tree seedlings interact with established vegetation, but the mechanisms and outcomes of these interactions are not well understood. To explore such mechanisms, we manipulated above- and belowground interactions among tree seedlings, shrubs, and trees and monitored seedling survival and growth of six species (Pinus banksiana, Betula papyrifera, P. resinosa, Quercus rubra, P. strobus, and Acer rubrum) in mature pine-dominated forest in northern Minnesota, USA. The forest had a moderately open canopy and sandy soils. Understory manipulations were implemented in the forest interior and in large gaps and included removal of shrubs (no interactions), tieback of shrubs (belowground), removal of shrubs with addition of shade (aboveground), and unmanipulated shrubs (both below- and aboveground). We found that shrubs either suppressed or facilitated seedling survival and growth depending on the seedling species, source of interaction (e.g., above- or belowground), and ecological context (e.g., gap or forest interior). In general, shrubs strongly influenced survival and growth in gaps, with more modest effects in the forest interior. In gaps, the presence of shrub roots markedly decreased seedling growth and survival, supporting the idea that belowground competition may be more important in dry, nutrient-poor sites. Shrub shade effects were neutral for three species and facilitative for the other three. Facilitation was more likely for shade-tolerant species. In the forest interior, shrub shade negatively affected seedling survival for the most shade

  12. Past tree influence and prescribed fire mediate biotic interactions and community reassembly in a grassland-restoration experiment

    Treesearch

    Charles B. Halpern; Joseph A. Antos; Donald McKenzie; Annette M. Olson; Lara Souza

    2016-01-01

    1. Woody plant encroachment of grasslands is occurring globally, with profound ecological consequences. Attempts to restore herbaceous dominance may fail if the woody state is resilient or if intervention leads to an alternate, undesirable state. Restoration outcomes often hinge on biotic interactions – particularly on priority effects that inhibit or promote community...

  13. Diversification and coevolution in brood pollination mutualisms: Windows into the role of biotic interactions in generating biological diversity.

    PubMed

    Hembry, David H; Althoff, David M

    2016-10-01

    Brood pollination mutualisms-interactions in which specialized insects are both the pollinators (as adults) and seed predators (as larvae) of their host plants-have been influential study systems for coevolutionary biology. These mutualisms include those between figs and fig wasps, yuccas and yucca moths, leafflowers and leafflower moths, globeflowers and globeflower flies, Silene plants and Hadena and Perizoma moths, saxifrages and Greya moths, and senita cacti and senita moths. The high reciprocal diversity and species-specificity of some of these mutualisms have been cited as evidence that coevolution between plants and pollinators drives their mutual diversification. However, the mechanisms by which these mutualisms diversify have received less attention. In this paper, we review key hypotheses about how these mutualisms diversify and what role coevolution between plants and pollinators may play in this process. We find that most species-rich brood pollination mutualisms show significant phylogenetic congruence at high taxonomic scales, but there is limited evidence for the processes of both cospeciation and duplication, and there are no unambiguous examples known of strict-sense contemporaneous cospeciation. Allopatric speciation appears important across multiple systems, particularly in the insects. Host-shifts appear to be common, and widespread host-shifts by pollinators may displace other pollinator lineages. There is relatively little evidence for a "coevolution through cospeciation" model or that coevolution promotes speciation in these systems. Although we have made great progress in understanding the mechanisms by which brood pollination mutualisms diversify, many opportunities remain to use these intriguing symbioses to understand the role of biotic interactions in generating biological diversity.

  14. Causes of variation in biotic interaction strength and phenotypic selection along an altitudinal gradient.

    PubMed

    Mezquida, Eduardo T; Benkman, Craig W

    2014-06-01

    Understanding the causes of variation in biotic interaction strength and phenotypic selection remains one of the outstanding goals of evolutionary ecology. Here we examine the variation in strength of interactions between two seed predators, common crossbills (Loxia curvirostra) and European red squirrels (Sciurus vulgaris), and mountain pine (Pinus uncinata) at and below tree limit in the Pyrenees, and how this translates into phenotypic selection. Seed predation by crossbills increased whereas seed predation by squirrels decreased with increasing elevation and as the canopy became more open. Overall, seed predation by crossbills averaged about twice that by squirrels, and the intensity of selection exerted by crossbills averaged between 2.6 and 7.5 times greater than by squirrels. The higher levels of seed predation by crossbills than squirrels were related to the relatively open nature of most of the forests, and the higher intensity of selection exerted by crossbills resulted from their higher levels of seed predation. However, most of the differences in selection intensity between crossbills and squirrels were the result of habitat features having a greater effect on the foraging behavior of squirrels than of crossbills, causing selection to be much lower for squirrels than for crossbills. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.

  15. Soil biotic interactions and climate change: consequences for carbon cycle feedbacks

    NASA Astrophysics Data System (ADS)

    Bardgett, Richard

    2015-04-01

    There is currently much interest in understanding the biological mechanisms that regulate carbon exchanges between land and atmosphere, and how these exchanges respond to climate change. Climate change impacts on biogeochemical cycles via a variety of mechanisms; but there is now mounting evidence that biotic interactions between plants and diverse soil communities play a major role in determining carbon cycle responses to climate change across a range of spatial and temporal scales. Over seasonal and annual timescales, climate change impacts the growth and physiology of plants and their roots, with knock on effects for the activity of soil biota and carbon transformations; in the longer term, over tens to hundreds of years, climate change can cause shifts in community composition, and species range expansions and contractions, with cascading impacts on belowground communities and carbon cycling in soil. These responses have local and, potentially, global scale implications for carbon cycle feedbacks. In this talk, I will draw on recent research to illustrate this hierarchy of plant-soil feedback responses to climate change, the mechanisms involved, and consequences for the carbon cycle at local and global scales. I will also discuss how such knowledge on plant-soil interactions might be harnessed to inform management strategies for soil carbon sequestration and mitigation of climate change, and identify some major research challenges for the future.

  16. Facilitative plant interactions and climate simultaneously drive alpine plant diversity.

    PubMed

    Cavieres, Lohengrin A; Brooker, Rob W; Butterfield, Bradley J; Cook, Bradley J; Kikvidze, Zaal; Lortie, Christopher J; Michalet, Richard; Pugnaire, Francisco I; Schöb, Christian; Xiao, Sa; Anthelme, Fabien; Björk, Robert G; Dickinson, Katharine J M; Cranston, Brittany H; Gavilán, Rosario; Gutiérrez-Girón, Alba; Kanka, Robert; Maalouf, Jean-Paul; Mark, Alan F; Noroozi, Jalil; Parajuli, Rabindra; Phoenix, Gareth K; Reid, Anya M; Ridenour, Wendy M; Rixen, Christian; Wipf, Sonja; Zhao, Liang; Escudero, Adrián; Zaitchik, Benjamin F; Lingua, Emanuele; Aschehoug, Erik T; Callaway, Ragan M

    2014-02-01

    Interactions among species determine local-scale diversity, but local interactions are thought to have minor effects at larger scales. However, quantitative comparisons of the importance of biotic interactions relative to other drivers are rarely made at larger scales. Using a data set spanning 78 sites and five continents, we assessed the relative importance of biotic interactions and climate in determining plant diversity in alpine ecosystems dominated by nurse-plant cushion species. Climate variables related with water balance showed the highest correlation with richness at the global scale. Strikingly, although the effect of cushion species on diversity was lower than that of climate, its contribution was still substantial. In particular, cushion species enhanced species richness more in systems with inherently impoverished local diversity. Nurse species appear to act as a 'safety net' sustaining diversity under harsh conditions, demonstrating that climate and species interactions should be integrated when predicting future biodiversity effects of climate change.

  17. Effects of pentachlorophenol and biotic interactions on soil fauna and decomposition in humus soil.

    PubMed

    Salminen, J; Haimi, J; Sironen, A; Ahtiainen, J

    1995-08-01

    In a laboratory experiment, effects of chemical stress (pentachlorophenol, PCP, at concentrations of 0, 50, and 500 mg/kg) and biotic interactions (nematodes in the presence or absence of collembolas and enchytraeids) on the community structure of soil animals and decomposition processes were studied. PCP was strongly adsorbed to humus that contained 65% organic matter. Numbers of fungal-feeding nematodes decreased significantly at the highest PCP concentration, while no effects were found in bacterial feeders. There were differences in the numbers of nematodes between different animal combinations, but at the highest PCP concentration, collembolas and enchytraeids had no effect on them. Numbers of collembola Willemia anophtalma were lowered at the highest PCP concentration, although PCP was not acutely toxic at this concentration. The highest PCP concentration was acutely toxic to enchytraeids, and for an unknown reason all of them died in the main experiment. Both ATP content of the soil and soil respiration were reduced at the highest PCP concentration, while no differences were found between animal treatments. Amounts of NH4-N and PO4-P in the soil increased with increasing PCP concentration. It was concluded that in the presence of simple animal communities, harmful chemicals like PCP regulate the community structure of soil animals as well as decomposition and nutrient mobilization.

  18. Plant microRNAs: key regulators of root architecture and biotic interactions.

    PubMed

    Couzigou, Jean-Malo; Combier, Jean-Philippe

    2016-10-01

    Contents 22 I. 22 II. 24 III. 25 IV. 27 V. 29 VI. 10 31 References 32 SUMMARY: Plants have evolved a remarkable faculty of adaptation to deal with various and changing environmental conditions. In this context, the roots have taken over nutritional aspects and the root system architecture can be modulated in response to nutrient availability or biotic interactions with soil microorganisms. This adaptability requires a fine tuning of gene expression. Indeed, root specification and development are highly complex processes requiring gene regulatory networks involved in hormonal regulations and cell identity. Among the different molecular partners governing root development, microRNAs (miRNAs) are key players for the fast regulation of gene expression. miRNAs are small RNAs involved in most developmental processes and are required for the normal growth of organisms, by the negative regulation of key genes, such as transcription factors and hormone receptors. Here, we review the known roles of miRNAs in root specification and development, from the embryonic roots to the establishment of root symbioses, highlighting the major roles of miRNAs in these processes.

  19. No species is an island: testing the effects of biotic interactions on models of avian niche occupation

    PubMed Central

    Morelli, Federico; Tryjanowski, Piotr

    2015-01-01

    Traditionally, the niche of a species is described as a hypothetical 3D space, constituted by well-known biotic interactions (e.g. predation, competition, trophic relationships, resource–consumer interactions, etc.) and various abiotic environmental factors. Species distribution models (SDMs), also called “niche models” and often used to predict wildlife distribution at landscape scale, are typically constructed using abiotic factors with biotic interactions generally been ignored. Here, we compared the goodness of fit of SDMs for red-backed shrike Lanius collurio in farmlands of Western Poland, using both the classical approach (modeled only on environmental variables) and the approach which included also other potentially associated bird species. The potential associations among species were derived from the relevant ecological literature and by a correlation matrix of occurrences. Our findings highlight the importance of including heterospecific interactions in improving our understanding of niche occupation for bird species. We suggest that suite of measures currently used to quantify realized species niches could be improved by also considering the occurrence of certain associated species. Then, an hypothetical “species 1” can use the occurrence of a successfully established individual of “species 2” as indicator or “trace” of the location of available suitable habitat to breed. We hypothesize this kind of biotic interaction as the “heterospecific trace effect” (HTE): an interaction based on the availability and use of “public information” provided by individuals from different species. Finally, we discuss about the incomes of biotic interactions for enhancing the predictive capacities on species distribution models. PMID:25691996

  20. Do biotic interactions modulate ecosystem functioning along stress gradients? Insights from semi-arid plant and biological soil crust communities

    PubMed Central

    Maestre, Fernando T.; Bowker, Matthew A.; Escolar, Cristina; Puche, María D.; Soliveres, Santiago; Maltez-Mouro, Sara; García-Palacios, Pablo; Castillo-Monroy, Andrea P.; Martínez, Isabel; Escudero, Adrián

    2010-01-01

    Climate change will exacerbate the degree of abiotic stress experienced by semi-arid ecosystems. While abiotic stress profoundly affects biotic interactions, their potential role as modulators of ecosystem responses to climate change is largely unknown. Using plants and biological soil crusts, we tested the relative importance of facilitative–competitive interactions and other community attributes (cover, species richness and species evenness) as drivers of ecosystem functioning along stress gradients in semi-arid Mediterranean ecosystems. Biotic interactions shifted from facilitation to competition along stress gradients driven by water availability and temperature. These changes were, however, dependent on the spatial scale and the community considered. We found little evidence to suggest that biotic interactions are a major direct influence upon indicators of ecosystem functioning (soil respiration, organic carbon, water-holding capacity, compaction and the activity of enzymes related to the carbon, nitrogen and phosphorus cycles) along stress gradients. However, attributes such as cover and species richness showed a direct effect on ecosystem functioning. Our results do not agree with predictions emphasizing that the importance of plant–plant interactions will be increased under climate change in dry environments, and indicate that reductions in the cover of plant and biological soil crust communities will negatively impact ecosystems under future climatic conditions. PMID:20513714

  1. Species Introductions and Their Cascading Impacts on Biotic Interactions in desert riparian ecosystems.

    PubMed

    Hultine, Kevin R; Bean, Dan W; Dudley, Tom L; Gehring, Catherine A

    2015-10-01

    Desert riparian ecosystems of North America are hotspots of biodiversity that support many sensitive species, and are in a region experiencing some of the highest rates of climatic alteration in North America. Fremont cottonwood, Populus fremontii, is a foundation tree species of this critical habitat, but it is threatened by global warming and regional drying, and by a non-native tree/shrub, Tamarix spp., all of which can disrupt the mutualism between P. fremontii and its beneficial mycorrhizal fungal communities. Specialist herbivorous leaf beetles (Diorhabda spp.) introduced for biocontrol of Tamarix are altering the relationship between this shrub and its environment. Repeated episodic feeding on Tamarix foliage by Diorhabda results in varying rates of dieback and mortality, depending on genetic variation in allocation of resources, growing conditions, and phenological synchrony between herbivore and host plant. In this article, we review the complex interaction between climatic change and species introductions and their combined impacts on P. fremontii and their associated communities. We anticipate that (1) certain genotypes of P. fremontii will respond more favorably to the presence of Tamarix and to climatic change due to varying selection pressures to cope with competition and stress; (2) the ongoing evolution of Diorhabda's life cycle timing will continue to facilitate its expansion in North America, and will over time enhance herbivore impact to Tamarix; (3) defoliation by Diorhabda will reduce the negative impact of Tamarix on P. fremontii associations with mycorrhizal fungi; and (4) spatial variability in climate and climatic change will modify the capacity for Tamarix to survive episodic defoliation by Diorhabda, thereby altering the relationship between Tamarix and P. fremontii, and its associated mycorrhizal fungal communities. Given the complex biotic/abiotic interactions outlined in this review, conservation biologists and riparian ecosystem

  2. Adding Biotic Interactions into Paleodistribution Models: A Host-Cleptoparasite Complex of Neotropical Orchid Bees

    PubMed Central

    Silva, Daniel Paiva; Varela, Sara; Nemésio, André; De Marco, Paulo

    2015-01-01

    Orchid bees compose an exclusive Neotropical pollinators group, with bright body coloration. Several of those species build their own nests, while others are reported as nest cleptoparasites. Here, the objective was to evaluate whether the inclusion of a strong biotic interaction, such as the presence of a host species, improved the ability of species distribution models (SDMs) to predict the geographic range of the cleptoparasite species. The target species were Aglae caerulea and its host species Eulaema nigrita. Additionally, since A. caerulea is more frequently found in the Amazon rather than the Cerrado areas, a secondary objective was to evaluate whether this species is increasing or decreasing its distribution given South American past and current climatic conditions. SDMs methods (Maxent and Bioclim), in addition with current and past South American climatic conditions, as well as the occurrences for A. caerulea and E. nigrita were used to generate the distribution models. The distribution of A. caerulea was generated with and without the inclusion of the distribution of E. nigrita as a predictor variable. The results indicate A. caerulea was barely affected by past climatic conditions and the populations from the Cerrado savanna could be at least 21,000 years old (the last glacial maximum), as well as the Amazonian ones. On the other hand, in this study, the inclusion of the host-cleptoparasite interaction complex did not statistically improve the quality of the produced models, which means that the geographic range of this cleptoparasite species is mainly constrained by climate and not by the presence of the host species. Nonetheless, this could also be caused by unknown complexes of other Euglossini hosts with A. caerulea, which still are still needed to be described by science. PMID:26069956

  3. Can nutrient pathways and biotic interactions control eutrophication in riverine ecosystems? Evidence from a model driven mesocosm experiment.

    PubMed

    Jäger, Christoph G; Hagemann, Jeske; Borchardt, Dietrich

    2017-05-15

    Ecological theory predicts that the relative importance of benthic to planktonic primary production usually changes along the rivers' continuum from a predomination of benthic algae in lower stream orders to a predomination of planktonic algae at higher orders. Underlying mechanisms driving the interaction between algae in these habitats, its controlling factors and consequences for riverine ecosystems are, however, only partly understood. We present a mechanistic analysis of the governing ecological processes using a simplified, numerical model and examine how abiotic factors and biotic interactions influence benthic and planktonic algae by changing resource competition. We compare the outcome of the model with the results of a factorial mesocosm experiment mimicking the parameter spaces of the model. The results show a remarkable similarity with regard to the temporal development of benthic and pelagic algal biomass and shifting dominance patterns. In particular we analyse the effects of the pathways of nutrient supply (upwelling from the hyporheic zone, direct supply to the surface water, or via both pathways) and grazing in a gradient of river depths. Our results show that detachment of benthic algae, sinking of planktonic algae and the pathway of nutrient supply are key processes determining the respective algal biomass distributions particularly in shallow and intermediate deep systems. Increasing nutrient supply increases algal biomasses, but does not change the general pattern of the interactions. Decreasing light supply decreases the dominance of planktonic algae, but increases dissolved nutrients. At intermediate to high grazing rates algal biomass can be controlled by grazers, but however, at high grazing rates, dissolved nutrients accumulate in the surface water. Our results indicate that nutrient pathways, resource competition and internal control by grazing need to be considered explicitly for the understanding and explanation of eutrophication

  4. Aerobic bacterial catabolism of persistent organic pollutants - potential impact of biotic and abiotic interaction.

    PubMed

    Jeon, Jong-Rok; Murugesan, Kumarasamy; Baldrian, Petr; Schmidt, Stefan; Chang, Yoon-Seok

    2016-04-01

    Several aerobic bacteria possess unique catabolic pathways enabling them to degrade persistent organic pollutants (POPs), including polychlorinated dibenzo-p-dioxins/furans (PCDD/Fs), polybrominated diphenylethers (PBDEs), and polychlorinated biphenyls (PCBs). The catabolic activity of aerobic bacteria employed for removal of POPs in the environment may be modulated by several biotic (i.e. fungi, plants, algae, earthworms, and other bacteria) and abiotic (i.e. zero-valent iron, advanced oxidation, and electricity) agents. This review describes the basic biochemistry of the aerobic bacterial catabolism of selected POPs and discusses how biotic and abiotic agents enhance or inhibit the process. Solutions allowing biotic and abiotic agents to exert physical and chemical assistance to aerobic bacterial catabolism of POPs are also discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Combined effects of climate and biotic interactions on the elevational range of a phytophagous insect.

    PubMed

    Merrill, Richard M; Gutiérrez, David; Lewis, Owen T; Gutiérrez, Javier; Díez, Sonia B; Wilson, Robert J

    2008-01-01

    1. The ranges of many species have expanded in cool regions but contracted at warm margins in response to recent climate warming, but the mechanisms behind such changes remain unclear. Particular debate concerns the roles of direct climatic limitation vs. the effects of interacting species in explaining the location of low latitude or low elevation range margins. 2. The mountains of the Sierra de Guadarrama (central Spain) include both cool and warm range margins for the black-veined white butterfly, Aporia crataegi, which has disappeared from low elevations since the 1970s without colonizing the highest elevations. 3. We found that the current upper elevation limit to A. crataegi's distribution coincided closely with that of its host plants, but that the species was absent from elevations below 900 m, even where host plants were present. The density of A. crataegi per host plant increased with elevation, but overall abundance of the species declined at high elevations where host plants were rare. 4. The flight period of A. crataegi was later at higher elevations, meaning that butterflies in higher populations flew at hotter times of year; nevertheless, daytime temperatures for the month of peak flight decreased by 6.2 degrees C per 1 km increase in elevation. 5. At higher elevations A. crataegi eggs were laid on the south side of host plants (expected to correspond to hotter microclimates), whereas at lower sites the (cooler) north side of plants was selected. Field transplant experiments showed that egg survival increased with elevation. 6. Climatic limitation is the most likely explanation for the low elevation range margin of A. crataegi, whereas the absence of host plants from high elevations sets the upper limit. This contrasts with the frequent assumption that biotic interactions typically determine warm range margins, and thermal limitation cool margins. 7. Studies that have modelled distribution changes in response to climate change may have underestimated

  6. Ridge suction drives plume-ridge interactions

    NASA Astrophysics Data System (ADS)

    Niu, Y.; Hékinian, R.

    2003-04-01

    Deep-sourced mantle plumes, if existing, are genetically independent of plate tectonics. When the ascending plumes approach lithospheric plates, interactions between the two occur. Such interactions are most prominent near ocean ridges where the lithosphere is thin and the effect of plumes is best revealed. While ocean ridges are mostly passive features in terms of plate tectonics, they play an active role in the context of plume-ridge interactions. This active role is a ridge suction force that drives asthenospheric mantle flow towards ridges because of material needs to form the ocean crust at ridges and lithospheric mantle in the vicinity of ridges. This ridge suction force increases with increasing plate separation rate because of increased material demand per unit time. As the seismic low-velocity zone atop the asthenosphere has the lowest viscosity that increases rapidly with depth, the ridge-ward asthenospheric flow is largely horizontal beneath the lithosphere. Recognizing that plume materials have two components with easily-melted dikes/veins enriched in volatiles and incompatible elements dispersed in the more refractory and depleted peridotitic matrix, geochemistry of some seafloor volcanics well illustrates that plume-ridge interactions are consequences of ridge-suction-driven flow of plume materials, which melt by decompression because of lithospheric thinning towards ridges. There are excellent examples: 1. The decreasing La/Sm and increasing MgO and CaO/Al_2O_3 in Easter Seamount lavas from Salas-y-Gomez Islands to the Easter Microplate East rift zone result from progressive decompression melting of ridge-ward flowing plume materials. 2. The similar geochemical observations in lavas along the Foundation hotline towards the Pacific-Antarctic Ridge result from the same process. 3. The increasing ridge suction force with increasing spreading rate explains why the Iceland plume has asymmetric effects on its neighboring ridges: both topographic and

  7. SEWAGE DECOMPOSITION IN AMBIENT WATER: INFLUENCE OF SOLARRADIATION AND BIOTIC INTERACTIONS ON MICROORGANISM COMMUNITIES AND BACTEROIDALES REAL-TIME QUANTITATIVE PCR MEASUREMENTS - poster

    EPA Science Inventory

    AIMS: Sewage and ambient water both consist of a highly complex array of bacteria and eukaryotic microbes. When these communities are mixed, solar radiation and biotic interactions (predation and competition) can influence pathogen decay based on experiments targeting indicator ...

  8. Sewage Decomposition in Ambient Water: Influence of Solarradiation and Biotic Interactions on Microorganism Communities and Bacteroidales Real-Time Quantitative PCR Measurements - poster/abstract

    EPA Science Inventory

    AIMS: Sewage and ambient water both consist of a highly complex array of bacteria and eukaryotic microbes. When these communities are mixed, solar radiation and biotic interactions (predation and competition) can influence pathogen decay based on experiments targeting indicator ...

  9. Sewage Decomposition in Ambient Water: Influence of Solarradiation and Biotic Interactions on Microorganism Communities and Bacteroidales Real-Time Quantitative PCR Measurements - poster/abstract

    EPA Science Inventory

    AIMS: Sewage and ambient water both consist of a highly complex array of bacteria and eukaryotic microbes. When these communities are mixed, solar radiation and biotic interactions (predation and competition) can influence pathogen decay based on experiments targeting indicator ...

  10. SEWAGE DECOMPOSITION IN AMBIENT WATER: INFLUENCE OF SOLARRADIATION AND BIOTIC INTERACTIONS ON MICROORGANISM COMMUNITIES AND BACTEROIDALES REAL-TIME QUANTITATIVE PCR MEASUREMENTS - poster

    EPA Science Inventory

    AIMS: Sewage and ambient water both consist of a highly complex array of bacteria and eukaryotic microbes. When these communities are mixed, solar radiation and biotic interactions (predation and competition) can influence pathogen decay based on experiments targeting indicator ...

  11. ALCOHOL AND DISTRACTION INTERACT TO IMPAIR DRIVING PERFORMANCE

    PubMed Central

    Harrison, Emily L. R.; Fillmore, Mark T.

    2011-01-01

    Background Recognition of the risks associated with alcohol intoxication and driver distraction has led to a wealth of simulated driving research aimed at studying the adverse effects of each of these factors. Research on driving has moved beyond the individual, separate examination of these factors to the examination of potential interactions between alcohol intoxication and driver distraction. In many driving situations, distractions are commonplace and might have little or no disruptive influence on primary driving functions. Yet, such distractions might become disruptive to a driver who is intoxicated. Methods The present study examined the interactive impairing effects of alcohol intoxication and driver distraction on simulated driving performance in 40 young adult drivers using a divided attention task as a distracter activity. The interactive influence of alcohol and distraction was tested by having drivers perform the driving task under four different conditions: 0.65 g/kg alcohol; 0.65 g/kg alcohol + divided attention; placebo; and placebo + divided attention. Results As hypothesized, divided attention had no impairing effect on driving performance in sober drivers. However, under alcohol, divided attention exacerbated the impairing effects of alcohol on driving precision. Conclusions Alcohol and distraction continue to be appropriate targets for research into ways to reduce the rates of driving-related fatalities and injuries. Greater consideration of how alcohol and distraction interact to impair aspects of driving performance can further efforts to create prevention and intervention measures to protect drivers, particularly young adults. PMID:21277119

  12. Alcohol and distraction interact to impair driving performance.

    PubMed

    Harrison, Emily L R; Fillmore, Mark T

    2011-08-01

    Recognition of the risks associated with alcohol intoxication and driver distraction has led to a wealth of simulated driving research aimed at studying the adverse effects of each of these factors. Research on driving has moved beyond the individual, separate examination of these factors to the examination of potential interactions between alcohol intoxication and driver distraction. In many driving situations, distractions are commonplace and might have little or no disruptive influence on primary driving functions. Yet, such distractions might become disruptive to a driver who is intoxicated. The present study examined the interactive impairing effects of alcohol intoxication and driver distraction on simulated driving performance in 40 young adult drivers using a divided attention task as a distracter activity. The interactive influence of alcohol and distraction was tested by having drivers perform the driving task under four different conditions: 0.65 g/kg alcohol; 0.65 g/kg alcohol+divided attention; placebo; and placebo+divided attention. As hypothesized, divided attention had no impairing effect on driving performance in sober drivers. However, under alcohol, divided attention exacerbated the impairing effects of alcohol on driving precision. Alcohol and distraction continue to be appropriate targets for research into ways to reduce the rates of driving-related fatalities and injuries. Greater consideration of how alcohol and distraction interact to impair aspects of driving performance can further efforts to create prevention and intervention measures to protect drivers, particularly young adults. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  13. The interactive effects of simultaneous biotic and abiotic stresses on plants: mechanistic understanding from drought and pathogen combination.

    PubMed

    Ramegowda, Venkategowda; Senthil-Kumar, Muthappa

    2015-03-15

    In nature, plants are simultaneously exposed to a combination of biotic and abiotic stresses that limit crop yields. Only recently, researchers have started understanding the molecular basis of combined biotic and abiotic stress interactions. Evidences suggest that under combined stress plants exhibit tailored physiological and molecular responses, in addition to several shared responses as part of their stress tolerance strategy. These tailored responses are suggested to occur only in plants exposed to simultaneous stresses and this information cannot be inferred from individual stress studies. In this review article, we provide update on the responses of plants to simultaneous biotic and abiotic stresses, in particular drought and pathogen. Simultaneous occurrence of drought and pathogen during plant growth provokes complex pathways controlled by different signaling events resulting in positive or negative impact of one stress over the other. Here, we summarize the effect of combined drought and pathogen infection on plants and highlight the tailored strategies adapted by plants. Besides, we enumerate the evidences from pathogen derived elicitors and ABA response studies for understanding simultaneous drought and pathogen tolerance.

  14. Process-Based Species Pools Reveal the Hidden Signature of Biotic Interactions Amid the Influence of Temperature Filtering.

    PubMed

    Lessard, Jean-Philippe; Weinstein, Ben G; Borregaard, Michael K; Marske, Katharine A; Martin, Danny R; McGuire, Jimmy A; Parra, Juan L; Rahbek, Carsten; Graham, Catherine H

    2016-01-01

    A persistent challenge in ecology is to tease apart the influence of multiple processes acting simultaneously and interacting in complex ways to shape the structure of species assemblages. We implement a heuristic approach that relies on explicitly defining species pools and permits assessment of the relative influence of the main processes thought to shape assemblage structure: environmental filtering, dispersal limitations, and biotic interactions. We illustrate our approach using data on the assemblage composition and geographic distribution of hummingbirds, a comprehensive phylogeny and morphological traits. The implementation of several process-based species pool definitions in null models suggests that temperature-but not precipitation or dispersal limitation-acts as the main regional filter of assemblage structure. Incorporating this environmental filter directly into the definition of assemblage-specific species pools revealed an otherwise hidden pattern of phylogenetic evenness, indicating that biotic interactions might further influence hummingbird assemblage structure. Such hidden patterns of assemblage structure call for a reexamination of a multitude of phylogenetic- and trait-based studies that did not explicitly consider potentially important processes in their definition of the species pool. Our heuristic approach provides a transparent way to explore patterns and refine interpretations of the underlying causes of assemblage structure.

  15. Physical Stress, Not Biotic Interactions, Preclude an Invasive Grass from Establishing in Forb-Dominated Salt Marshes

    PubMed Central

    He, Qiang; Cui, Baoshan; An, Yuan

    2012-01-01

    Background Biological invasions have become the focus of considerable concern and ecological research, yet the relative importance of abiotic and biotic factors in controlling the invasibility of habitats to exotic species is not well understood. Spartina species are highly invasive plants in coastal wetlands; however, studies on the factors that control the success or failure of Spartina invasions across multiple habitat types are rare and inconclusive. Methodology and Principal Findings We examined the roles of physical stress and plant interactions in mediating the establishment of the smooth cordgrass, Spartina alterniflora, in a variety of coastal habitats in northern China. Field transplant experiments showed that cordgrass can invade mudflats and low estuarine marshes with low salinity and frequent flooding, but cannot survive in salt marshes and high estuarine marshes with hypersaline soils and infrequent flooding. The dominant native plant Suaeda salsa had neither competitive nor facilitative effects on cordgrass. A common garden experiment revealed that cordgrass performed significantly better when flooded every other day than when flooded weekly. These results suggest that physical stress rather than plant interactions limits cordgrass invasions in northern China. Conclusions and Significance We conclude that Spartina invasions are likely to be constrained to tidal flats and low estuarine marshes in the Yellow River Delta. Due to harsh physical conditions, salt marshes and high estuarine marshes are unlikely to be invaded. These findings have implications for understanding Spartina invasions in northern China and on other coasts with similar biotic and abiotic environments. PMID:22432003

  16. Physical stress, not biotic interactions, preclude an invasive grass from establishing in forb-dominated salt marshes.

    PubMed

    He, Qiang; Cui, Baoshan; An, Yuan

    2012-01-01

    Biological invasions have become the focus of considerable concern and ecological research, yet the relative importance of abiotic and biotic factors in controlling the invasibility of habitats to exotic species is not well understood. Spartina species are highly invasive plants in coastal wetlands; however, studies on the factors that control the success or failure of Spartina invasions across multiple habitat types are rare and inconclusive. We examined the roles of physical stress and plant interactions in mediating the establishment of the smooth cordgrass, Spartina alterniflora, in a variety of coastal habitats in northern China. Field transplant experiments showed that cordgrass can invade mudflats and low estuarine marshes with low salinity and frequent flooding, but cannot survive in salt marshes and high estuarine marshes with hypersaline soils and infrequent flooding. The dominant native plant Suaeda salsa had neither competitive nor facilitative effects on cordgrass. A common garden experiment revealed that cordgrass performed significantly better when flooded every other day than when flooded weekly. These results suggest that physical stress rather than plant interactions limits cordgrass invasions in northern China. We conclude that Spartina invasions are likely to be constrained to tidal flats and low estuarine marshes in the Yellow River Delta. Due to harsh physical conditions, salt marshes and high estuarine marshes are unlikely to be invaded. These findings have implications for understanding Spartina invasions in northern China and on other coasts with similar biotic and abiotic environments.

  17. Linking Spatial Structure and Community-Level Biotic Interactions through Cooccurrence and Time Series Modeling of the Human Intestinal Microbiota.

    PubMed

    de Muinck, Eric J; Lundin, Knut E A; Trosvik, Pål

    2017-01-01

    The gastrointestinal (GI) microbiome is a densely populated ecosystem where dynamics are determined by interactions between microbial community members, as well as host factors. The spatial organization of this system is thought to be important in human health, yet this aspect of our resident microbiome is still poorly understood. In this study, we report significant spatial structure of the GI microbiota, and we identify general categories of spatial patterning in the distribution of microbial taxa along a healthy human GI tract. We further estimate the biotic interaction structure in the GI microbiota, both through time series and cooccurrence modeling of microbial community data derived from a large number of sequentially collected fecal samples. Comparison of these two approaches showed that species pairs involved in significant negative interactions had strong positive contemporaneous correlations and vice versa, while for species pairs without significant interactions, contemporaneous correlations were distributed around zero. We observed similar patterns when comparing these models to the spatial correlations between taxa identified in the adherent microbiota. This suggests that colocalization of microbial taxon pairs, and thus the spatial organization of the GI microbiota, is driven, at least in part, by direct or indirect biotic interactions. Thus, our study can provide a basis for an ecological interpretation of the biogeography of the human gut. IMPORTANCE The human gut microbiome is the subject of intense study due to its importance in health and disease. The majority of these studies have been based on the analysis of feces. However, little is known about how the microbial composition in fecal samples relates to the spatial distribution of microbial taxa along the gastrointestinal tract. By characterizing the microbial content both in intestinal tissue samples and in fecal samples obtained daily, we provide a conceptual framework for how the spatial

  18. Eco-evolutionary feedbacks drive species interactions

    PubMed Central

    Andrade-Domínguez, Andrés; Salazar, Emmanuel; del Carmen Vargas-Lagunas, María; Kolter, Roberto; Encarnación, Sergio

    2014-01-01

    In the biosphere, many species live in close proximity and can thus interact in many different ways. Such interactions are dynamic and fall along a continuum between antagonism and cooperation. Because interspecies interactions are the key to understanding biological communities, it is important to know how species interactions arise and evolve. Here, we show that the feedback between ecological and evolutionary processes has a fundamental role in the emergence and dynamics of species interaction. Using a two-species artificial community, we demonstrate that ecological processes and rapid evolution interact to influence the dynamics of the symbiosis between a eukaryote (Saccharomyces cerevisiae) and a bacterium (Rhizobium etli). The simplicity of our experimental design enables an explicit statement of causality. The niche-constructing activities of the fungus were the key ecological process: it allowed the establishment of a commensal relationship that switched to ammensalism and provided the selective conditions necessary for the adaptive evolution of the bacteria. In this latter state, the bacterial population radiates into more than five genotypes that vary with respect to nutrient transport, metabolic strategies and global regulation. Evolutionary diversification of the bacterial populations has strong effects on the community; the nature of interaction subsequently switches from ammensalism to antagonism where bacteria promote yeast extinction. Our results demonstrate the importance of the evolution-to-ecology pathway in the persistence of interactions and the stability of communities. Thus, eco-evolutionary dynamics have the potential to transform the structure and functioning of ecosystems. Our results suggest that these dynamics should be considered to improve our understanding of beneficial and detrimental host–microbe interactions. PMID:24304674

  19. Ecological interactions drive evolutionary loss of traits.

    PubMed

    Ellers, Jacintha; Kiers, E Toby; Currie, Cameron R; McDonald, Bradon R; Visser, Bertanne

    2012-10-01

    Loss of traits can dramatically alter the fate of species. Evidence is rapidly accumulating that the prevalence of trait loss is grossly underestimated. New findings demonstrate that traits can be lost without affecting the external phenotype, provided the lost function is compensated for by species interactions. This is important because trait loss can tighten the ecological relationship between partners, affecting the maintenance of species interactions. Here, we develop a new perspective on so-called `compensated trait loss' and how this type of trait loss may affect the evolutionary dynamics between interacting organisms. We argue that: (1) the frequency of compensated trait loss is currently underestimated because it can go unnoticed as long as ecological interactions are maintained; (2) by analysing known cases of trait loss, specific factors promoting compensated trait loss can be identified and (3) genomic sequencing is a key way forwards in detecting compensated trait loss. We present a comprehensive literature survey showing that compensated trait loss is taxonomically widespread, can involve essential traits, and often occurs as replicated evolutionary events. Despite its hidden nature, compensated trait loss is important in directing evolutionary dynamics of ecological relationships and has the potential to change facultative ecological interactions into obligatory ones.

  20. Predicting species distribution and abundance responses to climate change: why it is essential to include biotic interactions across trophic levels

    PubMed Central

    Van der Putten, Wim H.; Macel, Mirka; Visser, Marcel E.

    2010-01-01

    Current predictions on species responses to climate change strongly rely on projecting altered environmental conditions on species distributions. However, it is increasingly acknowledged that climate change also influences species interactions. We review and synthesize literature information on biotic interactions and use it to argue that the abundance of species and the direction of selection during climate change vary depending on how their trophic interactions become disrupted. Plant abundance can be controlled by aboveground and belowground multitrophic level interactions with herbivores, pathogens, symbionts and their enemies. We discuss how these interactions may alter during climate change and the resulting species range shifts. We suggest conceptual analogies between species responses to climate warming and exotic species introduced in new ranges. There are also important differences: the herbivores, pathogens and mutualistic symbionts of range-expanding species and their enemies may co-migrate, and the continuous gene flow under climate warming can make adaptation in the expansion zone of range expanders different from that of cross-continental exotic species. We conclude that under climate change, results of altered species interactions may vary, ranging from species becoming rare to disproportionately abundant. Taking these possibilities into account will provide a new perspective on predicting species distribution under climate change. PMID:20513711

  1. Mechanosensory Interactions Drive Collective Behaviour in Drosophila

    PubMed Central

    Ramdya, Pavan; Lichocki, Pawel; Cruchet, Steeve; Frisch, Lukas; Tse, Winnie; Floreano, Dario; Benton, Richard

    2014-01-01

    Collective behaviour enhances environmental sensing and decision-making in groups of animals1,2. Experimental and theoretical investigations of schooling fish, flocking birds and human crowds have demonstrated that simple interactions between individuals can explain emergent group dynamics3,4. These findings imply the existence of neural circuits that support distributed behaviours, but the molecular and cellular identities of relevant sensory pathways are unknown. Here we show that Drosophila melanogaster exhibits collective responses to an aversive odour: individual flies weakly avoid the stimulus, but groups show enhanced escape reactions. Using high-resolution behavioural tracking, computational simulations, genetic perturbations, neural silencing and optogenetic activation we demonstrate that this collective odour avoidance arises from cascades of appendage touch interactions between pairs of flies. Inter-fly touch sensing and collective behaviour require the activity of distal leg mechanosensory sensilla neurons and the mechanosensory channel NOMPC5,6. Remarkably, through these inter-fly encounters, wild-type flies can elicit avoidance behaviour in mutant animals that cannot sense the odour – a basic form of communication. Our data highlight the unexpected importance of social context in the sensory responses of a solitary species and open the door to a neural circuit level understanding of collective behaviour in animal groups. PMID:25533959

  2. Biotic interactions mediate the influence of bird colonies on vegetation and soil chemistry at aggregation sites.

    PubMed

    Natusch, Daniel James Deans; Lyons, Jessica Ann; Brown, Gregory P; Shine, Richard

    2017-02-01

    Colonial-nesting organisms can strongly alter the chemical and biotic conditions around their aggregation sites, with cascading impacts on other components of the ecosystem. In tropical Australia, Metallic Starlings (Aplonis metallica) nest in large colonies far above the forest canopy, in emergent trees. The ground beneath those trees is open, in stark contrast to the dense foliage all around. We surveyed the areas beneath 27 colony trees (and nearby randomly chosen trees lacking bird colonies) to quantify the birds' impacts on soil and vegetation characteristics, and to test alternative hypotheses about the proximate mechanisms responsible for the lack of live vegetation beneath colony trees. Nutrient levels were greatly elevated beneath colony trees (especially, those with larger colonies), potentially reaching levels toxic to older trees. However, seedlings thrived in the soil from beneath colony trees. The primary mechanism generating open areas beneath colony trees is disturbance by scavengers (feral pigs and native Turkeys) that are attracted in vast numbers to these nutrient hotspots. Seedlings flourished within exclosures inaccessible to vertebrate herbivores, but were rapidly consumed if unprotected. Our results contrast with previous studies of colonies of seabirds on remote islands, where a lack of large terrestrial herbivores results in bird colonies encouraging rather than eliminating vegetation in areas close to the nesting site. In our continental study system, scavengers may rapidly dilute the spatial heterogeneity generated by the massive nutrient subsidy from bird colonies.

  3. Interactive biotic and abiotic regulators of soil carbon cycling: evidence from controlled climate experiments on peatland and boreal soils.

    PubMed

    Briones, María Jesús I; McNamara, Niall P; Poskitt, Jan; Crow, Susan E; Ostle, Nicholas J

    2014-09-01

    Partially decomposed plant and animal remains have been accumulating in organic soils (i.e. >40% C content) for millennia, making them the largest terrestrial carbon store. There is growing concern that, in a warming world, soil biotic processing will accelerate and release greenhouse gases that further exacerbate climate change. However, the magnitude of this response remains uncertain as the constraints are abiotic, biotic and interactive. Here, we examined the influence of resource quality and biological activity on the temperature sensitivity of soil respiration under different soil moisture regimes. Organic soils were sampled from 13 boreal and peatland ecosystems located in the United Kingdom, Ireland, Spain, Finland and Sweden, representing a natural resource quality range of C, N and P. They were incubated at four temperatures (4, 10, 15 and 20 °C) at either 60% or 100% water holding capacity (WHC). Our results showed that chemical and biological properties play an important role in determining soil respiration responses to temperature and moisture changes. High soil C : P and C : N ratios were symptomatic of slow C turnover and long-term C accumulation. In boreal soils, low bacterial to fungal ratios were related to greater temperature sensitivity of respiration, which was amplified in drier conditions. This contrasted with peatland soils which were dominated by bacterial communities and enchytraeid grazing, resulting in a more rapid C turnover under warmer and wetter conditions. The unexpected acceleration of C mineralization under high moisture contents was possibly linked to the primarily role of fermented organic matter, instead of oxygen, in mediating microbial decomposition. We conclude that to improve C model simulations of soil respiration, a better resolution of the interactions occurring between climate, resource quality and the decomposer community will be required. © 2014 John Wiley & Sons Ltd.

  4. Regulation of Copper Homeostasis and Biotic Interactions by MicroRNA 398b in Common Bean

    PubMed Central

    Valdés-López, Oswaldo; Mendoza-Soto, Ana B.; Nova-Franco, Bárbara; Sosa-Valencia, Guadalupe; Reyes, José L.; Hernández, Georgina

    2014-01-01

    MicroRNAs are recognized as important post-transcriptional regulators in plants. Information about the roles of miRNAs in common bean (Phaseolus vulgaris L.), an agronomically important legume, is yet scant. The objective of this work was to functionally characterize the conserved miRNA: miR398b and its target Cu/Zn Superoxide Dismutase 1 (CSD1) in common bean. We experimentally validated a novel miR398 target: the stress up-regulated Nodulin 19 (Nod19). Expression analysis of miR398b and target genes –CSD1 and Nod19- in bean roots, nodules and leaves, indicated their role in copper (Cu) homeostasis. In bean plants under Cu toxicity miR398b was decreased and Nod19 and CSD1, that participates in reactive oxygen species (ROS) detoxification, were up-regulated. The opposite regulation was observed in Cu deficient bean plants; lower levels of CSD1 would allow Cu delivery to essential Cu-containing proteins. Composite common bean plants with transgenic roots over-expressing miR398 showed ca. 20-fold higher mature miR398b and almost negligible target transcript levels as well as increased anthocyanin content and expression of Cu-stress responsive genes, when subjected to Cu deficiency. The down-regulation of miR398b with the consequent up-regulation of its targets was observed in common bean roots during the oxidative burst resulting from short-time exposure to high Cu. A similar response occurred at early stage of bean roots inoculated with Rhizobium tropici, where an increase in ROS was observed. In addition, the miR398b down-regulation and an increase in CSD1 and Nod19 were observed in bean leaves challenged with Sclerotinia scleortiorum fungal pathogen. Transient over-expression of miR398b in Nicotiana benthamiana leaves infected with S. sclerotiorum resulted in enhanced fungal lesions. We conclude that the miR398b-mediated up-regulation of CSD and Nod19 is relevant for common bean plants to cope with oxidative stress generated in abiotic and biotic stresses. PMID

  5. Regulation of copper homeostasis and biotic interactions by microRNA 398b in common bean.

    PubMed

    Naya, Loreto; Paul, Sujay; Valdés-López, Oswaldo; Mendoza-Soto, Ana B; Nova-Franco, Bárbara; Sosa-Valencia, Guadalupe; Reyes, José L; Hernández, Georgina

    2014-01-01

    MicroRNAs are recognized as important post-transcriptional regulators in plants. Information about the roles of miRNAs in common bean (Phaseolus vulgaris L.), an agronomically important legume, is yet scant. The objective of this work was to functionally characterize the conserved miRNA: miR398b and its target Cu/Zn Superoxide Dismutase 1 (CSD1) in common bean. We experimentally validated a novel miR398 target: the stress up-regulated Nodulin 19 (Nod19). Expression analysis of miR398b and target genes -CSD1 and Nod19- in bean roots, nodules and leaves, indicated their role in copper (Cu) homeostasis. In bean plants under Cu toxicity miR398b was decreased and Nod19 and CSD1, that participates in reactive oxygen species (ROS) detoxification, were up-regulated. The opposite regulation was observed in Cu deficient bean plants; lower levels of CSD1 would allow Cu delivery to essential Cu-containing proteins. Composite common bean plants with transgenic roots over-expressing miR398 showed ca. 20-fold higher mature miR398b and almost negligible target transcript levels as well as increased anthocyanin content and expression of Cu-stress responsive genes, when subjected to Cu deficiency. The down-regulation of miR398b with the consequent up-regulation of its targets was observed in common bean roots during the oxidative burst resulting from short-time exposure to high Cu. A similar response occurred at early stage of bean roots inoculated with Rhizobium tropici, where an increase in ROS was observed. In addition, the miR398b down-regulation and an increase in CSD1 and Nod19 were observed in bean leaves challenged with Sclerotinia scleortiorum fungal pathogen. Transient over-expression of miR398b in Nicotiana benthamiana leaves infected with S. sclerotiorum resulted in enhanced fungal lesions. We conclude that the miR398b-mediated up-regulation of CSD and Nod19 is relevant for common bean plants to cope with oxidative stress generated in abiotic and biotic stresses.

  6. Food Webs and Multiple Biotic Interactions in Plant-Herbivore Models

    USDA-ARS?s Scientific Manuscript database

    Trophic relationships between plants and insects are not confined to biological interactions such as herbivory (i.e. direct consumption of one primary producer by a predator), in an ecological approach, many other interactions, trophic or even non trophic, may influence plant herbivory by insects. T...

  7. LSU network hubs integrate abiotic and biotic stress responses via interaction with the superoxide dismutase FSD2.

    PubMed

    Garcia-Molina, Antoni; Altmann, Melina; Alkofer, Angela; Epple, Petra M; Dangl, Jeffery L; Falter-Braun, Pascal

    2017-02-01

    In natural environments, plants often experience different stresses simultaneously, and adverse abiotic conditions can weaken the plant immune system. Interactome mapping revealed that the LOW SULPHUR UPREGULATED (LSU) proteins are hubs in an Arabidopsis protein interaction network that are targeted by virulence effectors from evolutionarily diverse pathogens. Here we show that LSU proteins are up-regulated in several abiotic and biotic stress conditions, such as nutrient depletion or salt stress, by both transcriptional and post-translational mechanisms. Interference with LSU expression prevents chloroplastic reactive oxygen species (ROS) production and proper stomatal closure during sulphur stress. We demonstrate that LSU1 interacts with the chloroplastic superoxide dismutase FSD2 and stimulates its enzymatic activity in vivo and in vitro. Pseudomonas syringae virulence effectors interfere with this interaction and preclude re-localization of LSU1 to chloroplasts. We demonstrate that reduced LSU levels cause a moderately enhanced disease susceptibility in plants exposed to abiotic stresses such as nutrient deficiency, high salinity, or heavy metal toxicity, whereas LSU1 overexpression confers significant disease resistance in several of these conditions. Our data suggest that the network hub LSU1 plays an important role in co-ordinating plant immune responses across a spectrum of abiotic stress conditions. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  8. Hydrologic, abiotic and biotic interactions: plant density, windspeed, leaf size and groundwater all affect oak water use efficiency

    Treesearch

    Darin J. Law; Deborah M. Finch

    2011-01-01

    Plant water use in drylands can be complex due to variation in hydrologic, abiotic and biotic factors, particularly near ephemeral or intermittent streams. Plant use of groundwater may be important but is usually uncertain. Disturbances like fire contribute to complex spatiotemporal heterogeneity. Improved understanding of how such hydrologic, abiotic, and biotic...

  9. At the interface: Biotic-abiotic interactions between substrates and a model epithlium

    NASA Astrophysics Data System (ADS)

    Covell, Alan D.

    The need for determining the fundamental mechanisms that define the interaction of biological systems with underlying materials, both natural and synthetic, is important as humanity endeavors to improve the quality of life of individuals through technology. Recently, much work has focused on the role of material properties on the behavior of cells. Most of these studies have concentrated their efforts on fibroblastic cell lines and more recently different kinds of stems cells. While these cells represent an important subset of cells in complex organisms, they do not manifest cell-cell interactions, a feature of epithelial cells, the most abundant cell type. Epithelial cells represent the largest cell type in the body and introduce an intrinsic complexity when researching the interaction of biological systems with materials. Adherens junctions (AJ) play a significant role in many signaling pathways, and therefore there is need to investigate how physical interactions with underlying substrates affect cell-cell interactions, such as the adhesion properties between cells, as well as how cell-substrate interactions influence the morphology and growth of epithelial cells. In this work I seek to determine the effects and identify mechanisms that epithelial cells use to "read" their environment. To do this I examined changes in cell behavior (growth, morphological, adhesion) of a model epithelium on substrates that have similar composition but significant differences in surface organization. In such a manner, I probed the limitations at which the nanoscale differences in substrate topography affect cellular behavior.

  10. Physiological and molecular implications of plant polyamine metabolism during biotic interactions.

    PubMed

    Jiménez-Bremont, Juan F; Marina, María; Guerrero-González, María de la Luz; Rossi, Franco R; Sánchez-Rangel, Diana; Rodríguez-Kessler, Margarita; Ruiz, Oscar A; Gárriz, Andrés

    2014-01-01

    During ontogeny, plants interact with a wide variety of microorganisms. The association with mutualistic microbes results in benefits for the plant. By contrast, pathogens may cause a remarkable impairment of plant growth and development. Both types of plant-microbe interactions provoke notable changes in the polyamine (PA) metabolism of the host and/or the microbe, being each interaction a complex and dynamic process. It has been well documented that the levels of free and conjugated PAs undergo profound changes in plant tissues during the interaction with microorganisms. In general, this is correlated with a precise and coordinated regulation of PA biosynthetic and catabolic enzymes. Interestingly, some evidence suggests that the relative importance of these metabolic pathways may depend on the nature of the microorganism, a concept that stems from the fact that these amines mediate the activation of plant defense mechanisms. This effect is mediated mostly through PA oxidation, even though part of the response is activated by non-oxidized PAs. In the last years, a great deal of effort has been devoted to profile plant gene expression following microorganism recognition. In addition, the phenotypes of transgenic and mutant plants in PA metabolism genes have been assessed. In this review, we integrate the current knowledge on this field and analyze the possible roles of these amines during the interaction of plants with microbes.

  11. Physiological and molecular implications of plant polyamine metabolism during biotic interactions

    PubMed Central

    Jiménez-Bremont, Juan F.; Marina, María; Guerrero-González, María de la Luz; Rossi, Franco R.; Sánchez-Rangel, Diana; Rodríguez-Kessler, Margarita; Ruiz, Oscar A.; Gárriz, Andrés

    2014-01-01

    During ontogeny, plants interact with a wide variety of microorganisms. The association with mutualistic microbes results in benefits for the plant. By contrast, pathogens may cause a remarkable impairment of plant growth and development. Both types of plant–microbe interactions provoke notable changes in the polyamine (PA) metabolism of the host and/or the microbe, being each interaction a complex and dynamic process. It has been well documented that the levels of free and conjugated PAs undergo profound changes in plant tissues during the interaction with microorganisms. In general, this is correlated with a precise and coordinated regulation of PA biosynthetic and catabolic enzymes. Interestingly, some evidence suggests that the relative importance of these metabolic pathways may depend on the nature of the microorganism, a concept that stems from the fact that these amines mediate the activation of plant defense mechanisms. This effect is mediated mostly through PA oxidation, even though part of the response is activated by non-oxidized PAs. In the last years, a great deal of effort has been devoted to profile plant gene expression following microorganism recognition. In addition, the phenotypes of transgenic and mutant plants in PA metabolism genes have been assessed. In this review, we integrate the current knowledge on this field and analyze the possible roles of these amines during the interaction of plants with microbes. PMID:24672533

  12. Epibiotic mutualists alter coral susceptibility and response to biotic disturbance through cascading trait-mediated indirect interactions

    NASA Astrophysics Data System (ADS)

    Bergsma, G. S.

    2012-06-01

    Biotic disturbances are important drivers of community structure, but interactions among community members can determine trajectories of response and recovery. On coral reefs in French Polynesia, epibiotic amphipods induce the formation of branch-like "fingers" on flat colonies of encrusting Montipora coral. The fingers form as coral encrusts the amphipods' tubes and lead to significant changes in colony morphology. I tested whether the induced morphological changes affect Montipora's susceptibility to predation by pincushion ( Culcita novaeguineae) and crown-of-thorns sea stars ( Acanthaster planci). Montipora with fingers were less likely to be attacked and more likely to survive attack than colonies without fingers. Furthermore, the presence of fingers altered A. planci prey preference. Sea stars preferred Montipora without fingers over other common coral genera, but preferred other genera when Montipora had fingers. Amphipods indirectly affected Montipora's resistance and resilience to predation, and the susceptibility of other coral genera to predation, through induced morphological changes. Such trait-mediated indirect interactions likely play an important role in determining how species respond to periodic sea star outbreaks.

  13. Synergistic interactions of biotic and abiotic environmental stressors on gene expression.

    PubMed

    Altshuler, Ianina; McLeod, Anne M; Colbourne, John K; Yan, Norman D; Cristescu, Melania E

    2015-03-01

    Understanding the response of organisms to multiple stressors is critical for predicting if populations can adapt to rapid environmental change. Natural and anthropogenic stressors often interact, complicating general predictions. In this study, we examined the interactive and cumulative effects of two common environmental stressors, lowered calcium concentration, an anthropogenic stressor, and predator presence, a natural stressor, on the water flea Daphnia pulex. We analyzed expression changes of five genes involved in calcium homeostasis - cuticle proteins (Cutie, Icp2), calbindin (Calb), and calcium pump and channel (Serca and Ip3R) - using real-time quantitative PCR (RT-qPCR) in a full factorial experiment. We observed strong synergistic interactions between low calcium concentration and predator presence. While the Ip3R gene was not affected by the stressors, the other four genes were affected in their transcriptional levels by the combination of the stressors. Transcriptional patterns of genes that code for cuticle proteins (Cutie and Icp2) and a sarcoplasmic calcium pump (Serca) only responded to the combination of stressors, changing their relative expression levels in a synergistic response, while a calcium-binding protein (Calb) responded to low calcium stress and the combination of both stressors. The expression pattern of these genes (Cutie, Icp2, and Serca) were nonlinear, yet they were dose dependent across the calcium gradient. Multiple stressors can have complex, often unexpected effects on ecosystems. This study demonstrates that the dominant interaction for the set of tested genes appears to be synergism. We argue that gene expression patterns can be used to understand and predict the type of interaction expected when organisms are exposed simultaneously to natural and anthropogenic stressors.

  14. Strigolactone Involvement in Root Development, Response to Abiotic Stress, and Interactions with the Biotic Soil Environment

    PubMed Central

    Kapulnik, Yoram; Koltai, Hinanit

    2014-01-01

    Strigolactones, recently discovered as plant hormones, regulate the development of different plant parts. In the root, they regulate root architecture and affect root hair length and density. Their biosynthesis and exudation increase under low phosphate levels, and they are associated with root responses to these conditions. Their signaling pathway in the plant includes protein interactions and ubiquitin-dependent repressor degradation. In the root, they lead to changes in actin architecture and dynamics as well as localization of the PIN-FORMED auxin transporter in the plasma membrane. Strigolactones are also involved with communication in the rhizosphere. They are necessary for germination of parasitic plant seeds, they enhance hyphal branching of arbuscular mycorrhizal fungi of the Glomus and Gigaspora spp., and they promote rhizobial symbiosis. This review focuses on the role played by strigolactones in root development, their response to nutrient deficiency, and their involvement with plant interactions in the rhizosphere. PMID:25037210

  15. Biotic Interactions in the Rhizosphere: A Diverse Cooperative Enterprise for Plant Productivity1[C

    PubMed Central

    De-la-Peña, Clelia; Loyola-Vargas, Víctor M.

    2014-01-01

    Microbes and plants have evolved biochemical mechanisms to communicate with each other. The molecules responsible for such communication are secreted during beneficial or harmful interactions. Hundreds of these molecules secreted into the rhizosphere have been identified, and their functions are being studied in order to understand the mechanisms of interaction and communication among the different members of the rhizosphere community. The importance of root and microbe secretion to the underground habitat in improving crop productivity is increasingly recognized, with the discovery and characterization of new secreting compounds found in the rhizosphere. Different omic approaches, such as genomics, transcriptomics, proteomics, and metabolomics, have expanded our understanding of the first signals between microbes and plants. In this review, we highlight the more recent discoveries related to molecules secreted into the rhizosphere and how they affect plant productivity, either negatively or positively. In addition, we include a survey of novel approaches to studying the rhizosphere and emerging opportunities to direct future studies. PMID:25118253

  16. Bottom-up and top-down mechanisms indirectly mediate interactions between benthic biotic ecosystem components

    NASA Astrophysics Data System (ADS)

    Van Colen, Carl; Thrush, Simon F.; Parkes, Samantha; Harris, Rachel; Woodin, Sally A.; Wethey, David S.; Pilditch, Conrad A.; Hewitt, Judi E.; Lohrer, Andrew M.; Vincx, Magda

    2015-04-01

    The loss or decline in population size of key species can instigate a cascade of effects that have implications for interacting species, therewith impacting biodiversity and ecosystem functioning. We examined how top-down and bottom-up interactions may mediate knock-on effects of a coastal deposit-feeding clam, Macomona liliana (hereafter Macomona), on sandflat meiobenthos densities. Therefore we manipulated densities of Macomona in combination with predator exclusion and experimental shading that was expected to alter microphytobenthos biomass. We show that Macomona regulated densities of meiobenthic (38-500 μm) nematodes, copepods, polychaetes, turbellarians, and ostracodes during the three months of incubation via indirect mechanisms. Predator pressure on Macomona by eagle rays (Myliobatis tenuicaudatus) was found to have a negative effect on densities of some meiobenthic taxa. Furthermore, experimental shading resulted in the loss of a positive relation between Macomona and microphytobenthos biomass, while concurrently increasing the density of some meiobenthic taxa. We suggest that this observation can be explained by the release from bioturbation interference effects of the cockle Austrovenus stutchburyi that was found to thrive in the presence of Macomona under non-shaded conditions. Our results highlight the importance of interactions between macrofaunal bioturbation, microphyte biomass, sediment stability, and predation pressure for the structuring of benthic communities. This experiment illustrates that manipulative field experiments may be particularly suitable to study such multiple indirect mechanisms that regulate ecosystem diversity and related functioning because such approaches may best capture the complex feedbacks and processes that determine ecosystem dynamics.

  17. Study of toxicity and uptake of nanoparticles towards understanding biotic-abiotic interactions

    NASA Astrophysics Data System (ADS)

    Kosaraju, Karshak

    With the rapid growth in nanotechnology and tremendous applications the engineered nanomaterials (ENs) offer, there is increase in usage of ENs which increases their likelihood of coming in contact with biological systems which include complex beings like humans and other relatively simpler organism like bacteria and other microorganisms. The interaction between the nanomaterials (NMs) and biological systems includes the formation of protein coronas, particle wrapping, intracellular uptake and bio catalytic processes which could have biocompatible or bio adverse outcomes. Understanding these interactions allows the development of predictive relationships between structure and activity that are mainly determined by NM properties such as size, shape, surface chemistry, aggregation, and surface functionality among many others. This understanding will also provide insight towards the design and development of benign nanomaterials. The overarching goal of this dissertation is to understand the influence of the physicochemical characteristics of the NMs and their influence on their uptake and toxicity when they interact with the biological systems (cells and organs). For this purpose, thoroughly characterized NMs will be exposed to a cellular model, A549 cells (alveolar lung epithelial cells), and a mice model (CD-1 mice) through inhalational administration. The effects of NMs on the in vitro and in vivo models will be evaluated by bio- and immuno-chemical methods to understand toxicity, and a combination of analytical spectroscopic and microscopic tools to study uptake. In vivo toxicity assessment will also be performed by using electrocardiogram (ECG) measurements as a tool to study the effects of inhalation of NMs on cardiac response in mice. Through in vivo studies, a novel non-invasive method, Reserve of Refractoriness (RoR), will be introduced as a tool to study cardiotoxicity.

