Sample records for bioventing

  1. MANUAL: BIOVENTING PRINCIPLES AND PRACTICE VOLUME II. BIOVENTING DESIGN

    EPA Science Inventory

    The results from bioventing research and development efforts and from the pilot-scale bioventing systems have been used to produce this two-volume manual. Although this design manual has been written based on extensive experience with petroleum hydrocarbons (and thus, many exampl...

  2. MANUAL: BIOVENTING PRINCIPLES AND PRACTICE VOLUME I. BIOVENTING PRINCIPLES

    EPA Science Inventory

    Bioventing is the process of aerating soils to stimulate in situ biological activity and promote bioremediation. Bioventing typically is applied in situ to the vadose zone and is applicable to any chemical that can be aerobically biodegraded but to date has primarily been impleme...

  3. Case Study: del Amo Bioventing

    EPA Science Inventory

    The attached presentation discusses the fundamentals of bioventing in the vadose zone. The basics of bioventing are presented. The experience to date with the del Amo Superfund Site is presented as a case study.

  4. BIOVENTING DEVELOPMENT PROGRAM (TREATMENT AND DESTRUCTION BRANCH, LRPCD, NRMRL)

    EPA Science Inventory

    In a continuing effort to develop environment-friendly and cost-effective remediation technologies, the Land Remediation and Pollution Control Division (LRPCD) conducts an aggressive research and development program in bioventing. LRPCD's bioventing program is multi-faceted, with...

  5. OPTIMIZING BIOVENTING IN SHALLOW VADOSE ZONES AND COLD CLIMATES

    EPA Science Inventory

    This paper describes a bioventing study design and initial activities applied to a JP-4 jet fuel spill at Eielson Air Force Base, Alaska. The primary objectives of the project were to investigate the feasibility of using bioventing technology to remediate JP-4 jet fuel contaminat...

  6. Investigations into the application of a combination of bioventing and biotrickling filter technologies for soil decontamination processes--a transition regime between bioventing and soil vapour extraction.

    PubMed

    Magalhães, S M C; Ferreira Jorge, R M; Castro, P M L

    2009-10-30

    Bioventing has emerged as one of the most cost-effective in situ technologies available to address petroleum light-hydrocarbon spills, one of the most common sources of soil pollution. However, the major drawback associated with this technology is the extended treatment time often required. The present study aimed to illustrate how an intended air-injection bioventing technology can be transformed into a soil vapour extraction effort when the air flow rates are pushed to a stripping mode, thus leading to the treatment of the off-gas resulting from volatilisation. As such, a combination of an air-injection bioventing system and a biotrickling filter was applied for the treatment of contaminated soil, the latter aiming at the treatment of the emissions resulting from the bioventing process. With a moisture content of 10%, soil contaminated with toluene at two different concentrations, namely 2 and 14 mg g soil(-1), were treated successfully using an air-injection bioventing system at a constant air flow rate of ca. 0.13 dm(3) min(-1), which led to the removal of ca. 99% toluene, after a period of ca. 5 days of treatment. A biotrickling filter was simultaneously used to treat the outlet gas emissions, which presented average removal efficiencies of ca. 86%. The proposed combination of biotechnologies proved to be an efficient solution for the decontamination process, when an excessive air flow rate was applied, reducing both the soil contamination and the outlet gas emissions, whilst being able to reduce the treatment time required by bioventing only.

  7. Natural Pressure-Driven Passive Bioventing

    DTIC Science & Technology

    2000-09-01

    8217 300’ PFFA SCALE : 1 "= 300’ LEGEND 0 ABOVE GROUND STORAGE TANK I BUILDING FENCE = = = : DRAINAGE CHANNEL \\731272\\REPORT\\FINAL\\GRA PHICS...preparation for full- scale design of a conventional bioventing system at the PFFA, a bioventing pilot test was conducted in the demonstration area prior...PFFAVW02 @ @ PFFABOS02 PFFAVMP14..6. @ PFFABOS04 • PFFABOS06 CPT-BOSSA @ PFFABOS08 ~ JM11 ~? r 1,o v SCALE IN FEET FIGURE 6 SITE PLAN PFFA

  8. COMPARISON OF FIELD AEROBIC BIODEGRADATION RATES TO LABORATORY

    EPA Science Inventory

    It is common to use bioventing as a polishing step for soil vapor extraction. It was originally planned to use soil vapor extraction and bioventing at a former landfill site in Delaware but laboratory scale biodegradation studies indicated that most of the volatile organic compou...

  9. In situ bioventing at a natural gas dehydrator site: Field demonstration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawrence, A.W.; Miller, D.L.; Miller, J.A.

    1995-12-31

    This paper describes a bioventing/biosparging field demonstration that was conducted over a 10-month period at a former glycol dehydrator site located near Traverse City, Michigan. The goal of the project was to determine the feasibility of this technology for dehydrator site remediation and to develop engineering design concepts for applying bioventing/biosparging at similar sites. The chemicals of interest are benzene, toluene, ethylbenzene, and xylenes (BTEX) and alkanes. Soil sampling indicated that the capillary fringe and saturated zones were heavily contaminated, but that the unsaturated zone was relatively free of the contaminants. A pump-and-treat system has operated since 1991 to treatmore » the groundwater BTEX plume. Bioventing/biosparging was installed in September 1993 to treat the contaminant source area. Three different air sparging operating modes were tested to determine an optimal process configuration for site remediation. These operational modes were compared through in situ respirometry studies. Respirometry measurements were used to estimate biodegradation rates. Dissolved oxygen and carbon dioxide were monitored in the groundwater.« less

  10. FIELD TEST OF NONFUEL HYDROCARBON BIOVENTING IN CLAYEY-SAND SOIL

    EPA Science Inventory

    A pilot-scale bioventing test was conducted at the Greenwood Chemical Superfund Site in Virginia. The characteristics of the site included clayey-sand soils and nonfuel organic contamination such as acetone, toluene, and naphthalene in the vadose zone. Based on the results of an...

