Science.gov

Sample records for bipedal walking mechanism

  1. On the Mechanics of Functional Asymmetry in Bipedal Walking

    PubMed Central

    Dhaher, Yasin Y.; Degani, Amir; Lynch, Kevin M.

    2014-01-01

    This paper uses two symmetrical models, the passive compass-gait biped and a five-link 3D biped, to computationally investigate the cause and function of gait asymmetry. We show that for a range of slope angles during passive 2D walking and mass distributions during controlled 3D walking, these models have asymmetric walking patterns between the left and right legs due to the phenomenon of spontaneous symmetry-breaking. In both cases a stable asymmetric family of gaits emerges from a symmetric family of gaits as the total energy increases (e.g., fast speeds). The ground reaction forces of each leg reflect different roles, roughly corresponding to support, propulsion, and motion control as proposed by the hypothesis of functional asymmetry in able-bodied human walking. These results suggest that body mechanics, independent of neurophysiological mechanisms such as leg dominance, may contribute to able-bodied gait asymmetry. PMID:22328168

  2. The mechanical effectiveness of erect and "bent-hip, bent-knee" bipedal walking in Australopithecus afarensis.

    PubMed

    Crompton, R H; Yu, L; Weijie, W; Günther, M; Savage, R

    1998-07-01

    It is universally accepted that the postcranial skeleton of the early hominid Australopithecus afarensis shows adaptations, or at least exaptations, towards bipedalism. However, there continues to be a debate concerning the likely form of terrestrial bipedality: whether gait was erect, like our own, or "bent-hip, bent-knee" like the bipedalism of living chimpanzees. In this study we use predictive dynamic modelling to assess the mechanical effectiveness of AL-288-1 under both hypotheses, on the basis of data on segment proportions from the literature. AL-288-1's proportions are incompatible with the kinematics of chimpanzee bipedalism, but compatible with the kinematics of either erect or "bent-hip, bent-knee" human gait. In the latter case, neither the ankle nor the knee joint would have contributed substantial mechanical work to propulsion of the body, and net energy absorption is predicted for these joints, which would have resulted in increased heat load. Such an ineffective gait is unlikely to have lead to selection for "bipedal" features in the postcranial skeleton.

  3. Development of bipedal walking in humans and chimpanzees: a comparative study.

    PubMed

    Kimura, Tasuku; Yaguramaki, Naoko

    2009-01-01

    Development of bipedal walking from the very early stage of walking was studied longitudinally in infant humans and chimpanzees. In contrast to adults, infants of neither species could walk steadily and rhythmically step by step. Short braking duration and small recovery of mechanical energy were demonstrated in infants of both species. The trunk was inclined forwards, the extension of lower limb joints was limited and the accelerating force was not strongly activated. Potential energy was not efficiently used in progression. Walking in adult chimpanzees still showed a forward-inclined trunk, short braking duration, small recovery of energy and large variance of parameters compared to the unique human adult bipedalism. The locomotor characteristics of presumed pre-bipedal ancestors are discussed.

  4. Origin of human bipedalism: The knuckle-walking hypothesis revisited.

    PubMed

    Richmond, B G; Begun, D R; Strait, D S

    2001-01-01

    Some of the most long-standing questions in paleoanthropology concern how and why human bipedalism evolved. Over the last century, many hypotheses have been offered on the mode of locomotion from which bipedalism originated. Candidate ancestral adaptations include monkey-like arboreal or terrestrial quadrupedalism, gibbon- or orangutan-like (or other forms of) climbing and suspension, and knuckle-walking. This paper reviews the history of these hypotheses, outlines their predictions, and assesses them in light of current phylogenetic, comparative anatomical, and fossil evidence. The functional significance of characteristics of the shoulder and arm, elbow, wrist, and hand shared by African apes and humans, including their fossil relatives, most strongly supports the knuckle-walking hypothesis, which reconstructs the ancestor as being adapted to knuckle-walking and arboreal climbing. Future fossil discoveries, and a clear understanding of anthropoid locomotor anatomy, are required to ultimately test these hypotheses. If knuckle-walking was an important component of the behavioral repertoire of the prebipedal human ancestor, then we can reject scenarios on the origin of bipedalism that rely on a strictly arboreal ancestor. Moreover, paleoenvironmental data associated with the earliest hominins, and their close relatives, contradict hypotheses that place the agents of selection for bipedality in open savanna habitats. Existing hypotheses must explain why bipedalism would evolve from an ancestor that was already partly terrestrial. Many food acquisition and carrying hypotheses remain tenable in light of current evidence.

  5. Theoretical analysis of the state of balance in bipedal walking.

    PubMed

    Firmani, Flavio; Park, Edward J

    2013-04-01

    This paper presents a theoretical analysis based on classic mechanical principles of balance of forces in bipedal walking. Theories on the state of balance have been proposed in the area of humanoid robotics and although the laws of classical mechanics are equivalent to both humans and humanoid robots, the resulting motion obtained with these theories is unnatural when compared to normal human gait. Humanoid robots are commonly controlled using the zero moment point (ZMP) with the condition that the ZMP cannot exit the foot-support area. This condition is derived from a physical model in which the biped must always walk under dynamically balanced conditions, making the centre of pressure (CoP) and the ZMP always coincident. On the contrary, humans follow a different strategy characterized by a 'controlled fall' at the end of the swing phase. In this paper, we present a thorough theoretical analysis of the state of balance and show that the ZMP can exit the support area, and its location is representative of the imbalance state characterized by the separation between the ZMP and the CoP. Since humans exhibit this behavior, we also present proof-of-concept results of a single subject walking on an instrumented treadmill at different speeds (from slow 0.7 m/s to fast 2.0 m/s walking with increments of 0.1 m/s) with the motion recorded using an optical motion tracking system. In order to evaluate the experimental results of this model, the coefficient of determination (R2) is used to correlate the measured ground reaction forces and the resultant of inertial and gravitational forces (anteroposterior R² = 0.93, mediolateral R² = 0.89, and vertical R² = 0.86) indicating that there is a high correlation between the measurements. The results suggest that the subject exhibits a complete dynamically balanced gait during slow speeds while experiencing a controlled fall (end of swing phase) with faster speeds. This is quantified with the root-mean-square deviation (RMSD

  6. Segment and joint angles of hind limb during bipedal and quadrupedal walking of the bonobo (Pan paniscus).

    PubMed

    D'Août, Kristiaan; Aerts, Peter; De Clercq, Dirk; De Meester, Koen; Van Elsacker, Linda

    2002-09-01

    We describe segment angles (trunk, thigh, shank, and foot) and joint angles (hip, knee, and ankle) for the hind limbs of bonobos walking bipedally ("bent-hip bent-knee walking," 17 sequences) and quadrupedally (33 sequences). Data were based on video recordings (50 Hz) of nine subjects in a lateral view, walking at voluntary speed. The major differences between bipedal and quadrupedal walking are found in the trunk, thigh, and hip angles. During bipedal walking, the trunk is approximately 33-41 degrees more erect than during quadrupedal locomotion, although it is considerably more bent forward than in normal human locomotion. Moreover, during bipedal walking, the hip has a smaller range of motion (by 12 degrees ) and is more extended (by 20-35 degrees ) than during quadrupedal walking. In general, angle profiles in bonobos are much more variable than in humans. Intralimb phase relationships of subsequent joint angles show that hip-knee coordination is similar for bipedal and quadrupedal walking, and resembles the human pattern. The coordination between knee and ankle differs much more from the human pattern. Based on joint angles observed throughout stance phase and on the estimation of functional leg length, an efficient inverted pendulum mechanism is not expected in bonobos.

  7. Parallel elastic elements improve energy efficiency on the STEPPR bipedal walking robot

    DOE PAGES

    Mazumdar, Anirban; Spencer, Steven J.; Hobart, Clinton; ...

    2016-11-23

    This study describes how parallel elastic elements can be used to reduce energy consumption in the electric motor driven, fully-actuated, STEPPR bipedal walking robot without compromising or significantly limiting locomotive behaviors. A physically motivated approach is used to illustrate how selectively-engaging springs for hip adduction and ankle flexion predict benefits for three different flat ground walking gaits: human walking, human-like robot walking and crouched robot walking. Based on locomotion data, springs are designed and substantial reductions in power consumption are demonstrated using a bench dynamometer. These lessons are then applied to STEPPR (Sandia Transmission-Efficient Prototype Promoting Research), a fully actuatedmore » bipedal robot designed to explore the impact of tailored joint mechanisms on walking efficiency. Featuring high-torque brushless DC motors, efficient low-ratio transmissions, and high fidelity torque control, STEPPR provides the ability to incorporate novel joint-level mechanisms without dramatically altering high level control. Unique parallel elastic designs are incorporated into STEPPR, and walking data shows that hip adduction and ankle flexion springs significantly reduce the required actuator energy at those joints for several gaits. These results suggest that parallel joint springs offer a promising means of supporting quasi-static joint torques due to body mass during walking, relieving motors of the need to support these torques and substantially improving locomotive energy efficiency.« less

  8. Parallel elastic elements improve energy efficiency on the STEPPR bipedal walking robot

    SciTech Connect

    Mazumdar, Anirban; Spencer, Steven J.; Hobart, Clinton; Salton, Jonathan; Quigley, Morgan; Wu, Tingfan; Bertrand, Sylvain; Pratt, Jerry; Buerger, Stephen P.

    2016-11-23

    This study describes how parallel elastic elements can be used to reduce energy consumption in the electric motor driven, fully-actuated, STEPPR bipedal walking robot without compromising or significantly limiting locomotive behaviors. A physically motivated approach is used to illustrate how selectively-engaging springs for hip adduction and ankle flexion predict benefits for three different flat ground walking gaits: human walking, human-like robot walking and crouched robot walking. Based on locomotion data, springs are designed and substantial reductions in power consumption are demonstrated using a bench dynamometer. These lessons are then applied to STEPPR (Sandia Transmission-Efficient Prototype Promoting Research), a fully actuated bipedal robot designed to explore the impact of tailored joint mechanisms on walking efficiency. Featuring high-torque brushless DC motors, efficient low-ratio transmissions, and high fidelity torque control, STEPPR provides the ability to incorporate novel joint-level mechanisms without dramatically altering high level control. Unique parallel elastic designs are incorporated into STEPPR, and walking data shows that hip adduction and ankle flexion springs significantly reduce the required actuator energy at those joints for several gaits. These results suggest that parallel joint springs offer a promising means of supporting quasi-static joint torques due to body mass during walking, relieving motors of the need to support these torques and substantially improving locomotive energy efficiency.

  9. Using intelligent controller to enhance the walking stability of bipedal walking robot

    NASA Astrophysics Data System (ADS)

    Hsieh, Tsung-Che; Chang, Chia-Der

    2016-07-01

    This paper is to improve the stability issue of the bipedal walking robot. The study of robot's pivot joint constructs the driver system to control the implementation. First, a Proportion-Integral-Derivative (PID) controller is designed by which is used the concept of tuning parameter to achieve the stability of the system. Second, Fuzzy controller and tradition PID controller is used to maintain output. It improved original PID controller efficacy. Finally, Artificial Neuro-Fuzzy Inference System (ANFIS) is utilized which is made the controller to achieve self-studying and modify the effect which is completed by the intelligent controller. It improved bipedal robot's stability control of realization. The result is verified that the walking stability of the bipedal walking robot in Matlab/Simulink. The intelligent controller has achieved the desired position of motor joint and the target stability performance.

  10. Collision-based mechanics of bipedal hopping.

    PubMed

    Gutmann, Anne K; Lee, David V; McGowan, Craig P

    2013-08-23

    The muscle work required to sustain steady-speed locomotion depends largely upon the mechanical energy needed to redirect the centre of mass and the degree to which this energy can be stored and returned elastically. Previous studies have found that large bipedal hoppers can elastically store and return a large fraction of the energy required to hop, whereas small bipedal hoppers can only elastically store and return a relatively small fraction. Here, we consider the extent to which large and small bipedal hoppers (tammar wallabies, approx. 7 kg, and desert kangaroo rats, approx. 0.1 kg) reduce the mechanical energy needed to redirect the centre of mass by reducing collisions. We hypothesize that kangaroo rats will reduce collisions to a greater extent than wallabies since kangaroo rats cannot elastically store and return as high a fraction of the mechanical energy of hopping as wallabies. We find that kangaroo rats use a significantly smaller collision angle than wallabies by employing ground reaction force vectors that are more vertical and center of mass velocity vectors that are more horizontal and thereby reduce their mechanical cost of transport. A collision-based approach paired with tendon morphometry may reveal this effect more generally among bipedal runners and quadrupedal trotters.

  11. Surprising trunk rotational capabilities in chimpanzees and implications for bipedal walking proficiency in early hominins.

    PubMed

    Thompson, Nathan E; Demes, Brigitte; O'Neill, Matthew C; Holowka, Nicholas B; Larson, Susan G

    2015-10-06

    Human walking entails coordinated out-of-phase axial rotations of the thorax and pelvis. A long-held assumption is that this ability relies on adaptations for trunk flexibility present in humans, but not in chimpanzees, other great apes, or australopithecines. Here we use three-dimensional kinematic analyses to show that, contrary to current thinking, chimpanzees walking bipedally rotate their lumbar and thoracic regions in a manner similar to humans. This occurs despite differences in the magnitude of trunk motion, and despite morphological differences in truncal 'rigidity' between species. These results suggest that, like humans and chimpanzees, early hominins walked with upper body rotations that countered pelvic rotation. We demonstrate that even if early hominins walked with pelvic rotations 50% larger than humans, they may have accrued the energetic and mechanical benefits of out-of-phase thoracic rotations. This would have allowed early hominins to reduce work and locomotor cost, improving walking efficiency early in hominin evolution.

  12. Three-dimensional kinematics of the pelvis and hind limbs in chimpanzee (Pan troglodytes) and human bipedal walking.

    PubMed

    O'Neill, Matthew C; Lee, Leng-Feng; Demes, Brigitte; Thompson, Nathan E; Larson, Susan G; Stern, Jack T; Umberger, Brian R

    2015-09-01

    The common chimpanzee (Pan troglodytes) is a facultative biped and our closest living relative. As such, the musculoskeletal anatomies of their pelvis and hind limbs have long provided a comparative context for studies of human and fossil hominin locomotion. Yet, how the chimpanzee pelvis and hind limb actually move during bipedal walking is still not well defined. Here, we describe the three-dimensional (3-D) kinematics of the pelvis, hip, knee and ankle during bipedal walking and compare those values to humans walking at the same dimensionless and dimensional velocities. The stride-to-stride and intraspecific variations in 3-D kinematics were calculated using the adjusted coefficient of multiple correlation. Our results indicate that humans walk with a more stable pelvis than chimpanzees, especially in tilt and rotation. Both species exhibit similar magnitudes of pelvis list, but with segment motion that is opposite in phasing. In the hind limb, chimpanzees walk with a more flexed and abducted limb posture, and substantially exceed humans in the magnitude of hip rotation during a stride. The average stride-to-stride variation in joint and segment motion was greater in chimpanzees than humans, while the intraspecific variation was similar on average. These results demonstrate substantial differences between human and chimpanzee bipedal walking, in both the sagittal and non-sagittal planes. These new 3-D kinematic data are fundamental to a comprehensive understanding of the mechanics, energetics and control of chimpanzee bipedalism.

  13. Surprising trunk rotational capabilities in chimpanzees and implications for bipedal walking proficiency in early hominins

    PubMed Central

    Thompson, Nathan E.; Demes, Brigitte; O'Neill, Matthew C.; Holowka, Nicholas B.; Larson, Susan G.

    2015-01-01

    Human walking entails coordinated out-of-phase axial rotations of the thorax and pelvis. A long-held assumption is that this ability relies on adaptations for trunk flexibility present in humans, but not in chimpanzees, other great apes, or australopithecines. Here we use three-dimensional kinematic analyses to show that, contrary to current thinking, chimpanzees walking bipedally rotate their lumbar and thoracic regions in a manner similar to humans. This occurs despite differences in the magnitude of trunk motion, and despite morphological differences in truncal ‘rigidity' between species. These results suggest that, like humans and chimpanzees, early hominins walked with upper body rotations that countered pelvic rotation. We demonstrate that even if early hominins walked with pelvic rotations 50% larger than humans, they may have accrued the energetic and mechanical benefits of out-of-phase thoracic rotations. This would have allowed early hominins to reduce work and locomotor cost, improving walking efficiency early in hominin evolution. PMID:26441046

  14. Effects of electrical noise to a knee joint on quiet bipedal stance and treadmill walking.

    PubMed

    Kimura, T; Taki, C; Shiozawa, N; Kouzaki, M

    2013-01-01

    The present study assessed whether an unperceivable, noise-like electrical stimulation of a knee joint enhances the stability of quiet bipedal stance and treadmill walking in young subjects. The results showed that the slow postural sway measures in quiet bipedal stance were significantly reduced by the electrical noise (P<0.05). In the treadmill walking, low frequency component (below 1 Hz) of mediolateral acceleration, measured at the third lumbar vertebra, significantly decreased with the electrical noise (P<0.05), while there were no changes in the anteroposterior and vertical directions. These results indicate that the electrical noise to a knee joint can be applied to enhance postural control in quiet bipedal stance and treadmill walking.

  15. Extracting Kinematic Parameters for Monkey Bipedal Walking from Cortical Neuronal Ensemble Activity

    PubMed Central

    Fitzsimmons, Nathan A.; Lebedev, Mikhail A.; Peikon, Ian D.; Nicolelis, Miguel A. L.

    2009-01-01

    The ability to walk may be critically impacted as the result of neurological injury or disease. While recent advances in brain–machine interfaces (BMIs) have demonstrated the feasibility of upper-limb neuroprostheses, BMIs have not been evaluated as a means to restore walking. Here, we demonstrate that chronic recordings from ensembles of cortical neurons can be used to predict the kinematics of bipedal walking in rhesus macaques – both offline and in real time. Linear decoders extracted 3D coordinates of leg joints and leg muscle electromyograms from the activity of hundreds of cortical neurons. As more complex patterns of walking were produced by varying the gait speed and direction, larger neuronal populations were needed to accurately extract walking patterns. Extraction was further improved using a switching decoder which designated a submodel for each walking paradigm. We propose that BMIs may one day allow severely paralyzed patients to walk again. PMID:19404411

  16. Simulation Studies of Bipedal Walking on the Moon and Mars

    NASA Astrophysics Data System (ADS)

    Yamada, Shin; Ohshima, Hiroshi; Yamaguchi, Tomofumi; Narukawa, Terumasa; Takahashi, Masaki; Hase, Kimitaka; Liu, Meigen; Mukai, Chiaki

    In order to walk upright on the Moon or Mars without falling, a specific walking strategy to account for altered gravitational conditions must be verified. We have therefore been studying changes in the kinematics of walking at different gravitational loads using a body weight suspension system. Our simulation consisted of three gravitational conditions: 1 g (Earth); 1/3 g (Mars); and 1/6 g (the Moon). Surface EMG recordings were taken from the leg muscles of subjects walking on a treadmill. Cadence, stance phase duration, and step length were calculated from the walking velocity and steps. Subsequent experiments revealed that muscle activity and the duration of the double support phase decreased as simulated gravity was reduced. These changes are apparently caused not only by the direct effects of unloading but also by kinematic adaptations to the same. It can be said that humans walk slowly with a shortened stride and elongated stance phase in order to adjust to low gravitational conditions. One major limitation of our study that may have affected walking stability was the fact that the suspension system was fixed to an immovable frame. We have begun further studies using a newer movable body weight suspension system to achieve more realistic simulations.

  17. An analysis of leg joint synergy during bipedal walking in Japanese macaques.

    PubMed

    Kaichida, Shoko; Hashizume, Yoshimitsu; Ogihara, Naomichi; Nishii, Jun

    2011-01-01

    We analyzed bipedal locomotion of Japanese macaques from the view point of leg joint synergy by the UCM (Uncontrolled manifold) analysis in order to examine how and when hip, knee and ankle joints cooperate so as to suppress the variances of the toe position relative to the hip position. Our results showed that joint synergy is exploited at some moments during walking. For instance, the variance of the vertical toe position was suppressed by joint synergy when the tip of the finger passes its lowest position from the ground. Some characteristics of the synergy pattern of macaques have been also reported in human walking, on the other hand, some differences between humans and macaques were found. For instance, high degree of joint synergy that suppresses the variance of hip height was observed around the end of stance phase in human walking, but such synergy was weak in macaques. The results suggest that different control strategies are used in bipedal walking of macaques and humans.

  18. Mechanisms for the acquisition of habitual bipedality: are there biomechanical reasons for the acquisition of upright bipedal posture?

    PubMed Central

    Preuschoft, Holger

    2004-01-01

    Morphology and biomechanics are linked by causal morphogenesis (‘Wolff's law’) and the interplay of mutations and selection (Darwin's ‘survival of the fittest’). Thus shape-based selective pressures can be determined. In both cases we need to know which biomechanical factors lead to skeletal adaptation, and which ones exert selective pressures on body shape. Each bone must be able to sustain the greatest regularly occurring loads. Smaller loads are unlikely to lead to adaptation of morphology. The highest loads occur primarily in posture and locomotion, simply because of the effect of body weight (or its multiple). In the skull, however, it is biting and chewing that result in the greatest loads. Body shape adapted for an arboreal lifestyle also smooths the way towards bipedality. Hindlimb dominance, length of the limbs in relation to the axial skeleton, grasping hands and feet, mass distribution (especially of the limb segments), thoracic shape, rib curvatures, and the position of the centre of gravity are the adaptations to arboreality that also pre-adapt for bipedality. Five divergent locomotor/morphological types have evolved from this base: arm-swinging in gibbons, forelimb-dominated slow climbing in orang-utans, quadrupedalism/climbing in the African apes, an unknown mix of climbing and bipedal walking in australopithecines, and the remarkably endurant bipedal walking of humans. All other apes are also facultative bipeds, but it is the biomechanical characteristics of bipedalism in orang-utans, the most arboreal great ape, which is closest to that in humans. If not evolutionary accident, what selective factor can explain why two forms adopted bipedality? Most authors tend to connect bipedal locomotion with some aspect of progressively increasing distance between trees because of climatic changes. More precise factors, in accordance with biomechanical requirements, include stone-throwing, thermoregulation or wading in shallow water. Once bipedality has

  19. Mechanisms for the acquisition of habitual bipedality: are there biomechanical reasons for the acquisition of upright bipedal posture?

    PubMed

    Preuschoft, Holger

    2004-05-01

    Morphology and biomechanics are linked by causal morphogenesis ('Wolff's law') and the interplay of mutations and selection (Darwin's 'survival of the fittest'). Thus shape-based selective pressures can be determined. In both cases we need to know which biomechanical factors lead to skeletal adaptation, and which ones exert selective pressures on body shape. Each bone must be able to sustain the greatest regularly occurring loads. Smaller loads are unlikely to lead to adaptation of morphology. The highest loads occur primarily in posture and locomotion, simply because of the effect of body weight (or its multiple). In the skull, however, it is biting and chewing that result in the greatest loads. Body shape adapted for an arboreal lifestyle also smooths the way towards bipedality. Hindlimb dominance, length of the limbs in relation to the axial skeleton, grasping hands and feet, mass distribution (especially of the limb segments), thoracic shape, rib curvatures, and the position of the centre of gravity are the adaptations to arboreality that also pre-adapt for bipedality. Five divergent locomotor/morphological types have evolved from this base: arm-swinging in gibbons, forelimb-dominated slow climbing in orangutans, quadrupedalism/climbing in the African apes, an unknown mix of climbing and bipedal walking in australopithecines, and the remarkably endurant bipedal walking of humans. All other apes are also facultative bipeds, but it is the biomechanical characteristics of bipedalism in orangutans, the most arboreal great ape, which is closest to that in humans. If not evolutionary accident, what selective factor can explain why two forms adopted bipedality? Most authors tend to connect bipedal locomotion with some aspect of progressively increasing distance between trees because of climatic changes. More precise factors, in accordance with biomechanical requirements, include stone-throwing, thermoregulation or wading in shallow water. Once bipedality has been

  20. The lower limb and mechanics of walking in Australopithecus sediba.

    PubMed

    DeSilva, Jeremy M; Holt, Kenneth G; Churchill, Steven E; Carlson, Kristian J; Walker, Christopher S; Zipfel, Bernhard; Berger, Lee R

    2013-04-12

    The discovery of a relatively complete Australopithecus sediba adult female skeleton permits a detailed locomotor analysis in which joint systems can be integrated to form a comprehensive picture of gait kinematics in this late australopith. Here we describe the lower limb anatomy of Au. sediba and hypothesize that this species walked with a fully extended leg and with an inverted foot during the swing phase of bipedal walking. Initial contact of the lateral foot with the ground resulted in a large pronatory torque around the joints of the foot that caused extreme medial weight transfer (hyperpronation) into the toe-off phase of the gait cycle (late pronation). These bipedal mechanics are different from those often reconstructed for other australopiths and suggest that there may have been several forms of bipedalism during the Plio-Pleistocene.

  1. Sensor Data Fusion for Body State Estimation in a Bipedal Robot and Its Feedback Control Application for Stable Walking

    PubMed Central

    Chen, Ching-Pei; Chen, Jing-Yi; Huang, Chun-Kai; Lu, Jau-Ching; Lin, Pei-Chun

    2015-01-01

    We report on a sensor data fusion algorithm via an extended Kalman filter for estimating the spatial motion of a bipedal robot. Through fusing the sensory information from joint encoders, a 6-axis inertial measurement unit and a 2-axis inclinometer, the robot’s body state at a specific fixed position can be yielded. This position is also equal to the CoM when the robot is in the standing posture suggested by the detailed CAD model of the robot. In addition, this body state is further utilized to provide sensory information for feedback control on a bipedal robot with walking gait. The overall control strategy includes the proposed body state estimator as well as the damping controller, which regulates the body position state of the robot in real-time based on instant and historical position tracking errors. Moreover, a posture corrector for reducing unwanted torque during motion is addressed. The body state estimator and the feedback control structure are implemented in a child-size bipedal robot and the performance is experimentally evaluated. PMID:25734644

  2. Sensor data fusion for body state estimation in a bipedal robot and its feedback control application for stable walking.

    PubMed

    Chen, Ching-Pei; Chen, Jing-Yi; Huang, Chun-Kai; Lu, Jau-Ching; Lin, Pei-Chun

    2015-02-27

    We report on a sensor data fusion algorithm via an extended Kalman filter for estimating the spatial motion of a bipedal robot. Through fusing the sensory information from joint encoders, a 6-axis inertial measurement unit and a 2-axis inclinometer, the robot's body state at a specific fixed position can be yielded. This position is also equal to the CoM when the robot is in the standing posture suggested by the detailed CAD model of the robot. In addition, this body state is further utilized to provide sensory information for feedback control on a bipedal robot with walking gait. The overall control strategy includes the proposed body state estimator as well as the damping controller, which regulates the body position state of the robot in real-time based on instant and historical position tracking errors. Moreover, a posture corrector for reducing unwanted torque during motion is addressed. The body state estimator and the feedback control structure are implemented in a child-size bipedal robot and the performance is experimentally evaluated.

  3. Analysis of joint force and torque for the human and non-human ape foot during bipedal walking with implications for the evolution of the foot

    PubMed Central

    Wang, Weijie; Abboud, Rami J; Günther, Michael M; Crompton, Robin H

    2014-01-01

    The feet of apes have a different morphology from those of humans. Until now, it has merely been assumed that the morphology seen in humans must be adaptive for habitual bipedal walking, as the habitual use of bipedal walking is generally regarded as one of the most clear-cut differences between humans and apes. This study asks simply whether human skeletal proportions do actually enhance foot performance during human-like bipedalism, by examining the influence of foot proportions on force, torque and work in the foot joints during simulated bipedal walking. Skeletons of the common chimpanzee, orangutan, gorilla and human were represented by multi-rigid-body models, where the components of the foot make external contact via finite element surfaces. The models were driven by identical joint motion functions collected from experiments on human walking. Simulated contact forces between the ground and the foot were found to be reasonably comparable with measurements made during human walking using pressure- and force-platforms. Joint force, torque and work in the foot were then predicted. Within the limitations of our model, the results show that during simulated human-like bipedal walking, (1) the human and non-human ape (NHA) feet carry similar joint forces, although the distributions of the forces differ; (2) the NHA foot incurs larger joint torques than does the human foot, although the human foot has higher values in the first tarso-metatarsal and metatarso-phalangeal joints, whereas the NHA foot incurs higher values in the lateral digits; and (3) total work in the metatarso-phalangeal joints is lower in the human foot than in the NHA foot. The results indicate that human foot proportions are indeed well suited to performance in normal human walking. PMID:24925580

  4. Reactive and anticipatory control of posture and bipedal locomotion in a nonhuman primate.

    PubMed

    Mori, Futoshi; Nakajima, Katsumi; Tachibana, Atsumichi; Takasu, Chijiko; Mori, Masahiro; Tsujimoto, Toru; Tsukada, Hideo; Mori, Shigemi

    2004-01-01

    Bipedal locomotion is a common daily activity. Despite its apparent simplicity, it is a complex set of movements that requires the integrated neural control of multiple body segments. We have recently shown that the juvenile Japanese monkey, M. fuscata, can be operant-trained to walk bipedally on moving treadmill. It can control the body axis and lower limb movements when confronted by a change in treadmill speed. M. fuscata can also walk bipedally on a slanted treadmill. Furthermore, it can learn to clear an obstacle attached to the treadmill's belt. When failing to clear the obstacle, the monkey stumbles but quickly corrects its posture and the associated movements of multiple motor segments to again resume smooth bipedal walking. These results give indication that in learning to walk bipedally, M. fuscata transforms relevant visual, vestibular, proprioceptive, and exteroceptive sensory inputs into commands that engage both anticipatory and reactive motor mechanisms. Both mechanisms are essential for meeting external demands imposed upon posture and locomotion.

  5. A walk along DNA using bipedal migration of a dynamic and covalent crosslinker

    NASA Astrophysics Data System (ADS)

    Fakhari, Fazel; Rokita, Steven E.

    2014-11-01

    DNA has previously served as an excellent scaffold for molecular transport based on its non-covalent base pairing to assemble both stationary and mobile elements. Use of DNA can now be extended to transport systems based on reversible covalent chemistry. Autonomous and bipedal-like migration of crosslinking within helical DNA is made possible by tandem exchange of a quinone methide intermediate. In this report, net transport is illustrated to proceed over 10 base pairs. This process is driven towards its equilibrium distribution of crosslinks and consumes neither the walker nor the track irreversibly. Successful migration requires an electron-rich quinone methide to promote its regeneration and a continuous array of nucleophilic sites along its DNA track. Accordingly, net migration can be dramatically influenced by the presence of noncanonical structures within duplex DNA as demonstrated with a backbone nick and extrahelical bulge.

  6. Locomotor energetics and leg length in hominid bipedality.

    PubMed

    Kramer, P A; Eck, G G

    2000-05-01

    Because bipedality is the quintessential characteristic of Hominidae, researchers have compared ancient forms of bipedality with modern human gait since the first clear evidence of bipedal australopithecines was unearthed over 70 years ago. Several researchers have suggested that the australopithecine form of bipedality was transitional between the quadrupedality of the African apes and modern human bipedality and, consequently, inefficient. Other researchers have maintained that australopithecine bipedality was identical to that of Homo. But is it reasonable to require that all forms of hominid bipedality must be the same in order to be optimized? Most attempts to evaluate the locomotor effectiveness of the australopithecines have, unfortunately, assumed that the locomotor anatomy of modern humans is the exemplar of consummate bipedality. Modern human anatomy is, however, the product of selective pressures present in the particular milieu in which Homo arose and it is not necessarily the only, or even the most efficient, bipedal solution possible. In this report, we investigate the locomotion of Australopithecus afarensis, as represented by AL 288-1, using standard mechanical analyses. The osteological anatomy of AL 288-1 and movement profiles derived from modern humans are applied to a dynamic model of a biped, which predicts the mechanical power required by AL 288-1 to walk at various velocities. This same procedure is used with the anatomy of a composite modern woman and a comparison made. We find that AL 288-1 expends less energy than the composite woman when locomoting at walking speeds. This energetic advantage comes, however, at a price: the preferred transition speed (from a walk to a run) of AL 288-1 was lower than that of the composite woman. Consequently, the maximum daily range of AL 288-1 may well have been substantially smaller than that of modern people. The locomotor anatomy of A. afarensis may have been optimized for a particular ecological niche

  7. The mechanics of the gibbon foot and its potential for elastic energy storage during bipedalism.

    PubMed

    Vereecke, Evie E; Aerts, Peter

    2008-12-01

    The mechanics of the modern human foot and its specialization for habitual bipedalism are well understood. The windlass mechanism gives it the required stability for propulsion generation, and flattening of the arch and stretching of the plantar aponeurosis leads to energy saving. What is less well understood is how an essentially flat and mobile foot, as found in protohominins and extant apes, functions during bipedalism. This study evaluates the hypothesis that an energy-saving mechanism, by stretch and recoil of plantar connective tissues, is present in the mobile gibbon foot and provides a two-dimensional analysis of the internal joint mechanics of the foot during spontaneous bipedalism of gibbons using a four-link segment foot model. Available force and pressure data are combined with detailed foot kinematics, recorded with a high-speed camera at 250 Hz, to calculate the external joint moments at the metatarsophalangeal (MP), tarsometatarsal (TM) and talocrural (TC) joints. In addition, instantaneous joint powers are estimated to obtain insight into the propulsion-generating capacities of the internal foot joints. It is found that, next to a wide range of motion at the TC joint, substantial motion is observed at the TM and MP joint, underlining the importance of using a multi-segment foot model in primate gait analyses. More importantly, however, this study shows that although a compliant foot is less mechanically effective for push-off than a ;rigid' arched foot, it can contribute to the generation of propulsion in bipedal locomotion via stretch and recoil of the plantarflexor tendons and plantar ligaments.

  8. Controlled Reduction with Unactuated Cyclic Variables: Application to 3D Bipedal Walking with Passive Yaw Rotation.

    PubMed

    Gregg, Robert D; Righetti, Ludovic

    2013-10-01

    This paper shows that viscous damping can shape momentum conservation laws in a manner that stabilizes yaw rotation and enables steering for underactuated 3D walking. We first show that unactuated cyclic variables can be controlled by passively shaped conservation laws given a stabilizing controller in the actuated coordinates. We then exploit this result to realize controlled geometric reduction with multiple unactuated cyclic variables. We apply this underactuated control strategy to a five-link 3D biped to produce exponentially stable straight-ahead walking and steering in the presence of passive yawing.

  9. Controlled Reduction with Unactuated Cyclic Variables: Application to 3D Bipedal Walking with Passive Yaw Rotation

    PubMed Central

    Righetti, Ludovic

    2014-01-01

    This paper shows that viscous damping can shape momentum conservation laws in a manner that stabilizes yaw rotation and enables steering for underactuated 3D walking. We first show that unactuated cyclic variables can be controlled by passively shaped conservation laws given a stabilizing controller in the actuated coordinates. We then exploit this result to realize controlled geometric reduction with multiple unactuated cyclic variables. We apply this underactuated control strategy to a five-link 3D biped to produce exponentially stable straight-ahead walking and steering in the presence of passive yawing. PMID:25554709

  10. Mechatronic Wearable Exoskeletons for Bionic Bipedal Standing and Walking: A New Synthetic Approach

    PubMed Central

    Onose, Gelu; Cârdei, Vladimir; Crăciunoiu, Ştefan T.; Avramescu, Valeriu; Opriş, Ioan; Lebedev, Mikhail A.; Constantinescu, Marian Vladimir

    2016-01-01

    During the last few years, interest has been growing to mechatronic and robotic technologies utilized in wearable powered exoskeletons that assist standing and walking. The available literature includes single-case reports, clinical studies conducted in small groups of subjects, and several recent systematic reviews. These publications have fulfilled promotional and marketing objectives but have not yet resulted in a fully optimized, practical wearable exoskeleton. Here we evaluate the progress and future directions in this field from a joint perspective of health professionals, manufacturers, and consumers. We describe the taxonomy of existing technologies and highlight the main improvements needed for the development and functional optimization of the practical exoskeletons. PMID:27746711

  11. Formation mechanism of a basin of attraction for passive dynamic walking induced by intrinsic hyperbolicity

    NASA Astrophysics Data System (ADS)

    Obayashi, Ippei; Aoi, Shinya; Tsuchiya, Kazuo; Kokubu, Hiroshi

    2016-06-01

    Passive dynamic walking is a useful model for investigating the mechanical functions of the body that produce energy-efficient walking. The basin of attraction is very small and thin, and it has a fractal-like shape; this explains the difficulty in producing stable passive dynamic walking. The underlying mechanism that produces these geometric characteristics was not known. In this paper, we consider this from the viewpoint of dynamical systems theory, and we use the simplest walking model to clarify the mechanism that forms the basin of attraction for passive dynamic walking. We show that the intrinsic saddle-type hyperbolicity of the upright equilibrium point in the governing dynamics plays an important role in the geometrical characteristics of the basin of attraction; this contributes to our understanding of the stability mechanism of bipedal walking.

  12. Mechanical design of walking machines.

    PubMed

    Arikawa, Keisuke; Hirose, Shigeo

    2007-01-15

    The performance of existing actuators, such as electric motors, is very limited, be it power-weight ratio or energy efficiency. In this paper, we discuss the method to design a practical walking machine under this severe constraint with focus on two concepts, the gravitationally decoupled actuation (GDA) and the coupled drive. The GDA decouples the driving system against the gravitational field to suppress generation of negative power and improve energy efficiency. On the other hand, the coupled drive couples the driving system to distribute the output power equally among actuators and maximize the utilization of installed actuator power. First, we depict the GDA and coupled drive in detail. Then, we present actual machines, TITAN-III and VIII, quadruped walking machines designed on the basis of the GDA, and NINJA-I and II, quadruped wall walking machines designed on the basis of the coupled drive. Finally, we discuss walking machines that travel on three-dimensional terrain (3D terrain), which includes the ground, walls and ceiling. Then, we demonstrate with computer simulation that we can selectively leverage GDA and coupled drive by walking posture control.

  13. Bipedal locomotion in granular media

    NASA Astrophysics Data System (ADS)

    Kingsbury, Mark; Zhang, Tingnan; Goldman, Daniel

    Bipedal walking, locomotion characterized by alternating swing and double support phase, is well studied on ground where feet do not penetrate the substrate. On granular media like sand however, intrusion and extrusion phases also occur. In these phases, relative motion of the two feet requires that one or both feet slip through the material, degrading performance. To study walking in these phases, we designed and studied a planarized bipedal robot (1.6 kg, 42 cm) that walked in a fluidized bed of poppy seeds. We also simulated the robot in a multibody software environment (Chrono) using granular resistive force theory (RFT) to calculate foot forces. In experiment and simulation, the robot experienced slip during the intrusion phase, with the experiment presenting additional slip due to motor control error during the double support phase. This exaggerated slip gave insight (through analysis of ground reaction forces in simulation) into how slip occurs when relative motion exists between the two feet in the granular media, where the foot with higher relative drag forces (from its instantaneous orientation, rotation, relative direction of motion, and depth) remains stationary. With this relationship, we generated walking gaits for the robot to walk with minimal slip.

  14. Bipedality in chimpanzee (Pan troglodytes) and bonobo (Pan paniscus): testing hypotheses on the evolution of bipedalism.

    PubMed

    Videan, Elaine N; McGrew, W C

    2002-06-01

    A host of ecological, anatomical, and physiological selective pressures are hypothesized to have played a role in the evolution of hominid bipedalism. A referential model, based on the chimpanzee (Pan troglodytes) and bonobo (Pan paniscus), was used to test through experimental manipulation four hypotheses on the evolution of hominid bipedalism. The introduction of food piles (Carry hypothesis) increased locomotor bipedality in both species. Neither the introduction of branches (Display hypothesis) nor the construction of visual barriers (Vigilance hypothesis) altered bipedality in either species. Introduction of raised foraging structures (Forage hypothesis) increased postural bipedality in chimpanzees. These experimental manipulations provided support for carrying of portable objects and foraging on elevated food-items as plausible mechanisms that shaped bipedalism in hominids.

  15. Underwater bipedal locomotion by octopuses in disguise.

    PubMed

    Huffard, Christine L; Boneka, Farnis; Full, Robert J

    2005-03-25

    Here we report bipedal movement with a hydrostatic skeleton. Two species of octopus walk on two alternating arms using a rolling gait and appear to use the remaining six arms for camouflage. Octopus marginatus resembles a coconut, and Octopus (Abdopus) aculeatus, a clump of floating algae. Using underwater video, we analyzed the kinematics of their strides. Each arm was on the sand for more than half of the stride, qualifying this behavior as a form of walking.

  16. Form and function of the human and chimpanzee forefoot: implications for early hominin bipedalism

    PubMed Central

    Fernández, Peter J.; Holowka, Nicholas B.; Demes, Brigitte; Jungers, William L.

    2016-01-01

    During bipedal walking, modern humans dorsiflex their forefoot at the metatarsophalangeal joints (MTPJs) prior to push off, which tightens the plantar soft tissues to convert the foot into a stiff propulsive lever. Particular features of metatarsal head morphology such as “dorsal doming” are thought to facilitate this stiffening mechanism. In contrast, chimpanzees are believed to possess MTPJ morphology that precludes high dorsiflexion excursions during terrestrial locomotion. The morphological affinity of the metatarsal heads has been used to reconstruct locomotor behavior in fossil hominins, but few studies have provided detailed empirical data to validate the assumed link between morphology and function at the MTPJs. Using three-dimensional kinematic and morphometric analyses, we show that humans push off with greater peak dorsiflexion angles at all MTPJs than do chimpanzees during bipedal and quadrupedal walking, with the greatest disparity occurring at MTPJ 1. Among MTPJs 2–5, both species exhibit decreasing peak angles from medial to lateral. This kinematic pattern is mirrored in the morphometric analyses of metatarsal head shape. Analyses of Australopithecus afarensis metatarsals reveal morphology intermediate between humans and chimpanzees, suggesting that this species used different bipedal push-off kinematics than modern humans, perhaps resulting in a less efficient form of bipedalism. PMID:27464580

  17. Laetoli Footprints Preserve Earliest Direct Evidence of Human-Like Bipedal Biomechanics

    PubMed Central

    Raichlen, David A.; Gordon, Adam D.; Harcourt-Smith, William E. H.; Foster, Adam D.; Haas, Wm. Randall

    2010-01-01

    Background Debates over the evolution of hominin bipedalism, a defining human characteristic, revolve around whether early bipeds walked more like humans, with energetically efficient extended hind limbs, or more like apes with flexed hind limbs. The 3.6 million year old hominin footprints at Laetoli, Tanzania represent the earliest direct evidence of hominin bipedalism. Determining the kinematics of Laetoli hominins will allow us to understand whether selection acted to decrease energy costs of bipedalism by 3.6 Ma. Methodology/Principal Findings Using an experimental design, we show that the Laetoli hominins walked with weight transfer most similar to the economical extended limb bipedalism of humans. Humans walked through a sand trackway using both extended limb bipedalism, and more flexed limb bipedalism. Footprint morphology from extended limb trials matches weight distribution patterns found in the Laetoli footprints. Conclusions These results provide us with the earliest direct evidence of kinematically human-like bipedalism currently known, and show that extended limb bipedalism evolved long before the appearance of the genus Homo. Since extended-limb bipedalism is more energetically economical than ape-like bipedalism, energy expenditure was likely an important selection pressure on hominin bipeds by 3.6 Ma. PMID:20339543

  18. Adaptations for economical bipedal running: the effect of limb structure on three-dimensional joint mechanics

    PubMed Central

    Rubenson, Jonas; Lloyd, David G.; Heliams, Denham B.; Besier, Thor F.; Fournier, Paul A.

    2011-01-01

    The purpose of this study was to examine the mechanical adaptations linked to economical locomotion in cursorial bipeds. We addressed this question by comparing mass-matched humans and avian bipeds (ostriches), which exhibit marked differences in limb structure and running economy. We hypothesized that the nearly 50 per cent lower energy cost of running in ostriches is a result of: (i) lower limb-swing mechanical power, (ii) greater stance-phase storage and release of elastic energy, and (iii) lower total muscle power output. To test these hypotheses, we used three-dimensional joint mechanical measurements and a simple model to estimate the elastic and muscle contributions to joint work and power. Contradictory to our first hypothesis, we found that ostriches and humans generate the same amounts of mechanical power to swing the limbs at a similar self-selected running speed, indicating that limb swing probably does not contribute to the difference in energy cost of running between these species. In contrast, we estimated that ostriches generate 120 per cent more stance-phase mechanical joint power via release of elastic energy compared with humans. This elastic mechanical power occurs nearly exclusively at the tarsometatarso-phalangeal joint, demonstrating a shift of mechanical power generation to distal joints compared with humans. We also estimated that positive muscle fibre power is 35 per cent lower in ostriches compared with humans, and is accounted for primarily by higher capacity for storage and release of elastic energy. Furthermore, our analysis revealed much larger frontal and internal/external rotation joint loads during ostrich running than in humans. Together, these findings support the hypothesis that a primary limb structure specialization linked to economical running in cursorial species is an elevated storage and release of elastic energy in tendon. In the ostrich, energy-saving specializations may also include passive frontal and internal

  19. Vaulting mechanics successfully predict decrease in walk-run transition speed with incline.

    PubMed

    Hubel, Tatjana Y; Usherwood, James R

    2013-04-23

    There is an ongoing debate about the reasons underlying gait transition in terrestrial locomotion. In bipedal locomotion, the 'compass gait', a reductionist model of inverted pendulum walking, predicts the boundaries of speed and step length within which walking is feasible. The stance of the compass gait is energetically optimal-at walking speeds-owing to the absence of leg compression/extension; completely stiff limbs perform no work during the vaulting phase. Here, we extend theoretical compass gait vaulting to include inclines, and find good agreement with previous observations of changes in walk-run transition speed (approx. 1% per 1% incline). We measured step length and frequency for humans walking either on the level or up a 9.8 per cent incline and report preferred walk-run, walk-compliant-walk and maximum walk-run transition speeds. While the measured 'preferred' walk-run transition speed lies consistently below the predicted maximum walking speeds, and 'actual' maximum walking speeds are clearly above the predicted values, the onset of compliant walking in level as well as incline walking occurs close to the predicted values. These findings support the view that normal human walking is constrained by the physics of vaulting, but preferred absolute walk-run transition speeds may be influenced by additional factors.

  20. Complementary mechanisms for upright balance during walking

    PubMed Central

    Fettrow, Tyler D.; Thompson, Elizabeth D.; Agada, Peter; McFadyen, Bradford J.; Jeka, John J.

    2017-01-01

    Lateral balance is a critical factor in keeping the human body upright during walking. Two important mechanisms for balance control are the stepping strategy, in which the foot placement is changed in the direction of a sensed fall to modulate how the gravitational force acts on the body, and the lateral ankle strategy, in which the body mass is actively accelerated by an ankle torque. Currently, there is minimal evidence about how these two strategies complement one another to achieve upright balance during locomotion. We use Galvanic vestibular stimulation (GVS) to induce the sensation of a fall at heel-off during gait initiation. We found that young healthy adults respond to the illusory fall using both the lateral ankle strategy and the stepping strategy. The stance foot center of pressure (CoP) is shifted in the direction of the perceived fall by ≈2.5 mm, starting ≈247 ms after stimulus onset. The foot placement of the following step is shifted by ≈15 mm in the same direction. The temporal delay between these two mechanisms suggests that they independently contribute to upright balance during locomotion, potentially in a serially coordinated manner. Modeling results indicate that without the lateral ankle strategy, a much larger step width is required to maintain upright balance, suggesting that the small but early CoP shift induced by the lateral ankle strategy is critical for upright stability during locomotion. The relative importance of each mechanism and how neurological disorders may affect their implementation remain an open question. PMID:28234936

  1. 4. Band Wheel and Walking Beam Mechanism, Including Remains of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. Band Wheel and Walking Beam Mechanism, Including Remains of Frame Belt House, Looking Southeast - David Renfrew Oil Rig, East side of Connoquenessing Creek, 0.4 mile North of confluence with Thorn Creek, Renfrew, Butler County, PA

  2. Disparity and convergence in bipedal archosaur locomotion

    PubMed Central

    Bates, K. T.; Schachner, E. R.

    2012-01-01

    This study aims to investigate functional disparity in the locomotor apparatus of bipedal archosaurs. We use reconstructions of hindlimb myology of extant and extinct archosaurs to generate musculoskeletal biomechanical models to test hypothesized convergence between bipedal crocodile-line archosaurs and dinosaurs. Quantitative comparison of muscle leverage supports the inference that bipedal crocodile-line archosaurs and non-avian theropods had highly convergent hindlimb myology, suggesting similar muscular mechanics and neuromuscular control of locomotion. While these groups independently evolved similar musculoskeletal solutions to the challenges of parasagittally erect bipedalism, differences also clearly exist, particularly the distinct hip and crurotarsal ankle morphology characteristic of many pseudosuchian archosaurs. Furthermore, comparative analyses of muscle design in extant archosaurs reveal that muscular parameters such as size and architecture are more highly adapted or optimized for habitual locomotion than moment arms. The importance of these aspects of muscle design, which are not directly retrievable from fossils, warns against over-extrapolating the functional significance of anatomical convergences. Nevertheless, links identified between posture, muscle moments and neural control in archosaur locomotion suggest that functional interpretations of osteological changes in limb anatomy traditionally linked to postural evolution in Late Triassic archosaurs could be constrained through musculoskeletal modelling. PMID:22112652

  3. Planning energy-efficient bipedal locomotion on patterned terrain

    NASA Astrophysics Data System (ADS)

    Zamani, Ali; Bhounsule, Pranav A.; Taha, Ahmad

    2016-05-01

    Energy-efficient bipedal walking is essential in realizing practical bipedal systems. However, current energy-efficient bipedal robots (e.g., passive-dynamics-inspired robots) are limited to walking at a single speed and step length. The objective of this work is to address this gap by developing a method of synthesizing energy-efficient bipedal locomotion on patterned terrain consisting of stepping stones using energy-efficient primitives. A model of Cornell Ranger (a passive-dynamics inspired robot) is utilized to illustrate our technique. First, an energy-optimal trajectory control problem for a single step is formulated and solved. The solution minimizes the Total Cost Of Transport (TCOT is defined as the energy used per unit weight per unit distance travelled) subject to various constraints such as actuator limits, foot scuffing, joint kinematic limits, ground reaction forces. The outcome of the optimization scheme is a table of TCOT values as a function of step length and step velocity. Next, we parameterize the terrain to identify the location of the stepping stones. Finally, the TCOT table is used in conjunction with the parameterized terrain to plan an energy-efficient stepping strategy.

  4. Arboreality, terrestriality and bipedalism.

    PubMed

    Crompton, Robin Huw; Sellers, William I; Thorpe, Susannah K S

    2010-10-27

    The full publication of Ardipithecus ramidus has particular importance for the origins of hominin bipedality, and strengthens the growing case for an arboreal origin. Palaeontological techniques however inevitably concentrate on details of fragmentary postcranial bones and can benefit from a whole-animal perspective. This can be provided by field studies of locomotor behaviour, which provide a real-world perspective of adaptive context, against which conclusions drawn from palaeontology and comparative osteology may be assessed and honed. Increasingly sophisticated dynamic modelling techniques, validated against experimental data for living animals, offer a different perspective where evolutionary and virtual ablation experiments, impossible for living mammals, may be run in silico, and these can analyse not only the interactions and behaviour of rigid segments but increasingly the effects of compliance, which are of crucial importance in guiding the evolution of an arboreally derived lineage.

  5. Arboreality, terrestriality and bipedalism

    PubMed Central

    Crompton, Robin Huw; Sellers, William I.; Thorpe, Susannah K. S.

    2010-01-01

    The full publication of Ardipithecus ramidus has particular importance for the origins of hominin bipedality, and strengthens the growing case for an arboreal origin. Palaeontological techniques however inevitably concentrate on details of fragmentary postcranial bones and can benefit from a whole-animal perspective. This can be provided by field studies of locomotor behaviour, which provide a real-world perspective of adaptive context, against which conclusions drawn from palaeontology and comparative osteology may be assessed and honed. Increasingly sophisticated dynamic modelling techniques, validated against experimental data for living animals, offer a different perspective where evolutionary and virtual ablation experiments, impossible for living mammals, may be run in silico, and these can analyse not only the interactions and behaviour of rigid segments but increasingly the effects of compliance, which are of crucial importance in guiding the evolution of an arboreally derived lineage. PMID:20855304

  6. Summary of Human Ankle Mechanical Impedance During Walking.

    PubMed

    Lee, Hyunglae; Rouse, Elliott J; Krebs, Hermano Igo

    2016-01-01

    The human ankle joint plays a critical role during walking and understanding the biomechanical factors that govern ankle behavior and provides fundamental insight into normal and pathologically altered gait. Previous researchers have comprehensively studied ankle joint kinetics and kinematics during many biomechanical tasks, including locomotion; however, only recently have researchers been able to quantify how the mechanical impedance of the ankle varies during walking. The mechanical impedance describes the dynamic relationship between the joint position and the joint torque during perturbation, and is often represented in terms of stiffness, damping, and inertia. The purpose of this short communication is to unify the results of the first two studies measuring ankle mechanical impedance in the sagittal plane during walking, where each study investigated differing regions of the gait cycle. Rouse et al. measured ankle impedance from late loading response to terminal stance, where Lee et al. quantified ankle impedance from pre-swing to early loading response. While stiffness component of impedance increases significantly as the stance phase of walking progressed, the change in damping during the gait cycle is much less than the changes observed in stiffness. In addition, both stiffness and damping remained low during the swing phase of walking. Future work will focus on quantifying impedance during the "push off" region of stance phase, as well as measurement of these properties in the coronal plane.

  7. Summary of Human Ankle Mechanical Impedance During Walking

    PubMed Central

    Rouse, Elliott J.; Krebs, Hermano Igo

    2016-01-01

    The human ankle joint plays a critical role during walking and understanding the biomechanical factors that govern ankle behavior and provides fundamental insight into normal and pathologically altered gait. Previous researchers have comprehensively studied ankle joint kinetics and kinematics during many biomechanical tasks, including locomotion; however, only recently have researchers been able to quantify how the mechanical impedance of the ankle varies during walking. The mechanical impedance describes the dynamic relationship between the joint position and the joint torque during perturbation, and is often represented in terms of stiffness, damping, and inertia. The purpose of this short communication is to unify the results of the first two studies measuring ankle mechanical impedance in the sagittal plane during walking, where each study investigated differing regions of the gait cycle. Rouse et al. measured ankle impedance from late loading response to terminal stance, where Lee et al. quantified ankle impedance from pre-swing to early loading response. While stiffness component of impedance increases significantly as the stance phase of walking progressed, the change in damping during the gait cycle is much less than the changes observed in stiffness. In addition, both stiffness and damping remained low during the swing phase of walking. Future work will focus on quantifying impedance during the “push off” region of stance phase, as well as measurement of these properties in the coronal plane. PMID:27766187

  8. Locomotor versatility in the white-handed gibbon (Hylobates lar): a spatiotemporal analysis of the bipedal, tripedal, and quadrupedal gaits.

    PubMed

    Vereecke, Evie E; D'Août, Kristiaan; Aerts, Peter

    2006-05-01

    This study gives a qualitative and quantitative description of the different terrestrial locomotor modes of a group of white-handed gibbons (Hylobates lar) from the Wild Animal Park Planckendael, Belgium. The gibbons were filmed during voluntary locomotion on a grassy and smooth substrate and on a pole. These video images allowed us to define seven different gait types, based on spatial and temporal footfall patterns. Consequent digitization of the video images (n = 254) yielded duty factors, stride lengths, and stride frequencies of the fore- and hind limbs during locomotion at a wide range of speeds. These spatiotemporal gait characteristics were regressed against velocity, and the regression lines of the different gait types were compared. In addition, gibbon bipedalism was compared with bonobo (Pan paniscus) and human bipedalism. Gibbons appear to be very versatile animals, using a bipedal, tripedal, or quadrupedal gait during terrestrial travel with an overlapping speed range. The spatiotemporal characteristics of these gaits are largely similar, although they have clearly distinct footfall patterns. Bipedal walking on the pole is slightly different from terrestrial bipedalism, but differences between substrate types (grass vs. catwalk) are subtle. During bipedalism, gibbons increase both stride length and frequency to increase speed, just as humans and bonobos do, but at a given speed, gibbons take relatively larger strides at lower rates. Bipedal walking in gibbons also appears to be relatively fast-gibbons could keep on walking at speeds where humans have to start running. Apparently, adaptations for arboreal locomotion have not constrained the terrestrial locomotor abilities of gibbons. This may indicate that the step from an arboreal ancestral ape to a terrestrial, upright bipedal hominin might not be difficult and that structural specializations are not a prerequisite for adopting a (non-habitual) bipedal gait.

  9. First steps of bipedality in hominids: evidence from the atelid and proconsulid pelvis.

    PubMed

    Machnicki, Allison L; Spurlock, Linda B; Strier, Karen B; Reno, Philip L; Lovejoy, C Owen

    2016-01-01

    Upright walking absent a bent-hip-bent-knee gait requires lumbar lordosis, a ubiquitous feature in all hominids for which it can be observed. Its first appearance is therefore a central problem in human evolution. Atelids, which use the tail during suspension, exhibit demonstrable lordosis and can achieve full extension of their hind limbs during terrestrial upright stance. Although obviously homoplastic with hominids, the pelvic mechanisms facilitating lordosis appear largely similar in both taxa with respect to abbreviation of upper iliac height coupled with broad sacral alae. Both provide spatial separation of the most caudal lumbar(s) from the iliac blades. A broad sacrum is therefore a likely facet of earliest hominid bipedality. All tailed monkeys have broad alae. By contrast all extant apes have very narrow sacra, which promote "trapping" of their most caudal lumbars to achieve lower trunk rigidity during suspension. The alae in the tailless proconsul Ekembo nyanzae appear to have been quite broad, a character state that may have been primitive in Miocene hominoids not yet adapted to suspension and, by extension, exaptive for earliest bipedality in the hominid/panid last common ancestor. This hypothesis receives strong support from other anatomical systems preserved in Ardipithecus ramidus.

  10. First steps of bipedality in hominids: evidence from the atelid and proconsulid pelvis

    PubMed Central

    Machnicki, Allison L.; Spurlock, Linda B.; Strier, Karen B.

    2016-01-01

    Upright walking absent a bent-hip-bent-knee gait requires lumbar lordosis, a ubiquitous feature in all hominids for which it can be observed. Its first appearance is therefore a central problem in human evolution. Atelids, which use the tail during suspension, exhibit demonstrable lordosis and can achieve full extension of their hind limbs during terrestrial upright stance. Although obviously homoplastic with hominids, the pelvic mechanisms facilitating lordosis appear largely similar in both taxa with respect to abbreviation of upper iliac height coupled with broad sacral alae. Both provide spatial separation of the most caudal lumbar(s) from the iliac blades. A broad sacrum is therefore a likely facet of earliest hominid bipedality. All tailed monkeys have broad alae. By contrast all extant apes have very narrow sacra, which promote “trapping” of their most caudal lumbars to achieve lower trunk rigidity during suspension. The alae in the tailless proconsul Ekembo nyanzae appear to have been quite broad, a character state that may have been primitive in Miocene hominoids not yet adapted to suspension and, by extension, exaptive for earliest bipedality in the hominid/panid last common ancestor. This hypothesis receives strong support from other anatomical systems preserved in Ardipithecus ramidus. PMID:26793418

  11. Central pattern generators for bipedal locomotion.

    PubMed

    Pinto, Carla M A; Golubitsky, Martin

    2006-09-01

    Golubitsky, Stewart, Buono and Collins proposed two models for the achitecture of central pattern generators (CPGs): one for bipeds (which we call leg) and one for quadrupeds (which we call quad). In this paper we use symmetry techniques to classify the possible spatiotemporal symmetries of periodic solutions that can exist in leg (there are 10 nontrivial types) and we explore the possibility that coordinated arm/leg rhythms can be understood, on the CPG level, by a small breaking of the symmetry in quad, which leads to a third CPG architecture arm. Rhythms produced by leg correspond to the bipedal gaits of walk, run, two-legged hop, two-legged jump, skip, gallop, asymmetric hop, and one-legged hop. We show that breaking the symmetry between fore and hind limbs in quad, which yields the CPG arm, leads to periodic solution types whose associated leg rhythms correspond to seven of the eight leg gaits found in leg; the missing biped gait is the asymmetric hop. However, when arm/leg coordination rhythms are considered, we find the correct rhythms only for the biped gaits of two-legged hop, run, and gallop. In particular, the biped gait walk, along with its arm rhythms, cannot be obtained by a small breaking of symmetry of any quadruped gait supported by quad.

  12. Elastic Coupling in Bipedally Crawling Cells

    NASA Astrophysics Data System (ADS)

    Loosley, Alex; Tang, Jay

    2012-02-01

    Periodic shape changes during cell migration are recorded in fast moving fish epithelial keratocytes where sticking and slipping at opposite sides of the cell's broad trailing edge generate bipedal locomotion and oscillatory lateral displacement of the nucleus. We use a two-dimensional finite element model to study the mechanical coupling, adhesion forces, and cell shapes that recapitulate the dynamics of these crawling cells. The model consists of elastically coupled point-like elements representing regions of the cell: leading edge, opposite sides of the trailing edge, and the nucleus. Based on simple assumptions, such as cell symmetry and localization of each element to a specific cellular region, we determine that there are only four viable permutations of elastic couplings between these four elements. We compare the four configurations and find that centralized elastic coupling to the cell nucleus and wide aspect ratio of the shape is necessary to mechanically generate realistic bipedal shape dynamics and lateral displacement of the nucleus. We suggest one configuration that is most realistic. The dynamics of this configuration are strongly dependent on the elasticity between peripheral elements, but not on the elasticity between these elements and the nucleus.

  13. Mechanical Energy Recovery during Walking in Patients with Parkinson Disease

    PubMed Central

    Dipaola, Mariangela; Pavan, Esteban E.; Cattaneo, Andrea; Frazzitta, Giuseppe; Pezzoli, Gianni; Cavallari, Paolo; Frigo, Carlo A.

    2016-01-01

    The mechanisms of mechanical energy recovery during gait have been thoroughly investigated in healthy subjects, but never described in patients with Parkinson disease (PD). The aim of this study was to investigate whether such mechanisms are preserved in PD patients despite an altered pattern of locomotion. We consecutively enrolled 23 PD patients (mean age 64±9 years) with bilateral symptoms (H&Y ≥II) if able to walk unassisted in medication-off condition (overnight suspension of all dopaminergic drugs). Ten healthy subjects (mean age 62±3 years) walked both at their ‘preferred’ and ‘slow’ speeds, to match the whole range of PD velocities. Kinematic data were recorded by means of an optoelectronic motion analyzer. For each stride we computed spatio-temporal parameters, time-course and range of motion (ROM) of hip, knee and ankle joint angles. We also measured kinetic (Wk), potential (Wp), total (WtotCM) energy variations and the energy recovery index (ER). Along with PD progression, we found a significant correlation of WtotCM and Wp with knee ROM and in particular with knee extension in terminal stance phase. Wk and ER were instead mainly related to gait velocity. In PD subjects, the reduction of knee ROM significantly diminished both Wp and WtotCM. Rehabilitation treatments should possibly integrate passive and active mobilization of knee to prevent a reduction of gait-related energetic components. PMID:27258183

  14. Generation of human bipedal locomotion by a bio-mimetic neuro-musculo-skeletal model.

    PubMed

    Ogihara, N; Yamazaki, N

    2001-01-01

    To emulate the actual neuro-control mechanism of human bipedal locomotion, an anatomically and physiologically based neuro-musculo-skeletal model is developed. The human musculo-skeletal system is constructed as seven rigid links in a sagittal plane, with a total of nine principal muscles. The nervous system consists of an alpha motoneuron and proprioceptors such as a muscle spindle and a Golgi tendon organ for each muscle. At the motoneurons, feedback signals from the proprioceptors are integrated with the signal induced by foot-ground contact and input from the rhythm pattern generator; a muscle activation signal is produced accordingly. Weights of connection in the neural network are optimized using a genetic algorithm, thus maximizing walking distance and minimizing energy consumption. The generated walking pattern is in remarkably good agreement with that of actual human walking, indicating that the locomotory pattern could be generated automatically, according to the musculoskeletal structures and the connections of the peripheral nervous system, particularly due to the reciprocal innervation in the muscle spindles. Using the proposed model, the flow of sensory-motor information during locomotion is estimated and a possible neuro-control mechanism is discussed.