  18. Biotic interactions and macroevolution: extensions and mismatches across scales and levels.

    PubMed

    Jablonski, David

    2008-04-01

    Clade dynamics in the fossil record broadly fit expectations from the operation of competition, predation, and mutualism, but data from both modern and ancient systems suggest mismatches across scales and levels. Indirect effects, as when antagonistic or mutualistic interactions restrict geographic range and thereby elevate extinction risk, are probably widespread and may flow in both directions, as when species- or organismic-level factors increase extinction risk or speciation probabilities. Apparent contradictions across scales and levels have been neglected, including (1) the individualistic geographic shifts of species on centennial and millennial timescales versus evidence for fine-tuned coevolutionary relationships; (2) the extensive and dynamic networks of interactions faced by most species versus the evolution of costly enemy-specific defenses and finely attuned mutualisms; and (3) the macroevolutionary lags often seen between the origin and the diversification of a clade or an evolutionary novelty versus the rapid microevolution of advantageous phenotypes and the invasibility of most communities. Resolution of these and other cross-level tensions presumably hinges on how organismic interactions impinge on genetic population structures, geographic ranges, and the persistence of incipient species, but generalizations are not yet possible. Paleontological and neontological data are both incomplete and so the most powerful response to these problems will require novel integrative approaches. Promising research areas include more realistic approaches to modeling and empirical analysis of large-scale diversity dynamics of ostensibly competing clades; spatial and phylogenetic dissections of clades involved in escalatory dynamics (where prey respond evolutionarily to a broad and shifting array of enemies); analyses of the short- versus long-term consequences of mutualistic symbioses; and fuller use of abundant natural experiments on the evolutionary impacts of

  19. Abiotic and biotic interactions determine whether increased colonization is beneficial or detrimental to metapopulation management.

    PubMed

    Southwell, Darren M; Rhodes, Jonathan R; McDonald-Madden, Eve; Nicol, Sam; Helmstedt, Kate J; McCarthy, Michael A

    2016-06-01

    Increasing the colonization rate of metapopulations can improve persistence, but can also increase exposure to threats. To make good decisions, managers must understand whether increased colonization is beneficial or detrimental to metapopulation persistence. While a number of studies have examined interactions between metapopulations, colonization, and threats, they have assumed that threat dynamics respond linearly to changes in colonization. Here, we determined when to increase colonization while explicitly accounting for non-linear dependencies between a metapopulation and its threats. We developed patch occupancy metapopulation models for species susceptible to abiotic, generalist, and specialist threats and modeled the total derivative of the equilibrium proportion of patches occupied by each metapopulation with respect to the colonization rate. By using the total derivative, we developed a rule for determining when to increase metapopulation colonization. This rule was applied to a simulated metapopulation where the dynamics of each threat responded to increased colonization following a power function. Before modifying colonization, we show that managers must understand: (1) whether a metapopulation is susceptible to a threat; (2) the type of threat acting on a metapopulation; (3) which component of threat dynamics might depend on colonization, and; (4) the likely response of a threat-dependent variable to changes in colonization. The sensitivity of management decisions to these interactions increases uncertainty in conservation planning decisions. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.

  20. Invasion biology in non-free-living species: interactions between abiotic (climatic) and biotic (host availability) factors in geographical space in crayfish commensals (Ostracoda, Entocytheridae)

    PubMed Central

    Mestre, Alexandre; Aguilar-Alberola, Josep A; Baldry, David; Balkis, Husamettin; Ellis, Adam; Gil-Delgado, Jose A; Grabow, Karsten; Klobučar, Göran; Kouba, Antonín; Maguire, Ivana; Martens, Andreas; Mülayim, Ayşegül; Rueda, Juan; Scharf, Burkhard; Soes, Menno; S Monrós, Juan; Mesquita-Joanes, Francesc

    2013-01-01

    In invasion processes, both abiotic and biotic factors are considered essential, but the latter are usually disregarded when modeling the potential spread of exotic species. In the framework of set theory, interactions between biotic (B), abiotic (A), and movement-related (M) factors in the geographical space can be hypothesized with BAM diagrams and tested using ecological niche models (ENMs) to estimate A and B areas. The main aim of our survey was to evaluate the interactions between abiotic (climatic) and biotic (host availability) factors in geographical space for exotic symbionts (i.e., non-free-living species), using ENM techniques combined with a BAM framework and using exotic Entocytheridae (Ostracoda) found in Europe as model organisms. We carried out an extensive survey to evaluate the distribution of entocytherids hosted by crayfish in Europe by checking 94 European localities and 12 crayfish species. Both exotic entocytherid species found, Ankylocythere sinuosa and Uncinocythere occidentalis, were widely distributed in W Europe living on the exotic crayfish species Procambarus clarkii and Pacifastacus leniusculus, respectively. No entocytherids were observed in the remaining crayfish species. The suitable area for A. sinuosa was mainly restricted by its own limitations to minimum temperatures in W and N Europe and precipitation seasonality in circum-Mediterranean areas. Uncinocythere occidentalis was mostly restricted by host availability in circum-Mediterranean regions due to limitations of P. leniusculus to higher precipitation seasonality and maximum temperatures. The combination of ENMs with set theory allows studying the invasive biology of symbionts and provides clues about biogeographic barriers due to abiotic or biotic factors limiting the expansion of the symbiont in different regions of the invasive range. The relative importance of abiotic and biotic factors on geographical space can then be assessed and applied in conservation plans. This

  1. Invasion biology in non-free-living species: interactions between abiotic (climatic) and biotic (host availability) factors in geographical space in crayfish commensals (Ostracoda, Entocytheridae).

    PubMed

    Mestre, Alexandre; Aguilar-Alberola, Josep A; Baldry, David; Balkis, Husamettin; Ellis, Adam; Gil-Delgado, Jose A; Grabow, Karsten; Klobučar, Göran; Kouba, Antonín; Maguire, Ivana; Martens, Andreas; Mülayim, Ayşegül; Rueda, Juan; Scharf, Burkhard; Soes, Menno; S Monrós, Juan; Mesquita-Joanes, Francesc

    2013-12-01

    In invasion processes, both abiotic and biotic factors are considered essential, but the latter are usually disregarded when modeling the potential spread of exotic species. In the framework of set theory, interactions between biotic (B), abiotic (A), and movement-related (M) factors in the geographical space can be hypothesized with BAM diagrams and tested using ecological niche models (ENMs) to estimate A and B areas. The main aim of our survey was to evaluate the interactions between abiotic (climatic) and biotic (host availability) factors in geographical space for exotic symbionts (i.e., non-free-living species), using ENM techniques combined with a BAM framework and using exotic Entocytheridae (Ostracoda) found in Europe as model organisms. We carried out an extensive survey to evaluate the distribution of entocytherids hosted by crayfish in Europe by checking 94 European localities and 12 crayfish species. Both exotic entocytherid species found, Ankylocythere sinuosa and Uncinocythere occidentalis, were widely distributed in W Europe living on the exotic crayfish species Procambarus clarkii and Pacifastacus leniusculus, respectively. No entocytherids were observed in the remaining crayfish species. The suitable area for A. sinuosa was mainly restricted by its own limitations to minimum temperatures in W and N Europe and precipitation seasonality in circum-Mediterranean areas. Uncinocythere occidentalis was mostly restricted by host availability in circum-Mediterranean regions due to limitations of P. leniusculus to higher precipitation seasonality and maximum temperatures. The combination of ENMs with set theory allows studying the invasive biology of symbionts and provides clues about biogeographic barriers due to abiotic or biotic factors limiting the expansion of the symbiont in different regions of the invasive range. The relative importance of abiotic and biotic factors on geographical space can then be assessed and applied in conservation plans. This

  2. Above- and belowground biotic interactions facilitate relocation of plants into cooler environments.

    PubMed

    Spasojevic, Marko J; Harrison, Susan; Day, Howard W; Southard, Randal J

    2014-06-01

    One important but largely unanswered question about floristic responses to climate change is how interactions such as competition, facilitation and plant-soil feedbacks will influence the ability of species to track shifting climates. In a rugged and moisture-limited region that has recently warmed by 2° (Siskiyou Mountains, OR, USA), we planted three species into cooler aspects and elevations than those they currently inhabit, with and without removal of neighbouring plants, and tracked them over 2 years. Two species had higher success in cooler topographic locations, and this success was enhanced by neighbouring plants, which appeared to modulate minimum growing season temperatures. One species' success was also facilitated by the higher soil organic matter found in cooler sites. These results are a novel experimental demonstration of two important factors that may buffer climate change impacts on plants: rugged topography and plant-plant facilitation.

  3. Environmental conditions and biotic interactions influence ecosystem structure and function in a drying stream

    USGS Publications Warehouse

    Ludlam, J.P.; Magoulick, D.D.

    2010-01-01

    Benthic consumers influence stream ecosystem structure and function, but these interactions depend on environmental context. We experimentally quantified the effects of central stoneroller minnows (Campostoma anomalum (Rafinesque) and Meek's crayfish (Orconectes meeki meeki (Faxon)) on benthic communities using electric exclusion quadrats in Little Mulberry Creek before (June) and during (August) seasonal stream drying. Unglazed ceramic tiles were deployed in June and August to measure periphyton and invertebrate abundance, and leafpack decomposition and primary production were also measured in August. Relationships between stoneroller and crayfish density and the size of consumer effects were evaluated with multiple linear regression models. Average chlorophyll a abundance was greater on exposed than exclusion tiles in August, but not in June. Sediment dry mass, periphyton ash-free dry mass (AFDM), and chironomid densities on tiles did not differ among treatments in either period. Leaf packs decayed faster in exposed than exclusion treatments (kexposed = 0.038 ?? 0.013, kexclusion = 0.007 ?? 0.002), but consumer effects were stronger in some pools than others. Leafpack invertebrate biomass and abundance and tile primary productivity did not differ among treatments. Consumer effects on chlorophyll a were related to crayfish and stoneroller density, and effects on chironomid density were related to stoneroller density. These results contrast with a previous exclusion experiment in Little Mulberry Creek that demonstrated strong consumer effects. The influence of stream drying on consumer effects appears to have been reduced by strong spates, underscoring the importance of conducting multi-year studies to determine the magnitude of variability in ecological interactions. ?? US Government: USGS 2010.

  4. Evolutionary History and Novel Biotic Interactions Determine Plant Responses to Elevated CO2 and Nitrogen Fertilization

    PubMed Central

    Wooliver, Rachel; Senior, John K.; Schweitzer, Jennifer A.; O'Reilly-Wapstra, Julianne M.; Langley, J. Adam; Chapman, Samantha K.; Bailey, Joseph K.

    2014-01-01

    A major frontier in global change research is predicting how multiple agents of global change will alter plant productivity, a critical component of the carbon cycle. Recent research has shown that plant responses to climate change are phylogenetically conserved such that species within some lineages are more productive than those within other lineages in changing environments. However, it remains unclear how phylogenetic patterns in plant responses to changing abiotic conditions may be altered by another agent of global change, the introduction of non-native species. Using a system of 28 native Tasmanian Eucalyptus species belonging to two subgenera, Symphyomyrtus and Eucalyptus, we hypothesized that productivity responses to abiotic agents of global change (elevated CO2 and increased soil N) are unique to lineages, but that novel interactions with a non-native species mediate these responses. We tested this hypothesis by examining productivity of 1) native species monocultures and 2) mixtures of native species with an introduced hardwood plantation species, Eucalyptus nitens, to experimentally manipulated soil N and atmospheric CO2. Consistent with past research, we found that N limits productivity overall, especially in elevated CO2 conditions. However, monocultures of species within the Symphyomyrtus subgenus showed the strongest response to N (gained 127% more total biomass) in elevated CO2 conditions, whereas those within the Eucalyptus subgenus did not respond to N. Root:shoot ratio (an indicator of resource use) was on average greater in species pairs containing Symphyomyrtus species, suggesting that functional traits important for resource uptake are phylogenetically conserved and explaining the phylogenetic pattern in plant response to changing environmental conditions. Yet, native species mixtures with E. nitens exhibited responses to CO2 and N that differed from those of monocultures, supporting our hypothesis and highlighting that both plant

  5. Microbial Interactions in the Phyllosphere Increase Plant Performance under Herbivore Biotic Stress

    PubMed Central

    Saleem, Muhammad; Meckes, Nicole; Pervaiz, Zahida H.; Traw, Milton B.

    2017-01-01

    The phyllosphere supports a tremendous diversity of microbes and other organisms. However, little is known about the colonization and survival of pathogenic and beneficial bacteria alone or together in the phyllosphere across the whole plant life-cycle under herbivory, which hinders our ability to understand the role of phyllosphere bacteria on plant performance. We addressed these questions in experiments using four genetically and biogeographically diverse accessions of Arabidopsis thaliana, three ecologically important bacterial strains (Pseudomonas syringae DC3000, Xanthomonas campestris, both pathogens, and Bacillus cereus, plant beneficial) under common garden conditions that included fungus gnats (Bradysia spp.). Plants supported greater abundance of B. cereus over either pathogenic strain in the phyllosphere under such greenhouse conditions. However, the Arabidopsis accessions performed much better (i.e., early flowering, biomass, siliques, and seeds per plant) in the presence of pathogenic bacteria rather than in the presence of the plant beneficial B. cereus. As a group, the plants inoculated with any of the three bacteria (Pst DC3000, Xanthomonas, or Bacillus) all had a higher fitness than uninoculated controls under these conditions. These results suggest that the plants grown under the pressure of different natural enemies, such as pathogens and an herbivore together perform relatively better, probably because natural enemies induce host defense against each other. However, in general, a positive impact of Bacillus on plant performance under herbivory may be due to its plant-beneficial properties. In contrast, bacterial species in the mixture (all three together) performed poorer than as monocultures in their total abundance and host plant growth promotion, possibly due to negative interspecific interactions among the bacteria. However, bacterial species richness linearly promoted seed production in the host plants under these conditions, suggesting

  6. The net effect of abiotic conditions and biotic interactions in a semi-arid ecosystem NE Spain: implications for the management and restoration.

    NASA Astrophysics Data System (ADS)

    Pueyo, Yolanda; Arroyo, Antonio I.; Saiz, Hugo; Alados, Concepción L.

    2014-05-01

    Degradation in arid and semiarid lands can be irreversible without human intervention, due to a positive plant-soil feedback where the loss of vegetation cover leads to soil degradation, which in turn hampers plant establishment. Human intervention in restoration actions usually involves the amendment of the degraded abiotic conditions, revegetation of bare areas, or both. However, abiotic amelioration is often expensive and too intrusive, and revegetation is not successful in many cases. Biotic interactions between plants, and more specifically facilitation by a "nurse" plant, have been proposed as a new via to take profit of improved abiotic conditions without intervention, and to increase the success rate of revegetation actions. But "nurse" plants can also interfere with others (i.e. by competition for resources or the release of allelopathic compounds), and the net balance between facilitation and interference could depend on plant types involved. We present recent observational and experimental studies performed in the semiarid ecosystems of the Middle Ebro Valley (NE Spain) about the role of abiotic conditions and biotic interactions in the productivity, dynamics and diversity of plant communities under different stress conditions (aridity and grazing). We found that all plant types studied (shrubs and perennial grasses) improved abiotic conditions (soil temperature and water availability for plants) with respect to open areas. However, only some shrubs (mainly Salsola vermiculata) had a positive net balance in the biotic interactions between plants, while other shrubs (Artemisia herba-alba) and perennial grasses (Lygeum spartum) showed interference with other plants. Moreover, the net balance between facilitation and interference among plants in the community shifted from competitive to neutral or from neutral to facilitative with increasing aridity. Grazing status did not strongly change the net biotic interactions between plants. Our results suggest that

  7. Test of local adaptation to biotic interactions and soil abiotic conditions in the ant-tended Chamaecrista fasciculata (Fabaceae).

    PubMed

    Abdala-Roberts, Luis; Marquis, Robert J

    2007-11-01

    Few previous studies have assessed the role of herbivores and the third trophic level in the evolution of local adaptation in plants. The overall objectives of this study were to determine (1) whether local adaptation is present in the ant-defended plant, Chamaecrista fasciculata, and (2) the contribution of ant-plant-herbivore interactions and soil source to such adaptation. We used three C. fasciculata populations and performed both a field and a greenhouse experiment. The first involved reciprocally transplanting C. fasciculata seedlings from each population-source to each site, and subsequently applying one of three treatments to one-third of the seedlings of each population-source at each site: control, reduced ant density and reduced folivory. The greenhouse experiment involved reciprocal transplants of population-sources with soil sources to test for a soil-source effect on flower production and local adaptation to soil conditions. Field results showed that ant and herbivore treatments reduced ant density (increasing folivory) and herbivore damage relative to controls, respectively; however, these manipulations did not impact C. fasciculata reproduction or the likelihood of survival. In contrast, greenhouse results showed that soil source significantly affected flower production. Overall, plants in both experiments, regardless of population-source, always had higher reproductive output at one specific site. Native populations did not outperform nonnative ones, causing us to reject the hypothesis of local adaptation. The absence of treatment effects on plant reproduction and the likelihood of survival suggest a limited effect of ants and folivores on C. fasciculata fitness and local adaptation during the study year. Temporally inconsistent effects of biotic forces across years, coupled with the young age of populations, relative proximity of populations and possible counter effects of seed predators may reduce the likelihood of local adaptation in the

  8. Application of the biotic ligand model to explain potassium interaction with thallium uptake and toxicity to plankton.

    PubMed

    Hassler, Christel S; Chafin, Ryan D; Klinger, Mary Beth; Twiss, Michael R

    2007-06-01

    Competitive interaction between TI(I) and K was successfully predicted by the biotic ligand model (BLM) for the microalga Chlorella sp. (Chlorophyta; University of Toronto Culture Collection strain 522) during 96-h toxicity tests. Because of a greater affinity of T1(I) (log K = 7.3-7.4) as compared to K (log K = 5.3-6.3) for biologically sensitive sites, an excess of 40- to 160-fold of K is required to suppress T1(I) toxic effects on Chlorella sp., regardless of [T1(I)] in solution. Similar excess of K is required to suppress T1(I) toxicity to Synechococcus leopoliensis (Cyanobacteria; University of Texas Culture Collection strain 625) and Brachionus calyciflorus (Rotifera; strain AB-RIF). The mechanism for the mitigating effect of K on T1(I) toxicity was investigated by measuring 204T1(I) cellular uptake flux and efflux in Chlorella sp. Potassium shows a competitive effect on T1(I) uptake fluxes that could be modeled using the BLM-derived stability constants and a Michaelis-Menten relationship. A strong T1 efflux dependent only on the cellular T1 concentration was measured. Although T1 efflux does not explain the effect of K on T1(I) toxicity and uptake, it is responsible for a high turnover of the cellular T1 pool (intracellular half-life = 12-13.5 min). No effect of Na+, Mg2+, or Ca2+ was observed on T1+ uptake, whereas the absence of trace metals (Cu, Co, Mo, Mn, Fe, and Zn) significantly increased T1 uptake and decreased the mitigating effect of K+. The importance of K+ in determining the aquatic toxicity of T1+ underscores the use of ambient K+ concentration in the establishment of T1 water-quality guidelines and the need to consider K in predicting biogeochemical fates of T1 in the aquatic environment.

  9. Disentangling effects of abiotic factors and biotic interactions on cross-taxon congruence in species turnover patterns of plants, moths and beetles

    PubMed Central

    Duan, Meichun; Liu, Yunhui; Yu, Zhenrong; Baudry, Jacques; Li, Liangtao; Wang, Changliu; Axmacher, Jan C.

    2016-01-01

    High cross-taxon congruence in species diversity patterns is essential for the use of surrogate taxa in biodiversity conservation, but presence and strength of congruence in species turnover patterns, and the relative contributions of abiotic environmental factors and biotic interaction towards this congruence, remain poorly understood. In our study, we used variation partitioning in multiple regressions to quantify cross-taxon congruence in community dissimilarities of vascular plants, geometrid and arciinid moths and carabid beetles, subsequently investigating their respective underpinning by abiotic factors and biotic interactions. Significant cross-taxon congruence observed across all taxon pairs was linked to their similar responses towards elevation change. Changes in the vegetation composition were closely linked to carabid turnover, with vegetation structure and associated microclimatic conditions proposed causes of this link. In contrast, moth assemblages appeared to be dominated by generalist species whose turnover was weakly associated with vegetation changes. Overall, abiotic factors exerted a stronger influence on cross-taxon congruence across our study sites than biotic interactions. The weak congruence in turnover observed particularly between plants and moths highlights the importance of multi-taxon approaches based on groupings of taxa with similar turnovers, rather than the use of single surrogate taxa or environmental proxies, in biodiversity assessments. PMID:27032533

  10. Disentangling effects of abiotic factors and biotic interactions on cross-taxon congruence in species turnover patterns of plants, moths and beetles

    NASA Astrophysics Data System (ADS)

    Duan, Meichun; Liu, Yunhui; Yu, Zhenrong; Baudry, Jacques; Li, Liangtao; Wang, Changliu; Axmacher, Jan C.

    2016-04-01

    High cross-taxon congruence in species diversity patterns is essential for the use of surrogate taxa in biodiversity conservation, but presence and strength of congruence in species turnover patterns, and the relative contributions of abiotic environmental factors and biotic interaction towards this congruence, remain poorly understood. In our study, we used variation partitioning in multiple regressions to quantify cross-taxon congruence in community dissimilarities of vascular plants, geometrid and arciinid moths and carabid beetles, subsequently investigating their respective underpinning by abiotic factors and biotic interactions. Significant cross-taxon congruence observed across all taxon pairs was linked to their similar responses towards elevation change. Changes in the vegetation composition were closely linked to carabid turnover, with vegetation structure and associated microclimatic conditions proposed causes of this link. In contrast, moth assemblages appeared to be dominated by generalist species whose turnover was weakly associated with vegetation changes. Overall, abiotic factors exerted a stronger influence on cross-taxon congruence across our study sites than biotic interactions. The weak congruence in turnover observed particularly between plants and moths highlights the importance of multi-taxon approaches based on groupings of taxa with similar turnovers, rather than the use of single surrogate taxa or environmental proxies, in biodiversity assessments.

  11. Disentangling effects of abiotic factors and biotic interactions on cross-taxon congruence in species turnover patterns of plants, moths and beetles.

    PubMed

    Duan, Meichun; Liu, Yunhui; Yu, Zhenrong; Baudry, Jacques; Li, Liangtao; Wang, Changliu; Axmacher, Jan C

    2016-04-01

    High cross-taxon congruence in species diversity patterns is essential for the use of surrogate taxa in biodiversity conservation, but presence and strength of congruence in species turnover patterns, and the relative contributions of abiotic environmental factors and biotic interaction towards this congruence, remain poorly understood. In our study, we used variation partitioning in multiple regressions to quantify cross-taxon congruence in community dissimilarities of vascular plants, geometrid and arciinid moths and carabid beetles, subsequently investigating their respective underpinning by abiotic factors and biotic interactions. Significant cross-taxon congruence observed across all taxon pairs was linked to their similar responses towards elevation change. Changes in the vegetation composition were closely linked to carabid turnover, with vegetation structure and associated microclimatic conditions proposed causes of this link. In contrast, moth assemblages appeared to be dominated by generalist species whose turnover was weakly associated with vegetation changes. Overall, abiotic factors exerted a stronger influence on cross-taxon congruence across our study sites than biotic interactions. The weak congruence in turnover observed particularly between plants and moths highlights the importance of multi-taxon approaches based on groupings of taxa with similar turnovers, rather than the use of single surrogate taxa or environmental proxies, in biodiversity assessments.

  12. [An experimental study and a mathematical model of interactions in mixed culture of invertebrates and algae in the "producer-consumer" aquatic biotic cycle].

    PubMed

    Pis'man, T I; Bogdanova, O N

    2004-01-01

    An experimental investigation was carried out, and a mathematical model of interaction between invertebrates (infusoria Paramecium caudatum and rotifera Brachionus plicatilis) and algae (Chlorella vulgaris and Scenedesmus quadricauda) in the "producer-consumer" aquatic biotic cycle with spatially divided links was constructed. The model describes the dynamics of a mixed culture of infusoria and rotifera in the "consumer" link, when they consume a mixed culture of algae coming from the "producer" link. A negative influence of products of algae Scenedesmus metabolism upon the reproduction of infusoria P. caudatum was revealed. Taking this into account, a qualitative coincidence of the results of mathematical modeling with experimental data was obtained. It was shown that the co-existence of mixed algae culture in the "producer" link with invertebrates in the "consumer" link in the "producer-consumer" aquatic biotic cycle is impossible because of the displacement of infusoria P. caudatum by rotifera Brachionus plicatilis.

  13. Influence of Solar Radiation and Biotic Interactions on Bacterial and Eukaryotic Communities Associated with Sewage Decomposition in Ambient Water - Poster

    EPA Science Inventory

    Sewage and ambient water both consist of a highly complex array of bacteria and eukaryotic microbes. When these communities are mixed, the persistence of sewage-derived pathogens in environmental waters can represent a significant public health concern. Solar radiation and biotic...

  14. Influence of Solar Radiation and Biotic Interactions on Bacterial and Eukaryotic Communities Associated with Sewage Decomposition in Ambient Water - Poster

    EPA Science Inventory

    Sewage and ambient water both consist of a highly complex array of bacteria and eukaryotic microbes. When these communities are mixed, the persistence of sewage-derived pathogens in environmental waters can represent a significant public health concern. Solar radiation and biotic...

  15. Traffic and Driving Simulator Based on Architecture of Interactive Motion

    PubMed Central

    Paz, Alexander; Veeramisti, Naveen; Khaddar, Romesh; de la Fuente-Mella, Hanns; Modorcea, Luiza

    2015-01-01

    This study proposes an architecture for an interactive motion-based traffic simulation environment. In order to enhance modeling realism involving actual human beings, the proposed architecture integrates multiple types of simulation, including: (i) motion-based driving simulation, (ii) pedestrian simulation, (iii) motorcycling and bicycling simulation, and (iv) traffic flow simulation. The architecture has been designed to enable the simulation of the entire network; as a result, the actual driver, pedestrian, and bike rider can navigate anywhere in the system. In addition, the background traffic interacts with the actual human beings. This is accomplished by using a hybrid mesomicroscopic traffic flow simulation modeling approach. The mesoscopic traffic flow simulation model loads the results of a user equilibrium traffic assignment solution and propagates the corresponding traffic through the entire system. The microscopic traffic flow simulation model provides background traffic around the vicinities where actual human beings are navigating the system. The two traffic flow simulation models interact continuously to update system conditions based on the interactions between actual humans and the fully simulated entities. Implementation efforts are currently in progress and some preliminary tests of individual components have been conducted. The implementation of the proposed architecture faces significant challenges ranging from multiplatform and multilanguage integration to multievent communication and coordination. PMID:26491711

  16. Traffic and Driving Simulator Based on Architecture of Interactive Motion.

    PubMed

    Paz, Alexander; Veeramisti, Naveen; Khaddar, Romesh; de la Fuente-Mella, Hanns; Modorcea, Luiza

    2015-01-01

    This study proposes an architecture for an interactive motion-based traffic simulation environment. In order to enhance modeling realism involving actual human beings, the proposed architecture integrates multiple types of simulation, including: (i) motion-based driving simulation, (ii) pedestrian simulation, (iii) motorcycling and bicycling simulation, and (iv) traffic flow simulation. The architecture has been designed to enable the simulation of the entire network; as a result, the actual driver, pedestrian, and bike rider can navigate anywhere in the system. In addition, the background traffic interacts with the actual human beings. This is accomplished by using a hybrid mesomicroscopic traffic flow simulation modeling approach. The mesoscopic traffic flow simulation model loads the results of a user equilibrium traffic assignment solution and propagates the corresponding traffic through the entire system. The microscopic traffic flow simulation model provides background traffic around the vicinities where actual human beings are navigating the system. The two traffic flow simulation models interact continuously to update system conditions based on the interactions between actual humans and the fully simulated entities. Implementation efforts are currently in progress and some preliminary tests of individual components have been conducted. The implementation of the proposed architecture faces significant challenges ranging from multiplatform and multilanguage integration to multievent communication and coordination.

  17. Antagonistic, overlapping and distinct responses to biotic stress in rice (Oryza sativa) and interactions with abiotic stress.

    PubMed

    Narsai, Reena; Wang, Chuang; Chen, Jie; Wu, Jianli; Shou, Huixia; Whelan, James

    2013-02-12

    Every year, substantial crop loss occurs globally, as a result of bacterial, fungal, parasite and viral infections in rice. Here, we present an in-depth investigation of the transcriptomic response to infection with the destructive bacterial pathogen Xanthomonas oryzae pv. oryzae(Xoo) in both resistant and susceptible varieties of Oryza sativa. A comparative analysis to fungal, parasite and viral infection in rice is also presented. Within 24 h of Xoo inoculation, significant reduction of cell wall components and induction of several signalling components, membrane bound receptor kinases and specific WRKY and NAC transcription factors was prominent, providing a framework for how the presence of this pathogen was signalled and response mounted. Extensive comparative analyses of various other pathogen responses, including in response to infection with another bacterium (Xoc), resistant and susceptible parasite infection, fungal, and viral infections, led to a proposed model for the rice biotic stress response. In this way, a conserved induction of calcium signalling functions, and specific WRKY and NAC transcription factors, was identified in response to all biotic stresses. Comparison of these responses to abiotic stress (cold, drought, salt, heat), enabled the identification of unique genes responsive only to bacterial infection, 240 genes responsive to both abiotic and biotic stress, and 135 genes responsive to biotic, but not abiotic stresses. Functional significance of a number of these genes, using genetic inactivation or over-expression, has revealed significant stress-associated phenotypes. While only a few antagonistic responses were observed between biotic and abiotic stresses, e.g. for a number of endochitinases and kinase encoding genes, some of these may be crucial in explaining greater pathogen infection and damage under abiotic stresses. The analyses presented here provides a global view of the responses to multiple stresses, further validates known

  18. Antagonistic, overlapping and distinct responses to biotic stress in rice (Oryza sativa) and interactions with abiotic stress

    PubMed Central

    2013-01-01

    Background Every year, substantial crop loss occurs globally, as a result of bacterial, fungal, parasite and viral infections in rice. Here, we present an in-depth investigation of the transcriptomic response to infection with the destructive bacterial pathogen Xanthomonas oryzae pv. oryzae(Xoo) in both resistant and susceptible varieties of Oryza sativa. A comparative analysis to fungal, parasite and viral infection in rice is also presented. Results Within 24 h of Xoo inoculation, significant reduction of cell wall components and induction of several signalling components, membrane bound receptor kinases and specific WRKY and NAC transcription factors was prominent, providing a framework for how the presence of this pathogen was signalled and response mounted. Extensive comparative analyses of various other pathogen responses, including in response to infection with another bacterium (Xoc), resistant and susceptible parasite infection, fungal, and viral infections, led to a proposed model for the rice biotic stress response. In this way, a conserved induction of calcium signalling functions, and specific WRKY and NAC transcription factors, was identified in response to all biotic stresses. Comparison of these responses to abiotic stress (cold, drought, salt, heat), enabled the identification of unique genes responsive only to bacterial infection, 240 genes responsive to both abiotic and biotic stress, and 135 genes responsive to biotic, but not abiotic stresses. Functional significance of a number of these genes, using genetic inactivation or over-expression, has revealed significant stress-associated phenotypes. While only a few antagonistic responses were observed between biotic and abiotic stresses, e.g. for a number of endochitinases and kinase encoding genes, some of these may be crucial in explaining greater pathogen infection and damage under abiotic stresses. Conclusions The analyses presented here provides a global view of the responses to multiple

  19. Interactions among biotic and abiotic factors affect the reliability of tungsten microneedles puncturing in vitro and in vivo peripheral nerves: A hybrid computational approach.

    PubMed

    Sergi, Pier Nicola; Jensen, Winnie; Yoshida, Ken

    2016-02-01

    Tungsten is an elective material to produce slender and stiff microneedles able to enter soft tissues and minimize puncture wounds. In particular, tungsten microneedles are used to puncture peripheral nerves and insert neural interfaces, bridging the gap between the nervous system and robotic devices (e.g., hand prostheses). Unfortunately, microneedles fail during the puncture process and this failure is not dependent on stiffness or fracture toughness of the constituent material. In addition, the microneedles' performances decrease during in vivo trials with respect to the in vitro ones. This further effect is independent on internal biotic effects, while it seems to be related to external biotic causes. Since the exact synergy of phenomena decreasing the in vivo reliability is still not known, this work explored the connection between in vitro and in vivo behavior of tungsten microneedles through the study of interactions between biotic and abiotic factors. A hybrid computational approach, simultaneously using theoretical relationships and in silico models of nerves, was implemented to model the change of reliability varying the microneedle diameter, and to predict in vivo performances by using in vitro reliability and local differences between in vivo and in vitro mechanical response of nerves. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. What interactions drive the salivary mucosal pellicle formation?

    PubMed Central

    Gibbins, Hannah L.; Yakubov, Gleb E.; Proctor, Gordon B.; Wilson, Stephen; Carpenter, Guy H.

    2014-01-01

    The bound salivary pellicle is essential for protection of both the enamel and mucosa in the oral cavity. The enamel pellicle formation is well characterised, however the mucosal pellicle proteins have only recently been clarified and what drives their formation is still unclear. The aim of this study was to examine the salivary pellicle on particles with different surface properties (hydrophobic or hydrophilic with a positive or negative charge), to determine a suitable model to mimic the mucosal pellicle. A secondary aim was to use the model to test how transglutaminase may alter pellicle formation. Particles were incubated with resting whole mouth saliva, parotid saliva and submandibular/sublingual saliva. Following incubation and two PBS and water washes bound salivary proteins were eluted with two concentrations of SDS, which were later analysed using SDS-PAGE and Western blotting. Experiments were repeated with purified transglutaminase to determine how this epithelial-derived enzyme may alter the bound pellicle. Protein pellicles varied according to the starting salivary composition and the particle chemistry. Amylase, the single most abundant protein in saliva, did not bind to any particle indicating specific protein binding. Most proteins bound through hydrophobic interactions and a few according to their charges. The hydrophobic surface most closely matched the known salivary mucosal pellicle by containing mucins, cystatin and statherin but an absence of amylase and proline-rich proteins. This surface was further used to examine the effect of added transglutaminase. At the concentrations used only statherin showed any evidence of crosslinking with itself or another saliva protein. In conclusion, the formation of the salivary mucosal pellicle is probably mediated, at least in part, by hydrophobic interactions to the epithelial cell surface. PMID:24921197

  1. Laser-Matter Interactions with a 527 nm Drive

    SciTech Connect

    Glenzer, S; Niemann, C; Witman, P; Wegner, P; Mason, D; Haynam, C; Parham, T; Datte, P

    2007-02-16

    The primary goal of this Exploratory Research is to develop an understanding of laser-matter interactions with 527-nm light (2{omega}) for studies of interest to numerous Laboratory programs including inertial confinement fusion (ICF), material strength, radiation transport, and hydrodynamics. In addition, during the course of this work we will develop the enabling technology and prototype instrumentation to diagnose a high fluence laser beam for energy, power, and near field intensity profile at 2{omega}. Through this Exploratory Research we have established an extensive experimental and modeling data base on laser-matter interaction with 527 nm laser light (2{omega}) in plasma conditions of interest to numerous Laboratory programs. The experiments and the laser-plasma interaction modeling using the code pF3D have shown intensity limits and laser beam conditioning requirements for future 2{omega} laser operations and target physics experiments on the National Ignition Facility (NIF). These findings have set requirements for which present radiation-hydrodynamic simulations indicate the successful generation of relevant pressure regimes in future 2{omega} experiments. To allow these experiments on the NIF, optics and optical mounts were prepared for the 18mm Second Harmonic Generation Crystal (SHG crystal) that would provide the desired high conversion efficiency from 1{omega} to 2{omega}. Supporting experimental activities on NIF included high-energy 1{omega} shots at up to 22kJ/beamline (4MJ full NIF 1{omega} equivalent energy) that demonstrated, in excess, the 1{omega} drive capability of the main laser that is required for 2{omega} operations. Also, a very extensive 3{omega} campaign was completed (see ''The National Ignition Facility Laser Performance Status'' UCRL-JRNL-226553) that demonstrated that not only doubling the laser, but also tripling the laser (a much more difficult and sensitive combination) met our model predictions over a wide range of laser

  2. Limitations to lake trout (Salvelinus namaycush) rehabilitation in the Great Lakes imposed by biotic interactions occurring at early life stages

    USGS Publications Warehouse

    Jones, Michael L.; Eck, Gary W.; Evans, David O.; Fabrizio, Mary C.; Hoff, Michael H.; Hudson, Patrick L.; Janssen, John; Jude, David; O'Gorman, Robert; Savino, Jacqueline F.

    1995-01-01

    We examine evidence that biotic factors, particularly predation, may be limiting early survival of wild lake trout (Salvelinus namaycush) juveniles in many areas of the Great Lakes. The Great Lakes contain numerous potential predators of lake trout eggs and fry, some of which are recent invaders, and most of which were probably absent when lake trout most recently re-invaded the Great Lakes after the last ice age. Simple quantitative models of predation suggest that plausible assumptions about prey densities, predator feeding rates, and duration of exposure of predator to prey can lead to very high estimates of predation mortality, in some instances approaching 100%. Indirect evidence from inter-Great Lake comparisons and inland lake examples also suggest that biotic factors may impede successful lake trout colonization. Our synthesis of the evidence leads to recommendations for research to better define field feeding rates of lake trout egg and fry predators and comparative studies of densities of potential egg and fry predators on lake trout spawning reefs. Management options should be designed to provide useful information as well as achieve short-term goals. From a management standpoint we recommend that: newly constructed lake trout reefs should be placed well away from concentrations of potential predators; offshore spawning reefs should be stocked; salmonine stocking, nutrient abatement, and commercial harvest of alewives should all be considered as options to enhance survival of young lake trout; hatchery lake trout should not be stocked at sites where wild lake trout are showing signs of recovery; and exotic species expansions or introductions must be curtailed to maintain or improve on our recent successes in lake trout rehabilitation.

  3. Consumer diversity interacts with prey defenses to drive ecosystem function.

    PubMed

    Rasher, Douglas B; Hoey, Andrew S; Hay, Mark E

    2013-06-01

    findings indicate that the total diet breadth of the herbivore community and the probability of all macroalgae being removed from reefs by herbivores increases with increasing herbivore diversity, but that a few critical species drive this relationship. Therefore, interactions between algal defenses and herbivore tolerances create an essential role for consumer diversity in the functioning and resilience of coral reefs.

  4. Biotic and abiotic interactions in aquatic microcosms determine fate and toxicity of Ag nanoparticles. Part 1. Aggregation and dissolution.

    PubMed

    Unrine, Jason M; Colman, Benjamin P; Bone, Audrey J; Gondikas, Andreas P; Matson, Cole W

    2012-07-03

    To better understand their fate and toxicity in aquatic environments, we compared the aggregation and dissolution behavior of gum arabic (GA) and polyvinylpyrrolidone (PVP) coated Ag nanoparticles (NPs) in aquatic microcosms. There were four microcosm types: surface water; water and sediment; water and aquatic plants; or water, sediment, and aquatic plants. Dissolution and aggregation behavior of AgNPs were examined using ultracentrifugation, ultrafiltration, and asymmetrical flow field flow fractionation coupled to ultraviolet-visible spectroscopy, dynamic and static laser light scattering, and inductively coupled plasma mass spectrometry. Plants released dissolved organic matter (DOM) into the water column either through active or passive processes in response to Ag exposure. This organic matter fraction readily bound Ag ions. The plant-derived DOM had the effect of stabilizing PVP-AgNPs as primary particles, but caused GA-AgNPs to be removed from the water column, likely by dissolution and binding of released Ag ions on sediment and plant surfaces. The destabilization of the GA-AgNPs also corresponded with X-ray absorption near edge spectroscopy results which suggest that 22-28% of the particulate Ag was associated with thiols and 5-14% was present as oxides. The results highlight the potential complexities of nanomaterial behavior in response to biotic and abiotic modifications in ecosystems, and may help to explain differences in toxicity of Ag observed in realistic exposure media compared to simplified laboratory exposures.

  5. Hydrothermal plume particles deconstructed: evidence of biotic and abiotic interactions in particle formation at 9N East Pacific Rise

    NASA Astrophysics Data System (ADS)

    Breier, J. A.; Toner, B.; Manganini, S. J.; German, C. R.

    2008-12-01

    We are using non-buoyant hydrothermal plume samples collected at 9° 50' N East Pacific Rise to conduct an unprecedented examination of the fine scale (μm- and nm-range) mineralogical and biogeochemical composition of hydrothermal particulates. Recent findings from studies of sinking particulate, suggest that East Pacific Rise hydrothermal particulates are inorganic/organic aggregates. We confirmed this with suspended particulate samples collected, during a 3-day moored multi-sampler deployment in the non- buoyant hydrothermal plume above Tica vent at 9° 50' N East Pacific Rise in November 2007. A combination of high energy synchrotron x-ray absorption spectroscopy and bulk and trace elemental analysis reveal that the >1 μm suspended particulates consist of inorganic Fe oxide grains in a pervasive organic C matrix with carbon K-edge spectra consistent with proteins, lipids, and polysaccharides. This aggregate structure may preserve reduced Fe phases in the presence of oxygenated seawater and alter our basic assumptions about hydrothermal particle dispersion. Scavenging, by coprecipitation and surface adsorption, of seawater nutrients and trace elements such as P, U, Mo, Cr, V, and As may also be influenced by this particulate composition. These samples were collected with a newly developed Suspended Particulate Rosette multi-sampling system designed to collect geochemical and microbial samples from rising deep-sea hydrothermal plumes to enable investigations of abiotic and biotic plume processes.

  6. Drought as a modifier of interaction between adult beech and spruce - impacts on tree water use, C budgets and biotic interactions above- and belowground

    NASA Astrophysics Data System (ADS)

    Grams, Thorsten

    2017-04-01

    Understanding biotic interactions among tree species with their microbial associates under drought will be crucial for silviculture in meeting ecological challenges of the future. This contribution gives an overview on a project integrating a throughfall-exclusion experiment (TEE) on adult trees with a natural precipitation gradient (PGR) in central European forests. Focus is on drought affecting species interaction above and belowground, including associated ectomycorrhizal (ECM) communities. Study objects are pure and mixed forests dominated by adult European beech and Norway spruce trees (c. 70-years old). At the throughfall-exclusion experiment (TEE), trees are readily accessible via scaffolding and canopy crane (Kranzberg Forest, southern Germany). Effects of experimentally induced, repeated summer drought are assessed with roughly 100 trees assigned to a total of 12 plots (Kranzberg forest ROOF experiment, kroof.wzw.tum.de). The summer drought treatment started in 2014 and was repeated in 2015 and 2106. The focus on species interaction is intensified by a parallel study along a natural precipitation gradient with plot triplets of monocultures and mixed cultures of European beech and Norway spruce at each of the five study sites. Complementary resource use, effects of competitive vs. facilitation and related changes in ECM communities are exemplified for the two tree species of contrasting foliage (i.e. deciduous vs. evergreen) and stomatal sensitivity to drought (i.e. an-isohydric vs. isohydric behavior). At the TEE site, precipitation throughfall was completely excluded from early spring to late fall (i.e. March to November), resulting in pre-dawn leaf water potentials of both beech and spruce as low as -2.5 MPa. Despite significant reductions in growth and rate of photosynthesis by up to 80% under drought, NSC budget of trees was hardly affected. Moreover, phloem functionality, tested as phloem transport velocity through 13C-labeling of recent

  7. Biotic interactions and sunlight affect persistence of fecal indicator bacteria and microbial source tracking genetic markers in the upper Mississippi river.

    PubMed

    Korajkic, Asja; McMinn, Brian R; Shanks, Orin C; Sivaganesan, Mano; Fout, G Shay; Ashbolt, Nicholas J

    2014-07-01

    The sanitary quality of recreational waters that may be impacted by sewage is assessed by enumerating fecal indicator bacteria (FIB) (Escherichia coli and enterococci); these organisms are found in the gastrointestinal tracts of humans and many other animals, and hence their presence provides no information about the pollution source. Microbial source tracking (MST) methods can discriminate between different pollution sources, providing critical information to water quality managers, but relatively little is known about factors influencing the decay of FIB and MST genetic markers following release into aquatic environments. An in situ mesocosm was deployed at a temperate recreational beach in the Mississippi River to evaluate the effects of ambient sunlight and biotic interactions (predation, competition, and viral lysis) on the decay of culture-based FIB, as well as molecularly based FIB (Entero1a and GenBac3) and human-associated MST genetic markers (HF183 and HumM2) measured by quantitative real-time PCR (qPCR). In general, culturable FIB decayed the fastest, while molecularly based FIB and human-associated genetic markers decayed more slowly. There was a strong correlation between the decay of molecularly based FIB and that of human-associated genetic markers (r(2), 0.96 to 0.98; P < 0.0001) but not between culturable FIB and any qPCR measurement. Overall, exposure to ambient sunlight may be an important factor in the early-stage decay dynamics but generally was not after continued exposure (i.e., after 120 h), when biotic interactions tended to be the only/major influential determinant of persistence. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  8. Biotic Interactions and Sunlight Affect Persistence of Fecal Indicator Bacteria and Microbial Source Tracking Genetic Markers in the Upper Mississippi River

    PubMed Central

    McMinn, Brian R.; Shanks, Orin C.; Sivaganesan, Mano; Fout, G. Shay; Ashbolt, Nicholas J.

    2014-01-01

    The sanitary quality of recreational waters that may be impacted by sewage is assessed by enumerating fecal indicator bacteria (FIB) (Escherichia coli and enterococci); these organisms are found in the gastrointestinal tracts of humans and many other animals, and hence their presence provides no information about the pollution source. Microbial source tracking (MST) methods can discriminate between different pollution sources, providing critical information to water quality managers, but relatively little is known about factors influencing the decay of FIB and MST genetic markers following release into aquatic environments. An in situ mesocosm was deployed at a temperate recreational beach in the Mississippi River to evaluate the effects of ambient sunlight and biotic interactions (predation, competition, and viral lysis) on the decay of culture-based FIB, as well as molecularly based FIB (Entero1a and GenBac3) and human-associated MST genetic markers (HF183 and HumM2) measured by quantitative real-time PCR (qPCR). In general, culturable FIB decayed the fastest, while molecularly based FIB and human-associated genetic markers decayed more slowly. There was a strong correlation between the decay of molecularly based FIB and that of human-associated genetic markers (r2, 0.96 to 0.98; P < 0.0001) but not between culturable FIB and any qPCR measurement. Overall, exposure to ambient sunlight may be an important factor in the early-stage decay dynamics but generally was not after continued exposure (i.e., after 120 h), when biotic interactions tended to be the only/major influential determinant of persistence. PMID:24747902

  9. Biotic and abiotic factors investigated in two Drosophila species - evidence of both negative and positive effects of interactions on performance.

    PubMed

    Ørsted, Michael; Schou, Mads Fristrup; Kristensen, Torsten Nygaard

    2017-01-06

    Multiple environmental factors acting in concert can interact and strongly influence population fitness and ecosystem composition. Studies investigating interactions usually involve only two environmental factors; most frequently a chemical and another abiotic factor such as a stressful temperature. Here we investigate the effects of three environmental factors: temperature, an insecticide (dimethoate) and interspecific co-occurrence. We expose two naturally co-occurring species of Drosophila (D. hydei and D. melanogaster) to the different environments during development and examine the consequences on several performance measures. Results are highly species and trait specific with evidence of two- and three-way interactions in approximately 30% of all cases, suggesting that additive effects of combined environmental factors are most common, and that interactions are not universal. To provide more informative descriptions of complex interactions we implemented re-conceptualised definitions of synergism and antagonism. We found approximately equal proportions of synergistic and antagonistic interactions in both species, however the effects of interactions on performance differed between the two. Furthermore, we found negative impacts on performance in only 60% of interactions, thus our study also reveals a high proportion of cases with positive effects of interactions.

  10. Spatio-temporal variation of biotic factors underpins contemporary range dynamics of congeners.

    PubMed

    Naujokaitis-Lewis, Ilona; Fortin, Marie-Josée

    2016-03-01

    Species' ranges are complex often exhibiting multidirectional shifts over space and time. Despite the strong fingerprint of recent historical climate change on species' distributions, biotic factors such as loss of vegetative habitat and the presence of potential competitors constitute important yet often overlooked drivers of range dynamics. Furthermore, short-term changes in environmental conditions can influence the underlying processes of local extinction and local colonization that drive range shifts, yet are rarely considered at broad scales. We used dynamic state-space occupancy models to test multiple hypotheses of the relative importance of major drivers of range shifts of Golden-winged Warblers (Vermivora chrysoptera) and Blue-winged Warblers (V. cyanoptera) between 1983 and 2012 across North America: warming temperatures; habitat changes; and occurrence of congeneric species, used here as proxy for biotic interactions. Dynamic occupancies for both species were most influenced by spatial relative to temporal variation in temperature and habitat. However, temporal variation in temperature anomalies and biotic interactions remained important. The two biotic factors considered, habitat change and biotic interactions, had the largest relative effect on estimated extinction rates followed by abiotic temperature anomalies. For the Golden-winged Warbler, the predicted presence of the Blue-winged Warbler, a hypothesized competitor, most influenced extinction probabilities, contributing to evidence supporting its role in site-level species replacement. Given the overall importance of biotic factors on range-wide dynamic occupancies, their consideration alongside abiotic factors should not be overlooked. Our results suggest that warming compounds the negative effect of habitat loss emphasizing species' need for habitat to adapt to a changing climate. Notably, even closely related species exhibited individual responses to abiotic and biotic factors considered.

  11. Below-ground abiotic and biotic heterogeneity shapes above-ground infection outcomes and spatial divergence in a host-parasite interaction.

    PubMed

    Tack, Ayco J M; Laine, Anna-Liisa; Burdon, Jeremy J; Bissett, Andrew; Thrall, Peter H

    2015-09-01

    We investigated the impact of below-ground and above-ground environmental heterogeneity on the ecology and evolution of a natural plant-pathogen interaction. We combined field measurements and a reciprocal inoculation experiment to investigate the potential for natural variation in abiotic and biotic factors to mediate infection outcomes in the association between the fungal pathogen Melampsora lini and its wild flax host, Linum marginale, where pathogen strains and plant lines originated from two ecologically distinct habitat types that occur in close proximity ('bog' and 'hill'). The two habitat types differed strikingly in soil moisture and soil microbiota. Infection outcomes for different host-pathogen combinations were strongly affected by the habitat of origin of the plant lines and pathogen strains, the soil environment and their interactions. Our results suggested that tradeoffs play a key role in explaining the evolutionary divergence in interaction traits among the two habitat types. Overall, we demonstrate that soil heterogeneity, by mediating infection outcomes and evolutionary divergence, can contribute to the maintenance of variation in resistance and pathogenicity within a natural host-pathogen metapopulation.

  12. Interaction of rock, water, and plants in central Siberia (Russia) dominated by continuous permafrost: biotic versus abiotic fluxes

    NASA Astrophysics Data System (ADS)

    Viers, J.; Pokrovsky, O. S.; Prokushkin, A. S.; Beaulieu, E.; Dupre, B.

    2009-12-01

    -ground biomass in this region. We analyzed large number of soils, larch needles, mosses, dwarf shrubs and waters (from soils and rivers) collected in the various local environments. Plant biomass was regularly collected from May to September 2007. Our efforts focus on weathering processes and elements transport mechanisms between the different chemical reservoirs (soil and litter, plants, atmosphere) using a multidisciplinary approach. The aim of the presentation is : i) to propose a conceptual model of the present-day “biogeochemical” functioning of basaltic watershed located in central Siberia, ii) to evaluate biotic and abiotic element fluxes from the watershed, and iii) to assess the effect of global warming through the local comparison of the north-facing and south-facing environments. The role of plants dominated by larches, dwarf shrubs and mosses will be particularly considered.

  13. Interactions between age and moderate alcohol effects on simulated driving performance.

    PubMed

    Sklar, Alfredo L; Boissoneault, Jeff; Fillmore, Mark T; Nixon, Sara Jo

    2014-02-01

    There is a substantial body of literature documenting the deleterious effects of both alcohol consumption and age on driving performance. There is, however, limited work examining the interaction of age and acute alcohol consumption. The current study was conducted to determine if moderate alcohol doses differentially affect the driving performance of older and younger adults. Healthy older (55-70) and younger (25-35) adults were tested during a baseline session and again following consumption of one of three beverages [0.0 % (placebo), 0.04 % or 0.065 % target breath alcohol concentration]. Measures of driving precision and average speed were recorded. Older adults performed more poorly on precision driving measures and drove more slowly than younger adults at baseline. After controlling for baseline performance, interactions between alcohol and age were observed following beverage consumption on two measures of driving precision with older adults exhibiting greater impairment as a result of alcohol consumption. These data provide evidence that older adults may be more susceptible to the effects of alcohol on certain measures of driving performance. An investigation of mechanisms accounting for alcohol's effects on driving in older and younger adults is required. Further evaluation using more complex driving environments is needed to assess the real-world implication of this interaction.

  14. INTERACTIONS BETWEEN AGE AND MODERATE ALCOHOL EFFECTS ON SIMULATED DRIVING PERFORMANCE

    PubMed Central

    Sklar, Alfredo L.; Boissoneault, Jeff; Fillmore, Mark T.; Nixon, Sara Jo

    2013-01-01

    Rationale There is a substantial body of literature documenting the deleterious effects of both alcohol consumption and age on driving performance. There is, however, limited work examining the interaction of age and acute alcohol consumption. Objectives The current study was conducted to determine if moderate alcohol doses differentially affect the driving performance of older and younger adults. Methods Healthy older (55 – 70) and younger (25 – 35) adults were tested during a baseline session and again following consumption of one of three beverages (0.0% (placebo), 0.04% or 0.065% target breath alcohol concentration). Measures of driving precision and average speed were recorded. Results Older adults performed more poorly on precision driving measures and drove more slowly than younger adults at baseline. After controlling for baseline performance, interactions between alcohol and age were observed following beverage consumption on two measures of driving precision with older adults exhibiting greater impairment as a result of alcohol consumption. Conclusions These data provide evidence that older adults may be more susceptible to the effects of alcohol on certain measures of driving performance. An investigation of mechanisms accounting for alcohol’s effects on driving in older and younger adults is required. Further evaluation using more complex driving environments is needed to assess the real-world implication of this interaction. PMID:24030469

  15. Three-way interaction between biological control insects, a congener and their shared parasitoid: Evidence of biotic resistance

    USDA-ARS?s Scientific Manuscript database

    Invasive plants are one of the strongest drivers of species extinctions. Weed biological control offers a sustainable and safe means of long-term population reduction of their target. Herbivores introduced for the control of invasive plants interact with the native community in addition to the top-d...

  16. Dimensionality of consumer search space drives trophic interaction strengths.

    PubMed

    Pawar, Samraat; Dell, Anthony I; Savage, Van M

    2012-06-28

    Trophic interactions govern biomass fluxes in ecosystems, and stability in food webs. Knowledge of how trophic interaction strengths are affected by differences among habitats is crucial for understanding variation in ecological systems. Here we show how substantial variation in consumption-rate data, and hence trophic interaction strengths, arises because consumers tend to encounter resources more frequently in three dimensions (3D) (for example, arboreal and pelagic zones) than two dimensions (2D) (for example, terrestrial and benthic zones). By combining new theory with extensive data (376 species, with body masses ranging from 5.24 × 10(-14) kg to 800 kg), we find that consumption rates scale sublinearly with consumer body mass (exponent of approximately 0.85) for 2D interactions, but superlinearly (exponent of approximately 1.06) for 3D interactions. These results contradict the currently widespread assumption of a single exponent (of approximately 0.75) in consumer-resource and food-web research. Further analysis of 2,929 consumer-resource interactions shows that dimensionality of consumer search space is probably a major driver of species coexistence, and the stability and abundance of populations.

  17. Interactive influence of biotic and abiotic cues on the plasticity of preferred body temperatures in a predator-prey system.

    PubMed

    Smolinský, Radovan; Gvoždík, Lumír

    2012-09-01

    The ability to modify phenotypes in response to heterogeneity of the thermal environment represents an important component of an ectotherm's non-genetic adaptive capacity. Despite considerable attention being dedicated to the study of thermally-induced developmental plasticity, whether or not interspecific interactions shape the plastic response in both a predator and its prey remains unknown. We tested several predictions about the joint influence of predator/prey scents and thermal conditions on the plasticity of preferred body temperatures (T (p)) in both actors of this interaction, using a dragonfly nymphs-newt larvae system. Dragonfly nymphs (Aeshna cyanea) and newt eggs (Ichthyosaura alpestris) were subjected to fluctuating cold and warm thermal regimes (7-12 and 12-22°C, respectively) and the presence/absence of a predator or prey chemical cues. Preferred body temperatures were measured in an aquatic thermal gradient (5-33°C) over a 24-h period. Newt T (p) increased with developmental temperature irrespective of the presence/absence of predator cues. In dragonflies, thermal reaction norms for T (p) were affected by the interaction between temperature and prey cues. Specifically, the presence of newt scents in cold regime lowered dragonfly T (p). We concluded that predator-prey interactions influenced thermally-induced plasticity of T (p) but not in a reciprocal fashion. The occurrence of frequency-dependent thermal plasticity may have broad implications for predator-prey population dynamics, the evolution of thermal biology traits, and the consequences of sustaining climate change within ecological communities.

  18. Interaction forces drive the environmental transmission of pathogenic protozoa.

    PubMed

    Dumètre, Aurélien; Aubert, Dominique; Puech, Pierre-Henri; Hohweyer, Jeanne; Azas, Nadine; Villena, Isabelle

    2012-02-01

    The protozoan parasites Giardia duodenalis, Cryptosporidium spp., and Toxoplasma gondii are pathogens that are resistant to a number of environmental factors and pose significant risks to public health worldwide. Their environmental transmission is closely governed by the physicochemical properties of their cysts (Giardia) and oocysts (Cryptosporidium and Toxoplasma), allowing their transport, retention, and survival for months in water, soil, vegetables, and mollusks, which are the main reservoirs for human infection. Importantly, the cyst/oocyst wall plays a key role in that regard by exhibiting a complex polymeric coverage that determines the charge and hydrophobic characteristics of parasites' surfaces. Interaction forces between parasites and other environmental particles may be, in a first approximation, evaluated following the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory of colloidal stability. However, due to the molecular topography and nano- to microstructure of the cyst/oocyst surface, non-DVLO hydrophobic forces together with additional steric attractive and/or repulsive forces may play a pivotal role in controlling the parasite behavior when the organism is subjected to various external conditions. Here, we review several parameters that enhance or hinder the adhesion of parasites to other particles and surfaces and address the role of fast-emerging techniques for mapping the cyst/oocyst surface, e.g., by measuring its topology and the generated interaction forces at the nano- to microscale. We discuss why characterizing these interactions could be a crucial step for managing the environmental matrices at risk of microbial pollution.

  19. Interaction Forces Drive the Environmental Transmission of Pathogenic Protozoa

    PubMed Central

    Aubert, Dominique; Puech, Pierre-Henri; Hohweyer, Jeanne; Azas, Nadine; Villena, Isabelle

    2012-01-01

    The protozoan parasites Giardia duodenalis, Cryptosporidium spp., and Toxoplasma gondii are pathogens that are resistant to a number of environmental factors and pose significant risks to public health worldwide. Their environmental transmission is closely governed by the physicochemical properties of their cysts (Giardia) and oocysts (Cryptosporidium and Toxoplasma), allowing their transport, retention, and survival for months in water, soil, vegetables, and mollusks, which are the main reservoirs for human infection. Importantly, the cyst/oocyst wall plays a key role in that regard by exhibiting a complex polymeric coverage that determines the charge and hydrophobic characteristics of parasites' surfaces. Interaction forces between parasites and other environmental particles may be, in a first approximation, evaluated following the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory of colloidal stability. However, due to the molecular topography and nano- to microstructure of the cyst/oocyst surface, non-DVLO hydrophobic forces together with additional steric attractive and/or repulsive forces may play a pivotal role in controlling the parasite behavior when the organism is subjected to various external conditions. Here, we review several parameters that enhance or hinder the adhesion of parasites to other particles and surfaces and address the role of fast-emerging techniques for mapping the cyst/oocyst surface, e.g., by measuring its topology and the generated interaction forces at the nano- to microscale. We discuss why characterizing these interactions could be a crucial step for managing the environmental matrices at risk of microbial pollution. PMID:22156429

  20. Temporal and spatial habitat preferences and biotic interactions between mosquito larvae and antagonistic crustaceans in the field.