  11. MICHIGAN SOIL VAPOR EXTRACTION REMEDIATION (MISER) MODEL: A COMPUTER PROGRAM TO MODEL SOIL VAPORT EXTRACTION AND BIOVENTING OF ORGANIC MATERIALS IN UNSATURATED GEOLOGICAL MATERIAL

    EPA Science Inventory

    This report describes the formulation, numerical development, and use of a multiphase, multicomponent, biodegradation model designed to simulate physical, chemical, and biological interactions occurring primarily in field scale soil vapor extraction (SVE) and bioventing (B...

  12. Sustainable Horizontal Bioventing and Vertical Biosparging Implementation (Invited)

    NASA Astrophysics Data System (ADS)

    Leu, J.; Lin, J.; Ferris, S.

    2013-12-01

    A former natural gas processing site with total petroleum hydrocarbons (TPH) and benzene, toluene, ethylbenzene, and xylene (BTEX) impacts in both soil and groundwater was partially excavated to remove 2,400 cubic yards of impacted soil. However, due to active natural gas pipelines within the impacted footprint, excavation was discontinued and an area of impacted soil containing maximum concentrations of 5,000 mg/kg gasoline-range organics (GRO), 8,600 mg/kg diesel-range organics (DRO), and 130 mg/kg motor oil-range organics (ORO). Groundwater was impacted with concentrations up to 2,300 μg/L GRO and 4,200 μg/L DRO remained in place. Taking advantage of the open excavation, horizontal-screened piping was placed in the backfill to deliver air for bioventing, which resulted in successful remediation of soil in a physically inaccessible area. The combined use of excavation of the source area, bioventing of surrounding inaccessible soil, and biosparging of the groundwater and smear zone resulted in nearing a no-further-action status at the site. The sustainable bioventing system consisted of one 3-HP blower and eight horizontal air injection wells. Five dual-depth nested vapor monitoring points (VMPs) were installed at 5 feet and 10 feet below ground surface as part of the monitoring system for human health and system performance. The bioventing system operated for one year followed by a three-month rebound test. During the one-year operation, air flow was periodically adjusted to maximize removal of volatile organic compounds (VOCs) from the vent wells with elevated photo-ionization detector readings. After the bioventing successfully remediated the inaccessible impacted soil, the biosparging system incorporated the pre-existing bioventing unit with an upgraded 5-HP blower and three vertical biosparging wells to biodegrade dissolved phase impacts in the groundwater. The subsequent monitoring system includes the VMPs, the air injection wells, and four groundwater monitoring wells including three existing wells. The system is scheduled to operate for at least one year followed by a three-month rebound test. The flow rate was adjusted between 5 and 10 scfm during operations to focus the biosparging in the impacted area of the site. After the bioventing system was operated and optimized for a year, average VOC concentrations were reduced from approximately 120 to 5 ppmv in the vadose zone. TPH gasoline and BTEX concentrations experienced reductions up to 99%. Fugitive VOCs were not detected outside the property boundary or at possible fugitive gas monitoring points. During the rebound test, no significant rebound of VOC concentrations was observed. The average hydrocarbon biodegradation rate was estimated to be approximately 2.5 mg TPH/kg soil/day. During biosparging, the migration of injected air also stimulated biodegradation in the vadose zone. Within six months of operation, the groundwater GRO and DRO concentrations decreased approximately 70% and 50%, respectively, at the monitoring well within the excavation/backfill area. Bioventing followed by biosparging has proven to be successful in decreasing soil vapor chemicals of concern in the native soil of the inaccessible area and in groundwater of the excavation/backfill area.

  13. MICHIGAN SOIL VAPOR EXTRACTION REMEDIATION (MISER) MODEL: A COMPUTER PROGRAM TO MODEL SOIL VAPOR EXTRACTION AND BIOVENTING OF ORGANIC CHEMICALS IN UNSATURATED GEOLOGICAL MATERIAL

    EPA Science Inventory

    Soil vapor extraction (SVE) and bioventing (BV) are proven strategies for remediation of unsaturated zone soils. Mathematical models are powerful tools that can be used to integrate and quantify the interaction of physical, chemical, and biological processes occurring in field sc...

  14. MICHIGAN SOIL VAPOR EXTRACTION REMEDIATION (MISER) MODEL: A COMPUTER PROGRAM TO MODEL SOIL VAPORT EXTRACTION AND BIOVENTING OF ORGANIC MATERIALS IN UNSATURATED GEOLO-GICAL MATERIAL (EPA/600/SR-97/099)

    EPA Science Inventory

    Soil vapor extraction (SVE) and bioventing (BV) are proven strategies for remediation of unsaturated zone soils. Mathematical models are powerful tools that can be used to integrate and quantify the interaction of physical, chemical, and biological processes occurring in field sc...

  15. Bioventing remediation and ecotoxicity evaluation of phenanthrene-contaminated soil.

    PubMed

    García Frutos, F Javier; Escolano, Olga; García, Susana; Babín, Mar; Fernández, M Dolores

    2010-11-15

    The objectives of soil remediation processes are usually based on threshold levels of soil contaminants. However, during remediation processes, changes in bioavailability and metabolite production can occur, making it necessary to incorporate an ecotoxicity assessment to estimate the risk to ecological receptors. The evolution of contaminants and soil ecotoxicity of artificially phenanthrene-contaminated soil (1000 mg/kg soil) during soil treatment through bioventing was studied in this work. Bioventing was performed in glass columns containing 5.5 kg of phenanthrene-contaminated soil and uncontaminated natural soil over a period of 7 months. Optimum conditions of mineralisation (humidity=60% WHC; C/N/P=100:20:1) were determined in a previous work. The evolution of oxygen consumption, carbon dioxide production, phenanthrene concentration and soil toxicity were studied on sacrificed columns at periods of 0, 3 and 7 months. Toxicity to soil and aquatic organisms was determined using a multispecies system in the soil columns (MS-3). In the optimal bioventing treatability test, we obtained a reduction rate in phenanthrene concentration higher that 93% after 7 months of treatment. The residual toxicity obtained at the end of the treatment was not attributed to the low phenanthrene concentration, but to the ammonia used to restore the optimal C/N ratio. Copyright © 2010 Elsevier B.V. All rights reserved.

