Optimization-based Dynamic Human Walking Prediction
2007-01-01
9(1), 1997, p 10-17. 3. Chevallereau, C. and Aousin, Y. Optimal reference trajectories for walking and running of a biped robot. Robotica , v 19...28, 2001, Arlington, Virginia. 13. Mu, XP. and Wu, Q. Synthesis of a complete sagittal gait cycle for a five-link biped robot. Robotica , v 21...gait cycles of a biped robot. Robotica , v 21(2), 2003, p 199-210. 16. Sardain, P. and Bessonnet, G. Forces acting on a biped robot. Center of
SVR versus neural-fuzzy network controllers for the sagittal balance of a biped robot.
Ferreira, João P; Crisóstomo, Manuel M; Coimbra, A Paulo
2009-12-01
The real-time balance control of an eight-link biped robot using a zero moment point (ZMP) dynamic model is difficult due to the processing time of the corresponding equations. To overcome this limitation, two alternative intelligent computing control techniques were compared: one based on support vector regression (SVR) and another based on a first-order Takagi-Sugeno-Kang (TSK)-type neural-fuzzy (NF) network. Both methods use the ZMP error and its variation as inputs and the output is the correction of the robot's torso necessary for its sagittal balance. The SVR and the NF were trained based on simulation data and their performance was verified with a real biped robot. Two performance indexes are proposed to evaluate and compare the online performance of the two control methods. The ZMP is calculated by reading four force sensors placed under each robot's foot. The gait implemented in this biped is similar to a human gait that was acquired and adapted to the robot's size. Some experiments are presented and the results show that the implemented gait combined either with the SVR controller or with the TSK NF network controller can be used to control this biped robot. The SVR and the NF controllers exhibit similar stability, but the SVR controller runs about 50 times faster.
Single-step collision-free trajectory planning of biped climbing robots in spatial trusses.
Zhu, Haifei; Guan, Yisheng; Chen, Shengjun; Su, Manjia; Zhang, Hong
For a biped climbing robot with dual grippers to climb poles, trusses or trees, feasible collision-free climbing motion is inevitable and essential. In this paper, we utilize the sampling-based algorithm, Bi-RRT, to plan single-step collision-free motion for biped climbing robots in spatial trusses. To deal with the orientation limit of a 5-DoF biped climbing robot, a new state representation along with corresponding operations including sampling, metric calculation and interpolation is presented. A simple but effective model of a biped climbing robot in trusses is proposed, through which the motion planning of one climbing cycle is transformed to that of a manipulator. In addition, the pre- and post-processes are introduced to expedite the convergence of the Bi-RRT algorithm and to ensure the safe motion of the climbing robot near poles as well. The piecewise linear paths are smoothed by utilizing cubic B-spline curve fitting. The effectiveness and efficiency of the presented Bi-RRT algorithm for climbing motion planning are verified by simulations.
Mahmoodabadi, M. J.; Taherkhorsandi, M.; Bagheri, A.
2014-01-01
An optimal robust state feedback tracking controller is introduced to control a biped robot. In the literature, the parameters of the controller are usually determined by a tedious trial and error process. To eliminate this process and design the parameters of the proposed controller, the multiobjective evolutionary algorithms, that is, the proposed method, modified NSGAII, Sigma method, and MATLAB's Toolbox MOGA, are employed in this study. Among the used evolutionary optimization algorithms to design the controller for biped robots, the proposed method operates better in the aspect of designing the controller since it provides ample opportunities for designers to choose the most appropriate point based upon the design criteria. Three points are chosen from the nondominated solutions of the obtained Pareto front based on two conflicting objective functions, that is, the normalized summation of angle errors and normalized summation of control effort. Obtained results elucidate the efficiency of the proposed controller in order to control a biped robot. PMID:24616619
Reinforcement learning for a biped robot based on a CPG-actor-critic method.
Nakamura, Yutaka; Mori, Takeshi; Sato, Masa-aki; Ishii, Shin
2007-08-01
Animals' rhythmic movements, such as locomotion, are considered to be controlled by neural circuits called central pattern generators (CPGs), which generate oscillatory signals. Motivated by this biological mechanism, studies have been conducted on the rhythmic movements controlled by CPG. As an autonomous learning framework for a CPG controller, we propose in this article a reinforcement learning method we call the "CPG-actor-critic" method. This method introduces a new architecture to the actor, and its training is roughly based on a stochastic policy gradient algorithm presented recently. We apply this method to an automatic acquisition problem of control for a biped robot. Computer simulations show that training of the CPG can be successfully performed by our method, thus allowing the biped robot to not only walk stably but also adapt to environmental changes.
NASA Astrophysics Data System (ADS)
Zhou, Changjiu; Meng, Qingchun; Guo, Zhongwen; Qu, Wiefen; Yin, Bo
2002-04-01
Robot learning in unstructured environments has been proved to be an extremely challenging problem, mainly because of many uncertainties always present in the real world. Human beings, on the other hand, seem to cope very well with uncertain and unpredictable environments, often relying on perception-based information. Furthermore, humans beings can also utilize perceptions to guide their learning on those parts of the perception-action space that are actually relevant to the task. Therefore, we conduct a research aimed at improving robot learning through the incorporation of both perception-based and measurement-based information. For this reason, a fuzzy reinforcement learning (FRL) agent is proposed in this paper. Based on a neural-fuzzy architecture, different kinds of information can be incorporated into the FRL agent to initialise its action network, critic network and evaluation feedback module so as to accelerate its learning. By making use of the global optimisation capability of GAs (genetic algorithms), a GA-based FRL (GAFRL) agent is presented to solve the local minima problem in traditional actor-critic reinforcement learning. On the other hand, with the prediction capability of the critic network, GAs can perform a more effective global search. Different GAFRL agents are constructed and verified by using the simulation model of a physical biped robot. The simulation analysis shows that the biped learning rate for dynamic balance can be improved by incorporating perception-based information on biped balancing and walking evaluation. The biped robot can find its application in ocean exploration, detection or sea rescue activity, as well as military maritime activity.
The motion control of a statically stable biped robot on an uneven floor.
Shih, C L; Chiou, C J
1998-01-01
This work studies the motion control of a statically stable biped robot having seven degrees of freedom. Statically stable walking of the biped robot is realized by maintaining the center-of-gravity inside the convex region of the supporting foot and/or feet during both single-support and double-support phases. The main points of this work are framing the stability in an easy and correct way, the design of a bipedal statically stable walker, and walking on sloping surfaces and stairs.
Motion synthesis and force distribution analysis for a biped robot.
Trojnacki, Maciej T; Zielińska, Teresa
2011-01-01
In this paper, the method of generating biped robot motion using recorded human gait is presented. The recorded data were modified taking into account the velocity available for robot drives. Data includes only selected joint angles, therefore the missing values were obtained considering the dynamic postural stability of the robot, which means obtaining an adequate motion trajectory of the so-called Zero Moment Point (ZMT). Also, the method of determining the ground reaction forces' distribution during the biped robot's dynamic stable walk is described. The method was developed by the authors. Following the description of equations characterizing the dynamics of robot's motion, the values of the components of ground reaction forces were symbolically determined as well as the coordinates of the points of robot's feet contact with the ground. The theoretical considerations have been supported by computer simulation and animation of the robot's motion. This was done using Matlab/Simulink package and Simulink 3D Animation Toolbox, and it has proved the proposed method.
Operation analysis of a Chebyshev-Pantograph leg mechanism for a single DOF biped robot
NASA Astrophysics Data System (ADS)
Liang, Conghui; Ceccarelli, Marco; Takeda, Yukio
2012-12-01
In this paper, operation analysis of a Chebyshev-Pantograph leg mechanism is presented for a single degree of freedom (DOF) biped robot. The proposed leg mechanism is composed of a Chebyshev four-bar linkage and a pantograph mechanism. In contrast to general fully actuated anthropomorphic leg mechanisms, the proposed leg mechanism has peculiar features like compactness, low-cost, and easy-operation. Kinematic equations of the proposed leg mechanism are formulated for a computer oriented simulation. Simulation results show the operation performance of the proposed leg mechanism with suitable characteristics. A parametric study has been carried out to evaluate the operation performance as function of design parameters. A prototype of a single DOF biped robot equipped with two proposed leg mechanisms has been built at LARM (Laboratory of Robotics and Mechatronics). Experimental test shows practical feasible walking ability of the prototype, as well as drawbacks are discussed for the mechanical design.
Foot Placement Modification for a Biped Humanoid Robot with Narrow Feet
Hattori, Kentaro; Otani, Takuya; Lim, Hun-Ok; Takanishi, Atsuo
2014-01-01
This paper describes a walking stabilization control for a biped humanoid robot with narrow feet. Most humanoid robots have larger feet than human beings to maintain their stability during walking. If robot's feet are as narrow as humans, it is difficult to realize a stable walk by using conventional stabilization controls. The proposed control modifies a foot placement according to the robot's attitude angle. If a robot tends to fall down, a foot angle is modified about the roll axis so that a swing foot contacts the ground horizontally. And a foot-landing point is also changed laterally to inhibit the robot from falling to the outside. To reduce a foot-landing impact, a virtual compliance control is applied to the vertical axis and the roll and pitch axes of the foot. Verification of the proposed method is conducted through experiments with a biped humanoid robot WABIAN-2R. WABIAN-2R realized a knee-bended walking with 30 mm breadth feet. Moreover, WABIAN-2R mounted on a human-like foot mechanism mimicking a human's foot arch structure realized a stable walking with the knee-stretched, heel-contact, and toe-off motion. PMID:24592154
Foot placement modification for a biped humanoid robot with narrow feet.
Hashimoto, Kenji; Hattori, Kentaro; Otani, Takuya; Lim, Hun-Ok; Takanishi, Atsuo
2014-01-01
This paper describes a walking stabilization control for a biped humanoid robot with narrow feet. Most humanoid robots have larger feet than human beings to maintain their stability during walking. If robot's feet are as narrow as humans, it is difficult to realize a stable walk by using conventional stabilization controls. The proposed control modifies a foot placement according to the robot's attitude angle. If a robot tends to fall down, a foot angle is modified about the roll axis so that a swing foot contacts the ground horizontally. And a foot-landing point is also changed laterally to inhibit the robot from falling to the outside. To reduce a foot-landing impact, a virtual compliance control is applied to the vertical axis and the roll and pitch axes of the foot. Verification of the proposed method is conducted through experiments with a biped humanoid robot WABIAN-2R. WABIAN-2R realized a knee-bended walking with 30 mm breadth feet. Moreover, WABIAN-2R mounted on a human-like foot mechanism mimicking a human's foot arch structure realized a stable walking with the knee-stretched, heel-contact, and toe-off motion.
Biped Robot Gait Planning Based on 3D Linear Inverted Pendulum Model
NASA Astrophysics Data System (ADS)
Yu, Guochen; Zhang, Jiapeng; Bo, Wu
2018-01-01
In order to optimize the biped robot’s gait, the biped robot’s walking motion is simplify to the 3D linear inverted pendulum motion mode. The Center of Mass (CoM) locus is determined from the relationship between CoM and the Zero Moment Point (ZMP) locus. The ZMP locus is planned in advance. Then, the forward gait and lateral gait are simplified as connecting rod structure. Swing leg trajectory using B-spline interpolation. And the stability of the walking process is discussed in conjunction with the ZMP equation. Finally the system simulation is carried out under the given conditions to verify the validity of the proposed planning method.
Research state-of-the-art of mobile robots in China
NASA Astrophysics Data System (ADS)
Wu, Lin; Zhao, Jinglun; Zhang, Peng; Li, Shiqing
1991-03-01
Several newly developed mobile robots in china are described in the paper. It includes masterslave telerobot sixleged robot biped walking robot remote inspection robot crawler moving robot and autonomous mobi le vehicle . Some relevant technology are also described.
A new biarticular actuator design facilitates control of leg function in BioBiped3.
Sharbafi, Maziar Ahmad; Rode, Christian; Kurowski, Stefan; Scholz, Dorian; Möckel, Rico; Radkhah, Katayon; Zhao, Guoping; Rashty, Aida Mohammadinejad; Stryk, Oskar von; Seyfarth, Andre
2016-07-01
Bioinspired legged locomotion comprises different aspects, such as (i) benefiting from reduced complexity control approaches as observed in humans/animals, (ii) combining embodiment with the controllers and (iii) reflecting neural control mechanisms. One of the most important lessons learned from nature is the significant role of compliance in simplifying control, enhancing energy efficiency and robustness against perturbations for legged locomotion. In this research, we investigate how body morphology in combination with actuator design may facilitate motor control of leg function. Inspired by the human leg muscular system, we show that biarticular muscles have a key role in balancing the upper body, joint coordination and swing leg control. Appropriate adjustment of biarticular spring rest length and stiffness can simplify the control and also reduce energy consumption. In order to test these findings, the BioBiped3 robot was developed as a new version of BioBiped series of biologically inspired, compliant musculoskeletal robots. In this robot, three-segmented legs actuated by mono- and biarticular series elastic actuators mimic the nine major human leg muscle groups. With the new biarticular actuators in BioBiped3, novel simplified control concepts for postural balance and for joint coordination in rebounding movements (drop jumps) were demonstrated and approved.
NASA Astrophysics Data System (ADS)
Khusainov, R.; Klimchik, A.; Magid, E.
2017-01-01
The paper presents comparison analysis of two approaches in defining leg trajectories for biped locomotion. The first one operates only with kinematic limitations of leg joints and finds the maximum possible locomotion speed for given limits. The second approach defines leg trajectories from the dynamic stability point of view and utilizes ZMP criteria. We show that two methods give different trajectories and demonstrate that trajectories based on pure dynamic optimization cannot be realized due to joint limits. Kinematic optimization provides unstable solution which can be balanced by upper body movement.
Dynamic legged locomotion in robots and animals
NASA Astrophysics Data System (ADS)
Raibert, Marc; Playter, Robert; Ringrose, Robert; Bailey, Dave; Leeser, Karl
1995-01-01
This report documents our study of active legged systems that balance actively and move dynamically. The purpose of this research is to build a foundation of knowledge that can lead both to the construction of useful legged vehicles and to a better understanding of how animal locomotion works. In this report we provide an update on progress during the past year. Here are the topics covered in this report: (1) Is cockroach locomotion dynamic? To address this question we created three models of cockroaches, each abstracted at a different level. We provided each model with a control system and computer simulation. One set of results suggests that 'Groucho Running,' a type of dynamic walking, seems feasible at cockroach scale. (2) How do bipeds shift weight between the legs? We built a simple planar biped robot specifically to explore this question. It shifts its weight from one curved foot to the other, using a toe-off and toe-on strategy, in conjunction with dynamic tipping. (3) 3D biped gymnastics: The 3D biped robot has done front somersaults in the laboratory. The robot changes its leg length in flight to control rotation rate. This in turn provides a mechanism for controlling the landing attitude of the robot once airborne. (4) Passively stabilized layout somersault: We have found that the passive structure of a gymnast, the configuration of masses and compliances, can stabilize inherently unstable maneuvers. This means that body biomechanics could play a larger role in controlling behavior than is generally thought. We used a physical 'doll' model and computer simulation to illustrate the point. (5) Twisting: Some gymnastic maneuvers require twisting. We are studying how to couple the biomechanics of the system to its control to produce efficient, stable twisting maneuvers.
Kinematics and dynamics analysis of a quadruped walking robot with parallel leg mechanism
NASA Astrophysics Data System (ADS)
Wang, Hongbo; Sang, Lingfeng; Hu, Xing; Zhang, Dianfan; Yu, Hongnian
2013-09-01
It is desired to require a walking robot for the elderly and the disabled to have large capacity, high stiffness, stability, etc. However, the existing walking robots cannot achieve these requirements because of the weight-payload ratio and simple function. Therefore, Improvement of enhancing capacity and functions of the walking robot is an important research issue. According to walking requirements and combining modularization and reconfigurable ideas, a quadruped/biped reconfigurable walking robot with parallel leg mechanism is proposed. The proposed robot can be used for both a biped and a quadruped walking robot. The kinematics and performance analysis of a 3-UPU parallel mechanism which is the basic leg mechanism of a quadruped walking robot are conducted and the structural parameters are optimized. The results show that performance of the walking robot is optimal when the circumradius R, r of the upper and lower platform of leg mechanism are 161.7 mm, 57.7 mm, respectively. Based on the optimal results, the kinematics and dynamics of the quadruped walking robot in the static walking mode are derived with the application of parallel mechanism and influence coefficient theory, and the optimal coordination distribution of the dynamic load for the quadruped walking robot with over-determinate inputs is analyzed, which solves dynamic load coupling caused by the branches’ constraint of the robot in the walk process. Besides laying a theoretical foundation for development of the prototype, the kinematics and dynamics studies on the quadruped walking robot also boost the theoretical research of the quadruped walking and the practical applications of parallel mechanism.
A study of the passive gait of a compass-like biped robot: Symmetry and chaos
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goswami, A.; Espiau, B.; Thuilot, B.
1998-12-01
The focus of this work is a systematic study of the passive gait of a compass-like planar, biped robot on inclined slopes. The robot is kinematically equivalent to a double pendulum, possessing two kneeless legs with point masses and a third point mass at the hip joint. Three parameters, namely, the ground-slope angle and the normalized mass and length of the robot describe its gait. The authors show that in response to a continuous change in any one of its parameters, the symmetric and steady stable gait of the unpowered robot gradually evolves through a regime of bifurcations characterized bymore » progressively complicated asymmetric gaits, eventually arriving at an apparently chaotic gait where not two steps are identical. The robot can maintain this gait indefinitely. A necessary (but not sufficient) condition for the stability of such gaits is the contraction of the phase-fluid volume. For this frictionless robot, the volume contraction, which the authors compute, is caused by the dissipative effects of the ground-impact model. In the chaotic regime, the fractal dimension of the robot`s strange attractor (2.07) compared to its state-space dimension (4) also reveals strong contraction. The authors present a novel graphical technique based on the first return map that compactly captures the entire evolution of the gait, from symmetry to chaos. Additional passive dissipative elements in the robot joint results in a significant improvement in the stability and the versatility of the gait, and provide a rich repertoire for simple controls laws.« less
Postural stability of biped robots and the foot-rotation indicator (FRI) point
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goswami, A.
1999-06-01
The focus of this paper is the problem of foot rotation in biped robots during the single-support phase. Foot rotation is an indication of postural instability, which should be carefully treated in a dynamically stable walk and avoided altogether in a statically stable walk. The author introduces the foot-rotation indicator (FRI) point, which is a point on the foot/ground-contact surface where the net ground-reaction force would have to act to keep the foot stationary. To ensure no foot rotation, the FRI point must remain within the convex hull of the foot-support area. In contrast with the ground projection of themore » center of mass (GCoM), which is a static criterion, the FRI point incorporates robot dynamics. As opposed to the center of pressure (CoP) -- better known as the zero-moment point (ZMP) in the robotics literature -- which may not leave the support area, the FRI point may leave the area. In fact, the position of the FRI point outside the footprint indicates the direction of the impending rotation and the magnitude of rotational moment acting on the foot. Owing to these important properties, the FRI point helps not only to monitor the state of postural stability of a biped robot during the entire gait cycle, but indicates the severity of instability of the gait as well. In response to a recent need, the paper also resolves the misconceptions surrounding the CoP/ZMP equivalence.« less
Arbitrary Symmetric Running Gait Generation for an Underactuated Biped Model.
Dadashzadeh, Behnam; Esmaeili, Mohammad; Macnab, Chris
2017-01-01
This paper investigates generating symmetric trajectories for an underactuated biped during the stance phase of running. We use a point mass biped (PMB) model for gait analysis that consists of a prismatic force actuator on a massless leg. The significance of this model is its ability to generate more general and versatile running gaits than the spring-loaded inverted pendulum (SLIP) model, making it more suitable as a template for real robots. The algorithm plans the necessary leg actuator force to cause the robot center of mass to undergo arbitrary trajectories in stance with any arbitrary attack angle and velocity angle. The necessary actuator forces follow from the inverse kinematics and dynamics. Then these calculated forces become the control input to the dynamic model. We compare various center-of-mass trajectories, including a circular arc and polynomials of the degrees 2, 4 and 6. The cost of transport and maximum leg force are calculated for various attack angles and velocity angles. The results show that choosing the velocity angle as small as possible is beneficial, but the angle of attack has an optimum value. We also find a new result: there exist biped running gaits with double-hump ground reaction force profiles which result in less maximum leg force than single-hump profiles.
Arbitrary Symmetric Running Gait Generation for an Underactuated Biped Model
Esmaeili, Mohammad; Macnab, Chris
2017-01-01
This paper investigates generating symmetric trajectories for an underactuated biped during the stance phase of running. We use a point mass biped (PMB) model for gait analysis that consists of a prismatic force actuator on a massless leg. The significance of this model is its ability to generate more general and versatile running gaits than the spring-loaded inverted pendulum (SLIP) model, making it more suitable as a template for real robots. The algorithm plans the necessary leg actuator force to cause the robot center of mass to undergo arbitrary trajectories in stance with any arbitrary attack angle and velocity angle. The necessary actuator forces follow from the inverse kinematics and dynamics. Then these calculated forces become the control input to the dynamic model. We compare various center-of-mass trajectories, including a circular arc and polynomials of the degrees 2, 4 and 6. The cost of transport and maximum leg force are calculated for various attack angles and velocity angles. The results show that choosing the velocity angle as small as possible is beneficial, but the angle of attack has an optimum value. We also find a new result: there exist biped running gaits with double-hump ground reaction force profiles which result in less maximum leg force than single-hump profiles. PMID:28118401
A Control Framework for Anthropomorphic Biped Walking Based on Stabilizing Feedforward Trajectories.
Rezazadeh, Siavash; Gregg, Robert D
2016-10-01
Although dynamic walking methods have had notable successes in control of bipedal robots in the recent years, still most of the humanoid robots rely on quasi-static Zero Moment Point controllers. This work is an attempt to design a highly stable controller for dynamic walking of a human-like model which can be used both for control of humanoid robots and prosthetic legs. The method is based on using time-based trajectories that can induce a highly stable limit cycle to the bipedal robot. The time-based nature of the controller motivates its use to entrain a model of an amputee walking, which can potentially lead to a better coordination of the interaction between the prosthesis and the human. The simulations demonstrate the stability of the controller and its robustness against external perturbations.
An asymptotic solution to a passive biped walker model
NASA Astrophysics Data System (ADS)
Yudaev, Sergey A.; Rachinskii, Dmitrii; Sobolev, Vladimir A.
2017-02-01
We consider a simple model of a passive dynamic biped robot walker with point feet and legs without knee. The model is a switched system, which includes an inverted double pendulum. Robot’s gait and its stability depend on parameters such as the slope of the ramp, the length of robot’s legs, and the mass distribution along the legs. We present an asymptotic solution of the model. The first correction to the zero order approximation is shown to agree with the numerical solution for a limited parameter range.
Evaluating alternative gait strategies using evolutionary robotics.
Sellers, William I; Dennis, Louise A; W -J, Wang; Crompton, Robin H
2004-05-01
Evolutionary robotics is a branch of artificial intelligence concerned with the automatic generation of autonomous robots. Usually the form of the robot is predefined and various computational techniques are used to control the machine's behaviour. One aspect is the spontaneous generation of walking in legged robots and this can be used to investigate the mechanical requirements for efficient walking in bipeds. This paper demonstrates a bipedal simulator that spontaneously generates walking and running gaits. The model can be customized to represent a range of hominoid morphologies and used to predict performance parameters such as preferred speed and metabolic energy cost. Because it does not require any motion capture data it is particularly suitable for investigating locomotion in fossil animals. The predictions for modern humans are highly accurate in terms of energy cost for a given speed and thus the values predicted for other bipeds are likely to be good estimates. To illustrate this the cost of transport is calculated for Australopithecus afarensis. The model allows the degree of maximum extension at the knee to be varied causing the model to adopt walking gaits varying from chimpanzee-like to human-like. The energy costs associated with these gait choices can thus be calculated and this information used to evaluate possible locomotor strategies in early hominids.
Evaluating alternative gait strategies using evolutionary robotics
Sellers, William I; Dennis, Louise A; Wang, W -J; Crompton, Robin H
2004-01-01
Evolutionary robotics is a branch of artificial intelligence concerned with the automatic generation of autonomous robots. Usually the form of the robot is predefined and various computational techniques are used to control the machine's behaviour. One aspect is the spontaneous generation of walking in legged robots and this can be used to investigate the mechanical requirements for efficient walking in bipeds. This paper demonstrates a bipedal simulator that spontaneously generates walking and running gaits. The model can be customized to represent a range of hominoid morphologies and used to predict performance parameters such as preferred speed and metabolic energy cost. Because it does not require any motion capture data it is particularly suitable for investigating locomotion in fossil animals. The predictions for modern humans are highly accurate in terms of energy cost for a given speed and thus the values predicted for other bipeds are likely to be good estimates. To illustrate this the cost of transport is calculated for Australopithecus afarensis. The model allows the degree of maximum extension at the knee to be varied causing the model to adopt walking gaits varying from chimpanzee-like to human-like. The energy costs associated with these gait choices can thus be calculated and this information used to evaluate possible locomotor strategies in early hominids. PMID:15198699
Note: Reconfigurable pelvis mechanism for efficient multi-locomotion: Biped and quadruped walking
NASA Astrophysics Data System (ADS)
Yoon, Byungho; Kim, Soohyun
2017-12-01
A reconfigurable pelvis mechanism that can change its length for multi-locomotion robot is introduced. From the characteristics of animals that walk in a bipedal or quadrupedal manner, we found that the length of the pelvis for each type of locomotion is related to the efficiency and stability of walking. We demonstrated the effectiveness of this mechanism in biped and quadruped walking through comparison of accumulated power of consumption. We also examined the changes of the supporting polygon according to the length of the pelvis during quadruped walking in terms of stability.
Note: Reconfigurable pelvis mechanism for efficient multi-locomotion: Biped and quadruped walking.
Yoon, Byungho; Kim, Soohyun
2017-12-01
A reconfigurable pelvis mechanism that can change its length for multi-locomotion robot is introduced. From the characteristics of animals that walk in a bipedal or quadrupedal manner, we found that the length of the pelvis for each type of locomotion is related to the efficiency and stability of walking. We demonstrated the effectiveness of this mechanism in biped and quadruped walking through comparison of accumulated power of consumption. We also examined the changes of the supporting polygon according to the length of the pelvis during quadruped walking in terms of stability.
Stereo vision with distance and gradient recognition
NASA Astrophysics Data System (ADS)
Kim, Soo-Hyun; Kang, Suk-Bum; Yang, Tae-Kyu
2007-12-01
Robot vision technology is needed for the stable walking, object recognition and the movement to the target spot. By some sensors which use infrared rays and ultrasonic, robot can overcome the urgent state or dangerous time. But stereo vision of three dimensional space would make robot have powerful artificial intelligence. In this paper we consider about the stereo vision for stable and correct movement of a biped robot. When a robot confront with an inclination plane or steps, particular algorithms are needed to go on without failure. This study developed the recognition algorithm of distance and gradient of environment by stereo matching process.
Walk-Startup of a Two-Legged Walking Mechanism
NASA Astrophysics Data System (ADS)
Babković, Kalman; Nagy, László; Krklješ, Damir; Borovac, Branislav
There is a growing interest towards humanoid robots. One of their most important characteristic is the two-legged motion - walk. Starting and stopping of humanoid robots introduce substantial delays. In this paper, the goal is to explore the possibility of using a short unbalanced state of the biped robot to quickly gain speed and achieve the steady state velocity during a period shorter than half of the single support phase. The proposed method is verified by simulation. Maintainig a steady state, balanced gait is not considered in this paper.
An Algorithm for Pedestrian Detection in Multispectral Image Sequences
NASA Astrophysics Data System (ADS)
Kniaz, V. V.; Fedorenko, V. V.
2017-05-01
The growing interest for self-driving cars provides a demand for scene understanding and obstacle detection algorithms. One of the most challenging problems in this field is the problem of pedestrian detection. Main difficulties arise from a diverse appearances of pedestrians. Poor visibility conditions such as fog and low light conditions also significantly decrease the quality of pedestrian detection. This paper presents a new optical flow based algorithm BipedDetet that provides robust pedestrian detection on a single-borad computer. The algorithm is based on the idea of simplified Kalman filtering suitable for realization on modern single-board computers. To detect a pedestrian a synthetic optical flow of the scene without pedestrians is generated using slanted-plane model. The estimate of a real optical flow is generated using a multispectral image sequence. The difference of the synthetic optical flow and the real optical flow provides the optical flow induced by pedestrians. The final detection of pedestrians is done by the segmentation of the difference of optical flows. To evaluate the BipedDetect algorithm a multispectral dataset was collected using a mobile robot.
NASA Astrophysics Data System (ADS)
Zheng, Yuan-Fang
A three-dimensional, five link biped system is established. Newton-Euler state space formulation is employed to derive the equations of the system. The constraint forces involved in the equations can be eliminated by projection onto a smaller state space system for deriving advanced control laws. A model-referenced adaptive control scheme is developed to control the system. Digital computer simulations of point to point movement are carried out to show that the model-referenced adaptive control increases the dynamic range and speeds up the response of the system in comparison with linear and nonlinear feedback control. Further, the implementation of the controller is simpler. Impact effects of biped contact with the environment are modeled and studied. The instant velocity change at the moment of impact is derived as a function of the biped state and contact speed. The effects of impact on the state, as well as constraints are studied in biped landing on heels and toes simultaneously or on toes first. Rate and nonlinear position feedback are employed for stability of the biped after the impact. The complex structure of the foot is properly modeled. A spring and dashpot pair is suggested to represent the action of plantar fascia during the impact. This action prevents the arch of the foot from collapsing. A mathematical model of the skeletal muscle is discussed. A direct relationship between the stimulus rate and the active state is established. A piecewise linear relation between the length of the contractile element and the isometric force is considered. Hill's characteristic equation is maintained for determining the actual output force during different shortening velocities. A physical threshold model is proposed for recruitment which encompasses the size principle, its manifestations and exceptions to the size principle. Finally the role of spindle feedback in stability of the model is demonstrated by study of a pair of muscles.
Jiang, Ping; Chiba, Ryosuke; Takakusaki, Kaoru; Ota, Jun
2016-01-01
The development of a physiologically plausible computational model of a neural controller that can realize a human-like biped stance is important for a large number of potential applications, such as assisting device development and designing robotic control systems. In this paper, we develop a computational model of a neural controller that can maintain a musculoskeletal model in a standing position, while incorporating a 120-ms neurological time delay. Unlike previous studies that have used an inverted pendulum model, a musculoskeletal model with seven joints and 70 muscular-tendon actuators is adopted to represent the human anatomy. Our proposed neural controller is composed of both feed-forward and feedback controls. The feed-forward control corresponds to the constant activation input necessary for the musculoskeletal model to maintain a standing posture. This compensates for gravity and regulates stiffness. The developed neural controller model can replicate two salient features of the human biped stance: (1) physiologically plausible muscle activations for quiet standing; and (2) selection of a low active stiffness for low energy consumption. PMID:27655271
Adaptive, fast walking in a biped robot under neuronal control and learning.
Manoonpong, Poramate; Geng, Tao; Kulvicius, Tomas; Porr, Bernd; Wörgötter, Florentin
2007-07-01
Human walking is a dynamic, partly self-stabilizing process relying on the interaction of the biomechanical design with its neuronal control. The coordination of this process is a very difficult problem, and it has been suggested that it involves a hierarchy of levels, where the lower ones, e.g., interactions between muscles and the spinal cord, are largely autonomous, and where higher level control (e.g., cortical) arises only pointwise, as needed. This requires an architecture of several nested, sensori-motor loops where the walking process provides feedback signals to the walker's sensory systems, which can be used to coordinate its movements. To complicate the situation, at a maximal walking speed of more than four leg-lengths per second, the cycle period available to coordinate all these loops is rather short. In this study we present a planar biped robot, which uses the design principle of nested loops to combine the self-stabilizing properties of its biomechanical design with several levels of neuronal control. Specifically, we show how to adapt control by including online learning mechanisms based on simulated synaptic plasticity. This robot can walk with a high speed (>3.0 leg length/s), self-adapting to minor disturbances, and reacting in a robust way to abruptly induced gait changes. At the same time, it can learn walking on different terrains, requiring only few learning experiences. This study shows that the tight coupling of physical with neuronal control, guided by sensory feedback from the walking pattern itself, combined with synaptic learning may be a way forward to better understand and solve coordination problems in other complex motor tasks.
Novel Door-opening Method for Six-legged Robots Based on Only Force Sensing
NASA Astrophysics Data System (ADS)
Chen, Zhi-Jun; Gao, Feng; Pan, Yang
2017-09-01
Current door-opening methods are mainly developed on tracked, wheeled and biped robots by applying multi-DOF manipulators and vision systems. However, door-opening methods for six-legged robots are seldom studied, especially using 0-DOF tools to operate and only force sensing to detect. A novel door-opening method for six-legged robots is developed and implemented to the six-parallel-legged robot. The kinematic model of the six-parallel-legged robot is established and the model of measuring the positional relationship between the robot and the door is proposed. The measurement model is completely based on only force sensing. The real-time trajectory planning method and the control strategy are designed. The trajectory planning method allows the maximum angle between the sagittal axis of the robot body and the normal line of the door plane to be 45º. A 0-DOF tool mounted to the robot body is applied to operate. By integrating with the body, the tool has 6 DOFs and enough workspace to operate. The loose grasp achieved by the tool helps release the inner force in the tool. Experiments are carried out to validate the method. The results show that the method is effective and robust in opening doors wider than 1 m. This paper proposes a novel door-opening method for six-legged robots, which notably uses a 0-DOF tool and only force sensing to detect and open the door.
Spitz, Jonathan; Evstrachin, Alexandrina; Zacksenhouse, Miriam
2015-08-20
In recent years there has been a growing interest in the field of dynamic walking and bio-inspired robots. However, while walking and running on a flat surface have been studied extensively, walking dynamically over terrains with varying slope remains a challenge. Previously we developed an open loop controller based on a central pattern generator (CPG). The controller applied predefined torque patterns to a compass-gait biped, and achieved stable gaits over a limited range of slopes. In this work, this range is greatly extended by applying a once per cycle feedback to the CPG controller. The terrain's slope is measured and used to modify both the CPG frequency and the torque amplitude once per step. A multi-objective optimization algorithm was used to tune the controller parameters for a simulated CB model. The resulting controller successfully traverses terrains with slopes ranging from +7° to -8°, comparable to most slopes found in human constructed environments. Gait stability was verified by computing the linearized Poincaré Map both numerically and analytically.
Agile and dexterous robot for inspection and EOD operations
NASA Astrophysics Data System (ADS)
Handelman, David A.; Franken, Gordon H.; Komsuoglu, Haldun
2010-04-01
The All-Terrain Biped (ATB) robot is an unmanned ground vehicle with arms, legs and wheels designed to drive, crawl, walk and manipulate objects for inspection and explosive ordnance disposal tasks. This paper summarizes on-going development of the ATB platform. Control technology for semi-autonomous legged mobility and dual-arm dexterity is described as well as preliminary simulation and hardware test results. Performance goals include driving on flat terrain, crawling on steep terrain, walking on stairs, opening doors and grasping objects. Anticipated benefits of the adaptive mobility and dexterity of the ATB platform include increased robot agility and autonomy for EOD operations, reduced operator workload and reduced operator training and skill requirements.
Kinematically stable bipedal locomotion using ionic polymer-metal composite actuators
NASA Astrophysics Data System (ADS)
Hosseinipour, Milad; Elahinia, Mohammad
2013-08-01
Ionic conducting polymer-metal composites (abbreviated as IPMCs) are interesting actuators that can act as artificial muscles in robotic and microelectromechanical systems. Various black or gray box models have modeled the electrochemical-mechanical behavior of these materials. In this study, the governing partial differential equation of the behavior of IPMCs is solved using finite element methods to find the critical actuation parameters, such as strain distribution, maximum strain, and response time. One-dimensional results of the FEM solution are then extended to 2D to find the tip displacement of a flap actuator and experimentally verified. A model of a seven-degree-of-freedom biped robot, actuated by IPMC flaps, is then introduced. The possibility of fast and stable bipedal locomotion using IPMC artificial muscles is the main motivation of this study. Considering the actuator limits, joint path trajectories are generated to achieve a fast and smooth motion. The stability of the proposed gait is then evaluated using the ZMP criterion and motion simulation. The fabrication parameters of each actuator, such as length, platinum plating thickness and installation angle, are then determined using the generated trajectories. A discussion on future studies on force-torque generation of IPMCs for biped locomotion concludes this paper.
Optimal bipedal interactions with dynamic terrain: synthesis and analysis via nonlinear programming
NASA Astrophysics Data System (ADS)
Hubicki, Christian; Goldman, Daniel; Ames, Aaron
In terrestrial locomotion, gait dynamics and motor control behaviors are tuned to interact efficiently and stably with the dynamics of the terrain (i.e. terradynamics). This controlled interaction must be particularly thoughtful in bipeds, as their reduced contact points render them highly susceptible to falls. While bipedalism under rigid terrain assumptions is well-studied, insights for two-legged locomotion on soft terrain, such as sand and dirt, are comparatively sparse. We seek an understanding of how biological bipeds stably and economically negotiate granular media, with an eye toward imbuing those abilities in bipedal robots. We present a trajectory optimization method for controlled systems subject to granular intrusion. By formulating a large-scale nonlinear program (NLP) with reduced-order resistive force theory (RFT) models and jamming cone dynamics, the optimized motions are informed and shaped by the dynamics of the terrain. Using a variant of direct collocation methods, we can express all optimization objectives and constraints in closed-form, resulting in rapid solving by standard NLP solvers, such as IPOPT. We employ this tool to analyze emergent features of bipedal locomotion in granular media, with an eye toward robotic implementation.
NASA Astrophysics Data System (ADS)
Sun, Yuming; Wu, Christine Qiong
2012-12-01
Balancing control is important for biped standing. In spite of large efforts, it is very difficult to design balancing control strategies satisfying three requirements simultaneously: maintaining postural stability, improving energy efficiency and satisfying the constraints between the biped feet and the ground. In this article, a proportional-derivative (PD) controller is proposed for a standing biped, which is simplified as a two-link inverted pendulum with one additional rigid foot-link. The genetic algorithm (GA) is used to search for the control gain meeting all three requirements. The stability analysis of such a deterministic biped control system is carried out using the concept of Lyapunov exponents (LEs), based on which, the system stability, where the disturbance comes from the initial states, and the structural stability, where the disturbance comes from the PD gains, are examined quantitively in terms of stability region. This article contributes to the biped balancing control, more significantly, the method shown in the studied case of biped provides a general framework of systematic stability analysis for certain deterministic nonlinear dynamical systems.
Modelling gait transition in two-legged animals
NASA Astrophysics Data System (ADS)
Pinto, Carla M. A.; Santos, Alexandra P.
2011-12-01
The study of locomotor patterns has been a major research goal in the last decades. Understanding how intralimb and interlimb coordination works out so well in animals' locomotion is a hard and challenging task. Many models have been proposed to model animal's rhythms. These models have also been applied to the control of rhythmic movements of adaptive legged robots, namely biped, quadruped and other designs. In this paper we study gait transition in a central pattern generator (CPG) model for bipeds, the 4-cells model. This model is proposed by Golubitsky, Stewart, Buono and Collins and is studied further by Pinto and Golubitsky. We briefly resume the work done by Pinto and Golubitsky. We compute numerically gait transition in the 4-cells CPG model for bipeds. We use Morris-Lecar equations and Wilson-Cowan equations as the internal dynamics for each cell. We also consider two types of coupling between the cells: diffusive and synaptic. We obtain secondary gaits by bifurcation of primary gaits, by varying the coupling strengths. Nevertheless, some bifurcating branches could not be obtained, emphasizing the fact that despite analytically those bifurcations exist, finding them is a hard task and requires variation of other parameters of the equations. We note that the type of coupling did not influence the results.
Controlling legs for locomotion-insights from robotics and neurobiology.
Buschmann, Thomas; Ewald, Alexander; von Twickel, Arndt; Büschges, Ansgar
2015-06-29
Walking is the most common terrestrial form of locomotion in animals. Its great versatility and flexibility has led to many attempts at building walking machines with similar capabilities. The control of walking is an active research area both in neurobiology and robotics, with a large and growing body of work. This paper gives an overview of the current knowledge on the control of legged locomotion in animals and machines and attempts to give walking control researchers from biology and robotics an overview of the current knowledge in both fields. We try to summarize the knowledge on the neurobiological basis of walking control in animals, emphasizing common principles seen in different species. In a section on walking robots, we review common approaches to walking controller design with a slight emphasis on biped walking control. We show where parallels between robotic and neurobiological walking controllers exist and how robotics and biology may benefit from each other. Finally, we discuss where research in the two fields diverges and suggest ways to bridge these gaps.
Development of a neuromorphic control system for a lightweight humanoid robot
NASA Astrophysics Data System (ADS)
Folgheraiter, Michele; Keldibek, Amina; Aubakir, Bauyrzhan; Salakchinov, Shyngys; Gini, Giuseppina; Mauro Franchi, Alessio; Bana, Matteo
2017-03-01
A neuromorphic control system for a lightweight middle size humanoid biped robot built using 3D printing techniques is proposed. The control architecture consists of different modules capable to learn and autonomously reproduce complex periodic trajectories. Each module is represented by a chaotic Recurrent Neural Network (RNN) with a core of dynamic neurons randomly and sparsely connected with fixed synapses. A set of read-out units with adaptable synapses realize a linear combination of the neurons output in order to reproduce the target signals. Different experiments were conducted to find out the optimal initialization for the RNN’s parameters. From simulation results, using normalized signals obtained from the robot model, it was proven that all the instances of the control module can learn and reproduce the target trajectories with an average RMS error of 1.63 and variance 0.74.
Trotting, pacing and bounding by a quadruped robot.
Raibert, M H
1990-01-01
This paper explores the quadruped running gaits that use the legs in pairs: the trot (diagonal pairs), the pace (lateral pairs), and the bound (front and rear pairs). Rather than study these gaits in quadruped animals, we studied them in a quadruped robot. We found that each of the gaits that use the legs in pairs can be transformed into a common underlying gait, a virtual biped gait. Once transformed, a single set of control algorithms produce all three gaits, with modest parameter variations between them. The control algorithms manipulated rebound height, running speed, and body attitude, while a low-level mechanism coordinated the behavior of the legs in each pair. The approach was tested with laboratory experiments on a four-legged robot. Data are presented that show the details of the running motion for the three gaits and for transitions from one gait to another.
Locomotion training of legged robots using hybrid machine learning techniques
NASA Technical Reports Server (NTRS)
Simon, William E.; Doerschuk, Peggy I.; Zhang, Wen-Ran; Li, Andrew L.
1995-01-01
In this study artificial neural networks and fuzzy logic are used to control the jumping behavior of a three-link uniped robot. The biped locomotion control problem is an increment of the uniped locomotion control. Study of legged locomotion dynamics indicates that a hierarchical controller is required to control the behavior of a legged robot. A structured control strategy is suggested which includes navigator, motion planner, biped coordinator and uniped controllers. A three-link uniped robot simulation is developed to be used as the plant. Neurocontrollers were trained both online and offline. In the case of on-line training, a reinforcement learning technique was used to train the neurocontroller to make the robot jump to a specified height. After several hundred iterations of training, the plant output achieved an accuracy of 7.4%. However, when jump distance and body angular momentum were also included in the control objectives, training time became impractically long. In the case of off-line training, a three-layered backpropagation (BP) network was first used with three inputs, three outputs and 15 to 40 hidden nodes. Pre-generated data were presented to the network with a learning rate as low as 0.003 in order to reach convergence. The low learning rate required for convergence resulted in a very slow training process which took weeks to learn 460 examples. After training, performance of the neurocontroller was rather poor. Consequently, the BP network was replaced by a Cerebeller Model Articulation Controller (CMAC) network. Subsequent experiments described in this document show that the CMAC network is more suitable to the solution of uniped locomotion control problems in terms of both learning efficiency and performance. A new approach is introduced in this report, viz., a self-organizing multiagent cerebeller model for fuzzy-neural control of uniped locomotion is suggested to improve training efficiency. This is currently being evaluated for a possible patent by NASA, Johnson Space Center. An alternative modular approach is also developed which uses separate controllers for each stage of the running stride. A self-organizing fuzzy-neural controller controls the height, distance and angular momentum of the stride. A CMAC-based controller controls the movement of the leg from the time the foot leaves the ground to the time of landing. Because the leg joints are controlled at each time step during flight, movement is smooth and obstacles can be avoided. Initial results indicate that this approach can yield fast, accurate results.
A feasibility study on the design and walking operation of a biped locomotor via dynamic simulation
NASA Astrophysics Data System (ADS)
Wang, Mingfeng; Ceccarelli, Marco; Carbone, Giuseppe
2016-06-01
A feasibility study on the mechanical design and walking operation of a Cassino biped locomotor is presented in this paper. The biped locomotor consists of two identical 3 degrees-of-freedom tripod leg mechanisms with a parallel manipulator architecture. Planning of the biped walking gait is performed by coordinating the motions of the two leg mechanisms and waist. A threedimensional model is elaborated in SolidWorks® environment in order to characterize a feasible mechanical design. Dynamic simulation is carried out in MSC.ADAMS® environment with the aims of characterizing and evaluating the dynamic walking performance of the proposed design. Simulation results show that the proposed biped locomotor with proper input motions of linear actuators performs practical and feasible walking on flat surfaces with limited actuation and reaction forces between its feet and the ground. A preliminary prototype of the biped locomotor is built for the purpose of evaluating the operation performance of the biped walking gait of the proposed locomotor.
Modeling of R/C Servo Motor and Application to Underactuated Mechanical Systems
NASA Astrophysics Data System (ADS)
Ishikawa, Masato; Kitayoshi, Ryohei; Wada, Takashi; Maruta, Ichiro; Sugie, Toshiharu
An R/C servo motor is a compact package of a DC geard-motor associated with a position servo controller. They are widely used in small-sized robotics and mechatronics by virtue of their compactness, easiness-to-use and high/weight ratio. However, it is crucial to clarify their internal model (including the embedded position servo) in order to improve control performance of mechatronic systems using R/C servo motors, such as biped robots or underactuted sysyems. In this paper, we propose a simple and realistic internal model of the R/C servo motors including the embedded servo controller, and estimate their physical parameters using continuous-time system identification method. We also provide a model of reference-to-torque transfer function so that we can estimate the internal torque acting on the load.
Numerical Estimation of Balanced and Falling States for Constrained Legged Systems
NASA Astrophysics Data System (ADS)
Mummolo, Carlotta; Mangialardi, Luigi; Kim, Joo H.
2017-08-01
Instability and risk of fall during standing and walking are common challenges for biped robots. While existing criteria from state-space dynamical systems approach or ground reference points are useful in some applications, complete system models and constraints have not been taken into account for prediction and indication of fall for general legged robots. In this study, a general numerical framework that estimates the balanced and falling states of legged systems is introduced. The overall approach is based on the integration of joint-space and Cartesian-space dynamics of a legged system model. The full-body constrained joint-space dynamics includes the contact forces and moments term due to current foot (or feet) support and another term due to altered contact configuration. According to the refined notions of balanced, falling, and fallen, the system parameters, physical constraints, and initial/final/boundary conditions for balancing are incorporated into constrained nonlinear optimization problems to solve for the velocity extrema (representing the maximum perturbation allowed to maintain balance without changing contacts) in the Cartesian space at each center-of-mass (COM) position within its workspace. The iterative algorithm constructs the stability boundary as a COM state-space partition between balanced and falling states. Inclusion in the resulting six-dimensional manifold is a necessary condition for a state of the given system to be balanced under the given contact configuration, while exclusion is a sufficient condition for falling. The framework is used to analyze the balance stability of example systems with various degrees of complexities. The manifold for a 1-degree-of-freedom (DOF) legged system is consistent with the experimental and simulation results in the existing studies for specific controller designs. The results for a 2-DOF system demonstrate the dependency of the COM state-space partition upon joint-space configuration (elbow-up vs. elbow-down). For both 1- and 2-DOF systems, the results are validated in simulation environments. Finally, the manifold for a biped walking robot is constructed and illustrated against its single-support walking trajectories. The manifold identified by the proposed framework for any given legged system can be evaluated beforehand as a system property and serves as a map for either a specified state or a specific controller's performance.
Reinforcement learning: Solving two case studies
NASA Astrophysics Data System (ADS)
Duarte, Ana Filipa; Silva, Pedro; dos Santos, Cristina Peixoto
2012-09-01
Reinforcement Learning algorithms offer interesting features for the control of autonomous systems, such as the ability to learn from direct interaction with the environment, and the use of a simple reward signalas opposed to the input-outputs pairsused in classic supervised learning. The reward signal indicates the success of failure of the actions executed by the agent in the environment. In this work, are described RL algorithmsapplied to two case studies: the Crawler robot and the widely known inverted pendulum. We explore RL capabilities to autonomously learn a basic locomotion pattern in the Crawler, andapproach the balancing problem of biped locomotion using the inverted pendulum.
Hamed, Kaveh Akbari; Gregg, Robert D
2016-07-01
This paper presents a systematic algorithm to design time-invariant decentralized feedback controllers to exponentially stabilize periodic orbits for a class of hybrid dynamical systems arising from bipedal walking. The algorithm assumes a class of parameterized and nonlinear decentralized feedback controllers which coordinate lower-dimensional hybrid subsystems based on a common phasing variable. The exponential stabilization problem is translated into an iterative sequence of optimization problems involving bilinear and linear matrix inequalities, which can be easily solved with available software packages. A set of sufficient conditions for the convergence of the iterative algorithm to a stabilizing decentralized feedback control solution is presented. The power of the algorithm is demonstrated by designing a set of local nonlinear controllers that cooperatively produce stable walking for a 3D autonomous biped with 9 degrees of freedom, 3 degrees of underactuation, and a decentralization scheme motivated by amputee locomotion with a transpelvic prosthetic leg.
Hamed, Kaveh Akbari; Gregg, Robert D.
2016-01-01
This paper presents a systematic algorithm to design time-invariant decentralized feedback controllers to exponentially stabilize periodic orbits for a class of hybrid dynamical systems arising from bipedal walking. The algorithm assumes a class of parameterized and nonlinear decentralized feedback controllers which coordinate lower-dimensional hybrid subsystems based on a common phasing variable. The exponential stabilization problem is translated into an iterative sequence of optimization problems involving bilinear and linear matrix inequalities, which can be easily solved with available software packages. A set of sufficient conditions for the convergence of the iterative algorithm to a stabilizing decentralized feedback control solution is presented. The power of the algorithm is demonstrated by designing a set of local nonlinear controllers that cooperatively produce stable walking for a 3D autonomous biped with 9 degrees of freedom, 3 degrees of underactuation, and a decentralization scheme motivated by amputee locomotion with a transpelvic prosthetic leg. PMID:27990059
Design of biped hip simulator using SolidWorks
NASA Astrophysics Data System (ADS)
Zainudin, M. R.; Yahya, A.; Fazli, M. I. M.; Syahrom, A.; Harun, F. K. C.; Nazarudin, M. S.
2017-10-01
The increasing number of people who underwent both hip implant surgery based on World Health Organization (WHO) has received massive attention from researchers lately to develop various types of hip simulators in order to test the hip implant. Various number of hip simulator have been developed with different functions and capabilities. This paper presents the design development of biped hip simulator using SolidWorks software by taking into consideration some improvement and modifications. The finite element method is used to test the design whether it is safe to be used or not. The biped hip simulator has been successfully designed and ready to be fabricated as the endurance testing shown a positive results. The von Mises stress induced in the material is an alloy steel which is 2,975,862.3 N/m2 lower than the yield strength. Thus, the design is safe to be used as it obey the safety criterion.
Long-term dynamics of freshwater red tide in shallow lake in central Japan.
Hirabayashi, Kimio; Yoshizawa, Kazuya; Yoshida, Norihiko; Ariizumi, Kazunori; Kazama, Futaba
2007-01-01
The aim of this study is to clarify the long-term dynamics of the red tide occurring in Lake Kawaguchi. The measurement of environmental factors and water sampling were carried out monthly at a fixed station in Lake Kawaguchi's center basin from April 1993 to March 2004. On June 26, 1995, the horizontal distribution ofPeridinium bipes was investigated using a plastic pipe, obtaining 0∼1-m layers of water column samples at 68 locations across the entire lake. P. bipes showed an explosive growth and formed a freshwater red tide in the early summer of 1995, when the nutrient level was higher than those in the other years, particularly the phosphate concentration in the surface layer. The dissolved total phosphorus (DTP) concentration was sufficient forP. bipes growth in that year. In the study of its horizontal distribution,P. bipes was found at all the locations. The numbers of cells per milliliter ranged from 67 to 5360, averaging 1094±987 cells/ml, with particularly high densities along the northern shore. Since then,P. bipes has annually averaged about 25 cells/ml in Lake Kawaguchi. We observed that the red tide caused byP. bipes correlates with a high DTP concentration in Lake Kawaguchi.
Simulated Lidar Images of Human Pose using a 3DS Max Virtual Laboratory
2015-12-01
developed in Autodesk 3DS Max, with an animated, biofidelic 3D human mesh biped character ( avatar ) as the subject. The biped animation modifies the digital...character ( avatar ) as the subject. The biped animation modifies the digital human model through a time sequence of motion capture data representing an...AFB. Mr. Isiah Davenport from Infoscitex Corp developed the method for creating the biofidelic avatars from laboratory data and 3DS Max code for
Comparison of Human and Humanoid Robot Control of Upright Stance
Peterka, Robert J.
2009-01-01
There is considerable recent interest in developing humanoid robots. An important substrate for many motor actions in both humans and biped robots is the ability to maintain a statically or dynamically stable posture. Given the success of the human design, one would expect there are lessons to be learned in formulating a postural control mechanism for robots. In this study we limit ourselves to considering the problem of maintaining upright stance. Human stance control is compared to a suggested method for robot stance control called zero moment point (ZMP) compensation. Results from experimental and modeling studies suggest there are two important subsystems that account for the low- and mid-frequency (DC to ~1 Hz) dynamic characteristics of human stance control. These subsystems are 1) a “sensory integration” mechanism whereby orientation information from multiple sensory systems encoding body kinematics (i.e. position, velocity) is flexibly combined to provide an overall estimate of body orientation while allowing adjustments (sensory re-weighting) that compensate for changing environmental conditions, and 2) an “effort control” mechanism that uses kinetic-related (i.e., force-related) sensory information to reduce the mean deviation of body orientation from upright. Functionally, ZMP compensation is directly analogous to how humans appear to use kinetic feedback to modify the main sensory integration feedback loop controlling body orientation. However, a flexible sensory integration mechanism is missing from robot control leaving the robot vulnerable to instability in conditions were humans are able to maintain stance. We suggest the addition of a simple form of sensory integration to improve robot stance control. We also investigate how the biological constraint of feedback time delay influences the human stance control design. The human system may serve as a guide for improved robot control, but should not be directly copied because the constraints on robot and human control are different. PMID:19665564
Comparison of human and humanoid robot control of upright stance.
Peterka, Robert J
2009-01-01
There is considerable recent interest in developing humanoid robots. An important substrate for many motor actions in both humans and biped robots is the ability to maintain a statically or dynamically stable posture. Given the success of the human design, one would expect there are lessons to be learned in formulating a postural control mechanism for robots. In this study we limit ourselves to considering the problem of maintaining upright stance. Human stance control is compared to a suggested method for robot stance control called zero moment point (ZMP) compensation. Results from experimental and modeling studies suggest there are two important subsystems that account for the low- and mid-frequency (DC to approximately 1Hz) dynamic characteristics of human stance control. These subsystems are (1) a "sensory integration" mechanism whereby orientation information from multiple sensory systems encoding body kinematics (i.e. position, velocity) is flexibly combined to provide an overall estimate of body orientation while allowing adjustments (sensory re-weighting) that compensate for changing environmental conditions and (2) an "effort control" mechanism that uses kinetic-related (i.e., force-related) sensory information to reduce the mean deviation of body orientation from upright. Functionally, ZMP compensation is directly analogous to how humans appear to use kinetic feedback to modify the main sensory integration feedback loop controlling body orientation. However, a flexible sensory integration mechanism is missing from robot control leaving the robot vulnerable to instability in conditions where humans are able to maintain stance. We suggest the addition of a simple form of sensory integration to improve robot stance control. We also investigate how the biological constraint of feedback time delay influences the human stance control design. The human system may serve as a guide for improved robot control, but should not be directly copied because the constraints on robot and human control are different.
Regularity in an environment produces an internal torque pattern for biped balance control.
Ito, Satoshi; Kawasaki, Haruhisa
2005-04-01
In this paper, we present a control method for achieving biped static balance under unknown periodic external forces whose periods are only known. In order to maintain static balance adaptively in an uncertain environment, it is essential to have information on the ground reaction forces. However, when the biped is exposed to a steady environment that provides an external force periodically, uncertain factors on the regularity with respect to a steady environment are gradually clarified using learning process, and finally a torque pattern for balancing motion is acquired. Consequently, static balance is maintained without feedback from ground reaction forces and achieved in a feedforward manner.
The Ear and Hearing in Bipes biporus
Wever, Ernest Glen; Gans, Carl
1972-01-01
The sound conduction system of Bipes biporus is unusual among amphisbaenians, in that the columella does not have a catilaginous or bony extra-columella passing laterally to the labial skin. Instead, the terminal disk of the columella ends in fibrous tissue beneath a deep fold of skin forming the nuchal constriction. The occurrence of an epihyal supports earlier suggestions that the amphisbaenian extracolumella may be homologous to the epihyal. Measurements of cochlear potentials, made by direction of the sound stimuli to the region of the head posteroventral to the quadrate bone, show that Bipes biporus ranks high among amphisbaenians in auditory sensitivity. Images PMID:4506791
Joshi, Varun; Srinivasan, Manoj
2015-02-08
Understanding how humans walk on a surface that can move might provide insights into, for instance, whether walking humans prioritize energy use or stability. Here, motivated by the famous human-driven oscillations observed in the London Millennium Bridge, we introduce a minimal mathematical model of a biped, walking on a platform (bridge or treadmill) capable of lateral movement. This biped model consists of a point-mass upper body with legs that can exert force and perform mechanical work on the upper body. Using numerical optimization, we obtain energy-optimal walking motions for this biped, deriving the periodic body and platform motions that minimize a simple metabolic energy cost. When the platform has an externally imposed sinusoidal displacement of appropriate frequency and amplitude, we predict that body motion entrained to platform motion consumes less energy than walking on a fixed surface. When the platform has finite inertia, a mass- spring-damper with similar parameters to the Millennium Bridge, we show that the optimal biped walking motion sustains a large lateral platform oscillation when sufficiently many people walk on the bridge. Here, the biped model reduces walking metabolic cost by storing and recovering energy from the platform, demonstrating energy benefits for two features observed for walking on the Millennium Bridge: crowd synchrony and large lateral oscillations.
Joshi, Varun; Srinivasan, Manoj
2015-01-01
Understanding how humans walk on a surface that can move might provide insights into, for instance, whether walking humans prioritize energy use or stability. Here, motivated by the famous human-driven oscillations observed in the London Millennium Bridge, we introduce a minimal mathematical model of a biped, walking on a platform (bridge or treadmill) capable of lateral movement. This biped model consists of a point-mass upper body with legs that can exert force and perform mechanical work on the upper body. Using numerical optimization, we obtain energy-optimal walking motions for this biped, deriving the periodic body and platform motions that minimize a simple metabolic energy cost. When the platform has an externally imposed sinusoidal displacement of appropriate frequency and amplitude, we predict that body motion entrained to platform motion consumes less energy than walking on a fixed surface. When the platform has finite inertia, a mass- spring-damper with similar parameters to the Millennium Bridge, we show that the optimal biped walking motion sustains a large lateral platform oscillation when sufficiently many people walk on the bridge. Here, the biped model reduces walking metabolic cost by storing and recovering energy from the platform, demonstrating energy benefits for two features observed for walking on the Millennium Bridge: crowd synchrony and large lateral oscillations. PMID:25663810
Mergner, Thomas; Lippi, Vittorio
2018-01-01
Posture control is indispensable for both humans and humanoid robots, which becomes especially evident when performing sensorimotor tasks such as moving on compliant terrain or interacting with the environment. Posture control is therefore targeted in recent proposals of robot benchmarking in order to advance their development. This Methods article suggests corresponding robot tests of standing balance, drawing inspirations from the human sensorimotor system and presenting examples from robot experiments. To account for a considerable technical and algorithmic diversity among robots, we focus in our tests on basic posture control mechanisms, which provide humans with an impressive postural versatility and robustness. Specifically, we focus on the mechanically challenging balancing of the whole body above the feet in the sagittal plane around the ankle joints in concert with the upper body balancing around the hip joints. The suggested tests target three key issues of human balancing, which appear equally relevant for humanoid bipeds: (1) four basic physical disturbances (support surface (SS) tilt and translation, field and contact forces) may affect the balancing in any given degree of freedom (DoF). Targeting these disturbances allows us to abstract from the manifold of possible behavioral tasks. (2) Posture control interacts in a conflict-free way with the control of voluntary movements for undisturbed movement execution, both with "reactive" balancing of external disturbances and "proactive" balancing of self-produced disturbances from the voluntary movements. Our proposals therefore target both types of disturbances and their superposition. (3) Relevant for both versatility and robustness of the control, linkages between the posture control mechanisms across DoFs provide their functional cooperation and coordination at will and on functional demands. The suggested tests therefore include ankle-hip coordination. Suggested benchmarking criteria build on the evoked sway magnitude, normalized to robot weight and Center of mass (COM) height, in relation to reference ranges that remain to be established. The references may include human likeness features. The proposed benchmarking concept may in principle also be applied to wearable robots, where a human user may command movements, but may not be aware of the additionally required postural control, which then needs to be implemented into the robot.