  15. Virtual Slope Control of a Forward Dynamic Bipedal Walker

    PubMed Central

    Russell, S.; Granata, K. P.; Sheth, P.

    2006-01-01

    Active joint torques are the primary source of power and control in dynamic walking motion. However the amplitude, rate, timing and phasic behavior of the joint torques necessary to achieve a natural and stable performance are difficult to establish. The goal of this study was to demonstrate the feasibility and stable behavior of an actively controlled bipedal walking simulation wherein the natural system dynamics were preserved by an active, nonlinear, state-feedback controller patterned after passive downhill walking. A two degree-of-freedom, forward-dynamic simulation was implemented with active joint torques applied at the hip joints and stance leg ankle. Kinematic trajectories produced by the active walker were similar to passive dynamic walking with active joint torques influenced by prescribed walking velocity. The control resulted in stable steady-state gait patterns, i.e. eigenvalue magnitudes of the stride function were less than one. The controller coefficient analogous to the virtual slope was modified to successfully control average walking velocity. Furture developments are necessary to expand the range of walking velocities. PMID:15868794

  16. The calcaneus of Australopithecus afarensis and its implications for the evolution of bipedality.

    PubMed

    Latimer, B; Lovejoy, C O

    1989-03-01

    Calcanei from African apes, modern humans, and Australopithecus afarensis are compared to investigate the anatomical and mechanical changes that occurred in this bone as a result of the transition to terrestrial bipedality. Features analyzed include the cross-sectional area and volume of the calcaneal tuber, the geometry and orientation of the articular surfaces, and the surface topography of the calcaneal corpus. Calcaneal morphology is unequivocal in its partitioning of quadrupedal pongids and bipedal hominids.

  17. The functional origin of dinosaur bipedalism: Cumulative evidence from bipedally inclined reptiles and disinclined mammals.

    PubMed

    Persons, W Scott; Currie, Philip J

    2017-02-27

    Bipedalism is a trait basal to, and widespread among, dinosaurs. It has been previously argued that bipedalism arose in the ancestors of dinosaurs for the function of freeing the forelimbs to serve as predatory weapons. However, this argument does not explain why bipedalism was retained among numerous herbivorous groups of dinosaurs. We argue that bipedalism arose in the dinosaur line for the purpose of enhanced cursoriality. Modern facultatively bipedal lizards offer an analog for the first stages in the evolution of dinosaurian bipedalism. Many extant lizards assume a bipedal stance while attempting to flee predators at maximum speed. Bipedalism, when combined with a caudofemoralis musculature, has cursorial advantages because the caudofemoralis provides a greater source of propulsion to the hindlimbs than is generally available to the forelimbs. That cursorial advantage explains the relative abundance of cursorial facultative bipeds and obligate bipeds among fossil diapsids and the relative scarcity of either among mammals. Having lost their caudofemoralis in the Permian, perhaps in the context of adapting to a fossorial lifestyle, the mammalian line has been disinclined towards bipedalism, but, having never lost the caudofemoralis of their ancestors, cursorial avemetatarsalians (bird-line archosaurs) were naturally inclined towards bipedalism.

  18. Biped walking robot based on a 2-UPU+2-UU parallel mechanism

    NASA Astrophysics Data System (ADS)

    Miao, Zhihuai; Yao, Yan'an; Kong, Xianwen

    2014-03-01

    Existing biped robots mainly fall into two categories: robots with left and right feet and robots with upper and lower feet. The load carrying capability of a biped robot is quite limited since the two feet of a walking robot supports the robot alternatively during walking. To improve the load carrying capability, a novel biped walking robot is proposed based on a 2-UPU+2-UU parallel mechanism. The biped walking robot is composed of two identical platforms(feet) and four limbs, including two UPU(universal-prismatic-universal serial chain) limbs and two UU limbs. To enhance its terrain adaptability like articulated vehicles, the two feet of the biped walking robot are designed as two vehicles in detail. The conditions that the geometric parameters of the feet must satisfy are discussed. The degrees-of-freedom of the mechanism is analyzed by using screw theory. Gait analysis, kinematic analysis and stability analysis of the mechanism are carried out to verify the structural design parameters. The simulation results validate the feasibility of walking on rugged terrain. Experiments with a physical prototype show that the novel biped walking robot can walk stably on smooth terrain. Due to its unique feet design and high stiffness, the biped walking robot may adapt to rugged terrain and is suitable for load-carrying.

  19. Automaticity of walking: functional significance, mechanisms, measurement and rehabilitation strategies

    PubMed Central

    Clark, David J.

    2015-01-01

    Automaticity is a hallmark feature of walking in adults who are healthy and well-functioning. In the context of walking, “automaticity” refers to the ability of the nervous system to successfully control typical steady state walking with minimal use of attention-demanding executive control resources. Converging lines of evidence indicate that walking deficits and disorders are characterized in part by a shift in the locomotor control strategy from healthy automaticity to compensatory executive control. This is potentially detrimental to walking performance, as an executive control strategy is not optimized for locomotor control. Furthermore, it places excessive demands on a limited pool of executive reserves. The result is compromised ability to perform basic and complex walking tasks and heightened risk for adverse mobility outcomes including falls. Strategies for rehabilitation of automaticity are not well defined, which is due to both a lack of systematic research into the causes of impaired automaticity and to a lack of robust neurophysiological assessments by which to gauge automaticity. These gaps in knowledge are concerning given the serious functional implications of compromised automaticity. Therefore, the objective of this article is to advance the science of automaticity of walking by consolidating evidence and identifying gaps in knowledge regarding: (a) functional significance of automaticity; (b) neurophysiology of automaticity; (c) measurement of automaticity; (d) mechanistic factors that compromise automaticity; and (e) strategies for rehabilitation of automaticity. PMID:25999838

  20. Dynamic Simulation and Analysis of Human Walking Mechanism

    NASA Astrophysics Data System (ADS)

    Azahari, Athirah; Siswanto, W. A.; Ngali, M. Z.; Salleh, S. Md.; Yusup, Eliza M.

    2017-01-01

    Behaviour such as gait or posture may affect a person with the physiological condition during daily activities. The characteristic of human gait cycle phase is one of the important parameter which used to described the human movement whether it is in normal gait or abnormal gait. This research investigates four types of crouch walking (upright, interpolated, crouched and severe) by simulation approach. The assessment are conducting by looking the parameters of hamstring muscle joint, knee joint and ankle joint. The analysis results show that based on gait analysis approach, the crouch walking have a weak pattern of walking and postures. Short hamstring and knee joint is the most influence factor contributing to the crouch walking due to excessive hip flexion that typically accompanies knee flexion.

  1. Muscle force production during bent-knee, bent-hip walking in humans.

    PubMed

    Foster, Adam D; Raichlen, David A; Pontzer, Herman

    2013-09-01

    Researchers have long debated the locomotor posture used by the earliest bipeds. While many agree that by 3-4 Ma (millions of years ago), hominins walked with an extended-limb human style of bipedalism, researchers are still divided over whether the earliest bipeds walked like modern humans, or walked with a more bent-knee, bent-hip (BKBH) ape-like form of locomotion. Since more flexed postures are associated with higher energy costs, reconstructing early bipedal mechanics has implications for the selection pressures that led to upright walking. The purpose of this study is to determine how modern human anatomy functions in BKBH walking to clarify the links between morphology and energy costs in different mechanical regimes. Using inverse dynamics, we calculated muscle force production at the major limb joints in humans walking in two modes, both with extended limbs and BKBH. We found that in BKBH walking, humans must produce large muscle forces at the knee to support body weight, leading to higher estimated energy costs. However, muscle forces at the hip remained similar in BKBH and extended limb walking, suggesting that anatomical adaptations for hip extension in humans do not necessarily diminish the effective mechanical advantage at the hip in more flexed postures. We conclude that the key adaptations for economical walking, regardless of joint posture, seem to center on maintaining low muscle forces at the hip, primarily by keeping low external moments at the hip. We explore the implications of these results for interpreting locomotor energetics in early hominins, including australopithecines and Ardipithecus ramidus.

  2. The pendular mechanism does not determine the optimal speed of loaded walking on gradients.

    PubMed

    Gomeñuka, Natalia Andrea; Bona, Renata Luisa; da Rosa, Rodrigo Gomes; Peyré-Tartaruga, Leonardo Alexandre

    2016-06-01

    The pendular mechanism does not act as a primary mechanism in uphill walking due to the monotonic behavior of the mechanical energies of the center of mass. Nevertheless, recent evidence shows that there is an important minimization of energy expenditure by the pendular mechanism during walking on uphill gradients. In this study, we analyzed the optimum speed (OPT) of loaded human walking and the pendulum-like determining variables (Recovery R, Instantaneous pendular re-conversion Rint, and Congruity percentage %Cong). Ten young men walked on a treadmill at five different speeds and at three different treadmill incline gradients (0, +7 and +15%), with and without a load carried in their backpacks. We used indirect calorimetry and 3D motion analysis, and all of the data were analyzed by computational algorithms. Rint increased at higher speeds and decreased with increasing gradient. R and %Cong decreased with increasing gradient and increased with speed, independent of load. Thus, energy conversion by the pendular mechanism during walking on a 15% gradient is supported, and although this mechanism can explain the maintenance of OPT at low walking speeds, the pendular mechanism does not fully explain the energy minimization at higher speeds.

  3. The how and why of arm swing during human walking.

    PubMed

    Meyns, Pieter; Bruijn, Sjoerd M; Duysens, Jacques

    2013-09-01

    Humans walk bipedally, and thus, it is unclear why they swing their arms. In this paper, we will review the mechanisms and functions of arm swinging in human gait. First, we discuss the potential advantages of having swinging arms. Second, we go into the detail on the debate whether arm swing is arising actively or passively, where we will conclude that while a large part of arm swinging is mechanically passive, there is an active contribution of muscles (i.e. an activity that is not merely caused by stretch reflexes). Third, we describe the possible function of the active muscular contribution to arm swinging in normal gait, and discuss the possibility that a Central Pattern Generator (CPG) generates this activity. Fourth, we discuss examples from pathological cases, in which arm swinging is affected. Moreover, using the ideas presented, we suggest ways in which arm swing may be used as a therapeutic aid. We conclude that (1) arm swing should be seen as an integral part of human bipedal gait, arising mostly from passive movements, which are stabilized by active muscle control, which mostly originates from locomotor circuits in the central nervous system (2) arm swinging during normal bipedal gait most likely serves to reduce energy expenditure and (3) arm swinging may be of therapeutic value.

  4. Haptic feedback helps bipedal coordination.

    PubMed

    Roelofsen, Eefje G J; Bosga, Jurjen; Rosenbaum, David A; Nijhuis-van der Sanden, Maria W G; Hullegie, Wim; van Cingel, Robert; Meulenbroek, Ruud G J

    2016-10-01

    The present study investigated whether special haptic or visual feedback would facilitate the coordination of in-phase, cyclical feet movements of different amplitudes. Seventeen healthy participants sat with their feet on sliding panels that were moved externally over the same or different amplitudes. The participants were asked to generate simultaneous knee flexion-extension movements, or to let their feet be dragged, resulting in reference foot displacements of 150 mm and experimental foot displacements of 150, 120, or 90 mm. Four types of feedback were given: (1) special haptic feedback, involving actively following the motions of the sliders manipulated by two confederates, (2) haptic feedback resulting from passive motion, (3) veridical visual feedback, and (4) enhanced visual feedback. Both with respect to amplitude assimilation effects, correlations and standard deviation of relative phase, the results showed that enhanced visual feedback did not facilitate bipedal independence, but haptic feedback with active movement did. Implications of the findings for movement rehabilitation contexts are discussed.

  5. Split-belt Treadmill Walking Alters Lower Extremity Frontal Plane Mechanics.

    PubMed

    Roper, Jaimie A; Roemmich, Ryan T; Tillman, Mark D; Terza, Matthew J; Hass, Chris J

    2017-01-13

    Interventions that manipulate gait speed may also affect the control of frontal plane mechanics. Expanding the current knowledge of frontal plane adaptations during split-belt treadmill walking could advance our understanding of the influence of asymmetries in gait speed on frontal plane mechanics and provide insight into the breadth of adaptations required by split-belt walking. Thirteen young, healthy participants, free from lower extremity injury walked on a split-belt treadmill with belts moving simultaneously at different speeds. We examined frontal plane mechanics of the ankle, knee, and hip joints during split-belt walking, as well as medio-lateral ground reaction forces (ML-GRF). We did not observe alterations in the frontal mechanics produced during early or late adaptation of split-belt walking when compared to conditions where the belts moved together. We did observe that ML-GRF and hip moment impulse of the fast limb increased over time with adaptation to split-belt walking. These results suggest this modality may provide a unique therapy for individuals with gait pathologies, impairments, or compensation(s).

  6. Torque-stiffness-controlled dynamic walking with central pattern generators.

    PubMed

    Huang, Yan; Vanderborght, Bram; Van Ham, Ronald; Wang, Qining

    2014-12-01

    Walking behavior is modulated by controlling joint torques in most existing passivity-based bipeds. Controlled Passive Walking with adaptable stiffness exhibits controllable natural motions and energy efficient gaits. In this paper, we propose torque-stiffness-controlled dynamic bipedal walking, which extends the concept of Controlled Passive Walking by introducing structured control parameters and a bio-inspired control method with central pattern generators. The proposed walking paradigm is beneficial in clarifying the respective effects of the external actuation and the internal natural dynamics. We present a seven-link biped model to validate the presented walking. Effects of joint torque and joint stiffness on gait selection, walking performance and walking pattern transitions are studied in simulations. The work in this paper develops a new solution of motion control of bipedal robots with adaptable stiffness and provides insights of efficient and sophisticated walking gaits of humans.

  7. Preferred gait and walk-run transition speeds in ostriches measured using GPS-IMU sensors.

    PubMed

    Daley, Monica A; Channon, Anthony J; Nolan, Grant S; Hall, Jade

    2016-10-15

    The ostrich (Struthio camelus) is widely appreciated as a fast and agile bipedal athlete, and is a useful comparative bipedal model for human locomotion. Here, we used GPS-IMU sensors to measure naturally selected gait dynamics of ostriches roaming freely over a wide range of speeds in an open field and developed a quantitative method for distinguishing walking and running using accelerometry. We compared freely selected gait-speed distributions with previous laboratory measures of gait dynamics and energetics. We also measured the walk-run and run-walk transition speeds and compared them with those reported for humans. We found that ostriches prefer to walk remarkably slowly, with a narrow walking speed distribution consistent with minimizing cost of transport (CoT) according to a rigid-legged walking model. The dimensionless speeds of the walk-run and run-walk transitions are slower than those observed in humans. Unlike humans, ostriches transition to a run well below the mechanical limit necessitating an aerial phase, as predicted by a compass-gait walking model. When running, ostriches use a broad speed distribution, consistent with previous observations that ostriches are relatively economical runners and have a flat curve for CoT against speed. In contrast, horses exhibit U-shaped curves for CoT against speed, with a narrow speed range within each gait for minimizing CoT. Overall, the gait dynamics of ostriches moving freely over natural terrain are consistent with previous lab-based measures of locomotion. Nonetheless, ostriches, like humans, exhibit a gait-transition hysteresis that is not explained by steady-state locomotor dynamics and energetics. Further study is required to understand the dynamics of gait transitions.

  8. Spinopelvic pathways to bipedality: why no hominids ever relied on a bent-hip-bent-knee gait.

    PubMed

    Lovejoy, C Owen; McCollum, Melanie A

    2010-10-27

    Until recently, the last common ancestor of African apes and humans was presumed to resemble living chimpanzees and bonobos. This was frequently extended to their locomotor pattern leading to the presumption that knuckle-walking was a likely ancestral pattern, requiring bipedality to have emerged as a modification of their bent-hip-bent-knee gait used during erect walking. Research on the development and anatomy of the vertebral column, coupled with new revelations from the fossil record (in particular, Ardipithecus ramidus), now demonstrate that these presumptions have been in error. Reassessment of the potential pathway to early hominid bipedality now reveals an entirely novel sequence of likely morphological events leading to the emergence of upright walking.

  9. Froude and the contribution of naval architecture to our understanding of bipedal locomotion.

    PubMed

    Vaughan, Christopher L; O'Malley, Mark J

    2005-04-01

    It is fascinating to think that the ideas of two 19th century naval architects could offer useful insights for 21st century scientists contemplating the exploration of our planetary system or monitoring the long-term effects of a neurosurgical procedure on gait. The Froude number, defined as Fr = v2/gL, where v is velocity, g is gravitational acceleration and L is a characteristic linear dimension (such as leg length), has found widespread application in the biomechanics of bipedal locomotion. This review of two parameters, Fr and dimensionless velocity beta = (Fr)1/2, that have served as the criterion for dynamic similarity, has been arranged in two parts: (I) historical development, including the contributions by William Froude and his son Edmund, two ship designers who lived more than 130 years ago, the classic insights of D'Arcy Wentworth Thompson who, in his magnum opus On Growth and Form, espoused the connection between mathematics and biology, and the pioneering efforts of Robert McNeill Alexander, who popularised the application of Fr to animal locomotion; and (II) selected applications, including a comparison of walking for people of different heights, exploring the effects of different gravitational fields on human locomotion, establishing the impact of pathology and the benefits of treatment, and understanding the walking patterns of bipedal robots. Although not all applications of Fr to locomotion have been covered, the review offers an important historical context for all researchers of bipedal gait, and extends the idea of dimensionless scaling of gait parameters.

  10. A wrist-walker exhibiting no "Uner Tan Syndrome": a theory for possible mechanisms of human devolution toward the atavistic walking patterns.

    PubMed

    Tan, Uner

    2007-01-01

    transition from quadrupedality to bipedality. That is, the activity of the philogenetically youngest supraspinal centers for bipedal walking responsible for suppression of the older supraspinal centers for quadrupedal gait may be interrupted at the atavistic level due to genetic and/or environmental factors. Consequently, it is assumed that these individuals prefer their natural wrist-walking to move around more quickly and efficiently.

  11. The evolution of the human pelvis: changing adaptations to bipedalism, obstetrics and thermoregulation.

    PubMed

    Gruss, Laura Tobias; Schmitt, Daniel

    2015-03-05

    The fossil record of the human pelvis reveals the selective priorities acting on hominin anatomy at different points in our evolutionary history, during which mechanical requirements for locomotion, childbirth and thermoregulation often conflicted. In our earliest upright ancestors, fundamental alterations of the pelvis compared with non-human primates facilitated bipedal walking. Further changes early in hominin evolution produced a platypelloid birth canal in a pelvis that was wide overall, with flaring ilia. This pelvic form was maintained over 3-4 Myr with only moderate changes in response to greater habitat diversity, changes in locomotor behaviour and increases in brain size. It was not until Homo sapiens evolved in Africa and the Middle East 200 000 years ago that the narrow anatomically modern pelvis with a more circular birth canal emerged. This major change appears to reflect selective pressures for further increases in neonatal brain size and for a narrow body shape associated with heat dissipation in warm environments. The advent of the modern birth canal, the shape and alignment of which require fetal rotation during birth, allowed the earliest members of our species to deal obstetrically with increases in encephalization while maintaining a narrow body to meet thermoregulatory demands and enhance locomotor performance.

  12. The evolution of the human pelvis: changing adaptations to bipedalism, obstetrics and thermoregulation

    PubMed Central

    Gruss, Laura Tobias; Schmitt, Daniel

    2015-01-01

    The fossil record of the human pelvis reveals the selective priorities acting on hominin anatomy at different points in our evolutionary history, during which mechanical requirements for locomotion, childbirth and thermoregulation often conflicted. In our earliest upright ancestors, fundamental alterations of the pelvis compared with non-human primates facilitated bipedal walking. Further changes early in hominin evolution produced a platypelloid birth canal in a pelvis that was wide overall, with flaring ilia. This pelvic form was maintained over 3–4 Myr with only moderate changes in response to greater habitat diversity, changes in locomotor behaviour and increases in brain size. It was not until Homo sapiens evolved in Africa and the Middle East 200 000 years ago that the narrow anatomically modern pelvis with a more circular birth canal emerged. This major change appears to reflect selective pressures for further increases in neonatal brain size and for a narrow body shape associated with heat dissipation in warm environments. The advent of the modern birth canal, the shape and alignment of which require fetal rotation during birth, allowed the earliest members of our species to deal obstetrically with increases in encephalization while maintaining a narrow body to meet thermoregulatory demands and enhance locomotor performance. PMID:25602067

  13. Skipping vs. running as the bipedal gait of choice in hypogravity.

    PubMed

    Pavei, Gaspare; Biancardi, Carlo M; Minetti, Alberto E

    2015-07-01

    Hypogravity challenges bipedal locomotion in its common forms. However, as previously theoretically and empirically suggested, humans can rely on "skipping," a less common gait available as a functional analog (perhaps a vestigium) of quadrupedal gallop, to confidently move when gravity is much lower than on Earth. We set up a 17-m-tall cavaedium (skylight shaft) with a bungee rubber body-suspension system and a treadmill to investigate the metabolic cost and the biomechanics of low-gravity (Mars, Moon) locomotion. Although skipping is never more metabolically economical than running, the difference becomes marginal at lunar gravities, with both bouncing gaits approaching values of walking on Earth (cost ≈ 2 J · kg(-1)· m(-1)). Nonmetabolic factors may thus be allowed to dominate the choice of skipping on the Moon. On the basis of center of pressure measurements and body segments kinetics, we can speculate that these factors may include a further reduction of mechanical work to move the limbs when wearing space suits and a more effective motor control during the ground (regoliths)-boot interaction.

  14. Reading from a Head-Fixed Display during Walking: Adverse Effects of Gaze Stabilization Mechanisms

    PubMed Central

    Borg, Olivier; Casanova, Remy; Bootsma, Reinoud J.

    2015-01-01

    Reading performance during standing and walking was assessed for information presented on earth-fixed and head-fixed displays by determining the minimal duration during which a numerical time stimulus needed to be presented for 50% correct naming answers. Reading from the earth-fixed display was comparable during standing and walking, with optimal performance being attained for visual character sizes in the range of 0.2° to 1°. Reading from the head-fixed display was impaired for small (0.2-0.3°) and large (5°) visual character sizes, especially during walking. Analysis of head and eye movements demonstrated that retinal slip was larger during walking than during standing, but remained within the functional acuity range when reading from the earth-fixed display. The detrimental effects on performance of reading from the head-fixed display during walking could be attributed to loss of acuity resulting from large retinal slip. Because walking activated the angular vestibulo-ocular reflex, the resulting compensatory eye movements acted to stabilize gaze on the information presented on the earth-fixed display but destabilized gaze from the information presented on the head-fixed display. We conclude that the gaze stabilization mechanisms that normally allow visual performance to be maintained during physical activity adversely affect reading performance when the information is presented on a display attached to the head. PMID:26053622

  15. Reading from a Head-Fixed Display during Walking: Adverse Effects of Gaze Stabilization Mechanisms.

    PubMed

    Borg, Olivier; Casanova, Remy; Bootsma, Reinoud J

    2015-01-01

    Reading performance during standing and walking was assessed for information presented on earth-fixed and head-fixed displays by determining the minimal duration during which a numerical time stimulus needed to be presented for 50% correct naming answers. Reading from the earth-fixed display was comparable during standing and walking, with optimal performance being attained for visual character sizes in the range of 0.2° to 1°. Reading from the head-fixed display was impaired for small (0.2-0.3°) and large (5°) visual character sizes, especially during walking. Analysis of head and eye movements demonstrated that retinal slip was larger during walking than during standing, but remained within the functional acuity range when reading from the earth-fixed display. The detrimental effects on performance of reading from the head-fixed display during walking could be attributed to loss of acuity resulting from large retinal slip. Because walking activated the angular vestibulo-ocular reflex, the resulting compensatory eye movements acted to stabilize gaze on the information presented on the earth-fixed display but destabilized gaze from the information presented on the head-fixed display. We conclude that the gaze stabilization mechanisms that normally allow visual performance to be maintained during physical activity adversely affect reading performance when the information is presented on a display attached to the head.

  16. Robots in human biomechanics--a study on ankle push-off in walking.

    PubMed

    Renjewski, Daniel; Seyfarth, André

    2012-09-01

    In biomechanics, explanatory template models are used to identify the basic mechanisms of human locomotion. However, model predictions often lack verification in a realistic environment. We present a method that uses template model mechanics as a blueprint for a bipedal robot and a corresponding computer simulation. The hypotheses derived from template model studies concerning the function of heel-off in walking are analysed and discrepancies between the template model and its real-world anchor are pointed out. Neither extending the ground clearance of the swinging leg nor an impact reduction at touch-down as an effect of heel lifting was supported by the experiments. To confirm the relevance of the experimental findings, a comparison of robot data to human walking data is discussed and we speculate on an alternative explanation of heel-off in human walking, i.e. that the push-off powers the following leg swing.

  17. Decoding bipedal locomotion from the rat sensorimotor cortex

    NASA Astrophysics Data System (ADS)

    Rigosa, J.; Panarese, A.; Dominici, N.; Friedli, L.; van den Brand, R.; Carpaneto, J.; DiGiovanna, J.; Courtine, G.; Micera, S.

    2015-10-01

    Objective. Decoding forelimb movements from the firing activity of cortical neurons has been interfaced with robotic and prosthetic systems to replace lost upper limb functions in humans. Despite the potential of this approach to improve locomotion and facilitate gait rehabilitation, decoding lower limb movement from the motor cortex has received comparatively little attention. Here, we performed experiments to identify the type and amount of information that can be decoded from neuronal ensemble activity in the hindlimb area of the rat motor cortex during bipedal locomotor tasks. Approach. Rats were trained to stand, step on a treadmill, walk overground and climb staircases in a bipedal posture. To impose this gait, the rats were secured in a robotic interface that provided support against the direction of gravity and in the mediolateral direction, but behaved transparently in the forward direction. After completion of training, rats were chronically implanted with a micro-wire array spanning the left hindlimb motor cortex to record single and multi-unit activity, and bipolar electrodes into 10 muscles of the right hindlimb to monitor electromyographic signals. Whole-body kinematics, muscle activity, and neural signals were simultaneously recorded during execution of the trained tasks over multiple days of testing. Hindlimb kinematics, muscle activity, gait phases, and locomotor tasks were decoded using offline classification algorithms. Main results. We found that the stance and swing phases of gait and the locomotor tasks were detected with accuracies as robust as 90% in all rats. Decoded hindlimb kinematics and muscle activity exhibited a larger variability across rats and tasks. Significance. Our study shows that the rodent motor cortex contains useful information for lower limb neuroprosthetic development. However, brain-machine interfaces estimating gait phases or locomotor behaviors, instead of continuous variables such as limb joint positions or speeds

  18. Giant Galapagos tortoises walk without inverted pendulum mechanical-energy exchange.

    PubMed

    Zani, Peter A; Gottschall, Jinger S; Kram, Rodger

    2005-04-01

    Animals must perform mechanical work during walking, but most conserve substantial mechanical energy via an inverted-pendulum-like mechanism of energy recovery in which fluctuations of kinetic energy (KE) and gravitational potential energy (GPE) are of similar magnitude and 180 degrees out of phase. The greatest energy recovery typically occurs at intermediate speeds. Tortoises are known for their slow speeds, which we anticipated would lead to small fluctuations in KE. To have an effective exchange of mechanical energy using the inverted-pendulum mechanism, tortoises would need to walk with only small changes in GPE corresponding to vertical center-of-mass (COM) fluctuations of < 0.5 mm. Thus, we hypothesized that giant Galapagos tortoises would not conserve substantial mechanical energy using the inverted-pendulum mechanism. We studied five adult giant Galapagos tortoises Geochelone elephantopus (mean mass=142 kg; range= 103-196 kg). Walking speed was extremely slow (0.16+/-0.052 m s(-1); mean +/- 1 s.d.). The fluctuations in kinetic energy (8.1+/-3.98 J stride(-1)) were only one-third as large as the fluctuations in gravitational potential energy (22.7+/-8.04 J stride(-1)). In addition, these energies fluctuated nearly randomly and were only sporadically out of phase. Because of the dissimilar amplitudes and inconsistent phase relationships of these energies, tortoises conserved little mechanical energy during steady walking, recovering only 29.8+/-3.77% of the mechanical energy (range=13-52%). Thus, giant Galapagos tortoises do not utilize effectively an inverted-pendulum mechanism of energy conservation. Nonetheless, the mass-specific external mechanical work required per distance (0.41+/-0.092 J kg(-1) m(-1)) was not different from most other legged animals. Other turtle species use less than half as much metabolic energy to walk as other terrestrial animals of similar mass. It is not yet known if Galapagos tortoises are economical walkers. Nevertheless

  19. Gradual mechanics-dependent adaptation of medial gastrocnemius activity during human walking

    PubMed Central

    Wellinghoff, Molly A.; Bunchman, Alison M.

    2013-01-01

    While performing a simple bouncing task, humans modify their preferred movement period and pattern of plantarflexor activity in response to changes in system mechanics. Over time, the preferred movement pattern gradually adapts toward the resonant frequency. The purpose of the present experiments was to determine whether humans undergo a similar process of gradually adapting their stride period and plantarflexor activity after a change in mechanical demand while walking. Participants walked on a treadmill while we measured stride period and plantarflexor activity (medial gastrocnemius and soleus). Plantarflexor activity during stance was divided into a storage phase (30–65% stance) and a return phase (65–100% stance) based on when the Achilles tendon has previously been shown to store and return mechanical energy. Participants walked either on constant inclines (0%, 1%, 5%, 9%) or on a variable incline (0–1%) for which they were unaware of the incline changes. For variable-incline trials, participants walked under both single-task and dual-task conditions in order to vary the cognitive load. Both stride period and plantarflexor activity increased at steeper inclines. During single-task walking, small changes in incline were followed by gradual adaptation of storage-phase medial gastrocnemius activity. However, this adaptation was not present during dual-task walking, indicating some level of cognitive involvement. The observed adaptation may be the result of using afferent feedback in order to optimize the contractile conditions of the plantarflexors during the stance phase. Such adaptation could serve to improve metabolic economy but may be limited in clinical populations with disrupted proprioception. PMID:24335207

  20. Mechanical energy assessment of adult with Down syndrome during walking with obstacle avoidance.

    PubMed

    Salami, Firooz; Vimercati, Sara Laura; Rigoldi, Chiara; Taebi, Amirtaha; Albertini, Giorgio; Galli, Manuela

    2014-08-01

    The aim of this study is analyzing the differences between plane walking and stepping over an obstacle for two groups of healthy people and people with Down syndrome and then, evaluating the movement efficiency between the groups by comprising of their mechanical energy exchanges. 39 adults including two groups of 21 people with Down syndrome (age: 21.6 ± 7 years) and 18 healthy people (age: 25.1 ± 2.4 years) participated in this research. The test has been done in two conditions, first in plane walking and second in walking with an obstacle (10% of the subject's height). The gait data were acquired using quantitative movement analysis, composed of an optoelectronic system (Elite2002, BTS) with eight infrared cameras. Mechanical energy exchanges are computed by dedicated software and finally the data including spatiotemporal parameters, mechanical energy parameters and energy recovery of gait cycle are analyzed by statistical software to find significant differences. Regards to spatiotemporal parameters velocity and step length are lower in people with Down syndrome. Mechanical energy parameters particularly energy recovery does not change from healthy people to people with Down syndrome. However, there are some differences in inter-group through plane walking to obstacle avoidance and it means people with Down syndrome probably use their residual abilities in the most efficient way to achieve the main goal of an efficient energy recovery.

  1. Paleoanthropology: When hobbits (slowly) walked the earth.

    PubMed

    Culotta, Elizabeth

    2008-04-25

    At the recent American Association of Physical Anthropology meetings, a researcher described the foot bones of an 18,000-year-old Indonesian skeleton known as the "hobbit." The tiny hominin would not have walked like we do, he said, and may offer "a window into a primitive bipedal foot."

  2. The effect of walking speed on muscle function and mechanical energetics.

    PubMed

    Neptune, Richard R; Sasaki, Kotaro; Kautz, Steven A

    2008-07-01

    Modulating speed over a large range is important in walking, yet understanding how the neuromotor patterns adapt to the changing energetic demands of different speeds is not well understood. The purpose of this study was to identify functional and energetic adaptations in individual muscles in response to walking at faster steady-state speeds using muscle-actuated forward dynamics simulations. The simulation data were invariant with speed as to whether muscles contributed to trunk support, forward propulsion or leg swing. Trunk support (vertical acceleration) was provided primarily by the hip and knee extensors in early stance and the plantar flexors in late stance, while trunk propulsion (horizontal acceleration) was provided primarily by the soleus and rectus femoris in late stance, and these muscle contributions all systematically increased with speed. The results also highlighted the importance of initiating and controlling leg swing as there was a dramatic increase at the higher walking speeds in iliopsoas muscle work to accelerate the leg in pre- and early swing, and an increase in the biarticular hamstring muscle work to decelerate the leg in late swing. In addition, walking near self-selected speeds (1.2m/s) improves the utilization of elastic energy storage and recovery in the uniarticular ankle plantar flexors and reduces negative fiber work, when compared to faster or slower speeds. These results provide important insight into the neuromotor mechanisms underlying speed regulation in walking and provide the foundation on which to investigate the influence of walking speed on various neuromotor measures of interest in pathological populations.

  3. Mechanical and energetic consequences of reduced ankle plantar-flexion in human walking

    PubMed Central

    Huang, Tzu-wei P.; Shorter, Kenneth A.; Adamczyk, Peter G.; Kuo, Arthur D.

    2015-01-01

    ABSTRACT The human ankle produces a large burst of ‘push-off’ mechanical power late in the stance phase of walking, reduction of which leads to considerably poorer energy economy. It is, however, uncertain whether the energetic penalty results from poorer efficiency when the other leg joints substitute for the ankle's push-off work, or from a higher overall demand for work due to some fundamental feature of push-off. Here, we show that greater metabolic energy expenditure is indeed explained by a greater demand for work. This is predicted by a simple model of walking on pendulum-like legs, because proper push-off reduces collision losses from the leading leg. We tested this by experimentally restricting ankle push-off bilaterally in healthy adults (N=8) walking on a treadmill at 1.4 m s−1, using ankle–foot orthoses with steel cables limiting motion. These produced up to ∼50% reduction in ankle push-off power and work, resulting in up to ∼50% greater net metabolic power expenditure to walk at the same speed. For each 1 J reduction in ankle work, we observed 0.6 J more dissipative collision work by the other leg, 1.3 J more positive work from the leg joints overall, and 3.94 J more metabolic energy expended. Loss of ankle push-off required more positive work elsewhere to maintain walking speed; this additional work was performed by the knee, apparently at reasonably high efficiency. Ankle push-off may contribute to walking economy by reducing dissipative collision losses and thus overall work demand. PMID:26385330

  4. Soft Tissue Deformations Contribute to the Mechanics of Walking in Obese Adults

    PubMed Central

    Fu, Xiao-Yu; Zelik, Karl E.; Board, Wayne J.; Browning, Raymond C.; Kuo, Arthur D.

    2014-01-01

    Obesity not only adds to the mass that must be carried during walking, but also changes body composition. Although extra mass causes roughly proportional increases in musculoskeletal loading, less well understood is the effect of relatively soft and mechanically compliant adipose tissue. Purpose To estimate the work performed by soft tissue deformations during walking. The soft tissue would be expected to experience damped oscillations, particularly from high force transients following heel strike, and could potentially change the mechanical work demands for walking. Method We analyzed treadmill walking data at 1.25 m/s for 11 obese (BMI > 30 kg/m2) and 9 non-obese (BMI < 30 kg/m2) adults. The soft tissue work was quantified with a method that compares the work performed by lower extremity joints as derived using assumptions of rigid body segments, with that estimated without rigid body assumptions. Results Relative to body mass, obese and non-obese individuals perform similar amounts of mechanical work. But negative work performed by soft tissues was significantly greater in obese individuals (p= 0.0102), equivalent to about 0.36 J/kg vs. 0.27 J/kg in non-obese individuals. The negative (dissipative) work by soft tissues occurred mainly after heel strike, and for obese individuals was comparable in magnitude to the total negative work from all of the joints combined (0.34 J/kg vs. 0.33 J/kg for obese and non-obese adults, respectively). Although the joints performed a relatively similar amount of work overall, obese individuals performed less negative work actively at the knee. Conclusion The greater proportion of soft tissues in obese individuals results in substantial changes in the amount, location, and timing of work, and may also impact metabolic energy expenditure during walking. PMID:25380475

  5. Mechanical and energetic consequences of rolling foot shape in human walking

    PubMed Central

    Adamczyk, Peter G.; Kuo, Arthur D.

    2013-01-01

    SUMMARY During human walking, the center of pressure under the foot progresses forward smoothly during each step, creating a wheel-like motion between the leg and the ground. This rolling motion might appear to aid walking economy, but the mechanisms that may lead to such a benefit are unclear, as the leg is not literally a wheel. We propose that there is indeed a benefit, but less from rolling than from smoother transitions between pendulum-like stance legs. The velocity of the body center of mass (COM) must be redirected in that transition, and a longer foot reduces the work required for the redirection. Here we develop a dynamic walking model that predicts different effects from altering foot length as opposed to foot radius, and test it by attaching rigid, arc-like foot bottoms to humans walking with fixed ankles. The model suggests that smooth rolling is relatively insensitive to arc radius, whereas work for the step-to-step transition decreases approximately quadratically with foot length. We measured the separate effects of arc-foot length and radius on COM velocity fluctuations, work performed by the legs and metabolic cost. Experimental data (N=8) show that foot length indeed has much greater effect on both the mechanical work of the step-to-step transition (23% variation, P=0.04) and the overall energetic cost of walking (6%, P=0.03) than foot radius (no significant effect, P>0.05). We found the minimum metabolic energy cost for an arc foot length of approximately 29% of leg length, roughly comparable to human foot length. Our results suggest that the foot's apparently wheel-like action derives less benefit from rolling per se than from reduced work to redirect the body COM. PMID:23580717

  6. Biomechanics of Running Indicates Endothermy in Bipedal Dinosaurs

    PubMed Central

    Pontzer, Herman; Allen, Vivian; Hutchinson, John R.

    2009-01-01

    Background One of the great unresolved controversies in paleobiology is whether extinct dinosaurs were endothermic, ectothermic, or some combination thereof, and when endothermy first evolved in the lineage leading to birds. Although it is well established that high, sustained growth rates and, presumably, high activity levels are ancestral for dinosaurs and pterosaurs (clade Ornithodira), other independent lines of evidence for high metabolic rates, locomotor costs, or endothermy are needed. For example, some studies have suggested that, because large dinosaurs may have been homeothermic due to their size alone and could have had heat loss problems, ectothermy would be a more plausible metabolic strategy for such animals. Methodology/Principal Findings Here we describe two new biomechanical approaches for reconstructing the metabolic rate of 14 extinct bipedal dinosauriforms during walking and running. These methods, well validated for extant animals, indicate that during walking and slow running the metabolic rate of at least the larger extinct dinosaurs exceeded the maximum aerobic capabilities of modern ectotherms, falling instead within the range of modern birds and mammals. Estimated metabolic rates for smaller dinosaurs are more ambiguous, but generally approach or exceed the ectotherm boundary. Conclusions/Significance Our results support the hypothesis that endothermy was widespread in at least larger non-avian dinosaurs. It was plausibly ancestral for all dinosauriforms (perhaps Ornithodira), but this is perhaps more strongly indicated by high growth rates than by locomotor costs. The polarity of the evolution of endothermy indicates that rapid growth, insulation, erect postures, and perhaps aerobic power predated advanced “avian” lung structure and high locomotor costs. PMID:19911059

  7. Muscle and prosthesis contributions to amputee walking mechanics: a modeling study.

    PubMed

    Silverman, Anne K; Neptune, Richard R

    2012-08-31

    Unilateral, below-knee amputees have altered gait mechanics, which can significantly affect their mobility. Below-knee amputees lose the functional use of the ankle muscles, which are critical during walking to provide body support, forward propulsion, leg-swing initiation and mediolateral balance. Thus, either muscles must compensate or the prosthesis must provide the functional tasks normally provided by the ankle muscles. Three-dimensional (3D) forward dynamics simulations of amputee and non-amputee walking were generated to identify muscle and prosthesis contributions to amputee walking mechanics, including the subtasks of body support, forward propulsion, leg-swing initiation and mediolateral balance. Results showed that the prosthesis provided body support in the absence of the ankle muscles. The prosthesis contributed to braking from early to mid-stance and propulsion in late stance. The prosthesis also functioned like the uniarticular soleus muscle by transferring energy from the residual leg to the trunk to provide trunk propulsion. The residual-leg vasti and rectus femoris reduced their contributions to braking in early stance, which mitigated braking from the prosthesis during this period. The prosthesis did not replace the function of the gastrocnemius, which normally generates energy to the leg to initiate swing. As a result, lower overall energy was delivered to the residual leg. The prosthesis also acted to accelerate the body laterally in the absence of the ankle muscles. These results provide further insight into muscle and prosthesis function in below-knee amputee walking and can help guide rehabilitation methods and device designs to improve amputee mobility.

  8. Stability of an underactuated bipedal gait.

    PubMed

    Mukherjee, S; Sangwan, V; Taneja, A; Seth, B

    2007-01-01

    A self-excited biped walking mechanism consisting of two legs that are connected in series at the hip joint through a servomotor is studied as a cyclic system with collisions. A torque proportional to angle between the shank of the swinging leg and the vertical is seen to sustain a gait. Each leg has a thigh and a shank connected at a passive knee joint that has a knee stopper restricting hyperextension similar to the human knee. A mathematical model for the dynamics of the system including the impact equations is used to analyse the stability of the system through examination of phase plane plots. Attractor lines along which the system approaches stability have been identified. A leg length for optimal stability has been identified. The biological basis for the proposed system has been identified by comparison with human gait.

  9. Mechanical efficiency of limb swing during walking and running in guinea fowl (Numida meleagris)

    PubMed Central

    Rubenson, Jonas; Marsh, Richard L.

    2009-01-01

    Understanding the mechanical determinants of the energy cost of limb swing is crucial for refining our models of locomotor energetics, as well as improving treatments for those suffering from impaired limb-swing mechanics. In this study, we use guinea fowl (Numida meleagris) as a model to explore whether mechanical work at the joints explains limb-swing energy use by combining inverse dynamic modeling and muscle-specific energetics from blood flow measurements. We found that the overall efficiencies of the limb swing increased markedly from walking (3%) to fast running (17%) and are well below the usually accepted maximum efficiency of muscle, except at the fastest speeds recorded. The estimated efficiency of a single muscle used during ankle flexion (tibialis cranialis) parallels that of the total limb-swing efficiency (3% walking, 15% fast running). Taken together, these findings do not support the hypothesis that joint work is the major determinant of limb-swing energy use across the animal's speed range and warn against making simple predictions of energy use based on joint mechanical work. To understand limb-swing energy use, mechanical functions other than accelerating the limb segments need to be explored, including isometric force production and muscle work arising from active and passive antagonist muscle forces. PMID:19228989

  10. Compensatory mechanisms in below-knee amputee gait in response to increasing steady-state walking speeds.

    PubMed

    Silverman, Anne K; Fey, Nicholas P; Portillo, Albert; Walden, Judith G; Bosker, Gordon; Neptune, Richard R

    2008-11-01

    Compensatory mechanisms in below-knee amputee gait are necessary due to the functional loss of the ankle muscles, especially at higher walking speeds when the mechanical energetic demands of walking are greater. The objective of this study was to examine amputee anterior/posterior (A/P) ground reaction force (GRF) impulses and joint kinetics across a wide range of steady-state walking speeds to further understand the compensatory mechanisms used by below-knee amputees. We hypothesized that amputees would rely more on their intact leg to generate greater propulsion relative to the residual leg, which would result in greater GRF asymmetry between legs as walking speed increased. Amputee and control subject kinematic and kinetic data were collected during overground walking at four different speeds. Group (n=14) average amputee data showed no significant differences in braking or propulsive GRF impulse ratios, except the propulsive ratio at 0.9 m/s, indicating that the subjects maintained their initial levels of GRF asymmetry when walking faster. Therefore, our hypothesis was not supported (i.e., walking faster does not increase GRF loading asymmetry). The primary compensatory mechanism was greater positive residual leg hip joint power and work in early stance, which led to increased propulsion from the residual leg as walking speed increased. In addition, amputees had reduced residual leg positive knee work in early stance, suggesting increased output from the biarticular hamstrings. Thus, increasing residual leg hip extensor strength and output may be a useful mechanism to reduce GRF loading asymmetry between the intact and residual legs.

  11. Effect of end-stage hip, knee, and ankle osteoarthritis on walking mechanics.

    PubMed

    Schmitt, Daniel; Vap, Alexander; Queen, Robin M

    2015-09-01

    This study tested the hypothesis that the presence of isolated ankle (A-OA; N=30), knee (K-OA; N=20), or hip (H-OA; N=30) osteoarthritis (OA) compared to asymptomatic controls (N=15) would lead to mechanical changes in the affected joint but also in all other lower limb joints and gait overall. Stride length, stance and swing times, as well as joint angles and moments at the hip, knee, and ankle were derived from 3-D kinematic and kinetic data collected from seven self-selected speed walking trial. Values were compared across groups using a 1×4 ANCOVA, covarying for walking speed. With walking speed controlled, the results indicated a reduction in hip and knee extension and ankle plantar flexion in accordance with the joint affected. In addition, OA in one joint had strong effects on other joints. In both H-OA and K-OA groups the hip never passed into extension, and A-OA subjects significantly changed hip kinematics to compensate for lack of plantar flexion. Finally, OA in any joint led to lower peak vertical forces as well as extension and plantar flexion moments compared to controls. The presence of end-stage OA at various lower extremity joints results in compensatory gait mechanics that cause movement alterations throughout the lower extremity. This work reinforces our understanding of the complex interaction of joints of the lower limb and the importance of focusing on the mechanics of the entire lower limb when considering gait disability and potential interventions in patients with isolated OA.

  12. Finite element analysis of sliding distance and contact mechanics of hip implant under dynamic walking conditions.

    PubMed

    Gao, Yongchang; Jin, Zhongmin; Wang, Ling; Wang, Manyi

    2015-06-01

    An explicit finite element method was developed to predict the dynamic behavior of the contact mechanics for a hip implant under normal walking conditions. Two key parameters of mesh sensitivity and time steps were examined to balance the accuracy and computational cost. Both the maximum contact pressure and accumulated sliding distance showed good agreement with those in the previous studies using the implicit finite element analysis and analytical methods. Therefore, the explicit finite element method could be used to predict the contact pressure and accumulated sliding distance for an artificial hip joint simultaneously in dynamic manner.

  13. Neuromusculoskeletal computer modeling and simulation of upright, straight-legged, bipedal locomotion of Australopithecus afarensis (A.L. 288-1).

    PubMed

    Nagano, Akinori; Umberger, Brian R; Marzke, Mary W; Gerritsen, Karin G M

    2005-01-01

    The skeleton of Australopithecus afarensis (A.L. 288-1, better known as "Lucy") is by far the most complete record of locomotor morphology of early hominids currently available. Even though researchers agree that the postcranial skeleton of Lucy shows morphological features indicative of bipedality, only a few studies have investigated Lucy's bipedal locomotion itself. Lucy's energy expenditure during locomotion has been the topic of much speculation, but has not been investigated, except for several estimates derived from experimental data collected on other animals. To gain further insights into how Lucy may have walked, we generated a full three-dimensional (3D) reconstruction and forward-dynamic simulation of upright bipedal locomotion of this ancient human ancestor. Laser-scanned 3D bone geometries were combined with state-of-the-art neuromusculoskeletal modeling and simulation techniques from computational biomechanics. A detailed full 3D neuromusculoskeletal model was developed that encompassed all major bones, joints (10), and muscles (52) of the lower extremity. A model of muscle force and heat production was used to actuate the musculoskeletal system, and to estimate total energy expenditure during locomotion. Neural activation profiles for each of the 52 muscles that produced a single step of locomotion, while at the same time minimizing the energy consumed per meter traveled, were searched through numerical optimization. The numerical optimization resulted in smooth locomotor kinematics, and the predicted energy expenditure was appropriate for upright bipedal walking in an individual of Lucy's body size.

  14. The pelvis and femur of Ardipithecus ramidus: the emergence of upright walking.

    PubMed

    Lovejoy, C Owen; Suwa, Gen; Spurlock, Linda; Asfaw, Berhane; White, Tim D

    2009-10-02

    The femur and pelvis of Ardipithecus ramidus have characters indicative of both upright bipedal walking and movement in trees. Consequently, bipedality in Ar. ramidus was more primitive than in later Australopithecus. Compared with monkeys and Early Miocene apes such as Proconsul, the ilium in Ar. ramidus is mediolaterally expanded, and its sacroiliac joint is located more posteriorly. These changes are shared with some Middle and Late Miocene apes as well as with African apes and later hominids. However, in contrast to extant apes, bipedality in Ar. ramidus was facilitated by craniocaudal shortening of the ilium and enhanced lordotic recurvature of the lower spine. Given the predominant absence of derived traits in other skeletal regions of Ar. ramidus, including the forelimb, these adaptations were probably acquired shortly after divergence from our last common ancestor with chimpanzees. They therefore bear little or no functional relationship to the highly derived suspension, vertical climbing, knuckle-walking, and facultative bipedality of extant African apes.

  15. Walking at non-constant speeds: mechanical work, pendular transduction, and energy congruity.

    PubMed

    Balbinot, G

    2017-05-01

    Although almost half of all walking bouts in urban environments consist of less than 12 consecutive steps and several day-to-day gait activities contain transient gait responses, in most studies gait analysis is performed at steady-state. This study aimed to analyze external (Wext ) and internal mechanical work (Wint ), pendulum-like mechanics, and elastic energy usage during constant and non-constant speeds. The mechanical work, pendular transduction, and energy congruity (an estimate of storage and release of elastic energy) during walking were computed using two force platforms. We found that during accelerating gait (+NCS) energy recovery is maintained, besides extra W(+)ext , for decelerating gait (-NCS) poor energy recovery was counterbalanced by W(-)ext and C% predominance. We report an increase in elastic energy usage with speed (4-11%). Both W(-)ext and %C suggests that elastic energy usage is higher at faster speeds and related to -NCS (≈20% of elastic energy usage). This study was the first to show evidences of elastic energy usage during constant and non-constant speeds.

  16. Step length asymmetry is representative of compensatory mechanisms used in post-stroke hemiparetic walking.

    PubMed

    Allen, Jessica L; Kautz, Steven A; Neptune, Richard R

    2011-04-01

    Post-stroke hemiparetic subjects walk with asymmetrical step lengths that are highly variable between subjects and may be indicative of the underlying impairments and compensatory mechanisms used. The goal of this study was to determine if post-stroke hemiparetic subjects grouped by step length asymmetry have similar abnormal walking biomechanics compared to non-impaired walkers. Kinematic and ground reaction force data were recorded from 55 hemiparetic subjects walking at their self-selected speed and 21 age and speed-matched non-impaired control subjects. Hemiparetic subjects were grouped by paretic step ratio, which was calculated as the paretic step-length divided by the sum of paretic and nonparetic step-lengths, into high (>0.535), symmetric (0.535-0.465) and low (<0.465) groups. Non-parametric Wilcoxin signed-rank tests were used to test for differences in joint kinetic measures between hemiparetic groups and speed-matched control subjects during late single-leg stance and pre-swing. The paretic leg ankle moment impulse was reduced in all hemiparetic subjects regardless of their paretic step ratio. The high group had increased nonparetic leg ankle plantarflexor and knee extensor moment impulses, the symmetric group had increased hip flexor moment impulses on both the paretic and nonparetic leg and the low group had no additional significant differences in joint moment impulses. These results suggest that the direction of asymmetry can be used to identify both the degree of paretic plantarflexor impairment and the compensatory mechanisms used by post-stroke hemiparetic subjects.

  17. Common motor mechanisms support body load in serially homologous legs of cockroaches in posture and walking.

    PubMed

    Quimby, Laura A; Amer, Ayman S; Zill, Sasha N

    2006-03-01

    We studied the mechanisms underlying support of body load in posture and walking in serially homologous legs of cockroaches. Activities of the trochanteral extensor muscle in the front or middle legs were recorded neurographically while animals were videotaped. Body load was increased via magnets attached to the thorax and varied through a coil below the substrate. In posture, tonic firing of the slow trochanteral extensor motoneuron (Ds) in each leg was strongly modulated by changing body load. Rapid load increases produced decreases in body height and sharp increments in extensor firing. The peak of extensor activity more closely approximated the maximum velocity of body displacement than the body position. In walking, extensor bursts in front and middle legs were initiated during swing and continued into the stance phase. Moderate tonic increases in body load elicited similar, specific, phase dependent changes in both legs: extensor firing was not altered in swing but was higher after foot placement in stance. These motor adjustments to load are not anticipatory but apparently depend upon sensory feedback. These data are consistent with previous findings in the hind legs and support the idea that body load is countered by common motor mechanisms in serially homologous legs.

  18. Effects of walking in deep venous thrombosis: a new integrated solid and fluid mechanics model.

    PubMed

    López, Josep M; Fortuny, Gerard; Puigjaner, Dolors; Herrero, Joan; Marimon, Francesc; Garcia-Bennett, Josep

    2016-08-09

    Deep venous thrombosis (DVT) is a common disease. Large thrombi in venous vessels cause bad blood circulation and pain; and when a blood clot detaches from a vein wall, it causes an embolism whose consequences range from mild to fatal. Walking is recommended to DVT patients as a therapeutical complement. In this study the mechanical effects of walking on a specific patient of DVT were simulated by means of an unprecedented integration of 3 elements: a real geometry, a biomechanical model of body tissues, and a computational fluid dynamics study. A set of computed tomography images of a patient's leg with a thrombus in the popliteal vein was employed to reconstruct a geometry model. Then a biomechanical model was used to compute the new deformed geometry of the vein as a function of the fiber stretch level of the semimembranosus muscle. Finally, a computational fluid dynamics study was performed to compute the blood flow and the wall shear stress (WSS) at the vein and thrombus walls. Calculations showed that either a lengthening or shortening of the semimembranosus muscle led to a decrease of WSS levels up to 10%. Notwithstanding, changes in blood viscosity properties or blood flow rate may easily have a greater impact in WSS.

  19. Introduction to Focus Issue: Bipedal Locomotion-From Robots to Humans

    NASA Astrophysics Data System (ADS)

    Milton, John G.

    2009-06-01

    Running and walking, collectively referred to as bipedal locomotion, represent self-organized behaviors generated by a spatially distributed dynamical system operating under the constraint that a person must be able to move without falling down. The organizing principles involve both forces actively regulated by the nervous system and those generated passively by the biomechanical properties of the musculoskeletal system and the environment in which the movements occur. With the development of modern motion capture and electrophysiological techniques it has become possible to explore the dynamical interplay between the passive and active controllers of locomotion in a manner that directly compares observation to predictions made by relevant mathematical and computer models. Consequently, many of the techniques initially developed to study nonlinear dynamical systems, including stability analyses, phase resetting and entrainment properties of limit cycles, and fractal and multifractal analysis, have come to play major roles in guiding progress. This Focus Issue discusses bipedal locomotion from the point of view of dynamical systems theory with the goal of stimulating discussion between the dynamical systems, physics, biomechanics, and neuroscience communities.

  20. Biased motion and molecular motor properties of bipedal spiders.

    PubMed

    Samii, Laleh; Linke, Heiner; Zuckermann, Martin J; Forde, Nancy R

    2010-02-01

    Molecular spiders are synthetic molecular motors featuring multiple legs that each can interact with a substrate through binding and cleavage. Experimental studies suggest the motion of the spider in a matrix is biased toward uncleaved substrates and that spider properties such as processivity can be altered by changing the binding strength of the legs to substrate [R. Pei, S. K. Taylor, D. Stefanovic, S. Rudchenko, T. E. Mitchell, and M. N. Stojanovic, J. Am. Chem. Soc. 128, 12693 (2006)]. We investigate the origin of biased motion and molecular motor properties of bipedal spiders using Monte Carlo simulations. Our simulations combine a realistic chemical kinetic model, hand-over-hand or inchworm modes of stepping, and the use of a one-dimensional track. We find that stronger binding to substrate, cleavage and spider detachment from the track are contributing mechanisms to population bias. We investigate the contributions of stepping mechanism to speed, randomness parameter, processivity, coupling, and efficiency, and comment on how these molecular motor properties can be altered by changing experimentally tunable kinetic parameters.

  1. Biased motion and molecular motor properties of bipedal spiders

    NASA Astrophysics Data System (ADS)

    Samii, Laleh; Linke, Heiner; Zuckermann, Martin J.; Forde, Nancy R.

    2010-02-01

    Molecular spiders are synthetic molecular motors featuring multiple legs that each can interact with a substrate through binding and cleavage. Experimental studies suggest the motion of the spider in a matrix is biased toward uncleaved substrates and that spider properties such as processivity can be altered by changing the binding strength of the legs to substrate [R. Pei, S. K. Taylor, D. Stefanovic, S. Rudchenko, T. E. Mitchell, and M. N. Stojanovic, J. Am. Chem. Soc. 128, 12693 (2006)]. We investigate the origin of biased motion and molecular motor properties of bipedal spiders using Monte Carlo simulations. Our simulations combine a realistic chemical kinetic model, hand-over-hand or inchworm modes of stepping, and the use of a one-dimensional track. We find that stronger binding to substrate, cleavage and spider detachment from the track are contributing mechanisms to population bias. We investigate the contributions of stepping mechanism to speed, randomness parameter, processivity, coupling, and efficiency, and comment on how these molecular motor properties can be altered by changing experimentally tunable kinetic parameters.

  2. External Mechanical Work and Pendular Energy Transduction of Overground and Treadmill Walking in Adolescents with Unilateral Cerebral Palsy

    PubMed Central

    Zollinger, Marie; Degache, Francis; Currat, Gabriel; Pochon, Ludmila; Peyrot, Nicolas; Newman, Christopher J.; Malatesta, Davide

    2016-01-01

    Purpose: Motor impairments affect functional abilities and gait in children and adolescents with cerebral palsy (CP). Improving their walking is an essential objective of treatment, and the use of a treadmill for gait analysis and training could offer several advantages in adolescents with CP. However, there is a controversy regarding the similarity between treadmill and overground walking both for gait analysis and training in children and adolescents. The aim of this study was to compare the external mechanical work and pendular energy transduction of these two types of gait modalities at standard and preferred walking speeds in adolescents with unilateral cerebral palsy (UCP) and typically developing (TD) adolescents matched on age, height and body mass. Methods: Spatiotemporal parameters, external mechanical work and pendular energy transduction of walking were computed using two inertial sensors equipped with a triaxial accelerometer and gyroscope and compared in 10 UCP (14.2 ± 1.7 year) and 10 TD (14.1 ± 1.9 year) adolescents during treadmill and overground walking at standard and preferred speeds. Results: The treadmill induced almost identical mechanical changes to overground walking in TD adolescents and those with UCP, with the exception of potential and kinetic vertical and lateral mechanical works, which are both significantly increased in the overground-treadmill transition only in UCP (P < 0.05). Conclusions: Adolescents with UCP have a reduced adaptive capacity in absorbing and decelerating the speed created by a treadmill (i.e., dynamic stability) compared to TD adolescents. This may have an important implication in rehabilitation programs that assess and train gait by using a treadmill in adolescents with UCP. PMID:27148062

  3. Muscle-tendon mechanics explain unexpected effects of exoskeleton assistance on metabolic rate during walking.

    PubMed

    Jackson, Rachel W; Dembia, Christopher L; Delp, Scott L; Collins, Steven H

    2017-03-24

    The goal of this study was to gain insight into how ankle exoskeletons affect the behavior of the plantarflexor muscles during walking. Using data from previous experiments, we performed electromyography-driven simulations of musculoskeletal dynamics to explore how changes in exoskeleton assistance affected plantarflexor muscle-tendon mechanics, particularly for the soleus. We used a model of muscle energy consumption to estimate individual muscle metabolic rate. As average exoskeleton torque was increased, while no net exoskeleton work was provided, a reduction in tendon recoil led to an increase in positive mechanical work performed by the soleus muscle fibers. As net exoskeleton work was increased, both soleus muscle fiber force and positive mechanical work decreased. Trends in the sum of the metabolic rates of the simulated muscles correlated well with trends in experimentally-observed whole-body metabolic rate (R(2) = 0.9), providing confidence in our model estimates. Our simulation results suggest that different exoskeleton behaviors can alter the functioning of the muscles and tendons acting at the assisted joint. Furthermore, our results support the idea that the series tendon helps reduce positive work done by the muscle fibers by storing and returning energy elastically. We expect the results from this study to promote the use of electromyography-driven simulations to gain insight into the operation of muscle-tendon units and to guide the design and control of assistive devices.

  4. Biomechanical modeling and sensitivity analysis of bipedal running ability. I. Extant taxa.

    PubMed

    Hutchinson, John R

    2004-10-01

    I used a simple mathematical model of the inverse dynamics of locomotion to estimate the minimum muscle masses required to maintain quasi-static equilibrium about the four main limb joints at mid-stance of fast running. Models of 10 extant taxa (a human, a kangaroo, two lizards, an alligator, and five birds) were analyzed in various bipedal poses to examine how anatomy, size, limb orientation, and other model parameters influence running ability. I examined how the muscle masses required for fast running compare to the muscle masses that are actually able to exert moments about the hip, knee, ankle, and toe joints, to see how support ability varies across the limb. I discuss the assumptions and limitations of the models, using sensitivity analysis to see how widely the results differed with feasible parameter input values. Even with a wide range of input values, the models validated the analysis procedure. Animals that are known to run bipedally were calculated as able to preserve quasi-static equilibrium about their hindlimb joints at mid-stance, whereas non-bipedal runners (iguanas and alligators) were recognized as having too little muscle mass to run quickly in bipedal poses. Thus, this modeling approach should be reliable for reconstructing running ability in extinct bipeds such as nonavian dinosaurs. The models also elucidated how key features are important for bipedal running capacity, such as limb orientation, muscle moment arms, muscle fascicle lengths, and body size. None of the animals modeled had extensor muscle masses acting about any one joint that were 7% or more of their body mass, which provides a reasonable limit for how much muscle mass is normally apportioned within a limb to act about a particular joint. The models consistently showed that a key biomechanical limit on running ability is the capacity of ankle extensors to generate sufficiently large joint moments. Additionally, the analysis reveals how large ratite birds remain excellent runners

  5. Metabolic Cost, Mechanical Work, and Efficiency during Normal Walking in Obese and Normal-Weight Children

    ERIC Educational Resources Information Center

    Huang, Liang; Chen, Peijie; Zhuang, Jie; Zhang, Yanxin; Walt, Sharon

    2013-01-01

    Purpose: This study aimed to investigate the influence of childhood obesity on energetic cost during normal walking and to determine if obese children choose a walking strategy optimizing their gait pattern. Method: Sixteen obese children with no functional abnormalities were matched by age and gender with 16 normal-weight children. All…

  6. Resuspension of allergen-containing particles under mechanical and aerodynamic disturbances from human walking

    NASA Astrophysics Data System (ADS)

    Gomes, C.; Freihaut, J.; Bahnfleth, W.