  16. Final Treatability Study in Support of Remediation by Natural Attenuation Site FT-1 at Fairchild Air Force Base, Spokane, Washington

    DTIC Science & Technology

    1997-10-01

    and xylene (BTEX) in the shallow groundwater system at the site. Dissolved chlorinated aliphatic hydrocarbons (CAHs) also are present in the shallow...micrograms per liter (gg/L)], RNA with LTM I should be used to complement the ROD-mandated bioventing and air sparging systems . 0 When bioventing and...The ROD identifies benzene as the primary contaminant of concern (COC) for FT-i and specifies the use of air sparging in the remediation system

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brownlow, D.T.; Escude, S.; Johanneson, O.H.

    The 1500 Area at Kelly Air Force Base (AFB) was the site of a subsurface release of approximately 1,000 gallons of JP-4 jet fuel. Preliminary studies found evidence of hydrocarbon contamination extending from 10 feet below ground surface (bgs) down to the shallow water table, at 20 to 25 feet bgs. In June of 1993, Kelly AFB authorized the installation and evaluation of a bioventing system at this site to aid in the cleanup of the hydrocarbon contaminated soils. The purpose of the bioventing system is to aerate subsurface soils within and immediately surrounding the release area, in order tomore » stimulate in-situ biological activity and enhance the natural bioremediation capacity of the soil. Augmenting oxygen to the indigenous soil microorganisms promotes the aerobic metabolism of fuel hydrocarbons in the soil. In vadose zone soils exhibiting relatively good permeability, bioventing has proven to be a highly cost effective remediation technology for treating fuel contaminated soils. In November, 1993, a Start-Up Test program consisting of an In-Situ Respiration Test (ISRT) and an Air Permeability Test was performed at the 1500 Area Spill Site.« less

  18. APPLICATION, PERFORMANCE, AND COSTS OF ...

    EPA Pesticide Factsheets

    A critical review of biological treatment processes for remediation of contaminated soils is presented. The focus of the review is on documented cost and performance of biological treatment technologies demonstrated at full- or field-scale. Some of the data were generated by the U.S. Environmental Protection Agency's (EPA's) Bioremediation in the Field Program, jointly supported by EPA's Office of Research and Development, EPA's Office of Solid Waste and Emergency Waste, and the EPA Regions through the Superfund Innovative Technology Evaluation Program (SITE) Program. Military sites proved to be another fertile data source. Technologies reviewed in this report include both ex-situ processes, (land treatment, biopile/biocell treatment, composting, and bioslurry reactor treatment) and in-situ alternatives (conventional bioventing, enhanced or cometabolic bioventing, anaerobic bioventing, bioslurping, phytoremediation, and natural attenuation). Targeted soil contaminants at the documented sites were primarily organic chemicals, including BTEX, petroleum hydrocarbons, polycyclic aromatic hydrocarbons (PAHs), chlorinated aliphatic hydrocarbons (CAHs), organic solvents, polychlorinated biphenyls (PCBs), pesticides, dioxin, and energetics. The advantages, limitations, and major cost drivers for each technology are discussed. Box and whisker plots are used to summarize before and after concentrations of important contaminant groups for those technologies consider

  19. In situ bioremediation of a former natural gas dehydrator site using bioventing/biosparging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shamory, B.D.; Lawrence, A.W.; Miller, D.L.

    1995-12-01

    The Gas Research Institute (GRI) is conducting a research program on site remediation and residuals management for natural gas exploration and production (E&P) activities. Biological processes are considered to be a key component of the GRI remedial strategy since most of the chemicals-of-interest in soils and groundwater at E&P sites have been reported to be biodegradable. A bioventing/biosparging field demonstration was conducted over a ten month period at a former glycol dehydrator site, located near Traverse City, Michigan. The chemicals-of-interest at this site were benzene, toluene, ethylbenzene, and xylenes; and alkanes (primarily C{sub 4} through C{sub 10}). The goal ofmore » the project was to determine the feasibility of using this technology for dehydrator site remediation and to develop engineering basis of design concepts for applying bioventing/biosparging at other similar sites. Three different air sparging operational modes (pulsed, continuous, and offgas recycle) were tested to determine the optimum process configuration for site remediation. Biodegradation was also evaluated. Operational mode performance was evaluated by situ conducting in situ respirometry studies. Depletion of oxygen and hydrocarbons and production of carbon dioxide were used to calculated biodegradation rates in the vadose and saturated zones. The mass of hydrocarbons biologically degraded was estimated based on these biokinetic rates. In addition, biodegradation was also estimated based on contaminant removal shown by analytical sampling of soil and groundwater and based on other losses attributed to pump and treat and soil vapor extraction systems. In addition, an engineering evaluation of the operating modes is presented. The results of this study suggest that bioventing/biosparging is a feasible technology for in situ remediation of soil and groundwater at gas industry glycol dehydrator sites and that the pulsed operating mode may have an advantage over the other modes.« less

  20. Monitoring biodegradation of diesel fuel in bioventing processes using in situ respiration rate.

    PubMed

    Lee, T H; Byun, I G; Kim, Y O; Hwang, I S; Park, T J

    2006-01-01

    An in situ measuring system of respiration rate was applied for monitoring biodegradation of diesel fuel in a bioventing process for bioremediation of diesel contaminated soil. Two laboratory-scale soil columns were packed with 5 kg of soil that was artificially contaminated by diesel fuel as final TPH (total petroleum hydrocarbon) concentration of 8,000 mg/kg soil. Nutrient was added to make a relative concentration of C:N:P = 100:10:1. One soil column was operated with continuous venting mode, and the other one with intermittent (6 h venting/6 h rest) venting mode. On-line O2 and CO2 gas measuring system was applied to measure O2 utilisation and CO2 production during biodegradation of diesel for 5 months. Biodegradation rate of TPH was calculated from respiration rate measured by the on-line gas measuring system. There were no apparent differences between calculated biodegradation rates from two columns with different venting modes. The variation of biodegradation rates corresponded well with trend of the remaining TPH concentrations comparing other biodegradation indicators, such as C17/pristane and C18/phytane ratio, dehydrogenase activity, and the ratio of hydrocarbon utilising bacteria to total heterotrophic bacteria. These results suggested that the on-line measuring system of respiration rate would be applied to monitoring biodegradation rate and to determine the potential applicability of bioventing process for bioremediation of oil contaminated soil.