    PubMed

    Kroeger, Iris; Liess, Matthias; Duquesne, Sabine

    2014-06-01

    Investigations on natural antagonists of mosquito larvae found that micro-crustaceans (e.g., Cladocera) control mosquito populations under experimental conditions. However, their relevance for mosquito control under field situations remains widely unclear because important information about habitat preferences and time of occurrence of crustaceans and mosquito larvae are still missing. In order to fill this knowledge gap, a field study was undertaken in different wetland areas of Saxony, Germany, in different habitats (i.e., grassland, forest, and reed-covered wetlands). We found negative interactions between larvae of Ae. vexans and predatory Cyclopoida (Crustacean: Copepoda), which both were dominant during the first two weeks of hydroperiod, at ponds located at grassland habitats. Larvae of Cx. pipiens were spatially associated with competing Cladocera, but they colonized ponds more rapidly. Populations of Cladocera established from the third week of hydroperiod and prevented Cx. pipiens colonization thereafter. Ostracoda were highly abundant during the whole hydroperiod, but their presence was restricted to habitats of reed-covered wetland at one geographical area. Mosquito larvae hardly occurred at those ponds. In general, we found that ponds at the reed-covered wetlands provided better conditions for the initial development of crustaceans and hence, mosquito larval colonization was strongly inhibited. Grassland habitat, in contrast, favored early development of mosquito larvae. This study showed that micro-crustaceans are relevant for mosquito management but their impact on mosquito larvae varies between species and depends on environmental conditions.

  1. The potential of lactic acid bacteria to colonize biotic and abiotic surfaces and the investigation of their interactions and mechanisms.

    PubMed

    Arena, Mattia Pia; Capozzi, Vittorio; Spano, Giuseppe; Fiocco, Daniela

    2017-04-01

    Lactic acid bacteria (LAB) are a heterogeneous group of Gram-positive bacteria that comprise several species which have evolved in close association with humans (food and lifestyle). While their use to ferment food dates back to very ancient times, in the last decades, LAB have attracted much attention for their documented beneficial properties and for potential biomedical applications. Some LAB are commensal that colonize, stably or transiently, host mucosal surfaces, inlcuding the gut, where they may contribute to host health. In this review, we present and discuss the main factors enabling LAB adaptation to such lifestyle, including the gene reprogramming accompanying gut colonization, the specific bacterial components involved in adhesion and interaction with host, and how the gut niche has shaped the genome of intestine-adapted species. Moreover, the capacity of LAB to colonize abiotic surfaces by forming structured communities, i.e., biofilms, is briefly discussed, taking into account the main bacterial and environmental factors involved, particularly in relation to food-related environments. The vast spread of LAB surface-associated communities and the ability to control their occurrence hold great potentials for human health and food safety biotechnologies.

  2. Finding the Biotic Fringe

    NASA Astrophysics Data System (ADS)

    Shock, E.

    2014-12-01

    The deepest extent of inhabited rock, known as the biotic fringe, is determined by the interplay of geochemical and biochemical reaction rates. As a consequence it is unlikely that a single parameter, such as temperature, will be generally diagnostic. More probably, shifting combinations of compositional factors, together with temperature and pressure changes, will determine the position and dynamic movements of the biotic fringe. As an example, during serpentinization the biotic fringe may be determined by the depletion of carbon through carbonate precipitation or abiotic organic synthesis at mineral surfaces at temperatures and pressures that are readily inhabited elsewhere. During other weathering, diagenetic and alteration processes, the transition from sterile to populated may be determined by supply rates of reductants, oxidants, nutrients, or their diverse combinations. Where geochemical composition and mineral catalysts permit rapid abiotic organic synthesis and redox equilibration, microbes are unlikely to be able to compete. This is especially true if such conditions inhibit the function of enzymatic catalysts. As abiotic rates slow, opportunities for catalysis emerge as can the biotic fringe where enzymes can function effectively. There are many ways to turn this conceptual model into one that makes quantitative predictions. Rates of many abiotic redox and organic synthesis reactions are amenable to experimental study, and parallel biotic rate experiments yield particularly useful results. Likewise, determining how enzymes are inactivated at the limits of their function will add explicit biochemical constraints. Exploring for the biotic fringe in the subsurface involves using compositional data to evaluate apparent temperatures of equilibration that reveal anomalous approaches to redox equilibrium at conditions where abiotic rates are insufficient. Meanwhile, sampling the inhabitants of the biotic fringe will reveal surprising extents of enzyme behavior.

  3. Subtle gene-environment interactions driving paranoia in daily life.

    PubMed

    Simons, C J P; Wichers, M; Derom, C; Thiery, E; Myin-Germeys, I; Krabbendam, L; van Os, J

    2009-02-01

    It has been suggested that genes impact on the degree to which minor daily stressors cause variation in the intensity of subtle paranoid experiences. The objective of the present study was to test the hypothesis that catechol-O-methyltransferase (COMT) Val(158)Met and brain-derived neurotrophic factor (BDNF) Val(66)Met in part mediate genetic effects on paranoid reactivity to minor stressors. In a general population sample of 579 young adult female twins, on the one hand, appraisals of (1) event-related stress and (2) social stress and, on the other hand, feelings of paranoia in the flow of daily life were assessed using momentary assessment technology for five consecutive days. Multilevel regression analyses were used to examine moderation of daily life stress-induced paranoia by COMT Val(158)Met and BDNF Val(66)Met genotypes. Catechol-O-methyltransferase Val carriers displayed more feelings of paranoia in response to event stress compared with Met carriers. Brain-derived neurotrophic factor Met carriers showed more social-stress-induced paranoia than individuals with the Val/Val genotype. Thus, paranoia in the flow of daily life may be the result of gene-environment interactions that can be traced to different types of stress being moderated by different types of genetic variation.

  4. Effects of humidity on the interaction between a fused silica test mass and an electrostatic drive

    NASA Astrophysics Data System (ADS)

    Koptsov, D. V.; Prokhorov, L. G.; Mitrofanov, V. P.

    2015-10-01

    Interaction of a fused silica test mass with electric field of an electrostatic drive with interdigitated electrodes and influence of ambient air humidity on this interaction are investigated. The key element of the experimental setup is the fused silica torsional oscillator. Time dependent increase of the torque acting on the oscillator's plate after application of DC voltage to the drive is demonstrated. The torque relaxation is presumably caused by the redistribution of electric charges on the fused silica plate. The numerical model has been developed to compute the time evolution of the plate's surface charge distribution and the corresponding torque.

  5. Characterization and interaction of driving factors in karst rocky desertification: a case study from Changshun, China

    NASA Astrophysics Data System (ADS)

    Xu, E. Q.; Zhang, H. Q.

    2014-10-01

    As the most severe ecological issue in Southwest China, karst rocky desertification (KRD) has both threatened and constrained regional sustainable development. Comprehensively understanding the relationship between the evolution of KRD and relevant driving data would provide more information to combat KRD in such complex karst environments. Past studies have been limited in quantifying the relative importance of driving factors influencing fine-scale KRD evolution, and have also lacked insight into their interactive impacts. To address these issues, we have used geographical information system techniques and a geographical detector model to explore the spatial consistency of driving factors and their interactions in relation to the evolution of KRD. Changshun County in China was selected as a representative area for the study. Nine relevant driving factors, including both natural and anthropogenic factors, were studied in regard to their relationships with KRD transformation between 2000 and 2010. Our results demonstrate the relative importance of driving data in influencing the improvement and deterioration of KRD. Lithology, soil type and road influence are identified as the leading factors. Interestingly, to our study at least, there is no significant difference between the impacts of natural and anthropogenic factors. Factors were found to enhance the influence of each other for KRD transformation. In particular, the results show a non-linearly enhanced effect between driving factors, which significantly aggravates KRD. New information found in our study helps to effectively control and restore areas afflicted by KRD.

  6. Characterization and interaction of driving factors in karst rocky desertification: a case study from Changshun, China

    NASA Astrophysics Data System (ADS)

    Xu, E. Q.; Zhang, H. Q.

    2014-12-01

    As the most severe ecological issue in southwest China, karst rocky desertification (KRD) has both threatened and constrained regional sustainable development. Comprehensively understanding the relationship between the evolution of KRD and relevant driving data would provide more information to combat KRD in such complex karst environments. Past studies have been limited in quantifying the relative importance of driving factors influencing fine-scale KRD evolution, and have also lacked insight into their interactive impacts. To address these issues, we have used geographical information system techniques and a geographical detector model to explore the spatial consistency of driving factors and their interactions in relation to the evolution of KRD. Changshun County in China was selected as a representative area for the study. Nine relevant driving factors, including both natural and anthropogenic factors, were studied in regard to their relationships with KRD transformation between 2000 and 2010. Our results demonstrate the relative importance of driving data in influencing the improvement and deterioration of KRD. Lithology, soil type and road influence are identified as the leading factors. Interestingly, to our study at least, there is no significant difference between the impacts of natural and anthropogenic factors influencing KRD improvement, and even natural factors have a higher impact on KRD deterioration. Factors were found to enhance the influence of each other for KRD transformation. In particular, the results show a non-linearly enhanced effect between driving factors, which significantly aggravates KRD. New information found in our study helps to effectively control and restore areas afflicted by KRD.

  7. Biotic transitions in global marine diversity

    NASA Technical Reports Server (NTRS)

    Miller, A. I.

    1998-01-01

    Long-term transitions in the composition of Earth's marine biota during the Phanerozoic have historically been explained in two different ways. One view is that they were mediated through biotic interactions among organisms played out over geologic time. The other is that mass extinctions transcended any such interactions and governed diversity over the long term by resetting the relative diversities of higher taxa. However, a growing body of evidence suggests that macroevolutionary processes effecting biotic transitions during background times were not fundamentally different from those operating during mass extinctions. Physical perturbations at many geographic scales combined to produce the long-term trajectory of Phanerozoic diversity.

  8. A Novel Assessment of Braking Reaction Time Following THA Using a New Fully Interactive Driving Simulator.

    PubMed

    Ruel, Allison V; Lee, Yuo-Yu; Boles, John; Boettner, Friedrich; Su, Edwin; Westrich, Geoffrey H

    2015-07-01

    After total hip replacement surgery, patients are eager to resume the activities of daily life, particularly driving. Most surgeons recommend waiting 6 weeks after surgery to resume driving; however, there is no evidence to indicate that patients cannot resume driving earlier. Our purpose was to evaluate when in the recovery period following THA that patients regain or improve upon their preoperative braking reaction time, allowing them to safely resume driving. We measured and compared pre- and postoperative braking reaction times of 90 patients from 3 different surgeons using a Fully Interactive Driving Simulator (Simulator Systems International, Tulsa, OK). We defined a return to safe braking reaction time as a return to a time value that is either equal to or less than the preoperative braking reaction time. Patients tested at 2 and 3 weeks after surgery had slower braking reaction times than preoperative times by an average of 0.069 and 0.009 s, respectively. At 4 weeks after surgery, however, patients improved their reaction times by 0.035 s (p = 0.0398). In addition, at 2, 3, and 4 weeks postoperatively, the results also demonstrated that patient less than 70 years of age recovered faster. Based upon the results of this study, most patients should be allowed to return to driving 4 weeks following minimally invasive primary total hip arthroplasty.

  9. Differences in anticipated interaction drive own group biases in face memory.

    PubMed

    Wilson, John Paul; See, Pirita E; Bernstein, Michael J; Hugenberg, Kurt; Chartier, Christopher

    2014-01-01

    According to much research, the Own Group Bias (OGB) in face memory occurs as a consequence of social categorization - ingroup members are more likely than outgroup members to be encoded as individuals and remembered well. The current work is an examination of the role of anticipated future interaction in the OGB. We conducted two studies showing that anticipated interaction influences group-based face memory. In Study 1, we provided correlational evidence that beliefs about the amount and importance of future interaction one will have with racial outgroup members is associated with the OGB, such that people expecting more interaction with outgroup members show a reduced OGB. In Study 2, we manipulated expectations about future interactions with lab-created groups and observed that high levels of anticipated future interaction with the outgroup eliminated the OGB. Thus, social group categorization drives face memory biases to the extent that group membership affords the expectation of interpersonal interaction.

  10. Using the functional response of a consumer to predict biotic resistance to invasive prey.

    PubMed

    Twardochleb, Laura A; Novak, Mark; Moore, Jonathan W

    2012-06-01

    Predators sometimes provide biotic resistance against invasions by nonnative prey. Understanding and predicting the strength of biotic resistance remains a key challenge in invasion biology. A predator's functional response to nonnative prey may predict whether a predator can provide biotic resistance against nonnative prey at different prey densities. Surprisingly, functional responses have not been used to make quantitative predictions about biotic resistance. We parameterized the functional response of signal crayfish (Pacifastacus leniusculus) to invasive New Zealand mud snails (Potamopyrgus antipodarum; NZMS) and used this functional response and a simple model of NZMS population growth to predict the probability of biotic resistance at different predator and prey densities. Signal crayfish were effective predators of NZMS, consuming more than 900 NZMS per predator in a 12-h period, and Bayesian model fitting indicated their consumption rate followed a type 3 functional response to NZMS density. Based on this functional response and associated parameter uncertainty, we predict that NZMS will be able to invade new systems at low crayfish densities (< 0.2 crayfish/m2) regardless of NZMS density. At intermediate to high crayfish densities (> 0.2 crayfish/m2), we predict that low densities of NZMS will be able to establish in new communities; however, once NZMS reach a threshold density of -2000 NZMS/m2, predation by crayfish will drive negative NZMS population growth. Further, at very high densities, NZMS overwhelm predation by crayfish and invade. Thus, interacting thresholds of propagule pressure and predator densities define the probability of biotic resistance. Quantifying the shape and uncertainty of predator functional responses to nonnative prey may help predict the outcomes of invasions.

  11. Biotic Population Dynamics: Creative Biotic Patterns

    NASA Astrophysics Data System (ADS)

    Sabelli, Hector; Kovacevic, Lazar

    We present empirical studies and computer models of population dynamics that demonstrate creative features and we speculate that these creative processes may underline evolution. Changes in population size of lynx, muskrat, beaver, salmon, and fox display diversification, episodic changes in pattern, novelty, and evidence for nonrandom causation. These features of creativity characterize bios, and rule out random, periodic, chaotic, and random walk patterns. Biotic patterns are also demonstrated in time series generated with multi-agent predator-prey simulations. These results indicate that evolutionary processes are continually operating. In contrast to standard evolutionary theory (random variation, competition for scarce resources, selection by survival of the fittest, and directionless, meaningless evolution), we propose that biological evolution is a creative development from simple to complex in which (1) causal actions generate biological variation; (2) bipolar feedback (synergy and antagonism, abundance and scarcity) generates information (diversification, novelty and complexity); (3) connections (of molecules, genes, species) construct systems in which simple processes have priority for survival but complex processes acquire supremacy.

  12. Above- and below ground trophic interactions on creeping thistle (Cirsium arvense) in high- and low-diversity plant communities: potential for biotic resistance?

    PubMed

    Bezemer, T M; Graça, O; Rousseau, P; van der Putten, W H

    2004-01-01

    The capacity of local communities to control introduced plants is called biotic resistance. Biotic resistance has been almost exclusively tested for plant competition and above ground herbivores and pathogens, while neglecting root herbivores and soil pathogens. Here, we present biotic resistance by above- and below ground herbivores in concert, and relate the abundance of the plant enemies to the species diversity of the local plant communities. The study was carried out in a 7-year-old biodiversity field experiment. We used creeping thistle (Cirsium arvense) as a model, and quantified sap-sucking herbivores: above ground aphids, their antagonists, and root-feeding nematodes. As plant diversity treatments, we used field plots sown with high (15 plant species, HSD) or low (4 plant species, LSD) diverse seed mixtures in 1996 and that were not weeded. Creeping thistle became established spontaneously at the start of the experiment. In 2002, in HSD plots, 90 % of the plant community was made up by 11 species, compared to seven species in LSD plots. No differences were found for C. arvense abundance or biomass. Above ground, three aphid species were found on C. arvense-Uroleucon cirsii, Aphis fabae, and Macrosiphum euphorbiae, but the latter was found only in low densities. Significantly more aphid species were found on individual plants in HSD plots. Moreover, in HSD plots, on average 10 % of aphids were parasitized, while no parasitism was observed in LSD plots. In the root zone of C. arvense, significantly more nematodes were found in HSD than in LSD plots, and a significantly higher proportion of those nematodes were plant parasites. The dominant plant parasitic nematode in both treatments was Paratylenchus. We conclude that biotic resistance by natural enemies may be enhanced by plant species diversity, but that above- and below ground sap-sucking herbivores do not necessarily have to respond similarly to the diversity of the surrounding plant community.

  13. OakContigDF159.1, a reference library for studying differential gene expression in Quercus robur during controlled biotic interactions: use for quantitative transcriptomic profiling of oak roots in ectomycorrhizal symbiosis.

    PubMed

    Tarkka, Mika T; Herrmann, Sylvie; Wubet, Tesfaye; Feldhahn, Lasse; Recht, Sabine; Kurth, Florence; Mailänder, Sarah; Bönn, Markus; Neef, Maren; Angay, Oguzhan; Bacht, Michael; Graf, Marcel; Maboreke, Hazel; Fleischmann, Frank; Grams, Thorsten E E; Ruess, Liliane; Schädler, Martin; Brandl, Roland; Scheu, Stefan; Schrey, Silvia D; Grosse, Ivo; Buscot, François

    2013-07-01

    Oaks (Quercus spp.), which are major forest trees in the northern hemisphere, host many biotic interactions, but molecular investigation of these interactions is limited by fragmentary genome data. To date, only 75 oak expressed sequence tags (ESTs) have been characterized in ectomycorrhizal (EM) symbioses. We synthesized seven beneficial and detrimental biotic interactions between microorganisms and animals and a clone (DF159) of Quercus robur. Sixteen 454 and eight Illumina cDNA libraries from leaves and roots were prepared and merged to establish a reference for RNA-Seq transcriptomic analysis of oak EMs with Piloderma croceum. Using the Mimicking Intelligent Read Assembly (MIRA) and Trinity assembler, the OakContigDF159.1 hybrid assembly, containing 65 712 contigs with a mean length of 1003 bp, was constructed, giving broad coverage of metabolic pathways. This allowed us to identify 3018 oak contigs that were differentially expressed in EMs, with genes encoding proline-rich cell wall proteins and ethylene signalling-related transcription factors showing up-regulation while auxin and defence-related genes were down-regulated. In addition to the first report of remorin expression in EMs, the extensive coverage provided by the study permitted detection of differential regulation within large gene families (nitrogen, phosphorus and sugar transporters, aquaporins). This might indicate specific mechanisms of genome regulation in oak EMs compared with other trees.

  14. Social and genetic interactions drive fitness variation in a free-living dolphin population

    PubMed Central

    Frère, Celine H.; Krützen, Michael; Mann, Janet; Connor, Richard C.; Bejder, Lars; Sherwin, William B.

    2010-01-01

    The evolutionary forces that drive fitness variation in species are of considerable interest. Despite this, the relative importance and interactions of genetic and social factors involved in the evolution of fitness traits in wild mammalian populations are largely unknown. To date, a few studies have demonstrated that fitness might be influenced by either social factors or genes in natural populations, but none have explored how the combined effect of social and genetic parameters might interact to influence fitness. Drawing from a long-term study of wild bottlenose dolphins in the eastern gulf of Shark Bay, Western Australia, we present a unique approach to understanding these interactions. Our study shows that female calving success depends on both genetic inheritance and social bonds. Moreover, we demonstrate that interactions between social and genetic factors also influence female fitness. Therefore, our study represents a major methodological advance, and provides critical insights into the interplay of genetic and social parameters of fitness. PMID:21041638

  15. Social and genetic interactions drive fitness variation in a free-living dolphin population.

    PubMed

    Frère, Celine H; Krützen, Michael; Mann, Janet; Connor, Richard C; Bejder, Lars; Sherwin, William B

    2010-11-16

    The evolutionary forces that drive fitness variation in species are of considerable interest. Despite this, the relative importance and interactions of genetic and social factors involved in the evolution of fitness traits in wild mammalian populations are largely unknown. To date, a few studies have demonstrated that fitness might be influenced by either social factors or genes in natural populations, but none have explored how the combined effect of social and genetic parameters might interact to influence fitness. Drawing from a long-term study of wild bottlenose dolphins in the eastern gulf of Shark Bay, Western Australia, we present a unique approach to understanding these interactions. Our study shows that female calving success depends on both genetic inheritance and social bonds. Moreover, we demonstrate that interactions between social and genetic factors also influence female fitness. Therefore, our study represents a major methodological advance, and provides critical insights into the interplay of genetic and social parameters of fitness.

  16. Metaphors to Drive By: Exploring New Ways to Guide Human-Robot Interaction

    SciTech Connect

    David J. Bruemmer; David I. Gertman; Curtis W. Nielsen

    2007-08-01

    Autonomous behaviors created by the research and development community are not being extensively utilized within energy, defense, security, or industrial contexts. This paper provides evidence that the interaction methods used alongside these behaviors may not provide a mental model that can be easily adopted or used by operators. Although autonomy has the potential to reduce overall workload, the use of robot behaviors often increased the complexity of the underlying interaction metaphor. This paper reports our development of new metaphors that support increased robot complexity without passing the complexity of the interaction onto the operator. Furthermore, we illustrate how recognition of problems in human-robot interactions can drive the creation of new metaphors for design and how human factors lessons in usability, human performance, and our social contract with technology have the potential for enormous payoff in terms of establishing effective, user-friendly robot systems when appropriate metaphors are used.

  17. Synergistic parasite-pathogen interactions mediated by host immunity can drive the collapse of honeybee colonies.

    PubMed

    Nazzi, Francesco; Brown, Sam P; Annoscia, Desiderato; Del Piccolo, Fabio; Di Prisco, Gennaro; Varricchio, Paola; Della Vedova, Giorgio; Cattonaro, Federica; Caprio, Emilio; Pennacchio, Francesco

    2012-01-01

    The health of the honeybee and, indirectly, global crop production are threatened by several biotic and abiotic factors, which play a poorly defined role in the induction of widespread colony losses. Recent descriptive studies suggest that colony losses are often related to the interaction between pathogens and other stress factors, including parasites. Through an integrated analysis of the population and molecular changes associated with the collapse of honeybee colonies infested by the parasitic mite Varroa destructor, we show that this parasite can de-stabilise the within-host dynamics of Deformed wing virus (DWV), transforming a cryptic and vertically transmitted virus into a rapidly replicating killer, which attains lethal levels late in the season. The de-stabilisation of DWV infection is associated with an immunosuppression syndrome, characterized by a strong down-regulation of the transcription factor NF-κB. The centrality of NF-κB in host responses to a range of environmental challenges suggests that this transcription factor can act as a common currency underlying colony collapse that may be triggered by different causes. Our results offer an integrated account for the multifactorial origin of honeybee losses and a new framework for assessing, and possibly mitigating, the impact of environmental challenges on honeybee health.

  18. Synergistic Parasite-Pathogen Interactions Mediated by Host Immunity Can Drive the Collapse of Honeybee Colonies

    PubMed Central

    Nazzi, Francesco; Brown, Sam P.; Annoscia, Desiderato; Del Piccolo, Fabio; Di Prisco, Gennaro; Varricchio, Paola; Della Vedova, Giorgio; Cattonaro, Federica; Caprio, Emilio; Pennacchio, Francesco

    2012-01-01

    The health of the honeybee and, indirectly, global crop production are threatened by several biotic and abiotic factors, which play a poorly defined role in the induction of widespread colony losses. Recent descriptive studies suggest that colony losses are often related to the interaction between pathogens and other stress factors, including parasites. Through an integrated analysis of the population and molecular changes associated with the collapse of honeybee colonies infested by the parasitic mite Varroa destructor, we show that this parasite can de-stabilise the within-host dynamics of Deformed wing virus (DWV), transforming a cryptic and vertically transmitted virus into a rapidly replicating killer, which attains lethal levels late in the season. The de-stabilisation of DWV infection is associated with an immunosuppression syndrome, characterized by a strong down-regulation of the transcription factor NF-κB. The centrality of NF-κB in host responses to a range of environmental challenges suggests that this transcription factor can act as a common currency underlying colony collapse that may be triggered by different causes. Our results offer an integrated account for the multifactorial origin of honeybee losses and a new framework for assessing, and possibly mitigating, the impact of environmental challenges on honeybee health. PMID:22719246

  19. Highly Accurate Structure-Based Prediction of HIV-1 Coreceptor Usage Suggests Intermolecular Interactions Driving Tropism.

    PubMed

    Kieslich, Chris A; Tamamis, Phanourios; Guzman, Yannis A; Onel, Melis; Floudas, Christodoulos A

    2016-01-01

    HIV-1 entry into host cells is mediated by interactions between the V3-loop of viral glycoprotein gp120 and chemokine receptor CCR5 or CXCR4, collectively known as HIV-1 coreceptors. Accurate genotypic prediction of coreceptor usage is of significant clinical interest and determination of the factors driving tropism has been the focus of extensive study. We have developed a method based on nonlinear support vector machines to elucidate the interacting residue pairs driving coreceptor usage and provide highly accurate coreceptor usage predictions. Our models utilize centroid-centroid interaction energies from computationally derived structures of the V3-loop:coreceptor complexes as primary features, while additional features based on established rules regarding V3-loop sequences are also investigated. We tested our method on 2455 V3-loop sequences of various lengths and subtypes, and produce a median area under the receiver operator curve of 0.977 based on 500 runs of 10-fold cross validation. Our study is the first to elucidate a small set of specific interacting residue pairs between the V3-loop and coreceptors capable of predicting coreceptor usage with high accuracy across major HIV-1 subtypes. The developed method has been implemented as a web tool named CRUSH, CoReceptor USage prediction for HIV-1, which is available at http://ares.tamu.edu/CRUSH/.

  20. Mutualistic interactions drive ecological niche convergence in a diverse butterfly community.

    PubMed

    Elias, Marianne; Gompert, Zachariah; Jiggins, Chris; Willmott, Keith

    2008-12-02

    Ecological communities are structured in part by evolutionary interactions among their members. A number of recent studies incorporating phylogenetics into community ecology have upheld the paradigm that competition drives ecological divergence among species of the same guild. However, the role of other interspecific interactions, in particular positive interactions such as mutualism, remains poorly explored. We characterized the ecological niche and inferred phylogenetic relationships among members of a diverse community of neotropical Müllerian mimetic butterflies. Müllerian mimicry is one of the best studied examples of mutualism, in which unpalatable species converge in wing pattern locally to advertize their toxicity to predators. We provide evidence that mutualistic interactions can drive convergence along multiple ecological axes, outweighing both phylogeny and competition in shaping community structure. Our findings imply that ecological communities are adaptively assembled to a much greater degree than commonly suspected. In addition, our results show that phenotype and ecology are strongly linked and support the idea that mimicry can cause ecological speciation through multiple cascading effects on species' biology.

  1. Mutualistic Interactions Drive Ecological Niche Convergence in a Diverse Butterfly Community

    PubMed Central

    Elias, Marianne; Gompert, Zachariah; Jiggins, Chris; Willmott, Keith

    2008-01-01

    Ecological communities are structured in part by evolutionary interactions among their members. A number of recent studies incorporating phylogenetics into community ecology have upheld the paradigm that competition drives ecological divergence among species of the same guild. However, the role of other interspecific interactions, in particular positive interactions such as mutualism, remains poorly explored. We characterized the ecological niche and inferred phylogenetic relationships among members of a diverse community of neotropical Müllerian mimetic butterflies. Müllerian mimicry is one of the best studied examples of mutualism, in which unpalatable species converge in wing pattern locally to advertize their toxicity to predators. We provide evidence that mutualistic interactions can drive convergence along multiple ecological axes, outweighing both phylogeny and competition in shaping community structure. Our findings imply that ecological communities are adaptively assembled to a much greater degree than commonly suspected. In addition, our results show that phenotype and ecology are strongly linked and support the idea that mimicry can cause ecological speciation through multiple cascading effects on species' biology. PMID:19055316

  2. Laser-Plasma Interactions in Drive Campaign targets on the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Hinkel, D. E.; Callahan, D. A.; Moody, J. D.; Amendt, P. A.; Lasinski, B. F.; MacGowan, B. J.; Meeker, D.; Michel, P. A.; Ralph, J.; Rosen, M. D.; Ross, J. S.; Schneider, M. B.; Storm, E.; Strozzi, D. J.; Williams, E. A.

    2016-03-01

    The Drive campaign [D A Callahan et al., this conference] on the National Ignition Facility (NIF) laser [E. I. Moses, R. N. Boyd, B. A. Remington, C. J. Keane, R. Al-Ayat, Phys. Plasmas 16, 041006 (2009)] has the focused goal of understanding and optimizing the hohlraum for ignition. Both the temperature and symmetry of the radiation drive depend on laser and hohlraum characteristics. The drive temperature depends on the coupling of laser energy to the hohlraum, and the symmetry of the drive depends on beam-to-beam interactions that result in energy transfer [P. A. Michel, S. H. Glenzer, L. Divol, et al, Phys. Plasmas 17, 056305 (2010).] within the hohlraum. To this end, hohlraums are being fielded where shape (rugby vs. cylindrical hohlraums), gas fill composition (neopentane at room temperature vs. cryogenic helium), and gas fill density (increase of ∼ 150%) are independently changed. Cylindrical hohlraums with higher gas fill density show improved inner beam propagation, as should rugby hohlraums, because of the larger radius over the capsule (7 mm vs. 5.75 mm in a cylindrical hohlraum). Energy coupling improves in room temperature neopentane targets, as well as in hohlraums at higher gas fill density. In addition cross-beam energy transfer is being addressed directly by using targets that mock up one end of a hohlraum, but allow observation of the laser beam uniformity after energy transfer. Ideas such as splitting quads into “doublets” by re-pointing the right and left half of quads are also being pursued. LPI results of the Drive campaign will be summarized, and analyses of future directions presented.

  3. Analyzing driver-pedestrian interaction in a mixed-street environment using a driving simulator.

    PubMed

    Obeid, Hassan; Abkarian, Hoseb; Abou-Zeid, Maya; Kaysi, Isam

    2017-08-25

    This paper presents the design, analysis and results of a driving simulator experiment conducted to study the interaction between drivers and pedestrians in a mixed-street environment. Ninety-six students of the American University of Beirut (AUB) participated in the experiment that took place in the Transportation and Infrastructure Laboratory of AUB. The study looked at the driver-pedestrian interaction from the driver's perspective, by quantifying the effects of different scenario variables on the driving behavior of the participants. Kruskall-Wallis test shows that drivers' behavior in proximity of pedestrians tends to be statistically significantly less aggressive when their approach velocity is lower, curb-side parking is not allowed, a crosswalk exists, and the number of pedestrians crossing the street is higher. A discrete choice model for the yielding behavior of the drivers was also developed as a function of different predictor variables. Five out of the six predictors considered (except for gender) had a statistically significant effect on the yielding behavior, particularly the effects of curb-side parking, number of pedestrians crossing, and approach velocity. The model was then used to evaluate the effect of policy variables on the yielding probabilities of the drivers. The results of this study enrich current knowledge and understanding of drivers' behavior and their interaction with pedestrians, especially with studying the effects of scenario variables that were not addressed before; this would help planners propose and evaluate safety measures and traffic calming techniques to reduce the risks on pedestrians. The study also confirms the effectiveness of driving simulators in studying driver-pedestrian interactions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Microbe-microbe and host-microbe interactions drive microbiome dysbiosis and inflammatory processes.

    PubMed

    Proal, Amy D; Lindseth, Inge A; Marshall, Trevor G

    2017-01-01

    An extensive microbiome comprised of bacteria, viruses, bacteriophages, and fungi is now understood to persist in nearly every human body site, including tissue and blood. The genomes of these microbes continually interact with the human genome in order to regulate host metabolism. Many components of this microbiome are capable of both commensal and pathogenic activity. They are additionally able to persist in both 'acute' and chronic forms. Inflammatory conditions historically studied separately (autoimmune, neurological and malignant) are now repeatedly tied to a common trend: imbalance or dysbiosis of these microbial ecosystems. Population-based studies of the microbiome can shed light on this dysbiosis. However, it is the collective activity of the microbiome that drives inflammatory processes via complex microbe-microbe and host-microbe interactions. Many microbes survive as polymicrobial entities in order to evade the immune response. Pathogens in these communities alter their gene expression in ways that promote community-wide virulence. Other microbes persist inside the cells of the immune system, where they directly interfere with host transcription, translation, and DNA repair mechanisms. The numerous proteins and metabolites expressed by these pathogens further dysregulate human gene expression in a manner that promotes imbalance and immunosuppression. Molecular mimicry, or homology between host and microbial proteins, complicates the nature of this interference. When taken together, these microbe-microbe and host-microbe interactions are capable of driving the large-scale failure of human metabolism characteristic of many different inflammatory conditions.

  5. Rydberg-interaction gates via adiabatic passage and phase control of driving fields

    NASA Astrophysics Data System (ADS)

    Wu, Huaizhi; Huang, Xi-Rong; Hu, Chang-Sheng; Yang, Zhen-Biao; Zheng, Shi-Biao

    2017-08-01

    In this paper we propose two theoretical schemes for implementation of quantum phase gates by engineering the phase-sensitive dark state of two atoms subjected to Rydberg-Rydberg interaction. Combining the conventional adiabatic techniques and currently developed approaches of phase control, a feasible proposal for implementation of a geometric phase gate is presented, where the conditional phase shift (Berry phase) is achieved by adiabatically and cyclically changing the parameters of the driving fields. Here we find that the geometric phase acquired is related to the way how the relative phase is modulated. In the second scheme, the system Hamiltonian is adiabatically changed in a noncyclic manner, so that the acquired conditional phase is not a Berry phase. A detailed analysis of the experimental feasibility and the effect of decoherence is also given. The proposed schemes provide new perspectives for adiabatic manipulation of interacting Rydberg systems with tailored phase modulation.

  6. Preferential interactions between lithium chloride and glucan chains in N,N-dimethylacetamide drive cellulose dissolution.

    PubMed

    Gross, Adam S; Bell, Alexis T; Chu, Jhih-Wei

    2013-03-28

    Naturally occurring cellulose is crystalline as a consequence of the strong interactions between the glucan chains that comprise it and therefore is insoluble in most solvents. One of the few solvent systems able to dissolve cellulose is lithium chloride (LiCl) dissolved in N,N-dimethylacetamide (DMA). By an integrated application of all-atom molecular dynamics (MD) simulations, reaction path optimization, free-energy calculations, and a force-matching analysis of coarse-grained atomistic simulations, we establish that DMA-mediated preferential interactions of Li(+) cations and Cl(-) anions with glucan chains enable cellulose dissolution in LiCl/DMA. The relatively weak solvation of Li(+), Cl(-), and glucan chains by DMA results in strong effective interactions of Li(+) and Cl(-) ions with the glucans, leading to cellulose dissolution. The small size of the Li(+) cations allows them to strongly couple to multiple interaction sites on the glucan chains of cellulose, including the spatially restricted regions around the ether linkages connecting neighboring glucose residues. Li(+) cations were thus identified as the main component responsible for driving cellulose dissolution. The mechanism for explaining the solubility of cellulose in the LiCl/DMA system deduced from the analysis of atomistic-scale simulations conducted in this work is also consistent with most of the empirical observations related to cellulose dissolution in salt/amide solvent systems.

  7. Evolution of dispersal and life history interact to drive accelerating spread of an invasive species.

    PubMed

    Perkins, T Alex; Phillips, Benjamin L; Baskett, Marissa L; Hastings, Alan

    2013-08-01

    Populations on the edge of an expanding range are subject to unique evolutionary pressures acting on their life-history and dispersal traits. Empirical evidence and theory suggest that traits there can evolve rapidly enough to interact with ecological dynamics, potentially giving rise to accelerating spread. Nevertheless, which of several evolutionary mechanisms drive this interaction between evolution and spread remains an open question. We propose an integrated theoretical framework for partitioning the contributions of different evolutionary mechanisms to accelerating spread, and we apply this model to invasive cane toads in northern Australia. In doing so, we identify a previously unrecognised evolutionary process that involves an interaction between life-history and dispersal evolution during range shift. In roughly equal parts, life-history evolution, dispersal evolution and their interaction led to a doubling of distance spread by cane toads in our model, highlighting the potential importance of multiple evolutionary processes in the dynamics of range expansion. © 2013 John Wiley & Sons Ltd/CNRS.

  8. Interactive effects of xenobiotic, abiotic and biotic stressors on Daphnia pulex--results from a multiple stressor experiment with a fractional multifactorial design.

    PubMed

    Scherer, Christian; Seeland, Anne; Oehlmann, Jörg; Müller, Ruth

    2013-08-15

    Pollutant effects on aquatic key species are confounded by multiple abiotic and biotic stressors. To better discriminate and understand the intrinsic and environmental correlates of changing aquatic ecosystems, we untangle in present study how the effects of a low-dosed fungicide on daphnids (via different exposure routes) becomes modified by increasing temperature and the presence of a predator. Using a fractional multifactorial test design, the individual growth, reproduction and population growth rate of Daphnia pulex were investigated under exposure to the fungicide pyrimethanil at an environmental relevant concentration--either directly (via the water phase), indirectly (via food), dually (via water and food) or for multiple generations (fungicide treated source population)--at three temperatures and in presence/absence of the predator kairomones of Chaoborus flavicans. Our results clearly illustrate that multiple stress factors can modify the response of an aquatic key species to pollutants. The environmentally relevant exposure of the contaminant via food or the medium is of same importance. Nevertheless, temperature and the presence of a predator are the dominant factors controlling the reproduction of D. pulex. We conclude that sublethal pyrimethanil pollution can disturb the zooplankton community at suboptimal temperature conditions, but the effects will become masked by low temperatures or if chaoborid larvae are present.

  9. FOXP2 drives neuronal differentiation by interacting with retinoic acid signaling pathways

    PubMed Central

    Devanna, Paolo; Middelbeek, Jeroen; Vernes, Sonja C.

    2014-01-01

    FOXP2 was the first gene shown to cause a Mendelian form of speech and language disorder. Although developmentally expressed in many organs, loss of a single copy of FOXP2 leads to a phenotype that is largely restricted to orofacial impairment during articulation and linguistic processing deficits. Why perturbed FOXP2 function affects specific aspects of the developing brain remains elusive. We investigated the role of FOXP2 in neuronal differentiation and found that FOXP2 drives molecular changes consistent with neuronal differentiation in a human model system. We identified a network of FOXP2 regulated genes related to retinoic acid signaling and neuronal differentiation. FOXP2 also produced phenotypic changes associated with neuronal differentiation including increased neurite outgrowth and reduced migration. Crucially, cells expressing FOXP2 displayed increased sensitivity to retinoic acid exposure. This suggests a mechanism by which FOXP2 may be able to increase the cellular differentiation response to environmental retinoic acid cues for specific subsets of neurons in the brain. These data demonstrate that FOXP2 promotes neuronal differentiation by interacting with the retinoic acid signaling pathway and regulates key processes required for normal circuit formation such as neuronal migration and neurite outgrowth. In this way, FOXP2, which is found only in specific subpopulations of neurons in the brain, may drive precise neuronal differentiation patterns and/or control localization and connectivity of these FOXP2 positive cells. PMID:25309332

  10. Estimating direction in brain-behavior interactions: Proactive and reactive brain states in driving.

    PubMed

    Garcia, Javier O; Brooks, Justin; Kerick, Scott; Johnson, Tony; Mullen, Tim R; Vettel, Jean M

    2017-04-15

    Conventional neuroimaging analyses have ascribed function to particular brain regions, exploiting the power of the subtraction technique in fMRI and event-related potential analyses in EEG. Moving beyond this convention, many researchers have begun exploring network-based neurodynamics and coordination between brain regions as a function of behavioral parameters or environmental statistics; however, most approaches average evoked activity across the experimental session to study task-dependent networks. Here, we examined on-going oscillatory activity as measured with EEG and use a methodology to estimate directionality in brain-behavior interactions. After source reconstruction, activity within specific frequency bands (delta: 2-3Hz; theta: 4-7Hz; alpha: 8-12Hz; beta: 13-25Hz) in a priori regions of interest was linked to continuous behavioral measurements, and we used a predictive filtering scheme to estimate the asymmetry between brain-to-behavior and behavior-to-brain prediction using a variant of Granger causality. We applied this approach to a simulated driving task and examined directed relationships between brain activity and continuous driving performance (steering behavior or vehicle heading error). Our results indicated that two neuro-behavioral states may be explored with this methodology: a Proactive brain state that actively plans the response to the sensory information and is characterized by delta-beta activity, and a Reactive brain state that processes incoming information and reacts to environmental statistics primarily within the alpha band.

  11. Mechanisms of biotic resistance across complex life cycles.

    PubMed

    Rius, Marc; Potter, Elaine E; Aguirre, J David; Stachowicz, John J

    2014-01-01

    Biotic resistance is the ability of communities to inhibit the establishment, spread or impact of novel species. However, the interactions that underlie biotic resistance depend heavily on the contexts in which species interact. Consequently, studies of biotic resistance that consider single processes, patches, species or life-history stages may provide an incomplete picture of the capacity for communities to resist invasion. Many organisms have multiphasic life cycles, where individuals can occupy distinct niches at different stages of the life history. Generally, studies of biotic resistance focus on interactions within a single life-history stage, and interactions at other life-history stages are overlooked. Here, we demonstrate that different mechanisms of biotic resistance occur across the life history and together limit the invasion success of an introduced marine invertebrate (Ciona intestinalis) in Northern California. We tested the role of interactions (competition and predation) with the resident community in limiting the abundance of Ciona through experiments conducted on fertilization, larval survival, settlement, early postsettlement survival, and the survival of juveniles and adults. Under some circumstances, Ciona became abundant in mid-successional stages and showed more rapid growth rates than a morphologically similar native species, Ascidia ceratodes. However, predators reduced Ciona abundance much more than that of Ascidia at several life stages. Furthermore, Ciona appeared to be a weaker competitor at the adult stage. Early life-history interactions with other sessile species at the fertilization, larval and recruit stages had modest to no effects on Ciona abundance. The presence of biotic resistance mechanisms acting at multiple life stages, and potentially under different conditions, suggests that different components of biotic resistance interact to enhance the resident community's resistance to invasion. © 2013 The Authors. Journal of

  12. Early life stress interactions with the epigenome: potential mechanisms driving vulnerability towards psychiatric illness

    PubMed Central

    Olive, Michael Foster

    2014-01-01

    Throughout the 20th century a body of literature concerning the long lasting effects of early environment was produced. Adverse experiences in early life, or early life stress (ELS), is associated with a higher risk for developing various psychiatric illnesses. The mechanisms driving the complex interplay between ELS and adult phenotype has baffled many investigators for decades. Over the last decade, the new field of neuroepigenetics has emerged as one possible mechanism by which ELS can have far reaching effects on adult phenotype, behavior, and risk for psychiatric illness. Here we review two commonly investigated epigenetic mechanisms, histone modifications and DNA methylation, and the emerging field of neuroepigenetics as they relate to ELS. We discuss the current animal literature demonstrating ELS induced epigenetic modulation of gene expression that results in altered adult phenotypes. We also briefly discuss other areas in which neuroepigenetics has emerged as a potential mechanism underlying environmental and genetic interactions. PMID:25003947

  13. The Role of Interaction Patterns with Hybrid Electric Vehicle Eco-Features for Drivers' Eco-Driving Performance.

    PubMed

    Arend, Matthias G; Franke, Thomas

    2017-03-01

    The objective of the present research was to understand drivers' interaction patterns with hybrid electric vehicles' (HEV) eco-features (electric propulsion, regenerative braking, neutral mode) and their relationship to fuel efficiency and driver characteristics (technical system knowledge, eco-driving motivation). Eco-driving (driving behaviors performed to achieve higher fuel efficiency) has the potential to reduce CO2 emissions caused by road vehicles. Eco-driving in HEVs is particularly challenging due to the systems' dynamic energy flows. As a result, drivers are likely to show diverse eco-driving behaviors, depending on factors like knowledge and motivation. The eco-features represent an interface for the control of the systems' energy flows. A sample of 121 HEV drivers who had constantly logged their fuel consumption prior to the study participated in an online questionnaire. Drivers' interaction patterns with the eco-features were related to fuel efficiency. A common factor was identified in an exploratory factor analysis, characterizing the intensity of actively dealing with electric energy, which was also related to fuel efficiency. Driver characteristics were not related to this factor, yet they were significant predictors of fuel efficiency. From the perspective of user-energy interaction, the relationship of the aggregated factor to fuel efficiency emphasizes the central role of drivers' perception of and interaction with energy conversions in determining HEV eco-driving success. To arrive at an in-depth understanding of drivers' eco-driving behaviors that can guide interface design, authors of future research should be concerned with the psychological processes that underlie drivers' interaction patterns with eco-features.

  14. Functional Plant Types Drive Plant Interactions in a Mediterranean Mountain Range

    PubMed Central

    Macek, Petr; Prieto, Iván; Macková, Jana; Pistón, Nuria; Pugnaire, Francisco I.

    2016-01-01

    Shrubs have positive (facilitation) and negative (competition) effects on understory plants, the net interaction effect being modulated by abiotic conditions. Overall shrubs influence to great extent the structure of plant communities where they have significant presence. Interactions in a plant community are quite diverse but little is known about their variability and effects at community level. Here we checked the effects of co-occurring shrub species from different functional types on a focal understory species, determining mechanisms driving interaction outcome, and tested whether effects measured on the focal species were a proxy for effects measured at the community level. Growth, physiological, and reproductive traits of Euphorbia nicaeensis, our focal species, were recorded on individuals growing in association with four dominant shrub species and in adjacent open areas. We also recorded community composition and environmental conditions in each microhabitat. Shrubs provided environmental conditions for plant growth, which contrasted with open areas, including moister soil, greater N content, higher air temperatures, and lower radiation. Shrub-associated individuals showed lower reproductive effort and greater allocation to growth, while most physiological traits remained unaffected. Euphorbia individuals were bigger and had more leaf N under N-fixing than under non-fixing species. Soil moisture was also higher under N-fixing shrubs; therefore soil conditions in the understory may counter reduced light conditions. There was a significant effect of species identity and functional types in the outcome of plant interactions with consistent effects at individual and community levels. The contrasting allocation strategies to reproduction and growth in Euphorbia plants, either associated or not with shrubs, showed high phenotypic plasticity and evidence its ability to cope with contrasting environmental conditions. PMID:27242863

  15. Functional Plant Types Drive Plant Interactions in a Mediterranean Mountain Range.

    PubMed

    Macek, Petr; Prieto, Iván; Macková, Jana; Pistón, Nuria; Pugnaire, Francisco I

    2016-01-01

    Shrubs have positive (facilitation) and negative (competition) effects on understory plants, the net interaction effect being modulated by abiotic conditions. Overall shrubs influence to great extent the structure of plant communities where they have significant presence. Interactions in a plant community are quite diverse but little is known about their variability and effects at community level. Here we checked the effects of co-occurring shrub species from different functional types on a focal understory species, determining mechanisms driving interaction outcome, and tested whether effects measured on the focal species were a proxy for effects measured at the community level. Growth, physiological, and reproductive traits of Euphorbia nicaeensis, our focal species, were recorded on individuals growing in association with four dominant shrub species and in adjacent open areas. We also recorded community composition and environmental conditions in each microhabitat. Shrubs provided environmental conditions for plant growth, which contrasted with open areas, including moister soil, greater N content, higher air temperatures, and lower radiation. Shrub-associated individuals showed lower reproductive effort and greater allocation to growth, while most physiological traits remained unaffected. Euphorbia individuals were bigger and had more leaf N under N-fixing than under non-fixing species. Soil moisture was also higher under N-fixing shrubs; therefore soil conditions in the understory may counter reduced light conditions. There was a significant effect of species identity and functional types in the outcome of plant interactions with consistent effects at individual and community levels. The contrasting allocation strategies to reproduction and growth in Euphorbia plants, either associated or not with shrubs, showed high phenotypic plasticity and evidence its ability to cope with contrasting environmental conditions.

  16. Biotic and abiotic factors investigated in two Drosophila species – evidence of both negative and positive effects of interactions on performance

    PubMed Central

    Ørsted, Michael; Schou, Mads Fristrup; Kristensen, Torsten Nygaard

    2017-01-01

    Multiple environmental factors acting in concert can interact and strongly influence population fitness and ecosystem composition. Studies investigating interactions usually involve only two environmental factors; most frequently a chemical and another abiotic factor such as a stressful temperature. Here we investigate the effects of three environmental factors: temperature, an insecticide (dimethoate) and interspecific co-occurrence. We expose two naturally co-occurring species of Drosophila (D. hydei and D. melanogaster) to the different environments during development and examine the consequences on several performance measures. Results are highly species and trait specific with evidence of two- and three-way interactions in approximately 30% of all cases, suggesting that additive effects of combined environmental factors are most common, and that interactions are not universal. To provide more informative descriptions of complex interactions we implemented re-conceptualised definitions of synergism and antagonism. We found approximately equal proportions of synergistic and antagonistic interactions in both species, however the effects of interactions on performance differed between the two. Furthermore, we found negative impacts on performance in only 60% of interactions, thus our study also reveals a high proportion of cases with positive effects of interactions. PMID:28059144

  17. Plant Responses to Simultaneous Biotic and Abiotic Stress: Molecular Mechanisms

    PubMed Central

    Ben Rejeb, Ines; Pastor, Victoria; Mauch-Mani, Brigitte

    2014-01-01

    Plants are constantly confronted to both abiotic and biotic stresses that seriously reduce their productivity. Plant responses to these stresses are complex and involve numerous physiological, molecular, and cellular adaptations. Recent evidence shows that a combination of abiotic and biotic stress can have a positive effect on plant performance by reducing the susceptibility to biotic stress. Such an interaction between both types of stress points to a crosstalk between their respective signaling pathways. This crosstalk may be synergistic and/or antagonistic and include among others the involvement of phytohormones, transcription factors, kinase cascades, and reactive oxygen species (ROS). In certain cases, such crosstalk can lead to a cross-tolerance and enhancement of a plant’s resistance against pathogens. This review aims at giving an insight into cross-tolerance between abiotic and biotic stress, focusing on the molecular level and regulatory pathways. PMID:27135514

  18. Plant Responses to Simultaneous Biotic and Abiotic Stress: Molecular Mechanisms.

    PubMed

    Rejeb, Ines Ben; Pastor, Victoria; Mauch-Mani, Brigitte

    2014-10-15

    Plants are constantly confronted to both abiotic and biotic stresses that seriously reduce their productivity. Plant responses to these stresses are complex and involve numerous physiological, molecular, and cellular adaptations. Recent evidence shows that a combination of abiotic and biotic stress can have a positive effect on plant performance by reducing the susceptibility to biotic stress. Such an interaction between both types of stress points to a crosstalk between their respective signaling pathways. This crosstalk may be synergistic and/or antagonistic and include among others the involvement of phytohormones, transcription factors, kinase cascades, and reactive oxygen species (ROS). In certain cases, such crosstalk can lead to a cross-tolerance and enhancement of a plant's resistance against pathogens. This review aims at giving an insight into cross-tolerance between abiotic and biotic stress, focusing on the molecular level and regulatory pathways.

  19. How to integrate geology, biology, and modern wireless technologies to assess biotic-abiotic interactions on coastal dune systems: a new multidisciplinary approach

    NASA Astrophysics Data System (ADS)

    Sarti, Giovanni; Bertoni, Duccio; Bini, Monica; Ciccarelli, Daniela; Ribolini, Adriano; Ruocco, Matteo; Pozzebon, Alessandro; Alquini, Fernanda; Giaccari, Riccardo; Tordella, Stefano

    2014-05-01

    Coastal dune systems are arguably one of the most dynamic environments because their evolution is controlled by many factors, both natural and human-related. Hence, they are often exposed to processes leading to erosion, which in turn determine serious naturalistic and economic losses. Most recent studies carried out on different dune fields worldwide emphasized the notion that a better definition of this environment needs an approach that systematically involves several disciplines, striving to merge every data collected from any individual analyses. Therefore, a new multidisciplinary method to study coastal dune systems has been conceived in order to integrate geology, biology, and modern wireless technologies. The aim of the work is threefold: i) to check the reliability of this new approach; ii) to provide a dataset as complete as ever about the factors affecting the evolution of coastal dunes; and iii) to evaluate the influence of any biotic and abiotic factors on plant communities. The experimentation site is located along the Pisa coast within the Migliarino - S. Rossore - Massaciuccoli Regional Park, a protected area where human influence is low (Tuscany, Italy). A rectangle of 100 x 200 m containing 50 grids of 20 x 20 m was established along the coastal dune systems from the coastline to the pinewood at the landward end of the backdune area. Sampling from each grid determined grain-size analysis carried out on surface sediment samples such as geologic aspects; topographic surveys performed by means of DGPS-RTK instruments; geophysical surveys conducted with a GPR equipment, which will be matched with core drilling activities; digital image analysis of high definition pictures taken by means of a remote controlled aircraft drone flying over the study area; biological data obtained by percent cover of each vascular plant species recorded in the sampling unit. Along with geologic and biologic methodologies, this research implemented the use of informatics

  20. Laser-Plasma Interactions in NIF Direct-Drive-Scale Plasmas

    NASA Astrophysics Data System (ADS)

    Regan, S. P.

    1998-11-01

    Laser-plasma interactions have been carried out on OMEGA under plasma conditions representative of the peak of the NIF direct-drive laser pulse. This pulse, for a 1.5 MJ, α = 3 design, has a peak intensity of 2 × 10^15 W/cm^2 (summed over all beams) and a foot intensity of 4 × 10^13 W/cm^2. The coronal plasmas predicted for these implosions have Te ~ 4 keV and a ~1-mm density scale length at the peak of the laser pulse, and Te ~ 600 eV and a ~0.25-mm density scale length during the foot. In the OMEGA experiments, exploding foil plasmas with a maximum on-axis density of n_c/5 have been produced by irradiating mass-limited, 18- to 20-μm-thick CH foils on both sides with a total of 20 kJ of laser energy from 38 beams. In addition, NIF direct-drive scale plasmas including a critical density have been created by irradiating solid CH targets on one side with 10 kJ of laser energy from 19 beams. All of the experiments were carried out with distributed phase plates (DPP's) and 2-D SSD ( ~0.25 THz). The electron temperature and density of exploding-foil plasmas have been diagnosed using time-resolved x-ray spectroscopy and stimulated Raman scattering (SRS) measurements and are consistent with SAGE code predictions. Temperatures increasing with time up to 4 keV have been found. When these plasmas were irradiated with our interaction beam at ~1.5 × 10^15 W/cm^2, stimulated Brillouin backscattering (SBS) was found to be completely inhibited when DPP's were used. Without a DPP in the interaction beam, the SBS reflectivity can exceed 10%. Future experiments on OMEGA will address the parametric instabilities of the coronal plasmas in the foot and transition regions of the NIF laser pulse. This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC03-92SF19460. *In collaboration with D.K. Bradley^a, J.J. Carroll III^b, A.V. Chirokikh^a, R.S. Craxton^a, R.P. Drake^b, D.D. Meyerhofer^a, W. Seka^a, R

  1. Macro- and microclimatic interactions can drive variation in species' habitat associations.

    PubMed

    Pateman, Rachel M; Thomas, Chris D; Hayward, Scott A L; Hill, Jane K

    2016-02-01

    Many species are more restricted in their habitat associations at the leading edges of their range margins, but some species have broadened their habitat associations in these regions during recent climate change. We examine the effects of multiple, interacting climatic variables on spatial and temporal patterns of species' habitat associations, using the speckled wood butterfly, Pararge aegeria, in Britain, as our model taxon. Our analyses reveal that this species, traditionally regarded as a woodland-dependent insect, is less restricted to woodland in regions with warmer winters and warmer and wetter summers. In addition, over the past 40 years of climate change, the species has become less restricted to woodland in locations where temperature and summer rainfall have increased most. We show that these patterns arise mechanistically because larval growth rates are slower in open (i.e. nonwoodland) habitats associated with colder microclimates in winter and greater host plant desiccation in summer. We conclude that macro- and microclimatic interactions drive variation in species' habitat associations, which for our study species resulted predominantly in a widening of habitat associations under climate change. However, species vary in their climatic and nonclimatic requirements, and so complex spatial and temporal patterns of changes in habitat associations are likely to be observed in future as the climate changes. © 2015 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.

  2. Wave-Particle Interactions As a Driving Mechanism for the Solar Wind

    NASA Technical Reports Server (NTRS)

    Wagner, William J.

    2004-01-01

    Our research has been focusing on a highly experimentally relevant issue: intermittency of the fluctuating fields in outflowing plasmas. We have contributed to both the theoretical and experimental research of the topic. In particular, we have developed a theoretical model and data analyzing programs to examine the issue of intermittency in space plasma outflows, including the solar wind. As fluctuating electric fields in the solar wind are likely to provide a heating and acceleration mechanism for the ions, our studies of the intermittency in turbulence in space plasma outflows help us toward achieving the goal of comparing major physical mechanisms that contribute to the driving of the fast solar wind. Our new theoretical model extends the utilities of our global hybrid model, which has allowed us to follow the kinetic evolution of the particle distributions along an inhomogeneous field line while the particles are subjected to various physical mechanisms. The physical effects that were considered in the global hybrid model included wave-particle interactions, an ambipolar electric field that was consistent with the particle distributions themselves, and Coulomb collisions. With an earlier version of the global hybrid model, we examined the overall impact on the solar wind flow due to the combination of these physical effects. In particular, we studied the combined effects of two major mechanisms that had been proposed as the drivers of the fast solar wind: (1) velocity filtration effect due to suprathermal electrons; (2) ion cyclotron resonance. Since the approval of this research grant, we have updated the model such that the effects due to these two driving mechanisms can be examined separately, thereby allowing us to compare their contributions to the acceleration of the solar wind. In the next section, we shall demonstrate that the velocity filtration effect is rather insignificant in comparison with that due to ion cyclotron resonance.

  3. Plasma Interactions with High Voltage Solar Arrays for a Direct Drive Hall Effect Thruster System

    NASA Technical Reports Server (NTRS)

    Schneider, T.; Horvater, M. A.; Vaughn, J.; Carruth, M. R.; Jongeward, G. A.; Mikellides, I. G.

    2003-01-01

    The Environmental Effects Group of NASA s Marshall Space Flight Center (MSFC) is conducting research into the effects of plasma interaction with high voltage solar arrays. These high voltage solar arrays are being developed for a direct drive Hall Effect Thruster propulsion system. A direct drive system configuration will reduce power system mass by eliminating a conventional power-processing unit. The Environmental Effects Group has configured two large vacuum chambers to test different high-voltage array concepts in a plasma environment. Three types of solar arrays have so far been tested, an International Space Station (ISS) planar array, a Tecstar planar array, and a Tecstar solar concentrator array. The plasma environment was generated using a hollow cathode plasma source, which yielded densities between 10(exp 6) - 10(exp 7) per cubic centimeter and electron temperatures of 0.5-1 eV. Each array was positioned in this plasma and biased in the -500 to + 500 volt range. The current collection was monitored continuously. In addition, the characteristics of arcing, snap over, and other features, were recorded. Analysis of the array performance indicates a time dependence associated with the current collection as well as a tendency for "conditioning" over a large number of runs. Mitigation strategies, to reduce parasitic current collection, as well as arcing, include changing cover-glass geometry and layout as well as shielding the solar cell edges. High voltage performance data for each of the solar array types tested will be presented. In addition, data will be provided to indicate the effectiveness of the mitigation techniques.

  4. Species Interactions Drive Fish Biodiversity Loss in a High-CO2 World.

    PubMed

    Nagelkerken, Ivan; Goldenberg, Silvan U; Ferreira, Camilo M; Russell, Bayden D; Connell, Sean D

    2017-07-24

    Accelerating climate change is eroding the functioning and stability of ecosystems by weakening the interactions among species that stabilize biological communities against change [1]. A key challenge to forecasting the future of ecosystems centers on how to extrapolate results from short-term, single-species studies to community-level responses that are mediated by key mechanisms such as competition, resource availability (bottom-up control), and predation (top-down control) [2]. We used CO2 vents as potential analogs of ocean acidification combined with in situ experiments to test current predictions of fish biodiversity loss and community change due to elevated CO2 [3] and to elucidate the potential mechanisms that drive such change. We show that high risk-taking behavior and competitive strength, combined with resource enrichment and collapse of predator populations, fostered already common species, enabling them to double their populations under acidified conditions. However, the release of these competitive dominants from predator control led to suppression of less common and subordinate competitors that did not benefit from resource enrichment and reduced predation. As a result, local biodiversity was lost and novel fish community compositions were created under elevated CO2. Our study identifies the species interactions most affected by ocean acidification, revealing potential sources of natural selection. We also reveal how diminished predator abundances can have cascading effects on local species diversity, mediated by complex species interactions. Reduced overfishing of predators could therefore act as a key action to stall diversity loss and ecosystem change in a high-CO2 world. VIDEO ABSTRACT. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Goal Representations and Motivational Drive in Schizophrenia: The Role of Prefrontal–Striatal Interactions

    PubMed Central

    Barch, Deanna M.; Dowd, Erin C.