    This study presents and develops a controlled and characterized method to explore the influence of specific occupant activity on the aerosolization of allergen-containing particles. Indoor allergen-related diseases are primarily inhalation sensitized and developed, suggesting an aerobiological pathway of allergen-containing carrier particles from dust reservoir to occupant respiration. But the pathways are not well understood or quantified. The influence of occupant walking on particle aerosolization is simulated by a system in which complex floor disturbances are deconvoluted into aerodynamic and mechanical components. Time resolved particle size distributions are measured for particles resuspended from representative samples of flooring materials and different types of floor disturbances in an environmentally controlled experimental chamber. Results indicate aerodynamic disturbances, relative to mechanical, dominate the particle resuspension behavior. Dust type, dust load and floor type showed marginal influences on a normalized surface loading basis. Humidity effects were not clear since during experiments the floor samples may not have reached moisture partitioning equilibrium with the controlled air humidity. Average resuspension rates ranged from 10 -7 to 10 -3 min -1, having phenomenological consistency with previous, large room or chamber investigations, suggesting the method can be utilized to develop a database for particle resuspension rates.

  7. Effects of prolonged walking on neural and mechanical components of stretch responses in the human soleus muscle

    PubMed Central

    Cronin, Neil J; Ishikawa, Masaki; af Klint, Richard; Komi, Paavo V; Avela, Janne; Sinkjaer, Thomas; Voigt, Michael

    2009-01-01

    After repeated passive stretching, tendinous tissue compliance increases in the human soleus (SOL) muscle–tendon unit. During movement, such changes would have important consequences for neural and mechanical stretch responses. This study examined the existence of such effects in response to a 75 min walking intervention. Eleven healthy subjects walked on a treadmill at 4 km h−1 with a robotic stretch device attached to the left leg. Ultrasonography was used to measure SOL fascicle lengths, and surface EMG activity was recorded in the SOL and tibialis anterior (TA) muscles. Perturbations of 6 deg were imposed at three different measurement intervals: Pre (immediately before the walking intervention), Mid (after approximately 30 min of walking) and Post (immediately after the intervention). Between the Pre–Mid and Mid–Post intervals, subjects walked for 30 min at a gradient of 3%. After the intervention, the amplitude and velocity of fascicle stretch both decreased (by 46 and 59%, respectively; P < 0.001) in response to a constant external perturbation, as did short (33%; P < 0.01) and medium (25%; P < 0.01) latency stretch reflex amplitudes. A faster perturbation elicited at the end of the protocol resulted in a recovery of fascicle stretch velocities and short latency reflex amplitudes to the pre-exercise values. These findings suggest that repeated stretching and shortening of a muscle–tendon unit can induce short-term structural changes in the tendinous tissues during human walking. The data also highlight the effect of these changes on neural feedback from muscle sensory afferents. PMID:19622608

  8. Effects of prolonged walking on neural and mechanical components of stretch responses in the human soleus muscle.

    PubMed

    Cronin, Neil J; Ishikawa, Masaki; Af Klint, Richard; Komi, Paavo V; Avela, Janne; Sinkjaer, Thomas; Voigt, Michael

    2009-09-01

    After repeated passive stretching, tendinous tissue compliance increases in the human soleus (SOL) muscle-tendon unit. During movement, such changes would have important consequences for neural and mechanical stretch responses. This study examined the existence of such effects in response to a 75 min walking intervention. Eleven healthy subjects walked on a treadmill at 4 km h(1) with a robotic stretch device attached to the left leg. Ultrasonography was used to measure SOL fascicle lengths, and surface EMG activity was recorded in the SOL and tibialis anterior (TA) muscles. Perturbations of 6 deg were imposed at three different measurement intervals: Pre (immediately before the walking intervention), Mid (after approximately 30 min of walking) and Post (immediately after the intervention). Between the Pre-Mid and Mid-Post intervals, subjects walked for 30 min at a gradient of 3%. After the intervention, the amplitude and velocity of fascicle stretch both decreased (by 46 and 59%, respectively; P < 0.001) in response to a constant external perturbation, as did short (33%; P < 0.01) and medium (25%; P < 0.01) latency stretch reflex amplitudes. A faster perturbation elicited at the end of the protocol resulted in a recovery of fascicle stretch velocities and short latency reflex amplitudes to the pre-exercise values. These findings suggest that repeated stretching and shortening of a muscle-tendon unit can induce short-term structural changes in the tendinous tissues during human walking. The data also highlight the effect of these changes on neural feedback from muscle sensory afferents.

  9. Effect of carrying a weighted backpack on lung mechanics during treadmill walking in healthy men.

    PubMed

    Dominelli, Paolo B; Sheel, A William; Foster, Glen E

    2012-06-01

    Weighted backpacks are used extensively in recreational and occupational settings, yet their effects on lung mechanics during acute exercise is poorly understood. The purpose of this study was to determine the effects of different backpack weights on lung mechanics and breathing patterns during treadmill walking. Subjects (n = 7, age = 28 ± 6 years), completed two 2.5-min exercise stages for each backpack condition [no backpack (NP), an un-weighted backpack (NW) or a backpack weighing 15, 25 or 35 kg]. A maximal expiratory flow volume curve was generated for each backpack condition and an oesophageal balloon catheter was used to estimate pleural pressure. The 15, 25 and 35 kg backpacks caused a 3, 5 and 8% (P < 0.05) reduction in forced vital capacity compared with the NP condition, respectively. For the same exercise stage, the power of breathing (POB) requirement was higher in the 35 kg backpack compared to NP (32 ± 4.3 vs. 88 ± 9.0 J min(-1), P < 0.05; respectively). Independent of changes in minute ventilation, end-expiratory lung volume decreased as backpack weight increased. As backpack weight increased, there was a concomitant decline in calculated maximal ventilation, a rise in minute ventilation, and a resultant greater utilization of maximal available ventilation. In conclusion, wearing a weighted backpack during an acute bout of exercise altered operational lung volumes; however, adaptive changes in breathing mechanics may have minimized changes in the required POB such that at an iso-ventilation, wearing a backpack weighing up to 35 kg does not increase the POB requirement.

  10. Quadriceps and Hamstrings Morphology Is Related to Walking Mechanics and Knee Cartilage MRI Relaxation Times in Young Adults

    PubMed Central

    KUMAR, DEEPAK; SUBBURAJ, KARUPPPASAMY; LIN, WILSON; KARAMPINOS, DIMITRIOS C.; MCCULLOCH, CHARLES E.; LI, XIAOJUAN; LINK, THOMAS M.; SOUZA, RICHARD B.; MAJUMDAR, SHARMILA

    2015-01-01

    STUDY DESIGN Controlled laboratory study using a cross-sectional design. OBJECTIVES To analyze the relationship of quadriceps-hamstrings and medial-lateral quadriceps anatomical cross-sectional area (ACSA) ratios with knee loads during walking and articular and meniscal cartilage composition in young, healthy subjects. BACKGROUND Muscle forces affect knee loading during walking, but it is not known if muscle morphology is associated with walking mechanics and cartilage composition in young subjects. METHODS Forty-two knees from 27 young, healthy, active volunteers (age, 20-35 years; body mass index, <28 kg/m2) underwent 3-T magnetic resonance imaging (MRI) and 3-D motion capture. Standard MRI sequences were used for articular and meniscal cartilage T1rho and T2 relaxation times and for quadriceps and hamstrings muscle ACSA. Frontal plane kinetics during the stance phase of walking was calculated. Generalized estimating equation models were used to identify muscle variables that predicted MRI and gait parameters. RESULTS Quadriceps-hamstrings and medial-lateral quadriceps ACSA ratios were positively related to frontal plane loading (β = .27-.54, P≤.006), global articular cartilage relaxation times (β = .22-.28, P≤.041), and the medial-lateral ratio of meniscus T1rho relaxation time (β = .26-.36, P≤.049). The medial-lateral quadriceps ACSA ratio was positively related to global meniscus T1rho relaxation times (β = .30, P = .046). CONCLUSION Higher quadriceps-hamstrings and medial-lateral quadriceps ACSA ratios were associated with higher frontal plane loading during walking and with articular and meniscal cartilage T1rho and T2 relaxation times. These findings highlight the relationships between different knee tissues and knee mechanics in young, healthy individuals. PMID:24175607

  11. The gaits of primates: center of mass mechanics in walking, cantering and galloping ring-tailed lemurs, Lemur catta.

    PubMed

    O'Neill, Matthew C; Schmitt, Daniel

    2012-05-15

    Most primates, including lemurs, have a broad range of locomotor capabilities, yet much of the time, they walk at slow speeds and amble, canter or gallop at intermediate and fast speeds. Although numerous studies have investigated limb function during primate quadrupedalism, how the center of mass (COM) moves is not well understood. Here, we examined COM energy, work and power during walking, cantering and galloping in ring-tailed lemurs, Lemur catta (N=5), over a broad speed range (0.43-2.91 m s(-1)). COM energy recoveries were substantial during walking (35-71%) but lower during canters and gallops (10-51%). COM work, power and collisional losses increased with speed. The positive COM works were 0.625 J kg(-1) m(-1) for walks and 1.661 J kg(-1) m(-1) for canters and gallops, which are in the middle range of published values for terrestrial animals. Although some discontinuities in COM mechanics were evident between walking and cantering, there was no apparent analog to the trot-gallop transition across the intermediate and fast speed range (dimensionless v>0.75, Fr>0.5). A phenomenological model of a lemur cantering and trotting at the same speed shows that canters ensure continuous contact of the body with the substrate while reducing peak vertical COM forces, COM stiffness and COM collisions. We suggest that cantering, rather than trotting, at intermediate speeds may be tied to the arboreal origins of the Order Primates. These data allow us to better understand the mechanics of primate gaits and shed new light on primate locomotor evolution.

  12. Human Odometry Verifies the Symmetry Perspective on Bipedal Gaits

    ERIC Educational Resources Information Center

    Turvey, M. T.; Harrison, Steven J.; Frank, Till D.; Carello, Claudia

    2012-01-01

    Bipedal gaits have been classified on the basis of the group symmetry of the minimal network of identical differential equations (alias "cells") required to model them. Primary gaits are characterized by dihedral symmetry, whereas secondary gaits are characterized by a lower, cyclic symmetry. This fact was used in a test of human…

  13. A springy pendulum could describe the swing leg kinetics of human walking.

    PubMed

    Song, Hyunggwi; Park, Heewon; Park, Sukyung

    2016-06-14

    The dynamics of human walking during various walking conditions could be qualitatively captured by the springy legged dynamics, which have been used as a theoretical framework for bipedal robotics applications. However, the spring-loaded inverted pendulum model describes the motion of the center of mass (CoM), which combines the torso, swing and stance legs together and does not explicitly inform us as to whether the inter-limb dynamics share the springy legged dynamics characteristics of the CoM. In this study, we examined whether the swing leg dynamics could also be represented by springy mechanics and whether the swing leg stiffness shows a dependence on gait speed, as has been observed in CoM mechanics during walking. The swing leg was modeled as a spring-loaded pendulum hinged at the hip joint, which is under forward motion. The model parameters of the loaded mass were adopted from body parameters and anthropometric tables, whereas the free model parameters for the rest length of the spring and its stiffness were estimated to best match the data for the swing leg joint forces. The joint forces of the swing leg were well represented by the springy pendulum model at various walking speeds with a regression coefficient of R(2)>0.8. The swing leg stiffness increased with walking speed and was correlated with the swing frequency, which is consistent with previous observations from CoM dynamics described using the compliant leg. These results suggest that the swing leg also shares the springy dynamics, and the compliant walking model could be extended to better present swing leg dynamics.

  14. Effects of toe-out and toe-in gait with varying walking speeds on knee joint mechanics and lower limb energetics.

    PubMed

    Khan, Soobia Saad; Khan, Saad Jawaid; Usman, Juliana

    2017-03-01

    Toe-out/-in gait has been prescribed in reducing knee joint load to medial knee osteoarthritis patients. This study focused on the effects of toe-out/-in at different walking speeds on first peak knee adduction moment (fKAM), second peak KAM (sKAM), knee adduction angular impulse (KAAI), net mechanical work by lower limb as well as joint-level contribution to the total limb work during level walking. Gait analysis of 20 healthy young adults was done walking at pre-defined normal (1.18m/s), slow (0.85m/s) and fast (1.43m/s) walking speeds with straight-toe (natural), toe-out (15°>natural) and toe-in (15°walking speeds (highest at normal speed) while toe-in gait reduced fKAM at all speeds (highest at fast walking speed). Toeing-in reduced KAAI at all speeds while toeing-out affected KAAI only at normal speed. Increasing walking speed generally increased fKAM for all foot positions, but it did not affect sKAM considerably. Slowing down the speed, increased KAAI significantly at all foot positions except for toe-in. At slow walking speed, hip and knee joints were found to be major energy contributors for toe-in and toe-out respectively. At higher walking speeds, these contributions were switched. The ankle joint remained unaffected by changing walking speeds and foot progression angles. Toe-out/-in gait modifications affected knee joint kinetics and lower limb energetics at all walking speeds. However, their effects were inconsistent at different speeds. Therefore, walking speed should be taken into account when prescribing toe-out/-in gait.

  15. Early, Prehospital Activation of the Walking Blood Bank Based on Mechanism of Injury Improves Time to Fresh Whole Blood Transfusion.

    PubMed

    Bassett, Aaron K; Auten, Jonathan D; Zieber, Tara J; Lunceford, Nicole L

    2016-01-01

    Balanced component therapy (BCT) remains the mainstay in trauma resuscitation of the critically battle injured. In austere medical environments, access to packed red blood cells, apheresis platelets, and fresh frozen plasma is often limited. Transfusion of warm, fresh whole blood (FWB) has been used to augment limited access to full BCT in these settings. The main limitation of FWB is that it is not readily available for transfusion on casualty arrival. This small case series evaluates the impact early, mechanism-of-injury (MOI)-based, preactivation of the walking blood bank has on time to transfusion. We report an average time of 18 minutes to FWB transfusion from patient arrival. Early activation of the walking blood bank based on prehospital MOI may further reduce the time to FWB transfusion.

  16. Systematic variation of prosthetic foot spring affects center-of-mass mechanics and metabolic cost during walking.

    PubMed

    Zelik, Karl E; Collins, Steven H; Adamczyk, Peter G; Segal, Ava D; Klute, Glenn K; Morgenroth, David C; Hahn, Michael E; Orendurff, Michael S; Czerniecki, Joseph M; Kuo, Arthur D

    2011-08-01

    Lower-limb amputees expend more energy to walk than non-amputees and have an elevated risk of secondary disabilities. Insufficient push-off by the prosthetic foot may be a contributing factor. We aimed to systematically study the effect of prosthetic foot mechanics on gait, to gain insight into fundamental prosthetic design principles. We varied a single parameter in isolation, the energy-storing spring in a prototype prosthetic foot, the controlled energy storage and return (CESR) foot, and observed the effect on gait. Subjects walked on the CESR foot with three different springs. We performed parallel studies on amputees and on non-amputees wearing prosthetic simulators. In both groups, spring characteristics similarly affected ankle and body center-of-mass (COM) mechanics and metabolic cost. Softer springs led to greater energy storage, energy return, and prosthetic limb COM push-off work. But metabolic energy expenditure was lowest with a spring of intermediate stiffness, suggesting biomechanical disadvantages to the softest spring despite its greater push-off. Disadvantages of the softest spring may include excessive heel displacements and COM collision losses. We also observed some differences in joint kinetics between amputees and non-amputees walking on the prototype foot. During prosthetic push-off, amputees exhibited reduced energy transfer from the prosthesis to the COM along with increased hip work, perhaps due to greater energy dissipation at the knee. Nevertheless, the results indicate that spring compliance can contribute to push-off, but with biomechanical trade-offs that limit the degree to which greater push-off might improve walking economy.

  17. Contributions of knee swing initiation and ankle plantar flexion to the walking mechanics of amputees using a powered prosthesis.

    PubMed

    Ingraham, Kimberly A; Fey, Nicholas P; Simon, Ann M; Hargrove, Levi J

    2014-01-01

    Recently developed powered prostheses are capable of producing near-physiological joint torque at the knee and/or ankle joints. Based on previous studies of biological joint impedance and the mechanics of able-bodied gait, an impedance-based controller has been developed for a powered knee and ankle prosthesis that integrates knee swing initiation and powered plantar flexion in late stance with increasing ankle stiffness throughout stance. In this study, five prosthesis configuration conditions were tested to investigate the individual contributions of each sub-strategy to the overall walking mechanics of four unilateral transfemoral amputees as they completed a clinical 10-m walk test using a powered knee and ankle prosthesis. The baseline condition featured constant ankle stiffness and no swing initiation or powered plantar flexion. The four remaining conditions featured knee swing initiation alone (SI) or in combination with powered plantar flexion (SI+PF), increasing ankle stiffness (SI+IK), or both (SI+PF+IK). Self-selected walking speed did not significantly change between conditions, although subjects tended to walk the slowest in the baseline condition compared to conditions with swing initiation. The addition of powered plantar flexion resulted in significantly higher ankle power generation in late stance irrespective of ankle stiffness. The inclusion of swing initiation resulted in a significantly more flexed knee at toe off and a significantly higher average extensor knee torque following toe off. Identifying individual contributions of intrinsic control strategies to prosthesis biomechanics could help inform the refinement of impedance-based prosthesis controllers and simplify future designs of prostheses and lower-limb assistive devices alike.

  18. Systematic variation of prosthetic foot spring affects center-of-mass mechanics and metabolic cost during walking

    PubMed Central

    Zelik, Karl E.; Collins, Steven H.; Adamczyk, Peter G.; Segal, Ava D.; Klute, Glenn K.; Morgenroth, David C.; Hahn, Michael E.; Orendurff, Michael S.; Czerniecki, Joseph M.; Kuo, Arthur D.

    2014-01-01

    Lower-limb amputees expend more energy to walk than non-amputees and have an elevated risk of secondary disabilities. Insufficient push-off by the prosthetic foot may be a contributing factor. We aimed to systematically study the effect of prosthetic foot mechanics on gait, to gain insight into fundamental prosthetic design principles. We varied a single parameter in isolation, the energy-storing spring in a prototype prosthetic foot, the Controlled Energy Storage and Return (CESR) foot, and observed the effect on gait. Subjects walked on the CESR foot with three different springs. We performed parallel studies on amputees and on non-amputees wearing prosthetic simulators. In both groups, spring characteristics similarly affected ankle and body center-of-mass (COM) mechanics and metabolic cost. Softer springs led to greater energy storage, energy return and prosthetic limb COM push-off work. But metabolic energy expenditure was lowest with a spring of intermediate stiffness, suggesting biomechanical disadvantages to the softest spring despite its greater push-off. Disadvantages of the softest spring may include excessive heel displacements and COM collision losses. We also observed some differences in joint kinetics between amputees and non-amputees walking on the prototype foot. During prosthetic push-off, amputees exhibited reduced energy transfer from the prosthesis to the COM along with increased hip work, perhaps due to greater energy dissipation at the knee. Nevertheless, the results indicate that spring compliance can contribute to push-off, but with biomechanical trade-offs that limit the degree to which greater push-off might improve walking economy. PMID:21708509

  19. [Walking abnormalities in children].

    PubMed

    Segawa, Masaya

    2010-11-01

    Walking is a spontaneous movement termed locomotion that is promoted by activation of antigravity muscles by serotonergic (5HT) neurons. Development of antigravity activity follows 3 developmental epochs of the sleep-wake (S-W) cycle and is modulated by particular 5HT neurons in each epoch. Activation of antigravity activities occurs in the first epoch (around the age of 3 to 4 months) as restriction of atonia in rapid eye movement (REM) stage and development of circadian S-W cycle. These activities strengthen in the second epoch, with modulation of day-time sleep and induction of crawling around the age of 8 months and induction of walking by 1 year. Around the age of 1 year 6 months, absence of guarded walking and interlimb cordination is observed along with modulation of day-time sleep to once in the afternoon. Bipedal walking in upright position occurs in the third epoch, with development of a biphasic S-W cycle by the age of 4-5 years. Patients with infantile autism (IA), Rett syndrome (RTT), or Tourette syndrome (TS) show failure in the development of the first, second, or third epoch, respectively. Patients with IA fail to develop interlimb coordination; those with RTT, crawling and walking; and those with TS, walking in upright posture. Basic pathophysiology underlying these condition is failure in restricting atonia in REM stage; this induces dysfunction of the pedunculopontine nucleus and consequently dys- or hypofunction of the dopamine (DA) neurons. DA hypofunction in the developing brain, associated with compensatory upward regulation of the DA receptors causes psychobehavioral disorders in infancy (IA), failure in synaptogenesis in the frontal cortex and functional development of the motor and associate cortexes in late infancy through the basal ganglia (RTT), and failure in functional development of the prefrontal cortex through the basal ganglia (TS). Further, locomotion failure in early childhood causes failure in development of functional

  20. [Bipedalism in birds, a determining feature for their adaptive success].

    PubMed

    Abourachid, Anick

    2006-01-01

    The birds are flying animals but they are also basically bipeds. The theropod dinosaurs, precursors of the birds, were already cursorial bipeds. Because the body structure was modelled by aerodynamical constraints during the evolution, all birds, even those that do not fly anymore, share a typical avian body shape. The osteological differences between birds are more adjustments than deep disruptions. Nevertheless, the birds are very diversified in their way of life and habitat. Yet, the hind limbs of the birds are surprisingly efficient in many manners, such as taking off, landing, swimming and walking. The limb structures adaptability to the various tasks require different mechanical fitness or device such as shock absorber during landing, or thrusters during tacking off. Moreover, almost all birds can walk, even if they have another locomotor specialization, as swimming or flying. Depending on the specialization, the gait features of the walk and the kinematics pattern are slightly modified. The functional adaptability of their hind limb structure may be a key to the evolutive success of the birds.

  1. Fossils, feet and the evolution of human bipedal locomotion.

    PubMed

    Harcourt-Smith, W E H; Aiello, L C

    2004-05-01

    We review the evolution of human bipedal locomotion with a particular emphasis on the evolution of the foot. We begin in the early twentieth century and focus particularly on hypotheses of an ape-like ancestor for humans and human bipedal locomotion put forward by a succession of Gregory, Keith, Morton and Schultz. We give consideration to Morton's (1935) synthesis of foot evolution, in which he argues that the foot of the common ancestor of modern humans and the African apes would be intermediate between the foot of Pan and Hylobates whereas the foot of a hypothetical early hominin would be intermediate between that of a gorilla and a modern human. From this base rooted in comparative anatomy of living primates we trace changing ideas about the evolution of human bipedalism as increasing amounts of postcranial fossil material were discovered. Attention is given to the work of John Napier and John Robinson who were pioneers in the interpretation of Plio-Pleistocene hominin skeletons in the 1960s. This is the period when the wealth of evidence from the southern African australopithecine sites was beginning to be appreciated and Olduvai Gorge was revealing its first evidence for Homo habilis. In more recent years, the discovery of the Laetoli footprint trail, the AL 288-1 (A. afarensis) skeleton, the wealth of postcranial material from Koobi Fora, the Nariokotome Homo ergaster skeleton, Little Foot (Stw 573) from Sterkfontein in South Africa, and more recently tantalizing material assigned to the new and very early taxa Orrorin tugenensis, Ardipithecus ramidus and Sahelanthropus tchadensis has fuelled debate and speculation. The varying interpretations based on this material, together with changing theoretical insights and analytical approaches, is discussed and assessed in the context of new three-dimensional morphometric analyses of australopithecine and Homo foot bones, suggesting that there may have been greater diversity in human bipedalism in the earlier phases

  2. Locomotion: Why We Walk the Way We Walk.

    PubMed

    Bertram, John E A

    2015-09-21

    The way we walk determines the energetic investment needed. Humans spontaneously alter their walking style to exploit energetic opportunities. New research demonstrates the sensitivity and timing of this optimization and opens the door to discovering the underlying mechanisms.

  3. In search of the pitching momentum that enables some lizards to sustain bipedal running at constant speeds

    PubMed Central

    Van Wassenbergh, Sam; Aerts, Peter

    2013-01-01

    The forelimbs of lizards are often lifted from the ground when they start sprinting. Previous research pointed out that this is a consequence of the propulsive forces from the hindlimbs. However, despite forward acceleration being hypothesized as necessary to lift the head, trunk and forelimbs, some species of agamids, teiids and basilisks sustain running in a bipedal posture at a constant speed for a relatively long time. Biomechanical modelling of steady bipedal running in the agamid Ctenophorus cristatus now shows that a combination of three mechanisms must be present to generate the angular impulse needed to cancel or oppose the effect of gravity. First, the trunk must be lifted significantly to displace the centre of mass more towards the hip joint. Second, the nose-up pitching moment resulting from aerodynamic forces exerted at the lizard's surface must be taken into account. Third, the vertical ground-reaction forces at the hindlimb must show a certain degree of temporal asymmetry with higher forces closer to the instant of initial foot contact. Such asymmetrical vertical ground-reaction force profiles, which differ from the classical spring-mass model of bipedal running, seem inherent to the windmilling, splayed-legged running style of lizards. PMID:23658116

  4. In search of the pitching momentum that enables some lizards to sustain bipedal running at constant speeds.

    PubMed

    Van Wassenbergh, Sam; Aerts, Peter

    2013-07-06

    The forelimbs of lizards are often lifted from the ground when they start sprinting. Previous research pointed out that this is a consequence of the propulsive forces from the hindlimbs. However, despite forward acceleration being hypothesized as necessary to lift the head, trunk and forelimbs, some species of agamids, teiids and basilisks sustain running in a bipedal posture at a constant speed for a relatively long time. Biomechanical modelling of steady bipedal running in the agamid Ctenophorus cristatus now shows that a combination of three mechanisms must be present to generate the angular impulse needed to cancel or oppose the effect of gravity. First, the trunk must be lifted significantly to displace the centre of mass more towards the hip joint. Second, the nose-up pitching moment resulting from aerodynamic forces exerted at the lizard's surface must be taken into account. Third, the vertical ground-reaction forces at the hindlimb must show a certain degree of temporal asymmetry with higher forces closer to the instant of initial foot contact. Such asymmetrical vertical ground-reaction force profiles, which differ from the classical spring-mass model of bipedal running, seem inherent to the windmilling, splayed-legged running style of lizards.

  5. Predictive Walking-Age Health Analyzer.

    PubMed

    Mandal, Priyanka; Tank, Krishna; Monday, Tapas; Chen, Chih-Hung; Deen, M Jamal

    2017-02-09

    A simple, low-power and wearable health analyzer for early identification and management of some diseases is presented. To achieve this goal, we propose a walking pattern analysis system that uses features such as speed, energy, turn ratio, and bipedal behavior to characterize and classify individuals in distinct walking-ages. A database is constructed from 74 healthy young adults in the age range of 18 to 60 years using the combination of inertial signals from an accelerometer and a gyroscope on a level path including turns. An efficient advanced signal decomposition method called improved complete ensemble empirical mode decomposition with adaptive noise (Improved CEEMDAN) was used for feature extraction. Analyses show that the gait of healthy able-bodied individuals exhibits a natural bipedal asymmetry to a certain level depending on the activity-type and age, which relate to individual's functional attributes rather than pathological gait. The analysis of turn ratio, a measure of activity-transition9 energy change and stability, indicated turning to be less locally stable than straight-line walking making it a more reliable measure for determining falls and other health issues. Extracted features were used to analyze two distinct walking-age groups of the healthy young adults based on their walking pattern, classifying 18-45 years old individuals in one group and 46-60 years old in the other group. Our proposed simple, inexpensive walking analyzer system can be easily used as an ambulatory screening tool by clinicians to identify at risk population at the early onset of some diseases.

  6. "Far" and "Near" Visual Acuity While Walking and the Collective Contributions of Non-Ocular Mechanisms to Gaze Stabilization

    NASA Technical Reports Server (NTRS)

    Peters, Brian T.; vanEmmerik, Richard E. A.; Bloomberg, Jacob J.

    2006-01-01

    Gaze stabilization was quantified in subjects (n=11) as they walked on a motorized treadmill (1.8 m/s) and viewed visual targets at two viewing distances. A "far" target was positioned at 4 m (FAR) in front of the subject and the "near" target was placed at a distance of 0.5 m (NEAR). A direct measure of visual acuity was used to assess the overall effectiveness of the gaze stabilization system. The contributions of nonocular mechanisms to the gaze goal were also quantified using a measure of the distance between the subject and point in space where fixation of the visual target would require the least eye movement amplitude (i.e. the head fixation distance (HFD)). Kinematic variables mirrored those of previous investigations with the vertical trunk translation and head pitch signals, and the lateral translation and head yaw signals maintaining what appear as antiphase relationships. However, an investigation of the temporal relationships between the maxima and minima of the vertical translation and head pitch signals show that while the maximum in vertical translation occurs at the point of the minimum head pitch signal, the inverse is not true. The maximum in the head pitch signal lags the vertical translation minimum by an average of greater than 12 percent of the step cycle time. Three HFD measures, one each for data in the sagittal and transverse planes, and one that combined the movements from both planes, all revealed changes between the FAR and NEAR target viewing conditions. This reorganization of the nonocular degrees of freedom while walking was consistent with a strategy to reduce the magnitude of the eye movements required when viewing the NEAR target. Despite this reorganization, acuity measures show that image stabilization is not occurring while walking and viewing the NEAR target. Group means indicate that visual acuity is not affected while walking in the FAR condition, but a decrement of 0.15 logMAR (i.e. 1.5 eye chart lines) exists between the

  7. Walking cavity solitons

    SciTech Connect

    Skryabin, Dmitry V.; Champneys, Alan R.

    2001-06-01

    A family of walking solitons is obtained for the degenerate optical parametric oscillator below threshold. The loss-driven mechanism of velocity selection for these structures is described analytically and numerically. Our approach is based on understanding the role played by the field momentum and generic symmetry properties and, therefore, it can be easily generalized to other dissipative multicomponent models with walk off.

  8. Neural Computation Scheme of Compound Control: Tacit Learning for Bipedal Locomotion

    NASA Astrophysics Data System (ADS)

    Shimoda, Shingo; Kimura, Hidenori

    The growing need for controlling complex behaviors of versatile robots working in unpredictable environment has revealed the fundamental limitation of model-based control strategy that requires precise models of robots and environments before their operations. This difficulty is fundamental and has the same root with the well-known frame problem in artificial intelligence. It has been a central long standing issue in advanced robotics, as well as machine intelligence, to find a prospective clue to attack this fundamental difficulty. The general consensus shared by many leading researchers in the related field is that the body plays an important role in acquiring intelligence that can conquer unknowns. In particular, purposeful behaviors emerge during body-environment interactions with the help of an appropriately organized neural computational scheme that can exploit what the environment can afford. Along this line, we propose a new scheme of neural computation based on compound control which represents a typical feature of biological controls. This scheme is based on classical neuron models with local rules that can create macroscopic purposeful behaviors. This scheme is applied to a bipedal robot and generates the rhythm of walking without any model of robot dynamics and environments.

  9. The evolution of bipedal running in lizards suggests a consequential origin may be exploited in later lineages.

    PubMed

    Clemente, Christofer J

    2014-08-01

    The origin of bipedal locomotion in lizards is unclear. Modeling studies have suggested that bipedalism may be an exaptation, a byproduct of features originally designed to increase maneuverability, which were only later exploited. Measurement of the body center of mass (BCOM) in 124 species of lizards confirms a significant rearward shift among bipedal lineages. Further racetrack trials showed a significant acceleration threshold between bipedal and quadrupedal runs. These suggest good general support for a passive bipedal model, in which the combination of these features lead to passive lifting of the front of the body. However, variation in morphology could only account for 56% of the variation in acceleration thresholds, suggesting that dynamics have a significant influence on bipedalism. Deviation from the passive bipedal model was compared with node age, supporting an increase in the influence of dynamics over time. Together, these results show that bipedalism may have first arisen as a consequence of acceleration and a rearward shift in the BCOM, but subsequent linages have exploited this consequence to become bipedal more often, suggesting that bipedalism in lizards may convey some advantage. Exploitation of bipedalism was also associated with increased rates of phenotypic diversity, suggesting exploiting bipedalism may promote adaptive radiation.

  10. A Control Framework for Anthropomorphic Biped Walking Based on Stabilizing Feedforward Trajectories

    PubMed Central

    Rezazadeh, Siavash; Gregg, Robert D.

    2016-01-01

    Although dynamic walking methods have had notable successes in control of bipedal robots in the recent years, still most of the humanoid robots rely on quasi-static Zero Moment Point controllers. This work is an attempt to design a highly stable controller for dynamic walking of a human-like model which can be used both for control of humanoid robots and prosthetic legs. The method is based on using time-based trajectories that can induce a highly stable limit cycle to the bipedal robot. The time-based nature of the controller motivates its use to entrain a model of an amputee walking, which can potentially lead to a better coordination of the interaction between the prosthesis and the human. The simulations demonstrate the stability of the controller and its robustness against external perturbations. PMID:28239504

  11. Comparison of inverse-dynamics musculo-skeletal models of AL 288-1 Australopithecus afarensis and KNM-WT 15000 Homo ergaster to modern humans, with implications for the evolution of bipedalism.

    PubMed

    Wang, Weijie; Crompton, Robin H; Carey, Tanya S; Günther, Michael M; Li, Yu; Savage, Russell; Sellers, Williams I

    2004-12-01

    Size and proportions of the postcranial skeleton differ markedly between Australopithecus afarensis and Homo ergaster, and between the latter and modern Homo sapiens. This study uses computer simulations of gait in models derived from the best-known skeletons of these species (AL 288-1, Australopithecus afarensis, 3.18 million year ago) and KNM-WT 15000 (Homo ergaster, 1.5-1.8 million year ago) compared to models of adult human males and females, to estimate the required muscle power during bipedal walking, and to compare this with those in modern humans. Skeletal measurements were carried out on a cast of KNM-WT 15000, but for AL 288-1 were taken from the literature. Muscle attachments were applied to the models based on their position relative to the bone in modern humans. Joint motions and moments from experiments on human walking were input into the models to calculate muscle stress and power. The models were tested in erect walking and 'bent-hip bent-knee' gait. Calculated muscle forces were verified against EMG activity phases from experimental data, with reference to reasonable activation/force delays. Calculated muscle powers are reasonably comparable to experimentally derived metabolic values from the literature, given likely values for muscle efficiency. The results show that: 1) if evaluated by the power expenditure per unit of mass (W/kg) in walking, AL 288-1 and KNM-WT 15000 would need similar power to modern humans; however, 2) with distance-specific parameters as the criteria, AL 288-1 would require to expend relatively more muscle power (W/kg.m(-1)) in comparison to modern humans. The results imply that in the evolution of bipedalism, body proportions, for example those of KNM-WT 15000, may have evolved to obtain an effective application of muscle power to bipedal walking over a long distance, or at high speed.

  12. Laughter as an approach to vocal evolution: The bipedal theory.

    PubMed

    Provine, Robert R

    2017-02-01

    Laughter is a simple, stereotyped, innate, human play vocalization that is ideal for the study of vocal evolution. The basic approach of describing the act of laughter and when we do it has revealed a variety of phenomena of social, linguistic, and neurological significance. Findings include the acoustic structure of laughter, the minimal voluntary control of laughter, the punctuation effect (which describes the placement of laughter in conversation and indicates the dominance of speech over laughter), and the role of laughter in human matching and mating. Especially notable is the use of laughter to discover why humans can speak and other apes cannot. Quadrupeds, including our primate ancestors, have a 1:1 relation between breathing and stride because their thorax must absorb forelimb impacts during running. The direct link between breathing and locomotion limits vocalizations to short, simple utterances, such as the characteristic panting chimpanzee laugh (one sound per inward or outward breath). The evolution of bipedal locomotion freed the respiration system of its support function during running, permitting greater breath control and the selection for human-type laughter (a parsed exhalation), and subsequently the virtuosic, sustained, expiratory vocalization of speech. This is the basis of the bipedal theory of speech evolution.

  13. A novel elastic force-field to influence mediolateral foot placement during walking.

    PubMed

    Nyberg, Elizabeth; Broadway, Jordan; Finetto, Christian; Dean, Jesse

    2016-12-01

    Bipedal gait can be stabilized through mechanically-appropriate mediolateral foot placement, although this strategy is disrupted in a subset of neurologically injured individuals with balance deficits. The goal of the present work was to develop a device to influence mediolateral foot placement during treadmill walking. We created a novel force-field using a combination of passive elasticity and active control; wires in series with extension springs run parallel to the treadmill belts and can be rapidly repositioned to exert mediolateral forces on the legs of users. This mechanical structure creates a channel-like force landscape that resists displacements of each leg away from its prescribed mediolateral position, producing near-linear effective mediolateral stiffness. The depth of these force-field channels can be predictably controlled by manipulating extension spring initial tension. In human testing, we found that the force-field can effectively "get-out-of-the-way" when desired, closely following the mediolateral leg trajectory with a delay of approximately 110 ms. The force-field can also encourage users to adjust their mediolateral foot placement in order to walk with either narrower or wider steps, without interfering with forward gait progression. Future work will test whether this novel device can help retrain a stable gait pattern in clinical populations.

  14. A synthetic small molecule that can walk down a track

    NASA Astrophysics Data System (ADS)

    von Delius, Max; Geertsema, Edzard M.; Leigh, David A.

    2010-02-01

    Although chemists have made small-molecule rotary motors, to date there have been no reports of small-molecule linear motors. Here we describe the synthesis and operation of a 21-atom two-legged molecular unit that is able to walk up and down a four-foothold molecular track. High processivity is conferred by designing the track-binding interactions of the two feet to be labile under different sets of conditions such that each foot can act as a temporarily fixed pivot for the other. The walker randomly and processively takes zero or one step along the track using a `passing-leg' gait each time the environment is switched between acid and base. Replacing the basic step with a redox-mediated, disulfide-exchange reaction directionally transports the bipedal molecules away from the minimum-energy distribution by a Brownian ratchet mechanism. The ultimate goal of such studies is to produce artificial, linear molecular motors that move directionally along polymeric tracks to transport cargoes and perform tasks in a manner reminiscent of biological motor proteins.

  15. Application of random walk concept to the cyclic diffusion mechanisms for self-diffusion in intermetallic compounds

    NASA Astrophysics Data System (ADS)

    Tiwari, G. P.; Mehrotra, R. S.; Iijima, Y.

    2014-02-01

    Huntington-Elcock-McCombie (HEM) mechanism involving six consecutive and correlated jumps, a triple-defect mechanism (TDM) involving three correlated jumps and an anti-structure bridge (ASB) mechanism invoking the migration of an anti-structure atom are the three mechanisms currently in vogue to explain the self- and solute diffusion in intermetallic compounds. Among them, HEM and TDM are cyclic in nature. The HEM and TDM constitute the theme of the present article. The concept of random walk is applied to them and appropriate expressions for the diffusion coefficient are derived. These equations are then employed to estimate activation energies for self-diffusion via HEM and TDM processes and compared with the available experimental data on activation energy for self-diffusion in intermetallic compounds. The resulting activation energies do not favour HEM and TDM for the self-diffusion in intermetallic compounds. A comparison of the sum of experimentally determined activation energies for vacancy formation and migration with the activation energies for self-diffusion determined from radioactive tracer method favours the conventional monovacancy-mediated process for self-diffusion in intermetallic compounds.

  16. The evolution of bipedalism in jerboas (rodentia: Dipodoidea): origin in humid and forested environments.

    PubMed

    Wu, Shaoyuan; Zhang, Fuchun; Edwards, Scott V; Wu, Wenyu; Ye, Jie; Bi, Shundong; Ni, Xijun; Quan, Cheng; Meng, Jin; Organ, Chris L

    2014-07-01

    Mammalian bipedalism has long been thought to have arisen in response to arid and open environments. Here, we tested whether bipedalism coevolved with environmental changes using molecular and paleontological data from the rodent superfamily Dipodoidea and statistical methods for reconstructing ancestral characteristics and past climates. Our results show that the post-Late Miocene aridification exerted selective pressures on tooth shape, but not on leg length of bipedal jerboas. Cheek tooth crown height has increased since the Late Miocene, but the hind limb/head-body length ratios remained stable and high despite the environmental change from humid and forested to arid and open conditions, rather than increasing from low to high as predicted by the arid-bipedalism hypothesis. The decoupling of locomotor and dental character evolution indicates that bipedalism evolved under selective pressure different from that of dental hypsodonty in jerboas. We reconstructed the habitats of early jerboas using floral and faunal data, and the results show that the environments in which bipedalism evolved were forested. Our results suggest that bipedalism evolved as an adaptation to humid woodlands or forests for vertical jumping. Running at high speeds is likely a by-product of selection for jumping, which became advantageous in open environments later on.

  17. Multiple phylogenetically distinct events shaped the evolution of limb skeletal morphologies associated with bipedalism in the jerboas

    PubMed Central

    Moore, Talia Y.; Organ, Chris L.; Edwards, Scott V.; Biewener, Andrew A.; Tabin, Clifford J.; Jenkins, Farish A.; Cooper, Kimberly L.

    2016-01-01

    SUMMARY Recent rapid advances in experimental biology have expanded the opportunity for interdisciplinary investigations of the evolution of form and function in non-traditional model species. However, historical divisions of philosophy and methodology between evolutionary/organismal biologists and developmental geneticists often preclude an effective merging of disciplines. In an effort to overcome these divisions, we take advantage of the extraordinary morphological diversity of the rodent superfamily Dipodoidea, including the bipedal jerboas, to experimentally study the developmental mechanisms and biomechanical performance of a remarkably divergent limb structure. Here, we place multiple limb character states in a locomotor and phylogenetic context. While obligate bipedalism arose once in the ancestor of extant jerboas, we find that digit loss, metatarsal fusion, between limb proportions, and within hindlimb proportions all evolved independently of one another. Digit loss occurred three times through at least two distinct developmental mechanisms, and elongation of the hindlimb relative to the forelimb is not simply due to growth mechanisms that change proportions within the hindlimb. Furthermore, we find strong evidence for punctuated evolution of allometric scaling of hindlimb elements during the radiation of Dipodoidea. Our work demonstrates the value of leveraging the evolutionary history of a clade to establish criteria for identifying the developmental genetic mechanisms of morphological diversification. PMID:26455300

  18. Multiple phylogenetically distinct events shaped the evolution of limb skeletal morphologies associated with bipedalism in the jerboas.

    PubMed

    Moore, Talia Y; Organ, Chris L; Edwards, Scott V; Biewener, Andrew A; Tabin, Clifford J; Jenkins, Farish A; Cooper, Kimberly L

    2015-11-02

    Recent rapid advances in experimental biology have expanded the opportunity for interdisciplinary investigations of the evolution of form and function in non-traditional model species. However, historical divisions of philosophy and methodology between evolutionary/organismal biologists and developmental geneticists often preclude an effective merging of disciplines. In an effort to overcome these divisions, we take advantage of the extraordinary morphological diversity of the rodent superfamily Dipodoidea, including the bipedal jerboas, to experimentally study the developmental mechanisms and biomechanical performance of a remarkably divergent limb structure. Here, we place multiple limb character states in a locomotor and phylogenetic context. Whereas obligate bipedalism arose just once in the ancestor of extant jerboas, we find that digit loss, metatarsal fusion, between-limb proportions, and within-hindlimb proportions all evolved independently of one another. Digit loss occurred three times through at least two distinct developmental mechanisms, and elongation of the hindlimb relative to the forelimb is not simply due to growth mechanisms that change proportions within the hindlimb. Furthermore, we find strong evidence for punctuated evolution of allometric scaling of hindlimb elements during the radiation of Dipodoidea. Our work demonstrates the value of leveraging the evolutionary history of a clade to establish criteria for identifying the developmental genetic mechanisms of morphological diversification.

  19. Exploiting Inherent Robustness and Natural Dynamics in the Control of Bipedal Walking Robots

    DTIC Science & Technology

    2000-06-01

    connected to a “dog-track bunny” (right) is used to control forward speed during double support. A virtual “reciprocating gait orthosis ” (not shown) is...reciprocating gait orthosis ” is used to make the swing-leg mirror the stance leg by applying correcting forces to the swing-leg. A state machine was used to

  20. The Advantage of Standing Up to Fight and the Evolution of Habitual Bipedalism in Hominins

    PubMed Central

    Carrier, David R.

    2011-01-01

    Background Many quadrupedal species stand bipedally on their hindlimbs to fight. This posture may provide a performance advantage by allowing the forelimbs to strike an opponent with the range of motion that is intrinsic to high-speed running, jumping, rapid braking and turning; the range of motion over which peak force and power can be produced. Methodology/Principal Findings To test the hypothesis that bipedal (i.e., orthograde) posture provides a performance advantage when striking with the forelimbs, I measured the force and energy produced when human subjects struck from “quadrupedal” (i.e., pronograde) and bipedal postures. Downward and upward directed striking energy was measured with a custom designed pendulum transducer. Side and forward strikes were measured with a punching bag instrumented with an accelerometer. When subjects struck downward from a bipedal posture the work was 43.70±12.59% (mean ± S.E.) greater than when they struck from a quadrupedal posture. Similarly, 47.49±17.95% more work was produced when subjects struck upward from a bipedal stance compared to a quadrupedal stance. Importantly, subjects did 229.69±44.19% more work in downward than upward directed strikes. During side and forward strikes the force impulses were 30.12±3.68 and 43.04±9.00% greater from a bipedal posture than a quadrupedal posture, respectively. Conclusions/Significance These results indicate that bipedal posture does provide a performance advantage for striking with the forelimbs. The mating systems of great apes are characterized by intense male-male competition in which conflict is resolved through force or the threat of force. Great apes often fight from bipedal posture, striking with both the fore- and hindlimbs. These observations, plus the findings of this study, suggest that sexual selection contributed to the evolution of habitual bipedalism in hominins. PMID:21611167

  1. The Recovery of Walking in Stroke Patients: A Review

    ERIC Educational Resources Information Center

    Jang, Sung Ho

    2010-01-01

    We reviewed the literature on walking recovery of stroke patients as it relates to the following subjects: epidemiology of walking dysfunction, recovery course of walking, and recovery mechanism of walking (neural control of normal walking, the evaluation methods for leg motor function, and motor recovery mechanism of leg). The recovery of walking…

  2. Development and Feasibility Assessment of a Rotational Orthosis for Walking with Arm Swing.

    PubMed

    Fang, Juan; Xie, Qing; Yang, Guo-Yuan; Xie, Le

    2017-01-01

    Interlimb neural coupling might underlie human bipedal locomotion, which is reflected in the fact that people swing their arms synchronously with leg movement in normal gait. Therefore, arm swing should be included in gait training to provide coordinated interlimb performance. The present study aimed to develop a Rotational Orthosis for Walking with Arm Swing (ROWAS), and evaluate its feasibility from the perspectives of implementation, acceptability and responsiveness. We developed the mechanical structures of the ROWAS system in SolidWorks, and implemented the concept in a prototype. Normal gait data were used as the reference performance of the shoulder, hip, knee and ankle joints of the prototype. The ROWAS prototype was tested for function assessment and further evaluated using five able-bodied subjects for user feedback. The ROWAS prototype produced coordinated performance in the upper and lower limbs, with joint profiles similar to those occurring in normal gait. The subjects reported a stronger feeling of walking with arm swing than without. The ROWAS system was deemed feasible according to the formal assessment criteria.

  3. Development and Feasibility Assessment of a Rotational Orthosis for Walking with Arm Swing

    PubMed Central

    Fang, Juan; Xie, Qing; Yang, Guo-Yuan; Xie, Le

    2017-01-01

    Interlimb neural coupling might underlie human bipedal locomotion, which is reflected in the fact that people swing their arms synchronously with leg movement in normal gait. Therefore, arm swing should be included in gait training to provide coordinated interlimb performance. The present study aimed to develop a Rotational Orthosis for Walking with Arm Swing (ROWAS), and evaluate its feasibility from the perspectives of implementation, acceptability and responsiveness. We developed the mechanical structures of the ROWAS system in SolidWorks, and implemented the concept in a prototype. Normal gait data were used as the reference performance of the shoulder, hip, knee and ankle joints of the prototype. The ROWAS prototype was tested for function assessment and further evaluated using five able-bodied subjects for user feedback. The ROWAS prototype produced coordinated performance in the upper and lower limbs, with joint profiles similar to those occurring in normal gait. The subjects reported a stronger feeling of walking with arm swing than without. The ROWAS system was deemed feasible according to the formal assessment criteria. PMID:28203142

  4. Electrical noise to a knee joint stabilizes quiet bipedal stance.

    PubMed

    Kimura, Tetsuya; Kouzaki, Motoki

    2013-04-01

    Studies have shown that a minute, noise-like electrical stimulation (ES) of a lower limb joint stabilizes one-legged standing (OS), possibly due to the noise-enhanced joint proprioception. To demonstrate the practical utility of this finding, we assessed whether the bipedal stance (BS), relatively stable and generally employed in daily activities, is also stabilized by the same ES method. Twelve volunteers maintained quiet BS with or without an unperceivable, noise-like ES of a knee joint. The results showed that the average amplitude, peak-to-peak amplitude, and standard deviation of the foot center of pressure in the anteroposterior direction were significantly attenuated by the ES (P<0.05). These results indicate that the BS also can be stabilized by an unperceivable, noise-like ES of a knee joint.

  5. Body fat assessment by a new bipedal bioimpedance instrument in normal weight and obese women.

    PubMed

    Hainer, V; Kunesová, M; Parízková, J; Stich, V; Horejs, J; Müller, L

    1995-01-01

    The aim of the study was to evaluate a new bioimpedance method for assessment of body fat employing bipedal electrodes instead of those attached to both upper and lower extremities. The new analyzer (TBF-105, Tanita Corp., Tokyo, Japan) enables simultaneous measurements of body weight and total body resistance in a subject standing on the stainless steel electrodes. The instrument was tested in both normal weight and obese women. Fat mass estimated by bipedal bioimpedance was highly correlated with that determined by hydrodensitometry (n = 145, r = 0.945, p < 0.001). Fat mass estimated by bipedal bioimpedance significantly correlated not only with subcutaneous fat measured as a sum of 10 skinfolds (r = 0.758, p < 0.001) but also with visceral fat determined as an area on CT scan (r = 0.780, p < 0.001). Anthropometric variables did not substantially influence the differences revealed in fat mass determined by bipedal bioimpedance and by densitometry. An overestimation of total fat mass by bipedal bioimpedance has not been revealed in severely obese individuals, even in those with higher fat accumulation in the limb region. In conclusion, our data have demonstrated that the new bioimpedance instrument employing bipedal electrodes represents a reliable tool for rapid body fat assessment in both normal weight and obese women.

  6. A three-dimensional human walking model

    NASA Astrophysics Data System (ADS)

    Yang, Q. S.; Qin, J. W.; Law, S. S.

    2015-11-01

    A three-dimensional human bipedal walking model with compliant legs is presented in this paper. The legs are modeled with time-variant dampers, and the model is able to characterize the gait pattern of an individual using a minimal set of parameters. Feedback control, for both the forward and lateral movements, is implemented to regulate the walking performance of the pedestrian. The model provides an improvement over classic invert pendulum models. Numerical studies were undertaken to investigate the effects of leg stiffness and attack angle. Simulation results show that when walking at a given speed, increasing the leg stiffness with a constant attack angle results in a longer step length, a higher step frequency, a faster walking speed and an increase in both the peak vertical and lateral ground reaction forces. Increasing the attack angle with a constant leg stiffness results in a higher step frequency, a decrease in the step length, an increase in the total energy of the system and a decrease in both the peak vertical and lateral ground reaction forces.

  7. Walking Problems

    MedlinePlus

    ... Parkinson's disease Diseases such as arthritis or multiple sclerosis Vision or balance problems Treatment of walking problems depends on the cause. Physical therapy, surgery, or mobility aids may help.

  8. The Human Shoulder Suspension Apparatus: A Causal Explanation for Bilateral Asymmetry and a Fresh Look at the Evolution of Human Bipedality.

    PubMed

    Osborn, Michelle L; Homberger, Dominique G

    2015-09-01

    The combination of large mastoid processes and clavicles is unique to humans, but the biomechanical and evolutionary significance of their special configuration is poorly understood. As part of the newly conceptualized shoulder suspension apparatus, the mastoid processes and clavicles are shaped by forces exerted by the musculo-fascial components of the cleidomastoid and clavotrapezius muscles as they suspend the shoulders from the head. Because both skeletal elements develop during infancy in tandem with the attainment of an upright posture, increased manual dexterity, and the capacity for walking, we hypothesized that the same forces would have shaped them as the shoulder suspension apparatus evolved in ancestral humans in tandem with an upright posture, increased manual dexterity, and bipedality with swinging arms. Because the shoulder suspension apparatus is subjected to asymmetrical forces from handedness, we predicted that its skeletal features would grow asymmetrically. We used this prediction to test our hypothesis in a natural experiment to correlate the size of the skeletal features with the forces exerted on them. We (1) measured biomechanically relevant bony features within the shoulder suspension apparatus in 101 male human specimens (62 of known handedness); and (2) modeled and analyzed the forces within the shoulder suspension apparatus from X-ray CT data. We identified eight right-handed characters and demonstrated the causal relationship between these right-handed characters and the magnitude and direction of forces acting on them. Our data suggest that the presence of the shoulder suspension apparatus in humans was a necessary precondition for human bipedality.

  9. Reflex Control of Robotic Gait Using Human Walking Data

    PubMed Central

    Macleod, Catherine A.; Meng, Lin; Conway, Bernard A.; Porr, Bernd

    2014-01-01

    Control of human walking is not thoroughly understood, which has implications in developing suitable strategies for the retraining of a functional gait following neurological injuries such as spinal cord injury (SCI). Bipedal robots allow us to investigate simple elements of the complex nervous system to quantify their contribution to motor control. RunBot is a bipedal robot which operates through reflexes without using central pattern generators or trajectory planning algorithms. Ground contact information from the feet is used to activate motors in the legs, generating a gait cycle visually similar to that of humans. Rather than developing a more complicated biologically realistic neural system to control the robot's stepping, we have instead further simplified our model by measuring the correlation between heel contact and leg muscle activity (EMG) in human subjects during walking and from this data created filter functions transferring the sensory data into motor actions. Adaptive filtering was used to identify the unknown transfer functions which translate the contact information into muscle activation signals. Our results show a causal relationship between ground contact information from the heel and EMG, which allows us to create a minimal, linear, analogue control system for controlling walking. The derived transfer functions were applied to RunBot II as a proof of concept. The gait cycle produced was stable and controlled, which is a positive indication that the transfer functions have potential for use in the control of assistive devices for the retraining of an efficient and effective gait with potential applications in SCI rehabilitation. PMID:25347544

  10. Modified walking shoes for knee osteoarthritis: Mechanisms for reductions in the knee adduction moment.

    PubMed

    Kean, Crystal O; Bennell, Kim L; Wrigley, Tim V; Hinman, Rana S

    2013-08-09

    The objective of this study was to examine mechanisms underpinning the reduction in knee adduction moment (KAM) and changes in frontal plane knee-ground reaction force (GRF) lever arm with a modified shoe that incorporates both a variable-stiffness sole and lateral wedging. Thirty individuals with symptomatic knee osteoarthritis (OA) and 30 overweight asymptomatic individuals underwent gait analyses wearing modified and standard shoes. In both groups, there was a decrease in the lever arm (p<0.001), and a lateral shift in the center of pressure (COP) offset (p ≤ 0.001). There was no change in frontal plane or medial-lateral GRF magnitudes, lateral trunk lean or stance duration in either group. There was no significant change in the frontal plane hip-knee-ankle angle in the OA group but a significant decrease in the overweight group (p=0.003). In both groups, changes in lever arm and frontal plane GRF magnitude predicted change in peak KAM (p<0.01), but only change in lever arm predicted change in KAM impulse (p<0.001). In the OA group, changes in COP offset and medial-lateral GRF magnitude predicted change in lever arm (p<0.05), whereas changes in trunk lean and hip-knee-ankle angle predicted change in lever arm in the overweight group (p=0.01). In conclusion, the change in lever arm contributed the most to explaining change in KAM parameters with modified shoes. The change in the lever arm was driven by changes evident at the foot in the OA participants (COP and medial-lateral GRF), and by more proximal changes (hip-knee-ankle angle and trunk lean) in the overweight group.

  11. Foot trajectory approximation using the pendulum model of walking.

    PubMed

    Fang, Juan; Vuckovic, Aleksandra; Galen, Sujay; Conway, Bernard A; Hunt, Kenneth J

    2014-01-01

    Generating a natural foot trajectory is an important objective in robotic systems for rehabilitation of walking. Human walking has pendular properties, so the pendulum model of walking has been used in bipedal robots which produce rhythmic gait patterns. Whether natural foot trajectories can be produced by the pendulum model needs to be addressed as a first step towards applying the pendulum concept in gait orthosis design. This study investigated circle approximation of the foot trajectories, with focus on the geometry of the pendulum model of walking. Three able-bodied subjects walked overground at various speeds, and foot trajectories relative to the hip were analysed. Four circle approximation approaches were developed, and best-fit circle algorithms were derived to fit the trajectories of the ankle, heel and toe. The study confirmed that the ankle and heel trajectories during stance and the toe trajectory in both the stance and the swing phases during walking at various speeds could be well modelled by a rigid pendulum. All the pendulum models were centred around the hip with pendular lengths approximately equal to the segment distances from the hip. This observation provides a new approach for using the pendulum model of walking in gait orthosis design.

  12. Enforced bipedal downhill running induces Achilles tendinosis in rats.

    PubMed

    Ng, Gabriel Yin-Fat; Chung, Polly Yee-Man; Wang, Jenny Shijie; Cheung, Roy Tsz-Hei

    2011-01-01

    Enforced downhill running has been reported to induce tendinosis in the rat supraspinatus tendon but similar exercise failed to induce Achilles tendinosis in this animal. Due to the presence of acromial arch in the shoulder, accessing the supraspinatus tendon with physical modalities is difficult; thus this model may not be suitable for studying the treatment for tendinosis. To develop a rat model for Achilles tendinosis, we tested 14 mature Sprague-Dawley rats by dividing them into 2 groups of 7 each. The experimental group was subjected to a daily enforced downhill bipedal running program by suspending their upper bodies so that they ran with their hind limbs on a treadmill for 1 hr/day for 8 weeks. The downward inclination was 20 degrees and the speed was 17 m/min. The animals in the control group did not undergo any exercise. After 8 weeks, the Achilles tendons were harvested and subjected to histological and biomechanical analysis. Histological examination revealed tenocyte proliferation, change in tenocytes appearance, and collagen bundle disintegration in the running group. The biomechanical testing revealed significant decrease in stiffness (p = 0.002) and ultimate tensile strength (p = 0.016) in the running group than in the control group. Both the histological and biomechanical findings are suggestive of changes in the tendon of the running group that resembled the pathological changes of tendinosis in human. This new model of Achilles tendinosis in rat will be useful for studying the etiology and subsequent management strategies of this condition.

  13. Towards bipedal behavior on a quadrupedal platform using optimal control

    NASA Astrophysics Data System (ADS)

    Topping, T. Turner; Vasilopoulos, Vasileios; De, Avik; Koditschek, Daniel E.

    2016-05-01

    This paper explores the applicability of a Linear Quadratic Regulator (LQR) controller design to the problem of bipedal stance on the Minitaur [1] quadrupedal robot. Restricted to the sagittal plane, this behavior exposes a three degree of freedom (DOF) double inverted pendulum with extensible length that can be projected onto the familiar underactuated revolute-revolute "Acrobot" model by assuming a locked prismatic DOF, and a pinned toe. While previous work has documented the successful use of local LQR control to stabilize a physical Acrobot, simulations reveal that a design very similar to those discussed in the past literature cannot achieve an empirically viable controller for our physical plant. Experiments with a series of increasingly close physical facsimiles leading to the actual Minitaur platform itself corroborate and underscore the physical Minitaur platform corroborate and underscore the implications of the simulation study. We conclude that local LQR-based linearized controller designs are too fragile to stabilize the physical Minitaur platform around its vertically erect equilibrium and end with a brief assessment of a variety of more sophisticated nonlinear control approaches whose pursuit is now in progress.

  14. Mechanical energy oscillations of two brachiation gaits: measurement and simulation.

    PubMed

    Bertram, J E; Chang, Y H

    2001-08-01

    How do arm-swinging apes locomote effectively over a variety of speeds? One way to reduce the metabolic energy cost of locomotion is to transfer energy between reversible mechanical modes. In terrestrial animals, at least two transfer mechanisms have been identified: 1) a pendulum-like mechanism for walking, with exchange between gravitational potential energy and translational kinetic energy, and 2) a spring-like mechanism for running, where the elastic strain energy of stretched muscle and tendon is largely returned to reaccelerate the animal. At slower speeds, a brachiator will always have at least one limb in contact with the support, similar to the overlap of foot contact in bipedal walking. At faster speeds, brachiators exhibit an aerial phase, similar to that seen in bipedal running. Are there two distinct brachiation gaits even though the animal appears to simply swing beneath its overhead support? If so, are different exchange mechanisms employed? Our kinetic analysis of brachiation in a white-handed gibbon (Hylobates lar) indicates that brachiation is indeed comprised of two mechanically distinct gaits. At slower speeds in "continuous contact" brachiation, the gibbon utilizes a simple pendulum-like transfer of mechanical energy within each stride. At faster speeds in "ricochetal" brachiation, translational and rotational kinetic energy are exchanged in a novel "whip-like" transfer. We propose that brachiators utilize the transfer between translational and rotational kinetic energy to control the dynamics of their swing. This maneuver may allow muscle action at the shoulder to control the transfer and adjust the ballistic portion of the step to meet the requirements for the next hand contact.

  15. Independent evolution of knuckle-walking in African apes shows that humans did not evolve from a knuckle-walking ancestor.

    PubMed

    Kivell, Tracy L; Schmitt, Daniel

    2009-08-25

    Despite decades of debate, it remains unclear whether human bipedalism evolved from a terrestrial knuckle-walking ancestor or from a more generalized, arboreal ape ancestor. Proponents of the knuckle-walking hypothesis focused on the wrist and hand to find morphological evidence of this behavior in the human fossil record. These studies, however, have not examined variation or development of purported knuckle-walking features in apes or other primates, data that are critical to resolution of this long-standing debate. Here we present novel data on the frequency and development of putative knuckle-walking features of the wrist in apes and monkeys. We use these data to test the hypothesis that all knuckle-walking apes share similar anatomical features and that these features can be used to reliably infer locomotor behavior in our extinct ancestors. Contrary to previous expectations, features long-assumed to indicate knuckle-walking behavior are not found in all African apes, show different developmental patterns across species, and are found in nonknuckle-walking primates as well. However, variation among African ape wrist morphology can be clearly explained if we accept the likely independent evolution of 2 fundamentally different biomechanical modes of knuckle-walking: an extended wrist posture in an arboreal environment (Pan) versus a neutral, columnar hand posture in a terrestrial environment (Gorilla). The presence of purported knuckle-walking features in the hominin wrist can thus be viewed as evidence of arboreality, not terrestriality, and provide evidence that human bipedalism evolved from a more arboreal ancestor occupying the ecological niche common to all living apes.

  16. Assessing the Relative Contributions of Active Ankle and Knee Assistance to the Walking Mechanics of Transfemoral Amputees Using a Powered Prosthesis

    PubMed Central

    Simon, Ann M.; Hargrove, Levi J.