  1. Pilot-scale studies of soil vapor extraction and bioventing for remediation of a gasoline spill at Cameron Station, Alexandria, Virginia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harrison, W.; Joss, C.J.; Martino, L.E.

    Approximately 10,000 gal of spilled gasoline and unknown amounts Of trichloroethylene and benzene were discovered at the US Army`s Cameron Station facility. Because the base is to be closed and turned over to the city of Alexandria in 1995, the Army sought the most rapid and cost-effective means of spill remediation. At the request of the Baltimore District of the US Army Corps of Engineers, Argonne conducted a pilot-scale study to determine the feasibility of vapor extraction and bioventing for resolving remediation problems and to critique a private firm`s vapor-extraction design. Argonne staff, working with academic and private-sector participants, designedmore » and implemented a new systems approach to sampling, analysis and risk assessment. The US Geological Survey`s AIRFLOW model was adapted for the study to simulate the performance of possible remediation designs. A commercial vapor-extraction machine was used to remove nearly 500 gal of gasoline from Argonne-installed horizontal wells. By incorporating numerous design comments from the Argonne project team, field personnel improved the system`s performance. Argonne staff also determined that bioventing stimulated indigenous bacteria to bioremediate the gasoline spin. The Corps of Engineers will use Argonne`s pilot-study approach to evaluate remediation systems at field operation sites in several states.« less

  2. BIOREMEDIATION TRAINING

    EPA Science Inventory

    Bioremediation encompasses a collection of technologies which use microbes to degrade or transform contaminants. Three technologies have an established track record of acceptable performance: aerobic bioventing for fuels; enhanced reductive dechlorination for chlorinated solvent...

  3. Monitoring of Gasoline-ethanol Degradation In Undisturbed Soil

    NASA Astrophysics Data System (ADS)

    Österreicher-Cunha, P.; Nunes, C. M. F.; Vargas, E. A.; Guimarães, J. R. D.; Costa, A.

    Environmental contamination problems are greatly emphasised nowadays because of the direct threat they represent for human health. Traditional remediation methods fre- quently present low efficiency and high costs; therefore, biological treatment is being considered as an accessible and efficient alternative for soil and water remediation. Bioventing, commonly used to remediate petroleum hydrocarbon spills, stimulates the degradation capacity of indigenous microorganisms by providing better subsur- face oxygenation. In Brazil, gasoline and ethanol are mixed (78:22 v/v); some authors indicate that despite gasoline high degradability, its degradation in subsurface is hin- dered by the presence of much more rapidly degrading ethanol. Contaminant distribu- tion and degradation in the subsurface can be monitored by several physical, chemical and microbiological methodologies. This study aims to evaluate and follow the degra- dation of a gasoline-ethanol mixture in a residual undisturbed tropical soil from Rio de Janeiro. Bioventing was used to enhance microbial degradation. Shifts in bacte- rial culturable populations due to contamination and treatment effects were followed by conventional microbiology methods. Ground Penetrating Radar (GPR) measure- ments, which consist of the emission of electro-magnetic waves into the soil, yield a visualisation of contaminant degradation because of changes in soil conductivity due to microbial action on the pollutants. Chemical analyses will measure contaminant residue in soil. Our results disclosed contamination impact as well as bioventing stim- ulation on soil culturable heterotrophic bacterial populations. This multidisciplinary approach allows for a wider evaluation of processes occurring in soil.

  4. BIOREMEDIATION OF PETROLEUM HYDROCARBONS: A FLEXIBLE VARIABLE SPEED TECHNOLOGY

    EPA Science Inventory

    The bioremediation of petroleum hydrocarbons has evolved into a number of different processes. These processes include in-situ aquifer bioremediation, bioventing, biosparging, passive bioremediation with oxygen release compounds, and intrinsic bioremediation. Although often viewe...

  5. IN SITU BIOREMEDIATION STRATEGIES FOR ORGANIC WOOD PRESERVATIVES

    EPA Science Inventory

    Laboratory biotreatability studies evaluated the use of bioventing and biosparging plus groundwater circulation (UVB technology) for their potential abililty to treat soil and groundwater containing creosote and pentachlorophenol. Soils from two former wood-treatment facilities w...

  6. BIOVENTING OF CHLORINATED SOLVENTS FOR GROUND-WATER CLEANUP THROUGH BIOREMEDIATION

    EPA Science Inventory

    Chlorinated solvents such as tetrachloroethylene, trichloroethylene, carbon tetrachloride, chloroform, 1,2-dichloroethane, and dichloromethane (methylene chloride) can exist in contaminated subsurface material as (1) the neat oil, (2) a component of a mixed oily waste, (3) a solu...

  7. VAPOR PHASE TREATMENT OF PCE IN A SOIL COLUMN BY LAB-SCALE ANAEROBIC BIOVENTING

    EPA Science Inventory

    Microbial destruction of highly chlorinated organic compounds must be initiated by anaerobic followed by aerobic dechlorination. In-situ dechlorination of vadose zone soil contaminated with these compounds requires, among other factors, the establishment of highly reductive anaer...

  8. APPLICATION STRATEGIES AND DESIGN CRITERIA FOR IN SITU BIOREMEDIATION OF SOIL AND GROUNDWATER IMPACTED BY PAHS

    EPA Science Inventory

    Biotreatability studies conducted in our laboratory used soils from two former wood-treatment facilities to evaluate the use of in situ bioventing and biosparging applications for their potential ability to remediate soil and groundwater containing creosote. The combination of ph...

  9. Toluene removal from sandy soils via in situ technologies with an emphasis on factors influencing soil vapor extraction.