    2010-01-01

    The past several years have seen a resurgence of interest in understanding the psychological and neural bases of what are often referred to as “negative symptoms” in schizophrenia. These aspects of schizophrenia include constructs such as asociality, avolition (a reduction in the motivation to initiate or persist in goal-directed behavior), and anhedonia (a reduction in the ability to experience pleasure). We believe that these dimensions of impairment in individuals with schizophrenia reflect difficulties using internal representations of emotional experiences, previous rewards, and motivational goals to drive current and future behavior in a way that would allow them to obtain desired outcomes, a deficit that has major clinical significance in terms of functional capacity. In this article, we review the major components of the systems that link experienced and anticipated rewards with motivated behavior that could potentially be impaired in schizophrenia. We conclude that the existing evidence suggests relatively intact hedonics in schizophrenia, but impairments in some aspects of reinforcement learning, reward prediction, and prediction error processing, consistent with an impairment in “wanting.” As of yet, there is only indirect evidence of impairment in anterior cingulate and orbital frontal function that may support value and effort computations. However, there are intriguing hints that individuals with schizophrenia may not be able to use reward information to modulate cognitive control and dorsolateral prefrontal cortex function, suggesting a potentially important role for cortical–striatal interactions in mediating impairment in motivated and goal-directed behavior in schizophrenia. PMID:20566491

  6. Factors influencing the probability of an incident at a junction: results from an interactive driving simulator.

    PubMed

    Alexander, Jennifer; Barham, Philip; Black, Ian

    2002-11-01

    Using data generated from a fixed-base interactive driving simulator, which was used to evaluate a driver decision aid, a model is built to predict the probability of an incident (i.e. an accident or a 'near miss') occurring as a result of a right-turn across left-hand traffic at an unsignalised junction. This can be considered to be the product of two separate probabilities, the first being the probability that the gap between a pair of vehicles in the traffic stream is accepted, and the second the probability that the time needed to cross the on-coming stream of traffic causes the time-to-collision with the nearest vehicle in this traffic stream to be less than a second. The model is developed from the results of experimental trials involving a sample of drivers, the majority of whom were aged 60 years or older, in order to demonstrate the effect of various parameters on these probabilities. The parameters considered include the size of the gap between successive vehicles, vehicle characteristics such as size, colour and velocity, driver characteristics such as age and sex, and both daytime and night-time conditions.

  7. Hydrophobic Mismatch Drives the Interaction of E5 with the Transmembrane Segment of PDGF Receptor

    PubMed Central

    Windisch, Dirk; Ziegler, Colin; Grage, Stephan L.; Bürck, Jochen; Zeitler, Marcel; Gor’kov, Peter L.; Ulrich, Anne S.

    2015-01-01

    The oncogenic E5 protein from bovine papillomavirus is a short (44 amino acids long) integral membrane protein that forms homodimers. It activates platelet-derived growth factor receptor (PDGFR) β in a ligand-independent manner by transmembrane helix-helix interactions. The nature of this recognition event remains elusive, as numerous mutations are tolerated in the E5 transmembrane segment, with the exception of one hydrogen-bonding residue. Here, we examined the conformation, stability, and alignment of the E5 protein in fluid lipid membranes of substantially varying bilayer thickness, in both the absence and presence of the PDGFR transmembrane segment. Quantitative synchrotron radiation circular dichroism analysis revealed a very long transmembrane helix for E5 of ∼26 amino acids. Oriented circular dichroism and solid-state 15N-NMR showed that the alignment and stability of this unusually long segment depend critically on the membrane thickness. When reconstituted alone in exceptionally thick DNPC lipid bilayers, the E5 helix was found to be inserted almost upright. In moderately thick bilayers (DErPC and DEiPC), it started to tilt and became slightly deformed, and finally it became aggregated in conventional DOPC, POPC, and DMPC membranes due to hydrophobic mismatch. On the other hand, when E5 was co-reconstituted with the transmembrane segment of PDGFR, it was able to tolerate even the most pronounced mismatch and was stabilized by binding to the receptor, which has the same hydrophobic length. As E5 is known to activate PDGFR within the thin membranes of the Golgi compartment, we suggest that the intrinsic hydrophobic mismatch of these two interaction partners drives them together. They seem to recognize each other by forming a closely packed bundle of mutually aligned transmembrane helices, which is further stabilized by a specific pair of hydrogen-bonding residues. PMID:26287626

  8. A meta-analysis of in-vehicle and nomadic voice-recognition system interaction and driving performance.

    PubMed

    Simmons, Sarah M; Caird, Jeff K; Steel, Piers

    2017-09-01

    Driver distraction is a growing and pervasive issue that requires multiple solutions. Voice-recognition (V-R) systems may decrease the visual-manual (V-M) demands of a wide range of in-vehicle system and smartphone interactions. However, the degree that V-R systems integrated into vehicles or available in mobile phone applications affect driver distraction is incompletely understood. A comprehensive meta-analysis of experimental studies was conducted to address this knowledge gap. To meet study inclusion criteria, drivers had to interact with a V-R system while driving and doing everyday V-R tasks such as dialing, initiating a call, texting, emailing, destination entry or music selection. Coded dependent variables included detection, reaction time, lateral position, speed and headway. Comparisons of V-R systems with baseline driving and/or a V-M condition were also coded. Of 817 identified citations, 43 studies involving 2000 drivers and 183 effect sizes (r) were analyzed in the meta-analysis. Compared to baseline, driving while interacting with a V-R system is associated with increases in reaction time and lane positioning, and decreases in detection. When V-M systems were compared to V-R systems, drivers had slightly better performance with the latter system on reaction time, lane positioning and headway. Although V-R systems have some driving performance advantages over V-M systems, they have a distraction cost relative to driving without any system at all. The pattern of results indicates that V-R systems impose moderate distraction costs on driving. In addition, drivers minimally engage in compensatory performance adjustments such as reducing speed and increasing headway while using V-R systems. Implications of the results for theory, design guidelines and future research are discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Direct and indirect climatic drivers of biotic interactions: ice-cover and carbon runoff shaping Arctic char Salvelinus alpinus and brown trout Salmo trutta competitive asymmetries.

    PubMed

    Ulvan, Eva M; Finstad, Anders G; Ugedal, Ola; Berg, Ole Kristian

    2012-01-01

    One of the major challenges in ecological climate change impact science is to untangle the climatic effects on biological interactions and indirect cascading effects through different ecosystems. Here, we test for direct and indirect climatic drivers on competitive impact of Arctic char (Salvelinus alpinus L.) on brown trout (Salmo trutta L.) along a climate gradient in central Scandinavia, spanning from coastal to high-alpine environments. As a measure of competitive impact, trout food consumption was measured using (137)Cs tracer methodology both during the ice-covered and ice-free periods, and contrasted between lakes with or without char coexistence along the climate gradient. Variation in food consumption between lakes was best described by a linear mixed effect model including a three-way interaction between the presence/absence of Arctic char, season and Secchi depth. The latter is proxy for terrestrial dissolved organic carbon run-off, strongly governed by climatic properties of the catchment. The presence of Arctic char had a negative impact on trout food consumption. However, this effect was stronger during ice-cover and in lakes receiving high carbon load from the catchment, whereas no effect of water temperature was evident. In conclusion, the length of the ice-covered period and the export of allochthonous material from the catchment are likely major, but contrasting, climatic drivers of the competitive interaction between two freshwater lake top predators. While future climatic scenarios predict shorter ice-cover duration, they also predict increased carbon run-off. The present study therefore emphasizes the complexity of cascading ecosystem effects in future effects of climate change on freshwater ecosystems.

  10. Cooperative Electrostatic Interactions Drive Functional Evolution in the Alkaline Phosphatase Superfamily

    PubMed Central

    2015-01-01

    It is becoming widely accepted that catalytic promiscuity, i.e., the ability of a single enzyme to catalyze the turnover of multiple, chemically distinct substrates, plays a key role in the evolution of new enzyme functions. In this context, the members of the alkaline phosphatase superfamily have been extensively studied as model systems in order to understand the phenomenon of enzyme multifunctionality. In the present work, we model the selectivity of two multiply promiscuous members of this superfamily, namely the phosphonate monoester hydrolases from Burkholderia caryophylli and Rhizobium leguminosarum. We have performed extensive simulations of the enzymatic reaction of both wild-type enzymes and several experimentally characterized mutants. Our computational models are in agreement with key experimental observables, such as the observed activities of the wild-type enzymes, qualitative interpretations of experimental pH-rate profiles, and activity trends among several active site mutants. In all cases the substrates of interest bind to the enzyme in similar conformations, with largely unperturbed transition states from their corresponding analogues in aqueous solution. Examination of transition-state geometries and the contribution of individual residues to the calculated activation barriers suggest that the broad promiscuity of these enzymes arises from cooperative electrostatic interactions in the active site, allowing each enzyme to adapt to the electrostatic needs of different substrates. By comparing the structural and electrostatic features of several alkaline phosphatases, we suggest that this phenomenon is a generalized feature driving selectivity and promiscuity within this superfamily and can be in turn used for artificial enzyme design. PMID:26091851

  11. Minimize Adverse Motor and Adjustable Speed Drive Interactions - Motor Tip Sheet #15

    SciTech Connect

    2008-07-01

    Electronic adjustable speed drives (ASDs) are an extremely efficient and valuable asset to motor systems. They allow precise process control and provide energy savings within systems that do not need to continuously operate at full output.

  12. Environmental extremes and biotic interactions facilitate depredation of endangered California Ridgway’s rail in a San Francisco Bay tidal marsh

    USGS Publications Warehouse

    Overton, Cory T.; Bobzien, Steven; Grefsrud, Marcia

    2016-01-01

    On 23 December 2015 while performing a high tide population survey for endangered Ridgway’s rails (Rallus obsoletus obsoletus; formerly known as the California clapper rail) and other rail species at Arrowhead Marsh, Martin Luther King Jr. Regional Shoreline, Oakland, California, the authors observed a series of species interactions resulting in the predation of a Ridgway’s rail by an adult female peregrine falcon (Falco peregrinus). High tide surveys are performed during the highest tides of the year when tidal marsh vegetation at Arrowhead Marsh becomes inundated, concentrating the tidal marsh obligate species into the limited area of emergent vegetation remaining as refuge cover. Annual mean tide level (elevation referenced relative to mean lower low water) at Arrowhead Marsh is 1.10 m, mean higher high water is 2.04 m (NOAA National Ocean Service 2014) and the average elevation of the marsh surface is 1.60 m (Overton et al. 2014). Tidal conditions on the day of the survey were predicted to be 2.42 m. Observed tides at the nearby Alameda Island tide gauge were 8 cm higher than predicted due to a regional low-pressure system and warmer than average sea surface temperatures (NOAA National Ocean Service 2014). The approximately 80 cm deep inundation of the marsh plain was sufficient to completely submerge tidal marsh vegetation and effectively remove 90% of refugia habitats.

  13. Biotic interactions in temporal trends (1992-2010) of organochlorine contaminants in the aquatic food web of Lake Laberge, Yukon Territory.

    PubMed

    Ryan, M J; Stern, G A; Kidd, K A; Croft, M V; Gewurtz, S; Diamond, M; Kinnear, L; Roach, P

    2013-01-15

    Declines in 6 organochlorine (OC) contaminant groups; chlordane (CHL), DDT, HCH, toxaphene (CHB), PCB and chlorinated benzenes (CBz) were measured in biota of a sub-Arctic lake (Lake Laberge, YT) following the closure of a commercial fishery in 1991. This study examined morphological (length, weight, age), biochemical (lipid content, δ(13)C, δ(15)N), population and OC data for 9 fishes and zooplankton between 1993 and 2003 (2010 for lake trout) to investigate causes for the OC declines. Growth dilution was a major factor influencing the decrease of OCs in lake trout, round whitefish and possibly zooplankton most notably in the early 2000s. A decline in lipids of most fish species also contributed to OC declines, although no such change was evident for zooplankton. It is suspected that increases in fish populations or climate variations over the 1990s, may have contributed towards a shift in plankton community composition. From 1991 to 1999, CPUE increased for 7 of the fish species and declined for 2 others. Concurrently, the zooplankton community shifted from an abundance of C. scutifer in 1993 to dominance by D. pribilofensis in 2001. Nitrogen and carbon stable isotope data suggested that food web interactions for most fish species have not changed over time. Although concentrations of OCs have declined in many fishes, the "rate" of OC transfer (using slopes of log OC vs. nitrogen isotope ratios) through the food web was greater in 2001 than in 1993. Overall, the declines in OC concentrations in the fish from Lake Laberge occurred concurrently with changes in their growth, lipid, and abundance, suggesting that ecosystem responses to the closure of the fishery were in part responsible for the lower contaminants in these fishes. As a result of this study, the Yukon government rescinded the health advisory for limiting the consumption of fish from Lake Laberge.

  14. Steering the conversation: A linguistic exploration of natural language interactions with a digital assistant during simulated driving.

    PubMed

    Large, David R; Clark, Leigh; Quandt, Annie; Burnett, Gary; Skrypchuk, Lee

    2017-09-01

    Given the proliferation of 'intelligent' and 'socially-aware' digital assistants embodying everyday mobile technology - and the undeniable logic that utilising voice-activated controls and interfaces in cars reduces the visual and manual distraction of interacting with in-vehicle devices - it appears inevitable that next generation vehicles will be embodied by digital assistants and utilise spoken language as a method of interaction. From a design perspective, defining the language and interaction style that a digital driving assistant should adopt is contingent on the role that they play within the social fabric and context in which they are situated. We therefore conducted a qualitative, Wizard-of-Oz study to explore how drivers might interact linguistically with a natural language digital driving assistant. Twenty-five participants drove for 10 min in a medium-fidelity driving simulator while interacting with a state-of-the-art, high-functioning, conversational digital driving assistant. All exchanges were transcribed and analysed using recognised linguistic techniques, such as discourse and conversation analysis, normally reserved for interpersonal investigation. Language usage patterns demonstrate that interactions with the digital assistant were fundamentally social in nature, with participants affording the assistant equal social status and high-level cognitive processing capability. For example, participants were polite, actively controlled turn-taking during the conversation, and used back-channelling, fillers and hesitation, as they might in human communication. Furthermore, participants expected the digital assistant to understand and process complex requests mitigated with hedging words and expressions, and peppered with vague language and deictic references requiring shared contextual information and mutual understanding. Findings are presented in six themes which emerged during the analysis - formulating responses; turn-taking; back

  15. Biotic resistance in marine environments.

    PubMed

    Kimbro, David L; Cheng, Brian S; Grosholz, Edwin D

    2013-06-01

    Biological invasions depend in part on the resistance of native communities. Meta-analyses of terrestrial experiments demonstrate that native primary producers and herbivores generally resist invasions of primary producers, and that resistance through competition strengthens with native producer diversity. To test the generality of these findings, we conducted a meta-analysis of marine experiments. We found that native marine producers generally failed to resist producer invasions through competition unless the native community was diverse, and this diversity effect was weaker in marine than in terrestrial systems. In contrast, native consumers equally resisted invasive producers in both ecosystems. Most marine experiments, however, tested invasive consumers and these invasions were resisted more strongly than were producer invasions. Given these differences between ecosystems and between marine trophic levels, we used a model-selection approach to assess if factors other than the resistance mechanism (i.e. competition vs. consumption) are more important for predicting marine biotic resistance. These results suggest that understanding marine biotic resistance depends on latitude, habitat and invader taxon, in addition to distinguishing between competition with and consumption by native species. By examining biotic resistance within and across ecosystems, our work provides a more complete understanding of the factors that underlie biological invasions. © 2013 John Wiley & Sons Ltd/CNRS.

  16. Biotic resistance, disturbance, and mode of colonization impact the invasion of a widespread, introduced wetland grass.

    PubMed

    Kettenring, Karin M; Whigham, Dennis F; Hazelton, Eric L G; Gallagher, Sally K; Weiner, Heather M

    2015-03-01

    Disturbance and biotic resistance are important factors driving plant invasions, but how these factors interact for plants with different modes of colonization (i.e., sexual and asexual) is unclear. We evaluated factors influencing the invasion of nonnative Phragmites australis, which has been rapidly expanding in brackish tidal wetlands in Chesapeake Bay. We conducted a survey of naturally occurring small-scale disturbances (removal of vegetation and/or sediment deposition) across four plant communities; determined the effects of small-scale disturbance and biotic resistance on P. australis seedling and rhizome emergence; and tested the effects of size and frequency of small-scale disturbances on seedling emergence and survival of transplanted seedlings. The results of our study demonstrate that the invasion window for seeds is in disturbed areas in high-marsh plant communities that flood less frequently; seedling emergence in undisturbed areas was negligible. Establishment of shoots from rhizome segments was low in all plant communities. Disturbance size and frequency had no significant impact on seed germination and seedling survival. Our findings provide evidence that small-scale within-wetland disturbances are important for the invasion of the nonnative lineage of P. australis by seeds in brackish tidal wetlands in Chesapeake Bay. Efforts to reduce disturbances, large and small, in wetlands can be used to limit P. australis invasion by seed, but invasion by rhizome is still likely to occur across many plant communities irrespective of the presence of disturbance.

  17. Genomics of Biotic Interactions in the Triticeae

    USDA-ARS?s Scientific Manuscript database

    Plant diseases pose threats to agriculture in all corners of the world. In highly productive systems, the genetic uniformity required for mechanized production renders crops vulnerable to severe losses. The advent of Triticeae microarrays built upon community-wide sequencing efforts is empowering ...

  18. Modeling Laser-Plasma Interactions at Direct-Drive Ignition-Relevant Plasma Conditions at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Solodov, A. A.; Rosenberg, M. J.; Myatt, J. F.; Epstein, R.; Seka, W.; Hohenberger, M.; Short, R. W.; Shaw, J. G.; Regan, S. P.; Froula, D. H.; Radha, P. B.; Bates, J. W.; Schmitt, A. J.; Michel, P.; Moody, J. D.; Ralph, J. E.; Turnbull, D. P.; Barrios, M. A.

    2016-10-01

    Laser-plasma interaction instabilities, such as two-plasmon decay (TPD) and stimulated Raman scattering (SRS), can be detrimental for direct-drive inertial confinement fusion because of target preheat by generated high-energy electrons. The radiation-hydrodynamics code DRACO has been used to design planar-target experiments that generate plasma and interaction conditions relevant to direct-drive-ignition designs (IL 1015 W / cm 2 , Te > 3 KeV density gradient scale lengths of Ln 600 μm) . The hot-electron temperature of 40to50keV and the fraction of laser energy converted to hot electrons of 0.5to were inferred based on comparing the simulated and experimentally observed x-ray emission when the laser intensity at the quarter-critical surface increased from 6 to 15 ×1014 W / cm 2 . The measured SRS energy was sufficient to explain the observed total energy in hot electrons. Implications for ignition-scale direct-drive experiments and hot-electron preheat mitigation using mid- Z ablators will be discussed. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  19. Running with the Red Queen: the role of biotic conflicts in evolution

    PubMed Central

    Brockhurst, Michael A.; Chapman, Tracey; King, Kayla C.; Mank, Judith E.; Paterson, Steve; Hurst, Gregory D. D.

    2014-01-01

    What are the causes of natural selection? Over 40 years ago, Van Valen proposed the Red Queen hypothesis, which emphasized the primacy of biotic conflict over abiotic forces in driving selection. Species must continually evolve to survive in the face of their evolving enemies, yet on average their fitness remains unchanged. We define three modes of Red Queen coevolution to unify both fluctuating and directional selection within the Red Queen framework. Empirical evidence from natural interspecific antagonisms provides support for each of these modes of coevolution and suggests that they often operate simultaneously. We argue that understanding the evolutionary forces associated with interspecific interactions requires incorporation of a community framework, in which new interactions occur frequently. During their early phases, these newly established interactions are likely to drive fast evolution of both parties. We further argue that a more complete synthesis of Red Queen forces requires incorporation of the evolutionary conflicts within species that arise from sexual reproduction. Reciprocally, taking the Red Queen's perspective advances our understanding of the evolution of these intraspecific conflicts. PMID:25355473

  20. Running with the Red Queen: the role of biotic conflicts in evolution.

    PubMed

    Brockhurst, Michael A; Chapman, Tracey; King, Kayla C; Mank, Judith E; Paterson, Steve; Hurst, Gregory D D

    2014-12-22

    What are the causes of natural selection? Over 40 years ago, Van Valen proposed the Red Queen hypothesis, which emphasized the primacy of biotic conflict over abiotic forces in driving selection. Species must continually evolve to survive in the face of their evolving enemies, yet on average their fitness remains unchanged. We define three modes of Red Queen coevolution to unify both fluctuating and directional selection within the Red Queen framework. Empirical evidence from natural interspecific antagonisms provides support for each of these modes of coevolution and suggests that they often operate simultaneously. We argue that understanding the evolutionary forces associated with interspecific interactions requires incorporation of a community framework, in which new interactions occur frequently. During their early phases, these newly established interactions are likely to drive fast evolution of both parties. We further argue that a more complete synthesis of Red Queen forces requires incorporation of the evolutionary conflicts within species that arise from sexual reproduction. Reciprocally, taking the Red Queen's perspective advances our understanding of the evolution of these intraspecific conflicts.

  1. Laser-Plasma Interaction Near the Quarter-Critical Density in Direct-Drive Inertial Confinement Fusion

    NASA Astrophysics Data System (ADS)

    Maximov, A. V.; Wen, H.; Myatt, J. F.; Short, R. W.; Ren, C.

    2016-10-01

    The laser-plasma interaction (LPI) near the quarter-critical density in direct-drive inertial confinement fusion (ICF) plasmas strongly influences the coupling of laser energy to the target and the generation of fast electrons capable of preheating the target fuel. The full modeling of LPI near the quarter-critical density includes the interplay between two-plasmon decay and stimulated Raman scattering instabilities as well as ion-acoustic perturbations. The results of the kinetic particle-in-cell simulations are in agreement with the simulation results from the fluid-type code. The fast-electron flux and the ω/2 half-omega light spectra are calculated for the parameters relevant to direct-drive ICF experiments on the OMEGA Laser System and at the National Ignition Facility. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  2. Landscape simplification filters species traits and drives biotic homogenization

    PubMed Central

    Gámez-Virués, Sagrario; Perović, David J.; Gossner, Martin M.; Börschig, Carmen; Blüthgen, Nico; de Jong, Heike; Simons, Nadja K.; Klein, Alexandra-Maria; Krauss, Jochen; Maier, Gwen; Scherber, Christoph; Steckel, Juliane; Rothenwöhrer, Christoph; Steffan-Dewenter, Ingolf; Weiner, Christiane N.; Weisser, Wolfgang; Werner, Michael; Tscharntke, Teja; Westphal, Catrin

    2015-01-01

    Biodiversity loss can affect the viability of ecosystems by decreasing the ability of communities to respond to environmental change and disturbances. Agricultural intensification is a major driver of biodiversity loss and has multiple components operating at different spatial scales: from in-field management intensity to landscape-scale simplification. Here we show that landscape-level effects dominate functional community composition and can even buffer the effects of in-field management intensification on functional homogenization, and that animal communities in real-world managed landscapes show a unified response (across orders and guilds) to both landscape-scale simplification and in-field intensification. Adults and larvae with specialized feeding habits, species with shorter activity periods and relatively small body sizes are selected against in simplified landscapes with intense in-field management. Our results demonstrate that the diversity of land cover types at the landscape scale is critical for maintaining communities, which are functionally diverse, even in landscapes where in-field management intensity is high. PMID:26485325

  3. Uranium isotopes fingerprint biotic reduction

    SciTech Connect

    Stylo, Malgorzata; Neubert, Nadja; Wang, Yuheng; Monga, Nikhil; Romaniello, Stephen J.; Weyer, Stefan; Bernier-Latmani, Rizlan

    2015-04-20

    Knowledge of paleo-redox conditions in the Earth’s history provides a window into events that shaped the evolution of life on our planet. The role of microbial activity in paleo-redox processes remains unexplored due to the inability to discriminate biotic from abiotic redox transformations in the rock record. The ability to deconvolute these two processes would provide a means to identify environmental niches in which microbial activity was prevalent at a specific time in paleo-history and to correlate specific biogeochemical events with the corresponding microbial metabolism. Here, we demonstrate that the isotopic signature associated with microbial reduction of hexavalent uranium (U), i.e., the accumulation of the heavy isotope in the U(IV) phase, is readily distinguishable from that generated by abiotic uranium reduction in laboratory experiments. Thus, isotope signatures preserved in the geologic record through the reductive precipitation of uranium may provide the sought-after tool to probe for biotic processes. Because uranium is a common element in the Earth’s crust and a wide variety of metabolic groups of microorganisms catalyze the biological reduction of U(VI), this tool is applicable to a multiplicity of geological epochs and terrestrial environments. The findings of this study indicate that biological activity contributed to the formation of many authigenic U deposits, including sandstone U deposits of various ages, as well as modern, Cretaceous, and Archean black shales. In addition, engineered bioremediation activities also exhibit a biotic signature, suggesting that, although multiple pathways may be involved in the reduction, direct enzymatic reduction contributes substantially to the immobilization of uranium.

  4. Uranium isotopes fingerprint biotic reduction

    DOE PAGES

    Stylo, Malgorzata; Neubert, Nadja; Wang, Yuheng; ...

    2015-04-20

    Knowledge of paleo-redox conditions in the Earth’s history provides a window into events that shaped the evolution of life on our planet. The role of microbial activity in paleo-redox processes remains unexplored due to the inability to discriminate biotic from abiotic redox transformations in the rock record. The ability to deconvolute these two processes would provide a means to identify environmental niches in which microbial activity was prevalent at a specific time in paleo-history and to correlate specific biogeochemical events with the corresponding microbial metabolism. Here, we demonstrate that the isotopic signature associated with microbial reduction of hexavalent uranium (U),more » i.e., the accumulation of the heavy isotope in the U(IV) phase, is readily distinguishable from that generated by abiotic uranium reduction in laboratory experiments. Thus, isotope signatures preserved in the geologic record through the reductive precipitation of uranium may provide the sought-after tool to probe for biotic processes. Because uranium is a common element in the Earth’s crust and a wide variety of metabolic groups of microorganisms catalyze the biological reduction of U(VI), this tool is applicable to a multiplicity of geological epochs and terrestrial environments. The findings of this study indicate that biological activity contributed to the formation of many authigenic U deposits, including sandstone U deposits of various ages, as well as modern, Cretaceous, and Archean black shales. In addition, engineered bioremediation activities also exhibit a biotic signature, suggesting that, although multiple pathways may be involved in the reduction, direct enzymatic reduction contributes substantially to the immobilization of uranium.« less

  5. Uranium isotopes fingerprint biotic reduction

    PubMed Central

    Stylo, Malgorzata; Neubert, Nadja; Wang, Yuheng; Monga, Nikhil; Romaniello, Stephen J.; Weyer, Stefan; Bernier-Latmani, Rizlan

    2015-01-01

    Knowledge of paleo-redox conditions in the Earth’s history provides a window into events that shaped the evolution of life on our planet. The role of microbial activity in paleo-redox processes remains unexplored due to the inability to discriminate biotic from abiotic redox transformations in the rock record. The ability to deconvolute these two processes would provide a means to identify environmental niches in which microbial activity was prevalent at a specific time in paleo-history and to correlate specific biogeochemical events with the corresponding microbial metabolism. Here, we demonstrate that the isotopic signature associated with microbial reduction of hexavalent uranium (U), i.e., the accumulation of the heavy isotope in the U(IV) phase, is readily distinguishable from that generated by abiotic uranium reduction in laboratory experiments. Thus, isotope signatures preserved in the geologic record through the reductive precipitation of uranium may provide the sought-after tool to probe for biotic processes. Because uranium is a common element in the Earth’s crust and a wide variety of metabolic groups of microorganisms catalyze the biological reduction of U(VI), this tool is applicable to a multiplicity of geological epochs and terrestrial environments. The findings of this study indicate that biological activity contributed to the formation of many authigenic U deposits, including sandstone U deposits of various ages, as well as modern, Cretaceous, and Archean black shales. Additionally, engineered bioremediation activities also exhibit a biotic signature, suggesting that, although multiple pathways may be involved in the reduction, direct enzymatic reduction contributes substantially to the immobilization of uranium. PMID:25902522

  6. Uranium isotopes fingerprint biotic reduction.

    PubMed

    Stylo, Malgorzata; Neubert, Nadja; Wang, Yuheng; Monga, Nikhil; Romaniello, Stephen J; Weyer, Stefan; Bernier-Latmani, Rizlan

    2015-05-05

    Knowledge of paleo-redox conditions in the Earth's history provides a window into events that shaped the evolution of life on our planet. The role of microbial activity in paleo-redox processes remains unexplored due to the inability to discriminate biotic from abiotic redox transformations in the rock record. The ability to deconvolute these two processes would provide a means to identify environmental niches in which microbial activity was prevalent at a specific time in paleo-history and to correlate specific biogeochemical events with the corresponding microbial metabolism. Here, we demonstrate that the isotopic signature associated with microbial reduction of hexavalent uranium (U), i.e., the accumulation of the heavy isotope in the U(IV) phase, is readily distinguishable from that generated by abiotic uranium reduction in laboratory experiments. Thus, isotope signatures preserved in the geologic record through the reductive precipitation of uranium may provide the sought-after tool to probe for biotic processes. Because uranium is a common element in the Earth's crust and a wide variety of metabolic groups of microorganisms catalyze the biological reduction of U(VI), this tool is applicable to a multiplicity of geological epochs and terrestrial environments. The findings of this study indicate that biological activity contributed to the formation of many authigenic U deposits, including sandstone U deposits of various ages, as well as modern, Cretaceous, and Archean black shales. Additionally, engineered bioremediation activities also exhibit a biotic signature, suggesting that, although multiple pathways may be involved in the reduction, direct enzymatic reduction contributes substantially to the immobilization of uranium.

  7. How to assess driver's interaction with partially automated driving systems - A framework for early concept assessment.

    PubMed

    van den Beukel, Arie P; van der Voort, Mascha C

    2017-03-01

    The introduction of partially automated driving systems changes the driving task into supervising the automation with an occasional need to intervene. To develop interface solutions that adequately support drivers in this new role, this study proposes and evaluates an assessment framework that allows designers to evaluate driver-support within relevant real-world scenarios. Aspects identified as requiring assessment in terms of driver-support within the proposed framework are Accident Avoidance, gained Situation Awareness (SA) and Concept Acceptance. Measurement techniques selected to operationalise these aspects and the associated framework are pilot-tested with twenty-four participants in a driving simulator experiment. The objective of the test is to determine the reliability of the applied measurements for the assessment of the framework and whether the proposed framework is effective in predicting the level of support offered by the concepts. Based on the congruency between measurement scores produced in the test and scores with predefined differences in concept-support, this study demonstrates the framework's reliability. A remaining concern is the framework's weak sensitivity to small differences in offered support. The article concludes that applying the framework is especially advantageous for evaluating early design phases and can successfully contribute to the efficient development of driver's in-control and safe means of operating partially automated vehicles. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Strong biotic influences on regional patterns of climate regulation services

    NASA Astrophysics Data System (ADS)

    Serna-Chavez, H. M.; Swenson, N. G.; Weiser, M. D.; van Loon, E. E.; Bouten, W.; Davidson, M. D.; van Bodegom, P. M.

    2017-05-01

    Climate regulation services from forests are an important leverage in global-change mitigation treaties. Like most ecosystem services, climate regulation is the product of various ecological phenomena with unique spatial features. Elucidating which abiotic and biotic factors relate to spatial patterns of climate regulation services advances our understanding of what underlies climate-mitigation potential and its variation within and across ecosystems. Here we quantify and contrast the statistical relations between climate regulation services (albedo and evapotranspiration, primary productivity, and soil carbon) and abiotic and biotic factors. We focus on 16,955 forest plots in a regional extent across the eastern United States. We find the statistical effects of forest litter and understory carbon on climate regulation services to be as strong as those of temperature-precipitation interactions. These biotic factors likely influence climate regulation through changes in vegetation and canopy density, radiance scattering, and decomposition rates. We also find a moderate relation between leaf nitrogen traits and primary productivity at this regional scale. The statistical relation between climate regulation and temperature-precipitation ranges, seasonality, and climatic thresholds highlights a strong feedback with global climate change. Our assessment suggests the expression of strong biotic influences on climate regulation services at a regional, temperate extent. Biotic homogenization and management practices manipulating forest structure and succession will likely strongly impact climate-mitigation potential. The identity, strength, and direction of primary influences differed for each process involved in climate regulation. Hence, different abiotic and biotic factors are needed to monitor and quantify the full climate-mitigation potential of temperate forest ecosystems.

  9. Time lags and the balance of positive and negative interactions in driving grassland community dynamics.

    PubMed

    Farrer, Emily C; Goldberg, Deborah E; King, Aaron A

    2010-02-01

    Both facilitative and competitive interactions occur simultaneously among plants, and the net balance between them can vary over time. Despite this, recent model-fitting studies have found that negative interactions predominate. This suggests that more complex models may be necessary to uncover facilitation. Here we fitted models including seasonality, interannual variation, and time lags to survey data to test for patterns in positive and negative interactions among plants in a Michigan dry sand prairie. We hypothesized that interactions would be generally facilitative in this dry environment. Results indicate that most immediate (direct) interactions among dominant species are actually competitive, although interactions were more facilitative over the drier summer season. Interestingly, lagged density dependence was strong for all species in both seasons; it was positive for conspecific interactions and both positive and negative for heterospecific interactions. Observed lagged density dependence is likely due to effects from litter and/or past storage in rhizomes. Conspecific immediate and lagged interactions tended to be stronger than heterospecific interactions, suggesting that population dynamics in this community are driven mostly by conspecifics. Overall, the presence of strong lagged density dependence in this system suggests that it may be more widespread in plants than previously thought.

  10. Network Structure and Selection Asymmetry Drive Coevolution in Species-Rich Antagonistic Interactions.

    PubMed

    Andreazzi, Cecilia S; Thompson, John N; Guimarães, Paulo R

    2017-07-01

    Ecological interactions shape and are shaped by the evolution of interacting species. Mathematical models and empirical work have explored the multiple ways coevolution could occur in small sets of species, revealing that the addition of even one species can change the coevolutionary dynamics of a pairwise interaction. As a consequence, one of the current challenges in evolutionary biology is to understand how species-rich assemblages evolve and coevolve as networks of interacting species. We combined an adaptive network framework, a trait evolutionary model, and data on network structure to study how network organization affects and is affected by selection in antagonistic interactions such as parasitism, predation, and herbivory. We explored how selection imposed by interactions shapes the evolution of attack and defense traits, parameterizing our models with structural information from 31 empirical assemblages of antagonistic species. In the simulations, the form of coevolution in antagonistic interactions is affected by the intensity and asymmetry of the selection imposed by the interacting partners. Transient escalation in attack and defensive traits was the most prevalent form of coevolutionary dynamics, especially in networks formed by modules of highly interacting species. Fluctuating evolution of traits was observed when the intensity of selection was higher in exploiters than in victims and was especially favored in nested networks. At the species level, highly connected species experienced higher temporal variation in selection regardless of the network structure, resulting in high trait mismatching with their partners. The mismatched patterns of highly connected species, in turn, may explain the emergence of modularity in antagonistic interactions in which selection is stronger on exploiters than on their victims. Our results highlight the roles of different aspects of network structure on antagonistic coevolution: nestedness shapes coevolutionary

  11. The Importance of Biotic vs. Abiotic Drivers of Local Plant Community Composition Along Regional Bioclimatic Gradients

    PubMed Central

    Klanderud, Kari; Vandvik, Vigdis; Goldberg, Deborah

    2015-01-01

    We assessed if the relative importance of biotic and abiotic factors for plant community composition differs along environmental gradients and between functional groups, and asked which implications this may have in a warmer and wetter future. The study location is a unique grid of sites spanning regional-scale temperature and precipitation gradients in boreal and alpine grasslands in southern Norway. Within each site we sampled vegetation and associated biotic and abiotic factors, and combined broad- and fine-scale ordination analyses to assess the relative explanatory power of these factors for species composition. Although the community responses to biotic and abiotic factors did not consistently change as predicted along the bioclimatic gradients, abiotic variables tended to explain a larger proportion of the variation in species composition towards colder sites, whereas biotic variables explained more towards warmer sites, supporting the stress gradient hypothesis. Significant interactions with precipitation suggest that biotic variables explained more towards wetter climates in the sub alpine and boreal sites, but more towards drier climates in the colder alpine. Thus, we predict that biotic interactions may become more important in alpine and boreal grasslands in a warmer future, although more winter precipitation may counteract this trend in oceanic alpine climates. Our results show that both local and regional scales analyses are needed to disentangle the local vegetation-environment relationships and their regional-scale drivers, and biotic interactions and precipitation must be included when predicting future species assemblages. PMID:26091266

  12. The Importance of Biotic vs. Abiotic Drivers of Local Plant Community Composition Along Regional Bioclimatic Gradients.

    PubMed

    Klanderud, Kari; Vandvik, Vigdis; Goldberg, Deborah

    2015-01-01

    We assessed if the relative importance of biotic and abiotic factors for plant community composition differs along environmental gradients and between functional groups, and asked which implications this may have in a warmer and wetter future. The study location is a unique grid of sites spanning regional-scale temperature and precipitation gradients in boreal and alpine grasslands in southern Norway. Within each site we sampled vegetation and associated biotic and abiotic factors, and combined broad- and fine-scale ordination analyses to assess the relative explanatory power of these factors for species composition. Although the community responses to biotic and abiotic factors did not consistently change as predicted along the bioclimatic gradients, abiotic variables tended to explain a larger proportion of the variation in species composition towards colder sites, whereas biotic variables explained more towards warmer sites, supporting the stress gradient hypothesis. Significant interactions with precipitation suggest that biotic variables explained more towards wetter climates in the sub alpine and boreal sites, but more towards drier climates in the colder alpine. Thus, we predict that biotic interactions may become more important in alpine and boreal grasslands in a warmer future, although more winter precipitation may counteract this trend in oceanic alpine climates. Our results show that both local and regional scales analyses are needed to disentangle the local vegetation-environment relationships and their regional-scale drivers, and biotic interactions and precipitation must be included when predicting future species assemblages.

  13. Emission switching in carbon dots coated CdTe quantum dots driving by pH dependent hetero-interactions

    SciTech Connect

    Dai, Xiao; Wang, Hao; Yi, Qinghua; Wang, Yun; Cong, Shan; Zhao, Jie; Sun, Yinghui; Zou, Guifu E-mail: jiexiong@uestc.edu.cn; Qian, Zhicheng; Huang, Jianwen; Xiong, Jie E-mail: jiexiong@uestc.edu.cn; Luo, Hongmei

    2015-11-16

    Due to the different emission mechanism between fluorescent carbon dots and semiconductor quantum dots (QDs), it is of interest to explore the potential emission in hetero-structured carbon dots/semiconducting QDs. Herein, we design carbon dots coated CdTe QDs (CDQDs) and investigate their inherent emission. We demonstrate switchable emission for the hetero-interactions of the CDQDs. Optical analyses indicate electron transfer between the carbon dots and the CdTe QDs. A heterojunction electron process is proposed as the driving mechanism based on N atom protonation of the carbon dots. This work advances our understanding of the interaction mechanism of the heterostructured CDQDs and benefits the future development of optoelectronic nanodevices with new functionalities.

  14. Links between critical proteins drive the controllability of protein interaction networks.

    PubMed

    Wuchty, Stefan; Boltz, Toni; Küçük-McGinty, Hande

    2017-04-10

    Focusing on the interactomes of H. sapiens, S. cerevisiae, and E. coli, we investigated interactions between controlling proteins. In particular, we determined critical, intermittent, and redundant proteins based on their tendency to participate in minimum dominating sets (MDSets). Independently of the organisms considered, we found that interactions that involved critical nodes had the most prominent effects on the topology of their corresponding networks. Furthermore, we observed that phosphorylation and regulatory events were considerably enriched when the corresponding transcription factors and kinases were critical proteins, while such interactions were depleted when they were redundant proteins. Moreover, interactions involving critical proteins were enriched with essential genes, disease genes and drug targets, suggesting that such characteristics may be key for the detection of novel drug targets as well as assess their efficacy. This article is protected by copyright. All rights reserved.

  15. Stacking and Electrostatic Interactions Drive the Stereoselectivity of Silylium-Ion Asymmetric Counteranion-Directed Catalysis.

    PubMed

    Seguin, Trevor J; Wheeler, Steven E

    2016-12-19

    Computational analysis shows that the enantioselectivity of asymmetric Lewis-acid organocatalysis of the Diels-Alder cycloaddition of cyclopentadiene to cinnamates arises from stacking interactions that favor the addition of the diene to the more hindered face of the dienophile, while electrostatic interactions control the diastereoselectivity by selectively stabilizing the endo transition state. These results not only explain the stereoselectivity of these silylium-ion-ACDC reactions but should also guide the development of more effective ion-pairing asymmetric organocatalysts.

  16. Design and Implementation of High Interaction Client Honeypot for Drive-by-Download Attacks

    NASA Astrophysics Data System (ADS)

    Akiyama, Mitsuaki; Iwamura, Makoto; Kawakoya, Yuhei; Aoki, Kazufumi; Itoh, Mitsutaka

    Nowadays, the number of web-browser targeted attacks that lead users to adversaries' web sites and exploit web browser vulnerabilities is increasing, and a clarification of their methods and countermeasures is urgently needed. In this paper, we introduce the design and implementation of a new client honeypot for drive-by-download attacks that has the capacity to detect and investigate a variety of malicious web sites. On the basis of the problems of existing client honeypots, we enumerate the requirements of a client honeypot: 1) detection accuracy and variety, 2) collection variety, 3) performance efficiency, and 4) safety and stability. We improve our system with regard to these requirements. The key features of our developed system are stepwise detection focusing on exploit phases, multiple crawler processing, tracking of malware distribution networks, and malware infection prevention. Our evaluation of our developed system in a laboratory experiment and field experiment indicated that its detection variety and crawling performance are higher than those of existing client honeypots. In addition, our system is able to collect information for countermeasures and is secure and stable for continuous operation. We conclude that our system can investigate malicious web sites comprehensively and support countermeasures.

  17. Interactions of Multiple Atmospheric Circulation Drive the Drought in Tarim River Basin.

    PubMed

    Wu, Yong-Ping; Feng, Guo-Lin; Li, Bai-Lian

    2016-05-20

    Global warming is likely to cause overall drying of land surfaces and aridity increasing leading to expansion of dry climate zones. There is an increased risk of extremely arid environment and large deserts developed progressively in the central Asia. However, the key factors causing the drying in mid-Asia remain inconclusive. Here, we analyzed the relationship among precipitation, water vapor transportation in Tarim River Basin (TRB) and Multiple Atmospheric Circulation (MAC) to explore the mechanism of MAC driving the drying in TRB, through comparing MAC between abundant and scarce precipitation years. We found that Westerly Circulation (WC) and Asian Summer Monsoon (ASM) are likely to promote the precipitation respectively. Whereas, they not only have their own influence but also restrict each other and facilitate the forming of peculiar water vapor transport channel for TRB, which is probably to restrain the precipitation and its distribution pattern and accelerate the drying in this region. Our results enrich the findings on mechanisms of wet places becoming wetter while dry areas getting drier under the global warming.

  18. Interactions of Multiple Atmospheric Circulation Drive the Drought in Tarim River Basin

    NASA Astrophysics Data System (ADS)

    Wu, Yong-Ping; Feng, Guo-Lin; Li, Bai-Lian

    2016-05-01

    Global warming is likely to cause overall drying of land surfaces and aridity increasing leading to expansion of dry climate zones. There is an increased risk of extremely arid environment and large deserts developed progressively in the central Asia. However, the key factors causing the drying in mid-Asia remain inconclusive. Here, we analyzed the relationship among precipitation, water vapor transportation in Tarim River Basin (TRB) and Multiple Atmospheric Circulation (MAC) to explore the mechanism of MAC driving the drying in TRB, through comparing MAC between abundant and scarce precipitation years. We found that Westerly Circulation (WC) and Asian Summer Monsoon (ASM) are likely to promote the precipitation respectively. Whereas, they not only have their own influence but also restrict each other and facilitate the forming of peculiar water vapor transport channel for TRB, which is probably to restrain the precipitation and its distribution pattern and accelerate the drying in this region. Our results enrich the findings on mechanisms of wet places becoming wetter while dry areas getting drier under the global warming.

  19. Interactions of Multiple Atmospheric Circulation Drive the Drought in Tarim River Basin

    PubMed Central

    Wu, Yong-Ping; Feng, Guo-Lin; Li, Bai-Lian

    2016-01-01

    Global warming is likely to cause overall drying of land surfaces and aridity increasing leading to expansion of dry climate zones. There is an increased risk of extremely arid environment and large deserts developed progressively in the central Asia. However, the key factors causing the drying in mid-Asia remain inconclusive. Here, we analyzed the relationship among precipitation, water vapor transportation in Tarim River Basin (TRB) and Multiple Atmospheric Circulation (MAC) to explore the mechanism of MAC driving the drying in TRB, through comparing MAC between abundant and scarce precipitation years. We found that Westerly Circulation (WC) and Asian Summer Monsoon (ASM) are likely to promote the precipitation respectively. Whereas, they not only have their own influence but also restrict each other and facilitate the forming of peculiar water vapor transport channel for TRB, which is probably to restrain the precipitation and its distribution pattern and accelerate the drying in this region. Our results enrich the findings on mechanisms of wet places becoming wetter while dry areas getting drier under the global warming. PMID:27198665

  20. Post-shot analysis of plasma/rail interaction in a small bore load driving EML

    SciTech Connect

    Kolawolc, J.O.; Frierson, R.V. ); Clorhiaux, E.J. . Dept. of Physics); Gordon, C.E. ))

    1991-01-01

    This paper reports on the dynamics of an aluminum plasma armature in a small bore railgun at the Air Force Armament Laboratory (AFATL) Electromagnetic Launcher Research Facility which has been characterized using Scanning Electron Microscopy (SEM) and Auger Electron Spectroscopy (AES) (depth profiling and x-ray spectroscopy) techniques on rail samples exposed to a single passage of a plasma armature driving a load. These analyzes have for the first time suggested the existence of a thick layer of armature material (aluminum in this case) on all segments of the exposed rail surface with composition varying from pure metallic at the breech and oxidized aluminum (Al{sub 2}O{sub 3}) in other areas. The implications of the oxidized layer to railgun operation is yet to be established. However, the presence of oxidized aluminum on the rail surface would modify both the thermal and electrical characteristics of the rail surface in ways that degrade the performance of plasma armatures and may have implications on armature instability and the evolution of secondary arcs.

  1. Cell Surface CD74-MIF Interactions Drive Melanoma Survival in Response to Interferon-γ.

    PubMed

    Tanese, Keiji; Hashimoto, Yuuri; Berkova, Zuzana; Wang, Yuling; Samaniego, Felipe; Lee, Jeffrey E; Ekmekcioglu, Suhendan; Grimm, Elizabeth A

    2015-11-01

    Melanoma is believed to be a highly immunogenic tumor and recent developments in immunotherapies are promising. IFN-γ produced by immune cells has a crucial role in tumor immune surveillance; however, it has also been reported to be pro-tumorigenic. In the current study, we found that IFN-γ enhances the expression of CD74, which interacts with its ligand, macrophage migration inhibitory factor (MIF), and thereby activates the PI3K/AKT pathway in melanoma, promoting tumor survival. IFN-γ increased phosphorylation of AKT Ser473 and upregulated total cell surface expression of CD74 in human melanoma cell lines tested. CD74 was highly expressed in melanoma tissues. Moreover, the expression of CD74 on tumor cells correlated with plasma IFN-γ levels in melanoma patient samples. In our analysis of melanoma cell lines, all produced MIF constitutively. Blockade of CD74-MIF interaction reduced AKT phosphorylation and expression of pro-tumorigenic molecules, including IL-6, IL-8, and BCL-2. Inhibition of CD74-MIF interaction significantly suppressed tumor growth in the presence of IFN-γ in our xenograft mouse model. Thus, we conclude that IFN-γ promotes melanoma cell survival by regulating CD74-MIF signaling, suggesting that targeting the CD74-MIF interaction under IFN-γ-stimulatory conditions would be an effective therapeutic approach for melanoma.

  2. When do host-parasite interactions drive the evolution of non-random mating?

    PubMed

    Nuismer, Scott L; Otto, Sarah P; Blanquart, François

    2008-09-01

    Interactions with parasites may promote the evolution of disassortative mating in host populations as a mechanism through which genetically diverse offspring can be produced. This possibility has been confirmed through simulation studies and suggested for some empirical systems in which disassortative mating by disease resistance genotype has been documented. The generality of this phenomenon is unclear, however, because existing theory has considered only a subset of possible genetic and mating scenarios. Here we present results from analytical models that consider a broader range of genetic and mating scenarios and allow the evolution of non-random mating in the parasite as well. Our results confirm results of previous simulation studies, demonstrating that coevolutionary interactions with parasites can indeed lead to the evolution of host disassortative mating. However, our results also show that the conditions under which this occurs are significantly more fickle than previously thought, requiring specific forms of infection genetics and modes of non-random mating that do not generate substantial sexual selection. In cases where such conditions are not met, hosts may evolve random or assortative mating. Our analyses also reveal that coevolutionary interactions with hosts cause the evolution of non-random mating in parasites as well. In some cases, particularly those where mating occurs within groups, we find that assortative mating evolves sufficiently to catalyze sympatric speciation in the interacting species.

  3. The Assessment Interaction Plan--A Tool for Driving Performance Improvement through Analysis to Application

    ERIC Educational Resources Information Center

    Christensen, Brett; Barr, Jason

    2009-01-01

    The assessment interaction plan (AIP) is a performance support tool developed by members of the Canadian Defence Academy's Directorate of Learning Innovation. This article provides a brief overview of the performance gap that led to the creation of the AIP, its function within the overall courseware design process, a description of its components,…

  4. Herbivory drives large-scale spatial variation in reef fish trophic interactions

    PubMed Central

    Longo, Guilherme O; Ferreira, Carlos Eduardo L; Floeter, Sergio R

    2014-01-01

    Trophic interactions play a critical role in the structure and function of ecosystems. Given the widespread loss of biodiversity due to anthropogenic activities, understanding how trophic interactions respond to natural gradients (e.g., abiotic conditions, species richness) through large-scale comparisons can provide a broader understanding of their importance in changing ecosystems and support informed conservation actions. We explored large-scale variation in reef fish trophic interactions, encompassing tropical and subtropical reefs with different abiotic conditions and trophic structure of reef fish community. Reef fish feeding pressure on the benthos was determined combining bite rates on the substrate and the individual biomass per unit of time and area, using video recordings in three sites between latitudes 17°S and 27°S on the Brazilian Coast. Total feeding pressure decreased 10-fold and the composition of functional groups and species shifted from the northern to the southernmost sites. Both patterns were driven by the decline in the feeding pressure of roving herbivores, particularly scrapers, while the feeding pressure of invertebrate feeders and omnivores remained similar. The differential contribution to the feeding pressure across trophic categories, with roving herbivores being more important in the northernmost and southeastern reefs, determined changes in the intensity and composition of fish feeding pressure on the benthos among sites. It also determined the distribution of trophic interactions across different trophic categories, altering the evenness of interactions. Feeding pressure was more evenly distributed at the southernmost than in the southeastern and northernmost sites, where it was dominated by few herbivores. Species and functional groups that performed higher feeding pressure than predicted by their biomass were identified as critical for their potential to remove benthic biomass. Fishing pressure unlikely drove the large

  5. Herbivory drives large-scale spatial variation in reef fish trophic interactions.

    PubMed

    Longo, Guilherme O; Ferreira, Carlos Eduardo L; Floeter, Sergio R

    2014-12-01

    Trophic interactions play a critical role in the structure and function of ecosystems. Given the widespread loss of biodiversity due to anthropogenic activities, understanding how trophic interactions respond to natural gradients (e.g., abiotic conditions, species richness) through large-scale comparisons can provide a broader understanding of their importance in changing ecosystems and support informed conservation actions. We explored large-scale variation in reef fish trophic interactions, encompassing tropical and subtropical reefs with different abiotic conditions and trophic structure of reef fish community. Reef fish feeding pressure on the benthos was determined combining bite rates on the substrate and the individual biomass per unit of time and area, using video recordings in three sites between latitudes 17°S and 27°S on the Brazilian Coast. Total feeding pressure decreased 10-fold and the composition of functional groups and species shifted from the northern to the southernmost sites. Both patterns were driven by the decline in the feeding pressure of roving herbivores, particularly scrapers, while the feeding pressure of invertebrate feeders and omnivores remained similar. The differential contribution to the feeding pressure across trophic categories, with roving herbivores being more important in the northernmost and southeastern reefs, determined changes in the intensity and composition of fish feeding pressure on the benthos among sites. It also determined the distribution of trophic interactions across different trophic categories, altering the evenness of interactions. Feeding pressure was more evenly distributed at the southernmost than in the southeastern and northernmost sites, where it was dominated by few herbivores. Species and functional groups that performed higher feeding pressure than predicted by their biomass were identified as critical for their potential to remove benthic biomass. Fishing pressure unlikely drove the large

  6. Hydrophobic Interactions Are Key To Drive the Association of Tapasin with Peptide Transporter Subunit TAP2.

    PubMed

    Rufer, Elke; Kägebein, Danny; Leonhardt, Ralf M; Knittler, Michael R

    2015-12-01

    The transporter associated with Ag processing (TAP) translocates proteasomally derived cytosolic peptides into the endoplasmic reticulum. TAP is a central component of the peptide-loading complex (PLC), to which tapasin (TPN) recruits MHC class I (MHC I) and accessory chaperones. The PLC functions to facilitate and optimize MHC I-mediated Ag presentation. The heterodimeric peptide transporter consists of two homologous subunits, TAP1 and TAP2, each of which contains an N-terminal domain (N-domain) in addition to a conserved transmembrane (TM) core segment. Each N-domain binds to the TM region of a single TPN molecule, which recruits one MHC I molecule to TAP1 and/or TAP2. Although both N-domains act as TPN-docking sites, various studies suggest a functional asymmetry within the PLC resulting in greater significance of the TAP2/TPN interaction for MHC loading. In this study, we demonstrate that the leucine-rich hydrophobic sequence stretches (with the central leucine residues L20 and L66) in the first and second TM helix of TAP2 form a functional unit acting as a docking site for optimal TPN/MHC I recruitment, whereas three distinct highly conserved arginine and/or aspartate residues inside or flanking these TM helices are dispensable. Moreover, we show that the physical interaction between TAP2 and TPN is disrupted by benzene, a compound known to interfere with hydrophobic interactions, such as those between pairing leucine zippers. No such effects were observed for the TAP1/TAP2 interaction or the complex formation between TPN and MHC I. We propose that TAP/TPN complex formation is driven by hydrophobic interactions via leucine zipper-like motifs. Copyright © 2015 by The American Association of Immunologists, Inc.

  7. Interactions Within Susceptible Hosts Drive Establishment of Genetically Distinct Variants of an Insect-Borne Pathogen.

    PubMed

    Blaisdell, G K; Zhang, S; Bratburd, J R; Daane, K M; Cooper, M L; Almeida, R P P

    2015-08-01

    Coinfections are common, leading to pathogen interactions during transmission and establishment in a host. However, few studies have tested the relative strengths of pathogen interactions in vectors and hosts that determine the outcome of infection. We tested interactions between two genetically distinct variants of the mealybug-transmitted Grapevine leafroll-associated virus 3. The transmission efficiency of each variant in single variant inoculations by two vector species was determined. The effects of vector species, a coinfected source, and simultaneous inoculation from multiple hosts to one host on variant establishment were examined. Within-vector interactions could have a role in transmission from hosts containing mixed infections, but not when vectors were moved from separate singly infected source plants to a single recipient plant. The invasive Planococcus ficus (Signoret) was a more efficient vector than Pseudococcus viburni (Signoret). Transmission efficiency of the two variants did not differ in single variant inoculations. Overall infections were the same whether from singly or coinfected source plants. In mixed inoculations, establishment of one variant was reduced. Mixed inoculations from two singly infected source plants resulted in fewer mixed infections than expected by chance. Therefore, the observed outcome was determined subsequent to host inoculation rather than in the vector. The outcome may be due to resource competition between pathogens. Alternatively apparent competition may be responsible; the pathogens' differential ability to overcome host defenses and colonize the host may determine the final outcome of new infections. Detailed knowledge of interactions between pathogens during transmission and establishment could improve understanding and management of disease spread.

  8. Inference of targeted interactions of networks with data of driving and driven nodes only by applying fast-varying noise signals

    NASA Astrophysics Data System (ADS)

    Zhang, Chaoyang; Chen, Yang; Hu, Gang

    2017-08-01

    Most complex social, biological and technological systems can be described by dynamic networks. Reconstructing network structures from measurable data is a fundamental problem in almost all interdisciplinary fields. Network nodes interact to each other, therefore, the accurate reconstruction of any interaction to a node requires data measurements of all its neighboring nodes. When networks are large, these data are often unavailable and thus network inference turns to be difficult. Here, we propose a method to use fast-varying noise driving (FVND) to enhance targeted interactions. With applications of noise driving we can infer any interaction from a driving node to a driven node with known data of these two nodes only while all other nodes are hidden, though the driven node may be actually driven by a large number of hidden nodes. Analytical derivation of the FVND method is conducted and numerical simulations perfectly justify the theoretical derivation.

  9. Cross Interaction Drives Stratification in Drying Film of Binary Colloidal Mixtures

    NASA Astrophysics Data System (ADS)

    Zhou, Jiajia; Jiang, Ying; Doi, Masao

    2017-03-01

    When a liquid film of a colloidal solution consisting of particles of different sizes is dried on a substrate, the colloids often stratify, where smaller colloids are laid upon larger colloids. This phenomenon is counterintuitive because larger colloids which have a smaller diffusion constant, are expected to remain near the surface during the drying process, leaving a layer of larger colloids on top of smaller colloids. Here we show that the phenomenon is caused by the interaction between the colloids, and can be explained by a diffusion model accounting for the interaction between the colloids. By studying the evolution equations both numerically and analytically, we derive the condition at which the stratified structures are obtained.

  10. Planar Laser-Plasma Interaction Experiments at Direct-Drive Ignition-Relevant Scale Lengths at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Rosenberg, M. J.; Solodov, A. A.; Seka, W.; Myatt, J. F.; Regan, S. P.; Hohenberger, M.; Epstein, R.; Froula, D. H.; Radha, P. B.; Michel, P. A.; Moody, J. D.; Masse, L.; Goyon, C.; Turnbull, D. P.; Barrios, M. A.; Bates, J. W.; Schmitt, A. J.

    2016-10-01

    The first experiments at the National Ignition Facility to probe laser-plasma interactions and the hot electron production at scale lengths relevant to direct-drive ignition are reported. The irradiation on one side of planar CH foils generated a plasma at the quarter-critical surface with predicted density scale lengths of Ln 600 μm, measured electron temperatures of Te 3.5 to 4.0 keV, and overlapped laser intensities of I 6 to 15 ×1014W/cm2. Optical emission from stimulated Raman scattering (SRS) and at ω/2 are correlated with the time-dependent hard x-ray signal. The fraction of laser energy converted to hot electrons increased from 0.5 % to 2.3 % as the laser intensity increased from 6 to 15 ×1014W/cm2, while the hot electron temperature was nearly constant around 40 to 50 keV. Only a sharp red-shifted feature is observed around ω/2, and both refracted and sidescattered SRS are detected, suggesting that multibeam SRS contributes to, and may even dominate, hot-electron production. These results imply a diminished presence of two-plasmon decay relative to SRS at these conditions, which has implications for hot-electron preheat mitigation strategies for direct-drive ignition. This work is supported by the DOE NNSA under Award Number DE-NA0001944.

  11. Do Perturbed Epithelial-Mesenchymal Interactions Drive Early Stages of Carcinogenesis?

    DTIC Science & Technology

    2005-04-01

    version of holism-author’s note), Altered communication among cells is at the core of the autonomy was understood in terms of ’ totipotency ’, the pos- TOFT...of Cells : Cancer and Control of Cell Proliferation. New York, Springer Verlag, 1999, pp. 99-111 18. Illmensee K, Mintz B: Totipotency and normal...involved in tumorstromal cell interactions as mediators of neoplastic initiation and progression. 15. SUBJECT TERMS Carcinogenesis, tissue transplants

  12. Built Expansion and Global Climate Change Drive Projected Urban Heat: Relative Magnitudes, Interactions, and Mitigation

    NASA Astrophysics Data System (ADS)

    Krayenhoff, E. S.; Georgescu, M.; Moustaoui, M.

    2016-12-01

    Surface climates are projected to warm due to global climate change over the course of the 21st century, and demographic projections suggest urban areas in the United States will continue to expand and develop, with associated local climate outcomes. Interactions between these two drivers of urban heat have not been robustly quantified to date. Here, simulations with the Weather Research and Forecasting model (coupled to a Single-Layer Urban Canopy Model) are performed at 20 km resolution over the continental U.S. for two 10-year periods: contemporary (2000-2009) and end-of-century (2090-2099). Present and end of century urban land use are derived from the Environmental Protection Agency's Integrated Climate and Land-Use Scenarios. Modelled effects on urban climates are evaluated regionally. Sensitivity to climate projection (Community Climate System Model 4.0, RCP 4.5 vs. RCP 8.5) and associated urban development scenarios are assessed. Effects on near-surface urban air temperature of RCP8.5 climate change are greater than those attributable to the corresponding urban development in many regions. Interaction effects vary by region, and while of lesser magnitude, are not negligible. Moreover, urban development and its interactions with RCP8.5 climate change modify the distribution of convective precipitation over the eastern US. Interaction effects result from the different meteorological effects of urban areas under current and future climate. Finally, the potential for design implementations such as green roofs and high albedo roofs to offset the projected warming is considered. Impacts of these implementations on precipitation are also assessed.

  13. Biotic Proxies For Ocean Acidification?

    NASA Astrophysics Data System (ADS)

    Thomas, E.