    2016-01-01

    Powered knee-ankle prostheses are capable of providing net-positive mechanical energy to amputees. Yet, there are limitless ways to deliver this energy throughout the gait cycle. It remains largely unknown how different combinations of active knee and ankle assistance affect the walking mechanics of transfemoral amputees. This study assessed the relative contributions of stance phase knee swing initiation, increasing ankle stiffness and powered plantarflexion as three unilateral transfemoral amputees walked overground at their self-selected walking speed. Five combinations of knee and ankle conditions were evaluated regarding the kinematics and kinetics of the amputated and intact legs using repeated measures analyses of variance. We found eliminating active knee swing initiation or powered plantarflexion was linked to increased compensations of the ipsilateral hip joint during the subsequent swing phase. The elimination of knee swing initiation or powered plantarflexion also led to reduced braking ground reaction forces of the amputated and intact legs, and influenced both sagittal and frontal plane loading of the intact knee joint. Gradually increasing prosthetic ankle stiffness influenced the shape of the prosthetic ankle plantarflexion moment, more closely mirroring the intact ankle moment. Increasing ankle stiffness also corresponded to increased prosthetic ankle power generation (despite a similar maximum stiffness value across conditions) and increased braking ground reaction forces of the amputated leg. These findings further our understanding of how to deliver assistance with powered knee-ankle prostheses and the compensations that occur when specific aspects of assistance are added/removed. PMID:26807889

  17. Analysis on the Load Carrying Mechanism Integrated as Heterogeneous Co-operative Manipulator in a Walking Wheelchair

    NASA Astrophysics Data System (ADS)

    Rajay Vedaraj, I. S.; Jain, Ritika; Rao, B. V. A.

    2014-07-01

    used for climbing stairs with three leg design and anlaysis were also done on the mechanism integrated to the system. Kinematics of the legs are analysed separately and the legs are designed to carry a maximum of 175kgs, which is sustained by the center leg and shared by the dual wing legs equally during the walking phase. In the proposed design, screwjack mechanism is used as the central leg to share the load and thus the analysis on the load sharing capability of the whole system is analysed and concluded in terms of failure modes.

  18. Energy efficient walking with central pattern generators: from passive dynamic walking to biologically inspired control.

    PubMed

    Verdaasdonk, B W; Koopman, H F J M; van der Helm, F C T

    2009-07-01

    Like human walking, passive dynamic walking-i.e. walking down a slope with no actuation except gravity-is energy efficient by exploiting the natural dynamics. In the animal world, neural oscillators termed central pattern generators (CPGs) provide the basic rhythm for muscular activity in locomotion. We present a CPG model, which automatically tunes into the resonance frequency of the passive dynamics of a bipedal walker, i.e. the CPG model exhibits resonance tuning behavior. Each leg is coupled to its own CPG, controlling the hip moment of force. Resonance tuning above the endogenous frequency of the CPG-i.e. the CPG's eigenfrequency-is achieved by feedback of both limb angles to their corresponding CPG, while integration of the limb angles provides resonance tuning at and below the endogenous frequency of the CPG. Feedback of the angular velocity of both limbs to their corresponding CPG compensates for the time delay in the loop coupling each limb to its CPG. The resonance tuning behavior of the CPG model allows the gait velocity to be controlled by a single parameter, while retaining the energy efficiency of passive dynamic walking.

  19. Joint Loads in Marsupial Ankles Reflect Habitual Bipedalism versus Quadrupedalism

    PubMed Central

    Carlson, Kristian J.; Jashashvili, Tea; Houghton, Kimberley; Westaway, Michael C.; Patel, Biren A.

    2013-01-01

    Joint surfaces of limb bones are loaded in compression by reaction forces generated from body weight and musculotendon complexes bridging them. In general, joints of eutherian mammals have regions of high radiodensity subchondral bone that are better at resisting compressive forces than low radiodensity subchondral bone. Identifying similar form-function relationships between subchondral radiodensity distribution and joint load distribution within the marsupial postcranium, in addition to providing a richer understanding of marsupial functional morphology, can serve as a phylogenetic control in evaluating analogous relationships within eutherian mammals. Where commonalities are established across phylogenetic borders, unifying principles in mammalian physiology, morphology, and behavior can be identified. Here, we assess subchondral radiodensity patterns in distal tibiae of several marsupial taxa characterized by different habitual activities (e.g., locomotion). Computed tomography scanning, maximum intensity projection maps, and pixel counting were used to quantify radiodensity in 41 distal tibiae of bipedal (5 species), arboreal quadrupedal (4 species), and terrestrial quadrupedal (5 species) marsupials. Bipeds (Macropus and Wallabia) exhibit more expansive areas of high radiodensity in the distal tibia than arboreal (Dendrolagus, Phascolarctos, and Trichosurus) or terrestrial quadrupeds (Sarcophilus, Thylacinus, Lasiorhinus, and Vombatus), which may reflect the former carrying body weight only through the hind limbs. Arboreal quadrupeds exhibit smallest areas of high radiodensity, though they differ non-significantly from terrestrial quadrupeds. This could indicate slightly more compliant gaits by arboreal quadrupeds compared to terrestrial quadrupeds. The observed radiodensity patterns in marsupial tibiae, though their statistical differences disappear when controlling for phylogeny, corroborate previously documented patterns in primates and xenarthrans

  20. Joint loads in marsupial ankles reflect habitual bipedalism versus quadrupedalism.

    PubMed

    Carlson, Kristian J; Jashashvili, Tea; Houghton, Kimberley; Westaway, Michael C; Patel, Biren A

    2013-01-01

    Joint surfaces of limb bones are loaded in compression by reaction forces generated from body weight and musculotendon complexes bridging them. In general, joints of eutherian mammals have regions of high radiodensity subchondral bone that are better at resisting compressive forces than low radiodensity subchondral bone. Identifying similar form-function relationships between subchondral radiodensity distribution and joint load distribution within the marsupial postcranium, in addition to providing a richer understanding of marsupial functional morphology, can serve as a phylogenetic control in evaluating analogous relationships within eutherian mammals. Where commonalities are established across phylogenetic borders, unifying principles in mammalian physiology, morphology, and behavior can be identified. Here, we assess subchondral radiodensity patterns in distal tibiae of several marsupial taxa characterized by different habitual activities (e.g., locomotion). Computed tomography scanning, maximum intensity projection maps, and pixel counting were used to quantify radiodensity in 41 distal tibiae of bipedal (5 species), arboreal quadrupedal (4 species), and terrestrial quadrupedal (5 species) marsupials. Bipeds (Macropus and Wallabia) exhibit more expansive areas of high radiodensity in the distal tibia than arboreal (Dendrolagus, Phascolarctos, and Trichosurus) or terrestrial quadrupeds (Sarcophilus, Thylacinus, Lasiorhinus, and Vombatus), which may reflect the former carrying body weight only through the hind limbs. Arboreal quadrupeds exhibit smallest areas of high radiodensity, though they differ non-significantly from terrestrial quadrupeds. This could indicate slightly more compliant gaits by arboreal quadrupeds compared to terrestrial quadrupeds. The observed radiodensity patterns in marsupial tibiae, though their statistical differences disappear when controlling for phylogeny, corroborate previously documented patterns in primates and xenarthrans

  1. Toe Walking in Children

    MedlinePlus

    ... generalized disease of nerve and muscle. Children with autism also may walk on their toes or the ... initially walked normally before starting to toe walk. Autism. Toe walking has also been linked to autism, ...

  2. When Human Walking is a Random Walk

    NASA Astrophysics Data System (ADS)

    Hausdorff, J. M.

    1998-03-01

    The complex, hierarchical locomotor system normally does a remarkable job of controlling an inherently unstable, multi-joint system. Nevertheless, the stride interval --- the duration of a gait cycle --- fluctuates from one stride to the next, even under stationary conditions. We used random walk analysis to study the dynamical properties of these fluctuations under normal conditions and how they change with disease and aging. Random walk analysis of the stride-to-stride fluctuations of healthy, young adult men surprisingly reveals a self-similar pattern: fluctuations at one time scale are statistically similar to those at multiple other time scales (Hausdorff et al, J Appl Phsyiol, 1995). To study the stability of this fractal property, we analyzed data obtained from healthy subjects who walked for 1 hour at their usual pace, as well as at slower and faster speeds. The stride interval fluctuations exhibited long-range correlations with power-law decay for up to a thousand strides at all three walking rates. In contrast, during metronomically-paced walking, these long-range correlations disappeared; variations in the stride interval were uncorrelated and non-fractal (Hausdorff et al, J Appl Phsyiol, 1996). To gain insight into the mechanism(s) responsible for this fractal property, we examined the effects of aging and neurological impairment. Using detrended fluctuation analysis (DFA), we computed α, a measure of the degree to which one stride interval is correlated with previous and subsequent intervals over different time scales. α was significantly lower in healthy elderly subjects compared to young adults (p < .003) and in subjects with Huntington's disease, a neuro-degenerative disorder of the central nervous system, compared to disease-free controls (p < 0.005) (Hausdorff et al, J Appl Phsyiol, 1997). α was also significantly related to degree of functional impairment in subjects with Huntington's disease (r=0.78). Recently, we have observed that just as

  3. Neural decoding of treadmill walking from noninvasive electroencephalographic signals.

    PubMed

    Presacco, Alessandro; Goodman, Ronald; Forrester, Larry; Contreras-Vidal, Jose Luis

    2011-10-01

    Chronic recordings from ensembles of cortical neurons in primary motor and somatosensory areas in rhesus macaques provide accurate information about bipedal locomotion (Fitzsimmons NA, Lebedev MA, Peikon ID, Nicolelis MA. Front Integr Neurosci 3: 3, 2009). Here we show that the linear and angular kinematics of the ankle, knee, and hip joints during both normal and precision (attentive) human treadmill walking can be inferred from noninvasive scalp electroencephalography (EEG) with decoding accuracies comparable to those from neural decoders based on multiple single-unit activities (SUAs) recorded in nonhuman primates. Six healthy adults were recorded. Participants were asked to walk on a treadmill at their self-selected comfortable speed while receiving visual feedback of their lower limbs (i.e., precision walking), to repeatedly avoid stepping on a strip drawn on the treadmill belt. Angular and linear kinematics of the left and right hip, knee, and ankle joints and EEG were recorded, and neural decoders were designed and optimized with cross-validation procedures. Of note, the optimal set of electrodes of these decoders were also used to accurately infer gait trajectories in a normal walking task that did not require subjects to control and monitor their foot placement. Our results indicate a high involvement of a fronto-posterior cortical network in the control of both precision and normal walking and suggest that EEG signals can be used to study in real time the cortical dynamics of walking and to develop brain-machine interfaces aimed at restoring human gait function.

  4. Neural decoding of treadmill walking from noninvasive electroencephalographic signals

    PubMed Central

    Presacco, Alessandro; Goodman, Ronald; Forrester, Larry

    2011-01-01

    Chronic recordings from ensembles of cortical neurons in primary motor and somatosensory areas in rhesus macaques provide accurate information about bipedal locomotion (Fitzsimmons NA, Lebedev MA, Peikon ID, Nicolelis MA. Front Integr Neurosci 3: 3, 2009). Here we show that the linear and angular kinematics of the ankle, knee, and hip joints during both normal and precision (attentive) human treadmill walking can be inferred from noninvasive scalp electroencephalography (EEG) with decoding accuracies comparable to those from neural decoders based on multiple single-unit activities (SUAs) recorded in nonhuman primates. Six healthy adults were recorded. Participants were asked to walk on a treadmill at their self-selected comfortable speed while receiving visual feedback of their lower limbs (i.e., precision walking), to repeatedly avoid stepping on a strip drawn on the treadmill belt. Angular and linear kinematics of the left and right hip, knee, and ankle joints and EEG were recorded, and neural decoders were designed and optimized with cross-validation procedures. Of note, the optimal set of electrodes of these decoders were also used to accurately infer gait trajectories in a normal walking task that did not require subjects to control and monitor their foot placement. Our results indicate a high involvement of a fronto-posterior cortical network in the control of both precision and normal walking and suggest that EEG signals can be used to study in real time the cortical dynamics of walking and to develop brain-machine interfaces aimed at restoring human gait function. PMID:21768121

  5. Quantum random walks without walking

    SciTech Connect

    Manouchehri, K.; Wang, J. B.

    2009-12-15

    Quantum random walks have received much interest due to their nonintuitive dynamics, which may hold the key to a new generation of quantum algorithms. What remains a major challenge is a physical realization that is experimentally viable and not limited to special connectivity criteria. We present a scheme for walking on arbitrarily complex graphs, which can be realized using a variety of quantum systems such as a Bose-Einstein condensate trapped inside an optical lattice. This scheme is particularly elegant since the walker is not required to physically step between the nodes; only flipping coins is sufficient.

  6. The relationship between speed, contact time and peak plantar pressure in terrestrial walking of bonobos.

    PubMed

    Vereecke, Evie; D'Août, Kristiaan; De Clercq, Dirk; Van Elsacker, Linda; Aerts, Peter

    2004-01-01

    The aim of this paper is twofold. Firstly, we investigate whether contact times, as recorded by pedobarographic systems during quadrupedal and bipedal walking of bonobos, can be used to reliably calculate actual velocities, by applying formulae based on lateral-view video recordings. Secondly, we investigate the effect of speed on peak plantar pressures during bipedal and quadrupedal walking of the bonobo. Data were obtained from 4 individuals from a group of bonobos at the Animal Park Planckendael. From our study, we can conclude that both walking speeds calculated from contact times and lower leg length or simply from recorded contact times are good estimators for walking speed, when direct observation of the latter is impossible. Further, it was found that effects of speed on peak plantar pressures and vertical forces are absent or at least subtle in comparison to a large variation in pressure patterns. In bonobos, the same pressure patterns are used at all walking speeds, and, in consequence, we do not expect major changes in foot function.

  7. Experimental verification of a computational technique for determining ground reactions in human bipedal stance.

    PubMed

    Audu, Musa L; Kirsch, Robert F; Triolo, Ronald J

    2007-01-01

    We have developed a three-dimensional (3D) biomechanical model of human standing that enables us to study the mechanisms of posture and balance simultaneously in various directions in space. Since the two feet are on the ground, the system defines a kinematically closed-chain which has redundancy problems that cannot be resolved using the laws of mechanics alone. We have developed a computational (optimization) technique that avoids the problems with the closed-chain formulation thus giving users of such models the ability to make predictions of joint moments, and potentially, muscle activations using more sophisticated musculoskeletal models. This paper describes the experimental verification of the computational technique that is used to estimate the ground reaction vector acting on an unconstrained foot while the other foot is attached to the ground, thus allowing human bipedal standing to be analyzed as an open-chain system. The computational approach was verified in terms of its ability to predict lower extremity joint moments derived from inverse dynamic simulations performed on data acquired from four able-bodied volunteers standing in various postures on force platforms. Sensitivity analyses performed with model simulations indicated which ground reaction force (GRF) and center of pressure (COP) components were most critical for providing better estimates of the joint moments. Overall, the joint moments predicted by the optimization approach are strongly correlated with the joint moments computed using the experimentally measured GRF and COP (0.78 < or = r(2) < or = 0.99,median,0.96) with a best-fit that was not statistically different from a straight line with unity slope (experimental=computational results) for postures of the four subjects examined. These results indicate that this model-based technique can be relied upon to predict reasonable and consistent estimates of the joint moments using the predicted GRF and COP for most standing postures.

  8. How is sagittal balance acquired during bipedal gait acquisition? Comparison of neonatal and adult pelves in three dimensions. Evolutionary implications.

    PubMed

    Tardieu, Christine; Bonneau, Noémie; Hecquet, Jérôme; Boulay, Christophe; Marty, Catherine; Legaye, Jean; Duval-Beaupère, Geneviève

    2013-08-01

    We compare adult and intact neonatal pelves, using a pelvic sagittal variable, the angle of sacral incidence, which presents significant correlations with vertebral curvature in adults and plays an important role in sagittal balance of the trunk on the lower limbs. Since the lumbar curvature develops in the child in association with gait acquisition, we expect a change in this angle during growth which could contribute to the acquisition of sagittal balance. To understand the mechanisms underlying the sagittal balance in the evolution of human bipedalism, we also measure the angle of incidence of hominid fossils. Fourty-seven landmarks were digitized on 50 adult and 19 intact neonatal pelves. We used a three-dimensional model of the pelvis (DE-VISU program) which calculates the angle of sacral incidence and related functional variables. Cross-sectional data from newborns and adults show that the angle of sacral incidence increases and becomes negatively correlated with the sacro-acetabular distance. During ontogeny the sacrum becomes curved, tends to sink down between the iliac blades as a wedge and moves backward in the sagittal plane relative to the acetabula, thus contributing to the backwards displacement of the center of gravity of the trunk. A chain of correlations links the degree of the sacral slope and of the angle of incidence, which is tightly linked with the lumbar lordosis. We sketch a model showing the coordinated changes occurring in the pelvis and vertebral column during the acquisition of bipedalism in infancy. In the australopithecine pelves, Sts 14 and AL 288-1, and in the Homo erectus Gona pelvis the angle of sacral incidence reaches the mean values of humans. Discussing the incomplete pelves of Ardipithecus ramidus, Australopithecus sediba and the Nariokotome Boy, we suggest how the functional linkage between pelvis and spine, observed in humans, could have emerged during hominid evolution.

  9. Tail autotomy affects bipedalism but not sprint performance in a cursorial Mediterranean lizard

    NASA Astrophysics Data System (ADS)

    Savvides, Pantelis; Stavrou, Maria; Pafilis, Panayiotis; Sfenthourakis, Spyros

    2017-02-01

    Running is essential in all terrestrial animals mainly for finding food and mates and escaping from predators. Lizards employ running in all their everyday functions, among which defense stands out. Besides flight, tail autotomy is another very common antipredatory strategy within most lizard families. The impact of tail loss to sprint performance seems to be species dependent. In some lizard species, tail shedding reduces sprint speed, in other species, increases it, and, in a few species, speed is not affected at all. Here, we aimed to clarify the effect of tail autotomy on the sprint performance of a cursorial lizard with particular adaptations for running, such as bipedalism and spike-like protruding scales (fringes) on the toepads that allow high speed on sandy substrates. We hypothesized that individuals that performed bipedalism, and have more and larger fringes, would achieve higher sprint performance. We also anticipated that tail shedding would affect sprint speed (though we were not able to define in what way because of the unpredictable effects that tail loss has on different species). According to our results, individuals that ran bipedally were faster; limb length and fringe size had limited effects on sprint performance whereas tail autotomy affected quadrupedal running only in females. Nonetheless, tail loss significantly affected bipedalism: the ability for running on hindlimbs was completely lost in all adult individuals and in 72.3% of juveniles.

  10. Tail autotomy affects bipedalism but not sprint performance in a cursorial Mediterranean lizard.

    PubMed

    Savvides, Pantelis; Stavrou, Maria; Pafilis, Panayiotis; Sfenthourakis, Spyros

    2017-02-01

    Running is essential in all terrestrial animals mainly for finding food and mates and escaping from predators. Lizards employ running in all their everyday functions, among which defense stands out. Besides flight, tail autotomy is another very common antipredatory strategy within most lizard families. The impact of tail loss to sprint performance seems to be species dependent. In some lizard species, tail shedding reduces sprint speed, in other species, increases it, and, in a few species, speed is not affected at all. Here, we aimed to clarify the effect of tail autotomy on the sprint performance of a cursorial lizard with particular adaptations for running, such as bipedalism and spike-like protruding scales (fringes) on the toepads that allow high speed on sandy substrates. We hypothesized that individuals that performed bipedalism, and have more and larger fringes, would achieve higher sprint performance. We also anticipated that tail shedding would affect sprint speed (though we were not able to define in what way because of the unpredictable effects that tail loss has on different species). According to our results, individuals that ran bipedally were faster; limb length and fringe size had limited effects on sprint performance whereas tail autotomy affected quadrupedal running only in females. Nonetheless, tail loss significantly affected bipedalism: the ability for running on hindlimbs was completely lost in all adult individuals and in 72.3% of juveniles.

  11. The walking robot project

    NASA Technical Reports Server (NTRS)

    Williams, P.; Sagraniching, E.; Bennett, M.; Singh, R.

    1991-01-01

    A walking robot was designed, analyzed, and tested as an intelligent, mobile, and a terrain adaptive system. The robot's design was an application of existing technologies. The design of the six legs modified and combines well understood mechanisms and was optimized for performance, flexibility, and simplicity. The body design incorporated two tripods for walking stability and ease of turning. The electrical hardware design used modularity and distributed processing to drive the motors. The software design used feedback to coordinate the system and simple keystrokes to give commands. The walking machine can be easily adapted to hostile environments such as high radiation zones and alien terrain. The primary goal of the leg design was to create a leg capable of supporting a robot's body and electrical hardware while walking or performing desired tasks, namely those required for planetary exploration. The leg designers intent was to study the maximum amount of flexibility and maneuverability achievable by the simplest and lightest leg design. The main constraints for the leg design were leg kinematics, ease of assembly, degrees of freedom, number of motors, overall size, and weight.

  12. Wading for food the driving force of the evolution of bipedalism?

    PubMed

    Kuliukas, Algis

    2002-01-01

    Evidence is accumulating that suggests that the large human brain is most likely to have evolved in littoral and estuarine habitats rich in naturally occurring essential fatty acids. This paper adds further weight to this view, suggesting that another key human trait, our bipedality might also be best explained as an adaptation to a water-side niche. Evidence is provided here that extant apes, although preferring to keep dry, go into water when driven to do so by hunger. The anecdotal evidence has suggested that they tend to do this bipedally. Here, a new empirical study of captive bonobos found them to exhibit 2% or less bipedality on the ground or in trees but over 90% when wading in water to collect food. The skeletal morphology of AL 288-1 ("Lucy") is shown to indicate a strong ability to abduct and adduct the femur. These traits, together with a remarkably platypelloid pelvis, have not yet been adequately explained by terrestrial or arboreal models for early bipedalism but are consistent with those expected in an ape that adopted a specialist side-to-side 'ice-skating' or sideways wading mode. It is argued that this explanation of A. afarensis locomotor morphology is more parsimonious than others which have plainly failed to produce a consensus. Microwear evidence of Australopithecus dentition is also presented as evidence that the drive for such a wading form of locomotion might well have been waterside foods. This model obtains further support from the paleo-habitats of the earliest known bipeds, which are consistent with the hypothesis that wading contributed to the adaptive pressure towards bipedality.

  13. Hand before foot? Cortical somatotopy suggests manual dexterity is primitive and evolved independently of bipedalism.

    PubMed

    Hashimoto, Teruo; Ueno, Kenichi; Ogawa, Akitoshi; Asamizuya, Takeshi; Suzuki, Chisato; Cheng, Kang; Tanaka, Michio; Taoka, Miki; Iwamura, Yoshiaki; Suwa, Gen; Iriki, Atsushi

    2013-11-19

    People have long speculated whether the evolution of bipedalism in early hominins triggered tool use (by freeing their hands) or whether the necessity of making and using tools encouraged the shift to upright gait. Either way, it is commonly thought that one led to the other. In this study, we sought to shed new light on the origins of manual dexterity and bipedalism by mapping the neural representations in the brain of the fingers and toes of living people and monkeys. Contrary to the 'hand-in-glove' notion outlined above, our results suggest that adaptations underlying tool use evolved independently of those required for human bipedality. In both humans and monkeys, we found that each finger was represented separately in the primary sensorimotor cortex just as they are physically separated in the hand. This reflects the ability to use each digit independently, as required for the complex manipulation involved in tool use. The neural mapping of the subjects' toes differed, however. In the monkeys, the somatotopic representation of the toes was fused, showing that the digits function predominantly as a unit in general grasping. Humans, by contrast, had an independent neurological representation of the big toe (hallux), suggesting association with bipedal locomotion. These observations suggest that the brain circuits for the hand had advanced beyond simple grasping, whereas our primate ancestors were still general arboreal quadrupeds. This early adaptation laid the foundation for the evolution of manual dexterity, which was preserved and enhanced in hominins. In hominins, a separate adaptation, involving the neural separation of the big toe, apparently occurred with bipedality. This accords with the known fossil evidence, including the recently reported hominin fossils which have been dated to 4.4 million years ago.

  14. Hand before foot? Cortical somatotopy suggests manual dexterity is primitive and evolved independently of bipedalism

    PubMed Central

    Hashimoto, Teruo; Ueno, Kenichi; Ogawa, Akitoshi; Asamizuya, Takeshi; Suzuki, Chisato; Cheng, Kang; Tanaka, Michio; Taoka, Miki; Iwamura, Yoshiaki; Suwa, Gen; Iriki, Atsushi

    2013-01-01

    People have long speculated whether the evolution of bipedalism in early hominins triggered tool use (by freeing their hands) or whether the necessity of making and using tools encouraged the shift to upright gait. Either way, it is commonly thought that one led to the other. In this study, we sought to shed new light on the origins of manual dexterity and bipedalism by mapping the neural representations in the brain of the fingers and toes of living people and monkeys. Contrary to the ‘hand-in-glove’ notion outlined above, our results suggest that adaptations underlying tool use evolved independently of those required for human bipedality. In both humans and monkeys, we found that each finger was represented separately in the primary sensorimotor cortex just as they are physically separated in the hand. This reflects the ability to use each digit independently, as required for the complex manipulation involved in tool use. The neural mapping of the subjects’ toes differed, however. In the monkeys, the somatotopic representation of the toes was fused, showing that the digits function predominantly as a unit in general grasping. Humans, by contrast, had an independent neurological representation of the big toe (hallux), suggesting association with bipedal locomotion. These observations suggest that the brain circuits for the hand had advanced beyond simple grasping, whereas our primate ancestors were still general arboreal quadrupeds. This early adaptation laid the foundation for the evolution of manual dexterity, which was preserved and enhanced in hominins. In hominins, a separate adaptation, involving the neural separation of the big toe, apparently occurred with bipedality. This accords with the known fossil evidence, including the recently reported hominin fossils which have been dated to 4.4 million years ago. PMID:24101627

  15. Comparison of nonmicroprocessor knee mechanism versus C-Leg on Prosthesis Evaluation Questionnaire, stumbles, falls, walking tests, stair descent, and knee preference.

    PubMed

    Kahle, Jason T; Highsmith, M Jason; Hubbard, Sandra L

    2008-01-01

    This study compared subjects' performance with a nonmicroprocessor knee mechanism (NMKM) versus a C-Leg on nine clinically repeatable evaluative measures. We recorded data on subjects' performance while they used an accommodated NMKM and, following a 90-day accommodation period, the C-Leg in a convenience sample of 19 transfemoral (TF) amputees (mean age 51 +/- 19) from an outpatient prosthetic clinic. We found that use of the C-Leg improved function in all outcomes: (1) Prosthesis Evaluation Questionnaire scores increased 20% (p = 0.007), (2) stumbles decreased 59% (p = 0.006), (3) falls decreased 64% (p = 0.03), (4) 75 m self-selected walking speed on even terrain improved 15% (p = 0.03), (5) 75 m fastest possible walking speed (FPWS) on even terrain improved 12% (p = 0.005), (6) 38 m FPWS on uneven terrain improved 21% (p < 0.001), (7) 6 m FPWS on even terrain improved 17% (p = 0.001), (8) Montreal Rehabilitation Performance Profile Performance Composite Scores for stair descent increased for 12 subjects, and (9) the C-Leg was preferred over the NMKM by 14 subjects. Four limited community ambulators (Medicare Functional Classification Level [MFCL] K2) increased their ambulatory functional level to unlimited community ambulation (MFCL K3). Objective evaluative clinical measures are vital for justifying the medical necessity of knee mechanisms for TF amputees. Use of the C-Leg improves performance and quality of life and can increase MFCL and community ambulation level.

  16. Phase-dependent reversal of the crossed conditioning effect on the soleus Hoffmann reflex from cutaneous afferents during walking in humans.

    PubMed

    Suzuki, Shinya; Nakajima, Tsuyoshi; Futatsubashi, Genki; Mezzarane, Rinaldo A; Ohtsuka, Hiroyuki; Ohki, Yukari; Komiyama, Tomoyoshi

    2016-02-01

    We previously demonstrated that non-noxious electrical stimulation of the cutaneous nerve innervating the contralateral foot modified the excitability of the Hoffmann (H-) reflex in the soleus muscle (SOL) in a task-dependent manner during standing and walking in humans. To date, however, it remains unclear how the crossed conditioning effect on the SOL H-reflex from the contralateral foot is modified during the various phases of walking. We sought to answer this question in the present study. The SOL H-reflex was evoked in healthy volunteers by an electrical test stimulation (TS) of the right (ipsilateral) posterior tibial nerve at five different phases during treadmill walking (4 km/h). A non-noxious electrical stimulation was delivered to the superficial peroneal nerve of the left (contralateral) ankle ~100 ms before the TS as a conditioning stimulation (CS). This CS significantly suppressed the H-reflex amplitude during the early stance phase, whereas the same CS significantly facilitated the H-reflex amplitude during the late stance phase. The CS alone did not produce detectable changes in the full-wave rectified electromyogram of the SOL. This result indicates that presynaptic mechanisms driven by the activation of low-threshold cutaneous afferents in the contralateral foot play a role in regulating the transmission between the Ia terminal and motoneurons in a phase-dependent manner. The modulation pattern of the crossed conditioning effect on the SOL H-reflex may be functionally relevant for the left-right coordination of leg movements during bipedal walking.

  17. Mechanical Perturbations of the Walking Surface Reveal Unaltered Axial Trunk Stiffness in Chronic Low Back Pain Patients

    PubMed Central

    Meijer, Onno G.

    2016-01-01

    Introduction Patients with chronic low back pain (CLBP) often demonstrate altered timing of thorax rotations in the transverse plane during gait. Increased axial trunk stiffness has been claimed to cause this movement pattern. Objectives The objective of this study was to assess whether axial trunk stiffness is increased in gait in CLBP patients. Methods 15 CLBP patients and 15 healthy controls walked on a treadmill that imposed rotational perturbations in the transverse plane. The effect of these perturbations on transverse pelvis, thorax and trunk (thorax relative to pelvis) rotations was evaluated in terms of residual rotations, i.e., the deviation of these movements from the unperturbed patterns. In view of the heterogeneity of the CLBP group, we additionally performed a subgroup comparison between seven patients and seven controls with maximal between-group contrast for timing of thorax rotations. Results Rotations of the walking surface had a clear effect on transverse pelvis, thorax and trunk rotations in all groups. No significant between-group differences on residual transverse pelvis, thorax and trunk rotations were observed. Conclusion Axial trunk stiffness in gait does not appear to be increased in CLBP. Altered timing of thorax rotations in CLBP does not seem to be a result of increased axial trunk stiffness. PMID:27310528

  18. The biomechanics of walking shape the use of visual information during locomotion over complex terrain

    PubMed Central

    Matthis, Jonathan Samir; Barton, Sean L.; Fajen, Brett R.

    2015-01-01

    The aim of this study was to examine how visual information is used to control stepping during locomotion over terrain that demands precision in the placement of the feet. More specifically, we sought to determine the point in the gait cycle at which visual information about a target is no longer needed to guide accurate foot placement. Subjects walked along a path while stepping as accurately as possible on a series of small, irregularly spaced target footholds. In various conditions, each of the targets became invisible either during the step to the target or during the step to the previous target. We found that making targets invisible after toe off of the step to the target had little to no effect on stepping accuracy. However, when targets disappeared during the step to the previous target, foot placement became less accurate and more variable. The findings suggest that visual information about a target is used prior to initiation of the step to that target but is not needed to continuously guide the foot throughout the swing phase. We propose that this style of control is rooted in the biomechanics of walking, which facilitates an energetically efficient strategy in which visual information is primarily used to initialize the mechanical state of the body leading into a ballistic movement toward the target foothold. Taken together with previous studies, the findings suggest the availability of visual information about the terrain near a particular step is most essential during the latter half of the preceding step, which constitutes a critical control phase in the bipedal gait cycle. PMID:25788704

  19. Technicolor walks at the LHC

    SciTech Connect

    Belyaev, Alexander; Foadi, Roshan; Frandsen, Mads T.; Jaervinen, Matti; Sannino, Francesco; Pukhov, Alexander

    2009-02-01

    We analyze the potential of the Large Hadron Collider (LHC) to observe signatures of phenomenologically viable walking technicolor models. We study and compare the Drell-Yan and vector boson fusion mechanisms for the production of composite heavy vectors. We find that the heavy vectors are most easily produced and detected via the Drell-Yan processes. The composite Higgs phenomenology is also studied. If technicolor walks at the LHC, its footprints will be visible and our analysis will help in uncovering them.

  20. An analysis of the mechanisms for reducing the knee adduction moment during walking using a variable stiffness shoe in subjects with knee osteoarthritis.

    PubMed

    Jenkyn, Thomas R; Erhart, Jennifer C; Andriacchi, Thomas P

    2011-04-29

    Variable stiffness shoes that have a stiffer lateral than medial sole may reduce the external knee adduction moment (EKAM) and pain during walking in patients with medial compartment knee osteoarthritis (OA). However, the mechanism by which EKAM may be reduced in the OA knee with this intervention remains unclear. Three hypotheses were tested in this study: (1) The reduction in EKAM during walking with the variable stiffness shoe is associated with a reduction in GRF magnitude and/or (2) frontal plane lever arm. (3) A reduction in frontal plane lever arm occurs either by moving the center of pressure laterally under the shoe and/or by dynamically reducing the medial component of GRF. Thirty-two subjects (20 male, 12 female; age: 58.7 ± 9.3 years; height: 1.62 ± 0.08 m; mass: 81.3 ± 14.6 kg) with medial compartment knee osteoarthritis were studied walking in a gait laboratory. The frontal plane lever arm was significantly reduced (1.62%, 0.07%ht, p=0.02) on the affected side while the magnitude of the GRF was not significantly changed. The reduction in the lever arm was weakly correlated with a medial shift in the COP. However, the combined medial shift in the COP and reduction in the medial GRF explained 50% of the change of the frontal plane lever arm. These results suggest that the medial shift in the COP at the foot produced by the intervention shoe stimulates an adaptive dynamic response during gait that reduces the frontal plane lever arm.

  1. The Walk Poem.

    ERIC Educational Resources Information Center

    Padgett, Ron

    2000-01-01

    Discusses the long history of writing poems about a walk, noting many titles. Notes four basic types of walk poems and includes one by American poet Bill Zavatksy, called "Class Walk With Notebooks After Storm." Offers numerous brief ideas for both the writing and the form of walk poems. (SR)

  2. Two families with quadrupedalism, mental retardation, no speech, and infantile hypotonia (Uner Tan Syndrome Type-II); a novel theory for the evolutionary emergence of human bipedalism

    PubMed Central

    Tan, Uner

    2014-01-01

    Two consanguineous families with Uner Tan Syndrome (UTS) were analyzed in relation to self-organizing processes in complex systems, and the evolutionary emergence of human bipedalism. The cases had the key symptoms of previously reported cases of UTS, such as quadrupedalism, mental retardation, and dysarthric or no speech, but the new cases also exhibited infantile hypotonia and are designated UTS Type-II. There were 10 siblings in Branch I and 12 siblings in Branch II. Of these, there were seven cases exhibiting habitual quadrupedal locomotion (QL): four deceased and three living. The infantile hypotonia in the surviving cases gradually disappeared over a period of years, so that they could sit by about 10 years, crawl on hands and knees by about 12 years. They began walking on all fours around 14 years, habitually using QL. Neurological examinations showed normal tonus in their arms and legs, no Babinski sign, brisk tendon reflexes especially in the legs, and mild tremor. The patients could not walk in a straight line, but (except in one case) could stand up and maintain upright posture with truncal ataxia. Cerebello-vermial hypoplasia and mild gyral simplification were noted in their MRIs. The results of the genetic analysis were inconclusive: no genetic code could be identified as the triggering factor for the syndrome in these families. Instead, the extremely low socio-economic status of the patients was thought to play a role in the emergence of UTS, possibly by epigenetically changing the brain structure and function, with a consequent selection of ancestral neural networks for QL during locomotor development. It was suggested that UTS may be regarded as one of the unpredictable outcomes of self-organization within a complex system. It was also noted that the prominent feature of this syndrome, the diagonal-sequence habitual QL, generated an interference between ipsilateral hands and feet, as in non-human primates. It was suggested that this may have been

  3. Two families with quadrupedalism, mental retardation, no speech, and infantile hypotonia (Uner Tan Syndrome Type-II); a novel theory for the evolutionary emergence of human bipedalism.

    PubMed

    Tan, Uner

    2014-01-01

    Two consanguineous families with Uner Tan Syndrome (UTS) were analyzed in relation to self-organizing processes in complex systems, and the evolutionary emergence of human bipedalism. The cases had the key symptoms of previously reported cases of UTS, such as quadrupedalism, mental retardation, and dysarthric or no speech, but the new cases also exhibited infantile hypotonia and are designated UTS Type-II. There were 10 siblings in Branch I and 12 siblings in Branch II. Of these, there were seven cases exhibiting habitual quadrupedal locomotion (QL): four deceased and three living. The infantile hypotonia in the surviving cases gradually disappeared over a period of years, so that they could sit by about 10 years, crawl on hands and knees by about 12 years. They began walking on all fours around 14 years, habitually using QL. Neurological examinations showed normal tonus in their arms and legs, no Babinski sign, brisk tendon reflexes especially in the legs, and mild tremor. The patients could not walk in a straight line, but (except in one case) could stand up and maintain upright posture with truncal ataxia. Cerebello-vermial hypoplasia and mild gyral simplification were noted in their MRIs. The results of the genetic analysis were inconclusive: no genetic code could be identified as the triggering factor for the syndrome in these families. Instead, the extremely low socio-economic status of the patients was thought to play a role in the emergence of UTS, possibly by epigenetically changing the brain structure and function, with a consequent selection of ancestral neural networks for QL during locomotor development. It was suggested that UTS may be regarded as one of the unpredictable outcomes of self-organization within a complex system. It was also noted that the prominent feature of this syndrome, the diagonal-sequence habitual QL, generated an interference between ipsilateral hands and feet, as in non-human primates. It was suggested that this may have been

  4. Optimal bipedal interactions with dynamic terrain: synthesis and analysis via nonlinear programming

    NASA Astrophysics Data System (ADS)

    Hubicki, Christian; Goldman, Daniel; Ames, Aaron

    In terrestrial locomotion, gait dynamics and motor control behaviors are tuned to interact efficiently and stably with the dynamics of the terrain (i.e. terradynamics). This controlled interaction must be particularly thoughtful in bipeds, as their reduced contact points render them highly susceptible to falls. While bipedalism under rigid terrain assumptions is well-studied, insights for two-legged locomotion on soft terrain, such as sand and dirt, are comparatively sparse. We seek an understanding of how biological bipeds stably and economically negotiate granular media, with an eye toward imbuing those abilities in bipedal robots. We present a trajectory optimization method for controlled systems subject to granular intrusion. By formulating a large-scale nonlinear program (NLP) with reduced-order resistive force theory (RFT) models and jamming cone dynamics, the optimized motions are informed and shaped by the dynamics of the terrain. Using a variant of direct collocation methods, we can express all optimization objectives and constraints in closed-form, resulting in rapid solving by standard NLP solvers, such as IPOPT. We employ this tool to analyze emergent features of bipedal locomotion in granular media, with an eye toward robotic implementation.

  5. Effect of walking speed on the gait of king penguins: An accelerometric approach.

    PubMed

    Willener, Astrid S T; Handrich, Yves; Halsey, Lewis G; Strike, Siobhán

    2015-12-21

    Little is known about non-human bipedal gaits. This is probably due to the fact that most large animals are quadrupedal and that non-human bipedal animals are mostly birds, whose primary form of locomotion is flight. Very little research has been conducted on penguin pedestrian locomotion with the focus instead on their associated high energy expenditure. In animals, tri-axial accelerometers are frequently used to estimate physiological energy cost, as well as to define the behaviour pattern of a species, or the kinematics of swimming. In this study, we showed how an accelerometer-based technique could be used to determine the biomechanical characteristics of pedestrian locomotion. Eight king penguins, which represent the only family of birds to have an upright bipedal gait, were trained to walk on a treadmill. The trunk tri-axial accelerations were recorded while the bird was walking at four different speeds (1.0, 1.2, 1.4 and 1.6km/h), enabling the amplitude of dynamic body acceleration along the three axes (amplitude of DBAx, DBAy and DBAz), stride frequency, waddling and leaning amplitude, as well as the leaning angle to be defined. The magnitude of the measured variables showed a significant increase with increasing speed, apart from the backwards angle of lean, which decreased with increasing speed. The variability of the measured variables also showed a significant increase with speed apart from the DBAz amplitude, the waddling amplitude, and the leaning angle, where no significant effect of the walking speed was found. This paper is the first approach to describe 3D biomechanics with an accelerometer on wild animals, demonstrating the potential of this technique.

  6. A model-experiment comparison of system dynamics for human walking and running.

    PubMed

    Lipfert, Susanne W; Günther, Michael; Renjewski, Daniel; Grimmer, Sten; Seyfarth, Andre

    2012-01-07

    The human musculo-skeletal system comprises high complexity which makes it difficult to identify underlying basic principles of bipedal locomotion. To tackle this challenge, a common approach is to strip away complexity and formulate a reductive model. With utter simplicity a bipedal spring-mass model gives good predictions of the human gait dynamics, however, it has not been fully investigated whether center of mass motion over time of walking and running is comparable between the model and the human body over a wide range of speed. To test the model's ability in this respect, we compare sagittal center of mass trajectories of model and human data for speeds ranging from 0.5 m/s to 4 m/s. For simulations, system parameters and initial conditions are extracted from experimental observations of 28 subjects. The leg parameters stiffness and length are extracted from functional fitting to the subjects' leg force-length curves. With small variations of the touch-down angle of the leg and the vertical position of the center of mass at apex, we find successful spring-mass simulations for moderate walking and medium running speeds. Predictions of the sagittal center of mass trajectories and ground reaction forces are good, but their amplitudes are overestimated, while contact time is underestimated. At faster walking speeds and slower running speeds we do not find successful model locomotion with the extent of allowed parameter variation. We conclude that the existing limitations may be improved by adding complexity to the model.

  7. Fire-Walking

    ERIC Educational Resources Information Center

    Willey, David

    2010-01-01

    This article gives a brief history of fire-walking and then deals with the physics behind fire-walking. The author has performed approximately 50 fire-walks, took the data for the world's hottest fire-walk and was, at one time, a world record holder for the longest fire-walk (www.dwilley.com/HDATLTW/Record_Making_Firewalks.html). He currently…

  8. Positive messaging promotes walking in older adults

    PubMed Central

    Notthoff, Nanna; Carstensen, Laura L.

    2014-01-01

    Walking is among the most cost-effective and accessible means of exercise. Mounting evidence suggests that walking may help to maintain physical and cognitive independence in old age by preventing a variety of health problems. However, older Americans fall far short of meeting the daily recommendations for walking. In two studies, we examined whether considering older adults’ preferential attention to positive information may effectively enhance interventions aimed at promoting walking. In Study 1, we compared the effectiveness of positive, negative, and neutral messages to encourage walking (as measured with pedometers). Older adults who were informed about the benefits of walking walked more than those who were informed about the negative consequences of failing to walk, whereas younger adults were unaffected by framing valence. In Study 2, we examined within-person change in walking in older adults in response to positively- or negatively-framed messages over a 28-day period. Once again, positively-framed messages more effectively promoted walking than negatively-framed messages, and the effect was sustained across the intervention period. Together, these studies suggest that consideration of age-related changes in preferences for positive and negative information may inform the design of effective interventions to promote healthy lifestyles. Future research is needed to examine the mechanisms underlying the greater effectiveness of positively as opposed to negatively framed messages and the generalizability of findings to other intervention targets and other subpopulations of older adults. PMID:24956001

  9. A multi-scale finite element model for investigation of chondrocyte mechanics in normal and medial meniscectomy human knee joint during walking.

    PubMed

    Tanska, Petri; Mononen, Mika E; Korhonen, Rami K

    2015-06-01

    Mechanical signals experienced by chondrocytes (articular cartilage cells) modulate cell synthesis and cartilage health. Multi-scale modeling can be used to study how forces are transferred from joint surfaces through tissues to chondrocytes. Therefore, estimation of chondrocyte behavior during certain physical activities, such as walking, could provide information about how cells respond to normal and abnormal loading in joints. In this study, a 3D multi-scale model was developed for evaluating chondrocyte and surrounding peri- and extracellular matrix responses during gait loading within healthy and medial meniscectomy knee joints. The knee joint geometry was based on MRI, whereas the input used for gait loading was obtained from the literature. Femoral and tibial cartilages were modeled as fibril-reinforced poroviscoelastic materials, whereas menisci were considered as transversely isotropic. Fluid pressures in the chondrocyte and cartilage tissue increased up to 2MPa (an increase of 30%) in the meniscectomy joint compared to the normal, healthy joint. The elevated level of fluid pressure was observed during the entire stance phase of gait. A medial meniscectomy caused substantially larger (up to 60%) changes in maximum principal strains in the chondrocyte compared to those in the peri- or extracellular matrices. Chondrocyte volume or morphology did not change substantially due to a medial meniscectomy. Current findings suggest that during walking chondrocyte deformations are not substantially altered due to a medial meniscectomy, while abnormal joint loading exposes chondrocytes to elevated levels of fluid pressure and maximum principal strains (compared to strains in the peri- or extracellular matrices). These might contribute to cell viability and the onset of osteoarthritis.

  10. Specializations in the lumbosacral vertebral canal and spinal cord of birds: evidence of a function as a sense organ which is involved in the control of walking.

    PubMed

    Necker, Reinhold

    2006-05-01

    Birds are bipedal animals with a center of gravity rostral to the insertion of the hindlimbs. This imposes special demands on keeping balance when moving on the ground. Recently, specializations in the lumbosacral region have been suggested to function as a sense organ of equilibrium which is involved in the control of walking. Morphological, electrophysiological, behavioral and embryological evidence for such a function is reviewed. Birds have two nearly independent kinds of locomotion and it is suggested that two different sense organs play an important role in their respective control: the vestibular organ during flight and the lumbosacral system during walking.

  11. On alternating quantum walks

    NASA Astrophysics Data System (ADS)

    Rousseva, Jenia; Kovchegov, Yevgeniy

    2017-03-01

    We study an inhomogeneous quantum walk on a line that evolves according to alternating coins, each a rotation matrix. For the quantum walk with the coin alternating between clockwise and counterclockwise rotations by the same angle, we derive a closed form solution for the propagation of probabilities, and provide its asymptotic approximation via the method of stationary phase. Finally, we observe that for a x03c0;/4 angle, this alternating rotation walk will replicate the renown Hadamard walk.

  12. Walk This Way

    ERIC Educational Resources Information Center

    Mason, Nick

    2007-01-01

    A generation ago, it was part of growing up for all kids when they biked or walked to school. But in the last 30 years, heavier traffic, wider roads and more dangerous intersections have made it riskier for students walking or pedaling. Today, fewer than 15 percent of kids bike or walk to school compared with more than 50 percent in 1969. In the…

  13. Walking Wellness. Student Workbook.

    ERIC Educational Resources Information Center

    Sweetgall, Robert; Neeves, Robert

    This comprehensive student text and workbook, for grades four through eight, contains 16 workshop units focusing on walking field trips, aerobic pacing concepts, walking techniques, nutrition, weight control and healthy life-style planning. Co-ordinated homework assignments are included. The appendixes include 10 tips for walking, a calorie chart,…

  14. Quantum walk computation

    SciTech Connect

    Kendon, Viv

    2014-12-04

    Quantum versions of random walks have diverse applications that are motivating experimental implementations as well as theoretical studies. Recent results showing quantum walks are “universal for quantum computation” relate to algorithms, to be run on quantum computers. We consider whether an experimental implementation of a quantum walk could provide useful computation before we have a universal quantum computer.

  15. Feeding strategies as revealed by the section moduli of the humerus bones in bipedal theropod dinosaurs

    NASA Astrophysics Data System (ADS)

    Lee, Scott; Richards, Zachary

    2015-03-01

    The section modulus of a bone is a measure of its ability to resist bending torques. Carnivorous dinosaurs presumably had strong arm bones to hold struggling prey during hunting. Some theropods are believed to have become herbivorous and such animals would not have needed such strong arms. In this work, the section moduli of the humerus bones of bipedal theropod dinosaurs (from Microvenator celer to Tyrannosaurus rex) are studied to determine the maximum bending loads their arms could withstand. The results show that bending strength is not of uniform importance to these magnificent animals. The predatory theropods had strong arms for use in hunting. In contrast, the herbivorous dinosaurs had weaker arms.

  16. Knuckle-walking anteater: a convergence test of adaptation for purported knuckle-walking features of African Hominidae.

    PubMed

    Orr, Caley M

    2005-11-01

    distal radius in the hominin lineage might be indicative of a knuckle-walking ancestry for bipedal hominins if interpreted within the biomechanical and phylogenetic context of hominid locomotor evolution.

  17. Locomotion by Abdopus aculeatus (Cephalopoda: Octopodidae): walking the line between primary and secondary defenses.

    PubMed

    Huffard, Christine L

    2006-10-01

    Speeds and variation in body form during crawling, bipedal walking, swimming and jetting by the shallow-water octopus Abdopus aculeatus were compared to explore possible interactions between defense behaviors and biomechanics of these multi-limbed organisms. General body postures and patterns were more complex and varied during the slow mode of crawling than during fast escape maneuvers such as swimming and jetting. These results may reflect a trade-off between predator deception and speed, or simply a need to reduce drag during jet-propelled locomotion. Octopuses swam faster when dorsoventrally compressed, a form that may generate lift, than when swimming in the head-raised posture. Bipedal locomotion proceeded as fast as swimming and can be considered a form of fast escape (secondary defense) that also incorporates elements of crypsis and polyphenism (primary defenses). Body postures during walking suggested the use of both static and dynamic stability. Absolute speed was not correlated with body mass in any mode. Based on these findings the implications for defense behaviors such as escape from predation, aggression, and 'flatfish mimicry' performed by A. aculeatus and other octopuses are discussed.

  18. Walk Score®

    PubMed Central

    Brown, Scott C.; Pantin, Hilda; Lombard, Joanna; Toro, Matthew; Huang, Shi; Plater-Zyberk, Elizabeth; Perrino, Tatiana; Perez-Gomez, Gianna; Barrera-Allen, Lloyd; Szapocznik, José

    2013-01-01

    Background Walk Score® is a nationally and publicly available metric of neighborhood walkability based on proximity to amenities (e.g., retail, food, schools). However, few studies have examined the relationship of Walk Score to walking behavior. Purpose To examine the relationship of Walk Score to walking behavior in a sample of recent Cuban immigrants, who overwhelmingly report little choice in their selection of neighborhood built environments when they arrive in the U.S. Methods Participants were 391 recent healthy Cuban immigrants (M age=37.1 years) recruited within 90 days of arrival in the U.S., and assessed within 4 months of arrival (M=41.0 days in the U.S.), who resided throughout Miami-Dade County FL. Data on participants’ addresses, walking and sociodemographics were collected prospectively from 2008 to 2010. Analyses conducted in 2011 examined the relationship of Walk Score for each participant’s residential address in the U.S. to purposive walking, controlling for age, gender, education, BMI, days in the U.S., and habitual physical activity level in Cuba. Results For each 10-point increase in Walk Score, adjusting for covariates, there was a significant 19% increase in the likelihood of purposive walking, a 26% increase in the likelihood of meeting physical activity recommendations by walking, and 27% more minutes walked in the previous week. Conclusions Results suggest that Walk Score is associated with walking in a sample of recent immigrants who initially had little choice in where they lived in the U.S. These results support existing guidelines indicating that mixed land use (such as parks and restaurants near homes) should be included when designing walkable communities. PMID:23867028

  19. Bipedality and hair loss in human evolution revisited: The impact of altitude and activity scheduling.

    PubMed

    Dávid-Barrett, Tamás; Dunbar, Robin I M

    2016-05-01

    Bipedality evolved early in hominin evolution, and at some point was associated with hair loss over most of the body. One classic explanation (Wheeler 1984: J. Hum. Evol. 13, 91-98) was that these traits evolved to reduce heat overload when australopiths were foraging in more open tropical habitats where they were exposed to the direct effects of sunlight at midday. A recent critique of this model (Ruxton & Wilkinson 2011a: Proc. Natl. Acad. Sci. USA 108, 20965-20969) argued that it ignored the endogenous costs of heat generated by locomotion, and concluded that only hair loss provided a significant reduction in heat load. We add two crucial corrections to this model (the altitude at which australopiths actually lived and activity scheduling) and show that when these are included there are substantial reductions in heat load for bipedal locomotion even for furred animals. In addition, we add one further consideration to the model: we extend the analysis across the full 24 h day, and show that fur loss could not have evolved until much later because of the thermoregulatory costs this would have incurred at the altitudes where australopiths actually lived. Fur loss is most likely associated with the exploitation of open habitats at much lower altitudes at a much later date by the genus Homo.

  20. How Fast Can a Human Run? − Bipedal vs. Quadrupedal Running

    PubMed Central

    Kinugasa, Ryuta; Usami, Yoshiyuki

    2016-01-01

    Usain Bolt holds the current world record in the 100-m run, with a running time of 9.58 s, and has been described as the best human sprinter in history. However, this raises questions concerning the maximum human running speed, such as “Can the world’s fastest men become faster still?” The correct answer is likely “Yes.” We plotted the historical world records for bipedal and quadrupedal 100-m sprint times according to competition year. These historical records were plotted using several curve-fitting procedures. We found that the projected speeds intersected in 2048, when for the first time, the winning quadrupedal 100-m sprint time could be lower, at 9.276 s, than the winning bipedal time of 9.383 s. Video analysis revealed that in quadrupedal running, humans employed a transverse gallop with a small angular excursion. These results suggest that in the future, the fastest human on the planet might be a quadrupedal runner at the 2048 Olympics. This may be achieved by shifting up to the rotary gallop and taking longer strides with wide sagittal trunk motion. PMID:27446911

  1. Decentralized Feedback Controllers for Exponential Stabilization of Hybrid Periodic Orbits: Application to Robotic Walking*

    PubMed Central

    Hamed, Kaveh Akbari; Gregg, Robert D.

    2016-01-01

    This paper presents a systematic algorithm to design time-invariant decentralized feedback controllers to exponentially stabilize periodic orbits for a class of hybrid dynamical systems arising from bipedal walking. The algorithm assumes a class of parameterized and nonlinear decentralized feedback controllers which coordinate lower-dimensional hybrid subsystems based on a common phasing variable. The exponential stabilization problem is translated into an iterative sequence of optimization problems involving bilinear and linear matrix inequalities, which can be easily solved with available software packages. A set of sufficient conditions for the convergence of the iterative algorithm to a stabilizing decentralized feedback control solution is presented. The power of the algorithm is demonstrated by designing a set of local nonlinear controllers that cooperatively produce stable walking for a 3D autonomous biped with 9 degrees of freedom, 3 degrees of underactuation, and a decentralization scheme motivated by amputee locomotion with a transpelvic prosthetic leg. PMID:27990059

  2. Water-walking devices

    NASA Astrophysics Data System (ADS)

    Hu, David L.; Prakash, Manu; Chan, Brian; Bush, John W. M.

    2007-11-01

    We report recent efforts in the design and construction of water-walking machines inspired by insects and spiders. The fundamental physical constraints on the size, proportion and dynamics of natural water-walkers are enumerated and used as design criteria for analogous mechanical devices. We report devices capable of rowing along the surface, leaping off the surface and climbing menisci by deforming the free surface. The most critical design constraint is that the devices be lightweight and non-wetting. Microscale manufacturing techniques and new man-made materials such as hydrophobic coatings and thermally actuated wires are implemented. Using high-speed cinematography and flow visualization, we compare the functionality and dynamics of our devices with those of their natural counterparts.

  3. Water-walking devices

    NASA Astrophysics Data System (ADS)

    Hu, David L.; Prakash, Manu; Chan, Brian; Bush, John W. M.

    We report recent efforts in the design and construction of water-walking machines inspired by insects and spiders. The fundamental physical constraints on the size, proportion and dynamics of natural water-walkers are enumerated and used as design criteria for analogous mechanical devices. We report devices capable of rowing along the surface, leaping off the surface and climbing menisci by deforming the free surface. The most critical design constraint is that the devices be lightweight and non-wetting. Microscale manufacturing techniques and new man-made materials such as hydrophobic coatings and thermally actuated wires are implemented. Using highspeed cinematography and flow visualization, we compare the functionality and dynamics of our devices with those of their natural counterparts.

  4. Treadmill walking is not equivalent to overground walking for the study of walking smoothness and rhythmicity in older adults.

    PubMed

    Row Lazzarini, Brandi S; Kataras, Theodore J

    2016-05-01

    Treadmills are appealing for gait studies, but some gait mechanics are disrupted during treadmill walking. The purpose of this study was to examine the effects of speed and treadmill walking on walking smoothness and rhythmicity of 40 men and women between the ages of 70-96 years. Gait smoothness was examined during overground (OG) and treadmill (TM) walking by calculating the harmonic ratio from linear accelerations measured at the level of the lumbar spine. Rhythmicity was quantified as the stride time standard deviation. TM walking was performed at two speeds: a speed matching the natural OG walk speed (TM-OG), and a preferred TM speed (PTM). A dual-task OG condition (OG-DT) was evaluated to determine if TM walking posed a similar cognitive challenge. Statistical analysis included a one-way Analysis of Variance with Bonferroni corrected post hoc comparisons and the Wilcoxon signed rank test for non-normally distributed variables. Average PTM speed was slower than OG. Compared to OG, those who could reach the TM-OG speed (74.3% of sample) exhibited improved ML smoothness and rhythmicity, and the slower PTM caused worsened vertical and AP smoothness, but did not affect rhythmicity. PTM disrupted smoothness and rhythmicity differently than the OG-DT condition, likely due to reduced speed. The use of treadmills for gait smoothness and rhythmicity studies in older adults is problematic; some participants will not achieve OG speed during TM walking, walking at the TM-OG speed artificially improves rhythmicity and ML smoothness, and walking at the slower PTM speed worsens vertical and AP gait smoothness.

  5. Can treadmill walking be used to assess propulsion generation?

    PubMed

    Goldberg, Evan J; Kautz, Steven A; Neptune, Richard R

    2008-01-01

    Instrumented treadmills offer significant advantages for analysis of human locomotion, including recording consecutive steady-state gait cycles, precisely controlling walking speed, and avoiding force plate targeting. However, some studies of hemiparetic walking on a treadmill have suggested that the moving treadmill belt may fundamentally alter propulsion mechanics. Any differences in propulsion mechanics during treadmill walking would be problematic since recent studies assessing propulsion have provided fundamental insight into hemiparetic walking. The purpose of this study was to test the hypothesis that there would be no difference in the generation of anterior/posterior (A/P) propulsion by performing a carefully controlled comparison of the A/P ground reaction forces (GRFs) and impulses in healthy adults during treadmill and overground walking. Gait data were collected from eight subjects walking overground and on a treadmill with speed and cadence controlled. Peak negative and positive horizontal GRFs in early and late stance, respectively, were reduced by less than 5% of body weight (p<0.05) during treadmill walking compared to overground walking. The magnitude of the braking impulse was similarly lower (p<0.05) during treadmill walking, but no significant difference was found between propulsion impulses. While there were some subtle differences in A/P GRFs between overground and treadmill walking, these results suggest there is no fundamental difference in propulsion mechanics. We conclude that treadmill walking can be used to investigate propulsion generation in healthy and by implication clinical populations.

  6. Walking on music.

    PubMed

    Styns, Frederik; van Noorden, Leon; Moelants, Dirk; Leman, Marc

    2007-10-01

    The present study focuses on the intricate relationship between human body movement and music, in particular on how music may influence the way humans walk. In an experiment, participants were asked to synchronize their walking tempo with the tempo of musical and metronome stimuli. The walking tempo and walking speed were measured. The tempi of the stimuli varied between 50 and 190 beats per minute. The data revealed that people walk faster on music than on metronome stimuli and that walking on music can be modeled as a resonance phenomenon that is related to the perceptual resonance phenomenon as described by Van Noorden and Moelants (Van Noorden, L., & Moelants, D. (1999). Resonance in the perception of musical pulse. Journal of New Music Research, 28, 43-66).

  7. Rhythm Pattern of Sole through Electrification of the Human Body When Walking

    NASA Astrophysics Data System (ADS)

    Takiguchi, Kiyoaki; Wada, Takayuki; Tohyama, Shigeki

    The rhythm of automatic cyclic movements such as walking is known to be generated by a rhythm generator called CPG in the spinal cord. The measurement of rhythm characteristics in walking is considered to be important for analyzing human bipedal walking and adaptive walking on irregular terrain. In particular, the soles that contact the terrain surface perform flexible movements similar to the movement of the fins of a lungfish, which is considered to be the predecessor of land animals. The sole movements are believed to be a basic movement acquired during prehistoric times. The detailed rhythm pattern of sole motion is considered to be important. We developed a method for measuring electrification without installing device on a subject's body and footwear for stabilizing the electrification of the human body. We measured the rhythm pattern of 20 subjects including 4 infants when walking by using this system and the corresponding equipment. Therefore, we confirmed the commonality of the correlative rhythm patterns of 20 subjects. Further, with regard to an individual subject, the reproducibility of a rhythm pattern with strong correlation coefficient > 0.93 ± 0.5 (mean ± SD) concerning rhythms of trials that are differently conducted on adult subjects could be confirmed.

  8. Development of energy and time parameters in the walking of healthy human infants.

    PubMed

    Kimura, Tasuku; Yaguramaki, Naoko; Fujita, Masaki; Ogiue-Ikeda, Mari; Nishizawa, Satoshi; Ueda, Yutaka

    2005-11-01

    Sixteen infants were analyzed longitudinally from the onset of independent walking to 3 years of age using time parameters, speed and energy recovery. Considerable variation and irregularities were observed in many parameters of infant walking, especially until 13 months of age when infants had difficulty in walking steadily step by step. Infant walking until 3 years of age was characterized by a small braking duration, caused mainly by the forward inclination of the trunk, a large relative stance phase duration, which maintained static balance, short stride length, due to the small range of the lower limb joint angle, and a small recovery of external energy. These characteristics were also predominantly evident until 13 months of age. The small recovery characteristic of infants was caused by flexed lower limb joints, pronounced irregularities in energy output, and in younger infants, slow speed. The maximum recovery up until 2 years of age, though smaller than in adults, appeared at about 0.45 dimensionless speed, which is about the same speed that adults in particular naturally and at which their maximum recovery appeared. The forward inclination of the trunk and the lower limb joint angle, influenced the development of many characteristics of bipedal walking.

  9. Quantum walk public-key cryptographic system

    NASA Astrophysics Data System (ADS)

    Vlachou, C.; Rodrigues, J.; Mateus, P.; Paunković, N.; Souto, A.

    2015-12-01

    Quantum Cryptography is a rapidly developing field of research that benefits from the properties of Quantum Mechanics in performing cryptographic tasks. Quantum walks are a powerful model for quantum computation and very promising for quantum information processing. In this paper, we present a quantum public-key cryptographic system based on quantum walks. In particular, in the proposed protocol the public-key is given by a quantum state generated by performing a quantum walk. We show that the protocol is secure and analyze the complexity of public key generation and encryption/decryption procedures.

  10. Virtually Abelian quantum walks

    NASA Astrophysics Data System (ADS)

    Mauro D'Ariano, Giacomo; Erba, Marco; Perinotti, Paolo; Tosini, Alessandro

    2017-01-01

    We study discrete-time quantum walks on Cayley graphs of non-Abelian groups, focusing on the easiest case of virtually Abelian groups. We present a technique to reduce the quantum walk to an equivalent one on an Abelian group with coin system having larger dimension. This method allows one to extend the notion of wave-vector to the virtually Abelian case and study analytically the walk dynamics. We apply the technique in the case of two quantum walks on virtually Abelian groups with planar Cayley graphs, finding the exact solution in terms of dispersion relation.