    PubMed

    Amin, Mohammad Mehdi; Hatamipour, Mohammad Sadegh; Momenbeik, Fariborz; Nourmoradi, Heshmatollah; Farhadkhani, Marzieh; Mohammadi-Moghadam, Fazel

    2014-01-01

    The integration of bioventing (BV) and soil vapor extraction (SVE) appears to be an effective combination method for soil decontamination. This paper serves two main purposes: it evaluates the effects of soil water content (SWC) and air flow rate on SVE and it investigates the transition regime between BV and SVE for toluene removal from sandy soils. 96 hours after air injection, more than 97% removal efficiency was achieved in all five experiments (carried out for SVE) including 5, 10, and 15% for SWC and 250 and 500 mL/min for air flow rate on SVE. The highest removal efficiency (>99.5%) of toluene was obtained by the combination of BV and SVE (AIBV: Air Injection Bioventing) after 96 h of air injection at a constant flow rate of 250 mL/min. It was found that AIBV has the highest efficiency for toluene removal from sandy soils and can remediate the vadose zone effectively to meet the soil guideline values for protection of groundwater.

  10. Toluene Removal from Sandy Soils via In Situ Technologies with an Emphasis on Factors Influencing Soil Vapor Extraction

    PubMed Central

    Amin, Mohammad Mehdi; Hatamipour, Mohammad Sadegh; Nourmoradi, Heshmatollah; Farhadkhani, Marzieh; Mohammadi-Moghadam, Fazel

    2014-01-01

    The integration of bioventing (BV) and soil vapor extraction (SVE) appears to be an effective combination method for soil decontamination. This paper serves two main purposes: it evaluates the effects of soil water content (SWC) and air flow rate on SVE and it investigates the transition regime between BV and SVE for toluene removal from sandy soils. 96 hours after air injection, more than 97% removal efficiency was achieved in all five experiments (carried out for SVE) including 5, 10, and 15% for SWC and 250 and 500 mL/min for air flow rate on SVE. The highest removal efficiency (>99.5%) of toluene was obtained by the combination of BV and SVE (AIBV: Air Injection Bioventing) after 96 h of air injection at a constant flow rate of 250 mL/min. It was found that AIBV has the highest efficiency for toluene removal from sandy soils and can remediate the vadose zone effectively to meet the soil guideline values for protection of groundwater. PMID:24587723

  11. REMEDIATION OF A MAJOR JET FUEL SPILL BY BIOSLURPER AND NATURAL BIOVENTING TECHNOLOGY ON AN ISLAND AIR BASE

    EPA Science Inventory

    The Indian Ocean island of Diego Garcia has served as a base for B-52 bombers. In 1991 an underground transfer pipeline fracture was discovered after a spill exceeding 200,000 gallons occurred. The hydrogeology is fresh water at less than ten feet down overlying more dense salt...

  12. NATURAL ATTENUATION OF FUEL AND SOLVENT SPILLS ON AIR FORCE BASES: BIOSLURPING AND NATURAL BIOVENTING TO REMEDIATE A JET FUEL SPILL. EVALUATE PERFORMANCE OF NEW PUSH PROBES TO ASSAY FOR BIOREMEDIATION

    EPA Science Inventory

    Frequently both the subsurface vadose zone and underlying aquifer at Air Force Base spill locations are contaminated with fuel hydrocarbons such as benzene and degreasing solvents such as trichloroethene. In many instances these concentrations exceed regulatory limits mandated by...

  13. Field Demonstration of Rhizosphere-Enhanced Treatment of Organics-Contaminated Soils on Native American Lands with Application to Northern FUD Sites

    DTIC Science & Technology

    2004-11-01

    Phytoremediation ...................................................................................... 36 4.4.3 Bioventing and Biosparging...Rhizosphere-enhanced remediation is a developing technology. It is a subset of phytoremediation —a term often used in a broad sense and sometimes...inappropriately or too generally—because phytoremediation encompasses a wide range of processes. The operative process in phytoremediation depends largely on

  14. ESTCP Cost and Performance Report: Field Demonstration of Rhizosphere-Enhanced Treatment of Organics-Contaminated Soils on Native American Lands with Application to Northern FUD Sites

    DTIC Science & Technology

    2004-06-01

    Phytoremediation ................................................................................................. 23 4.4.3 Bioventing and Biosparging...remediation is a developing technology. It is a subset of phytoremediation —a term that is often used in a broad sense, and sometimes used...inappropriately or too generally because phytoremediation encompasses a wide range of processes. The operative process in phytoremediation depends largely on the

  15. Phase 1 remediation of jet fuel contaminated soil and groundwater at JFK International Airport using dual phase extraction and bioventing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roth, R.; Bianco, P. Rizzo, M.; Pressly, N.

    1995-12-31

    Soil and groundwater contaminated with jet fuel at Terminal One of the JFK International Airport in New York have been remediated using dual phase extraction (DPE) and bioventing. Two areas were remediated using 51 DPE wells and 20 air sparging/air injection wells. The total area remediated by the DPE wells is estimated to be 4.8 acres. Groundwater was extracted to recover nonaqueous phase and aqueous phase jet fuel from the shallow aquifer and treated above ground by the following processes; oil/water separation, iron-oxidation, flocculation, sedimentation, filtration, air stripping and liquid-phase granular activated carbon (LPGAC) adsorption. The extracted vapors were treatedmore » by vapor-phase granular activated carbon (VPGAC) adsorption in one area, and catalytic oxidation and VPGAC adsorption in another area. After 6 months of remediation, approximately 5,490 lbs. of volatile organic compounds (VOCs) were removed by soil vapor extraction (SVE), 109,650 lbs. of petroleum hydrocarbons were removed from the extracted groundwater, and 60,550 lbs. of petroleum hydrocarbons were biologically oxidized by subsurface microorganisms. Of these three mechanisms, the rate of petroleum hydrocarbon removal was the highest for biological oxidation in one area and by groundwater extraction in another area.« less

  16. Engineering and Design: Soil Vapor Extraction and Bioventing

    DTIC Science & Technology

    2002-06-03

    and Basile 1992). The most notable success of steam injection for remediation has been the Southern California Edison wood treating site in Visalia... pesticides and dioxins. Removal efficiencies using ISTD are typically very high, and since this technology relies on conduction of heat through the soil...Aroclor - 1242 c Pesticides Chlordane c Dioxins/furans 2,3,7,8-Tetrachlorodibenzo-p-dioxin c Organic cyanides c Organic corrosives c Explosives 2,4,6