Mergner, Thomas; Lippi, Vittorio
2018-01-01
Posture control is indispensable for both humans and humanoid robots, which becomes especially evident when performing sensorimotor tasks such as moving on compliant terrain or interacting with the environment. Posture control is therefore targeted in recent proposals of robot benchmarking in order to advance their development. This Methods article suggests corresponding robot tests of standing balance, drawing inspirations from the human sensorimotor system and presenting examples from robot experiments. To account for a considerable technical and algorithmic diversity among robots, we focus in our tests on basic posture control mechanisms, which provide humans with an impressive postural versatility and robustness. Specifically, we focus on the mechanically challenging balancing of the whole body above the feet in the sagittal plane around the ankle joints in concert with the upper body balancing around the hip joints. The suggested tests target three key issues of human balancing, which appear equally relevant for humanoid bipeds: (1) four basic physical disturbances (support surface (SS) tilt and translation, field and contact forces) may affect the balancing in any given degree of freedom (DoF). Targeting these disturbances allows us to abstract from the manifold of possible behavioral tasks. (2) Posture control interacts in a conflict-free way with the control of voluntary movements for undisturbed movement execution, both with “reactive” balancing of external disturbances and “proactive” balancing of self-produced disturbances from the voluntary movements. Our proposals therefore target both types of disturbances and their superposition. (3) Relevant for both versatility and robustness of the control, linkages between the posture control mechanisms across DoFs provide their functional cooperation and coordination at will and on functional demands. The suggested tests therefore include ankle-hip coordination. Suggested benchmarking criteria build on the evoked sway magnitude, normalized to robot weight and Center of mass (COM) height, in relation to reference ranges that remain to be established. The references may include human likeness features. The proposed benchmarking concept may in principle also be applied to wearable robots, where a human user may command movements, but may not be aware of the additionally required postural control, which then needs to be implemented into the robot. PMID:29867428
Real-time physics-based 3D biped character animation using an inverted pendulum model.
Tsai, Yao-Yang; Lin, Wen-Chieh; Cheng, Kuangyou B; Lee, Jehee; Lee, Tong-Yee
2010-01-01
We present a physics-based approach to generate 3D biped character animation that can react to dynamical environments in real time. Our approach utilizes an inverted pendulum model to online adjust the desired motion trajectory from the input motion capture data. This online adjustment produces a physically plausible motion trajectory adapted to dynamic environments, which is then used as the desired motion for the motion controllers to track in dynamics simulation. Rather than using Proportional-Derivative controllers whose parameters usually cannot be easily set, our motion tracking adopts a velocity-driven method which computes joint torques based on the desired joint angular velocities. Physically correct full-body motion of the 3D character is computed in dynamics simulation using the computed torques and dynamical model of the character. Our experiments demonstrate that tracking motion capture data with real-time response animation can be achieved easily. In addition, physically plausible motion style editing, automatic motion transition, and motion adaptation to different limb sizes can also be generated without difficulty.
Sellers, William I; Cain, Gemma M; Wang, Weijie; Crompton, Robin H
2005-01-01
This paper uses techniques from evolutionary robotics to predict the most energy-efficient upright walking gait for the early human relative Australopithecus afarensis, based on the proportions of the 3.2 million year old AL 288-1 ‘Lucy’ skeleton, and matches predictions against the nearly contemporaneous (3.5–3.6 million year old) Laetoli fossil footprint trails. The technique creates gaits de novo and uses genetic algorithm optimization to search for the most efficient patterns of simulated muscular contraction at a variety of speeds. The model was first verified by predicting gaits for living human subjects, and comparing costs, stride lengths and speeds to experimentally determined values for the same subjects. Subsequent simulations for A. afarensis yield estimates of the range of walking speeds from 0.6 to 1.3 m s−1 at a cost of 7.0 J kg−1 m−1 for the lowest speeds, falling to 5.8 J kg−1 m−1 at 1.0 m s−1, and rising to 6.2 J kg−1 m−1 at the maximum speed achieved. Speeds previously estimated for the makers of the Laetoli footprint trails (0.56 or 0.64 m s−1 for Trail 1, 0.72 or 0.75 m s−1 for Trail 2/3) may have been underestimated, substantially so for Trail 2/3, with true values in excess of 0.7 and 1.0 m s−1, respectively. The predictions conflict with suggestions that A. afarensis used a ‘shuffling’ gait, indicating rather that the species was a fully competent biped. PMID:16849203
Proceeding of human exoskeleton technology and discussions on future research
NASA Astrophysics Data System (ADS)
Li, Zhiqiang; Xie, Hanxing; Li, Weilin; Yao, Zheng
2014-05-01
After more than half a century of intense efforts, the development of exoskeleton has seen major advances, and several remarkable achievements have been made. Reviews of developing history of exoskeleton are presented, both in active and passive categories. Major models are introduced, and typical technologies are commented on. Difficulties in control algorithm, driver system, power source, and man-machine interface are discussed. Current researching routes and major developing methods are mapped and critically analyzed, and in the process, some key problems are revealed. First, the exoskeleton is totally different from biped robot, and relative studies based on the robot technologies are considerably incorrect. Second, biomechanical studies are only used to track the motion of the human body, the interaction between human and machines are seldom studied. Third, the traditional developing ways which focused on servo-controlling have inborn deficiency from making portable systems. Research attention should be shifted to the human side of the coupling system, and the human ability to learn and adapt should play a more significant role in the control algorithms. Having summarized the major difficulties, possible future works are discussed. It is argued that, since a distinct boundary cannot be drawn in such strong-coupling human-exoskeleton system, the more complex the control system gets, the more difficult it is for the user to learn to use. It is suggested that the exoskeleton should be treated as a simple wearable tool, and downgrading its automatic level may be a change toward a brighter research outlook. This effort at simplification is definitely not easy, as it necessitates theoretical supports from fields such as biomechanics, ergonomics, and bionics.
Macey, J Robert; Papenfuss, Theodore J; Kuehl, Jennifer V; Fourcade, H Mathew; Boore, Jeffrey L
2004-10-01
Complete mitochondrial genomic sequences are reported from 12 members in the four families of the reptile group Amphisbaenia. Analysis of 11,946 aligned nucleotide positions (5797 informative) produces a robust phylogenetic hypothesis. The family Rhineuridae is basal and Bipedidae is the sister taxon to the Amphisbaenidae plus Trogonophidae. Amphisbaenian reptiles are surprisingly old, predating the breakup of Pangaea 200 million years before present, because successive basal taxa (Rhineuridae and Bipedidae) are situated in tectonic regions of Laurasia and nested taxa (Amphisbaenidae and Trogonophidae) are found in Gondwanan regions. Thorough sampling within the Bipedidae shows that it is not tectonic movement of Baja California away from the Mexican mainland that is primary in isolating Bipes species, but rather that primary vicariance occurred between northern and southern groups. Amphisbaenian families show parallel reduction in number of limbs and Bipes species exhibit parallel reduction in number of digits. A measure is developed for comparing the phylogenetic information content of various genes. A synapomorphic trait defining the Bipedidae is a shift from the typical vertebrate mitochondrial gene arrangement to the derived state of trnE and nad6. In addition, a tandem duplication of trnT and trnP is observed in Bipes biporus with a pattern of pseudogene formation that varies among populations. The first case of convergent rearrangement of the mitochondrial genome among animals demonstrated by complete genomic sequences is reported. Relative to most vertebrates, the Rhineuridae has the block nad6, trnE switched in order with the block cob, trnT, trnP, as they are in birds.
Miller Buffinton, Christine; Buffinton, Elise M; Bieryla, Kathleen A; Pratt, Jerry E
2016-03-01
Balance-recovery stepping is often necessary for both a human and humanoid robot to avoid a fall by taking a single step or multiple steps after an external perturbation. The determination of where to step to come to a complete stop has been studied, but little is known about the strategy for initiation of forward motion from the static position following such a step. The goal of this study was to examine the human strategy for stepping by moving the back foot forward from a static, double-support position, comparing parameters from normal step length (SL) to those from increasing SLs to the point of step failure, to provide inspiration for a humanoid control strategy. Healthy young adults instrumented with joint reflective markers executed a prescribed-length step from rest while marker positions and ground reaction forces (GRFs) were measured. The participants were scaled to the Gait2354 model in opensim software to calculate body kinematic and joint kinetic parameters, with further post-processing in matlab. With increasing SL, participants reduced both static and push-off back-foot GRF. Body center of mass (CoM) lowered and moved forward, with additional lowering at the longer steps, and followed a path centered within the initial base of support (BoS). Step execution was successful if participants gained enough forward momentum at toe-off to move the instantaneous capture point (ICP) to within the BoS defined by the final position of both feet on the front force plate. All lower extremity joint torques increased with SL except ankle joint. Front knee work increased dramatically with SL, accompanied by decrease in back-ankle work. As SL increased, the human strategy changed, with participants shifting their CoM forward and downward before toe-off, thus gaining forward momentum, while using less propulsive work from the back ankle and engaging the front knee to straighten the body. The results have significance for human motion, suggesting the upper limit of the SL that can be completed with back-ankle push-off before additional knee flexion and torque is needed. For biped control, the results support stability based on capture-point dynamics and suggest strategy for center-of-mass trajectory and distribution of ground force reactions that can be compared with robot controllers for initiation of gait after recovery steps.
Spatio-temporal features for tracking and quadruped/biped discrimination
NASA Astrophysics Data System (ADS)
Rickman, Rick; Copsey, Keith; Bamber, David C.; Page, Scott F.
2012-05-01
Techniques such as SIFT and SURF facilitate efficient and robust image processing operations through the use of sparse and compact spatial feature descriptors and show much potential for defence and security applications. This paper considers the extension of such techniques to include information from the temporal domain, to improve utility in applications involving moving imagery within video data. In particular, the paper demonstrates how spatio-temporal descriptors can be used very effectively as the basis of a target tracking system and as target discriminators which can distinguish between bipeds and quadrupeds. Results using sequences of video imagery of walking humans and dogs are presented, and the relative merits of the approach are discussed.
NASA Astrophysics Data System (ADS)
Wang, Mingfeng; Ceccarelli, Marco
2015-07-01
Three-degree of freedom(3-DOF) translational parallel manipulators(TPMs) have been widely studied both in industry and academia in the past decades. However, most architectures of 3-DOF TPMs are created mainly on designers' intuition, empirical knowledge, or associative reasoning and the topology synthesis researches of 3-DOF TPMs are still limited. In order to find out the atlas of designs for 3-DOF TPMs, a topology search is presented for enumeration of 3-DOF TPMs whose limbs can be modeled as 5-DOF serial chains. The proposed topology search of 3-DOF TPMs is aimed to overcome the sensitivities of the design solution of a 3-DOF TPM for a LARM leg mechanism in a biped robot. The topology search, which is based on the concept of generation and specialization in graph theory, is reported as a step-by-step procedure with desired specifications, principle and rules of generalization, design requirements and constraints, and algorithm of number synthesis. In order to obtain new feasible designs for a chosen example and to limit the search domain under general considerations, one topological generalized kinematic chain is chosen to be specialized. An atlas of new feasible designs is obtained and analyzed for a specific solution as leg mechanisms. The proposed methodology provides a topology search for 3-DOF TPMs for leg mechanisms, but it can be also expanded for other applications and tasks.
Quantifying dynamic characteristics of human walking for comprehensive gait cycle.
Mummolo, Carlotta; Mangialardi, Luigi; Kim, Joo H
2013-09-01
Normal human walking typically consists of phases during which the body is statically unbalanced while maintaining dynamic stability. Quantifying the dynamic characteristics of human walking can provide better understanding of gait principles. We introduce a novel quantitative index, the dynamic gait measure (DGM), for comprehensive gait cycle. The DGM quantifies the effects of inertia and the static balance instability in terms of zero-moment point and ground projection of center of mass and incorporates the time-varying foot support region (FSR) and the threshold between static and dynamic walking. Also, a framework of determining the DGM from experimental data is introduced, in which the gait cycle segmentation is further refined. A multisegmental foot model is integrated into a biped system to reconstruct the walking motion from experiments, which demonstrates the time-varying FSR for different subphases. The proof-of-concept results of the DGM from a gait experiment are demonstrated. The DGM results are analyzed along with other established features and indices of normal human walking. The DGM provides a measure of static balance instability of biped walking during each (sub)phase as well as the entire gait cycle. The DGM of normal human walking has the potential to provide some scientific insights in understanding biped walking principles, which can also be useful for their engineering and clinical applications.
Mittal, Nikita; Özer, Merve S; Schmittel, Michael
2018-04-02
A three-component supramolecular walker system is presented where a two-footed ligand (biped) walks back and forth on a tetrahedral 3D track upon the addition and removal of copper(I) ions, respectively. The addition of N-methylpyrrolidine as a catalyst to the walker system generates a four-component catalytic machinery, which acts as a three-state switchable catalytic ensemble in the presence of substrates for a conjugate addition. The copper(I)-ion-initiated walking process of the biped ligand on the track regulates the catalytic activity in three steps: ON versus int ON (intermediate ON) versus OFF. To establish the operation of the four-component catalytic machinery in a mixture of all constituents, forward and backward cycles were performed in situ illustrating that both the walking process and catalytic action are fully reversible and reproducible.
Maneuvers during legged locomotion
NASA Astrophysics Data System (ADS)
Jindrich, Devin L.; Qiao, Mu
2009-06-01
Maneuverability is essential for locomotion. For animals in the environment, maneuverability is directly related to survival. For humans, maneuvers such as turning are associated with increased risk for injury, either directly through tissue loading or indirectly through destabilization. Consequently, understanding the mechanics and motor control of maneuverability is a critical part of locomotion research. We briefly review the literature on maneuvering during locomotion with a focus on turning in bipeds. Walking turns can use one of several different strategies. Anticipation can be important to adjust kinematics and dynamics for smooth and stable maneuvers. During running, turns may be substantially constrained by the requirement for body orientation to match movement direction at the end of a turn. A simple mathematical model based on the requirement for rotation to match direction can describe leg forces used by bipeds (humans and ostriches). During running turns, both humans and ostriches control body rotation by generating fore-aft forces. However, whereas humans must generate large braking forces to prevent body over-rotation, ostriches do not. For ostriches, generating the lateral forces necessary to change movement direction results in appropriate body rotation. Although ostriches required smaller braking forces due in part to increased rotational inertia relative to body mass, other movement parameters also played a role. Turning performance resulted from the coordinated behavior of an integrated biomechanical system. Results from preliminary experiments on horizontal-plane stabilization support the hypothesis that controlling body rotation is an important aspect of stable maneuvers. In humans, body orientation relative to movement direction is rapidly stabilized during running turns within the minimum of two steps theoretically required to complete analogous maneuvers. During straight running and cutting turns, humans exhibit spring-mass behavior in the horizontal plane. Changes in the horizontal projection of leg length were linearly related to changes in horizontal-plane leg forces. Consequently, the passive dynamic stabilization associated with spring-mass behavior may contribute to stability during maneuvers in bipeds. Understanding the mechanics of maneuverability will be important for understanding the motor control of maneuvers and also potentially be useful for understanding stability.
Conway Morris: Extraterrestrials: Aliens like us?
NASA Astrophysics Data System (ADS)
Morris, Simon Conway
2005-08-01
So what are they going to be like, those long-expected extraterrestrials? Hideous hydrocarbon arachnoids, waving laser cannons as they chase screaming humans, repulsively surveying the scene through empathy-free compound eyes? Or maybe laughing bipeds, chatting away, holding a glass of wine, a bit like us?
NASA Astrophysics Data System (ADS)
Arıcı, Mürsel; Yeşilel, Okan Zafer; Taş, Murat
2017-01-01
Three new Cd(II)-coordination polymers, namely, {[Cd2(μ6-ao2btc)(μ-1,5-bipe)2]·2H2O}n (1), {[Cd2(μ6-ao2btc)(μ-1,4-bix)2]n·2DMF} (2) and {[Cd2(μ8-abtc)(μ-1,4-betix)]·DMF·H2O}n (3) (ao2btc=di-oxygenated form of 3,3‧,5,5‧-azobenzenetetracarboxylate, 1,5-bipe: 1,5-bis(imidazol-1yl)pentane, 1,4-bix=1,4-bis(imidazol-1ylmethyl)benzene, 1,4-betix=1,4-bis(2-ethylimidazol-1ylmethyl)benzene) were synthesized with 3,3‧,5,5‧-azobenzenetetracarboxylic acid and flexible, semi-flexible and semi-flexible substituted bis(imidazole) linkers. They were characterized by IR spectroscopy, elemental analysis, single-crystal X-ray diffraction, powder X-ray diffractions (PXRD) and thermal analyses (TG/DTA). Complexes 1-3 exhibited structural diversities depending on flexible, semi-flexible and semi-flexible substituted bis(imidazole) ligands. Complex 1 was 2D structure with 3,6L18 topology. Complex 2 had a 3D pillar-layered framework with the rare sqc27 topology. When semi-flexible substituted bis(imidazole) linker was used, 3D framework of complex 3 was obtained with the paddlewheel Cd2(CO2)4-type binuclear SBU. Moreover, thermal and photoluminescence properties of the complexes were determined in detailed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Macey, J. Robert; Papenfuss, Theodore J.; Kuehl, Jennifer V.
2004-05-19
Complete mitochondrial genomic sequences are reported from 12 members in the four families of the reptile group Amphisbaenia. Analysis of 11,946 aligned nucleotide positions (5,797 informative) produces a robust phylogenetic hypothesis. The family Rhineuridae is basal and Bipedidae is the sister taxon to the Amphisbaenidae plus Trogonophidae. Amphisbaenian reptiles are surprisingly old, predating the breakup of Pangaea 200 million years before present, because successive basal taxa (Rhineuridae and Bipedidae) are situated in tectonic regions of Laurasia and nested taxa (Amphisbaenidae and Trogonophidae) are found in Gondwanan regions. Thorough sampling within the Bipedidae shows that it is not tectonic movement ofmore » Baja California away from the Mexican mainland that is primary in isolating Bipes species, but rather that primary vicariance occurred between northern and southern groups. Amphisbaenian families show parallel reduction in number of limbs and Bipes species exhibit parallel reduction in number of digits. A measure is developed for comparing the phylogenetic information content of various genes. A synapomorphic trait defining the Bipedidae is a shift from the typical vertebrate mitochondrial gene arrangement to the derived state of trnE and nad6. In addition, a tandem duplication of trnT and trnP is observed in B. biporus with a pattern of pseudogene formation that varies among populations. The first case of convergent rearrangement of the mitochondrial genome among animals demonstrated by complete genomic sequences is reported. Relative to most vertebrates, the Rhineuridae has the block nad6, trnE switched in order with cob, trnT, trnP, as they are in birds.« less
Defining the Scope of Systems of Care: An Ecological Perspective
ERIC Educational Resources Information Center
Cook, James R.; Kilmer, Ryan P.
2010-01-01
The definition of a system of care (SOC) can guide those intending to develop and sustain SOCs. Hodges, Ferreira, Israel, and Mazza [Hodges, S., Ferreira, K., Israel, N., & Mazza, J. (in press). "Systems of care, featherless bipeds, and the measure of all things." "Evaluation and Program Planning"] have emphasized contexts in which services are…
NASA Astrophysics Data System (ADS)
Gritli, Hassène; Belghith, Safya
2017-06-01
An analysis of the passive dynamic walking of a compass-gait biped model under the OGY-based control approach using the impulsive hybrid nonlinear dynamics is presented in this paper. We describe our strategy for the development of a simplified analytical expression of a controlled hybrid Poincaré map and then for the design of a state-feedback control. Our control methodology is based mainly on the linearization of the impulsive hybrid nonlinear dynamics around a desired nominal one-periodic hybrid limit cycle. Our analysis of the controlled walking dynamics is achieved by means of bifurcation diagrams. Some interesting nonlinear phenomena are displayed, such as the period-doubling bifurcation, the cyclic-fold bifurcation, the period remerging, the period bubbling and chaos. A comparison between the raised phenomena in the impulsive hybrid nonlinear dynamics and the hybrid Poincaré map under control was also presented.
Bishop, P J; Clemente, C J; Weems, R E; Graham, D F; Lamas, L P; Hutchinson, J R; Rubenson, J; Wilson, R S; Hocknull, S A; Barrett, R S; Lloyd, D G
2017-07-01
How extinct, non-avian theropod dinosaurs locomoted is a subject of considerable interest, as is the manner in which it evolved on the line leading to birds. Fossil footprints provide the most direct evidence for answering these questions. In this study, step width-the mediolateral (transverse) distance between successive footfalls-was investigated with respect to speed (stride length) in non-avian theropod trackways of Late Triassic age. Comparable kinematic data were also collected for humans and 11 species of ground-dwelling birds. Permutation tests of the slope on a plot of step width against stride length showed that step width decreased continuously with increasing speed in the extinct theropods ( p < 0.001), as well as the five tallest bird species studied ( p < 0.01). Humans, by contrast, showed an abrupt decrease in step width at the walk-run transition. In the modern bipeds, these patterns reflect the use of either a discontinuous locomotor repertoire, characterized by distinct gaits (humans), or a continuous locomotor repertoire, where walking smoothly transitions into running (birds). The non-avian theropods are consequently inferred to have had a continuous locomotor repertoire, possibly including grounded running. Thus, features that characterize avian terrestrial locomotion had begun to evolve early in theropod history. © 2017 The Author(s).
Persons, W Scott; Currie, Philip J
2017-05-07
Bipedalism is a trait basal to, and widespread among, dinosaurs. It has been previously argued that bipedalism arose in the ancestors of dinosaurs for the function of freeing the forelimbs to serve as predatory weapons. However, this argument does not explain why bipedalism was retained among numerous herbivorous groups of dinosaurs. We argue that bipedalism arose in the dinosaur line for the purpose of enhanced cursoriality. Modern facultatively bipedal lizards offer an analog for the first stages in the evolution of dinosaurian bipedalism. Many extant lizards assume a bipedal stance while attempting to flee predators at maximum speed. Bipedalism, when combined with a caudofemoralis musculature, has cursorial advantages because the caudofemoralis provides a greater source of propulsion to the hindlimbs than is generally available to the forelimbs. That cursorial advantage explains the relative abundance of cursorial facultative bipeds and obligate bipeds among fossil diapsids and the relative scarcity of either among mammals. Having lost their caudofemoralis in the Permian, perhaps in the context of adapting to a fossorial lifestyle, the mammalian line has been disinclined towards bipedalism, but, having never lost the caudofemoralis of their ancestors, cursorial avemetatarsalians (bird-line archosaurs) were naturally inclined towards bipedalism. Copyright © 2017 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Faria, Carlos; Vale, Carolina; Machado, Toni; Erlhagen, Wolfram; Rito, Manuel; Monteiro, Sérgio; Bicho, Estela
2016-01-01
Robotics has been playing an important role in modern surgery, especially in procedures that require extreme precision, such as neurosurgery. This paper addresses the challenge of teaching robotics to undergraduate engineering students, through an experiential learning project of robotics fundamentals based on a case study of robot-assisted…
Older adults' acceptance of a robot for partner dance-based exercise.
Chen, Tiffany L; Bhattacharjee, Tapomayukh; Beer, Jenay M; Ting, Lena H; Hackney, Madeleine E; Rogers, Wendy A; Kemp, Charles C
2017-01-01
Partner dance has been shown to be beneficial for the health of older adults. Robots could potentially facilitate healthy aging by engaging older adults in partner dance-based exercise. However, partner dance involves physical contact between the dancers, and older adults would need to be accepting of partner dancing with a robot. Using methods from the technology acceptance literature, we conducted a study with 16 healthy older adults to investigate their acceptance of robots for partner dance-based exercise. Participants successfully led a human-scale wheeled robot with arms (i.e., a mobile manipulator) in a simple, which we refer to as the Partnered Stepping Task (PST). Participants led the robot by maintaining physical contact and applying forces to the robot's end effectors. According to questionnaires, participants were generally accepting of the robot for partner dance-based exercise, tending to perceive it as useful, easy to use, and enjoyable. Participants tended to perceive the robot as easier to use after performing the PST with it. Through a qualitative data analysis of structured interview data, we also identified facilitators and barriers to acceptance of robots for partner dance-based exercise. Throughout the study, our robot used admittance control to successfully dance with older adults, demonstrating the feasibility of this method. Overall, our results suggest that robots could successfully engage older adults in partner dance-based exercise.
Perception for mobile robot navigation: A survey of the state of the art
NASA Technical Reports Server (NTRS)
Kortenkamp, David
1994-01-01
In order for mobile robots to navigate safely in unmapped and dynamic environments they must perceive their environment and decide on actions based on those perceptions. There are many different sensing modalities that can be used for mobile robot perception; the two most popular are ultrasonic sonar sensors and vision sensors. This paper examines the state-of-the-art in sensory-based mobile robot navigation. The first issue in mobile robot navigation is safety. This paper summarizes several competing sonar-based obstacle avoidance techniques and compares them. Another issue in mobile robot navigation is determining the robot's position and orientation (sometimes called the robot's pose) in the environment. This paper examines several different classes of vision-based approaches to pose determination. One class of approaches uses detailed, a prior models of the robot's environment. Another class of approaches triangulates using fixed, artificial landmarks. A third class of approaches builds maps using natural landmarks. Example implementations from each of these three classes are described and compared. Finally, the paper presents a completely implemented mobile robot system that integrates sonar-based obstacle avoidance with vision-based pose determination to perform a simple task.
Study of the Navigation Method for a Snake Robot Based on the Kinematics Model with MEMS IMU.
Zhao, Xu; Dou, Lihua; Su, Zhong; Liu, Ning
2018-03-16
A snake robot is a type of highly redundant mobile robot that significantly differs from a tracked robot, wheeled robot and legged robot. To address the issue of a snake robot performing self-localization in the application environment without assistant orientation, an autonomous navigation method is proposed based on the snake robot's motion characteristic constraints. The method realized the autonomous navigation of the snake robot with non-nodes and an external assistant using its own Micro-Electromechanical-Systems (MEMS) Inertial-Measurement-Unit (IMU). First, it studies the snake robot's motion characteristics, builds the kinematics model, and then analyses the motion constraint characteristics and motion error propagation properties. Second, it explores the snake robot's navigation layout, proposes a constraint criterion and the fixed relationship, and makes zero-state constraints based on the motion features and control modes of a snake robot. Finally, it realizes autonomous navigation positioning based on the Extended-Kalman-Filter (EKF) position estimation method under the constraints of its motion characteristics. With the self-developed snake robot, the test verifies the proposed method, and the position error is less than 5% of Total-Traveled-Distance (TDD). In a short-distance environment, this method is able to meet the requirements of a snake robot in order to perform autonomous navigation and positioning in traditional applications and can be extended to other familiar multi-link robots.
Designing speech-based interfaces for telepresence robots for people with disabilities.
Tsui, Katherine M; Flynn, Kelsey; McHugh, Amelia; Yanco, Holly A; Kontak, David
2013-06-01
People with cognitive and/or motor impairments may benefit from using telepresence robots to engage in social activities. To date, these robots, their user interfaces, and their navigation behaviors have not been designed for operation by people with disabilities. We conducted an experiment in which participants (n=12) used a telepresence robot in a scavenger hunt task to determine how they would use speech to command the robot. Based upon the results, we present design guidelines for speech-based interfaces for telepresence robots.
Older adults’ acceptance of a robot for partner dance-based exercise
Chen, Tiffany L.; Beer, Jenay M.; Ting, Lena H.; Hackney, Madeleine E.; Rogers, Wendy A.; Kemp, Charles C.
2017-01-01
Partner dance has been shown to be beneficial for the health of older adults. Robots could potentially facilitate healthy aging by engaging older adults in partner dance-based exercise. However, partner dance involves physical contact between the dancers, and older adults would need to be accepting of partner dancing with a robot. Using methods from the technology acceptance literature, we conducted a study with 16 healthy older adults to investigate their acceptance of robots for partner dance-based exercise. Participants successfully led a human-scale wheeled robot with arms (i.e., a mobile manipulator) in a simple, which we refer to as the Partnered Stepping Task (PST). Participants led the robot by maintaining physical contact and applying forces to the robot’s end effectors. According to questionnaires, participants were generally accepting of the robot for partner dance-based exercise, tending to perceive it as useful, easy to use, and enjoyable. Participants tended to perceive the robot as easier to use after performing the PST with it. Through a qualitative data analysis of structured interview data, we also identified facilitators and barriers to acceptance of robots for partner dance-based exercise. Throughout the study, our robot used admittance control to successfully dance with older adults, demonstrating the feasibility of this method. Overall, our results suggest that robots could successfully engage older adults in partner dance-based exercise. PMID:29045408
Feasibility of Synergy-Based Exoskeleton Robot Control in Hemiplegia.
Hassan, Modar; Kadone, Hideki; Ueno, Tomoyuki; Hada, Yasushi; Sankai, Yoshiyuki; Suzuki, Kenji
2018-06-01
Here, we present a study on exoskeleton robot control based on inter-limb locomotor synergies using a robot control method developed to target hemiparesis. The robot control is based on inter-limb locomotor synergies and kinesiological information from the non-paretic leg and a walking aid cane to generate motion patterns for the assisted leg. The developed synergy-based system was tested against an autonomous robot control system in five patients with hemiparesis and varying locomotor abilities. Three of the participants were able to walk using the robot. Results from these participants showed an improved spatial symmetry ratio and more consistent step length with the synergy-based method compared with that for the autonomous method, while the increase in the range of motion for the assisted joints was larger with the autonomous system. The kinematic synergy distribution of the participants walking without the robot suggests a relationship between each participant's synergy distribution and his/her ability to control the robot: participants with two independent synergies accounting for approximately 80% of the data variability were able to walk with the robot. This observation was not consistently apparent with conventional clinical measures such as the Brunnstrom stages. This paper contributes to the field of robot-assisted locomotion therapy by introducing the concept of inter-limb synergies, demonstrating performance differences between synergy-based and autonomous robot control, and investigating the range of disability in which the system is usable.
ERIC Educational Resources Information Center
Cappelleri, D. J.; Vitoroulis, N.
2013-01-01
This paper presents a series of novel project-based learning labs for an introductory robotics course that are developed into a semester-long Robotic Decathlon. The last three events of the Robotic Decathlon are used as three final one-week-long project tasks; these replace a previous course project that was a semester-long robotics competition.…
NASA Astrophysics Data System (ADS)
Zheng, Taixiong
2005-12-01
A neuro-fuzzy network based approach for robot motion in an unknown environment was proposed. In order to control the robot motion in an unknown environment, the behavior of the robot was classified into moving to the goal and avoiding obstacles. Then, according to the dynamics of the robot and the behavior character of the robot in an unknown environment, fuzzy control rules were introduced to control the robot motion. At last, a 6-layer neuro-fuzzy network was designed to merge from what the robot sensed to robot motion control. After being trained, the network may be used for robot motion control. Simulation results show that the proposed approach is effective for robot motion control in unknown environment.
The use of automation and robotic systems to establish and maintain lunar base operations
NASA Technical Reports Server (NTRS)
Petrosky, Lyman J.
1992-01-01
Robotic systems provide a means of performing many of the operations required to establish and maintain a lunar base. They form a synergistic system when properly used in concert with human activities. This paper discusses the various areas where robotics and automation may be used to enhance lunar base operations. Robots are particularly well suited for surface operations (exterior to the base habitat modules) because they can be designed to operate in the extreme temperatures and vacuum conditions of the Moon (or Mars). In this environment, the capabilities of semi-autonomous robots would surpass that of humans in all but the most complex tasks. Robotic surface operations include such activities as long range geological and mineralogical surveys with sample return, materials movement in and around the base, construction of radiation barriers around habitats, transfer of materials over large distances, and construction of outposts. Most of the above operations could be performed with minor modifications to a single basic robotic rover. Within the lunar base habitats there are a few areas where robotic operations would be preferable to human operations. Such areas include routine inspections for leakage in the habitat and its systems, underground transfer of materials between habitats, and replacement of consumables. In these and many other activities, robotic systems will greatly enhance lunar base operations. The robotic systems described in this paper are based on what is realistically achievable with relatively near term technology. A lunar base can be built and maintained if we are willing.
Mirheydar, Hossein S; Parsons, J Kellogg
2013-06-01
Robotic technology disseminated into urological practice without robust comparative effectiveness data. To review the diffusion of robotic surgery into urological practice. We performed a comprehensive literature review focusing on diffusion patterns, patient safety, learning curves, and comparative costs for robotic radical prostatectomy, partial nephrectomy, and radical cystectomy. Robotic urologic surgery diffused in patterns typical of novel technology spreading among practicing surgeons. Robust evidence-based data comparing outcomes of robotic to open surgery were sparse. Although initial Level 3 evidence for robotic prostatectomy observed complication outcomes similar to open prostatectomy, subsequent population-based Level 2 evidence noted an increased prevalence of adverse patient safety events and genitourinary complications among robotic patients during the early years of diffusion. Level 2 evidence indicated comparable to improved patient safety outcomes for robotic compared to open partial nephrectomy and cystectomy. Learning curve recommendations for robotic urologic surgery have drawn exclusively on Level 4 evidence and subjective, non-validated metrics. The minimum number of cases required to achieve competency for robotic prostatectomy has increased to unrealistically high levels. Most comparative cost-analyses have demonstrated that robotic surgery is significantly more expensive than open or laparoscopic surgery. Evidence-based data are limited but suggest an increased prevalence of adverse patient safety events for robotic prostatectomy early in the national diffusion period. Learning curves for robotic urologic surgery are subjective and based on non-validated metrics. The urological community should develop rigorous, evidence-based processes by which future technological innovations may diffuse in an organized and safe manner.
Laser-based pedestrian tracking in outdoor environments by multiple mobile robots.
Ozaki, Masataka; Kakimuma, Kei; Hashimoto, Masafumi; Takahashi, Kazuhiko
2012-10-29
This paper presents an outdoors laser-based pedestrian tracking system using a group of mobile robots located near each other. Each robot detects pedestrians from its own laser scan image using an occupancy-grid-based method, and the robot tracks the detected pedestrians via Kalman filtering and global-nearest-neighbor (GNN)-based data association. The tracking data is broadcast to multiple robots through intercommunication and is combined using the covariance intersection (CI) method. For pedestrian tracking, each robot identifies its own posture using real-time-kinematic GPS (RTK-GPS) and laser scan matching. Using our cooperative tracking method, all the robots share the tracking data with each other; hence, individual robots can always recognize pedestrians that are invisible to any other robot. The simulation and experimental results show that cooperating tracking provides the tracking performance better than conventional individual tracking does. Our tracking system functions in a decentralized manner without any central server, and therefore, this provides a degree of scalability and robustness that cannot be achieved by conventional centralized architectures.
Understanding of Android-Based Robotic and Game Structure
NASA Astrophysics Data System (ADS)
Phongtraychack, A.; Syryamkin, V.
2018-05-01
The development of an android with impressive lifelike appearance and behavior has been a long-standing goal in robotics and a new and exciting approach of smartphone-based robotics for research and education. Recent years have been progressive for many technologies, which allowed creating such androids. There are different examples including the autonomous Erica android system capable of conversational interaction and speech synthesis technologies. The behavior of Android-based robot could be running on the phone as the robot performed a task outdoors. In this paper, we present an overview and understanding of the platform of Android-based robotic and game structure for research and education.
Launchable and Retrievable Tetherobot
NASA Technical Reports Server (NTRS)
Younse, Paulo; Aghazarian, Hrand
2010-01-01
A proposed robotic system for scientific exploration of rough terrain would include a stationary or infrequently moving larger base robot, to which would be tethered a smaller hopping robot of the type described in the immediately preceding article. The two-robot design would extend the reach of the base robot, making it possible to explore nearby locations that might otherwise be inaccessible or too hazardous for the base robot. The system would include a launching mechanism and a motor-driven reel on the larger robot. The outer end of the tether would be attached to the smaller robot; the inner end of the tether would be attached to the reel. The figure depicts the launching and retrieval process. The launching mechanism would aim and throw the smaller robot toward a target location, and the tether would be paid out from the reel as the hopping robot flew toward the target. Upon completion of exploratory activity at the target location, the smaller robot would be made to hop and, in a coordinated motion, the tether would be wound onto the reel to pull the smaller robot back to the larger one.
NASA Technical Reports Server (NTRS)
Erickson, Jon D. (Editor)
1992-01-01
The present volume on cooperative intelligent robotics in space discusses sensing and perception, Space Station Freedom robotics, cooperative human/intelligent robot teams, and intelligent space robotics. Attention is given to space robotics reasoning and control, ground-based space applications, intelligent space robotics architectures, free-flying orbital space robotics, and cooperative intelligent robotics in space exploration. Topics addressed include proportional proximity sensing for telerobots using coherent lasar radar, ground operation of the mobile servicing system on Space Station Freedom, teleprogramming a cooperative space robotic workcell for space stations, and knowledge-based task planning for the special-purpose dextrous manipulator. Also discussed are dimensions of complexity in learning from interactive instruction, an overview of the dynamic predictive architecture for robotic assistants, recent developments at the Goddard engineering testbed, and parallel fault-tolerant robot control.
Yap, Hwa Jen; Taha, Zahari; Md Dawal, Siti Zawiah; Chang, Siow-Wee
2014-01-01
Traditional robotic work cell design and programming are considered inefficient and outdated in current industrial and market demands. In this research, virtual reality (VR) technology is used to improve human-robot interface, whereby complicated commands or programming knowledge is not required. The proposed solution, known as VR-based Programming of a Robotic Work Cell (VR-Rocell), consists of two sub-programmes, which are VR-Robotic Work Cell Layout (VR-RoWL) and VR-based Robot Teaching System (VR-RoT). VR-RoWL is developed to assign the layout design for an industrial robotic work cell, whereby VR-RoT is developed to overcome safety issues and lack of trained personnel in robot programming. Simple and user-friendly interfaces are designed for inexperienced users to generate robot commands without damaging the robot or interrupting the production line. The user is able to attempt numerous times to attain an optimum solution. A case study is conducted in the Robotics Laboratory to assemble an electronics casing and it is found that the output models are compatible with commercial software without loss of information. Furthermore, the generated KUKA commands are workable when loaded into a commercial simulator. The operation of the actual robotic work cell shows that the errors may be due to the dynamics of the KUKA robot rather than the accuracy of the generated programme. Therefore, it is concluded that the virtual reality based solution approach can be implemented in an industrial robotic work cell. PMID:25360663
Yap, Hwa Jen; Taha, Zahari; Dawal, Siti Zawiah Md; Chang, Siow-Wee
2014-01-01
Traditional robotic work cell design and programming are considered inefficient and outdated in current industrial and market demands. In this research, virtual reality (VR) technology is used to improve human-robot interface, whereby complicated commands or programming knowledge is not required. The proposed solution, known as VR-based Programming of a Robotic Work Cell (VR-Rocell), consists of two sub-programmes, which are VR-Robotic Work Cell Layout (VR-RoWL) and VR-based Robot Teaching System (VR-RoT). VR-RoWL is developed to assign the layout design for an industrial robotic work cell, whereby VR-RoT is developed to overcome safety issues and lack of trained personnel in robot programming. Simple and user-friendly interfaces are designed for inexperienced users to generate robot commands without damaging the robot or interrupting the production line. The user is able to attempt numerous times to attain an optimum solution. A case study is conducted in the Robotics Laboratory to assemble an electronics casing and it is found that the output models are compatible with commercial software without loss of information. Furthermore, the generated KUKA commands are workable when loaded into a commercial simulator. The operation of the actual robotic work cell shows that the errors may be due to the dynamics of the KUKA robot rather than the accuracy of the generated programme. Therefore, it is concluded that the virtual reality based solution approach can be implemented in an industrial robotic work cell.
Concept and design philosophy of a person-accompanying robot
NASA Astrophysics Data System (ADS)
Mizoguchi, Hiroshi; Shigehara, Takaomi; Goto, Yoshiyasu; Hidai, Ken-ichi; Mishima, Taketoshi
1999-01-01
This paper proposes a person accompanying robot as a novel human collaborative robot. The person accompanying robot is such legged mobile robot that is possible to follow the person utilizing its vision. towards future aging society, human collaboration and human support are required as novel applications of robots. Such human collaborative robots share the same space with humans. But conventional robots are isolated from humans and lack the capability to observe humans. Study on human observing function of robot is crucial to realize novel robot such as service and pet robot. To collaborate and support humans properly human collaborative robot must have capability to observe and recognize humans. Study on human observing function of robot is crucial to realize novel robot such as service and pet robot. The authors are currently implementing a prototype of the proposed accompanying robot.As a base for the human observing function of the prototype robot, we have realized face tracking utilizing skin color extraction and correlation based tracking. We also develop a method for the robot to pick up human voice clearly and remotely by utilizing microphone arrays. Results of these preliminary study suggest feasibility of the proposed robot.
Baykal, Cenk; Torres, Luis G; Alterovitz, Ron
2015-09-28
Concentric tube robots are tentacle-like medical robots that can bend around anatomical obstacles to access hard-to-reach clinical targets. The component tubes of these robots can be swapped prior to performing a task in order to customize the robot's behavior and reachable workspace. Optimizing a robot's design by appropriately selecting tube parameters can improve the robot's effectiveness on a procedure-and patient-specific basis. In this paper, we present an algorithm that generates sets of concentric tube robot designs that can collectively maximize the reachable percentage of a given goal region in the human body. Our algorithm combines a search in the design space of a concentric tube robot using a global optimization method with a sampling-based motion planner in the robot's configuration space in order to find sets of designs that enable motions to goal regions while avoiding contact with anatomical obstacles. We demonstrate the effectiveness of our algorithm in a simulated scenario based on lung anatomy.
Bearing-based localization for leader-follower formation control
Han, Qing; Ren, Shan; Lang, Hao; Zhang, Changliang
2017-01-01
The observability of the leader robot system and the leader-follower formation control are studied. First, the nonlinear observability is studied for when the leader robot observes landmarks. Second, the system is shown to be completely observable when the leader robot observes two different landmarks. When the leader robot system is observable, multi-robots can rapidly form and maintain a formation based on the bearing-only information that the follower robots observe from the leader robot. Finally, simulations confirm the effectiveness of the proposed formation control. PMID:28426706
Characteristics of Behavior of Robots with Emotion Model
NASA Astrophysics Data System (ADS)
Sato, Shigehiko; Nozawa, Akio; Ide, Hideto
Cooperated multi robots system has much dominance in comparison with single robot system. It is able to adapt to various circumstances and has a flexibility for variation of tasks. However it has still problems to control each robot, though methods for control multi robots system have been studied. Recently, the robots have been coming into real scene. And emotion and sensitivity of the robots have been widely studied. In this study, human emotion model based on psychological interaction was adapt to multi robots system to achieve methods for organization of multi robots. The characteristics of behavior of multi robots system achieved through computer simulation were analyzed. As a result, very complexed and interesting behavior was emerged even though it has rather simple configuration. And it has flexiblity in various circumstances. Additional experiment with actual robots will be conducted based on the emotion model.
A Vision-Based Self-Calibration Method for Robotic Visual Inspection Systems
Yin, Shibin; Ren, Yongjie; Zhu, Jigui; Yang, Shourui; Ye, Shenghua
2013-01-01
A vision-based robot self-calibration method is proposed in this paper to evaluate the kinematic parameter errors of a robot using a visual sensor mounted on its end-effector. This approach could be performed in the industrial field without external, expensive apparatus or an elaborate setup. A robot Tool Center Point (TCP) is defined in the structural model of a line-structured laser sensor, and aligned to a reference point fixed in the robot workspace. A mathematical model is established to formulate the misalignment errors with kinematic parameter errors and TCP position errors. Based on the fixed point constraints, the kinematic parameter errors and TCP position errors are identified with an iterative algorithm. Compared to the conventional methods, this proposed method eliminates the need for a robot-based-frame and hand-to-eye calibrations, shortens the error propagation chain, and makes the calibration process more accurate and convenient. A validation experiment is performed on an ABB IRB2400 robot. An optimal configuration on the number and distribution of fixed points in the robot workspace is obtained based on the experimental results. Comparative experiments reveal that there is a significant improvement of the measuring accuracy of the robotic visual inspection system. PMID:24300597
A Bayesian Developmental Approach to Robotic Goal-Based Imitation Learning.
Chung, Michael Jae-Yoon; Friesen, Abram L; Fox, Dieter; Meltzoff, Andrew N; Rao, Rajesh P N
2015-01-01
A fundamental challenge in robotics today is building robots that can learn new skills by observing humans and imitating human actions. We propose a new Bayesian approach to robotic learning by imitation inspired by the developmental hypothesis that children use self-experience to bootstrap the process of intention recognition and goal-based imitation. Our approach allows an autonomous agent to: (i) learn probabilistic models of actions through self-discovery and experience, (ii) utilize these learned models for inferring the goals of human actions, and (iii) perform goal-based imitation for robotic learning and human-robot collaboration. Such an approach allows a robot to leverage its increasing repertoire of learned behaviors to interpret increasingly complex human actions and use the inferred goals for imitation, even when the robot has very different actuators from humans. We demonstrate our approach using two different scenarios: (i) a simulated robot that learns human-like gaze following behavior, and (ii) a robot that learns to imitate human actions in a tabletop organization task. In both cases, the agent learns a probabilistic model of its own actions, and uses this model for goal inference and goal-based imitation. We also show that the robotic agent can use its probabilistic model to seek human assistance when it recognizes that its inferred actions are too uncertain, risky, or impossible to perform, thereby opening the door to human-robot collaboration.
A Bayesian Developmental Approach to Robotic Goal-Based Imitation Learning
Chung, Michael Jae-Yoon; Friesen, Abram L.; Fox, Dieter; Meltzoff, Andrew N.; Rao, Rajesh P. N.
2015-01-01
A fundamental challenge in robotics today is building robots that can learn new skills by observing humans and imitating human actions. We propose a new Bayesian approach to robotic learning by imitation inspired by the developmental hypothesis that children use self-experience to bootstrap the process of intention recognition and goal-based imitation. Our approach allows an autonomous agent to: (i) learn probabilistic models of actions through self-discovery and experience, (ii) utilize these learned models for inferring the goals of human actions, and (iii) perform goal-based imitation for robotic learning and human-robot collaboration. Such an approach allows a robot to leverage its increasing repertoire of learned behaviors to interpret increasingly complex human actions and use the inferred goals for imitation, even when the robot has very different actuators from humans. We demonstrate our approach using two different scenarios: (i) a simulated robot that learns human-like gaze following behavior, and (ii) a robot that learns to imitate human actions in a tabletop organization task. In both cases, the agent learns a probabilistic model of its own actions, and uses this model for goal inference and goal-based imitation. We also show that the robotic agent can use its probabilistic model to seek human assistance when it recognizes that its inferred actions are too uncertain, risky, or impossible to perform, thereby opening the door to human-robot collaboration. PMID:26536366
Plinkert, P K; Federspil, P A; Plinkert, B; Henrich, D
2002-03-01
Excellent precision, miss of retiring, reproducibility are main characteristics of robots in the operating theatre. Because of these facts their use for surgery in the lateral scull base is of great interest. In recent experiments we determined process parameters for robot assisted reaming of a cochlea implant bed and for a mastoidectomy. These results suggested that optimizing parameters for thrilling with the robot is needed. Therefore we implemented a suitable reaming curve from the geometrical data of the implant and a force controlled process control for robot assisted reaming at the lateral scull base. Experiments were performed with an industrial robot on animal and human scull base specimen. Because of online force detection and feedback of sensory data the reaming with the robot was controlled. With increasing force values above a defined limit feed rates were automatically regulated. Furthermore we were able to detect contact of the thrill to dura mater by analyzing the force values. With the new computer program the desired implant bed was exactly prepared. Our examinations showed a successful reaming of an implant bed in the lateral scull base with a robot. Because of a force controlled reaming process locale navigation is possible and enables careful thrilling with a robot.
Laser-Based Pedestrian Tracking in Outdoor Environments by Multiple Mobile Robots
Ozaki, Masataka; Kakimuma, Kei; Hashimoto, Masafumi; Takahashi, Kazuhiko
2012-01-01
This paper presents an outdoors laser-based pedestrian tracking system using a group of mobile robots located near each other. Each robot detects pedestrians from its own laser scan image using an occupancy-grid-based method, and the robot tracks the detected pedestrians via Kalman filtering and global-nearest-neighbor (GNN)-based data association. The tracking data is broadcast to multiple robots through intercommunication and is combined using the covariance intersection (CI) method. For pedestrian tracking, each robot identifies its own posture using real-time-kinematic GPS (RTK-GPS) and laser scan matching. Using our cooperative tracking method, all the robots share the tracking data with each other; hence, individual robots can always recognize pedestrians that are invisible to any other robot. The simulation and experimental results show that cooperating tracking provides the tracking performance better than conventional individual tracking does. Our tracking system functions in a decentralized manner without any central server, and therefore, this provides a degree of scalability and robustness that cannot be achieved by conventional centralized architectures. PMID:23202171
A tracked robot with novel bio-inspired passive "legs".
Sun, Bo; Jing, Xingjian
2017-01-01
For track-based robots, an important aspect is the suppression design, which determines the trafficability and comfort of the whole system. The trafficability limits the robot's working capability, and the riding comfort limits the robot's working effectiveness, especially with some sensitive instruments mounted on or operated. To these aims, a track-based robot equipped with a novel passive bio-inspired suspension is designed and studied systematically in this paper. Animal or insects have very special leg or limb structures which are good for motion control and adaptable to different environments. Inspired by this, a new track-based robot is designed with novel "legs" for connecting the loading wheels to the robot body. Each leg is designed with passive structures and can achieve very high loading capacity but low dynamic stiffness such that the robot can move on rough ground similar to a multi-leg animal or insect. Therefore, the trafficability and riding comfort can be significantly improved without losing loading capacity. The new track-based robot can be well applied to various engineering tasks for providing a stable moving platform of high mobility, better trafficability and excellent loading capacity.
System design of a hand-held mobile robot for craniotomy.
Kane, Gavin; Eggers, Georg; Boesecke, Robert; Raczkowsky, Jörg; Wörn, Heinz; Marmulla, Rüdiger; Mühling, Joachim
2009-01-01
This contribution reports the development and initial testing of a Mobile Robot System for Surgical Craniotomy, the Craniostar. A kinematic system based on a unicycle robot is analysed to provide local positioning through two spiked wheels gripping directly onto a patients skull. A control system based on a shared control system between both the Surgeon and Robot is employed in a hand-held design that is tested initially on plastic phantom and swine skulls. Results indicate that the system has substantially lower risk than present robotically assisted craniotomies, and despite being a hand-held mobile robot, the Craniostar is still capable of sub-millimetre accuracy in tracking along a trajectory and thus achieving an accurate transfer of pre-surgical plan to the operating room procedure, without the large impact of current medical robots based on modified industrial robots.
Research and implementation of a new 6-DOF light-weight robot
NASA Astrophysics Data System (ADS)
Tao, Zihang; Zhang, Tao; Qi, Mingzhong; Ji, Junhui
2017-06-01
Traditional industrial robots have some weaknesses such as low payload-weight, high power consumption and high cost. These drawbacks limit their applications in such areas, special application, service and surgical robots. To improve these shortcomings, a new kind 6-DOF light-weight robot was designed based on modular joints and modular construction. This paper discusses the general requirements of the light-weight robots. Based on these requirements the novel robot is designed. The new robot is described from two aspects, mechanical design and control system. A prototype robot had developed and a joint performance test platform had designed. Position and velocity tests had conducted to evaluate the performance of the prototype robot. Test results showed that the prototype worked well.
Design of a Two-Step Calibration Method of Kinematic Parameters for Serial Robots
NASA Astrophysics Data System (ADS)
WANG, Wei; WANG, Lei; YUN, Chao
2017-03-01
Serial robots are used to handle workpieces with large dimensions, and calibrating kinematic parameters is one of the most efficient ways to upgrade their accuracy. Many models are set up to investigate how many kinematic parameters can be identified to meet the minimal principle, but the base frame and the kinematic parameter are indistinctly calibrated in a one-step way. A two-step method of calibrating kinematic parameters is proposed to improve the accuracy of the robot's base frame and kinematic parameters. The forward kinematics described with respect to the measuring coordinate frame are established based on the product-of-exponential (POE) formula. In the first step the robot's base coordinate frame is calibrated by the unit quaternion form. The errors of both the robot's reference configuration and the base coordinate frame's pose are equivalently transformed to the zero-position errors of the robot's joints. The simplified model of the robot's positioning error is established in second-power explicit expressions. Then the identification model is finished by the least square method, requiring measuring position coordinates only. The complete subtasks of calibrating the robot's 39 kinematic parameters are finished in the second step. It's proved by a group of calibration experiments that by the proposed two-step calibration method the average absolute accuracy of industrial robots is updated to 0.23 mm. This paper presents that the robot's base frame should be calibrated before its kinematic parameters in order to upgrade its absolute positioning accuracy.
Design and implementation of self-balancing coaxial two wheel robot based on HSIC
NASA Astrophysics Data System (ADS)
Hu, Tianlian; Zhang, Hua; Dai, Xin; Xia, Xianfeng; Liu, Ran; Qiu, Bo
2007-12-01
This thesis has studied the control problem concerning position and orientation control of self-balancing coaxial two wheel robot based on the human simulated intelligent control (HSIC) theory. Adopting Lagrange equation, the dynamic model of self-balancing coaxial two-wheel Robot is built up, and the Sensory-motor Intelligent Schemas (SMIS) of HSIC controller for the robot is designed by analyzing its movement and simulating the human controller. In robot's motion process, by perceiving position and orientation of the robot and using multi-mode control strategy based on characteristic identification, the HSIC controller enables the robot to control posture. Utilizing Matlab/Simulink, a simulation platform is established and a motion controller is designed and realized based on RT-Linux real-time operating system, employing high speed ARM9 processor S3C2440 as kernel of the motion controller. The effectiveness of the new design is testified by the experiment.
Development of a soft untethered robot using artificial muscle actuators
NASA Astrophysics Data System (ADS)
Cao, Jiawei; Qin, Lei; Lee, Heow Pueh; Zhu, Jian
2017-04-01
Soft robots have attracted much interest recently, due to their potential capability to work effectively in unstructured environment. Soft actuators are key components in soft robots. Dielectric elastomer actuators are one class of soft actuators, which can deform in response to voltage. Dielectric elastomer actuators exhibit interesting attributes including large voltage-induced deformation and high energy density. These attributes make dielectric elastomer actuators capable of functioning as artificial muscles for soft robots. It is significant to develop untethered robots, since connecting the cables to external power sources greatly limits the robots' functionalities, especially autonomous movements. In this paper we develop a soft untethered robot based on dielectric elastomer actuators. This robot mainly consists of a deformable robotic body and two paper-based feet. The robotic body is essentially a dielectric elastomer actuator, which can expand or shrink at voltage on or off. In addition, the two feet can achieve adhesion or detachment based on the mechanism of electroadhesion. In general, the entire robotic system can be controlled by electricity or voltage. By optimizing the mechanical design of the robot (the size and weight of electric circuits), we put all these components (such as batteries, voltage amplifiers, control circuits, etc.) onto the robotic feet, and the robot is capable of realizing autonomous movements. Experiments are conducted to study the robot's locomotion. Finite element method is employed to interpret the deformation of dielectric elastomer actuators, and the simulations are qualitatively consistent with the experimental observations.
Localization of Mobile Robots Using Odometry and an External Vision Sensor
Pizarro, Daniel; Mazo, Manuel; Santiso, Enrique; Marron, Marta; Jimenez, David; Cobreces, Santiago; Losada, Cristina
2010-01-01
This paper presents a sensor system for robot localization based on the information obtained from a single camera attached in a fixed place external to the robot. Our approach firstly obtains the 3D geometrical model of the robot based on the projection of its natural appearance in the camera while the robot performs an initialization trajectory. This paper proposes a structure-from-motion solution that uses the odometry sensors inside the robot as a metric reference. Secondly, an online localization method based on a sequential Bayesian inference is proposed, which uses the geometrical model of the robot as a link between image measurements and pose estimation. The online approach is resistant to hard occlusions and the experimental setup proposed in this paper shows its effectiveness in real situations. The proposed approach has many applications in both the industrial and service robot fields. PMID:22319318
Localization of mobile robots using odometry and an external vision sensor.
Pizarro, Daniel; Mazo, Manuel; Santiso, Enrique; Marron, Marta; Jimenez, David; Cobreces, Santiago; Losada, Cristina
2010-01-01
This paper presents a sensor system for robot localization based on the information obtained from a single camera attached in a fixed place external to the robot. Our approach firstly obtains the 3D geometrical model of the robot based on the projection of its natural appearance in the camera while the robot performs an initialization trajectory. This paper proposes a structure-from-motion solution that uses the odometry sensors inside the robot as a metric reference. Secondly, an online localization method based on a sequential Bayesian inference is proposed, which uses the geometrical model of the robot as a link between image measurements and pose estimation. The online approach is resistant to hard occlusions and the experimental setup proposed in this paper shows its effectiveness in real situations. The proposed approach has many applications in both the industrial and service robot fields.
Study of the Navigation Method for a Snake Robot Based on the Kinematics Model with MEMS IMU
Dou, Lihua; Su, Zhong; Liu, Ning
2018-01-01
A snake robot is a type of highly redundant mobile robot that significantly differs from a tracked robot, wheeled robot and legged robot. To address the issue of a snake robot performing self-localization in the application environment without assistant orientation, an autonomous navigation method is proposed based on the snake robot’s motion characteristic constraints. The method realized the autonomous navigation of the snake robot with non-nodes and an external assistant using its own Micro-Electromechanical-Systems (MEMS) Inertial-Measurement-Unit (IMU). First, it studies the snake robot’s motion characteristics, builds the kinematics model, and then analyses the motion constraint characteristics and motion error propagation properties. Second, it explores the snake robot’s navigation layout, proposes a constraint criterion and the fixed relationship, and makes zero-state constraints based on the motion features and control modes of a snake robot. Finally, it realizes autonomous navigation positioning based on the Extended-Kalman-Filter (EKF) position estimation method under the constraints of its motion characteristics. With the self-developed snake robot, the test verifies the proposed method, and the position error is less than 5% of Total-Traveled-Distance (TDD). In a short-distance environment, this method is able to meet the requirements of a snake robot in order to perform autonomous navigation and positioning in traditional applications and can be extended to other familiar multi-link robots. PMID:29547515
Market-Based Coordination and Auditing Mechanisms for Self-Interested Multi-Robot Systems
ERIC Educational Resources Information Center
Ham, MyungJoo
2009-01-01
We propose market-based coordinated task allocation mechanisms, which allocate complex tasks that require synchronized and collaborated services of multiple robot agents to robot agents, and an auditing mechanism, which ensures proper behaviors of robot agents by verifying inter-agent activities, for self-interested, fully-distributed, and…
[Optimization of end-tool parameters based on robot hand-eye calibration].
Zhang, Lilong; Cao, Tong; Liu, Da
2017-04-01
A new one-time registration method was developed in this research for hand-eye calibration of a surgical robot to simplify the operation process and reduce the preparation time. And a new and practical method is introduced in this research to optimize the end-tool parameters of the surgical robot based on analysis of the error sources in this registration method. In the process with one-time registration method, firstly a marker on the end-tool of the robot was recognized by a fixed binocular camera, and then the orientation and position of the marker were calculated based on the joint parameters of the robot. Secondly the relationship between the camera coordinate system and the robot base coordinate system could be established to complete the hand-eye calibration. Because of manufacturing and assembly errors of robot end-tool, an error equation was established with the transformation matrix between the robot end coordinate system and the robot end-tool coordinate system as the variable. Numerical optimization was employed to optimize end-tool parameters of the robot. The experimental results showed that the one-time registration method could significantly improve the efficiency of the robot hand-eye calibration compared with the existing methods. The parameter optimization method could significantly improve the absolute positioning accuracy of the one-time registration method. The absolute positioning accuracy of the one-time registration method can meet the requirements of the clinical surgery.
Analysis on the workspace of palletizing robot based on AutoCAD
NASA Astrophysics Data System (ADS)
Li, Jin-quan; Zhang, Rui; Guan, Qi; Cui, Fang; Chen, Kuan
2017-10-01
In this paper, a four-degree-of-freedom articulated palletizing robot is used as the object of research. Based on the analysis of the overall configuration of the robot, the kinematic mathematical model is established by D-H method to figure out the workspace of the robot. In order to meet the needs of design and analysis, using AutoCAD secondary development technology and AutoLisp language to develop AutoCAD-based 2D and 3D workspace simulation interface program of palletizing robot. At last, using AutoCAD plugin, the influence of structural parameters on the shape and position of the working space is analyzed when the structure parameters of the robot are changed separately. This study laid the foundation for the design, control and planning of palletizing robots.
Autonomous Mobile Platform for Research in Cooperative Robotics
NASA Technical Reports Server (NTRS)
Daemi, Ali; Pena, Edward; Ferguson, Paul
1998-01-01
This paper describes the design and development of a platform for research in cooperative mobile robotics. The structure and mechanics of the vehicles are based on R/C cars. The vehicle is rendered mobile by a DC motor and servo motor. The perception of the robot's environment is achieved using IR sensors and a central vision system. A laptop computer processes images from a CCD camera located above the testing area to determine the position of objects in sight. This information is sent to each robot via RF modem. Each robot is operated by a Motorola 68HC11E micro-controller, and all actions of the robots are realized through the connections of IR sensors, modem, and motors. The intelligent behavior of each robot is based on a hierarchical fuzzy-rule based approach.
NASA Astrophysics Data System (ADS)
Haq, R.; Prayitno, H.; Dzulkiflih; Sucahyo, I.; Rahmawati, E.
2018-03-01
In this article, the development of a low cost mobile robot based on PID controller and odometer for education is presented. PID controller and odometer is applied for controlling mobile robot position. Two-dimensional position vector in cartesian coordinate system have been inserted to robot controller as an initial and final position. Mobile robot has been made based on differential drive and sensor magnetic rotary encoder which measured robot position from a number of wheel rotation. Odometry methode use data from actuator movements for predicting change of position over time. The mobile robot is examined to get final position with three different heading angle 30°, 45° and 60° by applying various value of KP, KD and KI constant.
Research on wheelchair robot control system based on EOG
NASA Astrophysics Data System (ADS)
Xu, Wang; Chen, Naijian; Han, Xiangdong; Sun, Jianbo
2018-04-01
The paper describes an intelligent wheelchair control system based on EOG. It can help disabled people improve their living ability. The system can acquire EOG signal from the user, detect the number of blink and the direction of glancing, and then send commands to the wheelchair robot via RS-232 to achieve the control of wheelchair robot. Wheelchair robot control system based on EOG is composed of processing EOG signal and human-computer interactive technology, which achieves a purpose of using conscious eye movement to control wheelchair robot.