  11. Prediction of walking possibility in crawling children in poliomyelitis.

    PubMed

    Arora, S S; Tandon, H

    1999-01-01

    Crawling is one of the most common modes of ambulating in children with severe paralysis and deformities in poliomyelitis. Restoring upright posture and bipedal gait, although desirable, has its own limitations due to various factors. Fifty-three children below the age of 12 years (29 boys and 24 girls) crawling due to post-poliomyelitis residual paralysis were assessed for the genesis of crawling as a mode of ambulating. The patterns of crawling were classified according to Cross's classification. Paralyzed muscles and deformities in definite combinations were found responsible for each type of crawling. Trunk muscles, gluteus maximus, quadriceps, hamstrings, tibialis anterior, and triceps surae were identified as muscles crucial for walking in order of priority. At least antigravity power in these muscles was necessary for an upright posture and walking with support. Various combinations of treatment modalities were used to correct the deformities before fitting an orthosis and instituting gait training. Thirty-four children became outdoor walkers, 14 indoor walkers, and five remained nonwalkers. The most favorable patterns of crawling for restoration of upright posture were true quadruped progression (30 cases) and infant-like crawl (14 cases). Average follow-up was 17 months (range, 6 months to 5 years).

  12. Passive Dynamics Explain Quadrupedal Walking, Trotting, and Tölting

    PubMed Central

    Gan, Zhenyu; Wiestner, Thomas; Weishaupt, Michael A.; Waldern, Nina M.; David Remy, C.

    2016-01-01

    This paper presents a simplistic passive dynamic model that is able to create realistic quadrupedal walking, tölting, and trotting motions. The model is inspired by the bipedal spring loaded inverted pendulum (SLIP) model and consists of a distributed mass on four massless legs. Each of the legs is either in ground contact, retracted for swing, or is ready for touch down with a predefined angle of attack. Different gaits, that is, periodic motions differing in interlimb coordination patterns, are generated by choosing different initial model states. Contact patterns and ground reaction forces (GRFs) evolve solely from these initial conditions. By identifying appropriate system parameters in an optimization framework, the model is able to closely match experimentally recorded vertical GRFs of walking and trotting of Warmblood horses, and of tölting of Icelandic horses. In a detailed study, we investigated the sensitivity of the obtained solutions with respect to all states and parameters and quantified the improvement in fitting GRF by including an additional head and neck segment. Our work suggests that quadrupedal gaits are merely different dynamic modes of the same structural system and that we can interpret different gaits as different nonlinear elastic oscillations that propel an animal forward. PMID:27222653

  13. Mechanical analysis of infant carrying in hominoids

    NASA Astrophysics Data System (ADS)

    Amaral, Lia Q.

    2008-04-01

    In all higher nonhuman primates, species survival depends upon safe carrying of infants clinging to body hair of adults. In this work, measurements of mechanical properties of ape hair (gibbon, orangutan, and gorilla) are presented, focusing on constraints for safe infant carrying. Results of hair tensile properties are shown to be species-dependent. Analysis of the mechanics of the mounting position, typical of heavier infant carrying among African apes, shows that both clinging and friction are necessary to carry heavy infants. As a consequence, a required relationship between infant weight, hair-hair friction coefficient, and body angle exists. The hair-hair friction coefficient is measured using natural ape skin samples, and dependence on load and humidity is analyzed. Numerical evaluation of the equilibrium constraint is in agreement with the knuckle-walking quadruped position of African apes. Bipedality is clearly incompatible with the usual clinging and mounting pattern of infant carrying, requiring a revision of models of hominization in relation to the divergence between apes and hominins. These results suggest that safe carrying of heavy infants justify the emergence of biped form of locomotion. Ways to test this possibility are foreseen here.

  14. Mechanical analysis of infant carrying in hominoids

    PubMed Central

    2007-01-01

    In all higher nonhuman primates, species survival depends upon safe carrying of infants clinging to body hair of adults. In this work, measurements of mechanical properties of ape hair (gibbon, orangutan, and gorilla) are presented, focusing on constraints for safe infant carrying. Results of hair tensile properties are shown to be species-dependent. Analysis of the mechanics of the mounting position, typical of heavier infant carrying among African apes, shows that both clinging and friction are necessary to carry heavy infants. As a consequence, a required relationship between infant weight, hair–hair friction coefficient, and body angle exists. The hair–hair friction coefficient is measured using natural ape skin samples, and dependence on load and humidity is analyzed. Numerical evaluation of the equilibrium constraint is in agreement with the knuckle-walking quadruped position of African apes. Bipedality is clearly incompatible with the usual clinging and mounting pattern of infant carrying, requiring a revision of models of hominization in relation to the divergence between apes and hominins. These results suggest that safe carrying of heavy infants justify the emergence of biped form of locomotion. Ways to test this possibility are foreseen here. PMID:18030438

  15. Mechanical analysis of infant carrying in hominoids.

    PubMed

    Amaral, Lia Q

    2008-04-01

    In all higher nonhuman primates, species survival depends upon safe carrying of infants clinging to body hair of adults. In this work, measurements of mechanical properties of ape hair (gibbon, orangutan, and gorilla) are presented, focusing on constraints for safe infant carrying. Results of hair tensile properties are shown to be species-dependent. Analysis of the mechanics of the mounting position, typical of heavier infant carrying among African apes, shows that both clinging and friction are necessary to carry heavy infants. As a consequence, a required relationship between infant weight, hair-hair friction coefficient, and body angle exists. The hair-hair friction coefficient is measured using natural ape skin samples, and dependence on load and humidity is analyzed. Numerical evaluation of the equilibrium constraint is in agreement with the knuckle-walking quadruped position of African apes. Bipedality is clearly incompatible with the usual clinging and mounting pattern of infant carrying, requiring a revision of models of hominization in relation to the divergence between apes and hominins. These results suggest that safe carrying of heavy infants justify the emergence of biped form of locomotion. Ways to test this possibility are foreseen here.

  16. Intra-task variability of trunk coordination during a rate-controlled bipedal dance jump.

    PubMed

    Smith, Jo Armour; Siemienski, Adam; Popovich, John M; Kulig, Kornelia

    2012-01-01

    In this study, we investigated trunk coordination during rate-controlled bipedal vertical dance jumps. The aims of the study were to investigate the pattern of coordination and the magnitude of coordination variability within jump phases and relative to phase-defining events during the jump. Lumbar and thoracic kinematics were collected from seven dancers during a series of jumps at 95 beats per minute. The vector coding technique was used to quantify the pattern and variability of trunk coordination. Coordination was predominantly anti-phase during propulsion and landing. Mean coordination variability peaked just before the landing phase and at the transition from landing to propulsion phases, and was lowest during the propulsion phase just before toe-off. The results indicate that peaks in variability could be explained by task and phase-specific biomechanical demands.

  17. Emergence of bipedal locomotion through entrainment among the neuro-musculo-skeletal system and the environment

    NASA Astrophysics Data System (ADS)

    Taga, Gentaro

    1994-08-01

    A principle of locomotor control in an unpredictably changing environment is presented on the basis of neurophysiology and biomechanics from the perspective of nonlinear dynamics theory. Locomotor movements emerge as a limit cycle generated through global entrainment among the neuro-musculo-skeletal system and the environment. A computer simulation of a specific model of bipedal locomotion shows its ability to adapt to a changing environment in real-time. The stability of the limit cycle is maintained despite the presence of time delays in transporting and processing information between the neural rhythm generator and the musculo-skeletal system. With considerable time delays, however, the locomotor pattern becomes chaotic, which is compared with a gait of patients with neural deficits. A general framework for motor control is discussed toward the control of movements in an unpredictable environment.

  18. Walking boot assembly

    NASA Technical Reports Server (NTRS)

    Vykukal, H. C.; Chambers, A. B.; Stjohn, R. H. (Inventor)

    1977-01-01

    A walking boot assembly particularly suited for use with a positively pressurized spacesuit is presented. A bootie adapted to be secured to the foot of a wearer, an hermetically sealed boot for receiving the bootie having a walking sole, an inner sole, and an upper portion adapted to be attached to an ankle joint of a spacesuit, are also described.

  19. Lévy walks

    NASA Astrophysics Data System (ADS)

    Zaburdaev, V.; Denisov, S.; Klafter, J.

    2015-04-01

    Random walk is a fundamental concept with applications ranging from quantum physics to econometrics. Remarkably, one specific model of random walks appears to be ubiquitous across many fields as a tool to analyze transport phenomena in which the dispersal process is faster than dictated by Brownian diffusion. The Lévy-walk model combines two key features, the ability to generate anomalously fast diffusion and a finite velocity of a random walker. Recent results in optics, Hamiltonian chaos, cold atom dynamics, biophysics, and behavioral science demonstrate that this particular type of random walk provides significant insight into complex transport phenomena. This review gives a self-consistent introduction to Lévy walks, surveys their existing applications, including latest advances, and outlines further perspectives.

  20. Energy expenditure during walking in amputees after disarticulation of the hip. A microprocessor-controlled swing-phase control knee versus a mechanical-controlled stance-phase control knee.

    PubMed

    Chin, T; Sawamura, S; Shiba, R; Oyabu, H; Nagakura, Y; Nakagawa, A

    2005-01-01

    We have compared the energy expenditure during walking in three patients, aged between 51 and 55 years, with unilateral disarticulation of the hip when using the mechanical-controlled stance-phase control knee (Otto Bock 3R15) and the microprocessor-controlled pneumatic swing-phase control knee (Intelligent Prosthesis, IP). All had an endoskeletal hip disarticulation prosthesis with an Otto Bock 7E7 hip and a single-axis foot. The energy expenditure was measured when walking at speeds of 30, 50, and 70 m/min. Two patients showed a decreased uptake of oxygen (energy expenditure per unit time, ml/kg/min) of between 10.3% and 39.6% when using the IP compared with the Otto Bock 3R15 at the same speeds. One did not show any significant difference in the uptake of oxygen at 30 m/min, but at 50 and 70 m/min, a decrease in uptake of between 10.5% and 11.6% was found when using the IP. The use of the IP decreased the energy expenditure of walking in these patients.

  1. Epidemic spreading driven by biased random walks

    NASA Astrophysics Data System (ADS)

    Pu, Cunlai; Li, Siyuan; Yang, Jian

    2015-08-01

    Random walk is one of the basic mechanisms of many network-related applications. In this paper, we study the dynamics of epidemic spreading driven by biased random walks in complex networks. In our epidemic model, infected nodes send out infection packets by biased random walks to their neighbor nodes, and this causes the infection of susceptible nodes that receive the packets. Infected nodes recover from the infection at a constant rate λ, and will not be infected again after recovery. We obtain the largest instantaneous number of infected nodes and the largest number of ever-infected nodes respectively, by tuning the parameter α of the biased random walks. Simulation results on model and real-world networks show that spread of the epidemic becomes intense and widespread with increase of either delivery capacity of infected nodes, average node degree, or homogeneity of node degree distribution.

  2. Walking with coffee: why does it spill?

    PubMed

    Mayer, H C; Krechetnikov, R

    2012-04-01

    In our busy lives, almost all of us have to walk with a cup of coffee. While often we spill the drink, this familiar phenomenon has never been explored systematically. Here we report on the results of an experimental study of the conditions under which coffee spills for various walking speeds and initial liquid levels in the cup. These observations are analyzed from the dynamical systems and fluid mechanics viewpoints as well as with the help of a model developed here. Particularities of the common cup sizes, the coffee properties, and the biomechanics of walking proved to be responsible for the spilling phenomenon. The studied problem represents an example of the interplay between the complex motion of a cup, due to the biomechanics of a walking individual, and the low-viscosity-liquid dynamics in it.

  3. Walking with coffee: Why does it spill?

    NASA Astrophysics Data System (ADS)

    Mayer, H. C.; Krechetnikov, R.

    2012-04-01

    In our busy lives, almost all of us have to walk with a cup of coffee. While often we spill the drink, this familiar phenomenon has never been explored systematically. Here we report on the results of an experimental study of the conditions under which coffee spills for various walking speeds and initial liquid levels in the cup. These observations are analyzed from the dynamical systems and fluid mechanics viewpoints as well as with the help of a model developed here. Particularities of the common cup sizes, the coffee properties, and the biomechanics of walking proved to be responsible for the spilling phenomenon. The studied problem represents an example of the interplay between the complex motion of a cup, due to the biomechanics of a walking individual, and the low-viscosity-liquid dynamics in it.

  4. Random walks in the history of life

    PubMed Central

    Cornette, James L.; Lieberman, Bruce S.

    2004-01-01

    The simplest null hypothesis for evolutionary time series is that the observed data follow a random walk. We examined whether aspects of Sepkoski's compilation of marine generic diversity depart from a random walk by using statistical tests from econometrics. Throughout most of the Phanerozoic, the random-walk null hypothesis is not rejected for marine diversity, accumulated origination or accumulated extinction, suggesting that either these variables were correlated with environmental variables that follow a random walk or so many mechanisms were affecting these variables, in different ways, that the resultant trends appear random. The only deviation from this pattern involves rejection of the null hypothesis for roughly the last 75 million years for the diversity and accumulated origination time series. PMID:14684835

  5. Effect of expertise in shooting and Taekwondo on bipedal and unipedal postural control isolated or concurrent with a reaction-time task.

    PubMed

    Negahban, Hossein; Aryan, Najmolhoda; Mazaheri, Masood; Norasteh, Ali Asghar; Sanjari, Mohammad Ali

    2013-06-01

    It was hypothesized that training in 'static balance' or 'dynamic balance' sports has differential effects on postural control and its attention demands during quiet standing. In order to test this hypothesis, two groups of female athletes practicing shooting, as a 'static balance' sport, and Taekwondo, as a 'dynamic balance' sport, and a control group of non-physically active females voluntarily participated in this study. Postural control was assessed during bipedal and unipedal stance with and without performing a Go/No-go reaction time task. Visual and/or support surface conditions were manipulated in bipedal and unipedal stances in order to modify postural difficulty. Mixed model analysis of variance was used to determine the effects of dual tasking on postural and cognitive performance. Similar pattern of results were found in bipedal and unipedal stances, with Taekwondo practitioners displaying larger sway, shooters displaying lower sway and non-athletes displaying sway characteristics intermediate to Taekwondo and shooting athletes. Larger effect was found in bipedal stance. Single to dual-task comparison of postural control showed no significant effect of mental task on sway velocity in shooters, indicating less cognitive effort invested in balance control during bipedal stance. We suggest that expertise in shooting has a more pronounced effect on decreased sway in static balance conditions. Furthermore, shooters invest less attention in postures that are more specific to their training, i.e. bipedal stance.

  6. Quantum Walk Schemes for Universal Quantum Computation

    NASA Astrophysics Data System (ADS)

    Underwood, Michael S.

    Random walks are a powerful tool for the efficient implementation of algorithms in classical computation. Their quantum-mechanical analogues, called quantum walks, hold similar promise. Quantum walks provide a model of quantum computation that has recently been shown to be equivalent in power to the standard circuit model. As in the classical case, quantum walks take place on graphs and can undergo discrete or continuous evolution, though quantum evolution is unitary and therefore deterministic until a measurement is made. This thesis considers the usefulness of continuous-time quantum walks to quantum computation from the perspectives of both their fundamental power under various formulations, and their applicability in practical experiments. In one extant scheme, logical gates are effected by scattering processes. The results of an exhaustive search for single-qubit operations in this model are presented. It is shown that the number of distinct operations increases exponentially with the number of vertices in the scattering graph. A catalogue of all graphs on up to nine vertices that implement single-qubit unitaries at a specific set of momenta is included in an appendix. I develop a novel scheme for universal quantum computation called the discontinuous quantum walk, in which a continuous-time quantum walker takes discrete steps of evolution via perfect quantum state transfer through small 'widget' graphs. The discontinuous quantum-walk scheme requires an exponentially sized graph, as do prior discrete and continuous schemes. To eliminate the inefficient vertex resource requirement, a computation scheme based on multiple discontinuous walkers is presented. In this model, n interacting walkers inhabiting a graph with 2n vertices can implement an arbitrary quantum computation on an input of length n, an exponential savings over previous universal quantum walk schemes. This is the first quantum walk scheme that allows for the application of quantum error correction

  7. Walking with coffee: when and why coffee spills

    NASA Astrophysics Data System (ADS)

    Mayer, Hans C.; Krechetnikov, Rouslan

    2011-11-01

    In our busy lives, almost all of us have to walk with a cup of coffee. Needless to say, under certain conditions we spill that precious liquid. This is a common example of the interplay between the mechanics of the complex motion of a walking individual and the fluid dynamics of a low viscosity liquid contained in a cup. We report on the results of an experimental investigation undertaken to explore the particular conditions under which coffee spills. Frame-by-frame analysis of recorded movies helps to elucidate the trajectory of the cup for various walking speeds and initial liquid levels. These kinematics, including both regular and irregular motions, are connected to instances during walking that result in spilled liquid. The coupling between mechanical aspects of walking and the fluid motion are analyzed based on which we determine a basic operational space with which one can confidently walk with cup in hand.

  8. Crossover from random walk to self-avoiding walk

    NASA Astrophysics Data System (ADS)

    Rieger, Jens

    1988-11-01

    A one-dimensional n-step random walk on openZ1 which must not visit a vertex more than k times is studied via Monte Carlo methods. The dependences of the mean-square end-to-end distance of the walk and of the fraction of trapped walks on λ=(k-1)/n will be given for the range from λ=0 (self-avoiding walk) to λ=1 (unrestricted random walk). From the results it is conjectured that in the limit n-->∞ the walk obeys simple random walk statistics with respect to its static properties for all λ>0.

  9. Hip proprioceptive feedback influences the control of mediolateral stability during human walking.

    PubMed

    Roden-Reynolds, Devin C; Walker, Megan H; Wasserman, Camille R; Dean, Jesse C

    2015-10-01

    Active control of the mediolateral location of the feet is an important component of a stable bipedal walking pattern, although the roles of sensory feedback in this process are unclear. In the present experiments, we tested whether hip abductor proprioception influenced the control of mediolateral gait motion. Participants performed a series of quiet standing and treadmill walking trials. In some trials, 80-Hz vibration was applied intermittently over the right gluteus medius (GM) to evoke artificial proprioceptive feedback. During walking, the GM was vibrated during either right leg stance (to elicit a perception that the pelvis was closer mediolaterally to the stance foot) or swing (to elicit a perception that the swing leg was more adducted). Vibration during quiet standing evoked leftward sway in most participants (13 of 16), as expected from its predicted perceptual effects. Across the 13 participants sensitive to vibration, stance phase vibration caused the contralateral leg to be placed significantly closer to the midline (by ∼2 mm) at the end of the ongoing step. In contrast, swing phase vibration caused the vibrated leg to be placed significantly farther mediolaterally from the midline (by ∼2 mm), whereas the pelvis was held closer to the stance foot (by ∼1 mm). The estimated mediolateral margin of stability was thus decreased by stance phase vibration but increased by swing phase vibration. Although the observed effects of vibration were small, they were consistent with humans monitoring hip proprioceptive feedback while walking to maintain stable mediolateral gait motion.

  10. Stand and be counted: the neo-Darwinian synthesis and the ascension of bipedalism as an essential hominid synapomorphy.

    PubMed

    Gundling, Tom

    2012-01-01

    Since its inception in the early- to middle-nineteenth century, human origins studies have been informed by a variety of disciplines beyond physical anthropology and archaeology, most notably geology and biology. This study examines dramatic changes within human origins research that occurred in the mid-twentieth century largely as a consequence of the dissemination of the neo-Darwinian synthesis from biology (sensu lato) into the new" physical anthropology. This paradigm shift resulted in foregrounding evolution as a process affecting variable populations over exercises in typological classification. It led to the acknowledgement of bipedalism as the earliest hominidi adaptation, preceding other important changes in morphology (e.g., increased encephalization quotient) and behavior (e.g., stone tool manufacture and use). An important corollary of the recognition of a bipedal ape phase in our ancestry was the decoupling of the grade category "human" from the phylogenetic term "hominid".

  11. Integrated photonic quantum walks

    NASA Astrophysics Data System (ADS)

    Gräfe, Markus; Heilmann, René; Lebugle, Maxime; Guzman-Silva, Diego; Perez-Leija, Armando; Szameit, Alexander

    2016-10-01

    Over the last 20 years quantum walks (QWs) have gained increasing interest in the field of quantum information science and processing. In contrast to classical walkers, quantum objects exhibit intrinsic properties like non-locality and non-classical many-particle correlations, which renders QWs a versatile tool for quantum simulation and computation as well as for a deeper understanding of genuine quantum mechanics. Since they are highly controllable and hardly interact with their environment, photons seem to be ideally suited quantum walkers. In order to study and exploit photonic QWs, lattice structures that allow low loss coherent evolution of quantum states are demanded. Such requirements are perfectly met by integrated optical waveguide devices that additionally allow a substantial miniaturization of experimental settings. Moreover, by utilizing the femtosecond direct laser writing technique three-dimensional waveguide structures are capable of analyzing QWs also on higher dimensional geometries. In this context, advances and findings of photonic QWs are discussed in this review. Various concepts and experimental results are presented covering, such as different quantum transport regimes, the Boson sampling problem, and the discrete fractional quantum Fourier transform.

  12. Walking On Air

    NASA Video Gallery

    This video features a series of time lapse sequences photographed by the Expedition 30 crew aboard the International Space Station. Set to the song "€œWalking in the Air,"€ by Howard Blake, the v...

  13. Gait or Walking Problems

    MedlinePlus

    ... a device is justified,” says Dr. Aisen. Gait Research & Technology At present, people with walking limitations related to ... independent through physical therapy, exercise, medication, and assistive ... is optimistic that research being done in other conditions, such as spinal ...

  14. Quantum walk and potential application

    NASA Astrophysics Data System (ADS)

    Wang, J. B.; Douglas, B. L.

    2010-06-01

    Quantum walk represents a generalised version of the well-known classical random walk. Regardless of their apparent connection, the dynamics of quantum walk is often non-intuitive and far deviate from its classical counterpart. However, despite such potentially superior efficiency in quantum walks, it has yet to be applied to problems of practical importance. In this paper, we will give a brief introduction to quantum walks and discuss potential applications.

  15. Developing Point-of-Decision Prompts to Encourage Airport Walking: The Walk to Fly Study

    PubMed Central

    Frederick, Ginny M.; Paul, Prabasaj; Watson, Kathleen Bachtel; Dorn, Joan M.; Fulton, Janet

    2017-01-01

    Background Point-of-decision prompts may be appropriate to promote walking, instead of using a mechanized mode of transport, such as a train, in airports. To our knowledge, no current studies describe the development of messages for prompts in this setting. Methods In-person interviews were conducted with 150 randomly selected airport travelers who rode the train to their departure gate. Travelers reported various reasons for riding the train to their gate. They were asked about messages that would encourage them to walk. Exploratory factor analysis was conducted for reasons for riding the train. Confirmatory factor analysis was conducted for messages to encourage walking to the departure gate. Results Travelers reported not knowing walking was an option (23.8%), seeing others riding the train (14.4%), and being afraid of getting lost (9.2%) as reasons for riding the train. Many indicated that directional signs and prompts promoting walking as exercise would encourage them to walk instead of riding the train. Conclusions Some reasons for riding the train in an airport may be modifiable by installing point-of-decision prompts. Providing directional signs to travelers may prompt them to walk to their gate instead of riding the train. Similar prompts may also be considered in other community settings. PMID:26445371

  16. Biomechanical modeling and sensitivity analysis of bipedal running ability. II. Extinct taxa.

    PubMed

    Hutchinson, John R

    2004-10-01

    Using an inverse dynamics biomechanical analysis that was previously validated for extant bipeds, I calculated the minimum amount of actively contracting hindlimb extensor muscle that would have been needed for rapid bipedal running in several extinct dinosaur taxa. I analyzed models of nine theropod dinosaurs (including birds) covering over five orders of magnitude in size. My results uphold previous findings that large theropods such as Tyrannosaurus could not run very quickly, whereas smaller theropods (including some extinct birds) were adept runners. Furthermore, my results strengthen the contention that many nonavian theropods, especially larger individuals, used fairly upright limb orientations, which would have reduced required muscular force, and hence muscle mass. Additional sensitivity analysis of muscle fascicle lengths, moment arms, and limb orientation supports these conclusions and points out directions for future research on the musculoskeletal limits on running ability. Although ankle extensor muscle support is shown to have been important for all taxa, the ability of hip extensor muscles to support the body appears to be a crucial limit for running capacity in larger taxa. I discuss what speeds were possible for different theropod dinosaurs, and how running ability evolved in an inverse relationship to body size in archosaurs.

  17. D.U.C.K. Walking.

    ERIC Educational Resources Information Center

    Steller, Jenifer J.

    This manual presents a schoolwide walking program that includes aerobic fitness information, curriculum integration, and walking tours. "Discover and Understand Carolina Kids by Walking" is D.U.C.K. Walking. An aerobic walking activity, D.U.C.K. Walking has two major goals: (1) to promote regular walking as a way to exercise at any age;…

  18. Staggered quantum walks with Hamiltonians

    NASA Astrophysics Data System (ADS)

    Portugal, R.; de Oliveira, M. C.; Moqadam, J. K.

    2017-01-01

    Quantum walks are recognizably useful for the development of new quantum algorithms, as well as for the investigation of several physical phenomena in quantum systems. Actual implementations of quantum walks face technological difficulties similar to the ones for quantum computers, though. Therefore, there is a strong motivation to develop new quantum-walk models which might be easier to implement. In this work we present an extension of the staggered quantum walk model that is fitted for physical implementations in terms of time-independent Hamiltonians. We demonstrate that this class of quantum walk includes the entire class of staggered quantum walk model, Szegedy's model, and an important subset of the coined model.

  19. Walks on SPR neighborhoods.

    PubMed

    Caceres, Alan Joseph J; Castillo, Juan; Lee, Jinnie; St John, Katherine

    2013-01-01

    A nearest-neighbor-interchange (NNI)-walk is a sequence of unrooted phylogenetic trees, T1, T2, . . . , T(k) where each consecutive pair of trees differs by a single NNI move. We give tight bounds on the length of the shortest NNI-walks that visit all trees in a subtree-prune-and-regraft (SPR) neighborhood of a given tree. For any unrooted, binary tree, T, on n leaves, the shortest walk takes Θ(n²) additional steps more than the number of trees in the SPR neighborhood. This answers Bryant’s Second Combinatorial Challenge from the Phylogenetics Challenges List, the Isaac Newton Institute, 2011, and the Penny Ante Problem List, 2009.

  20. 10 CFR 431.302 - Definitions concerning walk-in coolers and walk-in freezers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Definitions concerning walk-in coolers and walk-in... FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Walk-in Coolers and Walk-in Freezers § 431.302 Definitions concerning walk-in coolers and walk-in freezers. Walk-in cooler and walk-in freezer mean...

  1. Analysis of the multi-segmental postural movement strategies utilized in bipedal, tandem and one-leg stance as quantified by a principal component decomposition of marker coordinates.

    PubMed

    Federolf, Peter; Roos, Lilian; Nigg, Benno M

    2013-10-18

    Postural control research describes ankle-, hip-, or multi-joint strategies as mechanisms to control upright posture. The objectives of this study were, first, development of an analysis technique facilitating a direct comparison of the structure of such multi-segment postural movement patterns between subjects; second, comparison of the complexity of postural movements between three stances of different difficulty levels; and third, investigation of between-subject differences in the structure of postural movements and of factors that may contribute to these differences. Twenty-nine subjects completed 100-s trials in bipedal (BP), tandem (TA) and one-leg stance (OL). Their postural movements were recorded using 28 reflective markers distributed over all body segments. These marker coordinates were interpreted as 84-dimensional posture vectors, normalized, concatenated from all subjects, and submitted to a principal component analysis (PCA) to extract principal movement components (PMs). The PMs were characterized by determining their relative contribution to the subject's entire postural movements and the smoothness of their time series. Four, eight, and nine PM were needed to represent 90% of the total variance in BP, TA, and OL, respectively, suggesting that increased task difficulty is associated with increased complexity of the movement structure. Different subjects utilized different combinations of PMs to control their posture. In several PMs, the relative contribution of a PM to a subject's overall postural movements correlated with the smoothness of the PM's time series, suggesting that utilization of specific postural PMs may depend on the subject's ability to control the PM's temporal evolution.

  2. Shared muscle synergies in human walking and cycling.

    PubMed

    Barroso, Filipe O; Torricelli, Diego; Moreno, Juan C; Taylor, Julian; Gomez-Soriano, Julio; Bravo-Esteban, Elisabeth; Piazza, Stefano; Santos, Cristina; Pons, José L

    2014-10-15

    The motor system may rely on a modular organization (muscle synergies activated in time) to execute different tasks. We investigated the common control features of walking and cycling in healthy humans from the perspective of muscle synergies. Three hypotheses were tested: 1) muscle synergies extracted from walking trials are similar to those extracted during cycling; 2) muscle synergies extracted from one of these motor tasks can be used to mathematically reconstruct the electromyographic (EMG) patterns of the other task; 3) muscle synergies of cycling can result from merging synergies of walking. A secondary objective was to identify the speed (and cadence) at which higher similarities emerged. EMG activity from eight muscles of the dominant leg was recorded in eight healthy subjects during walking and cycling at four matched cadences. A factorization technique [nonnegative matrix factorization (NNMF)] was applied to extract individual muscle synergy vectors and the respective activation coefficients behind the global muscular activity of each condition. Results corroborated hypotheses 2 and 3, showing that 1) four synergies from walking and cycling can successfully explain most of the EMG variability of cycling and walking, respectively, and 2) two of four synergies from walking appear to merge together to reconstruct one individual synergy of cycling, with best reconstruction values found for higher speeds. Direct comparison of the muscle synergy vectors of walking and the muscle synergy vectors of cycling (hypothesis 1) produced moderated values of similarity. This study provides supporting evidence for the hypothesis that cycling and walking share common neuromuscular mechanisms.

  3. Bicycling and Walking are Associated with Different Cortical Oscillatory Dynamics

    PubMed Central

    Storzer, Lena; Butz, Markus; Hirschmann, Jan; Abbasi, Omid; Gratkowski, Maciej; Saupe, Dietmar; Schnitzler, Alfons; Dalal, Sarang S.

    2016-01-01

    Although bicycling and walking involve similar complex coordinated movements, surprisingly Parkinson’s patients with freezing of gait typically remain able to bicycle despite severe difficulties in walking. This observation suggests functional differences in the motor networks subserving bicycling and walking. However, a direct comparison of brain activity related to bicycling and walking has never been performed, neither in healthy participants nor in patients. Such a comparison could potentially help elucidating the cortical involvement in motor control and the mechanisms through which bicycling ability may be preserved in patients with freezing of gait. The aim of this study was to contrast the cortical oscillatory dynamics involved in bicycling and walking in healthy participants. To this end, EEG and EMG data of 14 healthy participants were analyzed, who cycled on a stationary bicycle at a slow cadence of 40 revolutions per minute (rpm) and walked at 40 strides per minute (spm), respectively. Relative to walking, bicycling was associated with a stronger power decrease in the high beta band (23–35 Hz) during movement initiation and execution, followed by a stronger beta power increase after movement termination. Walking, on the other hand, was characterized by a stronger and persisting alpha power (8–12 Hz) decrease. Both bicycling and walking exhibited movement cycle-dependent power modulation in the 24–40 Hz range that was correlated with EMG activity. This modulation was significantly stronger in walking. The present findings reveal differential cortical oscillatory dynamics in motor control for two types of complex coordinated motor behavior, i.e., bicycling and walking. Bicycling was associated with a stronger sustained cortical activation as indicated by the stronger high beta power decrease during movement execution and less cortical motor control within the movement cycle. We speculate this to be due to the more continuous nature of bicycling

  4. Mall Walking Program Environments, Features, and Participants: A Scoping Review

    PubMed Central

    Belza, Basia; Allen, Peg; Brolliar, Sarah; Brown, David R.; Cormier, Marc L.; Janicek, Sarah; Jones, Dina L.; King, Diane K.; Marquez, David X.; Rosenberg, Dori E.

    2015-01-01

    Introduction Walking is a preferred and recommended physical activity for middle-aged and older adults, but many barriers exist, including concerns about safety (ie, personal security), falling, and inclement weather. Mall walking programs may overcome these barriers. The purpose of this study was to summarize the evidence on the health-related value of mall walking and mall walking programs. Methods We conducted a scoping review of the literature to determine the features, environments, and benefits of mall walking programs using the RE-AIM framework (reach, effectiveness, adoption, implementation, and maintenance). The inclusion criteria were articles that involved adults aged 45 years or older who walked in indoor or outdoor shopping malls. Exclusion criteria were articles that used malls as laboratory settings or focused on the mechanics of walking. We included published research studies, dissertations, theses, conference abstracts, syntheses, nonresearch articles, theoretical papers, editorials, reports, policy briefs, standards and guidelines, and nonresearch conference abstracts and proposals. Websites and articles written in a language other than English were excluded. Results We located 254 articles on mall walking; 32 articles met our inclusion criteria. We found that malls provided safe, accessible, and affordable exercise environments for middle-aged and older adults. Programmatic features such as program leaders, blood pressure checks, and warm-up exercises facilitated participation. Individual benefits of mall walking programs included improvements in physical, social, and emotional well-being. Limited transportation to the mall was a barrier to participation. Conclusion We found the potential for mall walking programs to be implemented in various communities as a health promotion measure. However, the research on mall walking programs is limited and has weak study designs. More rigorous research is needed to define best practices for mall walking

  5. Walking Shoes: Features and Fit

    MedlinePlus

    Healthy Lifestyle Fitness Walking shoes have some features other shoes don't. Here's what to look for and ... 04, 2017 Original article: http://www.mayoclinic.org/healthy-lifestyle/fitness/in-depth/walking/art-20043897 . Mayo Clinic ...

  6. Predicting metabolic rate across walking speed: One fit for all body sizes?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We formulated a "one-size-fits-all" model that predicts the energy requirements of level human walking from height, weight, and walking speed. Our three-component model theorizes that the energy expended per kilogram per stride is independent of stature at mechanically equivalent walking speeds. We ...

  7. Walking with a Slower Friend

    ERIC Educational Resources Information Center

    Bailey, Herb; Kalman, Dan

    2011-01-01

    Fay and Sam go for a walk. Sam walks along the left side of the street while Fay, who walks faster, starts with Sam but walks to a point on the right side of the street and then returns to meet Sam to complete one segment of their journey. We determine Fay's optimal path minimizing segment length, and thus maximizing the number of times they meet…

  8. How to walk a conveyor

    SciTech Connect

    2007-06-15

    The article gives a check list of what one should know before walking a belt conveyor, and what to do during the walk. It then presents a list of what to look at on a walk along the conveyor system (excluding related equipment which could be inspected or maintained during the walk). It gives advice on when to stop the conveyor, on testing the emergency stop system, on recording problems and on acting on things noted. 1 tab.

  9. Take a Planet Walk

    ERIC Educational Resources Information Center

    Schuster, Dwight

    2008-01-01

    Physical models in the classroom "cannot be expected to represent the full-scale phenomenon with complete accuracy, not even in the limited set of characteristics being studied" (AAAS 1990). Therefore, by modifying a popular classroom activity called a "planet walk," teachers can explore upper elementary students' current understandings; create an…

  10. Walking Advisement: Program Description.

    ERIC Educational Resources Information Center

    Byram Hills School District, Armonk, NY.

    The Walking Advisement program at Crittenden Middle School in Armonk, New York was started during the 1984-1985 school year. It was based on the work of Alfred Arth, a middle school specialist at the University of Wyoming. Essentially, the program attempts to expand the guidance function of the school by bringing faculty and students together to…

  11. A Walk Back.

    ERIC Educational Resources Information Center

    Greenslade, Cleo B.

    1988-01-01

    Discusses a walking trip through Elfers, Florida, which gives intermediate level students a basis for a real understanding of the state's history, climate, economy, and natural resources. Describes how students prepare for the outing by examining maps and interviewing their parents and grandparents about life when they were in school. (GEA)

  12. Walking Out Graphs

    ERIC Educational Resources Information Center

    Shen, Ji

    2009-01-01

    In the Walking Out Graphs Lesson described here, students experience several types of representations used to describe motion, including words, sentences, equations, graphs, data tables, and actions. The most important theme of this lesson is that students have to understand the consistency among these representations and form the habit of…

  13. Deterministic Walks with Choice

    SciTech Connect

    Beeler, Katy E.; Berenhaut, Kenneth S.; Cooper, Joshua N.; Hunter, Meagan N.; Barr, Peter S.

    2014-01-10

    This paper studies deterministic movement over toroidal grids, integrating local information, bounded memory and choice at individual nodes. The research is motivated by recent work on deterministic random walks, and applications in multi-agent systems. Several results regarding passing tokens through toroidal grids are discussed, as well as some open questions.

  14. Walking in My Shoes

    ERIC Educational Resources Information Center

    Salia, Hannah

    2010-01-01

    The Walking in My Shoes curriculum at St. Thomas School in Medina, Washington, has been developed to deepen students' understanding of their own heritage and the cultural similarities and differences among their global peers. Exploring the rich diversity of the world's cultural heritage and the interactions of global migrations throughout history,…

  15. A Walk through Time.

    ERIC Educational Resources Information Center

    Renfroe, Mark; Letendre, Wanda

    1996-01-01

    Describes a seventh-grade class project where students constructed a "time tunnel" (a walk-through display with models and exhibits illustrating various themes and eras). Beginning modestly, the tunnel grew over seven years to include 11 different display scenes. Discusses the construction of the project and benefits to the school. (MJP)

  16. Autonomous exoskeleton reduces metabolic cost of walking.

    PubMed

    Mooney, Luke M; Rouse, Elliott J; Herr, Hugh M

    2014-01-01

    We developed an autonomous powered leg exoskeleton capable of providing large amounts of positive mechanical power to the wearer during powered plantarflexion phase of walking. The autonomous exoskeleton consisted of a winch actuator fasted to the shin which pulled on fiberglass struts attached to a boot. The fiberglass struts formed a rigid extension of the foot when the proximal end of the strut was pulled in forward by the winch actuator. This lightweight, geometric transmission allowed the electric winch actuator to efficiently produce biological levels of power at the ankle joint. The exoskeleton was powered and controlled by lithium polymer batteries and motor controller worn around the waist. Preliminary testing on two subjects walking at 1.4 m/s resulted in the exoskeleton reducing the metabolic cost of walking by 6-11% as compared to not wearing the device. The exoskeleton provided a peak mechanical power of over 180 W at each ankle (mean standard ± deviation) and an average positive mechanical power of 27 ± 1 W total to both ankles, while electrically using 75-89 W of electricity. The batteries (800 g) used in this experiment are estimated to be capable of providing this level of assistance for up to 7 km of walking.

  17. Comparing normal walking and compensated walking: their stability and perturbation resistance. A simulation study.

    PubMed

    Yu, W; Ikemoto, Y; Acharya, R; Unoue, J

    2010-01-01

    People usually develop different kinds of compensated gait in response to local function deficits, such as muscle weakness, spasticity in specific muscle groups, or joint stiffness, in order to overcome the falling risk factors. Compensated walking has been analysed empirically in the impaired gait analysis area. However, the compensation could be identified spatially and temporally. The stability and perturbation resistance of compensated walking have not been analysed quantitatively. In this research, a biomimetic human walking simulator was employed to model one individual paraplegic subject with plantarflexor spasticity. The pes equinus was expressed by biasing the outputs of plantarflexor neurons corresponding to the spastic muscles. Then, the compensatory mechanism was explored by adjusting the outputs of the other muscles. It was shown that this approach can be used for quantitative analysis of the spastic gait and compensated walking. Thus, this research can improve the understanding of the behaviour of compensated walking, bringing insights not only for building useful walking assist systems with high safety but also for designing effective rehabilitation interventions.

  18. Spin-1 quantum walks

    NASA Astrophysics Data System (ADS)

    Morita, Daichi; Kubo, Toshihiro; Tokura, Yasuhiro; Yamashita, Makoto

    2016-06-01

    We study the quantum walks of two interacting spin-1 bosons. We derive an exact solution for the time-dependent wave function, which describes the two-particle dynamics governed by the one-dimensional spin-1 Bose-Hubbard model. We show that propagation dynamics in real space and mixing dynamics in spin space are correlated via the spin-dependent interaction in this system. The spin-mixing dynamics has two characteristic frequencies in the limit of large spin-dependent interactions. One of the characteristic frequencies is determined by the energy difference between two bound states, and the other frequency relates to the cotunneling process of a pair of spin-1 bosons. Furthermore, we numerically analyze the growth of the spin correlations in quantum walks. We find that long-range spin correlations emerge showing a clear dependence on the sign of the spin-dependent interaction and the initial state.

  19. On extracting design principles from biology: II. Case study-the effect of knee direction on bipedal robot running efficiency.

    PubMed

    Haberland, M; Kim, S

    2015-02-02

    Comparing the leg of an ostrich to that of a human suggests an important question to legged robot designers: should a robot's leg joint bend in the direction of running ('forwards') or opposite ('backwards')? Biological studies cannot answer this question for engineers due to significant differences between the biological and engineering domains. Instead, we investigated the inherent effect of joint bending direction on bipedal robot running efficiency by comparing energetically optimal gaits of a wide variety of robot designs sampled at random from a design space. We found that the great majority of robot designs have several locally optimal gaits with the knee bending backwards that are more efficient than the most efficient gait with the knee bending forwards. The most efficient backwards gaits do not exhibit lower touchdown losses than the most efficient forward gaits; rather, the improved efficiency of backwards gaits stems from lower torque and reduced motion at the hip. The reduced hip use of backwards gaits is enabled by the ability of the backwards knee, acting alone, to (1) propel the robot upwards and forwards simultaneously and (2) lift and protract the foot simultaneously. In the absence of other information, designers interested in building efficient bipedal robots with two-segment legs driven by electric motors should design the knee to bend backwards rather than forwards. Compared to common practices for choosing robot knee direction, application of this principle would have a strong tendency to improve robot efficiency and save design resources.

  20. Tightrope walking bubbles

    NASA Astrophysics Data System (ADS)

    de Maleprade, Helene; Clanet, Christophe; Quere, David

    2016-11-01

    A fiber can hold a certain amount of liquid, which allows us to capture flying drops and control their motion. Immersed in water, a fiber can efficiently capture air bubbles only if it is hydrophobic. Using a superhydrophobic coating on an inclined wire, we experimentally control the rising velocity of air bubbles walking along the tightrope. We discuss the nature of the friction around the walker, and the resulting speed of bubbles.

  1. Treadmill walking of the pneumatic biped Lucy: Walking at different speeds and step-lengths

    NASA Astrophysics Data System (ADS)

    Vanderborght, B.; Verrelst, B.; Van Ham, R.; Van Damme, M.; Versluys, R.; Lefeber, D.

    2008-07-01

    Actuators with adaptable compliance are gaining interest in the field of legged robotics due to their capability to store motion energy and to exploit the natural dynamics of the system to reduce energy consumption while walking and running. To perform research on compliant actuators we have built the planar biped Lucy. The robot has six actuated joints, the ankle, knee and hip of both legs with each joint powered by two pleated pneumatic artificial muscles in an antagonistic setup. This makes it possible to control both the torque and the stiffness of the joint. Such compliant actuators are used in passive walkers to overcome friction when walking over level ground and to improve stability. Typically, this kind of robots is only designed to walk with a constant walking speed and step-length, determined by the mechanical design of the mechanism and the properties of the ground. In this paper, we show that by an appropriate control, the robot Lucy is able to walk at different speeds and step-lengths and that adding and releasing weights does not affect the stability of the robot. To perform these experiments, an automated treadmill was built

  2. Fractional random walk lattice dynamics

    NASA Astrophysics Data System (ADS)

    Michelitsch, T. M.; Collet, B. A.; Riascos, A. P.; Nowakowski, A. F.; Nicolleau, F. C. G. A.

    2017-02-01

    We analyze time-discrete and time-continuous ‘fractional’ random walks on undirected regular networks with special focus on cubic periodic lattices in n  =  1, 2, 3,.. dimensions. The fractional random walk dynamics is governed by a master equation involving fractional powers of Laplacian matrices {{L}\\fracα{2}}} where α =2 recovers the normal walk. First we demonstrate that the interval 0<α ≤slant 2 is admissible for the fractional random walk. We derive analytical expressions for the transition matrix of the fractional random walk and closely related the average return probabilities. We further obtain the fundamental matrix {{Z}(α )} , and the mean relaxation time (Kemeny constant) for the fractional random walk. The representation for the fundamental matrix {{Z}(α )} relates fractional random walks with normal random walks. We show that the matrix elements of the transition matrix of the fractional random walk exihibit for large cubic n-dimensional lattices a power law decay of an n-dimensional infinite space Riesz fractional derivative type indicating emergence of Lévy flights. As a further footprint of Lévy flights in the n-dimensional space, the transition matrix and return probabilities of the fractional random walk are dominated for large times t by slowly relaxing long-wave modes leading to a characteristic {{t}-\\frac{n{α}} -decay. It can be concluded that, due to long range moves of fractional random walk, a small world property is emerging increasing the efficiency to explore the lattice when instead of a normal random walk a fractional random walk is chosen.

  3. Comparative Anatomy of the Hind Limb Vessels of the Bearded Capuchins (Sapajus libidinosus) with Apes, Baboons, and Cebus capucinus: With Comments on the Vessels' Role in Bipedalism

    PubMed Central

    Aversi-Ferreira, Roqueline A. G. M. F.; de Abreu, Tainá; Pfrimer, Gabriel A.; Silva, Sylla F.; Ziermann, Janine M.; Carneiro-e-Silva, Frederico O.; Tomaz, Carlos; Tavares, Maria Clotilde H.; Maior, Rafael S.; Aversi-Ferreira, Tales A.

    2013-01-01

    Capuchin monkeys are known to exhibit sporadic bipedalism while performing specific tasks, such as cracking nuts. The bipedal posture and locomotion cause an increase in the metabolic cost and therefore increased blood supply to lower limbs is necessary. Here, we present a detailed anatomical description of the capuchin arteries and veins of the pelvic limb of Sapajus libidinosus in comparison with other primates. The arterial pattern of the bearded capuchin hind limb is more similar to other quadrupedal Cebus species. Similarities were also found to the pattern observed in the quadruped Papio, which is probably due to a comparable pelvis and the presence of the tail. Sapajus' traits show fewer similarities when compared to great apes and modern humans. Moreover, the bearded capuchin showed unique patterns for the femoral and the short saphenous veins. Although this species switches easily from quadrupedal to bipedal postures, our results indicate that the bearded capuchin has no specific or differential features that support extended bipedal posture and locomotion. Thus, the explanation for the behavioral differences found among capuchin genera probably includes other aspects of their physiology. PMID:24396829

  4. New wearable walking-type continuous passive motion device for postsurgery walking rehabilitation.

    PubMed

    Zhu, Yong; Nakamura, Masahiro; Horiuchi, Tadahiro; Kohno, Hideki; Takahashi, Rei; Terada, Hidetsugu; Haro, Hirotaka

    2013-07-01

    While total knee arthroplasty is useful for treating osteoarthritis of the knee, the success of this treatment depends on effective rehabilitation. The goal of this study was to develop an assistive device for post-total knee arthroplasty patients for walking rehabilitation and for shortening the hospitalization period. We developed a brace electronic assist system termed the knee assistive instrument for walking rehabilitation (KAI-R) to illustrate the need for training during postoperative rehabilitation. Sixteen osteoarthritis patients (1 male and 15 females; average age 68.9 years) who underwent total knee arthroplasty were analyzed before operation and 2-4 weeks after operation, and 25 healthy individuals (14 males and 11 females; average age 26.2 years) formed the control group. Based on the pre- and postoperative data on peak knee flexion angle, foot height, and walking velocity, we developed the KAI-R, which consists of an assistive mechanism for the knee joint, a hip joint support system, and a foot pressure sensor system and is driven by a CPU board that generates the walking pattern. We then tested the walking gait in seven healthy volunteers with and without KAI-R assistance. KAI-R increased the peak flexion angle of the knee and foot height in all seven volunteers; their range of motion of the knee joint was increased. However, KAI-R also decreased the walking velocity of subjects, which was explained by reaction delay and slightly compromised physical balance, which was caused by wearing the KAI-R. KAI-R is useful for gait improvement. In future studies, KAI-R will be investigated in a clinical trial for its ability for walking rehabilitation in post-total knee arthroplasty patients.

  5. 10 CFR 431.302 - Definitions concerning walk-in coolers and walk-in freezers.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... cooler or walk-in freezer that are not part of its refrigeration system. K-factor means the thermal... not limited to, refrigeration, doors, lights, windows, or walls; or (2) Manufactures or assembles the... Fahrenheit using a refrigeration system. Refrigeration system means the mechanism (including all controls...

  6. 10 CFR 431.302 - Definitions concerning walk-in coolers and walk-in freezers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... cooler or walk-in freezer that are not part of its refrigeration system. K-factor means the thermal... not limited to, refrigeration, doors, lights, windows, or walls; or (2) Manufactures or assembles the... Fahrenheit using a refrigeration system. Refrigeration system means the mechanism (including all controls...

  7. 10 CFR 431.302 - Definitions concerning walk-in coolers and walk-in freezers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... cooler or walk-in freezer that are not part of its refrigeration system. K-factor means the thermal... not limited to, refrigeration, doors, lights, windows, or walls; or (2) Manufactures or assembles the... Fahrenheit using a refrigeration system. Refrigeration system means the mechanism (including all controls...

  8. Pedometer accuracy in slow walking older adults

    PubMed Central

    Martin, Jessica B.; Krč, Katarina M.; Mitchell, Emily A.; Eng, Janice J.; Noble, Jeremy W.

    2013-01-01

    The purpose of this study was to determine pedometer accuracy during slow overground walking in older adults (Mean age = 63.6 years). A total of 18 participants (6 males, 12 females) wore 5 different brands of pedometers over 3 pre-set cadences that elicited walking speeds between 0.3 and 0.9 m/s and one self-selected cadence over 80 meters of indoor track. Pedometer accuracy decreased with slower walking speeds with mean percent errors across all devices combined of 56%, 40%, 19% and 9% at cadences of 50, 66, and 80 steps/min, and self selected cadence, respectively. Percent error ranged from 45.3% for Omron HJ105 to 66.9% for Yamax Digiwalker 200. Due to the high level of error across the slowest cadences of all 5 devices, the use of pedometers to monitor step counts in healthy older adults with slower gait speeds is problematic. Further research is required to develop pedometer mechanisms that accurately measure steps at slower walking speeds. PMID:24795762

  9. Perception, planning, and control for walking on rugged terrain

    NASA Technical Reports Server (NTRS)

    Simmons, Reid; Krotkov, Eric

    1991-01-01

    The CMU Planetary Rover project is developing a six-legged walking robot capable of autonomously navigating, exploring, and acquiring samples in rugged, unknown environments. To gain experience with the problems involved in walking on rugged terrain, a full-scale prototype leg was built and mounted on a carriage that rolls along overhead rails. Issues addressed in developing the software system to autonomously walk the leg through rugged terrain are described. In particular, the insights gained into perceiving and modeling rugged terrain, controlling the legged mechanism, interacting with the ground, choosing safe yet effective footfalls, and planning efficient leg moves through space are described.

  10. Persistence of random walk records

    NASA Astrophysics Data System (ADS)

    Ben-Naim, E.; Krapivsky, P. L.

    2014-06-01

    We study records generated by Brownian particles in one dimension. Specifically, we investigate an ordinary random walk and define the record as the maximal position of the walk. We compare the record of an individual random walk with the mean record, obtained as an average over infinitely many realizations. We term the walk ‘superior’ if the record is always above average, and conversely, the walk is said to be ‘inferior’ if the record is always below average. We find that the fraction of superior walks, S, decays algebraically with time, S ˜ t-β, in the limit t → ∞, and that the persistence exponent is nontrivial, β = 0.382 258…. The fraction of inferior walks, I, also decays as a power law, I ˜ t-α, but the persistence exponent is smaller, α = 0.241 608…. Both exponents are roots of transcendental equations involving the parabolic cylinder function. To obtain these theoretical results, we analyze the joint density of superior walks with a given record and position, while for inferior walks it suffices to study the density as a function of position.

  11. The phylogenetic position of the musky rat-kangaroo and the evolution of bipedal hopping in kangaroos (Macropodidae: Diprotodontia).

    PubMed

    Burk, A; Westerman, M; Springer, M

    1998-09-01

    Kangaroos and their relatives (family Macropodidae) are divided into the subfamilies Macropodinae (kangaroos, wallabies, pademelons) and Potoroinae (rat-kangaroos, potoroos, bettongs). The musky rat-kangaroo, Hypsiprymnodon moschatus, is traditionally allied with other potoroines, based primarily on the basis of osteological characters and aspects of the female reproductive system. Unlike other macropodids, however, which are capable of bipedal hopping, Hypsiprymnodon is a quadrupedal bounder and lacks several derived features of the pes and tarsus that are presumably adaptations for bipedal hopping. Other derived features, such as a complex stomach, loss of P2 with the eruption of P3, and reduction of litter size to one, are also lacking in Hypsiprymnodon but occur in all other macropodids. Thus, available evidence suggests that Hypsiprymnodon either is part of a monophyletic Potoroinae or is a sister taxon to other living macropodids. To test these hypotheses, we sequenced 1,170 bp base pairs of the mitochondrial genome for 16 macropodids. Maximum parsimony, minimum evolution, maximum likelihood, and quartet puzzling all support the hypothesis that macropodines and potoroines are united to the exclusion of Hypsiprymnodon. This hypothesis implies that characters such as bipedal hopping evolved only once in macropodid evolution. Aside from Hypsiprymnodon, the remaining macropodids separate into the traditional Macropodinae and Potoroinae. Macropodines further separate into two clades: one containing the New Guinean forest wallabies Dorcopsis and Dorcopsulus, and one consisting of the genera Macropus, Setonix, Thylogale, Onychogalea, Wallabia, Dendrolagus, Peradorcas, and Lagorchestes. Among potoroines, there is moderate support for the association of Bettongia and Aepyprymnus to the exclusion of Potorous. Divergence times were estimated by using 12S ribosomal RNA transversions. At the base of the macropodid radiation, Hypsiprymnodon diverged from other macropodids

  12. Walking Machine Control Programming

    DTIC Science & Technology

    1983-08-31

    difficulty. 21 \\W;dkitiI M.’h 1 .(otri rot I’rogr ii ini g S A #2054 iI.Ld T’dl itdt Itort OWL WALKING ALGORITHMS The structure of the nervous system of...the nervous system . For this reason the cell it is usually attached to the ad- perpendicular axes and about acoustic the hair cell is sometimes...to drive air from the hydraulic system is to drive the compensator in while the ma- chine is tucked. The knee centering routine simply positions the

  13. Agile Walking Robot

    NASA Technical Reports Server (NTRS)

    Larimer, Stanley J.; Lisec, Thomas R.; Spiessbach, Andrew J.; Waldron, Kenneth J.

    1990-01-01

    Proposed agile walking robot operates over rocky, sandy, and sloping terrain. Offers stability and climbing ability superior to other conceptual mobile robots. Equipped with six articulated legs like those of insect, continually feels ground under leg before applying weight to it. If leg sensed unexpected object or failed to make contact with ground at expected point, seeks alternative position within radius of 20 cm. Failing that, robot halts, examines area around foot in detail with laser ranging imager, and replans entire cycle of steps for all legs before proceeding.

  14. Rugged Walking Robot

    NASA Technical Reports Server (NTRS)

    Larimer, Stanley J.; Lisec, Thomas R.; Spiessbach, Andrew J.

    1990-01-01

    Proposed walking-beam robot simpler and more rugged than articulated-leg walkers. Requires less data processing, and uses power more efficiently. Includes pair of tripods, one nested in other. Inner tripod holds power supplies, communication equipment, computers, instrumentation, sampling arms, and articulated sensor turrets. Outer tripod holds mast on which antennas for communication with remote control site and video cameras for viewing local and distant terrain mounted. Propels itself by raising, translating, and lowering tripods in alternation. Steers itself by rotating raised tripod on turntable.

  15. Vaulting mechanics successfully predict decrease in walk–run transition speed with incline

    PubMed Central

    Hubel, Tatjana Y.; Usherwood, James R.

    2013-01-01

    There is an ongoing debate about the reasons underlying gait transition in terrestrial locomotion. In bipedal locomotion, the ‘compass gait’, a reductionist model of inverted pendulum walking, predicts the boundaries of speed and step length within which walking is feasible. The stance of the compass gait is energetically optimal—at walking speeds—owing to the absence of leg compression/extension; completely stiff limbs perform no work during the vaulting phase. Here, we extend theoretical compass gait vaulting to include inclines, and find good agreement with previous observations of changes in walk–run transition speed (approx. 1% per 1% incline). We measured step length and frequency for humans walking either on the level or up a 9.8 per cent incline and report preferred walk–run, walk–compliant-walk and maximum walk–run transition speeds. While the measured ‘preferred’ walk–run transition speed lies consistently below the predicted maximum walking speeds, and ‘actual’ maximum walking speeds are clearly above the predicted values, the onset of compliant walking in level as well as incline walking occurs close to the predicted values. These findings support the view that normal human walking is constrained by the physics of vaulting, but preferred absolute walk–run transition speeds may be influenced by additional factors. PMID:23325739

  16. The effect of calmodulin antagonists on scoliosis: bipedal C57BL/6 mice model.

    PubMed

    Akel, Ibrahim; Demirkiran, Gokhan; Alanay, Ahmet; Karahan, Sevilay; Marcucio, Ralph; Acaroglu, Emre

    2009-04-01

    C57BL6 mice are melatonin deficient from birth and have been shown to develop scoliosis when rendered bipedal. Our previous work suggested that tamoxifen and trifluoperozine may change the natural course of scoliosis in a chicken model. The objective of this study was to analyze whether the incidence of scoliosis or the magnitude of curves may be decreased by the administration of pharmacological agents tamoxifen or trifluoperozine in a mice scoliosis model. Sixty female 3-week-old C57BL6 mice underwent amputations of forelimbs and tails. Available 57 mice were divided into three groups, Group-I received no medications whereas Groups II and III received 10 mg TMX and 10 mg TMX + 10 mg TFP per liter of daily water supply, respectively. PA scoliosis X-rays were obtained at 20th and 40th weeks. Deformities were compared for incidence and the severity of the curves as well as disease progression or regression. At 20th week, overall, upper thoracic (UT), lower thoracic (T), and lumbar (L) scoliosis rates were similar (P = 0.531; P = 0.209; P = 0.926; P = 0.215, respectively) but thoraco-lumbar (TL) scoliosis rate was higher inTMX group (P = 0.036). However, at 40th week, although TL and L rates were similar (P = 0.628, P = 0.080), overall rate as well as the rates of UT and T scoliosis of TMX group were significantly lower (P = 0.001, P = 0.011, P = 0.001, respectively). As for curve magnitudes, T mean Cobb angle at 20th week was significantly higher in the C group (14 +/- 2.55) compared to TMX + TFP group (9 +/- 2.708; P = 0.033); at 40th week, TL mean Cobb angle was lower in the TMX + TFP group (17.50 +/- 3.45) compared to C (29.40 +/- 5.98; P = 0.031); and TMX group had lower TL Cobb angles compared to C (8.67 +/- 11.72) although not significant (P = 0.109). Double curve incidence at 40th week was significantly lower in TMX group compared to other groups (P = 0.001), triple curve incidence was lower in TMX + TFP and TMX groups, albeit not significant (P = 0

  17. Random-walk enzymes.

    PubMed

    Mak, Chi H; Pham, Phuong; Afif, Samir A; Goodman, Myron F

    2015-09-01

    Enzymes that rely on random walk to search for substrate targets in a heterogeneously dispersed medium can leave behind complex spatial profiles of their catalyzed conversions. The catalytic signatures of these random-walk enzymes are the result of two coupled stochastic processes: scanning and catalysis. Here we develop analytical models to understand the conversion profiles produced by these enzymes, comparing an intrusive model, in which scanning and catalysis are tightly coupled, against a loosely coupled passive model. Diagrammatic theory and path-integral solutions of these models revealed clearly distinct predictions. Comparison to experimental data from catalyzed deaminations deposited on single-stranded DNA by the enzyme activation-induced deoxycytidine deaminase (AID) demonstrates that catalysis and diffusion are strongly intertwined, where the chemical conversions give rise to new stochastic trajectories that were absent if the substrate DNA was homogeneous. The C→U deamination profiles in both analytical predictions and experiments exhibit a strong contextual dependence, where the conversion rate of each target site is strongly contingent on the identities of other surrounding targets, with the intrusive model showing an excellent fit to the data. These methods can be applied to deduce sequence-dependent catalytic signatures of other DNA modification enzymes, with potential applications to cancer, gene regulation, and epigenetics.

  18. Random-walk enzymes

    PubMed Central

    Mak, Chi H.; Pham, Phuong; Afif, Samir A.; Goodman, Myron F.

    2015-01-01

    Enzymes that rely on random walk to search for substrate targets in a heterogeneously dispersed medium can leave behind complex spatial profiles of their catalyzed conversions. The catalytic signatures of these random-walk enzymes are the result of two coupled stochastic processes: scanning and catalysis. Here we develop analytical models to understand the conversion profiles produced by these enzymes, comparing an intrusive model, in which scanning and catalysis are tightly coupled, against a loosely coupled passive model. Diagrammatic theory and path-integral solutions of these models revealed clearly distinct predictions. Comparison to experimental data from catalyzed deaminations deposited on single-stranded DNA by the enzyme activation-induced deoxycytidine deaminase (AID) demonstrates that catalysis and diffusion are strongly intertwined, where the chemical conversions give rise to new stochastic trajectories that were absent if the substrate DNA was homogeneous. The C → U deamination profiles in both analytical predictions and experiments exhibit a strong contextual dependence, where the conversion rate of each target site is strongly contingent on the identities of other surrounding targets, with the intrusive model showing an excellent fit to the data. These methods can be applied to deduce sequence-dependent catalytic signatures of other DNA modification enzymes, with potential applications to cancer, gene regulation, and epigenetics. PMID:26465508

  19. Random-walk enzymes

    NASA Astrophysics Data System (ADS)

    Mak, Chi H.; Pham, Phuong; Afif, Samir A.; Goodman, Myron F.

    2015-09-01

    Enzymes that rely on random walk to search for substrate targets in a heterogeneously dispersed medium can leave behind complex spatial profiles of their catalyzed conversions. The catalytic signatures of these random-walk enzymes are the result of two coupled stochastic processes: scanning and catalysis. Here we develop analytical models to understand the conversion profiles produced by these enzymes, comparing an intrusive model, in which scanning and catalysis are tightly coupled, against a loosely coupled passive model. Diagrammatic theory and path-integral solutions of these models revealed clearly distinct predictions. Comparison to experimental data from catalyzed deaminations deposited on single-stranded DNA by the enzyme activation-induced deoxycytidine deaminase (AID) demonstrates that catalysis and diffusion are strongly intertwined, where the chemical conversions give rise to new stochastic trajectories that were absent if the substrate DNA was homogeneous. The C →U deamination profiles in both analytical predictions and experiments exhibit a strong contextual dependence, where the conversion rate of each target site is strongly contingent on the identities of other surrounding targets, with the intrusive model showing an excellent fit to the data. These methods can be applied to deduce sequence-dependent catalytic signatures of other DNA modification enzymes, with potential applications to cancer, gene regulation, and epigenetics.

  20. Hip Joint Contact Force in the Emu (Dromaius novaehollandiae) during Normal Level Walking

    PubMed Central

    Goetz, Jessica E.; Derrick, Timothy R.; Pedersen, Douglas R.; Robinson, Duane A.; Conzemius, Michael G.; Baer, Thomas E.; Brown, Thomas D.