    2013-12-01

    Present and future high atmospheric pCO2 levels have caused acidification of the oceans, which has led to studies of past ocean acidification and its biotic response in the geological record (1). Therefore we need proxies for past acidification. Geochemical proxies for ocean pH are being developed (e.g., boron based), and various trace element and stable isotope proxies in part reflect carbonate saturation levels. In addition to geochemical proxies, the relative abundances of some benthic foraminiferal species might serve as proxies for the saturation state of bottom or pore waters. In general, pore waters are less carbonate-saturated than bottom waters, and infaunal benthic foraminifera calcify in such less saturated waters. The relative abundance of infaunal species of benthic foraminifera has commonly been used as a proxy for a high food supply (and/or oxygen depleted bottom or pore waters). This proxy (infaunal %), however, can be used to indicate high food/low oxygen ONLY in the absence of evidence for carbonate dissolution, and is a qualitative proxy for carbonate undersaturation of bottom and pore waters in the presence of such evidence (2). The living species Nuttallides umbonifer can calcify in carbonate-corrosive waters (i.e., below the lysocline), and its extinct Paleogene ancestor N. truempyi may have had a similar tolerance, in view of the fact that it is a deep-water species and commonly abundant in samples which otherwise contain agglutinant taxa only. The pattern of deep-sea benthic foraminiferal abundances across the Paleocene Eocene Thermal Maximum at South Atlantic Site 1263 (Walvis Ridge) can then be interpreted as a time sequence indicative of full dissolution (no calcareous benthics) at the start of the event, followed by strong dissolution (mainly infaunal taxa with relatively high % of N. truempyi), moderate dissolution (high % of N. truempyi), and return to background conditions. On the opposite extreme, extinction of pelagic calcifiers at

  14. RAC1 activation drives pathologic interactions between the epidermis and immune cells

    PubMed Central

    Winge, Mårten C.G.; Ohyama, Bungo; Dey, Clara N.; Boxer, Lisa M.; Li, Wei; Ehsani-Chimeh, Nazanin; Truong, Allison K.; Wu, Diane; Armstrong, April W.; Makino, Teruhiko; Davidson, Matthew; Starcevic, Daniela; Nguyen, Ngon T.; Hashimoto, Takashi; Homey, Bernard; Khavari, Paul A.; Bradley, Maria; Waterman, Elizabeth A.; Marinkovich, M. Peter

    2016-01-01

    Interactions between the epidermis and the immune system govern epidermal tissue homeostasis. These epidermis-immune interactions are altered in the inflammatory disease psoriasis; however, the pathways that underlie this aberrant immune response are not well understood. Here, we determined that Ras-related C3 botulinum toxin substrate 1 (RAC1) is a key mediator of epidermal dysfunction. RAC1 activation was consistently elevated in psoriatic epidermis and primary psoriatic human keratinocytes (PHKCs) exposed to psoriasis-related stimuli, but not in skin from patients with basal or squamous cell carcinoma. Expression of a constitutively active form of RAC1 (RACV12) in mice resulted in the development of lesions similar to those of human psoriasis that required the presence of an intact immune system. RAC1V12-expressing mice and human psoriatic skin showed similar RAC1-dependent signaling as well as transcriptional overlap of differentially expressed epidermal and immune pathways. Coculture of PHKCs with immunocytes resulted in the upregulation of RAC1-dependent proinflammatory cytokines, an effect that was reproduced by overexpressing RAC1 in normal human keratinocytes. In keratinocytes, modulating RAC1 activity altered differentiation, proliferation, and inflammatory pathways, including STAT3, NFκB, and zinc finger protein 750 (ZNF750). Finally, RAC1 inhibition in xenografts composed of human PHKCs and immunocytes abolished psoriasiform hyperplasia and inflammation in vivo. These studies implicate RAC1 as a potential therapeutic target for psoriasis and as a key orchestrator of pathologic epidermis-immune interactions. PMID:27294528

  15. MUC13 Interaction with Receptor Tyrosine Kinase HER2 Drives Pancreatic Ductal Adenocarcinoma Progression

    PubMed Central

    Khan, Sheema; Sikander, Mohammed; Ebeling, Mara C.; Ganju, Aditya; Kumari, Sonam; Yallapu, Murali M.; Hafeez, Bilal Bin; Ise, Tomoko; Nagata, Satoshi; Zafar, Nadeem; Behrman, Stephen W.; Wan, Jim Y.; Ghimire, Hemendra M.; Sahay, Peeyush; Pradhan, Prabhakar; Chauhan, Subhash C.; Jaggi, Meena

    2016-01-01

    Although MUC13, a transmembrane mucin, is aberrantly expressed in pancreatic ductal adenocarcinoma (PDAC) and generally correlates with increased expression of HER2, the underlying mechanism remains poorly understood. Herein, we found that MUC13 co-localizes and interacts with HER2 in PDAC cells (reciprocal co-immunoprecipitation, immunofluorescence, proximity ligation, co-capping assays) and tissues (immunohistofluorescence). The results from this study demonstrate that MUC13 functionally interacts and activates HER2 at p1248 in PDAC cells, leading to stimulation of HER2 signaling cascade including, ERK1/2, FAK, AKT and PAK1 as well as regulation of the growth, cytoskeleton remodeling and motility and invasion of PDAC cells - all collectively contributing to PDAC progression. Interestingly, all of these phenotypic effects of MUC13-HER2 co-localization could be effectively compromised by depleting MUC13 and mediated by the first and second EGF-like domains of MUC13. Further, MUC13-HER2 co-localization also holds true in PDAC tissues with a strong functional correlation with events contributing to increased degree of disorder and cancer aggressiveness. In brief, findings presented here provide compelling evidence of a functional ramification of MUC13-HER2: this interaction could be potentially exploited for targeted therapeutics in a subset of patients harboring an aggressive form of PDAC. PMID:27321183

  16. Cholesterol drives aβ(1-42) interaction with lipid rafts in model membranes.

    PubMed

    Seghezza, Silvia; Diaspro, Alberto; Canale, Claudio; Dante, Silvia

    2014-11-25

    The molecular mechanism at the basis of the neurodegenerative process related to Alzheimer's disease (AD) is triggered by the local composition of the neural plasma membrane. The role of cholesterol is controversial. In this investigation the interaction of the AD peptide amyloid-beta (1-42) with model membranes containing lipid rafts has been investigated by atomic force microscopy techniques. Supported lipid membranes made of phospholipids/sphingomyelin/cholesterol have been investigated as a function of the molar content of cholesterol, in a range spanning the phase diagram of the lipid system. The administration of amyloid-beta induced a phase reorganization of the lipid domains, when the cholesterol molar fraction was below 5%. At the same time, a mechanical destabilization and an appreciable thinning of the membrane induced by the peptide were detected. The major interaction was observed in the presence of the gel phase Lβ, and was enhanced by a low cholesterol amount. With the appearance of the liquid ordered phase Lo, the effect was hindered. At high cholesterol content (20% mol), no detectable effects in the bilayer morphology or in its mechanical stability were recorded. These findings give new insights on the molecular mechanism of the amyloid/membrane interaction, highlighting the peculiar role of cholesterol.

  17. RAC1 activation drives pathologic interactions between the epidermis and immune cells.

    PubMed

    Winge, Mårten C G; Ohyama, Bungo; Dey, Clara N; Boxer, Lisa M; Li, Wei; Ehsani-Chimeh, Nazanin; Truong, Allison K; Wu, Diane; Armstrong, April W; Makino, Teruhiko; Davidson, Matthew; Starcevic, Daniela; Kislat, Andreas; Nguyen, Ngon T; Hashimoto, Takashi; Homey, Bernard; Khavari, Paul A; Bradley, Maria; Waterman, Elizabeth A; Marinkovich, M Peter

    2016-07-01

    Interactions between the epidermis and the immune system govern epidermal tissue homeostasis. These epidermis-immune interactions are altered in the inflammatory disease psoriasis; however, the pathways that underlie this aberrant immune response are not well understood. Here, we determined that Ras-related C3 botulinum toxin substrate 1 (RAC1) is a key mediator of epidermal dysfunction. RAC1 activation was consistently elevated in psoriatic epidermis and primary psoriatic human keratinocytes (PHKCs) exposed to psoriasis-related stimuli, but not in skin from patients with basal or squamous cell carcinoma. Expression of a constitutively active form of RAC1 (RACV12) in mice resulted in the development of lesions similar to those of human psoriasis that required the presence of an intact immune system. RAC1V12-expressing mice and human psoriatic skin showed similar RAC1-dependent signaling as well as transcriptional overlap of differentially expressed epidermal and immune pathways. Coculture of PHKCs with immunocytes resulted in the upregulation of RAC1-dependent proinflammatory cytokines, an effect that was reproduced by overexpressing RAC1 in normal human keratinocytes. In keratinocytes, modulating RAC1 activity altered differentiation, proliferation, and inflammatory pathways, including STAT3, NFκB, and zinc finger protein 750 (ZNF750). Finally, RAC1 inhibition in xenografts composed of human PHKCs and immunocytes abolished psoriasiform hyperplasia and inflammation in vivo. These studies implicate RAC1 as a potential therapeutic target for psoriasis and as a key orchestrator of pathologic epidermis-immune interactions.

  18. Electrostatic contributions drive the interaction between Staphylococcus aureus protein Efb-C and its complement target C3d.

    PubMed

    Haspel, Nurit; Ricklin, Daniel; Geisbrecht, Brian V; Kavraki, Lydia E; Lambris, John D

    2008-11-01

    The C3-inhibitory domain of Staphylococcus aureus extracellular fibrinogen-binding protein (Efb-C) defines a novel three-helix bundle motif that regulates complement activation. Previous crystallographic studies of Efb-C bound to its cognate subdomain of human C3 (C3d) identified Arg-131 and Asn-138 of Efb-C as key residues for its activity. In order to characterize more completely the physical and chemical driving forces behind this important interaction, we employed in this study a combination of structural, biophysical, and computational methods to analyze the interaction of C3d with Efb-C and the single-point mutants R131A and N138A. Our results show that while these mutations do not drastically affect the structure of the Efb-C/C3d recognition complex, they have significant adverse effects on both the thermodynamic and kinetic profiles of the resulting complexes. We also characterized other key interactions along the Efb-C/C3d binding interface and found an intricate network of salt bridges and hydrogen bonds that anchor Efb-C to C3d, resulting in its potent complement inhibitory properties.

  19. Electrostatic Contributions Drive the Interaction Between Staphylococcus aureus Protein Efb-C and its Complement Target C3d

    SciTech Connect

    Haspel, N.; Ricklin, D.; Geisbrecht, B.V.; Kavraki, L.E.; Lambris, J.D.

    2008-11-13

    The C3-inhibitory domain of Staphylococcus aureus extracellular fibrinogen-binding protein (Efb-C) defines a novel three-helix bundle motif that regulates complement activation. Previous crystallographic studies of Efb-C bound to its cognate subdomain of human C3 (C3d) identified Arg-131 and Asn-138 of Efb-C as key residues for its activity. In order to characterize more completely the physical and chemical driving forces behind this important interaction, we employed in this study a combination of structural, biophysical, and computational methods to analyze the interaction of C3d with Efb-C and the single-point mutants R131A and N138A. Our results show that while these mutations do not drastically affect the structure of the Efb-C/C3d recognition complex, they have significant adverse effects on both the thermodynamic and kinetic profiles of the resulting complexes. We also characterized other key interactions along the Efb-C/C3d binding interface and found an intricate network of salt bridges and hydrogen bonds that anchor Efb-C to C3d, resulting in its potent complement inhibitory properties.

  20. Understanding the dynamic interactions driving Zambian health centre performance: a case-based health systems analysis

    PubMed Central

    Topp, Stephanie M; Chipukuma, Julien M; Hanefeld, Johanna

    2015-01-01

    Background Despite being central to achieving improved population health outcomes, primary health centres in low- and middle-income settings continue to underperform. Little research exists to adequately explain how and why this is the case. This study aimed to test the relevance and usefulness of an adapted conceptual framework for improving our understanding of the mechanisms and causal pathways influencing primary health centre performance. Methods A theory-driven, case-study approach was adopted. Four Zambian health centres were purposefully selected with case data including health-care worker interviews (n = 60); patient interviews (n = 180); direct observation of facility operations (2 weeks/centre) and key informant interviews (n = 14). Data were analysed to understand how the performance of each site was influenced by the dynamic interactions between system ‘hardware’ and ‘software’ acting on mechanisms of accountability. Findings Structural constraints including limited resources created challenging service environments in which work overload and stockouts were common. Health workers’ frustration with such conditions interacted with dissatisfaction with salary levels eroding service values and acting as a catalyst for different forms of absenteeism. Such behaviours exacerbated patient–provider ratios and increased the frequency of clinical and administrative shortcuts. Weak health information systems and lack of performance data undermined providers’ answerability to their employer and clients, and a lack of effective sanctions undermined supervisors’ ability to hold providers accountable for these transgressions. Weak answerability and enforceability contributed to a culture of impunity that masked and condoned weak service performance in all four sites. Conclusions Health centre performance is influenced by mechanisms of accountability, which are in turn shaped by dynamic interactions between system hardware and system software. Our

  1. CCL2 Mediates Neuron-Macrophage Interactions to Drive Proregenerative Macrophage Activation Following Preconditioning Injury.

    PubMed

    Kwon, Min Jung; Shin, Hae Young; Cui, Yuexian; Kim, Hyosil; Thi, Anh Hong Le; Choi, Jun Young; Kim, Eun Young; Hwang, Dong Hoon; Kim, Byung Gon

    2015-12-02

    CNS neurons in adult mammals do not spontaneously regenerate axons after spinal cord injury. Preconditioning peripheral nerve injury allows the dorsal root ganglia (DRG) sensory axons to regenerate beyond the injury site by promoting expression of regeneration-associated genes. We have previously shown that peripheral nerve injury increases the number of macrophages in the DRGs and that the activated macrophages are critical to the enhancement of intrinsic regeneration capacity. The present study identifies a novel chemokine signal mediated by CCL2 that links regenerating neurons with proregenerative macrophage activation. Neutralization of CCL2 abolished the neurite outgrowth activity of conditioned medium obtained from neuron-macrophage cocultures treated with cAMP. The neuron-macrophage interactions that produced outgrowth-promoting conditioned medium required CCL2 in neurons and CCR2/CCR4 in macrophages. The conditioning effects were abolished in CCL2-deficient mice at 3 and 7 d after sciatic nerve injury, but CCL2 was dispensable for the initial growth response and upregulation of GAP-43 at the 1 d time point. Intraganglionic injection of CCL2 mimicked conditioning injury by mobilizing M2-like macrophages. Finally, overexpression of CCL2 in DRGs promoted sensory axon regeneration in a rat spinal cord injury model without harmful side effects. Our data suggest that CCL2-mediated neuron-macrophage interaction plays a critical role for amplification and maintenance of enhanced regenerative capacity by preconditioning peripheral nerve injury. Manipulation of chemokine signaling mediating neuron-macrophage interactions may represent a novel therapeutic approach to promote axon regeneration after CNS injury.

  2. Safety and interaction of patients with implantable cardiac defibrillators driving a hybrid vehicle.

    PubMed

    Tondato, Fernando; Bazzell, Jane; Schwartz, Linda; Mc Donald, Bruce W; Fisher, Robert; Anderson, S Shawn; Galindo, Arcenio; Dueck, Amylou C; Scott, Luis R

    2017-01-15

    Electromagnetic interference (EMI) can affect the function of implantable cardioverter defibrillators (ICD). Hybrid electric vehicles (HEV) have increased popularity and are a potential source of EMI. Little is known about the in vivo effects of EMI generated by HEV on ICD. This study evaluated the in vivo interaction between EMI generated by HEV with ICD. Thirty patients (73±9 y/o; 80% male) with stable ICD function were exposed to EMI generated by a Toyota Prius Hybrid®. The vehicle was lifted above the ground, allowing safe changes in engine rotation and consequent variations in electromagnetic emission. EMI was measured (NARDA STS® model EHP-50C) and expressed in A/m (magnetic), Volts/m (electrical), and Hertz (frequency). Six positions were evaluated: driver, front passenger, right and left back seats, outside, at the back and front of the car. Each position was evaluated at idle, 30 mph, 60 mph and variable speeds (acceleration-deceleration-brake). All ICD devices were continuously monitored during the study. The levels of EMI generated were low (highest mean levels: 2.09A/m at right back seat at 30 mph; and 3.5V/m at driver seat at variable speeds). No episode of oversensing or inadvertent change in ICD programming was observed. It is safe for patients with ICD to interact with HEV. This is the first study to address this issue using an in vivo model. Further studies are necessary to evaluate the interaction of different models of HEV or electric engine with ICD or unipolar pacemakers. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. Driving Force Analysis in an Infinite Anisotropic Plate with Multiple Crack Interactions

    NASA Technical Reports Server (NTRS)

    Binienda, Wieslaw K.; Arnold, Steven M.

    1995-01-01

    The methodology and a rigorous solution formulation are presented for stress intensity factors (SIF's, k) and total strain energy release rates (SERR, G(sub T)) of a multicracked plate, that has fully interacting cracks and is subjected to a far-field arbitrary stress state. The fundamental perturbation problem is derived, and the steps needed to formulate the system of singular integral equations whose solution gives rise to the evaluation of the SIF's are identified. Parametric studies are conducted for two, three, and four crack problems. The sensitivity and characteristics of the model is demonstrated.

  4. Electrostatic Interactions between Elongated Monomers Drive Filamentation of Drosophila Shrub, a Metazoan ESCRT-III Protein.

    PubMed

    McMillan, Brian J; Tibbe, Christine; Jeon, Hyesung; Drabek, Andrew A; Klein, Thomas; Blacklow, Stephen C

    2016-08-02

    The endosomal sorting complex required for transport (ESCRT) is a conserved protein complex that facilitates budding and fission of membranes. It executes a key step in many cellular events, including cytokinesis and multi-vesicular body formation. The ESCRT-III protein Shrub in flies, or its homologs in yeast (Snf7) or humans (CHMP4B), is a critical polymerizing component of ESCRT-III needed to effect membrane fission. We report the structural basis for polymerization of Shrub and define a minimal region required for filament formation. The X-ray structure of the Shrub core shows that individual monomers in the lattice interact in a staggered arrangement using complementary electrostatic surfaces. Mutations that disrupt interface salt bridges interfere with Shrub polymerization and function. Despite substantial sequence divergence and differences in packing interactions, the arrangement of Shrub subunits in the polymer resembles that of Snf7 and other family homologs, suggesting that this intermolecular packing mechanism is shared among ESCRT-III proteins.

  5. Impact of risk attitudes and perception on game theoretic driving interactions and safety.

    PubMed

    Arbis, David; Dixit, Vinayak V; Rashidi, Taha Hossein

    2016-09-01

    This study employs game theory to investigate behavioural norms of interaction between drivers at a signalised intersection. The choice framework incorporates drivers' risk perception as well as their risk attitudes. A laboratory experiment is conducted to study the impact of risk attitudes and perception in crossing behaviour at a signalised intersection. The laboratory experiment uses methods from experimental economics to induce incentives and study revealed behaviour. Conflicting drivers are considered to have symmetric disincentives for crashing, to represent a no-fault car insurance environment. The study is novel as it uses experimental data collection methods to investigate perceived risk. Further, it directly integrates perceived risk of crashing with other active drivers into the modelling structure. A theoretical model of intersection crossing behaviour is also developed in this paper. This study shows that right-of-way entitlements assigned without authoritative penalties to at-fault drivers may still improve perceptions of safety. Further, risk aversion amongst drivers attributes to manoeuvring strategies at or below Nash mixed strategy equilibrium. These findings offer a theoretical explanation for interactive manoeuvres that lead to crashes, as opposed to purely statistical methods which provide correlation but not necessarily explanation.

  6. Fitness Ranking of Individual Mutants Drives Patterns of Epistatic Interactions in HIV-1

    PubMed Central

    Ignatovich, Anna; Reiter, Jochen; Dittmar, Matthias T.; Wain-Hobson, Simon; Meyerhans, Andreas

    2011-01-01

    Fitness interactions between mutations, referred to as epistasis, can strongly impact evolution. For RNA viruses and retroviruses with their high mutation rates, epistasis may be particularly important to overcome fitness losses due to the accumulation of deleterious mutations and thus could influence the frequency of mutants in a viral population. As human immunodeficiency virus type 1 (HIV-1) resistance to azidothymidine (AZT) requires selection of sequential mutations, it is a good system to study the impact of epistasis. Here we present a thorough analysis of a classical AZT-resistance pathway (the 41–215 cluster) of HIV-1 variants by fitness measurements in single round infection assays covering physiological drug concentrations ex vivo. The sign and value of epistasis varied and did not predict the epistatic effect on the mutant frequency. This complex behavior is explained by the fitness ranking of the variants that strongly depends on environmental factors, i.e., the presence and absence of drugs and the host cells used. Although some interactions compensate fitness losses, the observed small effect on the relative mutant frequencies suggests that epistasis might be inefficient as a buffering mechanism for fitness losses in vivo. While the use of epistasis-based hypotheses to make general assumptions on the evolutionary dynamics of viral populations is appealing, our data caution their interpretation without further knowledge on the characteristics of the viral mutant spectrum under different environmental conditions. PMID:21483787

  7. Hydrophobic interactions drive ligand-receptor recognition for activation and inhibition of staphylococcal quorum sensing.

    PubMed

    Wright, Jesse S; Lyon, Gholson J; George, Elizabeth A; Muir, Tom W; Novick, Richard P

    2004-11-16

    Two-component systems represent the most widely used signaling paradigm in living organisms. Encoding the prototypical two-component system in Gram-positive bacteria, the staphylococcal agr (accessory gene regulator) operon uses a polytopic receptor, AgrC, activated by an autoinducing peptide (AIP), to coordinate quorum sensing with the global synthesis of virulence factors. The agr locus has undergone evolutionary divergence, resulting in the formation of several distinct inter- and intraspecies specificity groups, such that most cross-group AIP-receptor interactions are mutually inhibitory. We have exploited this natural diversity by constructing and analyzing AgrC chimeras generated by exchange of intradomain segments between receptors of different agr groups. Functional chimeras fell into three general classes: receptors with broadened specificity, receptors with tightened specificity, and receptors that lack activation specificity. Testing of these chimeric receptors against a battery of AIP analogs localized the primary ligand recognition site to the receptor distal subdomain and revealed that the AIPs bind primarily to a putative hydrophobic pocket in the receptor. This binding is mediated by a highly conserved hydrophobic patch on the AIPs and is an absolute requirement for interactions in self-activation and cross-inhibition of the receptors. It is suggested that this recognition scheme provides the fundamental basis for agr activation and interference.

  8. Syntrophic interactions drive the hydrogen production from glucose at low temperature in microbial electrolysis cells.

    PubMed

    Lu, Lu; Xing, Defeng; Ren, Nanqi; Logan, Bruce E

    2012-11-01

    H(2) can be obtained from glucose by fermentation at mesophilic temperatures, but here we demonstrate that hydrogen can also be obtained from glucose at low temperatures using microbial electrolysis cells (MECs). H(2) was produced from glucose at 4°C in single-chamber MECs at a yield of about 6 mol H(2)mol(-1) glucose, and at rates of 0.25±0.03-0.37±0.04 m(3) H(2)m(-3)d(-1). Pyrosequencing of 16S rRNA gene and electrochemical analyses showed that syntrophic interactions combining glucose fermentation with the oxidization of fermentation products by exoelectrogens was the predominant pathway for current production at a low temperature other than direct glucose oxidization by exoelectrogens. Another syntrophic interaction, methanogenesis and homoacetogenesis, which have been found in 25°C reactors, were not detected in MECs at 4°C. These results demonstrate the feasibility of H(2) production from abundant biomass of carbohydrates at low temperature in MECs.

  9. Social interactions among grazing reef fish drive material flux in a coral reef ecosystem.

    PubMed

    Gil, Michael A; Hein, Andrew M

    2017-04-10

    In human financial and social systems, exchanges of information among individuals cause speculative bubbles, behavioral cascades, and other correlated actions that profoundly influence system-level function. Exchanges of information are also widespread in ecological systems, but their effects on ecosystem-level processes are largely unknown. Herbivory is a critical ecological process in coral reefs, where diverse assemblages of fish maintain reef health by controlling the abundance of algae. Here, we show that social interactions have a major effect on fish grazing rates in a reef ecosystem. We combined a system for observing and manipulating large foraging areas in a coral reef with a class of dynamical decision-making models to reveal that reef fish use information about the density and actions of nearby fish to decide when to feed on algae and when to flee foraging areas. This "behavioral coupling" causes bursts of feeding activity that account for up to 68% of the fish community's consumption of algae. Moreover, correlations in fish behavior induce a feedback, whereby each fish spends less time feeding when fewer fish are present, suggesting that reducing fish stocks may not only reduce total algal consumption but could decrease the amount of algae each remaining fish consumes. Our results demonstrate that social interactions among consumers can have a dominant effect on the flux of energy and materials through ecosystems, and our methodology paves the way for rigorous in situ measurements of the behavioral rules that underlie ecological rates in other natural systems.

  10. Nucleotide-induced asymmetry within ATPase activator ring drives σ54-RNAP interaction and ATP hydrolysis

    SciTech Connect

    Sysoeva, Tatyana A.; Chowdhury, Saikat; Guo, Liang; Nixon, B. Tracy

    2013-12-10

    It is largely unknown how the typical homomeric ring geometry of ATPases associated with various cellular activities enables them to perform mechanical work. Small-angle solution X-ray scattering, crystallography, and electron microscopy (EM) reconstructions revealed that partial ATP occupancy caused the heptameric closed ring of the bacterial enhancer-binding protein (bEBP) NtrC1 to rearrange into a hexameric split ring of striking asymmetry. The highly conserved and functionally crucial GAFTGA loops responsible for interacting with σ54–RNA polymerase formed a spiral staircase. We propose that splitting of the ensemble directs ATP hydrolysis within the oligomer, and the ring's asymmetry guides interaction between ATPase and the complex of σ54 and promoter DNA. Similarity between the structure of the transcriptional activator NtrC1 and those of distantly related helicases Rho and E1 reveals a general mechanism in homomeric ATPases whereby complex allostery within the ring geometry forms asymmetric functional states that allow these biological motors to exert directional forces on their target macromolecules.

  11. Male–female interactions drive the (un)repeatability of copula duration in an insect

    PubMed Central

    Brown, Denise V.

    2017-01-01

    Across the animal kingdom the duration of copulation varies enormously from a few seconds to several days. Functional explanations for this variation are largely embedded within sperm competition theory in which males modulate the duration of copula in order to optimize their fitness. However, copulation is the union of two protagonists which are likely to have separate and often conflicting reproductive interests, yet few experimental designs specifically assess the effect of male–female interactions on the duration of copulation. This can result in inexact assertions over which sex controls copulatory behaviour. Here we analyse the repeatability of copulatory behaviour in the seed beetle Callosobruchus maculatus to determine which sex exerts primary influence over copulation duration. In C. maculatus, copulation follows two distinct phases: an initial quiescent phase followed by a period of vigorous female kicking behaviour that culminates in the termination of copulation. When males or females copulated with several novel mates, copulatory behaviour was not significantly repeatable. By contrast, when males or females mated repeatedly with the same mate, copula duration was repeatable. These data suggest copulatory behaviour in C. maculatus to be largely the product of male–female interactions rather than the consistent, sex-specific modulation of copula duration of one protagonist in response to the phenotypic variation presented by the other protagonist. PMID:28386449

  12. a Study of Head-Disk Interaction Detection in the Hard-Disk Drives

    NASA Astrophysics Data System (ADS)

    Segu, Dawit Zenebe; Khan, Polina V.; Hwang, Pyung

    2015-09-01

    The reliability and performance of precision mechanical components that experience sliding under contact depend heavily on the friction and wear characteristics at the sliding interface. In order to improve the reliability of the sliding interface, there is a need to predict, measure and monitor any physical interactions at the head-disk interface (HDI). In the present work, the basic tribological characteristics of HDI were analyzed. The HDI during start-stop and constant speed operation using acoustic emission (AE) were studied. The Fast Fourier Transform (FFT) analysis of the AE signal was used to understand the interaction between the AE signal and the state of contact. In addition, we developed laser textured (LT) disk and the contact start-stop (CSS) tests were performed to investigate the effect of dimples on the stiction performance of the HDI. Furthermore, numerical analysis between the slider and disk surface pressure were performed using the boundary coordinate system and divergence formulation for the nonlinear Reynold's equation solution.

  13. Interactions driving the collapse of islet amyloid polypeptide: Implications for amyloid aggregation

    NASA Astrophysics Data System (ADS)

    Cope, Stephanie M.

    Human islet amyloid polypeptide (hIAPP), also known as amylin, is a 37-residue intrinsically disordered hormone involved in glucose regulation and gastric emptying. The aggregation of hIAPP into amyloid fibrils is believed to play a causal role in type 2 diabetes. To date, not much is known about the monomeric state of hIAPP or how it undergoes an irreversible transformation from disordered peptide to insoluble aggregate. IAPP contains a highly conserved disulfide bond that restricts hIAPP(1-8) into a short ring-like structure: N_loop. Removal or chemical reduction of N_loop not only prevents cell response upon binding to the CGRP receptor, but also alters the mass per length distribution of hIAPP fibers and the kinetics of fibril formation. The mechanism by which N_loop affects hIAPP aggregation is not yet understood, but is important for rationalizing kinetics and developing potential inhibitors. By measuring end-to-end contact formation rates, Vaiana et al. showed that N_loop induces collapsed states in IAPP monomers, implying attractive interactions between N_loop and other regions of the disordered polypeptide chain . We show that in addition to being involved in intra-protein interactions, the N_loop is involved in inter-protein interactions, which lead to the formation of extremely long and stable beta-turn fibers. These non-amyloid fibers are present in the 10 muM concentration range, under the same solution conditions in which hIAPP forms amyloid fibers. We discuss the effect of peptide cyclization on both intra- and inter-protein interactions, and its possible implications for aggregation. Our findings indicate a potential role of N_loop-N_loop interactions in hIAPP aggregation, which has not previously been explored. Though our findings suggest that N_loop plays an important role in the pathway of amyloid formation, other naturally occurring IAPP variants that contain this structural feature are incapable of forming amyloids. For example, hIAPP readily

  14. Understanding the dynamic interactions driving Zambian health centre performance: a case-based health systems analysis.

    PubMed

    Topp, Stephanie M; Chipukuma, Julien M; Hanefeld, Johanna

    2015-05-01

    Despite being central to achieving improved population health outcomes, primary health centres in low- and middle-income settings continue to underperform. Little research exists to adequately explain how and why this is the case. This study aimed to test the relevance and usefulness of an adapted conceptual framework for improving our understanding of the mechanisms and causal pathways influencing primary health centre performance. A theory-driven, case-study approach was adopted. Four Zambian health centres were purposefully selected with case data including health-care worker interviews (n = 60); patient interviews (n = 180); direct observation of facility operations (2 weeks/centre) and key informant interviews (n = 14). Data were analysed to understand how the performance of each site was influenced by the dynamic interactions between system 'hardware' and 'software' acting on mechanisms of accountability. Structural constraints including limited resources created challenging service environments in which work overload and stockouts were common. Health workers' frustration with such conditions interacted with dissatisfaction with salary levels eroding service values and acting as a catalyst for different forms of absenteeism. Such behaviours exacerbated patient-provider ratios and increased the frequency of clinical and administrative shortcuts. Weak health information systems and lack of performance data undermined providers' answerability to their employer and clients, and a lack of effective sanctions undermined supervisors' ability to hold providers accountable for these transgressions. Weak answerability and enforceability contributed to a culture of impunity that masked and condoned weak service performance in all four sites. Health centre performance is influenced by mechanisms of accountability, which are in turn shaped by dynamic interactions between system hardware and system software. Our findings confirm the usefulness of combining Sheikh et al

  15. The interactions of compressive stress and weathering in driving rock fracture.

    NASA Astrophysics Data System (ADS)

    de Vilder, Saskia; Brain, Matthew; Rosser, Nick; Vann Jones, Emma

    2016-04-01

    under stress but was subjected to the same weathering cycles. Monitoring of colour, surface texture, surface hardness and axial displacement was undertaken during the experiments, which lasted for 90 days. The samples were then removed and UCS values were obtained at the end of each test. These UCS results were compared with a baseline data-set of UCS tests (n = 10) to determine how strength had changed, if at all, in the samples due to weathering. Initial results show that samples which were preloaded prior to the tests showed the greatest difference in strength when compared with their corresponding control samples. This suggests that weathering processes are more effective in driving fracture in locations where stress concentrations have created a population of pre-existing microcracks. These microcracks can subsequently be exploited by weathering processes to further weaken the rock. Areas of higher stress in a rock slope may, therefore, form zones of enhanced weathering and greater rock weakening, which may preferentially fail prior to other areas of the rock slope. In turn, the decimetre- to metre-scale topography of the rock slope, an often overlooked component, can play a role in dictating the occurrence of failure on a rock slope.

  16. Host-Parasite Interactions from the Inside: Plant Reproductive Ontogeny Drives Specialization in Parasitic Insects

    PubMed Central

    Boivin, Thomas; Gidoin, Cindy; von Aderkas, Patrick; Safrana, Jonathan; Candau, Jean-Noël; Chalon, Alain; Sondo, Marion; El Maâtaoui, Mohamed

    2015-01-01

    Host plant interactions are likely key drivers of evolutionary processes involved in the diversification of phytophagous insects. Granivory has received substantial attention for its crucial role in shaping the interaction between plants and their seed parasites, but fine-scale mechanisms explaining the role of host plant reproductive biology on specialization of seed parasites remain poorly described. In a comparative approach using plant histological techniques, we tested the hypotheses that different seed parasite species synchronize their life cycles to specific stages in seed development, and that the stage they target depends on major differences in seed development programs. In a pinaceous system, seed storage products are initiated before ovule fertilization and the wasps target the ovule’s nucellus during megagametogenesis, a stage at which larvae may benefit from the by-products derived from both secreting cells and dying nucellar cells. In a cupressaceous system, oviposition activity peaks later, during embryogenesis, and the wasps target the ovule’s megagametophyte where larvae may benefit from cell disintegration during embryogenesis. Our cytohistological approach shows for the first time how, despite divergent oviposition targets, different parasite species share a common strategy that consists of first competing for nutrients with developing plant structures, and then consuming these developed structures to complete their development. Our results support the prediction that seed developmental program is an axis for specialization in seed parasites, and that it could be an important parameter in models of their ecological and taxonomic divergence. This study provides the basis for further investigating the possibility of the link between plant ontogeny and pre-dispersal seed parasitism. PMID:26441311

  17. Host-Parasite Interactions from the Inside: Plant Reproductive Ontogeny Drives Specialization in Parasitic Insects.

    PubMed

    Boivin, Thomas; Gidoin, Cindy; von Aderkas, Patrick; Safrana, Jonathan; Candau, Jean-Noël; Chalon, Alain; Sondo, Marion; El Maâtaoui, Mohamed

    2015-01-01

    Host plant interactions are likely key drivers of evolutionary processes involved in the diversification of phytophagous insects. Granivory has received substantial attention for its crucial role in shaping the interaction between plants and their seed parasites, but fine-scale mechanisms explaining the role of host plant reproductive biology on specialization of seed parasites remain poorly described. In a comparative approach using plant histological techniques, we tested the hypotheses that different seed parasite species synchronize their life cycles to specific stages in seed development, and that the stage they target depends on major differences in seed development programs. In a pinaceous system, seed storage products are initiated before ovule fertilization and the wasps target the ovule's nucellus during megagametogenesis, a stage at which larvae may benefit from the by-products derived from both secreting cells and dying nucellar cells. In a cupressaceous system, oviposition activity peaks later, during embryogenesis, and the wasps target the ovule's megagametophyte where larvae may benefit from cell disintegration during embryogenesis. Our cytohistological approach shows for the first time how, despite divergent oviposition targets, different parasite species share a common strategy that consists of first competing for nutrients with developing plant structures, and then consuming these developed structures to complete their development. Our results support the prediction that seed developmental program is an axis for specialization in seed parasites, and that it could be an important parameter in models of their ecological and taxonomic divergence. This study provides the basis for further investigating the possibility of the link between plant ontogeny and pre-dispersal seed parasitism.

  18. Mechanisms driving change: altered species interactions and ecosystem function through global warming.

    PubMed

    Traill, Lochran W; Lim, Matthew L M; Sodhi, Navjot S; Bradshaw, Corey J A

    2010-09-01

    1. We review the mechanisms behind ecosystem functions, the processes that facilitate energy transfer along food webs, and the major processes that allow the cycling of carbon, oxygen and nitrogen, and use case studies to show how these have already been, and will continue to be, altered by global warming. 2. Increased temperatures will affect the interactions between heterotrophs and autotrophs (e.g. pollination and seed dispersal), and between heterotrophs (e.g. predators-prey, parasites/pathogens-hosts), with generally negative ramifications for important ecosystem services (functions that provide direct benefit to human society such as pollination) and potential for heightened species co-extinction rates. 3. Mitigation of likely impacts of warming will require, in particular, the maintenance of species diversity as insurance for the provision of basic ecosystem services. Key to this will be long-term monitoring and focused research that seek to maintain ecosystem resilience in the face of global warming. 4. We provide guidelines for pursuing research that quantifies the nexus between ecosystem function and global warming. These include documentation of key functional species groups within systems, and understanding the principal outcomes arising from direct and indirect effects of a rapidly warming environment. Localized and targeted research and monitoring, complemented with laboratory work, will determine outcomes for resilience and guide adaptive conservation responses and long-term planning.

  19. Interspecific interactions and learning variability jointly drive geographic differences in mate preferences.

    PubMed

    Verzijden, Machteld N; Svensson, Erik I

    2016-08-01

    Co-occurrence of closely related species can cause behavioral interference in mating and increase hybridization risk. Theoretically, this could lead to the evolution of more species-specific mate preferences and sexual signaling traits. Alternatively, females can learn to reject heterospecific males, to avoid male sexual interference from closely related species. Such learned mate discrimination could also affect conspecific mate preferences if females generalize from between species differences to prefer more species-specific mating signals. Female damselflies of the banded demoiselle (Calopteryx splendens) learn to reject heterospecific males of the beautiful demoiselle (C. virgo) through direct premating interactions. These two species co-occur in a geographic mosaic of sympatric and microallopatric populations. Whereas C. virgo males have fully melanized wings, male C. splendens wings are partly melanized. We show that C. splendens females in sympatry with C. virgo prefer smaller male wing patches in conspecific males after learning to reject heterospecific males. In contrast, allopatric C. splendens females with experimentally induced experience with C. virgo males did not discriminate against larger male wing patches. Wing patch size might indicate conspecific male quality in allopatry. Co-occurrence with C. virgo therefore causes females to prefer conspecific male traits that are more species specific, contributing to population divergence and geographic variation in female mate preferences.

  20. Interaction complexity matters: disentangling services and disservices of ant communities driving yield in tropical agroecosystems

    PubMed Central

    Wielgoss, Arno; Tscharntke, Teja; Rumede, Alfianus; Fiala, Brigitte; Seidel, Hannes; Shahabuddin, Saleh; Clough, Yann

    2014-01-01

    Owing to complex direct and indirect effects, impacts of higher trophic levels on plants is poorly understood. In tropical agroecosystems, ants interact with crop mutualists and antagonists, but little is known about how this integrates into the final ecosystem service, crop yield. We combined ant exclusion and introduction of invasive and native-dominant species in cacao agroecosystems to test whether (i) ant exclusion reduces yield, (ii) dominant species maximize certain intermediate ecosystem services (e.g. control of specific pests) rather than yield, which depends on several, cascading intermediate services and (iii) even, species-rich ant communities result in highest yields. Ants provided services, including reduced leaf herbivory and fruit pest damage and indirect pollination facilitation, but also disservices, such as increased mealybug density, phytopathogen dissemination and indirect pest damage enhancement. Yields were highest with unmanipulated, species-rich, even communities, whereas ant exclusion decreased yield by 27%. Introduction of an invasive-dominant ant decreased species density and evenness and resulted in 34% lower yields, whereas introduction of a non-invasive-dominant species resulted in similar species density and yields as in the unmanipulated control. Species traits and ant community structure affect services and disservices for agriculture in surprisingly complex ways, with species-rich and even communities promoting highest yield. PMID:24307667

  1. Interaction complexity matters: disentangling services and disservices of ant communities driving yield in tropical agroecosystems.

    PubMed

    Wielgoss, Arno; Tscharntke, Teja; Rumede, Alfianus; Fiala, Brigitte; Seidel, Hannes; Shahabuddin, Saleh; Clough, Yann

    2014-01-22

    Owing to complex direct and indirect effects, impacts of higher trophic levels on plants is poorly understood. In tropical agroecosystems, ants interact with crop mutualists and antagonists, but little is known about how this integrates into the final ecosystem service, crop yield. We combined ant exclusion and introduction of invasive and native-dominant species in cacao agroecosystems to test whether (i) ant exclusion reduces yield, (ii) dominant species maximize certain intermediate ecosystem services (e.g. control of specific pests) rather than yield, which depends on several, cascading intermediate services and (iii) even, species-rich ant communities result in highest yields. Ants provided services, including reduced leaf herbivory and fruit pest damage and indirect pollination facilitation, but also disservices, such as increased mealybug density, phytopathogen dissemination and indirect pest damage enhancement. Yields were highest with unmanipulated, species-rich, even communities, whereas ant exclusion decreased yield by 27%. Introduction of an invasive-dominant ant decreased species density and evenness and resulted in 34% lower yields, whereas introduction of a non-invasive-dominant species resulted in similar species density and yields as in the unmanipulated control. Species traits and ant community structure affect services and disservices for agriculture in surprisingly complex ways, with species-rich and even communities promoting highest yield.

  2. Local cell interactions and self-amplifying individual cell ingression drive amniote gastrulation

    PubMed Central

    Voiculescu, Octavian; Bodenstein, Lawrence; Lau, I-Jun; Stern, Claudio D

    2014-01-01

    Gastrulation generates three layers of cells (ectoderm, mesoderm, endoderm) from a single sheet, while large scale cell movements occur across the entire embryo. In amniote (reptiles, birds, mammals) embryos, the deep layers arise by epithelial-to-mesenchymal transition (EMT) at a morphologically stable midline structure, the primitive streak (PS). We know very little about how these events are controlled or how the PS is maintained despite its continuously changing cellular composition. Using the chick, we show that isolated EMT events and ingression of individual cells start well before gastrulation. A Nodal-dependent ‘community effect’ then concentrates and amplifies EMT by positive feedback to form the PS as a zone of massive cell ingression. Computer simulations show that a combination of local cell interactions (EMT and cell intercalation) is sufficient to explain PS formation and the associated complex movements globally across a large epithelial sheet, without the need to invoke long-range signalling. DOI: http://dx.doi.org/10.7554/eLife.01817.001 PMID:24850665

  3. Local biotic adaptation of trees and shrubs to plant neighbors

    USGS Publications Warehouse

    Grady, Kevin C.; Wood, Troy E.; Kolb, Thomas E.; Hersch-Green, Erika; Shuster, Stephen M.; Gehring, Catherine A.; Hart, Stephen C.; Allan, Gerard J.; Whitham, Thomas G.

    2017-01-01

    Natural selection as a result of plant–plant interactions can lead to local biotic adaptation. This may occur where species frequently interact and compete intensely for resources limiting growth, survival, and reproduction. Selection is demonstrated by comparing a genotype interacting with con- or hetero-specific sympatric neighbor genotypes with a shared site-level history (derived from the same source location), to the same genotype interacting with foreign neighbor genotypes (from different sources). Better genotype performance in sympatric than allopatric neighborhoods provides evidence of local biotic adaptation. This pattern might be explained by selection to avoid competition by shifting resource niches (differentiation) or by interactions benefitting one or more members (facilitation). We tested for local biotic adaptation among two riparian trees, Populus fremontii and Salix gooddingii, and the shrub Salix exigua by transplanting replicated genotypes from multiple source locations to a 17 000 tree common garden with sympatric and allopatric treatments along the Colorado River in California. Three major patterns were observed: 1) across species, 62 of 88 genotypes grew faster with sympatric neighbors than allopatric neighbors; 2) these growth rates, on an individual tree basis, were 44, 15 and 33% higher in sympatric than allopatric treatments for P. fremontii, S. exigua and S. gooddingii, respectively, and; 3) survivorship was higher in sympatric treatments for P. fremontiiand S. exigua. These results support the view that fitness of foundation species supporting diverse communities and dominating ecosystem processes is determined by adaptive interactions among multiple plant species with the outcome that performance depends on the genetic identity of plant neighbors. The occurrence of evolution in a plant-community context for trees and shrubs builds on ecological evolutionary research that has demonstrated co-evolution among herbaceous taxa, and

  4. Bidirectional KCNQ1:β-catenin interaction drives colorectal cancer cell differentiation

    PubMed Central

    Rapetti-Mauss, Raphael; Bustos, Viviana; Thomas, Warren; McBryan, Jean; Harvey, Harry; Lajczak, Natalia; Madden, Stephen F.; Pellissier, Bernard; Borgese, Franck; Soriani, Olivier

    2017-01-01

    The K+ channel KCNQ1 has been proposed as a tumor suppressor in colorectal cancer (CRC). We investigated the molecular mechanisms regulating KCNQ1:β-catenin bidirectional interactions and their effects on CRC differentiation, proliferation, and invasion. Molecular and pharmacologic approaches were used to determine the influence of KCNQ1 expression on the Wnt/β-catenin signaling and epithelial-to-mesenchymal transition (EMT) in human CRC cell lines of varying stages of differentiation. The expression of KCNQ1 was lost with increasing mesenchymal phenotype in poorly differentiated CRC cell lines as a consequence of repression of the KCNQ1 promoter by β-catenin:T-cell factor (TCF)-4. In well-differentiated epithelial CRC cell lines, KCNQ1 was localized to the plasma membrane in a complex with β-catenin and E-cadherin. The colocalization of KCNQ1 with adherens junction proteins was lost with increasing EMT phenotype. ShRNA knock-down of KCNQ1 caused a relocalization of β-catenin from the plasma membrane and a loss of epithelial phenotype in CRC spheroids. Overexpression of KCNQ1 trapped β-catenin at the plasma membrane, induced a patent lumen in CRC spheroids, and slowed CRC cell invasion. The KCNQ1 ion channel inhibitor chromanol 293B caused membrane depolarization, redistribution of β-catenin into the cytosol, and a reduced transepithelial electrical resistance, and stimulated CRC cell proliferation. Analysis of human primary CRC tumor patient databases showed a positive correlation between KCNQ1:KCNE3 channel complex expression and disease-free survival. We conclude that the KCNQ1 ion channel is a target gene and regulator of the Wnt/β-catenin pathway, and its repression leads to CRC cell proliferation, EMT, and tumorigenesis. PMID:28373572

  5. Unexpected Interaction with Dispersed Crude Oil Droplets Drives Severe Toxicity in Atlantic Haddock Embryos

    PubMed Central

    Sørhus, Elin; Edvardsen, Rolf B.; Karlsen, Ørjan; Nordtug, Trond; van der Meeren, Terje; Thorsen, Anders; Harman, Christopher; Jentoft, Sissel; Meier, Sonnich

    2015-01-01

    The toxicity resulting from exposure to oil droplets in marine fish embryos and larvae is still subject for debate. The most detailed studies have investigated the effects of water-dissolved components of crude oil in water accommodated fractions (WAFs) that lack bulk oil droplets. Although exposure to dissolved petroleum compounds alone is sufficient to cause the characteristic developmental toxicity of crude oil, few studies have addressed whether physical interaction with oil micro-droplets are a relevant exposure pathway for open water marine speices. Here we used controlled delivery of mechanically dispersed crude oil to expose pelagic embryos and larvae of a marine teleost, the Atlantic haddock (Melanogrammus aeglefinus). Haddock embryos were exposed continuously to two different concentrations of dispersed crude oil, high and low, or in pulses. By 24 hours of exposure, micro-droplets of oil were observed adhering and accumulating on the chorion, accompanied by highly elevated levels of cyp1a, a biomarker for exposure to aromatic hydrocarbons. Embryos from all treatment groups showed abnormalities representative of crude oil cardiotoxicity at hatch (5 days of exposure), such as pericardial and yolk sac edema. Compared to other species, the frequency and severity of toxic effects was higher than expected for the waterborne PAH concentrations (e.g., 100% of larvae had edema at the low treatment). These findings suggest an enhanced tissue uptake of PAHs and/or other petroleum compounds from attached oil droplets. These studies highlight a novel property of haddock embryos that leads to greater than expected impact from dispersed crude oil. Given the very limited number of marine species tested in similar exposures, the likelihood of other species with similar properties could be high. This unanticipated result therefore has implications for assessing the ecological impacts of oil spills and the use of methods for dispersing oil in the open sea. PMID:25923774

  6. Unexpected interaction with dispersed crude oil droplets drives severe toxicity in Atlantic haddock embryos.

    PubMed

    Sørhus, Elin; Edvardsen, Rolf B; Karlsen, Ørjan; Nordtug, Trond; van der Meeren, Terje; Thorsen, Anders; Harman, Christopher; Jentoft, Sissel; Meier, Sonnich

    2015-01-01

    The toxicity resulting from exposure to oil droplets in marine fish embryos and larvae is still subject for debate. The most detailed studies have investigated the effects of water-dissolved components of crude oil in water accommodated fractions (WAFs) that lack bulk oil droplets. Although exposure to dissolved petroleum compounds alone is sufficient to cause the characteristic developmental toxicity of crude oil, few studies have addressed whether physical interaction with oil micro-droplets are a relevant exposure pathway for open water marine speices. Here we used controlled delivery of mechanically dispersed crude oil to expose pelagic embryos and larvae of a marine teleost, the Atlantic haddock (Melanogrammus aeglefinus). Haddock embryos were exposed continuously to two different concentrations of dispersed crude oil, high and low, or in pulses. By 24 hours of exposure, micro-droplets of oil were observed adhering and accumulating on the chorion, accompanied by highly elevated levels of cyp1a, a biomarker for exposure to aromatic hydrocarbons. Embryos from all treatment groups showed abnormalities representative of crude oil cardiotoxicity at hatch (5 days of exposure), such as pericardial and yolk sac edema. Compared to other species, the frequency and severity of toxic effects was higher than expected for the waterborne PAH concentrations (e.g., 100% of larvae had edema at the low treatment). These findings suggest an enhanced tissue uptake of PAHs and/or other petroleum compounds from attached oil droplets. These studies highlight a novel property of haddock embryos that leads to greater than expected impact from dispersed crude oil. Given the very limited number of marine species tested in similar exposures, the likelihood of other species with similar properties could be high. This unanticipated result therefore has implications for assessing the ecological impacts of oil spills and the use of methods for dispersing oil in the open sea.

  7. Bidirectional KCNQ1:β-catenin interaction drives colorectal cancer cell differentiation.

    PubMed

    Rapetti-Mauss, Raphael; Bustos, Viviana; Thomas, Warren; McBryan, Jean; Harvey, Harry; Lajczak, Natalia; Madden, Stephen F; Pellissier, Bernard; Borgese, Franck; Soriani, Olivier; Harvey, Brian J

    2017-04-03

    The K(+) channel KCNQ1 has been proposed as a tumor suppressor in colorectal cancer (CRC). We investigated the molecular mechanisms regulating KCNQ1:β-catenin bidirectional interactions and their effects on CRC differentiation, proliferation, and invasion. Molecular and pharmacologic approaches were used to determine the influence of KCNQ1 expression on the Wnt/β-catenin signaling and epithelial-to-mesenchymal transition (EMT) in human CRC cell lines of varying stages of differentiation. The expression of KCNQ1 was lost with increasing mesenchymal phenotype in poorly differentiated CRC cell lines as a consequence of repression of the KCNQ1 promoter by β-catenin:T-cell factor (TCF)-4. In well-differentiated epithelial CRC cell lines, KCNQ1 was localized to the plasma membrane in a complex with β-catenin and E-cadherin. The colocalization of KCNQ1 with adherens junction proteins was lost with increasing EMT phenotype. ShRNA knock-down of KCNQ1 caused a relocalization of β-catenin from the plasma membrane and a loss of epithelial phenotype in CRC spheroids. Overexpression of KCNQ1 trapped β-catenin at the plasma membrane, induced a patent lumen in CRC spheroids, and slowed CRC cell invasion. The KCNQ1 ion channel inhibitor chromanol 293B caused membrane depolarization, redistribution of β-catenin into the cytosol, and a reduced transepithelial electrical resistance, and stimulated CRC cell proliferation. Analysis of human primary CRC tumor patient databases showed a positive correlation between KCNQ1:KCNE3 channel complex expression and disease-free survival. We conclude that the KCNQ1 ion channel is a target gene and regulator of the Wnt/β-catenin pathway, and its repression leads to CRC cell proliferation, EMT, and tumorigenesis.

  8. Predator diversity and identity drive interaction strength and trophic cascades in a food web.

    PubMed

    Otto, Sonja B; Berlow, Eric L; Rank, Nathan E; Smiley, John; Brose, Ulrich

    2008-01-01

    Declining predator diversity may drastically affect the biomass and productivity of herbivores and plants. Understanding how changes in predator diversity can propagate through food webs to alter ecosystem function is one of the most challenging ecological research topics today. We studied the effects of predator removal in a simple natural food web in the Sierra Nevada mountains of California (USA). By excluding the predators of the third trophic level of a food web in a full-factorial design, we monitored cascading effects of varying predator diversity and composition on the herbivorous beetle Chrysomela aeneicollis and the willow Salix orestera, which compose the first and second trophic levels of the food web. Decreasing predator diversity increased herbivore biomass and survivorship, and consequently increased the amount of plant biomass consumed via a trophic cascade. Despite this simple linear mean effect of diversity on the strength of the trophic cascade, we found additivity, compensation, and interference in the effects of multiple predators on herbivores and plants. Herbivore survivorship and predator-prey interaction strengths varied with predator diversity, predator identity, and the identity of coexisting predators. Additive effects of predators on herbivores and plants may have been driven by temporal niche separation, whereas compensatory effects and interference occurred among predators with a similar phenology. Together, these results suggest that while the general trends of diversity effects may appear linear and additive, other information about species identity was required to predict the effects of removing individual predators. In a community that is not temporally well-mixed, predator traits such as phenology may help predict impacts of species loss on other species. Information about predator natural history and food web structure may help explain variation in predator diversity effects on trophic cascades and ecosystem function.

  9. Effects on driving performance of interacting with an in-vehicle music player: a comparison of three interface layout concepts for information presentation.

    PubMed

    Mitsopoulos-Rubens, Eve; Trotter, Margaret J; Lenné, Michael G

    2011-05-01

    Interface design is an important factor in assessing the potential effects on safety of interacting with an in-vehicle information system while driving. In the current study, the layout of information on a visual display was manipulated to explore its effect on driving performance in the context of music selection. The comparative effects of an auditory-verbal (cognitive) task were also explored. The driving performance of 30 participants was assessed under both baseline and dual task conditions using the Lane Change Test. Concurrent completion of the music selection task with driving resulted in significant impairment to lateral driving performance (mean lane deviation and percentage of correct lane changes) relative to the baseline, and significantly greater mean lane deviation relative to the combined driving and the cognitive task condition. The magnitude of these effects on driving performance was independent of layout concept, although significant differences in subjective workload estimates and performance on the music selection task across layout concepts highlights that potential uncertainty regarding design use as conveyed through layout concept could be disadvantageous. The implications of these results for interface design and safety are discussed. Copyright © 2010 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  10. Climate and local geomorphic interactions drive patterns of riparian forest decline along a Mediterranean Basin river

    NASA Astrophysics Data System (ADS)

    Stella, John C.; Riddle, Jess; Piégay, Hervé; Gagnage, Matthieu; Trémélo, Marie-Laure

    2013-11-01

    discharge, and this will increase both chronic and acute water shortage for riparian trees. This study shows that drought-prone riparian forests are vulnerable to hydrogeomorphological changes, but the severity of impacts is conditioned by interactions between drivers at different scales, including regional climate variability, reach-based geomorphic alteration, and local lithological controls.

  11. Polycation-π interactions are a driving force for molecular recognition by an intrinsically disordered oncoprotein family.

    PubMed

    Song, Jianhui; Ng, Sheung Chun; Tompa, Peter; Lee, Kevin A W; Chan, Hue Sun

    2013-01-01

    Molecular recognition by intrinsically disordered proteins (IDPs) commonly involves specific localized contacts and target-induced disorder to order transitions. However, some IDPs remain disordered in the bound state, a phenomenon coined "fuzziness", often characterized by IDP polyvalency, sequence-insensitivity and a dynamic ensemble of disordered bound-state conformations. Besides the above general features, specific biophysical models for fuzzy interactions are mostly lacking. The transcriptional activation domain of the Ewing's Sarcoma oncoprotein family (EAD) is an IDP that exhibits many features of fuzziness, with multiple EAD aromatic side chains driving molecular recognition. Considering the prevalent role of cation-π interactions at various protein-protein interfaces, we hypothesized that EAD-target binding involves polycation- π contacts between a disordered EAD and basic residues on the target. Herein we evaluated the polycation-π hypothesis via functional and theoretical interrogation of EAD variants. The experimental effects of a range of EAD sequence variations, including aromatic number, aromatic density and charge perturbations, all support the cation-π model. Moreover, the activity trends observed are well captured by a coarse-grained EAD chain model and a corresponding analytical model based on interaction between EAD aromatics and surface cations of a generic globular target. EAD-target binding, in the context of pathological Ewing's Sarcoma oncoproteins, is thus seen to be driven by a balance between EAD conformational entropy and favorable EAD-target cation-π contacts. Such a highly versatile mode of molecular recognition offers a general conceptual framework for promiscuous target recognition by polyvalent IDPs.

  12. Interactions of grazing history, cattle removal and time since rain drive divergent short-term responses by desert biota.

    PubMed

    Frank, Anke S K; Dickman, Chris R; Wardle, Glenda M; Greenville, Aaron C

    2013-01-01

    Arid grasslands are used worldwide for grazing by domestic livestock, generating debate about how this pastoral enterprise may influence native desert biota. One approach to resolving this question is to experimentally reduce livestock numbers and measure the effects. However, a key challenge in doing this is that historical grazing impacts are likely to be cumulative and may therefore confound comparisons of the short-term responses of desert biota to changes in stocking levels. Arid areas are also subject to infrequent flooding rainfalls that drive productivity and dramatically alter abundances of flora and fauna. We took advantage of an opportunity to study the recent effects of a property-scale cattle removal on two properties with similarly varied grazing histories in central Australia. Following the removal of cattle in 2006 and before and after a significant rainfall event at the beginning of 2007, we sampled vegetation and small vertebrates on eight occasions until October 2008. Our results revealed significant interactions of time of survey with both grazing history and grazing removal for vascular plants, small mammals and reptiles. The mammals exhibited a three-way interaction of time, grazing history and grazing removal, thus highlighting the importance of careful sampling designs and timing for future monitoring. The strongest response to the cessation of grazing after two years was depressed reproductive output of plants in areas where cattle continued to graze. Our results confirm that neither vegetation nor small vertebrates necessarily respond immediately to the removal of livestock, but that rainfall events and cumulative grazing history are key determinants of floral and faunal performance in grassland landscapes with low and variable rainfall. We suggest that improved assessments could be made of the health of arid grazing environments if long-term monitoring were implemented to track the complex interactions that influence how native biota

  13. Interactions of Grazing History, Cattle Removal and Time since Rain Drive Divergent Short-Term Responses by Desert Biota

    PubMed Central

    Frank, Anke S. K.; Dickman, Chris R.; Wardle, Glenda M.; Greenville, Aaron C.

    2013-01-01

    Arid grasslands are used worldwide for grazing by domestic livestock, generating debate about how this pastoral enterprise may influence native desert biota. One approach to resolving this question is to experimentally reduce livestock numbers and measure the effects. However, a key challenge in doing this is that historical grazing impacts are likely to be cumulative and may therefore confound comparisons of the short-term responses of desert biota to changes in stocking levels. Arid areas are also subject to infrequent flooding rainfalls that drive productivity and dramatically alter abundances of flora and fauna. We took advantage of an opportunity to study the recent effects of a property-scale cattle removal on two properties with similarly varied grazing histories in central Australia. Following the removal of cattle in 2006 and before and after a significant rainfall event at the beginning of 2007, we sampled vegetation and small vertebrates on eight occasions until October 2008. Our results revealed significant interactions of time of survey with both grazing history and grazing removal for vascular plants, small mammals and reptiles. The mammals exhibited a three-way interaction of time, grazing history and grazing removal, thus highlighting the importance of careful sampling designs and timing for future monitoring. The strongest response to the cessation of grazing after two years was depressed reproductive output of plants in areas where cattle continued to graze. Our results confirm that neither vegetation nor small vertebrates necessarily respond immediately to the removal of livestock, but that rainfall events and cumulative grazing history are key determinants of floral and faunal performance in grassland landscapes with low and variable rainfall. We suggest that improved assessments could be made of the health of arid grazing environments if long-term monitoring were implemented to track the complex interactions that influence how native biota

  14. The Natural Biotic Environment of Caenorhabditis elegans.

    PubMed

    Schulenburg, Hinrich; Félix, Marie-Anne

    2017-05-01

    Organisms evolve in response to their natural environment. Consideration of natural ecological parameters are thus of key importance for our understanding of an organism's biology. Curiously, the natural ecology of the model species Caenorhabditis elegans has long been neglected, even though this nematode has become one of the most intensively studied models in biological research. This lack of interest changed ∼10 yr ago. Since then, an increasing number of studies have focused on the nematode's natural ecology. Yet many unknowns still remain. Here, we provide an overview of the currently available information on the natural environment of C. elegans We focus on the biotic environment, which is usually less predictable and thus can create high selective constraints that are likely to have had a strong impact on C. elegans evolution. This nematode is particularly abundant in microbe-rich environments, especially rotting plant matter such as decomposing fruits and stems. In this environment, it is part of a complex interaction network, which is particularly shaped by a species-rich microbial community. These microbes can be food, part of a beneficial gut microbiome, parasites and pathogens, and possibly competitors. C. elegans is additionally confronted with predators; it interacts with vector organisms that facilitate dispersal to new habitats, and also with competitors for similar food environments, including competitors from congeneric and also the same species. Full appreciation of this nematode's biology warrants further exploration of its natural environment and subsequent integration of this information into the well-established laboratory-based research approaches. Copyright © 2017 by the Genetics Society of America.