  17. Analysis of Soil Vapor Extraction Expenses to Estimate Bioventing Expenses

    DTIC Science & Technology

    1995-11-01

    Performance and Cost Summary. Brooks Air Force Base, Texas, July 1994. 2. Atlas , Ronald M, and Richard Bartha . Microbial Ecology : Fundamentals and...and straight-chain alkanes is highly dependent on molecular weight (carbon chain length) and the degree of branching. The book " Microbial Ecology ...must first be the presence of lower- molecular-weight aromatics (Heitkamp and Cerniglia 1988). The " Microbial Ecology " book also points out, on page

  18. In Situ Warming and Soil Venting to Enhance the Biodegradation of JP-4 in Cold Climates: A Critical Study and Analysis

    DTIC Science & Technology

    1995-12-01

    1178-1180 (1991). Atlas , Ronald M. and Richard Bartha . Microbial Ecology : Fundamentals and Applications. 3d ed. Redwood City CA: The Benjamin/Cummings...technique called bioventing. In cold climates, in situ bioremediation is limited to the summer when soil temperatures are sufficient to support microbial ...actively warmed the soil -- warm water circulation and heat tape; the other passively warmed the plot with insulatory covers. Microbial respiration (02

  19. Estimation of rates of aerobic hydrocarbon biodegradation by simulation of gas transport in the unsaturated zone

    USGS Publications Warehouse

    Lahvis, Matthew A.; Baehr, Arthur L.

    1996-01-01

    The distribution of oxygen and carbon dioxide gases in the unsaturated zone provides a geochemical signature of aerobic hydrocarbon degradation at petroleum product spill sites. The fluxes of these gases are proportional to the rate of aerobic biodegradation and are quantified by calibrating a mathematical transport model to the oxygen and carbon dioxide gas concentration data. Reaction stoichiometry is assumed to convert the gas fluxes to a corresponding rate of hydrocarbon degradation. The method is applied at a gasoline spill site in Galloway Township, New Jersey, to determine the rate of aerobic degradation of hydrocarbons associated with passive and bioventing remediation field experiments. At the site, microbial degradation of hydrocarbons near the water table limits the migration of hydrocarbon solutes in groundwater and prevents hydrocarbon volatilization into the unsaturated zone. In the passive remediation experiment a site-wide degradation rate estimate of 34,400 g yr−1 (11.7 gal. yr−1) of hydrocarbon was obtained by model calibration to carbon dioxide gas concentration data collected in December 1989. In the bioventing experiment, degradation rate estimates of 46.0 and 47.9 g m−2 yr−1(1.45 × 10−3 and 1.51 × 10−3 gal. ft.−2yr−1) of hydrocarbon were obtained by model calibration to oxygen and carbon dioxide gas concentration data, respectively. Method application was successful in quantifying the significance of a naturally occurring process that can effectively contribute to plume stabilization.

  20. Immunological techniques as tools to characterize the subsurface microbial community at a trichloroethylene contaminated site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fliermans, C.B.; Dougherty, J.M.; Franck, M.M.

    Effective in situ bioremediation strategies require an understanding of the effects pollutants and remediation techniques have on subsurface microbial communities. Therefore, detailed characterization of a site`s microbial communities is important. Subsurface sediment borings and water samples were collected from a trichloroethylene (TCE) contaminated site, before and after horizontal well in situ air stripping and bioventing, as well as during methane injection for stimulation of methane-utilizing microorganisms. Subsamples were processed for heterotrophic plate counts, acridine orange direct counts (AODC), community diversity, direct fluorescent antibodies (DFA) enumeration for several nitrogen-transforming bacteria, and Biolog {reg_sign} evaluation of enzyme activity in collected water samples.more » Plate counts were higher in near-surface depths than in the vadose zone sediment samples. During the in situ air stripping and bioventing, counts increased at or near the saturated zone, remained elevated throughout the aquifer, but did not change significantly after the air stripping. Sporadic increases in plate counts at different depths as well as increased diversity appeared to be linked to differing lithologies. AODCs were orders of magnitude higher than plate counts and remained relatively constant with depth except for slight increases near the surface depths and the capillary fringe. Nitrogen-transforming bacteria, as measured by serospecific DFA, were greatly affected both by the in situ air stripping and the methane injection. Biolog{reg_sign} activity appeared to increase with subsurface stimulation both by air and methane. The complexity of subsurface systems makes the use of selective monitoring tools imperative.« less

  1. Bioremediation of Petroleum and Radiological Contaminated Soils at the Savannah River Site: Laboratory to Field Scale Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BRIGMON, ROBINL.

    In the process of Savannah River Site (SRS) operations limited amounts of waste are generated containing petroleum, and radiological contaminated soils. Currently, this combination of radiological and petroleum contaminated waste does not have an immediate disposal route and is being stored in low activity vaults. SRS developed and implemented a successful plan for clean up of the petroleum portion of the soils in situ using simple, inexpensive, bioreactor technology. Treatment in a bioreactor removes the petroleum contamination from the soil without spreading radiological contamination to the environment. This bioreactor uses the bioventing process and bioaugmentation or the addition of themore » select hydrocarbon degrading bacteria. Oxygen is usually the initial rate-limiting factor in the biodegradation of petroleum hydrocarbons. Using the bioventing process allowed control of the supply of nutrients and moisture based on petroleum contamination concentrations and soil type. The results of this work have proven to be a safe and cost-effective means of cleaning up low level radiological and petroleum-contaminated soil. Many of the other elements of the bioreactor design were developed or enhanced during the demonstration of a ''biopile'' to treat the soils beneath a Polish oil refinery's waste disposal lagoons. Aerobic microorganisms were isolated from the aged refinery's acidic sludge contaminated with polycyclic aromatic hydrocarbons (PAHs). Twelve hydrocarbon-degrading bacteria were isolated from the sludge. The predominant PAH degraders were tentatively identified as Achromobacter, Pseudomonas Burkholderia, and Sphingomonas spp. Several Ralstonia spp were also isolated that produce biosurfactants. Biosurfactants can enhance bioremediation by increasing the bioavailability of hydrophobic contaminants including hydrocarbons. The results indicated that the diversity of acid-tolerant PAH-degrading microorganisms in acidic oil wastes may be much greater than previously demonstrated and they have numerous applications to environmental restoration. Twelve of the isolates were subsequently added to the bioreactor to enhance bioremediation. In this study we showed that a bioreactor could be bioaugmented with select bacteria to enhance bioremediation of petroleum-contaminated soils under radiological conditions.« less

  2. Enhancement of the microbial community biomass and diversity during air sparging bioremediation of a soil highly contaminated with kerosene and BTEX.