NASA Astrophysics Data System (ADS)
Heath Pastore, Tracy; Barnes, Mitchell; Hallman, Rory
2005-05-01
Robot technology is developing at a rapid rate for both commercial and Department of Defense (DOD) applications. As a result, the task of managing both technology and experience information is growing. In the not-to-distant past, tracking development efforts of robot platforms, subsystems and components was not too difficult, expensive, or time consuming. To do the same today is a significant undertaking. The Mobile Robot Knowledge Base (MRKB) provides the robotics community with a web-accessible, centralized resource for sharing information, experience, and technology to more efficiently and effectively meet the needs of the robot system user. The resource includes searchable information on robot components, subsystems, mission payloads, platforms, and DOD robotics programs. In addition, the MRKB website provides a forum for technology and information transfer within the DOD robotics community and an interface for the Robotic Systems Pool (RSP). The RSP manages a collection of small teleoperated and semi-autonomous robotic platforms, available for loan to DOD and other qualified entities. The objective is to put robots in the hands of users and use the test data and fielding experience to improve robot systems.
A Recipe for Soft Fluidic Elastomer Robots
Marchese, Andrew D.; Katzschmann, Robert K.
2015-01-01
Abstract This work provides approaches to designing and fabricating soft fluidic elastomer robots. That is, three viable actuator morphologies composed entirely from soft silicone rubber are explored, and these morphologies are differentiated by their internal channel structure, namely, ribbed, cylindrical, and pleated. Additionally, three distinct casting-based fabrication processes are explored: lamination-based casting, retractable-pin-based casting, and lost-wax-based casting. Furthermore, two ways of fabricating a multiple DOF robot are explored: casting the complete robot as a whole and casting single degree of freedom (DOF) segments with subsequent concatenation. We experimentally validate each soft actuator morphology and fabrication process by creating multiple physical soft robot prototypes. PMID:27625913
A Recipe for Soft Fluidic Elastomer Robots.
Marchese, Andrew D; Katzschmann, Robert K; Rus, Daniela
2015-03-01
This work provides approaches to designing and fabricating soft fluidic elastomer robots. That is, three viable actuator morphologies composed entirely from soft silicone rubber are explored, and these morphologies are differentiated by their internal channel structure, namely, ribbed, cylindrical, and pleated. Additionally, three distinct casting-based fabrication processes are explored: lamination-based casting, retractable-pin-based casting, and lost-wax-based casting. Furthermore, two ways of fabricating a multiple DOF robot are explored: casting the complete robot as a whole and casting single degree of freedom (DOF) segments with subsequent concatenation. We experimentally validate each soft actuator morphology and fabrication process by creating multiple physical soft robot prototypes.
Method and System for Controlling a Dexterous Robot Execution Sequence Using State Classification
NASA Technical Reports Server (NTRS)
Sanders, Adam M. (Inventor); Quillin, Nathaniel (Inventor); Platt, Robert J., Jr. (Inventor); Pfeiffer, Joseph (Inventor); Permenter, Frank Noble (Inventor)
2014-01-01
A robotic system includes a dexterous robot and a controller. The robot includes a plurality of robotic joints, actuators for moving the joints, and sensors for measuring a characteristic of the joints, and for transmitting the characteristics as sensor signals. The controller receives the sensor signals, and is configured for executing instructions from memory, classifying the sensor signals into distinct classes via the state classification module, monitoring a system state of the robot using the classes, and controlling the robot in the execution of alternative work tasks based on the system state. A method for controlling the robot in the above system includes receiving the signals via the controller, classifying the signals using the state classification module, monitoring the present system state of the robot using the classes, and controlling the robot in the execution of alternative work tasks based on the present system state.
Learning gait of quadruped robot without prior knowledge of the environment
NASA Astrophysics Data System (ADS)
Xu, Tao; Chen, Qijun
2012-09-01
Walking is the basic skill of a legged robot, and one of the promising ways to improve the walking performance and its adaptation to environment changes is to let the robot learn its walking by itself. Currently, most of the walking learning methods are based on robot vision system or some external sensing equipment to estimate the walking performance of certain walking parameters, and therefore are usually only applicable under laboratory condition, where environment can be pre-defined. Inspired by the rhythmic swing movement during walking of legged animals and the behavior of their adjusting their walking gait on different walking surfaces, a concept of walking rhythmic pattern(WRP) is proposed to evaluate the walking specialty of legged robot, which is just based on the walking dynamics of the robot. Based on the onboard acceleration sensor data, a method to calculate WRP using power spectrum in frequency domain and diverse smooth filters is also presented. Since the evaluation of WRP is only based on the walking dynamics data of the robot's body, the proposed method doesn't require prior knowledge of environment and thus can be applied in unknown environment. A gait learning approach of legged robots based on WRP and evolution algorithm(EA) is introduced. By using the proposed approach, a quadruped robot can learn its locomotion by its onboard sensing in an unknown environment, where the robot has no prior knowledge about this place. The experimental result proves proportional relationship exits between WRP match score and walking performance of legged robot, which can be used to evaluate the walking performance in walking optimization under unknown environment.
Coordinated Control Of Mobile Robotic Manipulators
NASA Technical Reports Server (NTRS)
Seraji, Homayoun
1995-01-01
Computationally efficient scheme developed for on-line coordinated control of both manipulation and mobility of robots that include manipulator arms mounted on mobile bases. Applicable to variety of mobile robotic manipulators, including robots that move along tracks (typically, painting and welding robots), robots mounted on gantries and capable of moving in all three dimensions, wheeled robots, and compound robots (consisting of robots mounted on other robots). Theoretical basis discussed in several prior articles in NASA Tech Briefs, including "Increasing the Dexterity of Redundant Robots" (NPO-17801), "Redundant Robot Can Avoid Obstacles" (NPO-17852), "Configuration-Control Scheme Copes With Singularities" (NPO-18556), "More Uses for Configuration Control of Robots" (NPO-18607/NPO-18608).
Optimal Control Method of Robot End Position and Orientation Based on Dynamic Tracking Measurement
NASA Astrophysics Data System (ADS)
Liu, Dalong; Xu, Lijuan
2018-01-01
In order to improve the accuracy of robot pose positioning and control, this paper proposed a dynamic tracking measurement robot pose optimization control method based on the actual measurement of D-H parameters of the robot, the parameters is taken with feedback compensation of the robot, according to the geometrical parameters obtained by robot pose tracking measurement, improved multi sensor information fusion the extended Kalan filter method, with continuous self-optimal regression, using the geometric relationship between joint axes for kinematic parameters in the model, link model parameters obtained can timely feedback to the robot, the implementation of parameter correction and compensation, finally we can get the optimal attitude angle, realize the robot pose optimization control experiments were performed. 6R dynamic tracking control of robot joint robot with independent research and development is taken as experimental subject, the simulation results show that the control method improves robot positioning accuracy, and it has the advantages of versatility, simplicity, ease of operation and so on.
Research on Robot Pose Control Technology Based on Kinematics Analysis Model
NASA Astrophysics Data System (ADS)
Liu, Dalong; Xu, Lijuan
2018-01-01
In order to improve the attitude stability of the robot, proposes an attitude control method of robot based on kinematics analysis model, solve the robot walking posture transformation, grasping and controlling the motion planning problem of robot kinematics. In Cartesian space analytical model, using three axis accelerometer, magnetometer and the three axis gyroscope for the combination of attitude measurement, the gyroscope data from Calman filter, using the four element method for robot attitude angle, according to the centroid of the moving parts of the robot corresponding to obtain stability inertia parameters, using random sampling RRT motion planning method, accurate operation to any position control of space robot, to ensure the end effector along a prescribed trajectory the implementation of attitude control. The accurate positioning of the experiment is taken using MT-R robot as the research object, the test robot. The simulation results show that the proposed method has better robustness, and higher positioning accuracy, and it improves the reliability and safety of robot operation.
Full autonomous microline trace robot
NASA Astrophysics Data System (ADS)
Yi, Deer; Lu, Si; Yan, Yingbai; Jin, Guofan
2000-10-01
Optoelectric inspection may find applications in robotic system. In micro robotic system, smaller optoelectric inspection system is preferred. However, as miniaturizing the size of the robot, the number of the optoelectric detector becomes lack. And lack of the information makes the micro robot difficult to acquire its status. In our lab, a micro line trace robot has been designed, which autonomous acts based on its optoelectric detection. It has been programmed to follow a black line printed on the white colored ground. Besides the optoelectric inspection, logical algorithm in the microprocessor is also important. In this paper, we propose a simply logical algorithm to realize robot's intelligence. The robot's intelligence is based on a AT89C2051 microcontroller which controls its movement. The technical details of the micro robot are as follow: dimension: 30mm*25mm*35*mm; velocity: 60mm/s.
Control of free-flying space robot manipulator systems
NASA Technical Reports Server (NTRS)
Cannon, Robert H., Jr.
1989-01-01
Control techniques for self-contained, autonomous free-flying space robots are being tested and developed. Free-flying space robots are envisioned as a key element of any successful long term presence in space. These robots must be capable of performing the assembly, maintenance, and inspection, and repair tasks that currently require astronaut extra-vehicular activity (EVA). Use of robots will provide economic savings as well as improved astronaut safety by reducing and in many cases, eliminating the need for human EVA. The focus of the work is to develop and carry out a set of research projects using laboratory models of satellite robots. These devices use air-cushion-vehicle (ACV) technology to simulate in two dimensions the drag-free, zero-g conditions of space. Current work is divided into six major projects or research areas. Fixed-base cooperative manipulation work represents our initial entry into multiple arm cooperation and high-level control with a sophisticated user interface. The floating-base cooperative manipulation project strives to transfer some of the technologies developed in the fixed-base work onto a floating base. The global control and navigation experiment seeks to demonstrate simultaneous control of the robot manipulators and the robot base position so that tasks can be accomplished while the base is undergoing a controlled motion. The multiple-vehicle cooperation project's goal is to demonstrate multiple free-floating robots working in teams to carry out tasks too difficult or complex for a single robot to perform. The Location Enhancement Arm Push-off (LEAP) activity's goal is to provide a viable alternative to expendable gas thrusters for vehicle propulsion wherein the robot uses its manipulators to throw itself from place to place. Because the successful execution of the LEAP technique requires an accurate model of the robot and payload mass properties, it was deemed an attractive testbed for adaptive control technology.
Wei, Kun; Ren, Bingyin
2018-02-13
In a future intelligent factory, a robotic manipulator must work efficiently and safely in a Human-Robot collaborative and dynamic unstructured environment. Autonomous path planning is the most important issue which must be resolved first in the process of improving robotic manipulator intelligence. Among the path-planning methods, the Rapidly Exploring Random Tree (RRT) algorithm based on random sampling has been widely applied in dynamic path planning for a high-dimensional robotic manipulator, especially in a complex environment because of its probability completeness, perfect expansion, and fast exploring speed over other planning methods. However, the existing RRT algorithm has a limitation in path planning for a robotic manipulator in a dynamic unstructured environment. Therefore, an autonomous obstacle avoidance dynamic path-planning method for a robotic manipulator based on an improved RRT algorithm, called Smoothly RRT (S-RRT), is proposed. This method that targets a directional node extends and can increase the sampling speed and efficiency of RRT dramatically. A path optimization strategy based on the maximum curvature constraint is presented to generate a smooth and curved continuous executable path for a robotic manipulator. Finally, the correctness, effectiveness, and practicability of the proposed method are demonstrated and validated via a MATLAB static simulation and a Robot Operating System (ROS) dynamic simulation environment as well as a real autonomous obstacle avoidance experiment in a dynamic unstructured environment for a robotic manipulator. The proposed method not only provides great practical engineering significance for a robotic manipulator's obstacle avoidance in an intelligent factory, but also theoretical reference value for other type of robots' path planning.
An egocentric vision based assistive co-robot.
Zhang, Jingzhe; Zhuang, Lishuo; Wang, Yang; Zhou, Yameng; Meng, Yan; Hua, Gang
2013-06-01
We present the prototype of an egocentric vision based assistive co-robot system. In this co-robot system, the user is wearing a pair of glasses with a forward looking camera, and is actively engaged in the control loop of the robot in navigational tasks. The egocentric vision glasses serve for two purposes. First, it serves as a source of visual input to request the robot to find a certain object in the environment. Second, the motion patterns computed from the egocentric video associated with a specific set of head movements are exploited to guide the robot to find the object. These are especially helpful for quadriplegic individuals who do not have needed hand functionality for interaction and control with other modalities (e.g., joystick). In our co-robot system, when the robot does not fulfill the object finding task in a pre-specified time window, it would actively solicit user controls for guidance. Then the users can use the egocentric vision based gesture interface to orient the robot towards the direction of the object. After that the robot will automatically navigate towards the object until it finds it. Our experiments validated the efficacy of the closed-loop design to engage the human in the loop.
Hand gesture guided robot-assisted surgery based on a direct augmented reality interface.
Wen, Rong; Tay, Wei-Liang; Nguyen, Binh P; Chng, Chin-Boon; Chui, Chee-Kong
2014-09-01
Radiofrequency (RF) ablation is a good alternative to hepatic resection for treatment of liver tumors. However, accurate needle insertion requires precise hand-eye coordination and is also affected by the difficulty of RF needle navigation. This paper proposes a cooperative surgical robot system, guided by hand gestures and supported by an augmented reality (AR)-based surgical field, for robot-assisted percutaneous treatment. It establishes a robot-assisted natural AR guidance mechanism that incorporates the advantages of the following three aspects: AR visual guidance information, surgeon's experiences and accuracy of robotic surgery. A projector-based AR environment is directly overlaid on a patient to display preoperative and intraoperative information, while a mobile surgical robot system implements specified RF needle insertion plans. Natural hand gestures are used as an intuitive and robust method to interact with both the AR system and surgical robot. The proposed system was evaluated on a mannequin model. Experimental results demonstrated that hand gesture guidance was able to effectively guide the surgical robot, and the robot-assisted implementation was found to improve the accuracy of needle insertion. This human-robot cooperative mechanism is a promising approach for precise transcutaneous ablation therapy. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Dynamics and control of robot for capturing objects in space
NASA Astrophysics Data System (ADS)
Huang, Panfeng
Space robots are expected to perform intricate tasks in future space services, such as satellite maintenance, refueling, and replacing the orbital replacement unit (ORU). To realize these missions, the capturing operation may not be avoided. Such operations will encounter some challenges because space robots have some unique characteristics unfound on ground-based robots, such as, dynamic singularities, dynamic coupling between manipulator and space base, limited energy supply and working without a fixed base, and so on. In addition, since contacts and impacts may not be avoided during capturing operation. Therefore, dynamics and control problems of space robot for capturing objects are significant research topics if the robots are to be deployed for the space services. A typical servicing operation mainly includes three phases: capturing the object, berthing and docking the object, then repairing the target. Therefore, this thesis will focus on resolving some challenging problems during capturing the object, berthing and docking, and so on. In this thesis, I study and analyze the dynamics and control problems of space robot for capturing objects. This work has potential impact in space robotic applications. I first study the contact and impact dynamics of space robot and objects. I specifically focus on analyzing the impact dynamics and mapping the relationship of influence and speed. Then, I develop the fundamental theory for planning the minimum-collision based trajectory of space robot and designing the configuration of space robot at the moment of capture. To compensate for the attitude of the space base during the capturing approach operation, a new balance control concept which can effectively balance the attitude of the space base using the dynamic couplings is developed. The developed balance control concept helps to understand of the nature of space dynamic coupling, and can be readily applied to compensate or minimize the disturbance to the space base. After capturing the object, the space robot must complete the following two tasks: one is to berth the object, and the other is to re-orientate the attitude of the whole robot system for communication and power supply. Therefore, I propose a method to accomplish these two tasks simultaneously using manipulator motion only. The ultimate goal of space services is to realize the capture and manipulation autonomously. Therefore, I propose an affective approach based on learning human skill to track and capture the objects automatically in space. With human-teaching demonstration, the space robot is able to learn and abstract human tracking and capturing skill using an efficient neural-network learning architecture that combines flexible Cascade Neural Networks with Node Decoupled Extended Kalman Filtering (CNN-NDEKF). The simulation results attest that this approach is useful and feasible in tracking trajectory planning and capturing of space robot. Finally I propose a novel approach based on Genetic Algorithms (GAs) to optimize the approach trajectory of space robots in order to realize effective and stable operations. I complete the minimum-torque path planning in order to save the limited energy in space, and design the minimum jerk trajectory for the stabilization of the space manipulator and its space base. These optimal algorithms are very important and useful for the application of space robot.
Space-time modeling using environmental constraints in a mobile robot system
NASA Technical Reports Server (NTRS)
Slack, Marc G.
1990-01-01
Grid-based models of a robot's local environment have been used by many researchers building mobile robot control systems. The attraction of grid-based models is their clear parallel between the internal model and the external world. However, the discrete nature of such representations does not match well with the continuous nature of actions and usually serves to limit the abilities of the robot. This work describes a spatial modeling system that extracts information from a grid-based representation to form a symbolic representation of the robot's local environment. The approach makes a separation between the representation provided by the sensing system and the representation used by the action system. Separation allows asynchronous operation between sensing and action in a mobile robot, as well as the generation of a more continuous representation upon which to base actions.
Open Issues in Evolutionary Robotics.
Silva, Fernando; Duarte, Miguel; Correia, Luís; Oliveira, Sancho Moura; Christensen, Anders Lyhne
2016-01-01
One of the long-term goals in evolutionary robotics is to be able to automatically synthesize controllers for real autonomous robots based only on a task specification. While a number of studies have shown the applicability of evolutionary robotics techniques for the synthesis of behavioral control, researchers have consistently been faced with a number of issues preventing the widespread adoption of evolutionary robotics for engineering purposes. In this article, we review and discuss the open issues in evolutionary robotics. First, we analyze the benefits and challenges of simulation-based evolution and subsequent deployment of controllers versus evolution on real robotic hardware. Second, we discuss specific evolutionary computation issues that have plagued evolutionary robotics: (1) the bootstrap problem, (2) deception, and (3) the role of genomic encoding and genotype-phenotype mapping in the evolution of controllers for complex tasks. Finally, we address the absence of standard research practices in the field. We also discuss promising avenues of research. Our underlying motivation is the reduction of the current gap between evolutionary robotics and mainstream robotics, and the establishment of evolutionary robotics as a canonical approach for the engineering of autonomous robots.
Optimal foot shape for a passive dynamic biped.
Kwan, Maxine; Hubbard, Mont
2007-09-21
Passive walking dynamics describe the motion of a biped that is able to "walk" down a shallow slope without any actuation or control. Instead, the walker relies on gravitational and inertial effects to propel itself forward, exhibiting a gait quite similar to that of humans. These purely passive models depend on potential energy to overcome the energy lost when the foot impacts the ground. Previous research has demonstrated that energy loss at heel-strike can vary widely for a given speed, depending on the nature of the collision. The point of foot contact with the ground (relative to the hip) can have a significant effect: semi-circular (round) feet soften the impact, resulting in much smaller losses than point-foot walkers. Collisional losses are also lower if a single impulse is broken up into a series of smaller impulses that gradually redirect the velocity of the center of mass rather than a single abrupt impulse. Using this principle, a model was created where foot-strike occurs over two impulses, "heel-strike" and "toe-strike," representative of the initial impact of the heel and the following impact as the ball of the foot strikes the ground. Having two collisions with the flat-foot model did improve efficiency over the point-foot model. Representation of the flat-foot walker as a rimless wheel helped to explain the optimal flat-foot shape, driven by symmetry of the virtual spoke angles. The optimal long period foot shape of the simple passive walking model was not very representative of the human foot shape, although a reasonably anthropometric foot shape was predicted by the short period solution.
Hubel, Tatjana Y; Usherwood, James R
2015-09-01
Terrestrial locomotion on legs is energetically expensive. Compared with cycling, or with locomotion in swimming or flying animals, walking and running are highly uneconomical. Legged gaits that minimise mechanical work have previously been identified and broadly match walking and running at appropriate speeds. Furthermore, the 'cost of muscle force' approaches are effective in relating locomotion kinetics to metabolic cost. However, few accounts have been made for why animals deviate from either work-minimising or muscle-force-minimising strategies. Also, there is no current mechanistic account for the scaling of locomotion kinetics with animal size and speed. Here, we report measurements of ground reaction forces in walking children and adult humans, and their stance durations during running. We find that many aspects of gait kinetics and kinematics scale with speed and size in a manner that is consistent with minimising muscle activation required for the more demanding between mechanical work and power: spreading the duration of muscle action reduces activation requirements for power, at the cost of greater work demands. Mechanical work is relatively more demanding for larger bipeds--adult humans--accounting for their symmetrical M-shaped vertical force traces in walking, and relatively brief stance durations in running compared with smaller bipeds--children. The gaits of small children, and the greater deviation of their mechanics from work-minimising strategies, may be understood as appropriate for their scale, not merely as immature, incompletely developed and energetically sub-optimal versions of adult gaits. © 2015. Published by The Company of Biologists Ltd.
Embodied cognition for autonomous interactive robots.
Hoffman, Guy
2012-10-01
In the past, notions of embodiment have been applied to robotics mainly in the realm of very simple robots, and supporting low-level mechanisms such as dynamics and navigation. In contrast, most human-like, interactive, and socially adept robotic systems turn away from embodiment and use amodal, symbolic, and modular approaches to cognition and interaction. At the same time, recent research in Embodied Cognition (EC) is spanning an increasing number of complex cognitive processes, including language, nonverbal communication, learning, and social behavior. This article suggests adopting a modern EC approach for autonomous robots interacting with humans. In particular, we present three core principles from EC that may be applicable to such robots: (a) modal perceptual representation, (b) action/perception and action/cognition integration, and (c) a simulation-based model of top-down perceptual biasing. We describe a computational framework based on these principles, and its implementation on two physical robots. This could provide a new paradigm for embodied human-robot interaction based on recent psychological and neurological findings. Copyright © 2012 Cognitive Science Society, Inc.
Design-Oriented Enhanced Robotics Curriculum
ERIC Educational Resources Information Center
Yilmaz, M.; Ozcelik, S.; Yilmazer, N.; Nekovei, R.
2013-01-01
This paper presents an innovative two-course, laboratory-based, and design-oriented robotics educational model. The robotics curriculum exposed senior-level undergraduate students to major robotics concepts, and enhanced the student learning experience in hybrid learning environments by incorporating the IEEE Region-5 annual robotics competition…
Maidment, Susannah C R; Bates, Karl T; Falkingham, Peter L; VanBuren, Collin; Arbour, Victoria; Barrett, Paul M
2014-08-01
Ornithischian dinosaurs were primitively bipedal with forelimbs modified for grasping, but quadrupedalism evolved in the clade on at least three occasions independently. Outside of Ornithischia, quadrupedality from bipedal ancestors has only evolved on two other occasions, making this one of the rarest locomotory transitions in tetrapod evolutionary history. The osteological and myological changes associated with these transitions have only recently been documented, and the biomechanical consequences of these changes remain to be examined. Here, we review previous approaches to understanding locomotion in extinct animals, which can be broadly split into form-function approaches using analogy based on extant animals, limb-bone scaling, and computational approaches. We then carry out the first systematic attempt to quantify changes in locomotor muscle function in bipedal and quadrupedal ornithischian dinosaurs. Using three-dimensional computational modelling of the major pelvic locomotor muscle moment arms, we examine similarities and differences among individual taxa, between quadrupedal and bipedal taxa, and among taxa representing the three major ornithischian lineages (Thyreophora, Ornithopoda, Marginocephalia). Our results suggest that the ceratopsid Chasmosaurus and the ornithopod Hypsilophodon have relatively low moment arms for most muscles and most functions, perhaps suggesting poor locomotor performance in these taxa. Quadrupeds have higher abductor moment arms than bipeds, which we suggest is due to the overall wider bodies of the quadrupeds modelled. A peak in extensor moment arms at more extended hip angles and lower medial rotator moment arms in quadrupeds than in bipeds may be due to a more columnar hindlimb and loss of medial rotation as a form of lateral limb support in quadrupeds. We are not able to identify trends in moment arm evolution across Ornithischia as a whole, suggesting that the bipedal ancestry of ornithischians did not constrain the development of quadrupedal locomotion via a limited number of functional pathways. Functional anatomy appears to have had a greater effect on moment arms than phylogeny, and the differences identified between individual taxa and individual clades may relate to differences in locomotor performance required for living in different environments or for clade-specific behaviours. © 2013 The Authors. Biological Reviews © 2013 Cambridge Philosophical Society.
Liu, Tao; Guo, Yin; Yang, Shourui; Yin, Shibin; Zhu, Jigui
2017-01-01
Industrial robots are expected to undertake ever more advanced tasks in the modern manufacturing industry, such as intelligent grasping, in which robots should be capable of recognizing the position and orientation of a part before grasping it. In this paper, a monocular-based 6-degree of freedom (DOF) pose estimation technology to enable robots to grasp large-size parts at informal poses is proposed. A camera was mounted on the robot end-flange and oriented to measure several featured points on the part before the robot moved to grasp it. In order to estimate the part pose, a nonlinear optimization model based on the camera object space collinearity error in different poses is established, and the initial iteration value is estimated with the differential transformation. Measuring poses of the camera are optimized based on uncertainty analysis. Also, the principle of the robotic intelligent grasping system was developed, with which the robot could adjust its pose to grasp the part. In experimental tests, the part poses estimated with the method described in this paper were compared with those produced by a laser tracker, and results show the RMS angle and position error are about 0.0228° and 0.4603 mm. Robotic intelligent grasping tests were also successfully performed in the experiments. PMID:28216555
Liu, Tao; Guo, Yin; Yang, Shourui; Yin, Shibin; Zhu, Jigui
2017-02-14
Industrial robots are expected to undertake ever more advanced tasks in the modern manufacturing industry, such as intelligent grasping, in which robots should be capable of recognizing the position and orientation of a part before grasping it. In this paper, a monocular-based 6-degree of freedom (DOF) pose estimation technology to enable robots to grasp large-size parts at informal poses is proposed. A camera was mounted on the robot end-flange and oriented to measure several featured points on the part before the robot moved to grasp it. In order to estimate the part pose, a nonlinear optimization model based on the camera object space collinearity error in different poses is established, and the initial iteration value is estimated with the differential transformation. Measuring poses of the camera are optimized based on uncertainty analysis. Also, the principle of the robotic intelligent grasping system was developed, with which the robot could adjust its pose to grasp the part. In experimental tests, the part poses estimated with the method described in this paper were compared with those produced by a laser tracker, and results show the RMS angle and position error are about 0.0228° and 0.4603 mm. Robotic intelligent grasping tests were also successfully performed in the experiments.
Summary of astronaut inputs on automation and robotics for Space Station Freedom
NASA Technical Reports Server (NTRS)
Weeks, David J.
1990-01-01
Astronauts and payload specialists present specific recommendations in the form of an overview that relate to the use of automation and robotics on the Space Station Freedom. The inputs are based on on-orbit operations experience, time requirements for crews, and similar crew-specific knowledge that address the impacts of automation and robotics on productivity. Interview techniques and specific questionnaire results are listed, and the majority of the responses indicate that incorporating automation and robotics to some extent and with human backup can improve productivity. Specific support is found for the use of advanced automation and EVA robotics on the Space Station Freedom and for the use of advanced automation on ground-based stations. Ground-based control of in-flight robotics is required, and Space Station activities and crew tasks should be analyzed to assess the systems engineering approach for incorporating automation and robotics.
State Estimation for Tensegrity Robots
NASA Technical Reports Server (NTRS)
Caluwaerts, Ken; Bruce, Jonathan; Friesen, Jeffrey M.; Sunspiral, Vytas
2016-01-01
Tensegrity robots are a class of compliant robots that have many desirable traits when designing mass efficient systems that must interact with uncertain environments. Various promising control approaches have been proposed for tensegrity systems in simulation. Unfortunately, state estimation methods for tensegrity robots have not yet been thoroughly studied. In this paper, we present the design and evaluation of a state estimator for tensegrity robots. This state estimator will enable existing and future control algorithms to transfer from simulation to hardware. Our approach is based on the unscented Kalman filter (UKF) and combines inertial measurements, ultra wideband time-of-flight ranging measurements, and actuator state information. We evaluate the effectiveness of our method on the SUPERball, a tensegrity based planetary exploration robotic prototype. In particular, we conduct tests for evaluating both the robot's success in estimating global position in relation to fixed ranging base stations during rolling maneuvers as well as local behavior due to small-amplitude deformations induced by cable actuation.
Dai, Yanyan; Kim, YoonGu; Wee, SungGil; Lee, DongHa; Lee, SukGyu
2015-05-01
This paper describes a switching formation strategy for multi-robots with velocity constraints to avoid and cross obstacles. In the strategy, a leader robot plans a safe path using the geometric obstacle avoidance control method (GOACM). By calculating new desired distances and bearing angles with the leader robot, the follower robots switch into a safe formation. With considering collision avoidance, a novel robot priority model, based on the desired distance and bearing angle between the leader and follower robots, is designed during the obstacle avoidance process. The adaptive tracking control algorithm guarantees that the trajectory and velocity tracking errors converge to zero. To demonstrate the validity of the proposed methods, simulation and experiment results present that multi-robots effectively form and switch formation avoiding obstacles without collisions. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Controlling Tensegrity Robots through Evolution using Friction based Actuation
NASA Technical Reports Server (NTRS)
Kothapalli, Tejasvi; Agogino, Adrian K.
2017-01-01
Traditional robotic structures have limitations in planetary exploration as their rigid structural joints are prone to damage in new and rough terrains. In contrast, robots based on tensegrity structures, composed of rods and tensile cables, offer a highly robust, lightweight, and energy efficient solution over traditional robots. In addition tensegrity robots can be highly configurable by rearranging their topology of rods, cables and motors. However, these highly configurable tensegrity robots pose a significant challenge for locomotion due to their complexity. This study investigates a control pattern for successful locomotion in tensegrity robots through an evolutionary algorithm. A twelve-rod hardware model is rapidly prototyped to utilize a new actuation method based on friction. A web-based physics simulation is created to model the twelve-rod tensegrity ball structure. Square-waves are used as control policies for the actuators of the tensegrity structure. Monte Carlo trials are run to find the most successful number of amplitudes for the square-wave control policy. From the results, an evolutionary algorithm is implemented to find the most optimized solution for locomotion of the twelve-rod tensegrity structure. The software pattern coupled with the new friction based actuation method can serve as the basis for highly efficient tensegrity robots in space exploration.
micROS: a morphable, intelligent and collective robot operating system.
Yang, Xuejun; Dai, Huadong; Yi, Xiaodong; Wang, Yanzhen; Yang, Shaowu; Zhang, Bo; Wang, Zhiyuan; Zhou, Yun; Peng, Xuefeng
2016-01-01
Robots are developing in much the same way that personal computers did 40 years ago, and robot operating system is the critical basis. Current robot software is mainly designed for individual robots. We present in this paper the design of micROS, a morphable, intelligent and collective robot operating system for future collective and collaborative robots. We first present the architecture of micROS, including the distributed architecture for collective robot system as a whole and the layered architecture for every single node. We then present the design of autonomous behavior management based on the observe-orient-decide-act cognitive behavior model and the design of collective intelligence including collective perception, collective cognition, collective game and collective dynamics. We also give the design of morphable resource management, which first categorizes robot resources into physical, information, cognitive and social domains, and then achieve morphability based on self-adaptive software technology. We finally deploy micROS on NuBot football robots and achieve significant improvement in real-time performance.
Improvement of the insertion axis for cochlear implantation with a robot-based system.
Torres, Renato; Kazmitcheff, Guillaume; De Seta, Daniele; Ferrary, Evelyne; Sterkers, Olivier; Nguyen, Yann
2017-02-01
It has previously reported that alignment of the insertion axis along the basal turn of the cochlea was depending on surgeon' experience. In this experimental study, we assessed technological assistances, such as navigation or a robot-based system, to improve the insertion axis during cochlear implantation. A preoperative cone beam CT and a mastoidectomy with a posterior tympanotomy were performed on four temporal bones. The optimal insertion axis was defined as the closest axis to the scala tympani centerline avoiding the facial nerve. A neuronavigation system, a robot assistance prototype, and software allowing a semi-automated alignment of the robot were used to align an insertion tool with an optimal insertion axis. Four procedures were performed and repeated three times in each temporal bone: manual, manual navigation-assisted, robot-based navigation-assisted, and robot-based semi-automated. The angle between the optimal and the insertion tool axis was measured in the four procedures. The error was 8.3° ± 2.82° for the manual procedure (n = 24), 8.6° ± 2.83° for the manual navigation-assisted procedure (n = 24), 5.4° ± 3.91° for the robot-based navigation-assisted procedure (n = 24), and 3.4° ± 1.56° for the robot-based semi-automated procedure (n = 12). A higher accuracy was observed with the semi-automated robot-based technique than manual and manual navigation-assisted (p < 0.01). Combination of a navigation system and a manual insertion does not improve the alignment accuracy due to the lack of friendly user interface. On the contrary, a semi-automated robot-based system reduces both the error and the variability of the alignment with a defined optimal axis.
Implementation of a Multi-Robot Coverage Algorithm on a Two-Dimensional, Grid-Based Environment
2017-06-01
two planar laser range finders with a 180-degree field of view , color camera, vision beacons, and wireless communicator. In their system, the robots...Master’s thesis 4. TITLE AND SUBTITLE IMPLEMENTATION OF A MULTI -ROBOT COVERAGE ALGORITHM ON A TWO -DIMENSIONAL, GRID-BASED ENVIRONMENT 5. FUNDING NUMBERS...path planning coverage algorithm for a multi -robot system in a two -dimensional, grid-based environment. We assess the applicability of a topology
Control of a 7-DOF Robotic Arm System With an SSVEP-Based BCI.
Chen, Xiaogang; Zhao, Bing; Wang, Yijun; Xu, Shengpu; Gao, Xiaorong
2018-04-12
Although robot technology has been successfully used to empower people who suffer from motor disabilities to increase their interaction with their physical environment, it remains a challenge for individuals with severe motor impairment, who do not have the motor control ability to move robots or prosthetic devices by manual control. In this study, to mitigate this issue, a noninvasive brain-computer interface (BCI)-based robotic arm control system using gaze based steady-state visual evoked potential (SSVEP) was designed and implemented using a portable wireless electroencephalogram (EEG) system. A 15-target SSVEP-based BCI using a filter bank canonical correlation analysis (FBCCA) method allowed users to directly control the robotic arm without system calibration. The online results from 12 healthy subjects indicated that a command for the proposed brain-controlled robot system could be selected from 15 possible choices in 4[Formula: see text]s (i.e. 2[Formula: see text]s for visual stimulation and 2[Formula: see text]s for gaze shifting) with an average accuracy of 92.78%, resulting in a 15 commands/min transfer rate. Furthermore, all subjects (even naive users) were able to successfully complete the entire move-grasp-lift task without user training. These results demonstrated an SSVEP-based BCI could provide accurate and efficient high-level control of a robotic arm, showing the feasibility of a BCI-based robotic arm control system for hand-assistance.
Olfaction and Hearing Based Mobile Robot Navigation for Odor/Sound Source Search
Song, Kai; Liu, Qi; Wang, Qi
2011-01-01
Bionic technology provides a new elicitation for mobile robot navigation since it explores the way to imitate biological senses. In the present study, the challenging problem was how to fuse different biological senses and guide distributed robots to cooperate with each other for target searching. This paper integrates smell, hearing and touch to design an odor/sound tracking multi-robot system. The olfactory robot tracks the chemical odor plume step by step through information fusion from gas sensors and airflow sensors, while two hearing robots localize the sound source by time delay estimation (TDE) and the geometrical position of microphone array. Furthermore, this paper presents a heading direction based mobile robot navigation algorithm, by which the robot can automatically and stably adjust its velocity and direction according to the deviation between the current heading direction measured by magnetoresistive sensor and the expected heading direction acquired through the odor/sound localization strategies. Simultaneously, one robot can communicate with the other robots via a wireless sensor network (WSN). Experimental results show that the olfactory robot can pinpoint the odor source within the distance of 2 m, while two hearing robots can quickly localize and track the olfactory robot in 2 min. The devised multi-robot system can achieve target search with a considerable success ratio and high stability. PMID:22319401
Adaptive model-based assistive control for pneumatic direct driven soft rehabilitation robots.
Wilkening, Andre; Ivlev, Oleg
2013-06-01
Assistive behavior and inherent compliance are assumed to be the essential properties for effective robot-assisted therapy in neurological as well as in orthopedic rehabilitation. This paper presents two adaptive model-based assistive controllers for pneumatic direct driven soft rehabilitation robots that are based on separated models of the soft-robot and the patient's extremity, in order to take into account the individual patient's behavior, effort and ability during control, what is assumed to be essential to relearn lost motor functions in neurological and facilitate muscle reconstruction in orthopedic rehabilitation. The high inherent compliance of soft-actuators allows for a general human-robot interaction and provides the base for effective and dependable assistive control. An inverse model of the soft-robot with estimated parameters is used to achieve robot transparency during treatment and inverse adaptive models of the individual patient's extremity allow the controllers to learn on-line the individual patient's behavior and effort and react in a way that assist the patient only as much as needed. The effectiveness of the controllers is evaluated with unimpaired subjects using a first prototype of a soft-robot for elbow training. Advantages and disadvantages of both controllers are analyzed and discussed.
A visual servo-based teleoperation robot system for closed diaphyseal fracture reduction.
Li, Changsheng; Wang, Tianmiao; Hu, Lei; Zhang, Lihai; Du, Hailong; Zhao, Lu; Wang, Lifeng; Tang, Peifu
2015-09-01
Common fracture treatments include open reduction and intramedullary nailing technology. However, these methods have disadvantages such as intraoperative X-ray radiation, delayed union or nonunion and postoperative rotation. Robots provide a novel solution to the aforementioned problems while posing new challenges. Against this scientific background, we develop a visual servo-based teleoperation robot system. In this article, we present a robot system, analyze the visual servo-based control system in detail and develop path planning for fracture reduction, inverse kinematics, and output forces of the reduction mechanism. A series of experimental tests is conducted on a bone model and an animal bone. The experimental results demonstrate the feasibility of the robot system. The robot system uses preoperative computed tomography data to realize high precision and perform minimally invasive teleoperation for fracture reduction via the visual servo-based control system while protecting surgeons from radiation. © IMechE 2015.
Collaboration of Miniature Multi-Modal Mobile Smart Robots over a Network
2015-08-14
theoretical research on mathematics of failures in sensor-network-based miniature multimodal mobile robots and electromechanical systems. The views...theoretical research on mathematics of failures in sensor-network-based miniature multimodal mobile robots and electromechanical systems. The...independently evolving research directions based on physics-based models of mechanical, electromechanical and electronic devices, operational constraints
Micro-aerial vehicle type wall-climbing robot mechanism for structural health monitoring
NASA Astrophysics Data System (ADS)
Shin, Jae-Uk; Kim, Donghoon; Kim, Jong-Heon; Myung, Hyun
2013-04-01
Currently, the maintenance or inspection of large structures is labor-intensive, so it has a problem of the large cost due to the staffing professionals and the risk for hard to reach areas. To solve the problem, the needs of wall-climbing robot are emerged. Infra-based wall-climbing robots to maintain an outer wall of building have high payload and safety. However, the infrastructure for the robot must be equipped on the target structure and the infrastructure isn't preferred by the architects since it can injure the exterior of the structure. These are the reasons of why the infra-based wall-climbing robot is avoided. In case of the non-infra-based wall-climbing robot, it is researched to overcome the aforementioned problems. However, most of the technologies are in the laboratory level since the payload, safety and maneuverability are not satisfactory. For this reason, aerial vehicle type wall-climbing robot is researched. It is a flying possible wallclimbing robot based on a quadrotor. It is a famous aerial vehicle robot using four rotors to make a thrust for flying. This wall-climbing robot can stick to a vertical wall using the thrust. After sticking to the wall, it can move with four wheels installed on the robot. As a result, it has high maneuverability and safety since it can restore the position to the wall even if it is detached from the wall by unexpected disturbance while climbing the wall. The feasibility of the main concept was verified through simulations and experiments using a prototype.
Event-Based Control Strategy for Mobile Robots in Wireless Environments.
Socas, Rafael; Dormido, Sebastián; Dormido, Raquel; Fabregas, Ernesto
2015-12-02
In this paper, a new event-based control strategy for mobile robots is presented. It has been designed to work in wireless environments where a centralized controller has to interchange information with the robots over an RF (radio frequency) interface. The event-based architectures have been developed for differential wheeled robots, although they can be applied to other kinds of robots in a simple way. The solution has been checked over classical navigation algorithms, like wall following and obstacle avoidance, using scenarios with a unique or multiple robots. A comparison between the proposed architectures and the classical discrete-time strategy is also carried out. The experimental results shows that the proposed solution has a higher efficiency in communication resource usage than the classical discrete-time strategy with the same accuracy.
Event-Based Control Strategy for Mobile Robots in Wireless Environments
Socas, Rafael; Dormido, Sebastián; Dormido, Raquel; Fabregas, Ernesto
2015-01-01
In this paper, a new event-based control strategy for mobile robots is presented. It has been designed to work in wireless environments where a centralized controller has to interchange information with the robots over an RF (radio frequency) interface. The event-based architectures have been developed for differential wheeled robots, although they can be applied to other kinds of robots in a simple way. The solution has been checked over classical navigation algorithms, like wall following and obstacle avoidance, using scenarios with a unique or multiple robots. A comparison between the proposed architectures and the classical discrete-time strategy is also carried out. The experimental results shows that the proposed solution has a higher efficiency in communication resource usage than the classical discrete-time strategy with the same accuracy. PMID:26633412
Navigating the pathway to robotic competency in general thoracic surgery.
Seder, Christopher W; Cassivi, Stephen D; Wigle, Dennis A
2013-01-01
Although robotic technology has addressed many of the limitations of traditional videoscopic surgery, robotic surgery has not gained widespread acceptance in the general thoracic community. We report our initial robotic surgery experience and propose a structured, competency-based pathway for the development of robotic skills. Between December 2008 and February 2012, a total of 79 robot-assisted pulmonary, mediastinal, benign esophageal, or diaphragmatic procedures were performed. Data on patient characteristics and perioperative outcomes were retrospectively collected and analyzed. During the study period, one surgeon and three residents participated in a triphasic, competency-based pathway designed to teach robotic skills. The pathway consisted of individual preclinical learning followed by mentored preclinical exercises and progressive clinical responsibility. The robot-assisted procedures performed included lung resection (n = 38), mediastinal mass resection (n = 19), hiatal or paraesophageal hernia repair (n = 12), and Heller myotomy (n = 7), among others (n = 3). There were no perioperative mortalities, with a 20% complication rate and a 3% readmission rate. Conversion to a thoracoscopic or open approach was required in eight pulmonary resections to facilitate dissection (six) or to control hemorrhage (two). Fewer major perioperative complications were observed in the later half of the experience. All residents who participated in the thoracic surgery robotic pathway perform robot-assisted procedures as part of their clinical practice. Robot-assisted thoracic surgery can be safely learned when skill acquisition is guided by a structured, competency-based pathway.
NASA Technical Reports Server (NTRS)
Whittaker, William; Lowrie, James W.; Mccain, Harry; Bejczy, Antal; Sheridan, Tom; Kanade, Takeo; Allen, Peter
1994-01-01
Japan has been one of the most successful countries in the world in the realm of terrestrial robot applications. The panel found that Japan has in place a broad base of robotics research and development, ranging from components to working systems for manufacturing, construction, and human service industries. From this base, Japan looks to the use of robotics in space applications and has funded work in space robotics since the mid-1980's. The Japanese are focusing on a clear image of what they hope to achieve through three objectives for the 1990's: developing long-reach manipulation for tending experiments on Space Station Freedom, capturing satellites using a free-flying manipulator, and surveying part of the moon with a mobile robot. This focus and a sound robotics infrastructure is enabling the young Japanese space program to develop relevant systems for extraterrestrial robotics applications.
Controlling the autonomy of a reconnaissance robot
NASA Astrophysics Data System (ADS)
Dalgalarrondo, Andre; Dufourd, Delphine; Filliat, David
2004-09-01
In this paper, we present our research on the control of a mobile robot for indoor reconnaissance missions. Based on previous work concerning our robot control architecture HARPIC, we have developed a man machine interface and software components that allow a human operator to control a robot at different levels of autonomy. This work aims at studying how a robot could be helpful in indoor reconnaissance and surveillance missions in hostile environment. In such missions, since a soldier faces many threats and must protect himself while looking around and holding his weapon, he cannot devote his attention to the teleoperation of the robot. Moreover, robots are not yet able to conduct complex missions in a fully autonomous mode. Thus, in a pragmatic way, we have built a software that allows dynamic swapping between control modes (manual, safeguarded and behavior-based) while automatically performing map building and localization of the robot. It also includes surveillance functions like movement detection and is designed for multirobot extensions. We first describe the design of our agent-based robot control architecture and discuss the various ways to control and interact with a robot. The main modules and functionalities implementing those ideas in our architecture are detailed. More precisely, we show how we combine manual controls, obstacle avoidance, wall and corridor following, way point and planned travelling. Some experiments on a Pioneer robot equipped with various sensors are presented. Finally, we suggest some promising directions for the development of robots and user interfaces for hostile environment and discuss our planned future improvements.
New Trends in Robotics for Agriculture: Integration and Assessment of a Real Fleet of Robots
Gonzalez-de-Soto, Mariano; Pajares, Gonzalo
2014-01-01
Computer-based sensors and actuators such as global positioning systems, machine vision, and laser-based sensors have progressively been incorporated into mobile robots with the aim of configuring autonomous systems capable of shifting operator activities in agricultural tasks. However, the incorporation of many electronic systems into a robot impairs its reliability and increases its cost. Hardware minimization, as well as software minimization and ease of integration, is essential to obtain feasible robotic systems. A step forward in the application of automatic equipment in agriculture is the use of fleets of robots, in which a number of specialized robots collaborate to accomplish one or several agricultural tasks. This paper strives to develop a system architecture for both individual robots and robots working in fleets to improve reliability, decrease complexity and costs, and permit the integration of software from different developers. Several solutions are studied, from a fully distributed to a whole integrated architecture in which a central computer runs all processes. This work also studies diverse topologies for controlling fleets of robots and advances other prospective topologies. The architecture presented in this paper is being successfully applied in the RHEA fleet, which comprises three ground mobile units based on a commercial tractor chassis. PMID:25143976
New trends in robotics for agriculture: integration and assessment of a real fleet of robots.
Emmi, Luis; Gonzalez-de-Soto, Mariano; Pajares, Gonzalo; Gonzalez-de-Santos, Pablo
2014-01-01
Computer-based sensors and actuators such as global positioning systems, machine vision, and laser-based sensors have progressively been incorporated into mobile robots with the aim of configuring autonomous systems capable of shifting operator activities in agricultural tasks. However, the incorporation of many electronic systems into a robot impairs its reliability and increases its cost. Hardware minimization, as well as software minimization and ease of integration, is essential to obtain feasible robotic systems. A step forward in the application of automatic equipment in agriculture is the use of fleets of robots, in which a number of specialized robots collaborate to accomplish one or several agricultural tasks. This paper strives to develop a system architecture for both individual robots and robots working in fleets to improve reliability, decrease complexity and costs, and permit the integration of software from different developers. Several solutions are studied, from a fully distributed to a whole integrated architecture in which a central computer runs all processes. This work also studies diverse topologies for controlling fleets of robots and advances other prospective topologies. The architecture presented in this paper is being successfully applied in the RHEA fleet, which comprises three ground mobile units based on a commercial tractor chassis.
Concentric Tube Robot Design and Optimization Based on Task and Anatomical Constraints
Bergeles, Christos; Gosline, Andrew H.; Vasilyev, Nikolay V.; Codd, Patrick J.; del Nido, Pedro J.; Dupont, Pierre E.
2015-01-01
Concentric tube robots are catheter-sized continuum robots that are well suited for minimally invasive surgery inside confined body cavities. These robots are constructed from sets of pre-curved superelastic tubes and are capable of assuming complex 3D curves. The family of 3D curves that the robot can assume depends on the number, curvatures, lengths and stiffnesses of the tubes in its tube set. The robot design problem involves solving for a tube set that will produce the family of curves necessary to perform a surgical procedure. At a minimum, these curves must enable the robot to smoothly extend into the body and to manipulate tools over the desired surgical workspace while respecting anatomical constraints. This paper introduces an optimization framework that utilizes procedureor patient-specific image-based anatomical models along with surgical workspace requirements to generate robot tube set designs. The algorithm searches for designs that minimize robot length and curvature and for which all paths required for the procedure consist of stable robot configurations. Two mechanics-based kinematic models are used. Initial designs are sought using a model assuming torsional rigidity. These designs are then refined using a torsionally-compliant model. The approach is illustrated with clinically relevant examples from neurosurgery and intracardiac surgery. PMID:26380575
A Model Based Approach to Increase the Part Accuracy in Robot Based Incremental Sheet Metal Forming
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meier, Horst; Laurischkat, Roman; Zhu Junhong
One main influence on the dimensional accuracy in robot based incremental sheet metal forming results from the compliance of the involved robot structures. Compared to conventional machine tools the low stiffness of the robot's kinematic results in a significant deviation of the planned tool path and therefore in a shape of insufficient quality. To predict and compensate these deviations offline, a model based approach, consisting of a finite element approach, to simulate the sheet forming, and a multi body system, modeling the compliant robot structure, has been developed. This paper describes the implementation and experimental verification of the multi bodymore » system model and its included compensation method.« less
Bolzoni Villaret, Andrea; Doglietto, Francesco; Carobbio, Andrea; Schreiber, Alberto; Panni, Camilla; Piantoni, Enrico; Guida, Giovanni; Fontanella, Marco Maria; Nicolai, Piero; Cassinis, Riccardo
2017-09-01
Although robotics has already been applied to several surgical fields, available systems are not designed for endoscopic skull base surgery (ESBS). New conception prototypes have been recently described for ESBS. The aim of this study was to provide a systematic literature review of robotics for ESBS and describe a novel prototype developed at the University of Brescia. PubMed and Scopus databases were searched using a combination of terms, including Robotics OR Robot and Surgery OR Otolaryngology OR Skull Base OR Holder. The retrieved papers were analyzed, recording the following features: interface, tools under robotic control, force feedback, safety systems, setup time, and operative time. A novel hybrid robotic system has been developed and tested in a preclinical setting at the University of Brescia, using an industrial manipulator and readily available off-the-shelf components. A total of 11 robotic prototypes for ESBS were identified. Almost all prototypes present a difficult emergency management as one of the main limits. The Brescia Endoscope Assistant Robotic holder has proven the feasibility of an intuitive robotic movement, using the surgeon's head position: a 6 degree of freedom sensor was used and 2 light sources were added to glasses that were therefore recognized by a commercially available sensor. Robotic system prototypes designed for ESBS and reported in the literature still present significant technical limitations. Hybrid robot assistance has a huge potential and might soon be feasible in ESBS. Copyright © 2017 Elsevier Inc. All rights reserved.
Torres, Luis G; Kuntz, Alan; Gilbert, Hunter B; Swaney, Philip J; Hendrick, Richard J; Webster, Robert J; Alterovitz, Ron
2015-05-01
Concentric tube robots are thin, tentacle-like devices that can move along curved paths and can potentially enable new, less invasive surgical procedures. Safe and effective operation of this type of robot requires that the robot's shaft avoid sensitive anatomical structures (e.g., critical vessels and organs) while the surgeon teleoperates the robot's tip. However, the robot's unintuitive kinematics makes it difficult for a human user to manually ensure obstacle avoidance along the entire tentacle-like shape of the robot's shaft. We present a motion planning approach for concentric tube robot teleoperation that enables the robot to interactively maneuver its tip to points selected by a user while automatically avoiding obstacles along its shaft. We achieve automatic collision avoidance by precomputing a roadmap of collision-free robot configurations based on a description of the anatomical obstacles, which are attainable via volumetric medical imaging. We also mitigate the effects of kinematic modeling error in reaching the goal positions by adjusting motions based on robot tip position sensing. We evaluate our motion planner on a teleoperated concentric tube robot and demonstrate its obstacle avoidance and accuracy in environments with tubular obstacles.
A robotic orbital emulator with lidar-based SLAM and AMCL for multiple entity pose estimation
NASA Astrophysics Data System (ADS)
Shen, Dan; Xiang, Xingyu; Jia, Bin; Wang, Zhonghai; Chen, Genshe; Blasch, Erik; Pham, Khanh
2018-05-01
This paper revises and evaluates an orbital emulator (OE) for space situational awareness (SSA). The OE can produce 3D satellite movements using capabilities generated from omni-wheeled robot and robotic arm motions. The 3D motion of satellite is partitioned into the movements in the equatorial plane and the up-down motions in the vertical plane. The 3D actions are emulated by omni-wheeled robot models while the up-down motions are performed by a stepped-motorcontrolled- ball along a rod (robotic arm), which is attached to the robot. Lidar only measurements are used to estimate the pose information of the multiple robots. SLAM (simultaneous localization and mapping) is running on one robot to generate the map and compute the pose for the robot. Based on the SLAM map maintained by the robot, the other robots run the adaptive Monte Carlo localization (AMCL) method to estimate their poses. The controller is designed to guide the robot to follow a given orbit. The controllability is analyzed by using a feedback linearization method. Experiments are conducted to show the convergence of AMCL and the orbit tracking performance.
Design of the arm-wrestling robot's force acquisition system based on Qt
NASA Astrophysics Data System (ADS)
Huo, Zhixiang; Chen, Feng; Wang, Yongtao
2017-03-01
As a collection of entertainment and medical rehabilitation in a robot, the research on the arm-wrestling robot is of great significance. In order to achieve the collection of the arm-wrestling robot's force signals, the design and implementation of arm-wrestling robot's force acquisition system is introduced in this paper. The system is based on MP4221 data acquisition card and is programmed by Qt. It runs successfully in collecting the analog signals on PC. The interface of the system is simple and the real-time performance is good. The result of the test shows the feasibility in arm-wrestling robot.
Unified Approach To Control Of Motions Of Mobile Robots
NASA Technical Reports Server (NTRS)
Seraji, Homayoun
1995-01-01
Improved computationally efficient scheme developed for on-line coordinated control of both manipulation and mobility of robots that include manipulator arms mounted on mobile bases. Present scheme similar to one described in "Coordinated Control of Mobile Robotic Manipulators" (NPO-19109). Both schemes based on configuration-control formalism. Present one incorporates explicit distinction between holonomic and nonholonomic constraints. Several other prior articles in NASA Tech Briefs discussed aspects of configuration-control formalism. These include "Increasing the Dexterity of Redundant Robots" (NPO-17801), "Redundant Robot Can Avoid Obstacles" (NPO-17852), "Configuration-Control Scheme Copes with Singularities" (NPO-18556), "More Uses for Configuration Control of Robots" (NPO-18607/NPO-18608).
A mobile robots experimental environment with event-based wireless communication.
Guinaldo, María; Fábregas, Ernesto; Farias, Gonzalo; Dormido-Canto, Sebastián; Chaos, Dictino; Sánchez, José; Dormido, Sebastián
2013-07-22
An experimental platform to communicate between a set of mobile robots through a wireless network has been developed. The mobile robots get their position through a camera which performs as sensor. The video images are processed in a PC and a Waspmote card sends the corresponding position to each robot using the ZigBee standard. A distributed control algorithm based on event-triggered communications has been designed and implemented to bring the robots into the desired formation. Each robot communicates to its neighbors only at event times. Furthermore, a simulation tool has been developed to design and perform experiments with the system. An example of usage is presented.
A 2.5D Map-Based Mobile Robot Localization via Cooperation of Aerial and Ground Robots
Nam, Tae Hyeon; Shim, Jae Hong; Cho, Young Im
2017-01-01
Recently, there has been increasing interest in studying the task coordination of aerial and ground robots. When a robot begins navigation in an unknown area, it has no information about the surrounding environment. Accordingly, for robots to perform tasks based on location information, they need a simultaneous localization and mapping (SLAM) process that uses sensor information to draw a map of the environment, while simultaneously estimating the current location of the robot on the map. This paper aims to present a localization method based in cooperation between aerial and ground robots in an indoor environment. The proposed method allows a ground robot to reach accurate destination by using a 2.5D elevation map built by a low-cost RGB-D (Red Green and Blue-Depth) sensor and 2D Laser sensor attached onto an aerial robot. A 2.5D elevation map is formed by projecting height information of an obstacle using depth information obtained by the RGB-D sensor onto a grid map, which is generated by using the 2D Laser sensor and scan matching. Experimental results demonstrate the effectiveness of the proposed method for its accuracy in location recognition and computing speed. PMID:29186843
Thepsoonthorn, Chidchanok; Ogawa, Ken-Ichiro; Miyake, Yoshihiro
2018-05-30
At current state, although robotics technology has been immensely developed, the uncertainty to completely engage in human-robot interaction is still growing among people. Many current studies then started to concern about human factors that might influence human's likability like human's personality, and found that compatibility between human's and robot's personality (expressions of personality characteristics) can enhance human's likability. However, it is still unclear whether specific means and strategy of robot's nonverbal behaviours enhances likability from human with different personality traits and whether there is a relationship between robot's nonverbal behaviours and human's likability based on human's personality. In this study, we investigated and focused on the interaction via gaze and head nodding behaviours (mutual gaze convergence and head nodding synchrony) between introvert/extravert participants and robot in two communication strategies (Backchanneling and Turn-taking). Our findings reveal that the introvert participants are positively affected by backchanneling in robot's head nodding behaviour, which results in substantial head nodding synchrony whereas the extravert participants are positively influenced by turn-taking in gaze behaviour, which leads to significant mutual gaze convergence. This study demonstrates that there is a relationship between robot's nonverbal behaviour and human's likability based on human's personality.
Model learning for robot control: a survey.
Nguyen-Tuong, Duy; Peters, Jan
2011-11-01
Models are among the most essential tools in robotics, such as kinematics and dynamics models of the robot's own body and controllable external objects. It is widely believed that intelligent mammals also rely on internal models in order to generate their actions. However, while classical robotics relies on manually generated models that are based on human insights into physics, future autonomous, cognitive robots need to be able to automatically generate models that are based on information which is extracted from the data streams accessible to the robot. In this paper, we survey the progress in model learning with a strong focus on robot control on a kinematic as well as dynamical level. Here, a model describes essential information about the behavior of the environment and the influence of an agent on this environment. In the context of model-based learning control, we view the model from three different perspectives. First, we need to study the different possible model learning architectures for robotics. Second, we discuss what kind of problems these architecture and the domain of robotics imply for the applicable learning methods. From this discussion, we deduce future directions of real-time learning algorithms. Third, we show where these scenarios have been used successfully in several case studies.
A 2.5D Map-Based Mobile Robot Localization via Cooperation of Aerial and Ground Robots.
Nam, Tae Hyeon; Shim, Jae Hong; Cho, Young Im
2017-11-25
Recently, there has been increasing interest in studying the task coordination of aerial and ground robots. When a robot begins navigation in an unknown area, it has no information about the surrounding environment. Accordingly, for robots to perform tasks based on location information, they need a simultaneous localization and mapping (SLAM) process that uses sensor information to draw a map of the environment, while simultaneously estimating the current location of the robot on the map. This paper aims to present a localization method based in cooperation between aerial and ground robots in an indoor environment. The proposed method allows a ground robot to reach accurate destination by using a 2.5D elevation map built by a low-cost RGB-D (Red Green and Blue-Depth) sensor and 2D Laser sensor attached onto an aerial robot. A 2.5D elevation map is formed by projecting height information of an obstacle using depth information obtained by the RGB-D sensor onto a grid map, which is generated by using the 2D Laser sensor and scan matching. Experimental results demonstrate the effectiveness of the proposed method for its accuracy in location recognition and computing speed.
ERIC Educational Resources Information Center
Koumoullos, Michael
2013-01-01
This research study aimed to identify any correlation between participation in afterschool robotics at the high school level and academic performance. Through a sample of N = 121 students, the researcher examined the grades and attendance of students who participated in a robotics program in the 2011-2012 school year. The academic record of these…
IMU-based online kinematic calibration of robot manipulator.
Du, Guanglong; Zhang, Ping
2013-01-01
Robot calibration is a useful diagnostic method for improving the positioning accuracy in robot production and maintenance. An online robot self-calibration method based on inertial measurement unit (IMU) is presented in this paper. The method requires that the IMU is rigidly attached to the robot manipulator, which makes it possible to obtain the orientation of the manipulator with the orientation of the IMU in real time. This paper proposed an efficient approach which incorporates Factored Quaternion Algorithm (FQA) and Kalman Filter (KF) to estimate the orientation of the IMU. Then, an Extended Kalman Filter (EKF) is used to estimate kinematic parameter errors. Using this proposed orientation estimation method will result in improved reliability and accuracy in determining the orientation of the manipulator. Compared with the existing vision-based self-calibration methods, the great advantage of this method is that it does not need the complex steps, such as camera calibration, images capture, and corner detection, which make the robot calibration procedure more autonomous in a dynamic manufacturing environment. Experimental studies on a GOOGOL GRB3016 robot show that this method has better accuracy, convenience, and effectiveness than vision-based methods.
Doroodgar, Barzin; Liu, Yugang; Nejat, Goldie
2014-12-01
Semi-autonomous control schemes can address the limitations of both teleoperation and fully autonomous robotic control of rescue robots in disaster environments by allowing a human operator to cooperate and share such tasks with a rescue robot as navigation, exploration, and victim identification. In this paper, we present a unique hierarchical reinforcement learning-based semi-autonomous control architecture for rescue robots operating in cluttered and unknown urban search and rescue (USAR) environments. The aim of the controller is to enable a rescue robot to continuously learn from its own experiences in an environment in order to improve its overall performance in exploration of unknown disaster scenes. A direction-based exploration technique is integrated in the controller to expand the search area of the robot via the classification of regions and the rubble piles within these regions. Both simulations and physical experiments in USAR-like environments verify the robustness of the proposed HRL-based semi-autonomous controller to unknown cluttered scenes with different sizes and varying types of configurations.
NASA Astrophysics Data System (ADS)
Gwiazda, A.; Banas, W.; Sekala, A.; Foit, K.; Hryniewicz, P.; Kost, G.