    2008-01-01

    The emu is a large, (bipedal) flightless bird that potentially can be used to study various orthopaedic disorders in which load protection of the experimental limb is a limitation of quadrupedal models. An anatomy-based analysis of normal emu walking gait was undertaken to determine hip contact forces for comparison with human data. Kinematic and kinetic data captured for two laboratory-habituated emus were used to drive the model. Muscle attachment data were obtained by dissection, and bony geometries were obtained by CT scan. Inverse dynamics calculations at all major lower-limb joints were used in conjunction with optimization of muscle forces to determine hip contact forces. Like human walking gait, emu ground reaction forces showed a bimodal distribution over the course of the stance phase. Two-bird averaged maximum hip contact force was approximately 5.5 times body weight, directed nominally axially along the femur. This value is only modestly larger than optimization-based hip contact forces reported in literature for humans. The interspecies similarity in hip contact forces makes the emu a biomechanically attractive animal in which to model loading-dependent human orthopaedic hip disorders. PMID:18206892

  1. Unique characteristics of motor adaptation during walking in young children

    PubMed Central

    Musselman, Kristin E.; Patrick, Susan K.; Vasudevan, Erin V. L.; Bastian, Amy J.

    2011-01-01

    Children show precocious ability in the learning of languages; is this the case with motor learning? We used split-belt walking to probe motor adaptation (a form of motor learning) in children. Data from 27 children (ages 8–36 mo) were compared with those from 10 adults. Children walked with the treadmill belts at the same speed (tied belt), followed by walking with the belts moving at different speeds (split belt) for 8–10 min, followed again by tied-belt walking (postsplit). Initial asymmetries in temporal coordination (i.e., double support time) induced by split-belt walking were slowly reduced, with most children showing an aftereffect (i.e., asymmetry in the opposite direction to the initial) in the early postsplit period, indicative of learning. In contrast, asymmetries in spatial coordination (i.e., center of oscillation) persisted during split-belt walking and no aftereffect was seen. Step length, a measure of both spatial and temporal coordination, showed intermediate effects. The time course of learning in double support and step length was slower in children than in adults. Moreover, there was a significant negative correlation between the size of the initial asymmetry during early split-belt walking (called error) and the aftereffect for step length. Hence, children may have more difficulty learning when the errors are large. The findings further suggest that the mechanisms controlling temporal and spatial adaptation are different and mature at different times. PMID:21368001

  2. Intersegmental coordination of walking movements in stick insects.

    PubMed

    Ludwar, Björn Ch; Göritz, Marie L; Schmidt, Joachim

    2005-03-01

    Locomotion requires the coordination of movements across body segments, which in walking animals is expressed as gaits. We studied the underlying neural mechanisms of this coordination in a semi-intact walking preparation of the stick insect Carausius morosus. During walking of a single front leg on a treadmill, leg motoneuron (MN) activity tonically increased and became rhythmically modulated in the ipsilateral deafferented and deefferented mesothoracic (middle leg) ganglion. The pattern of modulation was correlated with the front leg cycle and specific for a given MN pool, although it was not consistent with functional leg movements for all MN pools. In an isolated preparation of a pair of ganglia, where one ganglion was made rhythmically active by application of pilocarpine, we found no evidence for coupling between segmental central pattern generators (CPGs) that could account for the modulation of MN activity observed in the semi-intact walking preparation. However, a third preparation provided evidence that signals from the front leg's femoral chordotonal organ (fCO) influenced activity of ipsilateral MNs in the adjacent mesothoracic ganglion. These intersegmental signals could be partially responsible for the observed MN activity modulation during front leg walking. While afferent signals from a single walking front leg modulate the activity of MNs in the adjacent segment, additional afferent signals, local or from contralateral or posterior legs, might be necessary to produce the functional motor pattern observed in freely walking animals.

  3. Counterturns initiated by decrease in rate of increase of concentration : Possible mechanism of chemotaxis by walking femaleIps paraconfusus bark beetles.

    PubMed

    Patrick Akers, R

    1989-01-01

    The position of beetles were marked at 1-sec intervals after they were released in still air 16-18 cm from point sources of pheromone. Characteristics of the tracks were quantified and compared to those that might be produced by counterturning schemakinesis, tropotaxis, klinotaxis, zigzagging, look-and-leap, or steepest-ascent schemakinesis mechanisms. The beetles' movements were highly irregular, but they turned almost continually and never fixed on a heading near 0° (=straight towards the source). Turn angle sizes increased slightly with absolute size of heading but had the opposite sign, thus compensating slightly for heading. Their distribution was centered about 0° and was unimodal. Heading decreased gradually as the source was neared, but the decrease became steeper within 1-5 cm of the source. Histograms showed that the maximum headings between occurrences when the beetle was headed directly towards the source (0°) were centered around 0° and most of them were less than 90°. However, maximum headings between 90° and 180° were not uncommon. Turn radius decreased as the source was neared. The counterturning mechanism was the most consistent with these observations. An analysis of rate of change of concentration with respect to heading and distance to the source further demonstrated that the counterturning mechanism could explain the form of the decrease in heading as the source was neared, if the major cue used to initiate counterturns was a decrease in the rate of increase of concentration. The tropotaxis could not recreate the form of the decrease, under any form of stimulus processing.

  4. Quantum walks on quotient graphs

    SciTech Connect

    Krovi, Hari; Brun, Todd A.

    2007-06-15

    A discrete-time quantum walk on a graph {gamma} is the repeated application of a unitary evolution operator to a Hilbert space corresponding to the graph. If this unitary evolution operator has an associated group of symmetries, then for certain initial states the walk will be confined to a subspace of the original Hilbert space. Symmetries of the original graph, given by its automorphism group, can be inherited by the evolution operator. We show that a quantum walk confined to the subspace corresponding to this symmetry group can be seen as a different quantum walk on a smaller quotient graph. We give an explicit construction of the quotient graph for any subgroup H of the automorphism group and illustrate it with examples. The automorphisms of the quotient graph which are inherited from the original graph are the original automorphism group modulo the subgroup H used to construct it. The quotient graph is constructed by removing the symmetries of the subgroup H from the original graph. We then analyze the behavior of hitting times on quotient graphs. Hitting time is the average time it takes a walk to reach a given final vertex from a given initial vertex. It has been shown in earlier work [Phys. Rev. A 74, 042334 (2006)] that the hitting time for certain initial states of a quantum walks can be infinite, in contrast to classical random walks. We give a condition which determines whether the quotient graph has infinite hitting times given that they exist in the original graph. We apply this condition for the examples discussed and determine which quotient graphs have infinite hitting times. All known examples of quantum walks with hitting times which are short compared to classical random walks correspond to systems with quotient graphs much smaller than the original graph; we conjecture that the existence of a small quotient graph with finite hitting times is necessary for a walk to exhibit a quantum speedup.

  5. Design of a walking robot

    NASA Astrophysics Data System (ADS)

    Whittaker, William; Dowling, Kevin

    1994-03-01

    Carnegie Mellon University's Autonomous Planetary Exploration Program (APEX) is currently building the Daedalus robot; a system capable of performing extended autonomous planetary exploration missions. Extended autonomy is an important capability because the continued exploration of the Moon, Mars and other solid bodies within the solar system will probably be carried out by autonomous robotic systems. There are a number of reasons for this - the most important of which are the high cost of placing a man in space, the high risk associated with human exploration and communication delays that make teleoperation infeasible. The Daedalus robot represents an evolutionary approach to robot mechanism design and software system architecture. Daedalus incorporates key features from a number of predecessor systems. Using previously proven technologies, the Apex project endeavors to encompass all of the capabilities necessary for robust planetary exploration. The Ambler, a six-legged walking machine was developed by CMU for demonstration of technologies required for planetary exploration. In its five years of life, the Ambler project brought major breakthroughs in various areas of robotic technology. Significant progress was made in: mechanism and control, by introducing a novel gait pattern (circulating gait) and use of orthogonal legs; perception, by developing sophisticated algorithms for map building; and planning, by developing and implementing the Task Control Architecture to coordinate tasks and control complex system functions. The APEX project is the successor of the Ambler project.

  6. Design of a walking robot

    NASA Technical Reports Server (NTRS)

    Whittaker, William; Dowling, Kevin

    1994-01-01

    Carnegie Mellon University's Autonomous Planetary Exploration Program (APEX) is currently building the Daedalus robot; a system capable of performing extended autonomous planetary exploration missions. Extended autonomy is an important capability because the continued exploration of the Moon, Mars and other solid bodies within the solar system will probably be carried out by autonomous robotic systems. There are a number of reasons for this - the most important of which are the high cost of placing a man in space, the high risk associated with human exploration and communication delays that make teleoperation infeasible. The Daedalus robot represents an evolutionary approach to robot mechanism design and software system architecture. Daedalus incorporates key features from a number of predecessor systems. Using previously proven technologies, the Apex project endeavors to encompass all of the capabilities necessary for robust planetary exploration. The Ambler, a six-legged walking machine was developed by CMU for demonstration of technologies required for planetary exploration. In its five years of life, the Ambler project brought major breakthroughs in various areas of robotic technology. Significant progress was made in: mechanism and control, by introducing a novel gait pattern (circulating gait) and use of orthogonal legs; perception, by developing sophisticated algorithms for map building; and planning, by developing and implementing the Task Control Architecture to coordinate tasks and control complex system functions. The APEX project is the successor of the Ambler project.

  7. Walking indoors, walking outdoors: an fMRI study

    PubMed Central

    Dalla Volta, Riccardo; Fasano, Fabrizio; Cerasa, Antonio; Mangone, Graziella; Quattrone, Aldo; Buccino, Giovanni

    2015-01-01

    An observation/execution matching system for walking has not been assessed yet. The present fMRI study was aimed at assessing whether, as for object-directed actions, an observation/execution matching system is active for walking and whether the spatial context of walking (open or narrow space) recruits different neural correlates. Two experimental conditions were employed. In the execution condition, while being scanned, participants performed walking on a rolling cylinder located just outside the scanner. The same action was performed also while observing a video presenting either an open space (a country field) or a narrow space (a corridor). In the observation condition, participants observed a video presenting an individual walking on the same cylinder on which the actual action was executed, the open space video and the narrow space video, respectively. Results showed common bilateral activations in the dorsal premotor/supplementary motor areas and in the posterior parietal lobe for both execution and observation of walking, thus supporting a matching system for this action. Moreover, specific sectors of the occipital–temporal cortex and the middle temporal gyrus were consistently active when processing a narrow space versus an open one, thus suggesting their involvement in the visuo-motor transformation required when walking in a narrow space. We forward that the present findings may have implications for rehabilitation of gait and sport training. PMID:26483745

  8. Slow-walking inflation

    SciTech Connect

    Erdmenger, Johanna; Halter, Sebastian; Núñez, Carlos; Tasinato, Gianmassimo E-mail: s.halter@physik.uni-muenchen.de E-mail: gianmassimo.tasinato@port.ac.uk

    2013-01-01

    We propose a new model of slow-roll inflation in string cosmology, based on warped throat supergravity solutions displaying 'walking' dynamics, i.e. the coupling constant of the dual gauge theory slowly varies over a range of energy scales. The features of the throat geometry are sourced by a rich field content, given by the dilaton and RR and NS fluxes. By considering the motion of a D3-brane probe in this geometry, we are able to analytically calculate the brane potential in a physically interesting regime. This potential has an inflection point: in its proximity we realize a model of inflation lasting sixty e-foldings, and whose robust predictions are in agreement with current observations. We are also able to interpret some of the most interesting aspects of this scenario in terms of the properties of the QFT dual theory.

  9. Diffraction of walking droplets

    NASA Astrophysics Data System (ADS)

    Harris, Daniel M.; Pucci, Giuseppe; Bush, John W. M.

    2014-11-01

    We present results from our revisitation of the experiment of a walking droplet passing through a single slit, originally investigated by Couder & Fort (PRL, 2006). On each passage, the walker's trajectory is deviated as a result of the spatial confinement of its guiding wave. We explore the role of the droplet size and the bath's vibration amplitude on both the dynamics and statistics. We find the behavior to be remarkably sensitive to these control parameters. A complex physical picture emerges. The authors gratefully acknowledge the financial support of the NSF through Grant CMMI-1333242, DMH through the NSF Graduate Research Fellowship Program, and GP through the Programma Operativo Regionale (POR) Calabria - FSE 2007/2013.

  10. Reduced Gravity Walking Simulator

    NASA Technical Reports Server (NTRS)

    1963-01-01

    A test subject being suited up for studies on the Reduced Gravity Walking Simulator located in the hanger at Langley Research Center. The initial version of this simulator was located inside the hanger. Later a larger version would be located at the Lunar Landing Facility. The purpose of this simulator was to study the subject while walking, jumping or running. Researchers conducted studies of various factors such as fatigue limit, energy expenditure, and speed of locomotion. Francis B. Smith wrote in his paper 'Simulators For Manned Space Research,' 'I would like to conclude this talk with a discussion of a device for simulating lunar gravity which is very effective and yet which is so simple that its cost is in the order of a few thousand dollars at most, rather than hundreds of thousands. With a little ingenuity, one could almost build this type simulator in his backyard for children to play on. The principle is ...if a test subject is suspended in a sling so that his body axis makes an angle of 9 1/2 degrees with the horizontal and if he then 'stands' on a platform perpendicular to his body axis, the component of the earth's gravity forcing him toward the platform is one times the sine of 9 1/2 degrees or approximately 1/6 of the earth's normal gravity field. That is, a 180 pound astronaut 'standing' on the platform would exert a force of only 30 pounds - the same as if he were standing upright on the lunar surface.' Published in James R. Hansen, Spaceflight Revolution: NASA Langley Research Center From Sputnik to Apollo, NASA SP-4308; Francis B. Smith, 'Simulators For Manned Space Research,' Paper for 1966 IEEE International Convention, New York, NY, March 21-25, 1966.

  11. The mass-specific energy cost of human walking is set by stature

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The metabolic and mechanical requirements of walking are considered to be of fundamental importance to the health, physiological function and even the evolution of modern humans. Although walking energy expenditure and gait mechanics are clearly linked, a direct quantitative relationship has not eme...

  12. Intrinsic Lévy behaviour in organisms - searching for a mechanism. Comment on "Liberating Lévy walk research from the shackles of optimal foraging" by A.M. Reynolds

    NASA Astrophysics Data System (ADS)

    Sims, David W.

    2015-09-01

    The seminal papers by Viswanathan and colleagues in the late 1990s [1,2] proposed not only that scale-free, superdiffusive Lévy walks can describe the free-ranging movement patterns observed in animals such as the albatross [1], but that the Lévy walk was optimal for searching for sparsely and randomly distributed resource targets [2]. This distinct advantage, now shown to be present over a much broader set of conditions than originally theorised [3], implied that the Lévy walk is a search strategy that should be found very widely in organisms [4]. In the years since there have been several influential empirical studies showing that Lévy walks can indeed be detected in the movement patterns of a very broad range of taxa, from jellyfish, insects, fish, reptiles, seabirds, humans [5-10], and even in the fossilised trails of extinct invertebrates [11]. The broad optimality and apparent deep evolutionary origin of movement (search) patterns that are well approximated by Lévy walks led to the development of the Lévy flight foraging (LFF) hypothesis [12], which states that "since Lévy flights and walks can optimize search efficiencies, therefore natural selection should have led to adaptations for Lévy flight foraging".

  13. Visual control of walking velocity.

    PubMed

    François, Matthieu; Morice, Antoine H P; Bootsma, Reinoud J; Montagne, Gilles

    2011-06-01

    Even if optical correlates of self-motion velocity have already been identified, their contribution to the control of displacement velocity remains to be established. In this study, we used a virtual reality set-up coupled to a treadmill to test the role of both Global Optic Flow Rate (GOFR) and Edge Rate (ER) in the regulation of walking velocity. Participants were required to walk at a constant velocity, corresponding to their preferred walking velocity, while eye height and texture density were manipulated. This manipulation perturbed the natural relationship between the actual walking velocity and its optical specification by GOFR and ER, respectively. Results revealed that both these sources of information are indeed used by participants to control walking speed, as demonstrated by a slowing down of actual walking velocity when the optical specification of velocity by either GOFR or ER gives rise to an overestimation of actual velocity, and vice versa. Gait analyses showed that these walking velocity adjustments result from simultaneous adaptations in both step length and step duration. The role of visual information in the control of self-motion velocity is discussed in relation with other factors.

  14. Constraining walking and custodial technicolor

    SciTech Connect

    Foadi, Roshan; Frandsen, Mads T.; Sannino, Francesco

    2008-05-01

    We show how to constrain the physical spectrum of walking technicolor models via precision measurements and modified Weinberg sum rules. We also study models possessing a custodial symmetry for the S parameter at the effective Lagrangian level - custodial technicolor - and argue that these models cannot emerge from walking-type dynamics. We suggest that it is possible to have a very light spin-one axial (vector) boson. However, in the walking dynamics the associated vector boson is heavy while it is degenerate with the axial in custodial technicolor.

  15. Base Station Walk-Back

    NASA Video Gallery

    Train to improve your lung, heart, and other muscle endurance while walking a progressive, measured distance. The Train Like an Astronaut project uses the excitement of exploration to challenge stu...

  16. Quantum snake walk on graphs

    SciTech Connect

    Rosmanis, Ansis

    2011-02-15

    I introduce a continuous-time quantum walk on graphs called the quantum snake walk, the basis states of which are fixed-length paths (snakes) in the underlying graph. First, I analyze the quantum snake walk on the line, and I show that, even though most states stay localized throughout the evolution, there are specific states that most likely move on the line as wave packets with momentum inversely proportional to the length of the snake. Next, I discuss how an algorithm based on the quantum snake walk might potentially be able to solve an extended version of the glued trees problem, which asks to find a path connecting both roots of the glued trees graph. To the best of my knowledge, no efficient quantum algorithm solving this problem is known yet.

  17. Big power from walking

    NASA Astrophysics Data System (ADS)

    Illenberger, Patrin K.; Madawala, Udaya K.; Anderson, Iain A.

    2016-04-01

    Dielectric Elastomer Generators (DEG) offer an opportunity to capture the energy otherwise wasted from human motion. By integrating a DEG into the heel of standard footwear, it is possible to harness this energy to power portable devices. DEGs require substantial auxiliary systems which are commonly large, heavy and inefficient. A unique challenge for these low power generators is the combination of high voltage and low current. A void exists in the semiconductor market for devices that can meet these requirements. Until these become available, existing devices must be used in an innovative way to produce an effective DEG system. Existing systems such as the Bi-Directional Flyback (BDFB) and Self Priming Circuit (SPC) are an excellent example of this. The BDFB allows full charging and discharging of the DEG, improving power gained. The SPC allows fully passive voltage boosting, removing the priming source and simplifying the electronics. This paper outlines the drawbacks and benefits of active and passive electronic solutions for maximizing power from walking.

  18. 10 CFR 429.53 - Walk-in coolers and walk-in freezers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Walk-in coolers and walk-in freezers. 429.53 Section 429... CONSUMER PRODUCTS AND COMMERCIAL AND INDUSTRIAL EQUIPMENT Certification § 429.53 Walk-in coolers and walk... are applicable to walk-in coolers and freezers; and (2) (b) Certification reports. (1) Except...

  19. 10 CFR 429.53 - Walk-in coolers and walk-in freezers.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Walk-in coolers and walk-in freezers. 429.53 Section 429... CONSUMER PRODUCTS AND COMMERCIAL AND INDUSTRIAL EQUIPMENT Certification § 429.53 Walk-in coolers and walk... are applicable to walk-in coolers and freezers; and (2) (b) Certification reports. (1) Except...

  20. Hairless mutation: a driving force of humanization from a human–ape common ancestor by enforcing upright walking while holding a baby with both hands

    PubMed Central

    Sutou, Shizuyo

    2012-01-01

    Three major characteristics distinguish humans from other primates: bipedality, practical nakedness, and the family as a social unit. A hairless mutation introduced into the chimpanzee/human last common ancestor (CLCA) 6 million years ago (Mya) diverged hairless human and hairy chimpanzee lineages. All primates except humans can carry their babies without using their hands. A hairless mother would be forced to stand and walk upright. Her activities would be markedly limited. The male partner would have to collect food and carry it to her by hand to keep her and their baby from starving; irresponsible and selfish males could not have left their offspring. The mother would have sexually accepted her partner at any time as a reward for food. Sexual relations irrespective of estrus cycles might have strengthened the pair bond. Molecular and paleontological dating indicates that CLCA existed 6 Mya, and early hominin fossils show that they were bipeds, indicating that humanization from CLCA occurred rapidly. A single mutation in animals with scalp hair is known to induce hairless phenotype (ectodermal dysplasia). Bipedalism and hairlessness are disadvantageous traits; only those who could survive trials and tribulations in cooperation with family members must have been able to evolve as humans. PMID:22404045

  1. Lévy random walks on multiplex networks

    PubMed Central

    Guo, Quantong; Cozzo, Emanuele; Zheng, Zhiming; Moreno, Yamir

    2016-01-01

    Random walks constitute a fundamental mechanism for many dynamics taking place on complex networks. Besides, as a more realistic description of our society, multiplex networks have been receiving a growing interest, as well as the dynamical processes that occur on top of them. Here, inspired by one specific model of random walks that seems to be ubiquitous across many scientific fields, the Lévy flight, we study a new navigation strategy on top of multiplex networks. Capitalizing on spectral graph and stochastic matrix theories, we derive analytical expressions for the mean first passage time and the average time to reach a node on these networks. Moreover, we also explore the efficiency of Lévy random walks, which we found to be very different as compared to the single layer scenario, accounting for the structure and dynamics inherent to the multiplex network. Finally, by comparing with some other important random walk processes defined on multiplex networks, we find that in some region of the parameters, a Lévy random walk is the most efficient strategy. Our results give us a deeper understanding of Lévy random walks and show the importance of considering the topological structure of multiplex networks when trying to find efficient navigation strategies. PMID:27892508

  2. Lévy random walks on multiplex networks

    NASA Astrophysics Data System (ADS)

    Guo, Quantong; Cozzo, Emanuele; Zheng, Zhiming; Moreno, Yamir

    2016-11-01

    Random walks constitute a fundamental mechanism for many dynamics taking place on complex networks. Besides, as a more realistic description of our society, multiplex networks have been receiving a growing interest, as well as the dynamical processes that occur on top of them. Here, inspired by one specific model of random walks that seems to be ubiquitous across many scientific fields, the Lévy flight, we study a new navigation strategy on top of multiplex networks. Capitalizing on spectral graph and stochastic matrix theories, we derive analytical expressions for the mean first passage time and the average time to reach a node on these networks. Moreover, we also explore the efficiency of Lévy random walks, which we found to be very different as compared to the single layer scenario, accounting for the structure and dynamics inherent to the multiplex network. Finally, by comparing with some other important random walk processes defined on multiplex networks, we find that in some region of the parameters, a Lévy random walk is the most efficient strategy. Our results give us a deeper understanding of Lévy random walks and show the importance of considering the topological structure of multiplex networks when trying to find efficient navigation strategies.

  3. Modular control during incline and level walking in humans.

    PubMed

    Janshen, Lars; Santuz, Alessandro; Ekizos, Antonis; Arampatzis, Adamantios

    2017-03-01

    The neuromuscular control of human movement can be described by a set of muscle synergies factorized from myoelectric signals. There is some evidence that the selection, activation and flexible combination of these basic activation patterns are of a neural origin. We investigated the muscle synergies during incline and level walking to evaluate changes in the modular organization of neuromuscular control related to changes in the mechanical demands. Our results revealed five fundamental (not further factorizable) synergies for both walking conditions but with different frequencies of appearance of the respective synergies during incline compared with level walking. Low similarities across conditions were observed in the timing of the activation patterns (motor primitives) and the weightings of the muscles within the respective elements (motor modules) for the synergies associated with the touchdown, mid-stance and early push-off phase. The changes in neuromuscular control could be attributed to changes in the mechanical demands in support, propulsion and medio-lateral stabilization of the body during incline compared with level walking. Our findings provide further evidence that the central nervous system flexibly uses a consistent set of neural control elements with a flexible temporal recruitment and modifications of the relative muscle weightings within each element to provide stable locomotion under varying mechanical demands during walking.

  4. Walking on a moving surface: energy-optimal walking motions on a shaky bridge and a shaking treadmill can reduce energy costs below normal

    PubMed Central

    Joshi, Varun; Srinivasan, Manoj

    2015-01-01

    Understanding how humans walk on a surface that can move might provide insights into, for instance, whether walking humans prioritize energy use or stability. Here, motivated by the famous human-driven oscillations observed in the London Millennium Bridge, we introduce a minimal mathematical model of a biped, walking on a platform (bridge or treadmill) capable of lateral movement. This biped model consists of a point-mass upper body with legs that can exert force and perform mechanical work on the upper body. Using numerical optimization, we obtain energy-optimal walking motions for this biped, deriving the periodic body and platform motions that minimize a simple metabolic energy cost. When the platform has an externally imposed sinusoidal displacement of appropriate frequency and amplitude, we predict that body motion entrained to platform motion consumes less energy than walking on a fixed surface. When the platform has finite inertia, a mass- spring-damper with similar parameters to the Millennium Bridge, we show that the optimal biped walking motion sustains a large lateral platform oscillation when sufficiently many people walk on the bridge. Here, the biped model reduces walking metabolic cost by storing and recovering energy from the platform, demonstrating energy benefits for two features observed for walking on the Millennium Bridge: crowd synchrony and large lateral oscillations. PMID:25663810

  5. Comparison of forward walking and backward walking in stroke hemiplegia patients focusing on the paretic side

    PubMed Central

    Makino, Misato; Takami, Akiyoshi; Oda, Atsushi

    2017-01-01

    [Purpose] To investigate the features of backward walking in stroke patients with hemiplegia by focusing on the joint movements and moments of the paretic side, walking speed, stride length, and cadence. [Subjects and Methods] Nine stroke patients performed forward walking and backward walking along a 5-m walkway. Walking speed and stride length were self-selected. Movements were measured using a three-dimensional motion analysis system and a force plate. One walking cycle of the paretic side was analyzed. [Results] Walking speed, stride length, and cadence were significantly lower in backward walking than in forward walking. Peak hip extension was significantly lower in backward walking and peak hip flexion moment, knee extension moment, and ankle dorsiflexion and plantar flexion moments were lower in backward walking. [Conclusion] Unlike forward walking, backward walking requires conscious hip joint extension. Conscious extension of the hip joint is hard for stroke patients with hemiplegia. Therefore, the range of hip joint movement declined in backward walking, and walking speed and stride length also declined. The peak ankle plantar flexion moment was significantly lower in backward walking than in forward walking, and it was hard to generate propulsion power in backward walking. These difficulties also affected the walking speed. PMID:28265136

  6. Biomechanics and energetics of walking on uneven terrain

    PubMed Central

    Voloshina, Alexandra S.; Kuo, Arthur D.; Daley, Monica A.; Ferris, Daniel P.

    2013-01-01

    SUMMARY Walking on uneven terrain is more energetically costly than walking on smooth ground, but the biomechanical factors that contribute to this increase are unknown. To identify possible factors, we constructed an uneven terrain treadmill that allowed us to record biomechanical, electromyographic and metabolic energetics data from human subjects. We hypothesized that walking on uneven terrain would increase step width and length variability, joint mechanical work and muscle co-activation compared with walking on smooth terrain. We tested healthy subjects (N=11) walking at 1.0 m s−1, and found that, when walking on uneven terrain with up to 2.5 cm variation, subjects decreased their step length by 4% and did not significantly change their step width, while both step length and width variability increased significantly (22 and 36%, respectively; P<0.05). Uneven terrain walking caused a 28 and 62% increase in positive knee and hip work, respectively, and a 26% greater magnitude of negative knee work (0.0106, 0.1078 and 0.0425 J kg−1, respectively; P<0.05). Mean muscle activity increased in seven muscles in the lower leg and thigh (P<0.05). These changes caused overall net metabolic energy expenditure to increase by 0.73 W kg−1 (28%; P<0.0001). Much of that increase could be explained by the increased mechanical work observed at the knee and hip. Greater muscle co-activation could also contribute to increased energetic cost but to unknown degree. The findings provide insight into how lower limb muscles are used differently for natural terrain compared with laboratory conditions. PMID:23913951

  7. Biomechanics and energetics of walking on uneven terrain.

    PubMed

    Voloshina, Alexandra S; Kuo, Arthur D; Daley, Monica A; Ferris, Daniel P

    2013-11-01

    Walking on uneven terrain is more energetically costly than walking on smooth ground, but the biomechanical factors that contribute to this increase are unknown. To identify possible factors, we constructed an uneven terrain treadmill that allowed us to record biomechanical, electromyographic and metabolic energetics data from human subjects. We hypothesized that walking on uneven terrain would increase step width and length variability, joint mechanical work and muscle co-activation compared with walking on smooth terrain. We tested healthy subjects (N=11) walking at 1.0 m s(-1), and found that, when walking on uneven terrain with up to 2.5 cm variation, subjects decreased their step length by 4% and did not significantly change their step width, while both step length and width variability increased significantly (22 and 36%, respectively; P<0.05). Uneven terrain walking caused a 28 and 62% increase in positive knee and hip work, respectively, and a 26% greater magnitude of negative knee work (0.0106, 0.1078 and 0.0425 J kg(-1), respectively; P<0.05). Mean muscle activity increased in seven muscles in the lower leg and thigh (P<0.05). These changes caused overall net metabolic energy expenditure to increase by 0.73 W kg(-1) (28%; P<0.0001). Much of that increase could be explained by the increased mechanical work observed at the knee and hip. Greater muscle co-activation could also contribute to increased energetic cost but to unknown degree. The findings provide insight into how lower limb muscles are used differently for natural terrain compared with laboratory conditions.

  8. Walking robot: A design project for undergraduate students

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The objective of the University of Maryland walking robot project was to design, analyze, assemble, and test an intelligent, mobile, and terrain-adaptive system. The robot incorporates existing technologies in novel ways. The legs emulate the walking path of a human by an innovative modification of a crank-and-rocker mechanism. The body consists of two tripod frames connected by a turning mechanism. The two sets of three legs are mounted so as to allow the robot to walk with stability in its own footsteps. The computer uses a modular hardware design and distributed processing. Dual-port RAM is used to allow communication between a supervisory personal computer and seven microcontrollers. The microcontrollers provide low-level control for the motors and relieve the processing burden on the PC.

  9. Bionic ankle-foot prosthesis normalizes walking gait for persons with leg amputation.

    PubMed

    Herr, Hugh M; Grabowski, Alena M

    2012-02-07

    Over time, leg prostheses have improved in design, but have been incapable of actively adapting to different walking velocities in a manner comparable to a biological limb. People with a leg amputation using such commercially available passive-elastic prostheses require significantly more metabolic energy to walk at the same velocities, prefer to walk slower and have abnormal biomechanics compared with non-amputees. A bionic prosthesis has been developed that emulates the function of a biological ankle during level-ground walking, specifically providing the net positive work required for a range of walking velocities. We compared metabolic energy costs, preferred velocities and biomechanical patterns of seven people with a unilateral transtibial amputation using the bionic prosthesis and using their own passive-elastic prosthesis to those of seven non-amputees during level-ground walking. Compared with using a passive-elastic prosthesis, using the bionic prosthesis decreased metabolic cost by 8 per cent, increased trailing prosthetic leg mechanical work by 57 per cent and decreased the leading biological leg mechanical work by 10 per cent, on average, across walking velocities of 0.75-1.75 m s(-1) and increased preferred walking velocity by 23 per cent. Using the bionic prosthesis resulted in metabolic energy costs, preferred walking velocities and biomechanical patterns that were not significantly different from people without an amputation.

  10. Szegedy's quantum walk with queries

    NASA Astrophysics Data System (ADS)

    Santos, Raqueline A. M.

    2016-11-01

    When searching for a marked vertex in a graph, Szegedy's usual search operator is defined by using the transition probability matrix of the random walk with absorbing barriers at the marked vertices. Instead of using this operator, we analyze searching with Szegedy's quantum walk by using reflections around the marked vertices, that is, the standard form of quantum query. We show we can boost the probability to 1 of finding a marked vertex in the complete graph. Numerical simulations suggest that the success probability can be improved for other graphs, like the two-dimensional grid. We also prove that, for a certain class of graphs, we can express Szegedy's search operator, obtained from the absorbing walk, using the standard query model.

  11. Walking droplets in confined domains

    NASA Astrophysics Data System (ADS)

    Sáenz, Pedro; Bush, John

    2016-11-01

    A millimetric liquid drop can walk spontaneously along the surface of a vibrating fluid bath, propelled by a resonant interaction with its own wave field. These walking droplets exhibit features previously thought to be exclusive to the microscopic quantum realm. We here explore experimentally the dynamics and statistics of this macroscopic wave-particle system in confined domains, or 'corrals'. Particular attention is given to characterizing the influence of the corral geometry on the emergent probability distributions. The relation to analogous quantum systems (specifically, quantum corrals, the quantum mirage and scarring in Bose-Einstein condensates) is discussed. NSF support via CMMI-1333242.

  12. After Talking the Talk, Now Walk the Walk

    ERIC Educational Resources Information Center

    Vukovic, Paul

    2011-01-01

    In this article, the author describes what his students are doing following the ATM Easter conference in Telford, where he was inspired by a workshop entitled "Vitamin D Maths," conducted by Jocelyn D'Arcy. He describes an activity that allows his Year 11 students to walk through angles drawn on the floors. This topic will now literally…

  13. The 1991-1992 walking robot design

    NASA Technical Reports Server (NTRS)

    Azarm, Shapour; Dayawansa, Wijesurija; Tsai, Lung-Wen; Peritt, Jon

    1992-01-01

    The University of Maryland Walking Machine team designed and constructed a robot. This robot was completed in two phases with supervision and suggestions from three professors and one graduate teaching assistant. Bob was designed during the Fall Semester 1991, then machined, assembled, and debugged in the Spring Semester 1992. The project required a total of 4,300 student hours and cost under $8,000. Mechanically, Bob was an exercise in optimization. The robot was designed to test several diverse aspects of robotic potential, including speed, agility, and stability, with simplicity and reliability holding equal importance. For speed and smooth walking motion, the footpath contained a long horizontal component; a vertical aspect was included to allow clearance of obstacles. These challenges were met with a leg design that utilized a unique multi-link mechanism which traveled a modified tear-drop footpath. The electrical requirements included motor, encoder, and voice control circuitry selection, manual controller manufacture, and creation of sensors for guidance. Further, there was also a need for selection of the computer, completion of a preliminary program, and testing of the robot.

  14. Running, walking, and hyperventilation causing asthma in children.

    PubMed Central

    Kilham, H; Tooley, M; Silverman, M

    1979-01-01

    To examine further the relation between type of exercise, workload, ventilation, and exercise-induced asthma, we compared treadmill walking with treadmill running and treadmill running with isocapnic hyperventilation in separate studies in children and adolescents. Inspired air conditions were identical during each pair of tests. Walking and running with similar minute ventilation and oxygen consumption were followed by similar falls in peak expiratory flow rate as were running and hyperventilation with similar minute ventilation and end-tidal carbon dioxide tension. This study supports the concept that hyperventilation is a central mechanism in exercise-induced asthma. PMID:515978

  15. Brisk Walk May Help Sidestep Heart Disease

    MedlinePlus

    ... fullstory_162978.html Brisk Walk May Help Sidestep Heart Disease In just 10 weeks, cholesterol, blood pressure and ... at moderate intensity may lower the risk of heart disease, a small study suggests. "We know walking is ...

  16. Crutches and children - standing and walking

    MedlinePlus

    ... patientinstructions/000641.htm Crutches and children - standing and walking To use the sharing features on this page, ... leg. Keep the crutches slightly forward and apart. Walking with Crutches (No Weight Bearing on Hurt Foot ...

  17. Dissipative quantum computing with open quantum walks

    SciTech Connect

    Sinayskiy, Ilya; Petruccione, Francesco

    2014-12-04

    An open quantum walk approach to the implementation of a dissipative quantum computing scheme is presented. The formalism is demonstrated for the example of an open quantum walk implementation of a 3 qubit quantum circuit consisting of 10 gates.

  18. On Convergent Probability of a Random Walk

    ERIC Educational Resources Information Center

    Lee, Y.-F.; Ching, W.-K.

    2006-01-01

    This note introduces an interesting random walk on a straight path with cards of random numbers. The method of recurrent relations is used to obtain the convergent probability of the random walk with different initial positions.

  19. Robotic gait analysis of bipedal treadmill stepping by spinal contused rats: characterization of intrinsic recovery and comparison with BBB.

    PubMed

    Nessler, Jeff A; De Leon, Ray D; Sharp, Kelli; Kwak, Eugene; Minakata, Koyiro; Reinkensmeyer, David J

    2006-06-01

    There is a critical need to develop objective, quantitative techniques to assess motor function after spinal cord injury. Here, we assess the ability of a recently developed robotic device (the "rat stepper") to characterize locomotor impairment following contusion injury in rats. In particular, we analyzed how the kinematic features of hindlimb movement during bipedal, weight-supported treadmill stepping change following contusion, and whether these changes correlate with the recovery of open field locomotion. Female, Sprague-Dawley rats (n=29, 8 weeks of age) received mid thoracic contusion injuries of differing severities (11 mild, nine moderate, nine severe, and four sham). In a first experiment, 16 of the animals were evaluated weekly for 12 weeks using the robotic stepping device. In a second experiment, 17 of the animals were evaluated every other day for 4 weeks. The contused animals recovered open field locomotion based on the Basso, Beattie, and Bresnahan Scale (BBB) analysis, with most of the recovery occurring by 4 weeks post-injury. Analysis of 14 robotic measures of stepping revealed that several measures improved significantly during the same 4 weeks: swing velocity, step height, step length, hindlimb coordination, and the ability to support body weight. These measures were also significantly correlated with the BBB score. The number of steps taken during testing was not directly related to intrinsic recovery or correlated to the BBB score. These results suggest that it is the quality of weight-supported steps, rather than the quantity, that best reflects locomotor recovery after contusion injury, and that the quality of these steps is determined by the integrity of extensor, flexor, and bilateral coordination pathways. Thus, by measuring only a few weight-supported steps with motion capture, a sensitive, valid measure of locomotor recovery following contusion injury can be obtained across a broad range of impairment levels.

  20. Current-reinforced random walks for constructing transport networks

    PubMed Central

    Ma, Qi; Johansson, Anders; Tero, Atsushi; Nakagaki, Toshiyuki; Sumpter, David J. T.

    2013-01-01

    Biological systems that build transport networks, such as trail-laying ants and the slime mould Physarum, can be described in terms of reinforced random walks. In a reinforced random walk, the route taken by ‘walking’ particles depends on the previous routes of other particles. Here, we present a novel form of random walk in which the flow of particles provides this reinforcement. Starting from an analogy between electrical networks and random walks, we show how to include current reinforcement. We demonstrate that current-reinforcement results in particles converging on the optimal solution of shortest path transport problems, and avoids the self-reinforcing loops seen in standard density-based reinforcement models. We further develop a variant of the model that is biologically realistic, in the sense that the particles can be identified as ants and their measured density corresponds to those observed in maze-solving experiments on Argentine ants. For network formation, we identify the importance of nonlinear current reinforcement in producing networks that optimize both network maintenance and travel times. Other than ant trail formation, these random walks are also closely related to other biological systems, such as blood vessels and neuronal networks, which involve the transport of materials or information. We argue that current reinforcement is likely to be a common mechanism in a range of systems where network construction is observed. PMID:23269849

  1. Quantum walks on a circle with optomechanical systems

    NASA Astrophysics Data System (ADS)

    Moqadam, Jalil Khatibi; Portugal, Renato; de Oliveira, Marcos Cesar

    2015-10-01

    We propose an implementation of a quantum walk on a circle in an optomechanical system by encoding the walker on the phase space of a radiation field and the coin on a two-level state of a mechanical resonator. The dynamics of the system is obtained by applying Suzuki-Trotter decomposition. We numerically show that the system displays typical behaviors of quantum walks, namely the probability distribution evolves ballistically and the standard deviation of the phase distribution is linearly proportional to the number of steps. We also analyze the effects of decoherence by using the phase-damping channel on the coin space, showing the possibility to implement the quantum walk with present-day technology.

  2. A Walk to the Well.

    ERIC Educational Resources Information Center

    Weir, Phil

    1994-01-01

    During a walk, an outdoor education teacher reflects on the status of outdoor education in Ottawa (Canada) and importance of maintaining a close relationship with nature. He looks for signs of an old log home site, observes a hawk's flight, discovers remains of a plastic bag in an owl pellet, and realizes that everyone is working on survival. (LP)

  3. Walking Tips for Older Adults

    MedlinePlus

    ... the most ppular form of exercise among older adults and it's a great choice. What can walking do for you? strengthen muscles help prevent weight gain lower risks of heart disease, stroke, diabetes, and osteoporosis improve balance lower the likelihood of falling If ...

  4. Successful Statewide Walking Program Websites

    ERIC Educational Resources Information Center

    Teran, Bianca Maria; Hongu, Nobuko

    2012-01-01

    Statewide Extension walking programs are making an effort to increase physical activity levels in America. An investigation of all 20 of these programs revealed that 14 use websites as marketing and educational tools, which could prove useful as the popularity of Internet communities continues to grow. Website usability information and an analysis…

  5. Behavior Management by Walking Around

    ERIC Educational Resources Information Center

    Boardman, Randolph M.

    2004-01-01

    An emerging concept from the field of business is to manage organizations by wandering around and engaging staff and consumers in informal interactions. The author extends these ideas to settings serving children and youth. In the best seller, In Search of Excellence, Peters and Waterman (1982) introduced Management by Walking Around (MBWA) as an…

  6. Walk around the Block Curriculum.

    ERIC Educational Resources Information Center

    Center for Understanding the Built Environment, Prairie Village, KS.

    This curriculum packet contains two teacher-developed lesson plans for upper elementary students focusing on the built environment. The first lesson plan, "The Built Environment--An Integrating Theme" (Liesa Schroeder), offers suggestions for developing a walking tour around the school neighborhood, a historic area, or a city square. It…

  7. Walking to Save a County.

    ERIC Educational Resources Information Center

    Slotnick, Karen

    1981-01-01

    Describes the 10-year history and accomplishments of the Walk to Save the County which has preserved more than 400 acres of Onondaga County, New York. Outlines organizational structure, promotional strategies, awards, and educational opportunities involved in this annual fund-raising hike by third- through eighth-grade students. (NEC)

  8. KidsWalk-to-School: A Guide To Promote Walking to School.

    ERIC Educational Resources Information Center

    Center for Chronic Disease Prevention and Health Promotion (DHHS/CDC), Atlanta, GA.

    This guide encourages people to create safe walking and biking routes to school, promoting four issues: physically active travel, safe and walkable routes to school, crime prevention, and health environments. The chapters include: "KidsWalk-to-School: A Guide to Promote Walking to School" (Is there a solution? Why is walking to school important?…

  9. Walking pattern classification and walking distance estimation algorithms using gait phase information.

    PubMed

    Wang, Jeen-Shing; Lin, Che-Wei; Yang, Ya-Ting C; Ho, Yu-Jen

    2012-10-01

    This paper presents a walking pattern classification and a walking distance estimation algorithm using gait phase information. A gait phase information retrieval algorithm was developed to analyze the duration of the phases in a gait cycle (i.e., stance, push-off, swing, and heel-strike phases). Based on the gait phase information, a decision tree based on the relations between gait phases was constructed for classifying three different walking patterns (level walking, walking upstairs, and walking downstairs). Gait phase information was also used for developing a walking distance estimation algorithm. The walking distance estimation algorithm consists of the processes of step count and step length estimation. The proposed walking pattern classification and walking distance estimation algorithm have been validated by a series of experiments. The accuracy of the proposed walking pattern classification was 98.87%, 95.45%, and 95.00% for level walking, walking upstairs, and walking downstairs, respectively. The accuracy of the proposed walking distance estimation algorithm was 96.42% over a walking distance.

  10. Dynamics of longitudinal arch support in relation to walking speed: contribution of the plantar aponeurosis.

    PubMed

    Caravaggi, Paolo; Pataky, Todd; Günther, Michael; Savage, Russell; Crompton, Robin

    2010-09-01

    The plantar aponeurosis (PA), in spanning the whole length of the plantar aspect of the foot, is clearly identified as one of the key structures that is likely to affect compliance and stability of the longitudinal arch. A recent study performed in our laboratory showed that tension/elongation in the PA can be predicted from the kinematics of the segments to which the PA is attached. In the present investigation, stereophotogrammetry and inverse kinematics were employed to shed light on the mechanics of the longitudinal arch and its main passive stabilizer, the PA, in relation to walking speed. When compared with a neutral unloaded position, the medial longitudinal arch underwent greater collapse during the weight-acceptance phase of stance at higher walking speed (0.1 degrees +/-1.9 degrees in slow walking; 0.9 degrees +/-2.6 degrees in fast walking; P = 0.0368). During late stance the arch was higher (3.4 degrees +/-3.1 degrees in slow walking; 2.8 degrees +/-2.7 degrees in fast walking; P = 0.0227) and the metatarsophalangeal joints more dorsiflexed (e.g. at the first metatarsophalangeal joint, 52 degrees +/-5 degrees in slow walking; 64 degrees +/-4 degrees in fast walking; P < 0.001) during fast walking. Early-stance tension in the PA increased with speed, whereas maximum tension during late stance did not seem to be significantly affected by walking speed. Although, on the one hand, these results give evidence for the existence of a pre-heel-strike, speed-dependent, arch-stiffening mechanism, on the other hand they suggest that augmentation of arch height in late stance is enhanced by higher forces exerted by the intrinsic muscles on the plantar aspect of the foot when walking at faster speeds.

  11. Developmental Continuity? Crawling, Cruising, and Walking

    ERIC Educational Resources Information Center

    Adolph, Karen E.; Berger, Sarah E.; Leo, Andrew J.

    2011-01-01

    This research examined developmental continuity between "cruising" (moving sideways holding onto furniture for support) and walking. Because cruising and walking involve locomotion in an upright posture, researchers have assumed that cruising is functionally related to walking. Study 1 showed that most infants crawl and cruise concurrently prior…

  12. Generalized Open Quantum Walks on Apollonian Networks

    PubMed Central

    Pawela, Łukasz; Gawron, Piotr; Miszczak, Jarosław Adam; Sadowski, Przemysław

    2015-01-01

    We introduce the model of generalized open quantum walks on networks using the Transition Operation Matrices formalism. We focus our analysis on the mean first passage time and the average return time in Apollonian networks. These results differ significantly from a classical walk on these networks. We show a comparison of the classical and quantum behaviour of walks on these networks. PMID:26177452

  13. Interindividual differences in H reflex modulation during normal walking.

    PubMed

    Simonsen, Erik B; Dyhre-Poulsen, Poul; Alkjaer, Tine; Aagaard, Per; Magnusson, S Peter

    2002-01-01

    Based on previous studies, at least two different types of soleus Hoffmann (H) reflex modulation were likely to be found during normal human walking. Accordingly, the aim of the present study was to identify different patterns of modulation of the soleus H reflex and to examine whether or not subjects with different H reflex modulation would exhibit different walking mechanics and different EMG activity. Fifteen subjects walked across two force platforms at 4.5 km/h (+/-10%) while the movements were recorded on video. The soleus H reflex and EMG activity were recorded separately during treadmill walking at 4.5 km/h. Using a two-dimensional analysis joint angles, angular velocities, accelerations, linear velocities and accelerations were calculated, and net joint moments about the ankle, knee and hip joint were computed by inverse dynamics from the video and force plate data. Six subjects (group S) showed a suppressed H reflex during the swing phase, and 9 subjects (group LS) showed increasing reflex excitability during the swing phase. The plantar flexor dominated moment about the ankle joint was greater for group LS. In contrast, the extensor dominated moment about the knee joint was greater for the S group. The hip joint moment was similar for the groups. The EMG activity in the vastus lateralis and anterior tibial muscles was greater prior to heel strike for the S group. These data indicate that human walking exhibits at least two different motor patterns as evaluated by gating of afferent input to the spinal cord, by EMG activity and by walking mechanics. Increasing H reflex excitability during the swing phase appears to protect the subject against unexpected perturbations around heel strike by a facilitated stretch reflex in the triceps surae muscle. Alternatively, in subjects with a suppressed H reflex in the swing phase the knee joint extensors seem to form the primary protection around heel strike.

  14. [The use of bi-pedical rotatory door muscle-skin flap reconstruction in extended partial laryngectomy for late (T3 and T4) glottic cancer].

    PubMed

    Zhao, S; Sun, X; Lu, S

    1998-12-01

    The purpose is to radical treatment for late glottic cancer by surgery, to restore the essential function of the larynx, 62 patients of late (T3 and T4) glottic cancer were treated by extended vertical partial and subtotal laryngectomy. At the same time, an appropriate method of reconstruction of laryngeal function by bi-pedical rotatory door muscle-skin flap was presented. The decannulation rate was 87.1% and 85.0% cases enjoyed satisfactory voice. All cases resumed normal mouth-food-taking. The conclusion is that selective treated with extended partial laryngectomy is effective for T3 and T4 glottic cancer.

  15. Stability and Control of Constrained Three-Dimensional Robotic Systems with Application to Bipedal Postural Movements

    NASA Astrophysics Data System (ADS)

    Kallel, Hichem

    Three classes of postural adjustments are investigated with the view of a better understanding of the control mechanisms involved in human movement. The control mechanisms and responses of human or computer models to deliberately induced disturbances in postural adjustments are the focus of this dissertation. The classes of postural adjustments are automatic adjustments, (i.e. adjustments not involving voluntary deliberate movement), adjustments involving imposition of constraints for the purpose of maintaining support forces, and adjustments involving violation and imposition of constraints for the purpose of maintaining balance, (i.e. taking one or more steps). For each class, based on the physiological attributes of the control mechanisms in human movements, control strategies are developed to synthesize the desired postural response. The control strategies involve position and velocity feedback control, on line relegation control, and pre-stored trajectory control. Stability analysis for constrained and unconstrained maneuvers is carried out based on Lyapunov stability theorems. The analysis is based on multi-segment biped robots. Depending on the class of postural adjustments, different biped models are developed. An eight-segment three dimensional biped model is formulated for the study of automatic adjustments and adjustments for balance. For the study of adjustments for support, a four segment lateral biped model is considered. Muscle synergies in automatic adjustments are analyzed based on a three link six muscle system. The muscle synergies considered involve minimal muscle number and muscle co-activation. The role of active and passive feedback in these automatic adjustments is investigated based on the specified stiffness and damping of the segments. The effectiveness of the control strategies and the role of muscle synergies in automatic adjustments are demonstrated by a number of digital computer simulations.

  16. Gait velocity and walking distance to predict community walking after stroke.

    PubMed

    An, SeungHeon; Lee, YunBok; Shin, HyeonHui; Lee, GyuChang

    2015-12-01

    Gait speed and walking distance were evaluated as predictors for levels of community walking after stroke. In this study, 103 stroke survivors were identified as limited (n = 67) or independent community walkers (n = 36). Ten meter and six min walk tests were used to measure gait speed and walking distance, respectively. The discriminative properties of gait speed and walking distance for community walking were investigated using receiver operating characteristic curves. Cut-off values of 0.87 m/s for community walking gait speed for walking distance had positive predictive values of 65% and 55%, respectively. The negative predictive value ranged from 89% for gait speed to 79% for walking distance. Gait speed and walking distance showed significant differences between limited and independent community walking. Gait speed was more significantly related to community walking than walking distance. The results of this study suggest that gait speed is a better predictor for community walking than walking distance in moderately affected post-stroke survivors.

  17. Directed random walk with random restarts: The Sisyphus random walk

    NASA Astrophysics Data System (ADS)

    Montero, Miquel; Villarroel, Javier

    2016-09-01

    In this paper we consider a particular version of the random walk with restarts: random reset events which suddenly bring the system to the starting value. We analyze its relevant statistical properties, like the transition probability, and show how an equilibrium state appears. Formulas for the first-passage time, high-water marks, and other extreme statistics are also derived; we consider counting problems naturally associated with the system. Finally we indicate feasible generalizations useful for interpreting different physical effects.

  18. Directed random walk with random restarts: The Sisyphus random walk.

    PubMed

    Montero, Miquel; Villarroel, Javier

    2016-09-01

    In this paper we consider a particular version of the random walk with restarts: random reset events which suddenly bring the system to the starting value. We analyze its relevant statistical properties, like the transition probability, and show how an equilibrium state appears. Formulas for the first-passage time, high-water marks, and other extreme statistics are also derived; we consider counting problems naturally associated with the system. Finally we indicate feasible generalizations useful for interpreting different physical effects.

  19. Fractional diffusion equation for an n-dimensional correlated Lévy walk.

    PubMed

    Taylor-King, Jake P; Klages, Rainer; Fedotov, Sergei; Van Gorder, Robert A

    2016-07-01

    Lévy walks define a fundamental concept in random walk theory that allows one to model diffusive spreading faster than Brownian motion. They have many applications across different disciplines. However, so far the derivation of a diffusion equation for an n-dimensional correlated Lévy walk remained elusive. Starting from a fractional Klein-Kramers equation here we use a moment method combined with a Cattaneo approximation to derive a fractional diffusion equation for superdiffusive short-range auto-correlated Lévy walks in the large time limit, and we solve it. Our derivation discloses different dynamical mechanisms leading to correlated Lévy walk diffusion in terms of quantities that can be measured experimentally.

  20. Assessing Walking Strategies Using Insole Pressure Sensors for Stroke Survivors

    PubMed Central

    Munoz-Organero, Mario; Parker, Jack; Powell, Lauren; Mawson, Susan

    2016-01-01

    Insole pressure sensors capture the different forces exercised over the different parts of the sole when performing tasks standing up such as walking. Using data analysis and machine learning techniques, common patterns and strategies from different users to achieve different tasks can be automatically extracted. In this paper, we present the results obtained for the automatic detection of different strategies used by stroke survivors when walking as integrated into an Information Communication Technology (ICT) enhanced Personalised Self-Management Rehabilitation System (PSMrS) for stroke rehabilitation. Fourteen stroke survivors and 10 healthy controls have participated in the experiment by walking six times a distance from chair to chair of approximately 10 m long. The Rivermead Mobility Index was used to assess the functional ability of each individual in the stroke survivor group. Several walking strategies are studied based on data gathered from insole pressure sensors and patterns found in stroke survivor patients are compared with average patterns found in healthy control users. A mechanism to automatically estimate a mobility index based on the similarity of the pressure patterns to a stereotyped stride is also used. Both data gathered from stroke survivors and healthy controls are used to evaluate the proposed mechanisms. The output of trained algorithms is applied to the PSMrS system to provide feedback on gait quality enabling stroke survivors to self-manage their rehabilitation. PMID:27706077

  1. Walking dynamics are symmetric (enough)

    PubMed Central

    Ankaralı, M. Mert; Sefati, Shahin; Madhav, Manu S.; Long, Andrew; Bastian, Amy J.; Cowan, Noah J.

    2015-01-01

    Many biological phenomena such as locomotion, circadian cycles and breathing are rhythmic in nature and can be modelled as rhythmic dynamical systems. Dynamical systems modelling often involves neglecting certain characteristics of a physical system as a modelling convenience. For example, human locomotion is frequently treated as symmetric about the sagittal plane. In this work, we test this assumption by examining human walking dynamics around the steady state (limit-cycle). Here, we adapt statistical cross-validation in order to examine whether there are statistically significant asymmetries and, even if so, test the consequences of assuming bilateral symmetry anyway. Indeed, we identify significant asymmetries in the dynamics of human walking, but nevertheless show that ignoring these asymmetries results in a more consistent and predictive model. In general, neglecting evident characteristics of a system can be more than a modelling convenience—it can produce a better model. PMID:26236826

  2. The six determinants of gait and the inverted pendulum analogy: A dynamic walking perspective.

    PubMed

    Kuo, Arthur D

    2007-08-01

    We examine two prevailing, yet surprisingly contradictory, theories of human walking. The six determinants of gait are kinematic features of gait proposed to minimize the energetic cost of locomotion by reducing the vertical displacement of the body center of mass (COM). The inverted pendulum analogy proposes that it is beneficial for the stance leg to behave like a pendulum, prescribing a more circular arc, rather than a horizontal path, for the COM. Recent literature presents evidence against the six determinants theory, and a simple mathematical analysis shows that a flattened COM trajectory in fact increases muscle work and force requirements. A similar analysis shows that the inverted pendulum fares better, but paradoxically predicts no work or force requirements. The paradox may be resolved through the dynamic walking approach, which refers to periodic gaits produced almost entirely by the dynamics of the limbs alone. Demonstrations include passive dynamic walking machines that descend a gentle slope, and active dynamic walking robots that walk on level ground. Dynamic walking takes advantage of the inverted pendulum mechanism, but requires mechanical work to transition from one pendular stance leg to the next. We show how the step-to-step transition is an unavoidable energetic consequence of the inverted pendulum gait, and gives rise to predictions that are experimentally testable on humans and machines. The dynamic walking approach provides a new perspective, focusing on mechanical work rather than the kinematics or forces of gait. It is helpful for explaining human gait features in a constructive rather than interpretive manner.

  3. Walking to a multisensory beat.

    PubMed

    Roy, Charlotte; Lagarde, Julien; Dotov, Dobromir; Dalla Bella, Simone

    2017-04-01

    Living in a complex and multisensory environment demands constant interaction between perception and action. In everyday life it is common to combine efficiently simultaneous signals coming from different modalities. There is evidence of a multisensory benefit in a variety of laboratory tasks (temporal judgement, reaction time tasks). It is less clear if this effect extends to ecological tasks, such as walking. Furthermore, benefits of multimodal stimulation are linked to temporal properties such as the temporal window of integration and temporal recalibration. These properties have been examined in tasks involving single, non-repeating stimulus presentations. Here we investigate the same temporal properties in the context of a rhythmic task, namely audio-tactile stimulation during walking. The effect of audio-tactile rhythmic cues on gait variability and the ability to synchronize to the cues was studied in young adults. Participants walked with rhythmic cues presented at different stimulus-onset asynchronies. We observed a multisensory benefit by comparing audio-tactile to unimodal stimulation. Moreover, both the temporal window of integration and temporal recalibration mediated the response to multimodal stimulation. In sum, rhythmic behaviours obey the same principles as temporal discrimination and detection behaviours and thus can also benefit from multimodal stimulation.

  4. Humans robustly adhere to dynamic walking principles by harnessing motor abundance to control forces.

    PubMed

    Toney, Megan E; Chang, Young-Hui

    2013-12-01

    Human walking dynamics are typically framed in the context of mechanics and energetics rather than in the context of neuromuscular control. Dynamic walking principles describe one helpful theoretical approach to characterize efficient human walking mechanics over many steps. These principles do not, however, address how such walking is controlled step-by-step despite small perturbations from natural variability. Our purpose was to identify neuromechanical control strategies used to achieve consistent and robust locomotion despite natural step-to-step force variability. We used the uncontrolled manifold concept to test whether human walkers select combinations of leading and trailing leg-forces that generate equivalent net-force trajectories during step-to-step transitions. Subjects selected leading and trailing leg-force combinations that generated consistent vertical net-force during step-to-step transitions. We conclude that vertical net-force is an implicit neuromechanical goal of human walking whose trajectory is stabilized for consistent step-to-step transitions, which agrees with the principles of dynamic walking. In contrast, inter-leg-force combinations modulated anterior-posterior net-force trajectories with each step to maintain constant walking speed, indicating that a consistent anterior-posterior net-force trajectory is not an implicit goal of walking. For a more complete picture of hierarchical locomotor control, we also tested whether each individual leg-force trajectory was stabilized through the selection of leg-force equivalent joint-torque combinations. The observed consistent vertical net-force trajectory was achieved primarily through the selection of joint-torque combinations that modulated trailing leg-force during step-to-step transitions. We conclude that humans achieve robust walking by harnessing inherent motor abundance of the joints and legs to maintain consistent step-by-step walking performance.

  5. Segment lengths influence hill walking strategies.

    PubMed

    Sheehan, Riley C; Gottschall, Jinger S

    2014-08-22

    Segment lengths are known to influence walking kinematics and muscle activity patterns. During level walking at the same speed, taller individuals take longer, slower strides than shorter individuals. Based on this, we sought to determine if segment lengths also influenced hill walking strategies. We hypothesized that individuals with longer segments would display more joint flexion going uphill and more extension going downhill as well as greater lateral gastrocnemius and vastus lateralis activity in both directions. Twenty young adults of varying heights (below 155 cm to above 188 cm) walked at 1.25 m/s on a level treadmill as well as 6° and 12° up and downhill slopes while we collected kinematic and muscle activity data. Subsequently, we ran linear regressions for each of the variables with height, leg, thigh, and shank length. Despite our population having twice the anthropometric variability, the level and hill walking patterns matched closely with previous studies. While there were significant differences between level and hill walking, there were few hill walking variables that were correlated with segment length. In support of our hypothesis, taller individuals had greater knee and ankle flexion during uphill walking. However, the majority of the correlations were between tibialis anterior and lateral gastrocnemius activities and shank length. Contrary to our hypothesis, relative step length and muscle activity decreased with segment length, specifically shank length. In summary, it appears that individuals with shorter segments require greater propulsion and toe clearance during uphill walking as well as greater braking and stability during downhill walking.

  6. Use of formative research and social network theory to develop a group walking intervention: Sumter County on the Move!

    PubMed

    Forthofer, Melinda; Burroughs-Girardi, Ericka; Stoisor-Olsson, Liliana; Wilcox, Sara; Sharpe, Patricia A; Pekuri, Linda M

    2016-10-01

    Although social support is a frequently cited enabler of physical activity, few studies have examined how to harness social support in interventions. This paper describes community-based formative research to design a walking program for mobilizing naturally occurring social networks to support increases in walking behavior. Focus group methods were used to engage community members in discussions about desired walking program features. The research was conducted with underserved communities in Sumter County, South Carolina. The majority of focus group participants were women (76%) and African American (92%). Several important themes emerged from the focus group results regarding attitudes toward walking, facilitators of and barriers to walking, ideal walking program characteristics, and strategies for encouraging community members to walk. Most noteably, the role of existing social networks as a supportive influence on physical activity was a recurring theme in our formative research and a gap in the existing evidence base. The resulting walking program focused on strategies for mobilizing, supporting and reinforcing existing social networks as mechanisms for increasing walking. Our approach to linking theory, empirical evidence and community-based formative research for the development of a walking intervention offers an example for practitioners developing intervention strategies for a wide range of behaviors.

  7. Quantum walks with random phase shifts

    SciTech Connect

    Kosik, Jozef; Buzek, Vladimir; Hillery, Mark

    2006-08-15

    We investigate quantum walks in multiple dimensions with different quantum coins. We augment the model by assuming that at each step the amplitudes of the coin state are multiplied by random phases. This model enables us to study in detail the role of decoherence in quantum walks and to investigate the quantum-to-classical transition. We also provide classical analog of the quantum random walks studied. Interestingly enough, it turns out that the classical counterparts of some quantum random walks are classical random walks with a memory and biased coin. In addition random phase shifts 'simplify' the dynamics (the cross-interference terms of different paths vanish on average) and enable us to give a compact formula for the dispersion of such walks.