    PubMed

    Kabelitz, Nadja; Machackova, Jirina; Imfeld, Gwenaël; Brennerova, Maria; Pieper, Dietmar H; Heipieper, Hermann J; Junca, Howard

    2009-03-01

    In order to obtain insights in complexity shifts taking place in natural microbial communities under strong selective pressure, soils from a former air force base in the Czech Republic, highly contaminated with jet fuel and at different stages of a bioremediation air sparging treatment, were analyzed. By tracking phospholipid fatty acids and 16S rRNA genes, a detailed monitoring of the changes in quantities and composition of the microbial communities developed at different stages of the bioventing treatment progress was performed. Depending on the length of the air sparging treatment that led to a significant reduction in the contamination level, we observed a clear shift in the soil microbial community being dominated by Pseudomonads under the harsh conditions of high aromatic contamination to a status of low aromatic concentrations, increased biomass content, and a complex composition with diverse bacterial taxonomical branches.

  3. Surfactant-aided recovery/in situ bioremediation for oil-contaminated sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ducreaux, J.; Baviere, M.; Seabra, P.

    1995-12-31

    Bioremediation has been the most commonly used method way for in situ cleaning of soils contaminated with low-volatility petroleum products such as diesel oil. However, whatever the process (bioventing, bioleaching, etc.), it is a time-consuming technique that may be efficiency limited by both accessibility and too high concentrations of contaminants. A currently developed process aims at quickly recovering part of the residual oil in the vadose and capillary zones by surfactant flushing, then activating in situ biodegradation of the remaining oil in the presence of the same or other surfactants. The process has been tested in laboratory columns and inmore » an experimental pool, located at the Institut Franco-Allemand de Recherche sur l`Environnement (IFARE) in Strasbourg, France. Laboratory column studies were carried out to fit physico-chemical and hydraulic parameters of the process to the field conditions. The possibility of recovering more than 80% of the oil in the flushing step was shown. For the biodegradation step, forced aeration as a mode of oxygen supply, coupled with nutrient injection aided by surfactants, was tested.« less

  4. Soil vapor extraction and bioventing: Applications, limitations, and future research directions

    NASA Astrophysics Data System (ADS)

    Rathfelder, K.; Lang, J. R.; Abriola, L. M.

    1995-07-01

    Soil vapor extraction (SVE) has evolved over the past decade as an attractive in situ remediation method for unsaturated soils contaminated with volatile organic compounds (VOCs). SVE involves the generation of air flow through the pores of the contaminated soil to induce transfer of VOCs to the air stream. Air flow is established by pumping from vadose zone wells through which contaminant vapors are collected and transported above ground where they are treated, if required, and discharged to the atmosphere. The popularity of SVE technologies stems from their proven effectiveness for removing large quantities of VOCs from the soil, their cost competitiveness, and their relatively simple non-intrusive implementation. Widespread field application of SVE has occurred following the success of early laboratory and field scale feasibility studies [Texas Research Institute, 1980, 1984; Thornton and Wootan, 1982; Marley and Hoag, 1984; Crow et al., 1985, 1987]. As many as 18% of Superfund sites employ SVE remediation technologies [Travis and Macinnis, 1992] and numerous articles and reports have documented the application of SVE [e.g. Hutzler et al., 1989; Downey and Elliott, 1990; U.S. EPA, 1991; Sanderson et al, 1993; Gerbasi and Menoli, 1994; McCann et al., 1994;].

  5. Venting test analysis using Jacob`s approximation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edwards, K.B.

    1996-03-01

    There are many sites contaminated by volatile organic compounds (VOCs) in the US and worldwide. Several technologies are available for remediation of these sites, including excavation, pump and treat, biological treatment, air sparging, steam injection, bioventing, and soil vapor extraction (SVE). SVE is also known as soil venting or vacuum extraction. Field venting tests were conducted in alluvial sands residing between the water table and a clay layer. Flow rate, barometric pressure, and well-pressure data were recorded using pressure transmitters and a personal computer. Data were logged as frequently as every second during periods of rapid change in pressure. Testsmore » were conducted at various extraction rates. The data from several tests were analyzed concurrently by normalizing the well pressures with respect to extraction rate. The normalized pressures vary logarithmically with time and fall on one line allowing a single match of the Jacob approximation to all tests. Though the Jacob approximation was originally developed for hydraulic pump test analysis, it is now commonly used for venting test analysis. Only recently, however, has it been used to analyze several transient tests simultaneously. For the field venting tests conducted in the alluvial sands, the air permeability and effective porosity determined from the concurrent analysis are 8.2 {times} 10{sup {minus}7} cm{sup 2} and 20%, respectively.« less

  6. Enhanced Remediation of Toluene in the Vadose Zone via a Nitrate-Rich Nutrient Solution: Field Study

    NASA Astrophysics Data System (ADS)

    Tindall, J. A.; Friedel, M. J.

    2003-12-01

    The objective of this study was to test the effectiveness of nitrate-rich nutrient solutions and hydrogen peroxide (H202) to enhance in-situ microbial remediation of toluene. Three sand filled plots (2 m2 surface area and 1.5 meters deep) were tested in three phases (each phase lasting approximately 2 weeks). During each phase, toluene (21.6 mol as an emulsion in 50L of water) was applied uniformly via sprinkler irrigation. Passive remediation was allowed to occur during the first (control) phase. A nutrient solution (modified Hoagland), concentrated in 40L of water, was tested during the second phase. The final phase involved addition of 230 moles of H202 in 50L of water to increase the available oxygen needed for aerobic biodegradation. During the first phase, toluene concentrations in soil gas were reduced from 120 ppm to 25 ppm in 14 days. After the addition of nutrients during the second phase, concentrations were reduced from 90 ppm to about 8 ppm within 14 days, and for the third phase (H202), toluene concentrations were about 1 ppm after only five days. Initial results suggest that this method could be an effective means of remediating a contaminated site, directly after a BTEX spill, without the intrusiveness and high cost of other abatement technologies such as bioventing and soil vapor extraction. However, further tests need to be completed to determine the effect of each of the BTEX components.