2015-11-01
Process of workcell designing is limited by different constructional requirements. They are related to technological parameters of manufactured element, to specifications of purchased elements of a workcell and to technical characteristics of a workcell scene. This shows the complexity of the design-constructional process itself. The results of such approach are individually designed workcell suitable to the specific location and specific production cycle. Changing this parameters one must rebuild the whole configuration of a workcell. Taking into consideration this it is important to elaborate the base of typical elements of a robot kinematic chain that could be used as the tool for building Virtual modelling of kinematic chains of industrial robots requires several preparatory phase. Firstly, it is important to create a database element, which will be models of industrial robot arms. These models could be described as functional primitives that represent elements between components of the kinematic pairs and structural members of industrial robots. A database with following elements is created: the base kinematic pairs, the base robot structural elements, the base of the robot work scenes. The first of these databases includes kinematic pairs being the key component of the manipulator actuator modules. Accordingly, as mentioned previously, it includes the first stage rotary pair of fifth stage. This type of kinematic pairs was chosen due to the fact that it occurs most frequently in the structures of industrial robots. Second base consists of structural robot elements therefore it allows for the conversion of schematic structures of kinematic chains in the structural elements of the arm of industrial robots. It contains, inter alia, the structural elements such as base, stiff members - simple or angular units. They allow converting recorded schematic three-dimensional elements. Last database is a database of scenes. It includes elements of both simple and complex: simple models of technological equipment, conveyors models, models of the obstacles and like that. Using these elements it could be formed various production spaces (robotized workcells), in which it is possible to virtually track the operation of an industrial robot arm modelled in the system.
NASA Astrophysics Data System (ADS)
Koumoullos, Michael
This research study aimed to identify any correlation between participation in afterschool robotics at the high school level and academic performance. Through a sample of N=121 students, the researcher examined the grades and attendance of students who participated in a robotics program in the 2011-2012 school year. The academic record of these students was compared to a group of students who were members of school based sports teams and to a group of students who were not part of either of the first two groups. Academic record was defined as overall GPA, English grade, mathematics grade, mathematics-based standardized state exam scores, and attendance rates. All of the participants of this study were students in a large, urban career and technical education high school. As STEM (Science, Technology, Engineering, and Mathematics) has come to the forefront of educational focus, robotics programs have grown in quantity. Starting robotics programs requires a serious commitment of time, money, and other resources. The benefits of such programs have not been well analyzed. This research study had three major goals: to identify the academic characteristics of students who are drawn to robotics programs, to identify the academic impact of the robotics program during the robotics season, and to identify the academic impact of the robotics program at the end of the school year. The study was a non-experiment. The researchers ran MANOVS, repeated measures analyses, an ANOVA, and descriptive statistics to analyze the data. The data showed that students drawn to robotics were academically stronger than students who did not participate in robotics. The data also showed that grades and attendance did not significantly improve or degrade either during the robotics season or at year-end. These findings are significant because they show that robotics programs attract students who are academically strong. This information can be very useful in high school articulation programs. These findings also show that robotics programs can be an educational activity for academically strong students. Further, they show that participation in such programs does not distract students from their academic focus.
Memristive device based learning for navigation in robots.
Sarim, Mohammad; Kumar, Manish; Jha, Rashmi; Minai, Ali A
2017-11-08
Biomimetic robots have gained attention recently for various applications ranging from resource hunting to search and rescue operations during disasters. Biological species are known to intuitively learn from the environment, gather and process data, and make appropriate decisions. Such sophisticated computing capabilities in robots are difficult to achieve, especially if done in real-time with ultra-low energy consumption. Here, we present a novel memristive device based learning architecture for robots. Two terminal memristive devices with resistive switching of oxide layer are modeled in a crossbar array to develop a neuromorphic platform that can impart active real-time learning capabilities in a robot. This approach is validated by navigating a robot vehicle in an unknown environment with randomly placed obstacles. Further, the proposed scheme is compared with reinforcement learning based algorithms using local and global knowledge of the environment. The simulation as well as experimental results corroborate the validity and potential of the proposed learning scheme for robots. The results also show that our learning scheme approaches an optimal solution for some environment layouts in robot navigation.
Multisensor-based human detection and tracking for mobile service robots.
Bellotto, Nicola; Hu, Huosheng
2009-02-01
One of fundamental issues for service robots is human-robot interaction. In order to perform such a task and provide the desired services, these robots need to detect and track people in the surroundings. In this paper, we propose a solution for human tracking with a mobile robot that implements multisensor data fusion techniques. The system utilizes a new algorithm for laser-based leg detection using the onboard laser range finder (LRF). The approach is based on the recognition of typical leg patterns extracted from laser scans, which are shown to also be very discriminative in cluttered environments. These patterns can be used to localize both static and walking persons, even when the robot moves. Furthermore, faces are detected using the robot's camera, and the information is fused to the legs' position using a sequential implementation of unscented Kalman filter. The proposed solution is feasible for service robots with a similar device configuration and has been successfully implemented on two different mobile platforms. Several experiments illustrate the effectiveness of our approach, showing that robust human tracking can be performed within complex indoor environments.
The Development of a Robot-Based Learning Companion: A User-Centered Design Approach
ERIC Educational Resources Information Center
Hsieh, Yi-Zeng; Su, Mu-Chun; Chen, Sherry Y.; Chen, Gow-Dong
2015-01-01
A computer-vision-based method is widely employed to support the development of a variety of applications. In this vein, this study uses a computer-vision-based method to develop a playful learning system, which is a robot-based learning companion named RobotTell. Unlike existing playful learning systems, a user-centered design (UCD) approach is…
Study on Parameter Identification of Assembly Robot based on Screw Theory
NASA Astrophysics Data System (ADS)
Yun, Shi; Xiaodong, Zhang
2017-11-01
The kinematic model of assembly robot is one of the most important factors affecting repetitive precision. In order to improve the accuracy of model positioning, this paper first establishes the exponential product model of ER16-1600 assembly robot on the basis of screw theory, and then based on iterative least squares method, using ER16-1600 model robot parameter identification. By comparing the experiment before and after the calibration, it is proved that the method has obvious improvement on the positioning accuracy of the assembly robot.
Robopedia: Leveraging Sensorpedia for Web-Enabled Robot Control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Resseguie, David R
There is a growing interest in building Internetscale sensor networks that integrate sensors from around the world into a single unified system. In contrast, robotics application development has primarily focused on building specialized systems. These specialized systems take scalability and reliability into consideration, but generally neglect exploring the key components required to build a large scale system. Integrating robotic applications with Internet-scale sensor networks will unify specialized robotics applications and provide answers to large scale implementation concerns. We focus on utilizing Internet-scale sensor network technology to construct a framework for unifying robotic systems. Our framework web-enables a surveillance robot smore » sensor observations and provides a webinterface to the robot s actuators. This lets robots seamlessly integrate into web applications. In addition, the framework eliminates most prerequisite robotics knowledge, allowing for the creation of general web-based robotics applications. The framework also provides mechanisms to create applications that can interface with any robot. Frameworks such as this one are key to solving large scale mobile robotics implementation problems. We provide an overview of previous Internetscale sensor networks, Sensorpedia (an ad-hoc Internet-scale sensor network), our framework for integrating robots with Sensorpedia, two applications which illustrate our frameworks ability to support general web-based robotic control, and offer experimental results that illustrate our framework s scalability, feasibility, and resource requirements.« less
NASA Technical Reports Server (NTRS)
1990-01-01
The present conference on artificial intelligence (AI), robotics, and automation in space encompasses robot systems, lunar and planetary robots, advanced processing, expert systems, knowledge bases, issues of operation and management, manipulator control, and on-orbit service. Specific issues addressed include fundamental research in AI at NASA, the FTS dexterous telerobot, a target-capture experiment by a free-flying robot, the NASA Planetary Rover Program, the Katydid system for compiling KEE applications to Ada, and speech recognition for robots. Also addressed are a knowledge base for real-time diagnosis, a pilot-in-the-loop simulation of an orbital docking maneuver, intelligent perturbation algorithms for space scheduling optimization, a fuzzy control method for a space manipulator system, hyperredundant manipulator applications, robotic servicing of EOS instruments, and a summary of astronaut inputs on automation and robotics for the Space Station Freedom.
Cooperative Environment Scans Based on a Multi-Robot System
Kwon, Ji-Wook
2015-01-01
This paper proposes a cooperative environment scan system (CESS) using multiple robots, where each robot has low-cost range finders and low processing power. To organize and maintain the CESS, a base robot monitors the positions of the child robots, controls them, and builds a map of the unknown environment, while the child robots with low performance range finders provide obstacle information. Even though each child robot provides approximated and limited information of the obstacles, CESS replaces the single LRF, which has a high cost, because much of the information is acquired and accumulated by a number of the child robots. Moreover, the proposed CESS extends the measurement boundaries and detects obstacles hidden behind others. To show the performance of the proposed system and compare this with the numerical models of the commercialized 2D and 3D laser scanners, simulation results are included. PMID:25789491
Knowledge based systems for intelligent robotics
NASA Technical Reports Server (NTRS)
Rajaram, N. S.
1982-01-01
It is pointed out that the construction of large space platforms, such as space stations, has to be carried out in the outer space environment. As it is extremely expensive to support human workers in space for large periods, the only feasible solution appears to be related to the development and deployment of highly capable robots for most of the tasks. Robots for space applications will have to possess characteristics which are very different from those needed by robots in industry. The present investigation is concerned with the needs of space robotics and the technologies which can be of assistance to meet these needs, giving particular attention to knowledge bases. 'Intelligent' robots are required for the solution of arising problems. The collection of facts and rules needed for accomplishing such solutions form the 'knowledge base' of the system.
Mobile robots IV; Proceedings of the Meeting, Philadelphia, PA, Nov. 6, 7, 1989
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolfe, W.J.; Chun, W.H.
1990-01-01
The present conference on mobile robot systems discusses high-speed machine perception based on passive sensing, wide-angle optical ranging, three-dimensional path planning for flying/crawling robots, navigation of autonomous mobile intelligence in an unstructured natural environment, mechanical models for the locomotion of a four-articulated-track robot, a rule-based command language for a semiautonomous Mars rover, and a computer model of the structured light vision system for a Mars rover. Also discussed are optical flow and three-dimensional information for navigation, feature-based reasoning trail detection, a symbolic neural-net production system for obstacle avoidance and navigation, intelligent path planning for robot navigation in an unknown environment,more » behaviors from a hierarchical control system, stereoscopic TV systems, the REACT language for autonomous robots, and a man-amplifying exoskeleton.« less
Autonomous Motion Learning for Intra-Vehicular Activity Space Robot
NASA Astrophysics Data System (ADS)
Watanabe, Yutaka; Yairi, Takehisa; Machida, Kazuo
Space robots will be needed in the future space missions. So far, many types of space robots have been developed, but in particular, Intra-Vehicular Activity (IVA) space robots that support human activities should be developed to reduce human-risks in space. In this paper, we study the motion learning method of an IVA space robot with the multi-link mechanism. The advantage point is that this space robot moves using reaction force of the multi-link mechanism and contact forces from the wall as space walking of an astronaut, not to use a propulsion. The control approach is determined based on a reinforcement learning with the actor-critic algorithm. We demonstrate to clear effectiveness of this approach using a 5-link space robot model by simulation. First, we simulate that a space robot learn the motion control including contact phase in two dimensional case. Next, we simulate that a space robot learn the motion control changing base attitude in three dimensional case.
A CLIPS-based expert system for the evaluation and selection of robots
NASA Technical Reports Server (NTRS)
Nour, Mohamed A.; Offodile, Felix O.; Madey, Gregory R.
1994-01-01
This paper describes the development of a prototype expert system for intelligent selection of robots for manufacturing operations. The paper first develops a comprehensive, three-stage process to model the robot selection problem. The decisions involved in this model easily lend themselves to an expert system application. A rule-based system, based on the selection model, is developed using the CLIPS expert system shell. Data about actual robots is used to test the performance of the prototype system. Further extensions to the rule-based system for data handling and interfacing capabilities are suggested.
Zhang, Chen; Sun, Chao; Gao, Liqiang; Zheng, Nenggan; Chen, Weidong; Zheng, Xiaoxiang
2013-01-01
Bio-robots based on brain computer interface (BCI) suffer from the lack of considering the characteristic of the animals in navigation. This paper proposed a new method for bio-robots' automatic navigation combining the reward generating algorithm base on Reinforcement Learning (RL) with the learning intelligence of animals together. Given the graded electrical reward, the animal e.g. the rat, intends to seek the maximum reward while exploring an unknown environment. Since the rat has excellent spatial recognition, the rat-robot and the RL algorithm can convergent to an optimal route by co-learning. This work has significant inspiration for the practical development of bio-robots' navigation with hybrid intelligence.
Method and apparatus for automatic control of a humanoid robot
NASA Technical Reports Server (NTRS)
Abdallah, Muhammad E (Inventor); Platt, Robert (Inventor); Wampler, II, Charles W. (Inventor); Sanders, Adam M (Inventor); Reiland, Matthew J (Inventor)
2013-01-01
A robotic system includes a humanoid robot having a plurality of joints adapted for force control with respect to an object acted upon by the robot, a graphical user interface (GUI) for receiving an input signal from a user, and a controller. The GUI provides the user with intuitive programming access to the controller. The controller controls the joints using an impedance-based control framework, which provides object level, end-effector level, and/or joint space-level control of the robot in response to the input signal. A method for controlling the robotic system includes receiving the input signal via the GUI, e.g., a desired force, and then processing the input signal using a host machine to control the joints via an impedance-based control framework. The framework provides object level, end-effector level, and/or joint space-level control of the robot, and allows for functional-based GUI to simplify implementation of a myriad of operating modes.
A Demonstrator Intelligent Scheduler For Sensor-Based Robots
NASA Astrophysics Data System (ADS)
Perrotta, Gabriella; Allen, Charles R.; Shepherd, Andrew J.
1987-10-01
The development of an execution module capable of functioning as as on-line supervisor for a robot equipped with a vision sensor and tactile sensing gripper system is described. The on-line module is supported by two off-line software modules which provide a procedural based assembly constraints language to allow the assembly task to be defined. This input is then converted into a normalised and minimised form. The host Robot programming language permits high level motions to be issued at the to level, hence allowing a low programming overhead to the designer, who must describe the assembly sequence. Components are selected for pick and place robot movement, based on information derived from two cameras, one static and the other mounted on the end effector of the robot. The approach taken is multi-path scheduling as described by Fox pi. The system is seen to permit robot assembly in a less constrained parts presentation environment making full use of the sensory detail available on the robot.
Iosa, Marco; Morone, Giovanni; Cherubini, Andrea; Paolucci, Stefano
Most studies and reviews on robots for neurorehabilitation focus on their effectiveness. These studies often report inconsistent results. This and many other reasons limit the credit given to these robots by therapists and patients. Further, neurorehabilitation is often still based on therapists' expertise, with competition among different schools of thought, generating substantial uncertainty about what exactly a neurorehabilitation robot should do. Little attention has been given to ethics. This review adopts a new approach, inspired by Asimov's three laws of robotics and based on the most recent studies in neurorobotics, for proposing new guidelines for designing and using robots for neurorehabilitation. We propose three laws of neurorobotics based on the ethical need for safe and effective robots, the redefinition of their role as therapist helpers, and the need for clear and transparent human-machine interfaces. These laws may allow engineers and clinicians to work closely together on a new generation of neurorobots.
Progress in EEG-Based Brain Robot Interaction Systems
Li, Mengfan; Niu, Linwei; Xian, Bin; Zeng, Ming; Chen, Genshe
2017-01-01
The most popular noninvasive Brain Robot Interaction (BRI) technology uses the electroencephalogram- (EEG-) based Brain Computer Interface (BCI), to serve as an additional communication channel, for robot control via brainwaves. This technology is promising for elderly or disabled patient assistance with daily life. The key issue of a BRI system is to identify human mental activities, by decoding brainwaves, acquired with an EEG device. Compared with other BCI applications, such as word speller, the development of these applications may be more challenging since control of robot systems via brainwaves must consider surrounding environment feedback in real-time, robot mechanical kinematics, and dynamics, as well as robot control architecture and behavior. This article reviews the major techniques needed for developing BRI systems. In this review article, we first briefly introduce the background and development of mind-controlled robot technologies. Second, we discuss the EEG-based brain signal models with respect to generating principles, evoking mechanisms, and experimental paradigms. Subsequently, we review in detail commonly used methods for decoding brain signals, namely, preprocessing, feature extraction, and feature classification, and summarize several typical application examples. Next, we describe a few BRI applications, including wheelchairs, manipulators, drones, and humanoid robots with respect to synchronous and asynchronous BCI-based techniques. Finally, we address some existing problems and challenges with future BRI techniques. PMID:28484488
O'Shaughnessy, Peter Kevin; Laws, Thomas A; Pinnock, Carol; Moul, Judd W; Esterman, Adrian
2013-12-01
To compare patient reported outcomes between robotic assisted surgery and non-robotic assisted surgery. This was an international web-based survey based on a qualitative research and literature review, an internet-based questionnaire was developed with approximately 70 items. The questionnaire included both closed and open-ended questions. Responses were received from 193 men of whom 86 had received either open (OP) or robotic (RALP) surgery. A statistically significant (p=0.027), ranked analysis of covariance was found demonstrating higher recent distress in the robotic (RALP) surgery group. Although not statistically significant, there was a pattern of men having robotic (RALP) surgery reporting fewer urinary and bowel problems, but having a greater rate of sexual dysfunction. Men who opt for robotic surgery may have higher expectations for robotic (RALP) surgery, when these expectations are not fully met they may be less likely to accept the consequences of this major cancer surgery. Information regarding surgical choice needs to be tailored to ensure that men diagnosed with prostate cancer are fully informed of not only short term surgical and physical outcomes such as erectile dysfunction and incontinence, but also of potential issues with regards to masculinity, lifestyle and sexual health. Copyright © 2013. Published by Elsevier Ltd.
Guo, Tong; Liu, Qiong; Zhu, Qianwei; Zhao, Xiangmo; Jin, Bo
2017-01-01
In order to find a common approach to plan the turning of a bio-inspired hexapod robot, a locomotion strategy for turning and deviation correction of a hexapod walking robot based on the biological behavior and sensory strategy of ants. A series of experiments using ants were carried out where the gait and the movement form of ants was studied. Taking the results of the ant experiments as inspiration by imitating the behavior of ants during turning, an extended turning algorithm based on arbitrary gait was proposed. Furthermore, after the observation of the radius adjustment of ants during turning, a radius correction algorithm based on the arbitrary gait of the hexapod robot was raised. The radius correction surface function was generated by fitting the correction data, which made it possible for the robot to move in an outdoor environment without the positioning system and environment model. The proposed algorithm was verified on the hexapod robot experimental platform. The turning and radius correction experiment of the robot with several gaits were carried out. The results indicated that the robot could follow the ideal radius and maintain stability, and the proposed ant-inspired turning strategy could easily make free turns with an arbitrary gait. PMID:29168742
The magic glove: a gesture-based remote controller for intelligent mobile robots
NASA Astrophysics Data System (ADS)
Luo, Chaomin; Chen, Yue; Krishnan, Mohan; Paulik, Mark
2012-01-01
This paper describes the design of a gesture-based Human Robot Interface (HRI) for an autonomous mobile robot entered in the 2010 Intelligent Ground Vehicle Competition (IGVC). While the robot is meant to operate autonomously in the various Challenges of the competition, an HRI is useful in moving the robot to the starting position and after run termination. In this paper, a user-friendly gesture-based embedded system called the Magic Glove is developed for remote control of a robot. The system consists of a microcontroller and sensors that is worn by the operator as a glove and is capable of recognizing hand signals. These are then transmitted through wireless communication to the robot. The design of the Magic Glove included contributions on two fronts: hardware configuration and algorithm development. A triple axis accelerometer used to detect hand orientation passes the information to a microcontroller, which interprets the corresponding vehicle control command. A Bluetooth device interfaced to the microcontroller then transmits the information to the vehicle, which acts accordingly. The user-friendly Magic Glove was successfully demonstrated first in a Player/Stage simulation environment. The gesture-based functionality was then also successfully verified on an actual robot and demonstrated to judges at the 2010 IGVC.
Zhu, Yaguang; Guo, Tong; Liu, Qiong; Zhu, Qianwei; Zhao, Xiangmo; Jin, Bo
2017-11-23
Abstract : In order to find a common approach to plan the turning of a bio-inspired hexapod robot, a locomotion strategy for turning and deviation correction of a hexapod walking robot based on the biological behavior and sensory strategy of ants. A series of experiments using ants were carried out where the gait and the movement form of ants was studied. Taking the results of the ant experiments as inspiration by imitating the behavior of ants during turning, an extended turning algorithm based on arbitrary gait was proposed. Furthermore, after the observation of the radius adjustment of ants during turning, a radius correction algorithm based on the arbitrary gait of the hexapod robot was raised. The radius correction surface function was generated by fitting the correction data, which made it possible for the robot to move in an outdoor environment without the positioning system and environment model. The proposed algorithm was verified on the hexapod robot experimental platform. The turning and radius correction experiment of the robot with several gaits were carried out. The results indicated that the robot could follow the ideal radius and maintain stability, and the proposed ant-inspired turning strategy could easily make free turns with an arbitrary gait.
A graphical, rule based robotic interface system
NASA Technical Reports Server (NTRS)
Mckee, James W.; Wolfsberger, John
1988-01-01
The ability of a human to take control of a robotic system is essential in any use of robots in space in order to handle unforeseen changes in the robot's work environment or scheduled tasks. But in cases in which the work environment is known, a human controlling a robot's every move by remote control is both time consuming and frustrating. A system is needed in which the user can give the robotic system commands to perform tasks but need not tell the system how. To be useful, this system should be able to plan and perform the tasks faster than a telerobotic system. The interface between the user and the robot system must be natural and meaningful to the user. A high level user interface program under development at the University of Alabama, Huntsville, is described. A graphical interface is proposed in which the user selects objects to be manipulated by selecting representations of the object on projections of a 3-D model of the work environment. The user may move in the work environment by changing the viewpoint of the projections. The interface uses a rule based program to transform user selection of items on a graphics display of the robot's work environment into commands for the robot. The program first determines if the desired task is possible given the abilities of the robot and any constraints on the object. If the task is possible, the program determines what movements the robot needs to make to perform the task. The movements are transformed into commands for the robot. The information defining the robot, the work environment, and how objects may be moved is stored in a set of data bases accessible to the program and displayable to the user.
Soft Biomimetic Fish Robot Made of Dielectric Elastomer Actuators.
Shintake, Jun; Cacucciolo, Vito; Shea, Herbert; Floreano, Dario
2018-06-29
This article presents the design, fabrication, and characterization of a soft biomimetic robotic fish based on dielectric elastomer actuators (DEAs) that swims by body and/or caudal fin (BCF) propulsion. BCF is a promising locomotion mechanism that potentially offers swimming at higher speeds and acceleration rates, and efficient locomotion. The robot consists of laminated silicone layers wherein two DEAs are used in an antagonistic configuration, generating undulating fish-like motion. The design of the robot is guided by a mathematical model based on the Euler-Bernoulli beam theory and takes account of the nonuniform geometry of the robot and of the hydrodynamic effect of water. The modeling results were compared with the experimental results obtained from the fish robot with a total length of 150 mm, a thickness of 0.75 mm, and weight of 4.4 g. We observed that the frequency peaks in the measured thrust force produced by the robot are similar to the natural frequencies computed by the model. The peak swimming speed of the robot was 37.2 mm/s (0.25 body length/s) at 0.75 Hz. We also observed that the modal shape of the robot at this frequency corresponds to the first natural mode. The swimming of the robot resembles real fish and displays a Strouhal number very close to those of living fish. These results suggest the high potential of DEA-based underwater robots relying on BCF propulsion, and applicability of our design and fabrication methods.
LABRADOR: a learning autonomous behavior-based robot for adaptive detection and object retrieval
NASA Astrophysics Data System (ADS)
Yamauchi, Brian; Moseley, Mark; Brookshire, Jonathan
2013-01-01
As part of the TARDEC-funded CANINE (Cooperative Autonomous Navigation in a Networked Environment) Program, iRobot developed LABRADOR (Learning Autonomous Behavior-based Robot for Adaptive Detection and Object Retrieval). LABRADOR was based on the rugged, man-portable, iRobot PackBot unmanned ground vehicle (UGV) equipped with an explosives ordnance disposal (EOD) manipulator arm and a custom gripper. For LABRADOR, we developed a vision-based object learning and recognition system that combined a TLD (track-learn-detect) filter based on object shape features with a color-histogram-based object detector. Our vision system was able to learn in real-time to recognize objects presented to the robot. We also implemented a waypoint navigation system based on fused GPS, IMU (inertial measurement unit), and odometry data. We used this navigation capability to implement autonomous behaviors capable of searching a specified area using a variety of robust coverage strategies - including outward spiral, random bounce, random waypoint, and perimeter following behaviors. While the full system was not integrated in time to compete in the CANINE competition event, we developed useful perception, navigation, and behavior capabilities that may be applied to future autonomous robot systems.
Nozzle Mounting Method Optimization Based on Robot Kinematic Analysis
NASA Astrophysics Data System (ADS)
Chen, Chaoyue; Liao, Hanlin; Montavon, Ghislain; Deng, Sihao
2016-08-01
Nowadays, the application of industrial robots in thermal spray is gaining more and more importance. A desired coating quality depends on factors such as a balanced robot performance, a uniform scanning trajectory and stable parameters (e.g. nozzle speed, scanning step, spray angle, standoff distance). These factors also affect the mass and heat transfer as well as the coating formation. Thus, the kinematic optimization of all these aspects plays a key role in order to obtain an optimal coating quality. In this study, the robot performance was optimized from the aspect of nozzle mounting on the robot. An optimized nozzle mounting for a type F4 nozzle was designed, based on the conventional mounting method from the point of view of robot kinematics validated on a virtual robot. Robot kinematic parameters were obtained from the simulation by offline programming software and analyzed by statistical methods. The energy consumptions of different nozzle mounting methods were also compared. The results showed that it was possible to reasonably assign the amount of robot motion to each axis during the process, so achieving a constant nozzle speed. Thus, it is possible optimize robot performance and to economize robot energy.
A Mobile Robots Experimental Environment with Event-Based Wireless Communication
Guinaldo, María; Fábregas, Ernesto; Farias, Gonzalo; Dormido-Canto, Sebastián; Chaos, Dictino; Sánchez, José; Dormido, Sebastián
2013-01-01
An experimental platform to communicate between a set of mobile robots through a wireless network has been developed. The mobile robots get their position through a camera which performs as sensor. The video images are processed in a PC and a Waspmote card sends the corresponding position to each robot using the ZigBee standard. A distributed control algorithm based on event-triggered communications has been designed and implemented to bring the robots into the desired formation. Each robot communicates to its neighbors only at event times. Furthermore, a simulation tool has been developed to design and perform experiments with the system. An example of usage is presented. PMID:23881139
Fast instantaneous center of rotation estimation algorithm for a skied-steered robot
NASA Astrophysics Data System (ADS)
Kniaz, V. V.
2015-05-01
Skid-steered robots are widely used as mobile platforms for machine vision systems. However it is hard to achieve a stable motion of such robots along desired trajectory due to an unpredictable wheel slip. It is possible to compensate the unpredictable wheel slip and stabilize the motion of the robot using visual odometry. This paper presents a fast optical flow based algorithm for estimation of instantaneous center of rotation, angular and longitudinal speed of the robot. The proposed algorithm is based on Horn-Schunck variational optical flow estimation method. The instantaneous center of rotation and motion of the robot is estimated by back projection of optical flow field to the ground surface. The developed algorithm was tested using skid-steered mobile robot. The robot is based on a mobile platform that includes two pairs of differential driven motors and a motor controller. Monocular visual odometry system consisting of a singleboard computer and a low cost webcam is mounted on the mobile platform. A state-space model of the robot was derived using standard black-box system identification. The input (commands) and the output (motion) were recorded using a dedicated external motion capture system. The obtained model was used to control the robot without visual odometry data. The paper is concluded with the algorithm quality estimation by comparison of the trajectories estimated by the algorithm with the data from motion capture system.
Miao, Qing; Zhang, Mingming; Wang, Congzhe; Li, Hongsheng
2018-01-01
This review aims to compare existing robot-assisted ankle rehabilitation techniques in terms of robot design. Included studies mainly consist of selected papers in two published reviews involving a variety of robot-assisted ankle rehabilitation techniques. A free search was also made in Google Scholar and Scopus by using keywords "ankle ∗ ," and "robot ∗ ," and ("rehabilitat ∗ " or "treat ∗ "). The search is limited to English-language articles published between January 1980 and September 2016. Results show that existing robot-assisted ankle rehabilitation techniques can be classified into wearable exoskeleton and platform-based devices. Platform-based devices are mostly developed for the treatment of a variety of ankle musculoskeletal and neurological injuries, while wearable ones focus more on ankle-related gait training. In terms of robot design, comparative analysis indicates that an ideal ankle rehabilitation robot should have aligned rotation center as the ankle joint, appropriate workspace, and actuation torque, no matter how many degrees of freedom (DOFs) it has. Single-DOF ankle robots are mostly developed for specific applications, while multi-DOF devices are more suitable for comprehensive ankle rehabilitation exercises. Other factors including posture adjustability and sensing functions should also be considered to promote related clinical applications. An ankle rehabilitation robot with reconfigurability to maximize its functions will be a new research point towards optimal design, especially on parallel mechanisms.
Extensibility in local sensor based planning for hyper-redundant manipulators (robot snakes)
NASA Technical Reports Server (NTRS)
Choset, Howie; Burdick, Joel
1994-01-01
Partial Shape Modification (PSM) is a local sensor feedback method used for hyper-redundant robot manipulators, in which the redundancy is very large or infinite such as that of a robot snake. This aspect of redundancy enables local obstacle avoidance and end-effector placement in real time. Due to the large number of joints or actuators in a hyper-redundant manipulator, small displacement errors of such easily accumulate to large errors in the position of the tip relative to the base. The accuracy could be improved by a local sensor based planning method in which sensors are distributed along the length of the hyper-redundant robot. This paper extends the local sensor based planning strategy beyond the limitations of the fixed length of such a manipulator when its joint limits are met. This is achieved with an algorithm where the length of the deforming part of the robot is variable. Thus , the robot's local avoidance of obstacles is improved through the enhancement of its extensibility.
Regulation and Entrainment in Human-Robot Interaction
2000-01-01
applications for domestic, health care related, or entertainment based robots motivate the development of robots that can socially interact with, learn...picture shows WE-3RII, an expressive face robot developed at Waseda University. The middle right picture shows Robita, an upper-torso robot also... developed at Waseda University to track speaking turns. The far right picture shows our expressive robot, Kismet, developed at MIT. The two leftmost photos
Development of inspection robots for bridge cables.
Yun, Hae-Bum; Kim, Se-Hoon; Wu, Liuliu; Lee, Jong-Jae
2013-01-01
This paper presents the bridge cable inspection robot developed in Korea. Two types of the cable inspection robots were developed for cable-suspension bridges and cable-stayed bridge. The design of the robot system and performance of the NDT techniques associated with the cable inspection robot are discussed. A review on recent advances in emerging robot-based inspection technologies for bridge cables and current bridge cable inspection methods is also presented.
Kim, Su Kyoung; Kirchner, Elsa Andrea; Stefes, Arne; Kirchner, Frank
2017-12-14
Reinforcement learning (RL) enables robots to learn its optimal behavioral strategy in dynamic environments based on feedback. Explicit human feedback during robot RL is advantageous, since an explicit reward function can be easily adapted. However, it is very demanding and tiresome for a human to continuously and explicitly generate feedback. Therefore, the development of implicit approaches is of high relevance. In this paper, we used an error-related potential (ErrP), an event-related activity in the human electroencephalogram (EEG), as an intrinsically generated implicit feedback (rewards) for RL. Initially we validated our approach with seven subjects in a simulated robot learning scenario. ErrPs were detected online in single trial with a balanced accuracy (bACC) of 91%, which was sufficient to learn to recognize gestures and the correct mapping between human gestures and robot actions in parallel. Finally, we validated our approach in a real robot scenario, in which seven subjects freely chose gestures and the real robot correctly learned the mapping between gestures and actions (ErrP detection (90% bACC)). In this paper, we demonstrated that intrinsically generated EEG-based human feedback in RL can successfully be used to implicitly improve gesture-based robot control during human-robot interaction. We call our approach intrinsic interactive RL.
Sensor Fusion Based Model for Collision Free Mobile Robot Navigation.
Almasri, Marwah; Elleithy, Khaled; Alajlan, Abrar
2015-12-26
Autonomous mobile robots have become a very popular and interesting topic in the last decade. Each of them are equipped with various types of sensors such as GPS, camera, infrared and ultrasonic sensors. These sensors are used to observe the surrounding environment. However, these sensors sometimes fail and have inaccurate readings. Therefore, the integration of sensor fusion will help to solve this dilemma and enhance the overall performance. This paper presents a collision free mobile robot navigation based on the fuzzy logic fusion model. Eight distance sensors and a range finder camera are used for the collision avoidance approach where three ground sensors are used for the line or path following approach. The fuzzy system is composed of nine inputs which are the eight distance sensors and the camera, two outputs which are the left and right velocities of the mobile robot's wheels, and 24 fuzzy rules for the robot's movement. Webots Pro simulator is used for modeling the environment and the robot. The proposed methodology, which includes the collision avoidance based on fuzzy logic fusion model and line following robot, has been implemented and tested through simulation and real time experiments. Various scenarios have been presented with static and dynamic obstacles using one robot and two robots while avoiding obstacles in different shapes and sizes.
A robotically constructed production and supply base on Phobos
NASA Astrophysics Data System (ADS)
1989-05-01
PHOBIA Corporation is involved with the design of a man-tenable robotically constructed, bootstrap base on Mars' moon, Phobos. This base will be a pit-stop for future manned missions to Mars and beyond and will be a control facility during the robotic construction of a Martian base. An introduction is given to the concepts and the ground rules followed during the design process. Details of a base design and its location are given along with information about some of the subsystems. Since a major purpose of the base is to supply fuel to spacecraft so they can limit their fuel mass, mining and production systems are discussed. Surface support activities such as docks, anchors, and surface transportation systems are detailed. Several power supplies for the base are investigated and include fuel cells and a nuclear reactor. Tasks for the robots are defined along with descriptions of the robots capable of completing the tasks. Finally, failure modes for the entire PHOBIA Corporation design are presented along with an effects analysis and preventative recommendations.
A robotically constructed production and supply base on Phobos
NASA Technical Reports Server (NTRS)
1989-01-01
PHOBIA Corporation is involved with the design of a man-tenable robotically constructed, bootstrap base on Mars' moon, Phobos. This base will be a pit-stop for future manned missions to Mars and beyond and will be a control facility during the robotic construction of a Martian base. An introduction is given to the concepts and the ground rules followed during the design process. Details of a base design and its location are given along with information about some of the subsystems. Since a major purpose of the base is to supply fuel to spacecraft so they can limit their fuel mass, mining and production systems are discussed. Surface support activities such as docks, anchors, and surface transportation systems are detailed. Several power supplies for the base are investigated and include fuel cells and a nuclear reactor. Tasks for the robots are defined along with descriptions of the robots capable of completing the tasks. Finally, failure modes for the entire PHOBIA Corporation design are presented along with an effects analysis and preventative recommendations.
KC-135 materials handling robotics
NASA Technical Reports Server (NTRS)
Workman, Gary L.
1991-01-01
Robot dynamics and control will become an important issue for implementing productive platforms in space. Robotic operations will become necessary for man-tended stations and for efficient performance of routine operations in a manned platform. The current constraints on the use of robotic devices in a microgravity environment appears to be due to an anticipated increase in acceleration levels due to manipulator motion and for safety concerns. The objective of this study will be to provide baseline data to meet that need. Most texts and papers dealing with the kinematics and dynamics of robots assume that the manipulator is composed of joints separated by rigid links. However, in recent years several groups have begun to study the dynamics of flexible manipulators, primarily for applying robots in space and for improving the efficiency and precision of robotic systems. Robotic systems which are being planned for implementation in space have a number of constraints to overcome. Additional concepts which have to be worked out in any robotic implementation for a space platform include teleoperation and degree of autonomous control. Some significant results in developing a robotic workcell for performing robotics research on the KC-135 aircraft in preperation for space-based robotics applications in the future were generated. In addition, it was shown that TREETOPS can be used to simulate the dynamics of robot manipulators for both space and ground-based applications.
Effect of Robotics-Enhanced Inquiry-Based Learning in Elementary Science Education in South Korea
ERIC Educational Resources Information Center
Park, Jungho
2015-01-01
Much research has been conducted in educational robotics, a new instructional technology, for K-12 education. However, there are arguments on the effect of robotics and limited empirical evidence to investigate the impact of robotics in science learning. Also most robotics studies were carried in an informal educational setting. This study…
Case Studies of a Robot-Based Game to Shape Interests and Hone Proportional Reasoning Skills
ERIC Educational Resources Information Center
Alfieri, Louis; Higashi, Ross; Shoop, Robin; Schunn, Christian D.
2015-01-01
Background: Robot-math is a term used to describe mathematics instruction centered on engineering, particularly robotics. This type of instruction seeks first to make the mathematics skills useful for robotics-centered challenges, and then to help students extend (transfer) those skills. A robot-math intervention was designed to target the…
Choi, Bongjae; Jo, Sungho
2013-01-01
This paper describes a hybrid brain-computer interface (BCI) technique that combines the P300 potential, the steady state visually evoked potential (SSVEP), and event related de-synchronization (ERD) to solve a complicated multi-task problem consisting of humanoid robot navigation and control along with object recognition using a low-cost BCI system. Our approach enables subjects to control the navigation and exploration of a humanoid robot and recognize a desired object among candidates. This study aims to demonstrate the possibility of a hybrid BCI based on a low-cost system for a realistic and complex task. It also shows that the use of a simple image processing technique, combined with BCI, can further aid in making these complex tasks simpler. An experimental scenario is proposed in which a subject remotely controls a humanoid robot in a properly sized maze. The subject sees what the surrogate robot sees through visual feedback and can navigate the surrogate robot. While navigating, the robot encounters objects located in the maze. It then recognizes if the encountered object is of interest to the subject. The subject communicates with the robot through SSVEP and ERD-based BCIs to navigate and explore with the robot, and P300-based BCI to allow the surrogate robot recognize their favorites. Using several evaluation metrics, the performances of five subjects navigating the robot were quite comparable to manual keyboard control. During object recognition mode, favorite objects were successfully selected from two to four choices. Subjects conducted humanoid navigation and recognition tasks as if they embodied the robot. Analysis of the data supports the potential usefulness of the proposed hybrid BCI system for extended applications. This work presents an important implication for the future work that a hybridization of simple BCI protocols provide extended controllability to carry out complicated tasks even with a low-cost system. PMID:24023953
Choi, Bongjae; Jo, Sungho
2013-01-01
This paper describes a hybrid brain-computer interface (BCI) technique that combines the P300 potential, the steady state visually evoked potential (SSVEP), and event related de-synchronization (ERD) to solve a complicated multi-task problem consisting of humanoid robot navigation and control along with object recognition using a low-cost BCI system. Our approach enables subjects to control the navigation and exploration of a humanoid robot and recognize a desired object among candidates. This study aims to demonstrate the possibility of a hybrid BCI based on a low-cost system for a realistic and complex task. It also shows that the use of a simple image processing technique, combined with BCI, can further aid in making these complex tasks simpler. An experimental scenario is proposed in which a subject remotely controls a humanoid robot in a properly sized maze. The subject sees what the surrogate robot sees through visual feedback and can navigate the surrogate robot. While navigating, the robot encounters objects located in the maze. It then recognizes if the encountered object is of interest to the subject. The subject communicates with the robot through SSVEP and ERD-based BCIs to navigate and explore with the robot, and P300-based BCI to allow the surrogate robot recognize their favorites. Using several evaluation metrics, the performances of five subjects navigating the robot were quite comparable to manual keyboard control. During object recognition mode, favorite objects were successfully selected from two to four choices. Subjects conducted humanoid navigation and recognition tasks as if they embodied the robot. Analysis of the data supports the potential usefulness of the proposed hybrid BCI system for extended applications. This work presents an important implication for the future work that a hybridization of simple BCI protocols provide extended controllability to carry out complicated tasks even with a low-cost system.
2017-03-01
ARL-TN-0814 ● MAR 2017 US Army Research Laboratory Usability Study and Heuristic Evaluation of the Applied Robotics for...ARL-TN-0814 ● MAR 2017 US Army Research Laboratory Usability Study and Heuristic Evaluation of the Applied Robotics for...Heuristic Evaluation of the Applied Robotics for Installations and Base Operations (ARIBO) Driverless Vehicle Reservation Application ARIBO Mobile 5a
Simulation-based intelligent robotic agent for Space Station Freedom
NASA Technical Reports Server (NTRS)
Biegl, Csaba A.; Springfield, James F.; Cook, George E.; Fernandez, Kenneth R.
1990-01-01
A robot control package is described which utilizes on-line structural simulation of robot manipulators and objects in their workspace. The model-based controller is interfaced with a high level agent-independent planner, which is responsible for the task-level planning of the robot's actions. Commands received from the agent-independent planner are refined and executed in the simulated workspace, and upon successful completion, they are transferred to the real manipulators.
Vision-Based Real-Time Traversable Region Detection for Mobile Robot in the Outdoors.
Deng, Fucheng; Zhu, Xiaorui; He, Chao
2017-09-13
Environment perception is essential for autonomous mobile robots in human-robot coexisting outdoor environments. One of the important tasks for such intelligent robots is to autonomously detect the traversable region in an unstructured 3D real world. The main drawback of most existing methods is that of high computational complexity. Hence, this paper proposes a binocular vision-based, real-time solution for detecting traversable region in the outdoors. In the proposed method, an appearance model based on multivariate Gaussian is quickly constructed from a sample region in the left image adaptively determined by the vanishing point and dominant borders. Then, a fast, self-supervised segmentation scheme is proposed to classify the traversable and non-traversable regions. The proposed method is evaluated on public datasets as well as a real mobile robot. Implementation on the mobile robot has shown its ability in the real-time navigation applications.
A motion sensing-based framework for robotic manipulation.
Deng, Hao; Xia, Zeyang; Weng, Shaokui; Gan, Yangzhou; Fang, Peng; Xiong, Jing
2016-01-01
To data, outside of the controlled environments, robots normally perform manipulation tasks operating with human. This pattern requires the robot operators with high technical skills training for varied teach-pendant operating system. Motion sensing technology, which enables human-machine interaction in a novel and natural interface using gestures, has crucially inspired us to adopt this user-friendly and straightforward operation mode on robotic manipulation. Thus, in this paper, we presented a motion sensing-based framework for robotic manipulation, which recognizes gesture commands captured from motion sensing input device and drives the action of robots. For compatibility, a general hardware interface layer was also developed in the framework. Simulation and physical experiments have been conducted for preliminary validation. The results have shown that the proposed framework is an effective approach for general robotic manipulation with motion sensing control.
NASA Astrophysics Data System (ADS)
Shi, Chengkun; Sun, Hanxu; Jia, Qingxuan; Zhao, Kailiang
2009-05-01
For realizing omni-directional movement and operating task of spherical space robot system, this paper describes an innovated prototype and analyzes dynamic characteristics of a spherical rolling robot with telescopic manipulator. Based on the Newton-Euler equations, the kinematics and dynamic equations of the spherical robot's motion are instructed detailedly. Then the motion simulations of the robot in different environments are developed with ADAMS. The simulation results validate the mathematics model of the system. And the dynamic model establishes theoretical basis for the latter job.
Path Planning for Robot based on Chaotic Artificial Potential Field Method
NASA Astrophysics Data System (ADS)
Zhang, Cheng
2018-03-01
Robot path planning in unknown environments is one of the hot research topics in the field of robot control. Aiming at the shortcomings of traditional artificial potential field methods, we propose a new path planning for Robot based on chaotic artificial potential field method. The path planning adopts the potential function as the objective function and introduces the robot direction of movement as the control variables, which combines the improved artificial potential field method with chaotic optimization algorithm. Simulations have been carried out and the results demonstrate that the superior practicality and high efficiency of the proposed method.
IMU-Based Online Kinematic Calibration of Robot Manipulator
2013-01-01
Robot calibration is a useful diagnostic method for improving the positioning accuracy in robot production and maintenance. An online robot self-calibration method based on inertial measurement unit (IMU) is presented in this paper. The method requires that the IMU is rigidly attached to the robot manipulator, which makes it possible to obtain the orientation of the manipulator with the orientation of the IMU in real time. This paper proposed an efficient approach which incorporates Factored Quaternion Algorithm (FQA) and Kalman Filter (KF) to estimate the orientation of the IMU. Then, an Extended Kalman Filter (EKF) is used to estimate kinematic parameter errors. Using this proposed orientation estimation method will result in improved reliability and accuracy in determining the orientation of the manipulator. Compared with the existing vision-based self-calibration methods, the great advantage of this method is that it does not need the complex steps, such as camera calibration, images capture, and corner detection, which make the robot calibration procedure more autonomous in a dynamic manufacturing environment. Experimental studies on a GOOGOL GRB3016 robot show that this method has better accuracy, convenience, and effectiveness than vision-based methods. PMID:24302854
Endonasal Skull Base Tumor Removal Using Concentric Tube Continuum Robots: A Phantom Study.
Swaney, Philip J; Gilbert, Hunter B; Webster, Robert J; Russell, Paul T; Weaver, Kyle D
2015-03-01
Objectives The purpose of this study is to experimentally evaluate the use of concentric tube continuum robots in endonasal skull base tumor removal. This new type of surgical robot offers many advantages over existing straight and rigid surgical tools including added dexterity, the ability to scale movements, and the ability to rotate the end effector while leaving the robot fixed in space. In this study, a concentric tube continuum robot was used to remove simulated pituitary tumors from a skull phantom. Design The robot was teleoperated by experienced skull base surgeons to remove a phantom pituitary tumor within a skull. Percentage resection was measured by weight. Resection duration was timed. Setting Academic research laboratory. Main Outcome Measures Percentage removal of tumor material and procedure duration. Results Average removal percentage of 79.8 ± 5.9% and average time to complete procedure of 12.5 ± 4.1 minutes (n = 20). Conclusions The robotic system presented here for use in endonasal skull base surgery shows promise in improving the dexterity, tool motion, and end effector capabilities currently available with straight and rigid tools while remaining an effective tool for resecting the tumor.
Review on design and control aspects of ankle rehabilitation robots.
Jamwal, Prashant K; Hussain, Shahid; Xie, Sheng Q
2015-03-01
Ankle rehabilitation robots can play an important role in improving outcomes of the rehabilitation treatment by assisting therapists and patients in number of ways. Consequently, few robot designs have been proposed by researchers which fall under either of the two categories, namely, wearable robots or platform-based robots. This paper presents a review of both kinds of ankle robots along with a brief analysis of their design, actuation and control approaches. While reviewing these designs it was observed that most of them are undesirably inspired by industrial robot designs. Taking note of the design concerns of current ankle robots, few improvements in the ankle robot designs have also been suggested. Conventional position control or force control approaches, being used in the existing ankle robots, have been reviewed. Apparently, opportunities of improvement also exist in the actuation as well as control of ankle robots. Subsequently, a discussion on most recent research in the development of novel actuators and advanced controllers based on appropriate physical and cognitive human-robot interaction has also been included in this review. Implications for Rehabilitation Ankle joint functions are restricted/impaired as a consequence of stroke or injury during sports or otherwise. Robots can help in reinstating functions faster and can also work as tool for recording rehabilitation data useful for further analysis. Evolution of ankle robots with respect to their design and control aspects has been discussed in the present paper and a novel design with futuristic control approach has been proposed.
A neural network-based exploratory learning and motor planning system for co-robots
Galbraith, Byron V.; Guenther, Frank H.; Versace, Massimiliano
2015-01-01
Collaborative robots, or co-robots, are semi-autonomous robotic agents designed to work alongside humans in shared workspaces. To be effective, co-robots require the ability to respond and adapt to dynamic scenarios encountered in natural environments. One way to achieve this is through exploratory learning, or “learning by doing,” an unsupervised method in which co-robots are able to build an internal model for motor planning and coordination based on real-time sensory inputs. In this paper, we present an adaptive neural network-based system for co-robot control that employs exploratory learning to achieve the coordinated motor planning needed to navigate toward, reach for, and grasp distant objects. To validate this system we used the 11-degrees-of-freedom RoPro Calliope mobile robot. Through motor babbling of its wheels and arm, the Calliope learned how to relate visual and proprioceptive information to achieve hand-eye-body coordination. By continually evaluating sensory inputs and externally provided goal directives, the Calliope was then able to autonomously select the appropriate wheel and joint velocities needed to perform its assigned task, such as following a moving target or retrieving an indicated object. PMID:26257640
NASA Astrophysics Data System (ADS)
Gao, Guoyou; Jiang, Chunsheng; Chen, Tao; Hui, Chun
2018-05-01
Industrial robots are widely used in various processes of surface manufacturing, such as thermal spraying. The established robot programming methods are highly time-consuming and not accurate enough to fulfil the demands of the actual market. There are many off-line programming methods developed to reduce the robot programming effort. This work introduces the principle of several based robot trajectory generation strategy on planar surface and curved surface. Since the off-line programming software is widely used and thus facilitates the robot programming efforts and improves the accuracy of robot trajectory, the analysis of this work is based on the second development of off-line programming software Robot studio™. To meet the requirements of automotive paint industry, this kind of software extension helps provide special functions according to the users defined operation parameters. The presented planning strategy generates the robot trajectory by moving an orthogonal surface according to the information of coating surface, a series of intersection curves are then employed to generate the trajectory points. The simulation results show that the path curve created with this method is successive and smooth, which corresponds to the requirements of automotive spray industrial applications.
A neural network-based exploratory learning and motor planning system for co-robots.
Galbraith, Byron V; Guenther, Frank H; Versace, Massimiliano
2015-01-01
Collaborative robots, or co-robots, are semi-autonomous robotic agents designed to work alongside humans in shared workspaces. To be effective, co-robots require the ability to respond and adapt to dynamic scenarios encountered in natural environments. One way to achieve this is through exploratory learning, or "learning by doing," an unsupervised method in which co-robots are able to build an internal model for motor planning and coordination based on real-time sensory inputs. In this paper, we present an adaptive neural network-based system for co-robot control that employs exploratory learning to achieve the coordinated motor planning needed to navigate toward, reach for, and grasp distant objects. To validate this system we used the 11-degrees-of-freedom RoPro Calliope mobile robot. Through motor babbling of its wheels and arm, the Calliope learned how to relate visual and proprioceptive information to achieve hand-eye-body coordination. By continually evaluating sensory inputs and externally provided goal directives, the Calliope was then able to autonomously select the appropriate wheel and joint velocities needed to perform its assigned task, such as following a moving target or retrieving an indicated object.
Inverse kinematic solution for near-simple robots and its application to robot calibration
NASA Technical Reports Server (NTRS)
Hayati, Samad A.; Roston, Gerald P.
1986-01-01
This paper provides an inverse kinematic solution for a class of robot manipulators called near-simple manipulators. The kinematics of these manipulators differ from those of simple-robots by small parameter variations. Although most robots are by design simple, in practice, due to manufacturing tolerances, every robot is near-simple. The method in this paper gives an approximate inverse kinematics solution for real time applications based on the nominal solution for these robots. The validity of the results are tested both by a simulation study and by applying the algorithm to a PUMA robot.
A Mobile, Map-Based Tasking Interface for Human-Robot Interaction
2010-12-01
A MOBILE, MAP-BASED TASKING INTERFACE FOR HUMAN-ROBOT INTERACTION By Eli R. Hooten Thesis Submitted to the Faculty of the Graduate School of...SUBTITLE A Mobile, Map-Based Tasking Interface for Human-Robot Interaction 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6...3 II.1 Interactive Modalities and Multi-Touch . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 II.2
Bing, Zhenshan; Cheng, Long; Chen, Guang; Röhrbein, Florian; Huang, Kai; Knoll, Alois
2017-04-04
Snake-like robots with 3D locomotion ability have significant advantages of adaptive travelling in diverse complex terrain over traditional legged or wheeled mobile robots. Despite numerous developed gaits, these snake-like robots suffer from unsmooth gait transitions by changing the locomotion speed, direction, and body shape, which would potentially cause undesired movement and abnormal torque. Hence, there exists a knowledge gap for snake-like robots to achieve autonomous locomotion. To address this problem, this paper presents the smooth slithering gait transition control based on a lightweight central pattern generator (CPG) model for snake-like robots. First, based on the convergence behavior of the gradient system, a lightweight CPG model with fast computing time was designed and compared with other widely adopted CPG models. Then, by reshaping the body into a more stable geometry, the slithering gait was modified, and studied based on the proposed CPG model, including the gait transition of locomotion speed, moving direction, and body shape. In contrast to sinusoid-based method, extensive simulations and prototype experiments finally demonstrated that smooth slithering gait transition can be effectively achieved using the proposed CPG-based control method without generating undesired locomotion and abnormal torque.
Robotic Anterior and Midline Skull Base Surgery: Preclinical Investigations
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Malley, Bert W.; Weinstein, Gregory S.
Purpose: To develop a minimally invasive surgical technique to access the midline and anterior skull base using the optical and technical advantages of robotic surgical instrumentation. Methods and Materials: Ten experimental procedures focusing on approaches to the nasopharynx, clivus, sphenoid, pituitary sella, and suprasellar regions were performed on one cadaver and one live mongrel dog. Both the cadaver and canine procedures were performed in an approved training facility using the da Vinci Surgical Robot. For the canine experiments, a transoral robotic surgery (TORS) approach was used, and for the cadaver a newly developed combined cervical-transoral robotic surgery (C-TORS) approach wasmore » investigated and compared with standard TORS. The ability to access and dissect tissues within the various areas of the midline and anterior skull base were evaluated, and techniques to enhance visualization and instrumentation were developed. Results: Standard TORS approaches did not provide adequate access to the midline and anterior skull base; however, the newly developed C-TORS approach was successful in providing the surgical access to these regions of the skull base. Conclusion: Robotic surgery is an exciting minimally invasive approach to the skull base that warrants continued preclinical investigation and development.« less
Development of Inspection Robots for Bridge Cables
Kim, Se-Hoon; Lee, Jong-Jae
2013-01-01
This paper presents the bridge cable inspection robot developed in Korea. Two types of the cable inspection robots were developed for cable-suspension bridges and cable-stayed bridge. The design of the robot system and performance of the NDT techniques associated with the cable inspection robot are discussed. A review on recent advances in emerging robot-based inspection technologies for bridge cables and current bridge cable inspection methods is also presented. PMID:24459453
Analysis of Unmanned Systems in Military Logistics
2016-12-01
opportunities to employ unmanned systems to support logistic operations. 14. SUBJECT TERMS unmanned systems, robotics , UAVs, UGVs, USVs, UUVs, military...Industrial Robots at Warehouses / Distribution Centers .............................................................................. 17 2. Unmanned...Autonomous Robot Gun Turret. Source: Blain (2010)................................................... 33 Figure 4. Robot Sentries for Base Patrol
Mazzoleni, S; Battini, E; Rustici, A; Stampacchia, G
2017-07-01
The aim of this study is to investigate the effects of an integrated gait rehabilitation training based on Functional Electrical Stimulation (FES)-cycling and overground robotic exoskeleton in a group of seven complete spinal cord injury patients on spasticity and patient-robot interaction. They underwent a robot-assisted rehabilitation training based on two phases: n=20 sessions of FES-cycling followed by n= 20 sessions of robot-assisted gait training based on an overground robotic exoskeleton. The following clinical outcome measures were used: Modified Ashworth Scale (MAS), Numerical Rating Scale (NRS) on spasticity, Penn Spasm Frequency Scale (PSFS), Spinal Cord Independence Measure Scale (SCIM), NRS on pain and International Spinal Cord Injury Pain Data Set (ISCI). Clinical outcome measures were assessed before (T0) after (T1) the FES-cycling training and after (T2) the powered overground gait training. The ability to walk when using exoskeleton was assessed by means of 10 Meter Walk Test (10MWT), 6 Minute Walk Test (6MWT), Timed Up and Go test (TUG), standing time, walking time and number of steps. Statistically significant changes were found on the MAS score, NRS-spasticity, 6MWT, TUG, standing time and number of steps. The preliminary results of this study show that an integrated gait rehabilitation training based on FES-cycling and overground robotic exoskeleton in complete SCI patients can provide a significant reduction of spasticity and improvements in terms of patient-robot interaction.
Wang, Tianmiao; Wu, Yao; Liang, Jianhong; Han, Chenhao; Chen, Jiao; Zhao, Qiteng
2015-04-24
Skid-steering mobile robots are widely used because of their simple mechanism and robustness. However, due to the complex wheel-ground interactions and the kinematic constraints, it is a challenge to understand the kinematics and dynamics of such a robotic platform. In this paper, we develop an analysis and experimental kinematic scheme for a skid-steering wheeled vehicle based-on a laser scanner sensor. The kinematics model is established based on the boundedness of the instantaneous centers of rotation (ICR) of treads on the 2D motion plane. The kinematic parameters (the ICR coefficient , the path curvature variable and robot speed ), including the effect of vehicle dynamics, are introduced to describe the kinematics model. Then, an exact but costly dynamic model is used and the simulation of this model's stationary response for the vehicle shows a qualitative relationship for the specified parameters and . Moreover, the parameters of the kinematic model are determined based-on a laser scanner localization experimental analysis method with a skid-steering robotic platform, Pioneer P3-AT. The relationship between the ICR coefficient and two physical factors is studied, i.e., the radius of the path curvature and the robot speed . An empirical function-based relationship between the ICR coefficient of the robot and the path parameters is derived. To validate the obtained results, it is empirically demonstrated that the proposed kinematics model significantly improves the dead-reckoning performance of this skid-steering robot.
Collective search by mobile robots using alpha-beta coordination
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldsmith, S.Y.; Robinett, R. III
1998-04-01
One important application of mobile robots is searching a geographical region to locate the origin of a specific sensible phenomenon. Mapping mine fields, extraterrestrial and undersea exploration, the location of chemical and biological weapons, and the location of explosive devices are just a few potential applications. Teams of robotic bloodhounds have a simple common goal; to converge on the location of the source phenomenon, confirm its intensity, and to remain aggregated around it until directed to take some other action. In cases where human intervention through teleoperation is not possible, the robot team must be deployed in a territory withoutmore » supervision, requiring an autonomous decentralized coordination strategy. This paper presents the alpha beta coordination strategy, a family of collective search algorithms that are based on dynamic partitioning of the robotic team into two complementary social roles according to a sensor based status measure. Robots in the alpha role are risk takers, motivated to improve their status by exploring new regions of the search space. Robots in the beta role are motivated to improve but are conservative, and tend to remain aggregated and stationary until the alpha robots have identified better regions of the search space. Roles are determined dynamically by each member of the team based on the status of the individual robot relative to the current state of the collective. Partitioning the robot team into alpha and beta roles results in a balance between exploration and exploitation, and can yield collective energy savings and improved resistance to sensor noise and defectors. Alpha robots waste energy exploring new territory, and are more sensitive to the effects of ambient noise and to defectors reporting inflated status. Beta robots conserve energy by moving in a direct path to regions of confirmed high status.« less
Effect of motor dynamics on nonlinear feedback robot arm control
NASA Technical Reports Server (NTRS)
Tarn, Tzyh-Jong; Li, Zuofeng; Bejczy, Antal K.; Yun, Xiaoping
1991-01-01
A nonlinear feedback robot controller that incorporates the robot manipulator dynamics and the robot joint motor dynamics is proposed. The manipulator dynamics and the motor dynamics are coupled to obtain a third-order-dynamic model, and differential geometric control theory is applied to produce a linearized and decoupled robot controller. The derived robot controller operates in the robot task space, thus eliminating the need for decomposition of motion commands into robot joint space commands. Computer simulations are performed to verify the feasibility of the proposed robot controller. The controller is further experimentally evaluated on the PUMA 560 robot arm. The experiments show that the proposed controller produces good trajectory tracking performances and is robust in the presence of model inaccuracies. Compared with a nonlinear feedback robot controller based on the manipulator dynamics only, the proposed robot controller yields conspicuously improved performance.
Drive Control System for Pipeline Crawl Robot Based on CAN Bus
NASA Astrophysics Data System (ADS)
Chen, H. J.; Gao, B. T.; Zhang, X. H.; Deng2, Z. Q.
2006-10-01
Drive control system plays important roles in pipeline robot. In order to inspect the flaw and corrosion of seabed crude oil pipeline, an original mobile pipeline robot with crawler drive unit, power and monitor unit, central control unit, and ultrasonic wave inspection device is developed. The CAN bus connects these different function units and presents a reliable information channel. Considering the limited space, a compact hardware system is designed based on an ARM processor with two CAN controllers. With made-to-order CAN protocol for the crawl robot, an intelligent drive control system is developed. The implementation of the crawl robot demonstrates that the presented drive control scheme can meet the motion control requirements of the underwater pipeline crawl robot.
OLDER ADULTS’ PREFERENCES FOR AND ACCEPTANCE OF ROBOT ASSISTANCE FOR EVERYDAY LIVING TASKS
Smarr, Cory-Ann; Prakash, Akanksha; Beer, Jenay M.; Mitzner, Tracy L.; Kemp, Charles C.; Rogers, Wendy A.
2014-01-01
Many older adults value their independence and prefer to age in place. Robots can be designed to assist older people with performing everyday living tasks and maintaining their independence at home. Yet, there is a scarcity of knowledge regarding older adults’ attitudes toward robots and their preferences for robot assistance. Twenty-one older adults (M = 80.25 years old, SD = 7.19) completed questionnaires and participated in structured group interviews investigating their openness to and preferences for assistance from a mobile manipulator robot. Although the older adults were generally open to robot assistance for performing home-based tasks, they were selective in their views. Older adults preferred robot assistance over human assistance for many instrumental (e.g., housekeeping, laundry, medication reminders) and enhanced activities of daily living (e.g., new learning, hobbies). However, older adults were less open to robot assistance for some activities of daily living (e.g., shaving, hair care). Results from this study provide insight into older adults’ attitudes toward robot assistance with home-based everyday living tasks. PMID:25284971
Children’s Imaginaries of Human-Robot Interaction in Healthcare
2018-01-01
This paper analyzes children’s imaginaries of Human-Robots Interaction (HRI) in the context of social robots in healthcare, and it explores ethical and social issues when designing a social robot for a children’s hospital. Based on approaches that emphasize the reciprocal relationship between society and technology, the analytical force of imaginaries lies in their capacity to be embedded in practices and interactions as well as to affect the construction and applications of surrounding technologies. The study is based on a participatory process carried out with six-year-old children for the design of a robot. Imaginaries of HRI are analyzed from a care-centered approach focusing on children’s values and practices as related to their representation of care. The conceptualization of HRI as an assemblage of interactions, the prospective bidirectional care relationships with robots, and the engagement with the robot as an entity of multiple potential robots are the major findings of this study. The study shows the potential of studying imaginaries of HRI, and it concludes that their integration in the final design of robots is a way of including ethical values in it. PMID:29757221
Optical assembly of bio-hybrid micro-robots.