  8. Leg joint function during walking acceleration and deceleration.

    PubMed

    Qiao, Mu; Jindrich, Devin L

    2016-01-04

    Although constant-average-velocity walking has been extensively studied, less is known about walking maneuvers that change speed. We investigated the function of individual leg joints when humans walked at a constant speed, accelerated or decelerated. We hypothesized that leg joints make different functional contributions to maneuvers. Specifically, we hypothesized that the hip generates positive mechanical work (acting like a "motor"), the knee generates little mechanical work (acting like a "strut"), and the ankle absorbs energy during the first half of stance and generates energy during the second half (consistent with "spring"-like function). We recorded full body kinematics and kinetics, used inverse dynamics to estimate net joint moments, and decomposed joint function into strut-, motor-, damper-, and spring-like components using indices based on net joint work. Although overall leg mechanics were primarily strut-like, individual joints did not act as struts during stance. The hip functioned as a power generating "motor," and ankle function was consistent with spring-like behavior. Even though net knee work was small, the knee did not behave solely as a strut but also showed motor-, and damper-like function. Acceleration involved increased motor-like function of the hip and ankle. Deceleration involved decreased hip motor-like function and ankle spring-like function and increased damping at the knee and ankle. Changes to joint mechanical work were primarily due to changes in joint angular displacements and not net moments. Overall, joints maintain different functional roles during unsteady locomotion.

  9. Inference of random walk models to describe leukocyte migration

    NASA Astrophysics Data System (ADS)

    Jones, Phoebe J. M.; Sim, Aaron; Taylor, Harriet B.; Bugeon, Laurence; Dallman, Magaret J.; Pereira, Bernard; Stumpf, Michael P. H.; Liepe, Juliane

    2015-12-01

    While the majority of cells in an organism are static and remain relatively immobile in their tissue, migrating cells occur commonly during developmental processes and are crucial for a functioning immune response. The mode of migration has been described in terms of various types of random walks. To understand the details of the migratory behaviour we rely on mathematical models and their calibration to experimental data. Here we propose an approximate Bayesian inference scheme to calibrate a class of random walk models characterized by a specific, parametric particle re-orientation mechanism to observed trajectory data. We elaborate the concept of transition matrices (TMs) to detect random walk patterns and determine a statistic to quantify these TM to make them applicable for inference schemes. We apply the developed pipeline to in vivo trajectory data of macrophages and neutrophils, extracted from zebrafish that had undergone tail transection. We find that macrophage and neutrophils exhibit very distinct biased persistent random walk patterns, where the strengths of the persistence and bias are spatio-temporally regulated. Furthermore, the movement of macrophages is far less persistent than that of neutrophils in response to wounding.

  10. The influence of a user-adaptive prosthetic knee across varying walking speeds: A randomized cross-over trial.

    PubMed

    Prinsen, E C; Nederhand, M J; Sveinsdóttir, H S; Prins, M R; van der Meer, F; Koopman, H F J M; Rietman, J S

    2017-01-01

    Previously conducted trials comparing the gait pattern of individuals with a transfemoral amputation using a user-adaptive and a non-microprocessor-controlled prosthetic knee (NMPK) found mixed and conflicting results. Few trials, however, have compared user-adaptive to non-adaptive prosthetic knees across different walking speeds. Because of the ability of variable damping, the effect of user-adaptive knees might be more pronounced at lower or higher walking speeds. Our aim was to compare the Rheo Knee II (a microprocessor-controlled prosthetic knee) with NMPKs across varying walking speeds. In addition, we studied compensatory mechanisms associated with non-optimal prosthetic knee kinematics, such as intact ankle vaulting and vertical acceleration of the pelvis. Nine persons with a transfemoral amputation or knee disarticulation were included and measured with their own NMPK and with the Rheo Knee II. Measurements were performed at three walking speeds: preferred walking speed, 70% preferred walking speed and 115% preferred walking speed. No differences on peak prosthetic knee flexion during swing were found between prosthetic knee conditions. In addition, prosthetic knee flexion increased significantly with walking speed for both prosthetic knee conditions. At 70% preferred walking speed we found that vaulting of the intact ankle was significantly decreased while walking with the Rheo Knee II compared to the NMPK condition (P=0.028). We did not find differences in peak vertical acceleration of the pelvis during initial and mid-swing of the prosthetic leg. In conclusion, comparison of walking with the Rheo Knee II to walking with a NMPK across different walking speeds showed limited differences in gait parameters.

  11. Quantum walk with one variable absorbing boundary

    NASA Astrophysics Data System (ADS)

    Wang, Feiran; Zhang, Pei; Wang, Yunlong; Liu, Ruifeng; Gao, Hong; Li, Fuli

    2017-01-01

    Quantum walks constitute a promising ingredient in the research on quantum algorithms; consequently, exploring different types of quantum walks is of great significance for quantum information and quantum computation. In this study, we investigate the progress of quantum walks with a variable absorbing boundary and provide an analytical solution for the escape probability (the probability of a walker that is not absorbed by the boundary). We simulate the behavior of escape probability under different conditions, including the reflection coefficient, boundary location, and initial state. Moreover, it is also meaningful to extend our research to the situation of continuous-time and high-dimensional quantum walks.

  12. Cell phones change the way we walk.

    PubMed

    Lamberg, Eric M; Muratori, Lisa M

    2012-04-01

    Cell phone use among pedestrians leads to increased cognitive distraction, reduced situation awareness and increases in unsafe behavior. Performing a dual-task, such as talking or texting with a cell phone while walking, may interfere with working memory and result in walking errors. At baseline, thirty-three participants visually located a target 8m ahead; then vision was occluded and they were instructed to walk to the remembered target. One week later participants were assigned to either walk, walk while talking on a cell phone, or walk while texting on a cell phone toward the target with vision occluded. Duration and final location of the heel were noted. Linear distance traveled, lateral angular deviation from the start line, and gait velocity were derived. Changes from baseline to testing were analyzed with paired t-tests. Participants engaged in cell phone use presented with significant reductions in gait velocity (texting: 33% reduction, p=0.01; talking: 16% reduction, p=0.02). Moreover, participants who were texting while walking demonstrated a 61% increase in lateral deviation (p=0.04) and 13% increase in linear distance traveled (p=0.03). These results suggest that the dual-task of walking while using a cell phone impacts executive function and working memory and influences gait to such a degree that it may compromise safety. Importantly, comparison of the two cell phone conditions demonstrates texting creates a significantly greater interference effect on walking than talking on a cell phone.

  13. Visual Acuity During Treadmill Walking

    NASA Technical Reports Server (NTRS)

    Peters, B. T.; Brady, R.; vanEmmerik, R. E. A.; Bloomberg, Jacob J.

    2006-01-01

    An awareness of the physical world is essential for successful navigation through the environment. Vision is the means by which this awareness is made possible for most people. However, without adequate compensation, the movements of the body during walking could impair vision. Previous research has shown how the eyes, head and trunk movements are coordinated to provide the compensation necessary for clear vision, but the overall effectiveness of these coordinated movements is unknown. The goal of the research presented here was to provide a direct measure of visual performance during locomotion, while also investigating the degree to which coordinated head and body movements can be altered to facilitate the goal of seeing clearly.

  14. Quantum Walks with Encrypted Data

    NASA Astrophysics Data System (ADS)

    Rohde, Peter P.; Fitzsimons, Joseph F.; Gilchrist, Alexei

    2012-10-01

    In the setting of networked computation, data security can be a significant concern. Here we consider the problem of allowing a server to remotely manipulate client supplied data, in such a way that both the information obtained by the client about the server’s operation and the information obtained by the server about the client’s data are significantly limited. We present a protocol for achieving such functionality in two closely related models of restricted quantum computation—the boson sampling and quantum walk models. Because of the limited technological requirements of the boson scattering model, small scale implementations of this technique are feasible with present-day technology.

  15. fNIRS Study of Walking and Walking While Talking in Young and Old Individuals

    PubMed Central

    Mahoney, Jeannette R.; Izzetoglu, Meltem; Izzetoglu, Kurtulus; Onaral, Banu; Verghese, Joe

    2011-01-01

    Background. Evidence suggests that gait is influenced by higher order cognitive and cortical control mechanisms. However, less is known about the functional correlates of cortical control of gait. Methods. Using functional near-infrared spectroscopy, the current study was designed to evaluate whether increased activations in the prefrontal cortex (PFC) were detected in walking while talking (WWT) compared with normal pace walking (NW) in 11 young and 11 old participants. Specifically, the following two hypotheses were evaluated: (a) Activation in the PFC would be increased in WWT compared with NW. (b) The increase in activation in the PFC during WWT as compared with NW would be greater in young than in old participants. Results. Separate linear mixed effects models with age as the two-level between-subject factor, walking condition (NW vs WWT) as the two-level repeated within-subject factor, and HbO2 levels in each of the 16 functional near-infrared spectroscopy channels as the dependent measure revealed significant task effects in 14 channels, indicating a robust bilateral increased activation in the PFC in WWT compared with NW. Furthermore, the group-by-task interaction was significant in 11 channels with young participants showing greater WWT-related increase in HbO2 levels compared with the old participants. Conclusions. This study provided the first evidence that oxygenation levels are increased in the PFC during WWT compared with NW in young and old individuals. This effect was modified by age suggesting that older adults may underutilize the PFC in attention-demanding locomotion tasks. PMID:21593013

  16. Effects of walking velocity on vertical head and body movements during locomotion

    NASA Technical Reports Server (NTRS)

    Hirasaki, E.; Moore, S. T.; Raphan, T.; Cohen, B.

    1999-01-01

    Trunk and head movements were characterized over a wide range of walking speeds to determine the relationship between stride length, stepping frequency, vertical head translation, pitch rotation of the head, and pitch trunk rotation as a function of gait velocity. Subjects (26-44 years old) walked on a linear treadmill at velocities of 0.6-2.2 m/s. The head and trunk were modeled as rigid bodies, and rotation and translation were determined using a video-based motion analysis system. At walking speeds up to 1.2 m/s there was little head pitch movement in space, and the head pitch relative to the trunk was compensatory for trunk pitch. As walking velocity increased, trunk pitch remained approximately invariant, but a significant head translation developed. This head translation induced compensatory head pitch in space, which tended to point the head at a fixed point in front of the subject that remained approximately invariant with regard to walking speed. The predominant frequency of head translation and rotation was restricted to a narrow range from 1.4 Hz at 0.6 m/s to 2.5 Hz at 2.2 m/s. Within the range of 0.8-1.8 m/s, subjects tended to increase their stride length rather than step frequency to walk faster, maintaining the predominant frequency of head movement at close to 2.0 Hz. At walking speeds above 1.2 m/s, head pitch in space was highly coherent with, and compensatory for, vertical head translation. In the range 1.2-1.8 m/s, the power spectrum of vertical head translation was the most highly tuned, and the relationship between walking speed and head and trunk movements was the most linear. We define this as an optimal range of walking velocity with regard to head-trunk coordination. The coordination of head and trunk movement was less coherent at walking velocities below 1.2 m/s and above 1.8 m/s. These results suggest that two mechanisms are utilized to maintain a stable head fixation distance over the optimal range of walking velocities. The relative

  17. Development of a Power Assist System of a Walking Chair Based on Human Arm Characteristics

    NASA Astrophysics Data System (ADS)

    Wu, Yunfeng; Nakamura, Hitoshi; Takeda, Yukio; Higuchi, Masaru; Sugimoto, Koichi

    In this paper, design of control system and power combination mechanism of a power assist system of the walking chair was discussed based on kinetostatic characteristics of human arm. The walking chair is a welfare walking machine which is an alternative vehicle of the wheelchair, and expected to be driven by user's cranking operation with assisting actuator. To efficiently utilize user power as much as possible for long locomotion without giving much fatigue to the user while providing comfortable driving feeling to the user, the human arm characteristics were taken into consideration. Kinetostatic characteristics of the human arm were experimentally investigated for its modeling. This model was applied to the design of mechanism and control system of the power assist system of the walking chair, and design parameters were determined for achieving comfortable driving feeling and efficient utilization of user power.

  18. Hydrodynamic quantum analogues: droplets walking on the impossible pilot wave

    NASA Astrophysics Data System (ADS)

    Bush, John

    2012-11-01

    Yves Couder and coworkers have demonstrated that droplets walking on a vibrating fluid bath exhibit several features previously thought to be peculiar to the microscopic quantum realm. We explore the connection between this hydrodynamic system and the pilot-wave theory of quantum mechanics proposed by de Broglie and extended by workers in the field of stochastic electrodynamics. Critical common features of these ostensibly disparate systems are identified, and quantitative differences noted. The author thanks the NSF.

  19. IMU-based ambulatory walking speed estimation in constrained treadmill and overground walking.

    PubMed

    Yang, Shuozhi; Li, Qingguo

    2012-01-01

    This study evaluated the performance of a walking speed estimation system based on using an inertial measurement unit (IMU), a combination of accelerometers and gyroscopes. The walking speed estimation algorithm segments the walking sequence into individual stride cycles (two steps) based on the inverted pendulum-like behaviour of the stance leg during walking and it integrates the angular velocity and linear accelerations of the shank to determine the displacement of each stride. The evaluation was performed in both treadmill and overground walking experiments with various constraints on walking speed, step length and step frequency to provide a relatively comprehensive assessment of the system. Promising results were obtained in providing accurate and consistent walking speed/step length estimation in different walking conditions. An overall percentage root mean squared error (%RMSE) of 4.2 and 4.0% was achieved in treadmill and overground walking experiments, respectively. With an increasing interest in understanding human walking biomechanics, the IMU-based ambulatory system could provide a useful walking speed/step length measurement/control tool for constrained walking studies.

  20. Molecular motors: thermodynamics and the random walk.

    PubMed Central

    Thomas, N.; Imafuku, Y.; Tawada, K.

    2001-01-01

    The biochemical cycle of a molecular motor provides the essential link between its thermodynamics and kinetics. The thermodynamics of the cycle determine the motor's ability to perform mechanical work, whilst the kinetics of the cycle govern its stochastic behaviour. We concentrate here on tightly coupled, processive molecular motors, such as kinesin and myosin V, which hydrolyse one molecule of ATP per forward step. Thermodynamics require that, when such a motor pulls against a constant load f, the ratio of the forward and backward products of the rate constants for its cycle is exp [-(DeltaG + u(0)f)/kT], where -DeltaG is the free energy available from ATP hydrolysis and u(0) is the motor's step size. A hypothetical one-state motor can therefore act as a chemically driven ratchet executing a biased random walk. Treating this random walk as a diffusion problem, we calculate the forward velocity v and the diffusion coefficient D and we find that its randomness parameter r is determined solely by thermodynamics. However, real molecular motors pass through several states at each attachment site. They satisfy a modified diffusion equation that follows directly from the rate equations for the biochemical cycle and their effective diffusion coefficient is reduced to D-v(2)tau, where tau is the time-constant for the motor to reach the steady state. Hence, the randomness of multistate motors is reduced compared with the one-state case and can be used for determining tau. Our analysis therefore demonstrates the intimate relationship between the biochemical cycle, the force-velocity relation and the random motion of molecular motors. PMID:11600075

  1. Walking Performance: Correlation between Energy Cost of Walking and Walking Participation. New Statistical Approach Concerning Outcome Measurement

    PubMed Central

    Franceschini, Marco; Rampello, Anais; Agosti, Maurizio; Massucci, Maurizio; Bovolenta, Federica; Sale, Patrizio

    2013-01-01

    Walking ability, though important for quality of life and participation in social and economic activities, can be adversely affected by neurological disorders, such as Spinal Cord Injury, Stroke, Multiple Sclerosis or Traumatic Brain Injury. The aim of this study is to evaluate if the energy cost of walking (CW), in a mixed group of chronic patients with neurological diseases almost 6 months after discharge from rehabilitation wards, can predict the walking performance and any walking restriction on community activities, as indicated by Walking Handicap Scale categories (WHS). One hundred and seven subjects were included in the study, 31 suffering from Stroke, 26 from Spinal Cord Injury and 50 from Multiple Sclerosis. The multivariable binary logistical regression analysis has produced a statistical model with good characteristics of fit and good predictability. This model generated a cut-off value of.40, which enabled us to classify correctly the cases with a percentage of 85.0%. Our research reveal that, in our subjects, CW is the only predictor of the walking performance of in the community, to be compared with the score of WHS. We have been also identifying a cut-off value of CW cost, which makes a distinction between those who can walk in the community and those who cannot do it. In particular, these values could be used to predict the ability to walk in the community when discharged from the rehabilitation units, and to adjust the rehabilitative treatment to improve the performance. PMID:23468871

  2. Interface Reconstruction with Directional Walking

    SciTech Connect

    Yao, J

    2009-05-22

    Young's interface reconstruction with three-dimensional arbitrary mesh, in general, is rather tedious to implement compared to the case of a regular mesh. The main difficulty comes from the construction of a planar facet that bounds a certain volume inside a cell. Unlike the five basic configurations with a Cartesian mesh, there can be a great number of different configurations in the case of a general mesh. We represent a simple method that can derive the topology/geometry of the intersection of arbitrary planar objects in a uniform way. The method is based on a directional walking on the surface of objects, and links the intersection points with the paths of the walking naturally defining the intersection of objects. The method works in both two and three dimensions. The method does not take advantage of convexity, thus decomposition of an object is not necessary. Therefore, the solution with this method will have a reduced number of edges and less data storage, compared with methods that use shape decomposition. The treatment is general for arbitrary polyhedrons, and no look-up tables are needed. The same operation can easily be extended for curved geometry. The implementation of this new algorithm shall allow the interface reconstruction on an arbitrary mesh to be as simple as it is on a regular mesh. Furthermore, we exactly compute the integral of partial cell volume bounded by quadratic interface. Therefore, interface reconstruction with higher than second order accuracy can be achieved on an arbitrary mesh.

  3. Quantum walk on a cylinder

    NASA Astrophysics Data System (ADS)

    Bru, Luis A.; de Valcárcel, Germán J.; Di Molfetta, Giuseppe; Pérez, Armando; Roldán, Eugenio; Silva, Fernando

    2016-09-01

    We consider the two-dimensional alternate quantum walk on a cylinder. We concentrate on the study of the motion along the open dimension, in the spirit of looking at the closed coordinate as a small or "hidden" extra dimension. If one starts from localized initial conditions on the lattice, the dynamics of the quantum walk that is obtained after tracing out the small dimension shows the contribution of several components which can be understood from the study of the dispersion relations for this problem. In fact, these components originate from the contribution of the possible values of the quasimomentum in the closed dimension. In the continuous space-time limit, the different components manifest as a set of Dirac equations, with each quasimomentum providing the value of the corresponding mass. We briefly discuss the possible link of these ideas to the simulation of high-energy physical theories that include extra dimensions. Finally, entanglement between the coin and spatial degrees of freedom is studied, showing that the entanglement entropy clearly overcomes the value reached with only one spatial dimension.

  4. Walking activities and wear of prostheses.

    PubMed Central

    Seedhom, B B; Wallbridge, N C

    1985-01-01

    A study of the walking activities of 243 individuals was carried out. The individuals came from four different occupations and had an age range of 17-83 years. The survey carried out in this investigation showed surprisingly little correlation between variables such as age, height, and weight of individuals and their speed of walking, length of stride, or distance walked. Correlation matrices were obtained for the whole sample and then for each sex, showing similar trends. The most significant correlation was between the height of an individual and the length of the stride, and there was a lesser correlation between age and the number of steps walked by an individual per day. Further statistical analyses showed that males in manual occupations walked most and those in sedentary occupations walked least. On the other hand, in the female groups housewives seemed to walk least and those in technical occupations walked most. The average number of steps walked per day by a male individual for the whole sample was 9537; that for females was 9839. The corresponding distances walked per day were 6.7 and 6.5 km. The differences were not statistically significant. Predictions of wear of prosthetic components made of ultrahigh molecular weight polyethylene were made on the basis of the above data and other variables affecting wear, such as the weight of the subject and the area available for contact during walking. Charts have been constructed of the penetration of the metallic component into the plastic one for both hip knee prostheses, thus enabling predictions of the wear of the plastic components of these two most widely used prostheses. Owing to the wide ranging values of the variables used in making the predictions of wear, these latter should be regarded only as 'safe' first estimates. PMID:4083940

  5. Continuous detection of the self-initiated walking pre-movement state from EEG correlates without session-to-session recalibration

    NASA Astrophysics Data System (ADS)

    Ioana Sburlea, Andreea; Montesano, Luis; Minguez, Javier

    2015-06-01

    Objective. Brain-computer interfaces (BCI) as a rehabilitation tool have been used to restore functions in patients with motor impairments by actively involving the central nervous system and triggering prosthetic devices according to the detected pre-movement state. However, since EEG signals are highly variable between subjects and recording sessions, typically a BCI is calibrated at the beginning of each session. This process is inconvenient especially for patients suffering locomotor disabilities in maintaining a bipedal position for a longer time. This paper presents a continuous EEG decoder of a pre-movement state in self-initiated walking and the usage of this decoder from session to session without recalibrating. Approach. Ten healthy subjects performed a self-initiated walking task during three sessions, with an intersession interval of one week. The implementation of our continuous decoder is based on the combination of movement-related cortical potential (MRCP) and event-related desynchronization (ERD) features with sparse classification models. Main results. During intrasession our technique detects the pre-movement state with 70% accuracy. Moreover this decoder can be applied from session to session without recalibration, with a decrease in performance of about 4% on a one- or two-week intersession interval. Significance. Our detection model operates in a continuous manner, which makes it a straightforward asset for rehabilitation scenarios. By using both temporal and spectral information we attained higher detection rates than the ones obtained with the MRCP and ERD detection models, both during the intrasession and intersession conditions.

  6. Lower limb joint kinetics in walking: the role of industry recommended footwear.

    PubMed

    Keenan, Geoffrey S; Franz, Jason R; Dicharry, Jay; Della Croce, Ugo; Kerrigan, D Casey

    2011-03-01

    The effects of current athletic footwear on lower extremity biomechanics are unknown. The aim of this study was to examine the changes, if any, that occur in peak lower extremity net joint moments while walking in industry recommended athletic footwear. Sixty-eight healthy young adults underwent kinetic evaluation of lower extremity extrinsic joint moments while walking barefoot and while walking in current standard athletic footwear matched to the foot mechanics of each subject while controlling for speed. A secondary analysis was performed comparing peak knee joint extrinsic moments during barefoot walking to those while walking in three different standard footwear types: stability, motion control, and cushion. 3-D motion capture data were collected in synchrony with ground reaction force data collected from an instrumented treadmill. The shod condition was associated with a 9.7% increase in the first peak knee varus moment, and increases in the hip flexion and extension moments. These increases may be largely related to a 6.5% increase in stride length with shoes associated with increases in the ground reaction forces in all three axes. The changes from barefoot walking observed in the peak knee joint moments were similar when subjects walked in all three footwear types. It is unclear to what extent these increased joint moments may be clinically relevant, or potentially adverse. Nonetheless, these differences should be considered in the recommendation as well as the design of footwear in the future.

  7. Split-belt walking adaptation recalibrates sensorimotor estimates of leg speed but not position or force

    PubMed Central

    Vazquez, Alejandro; Statton, Matthew A.; Busgang, Stefanie A.

    2015-01-01

    Motor learning during reaching not only recalibrates movement but can also lead to small but consistent changes in the sense of arm position. Studies have suggested that this sensory effect may be the result of recalibration of a forward model that associates motor commands with their sensory consequences. Here we investigated whether similar perceptual changes occur in the lower limbs after learning a new walking pattern on a split-belt treadmill—a task that critically involves proprioception. Specifically, we studied how this motor learning task affects perception of leg speed during walking, perception of leg position during standing or walking, and perception of contact force during stepping. Our results show that split-belt adaptation leads to robust motor aftereffects and alters the perception of leg speed during walking. This is specific to the direction of walking that was trained during adaptation (i.e., backward or forward). The change in leg speed perception accounts for roughly half of the observed motor aftereffect. In contrast, split-belt adaptation does not alter the perception of leg position during standing or walking and does not change the perception of stepping force. Our results demonstrate that there is a recalibration of a sensory percept specific to the domain of the perturbation that was applied during walking (i.e., speed but not position or force). Furthermore, the motor and sensory consequences of locomotor adaptation may be linked, suggesting overlapping mechanisms driving changes in the motor and sensory domains. PMID:26424576

  8. Computer optimization of a minimal biped model discovers walking and running.

    PubMed

    Srinivasan, Manoj; Ruina, Andy

    2006-01-05

    Although people's legs are capable of a broad range of muscle-use and gait patterns, they generally prefer just two. They walk, swinging their body over a relatively straight leg with each step, or run, bouncing up off a bent leg between aerial phases. Walking feels easiest when going slowly, and running feels easiest when going faster. More unusual gaits seem more tiring. Perhaps this is because walking and running use the least energy. Addressing this classic conjecture with experiments requires comparing walking and running with many other strange and unpractised gaits. As an alternative, a basic understanding of gait choice might be obtained by calculating energy cost by using mechanics-based models. Here we use a minimal model that can describe walking and running as well as an infinite variety of other gaits. We use computer optimization to find which gaits are indeed energetically optimal for this model. At low speeds the optimization discovers the classic inverted-pendulum walk, at high speeds it discovers a bouncing run, even without springs, and at intermediate speeds it finds a new pendular-running gait that includes walking and running as extreme cases.

  9. Effect of reduced gravity on the preferred walk-run transition speed

    NASA Technical Reports Server (NTRS)

    Kram, R.; Domingo, A.; Ferris, D. P.

    1997-01-01

    We investigated the effect of reduced gravity on the human walk-run gait transition speed and interpreted the results using an inverted-pendulum mechanical model. We simulated reduced gravity using an apparatus that applied a nearly constant upward force at the center of mass, and the subjects walked and ran on a motorized treadmill. In the inverted pendulum model for walking, gravity provides the centripetal force needed to keep the pendulum in contact with the ground. The ratio of the centripetal and gravitational forces (mv2/L)/(mg) reduces to the dimensionless Froude number (v2/gL). Applying this model to a walking human, m is body mass, v is forward velocity, L is leg length and g is gravity. In normal gravity, humans and other bipeds with different leg lengths all choose to switch from a walk to a run at different absolute speeds but at approximately the same Froude number (0.5). We found that, at lower levels of gravity, the walk-run transition occurred at progressively slower absolute speeds but at approximately the same Froude number. This supports the hypothesis that the walk-run transition is triggered by the dynamics of an inverted-pendulum system.

  10. Effect of reduced gravity on the preferred walk-run transition speed.

    PubMed

    Kram, R; Domingo, A; Ferris, D P

    1997-02-01

    We investigated the effect of reduced gravity on the human walk-run gait transition speed and interpreted the results using an inverted-pendulum mechanical model. We simulated reduced gravity using an apparatus that applied a nearly constant upward force at the center of mass, and the subjects walked and ran on a motorized treadmill. In the inverted pendulum model for walking, gravity provides the centripetal force needed to keep the pendulum in contact with the ground. The ratio of the centripetal and gravitational forces (mv2/L)/(mg) reduces to the dimensionless Froude number (v2/gL). Applying this model to a walking human, m is body mass, v is forward velocity, L is leg length and g is gravity. In normal gravity, humans and other bipeds with different leg lengths all choose to switch from a walk to a run at different absolute speeds but at approximately the same Froude number (0.5). We found that, at lower levels of gravity, the walk-run transition occurred at progressively slower absolute speeds but at approximately the same Froude number. This supports the hypothesis that the walk-run transition is triggered by the dynamics of an inverted-pendulum system.

  11. Walking...A Step in the Right Direction!

    MedlinePlus

    ... 3. Go Divide your walk into three parts: Warm up by walking slowly. Increase your speed to a ... stretching only after you have warmed up. To warm up, walk slowly for a few minutes before picking ...

  12. Locomotor sequence learning in visually guided walking.

    PubMed

    Choi, Julia T; Jensen, Peter; Nielsen, Jens Bo

    2016-04-01

    Voluntary limb modifications must be integrated with basic walking patterns during visually guided walking. In this study we tested whether voluntary gait modifications can become more automatic with practice. We challenged walking control by presenting visual stepping targets that instructed subjects to modify step length from one trial to the next. Our sequence learning paradigm is derived from the serial reaction-time (SRT) task that has been used in upper limb studies. Both random and ordered sequences of step lengths were used to measure sequence-specific and sequence-nonspecific learning during walking. In addition, we determined how age (i.e., healthy young adults vs. children) and biomechanical factors (i.e., walking speed) affected the rate and magnitude of locomotor sequence learning. The results showed that healthy young adults (age 24 ± 5 yr,n= 20) could learn a specific sequence of step lengths over 300 training steps. Younger children (age 6-10 yr,n= 8) had lower baseline performance, but their magnitude and rate of sequence learning were the same compared with those of older children (11-16 yr,n= 10) and healthy adults. In addition, learning capacity may be more limited at faster walking speeds. To our knowledge, this is the first study to demonstrate that spatial sequence learning can be integrated with a highly automatic task such as walking. These findings suggest that adults and children use implicit knowledge about the sequence to plan and execute leg movement during visually guided walking.

  13. Walking economy in people with Parkinson's disease

    PubMed Central

    Christiansen, Cory L; Schenkman, Margaret L; McFann, Kim; Wolfe, Pamela; Kohrt, Wendy M

    2009-01-01

    Gait dysfunction is an early problem identified by patients with Parkinson's disease (PD). Alterations in gait may result in an increase in the energy cost of walking (i.e., walking economy). The purpose of this study was to determine whether walking economy is atypical in patients with PD when compared with healthy controls. A secondary purpose was to evaluate the associations of age, sex, and level of disease severity with walking economy in patients with PD. The rate of oxygen consumption (VO2) and other responses to treadmill walking were compared in 90 patients (64.4±10.3 yr) and 44 controls (64.6±7.3 yr) at several walking speeds. Pearson correlation coefficients (r) were calculated to determine relationships of age, sex, and disease state with walking economy in PD patients. Walking economy was significantly worse in PD patients than in controls at all speeds above 1.0 mph. Across all speeds, VO2 was 6 to 10% higher in PD patients. Heart rate, minute ventilation, respiratory exchange ratio, and rating of perceived exertion were correspondingly elevated. No significant relationship of age, sex, or UPDRS score with VO2 was found for patients with PD. The findings suggest that the physiologic stress of daily physical activities is increased in patients with early to mid-stage PD, and this may contribute to the elevated level of fatigue that is characteristic of PD. PMID:19441128

  14. Quantum random walks and decision making.

    PubMed

    Shankar, Karthik H

    2014-01-01

    How realistic is it to adopt a quantum random walk model to account for decisions involving two choices? Here, we discuss the neural plausibility and the effect of initial state and boundary thresholds on such a model and contrast it with various features of the classical random walk model of decision making.

  15. Welly-Walks for Science Learning

    ERIC Educational Resources Information Center

    Fradley, Carol

    2006-01-01

    This article discusses how a regular walk in the wind or the rain can help develop science knowledge and skills. The author describes one "welly-walk" and links it to National Curriculum for England requirements so that readers can see how easy it is. (Contains 1 figure and 1 box.)

  16. Chinese City Children and Youth's Walking Behavior

    ERIC Educational Resources Information Center

    Quan, Minghui; Chen, Peijie; Zhuang, Jie; Wang, Chao

    2013-01-01

    Purpose: Although walking has been demonstrated as one of the best forms for promoting physical activity (PA), little is known about Chinese city children and youth's walking behavior. The purpose of this study was therefore to assess ambulatory PA behavior of Chinese city children and youth. Method: The daily steps of 2,751 children and youth…

  17. Quantum vs. classical walks with memory two

    NASA Astrophysics Data System (ADS)

    Dimcovic, Zlatko; Kovchegov, Yevgeniy

    2010-03-01

    Quantum walks is an emerging field in quantum computing. It is expected to become the next most effective tool in speeding up quantum algorithms, possibly achieving the similar gain in speed as was the case with Gibbs sampling in classical computing. There already exist examples of super-exponential speed up using only quantum walks. Markov chains, or random walks on graphs, have many uses in physics; and walks with memory are standard models for a number of phenomena. We study persistent quantum walks, and compare them with equivalent classical Markov processes. The first question to ask is how the mixing time compares between persistent quantum and classical walks. Since quantum walks are generated by unitary matrices, they do not converge to a stationary state. The mixing time is then naturally introduced via a limiting distribution defined as the average of the probability distributions over time (Cesaro sum). We compare the mixing times, along with other properties, using numerical methods and spectral analysis. Our preliminary results indicate a significant speedup in some cases, and a number of other interesting aspects of quantum walks.

  18. Efficient quantum walk on a quantum processor

    NASA Astrophysics Data System (ADS)

    Qiang, Xiaogang; Loke, Thomas; Montanaro, Ashley; Aungskunsiri, Kanin; Zhou, Xiaoqi; O'Brien, Jeremy L.; Wang, Jingbo B.; Matthews, Jonathan C. F.

    2016-05-01

    The random walk formalism is used across a wide range of applications, from modelling share prices to predicting population genetics. Likewise, quantum walks have shown much potential as a framework for developing new quantum algorithms. Here we present explicit efficient quantum circuits for implementing continuous-time quantum walks on the circulant class of graphs. These circuits allow us to sample from the output probability distributions of quantum walks on circulant graphs efficiently. We also show that solving the same sampling problem for arbitrary circulant quantum circuits is intractable for a classical computer, assuming conjectures from computational complexity theory. This is a new link between continuous-time quantum walks and computational complexity theory and it indicates a family of tasks that could ultimately demonstrate quantum supremacy over classical computers. As a proof of principle, we experimentally implement the proposed quantum circuit on an example circulant graph using a two-qubit photonics quantum processor.

  19. Learning to walk changes infants' social interactions.

    PubMed

    Clearfield, Melissa W

    2011-02-01

    The onset of crawling marks a motor, cognitive and social milestone. The present study investigated whether independent walking marks a second milestone for social behaviors. In Experiment 1, the social and exploratory behaviors of crawling infants were observed while crawling and in a baby-walker, resulting in no differences based on posture. In Experiment 2, the social behaviors of independently walking infants were compared to age-matched crawling infants in a baby-walker. Independently walking infants spent significantly more time interacting with the toys and with their mothers, and also made more vocalizations and more directed gestures compared to infants in the walker. Experiment 3 tracked infants' social behaviors longitudinally across the transition from crawling and walking. Even when controlled for age, the transition to independent walking marked increased interaction time with mothers, as well as more sophisticated interactions, including directing mothers' attention to particular objects. The results suggest a developmental progression linking social interactions with milestones in locomotor development.

  20. Efficient quantum walk on a quantum processor

    PubMed Central

    Qiang, Xiaogang; Loke, Thomas; Montanaro, Ashley; Aungskunsiri, Kanin; Zhou, Xiaoqi; O'Brien, Jeremy L.; Wang, Jingbo B.; Matthews, Jonathan C. F.

    2016-01-01

    The random walk formalism is used across a wide range of applications, from modelling share prices to predicting population genetics. Likewise, quantum walks have shown much potential as a framework for developing new quantum algorithms. Here we present explicit efficient quantum circuits for implementing continuous-time quantum walks on the circulant class of graphs. These circuits allow us to sample from the output probability distributions of quantum walks on circulant graphs efficiently. We also show that solving the same sampling problem for arbitrary circulant quantum circuits is intractable for a classical computer, assuming conjectures from computational complexity theory. This is a new link between continuous-time quantum walks and computational complexity theory and it indicates a family of tasks that could ultimately demonstrate quantum supremacy over classical computers. As a proof of principle, we experimentally implement the proposed quantum circuit on an example circulant graph using a two-qubit photonics quantum processor. PMID:27146471

  1. Go naked: diapers affect infant walking.

    PubMed

    Cole, Whitney G; Lingeman, Jesse M; Adolph, Karen E

    2012-11-01

    In light of cross-cultural and experimental research highlighting effects of childrearing practices on infant motor skill, we asked whether wearing diapers, a seemingly innocuous childrearing practice, affects infant walking. Diapers introduce bulk between the legs, potentially exacerbating infants' poor balance and wide stance. We show that walking is adversely affected by old-fashioned cloth diapers, and that even modern disposable diapers - habitually worn by most infants in the sample - incur a cost relative to walking naked. Infants displayed less mature gait patterns and more missteps and falls while wearing diapers. Thus, infants' own diapers constitute an ongoing biomechanical perturbation while learning to walk. Furthermore, shifts in diapering practices may have contributed to historical and cross-cultural differences in infant walking.

  2. Efficient quantum walk on a quantum processor.

    PubMed

    Qiang, Xiaogang; Loke, Thomas; Montanaro, Ashley; Aungskunsiri, Kanin; Zhou, Xiaoqi; O'Brien, Jeremy L; Wang, Jingbo B; Matthews, Jonathan C F

    2016-05-05

    The random walk formalism is used across a wide range of applications, from modelling share prices to predicting population genetics. Likewise, quantum walks have shown much potential as a framework for developing new quantum algorithms. Here we present explicit efficient quantum circuits for implementing continuous-time quantum walks on the circulant class of graphs. These circuits allow us to sample from the output probability distributions of quantum walks on circulant graphs efficiently. We also show that solving the same sampling problem for arbitrary circulant quantum circuits is intractable for a classical computer, assuming conjectures from computational complexity theory. This is a new link between continuous-time quantum walks and computational complexity theory and it indicates a family of tasks that could ultimately demonstrate quantum supremacy over classical computers. As a proof of principle, we experimentally implement the proposed quantum circuit on an example circulant graph using a two-qubit photonics quantum processor.

  3. Neighbourhood walking and regeneration in deprived communities.

    PubMed

    Mason, Phil; Kearns, Ade; Bond, Lyndal

    2011-05-01

    More frequent neighbourhood walking is a realistic goal for improving physical activity in deprived areas. We address regeneration activity by examining associations of residents' circumstances and perceptions of their local environment with frequent (5+ days/week) local walking (NW5) in 32 deprived neighbourhoods (Glasgow, UK), based on interview responses from a random stratified cross-sectional sample of 5657 residents. Associations were investigated by bivariate and multilevel, multivariate logistic regression. People living in low-rise flats or houses reported greater NW5 than those in multi-storey flats. Physical and social aspects of the neighbourhood were more strongly related to walking than perceptions of housing and neighbourhood, especially the neighbourhood's external reputation, and feelings of safety and belonging. Amenity use, especially of parks, play areas and general shops (mainly in the neighbourhood), was associated with more walking. Multidimensional regeneration of the physical, service, social and psychosocial environments of deprived communities therefore seems an appropriate strategy to boost walking.

  4. The limits of agency in walking humans.

    PubMed

    Kannape, O A; Schwabe, L; Tadi, T; Blanke, O

    2010-05-01

    An important principle of human ethics is that individuals are not responsible for actions performed when unconscious. Recent research found that the generation of an action and the building of a conscious experience of that action (agency) are distinct processes and crucial mechanisms for self-consciousness. Yet, previous agency studies have focussed on actions of a finger or hand. Here, we investigate how agents consciously monitor actions of the entire body in space during locomotion. This was motivated by previous work revealing that (1) a fundamental aspect of self-consciousness concerns a single and coherent representation of the entire spatially situated body and (2) clinical instances of human behaviour without consciousness occur in rare neurological conditions such as sleepwalking or epileptic nocturnal wandering. Merging techniques from virtual reality, full-body tracking, and cognitive science of conscious action monitoring, we report experimental data about consciousness during locomotion in healthy participants. We find that agents consciously monitor the location of their entire body and its locomotion only with low precision and report that while precision remains low it can be systematically modulated in several experimental conditions. This shows that conscious action monitoring in locomoting agents can be studied in a fine-grained manner. We argue that the study of the mechanisms of agency for a person's full body may help to refine our scientific criteria of self-hood and discuss sleepwalking and related conditions as alterations in neural systems encoding motor awareness in walking humans.

  5. Medical Aspects of Space Walking

    NASA Technical Reports Server (NTRS)

    Musgrave, Story

    1999-01-01

    Dr. Musgrave has acquired extensive experience during a distinguished and impressive career that includes flying as an astronaut on six Shuttle missions, participating in many hours of extravehicular activity, and contributing his myriad talents toward great public service, especially in the area of education. He has a unique perspective as a physician, scientist, engineer, pilot, and scholar. His interests and breadth of knowledge, which astound even the seasoned space enthusiast, have provided the space program an extraordinary scientific and technical expertise. Dr. Musgrave presented a personal perspective on space flight with particular emphasis on extravehicular activity (EVA or space walking), which was copiously illustrated with photographs from many space missions. His theme was two fold: the exacting and detailed preparations required for successful execution of a mission plan and a cosmic view of mankind's place in the greater scheme of things.

  6. Snell's law and walking droplets

    NASA Astrophysics Data System (ADS)

    Bush, John; Pucci, Giuseppe; Aubin, Benjamin; Brun, Pierre-Thomas; Faria, Luiz

    2016-11-01

    Droplets walking on the surface of a vibrating bath have been shown to exhibit a number of quantum-like features. We here present the results of a combined experimental and theoretical investigation of such droplets crossing a linear step corresponding to a reduction in bath depth. When the step is sufficiently large, the walker reflects off the step; otherwise, it is refracted as it crosses the step. Particular attention is given to an examination of the regime in which the droplet obeys a form of Snell's Law, a behavior captured in accompanying simulations. Attempts to provide theoretical rationale for the dependence of the effective refractive index on the system parameters are described. Supported by NSF through CMMI-1333242.

  7. Body stability and muscle and motor cortex activity during walking with wide stance

    PubMed Central

    Farrell, Brad J.; Bulgakova, Margarita A.; Beloozerova, Irina N.; Sirota, Mikhail G.

    2014-01-01

    Biomechanical and neural mechanisms of balance control during walking are still poorly understood. In this study, we examined the body dynamic stability, activity of limb muscles, and activity of motor cortex neurons [primarily pyramidal tract neurons (PTNs)] in the cat during unconstrained walking and walking with a wide base of support (wide-stance walking). By recording three-dimensional full-body kinematics we found for the first time that during unconstrained walking the cat is dynamically unstable in the forward direction during stride phases when only two diagonal limbs support the body. In contrast to standing, an increased lateral between-paw distance during walking dramatically decreased the cat's body dynamic stability in double-support phases and prompted the cat to spend more time in three-legged support phases. Muscles contributing to abduction-adduction actions had higher activity during stance, while flexor muscles had higher activity during swing of wide-stance walking. The overwhelming majority of neurons in layer V of the motor cortex, 82% and 83% in the forelimb and hindlimb representation areas, respectively, were active differently during wide-stance walking compared with unconstrained condition, most often by having a different depth of stride-related frequency modulation along with a different mean discharge rate and/or preferred activity phase. Upon transition from unconstrained to wide-stance walking, proximal limb-related neuronal groups subtly but statistically significantly shifted their activity toward the swing phase, the stride phase where most of body instability occurs during this task. The data suggest that the motor cortex participates in maintenance of body dynamic stability during locomotion. PMID:24790167

  8. The impact of dynamic balance measures on walking performance in multiple sclerosis

    PubMed Central

    Fritz, Nora E.; Marasigan, Rhul Evans R.; Calabresi, Peter A.; Newsome, Scott D.; Zackowski, Kathleen M.

    2014-01-01

    Background Static posture imbalance and gait dysfunction are common in individuals with multiple sclerosis (MS). Although the impact of strength and static balance on walking has been examined, little is known about the impact of dynamic standing balance on walking in MS. Objective To determine the impact of dynamic balance, static balance, sensation, and strength measures to walking in individuals with MS. Methods 52 individuals with MS (27 females; 26 relapsing-remitting; mean age 45.6±10.3 years; median EDSS 3.5 (range 0-7) participated in testing for dynamic and static posturography (Kistler 9281 force plate), hip flexion, hip extension, and ankle dorsiflexion strength (Microfet2 hand-held dynamometer), sensation (Vibratron II) and walk velocity (Optotrak Motion Analysis System). Mann-Whitney tests, Spearman correlation coefficients, and forward stepwise multiple regression were used to assess statistical significance. Results All measures were significantly abnormal in MS subjects when compared to age and sex-matched norms (p<0.05 for all). Static balance (eyes open, feet together [EOFT]), anterior- posterior (AP) dynamic sway, and hip extension strength were strongly correlated with fast walking velocity (AP sway r=0.68; hip extension strength r=0.73; EOFT r=-0.40). Together, AP dynamic sway (ρr=0.71, p<0.001), hip extension strength (ρr=0.54, p<0.001), and EOFT static balance (ρr=-0.41, p=0.01) explained more than 70% of the variance in fast walking velocity (p<0.001). Conclusions These data suggest that AP dynamic sway impacts walking performance in MS. A combined evaluation of dynamic balance, static balance and strength may lead to a better understanding of walking mechanisms as well as the development of strategies to improve walking. PMID:24795162

  9. Statistical Modeling of Robotic Random Walks on Different Terrain

    NASA Astrophysics Data System (ADS)

    Naylor, Austin; Kinnaman, Laura

    Issues of public safety, especially with crowd dynamics and pedestrian movement, have been modeled by physicists using methods from statistical mechanics over the last few years. Complex decision making of humans moving on different terrains can be modeled using random walks (RW) and correlated random walks (CRW). The effect of different terrains, such as a constant increasing slope, on RW and CRW was explored. LEGO robots were programmed to make RW and CRW with uniform step sizes. Level ground tests demonstrated that the robots had the expected step size distribution and correlation angles (for CRW). The mean square displacement was calculated for each RW and CRW on different terrains and matched expected trends. The step size distribution was determined to change based on the terrain; theoretical predictions for the step size distribution were made for various simple terrains. It's Dr. Laura Kinnaman, not sure where to put the Prefix.

  10. The random walk of tracers through river catchments

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Atreyee

    2012-08-01

    River catchments play critical roles in regional economies and in the global economy. In addition, rivers carry large volumes of nutrients, pollutants, and several other forms of tracers into the ocean. An intricate system of pathways and channels, both on the surface and in the subsurface of catchments, allows rivers to carry large volumes of tracers. However, scientists do not yet fully understand how pollutants and other tracers travel through the intricate web of channels in the catchment areas of rivers. In a new study, Cvetkovic et al show that the travel path of tracers through channels can be modeled as a random walk, which is mathematically similar to the path an animal would trace when foraging. Previous studies have applied the random walk approach to understand the behavior of fluids flowing through aquifers and soils but not to model the transport mechanism of tracers that travel passively with water flowing through catchments.

  11. A generalized model via random walks for information filtering

    NASA Astrophysics Data System (ADS)

    Ren, Zhuo-Ming; Kong, Yixiu; Shang, Ming-Sheng; Zhang, Yi-Cheng

    2016-08-01

    There could exist a simple general mechanism lurking beneath collaborative filtering and interdisciplinary physics approaches which have been successfully applied to online E-commerce platforms. Motivated by this idea, we propose a generalized model employing the dynamics of the random walk in the bipartite networks. Taking into account the degree information, the proposed generalized model could deduce the collaborative filtering, interdisciplinary physics approaches and even the enormous expansion of them. Furthermore, we analyze the generalized model with single and hybrid of degree information on the process of random walk in bipartite networks, and propose a possible strategy by using the hybrid degree information for different popular objects to toward promising precision of the recommendation.

  12. Sensor-based hip control with hybrid neuroprosthesis for walking in paraplegia.

    PubMed

    To, Curtis S; Kobetic, Rudi; Bulea, Thomas C; Audu, Musa L; Schnellenberger, John R; Pinault, Gilles; Triolo, Ronald J

    2014-01-01

    The objectives of this study were to test whether a hybrid neuroprosthesis (HNP) with an exoskeletal variable-constraint hip mechanism (VCHM) combined with a functional neuromuscular stimulation (FNS) controller can maintain upright posture with less upper-limb support and improve gait speed as compared with walking with either an isocentric reciprocating gait orthosis (IRGO) or FNS only. The results show that walking with the HNP significantly reduced forward lean in FNS-only walking and the maximum upper-limb forces by 42% and 19% as compared with the IRGO and FNS-only gait, respectively. Walking speed increased significantly with VCHM as compared with 1:1 reciprocal coupling and by 15% when using the sensor-based FNS controller as compared with HNP with fixed baseline stimulation without the controller active.

  13. Built Environment Correlates of Walking: A Review

    PubMed Central

    Saelens, Brian E.; Handy, Susan L.

    2010-01-01

    Introduction The past decade has seen a dramatic increase in the empirical investigation into the relations between built environmental and physical activity. To create places that facilitate and encourage walking, practitioners need an understanding of the specific characteristics of the built environment that correlate most strongly with walking. This paper reviews evidence on the built environment correlates with walking. Method Included in this review were 13 reviews published between 2002 and 2006 and 29 original studies published in 2005 and up through May 2006. Results were summarized based on specific characteristics of the built environment and transportation walking versus recreational walking. Results Previous reviews and newer studies document consistent positive relations between walking for transportation and density, distance to non-residential destinations, and land use mix; findings for route/network connectivity, parks and open space, and personal safety are more equivocal. Results regarding recreational walking were less clear. Conclusions More recent evidence supports the conclusions of prior reviews, and new studies address some of the limitations of earlier studies. Although prospective studies are needed, evidence on correlates appears sufficient to support policy changes. PMID:18562973

  14. The work of walking: a calorimetric study.

    PubMed

    Webb, P; Saris, W H; Schoffelen, P F; Van Ingen Schenau, G J; Ten Hoor, F

    1988-08-01

    Experiments were designed to test the traditional assumption that during level walking all of the energy from oxidation of fuel appears as heat and no work is done. Work is force expressed through distance, or energy transferred from a man to the environment, but not as heat. While wearing a suit calorimeter in a respiration chamber, five women and five men walked for 70 to 90 min on a level treadmill at 2.5, 4.6, and 6.7 km.h-1 and pedalled a cycle ergometer for 70 to 90 min against 53 and 92 W loads. They also walked with a weighted backpack and against a horizontal load. During cycling, energy from fuel matched heat loss plus the power measured by the ergometer. During walking, however, energy from fuel exceeded that which appeared as heat, meaning that work was done. The power increased with walking speed; values were 14, 29, and 63 W, which represented 11, 12, and 13% of the incremental cost of fuel above the resting level. Vertical and horizontal loads increased the fuel cost and heat loss of walking but did not alter the power output. This work energy did not re-appear as thermal energy during 18 h of recovery. The most likely explanation of the work done is in the inter-action between the foot and the ground, such as compressing the heel of the shoe and bending the sole. We conclude that work is done in level walking.

  15. Factors Influencing Whether Children Walk to School

    PubMed Central

    Su, Jason G.; Jerrett, Michael; Mcconnell, Rob; Berhane, Kiros; Dunton, Genevieve; Shankardass, Ketan; Reynolds, Kim; Chang, Roger; Wolch, Jennifer

    2015-01-01

    Few studies have evaluated multiple levels of influence simultaneously on whether children walk to school. A large cohort of 4,338 subjects from ten communities was used to identify the determinants of walking through (1) a one-level logistic regression model for individual-level variables and (2) a two-level mixed regression model for individual and school-level variables. Walking rates were positively associated with home-to-school proximity, greater age, and living in neighborhoods characterized by lower traffic density. Greater land use mix around the home was, however, associated with lower rates of walking. Rates of walking to school were also higher amongst recipients of the Free and Reduced Price Meals Program and attendees of schools with higher percentage of English language learners. Designing schools in the same neighborhood as residential districts should be an essential urban planning strategy to reduce walking distance to school. Policy interventions are needed to encourage children from higher socioeconomic status families to participate in active travel to school and to develop walking infrastructures and other measures that protect disadvantaged children. PMID:23707968

  16. Walking dreams in congenital and acquired paraplegia.

    PubMed

    Saurat, Marie-Thérèse; Agbakou, Maité; Attigui, Patricia; Golmard, Jean-Louis; Arnulf, Isabelle

    2011-12-01

    To test if dreams contain remote or never-experienced motor skills, we collected during 6 weeks dream reports from 15 paraplegics and 15 healthy subjects. In 9/10 subjects with spinal cord injury and in 5/5 with congenital paraplegia, voluntary leg movements were reported during dream, including feelings of walking (46%), running (8.6%), dancing (8%), standing up (6.3%), bicycling (6.3%), and practicing sports (skiing, playing basketball, swimming). Paraplegia patients experienced walking dreams (38.2%) just as often as controls (28.7%). There was no correlation between the frequency of walking dreams and the duration of paraplegia. In contrast, patients were rarely paraplegic in dreams. Subjects who had never walked or stopped walking 4-64 years prior to this study still experience walking in their dreams, suggesting that a cerebral walking program, either genetic or more probably developed via mirror neurons (activated when observing others performing an action) is reactivated during sleep.

  17. [Walking assist robot and its clinical application].

    PubMed

    Kakou, Hiroaki; Shitama, Hideo; Kimura, Yoshiko; Nakamoto, Yoko; Furuta, Nami; Honda, Kanae; Wada, Futoshi; Hachisuka, Kenji

    2009-06-01

    The walking assist robot was developed to improve gait disturbance in patients with severe disabilities. The robot had a trunk supporter, power generator and operating arms which held patient's lower extremities and simulated walking, a control unit, biofeedback system, and a treadmill. We applied the robot-aided gait training to three patients with severe gait disturbance induced by stroke, axonal Guillan-Barré syndrome or spinal cord injury, and the walking assist robot turned out to be effective in improving the gait disturbance.

  18. Machines that walk: The adaptive suspension vehicle

    NASA Astrophysics Data System (ADS)

    Song, Shin-Min; Waldron, Kenneth J.

    The design and operation of statically stable fully terrain-adaptive walking machines are discussed, with an emphasis on the adaptive-suspension vehicle developed at Ohio State University (Waldron and McGhee, 1986). Chapters are devoted to a review of walking-machine development, gait analysis and gaits for level walking, gaits for irregular terrain, coordination, leg design by four-bar linkage synthesis, design of a pantograph leg, motion-controlled ankle design, and the Adaptive Suspension Vehicle. Diagrams, drawings, and graphs are provided.

  19. Random walks on simplicial complexes and harmonics†

    PubMed Central

    Steenbergen, John

    2016-01-01

    Abstract In this paper, we introduce a class of random walks with absorbing states on simplicial complexes. Given a simplicial complex of dimension d, a random walk with an absorbing state is defined which relates to the spectrum of the k‐dimensional Laplacian for 1 ≤ k ≤ d. We study an example of random walks on simplicial complexes in the context of a semi‐supervised learning problem. Specifically, we consider a label propagation algorithm on oriented edges, which applies to a generalization of the partially labelled classification problem on graphs. © 2016 Wiley Periodicals, Inc. Random Struct. Alg., 49, 379–405, 2016

  20. High Point Walking for Health: Creating Built and Social Environments That Support Walking in a Public Housing Community

    PubMed Central

    Rabkin, Janice; Sharify, Denise; Song, Lin

    2009-01-01

    Objectives. We implemented and evaluated multiple interventions to increase walking activity at a multicultural public housing site. Methods. A community-based participatory research partnership and community action teams assessed assets and barriers related to walking and developed multiple interventions to promote walking activity. Interventions included sponsoring walking groups, improving walking routes, providing information about walking options, and advocating for pedestrian safety. A pre–post study design was used to assess the changes in walking activity. Results. Self-reported walking activity increased among walking group participants from 65 to 109 minutes per day (P = .001). The proportion that reported being at least moderately active for at least 150 minutes per week increased from 62% to 81% (P = .018). Conclusions. A multicomponent intervention developed through participatory research methods that emphasized walking groups and included additional strategies to change the built and social environments increased walking activity at a public housing site in Seattle. PMID:19890163

  1. A feasibility study on the design and walking operation of a biped locomotor via dynamic simulation

    NASA Astrophysics Data System (ADS)

    Wang, Mingfeng; Ceccarelli, Marco; Carbone, Giuseppe

    2016-06-01

    A feasibility study on the mechanical design and walking operation of a Cassino biped locomotor is presented in this paper. The biped locomotor consists of two identical 3 degrees-of-freedom tripod leg mechanisms with a parallel manipulator architecture. Planning of the biped walking gait is performed by coordinating the motions of the two leg mechanisms and waist. A threedimensional model is elaborated in SolidWorks® environment in order to characterize a feasible mechanical design. Dynamic simulation is carried out in MSC.ADAMS® environment with the aims of characterizing and evaluating the dynamic walking performance of the proposed design. Simulation results show that the proposed biped locomotor with proper input motions of linear actuators performs practical and feasible walking on flat surfaces with limited actuation and reaction forces between its feet and the ground. A preliminary prototype of the biped locomotor is built for the purpose of evaluating the operation performance of the biped walking gait of the proposed locomotor.

  2. Walking capabilities of Gregor controlled through Walknet

    NASA Astrophysics Data System (ADS)

    Arena, Paolo; Patané, Luca; Schilling, Malte; Schmitz, Josef

    2007-05-01

    Locomotion control of legged robots is nowadays a field in continuous evolution. In this work a bio-inspired control architecture based on the stick insect is applied to control the hexapod robot Gregor. The control scheme is an extension of Walknet, a decentralized network inspired by the stick insect, that on the basis of local reflexes generates the control signals needed to coordinate locomotion in hexapod robots. Walknet has been adapted to the specific mechanical structure of Gregor that is characterized by specialized legs and a sprawled posture. In particular an innovative hind leg geometry, inspired by the cockroach, has been considered to improve climbing capabilities. The performances of the new control architecture have been evaluated in dynamic simulation environments. The robot has been endowed with distance and contact sensors for obstacle detection. A heading control is used to avoid large obstacles, and an avoidance reflex, as can be found in stick insects, has been introduced to further improve climbing capabilities of the structure. The reported results, obtained in different environmental configurations, stress the adaptive capabilities of the Walknet approach: Even in unpredictable and cluttered environments the walking behaviour of the simulated robot and the robot prototype, controlled through a FPGA based board, remained stable.

  3. Effect of walking speed on lower extremity joint loading in graded ramp walking.

    PubMed

    Schwameder, Hermann; Lindenhofer, Elke; Müller, Erich

    2005-07-01

    Lower extremity joint loading during walking is strongly affected by the steepness of the slope and might cause pain and injuries in lower extremity joint structures. One feasible measure to reduce joint loading is the reduction of walking speed. Positive effects have been shown for level walking, but not for graded walking or hiking conditions. The aim of the study was to quantify the effect of walking speed (separated into the two components, step length and cadence) on the joint power of the hip, knee and ankle and to determine the knee joint forces in uphill and downhill walking. Ten participants walked up and down a ramp with step lengths of 0.46, 0.575 and 0.69 m and cadences of 80, 100 and 120 steps per minute. The ramp was equipped with a force platform and the locomotion was filmed with a 60 Hz video camera. Loading of the lower extremity joints was determined using inverse dynamics. A two-dimensional knee model was used to calculate forces in the knee structures during the stance phase. Walking speed affected lower extremity joint loading substantially and significantly. Change of step length caused much greater loading changes for all joints compared with change of cadence; the effects were more distinct in downhill than in uphill walking. The results indicate that lower extremity joint loading can be effectively controlled by varying step length and cadence during graded uphill and downhill walking. Hikers can avoid or reduce pain and injuries by reducing walking speed, particularly in downhill walking.

  4. Muscle contributions to frontal plane angular momentum during walking.

    PubMed

    Neptune, Richard R; McGowan, Craig P

    2016-09-06

    The regulation of whole-body angular momentum is important for maintaining dynamic balance during human walking, which is particularly challenging in the frontal plane. Whole-body angular momentum is actively regulated by individual muscle forces. Thus, understanding which muscles contribute to frontal plane angular momentum will further our understanding of mediolateral balance control and has the potential to help diagnose and treat balance disorders. The purpose of this study was to identify how individual muscles and gravity contribute to whole-body angular momentum in the frontal plane using a muscle-actuated forward dynamics simulation analysis. A three-dimensional simulation was developed that emulated the average walking mechanics of a group of young healthy adults (n=10). The results showed that a finite set of muscles are the primary contributors to frontal plane balance and that these contributions vary throughout the gait cycle. In early stance, the vasti, adductor magnus and gravity acted to rotate the body towards the contralateral leg while the gluteus medius acted to rotate the body towards the ipsilateral leg. In late stance, the gluteus medius continued to rotate the body towards the ipsilateral leg while the soleus and gastrocnemius acted to rotate the body towards the contralateral leg. These results highlight those muscles that are critical to maintaining dynamic balance in the frontal plane during walking and may provide targets for locomotor therapies aimed at treating balance disorders.

  5. Neuromuscular alterations during walking in persons with moderate knee osteoarthritis.

    PubMed

    Hubley-Kozey, C L; Deluzio, K J; Landry, S C; McNutt, J S; Stanish, W D

    2006-08-01

    This paper compared the neuromuscular responses during walking between those with early-stage knee osteoarthritis (OA) to asymptomatic controls. The rationale for studying those with mild to moderate knee OA was to determine the alterations in response to dynamic loading that might be expected before severe pain, joint space narrowing and joint surface changes occur. We used pattern recognition techniques to explore both amplitude and shape changes of the surface electromyograms recorded from seven muscles crossing the knee joint of 40 subjects with knee OA and 38 asymptomatic controls during a walking task. The principal patterns for each muscle grouping explained over 83% of the variance in the waveforms. This result supported the notion that the main neuromuscular patterns were similar between asymptomatic controls and those with OA, reflecting the specific roles of the major muscles during walking. ANOVA revealed significant (p<0.05) differences in the principal pattern scores reflecting both amplitude and shape alterations in the OA group and among muscles. These differences captured subtle changes in the neuromuscular responses of the subjects with OA throughout different phases of the gait cycle and most likely reflected changes in the mechanical environment (joint loading, instability) and pain. The subjects with OA attempted to increase activity of the lateral sites and reduce activity in the medial sites, having minimal but prolonged activity during late stance. Therefore, alterations in neuromuscular responses were found even in this high functioning group with moderate knee OA.

  6. Quantum-walk transport properties on graphene structures

    NASA Astrophysics Data System (ADS)

    Bougroura, Hamza; Aissaoui, Habib; Chancellor, Nicholas; Kendon, Viv

    2016-12-01

    We present numerical studies of quantum walks on C60 and related graphene structures to investigate their transport properties. Also known as a honeycomb lattice, the lattice formed by carbon atoms in the graphene phase can be rolled up to form nanotubes of various dimensions. Graphene nanotubes have many important applications, some of which rely on their unusual electrical conductivity and related properties. Quantum walks on graphs provide an abstract setting in which to study such transport properties independent of the other chemical and physical properties of a physical substance. They can thus be used to further the understanding of mechanisms behind such properties. We find that nanotube structures are significantly more efficient in transporting a quantum walk than cycles of equivalent size, provided the symmetry of the structure is respected in how they are used. We find faster transport on zigzag nanotubes compared to armchair nanotubes, which is unexpected given that for the actual materials the armchair nanotube is metallic, while the zigzag is semiconducting.

  7. Urban Walking and the Pedagogies of the Street

    ERIC Educational Resources Information Center

    Bairner, Alan

    2011-01-01

    Drawing upon the extensive literature on urban walking and also on almost 60 years' experience of walking the streets, this article argues that there is a pressing need to re-assert the educational value of going for a walk. After a brief discussion of the social significance of the "flaneur," the historic pioneer of urban walking, the article…

  8. Nordic Walking Practice Might Improve Plantar Pressure Distribution

    ERIC Educational Resources Information Center

    Perez-Soriano, Pedro; Llana-Belloch, Salvador; Martinez-Nova, Alfonso; Morey-Klapsing, G.; Encarnacion-Martinez, Alberto

    2011-01-01

    Nordic walking (NW), characterized by the use of two walking poles, is becoming increasingly popular (Morgulec-Adamowicz, Marszalek, & Jagustyn, 2011). We studied walking pressure patterns of 20 experienced and 30 beginner Nordic walkers. Plantar pressures from nine foot zones were measured during trials performed at two walking speeds (preferred…

  9. Walking and Eating Behavior of Toddlers at 12 Months Old

    ERIC Educational Resources Information Center

    Koda, Naoko; Akimoto, Yuko; Hirose, Toshiya; Hinobayashi, Toshihiko; Minami, Tetsuhiro

    2004-01-01

    Locomotive and eating behavior of 52 toddlers was observed at 12 months old in a nursery school and investigated in relation to the acquisition of independent walking. The toddlers who acquired walking ate more by themselves using the hands than the toddlers who did not start walking. This suggested that acquisition of walking was associated with…

  10. Walking after Stroke: Comfortable versus Maximum Safe Speed.

    ERIC Educational Resources Information Center

    Bohannon, Richard W.