  7. Part 2: A field study of enhanced remediation of Toluene in the vadose zone using a nutrient solution

    USGS Publications Warehouse

    Tindall, J.A.; Weeks, E.P.; Friedel, M.

    2005-01-01

    The objective of this study was to test the effectiveness of a nitrate-rich nutrient solution and hydrogen peroxide (H2O2) to enhance in-situ microbial remediation of toluene in the unsaturated zone. Three sand-filled plots were tested in three phases (each phase lasting approximately 2 weeks). During the control phase, toluene was applied uniformly via sprinkler irrigation. Passive remediation was allowed to occur during this phase. A modified Hoagland nutrient solution, concentrated in 150 L of water, was tested during the second phase. The final phase involved addition of 230 moles of H2O2 in 150 L of water to increase the available oxygen needed for aerobic biodegradation. During the first phase, measured toluene concentrations in soil gas were reduced from 120 ppm to 25 ppm in 14 days. After the addition of nutrients during the second phase, concentrations were reduced from 90 ppm to about 8 ppm within 14 days, and for the third phase (H 2O2), toluene concentrations were about 1 ppm after only 5 days. Initial results suggest that this method could be an effective means of remediating a contaminated site, directly after a BTEX spill, without the intrusiveness and high cost of other abatement technologies such as bioventing or soil-vapor extraction. However, further tests need to be completed to determine the effect of each of the BTEX components. ?? Springer 2005.

  8. Vertical radar profiles for the calibration of unsaturated flow models under dynamic water table conditions

    NASA Astrophysics Data System (ADS)

    Cassiani, G.; Gallotti, L.; Ventura, V.; Andreotti, G.

    2003-04-01

    The identification of flow and transport characteristics in the vadose zone is a fundamental step towards understanding the dynamics of contaminated sites and the resulting risk of groundwater pollution. Borehole radar has gained popularity for the monitoring of moisture content changes, thanks to its apparent simplicity and its high resolution characteristics. However, cross-hole radar requires closely spaced (a few meters), plastic-cased boreholes, that are rarely available as a standard feature in sites of practical interest. Unlike cross-hole applications, Vertical Radar Profiles (VRP) require only one borehole, with practical and financial benefits. High-resolution, time-lapse VRPs have been acquired at a crude oil contaminated site in Trecate, Northern Italy, on a few existing boreholes originally developed for remediation via bioventing. The dynamic water table conditions, with yearly oscillations of roughly 5 m from 6 to 11 m bgl, offers a good opportunity to observe via VRP a field scale drainage-imbibition process. Arrival time inversion has been carried out using a regularized tomographic algorithm, in order to overcome the noise introduced by first arrival picking. Interpretation of the vertical profiles in terms of moisture content has been based on standard models (Topp et al., 1980; Roth et al., 1990). The sedimentary sequence manifests itself as a cyclic pattern in moisture content over most of the profiles. We performed preliminary Richards' equation simulations with time varying later table boundary conditions, in order to estimate the unsaturated flow parameters, and the results have been compared with laboratory evidence from cores.

  9. Soil Contamination and Remediation Strategies. Current research and future challenge

    NASA Astrophysics Data System (ADS)

    Petruzzelli, G.

    2012-04-01

    Soil contamination: the heritage of industrial development Contamination is only a part of a whole set of soil degradation processes, but it is one of paramount importance since soil pollution greatly influences the quality of water, food and human health. Soil contamination has been identified as an important issue for action in the European strategy for soil protection, it has been estimated that 3.5 million of sites are potentially contaminated in Europe. Contaminated soils have been essentially discovered in industrial sites landfills and energy production plants, but accumulation of heavy metals and organic compounds can be found also in agricultural land . Remediation strategies. from incineration to bioremediation The assessment of soil contamination is followed by remedial action. The remediation of contaminated soils started using consolidates technologies (incineration inertization etc.) previously employed in waste treatment,. This has contributed to consider a contaminated soil as an hazardous waste. This rough approximation was unfortunately transferred in many legislations and on this basis soil knowledge have been used only marginally in the clean up procedures. For many years soil quality has been identified by a value of concentration of a contaminant and excavation and landfill disposal of soil has been largely used. In the last years the knowledge of remediation technology has rapidly grown, at present many treatment processes appear to be really feasible at field scale, and soil remediation is now based on risk assessment procedures. Innovative technologies, largely dependent on soil properties, such as in situ chemical oxidation, electroremediation, bioventing, soil vapor extraction etc. have been successfully applied. Hazardous organic compounds are commonly treated by biological technologies, biorememdiation and phytoremediation, being the last partially applied also for metals. Technologies selection is no longer exclusively based on eliminating the source of pollution, but also on blocking the pathways from contaminants to receptors or reducing the exposure to contaminants,. Future challenge integration of sustainability into remediation decision-making. Soil is not a waste! There is a growing interest in the clean up approaches that maintain soil quality after remediation treatments. This issue is of great importance in the U.S.A. where the EPA from 2009 is promoting innovative clean-up strategies (Green Remediation). Green remediation is defined as the practice of considering all environmental effects of remedy and incorporating options to maximize environmental benefit of cleanup actions . These remediation strategies restore contaminated sites to productive use with a great attention to the global environmental quality, including the preservation of soil functionality according to the following principles: use minimally invasive technologies; use passive energy technologies such as bioremediation and phytoremediation as primary remedies or finishing steps where possible and effective; minimize soil and habitat disturbance; minimize bioavailability of contaminants trough adequate contaminant source and plume control If we move from the current definition of remedial targets based on total concentrations, technologies with low impact on the environment can be utilized reducing the wrong choice to disposal soil in landfill destroying quickly a not renewable essential resource.

Top