Barroso, Álvaro; Landwerth, Shirin; Woerdemann, Mike; Alpmann, Christina; Buscher, Tim; Becker, Maike; Studer, Armido; Denz, Cornelia
2015-04-01
The combination of micro synthetic structures with bacterial flagella motors represents an actual trend for the construction of self-propelled micro-robots. The development of methods for fabrication of these bacteria-based robots is a first crucial step towards the realization of functional miniature and autonomous moving robots. We present a novel scheme based on optical trapping to fabricate living micro-robots. By using holographic optical tweezers that allow three-dimensional manipulation in real time, we are able to arrange the building blocks that constitute the micro-robot in a defined way. We demonstrate exemplarily that our method enables the controlled assembly of living micro-robots consisting of a rod-shaped prokaryotic bacterium and a single elongated zeolite L crystal, which are used as model of the biological and abiotic components, respectively. We present different proof-of-principle approaches for the site-selective attachment of the bacteria on the particle surface. The propulsion of the optically assembled micro-robot demonstrates the potential of the proposed method as a powerful strategy for the fabrication of bio-hybrid micro-robots.
Children's Imaginaries of Human-Robot Interaction in Healthcare.
Vallès-Peris, Núria; Angulo, Cecilio; Domènech, Miquel
2018-05-12
This paper analyzes children’s imaginaries of Human-Robots Interaction (HRI) in the context of social robots in healthcare, and it explores ethical and social issues when designing a social robot for a children’s hospital. Based on approaches that emphasize the reciprocal relationship between society and technology, the analytical force of imaginaries lies in their capacity to be embedded in practices and interactions as well as to affect the construction and applications of surrounding technologies. The study is based on a participatory process carried out with six-year-old children for the design of a robot. Imaginaries of HRI are analyzed from a care-centered approach focusing on children’s values and practices as related to their representation of care. The conceptualization of HRI as an assemblage of interactions, the prospective bidirectional care relationships with robots, and the engagement with the robot as an entity of multiple potential robots are the major findings of this study. The study shows the potential of studying imaginaries of HRI, and it concludes that their integration in the final design of robots is a way of including ethical values in it.
Serendipitous Offline Learning in a Neuromorphic Robot.
Stewart, Terrence C; Kleinhans, Ashley; Mundy, Andrew; Conradt, Jörg
2016-01-01
We demonstrate a hybrid neuromorphic learning paradigm that learns complex sensorimotor mappings based on a small set of hard-coded reflex behaviors. A mobile robot is first controlled by a basic set of reflexive hand-designed behaviors. All sensor data is provided via a spike-based silicon retina camera (eDVS), and all control is implemented via spiking neurons simulated on neuromorphic hardware (SpiNNaker). Given this control system, the robot is capable of simple obstacle avoidance and random exploration. To train the robot to perform more complex tasks, we observe the robot and find instances where the robot accidentally performs the desired action. Data recorded from the robot during these times is then used to update the neural control system, increasing the likelihood of the robot performing that task in the future, given a similar sensor state. As an example application of this general-purpose method of training, we demonstrate the robot learning to respond to novel sensory stimuli (a mirror) by turning right if it is present at an intersection, and otherwise turning left. In general, this system can learn arbitrary relations between sensory input and motor behavior.
Robots in Space -Psychological Aspects
NASA Technical Reports Server (NTRS)
Sipes, Walter E.
2006-01-01
A viewgraph presentation on the psychological aspects of developing robots to perform routine operations associated with monitoring, inspection, maintenance and repair in space is shown. The topics include: 1) Purpose; 2) Vision; 3) Current Robots in Space; 4) Ground Based Robots; 5) AERCam; 6) Rotating Bladder Robot (ROBLR); 7) DART; 8) Robonaut; 9) Full Immersion Telepresence Testbed; 10) ERA; and 11) Psychological Aspects
Evolution of Collective Behaviors for a Real Swarm of Aquatic Surface Robots.
Duarte, Miguel; Costa, Vasco; Gomes, Jorge; Rodrigues, Tiago; Silva, Fernando; Oliveira, Sancho Moura; Christensen, Anders Lyhne
2016-01-01
Swarm robotics is a promising approach for the coordination of large numbers of robots. While previous studies have shown that evolutionary robotics techniques can be applied to obtain robust and efficient self-organized behaviors for robot swarms, most studies have been conducted in simulation, and the few that have been conducted on real robots have been confined to laboratory environments. In this paper, we demonstrate for the first time a swarm robotics system with evolved control successfully operating in a real and uncontrolled environment. We evolve neural network-based controllers in simulation for canonical swarm robotics tasks, namely homing, dispersion, clustering, and monitoring. We then assess the performance of the controllers on a real swarm of up to ten aquatic surface robots. Our results show that the evolved controllers transfer successfully to real robots and achieve a performance similar to the performance obtained in simulation. We validate that the evolved controllers display key properties of swarm intelligence-based control, namely scalability, flexibility, and robustness on the real swarm. We conclude with a proof-of-concept experiment in which the swarm performs a complete environmental monitoring task by combining multiple evolved controllers.
Evolution of Collective Behaviors for a Real Swarm of Aquatic Surface Robots
Duarte, Miguel; Costa, Vasco; Gomes, Jorge; Rodrigues, Tiago; Silva, Fernando; Oliveira, Sancho Moura; Christensen, Anders Lyhne
2016-01-01
Swarm robotics is a promising approach for the coordination of large numbers of robots. While previous studies have shown that evolutionary robotics techniques can be applied to obtain robust and efficient self-organized behaviors for robot swarms, most studies have been conducted in simulation, and the few that have been conducted on real robots have been confined to laboratory environments. In this paper, we demonstrate for the first time a swarm robotics system with evolved control successfully operating in a real and uncontrolled environment. We evolve neural network-based controllers in simulation for canonical swarm robotics tasks, namely homing, dispersion, clustering, and monitoring. We then assess the performance of the controllers on a real swarm of up to ten aquatic surface robots. Our results show that the evolved controllers transfer successfully to real robots and achieve a performance similar to the performance obtained in simulation. We validate that the evolved controllers display key properties of swarm intelligence-based control, namely scalability, flexibility, and robustness on the real swarm. We conclude with a proof-of-concept experiment in which the swarm performs a complete environmental monitoring task by combining multiple evolved controllers. PMID:26999614
Qi, Fei; Ju, Feng; Bai, Dong Ming; Chen, Bai
2018-02-01
For the outstanding compliance and dexterity of continuum robot, it is increasingly used in minimally invasive surgery. The wide workspace, high dexterity and strong payload capacity are essential to the continuum robot. In this article, we investigate the workspace of a cable-driven continuum robot that we proposed. The influence of section number on the workspace is discussed when robot is operated in narrow environment. Meanwhile, the structural parameters of this continuum robot are optimized to achieve better kinematic performance. Moreover, an indicator based on the dexterous solid angle for evaluating the dexterity of robot is introduced and the distal end dexterity is compared for the three-section continuum robot with different range of variables. Results imply that the wider range of variables achieve the better dexterity. Finally, the static model of robot based on the principle of virtual work is derived to analyze the relationship between the bending shape deformation and the driven force. The simulations and experiments for plane and spatial motions are conducted to validate the feasibility of model, respectively. Results of this article can contribute to the real-time control and movement and can be a design reference for cable-driven continuum robot.
A Reconfigurable Omnidirectional Soft Robot Based on Caterpillar Locomotion.
Zou, Jun; Lin, Yangqiao; Ji, Chen; Yang, Huayong
2018-04-01
A pneumatically powered, reconfigurable omnidirectional soft robot based on caterpillar locomotion is described. The robot is composed of nine modules arranged as a three by three matrix and the length of this matrix is 154 mm. The robot propagates a traveling wave inspired by caterpillar locomotion, and it has all three degrees of freedom on a plane (X, Y, and rotation). The speed of the robot is about 18.5 m/h (two body lengths per minute) and it can rotate at a speed of 1.63°/s. The modules have neodymium-iron-boron (NdFeB) magnets embedded and can be easily replaced or combined into other configurations. Two different configurations are presented to demonstrate the possibilities of the modular structure: (1) by removing some modules, the omnidirectional robot can be reassembled into a form that can crawl in a pipe and (2) two omnidirectional robots can crawl close to each other and be assembled automatically into a bigger omnidirectional robot. Omnidirectional motion is important for soft robots to explore unstructured environments. The modular structure gives the soft robot the ability to cope with the challenges of different environments and tasks.
2015-08-01
Navigational and Robot -Monitoring Tasks by Gina Pomranky-Hartnett, Linda R Elliott, Bruce JP Mortimer, Greg R Mort, Rodger A Pettitt, and Gary A...Tactor Display during Simultaneous Navigational and Robot -Monitoring Tasks by Gina Pomranky-Hartnett, Linda R Elliott, and Rodger A Pettitt...2014–31 March 2015 4. TITLE AND SUBTITLE Soldier-Based Assessment of a Dual-Row Tactor Display during Simultaneous Navigational and Robot -Monitoring
Hovgaard, Lisette Hvid; Andersen, Steven Arild Wuyts; Konge, Lars; Dalsgaard, Torur; Larsen, Christian Rifbjerg
2018-03-30
The use of robotic surgery for minimally invasive procedures has increased considerably over the last decade. Robotic surgery has potential advantages compared to laparoscopic surgery but also requires new skills. Using virtual reality (VR) simulation to facilitate the acquisition of these new skills could potentially benefit training of robotic surgical skills and also be a crucial step in developing a robotic surgical training curriculum. The study's objective was to establish validity evidence for a simulation-based test for procedural competency for the vaginal cuff closure procedure that can be used in a future simulation-based, mastery learning training curriculum. Eleven novice gynaecological surgeons without prior robotic experience and 11 experienced gynaecological robotic surgeons (> 30 robotic procedures) were recruited. After familiarization with the VR simulator, participants completed the module 'Guided Vaginal Cuff Closure' six times. Validity evidence was investigated for 18 preselected simulator metrics. The internal consistency was assessed using Cronbach's alpha and a composite score was calculated based on metrics with significant discriminative ability between the two groups. Finally, a pass/fail standard was established using the contrasting groups' method. The experienced surgeons significantly outperformed the novice surgeons on 6 of the 18 metrics. The internal consistency was 0.58 (Cronbach's alpha). The experienced surgeons' mean composite score for all six repetitions were significantly better than the novice surgeons' (76.1 vs. 63.0, respectively, p < 0.001). A pass/fail standard of 75/100 was established. Four novice surgeons passed this standard (false positives) and three experienced surgeons failed (false negatives). Our study has gathered validity evidence for a simulation-based test for procedural robotic surgical competency in the vaginal cuff closure procedure and established a credible pass/fail standard for future proficiency-based training.
McColl, Derek; Jiang, Chuan; Nejat, Goldie
2017-02-01
For social robots to be successfully integrated and accepted within society, they need to be able to interpret human social cues that are displayed through natural modes of communication. In particular, a key challenge in the design of social robots is developing the robot's ability to recognize a person's affective states (emotions, moods, and attitudes) in order to respond appropriately during social human-robot interactions (HRIs). In this paper, we present and discuss social HRI experiments we have conducted to investigate the development of an accessibility-aware social robot able to autonomously determine a person's degree of accessibility (rapport, openness) toward the robot based on the person's natural static body language. In particular, we present two one-on-one HRI experiments to: 1) determine the performance of our automated system in being able to recognize and classify a person's accessibility levels and 2) investigate how people interact with an accessibility-aware robot which determines its own behaviors based on a person's speech and accessibility levels.
Software for project-based learning of robot motion planning
NASA Astrophysics Data System (ADS)
Moll, Mark; Bordeaux, Janice; Kavraki, Lydia E.
2013-12-01
Motion planning is a core problem in robotics concerned with finding feasible paths for a given robot. Motion planning algorithms perform a search in the high-dimensional continuous space of robot configurations and exemplify many of the core algorithmic concepts of search algorithms and associated data structures. Motion planning algorithms can be explained in a simplified two-dimensional setting, but this masks many of the subtleties and complexities of the underlying problem. We have developed software for project-based learning of motion planning that enables deep learning. The projects that we have developed allow advanced undergraduate students and graduate students to reflect on the performance of existing textbook algorithms and their own variations on such algorithms. Formative assessment has been conducted at three institutions. The core of the software used for this teaching module is also used within the Robot Operating System, a widely adopted platform by the robotics research community. This allows for transfer of knowledge and skills to robotics research projects involving a large variety robot hardware platforms.
Emergent of Burden Sharing of Robots with Emotion Model
NASA Astrophysics Data System (ADS)
Kusano, Takuya; Nozawa, Akio; Ide, Hideto
Cooperated multi robots system has much dominance in comparison with single robot system. Multi robots system is able to adapt to various circumstances and has a flexibility for variation of tasks. Robots are necessary that build a cooperative relations and acts as an organization to attain a purpose in multi robots system. Then, group behavior of insects which doesn't have advanced ability is observed. For example, ants called a sociality insect emerge systematic activities by the interaction with using a very simple way. Though ants make a communication with chemical matter, a human plans a communication by words and gestures. In this paper, we paid attention to the interaction based on psychological viewpoint. And a human's emotion model was used for the parameter which became a base of the motion planning of robots. These robots were made to do both-way action in test field with obstacle. As a result, a burden sharing like guide or carrier was seen even though those had a simple setup.
Tele-rehabilitation using in-house wearable ankle rehabilitation robot.
Jamwal, Prashant K; Hussain, Shahid; Mir-Nasiri, Nazim; Ghayesh, Mergen H; Xie, Sheng Q
2018-01-01
This article explores wide-ranging potential of the wearable ankle robot for in-house rehabilitation. The presented robot has been conceptualized following a brief analysis of the existing technologies, systems, and solutions for in-house physical ankle rehabilitation. Configuration design analysis and component selection for ankle robot have been discussed as part of the conceptual design. The complexities of human robot interaction are closely encountered while maneuvering a rehabilitation robot. We present a fuzzy logic-based controller to perform the required robot-assisted ankle rehabilitation treatment. Designs of visual haptic interfaces have also been discussed, which will make the treatment interesting, and the subject will be motivated to exert more and regain lost functions rapidly. The complex nature of web-based communication between user and remotely sitting physiotherapy staff has also been discussed. A high-level software architecture appended with robot ensures user-friendly operations. This software is made up of three important components: patient-related database, graphical user interface (GUI), and a library of exercises creating virtual reality-specifically developed for ankle rehabilitation.
Task path planning, scheduling and learning for free-ranging robot systems
NASA Technical Reports Server (NTRS)
Wakefield, G. Steve
1987-01-01
The development of robotics applications for space operations is often restricted by the limited movement available to guided robots. Free ranging robots can offer greater flexibility than physically guided robots in these applications. Presented here is an object oriented approach to path planning and task scheduling for free-ranging robots that allows the dynamic determination of paths based on the current environment. The system also provides task learning for repetitive jobs. This approach provides a basis for the design of free-ranging robot systems which are adaptable to various environments and tasks.
Development of the first force-controlled robot for otoneurosurgery.
Federspil, Philipp A; Geisthoff, Urban W; Henrich, Dominik; Plinkert, Peter K
2003-03-01
In some surgical specialties (eg, orthopedics), robots are already used in the operating room for bony milling work. Otological surgery and otoneurosurgery may also greatly benefit from the enhanced precision of robotics. Experimental study on robotic milling of oak wood and human temporal bone specimen. A standard industrial robot with a six-degrees-of-freedom serial kinematics was used, with force feedback to proportionally control the robot speed. Different milling modes and characteristic path parameters were evaluated to generate milling paths based on computer-aided design (CAD) geometry data of a cochlear implant and an implantable hearing system. The best-suited strategy proved to be the spiral horizontal milling mode with the burr held perpendicular to the temporal bone surface. To reduce groove height, the distance between paths should equal half the radius of the cutting burr head. Because of the vibration of the robot's own motors, a high oscillation of the SD of forces was encountered. This oscillation dropped drastically to nearly 0 Newton (N) when the burr head made contact with the dura mater, because of its damping characteristics. The cutting burr could be kept in contact with the dura mater for an extended period without damaging it, because of the burr's blunt head form. The robot moved the burr smoothly according to the encountered resistances. The study reports the first development of a functional robotic milling procedure for otoneurosurgery with force-based speed control. Future plans include implementation of ultrasound-based local navigation and performance of robotic mastoidectomy.
A Car Transportation System in Cooperation by Multiple Mobile Robots for Each Wheel: iCART II
NASA Astrophysics Data System (ADS)
Kashiwazaki, Koshi; Yonezawa, Naoaki; Kosuge, Kazuhiro; Sugahara, Yusuke; Hirata, Yasuhisa; Endo, Mitsuru; Kanbayashi, Takashi; Shinozuka, Hiroyuki; Suzuki, Koki; Ono, Yuki
The authors proposed a car transportation system, iCART (intelligent Cooperative Autonomous Robot Transporters), for automation of mechanical parking systems by two mobile robots. However, it was difficult to downsize the mobile robot because the length of it requires at least the wheelbase of a car. This paper proposes a new car transportation system, iCART II (iCART - type II), based on “a-robot-for-a-wheel” concept. A prototype system, MRWheel (a Mobile Robot for a Wheel), is designed and downsized less than half the conventional robot. First, a method for lifting up a wheel by MRWheel is described. In general, it is very difficult for mobile robots such as MRWheel to move to desired positions without motion errors caused by slipping, etc. Therefore, we propose a follower's motion error estimation algorithm based on the internal force applied to each follower by extending a conventional leader-follower type decentralized control algorithm for cooperative object transportation. The proposed algorithm enables followers to estimate their motion errors and enables the robots to transport a car to a desired position. In addition, we analyze and prove the stability and convergence of the resultant system with the proposed algorithm. In order to extract only the internal force from the force applied to each robot, we also propose a model-based external force compensation method. Finally, proposed methods are applied to the car transportation system, the experimental results confirm their validity.
Design of multifunction anti-terrorism robotic system based on police dog
NASA Astrophysics Data System (ADS)
You, Bo; Liu, Suju; Xu, Jun; Li, Dongjie
2007-11-01
Aimed at some typical constraints of police dogs and robots used in the areas of reconnaissance and counterterrorism currently, the multifunction anti-terrorism robotic system based on police dog has been introduced. The system is made up of two parts: portable commanding device and police dog robotic system. The portable commanding device consists of power supply module, microprocessor module, LCD display module, wireless data receiving and dispatching module and commanding module, which implements the remote control to the police dogs and takes real time monitor to the video and images. The police dog robotic system consists of microprocessor module, micro video module, wireless data transmission module, power supply module and offence weapon module, which real time collects and transmits video and image data of the counter-terrorism sites, and gives military attack based on commands. The system combines police dogs' biological intelligence with micro robot. Not only does it avoid the complexity of general anti-terrorism robots' mechanical structure and the control algorithm, but it also widens the working scope of police dog, which meets the requirements of anti-terrorism in the new era.
Crew/Robot Coordinated Planetary EVA Operations at a Lunar Base Analog Site
NASA Technical Reports Server (NTRS)
Diftler, M. A.; Ambrose, R. O.; Bluethmann, W. J.; Delgado, F. J.; Herrera, E.; Kosmo, J. J.; Janoiko, B. A.; Wilcox, B. H.; Townsend, J. A.; Matthews, J. B.;
2007-01-01
Under the direction of NASA's Exploration Technology Development Program, robots and space suited subjects from several NASA centers recently completed a very successful demonstration of coordinated activities indicative of base camp operations on the lunar surface. For these activities, NASA chose a site near Meteor Crater, Arizona close to where Apollo Astronauts previously trained. The main scenario demonstrated crew returning from a planetary EVA (extra-vehicular activity) to a temporary base camp and entering a pressurized rover compartment while robots performed tasks in preparation for the next EVA. Scenario tasks included: rover operations under direct human control and autonomous modes, crew ingress and egress activities, autonomous robotic payload removal and stowage operations under both local control and remote control from Houston, and autonomous robotic navigation and inspection. In addition to the main scenario, participants had an opportunity to explore additional robotic operations: hill climbing, maneuvering heaving loads, gathering geo-logical samples, drilling, and tether operations. In this analog environment, the suited subjects and robots experienced high levels of dust, rough terrain, and harsh lighting.
Grosmaire, Anne-Gaëlle; Duret, Christophe
2017-01-01
Repetitive, active movement-based training promotes brain plasticity and motor recovery after stroke. Robotic therapy provides highly repetitive therapy that reduces motor impairment. However, the effect of assist-as-needed algorithms on patient participation and movement quality is not known. To analyze patient participation and motor performance during highly repetitive assist-as-needed upper limb robotic therapy in a retrospective study. Sixteen patients with sub-acute stroke carried out a 16-session upper limb robotic training program combined with usual care. The Fugl-Meyer Assessment (FMA) score was evaluated pre and post training. Robotic assistance parameters and Performance measures were compared within and across sessions. Robotic assistance did not change within-session and decreased between sessions during the training program. Motor performance did not decrease within-session and improved between sessions. Velocity-related assistance parameters improved more quickly than accuracy-related parameters. An assist-as-needed-based upper limb robotic training provided intense and repetitive rehabilitation and promoted patient participation and motor performance, facilitating motor recovery.
NASA Astrophysics Data System (ADS)
Yang, Juqing; Wang, Dayong; Fan, Baixing; Dong, Dengfeng; Zhou, Weihu
2017-03-01
In-situ intelligent manufacturing for large-volume equipment requires industrial robots with absolute high-accuracy positioning and orientation steering control. Conventional robots mainly employ an offline calibration technology to identify and compensate key robotic parameters. However, the dynamic and static parameters of a robot change nonlinearly. It is not possible to acquire a robot's actual parameters and control the absolute pose of the robot with a high accuracy within a large workspace by offline calibration in real-time. This study proposes a real-time online absolute pose steering control method for an industrial robot based on six degrees of freedom laser tracking measurement, which adopts comprehensive compensation and correction of differential movement variables. First, the pose steering control system and robot kinematics error model are constructed, and then the pose error compensation mechanism and algorithm are introduced in detail. By accurately achieving the position and orientation of the robot end-tool, mapping the computed Jacobian matrix of the joint variable and correcting the joint variable, the real-time online absolute pose compensation for an industrial robot is accurately implemented in simulations and experimental tests. The average positioning error is 0.048 mm and orientation accuracy is better than 0.01 deg. The results demonstrate that the proposed method is feasible, and the online absolute accuracy of a robot is sufficiently enhanced.
An earthworm-like robot using origami-ball structures
NASA Astrophysics Data System (ADS)
Fang, Hongbin; Zhang, Yetong; Wang, K. W.
2017-04-01
Earthworms possess extraordinary on-ground and underground mobility, which inspired researchers to mimic their morphology characteristics and locomotion mechanisms to develop crawling robots. One of the bottlenecks that constrain the development and wide-spread application of earthworm-like robots is the process of design, fabrication and assembly of the robot frameworks. Here we present a new earthworm-like robot design and prototype by exploring and utilizing origami ball structures. The origami ball is able to antagonistically output both axial and radial deformations, similar as an earthworm's body segment. The origami folding techniques also introduce many advantages to the robot development, including precise and low cost fabrication and high customizability. Starting from a flat polymer film, we adopt laser machining technique to engrave the crease pattern and manually fold the patterned flat film into an origami ball. Coupling the ball with a servomotor-driven linkage yields a robot segment. Connecting six segments in series, we obtain an earthworm-like origami robot prototype. The prototype is tested in a tube to evaluate its locomotion performance. It shows that the robot could crawl effectively in the tube, manifesting the feasibility of the origami-based design. In addition, test results indicate that the robot's locomotion could be tailored by employing different peristalsis-wave based gaits. The robot design and prototype reported in this paper could foster a new breed of crawling robots with simply design, fabrication, and assemble processes, and improved locomotion performance.
Low-Stroke Actuation for a Serial Robot
NASA Technical Reports Server (NTRS)
Ihrke, Chris A. (Inventor); Gao, Dalong (Inventor)
2014-01-01
A serial robot includes a base, first and second segments, a proximal joint joining the base to the first segment, and a distal joint. The distal joint that joins the segments is serially arranged and distal with respect to the proximal joint. The robot includes first and second actuators. A first tendon extends from the first actuator to the proximal joint and is selectively moveable via the first actuator. A second tendon extends from the second actuator to the distal joint and is selectively moveable via the second actuator. The robot includes a transmission having at least one gear element which assists rotation of the distal joint when an input force is applied to the proximal and/or distal joints by the first and/or second actuators. A robotic hand having the above robot is also disclosed, as is a robotic system having a torso, arm, and the above-described hand.
Google glass-based remote control of a mobile robot
NASA Astrophysics Data System (ADS)
Yu, Song; Wen, Xi; Li, Wei; Chen, Genshe
2016-05-01
In this paper, we present an approach to remote control of a mobile robot via a Google Glass with the multi-function and compact size. This wearable device provides a new human-machine interface (HMI) to control a robot without need for a regular computer monitor because the Google Glass micro projector is able to display live videos around robot environments. In doing it, we first develop a protocol to establish WI-FI connection between Google Glass and a robot and then implement five types of robot behaviors: Moving Forward, Turning Left, Turning Right, Taking Pause, and Moving Backward, which are controlled by sliding and clicking the touchpad located on the right side of the temple. In order to demonstrate the effectiveness of the proposed Google Glass-based remote control system, we navigate a virtual Surveyor robot to pass a maze. Experimental results demonstrate that the proposed control system achieves the desired performance.
ERIC Educational Resources Information Center
Wagemaker, Eline; Dekkers, Tycho J.; Agelink van Rentergem, Joost A.; Volkers, Karin M.; Huizenga, Hilde M.
2017-01-01
Background: The evidence base for psychological treatments for autism and mood disorders in people with moderate to severe intellectual disabilities (ID) is limited. Recent promising robot-based innovations in mental health care suggest that robot-based animal assisted therapy (AAT) could be useful to improve social skills and mood in people with…
Pilot study on effectiveness of simulation for surgical robot design using manipulability.
Kawamura, Kazuya; Seno, Hiroto; Kobayashi, Yo; Fujie, Masakatsu G
2011-01-01
Medical technology has advanced with the introduction of robot technology, which facilitates some traditional medical treatments that previously were very difficult. However, at present, surgical robots are used in limited medical domains because these robots are designed using only data obtained from adult patients and are not suitable for targets having different properties, such as children. Therefore, surgical robots are required to perform specific functions for each clinical case. In addition, the robots must exhibit sufficiently high movability and operability for each case. In the present study, we focused on evaluation of the mechanism and configuration of a surgical robot by a simulation based on movability and operability during an operation. We previously proposed the development of a simulator system that reproduces the conditions of a robot and a target in a virtual patient body to evaluate the operability of the surgeon during an operation. In the present paper, we describe a simple experiment to verify the condition of the surgical assisting robot during an operation. In this experiment, the operation imitating suturing motion was carried out in a virtual workspace, and the surgical robot was evaluated based on manipulability as an indicator of movability. As the result, it was confirmed that the robot was controlled with low manipulability of the left side manipulator during the suturing. This simulation system can verify the less movable condition of a robot before developing an actual robot. Our results show the effectiveness of this proposed simulation system.
Intelligent robot control using an adaptive critic with a task control center and dynamic database
NASA Astrophysics Data System (ADS)
Hall, E. L.; Ghaffari, M.; Liao, X.; Alhaj Ali, S. M.
2006-10-01
The purpose of this paper is to describe the design, development and simulation of a real time controller for an intelligent, vision guided robot. The use of a creative controller that can select its own tasks is demonstrated. This creative controller uses a task control center and dynamic database. The dynamic database stores both global environmental information and local information including the kinematic and dynamic models of the intelligent robot. The kinematic model is very useful for position control and simulations. However, models of the dynamics of the manipulators are needed for tracking control of the robot's motions. Such models are also necessary for sizing the actuators, tuning the controller, and achieving superior performance. Simulations of various control designs are shown. Also, much of the model has also been used for the actual prototype Bearcat Cub mobile robot. This vision guided robot was designed for the Intelligent Ground Vehicle Contest. A novel feature of the proposed approach is that the method is applicable to both robot arm manipulators and robot bases such as wheeled mobile robots. This generality should encourage the development of more mobile robots with manipulator capability since both models can be easily stored in the dynamic database. The multi task controller also permits wide applications. The use of manipulators and mobile bases with a high-level control are potentially useful for space exploration, certain rescue robots, defense robots, and medical robotics aids.
NASA Astrophysics Data System (ADS)
Malik, Norjasween Abdul; Shamsuddin, Syamimi; Yussof, Hanafiah; Azfar Miskam, Mohd; Che Hamid, Aminullah
2013-12-01
Research evidences are accumulating with regards to the potential use of robots for the rehabilitation of children with autism. The purpose of this paper is to elaborate on the results of communicational response in two children with autism during interaction with the humanoid robot NAO. Both autistic subjects in this study have been diagnosed with mild autism. Following the outcome from our first pilot study; the aim of this current experiment is to explore the application of NAO robot to engage with a child and further teach about emotions through a game-centered and song-based approach. The experiment procedure involved interaction between humanoid robot NAO with each child through a series of four different modules. The observation items are based on ten items selected and referenced to GARS-2 (Gilliam Autism Rating Scale-second edition) and also input from clinicians and therapists. The results clearly indicated that both of the children showed optimistic response through the interaction. Negative responses such as feeling scared or shying away from the robot were not detected. Two-way communication between the child and robot in real time significantly gives positive impact in the responses towards the robot. To conclude, it is feasible to include robot-based interaction specifically to elicit communicational response as a part of the rehabilitation intervention of children with autism.
Li, Hongsheng
2018-01-01
This review aims to compare existing robot-assisted ankle rehabilitation techniques in terms of robot design. Included studies mainly consist of selected papers in two published reviews involving a variety of robot-assisted ankle rehabilitation techniques. A free search was also made in Google Scholar and Scopus by using keywords “ankle∗,” and “robot∗,” and (“rehabilitat∗” or “treat∗”). The search is limited to English-language articles published between January 1980 and September 2016. Results show that existing robot-assisted ankle rehabilitation techniques can be classified into wearable exoskeleton and platform-based devices. Platform-based devices are mostly developed for the treatment of a variety of ankle musculoskeletal and neurological injuries, while wearable ones focus more on ankle-related gait training. In terms of robot design, comparative analysis indicates that an ideal ankle rehabilitation robot should have aligned rotation center as the ankle joint, appropriate workspace, and actuation torque, no matter how many degrees of freedom (DOFs) it has. Single-DOF ankle robots are mostly developed for specific applications, while multi-DOF devices are more suitable for comprehensive ankle rehabilitation exercises. Other factors including posture adjustability and sensing functions should also be considered to promote related clinical applications. An ankle rehabilitation robot with reconfigurability to maximize its functions will be a new research point towards optimal design, especially on parallel mechanisms. PMID:29736230
Robot-based additive manufacturing for flexible die-modelling in incremental sheet forming
NASA Astrophysics Data System (ADS)
Rieger, Michael; Störkle, Denis Daniel; Thyssen, Lars; Kuhlenkötter, Bernd
2017-10-01
The paper describes the application concept of additive manufactured dies to support the robot-based incremental sheet metal forming process (`Roboforming') for the production of sheet metal components in small batch sizes. Compared to the dieless kinematic-based generation of a shape by means of two cooperating industrial robots, the supporting robot models a die on the back of the metal sheet by using the robot-based fused layer manufacturing process (FLM). This tool chain is software-defined and preserves the high geometrical form flexibility of Roboforming while flexibly generating support structures adapted to the final part's geometry. Test series serve to confirm the feasibility of the concept by investigating the process challenges of the adhesion to the sheet surface and the general stability as well as the influence on the geometric accuracy compared to the well-known forming strategies.
User-centric design of a personal assistance robot (FRASIER) for active aging.
Padir, Taşkin; Skorinko, Jeanine; Dimitrov, Velin
2015-01-01
We present our preliminary results from the design process for developing the Worcester Polytechnic Institute's personal assistance robot, FRASIER, as an intelligent service robot for enabling active aging. The robot capabilities include vision-based object detection, tracking the user and help with carrying heavy items such as grocery bags or cafeteria trays. This work-in-progress report outlines our motivation and approach to developing the next generation of service robots for the elderly. Our main contribution in this paper is the development of a set of specifications based on the adopted user-centered design process, and realization of the prototype system designed to meet these specifications.
Foell, Kirsten; Finelli, Antonio; Yasufuku, Kazuhiro; Bernardini, Marcus Q.; Waddell, Thomas K.; Pace, Kenneth T.; Honey, R. John D.’A.; Lee, Jason Y.
2013-01-01
Purpose: Simulation-based training improves clinical skills, while minimizing the impact of the educational process on patient care. We present results of a pilot multidisciplinary, simulation-based robotic surgery basic skills training curriculum (BSTC) for robotic novices. Methods: A 4-week, simulation-based, robotic surgery BSTC was offered to the Departments of Surgery and Obstetrics & Gynecology (ObGyn) at the University of Toronto. The course consisted of various instructional strategies: didactic lecture, self-directed online-training modules, introductory hands-on training with the da Vinci robot (dVR) (Intuitive Surgical Inc., Sunnyvale, CA), and dedicated training on the da Vinci Skills Simulator (Intuitive Surgical Inc., Sunnyvale, CA) (dVSS). A third of trainees participated in competency-based dVSS training, all others engaged in traditional time-based training. Pre- and post-course skill testing was conducted on the dVR using 2 standardized skill tasks: ring transfer (RT) and needle passing (NP). Retention of skills was assessed at 5 months post-BSTC. Results: A total of 37 participants completed training. The mean task completion time and number of errors improved significantly post-course on both RT (180.6 vs. 107.4 sec, p < 0.01 and 3.5 vs. 1.3 sec, p < 0.01, respectively) and NP (197.1 vs. 154.1 sec, p < 0.01 and 4.5 vs. 1.8 sec, p = 0.04, respectively) tasks. No significant difference in performance was seen between specialties. Competency-based training was associated with significantly better post-course performance. The dVSS demonstrated excellent face validity. Conclusions: The implementation of a pilot multidisciplinary, simulation-based robotic surgery BSTC revealed significantly improved basic robotic skills among novice trainees, regardless of specialty or level of training. Competency-based training was associated with significantly better acquisition of basic robotic skills. PMID:24381662
A Project-Based Biologically-Inspired Robotics Module
ERIC Educational Resources Information Center
Crowder, R. M.; Zauner, K.-P.
2013-01-01
The design of any robotic system requires input from engineers from a variety of technical fields. This paper describes a project-based module, "Biologically-Inspired Robotics," that is offered to Electronics and Computer Science students at the University of Southampton, U.K. The overall objective of the module is for student groups to…
A Null Space Control of Two Wheels Driven Mobile Manipulator Using Passivity Theory
NASA Astrophysics Data System (ADS)
Shibata, Tsuyoshi; Murakami, Toshiyuki
This paper describes a control strategy of null space motion of a two wheels driven mobile manipulator. Recently, robot is utilized in various industrial fields and it is preferable for the robot manipulator to have multiple degrees of freedom motion. Several studies of kinematics for null space motion have been proposed. However stability analysis of null space motion is not enough. Furthermore, these approaches apply to stable systems, but they do not apply unstable systems. Then, in this research, base of manipulator equips with two wheels driven mobile robot. This robot is called two wheels driven mobile manipulator, which becomes unstable system. In the proposed approach, a control design of null space uses passivity based stabilizing. A proposed controller is decided so that closed-loop system of robot dynamics satisfies passivity. This is passivity based control. Then, control strategy is that stabilizing of the robot system applies to work space observer based approach and null space control while keeping end-effector position. The validity of the proposed approach is verified by simulations and experiments of two wheels driven mobile manipulator.
A focused bibliography on robotics
NASA Astrophysics Data System (ADS)
Mergler, H. W.
1983-08-01
The present bibliography focuses on eight robotics-related topics believed by the author to be of special interest to researchers in the field of industrial electronics: robots, sensors, kinematics, dynamics, control systems, actuators, vision, economics, and robot applications. This literature search was conducted through the 1970-present COMPENDEX data base, which provides world-wide coverage of nearly 3500 journals, conference proceedings and reports, and the 1969-1981 INSPEC data base, which is the largest for the English language in the fields of physics, electrotechnology, computers, and control.
Behavior-based multi-robot collaboration for autonomous construction tasks
NASA Technical Reports Server (NTRS)
Stroupe, Ashley; Huntsberger, Terry; Okon, Avi; Aghazarian, Hrand; Robinson, Matthew
2005-01-01
The Robot Construction Crew (RCC) is a heterogeneous multi-robot system for autonomous construction of a structure through assembly of Long components. The two robot team demonstrates component placement into an existing structure in a realistic environment. The task requires component acquisition, cooperative transport, and cooperative precision manipulation. A behavior-based architecture provides adaptability. The RCC approach minimizes computation, power, communication, and sensing for applicability to space-related construction efforts, but the techniques are applicable to terrestrial construction tasks.
NASA Astrophysics Data System (ADS)
Zhao, Ming-fu; Hu, Xin-Yu; Shao, Yun; Luo, Bin-bin; Wang, Xin
2008-10-01
This article analyses nowadays in common use of football robots in China, intended to improve the football robots' hardware platform system's capability, and designed a football robot which based on DSP core controller, and combined Fuzzy-PID control algorithm. The experiment showed, because of the advantages of DSP, such as quickly operation, various of interfaces, low power dissipation etc. It has great improvement on the football robot's performance of movement, controlling precision, real-time performance.
Neuromodulation as a Robot Controller: A Brain Inspired Strategy for Controlling Autonomous Robots
2009-09-01
To Appear in IEEE Robotics and Automation Magazine PREPRINT 1 Neuromodulation as a Robot Controller: A Brain Inspired Strategy for Controlling...Introduction We present a strategy for controlling autonomous robots that is based on principles of neuromodulation in the mammalian brain...object, ignore irrelevant distractions, and respond quickly and appropriately to the event [1]. There are separate neuromodulators that alter responses to
Rodriguez-Donate, Carlos; Morales-Velazquez, Luis; Osornio-Rios, Roque Alfredo; Herrera-Ruiz, Gilberto; de Jesus Romero-Troncoso, Rene
2010-01-01
Intelligent robotics demands the integration of smart sensors that allow the controller to efficiently measure physical quantities. Industrial manipulator robots require a constant monitoring of several parameters such as motion dynamics, inclination, and vibration. This work presents a novel smart sensor to estimate motion dynamics, inclination, and vibration parameters on industrial manipulator robot links based on two primary sensors: an encoder and a triaxial accelerometer. The proposed smart sensor implements a new methodology based on an oversampling technique, averaging decimation filters, FIR filters, finite differences and linear interpolation to estimate the interest parameters, which are computed online utilizing digital hardware signal processing based on field programmable gate arrays (FPGA).
Rodriguez-Donate, Carlos; Morales-Velazquez, Luis; Osornio-Rios, Roque Alfredo; Herrera-Ruiz, Gilberto; de Jesus Romero-Troncoso, Rene
2010-01-01
Intelligent robotics demands the integration of smart sensors that allow the controller to efficiently measure physical quantities. Industrial manipulator robots require a constant monitoring of several parameters such as motion dynamics, inclination, and vibration. This work presents a novel smart sensor to estimate motion dynamics, inclination, and vibration parameters on industrial manipulator robot links based on two primary sensors: an encoder and a triaxial accelerometer. The proposed smart sensor implements a new methodology based on an oversampling technique, averaging decimation filters, FIR filters, finite differences and linear interpolation to estimate the interest parameters, which are computed online utilizing digital hardware signal processing based on field programmable gate arrays (FPGA). PMID:22319345
Why Robots Should Be Social: Enhancing Machine Learning through Social Human-Robot Interaction.
de Greeff, Joachim; Belpaeme, Tony
2015-01-01
Social learning is a powerful method for cultural propagation of knowledge and skills relying on a complex interplay of learning strategies, social ecology and the human propensity for both learning and tutoring. Social learning has the potential to be an equally potent learning strategy for artificial systems and robots in specific. However, given the complexity and unstructured nature of social learning, implementing social machine learning proves to be a challenging problem. We study one particular aspect of social machine learning: that of offering social cues during the learning interaction. Specifically, we study whether people are sensitive to social cues offered by a learning robot, in a similar way to children's social bids for tutoring. We use a child-like social robot and a task in which the robot has to learn the meaning of words. For this a simple turn-based interaction is used, based on language games. Two conditions are tested: one in which the robot uses social means to invite a human teacher to provide information based on what the robot requires to fill gaps in its knowledge (i.e. expression of a learning preference); the other in which the robot does not provide social cues to communicate a learning preference. We observe that conveying a learning preference through the use of social cues results in better and faster learning by the robot. People also seem to form a "mental model" of the robot, tailoring the tutoring to the robot's performance as opposed to using simply random teaching. In addition, the social learning shows a clear gender effect with female participants being responsive to the robot's bids, while male teachers appear to be less receptive. This work shows how additional social cues in social machine learning can result in people offering better quality learning input to artificial systems, resulting in improved learning performance.
Energy-Saving Control of a Novel Hydraulic Drive System for Field Walking Robot
NASA Astrophysics Data System (ADS)
Fang, Delei; Shang, Jianzhong; Xue, Yong; Yang, Junhong; Wang, Zhuo
2018-01-01
To improve the efficiency of the hydraulic drive system in field walking robot, this paper proposed a novel hydraulic system based on two-stage pressure source. Based on the analysis of low efficiency of robot single-stage hydraulic system, the paper firstly introduces the concept and design of two-stage pressure source drive system. Then, the new hydraulic system energy-saving control is planned according to the characteristics of walking robot. The feasibility of the new hydraulic system is proved by the simulation of the walking robot squatting. Finally, the efficiencies of two types hydraulic system are calculated, indicating that the novel hydraulic system can increase the efficiency by 41.5%, which can contribute to enhance knowledge about hydraulic drive system for field walking robot.
Efficient Control Law Simulation for Multiple Mobile Robots
DOE Office of Scientific and Technical Information (OSTI.GOV)
Driessen, B.J.; Feddema, J.T.; Kotulski, J.D.
1998-10-06
In this paper we consider the problem of simulating simple control laws involving large numbers of mobile robots. Such simulation can be computationally prohibitive if the number of robots is large enough, say 1 million, due to the 0(N2 ) cost of each time step. This work therefore uses hierarchical tree-based methods for calculating the control law. These tree-based approaches have O(NlogN) cost per time step, thus allowing for efficient simulation involving a large number of robots. For concreteness, a decentralized control law which involves only the distance and bearing to the closest neighbor robot will be considered. The timemore » to calculate the control law for each robot at each time step is demonstrated to be O(logN).« less
The new era of robotic neck surgery: The universal application of the retroauricular approach.
Byeon, Hyung Kwon; Koh, Yoon Woo
2015-12-01
Recent advances in technology has triggered the introduction of surgical robotics in the field of head and neck surgery and changed the landscape indefinitely. The advent of transoral robotic surgery and robotic thyroidectomy techniques has urged the extended applications of the robot to other neck surgeries including remote access surgeries. Based on earlier reports and our surgical experiences, this review will discuss in detail various robotic head and neck surgeries via retroauricular approach. © 2015 Wiley Periodicals, Inc.
Embodied Computation: An Active-Learning Approach to Mobile Robotics Education
ERIC Educational Resources Information Center
Riek, L. D.
2013-01-01
This paper describes a newly designed upper-level undergraduate and graduate course, Autonomous Mobile Robots. The course employs active, cooperative, problem-based learning and is grounded in the fundamental computational problems in mobile robotics defined by Dudek and Jenkin. Students receive a broad survey of robotics through lectures, weekly…
A Behavior-Based Approach for Educational Robotics Activities
ERIC Educational Resources Information Center
De Cristoforis, P.; Pedre, S.; Nitsche, M.; Fischer, T.; Pessacg, F.; Di Pietro, C.
2013-01-01
Educational robotics proposes the use of robots as a teaching resource that enables inexperienced students to approach topics in fields unrelated to robotics. In recent years, these activities have grown substantially in elementary and secondary school classrooms and also in outreach experiences to interest students in science, technology,…
Wang, Tianmiao; Wu, Yao; Liang, Jianhong; Han, Chenhao; Chen, Jiao; Zhao, Qiteng
2015-01-01
Skid-steering mobile robots are widely used because of their simple mechanism and robustness. However, due to the complex wheel-ground interactions and the kinematic constraints, it is a challenge to understand the kinematics and dynamics of such a robotic platform. In this paper, we develop an analysis and experimental kinematic scheme for a skid-steering wheeled vehicle based-on a laser scanner sensor. The kinematics model is established based on the boundedness of the instantaneous centers of rotation (ICR) of treads on the 2D motion plane. The kinematic parameters (the ICR coefficient χ, the path curvature variable λ and robot speed v), including the effect of vehicle dynamics, are introduced to describe the kinematics model. Then, an exact but costly dynamic model is used and the simulation of this model’s stationary response for the vehicle shows a qualitative relationship for the specified parameters χ and λ. Moreover, the parameters of the kinematic model are determined based-on a laser scanner localization experimental analysis method with a skid-steering robotic platform, Pioneer P3-AT. The relationship between the ICR coefficient χ and two physical factors is studied, i.e., the radius of the path curvature λ and the robot speed v. An empirical function-based relationship between the ICR coefficient of the robot and the path parameters is derived. To validate the obtained results, it is empirically demonstrated that the proposed kinematics model significantly improves the dead-reckoning performance of this skid–steering robot. PMID:25919370
NASA Technical Reports Server (NTRS)
Amos, Jeff; Beeman, Randy; Brown, Susan; Calhoun, John; Hill, John; Howorth, Lark; Mcfaden, Clay; Nguyen, Paul; Reid, Philip; Rexrode, Stuart
1989-01-01
A basic procedure for robotically constructing a manned Mars base is outlined. The research procedure was divided into three areas: environment, robotics, and habitat. The base as designed will consist of these components: two power plants, communication facilities, a habitat complex, and a hangar, a garage, recreation and manufacturing facilities. The power plants will be self-contained nuclear fission reactors placed approx. 1 km from the base for safety considerations. The base communication system will use a combination of orbiting satellites and surface relay stations. This system is necessary for robotic contact with Phobos and any future communication requirements. The habitat complex will consist of six self-contained modules: core, biosphere, science, living quarters, galley/storage, and a sick bay which will be brought from Phobos. The complex will be set into an excavated hole and covered with approximately 0.5 m of sandbags to provide radiation protection for the astronauts. The recreation, hangar, garage, and manufacturing facilities will each be transformed from the four one-way landers. The complete complex will be built by autonomous, artificially intelligent robots. Robots incorporated into the design are as follows: Large Modular Construction Robots with detachable arms capable of large scale construction activities; Small Maneuverable Robotic Servicers capable of performing delicate tasks normally requiring a suited astronaut; and a trailer vehicle with modular type attachments to complete specific tasks; and finally, Mobile Autonomous Rechargeable Transporters capable of transferring air and water from the manufacturing facility to the habitat complex.
NASA Astrophysics Data System (ADS)
Amos, Jeff; Beeman, Randy; Brown, Susan; Calhoun, John; Hill, John; Howorth, Lark; McFaden, Clay; Nguyen, Paul; Reid, Philip; Rexrode, Stuart
1989-05-01
A basic procedure for robotically constructing a manned Mars base is outlined. The research procedure was divided into three areas: environment, robotics, and habitat. The base as designed will consist of these components: two power plants, communication facilities, a habitat complex, and a hanger, a garage, recreation and manufacturing facilities. The power plants will be self-contained nuclear fission reactors placed approx. 1 km from the base for safety considerations. The base communication system will use a combination of orbiting satellites and surface relay stations. This system is necessary for robotic contact with Phobos and any future communication requirements. The habitat complex will consist of six self-contained modules: core, biosphere, science, living quarters, galley/storage, and a sick bay which will be brought from Phobos. The complex will be set into an excavated hole and covered with approximately 0.5 m of sandbags to provide radiation protection for the astronauts. The recreation, hangar, garage, and manufacturing facilities will each be transformed from the four one-way landers. The complete complex will be built by autonomous, artificially intelligent robots. Robots incorporated into the design are as follows: Large Modular Construction Robots with detachable arms capable of large scale construction activities; Small Maneuverable Robotic Servicers capable of performing delicate tasks normally requiring a suited astronaut; and a trailer vehicle with modular type attachments to complete specific tasks; and finally, Mobile Autonomous Rechargeable Transporters capable of transferring air and water from the manufacturing facility to the habitat complex.
NASA Technical Reports Server (NTRS)
Garrahan, Steven L.; Tolson, Robert H.; Williams, Robert L., II
1995-01-01
Industrial robots are usually attached to a rigid base. Placing the robot on a compliant base introduces dynamic coupling between the two systems. The Vehicle Emulation System (VES) is a six DOF platform that is capable of modeling this interaction. The VES employs a force-torque sensor as the interface between robot and base. A computer simulation of the VES is presented. Each of the hardware and software components is described and Simulink is used as the programming environment. The simulation performance is compared with experimental results to validate accuracy. A second simulation which models the dynamic interaction of a robot and a flexible base acts as a comparison to the simulated motion of the VES. Results are presented that compare the simulated VES motion with the motion of the VES hardware using the same admittance model. The two computer simulations are compared to determine how well the VES is expected to emulate the desired motion. Simulation results are given for robots mounted to the end effector of the Space Shuttle Remote Manipulator System (SRMS). It is shown that for fast motions of the two robots studied, the SRMS experiences disturbances on the order of centimeters. Larger disturbances are possible if different manipulators are used.
Robotic and Virtual Reality BCIs Using Spatial Tactile and Auditory Oddball Paradigms.
Rutkowski, Tomasz M
2016-01-01
The paper reviews nine robotic and virtual reality (VR) brain-computer interface (BCI) projects developed by the author, in collaboration with his graduate students, within the BCI-lab research group during its association with University of Tsukuba, Japan. The nine novel approaches are discussed in applications to direct brain-robot and brain-virtual-reality-agent control interfaces using tactile and auditory BCI technologies. The BCI user intentions are decoded from the brainwaves in realtime using a non-invasive electroencephalography (EEG) and they are translated to a symbiotic robot or virtual reality agent thought-based only control. A communication protocol between the BCI output and the robot or the virtual environment is realized in a symbiotic communication scenario using an user datagram protocol (UDP), which constitutes an internet of things (IoT) control scenario. Results obtained from healthy users reproducing simple brain-robot and brain-virtual-agent control tasks in online experiments support the research goal of a possibility to interact with robotic devices and virtual reality agents using symbiotic thought-based BCI technologies. An offline BCI classification accuracy boosting method, using a previously proposed information geometry derived approach, is also discussed in order to further support the reviewed robotic and virtual reality thought-based control paradigms.
NASA Technical Reports Server (NTRS)
Stevens, H. D.; Miles, E. S.; Rock, S. J.; Cannon, R. H.
1994-01-01
Expanding man's presence in space requires capable, dexterous robots capable of being controlled from the Earth. Traditional 'hand-in-glove' control paradigms require the human operator to directly control virtually every aspect of the robot's operation. While the human provides excellent judgment and perception, human interaction is limited by low bandwidth, delayed communications. These delays make 'hand-in-glove' operation from Earth impractical. In order to alleviate many of the problems inherent to remote operation, Stanford University's Aerospace Robotics Laboratory (ARL) has developed the Object-Based Task-Level Control architecture. Object-Based Task-Level Control (OBTLC) removes the burden of teleoperation from the human operator and enables execution of tasks not possible with current techniques. OBTLC is a hierarchical approach to control where the human operator is able to specify high-level, object-related tasks through an intuitive graphical user interface. Infrequent task-level command replace constant joystick operations, eliminating communications bandwidth and time delay problems. The details of robot control and task execution are handled entirely by the robot and computer control system. The ARL has implemented the OBTLC architecture on a set of Free-Flying Space Robots. The capability of the OBTLC architecture has been demonstrated by controlling the ARL Free-Flying Space Robots from NASA Ames Research Center.
Robotic and Virtual Reality BCIs Using Spatial Tactile and Auditory Oddball Paradigms
Rutkowski, Tomasz M.
2016-01-01
The paper reviews nine robotic and virtual reality (VR) brain–computer interface (BCI) projects developed by the author, in collaboration with his graduate students, within the BCI–lab research group during its association with University of Tsukuba, Japan. The nine novel approaches are discussed in applications to direct brain-robot and brain-virtual-reality-agent control interfaces using tactile and auditory BCI technologies. The BCI user intentions are decoded from the brainwaves in realtime using a non-invasive electroencephalography (EEG) and they are translated to a symbiotic robot or virtual reality agent thought-based only control. A communication protocol between the BCI output and the robot or the virtual environment is realized in a symbiotic communication scenario using an user datagram protocol (UDP), which constitutes an internet of things (IoT) control scenario. Results obtained from healthy users reproducing simple brain-robot and brain-virtual-agent control tasks in online experiments support the research goal of a possibility to interact with robotic devices and virtual reality agents using symbiotic thought-based BCI technologies. An offline BCI classification accuracy boosting method, using a previously proposed information geometry derived approach, is also discussed in order to further support the reviewed robotic and virtual reality thought-based control paradigms. PMID:27999538
Origami-based earthworm-like locomotion robots.
Fang, Hongbin; Zhang, Yetong; Wang, K W
2017-10-16
Inspired by the morphology characteristics of the earthworms and the excellent deformability of origami structures, this research creates a novel earthworm-like locomotion robot through exploiting the origami techniques. In this innovation, appropriate actuation mechanisms are incorporated with origami ball structures into the earthworm-like robot 'body', and the earthworm's locomotion mechanism is mimicked to develop a gait generator as the robot 'centralized controller'. The origami ball, which is a periodic repetition of waterbomb units, could output significant bidirectional (axial and radial) deformations in an antagonistic way similar to the earthworm's body segment. Such bidirectional deformability can be strategically programmed by designing the number of constituent units. Experiments also indicate that the origami ball possesses two outstanding mechanical properties that are beneficial to robot development: one is the structural multistability in the axil direction that could contribute to the robot control implementation; and the other is the structural compliance in the radial direction that would increase the robot robustness and applicability. To validate the origami-based innovation, this research designs and constructs three robot segments based on different axial actuators: DC-motor, shape-memory-alloy springs, and pneumatic balloon. Performance evaluations reveal their merits and limitations, and to prove the concept, the DC-motor actuation is selected for building a six-segment robot prototype. Learning from earthworms' fundamental locomotion mechanism-retrograde peristalsis wave, seven gaits are automatically generated; controlled by which, the robot could achieve effective locomotion with qualitatively different modes and a wide range of average speeds. The outcomes of this research could lead to the development of origami locomotion robots with low fabrication costs, high customizability, light weight, good scalability, and excellent re-configurability.
Hakim, Renée M; Tunis, Brandon G; Ross, Michael D
2017-11-01
The focus of research using technological innovations such as robotic devices has been on interventions to improve upper extremity function in neurologic populations, particularly patients with stroke. There is a growing body of evidence describing rehabilitation programs using various types of supportive/assistive and/or resistive robotic and virtual reality-enhanced devices to improve outcomes for patients with neurologic disorders. The most promising approaches are task-oriented, based on current concepts of motor control/learning and practice-induced neuroplasticity. Based on this evidence, we describe application and feasibility of virtual reality-enhanced robotics integrated with current concepts in orthopaedic rehabilitation shifting from an impairment-based focus to inclusion of more intense, task-specific training for patients with upper extremity disorders, specifically emphasizing the wrist and hand. The purpose of this paper is to describe virtual reality-enhanced rehabilitation robotic devices, review evidence of application in patients with upper extremity deficits related to neurologic disorders, and suggest how this technology and task-oriented rehabilitation approach can also benefit patients with orthopaedic disorders of the wrist and hand. We will also discuss areas for further research and development using a task-oriented approach and a commercially available haptic robotic device to focus on training of grasp and manipulation tasks. Implications for Rehabilitation There is a growing body of evidence describing rehabilitation programs using various types of supportive/assistive and/or resistive robotic and virtual reality-enhanced devices to improve outcomes for patients with neurologic disorders. The most promising approaches using rehabilitation robotics are task-oriented, based on current concepts of motor control/learning and practice-induced neuroplasticity. Based on the evidence in neurologic populations, virtual reality-enhanced robotics may be integrated with current concepts in orthopaedic rehabilitation shifting from an impairment-based focus to inclusion of more intense, task-specific training for patients with UE disorders, specifically emphasizing the wrist and hand. Clinical application of a task-oriented approach may be accomplished using commercially available haptic robotic device to focus on training of grasp and manipulation tasks.
Modelling and Experiment Based on a Navigation System for a Cranio-Maxillofacial Surgical Robot.
Duan, Xingguang; Gao, Liang; Wang, Yonggui; Li, Jianxi; Li, Haoyuan; Guo, Yanjun
2018-01-01
In view of the characteristics of high risk and high accuracy in cranio-maxillofacial surgery, we present a novel surgical robot system that can be used in a variety of surgeries. The surgical robot system can assist surgeons in completing biopsy of skull base lesions, radiofrequency thermocoagulation of the trigeminal ganglion, and radioactive particle implantation of skull base malignant tumors. This paper focuses on modelling and experimental analyses of the robot system based on navigation technology. Firstly, the transformation relationship between the subsystems is realized based on the quaternion and the iterative closest point registration algorithm. The hand-eye coordination model based on optical navigation is established to control the end effector of the robot moving to the target position along the planning path. The closed-loop control method, "kinematics + optics" hybrid motion control method, is presented to improve the positioning accuracy of the system. Secondly, the accuracy of the system model was tested by model experiments. And the feasibility of the closed-loop control method was verified by comparing the positioning accuracy before and after the application of the method. Finally, the skull model experiments were performed to evaluate the function of the surgical robot system. The results validate its feasibility and are consistent with the preoperative surgical planning.
Modelling and Experiment Based on a Navigation System for a Cranio-Maxillofacial Surgical Robot
Duan, Xingguang; Gao, Liang; Li, Jianxi; Li, Haoyuan; Guo, Yanjun
2018-01-01
In view of the characteristics of high risk and high accuracy in cranio-maxillofacial surgery, we present a novel surgical robot system that can be used in a variety of surgeries. The surgical robot system can assist surgeons in completing biopsy of skull base lesions, radiofrequency thermocoagulation of the trigeminal ganglion, and radioactive particle implantation of skull base malignant tumors. This paper focuses on modelling and experimental analyses of the robot system based on navigation technology. Firstly, the transformation relationship between the subsystems is realized based on the quaternion and the iterative closest point registration algorithm. The hand-eye coordination model based on optical navigation is established to control the end effector of the robot moving to the target position along the planning path. The closed-loop control method, “kinematics + optics” hybrid motion control method, is presented to improve the positioning accuracy of the system. Secondly, the accuracy of the system model was tested by model experiments. And the feasibility of the closed-loop control method was verified by comparing the positioning accuracy before and after the application of the method. Finally, the skull model experiments were performed to evaluate the function of the surgical robot system. The results validate its feasibility and are consistent with the preoperative surgical planning. PMID:29599948
Improving mobile robot localization: grid-based approach
NASA Astrophysics Data System (ADS)
Yan, Junchi
2012-02-01
Autonomous mobile robots have been widely studied not only as advanced facilities for industrial and daily life automation, but also as a testbed in robotics competitions for extending the frontier of current artificial intelligence. In many of such contests, the robot is supposed to navigate on the ground with a grid layout. Based on this observation, we present a localization error correction method by exploring the geometric feature of the tile patterns. On top of the classical inertia-based positioning, our approach employs three fiber-optic sensors that are assembled under the bottom of the robot, presenting an equilateral triangle layout. The sensor apparatus, together with the proposed supporting algorithm, are designed to detect a line's direction (vertical or horizontal) by monitoring the grid crossing events. As a result, the line coordinate information can be fused to rectify the cumulative localization deviation from inertia positioning. The proposed method is analyzed theoretically in terms of its error bound and also has been implemented and tested on a customary developed two-wheel autonomous mobile robot.
Optimizing Design Parameters for Sets of Concentric Tube Robots using Sampling-based Motion Planning
Baykal, Cenk; Torres, Luis G.; Alterovitz, Ron
2015-01-01
Concentric tube robots are tentacle-like medical robots that can bend around anatomical obstacles to access hard-to-reach clinical targets. The component tubes of these robots can be swapped prior to performing a task in order to customize the robot’s behavior and reachable workspace. Optimizing a robot’s design by appropriately selecting tube parameters can improve the robot’s effectiveness on a procedure-and patient-specific basis. In this paper, we present an algorithm that generates sets of concentric tube robot designs that can collectively maximize the reachable percentage of a given goal region in the human body. Our algorithm combines a search in the design space of a concentric tube robot using a global optimization method with a sampling-based motion planner in the robot’s configuration space in order to find sets of designs that enable motions to goal regions while avoiding contact with anatomical obstacles. We demonstrate the effectiveness of our algorithm in a simulated scenario based on lung anatomy. PMID:26951790
A taxonomy for user-healthcare robot interaction.
Bzura, Conrad; Im, Hosung; Liu, Tammy; Malehorn, Kevin; Padir, Taskin; Tulu, Bengisu
2012-01-01
This paper evaluates existing taxonomies aimed at characterizing the interaction between robots and their users and modifies them for health care applications. The modifications are based on existing robot technologies and user acceptance of robotics. Characterization of the user, or in this case the patient, is a primary focus of the paper, as they present a unique new role as robot users. While therapeutic and monitoring-related applications for robots are still relatively uncommon, we believe they will begin to grow and thus it is important that the spurring relationship between robot and patient is well understood.