  15. The Natural Biotic Environment of Caenorhabditis elegans

    PubMed Central

    Schulenburg, Hinrich; Félix, Marie-Anne

    2017-01-01

    Organisms evolve in response to their natural environment. Consideration of natural ecological parameters are thus of key importance for our understanding of an organism’s biology. Curiously, the natural ecology of the model species Caenorhabditis elegans has long been neglected, even though this nematode has become one of the most intensively studied models in biological research. This lack of interest changed ∼10 yr ago. Since then, an increasing number of studies have focused on the nematode’s natural ecology. Yet many unknowns still remain. Here, we provide an overview of the currently available information on the natural environment of C. elegans. We focus on the biotic environment, which is usually less predictable and thus can create high selective constraints that are likely to have had a strong impact on C. elegans evolution. This nematode is particularly abundant in microbe-rich environments, especially rotting plant matter such as decomposing fruits and stems. In this environment, it is part of a complex interaction network, which is particularly shaped by a species-rich microbial community. These microbes can be food, part of a beneficial gut microbiome, parasites and pathogens, and possibly competitors. C. elegans is additionally confronted with predators; it interacts with vector organisms that facilitate dispersal to new habitats, and also with competitors for similar food environments, including competitors from congeneric and also the same species. Full appreciation of this nematode’s biology warrants further exploration of its natural environment and subsequent integration of this information into the well-established laboratory-based research approaches. PMID:28476862

  16. Biotic replacement and mass extinction of the Ediacara biota.

    PubMed

    Darroch, Simon A F; Sperling, Erik A; Boag, Thomas H; Racicot, Rachel A; Mason, Sara J; Morgan, Alex S; Tweedt, Sarah; Myrow, Paul; Johnston, David T; Erwin, Douglas H; Laflamme, Marc

    2015-09-07

    The latest Neoproterozoic extinction of the Ediacara biota has been variously attributed to catastrophic removal by perturbations to global geochemical cycles, 'biotic replacement' by Cambrian-type ecosystem engineers, and a taphonomic artefact. We perform the first critical test of the 'biotic replacement' hypothesis using combined palaeoecological and geochemical data collected from the youngest Ediacaran strata in southern Namibia. We find that, even after accounting for a variety of potential sampling and taphonomic biases, the Ediacaran assemblage preserved at Farm Swartpunt has significantly lower genus richness than older assemblages. Geochemical and sedimentological analyses confirm an oxygenated and non-restricted palaeoenvironment for fossil-bearing sediments, thus suggesting that oxygen stress and/or hypersalinity are unlikely to be responsible for the low diversity of communities preserved at Swartpunt. These combined analyses suggest depauperate communities characterized the latest Ediacaran and provide the first quantitative support for the biotic replacement model for the end of the Ediacara biota. Although more sites (especially those recording different palaeoenvironments) are undoubtedly needed, this study provides the first quantitative palaeoecological evidence to suggest that evolutionary innovation, ecosystem engineering and biological interactions may have ultimately caused the first mass extinction of complex life.

  17. Biotic replacement and mass extinction of the Ediacara biota

    PubMed Central

    Darroch, Simon A. F.; Sperling, Erik A.; Boag, Thomas H.; Racicot, Rachel A.; Mason, Sara J.; Morgan, Alex S.; Tweedt, Sarah; Myrow, Paul; Johnston, David T.; Erwin, Douglas H.; Laflamme, Marc

    2015-01-01

    The latest Neoproterozoic extinction of the Ediacara biota has been variously attributed to catastrophic removal by perturbations to global geochemical cycles, ‘biotic replacement’ by Cambrian-type ecosystem engineers, and a taphonomic artefact. We perform the first critical test of the ‘biotic replacement’ hypothesis using combined palaeoecological and geochemical data collected from the youngest Ediacaran strata in southern Namibia. We find that, even after accounting for a variety of potential sampling and taphonomic biases, the Ediacaran assemblage preserved at Farm Swartpunt has significantly lower genus richness than older assemblages. Geochemical and sedimentological analyses confirm an oxygenated and non-restricted palaeoenvironment for fossil-bearing sediments, thus suggesting that oxygen stress and/or hypersalinity are unlikely to be responsible for the low diversity of communities preserved at Swartpunt. These combined analyses suggest depauperate communities characterized the latest Ediacaran and provide the first quantitative support for the biotic replacement model for the end of the Ediacara biota. Although more sites (especially those recording different palaeoenvironments) are undoubtedly needed, this study provides the first quantitative palaeoecological evidence to suggest that evolutionary innovation, ecosystem engineering and biological interactions may have ultimately caused the first mass extinction of complex life. PMID:26336166

  18. The effects of social interactions with in-vehicle agents on a driver's anger level, driving performance, situation awareness, and perceived workload.

    PubMed

    Jeon, Myounghoon; Walker, Bruce N; Gable, Thomas M

    2015-09-01

    Research has suggested that interaction with an in-vehicle software agent can improve a driver's psychological state and increase road safety. The present study explored the possibility of using an in-vehicle software agent to mitigate effects of driver anger on driving behavior. After either anger or neutral mood induction, 60 undergraduates drove in a simulator with two types of agent intervention. Results showed that both speech-based agents not only enhance driver situation awareness and driving performance, but also reduce their anger level and perceived workload. Regression models show that a driver's anger influences driving performance measures, mediated by situation awareness. The practical implications include design guidelines for the design of social interaction with in-vehicle software agents. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  19. Conserved sequence-specific lincRNA-steroid receptor interactions drive transcriptional repression and direct cell fate

    SciTech Connect

    Hudson, William H.; Pickard, Mark R.; de Vera, Ian Mitchelle S.; Kuiper, Emily G.; Mourtada-Maarabouni, Mirna; Conn, Graeme L.; Kojetin, Douglas J.; Williams, Gwyn T.; Ortlund, Eric A.

    2014-12-23

    The majority of the eukaryotic genome is transcribed, generating a significant number of long intergenic noncoding RNAs (lincRNAs). Although lincRNAs represent the most poorly understood product of transcription, recent work has shown lincRNAs fulfill important cellular functions. In addition to low sequence conservation, poor understanding of structural mechanisms driving lincRNA biology hinders systematic prediction of their function. Here we report the molecular requirements for the recognition of steroid receptors (SRs) by the lincRNA growth arrest-specific 5 (Gas5), which regulates steroid-mediated transcriptional regulation, growth arrest and apoptosis. We identify the functional Gas5-SR interface and generate point mutations that ablate the SR-Gas5 lincRNA interaction, altering Gas5-driven apoptosis in cancer cell lines. Further, we find that the Gas5 SR-recognition sequence is conserved among haplorhines, with its evolutionary origin as a splice acceptor site. This study demonstrates that lincRNAs can recognize protein targets in a conserved, sequence-specific manner in order to affect critical cell functions.

  20. Carbohydrate-protein interactions that drive processive polysaccharide translocation in enzymes revealed from a computational study of cellobiohydrolase processivity.

    PubMed

    Knott, Brandon C; Crowley, Michael F; Himmel, Michael E; Ståhlberg, Jerry; Beckham, Gregg T

    2014-06-18

    Translocation of carbohydrate polymers through protein tunnels and clefts is a ubiquitous biochemical phenomenon in proteins such as polysaccharide synthases, glycoside hydrolases, and carbohydrate-binding modules. Although static snapshots of carbohydrate polymer binding in proteins have long been studied via crystallography and spectroscopy, the molecular details of polysaccharide chain processivity have not been elucidated. Here, we employ simulation to examine how a cellulose chain translocates by a disaccharide unit during the processive cycle of a glycoside hydrolase family 7 cellobiohydrolase. Our results demonstrate that these biologically and industrially important enzymes employ a two-step mechanism for chain threading to form a Michaelis complex and that the free energy barrier to chain threading is significantly lower than the hydrolysis barrier. Taken with previous studies, our findings suggest that the rate-limiting step in enzymatic cellulose degradation is the glycosylation reaction, not chain processivity. Based on the simulations, we find that strong electrostatic interactions with polar residues that are conserved in GH7 cellobiohydrolases, but not in GH7 endoglucanases, at the leading glucosyl ring provide the thermodynamic driving force for polysaccharide chain translocation. Also, we consider the role of aromatic-carbohydrate interactions, which are widespread in carbohydrate-active enzymes and have long been associated with processivity. Our analysis suggests that the primary role for these aromatic residues is to provide tunnel shape and guide the carbohydrate chain to the active site. More broadly, this work elucidates the role of common protein motifs found in carbohydrate-active enzymes that synthesize or depolymerize polysaccharides by chain translocation mechanisms coupled to catalysis.

  1. Coevolutionary aesthetics in human and biotic artworlds.

    PubMed

    Prum, Richard O

    2013-01-01

    This work proposes a coevolutionary theory of aesthetics that encompasses both biotic and human arts. Anthropocentric perspectives in aesthetics prevent the recognition of the ontological complexity of the aesthetics of nature, and the aesthetic agency of many non-human organisms. The process of evaluative coevolution is shared by all biotic advertisements. I propose that art consists of a form of communication that coevolves with its own evaluation. Art and art history are population phenomena. I expand Arthur Danto's Artworld concept to any aesthetic population of producers and evaluators. Current concepts of art cannot exclusively circumscribe the human arts from many forms of non-human biotic art. Without assuming an arbitrarily anthropocentric perspective, any concept of art will need to engage with biodiversity, and either recognize many instances of biotic advertisements as art, or exclude some instances of human art. Coevolutionary aesthetic theory provides a heuristic account of aesthetic change in both human and biotic artworlds, including the coevolutionary origin of aesthetic properties and aesthetic value within artworlds. Restructuring aesthetics, art criticism, and art history without human beings at the organizing centers of these disciplines stimulate new progress in our understanding of art, and the unique human contributions to aesthetics and aesthetic diversity.

  2. Cenozoic Bolide Impacts and Biotic Change in North American Mammals

    NASA Astrophysics Data System (ADS)

    Alroy, John

    2003-01-01

    North American mammals experienced a major mass extinction at the Cretaceous/Tertiary (K/T) boundary that is tied unambiguously to the Chicxulub impact event. Immediately afterwards, there was an immense adaptive radiation that greatly expanded taxonomic diversity and the range of body sizes and ecological strategies. However, ties between later, Cenozoic impact events and specific episodes in mammalian evolution cannot be demonstrated. A time series of maximum known crater sizes within 1.0-million-year-long temporal bins is shown not to cross-correlate with five separate measures of taxonomic turnover rate, one measure of change in relative taxonomic composition, and four measures of change in body mass distributions. The lack of correlation persists even after excluding the volatile Paleocene mammalian data, adding dummy data to represent intervals without known craters, or lagging the time series against each other for up to 5 million years. Furthermore, the data fail to support broad-brush correspondences between ages of major (>20 km in diameter) craters and the timing of five key, post-K/T biotic transitions, including medium-sized extinction episodes during the late Paleocene and latest Miocene. The results challenge the idea that extraterrestrial impacts drive all, most, or even many extinction and radiation episodes in terrestrial organisms, and add to other evidence that natural, long-term biotic changes are often independent of changes in the physical environment.

  3. Temporal dynamics of biotic and abiotic drivers of litter decomposition.

    PubMed

    García-Palacios, Pablo; Shaw, E Ashley; Wall, Diana H; Hättenschwiler, Stephan

    2016-05-01

    Climate, litter quality and decomposers drive litter decomposition. However, little is known about whether their relative contribution changes at different decomposition stages. To fill this gap, we evaluated the relative importance of leaf litter polyphenols, decomposer communities and soil moisture for litter C and N loss at different stages throughout the decomposition process. Although both microbial and nematode communities regulated litter C and N loss in the early decomposition stages, soil moisture and legacy effects of initial differences in litter quality played a major role in the late stages of the process. Our results provide strong evidence for substantial shifts in how biotic and abiotic factors control litter C and N dynamics during decomposition. Taking into account such temporal dynamics will increase the predictive power of decomposition models that are currently limited by a single-pool approach applying control variables uniformly to the entire decay process.

  4. Factors influencing quality of patient interaction at community pharmacy drive-through and walk-in counselling areas.

    PubMed

    Odukoya, Olufunmilola K; Chui, Michelle A; Pu, Jia

    2014-08-01

    To examine factors influencing the amount of time and information pharmacy personnel provide to patients at drive-through and walk-in counselling areas. On-site observational data collection in 22 community pharmacies by pharmacy students. Information included observable patient characteristics such as gender, age range, English proficiency and mobility impairment; encounter characteristics included type of prescription and whether the patient was acknowledged; and counselling characteristics included types of counselling information conveyed and length of time for each encounter. Patient-pharmacist encounters were documented at the drive-through and walk-in counselling areas 961 and 1098 times respectively. Pharmacists spent less time, and technicians more time, with patients at the drive-through counselling area. The amount of information provided to patients was significantly affected by whether the patient was receiving new versus refill prescriptions. Patients with a new prescription were twice as likely to receive more information from pharmacy personnel. There was a significant difference between the amount of counselling provided to patients at the drive-through and walk-in counselling area (rate ratio (RR) 0.92, 95% confidence interval (CI): 0.86-1.00). Patients at the drive-through received a lower amount of information relative to patients using the walk-in. Amount of information provided to patients was affected by the level of pharmacy busyness (RR 0.96, 95% CI: 0.95-0.99). Providing patient care at the drive-through counselling area may negatively influence quality of patient care. To improve quality of pharmacy drive-through services, standardization of drive-through services in pharmacies may be needed. © 2013 Royal Pharmaceutical Society.

  5. Biotic effects of impacts and volcanism

    NASA Astrophysics Data System (ADS)

    Keller, Gerta

    2003-10-01

    The biotic effects of late Maastrichtian mantle plume volcanism on Ninetyeast Ridge and Deccan volcanism mirror those of the Cretaceous-Tertiary (KT) mass extinction and impact event. Planktonic foraminifera responded to high stress conditions with the same impoverished and small-sized species assemblages dominated by the disaster/opportunists Guembelitria cretacea, which characterize the KT mass extinction worldwide. Similar high stress late Maastrichtian assemblages have recently been documented from Madagascar, Israel and Egypt. Biotic effects of volcanism cannot be differentiated from those of impacts, though every period of intense volcanism is associated with high stress assemblages, this is not the case with every impact. The most catastrophic biotic effects occurred at the KT boundary (65.0 Ma) when intense Deccan volcanism coincided with a major impact and caused the mass extinction of all tropical and subtropical species. The Chicxulub impact, which now appears to have predated the KT boundary by about 300 kyr, coincided with intense Deccan volcanism that resulted in high biotic stress and greenhouse warming, but no major extinctions. The unequivocal connection between intense volcanism and high stress assemblages during the late Maastrichtian to early Danian, and the evidence of multiple impacts, necessitates revision of current impact and mass extinction theories.

  6. Subtropical Biotic Fringing Reefs as Ecological Laboratories.

    ERIC Educational Resources Information Center

    Hunt, Jeffrey W.

    1980-01-01

    Describes a 16-week course in marine biology involving a class-coordinated investigation of a subtropical biotic fringing reef of Hawaii. Describes in detail the development of preliminary hypotheses regarding general cause-effect relationships on the reef, and the exploration of specific areas, such as chemical or physical factors. (CS)

  7. Subtropical Biotic Fringing Reefs as Ecological Laboratories.

    ERIC Educational Resources Information Center

    Hunt, Jeffrey W.

    1980-01-01

    Describes a 16-week course in marine biology involving a class-coordinated investigation of a subtropical biotic fringing reef of Hawaii. Describes in detail the development of preliminary hypotheses regarding general cause-effect relationships on the reef, and the exploration of specific areas, such as chemical or physical factors. (CS)

  8. Assessment selection in human-automation interaction studies: The Failure-GAM(2)E and review of assessment methods for highly automated driving.

    PubMed

    Grane, Camilla

    2017-08-30

    Highly automated driving will change driver's behavioural patterns. Traditional methods used for assessing manual driving will only be applicable for the parts of human-automation interaction where the driver intervenes such as in hand-over and take-over situations. Therefore, driver behaviour assessment will need to adapt to the new driving scenarios. This paper aims at simplifying the process of selecting appropriate assessment methods. Thirty-five papers were reviewed to examine potential and relevant methods. The review showed that many studies still relies on traditional driving assessment methods. A new method, the Failure-GAM(2)E model, with purpose to aid assessment selection when planning a study, is proposed and exemplified in the paper. Failure-GAM(2)E includes a systematic step-by-step procedure defining the situation, failures (Failure), goals (G), actions (A), subjective methods (M), objective methods (M) and equipment (E). The use of Failure-GAM(2)E in a study example resulted in a well-reasoned assessment plan, a new way of measuring trust through feet movements and a proposed Optimal Risk Management Model. Failure-GAM(2)E and the Optimal Risk Management Model are believed to support the planning process for research studies in the field of human-automation interaction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Asymmetric coexistence: bidirectional abiotic and biotic effects between goose barnacles and mussels.

    PubMed

    Kawai, Takashi; Tokeshi, Mutsunori

    2006-07-01

    1. Species coexistence depends on the net effect of interacting species, representing the sum of multiple interaction components that may act simultaneously and vary independently depending on ambient environmental conditions. Consequently, for a comprehensive understanding of the compound nature of species interactions and coexistence, a mechanistic approach that allows a separate evaluation of each interaction component is required. 2. Two sessile filter-feeders, the goose barnacle Capitulum mitella and the mussel Septifer virgatus, coexist on moderately wave-exposed rocky shores in south-western Japan. In the upper intertidal, Capitulum positively influenced Septifer survivorship and growth through amelioration of thermal stress and of physical disturbance. On the other hand, these species are potential competitors as they have similar body sizes and modes of resource utilization. These opposite processes, facilitation and competition, are based on abiotic characteristics and biotic functions of the two species, respectively. 3. In order to quantify the bidirectional abiotic, biotic and net effects, a series of experimental manipulations was conducted involving the use of living neighbours with both abiotic and biotic effects, and artificial mimics to simulate abiotic effects without biotic effects. 4. Capitulum had strong positive abiotic effects on the mussel survivorship in most experimental periods, while the biotic effect was negligible or weakly negative, suggesting that the net effect of Capitulum on mussel survival was largely attributable to the abiotic effect. In contrast, a significantly negative biotic effect on the mussel growth rate was always present, though this was cancelled out by the larger, positive abiotic effect. In the case of Septifer, its abiotic and biotic effects on the survivorship of goose barnacles were negligible, while those on the growth rate showed temporal variation. 5. With respect to the relationship between species

  10. Double-Stranded RNA Interacts With Toll-Like Receptor 3 in Driving the Acute Inflammatory Response Following Lung Contusion.

    PubMed

    Suresh, Madathilparambil V; Thomas, Bivin; Machado-Aranda, David; Dolgachev, Vladislov A; Kumar Ramakrishnan, Sadeesh; Talarico, Nicholas; Cavassani, Karen; Sherman, Matthew A; Hemmila, Mark R; Kunkel, Steven L; Walter, Nils G; Hogaboam, Cory M; Raghavendran, Krishnan

    2016-11-01

    Lung contusion is a major risk factor for the development of acute respiratory distress syndrome. We set to determine the role of toll-like receptor 3 and the binding of double-stranded RNA in the pathogenesis of sterile injury following lung contusion. Toll-like receptor 3 expression was analyzed in postmortem lung samples from patients with lung contusion. Unilateral lung contusion was induced in toll-like receptor 3 (-/-), TIR-domain-containing adapter-inducing interferon-β (-/-), and wild-type mice. Subsequently, lung injury and inflammation were evaluated. Apoptotic indices, phagocytic activity, and phenotypic characterization of the macrophages were determined. Double-stranded RNA in bronchoalveolar lavage and serum samples following lung contusion was measured. A toll-like receptor 3/double-stranded RNA ligand inhibitor was injected into wild-type mice prior to lung contusion. Toll-like receptor 3 expression was higher in patients and wild-type mice with lung contusion. The degree of lung injury, inflammation, and macrophage apoptosis was reduced in toll-like receptor 3 (-/-), TIR-domain-containing adapter-inducing interferon-β (-/-), and wild-type mice with toll-like receptor 3 antibody neutralization. Alveolar macrophages from toll-like receptor 3 (-/-) mice had a lower early apoptotic index, a predominant M2 phenotype and increased surface translocation of toll-like receptor 3 from the endosome to the surface. When compared with viral activation pathways, lung injury in lung contusion demonstrated increased p38 mitogen-activated protein kinases, extracellular signal-regulated kinase 1/2 phosphorylation with inflammasome activation without a corresponding increase in nuclear factor-κB or type-1 interferon production. Additionally, pretreatment with toll-like receptor 3/double-stranded RNA ligand inhibitor led to a reduction in injury, inflammation, and macrophage apoptosis. We conclude that the interaction of double-stranded RNA from injured cells with

  11. The biotic ligand model: a historical overview.

    PubMed

    Paquin, Paul R; Gorsuch, Joseph W; Apte, Simon; Batley, Graeme E; Bowles, Karl C; Campbell, Peter G C; Delos, Charles G; Di Toro, Dominic M; Dwyer, Robert L; Galvez, Fernando; Gensemer, Robert W; Goss, Gregory G; Hostrand, Christer; Janssen, Colin R; McGeer, James C; Naddy, Rami B; Playle, Richard C; Santore, Robert C; Schneider, Uwe; Stubblefield, William A; Wood, Chris M; Wu, Kuen Benjamin

    2002-09-01

    During recent years, the biotic ligand model (BLM) has been proposed as a tool to evaluate quantitatively the manner in which water chemistry affects the speciation and biological availability of metals in aquatic systems. This is an important consideration because it is the bioavailability and bioreactivity of metals that control their potential to cause adverse effects. The BLM approach has gained widespread interest amongst the scientific, regulated and regulatory communities because of its potential for use in developing water quality criteria (WQC) and in performing aquatic risk assessments for metals. Specifically, the BLM does this in a way that considers the important influences of site-specific water quality. This journal issue includes papers that describe recent advances with regard to the development of the BLM approach. Here, the current status of the BLM development effort is described in the context of the longer-term history of advances in the understanding of metal interactions in the environment upon which the BLM is based. Early developments in the aquatic chemistry of metals, the physiology of aquatic organisms and aquatic toxicology are reviewed first, and the degree to which each of these disciplines influenced the development of water quality regulations is discussed. The early scientific advances that took place in each of these fields were not well coordinated, making it difficult for regulatory authorities to take full advantage of the potential utility of what had been learned. However, this has now changed, with the BLM serving as a useful interface amongst these scientific disciplines, and within the regulatory arena as well. The more recent events that have led to the present situation are reviewed, and consideration is given to some of the future needs and developments related to the BLM that are envisioned. The research results that are described in the papers found in this journal issue represent a distinct milestone in the ongoing

  12. Effect of driving frequency on the electron energy distribution function and electron-sheath interaction in a low pressure capacitively coupled plasma

    NASA Astrophysics Data System (ADS)

    Sharma, S.; Sirse, N.; Kaw, P. K.; Turner, M. M.; Ellingboe, A. R.

    2016-11-01

    By using a self-consistent particle-in-cell simulation, we investigated the effect of driving frequency (27.12-70 MHz) on the electron energy distribution function (EEDF) and electron-sheath interaction in a low pressure (5 mTorr) capacitively coupled Ar discharge for a fixed discharge voltage. We observed a mode transition with driving frequency, changing the shape of EEDF from a strongly bi-Maxwellian at a driving frequency of 27.12 MHz to a convex type distribution at an intermediate frequency, 50 MHz, and finally becomes a weak bi-Maxwellian at a higher driving frequency, i.e., above 50 MHz. The transition is caused by the electric field transients, which is of the order of electron plasma frequency caused by the energetic "beams" of electrons ejected from near the sheath edge. Below the transition frequency, 50 MHz, these high energy electrons redistribute their energy with low energy electrons, thereby increasing the effective electron temperature in the plasma, whereas the plasma density remains nearly constant. Above the transition frequency, high-energy electrons are confined between opposite sheaths, which increase the ionization probability and therefore the plasma density increases drastically.

  13. Rodent seed predation as a biotic filter influencing exotic plant abundance and distribution

    Treesearch

    D. E. Pearson; J. L. Hierro; M. Chiuffo; D. Villarreal

    2014-01-01

    Biotic resistance is commonly invoked to explain why many exotic plants fail to thrive in introduced ranges, but the role of seed predation as an invasion filter is understudied. Abiotic conditions may also influence plant populations and can interact with consumers to determine plant distributions, but how these factors jointly influence invasions is poorly understood...

  14. Pivoting from Arabidopsis to wheat to understand how agricultural plants integrate responses to biotic stress

    USDA-ARS?s Scientific Manuscript database

    Here we argue for a research initiative on gene-for-gene (g-f-g) interactions between wheat and its parasites. One aim is to begin a conversation between the disparate communities of plant pathology and entomology. Another is to understand how responses to biotic stress are integrated in an import...

  15. iDriving (Intelligent Driving)

    SciTech Connect

    Malikopoulos, Andreas

    2012-09-17

    iDriving identifies the driving style factors that have a major impact on fuel economy. An optimization framework is used with the aim of optimizing a driving style with respect to these driving factors. A set of polynomial metamodels is constructed to reflect the responses produced in fuel economy by changing the driving factors. The optimization framework is used to develop a real-time feedback system, including visual instructions, to enable drivers to alter their driving styles in responses to actual driving conditions to improve fuel efficiency.

  16. Plant Immune System: Crosstalk Between Responses to Biotic and Abiotic Stresses the Missing Link in Understanding Plant Defence.

    PubMed

    Nejat, Naghmeh; Mantri, Nitin

    2017-02-03

    Environmental pollution, global warming and climate change exacerbate the impact of biotic and abiotic stresses on plant growth and yield. Plants have evolved sophisticated defence network, also called innate immune system, in response to ever- changing environmental conditions. Significant progress has been made in identifying the key stress-inducible genes associated with defence response to single stressors. However, relatively little information is available on the signaling crosstalk in response to combined biotic/abiotic stresses. Recent evidence highlights the complex nature of interactions between biotic and abiotic stress responses, significant aberrant signaling crosstalk in response to combined stresses and a degree of overlap, but unique response to each environmental stimulus. Further, the results of simultaneous combined biotic and abiotic stress studies indicate that abiotic stresses particularly heat and drought enhance plant susceptibility to plant pathogens. It is noteworthy that global climate change is predicted to have a negative impact on biotic stress resistance in plants. Therefore, it is vital to conduct plant transcriptome analysis in response to combined stresses to identify general or multiple stress- and pathogen-specific genes that confer multiple stress tolerance in plants under climate change. Here, we discuss the recent advances in our understanding of the molecular mechanisms of crosstalk in response to biotic and abiotic stresses. Pinpointing both, common and specific components of the signaling crosstalk in plants, allows identification of new targets and development of novel methods to combat biotic and abiotic stresses under global climate change.

  17. Induced fit on heme binding to the Pseudomonas aeruginosa cytoplasmic protein (PhuS) drives interaction with heme oxygenase (HemO).

    PubMed

    O'Neill, Maura J; Bhakta, Mehul N; Fleming, Karen G; Wilks, Angela

    2012-04-10

    Iron, an essential nutrient with limited bioavailability, requires specialized cellular mechanisms for uptake. Although iron uptake into the cytoplasm in the form of heme has been well characterized in many bacteria, the subsequent trafficking is poorly understood. The cytoplasmic heme-binding proteins belong to a structurally related family thought to have evolved as "induced fit" ligand-binding macromolecules. One member, Pseudomonas aeruginosa cytoplasmic protein (PhuS), has previously been shown to be important for delivering heme to the iron regulated heme oxygenase (HemO). Spectroscopic investigations of the holo-PhuS complex revealed a dynamic heme environment with overlapping but distinct heme-binding sites with alternative coordinating heme ligands, His-209 or His-212. In the present work we establish a mechanism for how heme is transferred from PhuS to its partner, HemO. Using surface plasmon resonance and isothermal titration calorimetry, we have discovered that holo-PhuS, but not apo-PhuS, forms a 1:1 complex with HemO. Sedimentation velocity and limited proteolysis experiments suggest that heme binding to PhuS induces a conformational rearrangement that drives the protein interaction with HemO. Hydrodynamic analysis reveals that the holo-PhuS displays a more expanded hydrodynamic envelope compared with apo-PhuS, and we propose that this conformational change drives the interaction with HemO. We further demonstrate that replacement of His-212 by Ala disrupts the interaction of holo-PhuS with HemO; in contrast, the His-209-Ala variant can still complex with HemO, albeit more weakly. Together, the present studies reveal a mechanism that couples a heme-dependent conformational switch in PhuS to protein-protein interaction, the subsequent free energy of which drives heme release to HemO.

  18. Abiotic mediation of a mutualism drives herbivore abundance.

    PubMed

    Mooney, Emily H; Phillips, Joseph S; Tillberg, Chadwick V; Sandrow, Cheryl; Nelson, Annika S; Mooney, Kailen A

    2016-01-01

    Species abundance is typically determined by the abiotic environment, but the extent to which such effects occur through the mediation of biotic interactions, including mutualisms, is unknown. We explored how light environment (open meadow vs. shaded understory) mediates the abundance and ant tending of the aphid Aphis helianthi feeding on the herb Ligusticum porteri. Yearly surveys consistently found aphids to be more than 17-fold more abundant on open meadow plants than on shaded understory plants. Manipulations demonstrated that this abundance pattern was not due to the direct effects of light environment on aphid performance, or indirectly through host plant quality or the effects of predators. Instead, open meadows had higher ant abundance and per capita rates of aphid tending and, accordingly, ants increased aphid population growth in meadow but not understory environments. The abiotic environment thus drives the abundance of this herbivore exclusively through the mediation of a protection mutualism.

  19. Mean-field interactions between nucleic-acid-base dipoles can drive the formation of the double helix

    PubMed Central

    He, Yi; Maciejczyk, Maciej; Ołdziej, Stanisław; Scheraga, Harold A.; Liwo, Adam

    2013-01-01

    A proposed coarse-grained model of nucleic acids demonstrates that average interactions between base dipoles, together with chain connectivity and excluded-volume interactions, are sufficient to form double-helical structures of DNA and RNA molecules. Additionally, local interactions determine helix handedness and direction of strand packing. This result, and earlier research on reduced protein models, suggest that mean-field multipole-multipole interactions are the principal factors responsible for the formation of regular structure of biomolecules. PMID:23496746

  20. Impaired Driving

    MedlinePlus

    Impaired driving is dangerous. It's the cause of more than half of all car crashes. It means operating a ... texting Having a medical condition which affects your driving For your safety and the safety of others, ...

  1. Global warming, elevational range shifts, and lowland biotic attrition in the wet tropics.

    PubMed

    Colwell, Robert K; Brehm, Gunnar; Cardelús, Catherine L; Gilman, Alex C; Longino, John T

    2008-10-10

    Many studies suggest that global warming is driving species ranges poleward and toward higher elevations at temperate latitudes, but evidence for range shifts is scarce for the tropics, where the shallow latitudinal temperature gradient makes upslope shifts more likely than poleward shifts. Based on new data for plants and insects on an elevational transect in Costa Rica, we assess the potential for lowland biotic attrition, range-shift gaps, and mountaintop extinctions under projected warming. We conclude that tropical lowland biotas may face a level of net lowland biotic attrition without parallel at higher latitudes (where range shifts may be compensated for by species from lower latitudes) and that a high proportion of tropical species soon faces gaps between current and projected elevational ranges.

  2. The importance of biotic entrainment for base flow fluvial sediment transport

    NASA Astrophysics Data System (ADS)

    Rice, Stephen P.; Johnson, Matthew F.; Mathers, Kate; Reeds, Jake; Extence, Chris

    2016-05-01

    Sediment transport is regarded as an abiotic process driven by geophysical energy, but zoogeomorphological activity indicates that biological energy can also fuel sediment movements. It is therefore prudent to measure the contribution that biota make to sediment transport, but comparisons of abiotic and biotic sediment fluxes are rare. For a stream in the UK, the contribution of crayfish bioturbation to suspended sediment flux was compared with the amount of sediment moved by hydraulic forcing. During base flow periods, biotic fluxes can be isolated because nocturnal crayfish activity drives diel turbidity cycles, such that nighttime increases above daytime lows are attributable to sediment suspension by crayfish. On average, crayfish bioturbation contributed at least 32% (474 kg) to monthly base flow suspended sediment loads; this biotic surcharge added between 5.1 and 16.1 t (0.21 to 0.66 t km-2 yr-1) to the annual sediment yield. As anticipated, most sediment was moved by hydraulic forcing during floods and the biotic contribution from baseflow periods represented between 0.46 and 1.46% of the annual load. Crayfish activity is nonetheless an important impact during baseflow periods and the measured annual contribution may be a conservative estimate because of unusually prolonged flooding during the measurement period. In addition to direct sediment entrainment by bioturbation, crayfish burrowing supplies sediment to the channel for mobilization during floods so that the total biotic effect of crayfish is potentially greater than documented in this study. These results suggest that in rivers, during base flow periods, bioturbation can entrain significant quantities of fine sediment into suspension with implications for the aquatic ecosystem and base flow sediment fluxes. Energy from life rather than from elevation can make significant contributions to sediment fluxes.

  3. Abiotic and biotic drivers of aboveground biomass in semi-steppe rangelands.

    PubMed

    Sanaei, Anvar; Chahouki, Mohammad Ali Zare; Ali, Arshad; Jafari, Mohammad; Azarnivand, Hossein

    2017-10-07

    Rangelands play an important role in the biodiversity conservation and ecosystem functions. Yet, few studies have assessed the effects of biotic and abiotic factors on aboveground biomass across plant growth forms and at whole-community level in rangelands. Here, we hypothesized that aboveground biomass is driven by both biotic (plant coverage, species richness and evenness) and abiotic factors (soil textural properties and topographic factors) but biotic factors may best predict aboveground biomass, probably due to small spatial scale. To test this hypothesis, we performed multiple linear mixed model by including biotic and biotic factors as fixed effects while sites aspects and plant community types across sites, and disturbance intensities as random effects, using data from 735 quadrats across 35 sites in semi-steppe rangelands in Iran. The optimal model for shrubs showed that aboveground biomass was positively related to plant coverage, species richness, elevation, sand, silt and clay. Aboveground biomass of forbs and grasses was positively related to plant coverage, species richness, elevation and slope. Whole-community aboveground biomass was positively related to plant coverage, species richness and elevation, but negatively to species evenness and slope. We conclude that higher aboveground biomass is related to high species richness and plant coverage, and located on high elevation and/or slope across plant growth forms while having medium-coarse-textured to fine-textured soils for adaptation of shrubs only. Few dominant species or niche overlap in whole-community may also drive high aboveground biomass, and located on high elevation with gentle slope. Therefore, we found support for both the niche complementarity and selection effects across plant growth forms and at whole-community. In addition, this study shows that plant coverage is the best proxy for aboveground biomass in the studied rangelands. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. The relative contribution of climatic, edaphic, and biotic drivers to risk of tree mortality from drought

    NASA Astrophysics Data System (ADS)

    March, R. G.; Moore, G. W.; Edgar, C. B.; Lawing, A. M.; Washington-Allen, R. A.

    2015-12-01

    In recorded history, the 2011 Texas Drought was comparable in severity only to a drought that occurred 300 years ago. By mid-September, 88% of the state experienced 'exceptional' conditions, with the rest experiencing 'extreme' or 'severe' drought. By recent estimates, the 2011 Texas Drought killed 6.2% of all the state's trees, at a rate nearly 9 times greater than average. The vast spatial scale and relatively uniform intensity of this drought has provided an opportunity to examine the comparative interactions among forest types, terrain, and edaphic factors across major climate gradients which in 2011 were subjected to extreme drought conditions that ultimately caused massive tree mortality. We used maximum entropy modeling (Maxent) to rank environmental landscape factors with the potential to drive drought-related tree mortality and test the assumption that the relative importance of these factors are scale-dependent. Occurrence data of dead trees were collected during the summer of 2012 from 599 field plots distributed across Texas with 30% used for model evaluation. Bioclimatic variables, ecoregions, soils characteristics, and topographic variables were modeled with drought-killed tree occurrence. Their relative contribution to the model was seen as their relative importance in driving mortality. To test determinants at a more local scale, we examined Landsat 7 scenes in East and West Texas with moderate-resolution data for the same variables above with the exception of climate. All models were significantly better than random in binomial tests of omission and receiver operating characteristic analyses. The modeled spatial distribution of probability of occurrence showed high probability of mortality in the east-central oak woodlands and the mixed pine-hardwood forest region in northeast Texas. Both regional and local models were dominated by biotic factors (ecoregion and forest type, respectively). Forest density and precipitation of driest month also

  5. Modeling biotic habitat high risk areas

    USGS Publications Warehouse

    Despain, D.G.; Beier, P.; Tate, C.; Durtsche, B.M.; Stephens, T.

    2000-01-01

    Fire, especially stand replacing fire, poses a threat to many threatened and endangered species as well as their habitat. On the other hand, fire is important in maintaining a variety of successional stages that can be important for approach risk assessment to assist in prioritizing areas for allocation of fire mitigation funds. One example looks at assessing risk to the species and biotic communities of concern followed by the Colorado Natural Heritage Program. One looks at the risk to Mexican spottled owls. Another looks at the risk to cutthroat trout, and a fourth considers the general effects of fire and elk.

  6. Ordered framboids in dwarfed biotic molds

    NASA Astrophysics Data System (ADS)

    El-Dahhar, M. A.

    Abundant framboids of an ordered nature are encountered in some dwarfed biotic molds which were collected from an integral part of the Eocene sedimentary succession exposed at Garret Gehannan area, Fayoum Province, Egypt. These framboids are either clustered in polyframboids or occur as discrete individuals. Pyrite and/or limonite microaggregates constitute the internal makeup of both types. Morphology and other characteristics of the framboids and a genetic appraisal is further discussed. The invoked mechanism strongly suggests the necessity of a precursor in developing the framboid texture.

  7. Modeling biotic uptake by periphyton and transient hyporrheic storage of nitrate in a natural stream

    USGS Publications Warehouse

    Kim, Brian K.A.; Jackman, Alan P.; Triska, Frank J.

    1992-01-01

    To a convection-dispersion hydrologic transport model we coupled a transient storage submodel (Bencala, 1984) and a biotic uptake submodel based on Michaelis-Menten kinetics (Kim et al., 1990). Our purpose was threefold: (1) to simulate nitrate retention in response to change in load in a third-order stream, (2) to differentiate biotic versus hydrologie factors in nitrate retention, and (3) to produce a research tool whose properties are consistent with laboratory and field observations. Hydrodynamic parameters were fitted from chloride concentration during a 20-day chloride-nitrate coinjection (Bencala, 1984), and biotic uptake kinetics were based on flume studies by Kim et al. (1990) and Triska et al. (1983). Nitrate concentration from the 20-day coinjection experiment served as a base for model validation. The complete transport retention model reasonably predicted the observed nitrate concentration. However, simulations which lacked either the transient storage submodel or the biotic uptake submodel poorly predicted the observed nitrate concentration. Model simulations indicated that transient storage in channel and hyporrheic interstices dominated nitrate retention within the first 24 hours, whereas biotic uptake dominated thereafter. A sawtooth function for Vmax ranging from 0.10 to 0.17 μg NO3-N s−1gAFDM−1 (grams ash free dry mass) slightly underpredicted nitrate retention in simulations of 2–7 days. This result was reasonable since uptake by other nitrate-demanding processes were not included. The model demonstrated how ecosystem retention is an interaction between physical and biotic processes and supports the validity of coupling separate hydrodynamic and reactive submodels to established solute transport models in biological studies of fluvial ecosystems.

  8. Field chronobiology of a molluscan bivalve: how the moon and sun cycles interact to drive oyster activity rhythms.

    PubMed

    Tran, Damien; Nadau, Arnaud; Durrieu, Gilles; Ciret, Pierre; Parisot, Jean-Paul; Massabuau, Jean-Charles

    2011-05-01

    The present study reports new insights into the complexity of environmental drivers in aquatic animals. The focus of this study was to determine the main forces that drive mollusc bivalve behavior in situ. To answer this question, the authors continuously studied the valve movements of permanently immersed oysters, Crassostrea gigas, during a 1-year-long in situ study. Valve behavior was monitored with a specially build valvometer, which allows continuously recording of up to 16 bivalves at high frequency (10 Hz). The results highlight a strong relationship between the rhythms of valve behavior and the complex association of the sun-earth-moon orbital positions. Permanently immersed C. gigas follows a robust and strong behavior primarily driven by the tidal cycle. The intensity of this tidal driving force is modulated by the neap-spring tides (i.e., synodic moon cycle), which themselves depend of the earth-moon distance (i.e., anomalistic moon cycle). Light is a significant driver of the oysters' biological rhythm, although its power is limited by the tides, which remain the predominant driver. More globally, depending where in the world the bivalves reside, the results suggest their biological rhythms should vary according to the relative importance of the solar cycle and different lunar cycles associated with tide generation. These results highlight the high plasticity of these oysters to adapt to their changing environment.

  9. Protein design at the interface of the pre-biotic and biotic worlds.

    PubMed

    Longo, Liam M; Blaber, Michael

    2012-10-01

    "Proteogenesis" (the origin of proteins) is a likely key event in the unsolved problem of biogenesis (the origin of life). The raw material for the very first proteins comprised the available amino acids produced and accumulated upon the early earth via abiotic chemical and physical processes. A broad consensus is emerging that this pre-biotic set likely comprised Ala, Asp, Glu, Gly, Ile, Leu, Pro, Ser, Thr, and Val. A key question in proteogenesis is whether such abiotically-produced amino acids comprise a "foldable" set. Current knowledge of protein folding identifies properties of complexity, secondary structure propensity, hydrophobic-hydrophilic patterning, core-packing potential, among others, as necessary elements of foldability. None of these requirements excludes the pre-biotic set of amino acids from being a foldable set. Moreover, nucleophile and metal ion/mineral binding capabilities also appear present in the pre-biotic set. Properties of the pre-biotic set, however, likely restrict foldability to the acidophilic/halophilic environment.

  10. Ubiquitin, hormones and biotic stress in plants.

    PubMed

    Dreher, Kate; Callis, Judy

    2007-05-01

    The covalent attachment of ubiquitin to a substrate protein changes its fate. Notably, proteins typically tagged with a lysine48-linked polyubiquitin chain become substrates for degradation by the 26S proteasome. In recent years many experiments have been performed to characterize the proteins involved in the ubiquitylation process and to identify their substrates, in order to understand better the mechanisms that link specific protein degradation events to regulation of plant growth and development. This review focuses on the role that ubiquitin plays in hormone synthesis, hormonal signalling cascades and plant defence mechanisms. Several examples are given of how targeted degradation of proteins affects downstream transcriptional regulation of hormone-responsive genes in the auxin, gibberellin, abscisic acid, ethylene and jasmonate signalling pathways. Additional experiments suggest that ubiquitin-mediated proteolysis may also act upstream of the hormonal signalling cascades by regulating hormone biosynthesis, transport and perception. Moreover, several experiments demonstrate that hormonal cross-talk can occur at the level of proteolysis. The more recently established role of the ubiquitin/proteasome system (UPS) in defence against biotic threats is also reviewed. The UPS has been implicated in the regulation of almost every developmental process in plants, from embryogenesis to floral organ production probably through its central role in many hormone pathways. More recent evidence provides molecular mechanisms for hormonal cross-talk and links the UPS system to biotic defence responses.

  11. Ubiquitin, Hormones and Biotic Stress in Plants

    PubMed Central

    Dreher, Kate; Callis, Judy

    2007-01-01

    Background The covalent attachment of ubiquitin to a substrate protein changes its fate. Notably, proteins typically tagged with a lysine48-linked polyubiquitin chain become substrates for degradation by the 26S proteasome. In recent years many experiments have been performed to characterize the proteins involved in the ubiquitylation process and to identify their substrates, in order to understand better the mechanisms that link specific protein degradation events to regulation of plant growth and development. Scope This review focuses on the role that ubiquitin plays in hormone synthesis, hormonal signalling cascades and plant defence mechanisms. Several examples are given of how targeted degradation of proteins affects downstream transcriptional regulation of hormone-responsive genes in the auxin, gibberellin, abscisic acid, ethylene and jasmonate signalling pathways. Additional experiments suggest that ubiquitin-mediated proteolysis may also act upstream of the hormonal signalling cascades by regulating hormone biosynthesis, transport and perception. Moreover, several experiments demonstrate that hormonal cross-talk can occur at the level of proteolysis. The more recently established role of the ubiquitin/proteasome system (UPS) in defence against biotic threats is also reviewed. Conclusions The UPS has been implicated in the regulation of almost every developmental process in plants, from embryogenesis to floral organ production probably through its central role in many hormone pathways. More recent evidence provides molecular mechanisms for hormonal cross-talk and links the UPS system to biotic defence responses. PMID:17220175

  12. Biotic homogenization can decrease landscape-scale forest multifunctionality

    PubMed Central

    van der Plas, Fons; Manning, Pete; Soliveres, Santiago; Allan, Eric; Scherer-Lorenzen, Michael; Verheyen, Kris; Wirth, Christian; Zavala, Miguel A.; Ampoorter, Evy; Baeten, Lander; Barbaro, Luc; Bauhus, Jürgen; Benavides, Raquel; Benneter, Adam; Bonal, Damien; Bouriaud, Olivier; Bruelheide, Helge; Bussotti, Filippo; Carnol, Monique; Castagneyrol, Bastien; Charbonnier, Yohan; Coppi, Andrea; Bastias, Cristina C.; Dawud, Seid Muhie; De Wandeler, Hans; Domisch, Timo; Finér, Leena; Granier, André; Grossiord, Charlotte; Guyot, Virginie; Hättenschwiler, Stephan; Jactel, Hervé; Jaroszewicz, Bogdan; Joly, François-xavier; Jucker, Tommaso; Koricheva, Julia; Milligan, Harriet; Mueller, Sandra; Muys, Bart; Nguyen, Diem; Pollastrini, Martina; Ratcliffe, Sophia; Raulund-Rasmussen, Karsten; Selvi, Federico; Stenlid, Jan; Valladares, Fernando; Vesterdal, Lars; Zielínski, Dawid; Fischer, Markus

    2016-01-01

    Many experiments have shown that local biodiversity loss impairs the ability of ecosystems to maintain multiple ecosystem functions at high levels (multifunctionality). In contrast, the role of biodiversity in driving ecosystem multifunctionality at landscape scales remains unresolved. We used a comprehensive pan-European dataset, including 16 ecosystem functions measured in 209 forest plots across six European countries, and performed simulations to investigate how local plot-scale richness of tree species (α-diversity) and their turnover between plots (β-diversity) are related to landscape-scale multifunctionality. After accounting for variation in environmental conditions, we found that relationships between α-diversity and landscape-scale multifunctionality varied from positive to negative depending on the multifunctionality metric used. In contrast, when significant, relationships between β-diversity and landscape-scale multifunctionality were always positive, because a high spatial turnover in species composition was closely related to a high spatial turnover in functions that were supported at high levels. Our findings have major implications for forest management and indicate that biotic homogenization can have previously unrecognized and negative consequences for large-scale ecosystem multifunctionality. PMID:26979952

  13. Biotic homogenization can decrease landscape-scale forest multifunctionality.

    PubMed

    van der Plas, Fons; Manning, Pete; Soliveres, Santiago; Allan, Eric; Scherer-Lorenzen, Michael; Verheyen, Kris; Wirth, Christian; Zavala, Miguel A; Ampoorter, Evy; Baeten, Lander; Barbaro, Luc; Bauhus, Jürgen; Benavides, Raquel; Benneter, Adam; Bonal, Damien; Bouriaud, Olivier; Bruelheide, Helge; Bussotti, Filippo; Carnol, Monique; Castagneyrol, Bastien; Charbonnier, Yohan; Coomes, David Anthony; Coppi, Andrea; Bastias, Cristina C; Dawud, Seid Muhie; De Wandeler, Hans; Domisch, Timo; Finér, Leena; Gessler, Arthur; Granier, André; Grossiord, Charlotte; Guyot, Virginie; Hättenschwiler, Stephan; Jactel, Hervé; Jaroszewicz, Bogdan; Joly, François-Xavier; Jucker, Tommaso; Koricheva, Julia; Milligan, Harriet; Mueller, Sandra; Muys, Bart; Nguyen, Diem; Pollastrini, Martina; Ratcliffe, Sophia; Raulund-Rasmussen, Karsten; Selvi, Federico; Stenlid, Jan; Valladares, Fernando; Vesterdal, Lars; Zielínski, Dawid; Fischer, Markus

    2016-03-29

    Many experiments have shown that local biodiversity loss impairs the ability of ecosystems to maintain multiple ecosystem functions at high levels (multifunctionality). In contrast, the role of biodiversity in driving ecosystem multifunctionality at landscape scales remains unresolved. We used a comprehensive pan-European dataset, including 16 ecosystem functions measured in 209 forest plots across six European countries, and performed simulations to investigate how local plot-scale richness of tree species (α-diversity) and their turnover between plots (β-diversity) are related to landscape-scale multifunctionality. After accounting for variation in environmental conditions, we found that relationships between α-diversity and landscape-scale multifunctionality varied from positive to negative depending on the multifunctionality metric used. In contrast, when significant, relationships between β-diversity and landscape-scale multifunctionality were always positive, because a high spatial turnover in species composition was closely related to a high spatial turnover in functions that were supported at high levels. Our findings have major implications for forest management and indicate that biotic homogenization can have previously unrecognized and negative consequences for large-scale ecosystem multifunctionality.

  14. Per capita interactions and stress tolerance drive stress-induced changes in biodiversity effects on ecosystem functions.

    PubMed

    Baert, Jan M; Janssen, Colin R; Sabbe, Koen; De Laender, Frederik

    2016-08-18

    Environmental stress changes the relationship between biodiversity and ecosystem functions, but the underlying mechanisms are poorly understood. Because species interactions shape biodiversity-ecosystem functioning relationships, changes in per capita interactions under stress (as predicted by the stress gradient hypothesis) can be an important driver of stress-induced changes in these relationships. To test this hypothesis, we measure productivity in microalgae communities along a diversity and herbicide gradient. On the basis of additive partitioning and a mechanistic community model, we demonstrate that changes in per capita interactions do not explain effects of herbicide stress on the biodiversity-productivity relationship. Instead, assuming that the per capita interactions remain unaffected by stress, causing species densities to only change through differences in stress tolerance, suffices to predict the stress-induced changes in the biodiversity-productivity relationship and community composition. We discuss how our findings set the stage for developing theory on how environmental stress changes biodiversity effects on ecosystem functions.

  15. Per capita interactions and stress tolerance drive stress-induced changes in biodiversity effects on ecosystem functions

    PubMed Central

    Baert, Jan M.; Janssen, Colin R.; Sabbe, Koen; De Laender, Frederik

    2016-01-01

    Environmental stress changes the relationship between biodiversity and ecosystem functions, but the underlying mechanisms are poorly understood. Because species interactions shape biodiversity–ecosystem functioning relationships, changes in per capita interactions under stress (as predicted by the stress gradient hypothesis) can be an important driver of stress-induced changes in these relationships. To test this hypothesis, we measure productivity in microalgae communities along a diversity and herbicide gradient. On the basis of additive partitioning and a mechanistic community model, we demonstrate that changes in per capita interactions do not explain effects of herbicide stress on the biodiversity–productivity relationship. Instead, assuming that the per capita interactions remain unaffected by stress, causing species densities to only change through differences in stress tolerance, suffices to predict the stress-induced changes in the biodiversity–productivity relationship and community composition. We discuss how our findings set the stage for developing theory on how environmental stress changes biodiversity effects on ecosystem functions. PMID:27534986

  16. Integrating structure to protein-protein interaction networks that drive metastasis to brain and lung in breast cancer.

    PubMed

    Engin, H Billur; Guney, Emre; Keskin, Ozlem; Oliva, Baldo; Gursoy, Attila

    2013-01-01

    Blocking specific protein interactions can lead to human diseases. Accordingly, protein interactions and the structural knowledge on interacting surfaces of proteins (interfaces) have an important role in predicting the genotype-phenotype relationship. We have built the phenotype specific sub-networks of protein-protein interactions (PPIs) involving the relevant genes responsible for lung and brain metastasis from primary tumor in breast cancer. First, we selected the PPIs most relevant to metastasis causing genes (seed genes), by using the "guilt-by-association" principle. Then, we modeled structures of the interactions whose complex forms are not available in Protein Databank (PDB). Finally, we mapped mutations to interface structures (real and modeled), in order to spot the interactions that might be manipulated by these mutations. Functional analyses performed on these sub-networks revealed the potential relationship between immune system-infectious diseases and lung metastasis progression, but this connection was not observed significantly in the brain metastasis. Besides, structural analyses showed that some PPI interfaces in both metastasis sub-networks are originating from microbial proteins, which in turn were mostly related with cell adhesion. Cell adhesion is a key mechanism in metastasis, therefore these PPIs may be involved in similar molecular pathways that are shared by infectious disease and metastasis. Finally, by mapping the mutations and amino acid variations on the interface regions of the proteins in the metastasis sub-networks we found evidence for some mutations to be involved in the mechanisms differentiating the type of the metastasis.

  17. Pile Driving

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Machine-oriented structural engineering firm TERA, Inc. is engaged in a project to evaluate the reliability of offshore pile driving prediction methods to eventually predict the best pile driving technique for each new offshore oil platform. Phase I Pile driving records of 48 offshore platforms including such information as blow counts, soil composition and pertinent construction details were digitized. In Phase II, pile driving records were statistically compared with current methods of prediction. Result was development of modular software, the CRIPS80 Software Design Analyzer System, that companies can use to evaluate other prediction procedures or other data bases.

  18. Disentangling geographical, biotic, and abiotic drivers of plant diversity in neotropical Ruellia (Acanthaceae)

    PubMed Central

    Tsai, Yi-Hsin Erica

    2017-01-01

    It has long been hypothesized that biotic interactions are important drivers of biodiversity evolution, yet such interactions have been relatively less studied than abiotic factors owing to the inherent complexity in and the number of types of such interactions. Amongst the most prominent of biotic interactions worldwide are those between plants and pollinators. In the Neotropics, the most biodiverse region on Earth, hummingbird and bee pollination have contributed substantially to plant fitness. Using comparative methods, we test the macroevolutionary consequences of bird and bee pollination within a species rich lineage of flowering plants: Ruellia. We additionally explore impacts of species occupancy of ever-wet rainforests vs. dry ecosystems including cerrado and seasonally dry tropical forests. We compared outcomes based on two different methods of model selection: a traditional approach that utilizes a series of transitive likelihood ratio tests as well as a weighted model averaging approach. Analyses yield evidence for increased net diversification rates among Neotropical Ruellia (compared to Paleotropical lineages) as well as among hummingbird-adapted species. In contrast, we recovered no evidence of higher diversification rates among either bee- or non-bee-adapted lineages and no evidence for higher rates among wet or dry habitat lineages. Understanding fully the factors that have contributed to biases in biodiversity across the planet will ultimately depend upon incorporating knowledge of biotic interactions as well as connecting microevolutionary processes to macroevolutionary patterns. PMID:28472046

  19. Disentangling geographical, biotic, and abiotic drivers of plant diversity in neotropical Ruellia (Acanthaceae).

    PubMed

    Tripp, Erin A; Tsai, Yi-Hsin Erica

    2017-01-01

    It has long been hypothesized that biotic interactions are important drivers of biodiversity evolution, yet such interactions have been relatively less studied than abiotic factors owing to the inherent complexity in and the number of types of such interactions. Amongst the most prominent of biotic interactions worldwide are those between plants and pollinators. In the Neotropics, the most biodiverse region on Earth, hummingbird and bee pollination have contributed substantially to plant fitness. Using comparative methods, we test the macroevolutionary consequences of bird and bee pollination within a species rich lineage of flowering plants: Ruellia. We additionally explore impacts of species occupancy of ever-wet rainforests vs. dry ecosystems including cerrado and seasonally dry tropical forests. We compared outcomes based on two different methods of model selection: a traditional approach that utilizes a series of transitive likelihood ratio tests as well as a weighted model averaging approach. Analyses yield evidence for increased net diversification rates among Neotropical Ruellia (compared to Paleotropical lineages) as well as among hummingbird-adapted species. In contrast, we recovered no evidence of higher diversification rates among either bee- or non-bee-adapted lineages and no evidence for higher rates among wet or dry habitat lineages. Understanding fully the factors that have contributed to biases in biodiversity across the planet will ultimately depend upon incorporating knowledge of biotic interactions as well as connecting microevolutionary processes to macroevolutionary patterns.

  20. The abiotic and biotic factors limiting establishment of predatory fishes at their expanding northern range boundaries in Ontario, Canada.

    PubMed

    Alofs, Karen M; Jackson, Donald A

    2015-06-01

    There is a poor understanding of the importance of biotic interactions in determining species distributions with climate change. Theory from invasion biology suggests that the success of species introductions outside of their historical ranges may be either positively (biotic acceptance) or negatively (biotic resistance) related to native biodiversity. Using data on fish community composition from two survey periods separated by approximately 28 years during which climate was warming, we examined the factors influencing the establishment of three predatory centrarchids: Smallmouth Bass (Micropterus dolomieu), Largemouth Bass (M. salmoides), and Rock Bass (Ambloplites rupestris) in lakes at their expanding northern range boundaries in Ontario. Variance partitioning demonstrated that, at a regional scale, abiotic factors play a stronger role in determining the establishment of these species than biotic factors. Pairing lakes within watersheds where each species had established with lakes sharing similar abiotic conditions where the species had not established revealed both positive and negative relationships between the establishment of centrarchids and the historical presence of other predatory species. The establishment of these species near their northern range boundaries is primarily determined by abiotic factors at a regional scale; however, biotic factors become important at the lake-to-lake scale. Studies of exotic species invasions have previously highlighted how spatial scale mediates the importance of abiotic vs. biotic factors on species establishment. Our study demonstrates how concepts from invasion biology can inform our understanding of the factors controlling species distributions with changing climate. © 2014 John Wiley & Sons Ltd.

  1. Identification and Characterization of Noncovalent Interactions That Drive Binding and Specificity in DD-Peptidases and β-Lactamases

    PubMed Central

    2015-01-01

    Bacterial resistance to standard (i.e., β-lactam-based) antibiotics has become a global pandemic. Simultaneously, research into the underlying causes of resistance has slowed substantially, although its importance is universally recognized. Key to unraveling critical details is characterization of the noncovalent interactions that govern binding and specificity (DD-peptidases, antibiotic targets, versus β-lactamases, the evolutionarily derived enzymes that play a major role in resistance) and ultimately resistance as a whole. Herein, we describe a detailed investigation that elicits new chemical insights into these underlying intermolecular interactions. Benzylpenicillin and a novel β-lactam peptidomimetic complexed to the Stremptomyces R61 peptidase are examined using an arsenal of computational techniques: MD simulations, QM/MM calculations, charge perturbation analysis, QM/MM orbital analysis, bioinformatics, flexible receptor/flexible ligand docking, and computational ADME predictions. Several key molecular level interactions are identified that not only shed light onto fundamental resistance mechanisms, but also offer explanations for observed specificity. Specifically, an extended π–π network is elucidated that suggests antibacterial resistance has evolved, in part, due to stabilizing aromatic interactions. Additionally, interactions between the protein and peptidomimetic substrate are identified and characterized. Of particular interest is a water-mediated salt bridge between Asp217 and the positively charged N-terminus of the peptidomimetic, revealing an interaction that may significantly contribute to β-lactam specificity. Finally, interaction information is used to suggest modifications to current β-lactam compounds that should both improve binding and specificity in DD-peptidases and their physiochemical properties. PMID:24803854

  2. Vision and Driving

    PubMed Central

    Owsley, Cynthia; McGwin, Gerald

    2010-01-01

    Driving is the primary means of personal travel in many countries and is relies heavily on vision for its successful execution. Research over the past few decades has addressed the role of vision in driver safety (motor vehicle collision involvement) and in driver performance (both on-road and using interactive simulators in the laboratory). Here we critically review what is currently known about the role of various aspects of visual function in driving. We also discuss translational research issues on vision screening for licensure and re-licensure and rehabilitation of visually impaired persons who want to drive. PMID:20580907

  3. Cognate interactions: extrafollicular IL-4 drives germinal-center reactions, a new role for an old cytokine.

    PubMed

    Toellner, Kai-Michael

    2014-07-01

    Over the past 25 years it has become clear that B and T lymphocytes go through a range of interactions and migratory events when B cells differentiate to become high-affinity, antibody-secreting cells. This B-cell differentiation is associated with multiple sequential cognate interactions. In this issue of the European Journal of Immunology, Turqueti-Neves et al. [Eur. J. Immunol. 2014. 44: 2130-2138] show that IL-4, a cytokine well known as a regulator of Ig class switch recombination, has another as-yet-unappreciated role. The authors show that IL-4 produced by T-helper cells outside germinal centers has a major effect on the early stages of germinal-center B-cell differentiation. This Commentary will summarize their findings and relate them to what we know on the sequence of cognate interactions and migratory events B cells undergo during T-dependent immune responses.