New methods of measuring and calibrating robots
NASA Astrophysics Data System (ADS)
Janocha, Hartmut; Diewald, Bernd
1995-10-01
ISO 9283 and RIA R15.05 define industrial robot parameters which are applied to compare the efficiency of different robots. Hitherto, however, no suitable measurement systems have been available. ICAROS is a system which combines photogrammetrical procedures with an inertial navigation system. For the first time, this combination allows the high-precision static and dynamic measurement of the position as well as of the orientation of the robot endeffector. Thus, not only the measuring data for the determination of all industrial robot parameters can be acquired. By integration of a new over-all-calibration procedure, ICAROS also allows the reduction of the absolute robot pose errors to the range of its repeatability. The integration of both system components as well as measurement and calibration results are presented in this paper, using a six-axes robot as example. A further approach also presented here takes into consideration not only the individual robot errors but also the tolerances of workpieces. This allows the adjustment of off-line programs of robots based on inexact or idealized CAD data in any pose. Thus the robot position which is defined relative to the workpiece to be processed, is achieved as required. This includes the possibility to transfer teached robot programs to other devices without additional expenditure. The adjustment is based on the measurement of the robot position using two miniaturized CCD cameras mounted near the endeffector which are carried along by the robot during the correction phase. In the area viewed by both cameras, the robot position is determined in relation to prominent geometry elements, e.g. lines or holes. The scheduled data to be compared therewith can either be calculated in modern off-line programming systems during robot programming, or they can be determined at the so-called master robot if a transfer of the robot program is desired.
A Unified Approach to Motion Control of Motion Robots
NASA Technical Reports Server (NTRS)
Seraji, H.
1994-01-01
This paper presents a simple on-line approach for motion control of mobile robots made up of a manipulator arm mounted on a mobile base. The proposed approach is equally applicable to nonholonomic mobile robots, such as rover-mounted manipulators and to holonomic mobile robots such as tracked robots or compound manipulators. The computational efficiency of the proposed control scheme makes it particularly suitable for real-time implementation.
Method for six-legged robot stepping on obstacles by indirect force estimation
NASA Astrophysics Data System (ADS)
Xu, Yilin; Gao, Feng; Pan, Yang; Chai, Xun
2016-07-01
Adaptive gaits for legged robots often requires force sensors installed on foot-tips, however impact, temperature or humidity can affect or even damage those sensors. Efforts have been made to realize indirect force estimation on the legged robots using leg structures based on planar mechanisms. Robot Octopus III is a six-legged robot using spatial parallel mechanism(UP-2UPS) legs. This paper proposed a novel method to realize indirect force estimation on walking robot based on a spatial parallel mechanism. The direct kinematics model and the inverse kinematics model are established. The force Jacobian matrix is derived based on the kinematics model. Thus, the indirect force estimation model is established. Then, the relation between the output torques of the three motors installed on one leg to the external force exerted on the foot tip is described. Furthermore, an adaptive tripod static gait is designed. The robot alters its leg trajectory to step on obstacles by using the proposed adaptive gait. Both the indirect force estimation model and the adaptive gait are implemented and optimized in a real time control system. An experiment is carried out to validate the indirect force estimation model. The adaptive gait is tested in another experiment. Experiment results show that the robot can successfully step on a 0.2 m-high obstacle. This paper proposes a novel method to overcome obstacles for the six-legged robot using spatial parallel mechanism legs and to avoid installing the electric force sensors in harsh environment of the robot's foot tips.
Mapping planetary caves with an autonomous, heterogeneous robot team
NASA Astrophysics Data System (ADS)
Husain, Ammar; Jones, Heather; Kannan, Balajee; Wong, Uland; Pimentel, Tiago; Tang, Sarah; Daftry, Shreyansh; Huber, Steven; Whittaker, William L.
Caves on other planetary bodies offer sheltered habitat for future human explorers and numerous clues to a planet's past for scientists. While recent orbital imagery provides exciting new details about cave entrances on the Moon and Mars, the interiors of these caves are still unknown and not observable from orbit. Multi-robot teams offer unique solutions for exploration and modeling subsurface voids during precursor missions. Robot teams that are diverse in terms of size, mobility, sensing, and capability can provide great advantages, but this diversity, coupled with inherently distinct low-level behavior architectures, makes coordination a challenge. This paper presents a framework that consists of an autonomous frontier and capability-based task generator, a distributed market-based strategy for coordinating and allocating tasks to the different team members, and a communication paradigm for seamless interaction between the different robots in the system. Robots have different sensors, (in the representative robot team used for testing: 2D mapping sensors, 3D modeling sensors, or no exteroceptive sensors), and varying levels of mobility. Tasks are generated to explore, model, and take science samples. Based on an individual robot's capability and associated cost for executing a generated task, a robot is autonomously selected for task execution. The robots create coarse online maps and store collected data for high resolution offline modeling. The coordination approach has been field tested at a mock cave site with highly-unstructured natural terrain, as well as an outdoor patio area. Initial results are promising for applicability of the proposed multi-robot framework to exploration and modeling of planetary caves.
A secure and easy-to-implement web-based communication framework for caregiving robot teams
NASA Astrophysics Data System (ADS)
Tuna, G.; Daş, R.; Tuna, A.; Örenbaş, H.; Baykara, M.; Gülez, K.
2016-03-01
In recent years, robots have started to become more commonplace in our lives, from factory floors to museums, festivals and shows. They have started to change how we work and play. With an increase in the population of the elderly, they have also been started to be used for caregiving services, and hence many countries have been investing in the robot development. The advancements in robotics and wireless communications has led to the emergence of autonomous caregiving robot teams which cooperate to accomplish a set of tasks assigned by human operators. Although wireless communications and devices are flexible and convenient, they are vulnerable to many risks compared to traditional wired networks. Since robots with wireless communication capability transmit all data types, including sensory, coordination, and control, through radio frequencies, they are open to intruders and attackers unless protected and their openness may lead to many security issues such as data theft, passive listening, and service interruption. In this paper, a secure web-based communication framework is proposed to address potential security threats due to wireless communication in robot-robot and human-robot interaction. The proposed framework is simple and practical, and can be used by caregiving robot teams in the exchange of sensory data as well as coordination and control data.
Juang, Chia-Feng; Lai, Min-Ge; Zeng, Wan-Ting
2015-09-01
This paper presents a method that allows two wheeled, mobile robots to navigate unknown environments while cooperatively carrying an object. In the navigation method, a leader robot and a follower robot cooperatively perform either obstacle boundary following (OBF) or target seeking (TS) to reach a destination. The two robots are controlled by fuzzy controllers (FC) whose rules are learned through an adaptive fusion of continuous ant colony optimization and particle swarm optimization (AF-CACPSO), which avoids the time-consuming task of manually designing the controllers. The AF-CACPSO-based evolutionary fuzzy control approach is first applied to the control of a single robot to perform OBF. The learning approach is then applied to achieve cooperative OBF with two robots, where an auxiliary FC designed with the AF-CACPSO is used to control the follower robot. For cooperative TS, a rule for coordination of the two robots is developed. To navigate cooperatively, a cooperative behavior supervisor is introduced to select between cooperative OBF and cooperative TS. The performance of the AF-CACPSO is verified through comparisons with various population-based optimization algorithms for the OBF learning problem. Simulations and experiments verify the effectiveness of the approach for cooperative navigation of two robots.
Research and development of service robot platform based on artificial psychology
NASA Astrophysics Data System (ADS)
Zhang, Xueyuan; Wang, Zhiliang; Wang, Fenhua; Nagai, Masatake
2007-12-01
Some related works about the control architecture of robot system are briefly summarized. According to the discussions above, this paper proposes control architecture of service robot based on artificial psychology. In this control architecture, the robot can obtain the cognition of environment through sensors, and then be handled with intelligent model, affective model and learning model, and finally express the reaction to the outside stimulation through its behavior. For better understanding the architecture, hierarchical structure is also discussed. The control system of robot can be divided into five layers, namely physical layer, drives layer, information-processing and behavior-programming layer, application layer and system inspection and control layer. This paper shows how to achieve system integration from hardware modules, software interface and fault diagnosis. Embedded system GENE-8310 is selected as the PC platform of robot APROS-I, and its primary memory media is CF card. The arms and body of the robot are constituted by 13 motors and some connecting fittings. Besides, the robot has a robot head with emotional facial expression, and the head has 13 DOFs. The emotional and intelligent model is one of the most important parts in human-machine interaction. In order to better simulate human emotion, an emotional interaction model for robot is proposed according to the theory of need levels of Maslom and mood information of Siminov. This architecture has already been used in our intelligent service robot.
Soft Robotics: New Perspectives for Robot Bodyware and Control
Laschi, Cecilia; Cianchetti, Matteo
2014-01-01
The remarkable advances of robotics in the last 50 years, which represent an incredible wealth of knowledge, are based on the fundamental assumption that robots are chains of rigid links. The use of soft materials in robotics, driven not only by new scientific paradigms (biomimetics, morphological computation, and others), but also by many applications (biomedical, service, rescue robots, and many more), is going to overcome these basic assumptions and makes the well-known theories and techniques poorly applicable, opening new perspectives for robot design and control. The current examples of soft robots represent a variety of solutions for actuation and control. Though very first steps, they have the potential for a radical technological change. Soft robotics is not just a new direction of technological development, but a novel approach to robotics, unhinging its fundamentals, with the potential to produce a new generation of robots, in the support of humans in our natural environments. PMID:25022259
Piezoelectrically Actuated Robotic System for MRI-Guided Prostate Percutaneous Therapy
Su, Hao; Shang, Weijian; Cole, Gregory; Li, Gang; Harrington, Kevin; Camilo, Alexander; Tokuda, Junichi; Tempany, Clare M.; Hata, Nobuhiko; Fischer, Gregory S.
2014-01-01
This paper presents a fully-actuated robotic system for percutaneous prostate therapy under continuously acquired live magnetic resonance imaging (MRI) guidance. The system is composed of modular hardware and software to support the surgical workflow of intra-operative MRI-guided surgical procedures. We present the development of a 6-degree-of-freedom (DOF) needle placement robot for transperineal prostate interventions. The robot consists of a 3-DOF needle driver module and a 3-DOF Cartesian motion module. The needle driver provides needle cannula translation and rotation (2-DOF) and stylet translation (1-DOF). A custom robot controller consisting of multiple piezoelectric motor drivers provides precision closed-loop control of piezoelectric motors and enables simultaneous robot motion and MR imaging. The developed modular robot control interface software performs image-based registration, kinematics calculation, and exchanges robot commands and coordinates between the navigation software and the robot controller with a new implementation of the open network communication protocol OpenIGTLink. Comprehensive compatibility of the robot is evaluated inside a 3-Tesla MRI scanner using standard imaging sequences and the signal-to-noise ratio (SNR) loss is limited to 15%. The image deterioration due to the present and motion of robot demonstrates unobservable image interference. Twenty-five targeted needle placements inside gelatin phantoms utilizing an 18-gauge ceramic needle demonstrated 0.87 mm root mean square (RMS) error in 3D Euclidean distance based on MRI volume segmentation of the image-guided robotic needle placement procedure. PMID:26412962
Promoting Interactions Between Humans and Robots Using Robotic Emotional Behavior.
Ficocelli, Maurizio; Terao, Junichi; Nejat, Goldie
2016-12-01
The objective of a socially assistive robot is to create a close and effective interaction with a human user for the purpose of giving assistance. In particular, the social interaction, guidance, and support that a socially assistive robot can provide a person can be very beneficial to patient-centered care. However, there are a number of research issues that need to be addressed in order to design such robots. This paper focuses on developing effective emotion-based assistive behavior for a socially assistive robot intended for natural human-robot interaction (HRI) scenarios with explicit social and assistive task functionalities. In particular, in this paper, a unique emotional behavior module is presented and implemented in a learning-based control architecture for assistive HRI. The module is utilized to determine the appropriate emotions of the robot to display, as motivated by the well-being of the person, during assistive task-driven interactions in order to elicit suitable actions from users to accomplish a given person-centered assistive task. A novel online updating technique is used in order to allow the emotional model to adapt to new people and scenarios. Experiments presented show the effectiveness of utilizing robotic emotional assistive behavior during HRI scenarios.
Gesture-Based Robot Control with Variable Autonomy from the JPL Biosleeve
NASA Technical Reports Server (NTRS)
Wolf, Michael T.; Assad, Christopher; Vernacchia, Matthew T.; Fromm, Joshua; Jethani, Henna L.
2013-01-01
This paper presents a new gesture-based human interface for natural robot control. Detailed activity of the user's hand and arm is acquired via a novel device, called the BioSleeve, which packages dry-contact surface electromyography (EMG) and an inertial measurement unit (IMU) into a sleeve worn on the forearm. The BioSleeve's accompanying algorithms can reliably decode as many as sixteen discrete hand gestures and estimate the continuous orientation of the forearm. These gestures and positions are mapped to robot commands that, to varying degrees, integrate with the robot's perception of its environment and its ability to complete tasks autonomously. This flexible approach enables, for example, supervisory point-to-goal commands, virtual joystick for guarded teleoperation, and high degree of freedom mimicked manipulation, all from a single device. The BioSleeve is meant for portable field use; unlike other gesture recognition systems, use of the BioSleeve for robot control is invariant to lighting conditions, occlusions, and the human-robot spatial relationship and does not encumber the user's hands. The BioSleeve control approach has been implemented on three robot types, and we present proof-of-principle demonstrations with mobile ground robots, manipulation robots, and prosthetic hands.
Remote Learning for the Manipulation and Control of Robotic Cells
ERIC Educational Resources Information Center
Goldstain, Ofir; Ben-Gal, Irad; Bukchin, Yossi
2007-01-01
This work proposes an approach to remote learning of robotic cells based on internet and simulation tools. The proposed approach, which integrates remote-learning and tele-operation into a generic scheme, is designed to enable students and developers to set-up and manipulate a robotic cell remotely. Its implementation is based on a dedicated…
ERIC Educational Resources Information Center
Strawhacker, Amanda; Bers, Marina U.
2015-01-01
In recent years, educational robotics has become an increasingly popular research area. However, limited studies have focused on differentiated learning outcomes based on type of programming interface. This study aims to explore how successfully young children master foundational programming concepts based on the robotics user interface (tangible,…
On the reproducibility of expert-operated and robotic ultrasound acquisitions.
Kojcev, Risto; Khakzar, Ashkan; Fuerst, Bernhard; Zettinig, Oliver; Fahkry, Carole; DeJong, Robert; Richmon, Jeremy; Taylor, Russell; Sinibaldi, Edoardo; Navab, Nassir
2017-06-01
We present the evaluation of the reproducibility of measurements performed using robotic ultrasound imaging in comparison with expert-operated sonography. Robotic imaging for interventional procedures may be a valuable contribution, but requires reproducibility for its acceptance in clinical routine. We study this by comparing repeated measurements based on robotic and expert-operated ultrasound imaging. Robotic ultrasound acquisition is performed in three steps under user guidance: First, the patient is observed using a 3D camera on the robot end effector, and the user selects the region of interest. This allows for automatic planning of the robot trajectory. Next, the robot executes a sweeping motion following the planned trajectory, during which the ultrasound images and tracking data are recorded. As the robot is compliant, deviations from the path are possible, for instance due to patient motion. Finally, the ultrasound slices are compounded to create a volume. Repeated acquisitions can be performed automatically by comparing the previous and current patient surface. After repeated image acquisitions, the measurements based on acquisitions performed by the robotic system and expert are compared. Within our case series, the expert measured the anterior-posterior, longitudinal, transversal lengths of both of the left and right thyroid lobes on each of the 4 healthy volunteers 3 times, providing 72 measurements. Subsequently, the same procedure was performed using the robotic system resulting in a cumulative total of 144 clinically relevant measurements. Our results clearly indicated that robotic ultrasound enables more repeatable measurements. A robotic ultrasound platform leads to more reproducible data, which is of crucial importance for planning and executing interventions.
Telerobotic management system: coordinating multiple human operators with multiple robots
NASA Astrophysics Data System (ADS)
King, Jamie W.; Pretty, Raymond; Brothers, Brendan; Gosine, Raymond G.
2003-09-01
This paper describes an application called the Tele-robotic management system (TMS) for coordinating multiple operators with multiple robots for applications such as underground mining. TMS utilizes several graphical interfaces to allow the user to define a partially ordered plan for multiple robots. This plan is then converted to a Petri net for execution and monitoring. TMS uses a distributed framework to allow robots and operators to easily integrate with the applications. This framework allows robots and operators to join the network and advertise their capabilities through services. TMS then decides whether tasks should be dispatched to a robot or a remote operator based on the services offered by the robots and operators.
Two modular neuro-fuzzy system for mobile robot navigation
NASA Astrophysics Data System (ADS)
Bobyr, M. V.; Titov, V. S.; Kulabukhov, S. A.; Syryamkin, V. I.
2018-05-01
The article considers the fuzzy model for navigation of a mobile robot operating in two modes. In the first mode the mobile robot moves along a line. In the second mode, the mobile robot looks for an target in unknown space. Structural and schematic circuit of four-wheels mobile robot are presented in the article. The article describes the movement of a mobile robot based on two modular neuro-fuzzy system. The algorithm of neuro-fuzzy inference used in two modular control system for movement of a mobile robot is given in the article. The experimental model of the mobile robot and the simulation of the neuro-fuzzy algorithm used for its control are presented in the article.
Interaction dynamics of multiple mobile robots with simple navigation strategies
NASA Technical Reports Server (NTRS)
Wang, P. K. C.
1989-01-01
The global dynamic behavior of multiple interacting autonomous mobile robots with simple navigation strategies is studied. Here, the effective spatial domain of each robot is taken to be a closed ball about its mass center. It is assumed that each robot has a specified cone of visibility such that interaction with other robots takes place only when they enter its visibility cone. Based on a particle model for the robots, various simple homing and collision-avoidance navigation strategies are derived. Then, an analysis of the dynamical behavior of the interacting robots in unbounded spatial domains is made. The article concludes with the results of computer simulations studies of two or more interacting robots.
Vision-based mapping with cooperative robots
NASA Astrophysics Data System (ADS)
Little, James J.; Jennings, Cullen; Murray, Don
1998-10-01
Two stereo-vision-based mobile robots navigate and autonomously explore their environment safely while building occupancy grid maps of the environment. The robots maintain position estimates within a global coordinate frame using landmark recognition. This allows them to build a common map by sharing position information and stereo data. Stereo vision processing and map updates are done at 3 Hz and the robots move at speeds of 200 cm/s. Cooperative mapping is achieved through autonomous exploration of unstructured and dynamic environments. The map is constructed conservatively, so as to be useful for collision-free path planning. Each robot maintains a separate copy of a shared map, and then posts updates to the common map when it returns to observe a landmark at home base. Issues include synchronization, mutual localization, navigation, exploration, registration of maps, merging repeated views (fusion), centralized vs decentralized maps.
Solving Inverse Kinematics of Robot Manipulators by Means of Meta-Heuristic Optimisation
NASA Astrophysics Data System (ADS)
Wichapong, Kritsada; Bureerat, Sujin; Pholdee, Nantiwat
2018-05-01
This paper presents the use of meta-heuristic algorithms (MHs) for solving inverse kinematics of robot manipulators based on using forward kinematic. Design variables are joint angular displacements used to move a robot end-effector to the target in the Cartesian space while the design problem is posed to minimize error between target points and the positions of the robot end-effector. The problem is said to be a dynamic problem as the target points always changed by a robot user. Several well established MHs are used to solve the problem and the results obtained from using different meta-heuristics are compared based on the end-effector error and searching speed of the algorithms. From the study, the best performer will be obtained for setting as the baseline for future development of MH-based inverse kinematic solving.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-26
... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-70,749] FANUC Robotics America... negative determination which was based on the finding that, during the relevant period, Fanuc Robotics... Robotics America, Inc., Rochester Hills, Michigan. Signed in Washington, DC, this 13th day of July 2010...
ERIC Educational Resources Information Center
Chin, Kai-Yi; Hong, Zeng-Wei; Chen, Yen-Lin
2014-01-01
Educational robotics has been regarded as an effective instructional tool over the past decade. Many studies have tested the role of robots in supporting educational classroom activities. However, reliable empirical evidence confirming the effectiveness of educational robots remains limited. Therefore, this study developed an educational…
Solving the robot-world, hand-eye(s) calibration problem with iterative methods
USDA-ARS?s Scientific Manuscript database
Robot-world, hand-eye calibration is the problem of determining the transformation between the robot end effector and a camera, as well as the transformation between the robot base and the world coordinate system. This relationship has been modeled as AX = ZB, where X and Z are unknown homogeneous ...
Software for Project-Based Learning of Robot Motion Planning
ERIC Educational Resources Information Center
Moll, Mark; Bordeaux, Janice; Kavraki, Lydia E.
2013-01-01
Motion planning is a core problem in robotics concerned with finding feasible paths for a given robot. Motion planning algorithms perform a search in the high-dimensional continuous space of robot configurations and exemplify many of the core algorithmic concepts of search algorithms and associated data structures. Motion planning algorithms can…
Continuum limbed robots for locomotion
NASA Astrophysics Data System (ADS)
Mutlu, Alper
This thesis focuses on continuum robots based on pneumatic muscle technology. We introduce a novel approach to use these muscles as limbs of lightweight legged robots. The flexibility of the continuum legs of these robots offers the potential to perform some duties that are not possible with classical rigid-link robots. Potential applications are as space robots in low gravity, and as cave explorer robots. The thesis covers the fabrication process of continuum pneumatic muscles and limbs. It also provides some new experimental data on this technology. Afterwards, the designs of two different novel continuum robots - one tripod, one quadruped - are introduced. Experimental data from tests using the robots is provided. The experimental results are the first published example of locomotion with tripod and quadruped continuum legged robots. Finally, discussion of the results and how far this technology can go forward is presented.
Applications of artificial intelligence in safe human-robot interactions.
Najmaei, Nima; Kermani, Mehrdad R
2011-04-01
The integration of industrial robots into the human workspace presents a set of unique challenges. This paper introduces a new sensory system for modeling, tracking, and predicting human motions within a robot workspace. A reactive control scheme to modify a robot's operations for accommodating the presence of the human within the robot workspace is also presented. To this end, a special class of artificial neural networks, namely, self-organizing maps (SOMs), is employed for obtaining a superquadric-based model of the human. The SOM network receives information of the human's footprints from the sensory system and infers necessary data for rendering the human model. The model is then used in order to assess the danger of the robot operations based on the measured as well as predicted human motions. This is followed by the introduction of a new reactive control scheme that results in the least interferences between the human and robot operations. The approach enables the robot to foresee an upcoming danger and take preventive actions before the danger becomes imminent. Simulation and experimental results are presented in order to validate the effectiveness of the proposed method.
Preliminary research of a novel center-driven robot for upper extremity rehabilitation.
Cao, Wujing; Zhang, Fei; Yu, Hongliu; Hu, Bingshan; Meng, Qiaoling
2018-01-19
Loss of upper limb function often appears after stroke. Robot-assisted systems are becoming increasingly common in upper extremity rehabilitation. Rehabilitation robot provides intensive motor therapy, which can be performed in a repetitive, accurate and controllable manner. This study aims to propose a novel center-driven robot for upper extremity rehabilitation. A new power transmission mechanism is designed to transfer the power to elbow and shoulder joints from three motors located on the base. The forward and inverse kinematics equations of the center-driven robot (CENTROBOT) are deduced separately. The theoretical values of the scope of joint movements are obtained with the Denavit-Hartenberg parameters method. A prototype of the CENTROBOT is developed and tested. The elbow flexion/extension, shoulder flexion/extension and shoulder adduction/abduction can be realized of the center-driven robot. The angles value of joints are in conformity with the theoretical value. The CENTROBOT reduces the overall size of the robot arm, the influence of motor noise, radiation and other adverse factors by setting all motors on the base. It can satisfy the requirements of power and movement transmission of the robot arm.
A Behavior-Based Strategy for Single and Multi-Robot Autonomous Exploration
Cepeda, Jesus S.; Chaimowicz, Luiz; Soto, Rogelio; Gordillo, José L.; Alanís-Reyes, Edén A.; Carrillo-Arce, Luis C.
2012-01-01
In this paper, we consider the problem of autonomous exploration of unknown environments with single and multiple robots. This is a challenging task, with several potential applications. We propose a simple yet effective approach that combines a behavior-based navigation with an efficient data structure to store previously visited regions. This allows robots to safely navigate, disperse and efficiently explore the environment. A series of experiments performed using a realistic robotic simulator and a real testbed scenario demonstrate that our technique effectively distributes the robots over the environment and allows them to quickly accomplish their mission in large open spaces, narrow cluttered environments, dead-end corridors, as well as rooms with minimum exits.
Cloud-based robot remote control system for smart factory
NASA Astrophysics Data System (ADS)
Wu, Zhiming; Li, Lianzhong; Xu, Yang; Zhai, Jingmei
2015-12-01
With the development of internet technologies and the wide application of robots, there is a prospect (trend/tendency) of integration between network and robots. A cloud-based robot remote control system over networks for smart factory is proposed, which enables remote users to control robots and then realize intelligent production. To achieve it, a three-layer system architecture is designed including user layer, service layer and physical layer. Remote control applications running on the cloud server is developed on Microsoft Azure. Moreover, DIV+ CSS technologies are used to design human-machine interface to lower maintenance cost and improve development efficiency. Finally, an experiment is implemented to verify the feasibility of the program.
Reachability Analysis for Base Placement in Mobile Manipulators
NASA Technical Reports Server (NTRS)
Seraji, H.
1994-01-01
This paper addresses the problem of base placement for mobile robots, and proposes a simple off-line solution to determine the appropriate base locations from which the robot can reach a target point.
A fault-tolerant intelligent robotic control system
NASA Technical Reports Server (NTRS)
Marzwell, Neville I.; Tso, Kam Sing
1993-01-01
This paper describes the concept, design, and features of a fault-tolerant intelligent robotic control system being developed for space and commercial applications that require high dependability. The comprehensive strategy integrates system level hardware/software fault tolerance with task level handling of uncertainties and unexpected events for robotic control. The underlying architecture for system level fault tolerance is the distributed recovery block which protects against application software, system software, hardware, and network failures. Task level fault tolerance provisions are implemented in a knowledge-based system which utilizes advanced automation techniques such as rule-based and model-based reasoning to monitor, diagnose, and recover from unexpected events. The two level design provides tolerance of two or more faults occurring serially at any level of command, control, sensing, or actuation. The potential benefits of such a fault tolerant robotic control system include: (1) a minimized potential for damage to humans, the work site, and the robot itself; (2) continuous operation with a minimum of uncommanded motion in the presence of failures; and (3) more reliable autonomous operation providing increased efficiency in the execution of robotic tasks and decreased demand on human operators for controlling and monitoring the robotic servicing routines.
An orbital emulator for pursuit-evasion game theoretic sensor management
NASA Astrophysics Data System (ADS)
Shen, Dan; Wang, Tao; Wang, Gang; Jia, Bin; Wang, Zhonghai; Chen, Genshe; Blasch, Erik; Pham, Khanh
2017-05-01
This paper develops and evaluates an orbital emulator (OE) for space situational awareness (SSA). The OE can produce 3D satellite movements using capabilities generated from omni-wheeled robot and robotic arm motion methods. The 3D motion of a satellite is partitioned into the movements in the equatorial plane and the up-down motions in the vertical plane. The 3D actions are emulated by omni-wheeled robot models while the up-down motions are performed by a stepped-motor-controlled-ball along a rod (robotic arm), which is attached to the robot. For multiple satellites, a fast map-merging algorithm is integrated into the robot operating system (ROS) and simultaneous localization and mapping (SLAM) routines to locate the multiple robots in the scene. The OE is used to demonstrate a pursuit-evasion (PE) game theoretic sensor management algorithm, which models conflicts between a space-based-visible (SBV) satellite (as pursuer) and a geosynchronous (GEO) satellite (as evader). The cost function of the PE game is based on the informational entropy of the SBV-tracking-GEO scenario. GEO can maneuver using a continuous and low thruster. The hard-in-loop space emulator visually illustrates the SSA problem solution based PE game.
Review of control strategies for robotic movement training after neurologic injury.
Marchal-Crespo, Laura; Reinkensmeyer, David J
2009-06-16
There is increasing interest in using robotic devices to assist in movement training following neurologic injuries such as stroke and spinal cord injury. This paper reviews control strategies for robotic therapy devices. Several categories of strategies have been proposed, including, assistive, challenge-based, haptic simulation, and coaching. The greatest amount of work has been done on developing assistive strategies, and thus the majority of this review summarizes techniques for implementing assistive strategies, including impedance-, counterbalance-, and EMG- based controllers, as well as adaptive controllers that modify control parameters based on ongoing participant performance. Clinical evidence regarding the relative effectiveness of different types of robotic therapy controllers is limited, but there is initial evidence that some control strategies are more effective than others. It is also now apparent there may be mechanisms by which some robotic control approaches might actually decrease the recovery possible with comparable, non-robotic forms of training. In future research, there is a need for head-to-head comparison of control algorithms in randomized, controlled clinical trials, and for improved models of human motor recovery to provide a more rational framework for designing robotic therapy control strategies.
A Quadruped Micro-Robot Based on Piezoelectric Driving
Su, Qi; Quan, Qiquan; Deng, Jie; Yu, Hongpeng
2018-01-01
Inspired by a way of rowing, a new piezoelectric driving quadruped micro-robot operating in bending-bending hybrid vibration modes was proposed and tested in this work. The robot consisted of a steel base, four steel connecting pins and four similar driving legs, and all legs were bonded by four piezoelectric ceramic plates. The driving principle is discussed, which is based on the hybrid of first order vertical bending and first order horizontal bending vibrations. The bending-bending hybrid vibration modes motivated the driving foot to form an elliptical trajectory in space. The vibrations of four legs were used to provide the driving forces for robot motion. The proposed robot was fabricated and tested according to driving principle. The vibration characteristics and elliptical movements of the driving feet were simulated by FEM method. Experimental tests of vibration characteristics and mechanical output abilities were carried out. The tested resonance frequencies and vibration amplitudes agreed well with the FEM calculated results. The size of robot is 36 mm × 98 mm × 14 mm, its weight is only 49.8 g, but its maximum load capacity achieves 200 g. Furthermore, the robot can achieve a maximum speed of 33.45 mm/s. PMID:29518964
A Quadruped Micro-Robot Based on Piezoelectric Driving.
Su, Qi; Quan, Qiquan; Deng, Jie; Yu, Hongpeng
2018-03-07
Inspired by a way of rowing, a new piezoelectric driving quadruped micro-robot operating in bending-bending hybrid vibration modes was proposed and tested in this work. The robot consisted of a steel base, four steel connecting pins and four similar driving legs, and all legs were bonded by four piezoelectric ceramic plates. The driving principle is discussed, which is based on the hybrid of first order vertical bending and first order horizontal bending vibrations. The bending-bending hybrid vibration modes motivated the driving foot to form an elliptical trajectory in space. The vibrations of four legs were used to provide the driving forces for robot motion. The proposed robot was fabricated and tested according to driving principle. The vibration characteristics and elliptical movements of the driving feet were simulated by FEM method. Experimental tests of vibration characteristics and mechanical output abilities were carried out. The tested resonance frequencies and vibration amplitudes agreed well with the FEM calculated results. The size of robot is 36 mm × 98 mm × 14 mm, its weight is only 49.8 g, but its maximum load capacity achieves 200 g. Furthermore, the robot can achieve a maximum speed of 33.45 mm/s.
Review of control strategies for robotic movement training after neurologic injury
Marchal-Crespo, Laura; Reinkensmeyer, David J
2009-01-01
There is increasing interest in using robotic devices to assist in movement training following neurologic injuries such as stroke and spinal cord injury. This paper reviews control strategies for robotic therapy devices. Several categories of strategies have been proposed, including, assistive, challenge-based, haptic simulation, and coaching. The greatest amount of work has been done on developing assistive strategies, and thus the majority of this review summarizes techniques for implementing assistive strategies, including impedance-, counterbalance-, and EMG- based controllers, as well as adaptive controllers that modify control parameters based on ongoing participant performance. Clinical evidence regarding the relative effectiveness of different types of robotic therapy controllers is limited, but there is initial evidence that some control strategies are more effective than others. It is also now apparent there may be mechanisms by which some robotic control approaches might actually decrease the recovery possible with comparable, non-robotic forms of training. In future research, there is a need for head-to-head comparison of control algorithms in randomized, controlled clinical trials, and for improved models of human motor recovery to provide a more rational framework for designing robotic therapy control strategies. PMID:19531254
Virtual local target method for avoiding local minimum in potential field based robot navigation.
Zou, Xi-Yong; Zhu, Jing
2003-01-01
A novel robot navigation algorithm with global path generation capability is presented. Local minimum is a most intractable but is an encountered frequently problem in potential field based robot navigation. Through appointing appropriately some virtual local targets on the journey, it can be solved effectively. The key concept employed in this algorithm are the rules that govern when and how to appoint these virtual local targets. When the robot finds itself in danger of local minimum, a virtual local target is appointed to replace the global goal temporarily according to the rules. After the virtual target is reached, the robot continues on its journey by heading towards the global goal. The algorithm prevents the robot from running into local minima anymore. Simulation results showed that it is very effective in complex obstacle environments.
Decentralised consensus-based formation tracking of multiple differential drive robots
NASA Astrophysics Data System (ADS)
Chu, Xing; Peng, Zhaoxia; Wen, Guoguang; Rahmani, Ahmed
2017-11-01
This article investigates the control problem for formation tracking of multiple nonholonomic robots under distributed manner which means each robot only needs local information exchange. A class of general state and input transform is introduced to convert the formation-tracking issue of multi-robot systems into the consensus-like problem with time-varying reference. The distributed observer-based protocol with nonlinear dynamics is developed for each robot to achieve the consensus tracking of the new system, which namely means a group of nonholonomic mobile robots can form the desired formation configuration with its centroid moving along the predefined reference trajectory. The finite-time stability of observer and control law is analysed rigorously by using the Lyapunov direct method, algebraic graph theory and matrix analysis. Numerical examples are finally provided to illustrate the effectiveness of the theory results proposed in this paper.
Yoo, Sung Jin; Park, Bong Seok
2017-09-06
This paper addresses a distributed connectivity-preserving synchronized tracking problem of multiple uncertain nonholonomic mobile robots with limited communication ranges. The information of the time-varying leader robot is assumed to be accessible to only a small fraction of follower robots. The main contribution of this paper is to introduce a new distributed nonlinear error surface for dealing with both the synchronized tracking and the preservation of the initial connectivity patterns among nonholonomic robots. Based on this nonlinear error surface, the recursive design methodology is presented to construct the approximation-based local adaptive tracking scheme at the robot dynamic level. Furthermore, a technical lemma is established to analyze the stability and the connectivity preservation of the total closed-loop control system in the Lyapunov sense. An example is provided to illustrate the effectiveness of the proposed methodology.
Stingray-inspired robot with simply actuated intermediate motion
NASA Astrophysics Data System (ADS)
Neely, Lincoln; Gaiennie, Jack; Noble, Nick; Erickson, Jonathan C.
2016-04-01
Batoids, or rays, utilize unique forms of locomotion that may offer more efficient techniques of motorized propulsion in various marine environments. We present a novel biomimetic engineering design and assembly of a stingray-inspired robot swimmer. The robots locomotion mimics the Dasyatis americana, or southern stingray, whose distinction among rays is its intermediate motion, characterized by sweeping strokes that propagate between 1/2-1 wavelength of the fin profile in the posterior direction. Though oscillatory (<1/2 wavelength) and undulatory (> wavelengths) ray-based robots have been created, this project demonstrates new engineering possibilities in what is, to the best of our knowledge, the first intermediately propelled batoid-based robot. The robots fins were made of silicone rubber, cast in a 3-D printed mold, with wingspan of 42 cm (1/2 - 1/5 scale for males and females, respectively, scale of model organism). Two anteriorly placed servomotors per fin were used, all controlled by one wirelessly enabled Arduino microcontroller. Each servomotor oscillated a flexible rod with cylindrical joint, whose frequency, speed, and front-back phase delay were user-programmed over wireless connection. During free-swimming tests, the fin profile developed about 0.8 wavelength, qualifying for successful mimicry of its biological inspiration. The robot satisfactorily maintained straight-line motion, reaching average peak velocity of 9.4+/-1.0 cm/s (0.27-0.03 body lengths/second) at its optimum flapping frequency of 1.4 Hz. This is in the same order of magnitude of speed normalized to body length achieved by others in two recent batoid-based projects. In summary, our robot performed intermediate stingray locomotion with relatively fewer components, which reveals robust potential for innovation of the simple intermediate batoid-based robot swimmer.
Simulation and animation of sensor-driven robots.
Chen, C; Trivedi, M M; Bidlack, C R
1994-10-01
Most simulation and animation systems utilized in robotics are concerned with simulation of the robot and its environment without simulation of sensors. These systems have difficulty in handling robots that utilize sensory feedback in their operation. In this paper, a new design of an environment for simulation, animation, and visualization of sensor-driven robots is presented. As sensor technology advances, increasing numbers of robots are equipped with various types of sophisticated sensors. The main goal of creating the visualization environment is to aid the automatic robot programming and off-line programming capabilities of sensor-driven robots. The software system will help the users visualize the motion and reaction of the sensor-driven robot under their control program. Therefore, the efficiency of the software development is increased, the reliability of the software and the operation safety of the robot are ensured, and the cost of new software development is reduced. Conventional computer-graphics-based robot simulation and animation software packages lack of capabilities for robot sensing simulation. This paper describes a system designed to overcome this deficiency.
Navigation strategies for multiple autonomous mobile robots moving in formation
NASA Technical Reports Server (NTRS)
Wang, P. K. C.
1991-01-01
The problem of deriving navigation strategies for a fleet of autonomous mobile robots moving in formation is considered. Here, each robot is represented by a particle with a spherical effective spatial domain and a specified cone of visibility. The global motion of each robot in the world space is described by the equations of motion of the robot's center of mass. First, methods for formation generation are discussed. Then, simple navigation strategies for robots moving in formation are derived. A sufficient condition for the stability of a desired formation pattern for a fleet of robots each equipped with the navigation strategy based on nearest neighbor tracking is developed. The dynamic behavior of robot fleets consisting of three or more robots moving in formation in a plane is studied by means of computer simulation.
JPRS Report, Science & Technology, Japan, 4th Intelligent Robots Symposium, Volume 2
1989-03-16
accidents caused by strikes by robots,5 a quantitative model for safety evaluation,6 and evaluations of actual systems7 in order to contribute to...Mobile Robot Position Referencing Using Map-Based Vision Systems.... 160 Safety Evaluation of Man-Robot System 171 Fuzzy Path Pattern of Automatic...camera are made after the robot stops to prevent damage from occurring through obstacle interference. The position of the camera is indicated on the
Zhang, Yong-de; Jiang, Jin-gang; Liang, Ting; Hu, Wei-ping
2011-12-01
Artificial teeth are very complicated in shape, and not easy to be grasped and manipulated accurately by a single robot. The method of tooth-arrangement by multi-manipulator for complete denture manufacturing proposed in this paper. A novel complete denture manufacturing mechanism is designed based on multi-manipulator and dental arch generator. Kinematics model of the multi-manipulator tooth-arrangement robot is built by analytical method based on tooth-arrangement principle for full denture. Preliminary experiments on tooth-arrangement are performed using the multi-manipulator tooth-arrangement robot prototype system. The multi-manipulator tooth-arrangement robot prototype system can automatically design and manufacture a set of complete denture that is suitable for a patient according to the jaw arch parameters. The experimental results verified the validity of kinematics model of the multi-manipulator tooth-arrangement robot and the feasibility of the manufacture strategy of complete denture fulfilled by multi-manipulator tooth-arrangement robot.
Smart mobile robot system for rubbish collection
NASA Astrophysics Data System (ADS)
Ali, Mohammed A. H.; Sien Siang, Tan
2018-03-01
This paper records the research and procedures of developing a smart mobility robot with detection system to collect rubbish. The objective of this paper is to design a mobile robot that can detect and recognize medium-size rubbish such as drinking cans. Besides that, the objective is also to design a mobile robot with the ability to estimate the position of rubbish from the robot. In addition, the mobile robot is also able to approach the rubbish based on position of rubbish. This paper explained about the types of image processing, detection and recognition methods and image filters. This project implements RGB subtraction method as the prior system. Other than that, algorithm for distance measurement based on image plane is implemented in this project. This project is limited to use computer webcam as the sensor. Secondly, the robot is only able to approach the nearest rubbish in the same views of camera vision and any rubbish that contain RGB colour components on its body.
Turini, Giuseppe; Moglia, Andrea; Ferrari, Vincenzo; Ferrari, Mauro; Mosca, Franco
2012-01-01
The trend of surgical robotics is to follow the evolution of laparoscopy, which is now moving towards single-incision laparoscopic surgery. The main drawback of this approach is the limited maneuverability of the surgical tools. Promising solutions to improve the surgeon's dexterity are based on bimanual robots. However, since both robot arms are completely inserted into the patient's body, issues related to possible unwanted collisions with structures adjacent to the target organ may arise. This paper presents a simulator based on patient-specific data for the positioning and workspace evaluation of bimanual surgical robots in the pre-operative planning of single-incision laparoscopic surgery. The simulator, designed for the pre-operative planning of robotic laparoscopic interventions, was tested by five expert surgeons who evaluated its main functionalities and provided an overall rating for the system. The proposed system demonstrated good performance and usability, and was designed to integrate both present and future bimanual surgical robots.
Research on Snake-Like Robot with Controllable Scales
NASA Astrophysics Data System (ADS)
Chen, Kailin; Zhao, Yuting; Chen, Shuping
The purpose of this paper is to propose a new structure for a snake-like robot. This type of snake-like robot is different from the normal snake-like robot because it has lots of controllable scales which have a large role in helping moving. Besides, a new form of robot gait named as linear motion mode is developed based on theoretical analysis for the new mechanical structure. Through simulation and analysis in simmechanics of matlab, we proved the validity of theories about the motion mode of snake-like robot. The proposed machine construction and control method for the designed motion is verified experimentally by the independent developed snake robot.
Cao, Jinghui; Xie, Sheng Quan; Das, Raj; Zhu, Guo L
2014-12-01
A large number of gait rehabilitation robots, together with a variety of control strategies, have been developed and evaluated during the last decade. Initially, control strategies applied to rehabilitation robots were adapted from those applied to traditional industrial robots. However, these strategies cannot optimise effectiveness of gait rehabilitation. As a result, researchers have been investigating control strategies tailored for the needs of rehabilitation. Among these control strategies, assisted-as-needed (AAN) control is one of the most popular research topics in this field. AAN training strategies have gained the theoretical and practical evidence based backup from motor learning principles and clinical studies. Various approaches to AAN training have been proposed and investigated by research groups all around the world. This article presents a review on control algorithms of gait rehabilitation robots to summarise related knowledge and investigate potential trends of development. There are existing review papers on control strategies of rehabilitation robots. The review by Marchal-Crespo and Reinkensmeyer (2009) had a broad cover of control strategies of all kinds of rehabilitation robots. Hussain et al. (2011) had specifically focused on treadmill gait training robots and covered a limited number of control implementations on them. This review article encompasses more detailed information on control strategies for robot assisted gait rehabilitation, but is not limited to treadmill based training. It also investigates the potential to further develop assist-as-needed gait training based on assessments of patients' ability. In this paper, control strategies are generally divided into the trajectory tracking control and AAN control. The review covers these two basic categories, as well as other control algorithm and technologies derived from them, such as biofeedback control. Assessments on human gait ability are also included to investigate how to further develop implementations based on assist-as-needed concept. For the consideration of effectiveness, clinical studies on robotic gait rehabilitation are reviewed and analysed from the viewpoint of control algorithm. Copyright © 2014 IPEM. Published by Elsevier Ltd. All rights reserved.
Fernandez-Nogueras Jimenez, Francisco J; Segura Fernandez-Nogueras, Miguel; Jouma Katati, Majed; Arraez Sanchez, Miguel Ángel; Roda Murillo, Olga; Sánchez Montesinos, Indalecio
2015-01-01
The role of robotic surgery is well established in various specialties such as urology and general surgery, but not in others such as neurosurgery and otolaryngology. In the case of surgery of the skull base, it has just emerged from an experimental phase. To investigate possible applications of the da Vinci surgical robot in transoral skull base surgery, comparing it with the authors' experience using conventional endoscopic transnasal surgery in the same region. A transoral transpalatal approach to the nasopharynx and medial skull base was performed on 4 cryopreserved cadaver heads. We used the da Vinci robot, a 30° standard endoscope 12mm thick, dual camera and dual illumination, Maryland forceps on the left terminal and curved scissors on the right, both 8mm thick. Bone drilling was performed manually. For the anatomical study of this region, we used 0.5cm axial slices from a plastinated cadaver head. Various skull base structures at different depths were reached with relative ease with the robot terminals Transoral robotic surgery with the da Vinci system provides potential advantages over conventional endoscopic transnasal surgery in the surgical approach to this region. Copyright © 2014 Sociedad Española de Neurocirugía. Published by Elsevier España. All rights reserved.
Hsu, Bing-Cheng
2018-01-01
Waxing is an important aspect of automobile detailing, aimed at protecting the finish of the car and preventing rust. At present, this delicate work is conducted manually due to the need for iterative adjustments to achieve acceptable quality. This paper presents a robotic waxing system in which surface images are used to evaluate the quality of the finish. An RGB-D camera is used to build a point cloud that details the sheet metal components to enable path planning for a robot manipulator. The robot is equipped with a multi-axis force sensor to measure and control the forces involved in the application and buffing of wax. Images of sheet metal components that were waxed by experienced car detailers were analyzed using image processing algorithms. A Gaussian distribution function and its parameterized values were obtained from the images for use as a performance criterion in evaluating the quality of surfaces prepared by the robotic waxing system. Waxing force and dwell time were optimized using a mathematical model based on the image-based criterion used to measure waxing performance. Experimental results demonstrate the feasibility of the proposed robotic waxing system and image-based performance evaluation scheme. PMID:29757940
Liu, Bailing; Zhang, Fumin; Qu, Xinghua; Shi, Xiaojia
2016-02-18
Coordinate transformation plays an indispensable role in industrial measurements, including photogrammetry, geodesy, laser 3-D measurement and robotics. The widely applied methods of coordinate transformation are generally based on solving the equations of point clouds. Despite the high accuracy, this might result in no solution due to the use of ill conditioned matrices. In this paper, a novel coordinate transformation method is proposed, not based on the equation solution but based on the geometric transformation. We construct characteristic lines to represent the coordinate systems. According to the space geometry relation, the characteristic line scan is made to coincide by a series of rotations and translations. The transformation matrix can be obtained using matrix transformation theory. Experiments are designed to compare the proposed method with other methods. The results show that the proposed method has the same high accuracy, but the operation is more convenient and flexible. A multi-sensor combined measurement system is also presented to improve the position accuracy of a robot with the calibration of the robot kinematic parameters. Experimental verification shows that the position accuracy of robot manipulator is improved by 45.8% with the proposed method and robot calibration.
Cheng, Long; Hou, Zeng-Guang; Tan, Min; Zhang, W J
2012-10-01
The trajectory tracking problem of a closed-chain five-bar robot is studied in this paper. Based on an error transformation function and the backstepping technique, an approximation-based tracking algorithm is proposed, which can guarantee the control performance of the robotic system in both the stable and transient phases. In particular, the overshoot, settling time, and final tracking error of the robotic system can be all adjusted by properly setting the parameters in the error transformation function. The radial basis function neural network (RBFNN) is used to compensate the complicated nonlinear terms in the closed-loop dynamics of the robotic system. The approximation error of the RBFNN is only required to be bounded, which simplifies the initial "trail-and-error" configuration of the neural network. Illustrative examples are given to verify the theoretical analysis and illustrate the effectiveness of the proposed algorithm. Finally, it is also shown that the proposed approximation-based controller can be simplified by a smart mechanical design of the closed-chain robot, which demonstrates the promise of the integrated design and control philosophy.
Lin, Chi-Ying; Hsu, Bing-Cheng
2018-05-14
Waxing is an important aspect of automobile detailing, aimed at protecting the finish of the car and preventing rust. At present, this delicate work is conducted manually due to the need for iterative adjustments to achieve acceptable quality. This paper presents a robotic waxing system in which surface images are used to evaluate the quality of the finish. An RGB-D camera is used to build a point cloud that details the sheet metal components to enable path planning for a robot manipulator. The robot is equipped with a multi-axis force sensor to measure and control the forces involved in the application and buffing of wax. Images of sheet metal components that were waxed by experienced car detailers were analyzed using image processing algorithms. A Gaussian distribution function and its parameterized values were obtained from the images for use as a performance criterion in evaluating the quality of surfaces prepared by the robotic waxing system. Waxing force and dwell time were optimized using a mathematical model based on the image-based criterion used to measure waxing performance. Experimental results demonstrate the feasibility of the proposed robotic waxing system and image-based performance evaluation scheme.
Multi Sensor Fusion Framework for Indoor-Outdoor Localization of Limited Resource Mobile Robots
Marín, Leonardo; Vallés, Marina; Soriano, Ángel; Valera, Ángel; Albertos, Pedro
2013-01-01
This paper presents a sensor fusion framework that improves the localization of mobile robots with limited computational resources. It employs an event based Kalman Filter to combine the measurements of a global sensor and an inertial measurement unit (IMU) on an event based schedule, using fewer resources (execution time and bandwidth) but with similar performance when compared to the traditional methods. The event is defined to reflect the necessity of the global information, when the estimation error covariance exceeds a predefined limit. The proposed experimental platforms are based on the LEGO Mindstorm NXT, and consist of a differential wheel mobile robot navigating indoors with a zenithal camera as global sensor, and an Ackermann steering mobile robot navigating outdoors with a SBG Systems GPS accessed through an IGEP board that also serves as datalogger. The IMU in both robots is built using the NXT motor encoders along with one gyroscope, one compass and two accelerometers from Hitecnic, placed according to a particle based dynamic model of the robots. The tests performed reflect the correct performance and low execution time of the proposed framework. The robustness and stability is observed during a long walk test in both indoors and outdoors environments. PMID:24152933
Multi sensor fusion framework for indoor-outdoor localization of limited resource mobile robots.
Marín, Leonardo; Vallés, Marina; Soriano, Ángel; Valera, Ángel; Albertos, Pedro
2013-10-21
This paper presents a sensor fusion framework that improves the localization of mobile robots with limited computational resources. It employs an event based Kalman Filter to combine the measurements of a global sensor and an inertial measurement unit (IMU) on an event based schedule, using fewer resources (execution time and bandwidth) but with similar performance when compared to the traditional methods. The event is defined to reflect the necessity of the global information, when the estimation error covariance exceeds a predefined limit. The proposed experimental platforms are based on the LEGO Mindstorm NXT, and consist of a differential wheel mobile robot navigating indoors with a zenithal camera as global sensor, and an Ackermann steering mobile robot navigating outdoors with a SBG Systems GPS accessed through an IGEP board that also serves as datalogger. The IMU in both robots is built using the NXT motor encoders along with one gyroscope, one compass and two accelerometers from Hitecnic, placed according to a particle based dynamic model of the robots. The tests performed reflect the correct performance and low execution time of the proposed framework. The robustness and stability is observed during a long walk test in both indoors and outdoors environments.
Liu, Bailing; Zhang, Fumin; Qu, Xinghua; Shi, Xiaojia
2016-01-01
Coordinate transformation plays an indispensable role in industrial measurements, including photogrammetry, geodesy, laser 3-D measurement and robotics. The widely applied methods of coordinate transformation are generally based on solving the equations of point clouds. Despite the high accuracy, this might result in no solution due to the use of ill conditioned matrices. In this paper, a novel coordinate transformation method is proposed, not based on the equation solution but based on the geometric transformation. We construct characteristic lines to represent the coordinate systems. According to the space geometry relation, the characteristic line scan is made to coincide by a series of rotations and translations. The transformation matrix can be obtained using matrix transformation theory. Experiments are designed to compare the proposed method with other methods. The results show that the proposed method has the same high accuracy, but the operation is more convenient and flexible. A multi-sensor combined measurement system is also presented to improve the position accuracy of a robot with the calibration of the robot kinematic parameters. Experimental verification shows that the position accuracy of robot manipulator is improved by 45.8% with the proposed method and robot calibration. PMID:26901203
Electroencephalography(EEG)-based instinctive brain-control of a quadruped locomotion robot.
Jia, Wenchuan; Huang, Dandan; Luo, Xin; Pu, Huayan; Chen, Xuedong; Bai, Ou
2012-01-01
Artificial intelligence and bionic control have been applied in electroencephalography (EEG)-based robot system, to execute complex brain-control task. Nevertheless, due to technical limitations of the EEG decoding, the brain-computer interface (BCI) protocol is often complex, and the mapping between the EEG signal and the practical instructions lack of logic associated, which restrict the user's actual use. This paper presents a strategy that can be used to control a quadruped locomotion robot by user's instinctive action, based on five kinds of movement related neurophysiological signal. In actual use, the user drives or imagines the limbs/wrists action to generate EEG signal to adjust the real movement of the robot according to his/her own motor reflex of the robot locomotion. This method is easy for real use, as the user generates the brain-control signal through the instinctive reaction. By adopting the behavioral control of learning and evolution based on the proposed strategy, complex movement task may be realized by instinctive brain-control.
Multi-robot task allocation based on two dimensional artificial fish swarm algorithm
NASA Astrophysics Data System (ADS)
Zheng, Taixiong; Li, Xueqin; Yang, Liangyi
2007-12-01
The problem of task allocation for multiple robots is to allocate more relative-tasks to less relative-robots so as to minimize the processing time of these tasks. In order to get optimal multi-robot task allocation scheme, a twodimensional artificial swarm algorithm based approach is proposed in this paper. In this approach, the normal artificial fish is extended to be two dimension artificial fish. In the two dimension artificial fish, each vector of primary artificial fish is extended to be an m-dimensional vector. Thus, each vector can express a group of tasks. By redefining the distance between artificial fish and the center of artificial fish, the behavior of two dimension fish is designed and the task allocation algorithm based on two dimension artificial swarm algorithm is put forward. At last, the proposed algorithm is applied to the problem of multi-robot task allocation and comparer with GA and SA based algorithm is done. Simulation and compare result shows the proposed algorithm is effective.
Kim, Youngmoo E.
2017-01-01
Motor-imagery tasks are a popular input method for controlling brain-computer interfaces (BCIs), partially due to their similarities to naturally produced motor signals. The use of functional near-infrared spectroscopy (fNIRS) in BCIs is still emerging and has shown potential as a supplement or replacement for electroencephalography. However, studies often use only two or three motor-imagery tasks, limiting the number of available commands. In this work, we present the results of the first four-class motor-imagery-based online fNIRS-BCI for robot control. Thirteen participants utilized upper- and lower-limb motor-imagery tasks (left hand, right hand, left foot, and right foot) that were mapped to four high-level commands (turn left, turn right, move forward, and move backward) to control the navigation of a simulated or real robot. A significant improvement in classification accuracy was found between the virtual-robot-based BCI (control of a virtual robot) and the physical-robot BCI (control of the DARwIn-OP humanoid robot). Differences were also found in the oxygenated hemoglobin activation patterns of the four tasks between the first and second BCI. These results corroborate previous findings that motor imagery can be improved with feedback and imply that a four-class motor-imagery-based fNIRS-BCI could be feasible with sufficient subject training. PMID:28804712
Batula, Alyssa M; Kim, Youngmoo E; Ayaz, Hasan
2017-01-01
Motor-imagery tasks are a popular input method for controlling brain-computer interfaces (BCIs), partially due to their similarities to naturally produced motor signals. The use of functional near-infrared spectroscopy (fNIRS) in BCIs is still emerging and has shown potential as a supplement or replacement for electroencephalography. However, studies often use only two or three motor-imagery tasks, limiting the number of available commands. In this work, we present the results of the first four-class motor-imagery-based online fNIRS-BCI for robot control. Thirteen participants utilized upper- and lower-limb motor-imagery tasks (left hand, right hand, left foot, and right foot) that were mapped to four high-level commands (turn left, turn right, move forward, and move backward) to control the navigation of a simulated or real robot. A significant improvement in classification accuracy was found between the virtual-robot-based BCI (control of a virtual robot) and the physical-robot BCI (control of the DARwIn-OP humanoid robot). Differences were also found in the oxygenated hemoglobin activation patterns of the four tasks between the first and second BCI. These results corroborate previous findings that motor imagery can be improved with feedback and imply that a four-class motor-imagery-based fNIRS-BCI could be feasible with sufficient subject training.
Evaluation method on steering for the shape-shifting robot in different configurations
NASA Astrophysics Data System (ADS)
Chang, Jian; Li, Bin; Wang, Chong; Zheng, Huaibing; Li, Zhiqiang
2016-01-01
The evaluation method on steering is based on qualitative manner in existence, which causes the result inaccurate and fuzziness. It reduces the efficiency of process execution. So the method by quantitative manner for the shape-shifting robot in different configurations is proposed. Comparing to traditional evaluation method, the most important aspects which can influence the steering abilities of the robot in different configurations are researched in detail, including the energy, angular velocity, time and space. In order to improve the robustness of system, the ideal and slippage conditions are all considered by mathematical model. Comparing to the traditional weighting confirming method, the extent of robot steering method is proposed by the combination of subjective and objective weighting method. The subjective weighting method can show more preferences of the experts and is based on five-grade scale. The objective weighting method is based on information entropy to determine the factors. By the sensors fixed on the robot, the contract force between track grouser and ground, the intrinsic motion characteristics of robot are obtained and the experiment is done to prove the algorithm which is proposed as the robot in different common configurations. Through the method proposed in the article, fuzziness and inaccurate of the evaluation method has been solved, so the operators can choose the most suitable configuration of the robot to fulfil the different tasks more quickly and simply.
The Impacts of Robotics on the Workforce and Workplace.
ERIC Educational Resources Information Center
Carnegie-Mellon Univ., Pittsburgh, PA.
Based on a 15-week student project, this paper surveys the impact of current and expected future robotics technology on the workplace and workers. The monograph is organized into seven chapters. The first chapter introduces the issues of robotics and of social displacement as a result of anticipated growth in the use of industrial robots. In the…
TROTER's (Tiny Robotic Operation Team Experiment): A new concept of space robots
NASA Technical Reports Server (NTRS)
Su, Renjeng
1990-01-01
In view of the future need of automation and robotics in space and the existing approaches to the problem, we proposed a new concept of robots for space construction. The new concept is based on the basic idea of decentralization. Decentralization occurs, on the one hand, in using teams of many cooperative robots for construction tasks. Redundancy and modular design are explored to achieve high reliability for team robotic operations. Reliability requirement on individual robots is greatly reduced. Another area of decentralization is manifested by the proposed control hierarchy which eventually includes humans in the loop. The control strategy is constrained by various time delays and calls for different levels of abstraction of the task dynamics. Such technology is needed for remote control of robots in an uncertain environment. Thus, concerns of human safety around robots are relaxed. This presentation also introduces the required technologies behind the new robotic concept.
Value of Robotically Assisted Surgery for Mitral Valve Disease
Mihaljevic, Tomislav; Koprivanac, Marijan; Kelava, Marta; Goodman, Avi; Jarrett, Craig; Williams, Sarah J.; Gillinov, A. Marc; Bajwa, Gurjyot; Mick, Stephanie L.; Bonatti, Johannes; Blackstone, Eugene H.
2014-01-01
Importance The value of robotically assisted surgery for mitral valve disease is questioned because the high cost of care associated with robotic technology may outweigh its clinical benefits. Objective To investigate conditions under which benefits of robotic surgery mitigate high technology costs. Design Clinical cohort study comparing costs of robotic vs. three contemporaneous conventional surgical approaches for degenerative mitral disease. Surgery was performed from 2006–2011, and comparisons were based on intent-to-treat, with propensity-matching used to reduce selection bias. Setting Large multi-specialty academic medical center. Participants 1,290 patients aged 57±11 years, 27% women, underwent mitral repair for regurgitation from posterior leaflet prolapse. Robotic surgery was used in 473, complete sternotomy in 227, partial sternotomy in 349, and anterolateral thoracotomy in 241. Three propensity-matched groups were formed based on demographics, symptoms, cardiac and noncardiac comorbidities, valve pathophysiology, and echocardiographic measurements: robotic vs. sternotomy (n=198 pairs) vs. partial sternotomy (n=293 pairs) vs. thoracotomy (n=224 pairs). Interventions Mitral valve repair. Main Outcome Measures Cost of care, expressed as robotic capital investment, maintenance, and direct technical hospital cost, and benefit of care, based on differences in recovery time. Results Median cost of care for robotically assisted surgery exceeded the cost of alternative approaches by 27% (−5%, 68%), 32% (−6%, 70%), and 21% (−2%, 54%) (median [15th, 85th percentiles]) for complete sternotomy, partial sternotomy, and anterolateral thoracotomy, respectively. Higher operative costs were partially offset by lower postoperative costs and earlier return to work: median 35 days for robotic surgery, 49 for complete sternotomy, 56 for partial sternotomy, and 42 for anterolateral thoracotomy. Resulting net differences in cost of robotic surgery vs. the three alternatives were 16% (−15%, 55%), 16% (−19%, 51%), and 15% (−7%, 49%), respectively. Beyond a volume threshold of 55–100 robotic cases per year, confidence limits for the cost of robotic surgery broadly overlapped those of conventional approaches. Conclusions In exchange for higher procedural costs, robotically assisted mitral valve surgery offers the clinical benefit of least invasive surgery, lowest postoperative cost, and fastest return to work. The value of robotically assisted surgery comparable to conventional approaches can only be realized in high-volume centers. PMID:24848944
Biologically-inspired hexapod robot design and simulation
NASA Technical Reports Server (NTRS)
Espenschied, Kenneth S.; Quinn, Roger D.
1994-01-01
The design and construction of a biologically-inspired hexapod robot is presented. A previously developed simulation is modified to include models of the DC drive motors, the motor driver circuits and their transmissions. The application of this simulation to the design and development of the robot is discussed. The mechanisms thought to be responsible for the leg coordination of the walking stick insect were previously applied to control the straight-line locomotion of a robot. We generalized these rules for a robot walking on a plane. This biologically-inspired control strategy is used to control the robot in simulation. Numerical results show that the general body motion and performance of the simulated robot is similar to that of the robot based on our preliminary experimental results.
On the development of a reactive sensor-based robotic system
NASA Technical Reports Server (NTRS)
Hexmoor, Henry H.; Underwood, William E., Jr.
1989-01-01
Flexible robotic systems for space applications need to use local information to guide their action in uncertain environments where the state of the environment and even the goals may change. They have to be tolerant of unexpected events and robust enough to carry their task to completion. Tactical goals should be modified while maintaining strategic goals. Furthermore, reactive robotic systems need to have a broader view of their environments than sensory-based systems. An architecture and a theory of representation extending the basic cycles of action and perception are described. This scheme allows for dynamic description of the environment and determining purposive and timely action. Applications of this scheme for assembly and repair tasks using a Universal Machine Intelligence RTX robot are being explored, but the ideas are extendable to other domains. The nature of reactivity for sensor-based robotic systems and implementation issues encountered in developing a prototype are discussed.
Tegotae-based decentralised control scheme for autonomous gait transition of snake-like robots.
Kano, Takeshi; Yoshizawa, Ryo; Ishiguro, Akio
2017-08-04
Snakes change their locomotion patterns in response to the environment. This ability is a motivation for developing snake-like robots with highly adaptive functionality. In this study, a decentralised control scheme of snake-like robots that exhibited autonomous gait transition (i.e. the transition between concertina locomotion in narrow aisles and scaffold-based locomotion on unstructured terrains) was developed. Additionally, the control scheme was validated via simulations. A key insight revealed is that these locomotion patterns were not preprogrammed but emerged by exploiting Tegotae, a concept that describes the extent to which a perceived reaction matches a generated action. Unlike local reflexive mechanisms proposed previously, the Tegotae-based feedback mechanism enabled the robot to 'selectively' exploit environments beneficial for propulsion, and generated reasonable locomotion patterns. It is expected that the results of this study can form the basis to design robots that can work under unpredictable and unstructured environments.
SSVEP-based Experimental Procedure for Brain-Robot Interaction with Humanoid Robots.
Zhao, Jing; Li, Wei; Mao, Xiaoqian; Li, Mengfan
2015-11-24
Brain-Robot Interaction (BRI), which provides an innovative communication pathway between human and a robotic device via brain signals, is prospective in helping the disabled in their daily lives. The overall goal of our method is to establish an SSVEP-based experimental procedure by integrating multiple software programs, such as OpenViBE, Choregraph, and Central software as well as user developed programs written in C++ and MATLAB, to enable the study of brain-robot interaction with humanoid robots. This is achieved by first placing EEG electrodes on a human subject to measure the brain responses through an EEG data acquisition system. A user interface is used to elicit SSVEP responses and to display video feedback in the closed-loop control experiments. The second step is to record the EEG signals of first-time subjects, to analyze their SSVEP features offline, and to train the classifier for each subject. Next, the Online Signal Processor and the Robot Controller are configured for the online control of a humanoid robot. As the final step, the subject completes three specific closed-loop control experiments within different environments to evaluate the brain-robot interaction performance. The advantage of this approach is its reliability and flexibility because it is developed by integrating multiple software programs. The results show that using this approach, the subject is capable of interacting with the humanoid robot via brain signals. This allows the mind-controlled humanoid robot to perform typical tasks that are popular in robotic research and are helpful in assisting the disabled.
SSVEP-based Experimental Procedure for Brain-Robot Interaction with Humanoid Robots
Zhao, Jing; Li, Wei; Mao, Xiaoqian; Li, Mengfan
2015-01-01
Brain-Robot Interaction (BRI), which provides an innovative communication pathway between human and a robotic device via brain signals, is prospective in helping the disabled in their daily lives. The overall goal of our method is to establish an SSVEP-based experimental procedure by integrating multiple software programs, such as OpenViBE, Choregraph, and Central software as well as user developed programs written in C++ and MATLAB, to enable the study of brain-robot interaction with humanoid robots. This is achieved by first placing EEG electrodes on a human subject to measure the brain responses through an EEG data acquisition system. A user interface is used to elicit SSVEP responses and to display video feedback in the closed-loop control experiments. The second step is to record the EEG signals of first-time subjects, to analyze their SSVEP features offline, and to train the classifier for each subject. Next, the Online Signal Processor and the Robot Controller are configured for the online control of a humanoid robot. As the final step, the subject completes three specific closed-loop control experiments within different environments to evaluate the brain-robot interaction performance. The advantage of this approach is its reliability and flexibility because it is developed by integrating multiple software programs. The results show that using this approach, the subject is capable of interacting with the humanoid robot via brain signals. This allows the mind-controlled humanoid robot to perform typical tasks that are popular in robotic research and are helpful in assisting the disabled. PMID:26650051
Robotic hepatobiliary surgery: update on the current status.
Carr, A D; Ali, M R; Khatri, V P
2013-10-01
An update on the current status of robotic hepatobiliary surgery based on a review of the available literature. A literature search was performed using the PubMed database with search phrases "robotic hepatectomy", "robotic liver resection", "robotic liver surgery", "robotic hepatobiliary surgery", and "robotic biliary reconstruction". We selected articles with high volume case series or case controlled series. As a result of our literature search we will focus on the 9 major articles on robotic liver resection (RLR) with 235 patients undergoing RLR for a total of 244 liver resections. In addition a brief update on robotic biliary reconstruction will also be presented based on the above articles and recent review articles. Indications for robotic liver resection included both benign (N.=72, 29.5%) and malignant disease (N.=172, 70.5%). The most common indication was colorectal liver metastasis (N.=87, 50.6%) and hepatocellular carcinoma (N.=57, 33%). The most common type of resection was subsegmental (N.=55, 22.5%), with a significant number of major hepatectomies (N.=80, 32.8%). Overall conversion rate was 7.8%, with majority converted to open (N.=18) and one converted to hand assisted. The overall complication rate was 11.8% (N.=29). No perioperative mortality was reported. Preliminary results show that robotic assisted laparoscopic hepatobiliary surgery has materialized as a new technique that combines the advantages of laparoscopy with the dissection, suturing and articulation of robotics. This more closely approximates open surgery. The preliminary data demonstrates that RLR can be applied in major hepatobiliary centers safely. Future comparative studies are needed to determine if this is of significant benefit over current open techniques.
Methodology for cloud-based design of robots
NASA Astrophysics Data System (ADS)
Ogorodnikova, O. M.; Vaganov, K. A.; Putimtsev, I. D.
2017-09-01
This paper presents some important results for cloud-based designing a robot arm by a group of students. Methodology for the cloud-based design was developed and used to initiate interdisciplinary project about research and development of a specific manipulator. The whole project data files were hosted by Ural Federal University data center. The 3D (three-dimensional) model of the robot arm was created using Siemens PLM software (Product Lifecycle Management) and structured as a complex mechatronics product by means of Siemens Teamcenter thin client; all processes were performed in the clouds. The robot arm was designed in purpose to load blanks up to 1 kg into the work space of the milling machine for performing student's researches.
The Co-simulation of Humanoid Robot Based on Solidworks, ADAMS and Simulink
NASA Astrophysics Data System (ADS)
Song, Dalei; Zheng, Lidan; Wang, Li; Qi, Weiwei; Li, Yanli
A simulation method of adaptive controller is proposed for the humanoid robot system based on co-simulation of Solidworks, ADAMS and Simulink. A complex mathematical modeling process is avoided by this method, and the real time dynamic simulating function of Simulink would be exerted adequately. This method could be generalized to other complicated control system. This method is adopted to build and analyse the model of humanoid robot. The trajectory tracking and adaptive controller design also proceed based on it. The effect of trajectory tracking is evaluated by fitting-curve theory of least squares method. The anti-interference capability of the robot is improved a lot through comparative analysis.
Evolving self-assembly in autonomous homogeneous robots: experiments with two physical robots.
Ampatzis, Christos; Tuci, Elio; Trianni, Vito; Christensen, Anders Lyhne; Dorigo, Marco
2009-01-01
This research work illustrates an approach to the design of controllers for self-assembling robots in which the self-assembly is initiated and regulated by perceptual cues that are brought forth by the physical robots through their dynamical interactions. More specifically, we present a homogeneous control system that can achieve assembly between two modules (two fully autonomous robots) of a mobile self-reconfigurable system without a priori introduced behavioral or morphological heterogeneities. The controllers are dynamic neural networks evolved in simulation that directly control all the actuators of the two robots. The neurocontrollers cause the dynamic specialization of the robots by allocating roles between them based solely on their interaction. We show that the best evolved controller proves to be successful when tested on a real hardware platform, the swarm-bot. The performance achieved is similar to the one achieved by existing modular or behavior-based approaches, also due to the effect of an emergent recovery mechanism that was neither explicitly rewarded by the fitness function, nor observed during the evolutionary simulation. Our results suggest that direct access to the orientations or intentions of the other agents is not a necessary condition for robot coordination: Our robots coordinate without direct or explicit communication, contrary to what is assumed by most research works in collective robotics. This work also contributes to strengthening the evidence that evolutionary robotics is a design methodology that can tackle real-world tasks demanding fine sensory-motor coordination.
A soft flying robot driven by a dielectric elastomer actuator (Conference Presentation)
NASA Astrophysics Data System (ADS)
Wang, Yingxi; Zhang, Hui; Godaba, Hareesh; Khoo, Boo Cheong; Zhu, Jian
2017-04-01
Modern unmanned aerial vehicles are gaining promising success because of their versatility, flexibility, and minimized risk of operations. Most of them are normally designed and constructed based on hard components. For example, the body of the vehicle is generally made of aluminum or carbon fibers, and electric motors are adopted as the main actuators. These hard materials are able to offer reasonable balance of structural strength and weight. However, they exhibit apparent limitations. For instance, such robots are fragile in even small clash with surrounding objects. In addition, their noise is quite high due to spinning of rotors or propellers. Here we aim to develop a soft flying robot using soft actuators. Due to its soft body, the robot can work effectively in unstructured environment. The robot may also exhibit interesting attributes, including low weight, low noise, and low power consumption. This robot mainly consists of a dielectric elastomer balloon made of two layers of elastomers. One is VHB (3M), and the other is natural rubber. The balloon is filled with helium, which can make the robot nearly neutral. When voltage is applied to either of the two dielectric elastomers, the balloon expands. So that the buoyance can be larger than the robot's weight, and the robot can move up. In this seminar, we will show how to harness the dielectric breakdown of natural rubber to achieve giant deformation of this soft robot. Based on this method, the robot can move up effectively in air.
Modelling of cooperating robotized systems with the use of object-based approach
NASA Astrophysics Data System (ADS)
Foit, K.; Gwiazda, A.; Banas, W.; Sekala, A.; Hryniewicz, P.
2015-11-01
Today's robotized manufacturing systems are characterized by high efficiency. The emphasis is placed mainly on the simultaneous work of machines. It could manifest in many ways, where the most spectacular one is the cooperation of several robots, during work on the same detail. What's more, recently a dual-arm robots are used that could mimic the manipulative skills of human hands. As a result, it is often hard to deal with the situation, when it is necessary not only to maintain sufficient precision, but also the coordination and proper sequence of movements of individual robots’ arms. The successful completion of this task depends on the individual robot control systems and their respective programmed, but also on the well-functioning communication between robot controllers. A major problem in case of cooperating robots is the possibility of collision between particular links of robots’ kinematic chains. This is not a simple case, because the manufacturers of robotic systems do not disclose the details of the control algorithms, then it is hard to determine such situation. Another problem with cooperation of robots is how to inform the other units about start or completion of part of the task, so that other robots can take further actions. This paper focuses on communication between cooperating robotic units, assuming that every robot is represented by object-based model. This problem requires developing a form of communication protocol that the objects can use for collecting the information about its environment. The approach presented in the paper is not limited to the robots and could be used in a wider range, for example during modelling of the complete workcell or production line.
Hazardous Environment Robotics
NASA Technical Reports Server (NTRS)
1996-01-01
Jet Propulsion Laboratory (JPL) developed video overlay calibration and demonstration techniques for ground-based telerobotics. Through a technology sharing agreement with JPL, Deneb Robotics added this as an option to its robotics software, TELEGRIP. The software is used for remotely operating robots in nuclear and hazardous environments in industries including automotive and medical. The option allows the operator to utilize video to calibrate 3-D computer models with the actual environment, and thus plan and optimize robot trajectories before the program is automatically generated.
Teen Sized Humanoid Robot: Archie
NASA Astrophysics Data System (ADS)
Baltes, Jacky; Byagowi, Ahmad; Anderson, John; Kopacek, Peter
This paper describes our first teen sized humanoid robot Archie. This robot has been developed in conjunction with Prof. Kopacek’s lab from the Technical University of Vienna. Archie uses brushless motors and harmonic gears with a novel approach to position encoding. Based on our previous experience with small humanoid robots, we developed software to create, store, and play back motions as well as control methods which automatically balance the robot using feedback from an internal measurement unit (IMU).
Robot vibration control using inertial damping forces
NASA Technical Reports Server (NTRS)
Lee, Soo Han; Book, Wayne J.
1991-01-01
This paper concerns the suppression of the vibration of a large flexible robot by inertial forces of a small robot which is located at the tip of the large robot. A controller for generating damping forces to a large robot is designed based on the two time scale model. The controller does not need to calculate the quasi-steady variables and is efficient in computation. Simulation results show the effectiveness of the inertial forces and the controller designed.
Robot vibration control using inertial damping forces
NASA Technical Reports Server (NTRS)
Lee, Soo Han; Book, Wayne J.
1989-01-01
The suppression is examined of the vibration of a large flexible robot by inertial forces of a small robot which is located at the tip of the large robot. A controller for generating damping forces to a large robot is designed based on the two time scale mode. The controller does not need to calculate the quasi-steady state variables and is efficient in computation. Simulation results show the effectiveness of the inertial forces and the controller designed.
Peer-to-Peer Human-Robot Interaction for Space Exploration
NASA Technical Reports Server (NTRS)
Fong, Terrence; Nourbakhsh, Illah
2004-01-01
NASA has embarked on a long-term program to develop human-robot systems for sustained, affordable space exploration. To support this mission, we are working to improve human-robot interaction and performance on planetary surfaces. Rather than building robots that function as glorified tools, our focus is to enable humans and robots to work as partners and peers. In this paper. we describe our approach, which includes contextual dialogue, cognitive modeling, and metrics-based field testing.
Adaptive control of space based robot manipulators
NASA Technical Reports Server (NTRS)
Walker, Michael W.; Wee, Liang-Boon
1991-01-01
For space based robots in which the base is free to move, motion planning and control is complicated by uncertainties in the inertial properties of the manipulator and its load. A new adaptive control method is presented for space based robots which achieves globally stable trajectory tracking in the presence of uncertainties in the inertial parameters of the system. A partition is made of the fifteen degree of freedom system dynamics into two parts: a nine degree of freedom invertible portion and a six degree of freedom noninvertible portion. The controller is then designed to achieve trajectory tracking of the invertible portion of the system. This portion consist of the manipulator joint positions and the orientation of the base. The motion of the noninvertible portion is bounded, but unpredictable. This portion consist of the position of the robot's base and the position of the reaction wheel.
Research on the man in the loop control system of the robot arm based on gesture control
NASA Astrophysics Data System (ADS)
Xiao, Lifeng; Peng, Jinbao
2017-03-01
The Man in the loop control system of the robot arm based on gesture control research complex real-world environment, which requires the operator to continuously control and adjust the remote manipulator, as the background, completes the specific mission human in the loop entire system as the research object. This paper puts forward a kind of robot arm control system of Man in the loop based on gesture control, by robot arm control system based on gesture control and Virtual reality scene feedback to enhance immersion and integration of operator, to make operator really become a part of the whole control loop. This paper expounds how to construct a man in the loop control system of the robot arm based on gesture control. The system is a complex system of human computer cooperative control, but also people in the loop control problem areas. The new system solves the problems that the traditional method has no immersion feeling and the operation lever is unnatural, the adjustment time is long, and the data glove mode wears uncomfortable and the price is expensive.
Broeders, Ivo A M J
2014-02-01
Robotic systems were introduced 15 years ago to support complex endoscopic procedures. The technology is increasingly used in gastro-intestinal surgery. In this article, literature on experimental- and clinical research is reviewed and ergonomic issues are discussed. literature review was based on Medline search using a large variety of search terms, including e.g. robot(ic), randomized, rectal, oesophageal, ergonomics. Review articles on relevant topics are discussed with preference. There is abundant evidence of supremacy in performing complex endoscopic surgery tasks when using the robot in an experimental setting. There is little high-level evidence so far on translation of these merits to clinical practice. Robotic systems may appear helpful in complex gastro-intestinal surgery. Moreover, dedicated computer based technology integrated in telepresence systems opens the way to integration of planning, diagnostics and therapy. The first high tech add-ons such as near infrared technology are under clinical evaluation. Copyright © 2014 Elsevier Ltd. All rights reserved.
Mapping of unknown industrial plant using ROS-based navigation mobile robot
NASA Astrophysics Data System (ADS)
Priyandoko, G.; Ming, T. Y.; Achmad, M. S. H.
2017-10-01
This research examines how humans work with teleoperated unmanned mobile robot inspection in industrial plant area resulting 2D/3D map for further critical evaluation. This experiment focuses on two parts, the way human-robot doing remote interactions using robust method and the way robot perceives the environment surround as a 2D/3D perspective map. ROS (robot operating system) as a tool was utilized in the development and implementation during the research which comes up with robust data communication method in the form of messages and topics. RGBD SLAM performs the visual mapping function to construct 2D/3D map using Kinect sensor. The results showed that the mobile robot-based teleoperated system are successful to extend human perspective in term of remote surveillance in large area of industrial plant. It was concluded that the proposed work is robust solution for large mapping within an unknown construction building.
A Robotic Coach Architecture for Elder Care (ROCARE) Based on Multi-user Engagement Models
Fan, Jing; Bian, Dayi; Zheng, Zhi; Beuscher, Linda; Newhouse, Paul A.; Mion, Lorraine C.; Sarkar, Nilanjan
2017-01-01
The aging population with its concomitant medical conditions, physical and cognitive impairments, at a time of strained resources, establishes the urgent need to explore advanced technologies that may enhance function and quality of life. Recently, robotic technology, especially socially assistive robotics has been investigated to address the physical, cognitive, and social needs of older adults. Most system to date have predominantly focused on one-on-one human robot interaction (HRI). In this paper, we present a multi-user engagement-based robotic coach system architecture (ROCARE). ROCARE is capable of administering both one-on-one and multi-user HRI, providing implicit and explicit channels of communication, and individualized activity management for long-term engagement. Two preliminary feasibility studies, a one-on-one interaction and a triadic interaction with two humans and a robot, were conducted and the results indicated potential usefulness and acceptance by older adults, with and without cognitive impairment. PMID:28113672
Adaptive Nonparametric Kinematic Modeling of Concentric Tube Robots.
Fagogenis, Georgios; Bergeles, Christos; Dupont, Pierre E
2016-10-01
Concentric tube robots comprise telescopic precurved elastic tubes. The robot's tip and shape are controlled via relative tube motions, i.e. tube rotations and translations. Non-linear interactions between the tubes, e.g. friction and torsion, as well as uncertainty in the physical properties of the tubes themselves, e.g. the Young's modulus, curvature, or stiffness, hinder accurate kinematic modelling. In this paper, we present a machine-learning-based methodology for kinematic modelling of concentric tube robots and in situ model adaptation. Our approach is based on Locally Weighted Projection Regression (LWPR). The model comprises an ensemble of linear models, each of which locally approximates the original complex kinematic relation. LWPR can accommodate for model deviations by adjusting the respective local models at run-time, resulting in an adaptive kinematics framework. We evaluated our approach on data gathered from a three-tube robot, and report high accuracy across the robot's configuration space.
A Robotic Coach Architecture for Elder Care (ROCARE) Based on Multi-User Engagement Models.
Fan, Jing; Bian, Dayi; Zheng, Zhi; Beuscher, Linda; Newhouse, Paul A; Mion, Lorraine C; Sarkar, Nilanjan
2017-08-01
The aging population with its concomitant medical conditions, physical and cognitive impairments, at a time of strained resources, establishes the urgent need to explore advanced technologies that may enhance function and quality of life. Recently, robotic technology, especially socially assistive robotics has been investigated to address the physical, cognitive, and social needs of older adults. Most system to date have predominantly focused on one-on-one human robot interaction (HRI). In this paper, we present a multi-user engagement-based robotic coach system architecture (ROCARE). ROCARE is capable of administering both one-on-one and multi-user HRI, providing implicit and explicit channels of communication, and individualized activity management for long-term engagement. Two preliminary feasibility studies, a one-on-one interaction and a triadic interaction with two humans and a robot, were conducted and the results indicated potential usefulness and acceptance by older adults, with and without cognitive impairment.
An interactive control algorithm used for equilateral triangle formation with robotic sensors.
Li, Xiang; Chen, Hongcai
2014-04-22
This paper describes an interactive control algorithm, called Triangle Formation Algorithm (TFA), used for three neighboring robotic sensors which are distributed randomly to self-organize into and equilateral triangle (E) formation. The algorithm is proposed based on the triangular geometry and considering the actual sensors used in robotics. In particular, the stability of the TFA, which can be executed by robotic sensors independently and asynchronously for E formation, is analyzed in details based on Lyapunov stability theory. Computer simulations are carried out for verifying the effectiveness of the TFA. The analytical results and simulation studies indicate that three neighboring robots employing conventional sensors can self-organize into E formations successfully regardless of their initial distribution using the same TFAs.
Design guidelines for robotically serviceable hardware
NASA Technical Reports Server (NTRS)
Gordon, Scott A.
1988-01-01
Research being conducted at the Goddard Space Flight Center into the development of guidelines for the design of robotically serviceable spaceflight hardware is described. A mock-up was built based on an existing spaceflight system demonstrating how these guidelines can be applied to actual hardware. The report examines the basic servicing philosophy being studied and how this philosophy is reflected in the formulation of design guidelines for robotic servicing. A description of the mock-up is presented with emphasis on the design features that make it robot friendly. Three robotic servicing schemes fulfilling the design guidelines were developed for the mock-up. These servicing schemes are examined as to how their implementation was affected by the constraints of the spacecraft system on which the mock-up is based.
Technical features of the robot-assisted trans-axillary thyroidectomy.
Axente, D D; Major, Z Z; Micu, C M; Constantea, N A
2013-01-01
Numerous minimally invasive techniques for thyroid surgery have been described in recent years. Technical disadvantages have led to low practicability, although these techniques proved to be safe and to deliver good results. The robotic system was developed to overcome the limits of endoscopic surgery.Recently, based on the advantages of this new technology, robot assisted endoscopic surgery was introduced for minimally invasive thyroid surgery as well. Our experience with robot-assisted transaxillary thyroid surgery begins in November 2010 when we have practiced our first unilateral total lobectomy. From November 2010 to March 2012, 50 patients underwent robot assisted endoscopic thyroid surgery using the transaxillary approach. The aim of this study is to present the technical details and particularities of this procedure, based on our experience.
An Interactive Control Algorithm Used for Equilateral Triangle Formation with Robotic Sensors
Li, Xiang; Chen, Hongcai
2014-01-01
This paper describes an interactive control algorithm, called Triangle Formation Algorithm (TFA), used for three neighboring robotic sensors which are distributed randomly to self-organize into and equilateral triangle (E) formation. The algorithm is proposed based on the triangular geometry and considering the actual sensors used in robotics. In particular, the stability of the TFA, which can be executed by robotic sensors independently and asynchronously for E formation, is analyzed in details based on Lyapunov stability theory. Computer simulations are carried out for verifying the effectiveness of the TFA. The analytical results and simulation studies indicate that three neighboring robots employing conventional sensors can self-organize into E formations successfully regardless of their initial distribution using the same TFAs. PMID:24759118
Dynamic modeling of parallel robots for computed-torque control implementation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Codourey, A.
1998-12-01
In recent years, increased interest in parallel robots has been observed. Their control with modern theory, such as the computed-torque method, has, however, been restrained, essentially due to the difficulty in establishing a simple dynamic model that can be calculated in real time. In this paper, a simple method based on the virtual work principle is proposed for modeling parallel robots. The mass matrix of the robot, needed for decoupling control strategies, does not explicitly appear in the formulation; however, it can be computed separately, based on kinetic energy considerations. The method is applied to the DELTA parallel robot, leadingmore » to a very efficient model that has been implemented in a real-time computed-torque control algorithm.« less
Probabilistic self-localisation on a qualitative map based on occlusions
NASA Astrophysics Data System (ADS)
Santos, Paulo E.; Martins, Murilo F.; Fenelon, Valquiria; Cozman, Fabio G.; Dee, Hannah M.
2016-09-01
Spatial knowledge plays an essential role in human reasoning, permitting tasks such as locating objects in the world (including oneself), reasoning about everyday actions and describing perceptual information. This is also the case in the field of mobile robotics, where one of the most basic (and essential) tasks is the autonomous determination of the pose of a robot with respect to a map, given its perception of the environment. This is the problem of robot self-localisation (or simply the localisation problem). This paper presents a probabilistic algorithm for robot self-localisation that is based on a topological map constructed from the observation of spatial occlusion. Distinct locations on the map are defined by means of a classical formalism for qualitative spatial reasoning, whose base definitions are closer to the human categorisation of space than traditional, numerical, localisation procedures. The approach herein proposed was systematically evaluated through experiments using a mobile robot equipped with a RGB-D sensor. The results obtained show that the localisation algorithm is successful in locating the robot in qualitatively distinct regions.
The Design of Artificial Intelligence Robot Based on Fuzzy Logic Controller Algorithm
NASA Astrophysics Data System (ADS)
Zuhrie, M. S.; Munoto; Hariadi, E.; Muslim, S.
2018-04-01
Artificial Intelligence Robot is a wheeled robot driven by a DC motor that moves along the wall using an ultrasonic sensor as a detector of obstacles. This study uses ultrasonic sensors HC-SR04 to measure the distance between the robot with the wall based ultrasonic wave. This robot uses Fuzzy Logic Controller to adjust the speed of DC motor. When the ultrasonic sensor detects a certain distance, sensor data is processed on ATmega8 then the data goes to ATmega16. From ATmega16, sensor data is calculated based on Fuzzy rules to drive DC motor speed. The program used to adjust the speed of a DC motor is CVAVR program (Code Vision AVR). The readable distance of ultrasonic sensor is 3 cm to 250 cm with response time 0.5 s. Testing of robots on walls with a setpoint value of 9 cm to 10 cm produce an average error value of -12% on the wall of L, -8% on T walls, -8% on U wall, and -1% in square wall.
BILL-E: Robotic Platform for Locomotion and Manipulation of Lightweight Space Structures
NASA Technical Reports Server (NTRS)
Jenett, Benjamin; Cheung, Kenneth
2017-01-01
We describe a robotic platform for traversing and manipulating a modular 3D lattice structure. The robot is designed to operate within a specifically structured environment, which enables low numbers of degrees of freedom (DOF) compared to robots performing comparable tasks in an unstructured environment. This allows for simple controls, as well as low mass and cost. This approach, designing the robot relative to the local environment in which it operates, results in a type of robot we call a "relative robot." We describe a bipedal robot that can locomote across a periodic lattice structure, as well as being able to handle, manipulate, and transport building block parts that compose the lattice structure. Based on a general inchworm design, the robot has added functionality for traveling over and operating on a host structure.
ALLIANCE: An architecture for fault tolerant, cooperative control of heterogeneous mobile robots
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parker, L.E.
1995-02-01
This research addresses the problem of achieving fault tolerant cooperation within small- to medium-sized teams of heterogeneous mobile robots. The author describes a novel behavior-based, fully distributed architecture, called ALLIANCE, that utilizes adaptive action selection to achieve fault tolerant cooperative control in robot missions involving loosely coupled, largely independent tasks. The robots in this architecture possess a variety of high-level functions that they can perform during a mission, and must at all times select an appropriate action based on the requirements of the mission, the activities of other robots, the current environmental conditions, and their own internal states. Since suchmore » cooperative teams often work in dynamic and unpredictable environments, the software architecture allows the team members to respond robustly and reliably to unexpected environmental changes and modifications in the robot team that may occur due to mechanical failure, the learning of new skills, or the addition or removal of robots from the team by human intervention. After presenting ALLIANCE, the author describes in detail experimental results of an implementation of this architecture on a team of physical mobile robots performing a cooperative box pushing demonstration. These experiments illustrate the ability of ALLIANCE to achieve adaptive, fault-tolerant cooperative control amidst dynamic changes in the capabilities of the robot team.« less
Control strategies for robots in contact
NASA Astrophysics Data System (ADS)
Park, Jaeheung
In the field of robotics, there is a growing need to provide robots with the ability to interact with complex and unstructured environments. Operations in such environments pose significant challenges in terms of sensing, planning, and control. In particular, it is critical to design control algorithms that account for the dynamics of the robot and environment at multiple contacts. The work in this thesis focuses on the development of a control framework that addresses these issues. The approaches are based on the operational space control framework and estimation methods. By accounting for the dynamics of the robot and environment, modular and systematic methods are developed for robots interacting with the environment at multiple locations. The proposed force control approach demonstrates high performance in the presence of uncertainties. Building on this basic capability, new control algorithms have been developed for haptic teleoperation, multi-contact interaction with the environment, and whole body motion of non-fixed based robots. These control strategies have been experimentally validated through simulations and implementations on physical robots. The results demonstrate the effectiveness of the new control structure and its robustness to uncertainties. The contact control strategies presented in this thesis are expected to contribute to the needs in advanced controller design for humanoid and other complex robots interacting with their environments.
Liu, Yali; Ji, Linhong
2018-02-01
Robot rehabilitation has been a primary therapy method for the urgent rehabilitation demands of paralyzed patients after a stroke. The parameters in rehabilitation training such as the range of the training, which should be adjustable according to each participant's functional ability, are the key factors influencing the effectiveness of rehabilitation therapy. Therapists design rehabilitation projects based on the semiquantitative functional assessment scales and their experience. But these therapies based on therapists' experience cannot be implemented in robot rehabilitation therapy. This paper modeled the global human-robot by Simulink in order to analyze the relationship between the parameters in robot rehabilitation therapy and the patients' movement functional abilities. We compared the shoulder and elbow angles calculated by simulation with the angles recorded by motion capture system while the healthy subjects completed the simulated action. Results showed there was a remarkable correlation between the simulation data and the experiment data, which verified the validity of the human-robot global Simulink model. Besides, the relationship between the circle radius in the drawing tasks in robot rehabilitation training and the active movement degrees of shoulder as well as elbow was also matched by a linear, which also had a remarkable fitting coefficient. The matched linear can be a quantitative reference for the robot rehabilitation training parameters.
A Telerobotic System for Transnasal Surgery
Burgner, Jessica; Rucker, D. Caleb; Gilbert, Hunter B.; Swaney, Philip J.; Russell, Paul T.; Weaver, Kyle D.; Webster, Robert J.
2014-01-01
Mechanics-based models of concentric tube continuum robots have recently achieved a level of sophistication that makes it possible to begin to apply these robots to a variety of real-world clinical scenarios. Endonasal skull base surgery is one such application, where their small diameter and tentacle like dexterity are particularly advantageous. In this paper we provide the medical motivation for an endonasal surgical robot featuring concentric tube manipulators, and describe our model-based design and teleoperation methods, as well as a complete system incorporating image-guidance. Experimental demonstrations using a laparoscopic training task, a cadaver reachability study, and a phantom tumor resection experiment illustrate that both novice and expert users can effectively teleoperate the system, and that skull base surgeons can use the robot to achieve their objectives in a realistic surgical scenario. PMID:25089086
NASA Astrophysics Data System (ADS)
Singh, N. Nirmal; Chatterjee, Amitava; Rakshit, Anjan
2010-02-01
The present article describes the development of a peripheral interface controller (PIC) microcontroller-based system for interfacing external add-on peripherals with a real mobile robot, for real life applications. This system serves as an important building block of a complete integrated vision-based mobile robot system, integrated indigenously in our laboratory. The system is composed of the KOALA mobile robot in conjunction with a personal computer (PC) and a two-camera-based vision system where the PIC microcontroller is used to drive servo motors, in interrupt-driven mode, to control additional degrees of freedom of the vision system. The performance of the developed system is tested by checking it under the control of several user-specified commands, issued from the PC end.
Chen, Kai; Wu, Yi-Ning; Ren, Yupeng; Liu, Lin; Gaebler-Spira, Deborah; Tankard, Kelly; Lee, Julia; Song, Weiqun; Wang, Maobin; Zhang, Li-Qun
2016-08-01
To examine the outcomes of home-based robot-guided therapy and compare it to laboratory-based robot-guided therapy for the treatment of impaired ankles in children with cerebral palsy. A randomized comparative trial design comparing a home-based training group and a laboratory-based training group. Home versus laboratory within a research hospital. Children (N=41) with cerebral palsy who were at Gross Motor Function Classification System level I, II, or III were randomly assigned to 2 groups. Children in home-based and laboratory-based groups were 8.7±2.8 (n=23) and 10.7±6.0 (n=18) years old, respectively. Six-week combined passive stretching and active movement intervention of impaired ankle in a laboratory or home environment using a portable rehabilitation robot. Active dorsiflexion range of motion (as the primary outcome), mobility (6-minute walk test and timed Up and Go test), balance (Pediatric Balance Scale), Selective Motor Control Assessment of the Lower Extremity, Modified Ashworth Scale (MAS) for spasticity, passive range of motion (PROM), strength, and joint stiffness. Significant improvements were found for the home-based group in all biomechanical outcome measures except for PROM and all clinical outcome measures except the MAS. The laboratory-based group also showed significant improvements in all the biomechanical outcome measures and all clinical outcome measures except the MAS. There were no significant differences in the outcome measures between the 2 groups. These findings suggest that the translation of repetitive, goal-directed, biofeedback training through motivating games from the laboratory to the home environment is feasible. The benefits of home-based robot-guided therapy were similar to those of laboratory-based robot-guided therapy. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Yoon, Ma-byong; Baek, Je-eun
2018-01-01
The purpose of this article was to develop an elementary school robot STEAM program and explore the possibility of field applications. To this end, the authors extracted the contents related to school achievement standards for 5th and 6th grade curricula around the topic of robot soccer, incorporating a relevant curriculum based on the extracted…
Muecas: A Multi-Sensor Robotic Head for Affective Human Robot Interaction and Imitation
Cid, Felipe; Moreno, Jose; Bustos, Pablo; Núñez, Pedro
2014-01-01
This paper presents a multi-sensor humanoid robotic head for human robot interaction. The design of the robotic head, Muecas, is based on ongoing research on the mechanisms of perception and imitation of human expressions and emotions. These mechanisms allow direct interaction between the robot and its human companion through the different natural language modalities: speech, body language and facial expressions. The robotic head has 12 degrees of freedom, in a human-like configuration, including eyes, eyebrows, mouth and neck, and has been designed and built entirely by IADeX (Engineering, Automation and Design of Extremadura) and RoboLab. A detailed description of its kinematics is provided along with the design of the most complex controllers. Muecas can be directly controlled by FACS (Facial Action Coding System), the de facto standard for facial expression recognition and synthesis. This feature facilitates its use by third party platforms and encourages the development of imitation and of goal-based systems. Imitation systems learn from the user, while goal-based ones use planning techniques to drive the user towards a final desired state. To show the flexibility and reliability of the robotic head, the paper presents a software architecture that is able to detect, recognize, classify and generate facial expressions in real time using FACS. This system has been implemented using the robotics framework, RoboComp, which provides hardware-independent access to the sensors in the head. Finally, the paper presents experimental results showing the real-time functioning of the whole system, including recognition and imitation of human facial expressions. PMID:24787636
General surgery residents' perception of robot-assisted procedures during surgical training.
Farivar, Behzad S; Flannagan, Molly; Leitman, I Michael
2015-01-01
With the continued expansion of robotically assisted procedures, general surgery residents continue to receive more exposure to this new technology as part of their training. There are currently no guidelines or standardized training requirements for robot-assisted procedures during general surgical residency. The aim of this study was to assess the effect of this new technology on general surgery training from the residents' perspective. An anonymous, national, web-based survey was conducted on residents enrolled in general surgery training in 2013. The survey was sent to 240 Accreditation Council for Graduate Medical Education-approved general surgery training programs. Overall, 64% of the responding residents were men and had an average age of 29 years. Half of the responses were from postgraduate year 1 (PGY1) and PGY2 residents, and the remainder was from the PGY3 level and above. Overall, 50% of the responses were from university training programs, 32% from university-affiliated programs, and 18% from community-based programs. More than 96% of residents noted the availability of the surgical robot system at their training institution. Overall, 63% of residents indicated that they had participated in robotic surgical cases. Most responded that they had assisted in 10 or fewer robotic cases with the most frequent activities being assisting with robotic trocar placement and docking and undocking the robot. Only 18% reported experience with operating the robotic console. More senior residents (PGY3 and above) were involved in robotic cases compared with junior residents (78% vs 48%, p < 0.001). Overall, 60% of residents indicated that they received no prior education or training before their first robotic case. Approximately 64% of residents reported that formal training in robotic surgery was important in residency training and 46% of residents indicated that robotic-assisted cases interfered with resident learning. Only 11% felt that robotic-assisted cases would replace conventional laparoscopic surgery in the future. This study illustrates that although the most residents have a robot at their institution and have participated in robotic surgery cases, very few residents received formal training before participating in a robotic case. Copyright © 2014 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.
Computer hardware and software for robotic control
NASA Technical Reports Server (NTRS)
Davis, Virgil Leon
1987-01-01
The KSC has implemented an integrated system that coordinates state-of-the-art robotic subsystems. It is a sensor based real-time robotic control system performing operations beyond the capability of an off-the-shelf robot. The integrated system provides real-time closed loop adaptive path control of position and orientation of all six axes of a large robot; enables the implementation of a highly configurable, expandable testbed for sensor system development; and makes several smart distributed control subsystems (robot arm controller, process controller, graphics display, and vision tracking) appear as intelligent peripherals to a supervisory computer coordinating the overall systems.
Cavallo, F; Aquilano, M; Bonaccorsi, M; Mannari, I; Carrozza, M C; Dario, P
2011-01-01
This paper aims to show the effectiveness of a (inter / multi)disciplinary team, based on the technology developers, elderly care organizations, and designers, in developing the ASTRO robotic system for domiciliary assistance to elderly people. The main issues presented in this work concern the improvement of robot's behavior by means of a smart sensor network able to share information with the robot for localization and navigation, and the design of the robot's appearance and functionalities by means of a substantial analysis of users' requirements and attitude to robotic technology to improve acceptability and usability.
Robot Geometry and the High School Curriculum.
ERIC Educational Resources Information Center
Meyer, Walter
1988-01-01
Description of the field of robotics and its possible use in high school computational geometry classes emphasizes motion planning exercises and computer graphics displays. Eleven geometrical problems based on robotics are presented along with the correct solutions and explanations. (LRW)
The Clinical Use of Robots for Individuals with Autism Spectrum Disorders: A Critical Review
ERIC Educational Resources Information Center
Diehl, Joshua J.; Schmitt, Lauren M.; Villano, Michael; Crowell, Charles R.
2012-01-01
We examined peer-reviewed studies in order to understand the current status of empirically based evidence on the clinical applications of robots in the diagnosis and treatment of Autism Spectrum Disorders (ASD). Studies are organized into four broad categories: (a) the response of individuals with ASD to robots or robot-like behavior in comparison…
ERIC Educational Resources Information Center
McLurkin, J.; Rykowski, J.; John, M.; Kaseman, Q.; Lynch, A. J.
2013-01-01
This paper describes the experiences of using an advanced, low-cost robot in science, technology, engineering, and mathematics (STEM) education. It presents three innovations: It is a powerful, cheap, robust, and small advanced personal robot; it forms the foundation of a problem-based learning curriculum; and it enables a novel multi-robot…
Chen, Gong; Qi, Peng; Guo, Zhao; Yu, Haoyong
2017-06-01
In the field of gait rehabilitation robotics, achieving human-robot synchronization is very important. In this paper, a novel human-robot synchronization method using gait event information is proposed. This method includes two steps. First, seven gait events in one gait cycle are detected in real time with a hidden Markov model; second, an adaptive oscillator is utilized to estimate the stride percentage of human gait using any one of the gait events. Synchronous reference trajectories for the robot are then generated with the estimated stride percentage. This method is based on a bioinspired adaptive oscillator, which is a mathematical tool, first proposed to explain the phenomenon of synchronous flashing among fireflies. The proposed synchronization method is implemented in a portable knee-ankle-foot robot and tested in 15 healthy subjects. This method has the advantages of simple structure, flexible selection of gait events, and fast adaptation. Gait event is the only information needed, and hence the performance of synchronization holds when an abnormal gait pattern is involved. The results of the experiments reveal that our approach is efficient in achieving human-robot synchronization and feasible for rehabilitation robotics application.
Torres, Luis G.; Kuntz, Alan; Gilbert, Hunter B.; Swaney, Philip J.; Hendrick, Richard J.; Webster, Robert J.; Alterovitz, Ron
2015-01-01
Concentric tube robots are thin, tentacle-like devices that can move along curved paths and can potentially enable new, less invasive surgical procedures. Safe and effective operation of this type of robot requires that the robot’s shaft avoid sensitive anatomical structures (e.g., critical vessels and organs) while the surgeon teleoperates the robot’s tip. However, the robot’s unintuitive kinematics makes it difficult for a human user to manually ensure obstacle avoidance along the entire tentacle-like shape of the robot’s shaft. We present a motion planning approach for concentric tube robot teleoperation that enables the robot to interactively maneuver its tip to points selected by a user while automatically avoiding obstacles along its shaft. We achieve automatic collision avoidance by precomputing a roadmap of collision-free robot configurations based on a description of the anatomical obstacles, which are attainable via volumetric medical imaging. We also mitigate the effects of kinematic modeling error in reaching the goal positions by adjusting motions based on robot tip position sensing. We evaluate our motion planner on a teleoperated concentric tube robot and demonstrate its obstacle avoidance and accuracy in environments with tubular obstacles. PMID:26413381
Sperry, Steven M; O'Malley, Bert W; Weinstein, Gregory S
2014-01-01
To define a curriculum for the development of robotic surgical skills in otorhinolaryngology residency training. A systematic review of the current literature on robotic surgery training was performed. Based on prior reports in other specialties, a curriculum for otorhinolaryngology residents was created that progresses through several modules, including didactics, inanimate skills laboratory, and operative experience. The curriculum for residents in otorhinolaryngology was designed as follows: didactics include an overview of the robotic device and instruments, a tutorial in basic controls and function, and a room setup and positioning. The anatomy and steps of transoral procedures are taught through books, videos, operative observations, and cadaver dissections. Skills are developed with a virtual reality robotic simulator and robotics labs. The operative experience progresses from case observation to bedside assistant to console surgeon. The role of the console surgeon progresses in a stepwise fashion, and the procedures of radical tonsillectomy, supraglottic partial laryngectomy, and base of tongue resection have been organized as a series of steps. A structured curriculum for training residents in transoral robotic surgery was developed. This training is important for otorhinolaryngology residents to acquire the knowledge and skills to perform robotic surgery safely. © 2015 S. Karger AG, Basel.
Fu, Zhongtao; Yang, Wenyu; Yang, Zhen
2013-08-01
In this paper, we present an efficient method based on geometric algebra for computing the solutions to the inverse kinematics problem (IKP) of the 6R robot manipulators with offset wrist. Due to the fact that there exist some difficulties to solve the inverse kinematics problem when the kinematics equations are complex, highly nonlinear, coupled and multiple solutions in terms of these robot manipulators stated mathematically, we apply the theory of Geometric Algebra to the kinematic modeling of 6R robot manipulators simply and generate closed-form kinematics equations, reformulate the problem as a generalized eigenvalue problem with symbolic elimination technique, and then yield 16 solutions. Finally, a spray painting robot, which conforms to the type of robot manipulators, is used as an example of implementation for the effectiveness and real-time of this method. The experimental results show that this method has a large advantage over the classical methods on geometric intuition, computation and real-time, and can be directly extended to all serial robot manipulators and completely automatized, which provides a new tool on the analysis and application of general robot manipulators.
Soft Robotics: Academic Insights and Perspectives Through Bibliometric Analysis.
Bao, Guanjun; Fang, Hui; Chen, Lingfeng; Wan, Yuehua; Xu, Fang; Yang, Qinghua; Zhang, Libin
2018-06-01
Soft robotics is of growing interest in the robot community as well as in public media, and there is an increase in the quality and quantity of publications related to this topic. To formally elaborate this growth, we have used a bibliometric analysis to evaluate the publications in the field from 1990 to 2017 based on the Science Citation Index Expanded database. We present a detailed overview and discussion based on keywords, citation, h-index, year, journal, institution, country, author, and review articles. The results show that the United States takes the leading position in this research field, followed by China and Italy. Harvard University has the most publications, high average number of citations per publication and the highest h-index. IEEE Transactions on Robotics ranks first among the top 20 academic journals publishing articles related to this field, whereas Soft Robotics holds the top position in journals categorized with "ROBOTICS." Actuator, fabrication, control, material, sensing, simulation, bionics, stiffness, modeling, power, motion, and application are the hot topics of soft robotics. Smart materials, bionics, morphological computation, and embodiment control are expected to contribute to this field in the future. Application and commercialization appear to be the initial driving force and final goal for soft robots.
Evolution of Signaling in a Multi-Robot System: Categorization and Communication
NASA Astrophysics Data System (ADS)
Ampatzis, Christos; Tuci, Elio; Trianni, Vito; Dorigo, Marco
We use Evolutionary Robotics to design robot controllers in which decision-making mechanisms to switch from solitary to social behavior are integrated with the mechanisms that underpin the sensory-motor repertoire of the robots. In particular, we study the evolution of behavioral and communicative skills in a categorization task. The individual decision-making structures are based on the integration over time of sensory information. The mechanisms for switching from solitary to social behavior and the ways in which the robots can affect each other's behavior are not predetermined by the experimenter, but are aspects of our model designed by artificial evolution. Our results show that evolved robots manage to cooperate and collectively discriminate between different environments by developing a simple communication protocol based on sound signaling. Communication emerges in the absence of explicit selective pressure coded in the fitness function. The evolution of communication is neither trivial nor obvious; for a meaningful signaling system to evolve, evolution must produce both appropriate signals and appropriate reactions to signals. The use of communication proves to be adaptive for the group, even if, in principle, non-cooperating robots can be equally successful with cooperating robots.
Vollmer, Anna-Lisa; Mühlig, Manuel; Steil, Jochen J; Pitsch, Karola; Fritsch, Jannik; Rohlfing, Katharina J; Wrede, Britta
2014-01-01
Robot learning by imitation requires the detection of a tutor's action demonstration and its relevant parts. Current approaches implicitly assume a unidirectional transfer of knowledge from tutor to learner. The presented work challenges this predominant assumption based on an extensive user study with an autonomously interacting robot. We show that by providing feedback, a robot learner influences the human tutor's movement demonstrations in the process of action learning. We argue that the robot's feedback strongly shapes how tutors signal what is relevant to an action and thus advocate a paradigm shift in robot action learning research toward truly interactive systems learning in and benefiting from interaction.
Advances in Robotic Servicing Technology Development
NASA Technical Reports Server (NTRS)
Gefke, Gardell G.; Janas, Alex; Pellegrino, Joseph; Sammons, Matthew; Reed, Benjamin
2015-01-01
NASA's Satellite Servicing Capabilities Office (SSCO) has matured robotic and automation technologies applicable to in-space robotic servicing and robotic exploration over the last six years. This paper presents the progress of technology development activities at the Goddard Space Flight Center Servicing Technology Center and on the ISS, with an emphasis on those occurring in the past year. Highlighted advancements are design reference mission analysis for servicing in low Earth orbit (LEO) and near Earth asteroid boulder retrieval; delivery of the engineering development unit of the NASA Servicing Arm; an update on International Space Station Robotic Refueling Mission; and status of a comprehensive ground-based space robot technology demonstration expanding in-space robotic servicing capabilities beginning fall 2015.
Advances in Robotic Servicing Technology Development
NASA Technical Reports Server (NTRS)
Gefke, Gardell G.; Janas, Alex; Pellegrino, Joseph; Sammons, Matthew; Reed, Benjamin
2015-01-01
NASA's Satellite Servicing Capabilities Office (SSCO) has matured robotic and automation technologies applicable to in-space robotic servicing and robotic exploration over the last six years. This paper presents the progress of technology development activities at the Goddard Space Flight Center Servicing Technology Center and on the ISS, with an emphasis on those occurring in the past year. Highlighted advancements are design reference mission analysis for servicing in low Earth orbit (LEO) and asteroid redirection; delivery of the engineering development unit of the NASA Servicing Arm; an update on International Space Station Robotic Refueling Mission; and status of a comprehensive ground-based space robot technology demonstration expanding in-space robotic servicing capabilities beginning fall 2015.
Human-robot interaction tests on a novel robot for gait assistance.
Tagliamonte, Nevio Luigi; Sergi, Fabrizio; Carpino, Giorgio; Accoto, Dino; Guglielmelli, Eugenio
2013-06-01
This paper presents tests on a treadmill-based non-anthropomorphic wearable robot assisting hip and knee flexion/extension movements using compliant actuation. Validation experiments were performed on the actuators and on the robot, with specific focus on the evaluation of intrinsic backdrivability and of assistance capability. Tests on a young healthy subject were conducted. In the case of robot completely unpowered, maximum backdriving torques were found to be in the order of 10 Nm due to the robot design features (reduced swinging masses; low intrinsic mechanical impedance and high-efficiency reduction gears for the actuators). Assistance tests demonstrated that the robot can deliver torques attracting the subject towards a predicted kinematic status.
Vollmer, Anna-Lisa; Mühlig, Manuel; Steil, Jochen J.; Pitsch, Karola; Fritsch, Jannik; Rohlfing, Katharina J.; Wrede, Britta
2014-01-01
Robot learning by imitation requires the detection of a tutor's action demonstration and its relevant parts. Current approaches implicitly assume a unidirectional transfer of knowledge from tutor to learner. The presented work challenges this predominant assumption based on an extensive user study with an autonomously interacting robot. We show that by providing feedback, a robot learner influences the human tutor's movement demonstrations in the process of action learning. We argue that the robot's feedback strongly shapes how tutors signal what is relevant to an action and thus advocate a paradigm shift in robot action learning research toward truly interactive systems learning in and benefiting from interaction. PMID:24646510
TRICCS: A proposed teleoperator/robot integrated command and control system for space applications
NASA Technical Reports Server (NTRS)
Will, R. W.
1985-01-01
Robotic systems will play an increasingly important role in space operations. An integrated command and control system based on the requirements of space-related applications and incorporating features necessary for the evolution of advanced goal-directed robotic systems is described. These features include: interaction with a world model or domain knowledge base, sensor feedback, multiple-arm capability and concurrent operations. The system makes maximum use of manual interaction at all levels for debug, monitoring, and operational reliability. It is shown that the robotic command and control system may most advantageously be implemented as packages and tasks in Ada.
NASA Technical Reports Server (NTRS)
Agah, Arvin; Bekey, George A.
1994-01-01
This paper describes autonomous mobile robot teams performing tasks in unstructured environments. The behavior and the intelligence of the group is distributed, and the system does not include a central command base or leader. The novel concept of the Tropism-Based Cognitive Architecture is introduced, which is used by the robots in order to produce behavior transforming their sensory information to proper action. The results of a number of simulation experiments are presented. These experiments include worlds where the robot teams must locate, decompose, and gather objects, and defend themselves against hostile predators, while navigating around stationary and mobile obstacles.
Avoiding space robot collisions utilizing the NASA/GSFC tri-mode skin sensor
NASA Technical Reports Server (NTRS)
Prinz, F. B.
1991-01-01
Sensor based robot motion planning research has primarily focused on mobile robots. Consider, however, the case of a robot manipulator expected to operate autonomously in a dynamic environment where unexpected collisions can occur with many parts of the robot. Only a sensor based system capable of generating collision free paths would be acceptable in such situations. Recently, work in this area has been reported in which a deterministic solution for 2DOF systems has been generated. The arm was sensitized with 'skin' of infra-red sensors. We have proposed a heuristic (potential field based) methodology for redundant robots with large DOF's. The key concepts are solving the path planning problem by cooperating global and local planning modules, the use of complete information from the sensors and partial (but appropriate) information from a world model, representation of objects with hyper-ellipsoids in the world model, and the use of variational planning. We intend to sensitize the robot arm with a 'skin' of capacitive proximity sensors. These sensors were developed at NASA, and are exceptionally suited for the space application. In the first part of the report, we discuss the development and modeling of the capacitive proximity sensor. In the second part we discuss the motion planning algorithm.
Sensor Fusion Based Model for Collision Free Mobile Robot Navigation
Almasri, Marwah; Elleithy, Khaled; Alajlan, Abrar
2015-01-01
Autonomous mobile robots have become a very popular and interesting topic in the last decade. Each of them are equipped with various types of sensors such as GPS, camera, infrared and ultrasonic sensors. These sensors are used to observe the surrounding environment. However, these sensors sometimes fail and have inaccurate readings. Therefore, the integration of sensor fusion will help to solve this dilemma and enhance the overall performance. This paper presents a collision free mobile robot navigation based on the fuzzy logic fusion model. Eight distance sensors and a range finder camera are used for the collision avoidance approach where three ground sensors are used for the line or path following approach. The fuzzy system is composed of nine inputs which are the eight distance sensors and the camera, two outputs which are the left and right velocities of the mobile robot’s wheels, and 24 fuzzy rules for the robot’s movement. Webots Pro simulator is used for modeling the environment and the robot. The proposed methodology, which includes the collision avoidance based on fuzzy logic fusion model and line following robot, has been implemented and tested through simulation and real time experiments. Various scenarios have been presented with static and dynamic obstacles using one robot and two robots while avoiding obstacles in different shapes and sizes. PMID:26712766
Why Robots Should Be Social: Enhancing Machine Learning through Social Human-Robot Interaction
de Greeff, Joachim; Belpaeme, Tony
2015-01-01
Social learning is a powerful method for cultural propagation of knowledge and skills relying on a complex interplay of learning strategies, social ecology and the human propensity for both learning and tutoring. Social learning has the potential to be an equally potent learning strategy for artificial systems and robots in specific. However, given the complexity and unstructured nature of social learning, implementing social machine learning proves to be a challenging problem. We study one particular aspect of social machine learning: that of offering social cues during the learning interaction. Specifically, we study whether people are sensitive to social cues offered by a learning robot, in a similar way to children’s social bids for tutoring. We use a child-like social robot and a task in which the robot has to learn the meaning of words. For this a simple turn-based interaction is used, based on language games. Two conditions are tested: one in which the robot uses social means to invite a human teacher to provide information based on what the robot requires to fill gaps in its knowledge (i.e. expression of a learning preference); the other in which the robot does not provide social cues to communicate a learning preference. We observe that conveying a learning preference through the use of social cues results in better and faster learning by the robot. People also seem to form a “mental model” of the robot, tailoring the tutoring to the robot’s performance as opposed to using simply random teaching. In addition, the social learning shows a clear gender effect with female participants being responsive to the robot’s bids, while male teachers appear to be less receptive. This work shows how additional social cues in social machine learning can result in people offering better quality learning input to artificial systems, resulting in improved learning performance. PMID:26422143
NASA Technical Reports Server (NTRS)
Hwang, James; Campbell, Perry; Ross, Mike; Price, Charles R.; Barron, Don
1989-01-01
An integrated operating environment was designed to incorporate three general purpose robots, sensors, and end effectors, including Force/Torque Sensors, Tactile Array sensors, Tactile force sensors, and Force-sensing grippers. The design and implementation of: (1) the teleoperation of a general purpose PUMA robot; (2) an integrated sensor hardware/software system; (3) the force-sensing gripper control; (4) the host computer system for dual Robotic Research arms; and (5) the Ethernet integration are described.
2008-07-31
any wheels or legs even on small, rough terrain with the help of eccentric mechanical vibration. This tiny robot also has the ability of self...integral part of any robo -rescue operation. Inexpensive micro robots can be manufactured for this purpose and by utilizing numerous micro robots (100s to...designed and developed. This locomotion mechanism functions without any wheels or legs and can move based upon the asymmetrical thrusting and lifting
Affordance Templates for Shared Robot Control
NASA Technical Reports Server (NTRS)
Hart, Stephen; Dinh, Paul; Hambuchen, Kim
2014-01-01
This paper introduces the Affordance Template framework used to supervise task behaviors on the NASA-JSC Valkyrie robot at the 2013 DARPA Robotics Challenge (DRC) Trials. This framework provides graphical interfaces to human supervisors that are adjustable based on the run-time environmental context (e.g., size, location, and shape of objects that the robot must interact with, etc.). Additional improvements, described below, inject degrees of autonomy into instantiations of affordance templates at run-time in order to enable efficient human supervision of the robot for accomplishing tasks.
NASA Technical Reports Server (NTRS)
Currie, Nancy J.; Rochlis, Jennifer
2004-01-01
International Space Station (ISS) operations will require the on-board crew to perform numerous robotic-assisted assembly, maintenance, and inspection activities. Current estimates for some robotically performed maintenance timelines are disproportionate and potentially exceed crew availability and duty times. Ground-based control of the ISS robotic manipulators, specifically the Special Purpose Dexterous Manipulator (SPDM), is being examined as one potential solution to alleviate the excessive amounts of crew time required for extravehicular robotic maintenance and inspection tasks.
Simulation and animation of sensor-driven robots
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, C.; Trivedi, M.M.; Bidlack, C.R.
1994-10-01
Most simulation and animation systems utilized in robotics are concerned with simulation of the robot and its environment without simulation of sensors. These systems have difficulty in handling robots that utilize sensory feedback in their operation. In this paper, a new design of an environment for simulation, animation, and visualization of sensor-driven robots is presented. As sensor technology advances, increasing numbers of robots are equipped with various types of sophisticated sensors. The main goal of creating the visualization environment is to aide the automatic robot programming and off-line programming capabilities of sensor-driven robots. The software system will help the usersmore » visualize the motion and reaction of the sensor-driven robot under their control program. Therefore, the efficiency of the software development is increased, the reliability of the software and the operation safety of the robot are ensured, and the cost of new software development is reduced. Conventional computer-graphics-based robot simulation and animation software packages lack of capabilities for robot sensing simulation. This paper describes a system designed to overcome this deficiency.« less
Kinematic design considerations for minimally invasive surgical robots: an overview.
Kuo, Chin-Hsing; Dai, Jian S; Dasgupta, Prokar
2012-06-01
Kinematic design is a predominant phase in the design of robotic manipulators for minimally invasive surgery (MIS). However, an extensive overview of the kinematic design issues for MIS robots is not yet available to both mechanisms and robotics communities. Hundreds of archival reports and articles on robotic systems for MIS are reviewed and studied. In particular, the kinematic design considerations and mechanism development described in the literature for existing robots are focused on. The general kinematic design goals, design requirements, and design preferences for MIS robots are defined. An MIS-specialized mechanism, namely the remote center-of-motion (RCM) mechanism, is revisited and studied. Accordingly, based on the RCM mechanism types, a classification for MIS robots is provided. A comparison between eight different RCM types is given. Finally, several open challenges for the kinematic design of MIS robotic manipulators are discussed. This work provides a detailed survey of the kinematic design of MIS robots, addresses the research opportunity in MIS robots for kinematicians, and clarifies the kinematic point of view to MIS robots as a reference for the medical community. Copyright © 2012 John Wiley & Sons, Ltd.
Equipment and technology in surgical robotics.
Sim, Hong Gee; Yip, Sidney Kam Hung; Cheng, Christopher Wai Sam
2006-06-01
Contemporary medical robotic systems used in urologic surgery usually consist of a computer and a mechanical device to carry out the designated task with an image acquisition module. These systems are typically from one of the two categories: offline or online robots. Offline robots, also known as fixed path robots, are completely automated with pre-programmed motion planning based on pre-operative imaging studies where precise movements within set confines are carried out. Online robotic systems rely on continuous input from the surgeons and change their movements and actions according to the input in real time. This class of robots is further divided into endoscopic manipulators and master-slave robotic systems. Current robotic surgical systems have resulted in a paradigm shift in the minimally invasive approach to complex laparoscopic urological procedures. Future developments will focus on refining haptic feedback, system miniaturization and improved augmented reality and telesurgical capabilities.
Fish-inspired robots: design, sensing, actuation, and autonomy--a review of research.
Raj, Aditi; Thakur, Atul
2016-04-13
Underwater robot designs inspired by the behavior, physiology, and anatomy of fishes can provide enhanced maneuverability, stealth, and energy efficiency. Over the last two decades, robotics researchers have developed and reported a large variety of fish-inspired robot designs. The purpose of this review is to report different types of fish-inspired robot designs based upon their intended locomotion patterns. We present a detailed comparison of various design features like sensing, actuation, autonomy, waterproofing, and morphological structure of fish-inspired robots reported in the past decade. We believe that by studying the existing robots, future designers will be able to create new designs by adopting features from the successful robots. The review also summarizes the open research issues that need to be taken up for the further advancement of the field and also for the deployment of fish-inspired robots in practice.
Basic Operational Robotics Instructional System
NASA Technical Reports Server (NTRS)
Todd, Brian Keith; Fischer, James; Falgout, Jane; Schweers, John
2013-01-01
The Basic Operational Robotics Instructional System (BORIS) is a six-degree-of-freedom rotational robotic manipulator system simulation used for training of fundamental robotics concepts, with in-line shoulder, offset elbow, and offset wrist. BORIS is used to provide generic robotics training to aerospace professionals including flight crews, flight controllers, and robotics instructors. It uses forward kinematic and inverse kinematic algorithms to simulate joint and end-effector motion, combined with a multibody dynamics model, moving-object contact model, and X-Windows based graphical user interfaces, coordinated in the Trick Simulation modeling environment. The motivation for development of BORIS was the need for a generic system for basic robotics training. Before BORIS, introductory robotics training was done with either the SRMS (Shuttle Remote Manipulator System) or SSRMS (Space Station Remote Manipulator System) simulations. The unique construction of each of these systems required some specialized training that distracted students from the ideas and goals of the basic robotics instruction.
Attitudes towards care robots among Finnish home care personnel - a comparison of two approaches.
Rantanen, Teemu; Lehto, Paula; Vuorinen, Pertti; Coco, Kirsi
2017-08-22
The significance of care robotics has been highlighted in recent years. The article examines the adoption of care robots in home care settings, and in particular Finnish home care personnel's attitudes towards robots. The study compares the importance of the Negative Attitudes towards Robots Scale advanced by Nomura and specific positive attitudes related to the usefulness of care robots for different tasks in the home care. A cross-sectional study conducted by questionnaire. The research data were gathered from a survey of Finnish home care personnel (n = 200). Exploratory factor analysis, Pearson's correlation coefficient and linear regression analysis. The Negative Attitudes towards Robots Scale (NARS), by Nomura, with a specific behavioural intention scale based on Ajzen's theory of planned behaviour, and a measure of positive attitudes towards the usefulness of care robots for different tasks in home care and the promotion of independent living of older persons. The study shows that NARS helps to explain psychological resistance related to the introduction of care robots, although the scale is susceptible to cultural differences. Care personnel's behavioural intentions related to the introduction of robot applications are influenced also by the perception of the usefulness of care robots. The study is based only on a Finnish sample, and the response rate of the study was relatively small (18.2%), which limits the generalisability of the results. The study shows that the examination of home care personnel's attitudes towards robots is not justified to focus only on one aspect, but a better explanation is achieved by combining the perspectives of societal attitudes, attitudes related to psychological reactions and the practical care and promotion of the independent living of older people. © 2017 Nordic College of Caring Science.