  4. Method to grow Actinobacillus pleuropneumoniae biofilm on a biotic surface.

    PubMed

    Tremblay, Yannick D N; Lévesque, Cynthia; Segers, Ruud P A M; Jacques, Mario

    2013-10-20

    Actinobacillus pleuropneumoniae is a Gram-negative bacterium and a member of the Pasteurellaceae family. This bacterium is the causative agent of porcine pleuropneumonia, which is a highly contagious respiratory disease causing important economical losses to the worldwide pig industry. It has been shown that A. pleuropneumoniae can form biofilms on abiotic surfaces (plastic and glass). Although in vitro models are extremely useful to gain information on biofilm formation, these models may not be representative of the conditions found at the mucosal surface of the host, which is the natural niche of A. pleuropneumoniae. In this paper, we describe a method to grow A. pleuropneumoniae biofilms on the SJPL cell line, which represents a biotic surface. A non-hemolytic, non-cytotoxic mutant of A. pleuropneumoniae was used in our assays and this allowed the SJPL cell monolayers to be exposed to A. pleuropneumoniae for longer periods. This resulted in the formation of biofilms on the cell monolayer after incubations of 24 and 48 h. The biofilms can be stained with fluorescent probes, such as a lectin against the polymer of N-acetyl-D-glucosamine present in the biofilm matrix, and easily observed by confocal laser scanning microscopy. This is the first protocol that describes the formation of an A. pleuropneumoniae biofilm on a biotic surface. The advantage of this protocol is that it can be used to study biofilm formation in a context of host-pathogen interactions. The protocol could also be adapted to evaluate biofilm inhibitors or the efficacy of antibiotics in the presence of biofilms.

  5. Method to grow Actinobacillus pleuropneumoniae biofilm on a biotic surface

    PubMed Central

    2013-01-01

    Background Actinobacillus pleuropneumoniae is a Gram-negative bacterium and a member of the Pasteurellaceae family. This bacterium is the causative agent of porcine pleuropneumonia, which is a highly contagious respiratory disease causing important economical losses to the worldwide pig industry. It has been shown that A. pleuropneumoniae can form biofilms on abiotic surfaces (plastic and glass). Although in vitro models are extremely useful to gain information on biofilm formation, these models may not be representative of the conditions found at the mucosal surface of the host, which is the natural niche of A. pleuropneumoniae. Results In this paper, we describe a method to grow A. pleuropneumoniae biofilms on the SJPL cell line, which represents a biotic surface. A non-hemolytic, non-cytotoxic mutant of A. pleuropneumoniae was used in our assays and this allowed the SJPL cell monolayers to be exposed to A. pleuropneumoniae for longer periods. This resulted in the formation of biofilms on the cell monolayer after incubations of 24 and 48 h. The biofilms can be stained with fluorescent probes, such as a lectin against the polymer of N-acetyl-D-glucosamine present in the biofilm matrix, and easily observed by confocal laser scanning microscopy. Conclusions This is the first protocol that describes the formation of an A. pleuropneumoniae biofilm on a biotic surface. The advantage of this protocol is that it can be used to study biofilm formation in a context of host-pathogen interactions. The protocol could also be adapted to evaluate biofilm inhibitors or the efficacy of antibiotics in the presence of biofilms. PMID:24139070

  6. Synergistic Interactions between the Molecular and Neuronal Circadian Networks Drive Robust Behavioral Circadian Rhythms in Drosophila melanogaster

    PubMed Central

    Weiss, Ron; Bartok, Osnat; Mezan, Shaul; Malka, Yuval; Kadener, Sebastian

    2014-01-01

    Most organisms use 24-hr circadian clocks to keep temporal order and anticipate daily environmental changes. In Drosophila melanogaster CLOCK (CLK) and CYCLE (CYC) initiates the circadian system by promoting rhythmic transcription of hundreds of genes. However, it is still not clear whether high amplitude transcriptional oscillations are essential for circadian timekeeping. In order to address this issue, we generated flies in which the amplitude of CLK-driven transcription can be reduced partially (approx. 60%) or strongly (90%) without affecting the average levels of CLK-target genes. The impaired transcriptional oscillations lead to low amplitude protein oscillations that were not sufficient to drive outputs of peripheral oscillators. However, circadian rhythms in locomotor activity were resistant to partial reduction in transcriptional and protein oscillations. We found that the resilience of the brain oscillator is depending on the neuronal communication among circadian neurons in the brain. Indeed, the capacity of the brain oscillator to overcome low amplitude transcriptional oscillations depends on the action of the neuropeptide PDF and on the pdf-expressing cells having equal or higher amplitude of molecular rhythms than the rest of the circadian neuronal groups in the fly brain. Therefore, our work reveals the importance of high amplitude transcriptional oscillations for cell-autonomous circadian timekeeping. Moreover, we demonstrate that the circadian neuronal network is an essential buffering system that protects against changes in circadian transcription in the brain. PMID:24698952

  7. Driving factors of interactions between the exchange rate market and the commodity market: A wavelet-based complex network perspective

    NASA Astrophysics Data System (ADS)

    Wen, Shaobo; An, Haizhong; Chen, Zhihua; Liu, Xueyong

    2017-08-01

    In traditional econometrics, a time series must be in a stationary sequence. However, it usually shows time-varying fluctuations, and it remains a challenge to execute a multiscale analysis of the data and discover the topological characteristics of conduction in different scales. Wavelet analysis and complex networks in physical statistics have special advantages in solving these problems. We select the exchange rate variable from the Chinese market and the commodity price index variable from the world market as the time series of our study. We explore the driving factors behind the behavior of the two markets and their topological characteristics in three steps. First, we use the Kalman filter to find the optimal estimation of the relationship between the two markets. Second, wavelet analysis is used to extract the scales of the relationship that are driven by different frequency wavelets. Meanwhile, we search for the actual economic variables corresponding to different frequency wavelets. Finally, a complex network is used to search for the transfer characteristics of the combination of states driven by different frequency wavelets. The results show that statistical physics have a unique advantage over traditional econometrics. The Chinese market has time-varying impacts on the world market: it has greater influence when the world economy is stable and less influence in times of turmoil. The process of forming the state combination is random. Transitions between state combinations have a clustering feature. Based on these characteristics, we can effectively reduce the information burden on investors and correctly respond to the government's policy mix.

  8. Biotic and Abiotic Stresses Activate Different Ca2+ Permeable Channels in Arabidopsis

    PubMed Central

    Cao, Xiao-Qiang; Jiang, Zhong-Hao; Yi, Yan-Yan; Yang, Yi; Ke, Li-Ping; Pei, Zhen-Ming; Zhu, Shan

    2017-01-01

    To survive, plants must respond rapidly and effectively to various stress factors, including biotic and abiotic stresses. Salinity stress triggers the increase of cytosolic free Ca2+ concentration ([Ca2+]i) via Ca2+ influx across the plasma membrane, as well as bacterial flg22 and plant endogenous peptide Pep1. However, the interaction between abiotic stress-induced [Ca2+]i increases and biotic stress-induced [Ca2+]i increases is still not clear. Employing an aequorin-based Ca2+ imaging assay, in this work, we investigated the [Ca2+]i changes in response to flg22, Pep1, and NaCl treatments in Arabidopsis thaliana. We observed an additive effect on the [Ca2+]i increase which induced by flg22, Pep1, and NaCl. Our results indicate that biotic and abiotic stresses may activate different Ca2+ permeable channels. Further, calcium signal induced by biotic and abiotic stresses was independent in terms of spatial and temporal patterning. PMID:28197161

  9. Biotic and Abiotic Stresses Activate Different Ca(2+) Permeable Channels in Arabidopsis.

    PubMed

    Cao, Xiao-Qiang; Jiang, Zhong-Hao; Yi, Yan-Yan; Yang, Yi; Ke, Li-Ping; Pei, Zhen-Ming; Zhu, Shan

    2017-01-01

    To survive, plants must respond rapidly and effectively to various stress factors, including biotic and abiotic stresses. Salinity stress triggers the increase of cytosolic free Ca(2+) concentration ([Ca(2+)]i) via Ca(2+) influx across the plasma membrane, as well as bacterial flg22 and plant endogenous peptide Pep1. However, the interaction between abiotic stress-induced [Ca(2+)]i increases and biotic stress-induced [Ca(2+)]i increases is still not clear. Employing an aequorin-based Ca(2+) imaging assay, in this work, we investigated the [Ca(2+)]i changes in response to flg22, Pep1, and NaCl treatments in Arabidopsis thaliana. We observed an additive effect on the [Ca(2+)]i increase which induced by flg22, Pep1, and NaCl. Our results indicate that biotic and abiotic stresses may activate different Ca(2+) permeable channels. Further, calcium signal induced by biotic and abiotic stresses was independent in terms of spatial and temporal patterning.

  10. Rapid biotic homogenization of marine fish assemblages.

    PubMed

    Magurran, Anne E; Dornelas, Maria; Moyes, Faye; Gotelli, Nicholas J; McGill, Brian

    2015-09-24

    The role human activities play in reshaping biodiversity is increasingly apparent in terrestrial ecosystems. However, the responses of entire marine assemblages are not well-understood, in part, because few monitoring programs incorporate both spatial and temporal replication. Here, we analyse an exceptionally comprehensive 29-year time series of North Atlantic groundfish assemblages monitored over 5° latitude to the west of Scotland. These fish assemblages show no systematic change in species richness through time, but steady change in species composition, leading to an increase in spatial homogenization: the species identity of colder northern localities increasingly resembles that of warmer southern localities. This biotic homogenization mirrors the spatial pattern of unevenly rising ocean temperatures over the same time period suggesting that climate change is primarily responsible for the spatial homogenization we observe. In this and other ecosystems, apparent constancy in species richness may mask major changes in species composition driven by anthropogenic change.

  11. Can metals defend plants against biotic stress?

    PubMed

    Poschenrieder, Charlotte; Tolrà, Roser; Barceló, Juan

    2006-06-01

    Farmers have used metal compounds in phytosanitary treatments for more than a century; however, it has recently been suggested that plants absorb high concentrations of metals from the substrate as a self-defense mechanism against pathogens and herbivores. This metal defense hypothesis is among the most attractive proposals for the 'reason to be' of metal hyperaccumulator species. On a molecular basis, metal defense against biotic stress seems to imply common and/or complementary pathways of signal perception, signal transduction and metabolism. This does not imply a broad band of co-resistance to different stress types but reflects a continuous cross talk during the coevolution of plants, pathogens and herbivores competing in an environment where efficient metal ion acquisition and ion homeostasis are essential for survival.

  12. The biotic effects of climate change.

    PubMed

    Lister, Adrian M

    2009-02-01

    Humans are part of the biosphere and dependent upon it. The impact of climate change on 'ecosystem services' is therefore of extreme concern. Many studies demonstrate unequivocally that global warming is shifting the distribution of animal and plant species, affecting the composition not only of natural ecosystems but of agricultural ones as well, and also altering the range and impact of pathogenic organisms. The future trajectory of such complex processes is hard to map accurately, but even conservative estimates predict substantial species extinctions and changes in regional productivity. There is still a chance to significantly mitigate these effects, however, if urgent measures are taken. The biotic effects of climate change are strongly exacerbated by ongoing habitat destruction, which no less urgently needs to be halted or reversed by concerted international action. In terms of its rate and its human causation, the present crisis is not analogous to past 'natural' events.

  13. Direct interaction of the Golgi V-ATPase a-subunit isoform with PI(4)P drives localization of Golgi V-ATPases in yeast.

    PubMed

    Banerjee, Subhrajit; Kane, Patricia M

    2017-09-15

    Luminal pH and phosphoinositide content are fundamental features of organelle identity. Vacuolar H(+)-ATPases (V-ATPases) drive organelle acidification in all eukaryotes, and membrane-bound a-subunit isoforms of the V-ATPase are implicated in organelle-specific targeting and regulation. Earlier work demonstrated that the endolysosomal lipid PI(3,5)P2 activates V-ATPases containing the vacuolar a-subunit isoform in Saccharomyces cerevisiae Here we demonstrate that PI(4)P, the predominant Golgi phosphatidylinositol (PI) species, directly interacts with the cytosolic amino terminal (NT) domain of the yeast Golgi V-ATPase a-isoform Stv1. Lysine-84 of Stv1NT is essential for interaction with PI(4)P in vitro and in vivo, and interaction with PI(4)P is required for efficient localization of Stv1-containing V-ATPases. The cytosolic NT domain of the human V-ATPase a2 isoform specifically interacts with PI(4)P in vitro, consistent with its Golgi localization and function. We propose that NT domains of Vo a-subunit isoforms interact specifically with PI lipids in their organelles of residence. These interactions can transmit organelle-specific targeting or regulation information to V-ATPases. © 2017 Banerjee and Kane. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  14. Mycobacterium ulcerans dynamics in aquatic ecosystems are driven by a complex interplay of abiotic and biotic factors.

    PubMed

    Garchitorena, Andrés; Guégan, Jean-François; Léger, Lucas; Eyangoh, Sara; Marsollier, Laurent; Roche, Benjamin

    2015-07-28

    Host-parasite interactions are often embedded within complex host communities and can be influenced by a variety of environmental factors, such as seasonal variations in climate or abiotic conditions in water and soil, which confounds our understanding of the main drivers of many multi-host pathogens. Here, we take advantage of a combination of large environmental data sets on Mycobacterium ulcerans (MU), an environmentally persistent microorganism associated to freshwater ecosystems and present in a large variety of aquatic hosts, to characterize abiotic and biotic factors driving the dynamics of this pathogen in two regions of Cameroon. We find that MU dynamics are largely driven by seasonal climatic factors and certain physico-chemical conditions in stagnant and slow-flowing ecosystems, with an important role of pH as limiting factor. Furthermore, water conditions can modify the effect of abundance and diversity of aquatic organisms on MU dynamics, which suggests a different contribution of two MU transmission routes for aquatic hosts (trophic vs environmental transmission) depending on local abiotic factors.

  15. Taxonomic scale-dependence of habitat niche partitioning and biotic neighbourhood on survival of tropical tree seedlings.

    PubMed

    Queenborough, Simon A; Burslem, David F R P; Garwood, Nancy C; Valencia, Renato

    2009-12-07

    In order to differentiate between mechanisms of species coexistence, we examined the relative importance of local biotic neighbourhood, abiotic habitat factors and species differences as factors influencing the survival of 2330 spatially mapped tropical tree seedlings of 15 species of Myristicaceae in two separate analyses in which individuals were identified first to species and then to genus. Using likelihood methods, we selected the most parsimonious candidate models as predictors of 3 year seedling survival in both sets of analyses. We found evidence for differential effects of abiotic niche and neighbourhood processes on individual survival between analyses at the genus and species levels. Niche partitioning (defined as an interaction of taxonomic identity and abiotic neighbourhood) was significant in analyses at the genus level, but did not differentiate among species in models of individual seedling survival. By contrast, conspecific and congeneric seedling and adult density were retained in the minimum adequate models of seedling survival at species and genus levels, respectively. We conclude that abiotic niche effects express differences in seedling survival among genera but not among species, and that, within genera, community and/or local variation in adult and seedling abundance drives variation in seedling survival. These data suggest that different mechanisms of coexistence among tropical tree taxa may function at different taxonomic or phylogenetic scales. This perspective helps to reconcile perceived differences of importance in the various non-mutually exclusive mechanisms of species coexistence in hyper-diverse tropical forests.

  16. Mycobacterium ulcerans dynamics in aquatic ecosystems are driven by a complex interplay of abiotic and biotic factors

    PubMed Central

    Garchitorena, Andrés; Guégan, Jean-François; Léger, Lucas; Eyangoh, Sara; Marsollier, Laurent; Roche, Benjamin

    2015-01-01

    Host–parasite interactions are often embedded within complex host communities and can be influenced by a variety of environmental factors, such as seasonal variations in climate or abiotic conditions in water and soil, which confounds our understanding of the main drivers of many multi-host pathogens. Here, we take advantage of a combination of large environmental data sets on Mycobacterium ulcerans (MU), an environmentally persistent microorganism associated to freshwater ecosystems and present in a large variety of aquatic hosts, to characterize abiotic and biotic factors driving the dynamics of this pathogen in two regions of Cameroon. We find that MU dynamics are largely driven by seasonal climatic factors and certain physico-chemical conditions in stagnant and slow-flowing ecosystems, with an important role of pH as limiting factor. Furthermore, water conditions can modify the effect of abundance and diversity of aquatic organisms on MU dynamics, which suggests a different contribution of two MU transmission routes for aquatic hosts (trophic vs environmental transmission) depending on local abiotic factors. DOI: http://dx.doi.org/10.7554/eLife.07616.001 PMID:26216042

  17. Taxonomic scale-dependence of habitat niche partitioning and biotic neighbourhood on survival of tropical tree seedlings

    PubMed Central

    Queenborough, Simon A.; Burslem, David F. R. P.; Garwood, Nancy C.; Valencia, Renato

    2009-01-01

    In order to differentiate between mechanisms of species coexistence, we examined the relative importance of local biotic neighbourhood, abiotic habitat factors and species differences as factors influencing the survival of 2330 spatially mapped tropical tree seedlings of 15 species of Myristicaceae in two separate analyses in which individuals were identified first to species and then to genus. Using likelihood methods, we selected the most parsimonious candidate models as predictors of 3 year seedling survival in both sets of analyses. We found evidence for differential effects of abiotic niche and neighbourhood processes on individual survival between analyses at the genus and species levels. Niche partitioning (defined as an interaction of taxonomic identity and abiotic neighbourhood) was significant in analyses at the genus level, but did not differentiate among species in models of individual seedling survival. By contrast, conspecific and congeneric seedling and adult density were retained in the minimum adequate models of seedling survival at species and genus levels, respectively. We conclude that abiotic niche effects express differences in seedling survival among genera but not among species, and that, within genera, community and/or local variation in adult and seedling abundance drives variation in seedling survival. These data suggest that different mechanisms of coexistence among tropical tree taxa may function at different taxonomic or phylogenetic scales. This perspective helps to reconcile perceived differences of importance in the various non-mutually exclusive mechanisms of species coexistence in hyper-diverse tropical forests. PMID:19740886

  18. Is biotic resistance enhanced by natural variation in diversity?

    USGS Publications Warehouse

    Grace, James B.; Harrison, Susan P.; Cornell, Howard

    2017-01-01

    Theories linking diversity to ecosystem function have been challenged by the widespread observation of more exotic species in more diverse native communities. Few studies have addressed the underlying processes by dissecting how biotic resistance to new invaders may be shaped by the same environmental influences that determine diversity and other community properties.In grasslands with heterogeneous soils, we added invaders and removed competitors to analyze the causes of invasion resistance. Abiotic resistance was measured using invader success in the absence of the resident community. Biotic resistance was measured as the reduction in invader success in the presence of the resident community.Invaders were most successful where biotic resistance was lowest and abiotic resistance was highest, confirming the dominant role of biotic resistance. Contrary to theory, though, biotic resistance was highest where both species richness and functional diversity were lowest. In the multivariate framework of a structural equation model, biotic resistance was independent of community diversity, and was highest where fertile soils led to high community biomass.Seed predation slightly augmented biotic resistance without qualitatively changing the results. Soil-related genotypic variation in the invader also did not affect the results.We conclude that in natural systems, diversity may be correlated with invasibility and yet have little effect on biotic resistance to invasion. More generally, the environmental causes of variation in diversity should be considered when examining the potential functional consequences of diversity.

  19. Methods for evaluating stream, riparian, and biotic conditions

    Treesearch

    William S. Platts; Walter F. Megahan; G. Wayne Minshall

    1983-01-01

    This report develops a standard way of measuring stream, riparian, and biotic conditions and evaluates the validity of the measurements recommended. Accuracy and precision of most measurements are defined. This report will be of value to those persons documenting, monitoring, or predicting stream conditions and their biotic resources, especially those related to...

  20. Emergence of Strong Exchange Interaction in the Actinide Series: The Driving Force for Magnetic Stabilization of Curium

    SciTech Connect

    Moore, K; der Laan, G v; Haire, D; Wall, M; Schwartz, A; Soderlind, P

    2007-01-04

    Using electron energy-loss spectroscopy in a transmission electron microscope, many-electron atomic spectral calculations and density functional theory, we examine the electronic and magnetic structure of Cm metal. We show that angular momentum coupling in the 5f states plays a decisive role in the formation of the magnetic moment. The 5f states of Cm in intermediate coupling are strongly shifted towards the LS coupling limit due to exchange interaction, unlike most actinide elements where the effective spin-orbit interaction prevails. It is this LS-inclined intermediate coupling that is the key to producing the large spin polarization which in turn dictates the newly found crystal structure of Cm under pressure.

  1. The interactions between temperature and activity levels in driving metabolic rate: theory, with empirical validation from contrasting ectotherms.

    PubMed

    Halsey, L G; Matthews, P G D; Rezende, E L; Chauvaud, L; Robson, A A

    2015-04-01

    The rate of change in resting metabolic rate (RMR) as a result of a temperature increase of 10 °C is termed the temperature coefficient (Q10), which is often used to predict how an organism's total MR will change with temperature. However, this method neglects a potentially key component of MR; changes in activity level (and thus activity MR; AMR) with temperature may significantly alter the relationship between MR and temperature. The present study seeks to describe how thermal effects on total MR estimated from RMR-temperature measurements can be misleading when the contribution of activity to total MR is neglected. A simple conceptual framework illustrates that since the relationship between activity levels and temperature can be different to the relationship between RMR and temperature, a consistent relationship between RMR and total MR cannot be assumed. Thus the thermal effect on total MR can be considerably different to the thermal effect on RMR. Simultaneously measured MR and activity from three ectotherm species with differing behavioural and physiological ecologies were used to empirically examine how changes in temperature drive changes in RMR, activity level, AMR and the Q10 of MR. These species exhibited varied activity- and MR-temperature relationships, underlining the difficulty in predicting thermal influences on activity levels and total MR. These data support a model showing that thermal effects on total MR will deviate from predictions based solely on RMR; this deviation will depend upon the difference in Q10 between AMR and RMR, and the relative contribution of AMR to total MR. To develop mechanistic, predictive models for species' metabolic responses to temperature changes, empirical information about the relationships between activity levels, MR and temperature, such as reported here, is required. This will supersede predictions based on RMR alone.

  2. Central Nodes in Protein Interaction Networks Drive Critical Functions in Transforming Growth Factor Beta-1 Stimulated Kidney Cells

    PubMed Central

    Gheisari, Yousof

    2017-01-01

    Objective Despite the huge efforts, chronic kidney disease (CKD) remains as an unsolved problem in medicine. Many studies have shown a central role for transforming growth factor beta-1 (TGFβ-1) and its downstream signaling cascades in the pathogenesis of CKD. In this study, we have reanalyzed a microarray dataset to recognize critical signaling pathways controlled by TGFβ-1. Materials and Methods This study is a bioinformatics reanalysis for a microarray data. The GSE23338 dataset was downloaded from the gene expression omnibus (GEO) database which assesses the mRNA expression profile of TGFβ-1 treated human kidney cells after 24 and 48 hours incubation. The protein interaction networks for differentially expressed (DE) genes in both time points were constructed and enriched. In addition, by network topology analysis, genes with high centrality were identified and then pathway enrichment analysis was performed with either the total network genes or with the central nodes. Results We found 110 and 170 genes differentially expressed in the time points 24 and 48 hours, respectively. As the genes in each time point had few interactions, the networks were enriched by adding previously known genes interacting with the differentially expressed ones. In terms of degree, betweenness, and closeness centrality parameters 62 and 60 nodes were considered to be central in the enriched networks of 24 hours and 48 hours treatment, respectively. Pathway enrichment analysis with the central nodes was more informative than those with all network nodes or even initial DE genes, revealing key signaling pathways. Conclusion We here introduced a method for the analysis of microarray data that integrates the expression pattern of genes with their topological properties in protein interaction networks. This holistic novel approach allows extracting knowledge from raw bulk omics data. PMID:28042536

  3. Synergistic Interactions between Carotene Ring Hydroxylases Drive Lutein Formation in Plant Carotenoid Biosynthesis1[W][OA

    PubMed Central

    Quinlan, Rena F.; Shumskaya, Maria; Bradbury, Louis M.T.; Beltrán, Jesús; Ma, Chunhui; Kennelly, Edward J.; Wurtzel, Eleanore T.

    2012-01-01

    Plant carotenoids play essential roles in photosynthesis, photoprotection, and as precursors to apocarotenoids. The plastid-localized carotenoid biosynthetic pathway is mediated by well-defined nucleus-encoded enzymes. However, there is a major gap in understanding the nature of protein interactions and pathway complexes needed to mediate carotenogenesis. In this study, we focused on carotene ring hydroxylation, which is performed by two structurally distinct classes of enzymes, the P450 CYP97A and CYP97C hydroxylases and the nonheme diiron HYD enzymes. The CYP97A and HYD enzymes both function in the hydroxylation of β-rings in carotenes, but we show that they are not functionally interchangeable. The formation of lutein, which involves hydroxylation of both β- and ε-rings, was shown to require the coexpression of CYP97A and CYP97C enzymes. These enzymes were also demonstrated to interact in vivo and in vitro, as determined using bimolecular fluorescence complementation and a pull-down assay, respectively. We discuss the role of specific hydroxylase enzyme interactions in promoting pathway flux and preventing the formation of pathway dead ends. These findings will facilitate efforts to manipulate carotenoid content and composition for improving plant adaptation to climate change and/or for enhancing nutritionally important carotenoids in food crops. PMID:22786888

  4. Biotic and abiotic factors regulating forest floor CO2 flux across a range of forest age classes in the southern Appalachians

    Treesearch

    James M. Vose; Paul V. Bolstad

    2007-01-01

    We measured forest floor CO2 flux in three age classes of forest in the southern Appalachians: 20-year-old, 85-year-old, and old-growth. Our objectives were to quantify differences in forest floor CO2 flux among age classes, and determine the relative importance of abiotic and biotic driving variables. Forest floor CO

  5. Developing a Phytoplankton Biotic Index as an Indicator of Freshwater Inflow within a Subtropical Estuary

    NASA Astrophysics Data System (ADS)

    Steichen, J. L.; Quigg, A.; Lucchese, A.; Preischel, H.

    2016-02-01

    Freshwater inflows drive the water and sediment quality in coastal bays and estuaries influencing the ecosystem and health of the biological community. Phytoplankton accessory pigments (used as a proxy for major taxonomic groups) have been utilized to develop a biotic index of physical, chemical and biotic disturbances in Chesapeake Bay (USA) and other estuarine systems. In this study we have used the Chesapeake Bay - Phytoplankton Index of Biotic Integrity model as a guide in developing an index for Galveston Bay, TX (USA) as an indicator of sufficient freshwater inflow to a subtropical estuary. Multivariate statistical analyses were run using PRIMER-E+PERMANOVA to determine the correlations between phytoplankton accessory pigment concentrations and a suite of abiotic factors associated with freshwater inflow (salinity, DIN, PO4, secchi). Phytoplankton pigment concentrations and water quality parameters were collected across Galveston Bay on a monthly basis from 2008-2013. In the upper region of the bay nearest the river source Dinophyceae, Cryptophyceae (winter (Dec-Feb)) and Chlorophyceae (winter and spring (Mar-May)) were significantly correlated to freshwater inflow and nutrient concentrations PO4 (p<0.05). Increased concentrations of Bacillariophyceae and Cyanophyceae (summer (Jun-Aug)) were significantly correlated to lower concentrations of DIN (p<0.05). Near the mouth of the estuary there was a significant correlation between the increase in Bacillariophyceae, Cyanophyceae, Cryptophyceae and Dinophyceae with decreasing PO4 (p<0.05). Within the dynamic system of Galveston Bay we are working to apply a Phytoplankton Index of Biotic Integrity as a means of monitoring the biological health of this ecologically and economically important estuarine ecosystem.

  6. Shifting grassland plant community structure drives positive interactive effects of warming and diversity on aboveground net primary productivity.

    PubMed

    Cowles, Jane M; Wragg, Peter D; Wright, Alexandra J; Powers, Jennifer S; Tilman, David

    2016-02-01

    Ecosystems worldwide are increasingly impacted by multiple drivers of environmental change, including climate warming and loss of biodiversity. We show, using a long-term factorial experiment, that plant diversity loss alters the effects of warming on productivity. Aboveground primary productivity was increased by both high plant diversity and warming, and, in concert, warming (≈1.5 °C average above and belowground warming over the growing season) and diversity caused a greater than additive increase in aboveground productivity. The aboveground warming effects increased over time, particularly at higher levels of diversity, perhaps because of warming-induced increases in legume and C4 bunch grass abundances, and facilitative feedbacks of these species on productivity. Moreover, higher plant diversity was associated with the amelioration of warming-induced environmental conditions. This led to cooler temperatures, decreased vapor pressure deficit, and increased surface soil moisture in higher diversity communities. Root biomass (0-30 cm) was likewise consistently greater at higher plant diversity and was greater with warming in monocultures and at intermediate diversity, but at high diversity warming had no detectable effect. This may be because warming increased the abundance of legumes, which have lower root : shoot ratios than the other types of plants. In addition, legumes increase soil nitrogen (N) supply, which could make N less limiting to other species and potentially decrease their investment in roots. The negative warming × diversity interaction on root mass led to an overall negative interactive effect of these two global change factors on the sum of above and belowground biomass, and thus likely on total plant carbon stores. In total, plant diversity increased the effect of warming on aboveground net productivity and moderated the effect on root mass. These divergent effects suggest that warming and changes in plant diversity are likely to have both

  7. Driving the need to feed: Insight into the collaborative interaction between ghrelin and endocannabinoid systems in modulating brain reward systems.

    PubMed

    Edwards, Alexander; Abizaid, Alfonso

    2016-07-01

    Independent stimulation of either the ghrelin or endocannabinoid system promotes food intake and increases adiposity. Given the similar distribution of their receptors in feeding associated brain regions and organs involved in metabolism, it is not surprising that evidence of their interaction and its importance in modulating energy balance has emerged. This review documents the relationship between ghrelin and endocannabinoid systems within the periphery and hypothalamus (HYP) before presenting evidence suggesting that these two systems likewise work collaboratively within the ventral tegmental area (VTA) to modulate non-homeostatic feeding. Mechanisms, consistent with current evidence and local infrastructure within the VTA, will be proposed.

  8. Inter-annual variability of carbon fluxes in temperate forest ecosystems: effects of biotic and abiotic factors

    NASA Astrophysics Data System (ADS)

    Chen, M.; Keenan, T. F.; Hufkens, K.; Munger, J. W.; Bohrer, G.; Brzostek, E. R.; Richardson, A. D.

    2014-12-01

    Carbon dynamics in terrestrial ecosystems are influenced by both abiotic and biotic factors. Abiotic factors, such as variation in meteorological conditions, directly drive biophysical and biogeochemical processes; biotic factors, referring to the inherent properties of the ecosystem components, reflect the internal regulating effects including temporal dynamics and memory. The magnitude of the effect of abiotic and biotic factors on forest ecosystem carbon exchange has been suggested to vary at different time scales. In this study, we design and conduct a model-data fusion experiment to investigate the role and relative importance of the biotic and abiotic factors for inter-annual variability of the net ecosystem CO2 exchange (NEE) of temperate deciduous forest ecosystems in the Northeastern US. A process-based model (FöBAAR) is parameterized at four eddy-covariance sites using all available flux and biometric measurements. We conducted a "transplant" modeling experiment, that is, cross- site and parameter simulations with different combinations of site meteorology and parameters. Using wavelet analysis and variance partitioning techniques, analysis of model predictions identifies both spatial variant and spatially invariant parameters. Variability of NEE was primarily modulated by gross primary productivity (GPP), with relative contributions varying from hourly to yearly time scales. The inter-annual variability of GPP and NEE is more regulated by meteorological forcing, but spatial variability in certain model parameters (biotic response) has more substantial effects on the inter-annual variability of ecosystem respiration (Reco) through the effects on carbon pools. Both the biotic and abiotic factors play significant roles in modulating the spatial and temporal variability in terrestrial carbon cycling in the region. Together, our study quantifies the relative importance of both, and calls for better understanding of them to better predict regional CO2

  9. Enzyme-ligand interactions that drive active site rearrangements in the Helicobacter pylori 5´-methylthioadenosine/S-adenosylhomocysteine nucleosidase

    SciTech Connect

    Ronning, Donald R; Iacopelli, Natalie M; Mishra, Vidhi

    2012-03-15

    The bacterial enzyme 5'-methylthioadenosine/S-adenosylhomocysteine nucleosidase (MTAN) plays a central role in three essential metabolic pathways in bacteria: methionine salvage, purine salvage, and polyamine biosynthesis. Recently, its role in the pathway that leads to the production of autoinducer II, an important component in quorum-sensing, has garnered much interest. Because of this variety of roles, MTAN is an attractive target for developing new classes of inhibitors that influence bacterial virulence and biofilm formation. To gain insight toward the development of new classes of MTAN inhibitors, the interactions between the Helicobacter pylori-encoded MTAN and its substrates and substrate analogs were probed using X-ray crystallography. The structures of MTAN, an MTAN-Formycin A complex, and an adenine bound form were solved by molecular replacement and refined to 1.7, 1.8, and 1.6 Å, respectively. The ribose-binding site in the MTAN and MTAN-adenine cocrystal structures contain a tris[hydroxymethyl]aminomethane molecule that stabilizes the closed form of the enzyme and displaces a nucleophilic water molecule necessary for catalysis. This research gives insight to the interactions between MTAN and bound ligands that promote closing of the enzyme active site and highlights the potential for designing new classes of MTAN inhibitors using a link/grow or ligand assembly development strategy based on the described H. pylori MTAN crystal structures.

  10. Enzyme–ligand interactions that drive active site rearrangements in the Helicobacter pylori 5′-methylthioadenosine/S-adenosylhomocysteine nucleosidase

    PubMed Central

    Ronning, Donald R; Iacopelli, Natalie M; Mishra, Vidhi

    2010-01-01

    The bacterial enzyme 5′-methylthioadenosine/S-adenosylhomocysteine nucleosidase (MTAN) plays a central role in three essential metabolic pathways in bacteria: methionine salvage, purine salvage, and polyamine biosynthesis. Recently, its role in the pathway that leads to the production of autoinducer II, an important component in quorum-sensing, has garnered much interest. Because of this variety of roles, MTAN is an attractive target for developing new classes of inhibitors that influence bacterial virulence and biofilm formation. To gain insight toward the development of new classes of MTAN inhibitors, the interactions between the Helicobacter pylori-encoded MTAN and its substrates and substrate analogs were probed using X-ray crystallography. The structures of MTAN, an MTAN-Formycin A complex, and an adenine bound form were solved by molecular replacement and refined to 1.7, 1.8, and 1.6 Å, respectively. The ribose-binding site in the MTAN and MTAN-adenine cocrystal structures contain a tris[hydroxymethyl]aminomethane molecule that stabilizes the closed form of the enzyme and displaces a nucleophilic water molecule necessary for catalysis. This research gives insight to the interactions between MTAN and bound ligands that promote closing of the enzyme active site and highlights the potential for designing new classes of MTAN inhibitors using a link/grow or ligand assembly development strategy based on the described H. pylori MTAN crystal structures. PMID:20954236

  11. Partitioning controls on Amazon forest photosynthesis between environmental and biotic factors at hourly to interannual timescales.

    PubMed

    Wu, Jin; Guan, Kaiyu; Hayek, Matthew; Restrepo-Coupe, Natalia; Wiedemann, Kenia T; Xu, Xiangtao; Wehr, Richard; Christoffersen, Bradley O; Miao, Guofang; da Silva, Rodrigo; de Araujo, Alessandro C; Oliviera, Raimundo C; Camargo, Plinio B; Monson, Russell K; Huete, Alfredo R; Saleska, Scott R

    2017-03-01

    Gross ecosystem productivity (GEP) in tropical forests varies both with the environment and with biotic changes in photosynthetic infrastructure, but our understanding of the relative effects of these factors across timescales is limited. Here, we used a statistical model to partition the variability of seven years of eddy covariance-derived GEP in a central Amazon evergreen forest into two main causes: variation in environmental drivers (solar radiation, diffuse light fraction, and vapor pressure deficit) that interact with model parameters that govern photosynthesis and biotic variation in canopy photosynthetic light-use efficiency associated with changes in the parameters themselves. Our fitted model was able to explain most of the variability in GEP at hourly (R(2 ) = 0.77) to interannual (R(2 ) = 0.80) timescales. At hourly timescales, we found that 75% of observed GEP variability could be attributed to environmental variability. When aggregating GEP to the longer timescales (daily, monthly, and yearly), however, environmental variation explained progressively less GEP variability: At monthly timescales, it explained only 3%, much less than biotic variation in canopy photosynthetic light-use efficiency, which accounted for 63%. These results challenge modeling approaches that assume GEP is primarily controlled by the environment at both short and long timescales. Our approach distinguishing biotic from environmental variability can help to resolve debates about environmental limitations to tropical forest photosynthesis. For example, we found that biotically regulated canopy photosynthetic light-use efficiency (associated with leaf phenology) increased with sunlight during dry seasons (consistent with light but not water limitation of canopy development) but that realized GEP was nonetheless lower relative to its potential efficiency during dry than wet seasons (consistent with water limitation of photosynthesis in given assemblages of leaves). This work

  12. Partitioning controls on Amazon forest photosynthesis between environmental and biotic factors at hourly to interannual timescales

    SciTech Connect

    Wu, Jin; Guan, Kaiyu; Hayek, Matthew; Restrepo-Coupe, Natalia; Wiedemann, Kenia T.; Xu, Xiangtao; Wehr, Richard; Christoffersen, Bradley O.; Miao, Guofang; da Silva, Rodrigo; de Araujo, Alessandro C.; Oliviera, Raimundo C.; Camargo, Plinio B.; Monson, Russell K.; Huete, Alfredo R.; Saleska, Scott R.

    2016-09-19

    Gross ecosystem productivity (GEP) in tropical forests varies both with the environment and with biotic changes in photosynthetic infrastructure, but our understanding of the relative effects of these factors across timescales is limited. Here, we used a statistical model to partition the variability of seven years of eddy covariance-derived GEP in a central Amazon evergreen forest into two main causes: variation in environmental drivers (solar radiation, diffuse light fraction, and vapor pressure deficit) that interact with model parameters that govern photosynthesis and biotic variation in canopy photosynthetic light-use efficiency associated with changes in the parameters themselves. Our fitted model was able to explain most of the variability in GEP at hourly (R2 = 0.77) to interannual (R2 = 0.80) timescales. At hourly timescales, we found that 75% of observed GEP variability could be attributed to environmental variability. When aggregating GEP to the longer timescales (daily, monthly, and yearly), however, environmental variation explained progressively less GEP variability: At monthly timescales, it explained only 3%, much less than biotic variation in canopy photosynthetic light-use efficiency, which accounted for 63%. These results challenge modeling approaches that assume GEP is primarily controlled by the environment at both short and long timescales. Our approach distinguishing biotic from environmental variability can help to resolve debates about environmental limitations to tropical forest photosynthesis. For example, we found that biotically regulated canopy photosynthetic light-use efficiency (associated with leaf phenology) increased with sunlight during dry seasons (consistent with light but not water limitation of canopy development) but that realized GEP was nonetheless lower relative to its potential efficiency during dry than wet seasons (consistent with water limitation of photosynthesis in given assemblages of leaves

  13. Partitioning controls on Amazon forest photosynthesis between environmental and biotic factors at hourly to interannual timescales

    DOE PAGES

    Wu, Jin; Guan, Kaiyu; Hayek, Matthew; ...

    2016-09-19

    Gross ecosystem productivity (GEP) in tropical forests varies both with the environment and with biotic changes in photosynthetic infrastructure, but our understanding of the relative effects of these factors across timescales is limited. Here, we used a statistical model to partition the variability of seven years of eddy covariance-derived GEP in a central Amazon evergreen forest into two main causes: variation in environmental drivers (solar radiation, diffuse light fraction, and vapor pressure deficit) that interact with model parameters that govern photosynthesis and biotic variation in canopy photosynthetic light-use efficiency associated with changes in the parameters themselves. Our fitted model wasmore » able to explain most of the variability in GEP at hourly (R2 = 0.77) to interannual (R2 = 0.80) timescales. At hourly timescales, we found that 75% of observed GEP variability could be attributed to environmental variability. When aggregating GEP to the longer timescales (daily, monthly, and yearly), however, environmental variation explained progressively less GEP variability: At monthly timescales, it explained only 3%, much less than biotic variation in canopy photosynthetic light-use efficiency, which accounted for 63%. These results challenge modeling approaches that assume GEP is primarily controlled by the environment at both short and long timescales. Our approach distinguishing biotic from environmental variability can help to resolve debates about environmental limitations to tropical forest photosynthesis. For example, we found that biotically regulated canopy photosynthetic light-use efficiency (associated with leaf phenology) increased with sunlight during dry seasons (consistent with light but not water limitation of canopy development) but that realized GEP was nonetheless lower relative to its potential efficiency during dry than wet seasons (consistent with water limitation of photosynthesis in given assemblages of leaves). Lastly, this

  14. Impaired Driving

    MedlinePlus

    ... people were killed in alcohol-impaired driving crashes, accounting for nearly one-third (31%) of all traffic- ... promotion efforts into practice that influence economic, organizational, policy, and school/community action. 13,14 Using community- ...

  15. Distracted Driving

    MedlinePlus

    ... other distractions. 3 At 55 mph, the average text takes your eyes off the road long enough ... risk behaviors among high school students, including sending texts while driving. 6,7 In 2013, more than ...

  16. Biotic-Abiotic Nanoscale Interactions in Biological Fuel Cells

    DTIC Science & Technology

    2014-03-28

    aggregation – collaboration with Naval Research Lab. 2.4 As part of an international collaboration, we reported on filamentous bacteria mediating centimeter...Petersen and L. P. Nielsen. Filamentous bacteria transport electrons over centimeter distances, Nature, 419, 218-221, 2012. L.A. Fitzgerald, E.R...as pathways for electron transport in phylogenetically diverse microorganisms, including dissimilatory metal-reducing bacteria and photosynthetic

  17. Pile driving

    SciTech Connect

    Merjan, S.

    1988-02-16

    Process for producing in the ground a driven composite pile is described having (a) a lower pipe stem having an upper part having a top, the lower pipe stem being capable of withstanding pile driving blows applied to the top and (b) an upper corrugated shell stem incapable of withstanding pile driving blows, the corrugated shell stem having a lower end, which process comprises driving the lower pipe stem into the ground fitting to the top of the lower pipe stem a splicer. The splicer comprises a plate having a top face and a bottom face, an integral body portion depending from the plate and surrounding the upper part of the pipe stem and, welded to the top face of the plate, an upwardly extending corrugated shell stub up to about three feet long, screwing the lower end of the upper corrugated shell stem to the shell stub after driving the lower pipe stem into the ground, placing a non-expanding pipe mandrel into the shell stem with the bottom of the mandrel resting on the plate, striking pile-driving blows on the top of the mandrel to drive the composite pile into the ground, and filling the shell stem and pipe stem with concrete from above.

  18. Multi-trophic interactions driving the transmission cycle of Borrelia afzelii between Ixodes ricinus and rodents: a review.

    PubMed

    van Duijvendijk, Gilian; Sprong, Hein; Takken, Willem

    2015-12-18

    The tick Ixodes ricinus is the main vector of the spirochaete Borrelia burgdorferi sensu lato, the causal agent of Lyme borreliosis, in the western Palearctic. Rodents are the reservoir host of B. afzelii, which can be transmitted to I. ricinus larvae during a blood meal. The infected engorged larvae moult into infected nymphs, which can transmit the spirochaetes to rodents and humans. Interestingly, even though only about 1% of the larvae develop into a borreliae-infected nymph, the enzootic borreliae lifecycle can persist. The development from larva to infected nymph is a key aspect in this lifecycle, influencing the density of infected nymphs and thereby Lyme borreliosis risk. The density of infected nymphs varies temporally and geographically and is influenced by multi-trophic (tick-host-borreliae) interactions. For example, blood feeding success of ticks and spirochaete transmission success differ between rodent species and host-finding success appears to be affected by a B. afzelii infection in both the rodent and the tick. In this paper, we review the major interactions between I. ricinus, rodents and B. afzelii that influence this development, with the aim to elucidate the critical factors that determine the epidemiological risk of Lyme borreliosis. The effects of the tick, rodent and B. afzelii on larval host finding, larval blood feeding, spirochaete transmission from rodent to larva and development from larva to nymph are discussed. Nymphal host finding, nymphal blood feeding and spirochaete transmission from nymph to rodent are the final steps to complete the enzootic B. afzelii lifecycle and are included in the review. It is concluded that rodent density, rodent infection prevalence, and tick burden are the major factors affecting the development from larva to infected nymph and that these interact with each other. We suggest that the B. afzelii lifecycle is dependent on the aggregation of ticks among rodents, which is manipulated by the pathogen

  19. Soil fertility and disturbance interact to drive contrasting responses of co-occurring native and nonnative species.

    PubMed

    Peltzer, Duane A; Kurokawa, Hiroko; Wardle, David A

    2016-02-01

    Some plant functional groups such as nonnative invasive and nitrogen (N)-fixing plants are widely thought to have consistent, coordinated differences in their functional traits relative to other groups such as native and non -N-fixing plants. Recent evidence suggests that these trait differences between groups can be context dependent, varying with environmental factors such as resource availability and disturbance. However, many previous comparisons among plant groups differing in invasion status have not standardized growth form between groups or have compared species that do not co-occur, which could result in invasion status per se being confounded with other factors. We determined growth and leaf functional trait responses of 20 co-occurring woody species, that is, five species within each of four functional groups (native N-fixers, native non -N-fixers, nonnative [invasive] N-fixers and nonnative [invasive] non-N-fixers), to factorial combinations of soil fertility and defoliation treatments in a mesocosm experiment to test each of two hypotheses. First, we hypothesized that nonnative invasive and N-fixing species will have functional traits associated with rapid resource acquisition whereas natives and non -N-fixing species will have traits linked to resource conservation. Second, we hypothesized that plant growth and leaf traits of nonnative and N-fixing species will be more strongly influenced by environmental factors (i.e., soil fertility and disturbance) than will natives and non-N-fixers. Plant growth, foliar nutrients, and leaf structural traits varied among plant functional groups in a manner consistent with our first hypothesis. Support for our second hypothesis was mixed; origin (native vs. nonnative) and soil fertility rarely interacted to determine plant growth or variation in leaf traits whereas interactions involving N-fixing ability and soil fertility were common. Further, there were no consistent interactive effects between plant groupings and

  20. Belowground Carbon Allocation and Plant-Microbial Interactions Drive Resistance and Resilience of Mountain Grassland Communities to Drought

    NASA Astrophysics Data System (ADS)

    Karlowsky, S.; Augusti, A.; Ingrisch, J.; Hasibeder, R.; Lavorel, S.; Bahn, M.; Gleixner, G.

    2016-12-01

    Belowground carbon allocation (BCA) and plant-microbial interactions are crucial for the functioning of terrestrial ecosystems. Recent research suggests that extreme events can have severe effects on these processes but it is unknown how land use intensity potentially modifies their responses. We studied the resistance and resilience of mountain grassland communities to prolonged drought and investigated the role of plant C allocation and soil microbial communities in mediating drought resistance and immediate recovery. In a common garden experiment we exposed monoliths from an abandoned grassland and a hay meadow to an early summer drought. Two independent 13C pulse labeling experiments were conducted, the first during peak drought and the second during the recovery phase. The 13C incorporation was analyzed in above- and belowground plant parts and in phospho- and neutral lipid fatty acids of soil microorganisms. In addition, a 15N label was added at the rewetting to determine plant N uptake. We found that C uptake, BCA and C transfer to soil microorganisms were less strongly reduced by drought in the abandoned grassland than in the meadow. Moreover, drought induced an increase of arbuscular mycorrhiza fungi (AMF) marker in the abandoned grassland. Nevertheless, C uptake and related parameters were quickly recovered and N uptake increased in the meadow during recovery. Unexpectedly, AMF and their C uptake were generally reduced during recovery, while bacteria increased and quickly recovered C uptake, particularly in the meadow. Our results showed a negative relation between high resistance and fast recovery. The more resistant abandoned grassland plant communities seemed to invest more C below ground and into interactions with AMF during drought, likely to access water through their hyphal network. Conversely, meadow communities invested more C from recent photosynthesis into bacterial communities during recovery, obviously to gain more nutrients for regrowth

  1. The short range anion-H interaction is the driving force for crystal formation of ions in water.

    PubMed

    Alejandre, José; Chapela, Gustavo A; Bresme, Fernando; Hansen, Jean-Pierre

    2009-05-07

    The crystal formation of NaCl in water is studied by extensive molecular dynamics simulations. Ionic solutions at room temperature and various concentrations are studied using the SPC/E and TIP4P/2005 water models and seven force fields of NaCl. Most force fields of pure NaCl fail to reproduce the experimental density of the crystal, and in solution some favor dissociation at saturated conditions, while others favor crystal formation at low concentration. A new force field of NaCl is proposed, which reproduces the experimental phase diagram in the solid, liquid, and vapor regions. This force field overestimates the solubility of NaCl in water at saturation conditions when used with standard Lorentz-Berthelot combining rules for the ion-water pair potentials. It is shown that precipitation of ions is driven by the short range interaction between Cl-H pairs, a term which is generally missing in the simulation of ionic solutions. The effects of intramolecular flexibility of water on the solubility of NaCl ions are analyzed and is found to be small compared to rigid models. A flexible water model, extending the rigid SPC/E, is proposed, which incorporates Lennard-Jones interactions centered on the hydrogen atoms. This force field gives liquid-vapor coexisting densities and surface tensions in better agreement with experimental data than the rigid SPC/E model. The Cl-H, Na-O, and Cl-O pair distribution functions of the rigid and flexible models agree well with experiment. The predicted concentration dependence of the electric conductivity is in fair agreement with available experimental data.

  2. Does natural variation in diversity affect biotic resistance?

    USGS Publications Warehouse

    Harrison, Susan; Cornell, Howard; Grace, James B.

    2015-01-01

    Theories linking diversity to ecosystem function have been challenged by the widespread observation of more exotic species in more diverse native communities. Few studies have addressed the key underlying process by dissecting how community diversity is shaped by the same environmental gradients that determine biotic and abiotic resistance to new invaders. In grasslands on highly heterogeneous soils, we used addition of a recent invader, competitor removal and structural equation modelling (SEM) to analyse soil influences on community diversity, biotic and abiotic resistance and invader success. Biotic resistance, measured by reduction in invader success in the presence of the resident community, was negatively correlated with species richness and functional diversity. However, in the multivariate SEM framework, biotic resistance was independent of all forms of diversity and was positively affected by soil fertility via community biomass. Abiotic resistance, measured by invader success in the absence of the resident community, peaked on infertile soils with low biomass and high community diversity. Net invader success was determined by biotic resistance, consistent with this invader's better performance on infertile soils in unmanipulated conditions. Seed predation added slightly to biotic resistance without qualitatively changing the results. Soil-related genotypic variation in the invader also did not affect the results. Synthesis. In natural systems, diversity may be correlated with invasibility and yet have no effect on either biotic or abiotic resistance to invasion. More generally, the environmental causes of variation in diversity should not be overlooked when considering the potential functional consequences of diversity.

  3. Gaining Insight into Exclusive and Common Transcriptomic Features Linked with Biotic Stress Responses in Malus

    PubMed Central

    Balan, Bipin; Caruso, Tiziano; Martinelli, Federico

    2017-01-01

    Identifying key information in transcriptomic data is very important, especially when the “omic” study deals with plant responses to stresses in field conditions where a high number of variables and disturbing factors may affect the analysis. In this meta-analysis we collected 12 transcriptomic works in Malus in order to identify which key genes, proteins, gene categories are involved in general plant pathological conditions and those features linked with exclusive biotic stress responses. Those genes that are only related with molecular responses to pathogen attacks and those linked with other plant physiological processes were identified. A pipeline composed by pathway and gene set enrichment analysis, protein-protein interaction networks and gene visualization tools was employed. A total of 13,230 genes of the 12 studies were analyzed with functional data mining tools: 5,215 were upregulated, 8,015 were downregulated. Gene set enrichment analysis pointed out that photosynthesis was inhibited by Erwinia amylovora and fungal pathogens. Different hormonal crosstalk was linked with responses to different pathogens. Gibberellin-related pathways, ABA-related were mostly repressed by fungal pathogens. Relating to transcription factors, genes encoding MYBs and WRKY2 were downregulated by fungal pathogens and 12 WRKYs were commonly regulated by different biotic stresses The protein-protein interaction analysis discovered the presence of several proteins affected by more than one biotic stress including a WRKY40 and some highly interactive proteins such as heat shock proteins. This study represents a first preliminary curated meta-analysis of apple transcriptomic responses to biotic stresses. PMID:28955361

  4. Elevation and latitude interact to drive life-history variation in precocial birds: a comparative analysis using galliformes.

    PubMed

    Balasubramaniam, Priya; Rotenberry, John T

    2016-11-01

    Elevational gradients provide a powerful laboratory for understanding the environmental and ecological drivers of geographic variation in avian life-history strategies. Environmental variation across elevational gradients is hypothesized to select for a trade-off of reduced fecundity (lower clutch size and/or fewer broods) for higher offspring quality (larger eggs and/or increased parental care) in higher elevation species and populations. In birds, a focus on altricial species from north temperate latitudes has prevented an evaluation of the generality of this trade-off, and how it is affected by latitude and intrinsic factors (development mode). We performed a comparative analysis controlling for body size and phylogenetic relationships on a global data set of 135 galliform species to test (i) whether higher elevation precocial species have lower fecundity (smaller clutch and/or fewer broods) and invest more in offspring quality (greater egg mass) and (ii) whether latitude influences the traits involved and/or the trade-off, and (iii) to identify ecological and environmental drivers of life-history variation along elevational gradients. Life-history traits showed significant interaction effects across elevation and latitude: temperate higher elevation species had smaller clutches and clutch mass, larger eggs and shorter incubation periods, whereas more tropical species had larger clutches, eggs and clutch mass, and longer incubation periods as elevation increased. Number of broods and body mass did not vary with elevation or latitude. Latitudinal gradient in clutch size was observed only for low-elevation species. Significantly, an overlooked latitude-by-elevation interaction confounds our traditional view of clutch size variation across a tropical-to-temperate gradient. Across all latitudes, higher elevation species invested in offspring quality via larger eggs but support for reduced fecundity resulting from smaller clutches was found only along temperate

  5. Biotic systems to mitigate landfill methane emissions.

    PubMed

    Huber-Humer, Marion; Gebert, Julia; Hilger, Helene

    2008-02-01

    Landfill gases produced during biological degradation of buried organic wastes include methane, which when released to the atmosphere, can contribute to global climate change. Increasing use of gas collection systems has reduced the risk of escaping methane emissions entering the atmosphere, but gas capture is not 100% efficient, and further, there are still many instances when gas collection systems are not used. Biotic methane mitigation systems exploit the propensity of some naturally occurring bacteria to oxidize methane. By providing optimum conditions for microbial habitation and efficiently routing landfill gases to where they are cultivated, a number of bio-based systems, such as interim or long-term biocovers, passively or actively vented biofilters, biowindows and daily-used biotarps, have been developed that can alone, or with gas collection, mitigate landfill methane emissions. This paper reviews the science that guides bio-based designs; summarizes experiences with the diverse natural or engineered substrates used in such systems; describes some of the studies and field trials being used to evaluate them; and discusses how they can be used for better landfill operation, capping, and aftercare.

  6. Effect of driving frequency on the electron-sheath interaction and electron energy distribution function in a low pressure capacitively coupled plasmas

    NASA Astrophysics Data System (ADS)

    Sharma, Sarveshwar; Sirse, Nishant; Kaw, Predhiman; Turner, Miles; Ellingboe, Albert R.; InstitutePlasma Research, Gandhinagar, Gujarat Team; School Of Physical Sciences; Ncpst, Dublin City University, Dublin 9, Ireland Collaboration

    2016-09-01

    The effect of driving frequency (27.12-70 MHz) on the electron-sheath interaction and electron energy distribution function (EEDF) is investigated in a low pressure capacitive discharges using a self-consistent particle-in-cell simulation. At a fixed discharge voltage the EEDF evolves from a strongly bi-Maxwellian at low frequency, 27.12 MHz, to a convex type distribution at an intermediate frequency, 50 MHz, and finally becomes a weak biMaxwellian above 50 MHz. The EEDF evolution leads to a two-fold increase in the effective electron temperature up to 50 MHz, whereas the electron density remains constant in this range. After 50MHz, the electron density increases rapidly and the electron temperature decreases. The transition is caused by the transient electric field excited by bursts of high energy electrons interacting strongly with the sheath edge. Above the transition frequency, high energy electrons are confined between two sheaths which increase the ionization probability and thus the plasma density increases.

  7. Invasion by nonnative brook trout in Panther Creek, Idaho: Roles of habitat quality, connectivity, and biotic resistance

    Treesearch

    Joseph R. Benjamin

    2006-01-01

    Theoretical models suggest the invasion of nonnative freshwater species is facilitated through the interaction of three factors: biotic resistance, habitat quality, and connectivity. We measured variables that represented each component to determine which were associated with small (150 mm) brook trout occurrence in Panther Creek, a tributary...

  8. Environmental maternal effects mediate the resistance of maritime pine to biotic stress.

    PubMed

    Vivas, María; Zas, Rafael; Sampedro, Luis; Solla, Alejandro

    2013-01-01

    The resistance to abiotic stress is increasingly recognised as being impacted by maternal effects, given that environmental conditions experienced by parent (mother) trees affect stress tolerance in offspring. We hypothesised that abiotic environmental maternal effects may also mediate the resistance of trees to biotic stress. The influence of maternal environment and maternal genotype and the interaction of these two factors on early resistance of Pinus pinaster half-sibs to the Fusarium circinatum pathogen was studied using 10 mother genotypes clonally replicated in two contrasting environments. Necrosis length of infected seedlings was 16% shorter in seedlings grown from favourable maternal environment seeds than in seedlings grown from unfavourable maternal environment seeds. Damage caused by F. circinatum was mediated by maternal environment and maternal genotype, but not by seed mass. Mechanisms unrelated to seed provisioning, perhaps of epigenetic nature, were probably involved in the transgenerational plasticity of P. pinaster, mediating its resistance to biotic stress. Our findings suggest that the transgenerational resistance of pines due to an abiotic stress may interact with the defensive response of pines to a biotic stress.

  9. Disk Drives

    NASA Technical Reports Server (NTRS)

    1994-01-01

    A new material known as AlBeMet, developed by Brush Wellman for research applications in the National Aero-Space Plane (NASP) program, is now used for high performance disk drives. AlBeMet is a compression of aluminum, beryllium metal matrix composite. It reduces system weight and its high thermal conductivity can effectively remove heat and increase an electrical system's lifetime. The lighter, stiffer AlBeMet (AlBeMet 160) used in the disk drive means heads can be moved faster, improving disk performance.

  10. Electrostatic interactions between the CTX phage minor coat protein and the bacterial host receptor TolA drive the pathogenic conversion of Vibrio cholerae.

    PubMed

    Houot, Laetitia; Navarro, Romain; Nouailler, Matthieu; Duché, Denis; Guerlesquin, Françoise; Lloubes, Roland

    2017-08-18

    Vibrio cholerae is a natural inhabitant of aquatic environments and converts to a pathogen upon infection by a filamentous phage, CTXΦ, that transmits the cholera toxin-encoding genes. This toxigenic conversion of V. cholerae has evident implication in both genome plasticity and epidemic risk, but the early stages of the infection have not been thoroughly studied. CTXΦ transit across the bacterial periplasm requires binding between the minor coat protein named pIII and a bacterial inner-membrane receptor, TolA, which is part of the conserved Tol-Pal molecular motor. To gain insight into the TolA-pIII complex, we developed a bacterial two-hybrid approach, named Oxi-BTH, suited for studying the interactions between disulfide bond-folded proteins in the bacterial cytoplasm of an Escherichia coli reporter strain. We found that two of the four disulfide bonds of pIII are required for its interaction with TolA. By combining Oxi-BTH assays, NMR, and genetic studies, we also demonstrate that two intermolecular salt bridges between TolA and pIII provide the driving forces of the complex interaction. Moreover, we show that TolA residue Arg-325 involved in one of the two salt bridges is critical for proper functioning of the Tol-Pal system. Our results imply that to prevent host evasion, CTXΦ uses an infection strategy that targets a highly conserved protein of Gram-negative bacteria essential for the fitness of V. cholerae in its natural environment. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Relative importance of abiotic, biotic, and disturbance drivers of plant community structure in the sagebrush steppe.

    PubMed

    Mitchell, Rachel M; Bakker, Jonathan D; Vincent, John B; Davies, G Matt

    2017-04-01

    Abiotic conditions, biotic factors, and disturbances can act as filters that control community structure and composition. Understanding the relative importance of these drivers would allow us to understand and predict the causes and consequences of changes in community structure. We used long-term data (1989-2002) from the sagebrush steppe in the state of Washington, USA, to ask three questions: (1) What are the key drivers of community-level metrics of community structure? (2) Do community-level metrics and functional groups differ in magnitude or direction of response to drivers of community structure? (3) What is the relative importance of drivers of community structure? The vegetation in 2002 was expressed as seven response variables: three community-level metrics (species richness, total cover, compositional change from 1989 to 2002) and the relative abundances of four functional groups. We used a multi-model inference framework to identify a set of top models for each response metric beginning from a global model that included two abiotic drivers, six disturbances, a biotic driver (initial plant community), and interactions between the disturbance and biotic drivers. We also used a permutational relative variable importance metric to rank the influence of drivers. Moisture availability was the most important driver of species richness and of native forb cover. Fire was the most important driver of shrub cover and training area usage was important for compositional change, but disturbances, including grazing, were of secondary importance for most other variables. Biotic drivers, as represented by the initial plant communities, were the most important driver for total cover and for the relative covers of exotics and native grasses. Our results indicate that the relative importance of drivers is dependent on the choice of metric, and that drivers such as disturbance and initial plant community can interact. © 2016 by the Ecological Society of America.