Kim, Yeoun Jae; Seo, Jong Hyun; Kim, Hong Rae; Kim, Kwang Gi
2017-06-01
Clinicians who frequently perform ultrasound scanning procedures often suffer from musculoskeletal disorders, arthritis, and myalgias. To minimize their occurrence and to assist clinicians, ultrasound scanning robots have been developed worldwide. Although, to date, there is still no commercially available ultrasound scanning robot, many control methods have been suggested and researched. These control algorithms are either image based or force based. If the ultrasound scanning robot control algorithm was a combination of the two algorithms, it could benefit from the advantage of each one. However, there are no existing control methods for ultrasound scanning robots that combine force control and image analysis. Therefore, in this work, a control algorithm is developed for an ultrasound scanning robot using force feedback and ultrasound image analysis. A manipulator-type ultrasound scanning robot named 'NCCUSR' is developed and a control algorithm for this robot is suggested and verified. First, conventional hybrid position-force control is implemented for the robot and the hybrid position-force control algorithm is combined with ultrasound image analysis to fully control the robot. The control method is verified using a thyroid phantom. It was found that the proposed algorithm can be applied to control the ultrasound scanning robot and experimental outcomes suggest that the images acquired using the proposed control method can yield a rating score that is equivalent to images acquired directly by the clinicians. The proposed control method can be applied to control the ultrasound scanning robot. However, more work must be completed to verify the proposed control method in order to become clinically feasible. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Simulation tools for robotics research and assessment
NASA Astrophysics Data System (ADS)
Fields, MaryAnne; Brewer, Ralph; Edge, Harris L.; Pusey, Jason L.; Weller, Ed; Patel, Dilip G.; DiBerardino, Charles A.
2016-05-01
The Robotics Collaborative Technology Alliance (RCTA) program focuses on four overlapping technology areas: Perception, Intelligence, Human-Robot Interaction (HRI), and Dexterous Manipulation and Unique Mobility (DMUM). In addition, the RCTA program has a requirement to assess progress of this research in standalone as well as integrated form. Since the research is evolving and the robotic platforms with unique mobility and dexterous manipulation are in the early development stage and very expensive, an alternate approach is needed for efficient assessment. Simulation of robotic systems, platforms, sensors, and algorithms, is an attractive alternative to expensive field-based testing. Simulation can provide insight during development and debugging unavailable by many other means. This paper explores the maturity of robotic simulation systems for applications to real-world problems in robotic systems research. Open source (such as Gazebo and Moby), commercial (Simulink, Actin, LMS), government (ANVEL/VANE), and the RCTA-developed RIVET simulation environments are examined with respect to their application in the robotic research domains of Perception, Intelligence, HRI, and DMUM. Tradeoffs for applications to representative problems from each domain are presented, along with known deficiencies and disadvantages. In particular, no single robotic simulation environment adequately covers the needs of the robotic researcher in all of the domains. Simulation for DMUM poses unique constraints on the development of physics-based computational models of the robot, the environment and objects within the environment, and the interactions between them. Most current robot simulations focus on quasi-static systems, but dynamic robotic motion places an increased emphasis on the accuracy of the computational models. In order to understand the interaction of dynamic multi-body systems, such as limbed robots, with the environment, it may be necessary to build component-level computational models to provide the necessary simulation fidelity for accuracy. However, the Perception domain remains the most problematic for adequate simulation performance due to the often cartoon nature of computer rendering and the inability to model realistic electromagnetic radiation effects, such as multiple reflections, in real-time.
Creative Engineering Based Education with Autonomous Robots Considering Job Search Support
NASA Astrophysics Data System (ADS)
Takezawa, Satoshi; Nagamatsu, Masao; Takashima, Akihiko; Nakamura, Kaeko; Ohtake, Hideo; Yoshida, Kanou
The Robotics Course in our Mechanical Systems Engineering Department offers “Robotics Exercise Lessons” as one of its Problem-Solution Based Specialized Subjects. This is intended to motivate students learning and to help them acquire fundamental items and skills on mechanical engineering and improve understanding of Robotics Basic Theory. Our current curriculum was established to accomplish this objective based on two pieces of research in 2005: an evaluation questionnaire on the education of our Mechanical Systems Engineering Department for graduates and a survey on the kind of human resources which companies are seeking and their expectations for our department. This paper reports the academic results and reflections of job search support in recent years as inherited and developed from the previous curriculum.
Meng, Qing-Hao; Yang, Wei-Xing; Wang, Yang; Zeng, Ming
2011-01-01
This paper addresses the collective odor source localization (OSL) problem in a time-varying airflow environment using mobile robots. A novel OSL methodology which combines odor-source probability estimation and multiple robots' search is proposed. The estimation phase consists of two steps: firstly, the separate probability-distribution map of odor source is estimated via Bayesian rules and fuzzy inference based on a single robot's detection events; secondly, the separate maps estimated by different robots at different times are fused into a combined map by way of distance based superposition. The multi-robot search behaviors are coordinated via a particle swarm optimization algorithm, where the estimated odor-source probability distribution is used to express the fitness functions. In the process of OSL, the estimation phase provides the prior knowledge for the searching while the searching verifies the estimation results, and both phases are implemented iteratively. The results of simulations for large-scale advection-diffusion plume environments and experiments using real robots in an indoor airflow environment validate the feasibility and robustness of the proposed OSL method.
Space station automation: the role of robotics and artificial intelligence (Invited Paper)
NASA Astrophysics Data System (ADS)
Park, W. T.; Firschein, O.
1985-12-01
Automation of the space station is necessary to make more effective use of the crew, to carry out repairs that are impractical or dangerous, and to monitor and control the many space station subsystems. Intelligent robotics and expert systems play a strong role in automation, and both disciplines are highly dependent on a common artificial intelligence (Al) technology base. The AI technology base provides the reasoning and planning capabilities needed in robotic tasks, such as perception of the environment and planning a path to a goal, and in expert systems tasks, such as control of subsystems and maintenance of equipment. This paper describes automation concepts for the space station, the specific robotic and expert systems required to attain this automation, and the research and development required. It also presents an evolutionary development plan that leads to fully automatic mobile robots for servicing satellites. Finally, we indicate the sequence of demonstrations and the research and development needed to confirm the automation capabilities. We emphasize that advanced robotics requires AI, and that to advance, AI needs the "real-world" problems provided by robotics.
Modeling and controlling a robotic convoy using guidance laws strategies.
Belkhouche, Fethi; Belkhouche, Boumediene
2005-08-01
This paper deals with the problem of modeling and controlling a robotic convoy. Guidance laws techniques are used to provide a mathematical formulation of the problem. The guidance laws used for this purpose are the velocity pursuit, the deviated pursuit, and the proportional navigation. The velocity pursuit equations model the robot's path under various sensors based control laws. A systematic study of the tracking problem based on this technique is undertaken. These guidance laws are applied to derive decentralized control laws for the angular and linear velocities. For the angular velocity, the control law is directly derived from the guidance laws after considering the relative kinematics equations between successive robots. The second control law maintains the distance between successive robots constant by controlling the linear velocity. This control law is derived by considering the kinematics equations between successive robots under the considered guidance law. Properties of the method are discussed and proven. Simulation results confirm the validity of our approach, as well as the validity of the properties of the method. Index Terms-Guidance laws, relative kinematics equations, robotic convoy, tracking.
Non-contact versus contact-based sensing methodologies for in-home upper arm robotic rehabilitation.
Howard, Ayanna; Brooks, Douglas; Brown, Edward; Gebregiorgis, Adey; Chen, Yu-Ping
2013-06-01
In recent years, robot-assisted rehabilitation has gained momentum as a viable means for improving outcomes for therapeutic interventions. Such therapy experiences allow controlled and repeatable trials and quantitative evaluation of mobility metrics. Typically though these robotic devices have been focused on rehabilitation within a clinical setting. In these traditional robot-assisted rehabilitation studies, participants are required to perform goal-directed movements with the robot during a therapy session. This requires physical contact between the participant and the robot to enable precise control of the task, as well as a means to collect relevant performance data. On the other hand, non-contact means of robot interaction can provide a safe methodology for extracting the control data needed for in-home rehabilitation. As such, in this paper we discuss a contact and non-contact based method for upper-arm rehabilitation exercises that enables quantification of upper-arm movements. We evaluate our methodology on upper-arm abduction/adduction movements and discuss the advantages and limitations of each approach as applied to an in-home rehabilitation scenario.
Locomotion of inchworm-inspired robot made of smart soft composite (SSC).
Wang, Wei; Lee, Jang-Yeob; Rodrigue, Hugo; Song, Sung-Hyuk; Chu, Won-Shik; Ahn, Sung-Hoon
2014-10-07
A soft-bodied robot made of smart soft composite with inchworm-inspired locomotion capable of both two-way linear and turning movement has been proposed, developed, and tested. The robot was divided into three functional parts based on the different functions of the inchworm: the body, the back foot, and the front foot. Shape memory alloy wires were embedded longitudinally in a soft polymer to imitate the longitudinal muscle fibers that control the abdominal contractions of the inchworm during locomotion. Each foot of the robot has three segments with different friction coefficients to implement the anchor and sliding movement. Then, utilizing actuation patterns between the body and feet based on the looping gait, the robot achieves a biomimetic inchworm gait. Experiments were conducted to evaluate the robot's locomotive performance for both linear locomotion and turning movement. Results show that the proposed robot's stride length was nearly one third of its body length, with a maximum linear speed of 3.6 mm s(-1), a linear locomotion efficiency of 96.4%, a maximum turning capability of 4.3 degrees per stride, and a turning locomotion efficiency of 39.7%.
Human-Robot Interaction in High Vulnerability Domains
NASA Technical Reports Server (NTRS)
Gore, Brian F.
2016-01-01
Future NASA missions will require successful integration of the human with highly complex systems. Highly complex systems are likely to involve humans, automation, and some level of robotic assistance. The complex environments will require successful integration of the human with automation, with robots, and with human-automation-robot teams to accomplish mission critical goals. Many challenges exist for the human performing in these types of operational environments with these kinds of systems. Systems must be designed to optimally integrate various levels of inputs and outputs based on the roles and responsibilities of the human, the automation, and the robots; from direct manual control, shared human-robotic control, or no active human control (i.e. human supervisory control). It is assumed that the human will remain involved at some level. Technologies that vary based on contextual demands and on operator characteristics (workload, situation awareness) will be needed when the human integrates into these systems. Predictive models that estimate the impact of the technologies on the system performance and the on the human operator are also needed to meet the challenges associated with such future complex human-automation-robot systems in extreme environments.
Actuation control of a PiezoMEMS biomimetic robotic jellyfish
NASA Astrophysics Data System (ADS)
Alejandre, Alvaro; Olszewski, Oskar; Jackson, Nathan
2017-06-01
Biomimetic micro-robots try to mimic the motion of a living system in the form of a synthetically developed microfabricated device. Dynamic motion of living systems have evolved through the years, but trying to mimic these motions is challenging. Micro-robotics are particular challenging as the fabrication of devices and controlling the motion in 3 dimensions is difficult. However, micro-scale robotics have potential to be used in a wide range of applications. MEMS based robots that can move and function in a liquid environment is of particular interest. This paper describes the development of a piezoMEMS based device that mimics the movement of a jellyfish. The paper focuses on the development of a finite element model that investigates a method of controlling the individual piezoelectric beams in order to create a jet propulsion motion, consisting of a quick excitation pulse followed by a slow recovery pulse in order to maximize thrust and velocity. By controlling the individual beams or legs of the jellyfish robot the authors can control the robot to move precisely in 3 dimensions.
Precharged Pneumatic Soft Actuators and Their Applications to Untethered Soft Robots.
Li, Yunquan; Chen, Yonghua; Ren, Tao; Li, Yingtian; Choi, Shiu Hong
2018-06-20
The past decade has witnessed tremendous progress in soft robotics. Unlike most pneumatic-based methods, we present a new approach to soft robot design based on precharged pneumatics (PCP). We propose a PCP soft bending actuator, which is actuated by precharged air pressure and retracted by inextensible tendons. By pulling or releasing the tendons, the air pressure in the soft actuator is modulated, and hence, its bending angle. The tendons serve in a way similar to pressure-regulating valves that are used in typical pneumatic systems. The linear motion of tendons is transduced into complex motion via the prepressurized bent soft actuator. Furthermore, since a PCP actuator does not need any gas supply, complicated pneumatic control systems used in traditional soft robotics are eliminated. This facilitates the development of compact untethered autonomous soft robots for various applications. Both theoretical modeling and experimental validation have been conducted on a sample PCP soft actuator design. A fully untethered autonomous quadrupedal soft robot and a soft gripper have been developed to demonstrate the superiority of the proposed approach over traditional pneumatic-driven soft robots.
Chowriappa, Ashirwad J; Shi, Yi; Raza, Syed Johar; Ahmed, Kamran; Stegemann, Andrew; Wilding, Gregory; Kaouk, Jihad; Peabody, James O; Menon, Mani; Hassett, James M; Kesavadas, Thenkurussi; Guru, Khurshid A
2013-12-01
A standardized scoring system does not exist in virtual reality-based assessment metrics to describe safe and crucial surgical skills in robot-assisted surgery. This study aims to develop an assessment score along with its construct validation. All subjects performed key tasks on previously validated Fundamental Skills of Robotic Surgery curriculum, which were recorded, and metrics were stored. After an expert consensus for the purpose of content validation (Delphi), critical safety determining procedural steps were identified from the Fundamental Skills of Robotic Surgery curriculum and a hierarchical task decomposition of multiple parameters using a variety of metrics was used to develop Robotic Skills Assessment Score (RSA-Score). Robotic Skills Assessment mainly focuses on safety in operative field, critical error, economy, bimanual dexterity, and time. Following, the RSA-Score was further evaluated for construct validation and feasibility. Spearman correlation tests performed between tasks using the RSA-Scores indicate no cross correlation. Wilcoxon rank sum tests were performed between the two groups. The proposed RSA-Score was evaluated on non-robotic surgeons (n = 15) and on expert-robotic surgeons (n = 12). The expert group demonstrated significantly better performance on all four tasks in comparison to the novice group. Validation of the RSA-Score in this study was carried out on the Robotic Surgical Simulator. The RSA-Score is a valid scoring system that could be incorporated in any virtual reality-based surgical simulator to achieve standardized assessment of fundamental surgical tents during robot-assisted surgery. Copyright © 2013 Elsevier Inc. All rights reserved.
A small biomimetic quadruped robot driven by multistacked dielectric elastomer actuators
NASA Astrophysics Data System (ADS)
Nguyen, Canh Toan; Phung, Hoa; Dat Nguyen, Tien; Lee, Choonghan; Kim, Uikyum; Lee, Donghyouk; Moon, Hyungpil; Koo, Jachoon; Nam, Jae-do; Ryeol Choi, Hyouk
2014-06-01
A kind of dielectric elastomer (DE) material, called ‘synthetic elastomer’, has been developed based on acrylonitrile butadiene rubber (NBR) to be used as a dielectric elastomer actuator (DEA). By stacking single layers of synthetic elastomer, a linear actuator, called a multistacked actuator, is produced, and used by mechatronic and robotic systems to generate linear motion. In this paper, we demonstrate the application of the multistacked dielectric elastomer actuator in a biomimetic legged robot. A miniature robot driven by a biomimetic actuation system with four 2-DOF (two-degree-of-freedom) legged mechanisms is realized. Based on the experimental results, we evaluate the performance of the proposed robot and validate the feasibility of the multistacked actuator in a locomotion system as a replacement for conventional actuators.
Behavioral similarity measurement based on image processing for robots that use imitative learning
NASA Astrophysics Data System (ADS)
Sterpin B., Dante G.; Martinez S., Fernando; Jacinto G., Edwar
2017-02-01
In the field of the artificial societies, particularly those are based on memetics, imitative behavior is essential for the development of cultural evolution. Applying this concept for robotics, through imitative learning, a robot can acquire behavioral patterns from another robot. Assuming that the learning process must have an instructor and, at least, an apprentice, the fact to obtain a quantitative measurement for their behavioral similarity, would be potentially useful, especially in artificial social systems focused on cultural evolution. In this paper the motor behavior of both kinds of robots, for two simple tasks, is represented by 2D binary images, which are processed in order to measure their behavioral similarity. The results shown here were obtained comparing some similarity measurement methods for binary images.
Abel, Taylor J; Varela Osorio, René; Amorim-Leite, Ricardo; Mathieu, Francois; Kahane, Philippe; Minotti, Lorella; Hoffmann, Dominique; Chabardes, Stephan
2018-04-20
OBJECTIVE Robot-assisted stereoelectroencephalography (SEEG) is gaining popularity as a technique for localization of the epileptogenic zone (EZ) in children with pharmacoresistant epilepsy. Here, the authors describe their frameless robot-assisted SEEG technique and report preliminary outcomes and relative complications in children as compared to results with the Talairach frame-based SEEG technique. METHODS The authors retrospectively analyzed the results of 19 robot-assisted SEEG electrode implantations in 17 consecutive children (age < 17 years) with pharmacoresistant epilepsy, and compared these results to 19 preceding SEEG electrode implantations in 18 children who underwent the traditional Talairach frame-based SEEG electrode implantation. The primary end points were seizure-freedom rates, operating time, and complication rates. RESULTS Seventeen children (age < 17 years) underwent a total of 19 robot-assisted SEEG electrode implantations. In total, 265 electrodes were implanted. Twelve children went on to have EZ resection: 4 demonstrated Engel class I outcomes, whereas 2 had Engel class II outcomes, and 6 had Engel class III-IV outcomes. Of the 5 patients who did not have resection, 2 underwent thermocoagulation. One child reported transient paresthesia associated with 2 small subdural hematomas, and 3 other children had minor asymptomatic intracranial hemorrhages. There were no differences in complication rates, rates of resective epilepsy surgery, or seizure freedom rates between this cohort and the preceding 18 children who underwent Talairach frame-based SEEG. The frameless robot-assisted technique was associated with shorter operating time (p < 0.05). CONCLUSIONS Frameless robot-assisted SEEG is a safe and effective means of identifying the EZ in children with pharmacoresistant partial epilepsy. Robot-assisted SEEG is faster than the Talairach frame-based method, and has equivalent safety and efficacy. The former, furthermore, facilitates more electrode trajectory possibilities, which may improve the localization of epileptic networks.
Karaman, Murat; Gün, Taylan; Temelkuran, Burak; Aynacı, Engin; Kaya, Cem; Tekin, Ahmet Mahmut
2017-05-01
To compare intra-operative and post-operative effectiveness of fiber delivered CO 2 laser to monopolar electrocautery in robot assisted tongue base surgery. Prospective non-randomized clinical study. Twenty moderate to severe obstructive sleep apnea (OSA) patients, non-compliant with Continuous Positive Airway Pressure (CPAP), underwent Transoral Robotic Surgery (TORS) using the Da Vinci surgical robot in our University Hospital. OSA was treated with monopolar electrocautery in 10 patients, and with flexible CO 2 laser fiber in another 10 patients. The following parameters in the two sets are analyzed: Intraoperative bleeding that required cauterization, robot operating time, need for tracheotomy, postoperative self-limiting bleeding, length of hospitalization, duration until start of oral intake, pre-operative and post-operative minimum arterial oxygen saturation, pre-operative and post-operative Epworth Sleepiness Scale score, postoperative airway complication and postoperative pain. Mean follow-up was 12 months. None of the patients required tracheotomy and there were no intraoperative complications related to the use of the robot or the CO 2 laser. The use of CO 2 laser in TORS-assisted tongue base surgery resulted in less intraoperative bleeding that required cauterization, shorter robot operating time, shorter length of hospitalization, shorter duration until start of oral intake and less postoperative pain, when compared to electrocautery. Postoperative apnea-hypopnea index scores showed better efficacy of CO 2 laser than electrocautery. Comparison of postoperative airway complication rates and Epworth sleepiness scale scores were found to be statistically insignificant between the two groups. The use of CO 2 laser in robot assisted tongue base surgery has various intraoperative and post-operative advantages when compared to monopolar electrocautery.
The basic mechanics of bipedal walking lead to asymmetric behavior.
Gregg, Robert D; Degani, Amir; Dhaher, Yasin; Lynch, Kevin M
2011-01-01
This paper computationally investigates whether gait asymmetries can be attributed in part to basic bipedal mechanics independent of motor control. Using a symmetrical rigid-body model known as the compass-gait biped, we show that changes in environmental or physiological parameters can facilitate asymmetry in gait kinetics at fast walking speeds. In the environmental case, the asymmetric family of high-speed gaits is in fact more stable than the symmetric family of low-speed gaits. These simulations suggest that lower extremity mechanics might play a direct role in functional and pathological asymmetries reported in human walking, where velocity may be a common variable in the emergence and growth of asymmetry. © 2011 IEEE
Goldsztein, Guillermo H.
2016-01-01
Consider a person standing on a platform that oscillates laterally, i.e. to the right and left of the person. Assume the platform satisfies Hooke’s law. As the platform moves, the person reacts and moves its body attempting to keep its balance. We develop a simple model to study this phenomenon and show that the person, while attempting to keep its balance, may do positive work on the platform and increase the amplitude of its oscillations. The studies in this article are motivated by the oscillations in pedestrian bridges that are sometimes observed when large crowds cross them. PMID:27304857
Goldsztein, Guillermo H
2016-01-01
Consider a person standing on a platform that oscillates laterally, i.e. to the right and left of the person. Assume the platform satisfies Hooke's law. As the platform moves, the person reacts and moves its body attempting to keep its balance. We develop a simple model to study this phenomenon and show that the person, while attempting to keep its balance, may do positive work on the platform and increase the amplitude of its oscillations. The studies in this article are motivated by the oscillations in pedestrian bridges that are sometimes observed when large crowds cross them.
Computing Dynamics Of A Robot Of 6+n Degrees Of Freedom
NASA Technical Reports Server (NTRS)
Quiocho, Leslie J.; Bailey, Robert W.
1995-01-01
Improved formulation speeds and simplifies computation of dynamics of robot arm of n rotational degrees of freedom mounted on platform having three translational and three rotational degrees of freedom. Intended for use in dynamical modeling of robotic manipulators attached to such moving bases as spacecraft, aircraft, vessel, or land vehicle. Such modeling important part of simulation and control of robotic motions.
A Survey of Robotic Technology.
1983-07-01
developed the following definition of a robot: A robot is a reprogrammable multifunctional manipulator designed to move material, parts, tools, or specialized...subroutines subroutines commands to specific actuators, computations based on sensor data, etc. For instance, the job might be to assemble an automobile ...the set-up developed at Draper Labs to enable a robot to assemble an automobile alternator. The assembly operation is impressive to watch. The number
ERIC Educational Resources Information Center
Arita, A.; Hiraki, K.; Kanda, T.; Ishiguro, H.
2005-01-01
As technology advances, many human-like robots are being developed. Although these humanoid robots should be classified as objects, they share many properties with human beings. This raises the question of how infants classify them. Based on the looking-time paradigm used by [Legerstee, M., Barna, J., & DiAdamo, C., (2000). Precursors to the…
State-of-the-art robotic devices for ankle rehabilitation: Mechanism and control review.
Hussain, Shahid; Jamwal, Prashant K; Ghayesh, Mergen H
2017-12-01
There is an increasing research interest in exploring use of robotic devices for the physical therapy of patients suffering from stroke and spinal cord injuries. Rehabilitation of patients suffering from ankle joint dysfunctions such as drop foot is vital and therefore has called for the development of newer robotic devices. Several robotic orthoses and parallel ankle robots have been developed during the last two decades to augment the conventional ankle physical therapy of patients. A comprehensive review of these robotic ankle rehabilitation devices is presented in this article. Recent developments in the mechanism design, actuation and control are discussed. The study encompasses robotic devices for treadmill and over-ground training as well as platform-based parallel ankle robots. Control strategies for these robotic devices are deliberated in detail with an emphasis on the assist-as-needed training strategies. Experimental evaluations of the mechanism designs and various control strategies of these robotic ankle rehabilitation devices are also presented.
Endocavity Ultrasound Probe Manipulators
Stoianovici, Dan; Kim, Chunwoo; Schäfer, Felix; Huang, Chien-Ming; Zuo, Yihe; Petrisor, Doru; Han, Misop
2014-01-01
We developed two similar structure manipulators for medical endocavity ultrasound probes with 3 and 4 degrees of freedom (DoF). These robots allow scanning with ultrasound for 3-D imaging and enable robot-assisted image-guided procedures. Both robots use remote center of motion kinematics, characteristic of medical robots. The 4-DoF robot provides unrestricted manipulation of the endocavity probe. With the 3-DoF robot the insertion motion of the probe must be adjusted manually, but the device is simpler and may also be used to manipulate external-body probes. The robots enabled a novel surgical approach of using intraoperative image-based navigation during robot-assisted laparoscopic prostatectomy (RALP), performed with concurrent use of two robotic systems (Tandem, T-RALP). Thus far, a clinical trial for evaluation of safety and feasibility has been performed successfully on 46 patients. This paper describes the architecture and design of the robots, the two prototypes, control features related to safety, preclinical experiments, and the T-RALP procedure. PMID:24795525
Usability test of KNRC self-feeding robot.
Song, Won-Kyung; Song, Won-Jin; Kim, Yale; Kim, Jongbae
2013-06-01
Various assistive robots for supporting the activities of daily living have been developed. However, not many of these have been introduced into the market because they were found to be impractical in actual scenarios. In this paper, we report on the usability test results of an assistive robot designed for self-feeding for people having disabilities, which includes those having spinal cord injury, cerebral palsy, and traumatic brain injury. First, we present three versions of a novel self-feeding robot (KNRC self-feeding robot), which is suitable for use with Korean food, including sticky rice. These robots have been improved based on participatory action design over a period of three years. Next, we discuss the usability tests of the KNRC self-feeding robots. People with disabilities participated in comparative tests between the KNRC self-feeding robot and the commercialized product named My Spoon. The KNRC self-feeding robot showed positive results in relation to satisfaction and performance compared to the commercialized robot when users ate Korean food, including sticky rice.
An implementation of sensor-based force feedback in a compact laparoscopic surgery robot.
Lee, Duk-Hee; Choi, Jaesoon; Park, Jun-Woo; Bach, Du-Jin; Song, Seung-Jun; Kim, Yoon-Ho; Jo, Yungho; Sun, Kyung
2009-01-01
Despite the rapid progress in the clinical application of laparoscopic surgery robots, many shortcomings have not yet been fully overcome, one of which is the lack of reliable haptic feedback. This study implemented a force-feedback structure in our compact laparoscopic surgery robot. The surgery robot is a master-slave configuration robot with 5 DOF (degree of freedom corresponding laparoscopic surgical motion. The force-feedback implementation was made in the robot with torque sensors and controllers installed in the pitch joint of the master and slave robots. A simple dynamic model of action-reaction force in the slave robot was used, through which the reflective force was estimated and fed back to the master robot. The results showed the system model could be identified with significant fidelity and the force feedback at the master robot was feasible. However, the qualitative human assessment of the fed-back force showed only limited level of object discrimination ability. Further developments are underway with this result as a framework.
School-based use of a robotic arm system by children with disabilities.
Cook, Albert M; Bentz, Brenda; Harbottle, Norma; Lynch, Cheryl; Miller, Brad
2005-12-01
A robotic arm system was developed for use by children who had very severe motor disabilities and varying levels of cognitive and language skills. The children used the robot in a three-task sequence routine to dig objects from a tub of dry macaroni. The robotic system was used in the child's school for 12-15 sessions over a period of four weeks. Goal attainment scaling indicated improvement in all children in operational competence of the robot, and varying levels of gain in functional skill development with the robot and in carryover to the classroom from the robot experiments. Teacher interviews revealed gains in classroom participation, expressive language (vocalizations, symbolic communication), and a high degree of interest by the children in the robot tasks. The teachers also recommended that the robot should have more color, contrast and character, as well as generating sounds and/or music for student cues. They also felt that the robotic system accuracy should be increased so that teacher assistance is not necessary to complete the task.
Robot-Assisted Arm Assessments in Spinal Cord Injured Patients: A Consideration of Concept Study
Albisser, Urs; Rudhe, Claudia; Curt, Armin; Riener, Robert; Klamroth-Marganska, Verena
2015-01-01
Robotic assistance is increasingly used in neurological rehabilitation for enhanced training. Furthermore, therapy robots have the potential for accurate assessment of motor function in order to diagnose the patient status, to measure therapy progress or to feedback the movement performance to the patient and therapist in real time. We investigated whether a set of robot-based assessments that encompasses kinematic, kinetic and timing metrics is applicable, safe, reliable and comparable to clinical metrics for measurement of arm motor function. Twenty-four healthy subjects and five patients after spinal cord injury underwent robot-based assessments using the exoskeleton robot ARMin. Five different tasks were performed with aid of a visual display. Ten kinematic, kinetic and timing assessment parameters were extracted on joint- and end-effector level (active and passive range of motion, cubic reaching volume, movement time, distance-path ratio, precision, smoothness, reaction time, joint torques and joint stiffness). For cubic volume, joint torques and the range of motion for most joints, good inter- and intra-rater reliability were found whereas precision, movement time, distance-path ratio and smoothness showed weak to moderate reliability. A comparison with clinical scores revealed good correlations between robot-based joint torques and the Manual Muscle Test. Reaction time and distance-path ratio showed good correlation with the “Graded and Redefined Assessment of Strength, Sensibility and Prehension” (GRASSP) and the Van Lieshout Test (VLT) for movements towards a predefined position in the center of the frontal plane. In conclusion, the therapy robot ARMin provides a comprehensive set of assessments that are applicable and safe. The first results with spinal cord injured patients and healthy subjects suggest that the measurements are widely reliable and comparable to clinical scales for arm motor function. The methods applied and results can serve as a basis for the future development of end-effector and exoskeleton-based robotic assessments. PMID:25996374
Towards frameless maskless SRS through real-time 6DoF robotic motion compensation.
Belcher, Andrew H; Liu, Xinmin; Chmura, Steven; Yenice, Kamil; Wiersma, Rodney D
2017-11-13
Stereotactic radiosurgery (SRS) uses precise dose placement to treat conditions of the CNS. Frame-based SRS uses a metal head ring fixed to the patient's skull to provide high treatment accuracy, but patient comfort and clinical workflow may suffer. Frameless SRS, while potentially more convenient, may increase uncertainty of treatment accuracy and be physiologically confining to some patients. By incorporating highly precise robotics and advanced software algorithms into frameless treatments, we present a novel frameless and maskless SRS system where a robot provides real-time 6DoF head motion stabilization allowing positional accuracies to match or exceed those of traditional frame-based SRS. A 6DoF parallel kinematics robot was developed and integrated with a real-time infrared camera in a closed loop configuration. A novel compensation algorithm was developed based on an iterative closest-path correction approach. The robotic SRS system was tested on six volunteers, whose motion was monitored and compensated for in real-time over 15 min simulated treatments. The system's effectiveness in maintaining the target's 6DoF position within preset thresholds was determined by comparing volunteer head motion with and without compensation. Comparing corrected and uncorrected motion, the 6DoF robotic system showed an overall improvement factor of 21 in terms of maintaining target position within 0.5 mm and 0.5 degree thresholds. Although the system's effectiveness varied among the volunteers examined, for all volunteers tested the target position remained within the preset tolerances 99.0% of the time when robotic stabilization was used, compared to 4.7% without robotic stabilization. The pre-clinical robotic SRS compensation system was found to be effective at responding to sub-millimeter and sub-degree cranial motions for all volunteers examined. The system's success with volunteers has demonstrated its capability for implementation with frameless and maskless SRS treatments, potentially able to achieve the same or better treatment accuracies compared to traditional frame-based approaches.
Towards frameless maskless SRS through real-time 6DoF robotic motion compensation
NASA Astrophysics Data System (ADS)
Belcher, Andrew H.; Liu, Xinmin; Chmura, Steven; Yenice, Kamil; Wiersma, Rodney D.
2017-12-01
Stereotactic radiosurgery (SRS) uses precise dose placement to treat conditions of the CNS. Frame-based SRS uses a metal head ring fixed to the patient’s skull to provide high treatment accuracy, but patient comfort and clinical workflow may suffer. Frameless SRS, while potentially more convenient, may increase uncertainty of treatment accuracy and be physiologically confining to some patients. By incorporating highly precise robotics and advanced software algorithms into frameless treatments, we present a novel frameless and maskless SRS system where a robot provides real-time 6DoF head motion stabilization allowing positional accuracies to match or exceed those of traditional frame-based SRS. A 6DoF parallel kinematics robot was developed and integrated with a real-time infrared camera in a closed loop configuration. A novel compensation algorithm was developed based on an iterative closest-path correction approach. The robotic SRS system was tested on six volunteers, whose motion was monitored and compensated for in real-time over 15 min simulated treatments. The system’s effectiveness in maintaining the target’s 6DoF position within preset thresholds was determined by comparing volunteer head motion with and without compensation. Comparing corrected and uncorrected motion, the 6DoF robotic system showed an overall improvement factor of 21 in terms of maintaining target position within 0.5 mm and 0.5 degree thresholds. Although the system’s effectiveness varied among the volunteers examined, for all volunteers tested the target position remained within the preset tolerances 99.0% of the time when robotic stabilization was used, compared to 4.7% without robotic stabilization. The pre-clinical robotic SRS compensation system was found to be effective at responding to sub-millimeter and sub-degree cranial motions for all volunteers examined. The system’s success with volunteers has demonstrated its capability for implementation with frameless and maskless SRS treatments, potentially able to achieve the same or better treatment accuracies compared to traditional frame-based approaches.
Robotic edge machining using elastic abrasive tool
NASA Astrophysics Data System (ADS)
Sidorova, A. V.; Semyonov, E. N.; Belomestnykh, A. S.
2018-03-01
The article describes a robotic center designed for automation of finishing operations, and analyzes technological aspects of an elastic abrasive tool applied for edge machining. Based on the experimental studies, practical recommendations on the application of the robotic center for finishing operations were developed.
Field Tested Service Oriented Robotic Architecture: Case Study
NASA Technical Reports Server (NTRS)
Flueckiger, Lorenzo; Utz, Hanz
2012-01-01
This paper presents the lessons learned from six years of experiments with planetary rover prototypes running the Service Oriented Robotic Architecture (SORA) developed by the Intelligent Robotics Group (IRG) at NASA Ames Research Center. SORA relies on proven software methods and technologies applied to the robotic world. Based on a Service Oriented Architecture and robust middleware, SORA extends its reach beyond the on-board robot controller and supports the full suite of software tools used during mission scenarios from ground control to remote robotic sites. SORA has been field tested in numerous scenarios of robotic lunar and planetary exploration. The results of these high fidelity experiments are illustrated through concrete examples that have shown the benefits of using SORA as well as its limitations.
A development of intelligent entertainment robot for home life
NASA Astrophysics Data System (ADS)
Kim, Cheoltaek; Lee, Ju-Jang
2005-12-01
The purpose of this paper was to present the study and design idea for entertainment robot with educational purpose (IRFEE). The robot has been designed for home life considering dependability and interaction. The developed robot has three objectives - 1. Develop autonomous robot, 2. Design robot considering mobility and robustness, 3. Develop robot interface and software considering entertainment and education functionalities. The autonomous navigation was implemented by active vision based SLAM and modified EPF algorithm. The two differential wheels, the pan-tilt were designed mobility and robustness and the exterior was designed considering esthetic element and minimizing interference. The speech and tracking algorithm provided the good interface with human. The image transfer and Internet site connection is needed for service of remote connection and educational purpose.
NASA Technical Reports Server (NTRS)
Hollars, M. G.; Cannon, R. H., Jr.; Alexander, H. L.; Morse, D. F.
1987-01-01
The Stanford University Aerospace Robotics Laboratory is actively developing and experimentally testing advanced robot control strategies for space robotic applications. Early experiments focused on control of very lightweight one-link manipulators and other flexible structures. The results are being extended to position and force control of mini-manipulators attached to flexible manipulators and multilink manipulators with flexible drive trains. Experimental results show that end-point sensing and careful dynamic modeling or adaptive control are key to the success of these control strategies. Free-flying space robot simulators that operate on an air cushion table have been built to test control strategies in which the dynamics of the base of the robot and the payload are important.
Research on Modeling Technology of Virtual Robot Based on LabVIEW
NASA Astrophysics Data System (ADS)
Wang, Z.; Huo, J. L.; Y Sun, L.; Y Hao, X.
2017-12-01
Because of the dangerous working environment, the underwater operation robot for nuclear power station needs manual teleoperation. In the process of operation, it is necessary to guide the position and orientation of the robot in real time. In this paper, the geometric modeling of the virtual robot and the working environment is accomplished by using SolidWorks software, and the accurate modeling and assembly of the robot are realized. Using LabVIEW software to read the model, and established the manipulator forward kinematics and inverse kinematics model, and realized the hierarchical modeling of virtual robot and computer graphics modeling. Experimental results show that the method studied in this paper can be successfully applied to robot control system.
Kinematics Control and Analysis of Industrial Robot
NASA Astrophysics Data System (ADS)
Zhu, Tongbo; Cai, Fan; Li, Yongmei; Liu, Wei
2018-03-01
The robot’s development present situation, basic principle and control system are introduced briefly. Research is mainly focused on the study of the robot’s kinematics and motion control. The structural analysis of a planar articulated robot (SCARA) robot is presented,the coordinate system is established to obtain the position and orientation matrix of the end effector,a method of robot kinematics analysis based on homogeneous transformation method is proposed, and the kinematics solution of the robot is obtained.Establishment of industrial robot’s kinematics equation and formula for positive kinematics by example. Finally,the kinematic analysis of this robot was verified by examples.It provides a basis for structural design and motion control.It has active significance to promote the motion control of industrial robot.
Design of an integrated master-slave robotic system for minimally invasive surgery.
Li, Jianmin; Zhou, Ningxin; Wang, Shuxin; Gao, Yuanqian; Liu, Dongchun
2012-03-01
Minimally invasive surgery (MIS) robots are commonly used in hospitals and medical centres. However, currently available robotic systems are very complicated and huge, greatly raising system costs and the requirements of operating rooms. These disadvantages have become the major impediments to the expansion of MIS robots. An integrated MIS robotic system is proposed based on the analysis of advantages and disadvantages of different MIS robots. In the proposed system, the master manipulators, slave manipulators, image display device and control system have been designed as a whole. Modular design is adopted for the control system for easy maintenance and upgrade. The kinematic relations between the master and the slave are also investigated and embedded in software to realize intuitive movements of hand and instrument. Finally, animal experiments were designed to test the effectiveness of the robot. The robot realizes natural hand-eye movements between the master and the slave to facilitate MIS operations. The experimental results show that the robot can realize similar functions to those of current commercialized robots. The integrated design simplifies the robotic system and facilitates use of the robot. Compared with the commercialized robots, the proposed MIS robot achieves similar functions and features but with a smaller size and less weight. Copyright © 2011 John Wiley & Sons, Ltd.
Robot-supported assessment of balance in standing and walking.
Shirota, Camila; van Asseldonk, Edwin; Matjačić, Zlatko; Vallery, Heike; Barralon, Pierre; Maggioni, Serena; Buurke, Jaap H; Veneman, Jan F
2017-08-14
Clinically useful and efficient assessment of balance during standing and walking is especially challenging in patients with neurological disorders. However, rehabilitation robots could facilitate assessment procedures and improve their clinical value. We present a short overview of balance assessment in clinical practice and in posturography. Based on this overview, we evaluate the potential use of robotic tools for such assessment. The novelty and assumed main benefits of using robots for assessment are their ability to assess 'severely affected' patients by providing assistance-as-needed, as well as to provide consistent perturbations during standing and walking while measuring the patient's reactions. We provide a classification of robotic devices on three aspects relevant to their potential application for balance assessment: 1) how the device interacts with the body, 2) in what sense the device is mobile, and 3) on what surface the person stands or walks when using the device. As examples, nine types of robotic devices are described, classified and evaluated for their suitability for balance assessment. Two example cases of robotic assessments based on perturbations during walking are presented. We conclude that robotic devices are promising and can become useful and relevant tools for assessment of balance in patients with neurological disorders, both in research and in clinical use. Robotic assessment holds the promise to provide increasingly detailed assessment that allows to individually tailor rehabilitation training, which may eventually improve training effectiveness.
NASA Astrophysics Data System (ADS)
Zheng, Li; Yi, Ruan
2009-11-01
Power line inspection and maintenance already benefit from developments in mobile robotics. This paper presents mobile robots capable of crossing obstacles on overhead ground wires. A teleoperated robot realizes inspection and maintenance tasks on power transmission line equipment. The inspection robot is driven by 11 motor with two arms, two wheels and two claws. The inspection robot is designed to realize the function of observation, grasp, walk, rolling, turn, rise, and decline. This paper is oriented toward 100% reliable obstacle detection and identification, and sensor fusion to increase the autonomy level. An embedded computer based on PC/104 bus is chosen as the core of control system. Visible light camera and thermal infrared Camera are both installed in a programmable pan-and-tilt camera (PPTC) unit. High-quality visual feedback rapidly becomes crucial for human-in-the-loop control and effective teleoperation. The communication system between the robot and the ground station is based on Mesh wireless networks by 700 MHz bands. An expert system programmed with Visual C++ is developed to implement the automatic control. Optoelectronic laser sensors and laser range scanner were installed in robot for obstacle-navigation control to grasp the overhead ground wires. A novel prototype with careful considerations on mobility was designed to inspect the 500KV power transmission lines. Results of experiments demonstrate that the robot can be applied to execute the navigation and inspection tasks.
A bio-inspired swarm robot coordination algorithm for multiple target searching
NASA Astrophysics Data System (ADS)
Meng, Yan; Gan, Jing; Desai, Sachi
2008-04-01
The coordination of a multi-robot system searching for multi targets is challenging under dynamic environment since the multi-robot system demands group coherence (agents need to have the incentive to work together faithfully) and group competence (agents need to know how to work together well). In our previous proposed bio-inspired coordination method, Local Interaction through Virtual Stigmergy (LIVS), one problem is the considerable randomness of the robot movement during coordination, which may lead to more power consumption and longer searching time. To address these issues, an adaptive LIVS (ALIVS) method is proposed in this paper, which not only considers the travel cost and target weight, but also predicting the target/robot ratio and potential robot redundancy with respect to the detected targets. Furthermore, a dynamic weight adjustment is also applied to improve the searching performance. This new method a truly distributed method where each robot makes its own decision based on its local sensing information and the information from its neighbors. Basically, each robot only communicates with its neighbors through a virtual stigmergy mechanism and makes its local movement decision based on a Particle Swarm Optimization (PSO) algorithm. The proposed ALIVS algorithm has been implemented on the embodied robot simulator, Player/Stage, in a searching target. The simulation results demonstrate the efficiency and robustness in a power-efficient manner with the real-world constraints.
Research on the attitude detection technology of the tetrahedron robot
NASA Astrophysics Data System (ADS)
Gong, Hao; Chen, Keshan; Ren, Wenqiang; Cai, Xin
2017-10-01
The traditional attitude detection technology can't tackle the problem of attitude detection of the polyhedral robot. Thus we propose a novel algorithm of multi-sensor data fusion which is based on Kalman filter. In the algorithm a tetrahedron robot is investigated. We devise an attitude detection system for the polyhedral robot and conduct the verification of data fusion algorithm. It turns out that the minimal attitude detection system we devise could capture attitudes of the tetrahedral robot in different working conditions. Thus the Kinematics model we establish for the tetrahedron robot is correct and the feasibility of the attitude detection system is proven.
Robots for Elderly Care: Their Level of Social Interactions and the Targeted End User.
Bedaf, Sandra; de Witte, Luc
2017-01-01
Robots for older adults have a lot of potential. In order to create an overview of the developments in this area a systematic review of robots for older adults living independently was conducted. Robots were categorized based on their market readiness, the type of provided support (i.e., physical, non-physical, non-specified), and the activity domain they claim to support. Additionally, the commercially available robots are places in a proposed framework to help to distinguish the different types of robots and their focus. During the presentation an updated version of the state of the art will be presented.
Research on robot mobile obstacle avoidance control based on visual information
NASA Astrophysics Data System (ADS)
Jin, Jiang
2018-03-01
Robots to detect obstacles and control robots to avoid obstacles has been a key research topic of robot control. In this paper, a scheme of visual information acquisition is proposed. By judging visual information, the visual information is transformed into the information source of path processing. In accordance with the established route, in the process of encountering obstacles, the algorithm real-time adjustment trajectory to meet the purpose of intelligent control of mobile robots. Simulation results show that, through the integration of visual sensing information, the obstacle information is fully obtained, while the real-time and accuracy of the robot movement control is guaranteed.
Automatic Operation For A Robot Lawn Mower
NASA Astrophysics Data System (ADS)
Huang, Y. Y.; Cao, Z. L.; Oh, S. J.; Kattan, E. U.; Hall, E. L.
1987-02-01
A domestic mobile robot, lawn mower, which performs the automatic operation mode, has been built up in the Center of Robotics Research, University of Cincinnati. The robot lawn mower automatically completes its work with the region filling operation, a new kind of path planning for mobile robots. Some strategies for region filling of path planning have been developed for a partly-known or a unknown environment. Also, an advanced omnidirectional navigation system and a multisensor-based control system are used in the automatic operation. Research on the robot lawn mower, especially on the region filling of path planning, is significant in industrial and agricultural applications.
Certificate of need legislation and the dissemination of robotic surgery for prostate cancer.
Jacobs, Bruce L; Zhang, Yun; Skolarus, Ted A; Wei, John T; Montie, James E; Schroeck, Florian R; Hollenbeck, Brent K
2013-01-01
The uncertainty about the incremental benefit of robotic prostatectomy and its higher associated costs makes it an ideal target for state based certificate of need laws, which have been enacted in several states. We studied the relationship between certificate of need laws and market level adoption of robotic prostatectomy. We used SEER (Surveillance, Epidemiology, and End Results)-Medicare data from 2003 through 2007 to identify men 66 years old or older treated with prostatectomy for prostate cancer. Using data from the American Health Planning Association, we categorized Health Service Areas according to the stringency of certificate of need regulations (ie low vs high stringency) presiding over that market. We assessed our outcomes (probability of adopting robotic prostatectomy and propensity for robotic prostatectomy use in adopting Health Service Areas) using Cox proportional hazards and Poisson regression models, respectively. Compared to low stringency markets, high stringency markets were more racially diverse (54% vs 15% nonwhite, p <0.01), and had similar population densities (886 vs 861 people per square mile, p = 0.97) and median incomes ($42,344 vs $39,770, p = 0.56). In general, both market types had an increase in the adoption and utilization of robotic prostatectomy. However, the probability of robotic prostatectomy adoption (p = 0.22) did not differ based on a market's certificate of need stringency and use was lower in high stringency markets (p <0.01). State based certificate of need regulations were ineffective in constraining robotic surgery adoption. Despite decreased use in high stringency markets, similar adoption rates suggest that other factors impact the diffusion of robotic prostatectomy. Copyright © 2013 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
The Clinical Use of Robots for Individuals with Autism Spectrum Disorders: A Critical Review
Diehl, Joshua J.; Schmitt, Lauren M.; Villano, Michael; Crowell, Charles R.
2011-01-01
We examined peer-reviewed studies in order to understand the current status of empirically-based evidence on the clinical applications of robots in the diagnosis and treatment of Autism Spectrum Disorders (ASD). Studies are organized into four broad categories: (a) the response of individuals with ASD to robots or robot-like behavior in comparison to human behavior, (b) the use of robots to elicit behaviors, (c) the use of robots to model, teach, and/or practice a skill, and (d) the use of robots to provide feedback on performance. A critical review of the literature revealed that most of the findings are exploratory and have methodological limitations that make it difficult to draw firm conclusions about the clinical utility of robots. Finally, we outline the research needed to determine the incremental validity of this technique. PMID:22125579
Intrinsically motivated reinforcement learning for human-robot interaction in the real-world.
Qureshi, Ahmed Hussain; Nakamura, Yutaka; Yoshikawa, Yuichiro; Ishiguro, Hiroshi
2018-03-26
For a natural social human-robot interaction, it is essential for a robot to learn the human-like social skills. However, learning such skills is notoriously hard due to the limited availability of direct instructions from people to teach a robot. In this paper, we propose an intrinsically motivated reinforcement learning framework in which an agent gets the intrinsic motivation-based rewards through the action-conditional predictive model. By using the proposed method, the robot learned the social skills from the human-robot interaction experiences gathered in the real uncontrolled environments. The results indicate that the robot not only acquired human-like social skills but also took more human-like decisions, on a test dataset, than a robot which received direct rewards for the task achievement. Copyright © 2018 Elsevier Ltd. All rights reserved.
Gutierrez, Mario; Ditto, Richard; Roy, Sanjoy
2018-05-09
A comprehensive review of operative outcomes of robotic surgical procedures performed with the da Vinci robotic system using either endoscopic linear staplers (ELS) or robotic staplers is not available in the published literature. We conducted a literature search to identify publications of robotic surgical procedures in all specialties performed with either ELS or robotic staplers. Twenty-nine manuscripts and six abstracts with relevant information on operative outcomes published from January 2011 to September 2017 were identified. Given the relatively recent market release of robotic staplers in 2014, comparative perioperative clinical outcomes data on the performance of ELS vs. robotic staplers in robotic surgery is very sparse in the published literature. Only three comparative studies of surgeries with the da Vinci robotic system plus ELS vs. da Vinci plus robotic staplers were identified; two in robotic colorectal surgery and the other in robotic gastric bypass surgery. These comparative studies illustrate some nuances in device design and usability, which may impact outcomes and cost, and therefore may be important to consider when selecting the appropriate stapling technologies/technique for different robotic surgeries. Comparative perioperative data on the use of ELS vs. robotic staplers in robotic surgery is scarce (three studies), and current literature identifies both types of devices as safe and effective. Given the longer clinical history of ELS and its relatively more robust evidence base, there may be trade-offs to consider before switching to robotic staplers in certain robotic procedures. However, this literature review may serve as an initial reference for future research.
Robotic Billiards: Understanding Humans in Order to Counter Them.
Nierhoff, Thomas; Leibrandt, Konrad; Lorenz, Tamara; Hirche, Sandra
2016-08-01
Ongoing technological advances in the areas of computation, sensing, and mechatronics enable robotic-based systems to interact with humans in the real world. To succeed against a human in a competitive scenario, a robot must anticipate the human behavior and include it in its own planning framework. Then it can predict the next human move and counter it accordingly, thus not only achieving overall better performance but also systematically exploiting the opponent's weak spots. Pool is used as a representative scenario to derive a model-based planning and control framework where not only the physics of the environment but also a model of the opponent is considered. By representing the game of pool as a Markov decision process and incorporating a model of the human decision-making based on studies, an optimized policy is derived. This enables the robot to include the opponent's typical game style into its tactical considerations when planning a stroke. The results are validated in simulations and real-life experiments with an anthropomorphic robot playing pool against a human.
Homography-based visual servo regulation of mobile robots.
Fang, Yongchun; Dixon, Warren E; Dawson, Darren M; Chawda, Prakash
2005-10-01
A monocular camera-based vision system attached to a mobile robot (i.e., the camera-in-hand configuration) is considered in this paper. By comparing corresponding target points of an object from two different camera images, geometric relationships are exploited to derive a transformation that relates the actual position and orientation of the mobile robot to a reference position and orientation. This transformation is used to synthesize a rotation and translation error system from the current position and orientation to the fixed reference position and orientation. Lyapunov-based techniques are used to construct an adaptive estimate to compensate for a constant, unmeasurable depth parameter, and to prove asymptotic regulation of the mobile robot. The contribution of this paper is that Lyapunov techniques are exploited to craft an adaptive controller that enables mobile robot position and orientation regulation despite the lack of an object model and the lack of depth information. Experimental results are provided to illustrate the performance of the controller.
Rafii-Tari, Hedyeh; Liu, Jindong; Payne, Christopher J; Bicknell, Colin; Yang, Guang-Zhong
2014-01-01
Despite increased use of remote-controlled steerable catheter navigation systems for endovascular intervention, most current designs are based on master configurations which tend to alter natural operator tool interactions. This introduces problems to both ergonomics and shared human-robot control. This paper proposes a novel cooperative robotic catheterization system based on learning-from-demonstration. By encoding the higher-level structure of a catheterization task as a sequence of primitive motions, we demonstrate how to achieve prospective learning for complex tasks whilst incorporating subject-specific variations. A hierarchical Hidden Markov Model is used to model each movement primitive as well as their sequential relationship. This model is applied to generation of motion sequences, recognition of operator input, and prediction of future movements for the robot. The framework is validated by comparing catheter tip motions against the manual approach, showing significant improvements in the quality of catheterization. The results motivate the design of collaborative robotic systems that are intuitive to use, while reducing the cognitive workload of the operator.
Intelligent Surveillance Robot with Obstacle Avoidance Capabilities Using Neural Network
2015-01-01
For specific purpose, vision-based surveillance robot that can be run autonomously and able to acquire images from its dynamic environment is very important, for example, in rescuing disaster victims in Indonesia. In this paper, we propose architecture for intelligent surveillance robot that is able to avoid obstacles using 3 ultrasonic distance sensors based on backpropagation neural network and a camera for face recognition. 2.4 GHz transmitter for transmitting video is used by the operator/user to direct the robot to the desired area. Results show the effectiveness of our method and we evaluate the performance of the system. PMID:26089863
Modelling robot's behaviour using finite automata
NASA Astrophysics Data System (ADS)
Janošek, Michal; Žáček, Jaroslav
2017-07-01
This paper proposes a model of a robot's behaviour described by finite automata. We split robot's knowledge into several knowledge bases which are used by the inference mechanism of the robot's expert system to make a logic deduction. Each knowledgebase is dedicated to the particular behaviour domain and the finite automaton helps us switching among these knowledge bases with the respect of actual situation. Our goal is to simplify and reduce complexity of one big knowledgebase splitting it into several pieces. The advantage of this model is that we can easily add new behaviour by adding new knowledgebase and add this behaviour into the finite automaton and define necessary states and transitions.
Yang, Yunpeng; Jiang, Shan; Yang, Zhiyong; Yuan, Wei; Dou, Huaisu; Wang, Wei; Zhang, Daguang; Bian, Yuan
2017-04-01
Nowadays, biopsy is a decisive method of lung cancer diagnosis, whereas lung biopsy is time-consuming, complex and inaccurate. So a computed tomography-compatible robot for rapid and precise lung biopsy is developed in this article. According to the actual operation process, the robot is divided into two modules: 4-degree-of-freedom position module for location of puncture point is appropriate for patient's almost all positions and 3-degree-of-freedom tendon-based orientation module with remote center of motion is compact and computed tomography-compatible to orientate and insert needle automatically inside computed tomography bore. The workspace of the robot surrounds patient's thorax, and the needle tip forms a cone under patient's skin. A new error model of the robot based on screw theory is proposed in view of structure error and actuation error, which are regarded as screw motions. Simulation is carried out to verify the precision of the error model contrasted with compensation via inverse kinematics. The results of insertion experiment on specific phantom prove the feasibility of the robot with mean error of 1.373 mm in laboratory environment, which is accurate enough to replace manual operation.
NASA Technical Reports Server (NTRS)
Marzwell, Neville I.; Chen, Alexander Y. K.
1991-01-01
Dexterous coordination of manipulators based on the use of redundant degrees of freedom, multiple sensors, and built-in robot intelligence represents a critical breakthrough in development of advanced manufacturing technology. A cost-effective approach for achieving this new generation of robotics has been made possible by the unprecedented growth of the latest microcomputer and network systems. The resulting flexible automation offers the opportunity to improve the product quality, increase the reliability of the manufacturing process, and augment the production procedures for optimizing the utilization of the robotic system. Moreover, the Advanced Robotic System (ARS) is modular in design and can be upgraded by closely following technological advancements as they occur in various fields. This approach to manufacturing automation enhances the financial justification and ensures the long-term profitability and most efficient implementation of robotic technology. The new system also addresses a broad spectrum of manufacturing demand and has the potential to address both complex jobs as well as highly labor-intensive tasks. The ARS prototype employs the decomposed optimization technique in spatial planning. This technique is implemented to the framework of the sensor-actuator network to establish the general-purpose geometric reasoning system. The development computer system is a multiple microcomputer network system, which provides the architecture for executing the modular network computing algorithms. The knowledge-based approach used in both the robot vision subsystem and the manipulation control subsystems results in the real-time image processing vision-based capability. The vision-based task environment analysis capability and the responsive motion capability are under the command of the local intelligence centers. An array of ultrasonic, proximity, and optoelectronic sensors is used for path planning. The ARS currently has 18 degrees of freedom made up by two articulated arms, one movable robot head, and two charged coupled device (CCD) cameras for producing the stereoscopic views, and articulated cylindrical-type lower body, and an optional mobile base. A functional prototype is demonstrated.
Simulation of Robot Kinematics Using Interactive Computer Graphics.
ERIC Educational Resources Information Center
Leu, M. C.; Mahajan, R.
1984-01-01
Development of a robot simulation program based on geometric transformation softwares available in most computer graphics systems and program features are described. The program can be extended to simulate robots coordinating with external devices (such as tools, fixtures, conveyors) using geometric transformations to describe the…
Robotics technology discipline
NASA Technical Reports Server (NTRS)
Montemerlo, Melvin D.
1990-01-01
Viewgraphs on robotics technology discipline for Space Station Freedom are presented. Topics covered include: mechanisms; sensors; systems engineering processes for integrated robotics; man/machine cooperative control; 3D-real-time machine perception; multiple arm redundancy control; manipulator control from a movable base; multi-agent reasoning; and surfacing evolution technologies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, M.
2000-04-01
This project is the first evaluation of model-based diagnostics to hydraulic robot systems. A greater understanding of fault detection for hydraulic robots has been gained, and a new theoretical fault detection model developed and evaluated.
Analysis and experiments with an elephant's trunk robot
NASA Technical Reports Server (NTRS)
Hannan, M. W.; Walker, I. D.
2001-01-01
The area of tentacle and trunk type biological manipulation is not new, but there has been little progress in the development and application of a physical device to simulate these types of manipulation. Our research in this area is based on using an 'elephant trunk' robot. In this paper, we review the construction of the robot and how it compares to biological manipulators. We then apply our previously designed kinematic model to describe the kinematics of the robot. We finish by providing some examples of motion planning and intelligent manipulation using the robot.
Peg-in-Hole Assembly Based on Two-phase Scheme and F/T Sensor for Dual-arm Robot
Zhang, Xianmin; Zheng, Yanglong; Ota, Jun; Huang, Yanjiang
2017-01-01
This paper focuses on peg-in-hole assembly based on a two-phase scheme and force/torque sensor (F/T sensor) for a compliant dual-arm robot, the Baxter robot. The coordinated operations of human beings in assembly applications are applied to the behaviors of the robot. A two-phase assembly scheme is proposed to overcome the inaccurate positioning of the compliant dual-arm robot. The position and orientation of assembly pieces are adjusted respectively in an active compliant manner according to the forces and torques derived by a six degrees-of-freedom (6-DOF) F/T sensor. Experiments are conducted to verify the effectiveness and efficiency of the proposed assembly scheme. The performances of the dual-arm robot are consistent with those of human beings in the peg-in-hole assembly process. The peg and hole with 0.5 mm clearance for round pieces and square pieces can be assembled successfully. PMID:28862691
Peg-in-Hole Assembly Based on Two-phase Scheme and F/T Sensor for Dual-arm Robot.
Zhang, Xianmin; Zheng, Yanglong; Ota, Jun; Huang, Yanjiang
2017-09-01
This paper focuses on peg-in-hole assembly based on a two-phase scheme and force/torque sensor (F/T sensor) for a compliant dual-arm robot, the Baxter robot. The coordinated operations of human beings in assembly applications are applied to the behaviors of the robot. A two-phase assembly scheme is proposed to overcome the inaccurate positioning of the compliant dual-arm robot. The position and orientation of assembly pieces are adjusted respectively in an active compliant manner according to the forces and torques derived by a six degrees-of-freedom (6-DOF) F/T sensor. Experiments are conducted to verify the effectiveness and efficiency of the proposed assembly scheme. The performances of the dual-arm robot are consistent with those of human beings in the peg-in-hole assembly process. The peg and hole with 0.5 mm clearance for round pieces and square pieces can be assembled successfully.
NASA Technical Reports Server (NTRS)
Chen, Alexander Y.
1990-01-01
Scientific research associates advanced robotic system (SRAARS) is an intelligent robotic system which has autonomous learning capability in geometric reasoning. The system is equipped with one global intelligence center (GIC) and eight local intelligence centers (LICs). It controls mainly sixteen links with fourteen active joints, which constitute two articulated arms, an extensible lower body, a vision system with two CCD cameras and a mobile base. The on-board knowledge-based system supports the learning controller with model representations of both the robot and the working environment. By consecutive verifying and planning procedures, hypothesis-and-test routines and learning-by-analogy paradigm, the system would autonomously build up its own understanding of the relationship between itself (i.e., the robot) and the focused environment for the purposes of collision avoidance, motion analysis and object manipulation. The intelligence of SRAARS presents a valuable technical advantage to implement robotic systems for space exploration and space station operations.
NASA Astrophysics Data System (ADS)
Yoo, Sung Jin
2016-11-01
This paper presents a theoretical design approach for output-feedback formation tracking of multiple mobile robots under wheel perturbations. It is assumed that these perturbations are unknown and the linear and angular velocities of the robots are unmeasurable. First, adaptive state observers for estimating unmeasurable velocities of the robots are developed under the robots' kinematics and dynamics including wheel perturbation effects. Then, we derive a virtual-structure-based formation tracker scheme according to the observer dynamic surface design procedure. The main difficulty of the output-feedback control design is to manage the coupling problems between unmeasurable velocities and unknown wheel perturbation effects. These problems are avoided by using the adaptive technique and the function approximation property based on fuzzy logic systems. From the Lyapunov stability analysis, it is shown that point tracking errors of each robot and synchronisation errors for the desired formation converge to an adjustable neighbourhood of the origin, while all signals in the controlled closed-loop system are semiglobally uniformly ultimately bounded.