  12. Olivine Weathering: Abiotic Versus Biotic Processes as Possible Biosignatures

    NASA Technical Reports Server (NTRS)

    Longazo, T. G.; Wentworth, S. J.; McKay, D. S.; Southam, G.; Clemett, S. J.

    2001-01-01

    A preliminary study to determine how abiotic versus biotic processes affect the weathering of olivine crystals. Perhaps the differences between these weathering processes could be used as biosignatures. Additional information is contained in the original extended abstract.

  13. Biotic Invasions: Causes, Epidemiology, Global Consequences and Control

    EPA Pesticide Factsheets

    The module provides a link to an article in a series of articles in Issues in Ecology. This article presents information on biotic invaders, their destruction, controlling their detriment and the effects aquaculture is having on world fish supplies.

  14. Ecological application of biotic resistance to control the invasion of an invasive plant, Ageratina altissima.

    PubMed

    Byun, Chaeho; Lee, Eun Ju

    2017-04-01

    Biotic resistance is the ability of species in a community to limit the invasion of other species. However, biotic resistance is not widely used to control invasive plants. Experimental, functional, and modeling approaches were combined to investigate the processes of invasion by Ageratina altissima (white snakeroot), a model invasive species in South Korea. We hypothesized that (1) functional group identity would be a good predictor of biotic resistance to A. altissima, whereas a species identity effect would be redundant within a functional group, and (2) mixtures of species would be more resistant to invasion than monocultures. We classified 37 species of native plants into three functional groups based on seven functional traits. The classification of functional groups was based primarily on differences in life longevity and woodiness. A competition experiment was conducted based on an additive competition design with A. altissima and monocultures or mixtures of resident plants. As an indicator of biotic resistance, we calculated a relative competition index (RCI avg) based on the average performance of A. altissima in a competition treatment compared with that of the control where only seeds of A. altissima were sown. To further explain the effect of diversity, we tested several diversity-interaction models. In monoculture treatments, RCI avg of resident plants was significantly different among functional groups but not within each functional group. Fast-growing annuals (FG1) had the highest RCI avg, suggesting priority effects (niche pre-emption). RCI avg of resident plants was significantly greater in a mixture than in a monoculture. According to the diversity-interaction models, species interaction patterns in mixtures were best described by interactions between functional groups, which implied niche partitioning. Functional group identity and diversity of resident plant communities were good indicators of biotic resistance to invasion by introduced A

  15. Of lemurs and louse flies: The biogeochemical and biotic effects of forest disturbance on Propithecus edwardsi and its obligate ectoparasite Allobosca crassipes in Ranomafana National Park, southeastern Madagascar.

    PubMed

    McGee, Elizabeth; Vaughn, Stanley

    2017-08-01

    From alleles to ecosystems and landscapes, anthropogenic activity continues to affect the environment, with particularly adverse effects on biodiversity hotspots such as Madagascar. Selective logging has been proposed as a "win-win" conservation strategy, yet its effects on different components of biodiversity are still not fully understood. Here we examine biotic factors (i.e., dietary differences) that may be driving differences in biogeochemical stocks between disturbed and undisturbed forests. We present the stable nitrogen (δ(15) N) and carbon (δ(13) C) isotope composition of hair from the lemur Propithecus edwardsi and of whole bodies of its obligate ectoparasite, the louse-fly Allobosca crassipes, from sites in Ranomafana National Park (RNP) that are comparable except for the history of logging and subsequent forest regeneration. P. edwardsi and A. crassipes from the disturbed (i.e., heavily selectively logged) site are lower in (15) N and (13) C relative to P. edwardsi and A. crassipes from sites that were minimally selectively logged or not commercially logged at all. There is a ∼3‰ decrease in (15) N between disturbed and undisturbed sites that corresponds to a difference of nearly a full trophic level. Flowers from Bakerella clavata, a staple food source for P. edwardsi in disturbed habitats and a fallback food for P. edwardsi in primary forests, were also analyzed isotopically. B. clavata is δ(15) N-depleted in both disturbed and undisturbed sites. Data from longitudinal behavioral surveys of P. edwardsi in RNP and other forests in eastern Madagascar point to significant differences in consumption patterns of B. clavata, with P. edwardsi in disturbed forests consuming almost twice as much of this plant. Depletion of (15) N in animal tissues is a complex issue, but likely the result of the interaction of physiological and ecological factors. Anthropogenic disturbance in RNP from selective logging has had both biotic and biogeochemical effects that

  16. Forces Driving Chaperone Action

    PubMed Central

    Koldewey, Philipp; Stull, Frederick; Horowitz, Scott; Martin, Raoul; Bardwell, James C. A.

    2016-01-01

    SUMMARY It is still unclear what molecular forces drive chaperone-mediated protein folding. Here, we obtain a detailed mechanistic understanding of the forces that dictate the four key steps of chaperone-client interaction: initial binding, complex stabilization, folding, and release. Contrary to the common belief that chaperones recognize unfolding intermediates by their hydrophobic nature, we discover that the model chaperone Spy uses long-range electrostatic interactions to rapidly bind to its unfolded client protein Im7. Short-range hydrophobic interactions follow, which serve to stabilize the complex. Hydrophobic collapse of the client protein then drives its folding. By burying hydrophobic residues in its core, the client’s affinity to Spy decreases, which causes client release. By allowing the client to fold itself, Spy circumvents the need for client-specific folding instructions. This mechanism might help explain how chaperones can facilitate the folding of various unrelated proteins. PMID:27293188

  17. CRL4B interacts with and coordinates the SIN3A-HDAC complex to repress CDKN1A and drive cell cycle progression.

    PubMed

    Ji, Qinghong; Hu, Huili; Yang, Fan; Yuan, Jupeng; Yang, Yang; Jiang, Liangqian; Qian, Yanyan; Jiang, Baichun; Zou, Yongxin; Wang, Yan; Shao, Changshun; Gong, Yaoqin

    2014-11-01

    CUL4B, a scaffold protein that assembles the CRL4B ubiquitin ligase complex, participates in the regulation of a broad spectrum of biological processes. Here, we demonstrate a crucial role of CUL4B in driving cell cycle progression. We show that loss of CUL4B results in a significant reduction in cell proliferation and causes G1 cell cycle arrest, accompanied by the upregulation of the cyclin-dependent kinase (CDK) inhibitors (CKIs) p21 and p57 (encoded by CDKN1A and CDKN1C, respectively). Strikingly, CUL4B was found to negatively regulate the function of p21 through transcriptional repression, but not through proteolysis. Furthermore, we demonstrate that CRL4B and SIN3A-HDAC complexes interact with each other and co-occupy the CDKN1A and CDKN1C promoters. Lack of CUL4B led to a decreased retention of SIN3A-HDAC components and increased levels of acetylated H3 and H4. Interestingly, the ubiquitylation function of CRL4B is not required for the stable retention of SIN3A-HDAC on the promoters of target genes. Thus, in addition to directly contributing to epigenetic silencing by catalyzing H2AK119 monoubiquitylation, CRL4B also facilitates the deacetylation function of SIN3A-HDAC. Our findings reveal a coordinated action between CRL4B and SIN3A-HDAC complexes in transcriptional repression.

  18. Function of ABA in Stomatal Defense against Biotic and Drought Stresses.

    PubMed

    Lim, Chae Woo; Baek, Woonhee; Jung, Jangho; Kim, Jung-Hyun; Lee, Sung Chul

    2015-07-06

    The plant hormone abscisic acid (ABA) regulates many key processes involved in plant development and adaptation to biotic and abiotic stresses. Under stress conditions, plants synthesize ABA in various organs and initiate defense mechanisms, such as the regulation of stomatal aperture and expression of defense-related genes conferring resistance to environmental stresses. The regulation of stomatal opening and closure is important to pathogen defense and control of transpirational water loss. Recent studies using a combination of approaches, including genetics, physiology, and molecular biology, have contributed considerably to our understanding of ABA signal transduction. A number of proteins associated with ABA signaling and responses--especially ABA receptors--have been identified. ABA signal transduction initiates signal perception by ABA receptors and transfer via downstream proteins, including protein kinases and phosphatases. In the present review, we focus on the function of ABA in stomatal defense against biotic and abiotic stresses, through analysis of each ABA signal component and the relationships of these components in the complex network of interactions. In particular, two ABA signal pathway models in response to biotic and abiotic stress were proposed, from stress signaling to stomatal closure, involving the pyrabactin resistance (PYR)/PYR-like (PYL) or regulatory component of ABA receptor (RCAR) family proteins, 2C-type protein phosphatases, and SnRK2-type protein kinases.

  19. Can plant-natural enemy communication withstand disruption by biotic and abiotic factors?

    PubMed

    Clavijo McCormick, Andrea

    2016-12-01

    The attraction of natural enemies towards herbivore-induced plant volatiles is a well-documented phenomenon. However, the majority of published studies are carried under optimal water and nutrient regimes and with just one herbivore. But what happens when additional levels of ecological complexity are added? Does the presence of a second herbivore, microorganisms, and abiotic stress interfere with plant-natural enemy communication? or is communication stable enough to withstand disruption by additional biotic and abiotic factors?Investigating the effects of these additional levels of ecological complexity is key to understanding the stability of tritrophic interactions in natural ecosystems and may aid to forecast the impact of environmental disturbances on these, especially in climate change scenarios, which are often associated with modifications in plant and arthropod species distribution and increased levels of abiotic stress.This review explores the literature on natural enemy attraction to herbivore-induced volatiles when, besides herbivory, plants are challenged by additional biotic and abiotic factors.The aim of this review was to establish the impact of different biotic and abiotic factors on plant-natural enemy communication and to highlight critical aspects to guide future research efforts.

  20. Function of ABA in Stomatal Defense against Biotic and Drought Stresses

    PubMed Central

    Lim, Chae Woo; Baek, Woonhee; Jung, Jangho; Kim, Jung-Hyun; Lee, Sung Chul

    2015-01-01

    The plant hormone abscisic acid (ABA) regulates many key processes involved in plant development and adaptation to biotic and abiotic stresses. Under stress conditions, plants synthesize ABA in various organs and initiate defense mechanisms, such as the regulation of stomatal aperture and expression of defense-related genes conferring resistance to environmental stresses. The regulation of stomatal opening and closure is important to pathogen defense and control of transpirational water loss. Recent studies using a combination of approaches, including genetics, physiology, and molecular biology, have contributed considerably to our understanding of ABA signal transduction. A number of proteins associated with ABA signaling and responses—especially ABA receptors—have been identified. ABA signal transduction initiates signal perception by ABA receptors and transfer via downstream proteins, including protein kinases and phosphatases. In the present review, we focus on the function of ABA in stomatal defense against biotic and abiotic stresses, through analysis of each ABA signal component and the relationships of these components in the complex network of interactions. In particular, two ABA signal pathway models in response to biotic and abiotic stress were proposed, from stress signaling to stomatal closure, involving the pyrabactin resistance (PYR)/PYR-like (PYL) or regulatory component of ABA receptor (RCAR) family proteins, 2C-type protein phosphatases, and SnRK2-type protein kinases. PMID:26154766

  1. Coupled biotic-abiotic oxidation of organic matter by biogenic MnO_{2}

    NASA Astrophysics Data System (ADS)

    Gonzalez, Julia; Peña, Jasquelin

    2016-04-01

    Some reactive soil minerals are strongly implicated in stabilising organic matter. However, others can play an active role in the oxidation of organic molecules. In natural systems, layer-type manganese oxide minerals (MnO2) typically occur as biomineral assemblages consisting of mineral particles and microbial biomass. Both the mineral and biological fractions of the assemblage can be powerful oxidants of organic C. The biological compartment relies on a set of enzymes to drive oxidative transformations of reduced C-substrates, whereas MnO2 minerals are strong, less specific abiotic oxidants that are assumed to rely on interfacial interactions between C-substrates and the mineral surface. This project aims to understand the coupling between microbial C mineralization and abiotic C oxidation mediated by MnO2 in bacterial-MnO2 assemblages. Specifically, under conditions of high C turnover, microbial respiration can significantly alter local pH, dissolved oxygen and pool of available reductants, which may modify rates and mechanism of C oxidation by biotic and abiotic components. We first investigated changes in the solution chemistry of Pseudomonas putida suspensions exposed to varying concentrations of glucose, chosen to represent readily bioavailable substrates in soils. Glucose concentrations tested ranged between 0 and 5.5mM and changes in pH, dissolved oxygen and dissolved organic and inorganic carbon were tracked over 48h. We then combined literature review and wet-chemical experiments to compile the pH dependence of rates of organic substrate oxidation by MnO2, including glucose. Our results demonstrate a strong pH dependence for these abiotic reactions. In assemblages of P. putida - MnO2, kinetic limitations for abiotic C oxidation by MnO2 are overcome by changes in biogeochemical conditions that result from bacterial C metabolism. When extrapolated to a soil solution confronted to an input of fresh dissolved organic matter, bacterial C metabolism of the

  2. Pivoting from Arabidopsis to wheat to understand how agricultural plants integrate responses to biotic stress.

    PubMed

    Harris, M O; Friesen, T L; Xu, S S; Chen, M S; Giron, D; Stuart, J J

    2015-02-01

    In this review, we argue for a research initiative on wheat's responses to biotic stress. One goal is to begin a conversation between the disparate communities of plant pathology and entomology. Another is to understand how responses to a variety of agents of biotic stress are integrated in an important crop. We propose gene-for-gene interactions as the focus of the research initiative. On the parasite's side is an Avirulence (Avr) gene that encodes one of the many effector proteins the parasite applies to the plant to assist with colonization. On the plant's side is a Resistance (R) gene that mediates a surveillance system that detects the Avr protein directly or indirectly and triggers effector-triggered plant immunity. Even though arthropods are responsible for a significant proportion of plant biotic stress, they have not been integrated into important models of plant immunity that come from plant pathology. A roadblock has been the absence of molecular evidence for arthropod Avr effectors. Thirty years after this evidence was discovered in a plant pathogen, there is now evidence for arthropods with the cloning of the Hessian fly's vH13 Avr gene. After reviewing the two models of plant immunity, we discuss how arthropods could be incorporated. We end by showing features that make wheat an interesting system for plant immunity, including 479 resistance genes known from agriculture that target viruses, bacteria, fungi, nematodes, insects, and mites. It is not likely that humans will be subsisting on Arabidopsis in the year 2050. It is time to start understanding how agricultural plants integrate responses to biotic stress. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  3. Relative importance of biotic and abiotic soil components to plant growth and insect herbivore population dynamics.

    PubMed

    Vandegehuchte, Martijn L; de la Peña, Eduardo; Bonte, Dries

    2010-09-23

    Plants are affected by several aspects of the soil, which have the potential to exert cascading effects on the performance of herbivorous insects. The effects of biotic and abiotic soil characteristics have however mostly been investigated in isolation, leaving their relative importance largely unexplored. Such is the case for the dune grass Ammophila, whose decline under decreasing sand accretion is argued to be caused by either biotic or abiotic soil properties. By manipulating dune soils from three different regions, we decoupled the contributions of region, the abiotic and biotic soil component to the variation in characteristics of Ammophila arenaria seedlings and Schizaphis rufula aphid populations. Root mass fraction and total dry biomass of plants were affected by soil biota, although the latter effect was not consistent across regions. None of the measured plant properties were significantly affected by the abiotic soil component. Aphid population characteristics all differed between regions, irrespective of whether soil biota were present or absent. Hence these effects were due to differences in abiotic soil properties between regions. Although several chemical properties of the soil mixtures were measured, none of these were consistent with results for plant or aphid traits. Plants were affected more strongly by soil biota than by abiotic soil properties, whereas the opposite was true for aphids. Our results thus demonstrate that the relative importance of the abiotic and biotic component of soils can differ for plants and their herbivores. The fact that not all effects of soil properties could be detected across regions moreover emphasizes the need for spatial replication in order to make sound conclusions about the generality of aboveground-belowground interactions.

  4. CROSS DRIVE: A New Interactive and Immersive Approach for Exploring 3D Time-Dependent Mars Atmospheric Data in Distributed Teams

    NASA Astrophysics Data System (ADS)

    Gerndt, Andreas M.; Engelke, Wito; Giuranna, Marco; Vandaele, Ann C.; Neary, Lori; Aoki, Shohei; Kasaba, Yasumasa; Garcia, Arturo; Fernando, Terrence; Roberts, David; CROSS DRIVE Team

    2016-10-01

    Atmospheric phenomena of Mars can be highly dynamic and have daily and seasonal variations. Planetary-scale wavelike disturbances, for example, are frequently observed in Mars' polar winter atmosphere. Possible sources of the wave activity were suggested to be dynamical instabilities and quasi-stationary planetary waves, i.e. waves that arise predominantly via zonally asymmetric surface properties. For a comprehensive understanding of these phenomena, single layers of altitude have to be analyzed carefully and relations between different atmospheric quantities and interaction with the surface of Mars have to be considered. The CROSS DRIVE project tries to address the presentation of those data with a global view by means of virtual reality techniques. Complex orbiter data from spectrometer and observation data from Earth are combined with global circulation models and high-resolution terrain data and images available from Mars Express or MRO instruments. Scientists can interactively extract features from those dataset and can change visualization parameters in real-time in order to emphasize findings. Stereoscopic views allow for perception of the actual 3D behavior of Mars's atmosphere. A very important feature of the visualization system is the possibility to connect distributed workspaces together. This enables discussions between distributed working groups. The workspace can scale from virtual reality systems to expert desktop applications to web-based project portals. If multiple virtual environments are connected, the 3D position of each individual user is captured and used to depict the scientist as an avatar in the virtual world. The appearance of the avatar can also scale from simple annotations to complex avatars using tele-presence technology to reconstruct the users in 3D. Any change of the feature set (annotations, cutplanes, volume rendering, etc.) within the VR is immediately exchanged between all connected users. This allows that everybody is always

  5. Biotic structure indirectly affects associated prey in a predator-specific manner via changes in the sensory environment.

    PubMed

    Wilson, Miranda L; Weissburg, Marc J

    2013-02-01

    Indirect effects, which can be either positive or negative, may be important in areas containing biotic structure, because such structure can provide refuge and habitat, produce additional sensory cues that may attract predators, and modify the sensory landscape in which predator-prey interactions occur. To determine the indirect effects of biotic structure on prey populations, we assessed predation on patches of hard clams (Mercenaria mercenaria) by large odor-mediated blue crab (Callinectes sapidus) and knobbed whelk (Busycon carica) predators at 0, 5, and 10 m from oyster reefs in intertidal salt marshes. Oyster reefs had an overall indirect negative effect on hard clams, with higher predation rates closer to the reef than farther away. Predator-specific patterns of predation showed that blue crabs consumed more clams very close to the reef, whereas whelks consumed more clams at intermediate distances. Laboratory flume experiments suggest that the oyster reef structure creates turbulence that diminishes predator foraging efficiency, particularly in rapidly mobile predators such as blue crabs, but that oyster reef chemicals ameliorate the negative impact of turbulence on foraging success for both predators. Changes in the sensory landscape, in combination with predator perceptual ability, will determine the positive and/or negative impacts of biotic structure on associated prey. Gaining an understanding of the context specificity of positive and negative sensory effects of biotic structure provides insights that are important for developing a predictive framework to assess the magnitude and distribution of indirect interactions in natural communities.

  6. Validation of reference genes for RT-qPCR normalization in common bean during biotic and abiotic stresses.

    PubMed

    Borges, Aline; Tsai, Siu Mui; Caldas, Danielle Gregorio Gomes

    2012-05-01

    Selection of reference genes is an essential consideration to increase the precision and quality of relative expression analysis by the quantitative RT-PCR method. The stability of eight expressed sequence tags was evaluated to define potential reference genes to study the differential expression of common bean target genes under biotic (incompatible interaction between common bean and fungus Colletotrichum lindemuthianum) and abiotic (drought; salinity; cold temperature) stresses. The efficiency of amplification curves and quantification cycle (C (q)) were determined using LinRegPCR software. The stability of the candidate reference genes was obtained using geNorm and NormFinder software, whereas the normalization of differential expression of target genes [beta-1,3-glucanase 1 (BG1) gene for biotic stress and dehydration responsive element binding (DREB) gene for abiotic stress] was defined by REST software. High stability was obtained for insulin degrading enzyme (IDE), actin-11 (Act11), unknown 1 (Ukn1) and unknown 2 (Ukn2) genes during biotic stress, and for SKP1/ASK-interacting protein 16 (Skip16), Act11, Tubulin beta-8 (β-Tub8) and Unk1 genes under abiotic stresses. However, IDE and Act11 were indicated as the best combination of reference genes for biotic stress analysis, whereas the Skip16 and Act11 genes were the best combination to study abiotic stress. These genes should be useful in the normalization of gene expression by RT-PCR analysis in common bean, the most important edible legume.

  7. Soil heterogeneity in Mojave Desert shrublands: Biotic and abiotic processes

    NASA Astrophysics Data System (ADS)

    Caldwell, Todd G.; Young, Michael H.; McDonald, Eric V.; Zhu, Jianting

    2012-09-01

    Geological and ecological processes play critical roles in the evolution of desert piedmonts. Feedback between fast cyclic biotic and slow cumulative pedogenic processes on arid alluvial fan systems results in a heterogeneous landscape of interspace and canopy microsites. Defining the spatial extent between these processes will allow a better connection to ecosystem service and climate change. We use a soil chronosequence in the Mojave Desert and high spatial resolution infiltrometer measurements along transects radiating from canopies of perennial shrubs to assess the extent of biotic and abiotic processes and the heterogeneity of soil properties in arid shrublands. Results showed higher saturated conductivity under vegetation regardless of surface age, but it was more conspicuous on older, developed soils. At proximal locations to the shrub, bulk density, soil structure grade, silt, and clay content significantly increased radially from the canopy, while sand and organic material decreased. Soil properties at distal locations 2-5 times the canopy radius had no significant spatial correlation. The extent of the biotic influence of the shrub was 1.34 ± 0.32 times the canopy radius. Hydraulic properties were weakly correlated in space, but 75% of the variance could be attributed to sand content, soil structure grade, mean-particle diameter, and soil organic material, none of which are exclusively biotic or abiotic. The fast cyclic biotic processes occurring under vegetation are clearly overprinted on slow cumulative abiotic processes, resulting in the deterministic variability observed at the plant scale.

  8. The abiotic and biotic drivers of rapid diversification in Andean bellflowers (Campanulaceae).

    PubMed

    Lagomarsino, Laura P; Condamine, Fabien L; Antonelli, Alexandre; Mulch, Andreas; Davis, Charles C

    2016-06-01

    The tropical Andes of South America, the world's richest biodiversity hotspot, are home to many rapid radiations. While geological, climatic, and ecological processes collectively explain such radiations, their relative contributions are seldom examined within a single clade. We explore the contribution of these factors by applying a series of diversification models that incorporate mountain building, climate change, and trait evolution to the first dated phylogeny of Andean bellflowers (Campanulaceae: Lobelioideae). Our framework is novel for its direct incorporation of geological data on Andean uplift into a macroevolutionary model. We show that speciation and extinction are differentially influenced by abiotic factors: speciation rates rose concurrently with Andean elevation, while extinction rates decreased during global cooling. Pollination syndrome and fruit type, both biotic traits known to facilitate mutualisms, played an additional role in driving diversification. These abiotic and biotic factors resulted in one of the fastest radiations reported to date: the centropogonids, whose 550 species arose in the last 5 million yr. Our study represents a significant advance in our understanding of plant evolution in Andean cloud forests. It further highlights the power of combining phylogenetic and Earth science models to explore the interplay of geology, climate, and ecology in generating the world's biodiversity. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  9. Human influence and biotic homogenization drive the distribution of Escherichia coli virulence genes in natural habitats.

    PubMed

    Cabal, Adriana; Vicente, Joaquin; Alvarez, Julio; Barasona, Jose Angel; Boadella, Mariana; Dominguez, Lucas; Gortazar, Christian

    2017-02-18

    Cattle are the main reservoirs for Shiga-toxin-producing Escherichia coli (STEC), the only known zoonotic intestinal E. coli pathotype. However, there are other intestinal pathotypes that can cause disease in humans, whose presence has been seldom investigated. Thus, our aim was to identify the effects of anthropic pressure and of wild and domestic ungulate abundance on the distribution and diversity of the main human E. coli pathotypes and nine of their representative virulence genes (VGs). We used a quantitative real-time PCR (qPCR) for the direct detection and quantification of the genus-specific gene uidA, nine E. coli VGs (stx1, sxt2, eae, ehxA, aggR, est, elt, bfpA, invA), as well as four genes related to O157:H7 (rfbO157 , fliCH7 ) and O104:H4 (wzxO104 , fliCH4 ) serotypes in animals (feces from deer, cattle, and wild boar) and water samples collected in three areas of Doñana National Park (DNP), Spain. Eight of the nine VGs were detected, being invA, eae, and stx2 followed by stx1, aggR, and ehxA the most abundant ones. In quantitative terms (gene copies per mg of sample), stx1 and stx2 gave the highest values. Significant differences were seen regarding VGs in the three animal species in the three sampled areas. The serotype-related genes were found in all but one sample types. In general, VGs were more diverse and abundant in the northern part of the Park, where the surface waters are more contaminated by human waste and farms. In the current study, we demonstrated that human influence is more relevant than host species in shaping the E. coli VGs spatial pattern and diversity in DNP. In addition, wildlife could be potential reservoirs for other pathotypes different from STEC, however further isolation steps would be needed to completely characterize those E. coli.

  10. Interactions between seasonality and oceanic forcing drive the phytoplankton variability in the tropical-temperate transition zone (~ 30°S) of Eastern Australia

    NASA Astrophysics Data System (ADS)

    Armbrecht, Linda H.; Schaeffer, Amandine; Roughan, Moninya; Armand, Leanne K.

    2015-04-01

    The East Australian Current (EAC) has been shown to be warming rapidly, which is expected to cause latitudinal shifts in phytoplankton abundance, distribution and composition along the east Australian coast. Yet a lack of phytoplankton information exists northward of 34°S. Here, we provide the first detailed taxonomic time-series survey (monthly sampling for about one annual cycle, 2011-2012) in the east Australian tropical-temperate transition zone (~ 30°S, upstream of the EAC separation point at ~ 31-32°S). All phytoplankton (categorised depending on their association with specific water-types) show a seasonal signal with abundance maxima (minima) during summer (winter). This seasonal signal is most pronounced in the seasonal/bloom category and least expressed by deep-water taxa, which prefer cold, saline and dense bottom water independent of the season. Different extents of EAC encroachment onto the continental shelf drive the cross-shelf phytoplankton composition and distribution, such that a weak EAC is associated with phytoplankton community being organised along 'depth' and 'distance from the coast' gradients with high phytoplankton abundances inshore. A strong EAC favours the occurrence of warm-water taxa offshore and an increase in diatom abundance on the mid-shelf (53% shelf width). We conclude that the phytoplankton community in the tropical-temperate transition zone of Eastern Australia is driven by an interaction of intrinsic seasonal cycles and primarily EAC-driven oceanic forcing. Our findings benefit studies located in Western Boundary Current systems worldwide, in which warming and strengthening of these currents are predicted to severely impact phytoplankton dynamics.

  11. Biotic Nitrogen Enrichment Regulates Calcium Sources to Forests

    NASA Astrophysics Data System (ADS)

    Pett-Ridge, J. C.; Perakis, S. S.; Hynicka, J. D.

    2015-12-01

    Calcium is an essential nutrient in forest ecosystems that is susceptible to leaching loss and depletion. Calcium depletion can affect plant and animal productivity, soil acid buffering capacity, and fluxes of carbon and water. Excess nitrogen supply and associated soil acidification are often implicated in short-term calcium loss from soils, but the long-term role of nitrogen enrichment on calcium sources and resupply is unknown. Here we use strontium isotopes (87Sr/86Sr) as a proxy for calcium to investigate how soil nitrogen enrichment from biological nitrogen fixation interacts with bedrock calcium to regulate both short-term available supplies and the long-term sources of calcium in montane conifer forests. Our study examines 22 sites in western Oregon, spanning a 20-fold range of bedrock calcium on sedimentary and basaltic lithologies. In contrast to previous studies emphasizing abiotic control of weathering as a determinant of long-term ecosystem calcium dynamics and sources (via bedrock fertility, climate, or topographic/tectonic controls) we find instead that that biotic nitrogen enrichment of soil can strongly regulate calcium sources and supplies in forest ecosystems. For forests on calcium-rich basaltic bedrock, increasing nitrogen enrichment causes calcium sources to shift from rock-weathering to atmospheric dominance, with minimal influence from other major soil forming factors, despite regionally high rates of tectonic uplift and erosion that can rejuvenate weathering supply of soil minerals. For forests on calcium-poor sedimentary bedrock, we find that atmospheric inputs dominate regardless of degree of nitrogen enrichment. Short-term measures of soil and ecosystem calcium fertility are decoupled from calcium source sustainability, with fundamental implications for understanding nitrogen impacts, both in natural ecosystems and in the context of global change. Our finding that long-term nitrogen enrichment increases forest reliance on atmospheric

  12. Daphnia response to biotic stress is modified by PCBs.

    PubMed

    Bernatowicz, Piotr; Pijanowska, Joanna

    2011-05-01

    The aim of this study was to examine the influence of xenobiotics (PCBs) on the responses of Daphnia to biotic factors such as the presence of a predator (fish kairomone) or filamentous cyanobacteria. Both behaviour (depth selection) and life history (body size at first reproduction and fecundity) were affected by these stressors. Though there was no direct effect of PCBs, their influence resulted in disruption of the "natural" reaction to the presence of fish or cyanobacteria, leading to inadequate responses of Daphnia to these biotic threats. Examined clones of Daphnia showed significant diversity in their reaction to these stress factors, which was greater than that between Daphnia clones exposed to different environmental conditions. PCB pollution may change the frequency of Daphnia clones in favour of those whose responses to biotic stress are similar in both the absence and presence of these toxic chemicals. Copyright © 2010 Elsevier Inc. All rights reserved.

  13. BIOTIC FACTORS IN AMPHIBIAN POPULATION DECLINES

    EPA Science Inventory

    Amphibians evolved in, and continue to exist in, habitats that are replete with many other organisms. Some of these organisms serve as prey for amphibians and others interact with amphibians as predators, competitors, pathogens, or symbionts. Still other organisms in their enviro...

  14. BIOTIC FACTORS IN AMPHIBIAN POPULATION DECLINES

    EPA Science Inventory

    Amphibians evolved in, and continue to exist in, habitats that are replete with many other organisms. Some of these organisms serve as prey for amphibians and others interact with amphibians as predators, competitors, pathogens, or symbionts. Still other organisms in their enviro...

  15. Effect of Temperature on the Biotic Potential of Honeybee Microsporidia▿

    PubMed Central

    Martín-Hernández, Raquel; Meana, Aránzazu; García-Palencia, Pilar; Marín, Pilar; Botías, Cristina; Garrido-Bailón, Encarna; Barrios, Laura; Higes, Mariano

    2009-01-01

    The biological cycle of Nosema spp. in honeybees depends on temperature. When expressed as total spore counts per day after infection, the biotic potentials of Nosema apis and N. ceranae at 33°C were similar, but a higher proportion of immature stages of N. ceranae than of N. apis were seen. At 25 and 37°C, the biotic potential of N. ceranae was higher than that of N. apis. The better adaptation of N. ceranae to complete its endogenous cycle at different temperatures clearly supports the observation of the different epidemiological patterns. PMID:19233948

  16. Effect of temperature on the biotic potential of honeybee microsporidia.

    PubMed

    Martín-Hernández, Raquel; Meana, Aránzazu; García-Palencia, Pilar; Marín, Pilar; Botías, Cristina; Garrido-Bailón, Encarna; Barrios, Laura; Higes, Mariano

    2009-04-01

    The biological cycle of Nosema spp. in honeybees depends on temperature. When expressed as total spore counts per day after infection, the biotic potentials of Nosema apis and N. ceranae at 33 degrees C were similar, but a higher proportion of immature stages of N. ceranae than of N. apis were seen. At 25 and 37 degrees C, the biotic potential of N. ceranae was higher than that of N. apis. The better adaptation of N. ceranae to complete its endogenous cycle at different temperatures clearly supports the observation of the different epidemiological patterns.

  17. Biotic ligand model, a flexible tool for developing site-specific water quality guidelines for metals.

    PubMed

    Niyogi, Soumya; Wood, Chris M

    2004-12-01

    The biotic ligand model (BLM) is a mechanistic approach that greatly improves our ability to generate site-specific ambient water quality criteria (AWQC)for metals in the natural environment relative to conventional relationships based only on hardness. The model is flexible; all aspects of water chemistry that affect toxicity can be included, so the BLM integrates the concept of bioavailability into AWQC--in essence the computational equivalent of water effect ratio (WER) testing. The theory of the BLM evolved from the gill surface interaction model (GSIM) and the free ion activity model (FIAM). Using an equilibrium geochemical modeling framework, the BLM incorporates the competition of the free metal ion with other naturally occurring cations (e.g., Ca2+, Na+, Mg2-, H+), togetherwith complexation by abiotic ligands [e.g., DOM (dissolved organic matter), chloride, carbonates, sulfide] for binding with the biotic ligand, the site of toxic action on the organism. On the basis of fish gill research, the biotic ligands appear to be active ion uptake pathways (e.g., Na+ transporters for copper and silver, Ca2+ transporters for zinc, cadmium, lead, and cobalt), whose geochemical characteristics (affinity = log K, capacity = Bmax) can be quantified in short-term (3-24 h) in vivo gill binding tests. In general, the greater the toxicity of a particular metal, the higher the log K. The BLM quantitatively relates short-term binding to acute toxicity, with the LA50 (lethal accumulation) being predictive of the LC50 (generally 96 h for fish, 48 h for daphnids). We critically evaluate currently available BLMs for copper, silver, zinc, and nickel and gill binding approaches for cadmium, lead, and cobalt on which BLMs could be based. Most BLMs originate from tests with fish and have been recalibrated for more sensitive daphnids by adjustment of LA50 so as to fit the results of toxicity testing. Issues of concern include the arbitrary nature of LA50 adjustments; possible

  18. The floodplain large-wood cycle hypothesis: A mechanism for the physical and biotic structuring of temperate forested alluvial valleys in the North Pacific coastal ecoregion

    NASA Astrophysics Data System (ADS)

    Collins, Brian D.; Montgomery, David R.; Fetherston, Kevin L.; Abbe, Tim B.

    2012-02-01

    A 'floodplain large-wood cycle' is hypothesized as a mechanism for generating landforms and influencing river dynamics in ways that structure and maintain riparian and aquatic ecosystems of forested alluvial river valleys of the Pacific coastal temperate rainforest of North America. In the cycle, pieces of wood large enough to resist fluvial transport and remain in river channels initiate and stabilize wood jams, which in turn create alluvial patches and protect them from erosion. These stable patches provide sites for trees to mature over hundreds of years in river valleys where the average cycle of floodplain turnover is much briefer, thus providing a future source of large wood and reinforcing the cycle. Different tree species can function in the floodplain large-wood cycle in different ecological regions, in different river valleys within regions, and within individual river valleys in which forest composition changes through time. The cycle promotes a physically complex, biodiverse, and self-reinforcing state. Conversely, loss of large trees from the system drives landforms and ecosystems toward an alternate stable state of diminished biogeomorphic complexity. Reestablishing large trees is thus necessary to restore such rivers. Although interactions and mechanisms may differ between biomes and in larger or smaller rivers, available evidence suggests that large riparian trees may have similarly fundamental roles in the physical and biotic structuring of river valleys elsewhere in the temperate zone.

  19. Investigation of road salts and biotic stressors on freshwater wetland communities.

    PubMed

    Jones, Devin K; Mattes, Brian M; Hintz, William D; Schuler, Matthew S; Stoler, Aaron B; Lind, Lovisa A; Cooper, Reilly O; Relyea, Rick A

    2017-02-01

    The application of road deicing salts has led to the salinization of freshwater ecosystems in northern regions worldwide. Increased chloride concentrations in lakes, streams, ponds, and wetlands may negatively affect freshwater biota, potentially threatening ecosystem services. In an effort to reduce the effects of road salt, operators have increased the use of salt alternatives, yet we lack an understanding of how these deicers affect aquatic communities. We examined the direct and indirect effects of the most commonly used road salt (NaCl) and a proprietary salt mixture (NaCl, KCl, MgCl2), at three environmentally relevant concentrations (150, 470, and 780 mg Cl(-)/L) on freshwater wetland communities in combination with one of three biotic stressors (control, predator cues, and competitors). The communities contained periphyton, phytoplankton, zooplankton, and two tadpole species (American toads, Anaxyrus americanus; wood frogs, Lithobates sylvaticus). Overall, we found the two road salts did not interact with the natural stressors. Both salts decreased pH and reduced zooplankton abundance. The strong decrease in zooplankton abundance in the highest NaCl concentration caused a trophic cascade that resulted in increased phytoplankton abundance. The highest NaCl concentration also reduced toad activity. For the biotic stressors, predatory stress decreased whereas competitive stress increased the activity of both tadpole species. Wood frog survival, time to metamorphosis, and mass at metamorphosis all decreased under competitive stress whereas toad time to metamorphosis increased and mass at metamorphosis decreased. Road salts and biotic stressors can both affect freshwater communities, but their effects are not interactive. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. DETERMINATION OF CONDITION CATEGORIES FOR BIOTIC INDICES USING POWER ANALYSIS

    EPA Science Inventory

    Multimetric biotic indices are often used in bioassessment programs to determine the condition of water resources. These indices are typically divided into a number of condition tiers (e.g., good, poor). However, the number of tiers is often based on professional judgement. We u...

  1. River Quality Investigations, Part 1: Some Diversity and Biotic Indices.

    ERIC Educational Resources Information Center

    Hewitt, G.

    1991-01-01

    The following indices for assessing river water quality are described: Shannon-Weiner Diversity Index, Sorenson Quotient of Similarity, Czekanowski's Index of Similarity, Trent Biotic Index, Chandler Score, and Biological Monitoring Working Party Score. Their advantages and disadvantages are outlined. (Author)

  2. Biotic diversity interfaces with urbanization in the Lake Tahoe basin

    Treesearch

    Patricia N. Manley; Dennis D. Murphy; Lori A. Campbell; Kirsten E. Heckmann; Susan Merideth; Sean A. Parks; Monte P. Sanford; Matthew D. Schlesinger

    2006-01-01

    In the Lake Tahoe Basin, the retention of native ecosystems within urban areas may greatly enhance the landscape’s ability to maintain biotic diversity. Our study of plant, invertebrate and vertebrate species showed that many native species were present in remnant forest stands in developed areas; however, their richness and abundance declined in association with...

  3. A direct-gradient multivariate index of biotic condition

    USGS Publications Warehouse

    Miranda, Leandro E.; Aycock, J.N.; Killgore, K. J.

    2012-01-01

    Multimetric indexes constructed by summing metric scores have been criticized despite many of their merits. A leading criticism is the potential for investigator bias involved in metric selection and scoring. Often there is a large number of competing metrics equally well correlated with environmental stressors, requiring a judgment call by the investigator to select the most suitable metrics to include in the index and how to score them. Data-driven procedures for multimetric index formulation published during the last decade have reduced this limitation, yet apprehension remains. Multivariate approaches that select metrics with statistical algorithms may reduce the level of investigator bias and alleviate a weakness of multimetric indexes. We investigated the suitability of a direct-gradient multivariate procedure to derive an index of biotic condition for fish assemblages in oxbow lakes in the Lower Mississippi Alluvial Valley. Although this multivariate procedure also requires that the investigator identify a set of suitable metrics potentially associated with a set of environmental stressors, it is different from multimetric procedures because it limits investigator judgment in selecting a subset of biotic metrics to include in the index and because it produces metric weights suitable for computation of index scores. The procedure, applied to a sample of 35 competing biotic metrics measured at 50 oxbow lakes distributed over a wide geographical region in the Lower Mississippi Alluvial Valley, selected 11 metrics that adequately indexed the biotic condition of five test lakes. Because the multivariate index includes only metrics that explain the maximum variability in the stressor variables rather than a balanced set of metrics chosen to reflect various fish assemblage attributes, it is fundamentally different from multimetric indexes of biotic integrity with advantages and disadvantages. As such, it provides an alternative to multimetric procedures.

  4. Biotic resistance to invasion along an estuarine gradient

    PubMed Central

    Hovel, Kevin A.

    2010-01-01

    Biotic resistance is the ability of native communities to repel the establishment of invasive species. Predation by native species may confer biotic resistance to communities, but the environmental context under which this form of biotic resistance occurs is not well understood. We evaluated several factors that influence the distribution of invasive Asian mussels (Musculista senhousia) in Mission Bay, a southern California estuary containing an extensive eelgrass (Zostera marina) habitat. Asian mussels exhibit a distinct spatial pattern of invasion, with extremely high densities towards the back of Mission Bay (up to 4,000 m−2) in contrast with near-complete absence at sites towards the front of the bay. We established that recruits arrived at sites where adult mussels were absent and found that dense eelgrass does not appear to preclude Asian mussel growth and survival. Mussel survival and growth were high in predator-exclusion plots throughout the bay, but mussel survival was low in the front of the bay when plots were open to predators. Additional experiments revealed that consumption by spiny lobsters (Panulirus interruptus) and a gastropod (Pteropurpura festiva) likely are the primary factors responsible for resistance to Asian mussel invasion. However, biotic resistance was dependent on location within the estuary (for both species) and also on the availability of a hard substratum (for P. festiva). Our findings indicate that biotic resistance in the form of predation may be conferred by higher order predators, but that the strength of resistance may strongly vary across estuarine gradients and depend on the nature of the locally available habitat. Electronic supplementary material The online version of this article (doi:10.1007/s00442-010-1700-7) contains supplementary material, which is available to authorized users. PMID:20602118

  5. Biotic resistance to invasion along an estuarine gradient.

    PubMed

    Cheng, Brian S; Hovel, Kevin A

    2010-12-01

    Biotic resistance is the ability of native communities to repel the establishment of invasive species. Predation by native species may confer biotic resistance to communities, but the environmental context under which this form of biotic resistance occurs is not well understood. We evaluated several factors that influence the distribution of invasive Asian mussels (Musculista senhousia) in Mission Bay, a southern California estuary containing an extensive eelgrass (Zostera marina) habitat. Asian mussels exhibit a distinct spatial pattern of invasion, with extremely high densities towards the back of Mission Bay (up to 4,000 m(-2)) in contrast with near-complete absence at sites towards the front of the bay. We established that recruits arrived at sites where adult mussels were absent and found that dense eelgrass does not appear to preclude Asian mussel growth and survival. Mussel survival and growth were high in predator-exclusion plots throughout the bay, but mussel survival was low in the front of the bay when plots were open to predators. Additional experiments revealed that consumption by spiny lobsters (Panulirus interruptus) and a gastropod (Pteropurpura festiva) likely are the primary factors responsible for resistance to Asian mussel invasion. However, biotic resistance was dependent on location within the estuary (for both species) and also on the availability of a hard substratum (for P. festiva). Our findings indicate that biotic resistance in the form of predation may be conferred by higher order predators, but that the strength of resistance may strongly vary across estuarine gradients and depend on the nature of the locally available habitat.

  6. Abiotic, biotic, and in-between

    NASA Astrophysics Data System (ADS)

    Kolb, Vera M.; Liesch, P. J.

    2008-08-01

    In our search for the definition of life that will be relevant for astrobiology, we consider various entities that have some but not all of their features in common with the fully developed functioning life. We name these entities "life forms". Examples include viruses, spores, and partners in syntrophy (metabolically interdependent relationships). We introduce meaningful categories into which these life forms fit, and offer a definition of life in which they are included. Our suggested working definition of life is that life is a chemical phenomenon which occurs in space and time as a succession of life forms which combined have a potential to metabolize, reproduce, interact with the environment, including other life forms, and are the subject to natural selection.

  7. Seed dispersers, seed predators, and browsers act synergistically as biotic filters in a mosaic landscape.

    PubMed

    Zamora, Regino; Matías, Luis

    2014-01-01

    In this study, we analize the functional influence of animals on the plants they interact with in a mediterranean mountain. We hypothesise that seed dispersers, seed predators, and browsers can act as biotic filters for plant communities. We analyse the combined effects of mutualistic (seed dispersal) and antagonistic (seed predation, herbivory) animal interactions in a mosaic landscape of Mediterranean mountains, basing our results on observational and experimental field. Most of the dispersed seeds came from tree species, whereas the population of saplings was composed predominantly of zoochorous shrub species. Seed predators preferentially consumed seeds from tree species, whereas seeds from the dominant fleshy-fruited shrubs had a higher probability of escaping these predators. The same pattern was repeated among the different landscape units by browsers, since they browsed selectively and far more intensely on tree-species saplings than on the surrounding shrubs. In synthesis, our work identifies the major biotic processes that appear to be favoring a community dominated by shrubs versus trees because seed dispersers, predators, and herbivores together favored shrub dispersal and establishment versus trees.

  8. Seed Dispersers, Seed Predators, and Browsers Act Synergistically as Biotic Filters in a Mosaic Landscape

    PubMed Central

    Zamora, Regino; Matías, Luis

    2014-01-01

    In this study, we analize the functional influence of animals on the plants they interact with in a mediterranean mountain. We hypothesise that seed dispersers, seed predators, and browsers can act as biotic filters for plant communities. We analyse the combined effects of mutualistic (seed dispersal) and antagonistic (seed predation, herbivory) animal interactions in a mosaic landscape of Mediterranean mountains, basing our results on observational and experimental field. Most of the dispersed seeds came from tree species, whereas the population of saplings was composed predominantly of zoochorous shrub species. Seed predators preferentially consumed seeds from tree species, whereas seeds from the dominant fleshy-fruited shrubs had a higher probability of escaping these predators. The same pattern was repeated among the different landscape units by browsers, since they browsed selectively and far more intensely on tree-species saplings than on the surrounding shrubs. In synthesis, our work identifies the major biotic processes that appear to be favoring a community dominated by shrubs versus trees because seed dispersers, predators, and herbivores together favored shrub dispersal and establishment versus trees. PMID:25233342

  9. A biotic video game smart phone kit for formal and informal biophysics education

    NASA Astrophysics Data System (ADS)

    Kim, Honesty; Lee, Seung Ah; Riedel-Kruse, Ingmar

    2015-03-01

    Novel ways for formal and informal biophysics education are important. We present a low-cost biotic game design kit that incorporates microbial organisms into an interactive gaming experience: A 3D-printable microscope containing four LEDs controlled by a joystick enable human players to provide directional light stimuli to the motile single-celled organism Euglena gracilis. These cellular behaviors are displayed on the integrated smart phone. Real time cell-tracking couples these cells into interactive biotic video game play, i.e., the human player steers Euglena to play soccer with virtual balls and goals. The player's learning curve in mastering this fun game is intrinsically coupled to develop a deeper knowledge about Euglena's cell morphology and the biophysics of its phototactic behavior. This kit is dual educational - via construction and via play - and it provides an engaging theme for a formal biophysics devices class as well as to be presented in informal outreach activities; its low cost and open soft- and hardware should enable wide adoption.

  10. Vascular plant one-zinc-finger protein 1/2 transcription factors regulate abiotic and biotic stress responses in Arabidopsis.

    PubMed

    Nakai, Yusuke; Nakahira, Yoichi; Sumida, Hiroki; Takebayashi, Kosuke; Nagasawa, Yumiko; Yamasaki, Kanako; Akiyama, Masako; Ohme-Takagi, Masaru; Fujiwara, Sumire; Shiina, Takashi; Mitsuda, Nobutaka; Fukusaki, Eiichiro; Kubo, Yasuyuki; Sato, Masa H

    2013-03-01

    Plants adapt to abiotic and biotic stresses by activating abscisic acid-mediated (ABA) abiotic stress-responsive and salicylic acid-(SA) or jasmonic acid-mediated (JA) biotic stress-responsive pathways, respectively. Although the abiotic stress-responsive pathway interacts antagonistically with the biotic stress-responsive pathways, the mechanisms that regulate these pathways remain largely unknown. In this study, we provide insight into the function of vascular plant one-zinc-finger proteins (VOZs) that modulate various stress responses in Arabidopsis. The expression of many stress-responsive genes was changed in the voz1voz2 double mutant under normal growth conditions. Consistent with altered stress-responsive gene expression, freezing- and drought-stress tolerances were increased in the voz1voz2 double mutant. In contrast, resistance to a fungal pathogen, Colletotrichum higginsianum, and to a bacterial pathogen, Pseudomonas syringae, was severely impaired. Thus, impairing VOZ function simultaneously conferred increased abiotic tolerance and biotic stress susceptibility. In a chilling stress condition, both the VOZ1 and VOZ2 mRNA expression levels and the VOZ2 protein level gradually decreased. VOZ2 degradation during cold exposure was completely inhibited by the addition of the 26S proteasome inhibitor, MG132, a finding that suggested that VOZ2 degradation is dependent on the ubiquitin/26S proteasome system. In voz1voz2, ABA-inducible transcription factor CBF4 expression was enhanced significantly even under normal growth conditions, despite an unchanged endogenous ABA content. A finding that suggested that VOZs negatively affect CBF4 expression in an ABA-independent manner. These results suggest that VOZs function as both negative and positive regulators of the abiotic and biotic stress-responsive pathways, and control Arabidopsis adaptation to various stress conditions. © 2012 The Authors The Plant Journal © 2012 Blackwell Publishing Ltd.

  11. Biogeomorphology of a Mojave Desert landscape - Configurations and feedbacks of abiotic and biotic land surfaces during landform evolution

    NASA Astrophysics Data System (ADS)

    Pietrasiak, Nicole; Drenovsky, Rebecca E.; Santiago, Louis S.; Graham, Robert C.

    2014-02-01

    Terrestrial ecosystems can be more holistically understood by investigating the morphology of landscape mosaics, the assemblage of their ecological communities, and the linkages and feedbacks between the mosaics and communities. The overarching objectives of this study were to: (1) study the abiotic and biotic configurations of landform units as mosaics within a Mojave Desert chronosequence; and (2) elucidate their potential feedbacks, interactions, and dynamics during landform evolution. Seven landform units distributed over three geomorphic ages were identified, including: young bars and swales; intermediate-aged flattened bars, flattened swales, and bioturbation units; and old desert pavements and shrub zones. These landform units were characterized according to abiotic and biotic land surface properties. Landform units were statistically distinct and predictable based on a specific suite of abiotic and biotic properties. Vascular plant functional group and biological soil crust community diversity varied with geomorphology, with greatest diversity associated with bars and shrub zones and lowest diversity associated with desert pavements. Biological soil crust communities were controlled by geomorphic age, surface rock size, and protruding rocks with young bar units having the highest abundance and diversity. Perennial forbs were observed in old shrub zones with small rocks and few protruding rocks. A high clast density and a finer-sized clast distribution were found particularly in desert pavements and flattened swales, and generally inhibited biological soil crust and plant cover. Evolutionary trajectories for landforms of a lower piedmont landscape can be dominated by either abiotic and biotic landform processes. These two trajectories are distinctly different and are associated with their own unique linkages, feedbacks, and dynamics of abiotic and biotic land surface properties, producing a highly diverse desert landscape.

  12. Enhancing crop resilience to combined abiotic and biotic stress through the dissection of physiological and molecular crosstalk.

    PubMed

    Kissoudis, Christos; van de Wiel, Clemens; Visser, Richard G F; van der Linden, Gerard

    2014-01-01

    Plants growing in their natural habitats are often challenged simultaneously by multiple stress factors, both abiotic and biotic. Research has so far been limited to responses to individual stresses, and understanding of adaptation to combinatorial stress is limited, but indicative of non-additive interactions. Omics data analysis and functional characterization of individual genes has revealed a convergence of signaling pathways for abiotic and biotic stress adaptation. Taking into account that most data originate from imposition of individual stress factors, this review summarizes these findings in a physiological context, following the pathogenesis timeline and highlighting potential differential interactions occurring between abiotic and biotic stress signaling across the different cellular compartments and at the whole plant level. Potential effects of abiotic stress on resistance components such as extracellular receptor proteins, R-genes and systemic acquired resistance will be elaborated, as well as crosstalk at the levels of hormone, reactive oxygen species, and redox signaling. Breeding targets and strategies are proposed focusing on either manipulation and deployment of individual common regulators such as transcription factors or pyramiding of non- (negatively) interacting components such as R-genes with abiotic stress resistance genes. We propose that dissection of broad spectrum stress tolerance conferred by priming chemicals may provide an insight on stress cross regulation and additional candidate genes for improving crop performance under combined stress. Validation of the proposed strategies in lab and field experiments is a first step toward the goal of achieving tolerance to combinatorial stress in crops.

  13. Enhancing crop resilience to combined abiotic and biotic stress through the dissection of physiological and molecular crosstalk

    PubMed Central

    Kissoudis, Christos; van de Wiel, Clemens; Visser, Richard G. F.; van der Linden, Gerard

    2014-01-01

    Plants growing in their natural habitats are often challenged simultaneously by multiple stress factors, both abiotic and biotic. Research has so far been limited to responses to individual stresses, and understanding of adaptation to combinatorial stress is limited, but indicative of non-additive interactions. Omics data analysis and functional characterization of individual genes has revealed a convergence of signaling pathways for abiotic and biotic stress adaptation. Taking into account that most data originate from imposition of individual stress factors, this review summarizes these findings in a physiological context, following the pathogenesis timeline and highlighting potential differential interactions occurring between abiotic and biotic stress signaling across the different cellular compartments and at the whole plant level. Potential effects of abiotic stress on resistance components such as extracellular receptor proteins, R-genes and systemic acquired resistance will be elaborated, as well as crosstalk at the levels of hormone, reactive oxygen species, and redox signaling. Breeding targets and strategies are proposed focusing on either manipulation and deployment of individual common regulators such as transcription factors or pyramiding of non- (negatively) interacting components such as R-genes with abiotic stress resistance genes. We propose that dissection of broad spectrum stress tolerance conferred by priming chemicals may provide an insight on stress cross regulation and additional candidate genes for improving crop performance under combined stress. Validation of the proposed strategies in lab and field experiments is a first step toward the goal of achieving tolerance to combinatorial stress in crops. PMID:24904607

  14. Driving induced many-body localization

    NASA Astrophysics Data System (ADS)

    Bairey, Eyal; Refael, Gil; Lindner, Netanel H.

    2017-07-01

    Subjecting a many-body localized system to a time-periodic drive generically leads to delocalization and a transition to ergodic behavior if the drive is sufficiently strong or of sufficiently low frequency. Here we show that a specific drive can have an opposite effect, taking a static delocalized system into the many-body localized phase. We demonstrate this effect using a one-dimensional system of interacting hard-core bosons subject to an oscillating linear potential. The system is weakly disordered, and is ergodic absent the driving. The time-periodic linear potential leads to a suppression of the effective static hopping amplitude, increasing the relative strengths of disorder and interactions. Using numerical simulations, we find a transition into the many-body localized phase above a critical driving frequency and in a range of driving amplitudes. Our findings highlight the potential of driving schemes exploiting the coherent destruction of tunneling for engineering long-lived Floquet phases.

  15. Biotic and abiotic controls of Argentine ant invasion success at local and landscape scales.

    PubMed

    Menke, S B; Fisher, R N; Jetz, W; Holway, D A

    2007-12-01

    Although the ecological success of introduced species hinges on biotic interactions and physical conditions, few experimental studies--especially on animals--have simultaneously investigated the relative importance of both types of factors. The lack of such research may stem from the common assumption that native and introduced species exhibit similar environmental tolerances. Here we combine experimental and spatial modeling approaches (1) to determine the relative importance of biotic and abiotic controls of Argentine ant (Linepithema humile) invasion success, (2) to examine how the importance of these factors changes with spatial scale in southern California (USA), and (3) to assess how Argentine ants differ from native ants in their environmental tolerances. A factorial field experiment that combined native ant removal with irrigation revealed that Argentine ants failed to invade any dry plots (even those lacking native ants) but readily invaded all moist plots. Native ants slowed the spread of Argentine ants into irrigated plots but did not prevent invasion. In areas without Argentine ants, native ant species showed variable responses to irrigation. At the landscape scale, Argentine ant occurrence was positively correlated with minimum winter temperature (but not precipitation), whereas native ant diversity increased with precipitation and was negatively correlated with minimum winter temperature. These results are of interest for several reasons. First, they demonstrate that fine-scale differences in the physical environment can eclipse biotic resistance from native competitors in determining community susceptibility to invasion. Second, our results illustrate surprising complexities with respect to how the abiotic factors limiting invasion can change with spatial scale, and third, how native and invasive species can differ in their responses to the physical environment. Idiosyncratic and scale-dependent processes complicate attempts to forecast where

  16. Biotic and abiotic controls of argentine ant invasion success at local and landscape scales

    USGS Publications Warehouse

    Menke, S.B.; Fisher, R.N.; Jetz, W.; Holway, D.A.

    2007-01-01

    Although the ecological success of introduced species hinges on biotic interactions and physical conditions, few experimental studies - especially on animals - have simultaneously investigated the relative importance of both types of factors. The lack of such research may stem from the common assumption that native and introduced species exhibit similar environmental tolerances. Here we combine experimental and spatial modeling approaches (1) to determine the relative importance of biotic and abiotic controls of Argentine ant (Linepithema humile) invasion success, (2) to examine how the importance of these factors changes with spatial scale in southern California (USA), and (3) to assess how Argentine ants differ from native ants in their environmental tolerances. A factorial field experiment that combined native ant removal with irrigation revealed that Argentine ants failed to invade any dry plots (even those lacking native ants) but readily invaded all moist plots. Native ants slowed the spread of Argentine ants into irrigated plots but did not prevent invasion. In areas without Argentine ants, native ant species showed variable responses to irrigation. At the landscape scale, Argentine ant occurrence was positively correlated with minimum winter temperature (but not precipitation), whereas native ant diversity increased with precipitation and was negatively correlated with minimum winter temperature. These results are of interest for several reasons. First, they demonstrate that fine-scale differences in the physical environment can eclipse biotic resistance from native competitors in determining community susceptibility to invasion. Second, our results illustrate surprising complexities with respect to how the abiotic factors limiting invasion can change with spatial scale, and third, how native and invasive species can differ in their responses to the physical environment. Idiosyncratic and scale-dependent processes complicate attempts to forecast where

  17. The nature of cumulative impacts on biotic diversity of wetland vertebrates

    NASA Astrophysics Data System (ADS)

    Harris, Larry D.

    1988-09-01

    There is no longer any doubt that cumulative impacts have important effects on wetland vertebrates. Interactions of species diversity and community structure produce a complex pattern in which environmental impacts can play a highly significant role. Various examples show how wetlands maintain the biotic diversity within and among vertebrate populations, and some of the ways that environmental perturbations can interact to reduce this diversity. The trophic and habitat pyramids are useful organizing concepts. Habitat fragmentation can have severe effects at all levels, reducing the usable range of the larger habitat generalists while threatening the genetic integrity of small, isolated populations. The complexity of trophic interactions, and the propensity, or necessity, of vertebrates to switch from one food source to another—something we know little about—makes using food chain support as a variable for predicting environmental impacts very questionable. Historical instances illustrate the effects of the accumulation of impacts on vertebrates. At present it is nearly impossible to predict the result of three or more different kinds of perturbations, although long-range effects can be observed. One case in point is waterfowl; while their ingestion of lead shot, harvesting by hunters during migration, and loss of habitat have caused waterfowl populations to decline, the proportional responsibility of these factors has not been determined. Further examples show multiplicative effects of similar actions, effects with long time lags, diffuse processes in the landscape that may have concentrated effects on a component subsystem, and a variety of other interactions of increasing complexity. Not only is more information needed at all levels; impacts must be assessed on a landscape or regional scale to produce informed management decisions. I conclude that a system of replicate wetland reserves that are allowed to interact naturally with the surrounding landscape will

  18. In Search for Factors that Drive Hantavirus Epidemics

    PubMed Central

    Heyman, Paul; Thoma, Bryan R.; Marié, Jean-Lou; Cochez, Christel; Essbauer, Sandra Simone

    2012-01-01

    In Europe, hantaviruses (Bunyaviridae) are small mammal-associated zoonotic and emerging pathogens that can cause hemorrhagic fever with renal syndrome (HFRS). Puumala virus, the main etiological agent carried by the bank vole Myodes glareolus is responsible for a mild form of HFRS while Dobrava virus induces less frequent but more severe cases of HFRS. Since 2000 in Europe, more than 3000 cases of HFRS have been recorded, in average, each year, which is nearly double compared to the previous decade. In addition to this upside long-term trend, significant oscillations occur. Epidemic years appear, usually every 2–4 years, with an increased incidence, generally in localized hot spots. Moreover, the virus has been identified in new areas in the recent years. A great number of surveys have been carried out in order to assess the prevalence of the infection in the reservoir host and to identify links with different biotic and abiotic factors. The factors that drive the infections are related to the density and diversity of bank vole populations, prevalence of infection in the reservoir host, viral excretion in the environment, survival of the virus outside its host, and human behavior, which affect the main transmission virus route through inhalation of infected rodent excreta. At the scale of a rodent population, the prevalence of the infection increases with the age of the individuals but also other parameters, such as sex and genetic variability, interfere. The contamination of the environment may be correlated to the number of newly infected rodents, which heavily excret