    1992-01-01

    This study attempted to (1) determine whether stroke patients (n=20) can safely increase their walking speed above that of comfortable walking; (2) describe the relationship between comfortable and maximum safe walking speed; and (3) examine correlations between maximum and comfortable speeds and a functional walking score. Subjects were able to…

  11. Minimal walking technicolor: Setup for collider physics

    SciTech Connect

    Foadi, Roshan; Frandsen, Mads T.; Ryttov, Thomas A.; Sannino, Francesco

    2007-09-01

    Different theoretical and phenomenological aspects of the minimal and nonminimal walking technicolor theories have recently been studied. The goal here is to make the models ready for collider phenomenology. We do this by constructing the low energy effective theory containing scalars, pseudoscalars, vector mesons, and other fields predicted by the minimal walking theory. We construct their self-interactions and interactions with standard model fields. Using the Weinberg sum rules, opportunely modified to take into account the walking behavior of the underlying gauge theory, we find interesting relations for the spin-one spectrum. We derive the electroweak parameters using the newly constructed effective theory and compare the results with the underlying gauge theory. Our analysis is sufficiently general such that the resulting model can be used to represent a generic walking technicolor theory not at odds with precision data.

  12. Community walking in people with Parkinson's disease.

    PubMed

    Lamont, Robyn M; Morris, Meg E; Woollacott, Marjorie H; Brauer, Sandra G

    2012-01-01

    People with Parkinson's disease often have walking difficulty, and this is likely to be exacerbated while walking in places in the community, where people are likely to face greater and more varied challenges. This study aims to understand the facilitators and the barriers to walking in the community perceived by people with Parkinson's disease. This qualitative study involved 5 focus groups (n = 34) of people with Parkinson's disease and their partners residing in metropolitan and rural regions in Queensland, Australia. Results found that people with PD reported to use internal personal strategies as facilitators to community walking, but identified primarily external factors, particularly the environmental factors as barriers. The adoption of strategies or the use of facilitators allows people with Parkinson's disease to cope so that participants often did not report disability.

  13. Database of Standardized Questionnaires About Walking & Bicycling

    Cancer.gov

    This database contains questionnaire items and a list of validation studies for standardized items related to walking and biking. The items come from multiple national and international physical activity questionnaires.

  14. Holographic walking from tachyon DBI

    NASA Astrophysics Data System (ADS)

    Kutasov, David; Lin, Jennifer; Parnachev, Andrei

    2012-10-01

    We use holography to study conformal phase transitions, which are believed to be realized in four dimensional QCD and play an important role in walking technicolor models of electroweak symmetry breaking. At strong coupling they can be modeled by the non-linear dynamics of a tachyonic scalar field with mass close to the Breitenlohner-Freedman bound in anti-de Sitter spacetime. Taking the action for this field to have a tachyon-Dirac-Born-Infeld form gives rise to models that resemble hard and soft wall AdS/QCD, with a dynamically generated wall. For hard wall models, the highly excited spectrum has the KK form mn˜n; in the soft wall case we exhibit potentials with mn˜nα, 0<α⩽1/2. We investigate the finite temperature phase structure and find first or second order symmetry restoration transitions, depending on the behavior of the potential near the origin of field space.

  15. Adaptive walking in Alzheimer's disease.

    PubMed

    Orcioli-Silva, Diego; Simieli, Lucas; Barbieri, Fabio Augusto; Stella, Florindo; Gobbi, Lilian Teresa Bucken

    2012-01-01

    The aim of this study is to analyze dual-task effects on free and adaptive gait in Alzheimer's disease (AD) patients. Nineteen elders with AD participated in the study. A veteran neuropsychiatrist established the degree of AD in the sample. To determine dual-task effects on free and adaptive gait, patients performed five trials for each experimental condition: free and adaptive gait with and without a dual-task (regressive countdown). Spatial and temporal parameters were collected through an optoelectronic tridimensional system. The central stride was analyzed in free gait, and the steps immediately before (approaching phase) and during the obstacle crossing were analyzed in adaptive gait. Results indicated that AD patients walked more slowly during adaptive gait and free gait, using conservative strategies when confronted either with an obstacle or a secondary task. Furthermore, patients sought for stability to perform the tasks, particularly for adaptive gait with dual task, who used anticipatory and online adjustments to perform the task. Therefore, the increase of task complexity enhances cognitive load and risk of falls for AD patients.

  16. Adaptive Walking in Alzheimer's Disease

    PubMed Central

    Orcioli-Silva, Diego; Simieli, Lucas; Barbieri, Fabio Augusto; Stella, Florindo; Gobbi, Lilian Teresa Bucken

    2012-01-01

    The aim of this study is to analyze dual-task effects on free and adaptive gait in Alzheimer's disease (AD) patients. Nineteen elders with AD participated in the study. A veteran neuropsychiatrist established the degree of AD in the sample. To determine dual-task effects on free and adaptive gait, patients performed five trials for each experimental condition: free and adaptive gait with and without a dual-task (regressive countdown). Spatial and temporal parameters were collected through an optoelectronic tridimensional system. The central stride was analyzed in free gait, and the steps immediately before (approaching phase) and during the obstacle crossing were analyzed in adaptive gait. Results indicated that AD patients walked more slowly during adaptive gait and free gait, using conservative strategies when confronted either with an obstacle or a secondary task. Furthermore, patients sought for stability to perform the tasks, particularly for adaptive gait with dual task, who used anticipatory and online adjustments to perform the task. Therefore, the increase of task complexity enhances cognitive load and risk of falls for AD patients. PMID:22991684

  17. "I'm Just a'-Walking the Dog" correlates of regular dog walking.

    PubMed

    Christian nee Cutt, Hayley; Giles-Corti, Billie; Knuiman, Matthew

    2010-01-01

    Intrapersonal and environmental factors associated with dog walking (N = 483) were examined. A greater proportion of regular (80%) than irregular (59%) dog walkers met the recommended 150 minutes of physical activity per week. Owners who perceived greater social support and motivation from their dogs to walk, and who had access to a dog-supportive park within their neighborhood, were more likely to regularly walk with their dogs, even after adjustment for other well-known correlates of physical activity. The higher level of physical activity of regular dog walkers can be attributed to the additional walking these owners perform with their dogs.

  18. Social Aggregation in Pea Aphids: Experiment and Random Walk Modeling

    PubMed Central

    Nilsen, Christa; Paige, John; Warner, Olivia; Mayhew, Benjamin; Sutley, Ryan; Lam, Matthew; Bernoff, Andrew J.; Topaz, Chad M.

    2013-01-01

    From bird flocks to fish schools and ungulate herds to insect swarms, social biological aggregations are found across the natural world. An ongoing challenge in the mathematical modeling of aggregations is to strengthen the connection between models and biological data by quantifying the rules that individuals follow. We model aggregation of the pea aphid, Acyrthosiphon pisum. Specifically, we conduct experiments to track the motion of aphids walking in a featureless circular arena in order to deduce individual-level rules. We observe that each aphid transitions stochastically between a moving and a stationary state. Moving aphids follow a correlated random walk. The probabilities of motion state transitions, as well as the random walk parameters, depend strongly on distance to an aphid's nearest neighbor. For large nearest neighbor distances, when an aphid is essentially isolated, its motion is ballistic with aphids moving faster, turning less, and being less likely to stop. In contrast, for short nearest neighbor distances, aphids move more slowly, turn more, and are more likely to become stationary; this behavior constitutes an aggregation mechanism. From the experimental data, we estimate the state transition probabilities and correlated random walk parameters as a function of nearest neighbor distance. With the individual-level model established, we assess whether it reproduces the macroscopic patterns of movement at the group level. To do so, we consider three distributions, namely distance to nearest neighbor, angle to nearest neighbor, and percentage of population moving at any given time. For each of these three distributions, we compare our experimental data to the output of numerical simulations of our nearest neighbor model, and of a control model in which aphids do not interact socially. Our stochastic, social nearest neighbor model reproduces salient features of the experimental data that are not captured by the control. PMID:24376691

  19. Social aggregation in pea aphids: experiment and random walk modeling.

    PubMed

    Nilsen, Christa; Paige, John; Warner, Olivia; Mayhew, Benjamin; Sutley, Ryan; Lam, Matthew; Bernoff, Andrew J; Topaz, Chad M

    2013-01-01

    From bird flocks to fish schools and ungulate herds to insect swarms, social biological aggregations are found across the natural world. An ongoing challenge in the mathematical modeling of aggregations is to strengthen the connection between models and biological data by quantifying the rules that individuals follow. We model aggregation of the pea aphid, Acyrthosiphon pisum. Specifically, we conduct experiments to track the motion of aphids walking in a featureless circular arena in order to deduce individual-level rules. We observe that each aphid transitions stochastically between a moving and a stationary state. Moving aphids follow a correlated random walk. The probabilities of motion state transitions, as well as the random walk parameters, depend strongly on distance to an aphid's nearest neighbor. For large nearest neighbor distances, when an aphid is essentially isolated, its motion is ballistic with aphids moving faster, turning less, and being less likely to stop. In contrast, for short nearest neighbor distances, aphids move more slowly, turn more, and are more likely to become stationary; this behavior constitutes an aggregation mechanism. From the experimental data, we estimate the state transition probabilities and correlated random walk parameters as a function of nearest neighbor distance. With the individual-level model established, we assess whether it reproduces the macroscopic patterns of movement at the group level. To do so, we consider three distributions, namely distance to nearest neighbor, angle to nearest neighbor, and percentage of population moving at any given time. For each of these three distributions, we compare our experimental data to the output of numerical simulations of our nearest neighbor model, and of a control model in which aphids do not interact socially. Our stochastic, social nearest neighbor model reproduces salient features of the experimental data that are not captured by the control.

  20. Biomechanical implications of walking with indigenous footwear

    PubMed Central

    Willems, Catherine; Stassijns, Gaetane; Cornelis, Wim; D'Août, Kristiaan

    2017-01-01

    Abstract Objectives This study investigates biomechanical implications of walking with indigenous “Kolhapuri” footwear compared to barefoot walking among a population of South Indians. Materials and methods Ten healthy adults from South India walked barefoot and indigenously shod at voluntary speed on an artificial substrate. The experiment was repeated outside, on a natural substrate. Data were collected from (1) a heel‐mounted 3D‐accelerometer recording peak impact at heel contact, (2) an ankle‐mounted 3D‐goniometer (plantar/dorsiflexion and inversion/eversion), and (3) sEMG electrodes at the m. tibialis anterior and the m. gastrocnemius medialis. Results Data show that the effect of indigenous footwear on the measured variables, compared to barefoot walking, is relatively small and consistent between substrates (even though subjects walked faster on the natural substrate). Walking barefoot, compared to shod walking yields higher impact accelerations, but the differences are small and only significant for the artificial substrate. The main rotations of the ankle joint are mostly similar between conditions. Only the shod condition shows a faster ankle rotation over the rapid eversion motion on the natural substrate. Maximal dorsiflexion in late stance differs between the footwear conditions on an artificial substrate, with the shod condition involving a less dorsiflexed ankle, and the plantar flexion at toe‐off is more extreme when shod. Overall the activity pattern of the external foot muscles is similar. Discussion The indigenous footwear studied (Kolhapuri) seems to alter foot biomechanics only in a subtle way. While offering some degree of protection, walking in this type of footwear resembles barefoot gait and this type of indigenous footwear might be considered “minimal”. PMID:28101944

  1. Mesonic spectroscopy of minimal walking technicolor

    SciTech Connect

    Del Debbio, Luigi; Lucini, Biagio; Patella, Agostino; Pica, Claudio; Rago, Antonio

    2010-07-01

    We investigate the structure and the novel emerging features of the mesonic nonsinglet spectrum of the minimal walking technicolor theory. Precision measurements in the nonsinglet pseudoscalar and vector channels are compared to the expectations for an IR-conformal field theory and a QCD-like theory. Our results favor a scenario in which minimal walking technicolor is (almost) conformal in the infrared, while spontaneous chiral symmetry breaking seems less plausible.

  2. Evaluating Walking in Patients with Multiple Sclerosis

    PubMed Central

    Bennett, Susan

    2011-01-01

    Walking limitations are among the most visible manifestations of multiple sclerosis (MS). Regular walking assessments should be a component of patient management and require instruments that are appropriate from the clinician's and the patient's perspectives. This article reviews frequently used instruments to assess walking in patients with MS, with emphasis on their validity, reliability, and practicality in the clinical setting. Relevant articles were identified based on PubMed searches using the following terms: “multiple sclerosis AND (walking OR gait OR mobility OR physical activity) AND (disability evaluation)”; references of relevant articles were also searched. Although many clinician- and patient-driven instruments are available, not all have been validated in MS, and some are not sensitive enough to detect small but clinically important changes. Choosing among these depends on what needs to be measured, psychometric properties, the clinical relevance of results, and practicality with respect to space, time, and patient burden. Of the instruments available, the clinician-observed Timed 25-Foot Walk and patient self-report 12-Item Multiple Sclerosis Walking Scale have properties that make them suitable for routine evaluation of walking performance. The Dynamic Gait Index and the Timed Up and Go test involve other aspects of mobility, including balance. Tests of endurance, such as the 2- or 6-Minute Walk, may provide information on motor fatigue not captured by other tests. Quantitative measurement of gait kinetics and kinematics, and recordings of mobility in the patient's environment via accelerometry or Global Positioning System odometry, are currently not routinely used in the clinical setting. PMID:24453700

  3. Calcaneal loading during walking and running

    NASA Technical Reports Server (NTRS)

    Giddings, V. L.; Beaupre, G. S.; Whalen, R. T.; Carter, D. R.

    2000-01-01

    PURPOSE: This study of the foot uses experimentally measured kinematic and kinetic data with a numerical model to evaluate in vivo calcaneal stresses during walking and running. METHODS: External ground reaction forces (GRF) and kinematic data were measured during walking and running using cineradiography and force plate measurements. A contact-coupled finite element model of the foot was developed to assess the forces acting on the calcaneus during gait. RESULTS: We found that the calculated force-time profiles of the joint contact, ligament, and Achilles tendon forces varied with the time-history curve of the moment about the ankle joint. The model predicted peak talocalcaneal and calcaneocuboid joint loads of 5.4 and 4.2 body weights (BW) during walking and 11.1 and 7.9 BW during running. The maximum predicted Achilles tendon forces were 3.9 and 7.7 BW for walking and running. CONCLUSIONS: Large magnitude forces and calcaneal stresses are generated late in the stance phase, with maximum loads occurring at approximately 70% of the stance phase during walking and at approximately 60% of the stance phase during running, for the gait velocities analyzed. The trajectories of the principal stresses, during both walking and running, corresponded to each other and qualitatively to the calcaneal trabecular architecture.

  4. Goals and Social Comparisons Promote Walking Behavior.

    PubMed

    Chapman, Gretchen B; Colby, Helen; Convery, Kimberly; Coups, Elliot J

    2016-05-01

    The effectiveness of a pedometer intervention was affected by manipulating the goals given to participants and by providing social comparison feedback about how participants' performance compared with others. In study 1 (n= 148), university staff members received a low, medium, or high walking goal (10%, 50%, or 100% increase over baseline walking). Participants walked 1358 more steps per day (95% confidence interval [CI], 729, 1985), when receiving a high goal than when receiving a medium goal, but a medium goal did not increase walking relative to a low goal (554 more steps; 95% CI, -71,1179). In study 2 (n= 64), participants received individual feedback only or individual plus social comparison feedback. Participants walked 1120 more steps per day (95% CI, 538, 1703) when receiving social comparison feedback than when receiving only individual feedback. Goals and the performance of others act as reference points and influence the effect that pedometer feedback has on walking behavior, illustrating the applicability of the principles of behavioral economics and social psychology to the design of health behavior interventions.

  5. Developmental continuity? Crawling, cruising, and walking.

    PubMed

    Adolph, Karen E; Berger, Sarah E; Leo, Andrew J

    2011-03-01

    This research examined developmental continuity between "cruising" (moving sideways holding onto furniture for support) and walking. Because cruising and walking involve locomotion in an upright posture, researchers have assumed that cruising is functionally related to walking. Study 1 showed that most infants crawl and cruise concurrently prior to walking, amassing several weeks of experience with both skills. Study 2 showed that cruising infants perceive affordances for locomotion over an adjustable gap in a handrail used for manual support, but despite weeks of cruising experience, cruisers are largely oblivious to the dangers of gaps in the floor beneath their feet. Study 3 replicated the floor-gap findings for infants taking their first independent walking steps, and showed that new walkers also misperceive affordances for locomoting between gaps in a handrail. The findings suggest that weeks of cruising do not teach infants a basic fact about walking: the necessity of a floor to support their body. Moreover, this research demonstrated that developmental milestones that are temporally contiguous and structurally similar might have important functional discontinuities.

  6. Coined quantum walks on percolation graphs

    NASA Astrophysics Data System (ADS)

    Leung, Godfrey; Knott, Paul; Bailey, Joe; Kendon, Viv

    2010-12-01

    Quantum walks, both discrete (coined) and continuous time, form the basis of several quantum algorithms and have been used to model processes such as transport in spin chains and quantum chemistry. The enhanced spreading and mixing properties of quantum walks compared with their classical counterparts have been well studied on regular structures and also shown to be sensitive to defects and imperfections in the lattice. As a simple example of a disordered system, we consider percolation lattices, in which edges or sites are randomly missing, interrupting the progress of the quantum walk. We use numerical simulation to study the properties of coined quantum walks on these percolation lattices in one and two dimensions. In one dimension (the line), we introduce a simple notion of quantum tunnelling and determine how this affects the properties of the quantum walk as it spreads. On two-dimensional percolation lattices, we show how the spreading rate varies from linear in the number of steps down to zero as the percolation probability decreases towards the critical point. This provides an example of fractional scaling in quantum-walk dynamics.

  7. Uphill and Downhill Walking in Multiple Sclerosis

    PubMed Central

    Samaei, Afshin; Hajihasani, Abdolhamid; Fatemi, Elham; Motaharinezhad, Fatemeh

    2016-01-01

    Background: Various exercise protocols have been recommended for patients with multiple sclerosis (MS). We investigated the effects of uphill and downhill walking exercise on mobility, functional activities, and muscle strength in MS patients. Methods: Thirty-four MS patients were randomly allocated to either the downhill or uphill treadmill walking group for 12 sessions (3 times/wk) of 30 minutes' walking on a 10% negative slope (n = 17) or a 10% positive slope (n = 17), respectively. Measurements were taken before and after the intervention and after 4-week follow-up and included fatigue by Modified Fatigue Impact Scale; mobility by Modified Rivermead Mobility Index; disability by Guy's Neurological Disability Scale; functional activities by 2-Minute Walk Test, Timed 25-Foot Walk test, and Timed Up and Go test; balance indices by Biodex Balance System; and quadriceps and hamstring isometric muscles by torque of left and right knee joints. Analysis of variance with repeated measures was used to investigate the intervention effects on the measurements. Results: After the intervention, significant improvement was found in the downhill group versus the uphill group in terms of fatigue, mobility, and disability indices; functional activities; balance indices; and quadriceps isometric torque (P < .05). The results were stable at 4-week follow-up. Conclusions: Downhill walking on a treadmill may improve muscle performance, functional activity, and balance control in MS patients. These findings support the idea of using eccentric exercise training in MS rehabilitation protocols. PMID:26917996

  8. Convergence of quantum random walks with decoherence

    SciTech Connect

    Fan Shimao; Feng Zhiyong; Yang, Wei-Shih; Xiong Sheng

    2011-10-15

    In this paper, we study the discrete-time quantum random walks on a line subject to decoherence. The convergence of the rescaled position probability distribution p(x,t) depends mainly on the spectrum of the superoperator L{sub kk}. We show that if 1 is an eigenvalue of the superoperator with multiplicity one and there is no other eigenvalue whose modulus equals 1, then P(({nu}/{radical}(t)),t) converges to a convex combination of normal distributions. In terms of position space, the rescaled probability mass function p{sub t}(x,t){identical_to}p({radical}(t)x,t), x is an element of Z/{radical}(t), converges in distribution to a continuous convex combination of normal distributions. We give a necessary and sufficient condition for a U(2) decoherent quantum walk that satisfies the eigenvalue conditions. We also give a complete description of the behavior of quantum walks whose eigenvalues do not satisfy these assumptions. Specific examples such as the Hadamard walk and walks under real and complex rotations are illustrated. For the O(2) quantum random walks, an explicit formula is provided for the scaling limit of p(x,t) and their moments. We also obtain exact critical exponents for their moments at the critical point and show universality classes with respect to these critical exponents.

  9. Development of dalfampridine, a novel pharmacologic approach for treating walking impairment in multiple sclerosis.

    PubMed

    Blight, Andrew R; Henney, Herbert R; Cohen, Ron

    2014-11-01

    Walking impairment is a clinical hallmark of multiple sclerosis (MS). Dalfampridine-ER, an extended-release formulation of dalfampridine (also known by its chemical name, 4-aminopyridine, and its international nonproprietary name, fampridine), was developed to maintain drug plasma levels within a narrow therapeutic window, and assessed for its ability to improve walking in MS. The putative mechanism of action of dalfampridine-ER is restoration of axonal conduction via blockade of the potassium channels that become exposed during axonal demyelination. Two pivotal phase III clinical trials demonstrated that dalfampridine-ER 10-mg tablets administered twice daily improved walking speed and patient-reported perceptions of walking in some patients. Dalfampridine-ER was generally well tolerated, and, at the approved dose, risk of seizure was neither elevated relative to placebo nor higher than the rate in the MS population. Dalfampridine-ER (AMPYRA®) was approved in the United States for the treatment of walking in patients with MS as demonstrated by an increase in walking speed. The use of the dalfampridine-ER is contraindicated in patients with a history of seizure. It is the first pharmacologic therapy for this indication and has been incorporated into clinical management of MS.

  10. The circadian control of calling song and walking activity patterns in male crickets (Teleogryllus commodus).

    PubMed

    Wiedenmann, G; Krüger-Alef, K; Martin, W

    1988-01-01

    Calling song and walking activity patterns of the Australian field cricket Teleogryllus commodus were simultaneously recorded in LD and LL at constant temperature. The results were analysed with respect to their circadian structure: (1) Circadian properties were expressed more clearly in singing than in walking, with cases approaching arrhythmicity in the latter. Still, (independent) circadian control was proven for walking as in most cases the phase response of the recorded data was different from that of synthetic data produced by a model using the calling song as the only circadian source. (2) The phase angle difference between singing and walking rhythm (psi SIN/WAL) was usually smaller in LD than in LL, where values in the range of 180 degrees prevailed (Fig. 7). However deviations often occurred, during which the slopes of the instantaneous phase positions of singing and walking were different for several cycles, indicating individual periods. (3) Internal dissociation was also found following the exposure to 6-h pulses of low temperature. (4) After unilateral blinding of one compound eye during the last larval instar, which leads to splitting of the calling song rhythm, internal desynchronization was found between singing and walking. Additional removal of one optic lobe resulted in a common period and an abnormal psi SIN/WAL close to zero. (5) We interpret the results as follows: temporal calling song and walking activity patterns are controlled by the same compound circadian mechanism. Its bilaterally distributed pacemakers (Wiedenmann 1983) may dissociate under certain experimental conditions revealing their individual oscillatory properties in either singing or walking.

  11. A Simple State-Determined Model Reproduces Entrainment and Phase-Locking of Human Walking

    PubMed Central

    Ahn, Jooeun; Hogan, Neville

    2012-01-01

    Theoretical studies and robotic experiments have shown that asymptotically stable periodic walking may emerge from nonlinear limit-cycle oscillators in the neuro-mechanical periphery. We recently reported entrainment of human gait to periodic mechanical perturbations with two essential features: 1) entrainment occurred only when the perturbation period was close to the original (preferred) walking period, and 2) entrainment was always accompanied by phase locking so that the perturbation occurred at the end of the double-stance phase. In this study, we show that a highly-simplified state-determined walking model can reproduce several salient nonlinear limit-cycle behaviors of human walking: 1) periodic gait that is 2) asymptotically stable; 3) entrainment to periodic mechanical perturbations only when the perturbation period is close to the model's unperturbed period; and 4) phase-locking to locate the perturbation at the end of double stance. Importantly, this model requires neither supra-spinal control nor an intrinsic self-sustaining neural oscillator such as a rhythmic central pattern generator. Our results suggest that several prominent limit-cycle features of human walking may stem from simple afferent feedback processes without significant involvement of supra-spinal control or a self-sustaining oscillatory neural network. PMID:23152761

  12. Quantum walks with tuneable self-avoidance in one dimension

    NASA Astrophysics Data System (ADS)

    Camilleri, Elizabeth; Rohde, Peter P.; Twamley, Jason

    2014-04-01

    Quantum walks exhibit many unique characteristics compared to classical random walks. In the classical setting, self-avoiding random walks have been studied as a variation on the usual classical random walk. Here the walker has memory of its previous locations and preferentially avoids stepping back to locations where it has previously resided. Classical self-avoiding random walks have found numerous algorithmic applications, most notably in the modelling of protein folding. We consider the analogous problem in the quantum setting - a quantum walk in one dimension with tunable levels of self-avoidance. We complement a quantum walk with a memory register that records where the walker has previously resided. The walker is then able to avoid returning back to previously visited sites or apply more general memory conditioned operations to control the walk. We characterise this walk by examining the variance of the walker's distribution against time, the standard metric for quantifying how quantum or classical a walk is. We parameterise the strength of the memory recording and the strength of the memory back-action on the walker, and investigate their effect on the dynamics of the walk. We find that by manipulating these parameters, which dictate the degree of self-avoidance, the walk can be made to reproduce ideal quantum or classical random walk statistics, or a plethora of more elaborate diffusive phenomena. In some parameter regimes we observe a close correspondence between classical self-avoiding random walks and the quantum self-avoiding walk.

  13. Understanding walking activity in multiple sclerosis: step count, walking intensity and uninterrupted walking activity duration related to degree of disability.

    PubMed

    Neven, An; Vanderstraeten, Annelien; Janssens, Davy; Wets, Geert; Feys, Peter

    2016-09-01

    In multiple sclerosis (MS), physical activity (PA) is most commonly measured as number of steps, while also walking intensity and walking activity duration are keys for a healthy lifestyle. The aim of this study was to investigate (1) the number of steps persons with MS (PwMS) take; (2) the number of steps they take at low and moderate intensity; and (3) their walking activity duration for 2, 3, 6, 10, 12 and 14 uninterrupted minutes; all related to the degree of disability. 64 PwMS participated, distinguished in a mild (n = 31) and moderate MS subgroup (n = 34) based on their ambulatory dysfunction (Disease Steps). Standardized clinical tests were performed, and step data from the StepWatch Activity Monitor were collected for seven consecutive days. The results showed that (1) step count in PwMS was lower than PA recommendations, and is negatively influenced by a higher disability degree. (2) No walking was registered during 77 % of the day. PwMS are making steps for 22 % at low and only 1 % at moderate intensity. (3) Both MS subgroups rarely walk for more than six uninterrupted minutes, especially not at moderate intensity. PwMS need to be encouraged to make steps at moderate intensity, and to make steps for longer periods of time (minimal ten uninterrupted minutes).

  14. Assessing walking behaviors of selected subpopulations.

    PubMed

    Le Masurier, Guy C; Bauman, Adrian E; Corbin, Charles B; Konopack, James F; Umstattd, Renee M; VAN Emmerik, Richard E A

    2008-07-01

    Recent innovations in physical activity (PA) assessment have made it possible to assess the walking behaviors of a wide variety of populations. Objective measurement methods (e.g., pedometers, accelerometers) have been widely used to assess walking and other prevalent types of PA. Questionnaires suitable for international populations (e.g., the International Physical Activity Questionnaire and the Global Physical Activity Questionnaire) and measurement techniques for the assessment of gait patterns in disabled populations allow for the study of walking and its health benefits among many populations. Results of studies using the aforementioned techniques indicate that children are more active than adolescents and adolescents are more active than adults. Males, particularly young males, are typically more active than females. The benefits associated with regular participation in PA for youth and walking for older adults have been well documented, although improvements in the assessments of physical, cognitive, and psychosocial parameters must be made if we are to fully understand the benefits of walking for people of all ages. Most youth meet appropriate age-related PA activity recommendations, but adults, particularly older adults and adults with disabilities, are less likely to meet PA levels necessary for the accrual of health benefits. International studies indicate variation in walking by culture. It is clear, however, that walking is a prevalent form of PA across countries and a movement form that has great potential in global PA promotion. Continued development of measurement techniques that allow for the study of individualized gait patterns will help us add to the already rich body of knowledge on chronically disabled populations and allow for individual prescriptions for these populations.

  15. Framework for discrete-time quantum walks and a symmetric walk on a binary tree

    SciTech Connect

    Dimcovic, Zlatko; Rockwell, Daniel; Milligan, Ian; Burton, Robert M.; Kovchegov, Yevgeniy; Nguyen, Thinh

    2011-09-15

    We formulate a framework for discrete-time quantum walks, motivated by classical random walks with memory. We present a specific representation of the classical walk with memory 2, on which this is based. The framework has no need for coin spaces, it imposes no constraints on the evolution operator other than unitarity, and is unifying of other approaches. As an example we construct a symmetric discrete-time quantum walk on the semi-infinite binary tree. The generating function of the amplitude at the root is computed in closed form, as a function of time and the initial level n in the tree, and we find the asymptotic and a full numerical solution for the amplitude. It exhibits a sharp interference peak and a power-law tail, as opposed to the exponentially decaying tail of a broadly peaked distribution of the classical symmetric random walk on a binary tree. The probability peak is orders of magnitude larger than it is for the classical walk (already at small n). The quantum walk shows a polynomial algorithmic speedup in n over the classical walk, which we conjecture to be of the order 2/3, based on strong trends in data.

  16. Exercise intensity of robot-assisted walking versus overground walking in nonambulatory stroke patients.

    PubMed

    van Nunen, Michiel P M; Gerrits, Karin H L; de Haan, Arnold; Janssen, Thomas W J

    2012-01-01

    It has been suggested that aerobic training should be considered in stroke rehabilitation programs to counteract detrimental health effects and decrease cardiovascular risk caused by inactivity. Robot-assisted treadmill exercise (using a Lokomat device) has the potential to increase the duration of walking therapy relative to conventional overground therapy. We investigated whether exercise intensity during Lokomat therapy is adequate to elicit a training effect and how assistance during walking in the Lokomat affects this exercise intensity. Ten patients with stroke (age 54 +/- 9 yr) walked in both the Lokomat and in a hallway. Furthermore, 10 nondisabled subjects (age 43 +/- 14 yr) walked in the Lokomat at various settings and on a treadmill at various speeds. During walking, oxygen consumption and heart rate were monitored. Results showed that for patients with stroke, exercise intensity did not reach recommended levels (30% heart rate reserve) for aerobic training during Lokomat walking. Furthermore, exercise intensity during walking in the Lokomat (9.3 +/- 1.6 mL/min/kg) was lower than during overground walking (10.4 +/- 1.3 mL/min/kg). Also, different settings of the Lokomat only had small effects on exercise intensity in nondisabled subjects.

  17. 10 CFR 429.53 - Walk-in coolers and walk-in freezers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Walk-in coolers and walk-in freezers. 429.53 Section 429.53 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION CERTIFICATION, COMPLIANCE, AND ENFORCEMENT FOR... WICFs with transparent reach-in doors and windows: The glass type of the doors and windows (e.g.,...

  18. Do somatosensory conditions from the foot and ankle affect postural responses to plantar-flexor muscles fatigue during bipedal quiet stance?

    PubMed

    Hlavackova, Petra; Vuillerme, Nicolas

    2012-05-01

    The present study investigated the effects of somatosensory conditions at the foot and ankle on postural responses to plantar-flexor muscle fatigue during bipedal quiet stance. Twenty-two young healthy adults were asked to stand upright as still as possible with their eyes closed in three somatosensory conditions (normal, altered and improved) both prior to and after exercises inducing plantar-flexor muscle fatigue. In the normal condition, the postural task was executed on a firm support surface constituted by the force platform. In the altered condition, a 2-cm thick foam support surface was placed under the subjects' feet. In the improved condition, increased cutaneous feedback at the foot and ankle was provided by strips of athletic tape applied across both their ankle joints. Muscle fatigue was induced in the plantar-flexor muscles of both legs through the execution of a repeated standing heel raise exercise. Centre of foot pressure displacements were recorded using a force platform. Results showed that plantar-flexor muscle fatigue yielded increased centre of foot pressure displacements under normal foot and ankle sensory conditions. Furthermore, this effect was exacerbated under altered foot and ankle sensory conditions and mitigated under improved foot and ankle sensory conditions. Altogether, the present findings suggested an increased reliance on somatosensory information from the foot and ankle for controlling upright posture in the presence of plantar-flexor muscle fatigue.

  19. Activating and relaxing music entrains the speed of beat synchronized walking.

    PubMed

    Leman, Marc; Moelants, Dirk; Varewyck, Matthias; Styns, Frederik; van Noorden, Leon; Martens, Jean-Pierre

    2013-01-01

    Inspired by a theory of embodied music cognition, we investigate whether music can entrain the speed of beat synchronized walking. If human walking is in synchrony with the beat and all musical stimuli have the same duration and the same tempo, then differences in walking speed can only be the result of music-induced differences in stride length, thus reflecting the vigor or physical strength of the movement. Participants walked in an open field in synchrony with the beat of 52 different musical stimuli all having a tempo of 130 beats per minute and a meter of 4 beats. The walking speed was measured as the walked distance during a time interval of 30 seconds. The results reveal that some music is 'activating' in the sense that it increases the speed, and some music is 'relaxing' in the sense that it decreases the speed, compared to the spontaneous walked speed in response to metronome stimuli. Participants are consistent in their observation of qualitative differences between the relaxing and activating musical stimuli. Using regression analysis, it was possible to set up a predictive model using only four sonic features that explain 60% of the variance. The sonic features capture variation in loudness and pitch patterns at periods of three, four and six beats, suggesting that expressive patterns in music are responsible for the effect. The mechanism may be attributed to an attentional shift, a subliminal audio-motor entrainment mechanism, or an arousal effect, but further study is needed to figure this out. Overall, the study supports the hypothesis that recurrent patterns of fluctuation affecting the binary meter strength of the music may entrain the vigor of the movement. The study opens up new perspectives for understanding the relationship between entrainment and expressiveness, with the possibility to develop applications that can be used in domains such as sports and physical rehabilitation.

  20. Activating and Relaxing Music Entrains the Speed of Beat Synchronized Walking

    PubMed Central

    Leman, Marc; Moelants, Dirk; Varewyck, Matthias; Styns, Frederik; van Noorden, Leon; Martens, Jean-Pierre

    2013-01-01

    Inspired by a theory of embodied music cognition, we investigate whether music can entrain the speed of beat synchronized walking. If human walking is in synchrony with the beat and all musical stimuli have the same duration and the same tempo, then differences in walking speed can only be the result of music-induced differences in stride length, thus reflecting the vigor or physical strength of the movement. Participants walked in an open field in synchrony with the beat of 52 different musical stimuli all having a tempo of 130 beats per minute and a meter of 4 beats. The walking speed was measured as the walked distance during a time interval of 30 seconds. The results reveal that some music is ‘activating’ in the sense that it increases the speed, and some music is ‘relaxing’ in the sense that it decreases the speed, compared to the spontaneous walked speed in response to metronome stimuli. Participants are consistent in their observation of qualitative differences between the relaxing and activating musical stimuli. Using regression analysis, it was possible to set up a predictive model using only four sonic features that explain 60% of the variance. The sonic features capture variation in loudness and pitch patterns at periods of three, four and six beats, suggesting that expressive patterns in music are responsible for the effect. The mechanism may be attributed to an attentional shift, a subliminal audio-motor entrainment mechanism, or an arousal effect, but further study is needed to figure this out. Overall, the study supports the hypothesis that recurrent patterns of fluctuation affecting the binary meter strength of the music may entrain the vigor of the movement. The study opens up new perspectives for understanding the relationship between entrainment and expressiveness, with the possibility to develop applications that can be used in domains such as sports and physical rehabilitation. PMID:23874469

  1. Speed training with body weight unloading improves walking energy cost and maximal speed in 75- to 85-year-old healthy women.

    PubMed

    Thomas, Elju E; De Vito, Giuseppe; Macaluso, Andrea

    2007-11-01

    This randomized controlled study was designed to prove the hypothesis that a novel approach to high-speed interval training, based on walking on a treadmill with the use of body weight unloading (BWU), would have improved energy cost and speed of overground walking in healthy older women. Participants were randomly assigned to either the exercise group (n = 11, 79.6 +/- 3.7 yr, mean +/- SD) or the nonintervention control group (n = 11, 77.6 +/- 2.3 yr). During the first 6 wk, the exercise group performed walking interval training on the treadmill with 40% BWU at the maximal walking speed corresponding to an intensity close to heart rate at ventilatory threshold (T(vent) walking speed). Each session consisted of four sets of 5 min of walking (three 1-min periods at T(vent) walking speed, with two 1-min intervals at comfortable walking speed in between each period at T(vent) walking speed) with 1-min interval between each set. Speed was increased session by session until the end of week 6. BWU was then progressively reduced to 10% during the last 6 wk of intervention. After 12 wk, the walking energy cost per unit of distance at all self-selected overground walking speeds (slow, comfortable, and fast) was significantly reduced in the range from 18 to 21%. The exercise group showed a 13% increase in maximal walking speed and a 67% increase in mechanical power output at T(vent) after the training program. The novel "overspeed" training approach has been demonstrated to be effective in improving energy cost and speed of overground walking in healthy older women.

  2. A marching-walking hybrid induces step length adaptation and transfers to natural walking.

    PubMed

    Long, Andrew W; Finley, James M; Bastian, Amy J

    2015-06-01

    Walking is highly adaptable to new demands and environments. We have previously studied adaptation of locomotor patterns via a split-belt treadmill, where subjects learn to walk with one foot moving faster than the other. Subjects learn to adapt their walking pattern by changing the location (spatial) and time (temporal) of foot placement. Here we asked whether we can induce adaptation of a specific walking pattern when one limb does not "walk" but instead marches in place (i.e., marching-walking hybrid). The marching leg's movement is limited during the stance phase, and thus certain sensory signals important for walking may be reduced. We hypothesized that this would produce a spatial-temporal strategy different from that of normal split-belt adaptation. Healthy subjects performed two experiments to determine whether they could adapt their spatial-temporal pattern of step lengths during the marching-walking hybrid and whether the learning transfers to over ground walking. Results showed that the hybrid group did adapt their step lengths, but the time course of adaptation and deadaption was slower than that for the split-belt group. We also observed that the hybrid group utilized a mostly spatial strategy whereas the split-belt group utilized both spatial and temporal strategies. Surprisingly, we found no significant difference between the hybrid and split-belt groups in over ground transfer. Moreover, the hybrid group retained more of the learned pattern when they returned to the treadmill. These findings suggest that physical rehabilitation with this marching-walking paradigm on conventional treadmills may produce changes in symmetry comparable to what is observed during split-belt training.

  3. Foot Progression Angle Walking Test

    PubMed Central

    Ranawat, Anil S.; Gaudiani, Michael A.; Slullitel, Pablo A.; Satalich, James; Rebolledo, Brian J.

    2017-01-01

    Background: Determining an accurate clinical diagnosis for nonarthritic hip pain may be challenging, as symptoms related to femoroacetabular impingement (FAI) or hip instability can be difficult to elucidate with current testing methods. In addition, commonly utilized physical examination maneuvers are static and do not include a dynamic or weightbearing assessment to reproduce activity-related symptoms. Therefore, implementing a dynamic assessment for FAI and hip instability could help to improve diagnostic accuracy for routine clinical examinations of patients with nonarthritic hip pain. Purpose: To assess the efficacy of a novel diagnostic foot progression angle walking (FPAW) test for identifying hip pathology related to FAI or hip instability. Study Design: Prospective cohort study; Level of evidence, 3. Methods: This prospective study included 199 consecutive patients who were evaluated for unilateral hip pain and who underwent FPAW testing along with standard physical examination testing. Demographic data, including age, sex and hip laterality, were collected from each patient. FPAW testing was performed with directed internal and external foot progression angles from their baseline measurements, with a positive test reproducing pain and/or discomfort. Comparisons were then made with flexion adduction internal rotation (FADIR) and flexion abduction external rotation (FABER) tests as the designated diagnostic standard examinations for FAI and hip instability, respectively. Sensitivity and specificity, along with the McNemar chi-square test for group comparison, were used to generate summary statistics. In addition, areas under the combined receiver operating characteristic curves (AUC) of test performance were calculated for both FPAW and the designated standard examination tests (FADIR, FABER). Radiographic imaging was used subsequently to confirm the diagnosis. Results: The average age of the study cohort was 35.4 ± 11.8 years, with 114 patients being

  4. Energy cost of walking with flat feet.

    PubMed

    Otman, S; Basgöze, O; Gökce-Kutsal, Y

    1988-08-01

    A comparative study has been conducted to assess the effects of arch support on oxygen consumption in 20 subjects with flat feet who were generally complaining about fatigue, and also to explore whether their feeling of weariness was objective or not. The resting, walking and final recovery heart rates, blood pressures, and walking oxygen consumption values of the patients with flat feet were measured and calculated and compared to a control group using treadmill and oxygen consumption devices. In stage one the patients did not wear any arch support. Then suitable arch supports were prepared for each patient and in stage two they wore these arch supports. The results did not show any significant difference between the resting heart rates, blood pressure and oxygen consumptions. However, differences in walking heart rate, systolic blood pressure, final recovery heart rate, oxygen consumption, and energy cost values were found to be significant between stage one and two of the test in the patient group. The difference in walking diastolic blood pressure values without and with arch support were found to be insignificant. It may therefore be deduced that oxygen consumption during walking is decreased when a suitable arch support is applied to patients with flat feet.

  5. Exercise Training and Cognitive Rehabilitation: A Symbiotic Approach for Rehabilitating Walking and Cognitive Functions in Multiple Sclerosis?

    PubMed

    Motl, Robert W; Sandroff, Brian M; DeLuca, John

    2016-07-01

    The current review develops a rationale and framework for examining the independent and combined effects of exercise training and cognitive rehabilitation on walking and cognitive functions in persons with multiple sclerosis (MS). To do so, we first review evidence for improvements in walking and cognitive outcomes with exercise training and cognitive rehabilitation in MS. We then review evidence regarding cognitive-motor coupling and possible cross-modality transfer effects of exercise training and cognitive rehabilitation. We lastly present a macro-level framework for considering mechanisms that might explain improvements in walking and cognitive dysfunction with exercise and cognitive rehabilitation individually and combined in MS. We conclude that researchers should consider examining the effects of exercise training and cognitive rehabilitation on walking, cognition, and cognitive-motor interactions in MS and the possible physiological and central mechanisms for improving these functions.

  6. Treadmill walking in water induces greater respiratory muscle fatigue than treadmill walking on land in healthy young men.

    PubMed

    Yamashina, Yoshihiro; Yokoyama, Hisayo; Naghavi, Nooshin; Hirasawa, Yoshikazu; Takeda, Ryosuke; Ota, Akemi; Imai, Daiki; Miyagawa, Toshiaki; Okazaki, Kazunobu

    2016-05-01

    The purpose of the present study was to investigate the effect of walking in water on respiratory muscle fatigue compared with that of walking on land at the same exercise intensity. Ten healthy males participated in 40-min treadmill walking trials on land and in water at an intensity of 60% of peak oxygen consumption. Respiratory function and respiratory muscle strength were evaluated before and after walking trials. Inspiratory muscle strength and forced expiratory volume in 1 s were significantly decreased immediately after walking in water, and expiratory muscle strength was significantly decreased immediately and 5 min after walking in water compared with the baseline. The decreases of inspiratory and expiratory muscle strength were significantly greater compared with that after walking on land. In conclusion, greater inspiratory and expiratory muscle fatigue was induced by walking in water than by walking on land at the same exercise intensity in healthy young men.

  7. Mean first return time for random walks on weighted networks

    NASA Astrophysics Data System (ADS)

    Jing, Xing-Li; Ling, Xiang; Long, Jiancheng; Shi, Qing; Hu, Mao-Bin

    2015-11-01

    Random walks on complex networks are of great importance to understand various types of phenomena in real world. In this paper, two types of biased random walks on nonassortative weighted networks are studied: edge-weight-based random walks and node-strength-based random walks, both of which are extended from the normal random walk model. Exact expressions for stationary distribution and mean first return time (MFRT) are derived and examined by simulation. The results will be helpful for understanding the influences of weights on the behavior of random walks.

  8. Tendon Based Full Size Biped Humanoid Robot Walking Platform Design

    NASA Astrophysics Data System (ADS)

    Kuo, Chung-Hsien; Chiou, Kuo-Wei

    Actuators and gear trains of most biped humanoid robots are divergently allocated on the links of two legs. Disadvantages of such a mechanical design are complicated wiring of power cord and sensing/ control signal bundles and imprecise kinetics models of mixed link-and-actuator structures. Based on these drawbacks, this paper proposes a tendon-driven mechanism to develop a lower body structure of a full-size biped humanoid robot. The actuators are compacted as an actuator module, and they are placed at a distal site. A 12 degree-of-freedom mechanical structure is proposed with 100 cm in height and 45 kg in weight. The gait planning module is simulated and evaluated using the Matlab software. At the same time, an ARM7 based controller is developed to automatically generate walking patterns as well as to control the motors. Finally, a tendon-driven biped humanoid robot prototype is realized for practical waling control in the future.

  9. Photonics walking up a human hair

    NASA Astrophysics Data System (ADS)

    Zeng, Hao; Parmeggiani, Camilla; Martella, Daniele; Wasylczyk, Piotr; Burresi, Matteo; Wiersma, Diederik S.

    2016-03-01

    While animals have access to sugars as energy source, this option is generally not available to artificial machines and robots. Energy delivery is thus the bottleneck for creating independent robots and machines, especially on micro- and nano- meter length scales. We have found a way to produce polymeric nano-structures with local control over the molecular alignment, which allowed us to solve the above issue. By using a combination of polymers, of which part is optically sensitive, we can create complex functional structures with nanometer accuracy, responsive to light. In particular, this allowed us to realize a structure that can move autonomously over surfaces (it can "walk") using the environmental light as its energy source. The robot is only 60 μm in total length, thereby smaller than any known terrestrial walking species, and it is capable of random, directional walking and rotating on different dry surfaces.

  10. Humanoid robot Lola: design and walking control.

    PubMed

    Buschmann, Thomas; Lohmeier, Sebastian; Ulbrich, Heinz

    2009-01-01

    In this paper we present the humanoid robot LOLA, its mechatronic hardware design, simulation and real-time walking control. The goal of the LOLA-project is to build a machine capable of stable, autonomous, fast and human-like walking. LOLA is characterized by a redundant kinematic configuration with 7-DoF legs, an extremely lightweight design, joint actuators with brushless motors and an electronics architecture using decentralized joint control. Special emphasis was put on an improved mass distribution of the legs to achieve good dynamic performance. Trajectory generation and control aim at faster, more flexible and robust walking. Center of mass trajectories are calculated in real-time from footstep locations using quadratic programming and spline collocation methods. Stabilizing control uses hybrid position/force control in task space with an inner joint position control loop. Inertial stabilization is achieved by modifying the contact force trajectories.

  11. Quantum walk search through potential barriers

    NASA Astrophysics Data System (ADS)

    Wong, Thomas G.

    2016-12-01

    An ideal quantum walk transitions from one vertex to another with perfect fidelity, but in physical systems, the particle may be hindered by potential energy barriers. Then the particle has some amplitude of tunneling through the barriers, and some amplitude of staying put. We investigate the algorithmic consequence of such barriers for the quantum walk formulation of Grover’s algorithm. We prove that the failure amplitude must scale as O(1/\\sqrt{N}) for search to retain its quantum O(\\sqrt{N}) runtime; otherwise, it searches in classical O(N) time. Thus searching larger ‘databases’ requires increasingly reliable hop operations or error correction. This condition holds for both discrete- and continuous-time quantum walks.

  12. Diffraction and interference of walking drops

    NASA Astrophysics Data System (ADS)

    Pucci, Giuseppe; Harris, Daniel M.; Bush, John W. M.

    2016-11-01

    A decade ago, Yves Couder and Emmanuel Fort discovered a wave-particle association on the macroscopic scale: a drop can bounce indefinitely on a vibrating bath of the same liquid and can be piloted by the waves that it generates. These walking droplets have been shown to exhibit several quantum-like features, including single-particle diffraction and interference. Recently, the original diffraction and interference experiments of Couder and Fort have been revisited and contested. We have revisited this system using an improved experimental set-up, and observed a strong dependence of the behavior on system parameters, including drop size and vibrational forcing. In both the single- and the double-slit geometries, the diffraction pattern is dominated by the interaction of the walking droplet with a planar boundary. Critically, in the double-slit geometry, the walking droplet is influenced by both slits by virtue of its spatially extended wave field. NSF support via CMMI-1333242.

  13. Liberating Lévy walk research from the shackles of optimal foraging

    NASA Astrophysics Data System (ADS)

    Reynolds, Andy

    2015-09-01

    There is now compelling evidence that many organisms have movement patterns that can be described as Lévy walks, or Lévy flights. Lévy movement patterns have been identified in cells, microorganisms, molluscs, insects, reptiles, fish, birds and even human hunter-gatherers. Most research into Lévy walks as models of organism movement patterns has been shaped by the 'Lévy flight foraging hypothesis'. This states that, since Lévy walks can optimize search efficiencies, natural selection should lead to adaptations that select for Lévy walk foraging. However, a growing body of research on generative mechanisms suggests that Lévy walks can arise freely as by-products of otherwise innocuous behaviours; consequently their advantageous properties are purely coincidental. This suggests that the Lévy flight foraging hypothesis should be amended, or even replaced, by a simpler and more general hypothesis. This new hypothesis would state that 'Lévy walks emerge spontaneously and naturally from innate behaviours and innocuous responses to the environment but, if advantageous, then there could be selection against losing them'. The new hypothesis has the virtue of making fewer assumptions and being broader than the original hypothesis; it also encompasses the many examples of suboptimal Lévy patterns that challenge the prevailing paradigm. This does not detract from the Lévy flight foraging hypothesis, in fact, it adds to the theory by providing a stronger and more compelling case for the occurrence of Lévy walks. It dispenses with concerns about the theoretical arguments in support of the Lévy flight foraging hypothesis and so may lead to a wider acceptance of Lévy walks as models of movement pattern data. Furthermore, organisms can approximate Lévy walks by adapting intrinsic behaviour in simple ways; this occurs when Lévy movement patterns are advantageous, but come with an associated cost. These new developments represent a major change in perspective and

  14. NMR-based, molecular dynamics- and random walk molecular mechanics-supported study of conformational aspects of a carbohydrate ligand (Gal beta 1-2Gal beta 1-R) for an animal galectin in the free and in the bound state.

    PubMed

    Siebert, H C; Gilleron, M; Kaltner, H; von der Lieth, C W; Kozár, T; Bovin, N; Korchagina, E Y; Vliegenthart, J F; Gabius, H J

    1996-02-06

    The binding of a carbohydrate to a lectin may affect the conformation of the ligand. To address this question for the galectin from chicken liver, the conformation of Gal beta 1-2Gal beta 1-R was analyzed in the free and in the galectin-bound state with 2D-ROESY- and 1D- as well as 2D-transferred NOE-experiments. A computer-assisted analysis of spatial parameters of the ligand by molecular dynamics (MD) and random walk molecular mechanics (RAMM) calculations, taking different dielectric constraints from epsilon = 1 to epsilon = 80 and various force fields into account, were instrumental to define the energetic minima of the free state. NMR-derived interresidual distance constraints enabled a conformational mapping. The two overlapping interresidual distance constraints obtained from transferred-NOE experiments of the galectin-ligand complex clearly support the notion that the conformation of the disaccharide in the bound state is at least very close to its global energy minimum state in solution.

  15. Stride Counting in Human Walking and Walking Distance Estimation Using Insole Sensors

    PubMed Central

    Truong, Phuc Huu; Lee, Jinwook; Kwon, Ae-Ran; Jeong, Gu-Min

    2016-01-01

    This paper proposes a novel method of estimating walking distance based on a precise counting of walking strides using insole sensors. We use an inertial triaxial accelerometer and eight pressure sensors installed in the insole of a shoe to record walkers’ movement data. The data is then transmitted to a smartphone to filter out noise and determine stance and swing phases. Based on phase information, we count the number of strides traveled and estimate the movement distance. To evaluate the accuracy of the proposed method, we created two walking databases on seven healthy participants and tested the proposed method. The first database, which is called the short distance database, consists of collected data from all seven healthy subjects walking on a 16 m distance. The second one, named the long distance database, is constructed from walking data of three healthy subjects who have participated in the short database for an 89 m distance. The experimental results show that the proposed method performs walking distance estimation accurately with the mean error rates of 4.8% and 3.1% for the short and long distance databases, respectively. Moreover, the maximum difference of the swing phase determination with respect to time is 0.08 s and 0.06 s for starting and stopping points of swing phases, respectively. Therefore, the stride counting method provides a highly precise result when subjects walk. PMID:27271634

  16. Quantum Random Walks with General Particle States

    NASA Astrophysics Data System (ADS)

    Belton, Alexander C. R.

    2014-06-01

    A convergence theorem is obtained for quantum random walks with particles in an arbitrary normal state. This unifies and extends previous work on repeated-interactions models, including that of Attal and Pautrat (Ann Henri Poincaré 7:59-104 2006) and Belton (J Lond Math Soc 81:412-434, 2010; Commun Math Phys 300:317-329, 2010). When the random-walk generator acts by ampliation and either multiplication or conjugation by a unitary operator, it is shown that the quantum stochastic cocycle which arises in the limit is driven by a unitary process.

  17. Environmental factors influencing older adults’ walking for transportation: a study using walk-along interviews

    PubMed Central

    2012-01-01

    Background Current knowledge on the relationship between the physical environment and walking for transportation among older adults (≥ 65 years) is limited. Qualitative research can provide valuable information and inform further research. However, qualitative studies are scarce and fail to include neighborhood outings necessary to study participants’ experiences and perceptions while interacting with and interpreting the local social and physical environment. The current study sought to uncover the perceived environmental influences on Flemish older adults’ walking for transportation. To get detailed and context-sensitive environmental information, it used walk-along interviews. Methods Purposeful convenience sampling was used to recruit 57 older adults residing in urban or semi-urban areas. Walk-along interviews to and from a destination (e.g. a shop) located within a 15 minutes’ walk from the participants’ home were conducted. Content analysis was performed using NVivo 9 software (QSR International). An inductive approach was used to derive categories and subcategories from the data. Results Data were categorized in the following categories and subcategories: access to facilities (shops & services, public transit, connectivity), walking facilities (sidewalk quality, crossings, legibility, benches), traffic safety (busy traffic, behavior of other road users), familiarity, safety from crime (physical factors, other persons), social contacts, aesthetics (buildings, natural elements, noise & smell, openness, decay) and weather. Conclusions The findings indicate that to promote walking for transportation a neighborhood should provide good access to shops and services, well-maintained walking facilities, aesthetically appealing places, streets with little traffic and places for social interaction. In addition, the neighborhood environment should evoke feelings of familiarity and safety from crime. Future quantitative studies should investigate if (changes

  18. A marching-walking hybrid induces step length adaptation and transfers to natural walking

    PubMed Central

    Long, Andrew W.; Finley, James M.

    2015-01-01

    Walking is highly adaptable to new demands and environments. We have previously studied adaptation of locomotor patterns via a split-belt treadmill, where subjects learn to walk with one foot moving faster than the other. Subjects learn to adapt their walking pattern by changing the location (spatial) and time (temporal) of foot placement. Here we asked whether we can induce adaptation of a specific walking pattern when one limb does not “walk” but instead marches in place (i.e., marching-walking hybrid). The marching leg's movement is limited during the stance phase, and thus certain sensory signals important for walking may be reduced. We hypothesized that this would produce a spatial-temporal strategy different from that of normal split-belt adaptation. Healthy subjects performed two experiments to determine whether they could adapt their spatial-temporal pattern of step lengths during the marching-walking hybrid and whether the learning transfers to over ground walking. Results showed that the hybrid group did adapt their step lengths, but the time course of adaptation and deadaption was slower than that for the split-belt group. We also observed that the hybrid group utilized a mostly spatial strategy whereas the split-belt group utilized both spatial and temporal strategies. Surprisingly, we found no significant difference between the hybrid and split-belt groups in over ground transfer. Moreover, the hybrid group retained more of the learned pattern when they returned to the treadmill. These findings suggest that physical rehabilitation with this marching-walking paradigm on conventional treadmills may produce changes in symmetry comparable to what is observed during split-belt training. PMID:25867742

  19. Early changes in Achilles tendon behaviour in vivo following downhill backwards walking.

    PubMed

    Joseph, C W; Bradshaw, E J; Furness, T P; Kemp, J; Clark, R A

    2016-01-01

    Downhill backwards walking causes repeated, cyclical loading of the muscle-tendon unit. The effect this type of repeated loading has on the mechanical behaviour of the Achilles tendon is presently unknown. This study aimed to investigate the biomechanical response of the Achilles tendon aponeurosis complex following a downhill backwards walking protocol. Twenty active males (age: 22.3 ± 3.0 years; mass: 74.7 ± 5.6 kg; height: 1.8 ± 0.7 m) performed 60 min of downhill (8.5°), backwards walking on a treadmill at -0.67 m · s(-1). Data were collected before, immediately post, and 24-, 48- and 168-h post-downhill backwards walking. Achilles tendon aponeurosis elongation, strain and stiffness were measured using ultrasonography. Muscle force decreased immediately post-downhill backward walking (P = 0.019). There were increases in Achilles tendon aponeurosis stiffness at 24-h post-downhill backward walking (307 ± 179.6 N · mm(-1), P = 0.004), and decreases in Achilles tendon aponeurosis strain during maximum voluntary contraction at 24 (3.8 ± 1.7%, P = 0.008) and 48 h (3.9 ± 1.8%, P = 0.002) post. Repeated cyclical loading of downhill backwards walking affects the behaviour of the muscle-tendon unit, most likely by altering muscle compliance, and these changes result in tendon stiffness increases.

  20. Evaluation of a Neuromechanical Walking Control Model Using Disturbance Experiments

    PubMed Central

    Song, Seungmoon; Geyer, Hartmut

    2017-01-01

    Neuromechanical simulations have been used to study the spinal control of human locomotion which involves complex mechanical dynamics. So far, most neuromechanical simulation studies have focused on demonstrating the capability of a proposed control model in generating normal walking. As many of these models with competing control hypotheses can generate human-like normal walking behaviors, a more in-depth evaluation is required. Here, we conduct the more in-depth evaluation on a spinal-reflex-based control model using five representative gait disturbances, ranging from electrical stimulation to mechanical perturbation at individual leg joints and at the whole body. The immediate changes in muscle activations of the model are compared to those of humans across different gait phases and disturbance magnitudes. Remarkably similar response trends for the majority of investigated muscles and experimental conditions reinforce the plausibility of the reflex circuits of the model. However, the model's responses lack in amplitude for two experiments with whole body disturbances suggesting that in these cases the proposed reflex circuits need to be amplified by additional control structures such as location-specific cutaneous reflexes. A model that captures these selective amplifications would be able to explain both steady and reactive spinal control of human locomotion. Neuromechanical simulations that investigate hypothesized control models are complementary to gait experiments in better understanding the control of human locomotion. PMID:28381996

  1. Does Perceptual-Motor Calibration Generalize across Two Different Forms of Locomotion? Investigations of Walking and Wheelchairs

    PubMed Central

    Kunz, Benjamin R.; Creem-Regehr, Sarah H.; Thompson, William B.

    2013-01-01

    The relationship between biomechanical action and perception of self-motion during walking is typically consistent and well-learned but also adaptable. This perceptual-motor coupling can be recalibrated by creating a mismatch between the visual information for self-motion and walking speed. Perceptual-motor recalibration of locomotion has been demonstrated through effects on subsequent walking without vision, showing that learned perceptual-motor coupling influences a dynamic representation of one's spatial position during walking. Our present studies test whether recalibration of wheelchair locomotion, a novel form of locomotion for typically walking individuals, similarly influences subsequent wheelchair locomotion. Furthermore, we test whether adaptation to the pairing of visual information for self-motion during one form of locomotion transfers to a different locomotion modality. We find strong effects of perceptual-motor recalibration for matched locomotion modalities – walking/walking and wheeling/wheeling. Transfer across incongruent locomotion modalities showed weak recalibration effects. The results have implications both for theories of perceptual-motor calibration mechanisms and their effects on spatial orientation, as well as for practical applications in training and rehabilitation. PMID:23424615

  2. Modulation of leg joint function to produce emulated acceleration during walking and running in humans

    PubMed Central

    Raiteri, Brent J.

    2017-01-01

    Understanding how humans adapt gait mechanics for a wide variety of locomotor tasks is important for inspiring the design of robotic, prosthetic and wearable assistive devices. We aimed to elicit the mechanical adjustments made to leg joint functions that are required to generate accelerative walking and running, using metrics with direct relevance to device design. Twelve healthy male participants completed constant speed (CS) walking and running and emulated acceleration (ACC) trials on an instrumented treadmill. External force and motion capture data were combined in an inverse dynamics analysis. Ankle, knee and hip joint mechanics were described and compared using angles, moments, powers and normalized functional indexes that described each joint as relatively more: spring, motor, damper or strut-like. To accelerate using a walking gait, the ankle joint was switched from predominantly spring-like to motor-like, while the hip joint was maintained as a motor, with an increase in hip motor-like function. Accelerating while running involved no change in the primary function of any leg joint, but involved high levels of spring and motor-like function at the hip and ankle joints. Mechanical adjustments for ACC walking were achieved primarily via altered limb positioning, but ACC running needed greater joint moments.

  3. Talk the Walk: Does Socio-Cognitive Resource Reallocation Facilitate the Development of Walking?

    PubMed Central

    Orr, Edna

    2016-01-01

    Walking is of interest to psychology, robotics, zoology, neuroscience and medicine. Human’s ability to walk on two feet is considered to be one of the defining characteristics of hominoid evolution. Evolutionary science propses that it emerged in response to limited environmental resources; yet the processes supporting its emergence are not fully understood. Developmental psychology research suggests that walking elicits cognitive advancements. We postulate that the relationship between cognitive development and walking is a bi-directional one; and further suggest that the initiation of novel capacities, such as walking, is related to internal socio-cognitive resource reallocation. We shed light on these notions by exploring infants’ cognitive and socio-communicative outputs prospectively from 6–18 months of age. Structured bi/tri weekly evaluations of symbolic and verbal development were employed in an urban cohort (N = 9) for 12 months, during the transition from crawling to walking. Results show links between preemptive cognitive changes in socio-communicative output, symbolic-cognitive tool-use processes, and the age of emergence of walking. Plots of use rates of lower symbolic play levels before and after emergence of new skills illustrate reductions in use of previously attained key behaviors prior to emergence of higher symbolic play, language and walking. Further, individual differences in age of walking initiation were strongly related to the degree of reductions in complexity of object-use (r = .832, p < .005), along with increases, counter to the general reduction trend, in skills that serve recruitment of external resources [socio-communication bids before speech (r = -.696, p < .01), and speech bids before walking; r = .729, p < .01)]. Integration of these proactive changes using a computational approach yielded an even stronger link, underscoring internal resource reallocation as a facilitator of walking initiation (r = .901, p<0.001). These

  4. The development of metacognitive knowledge of basic motor skill: walking.

    PubMed

    Lee, K; Chen, L

    1996-09-01

    The development of children's metacognitive knowledge of walking was investigated. Sixty elementary school children (30 boys and 30 girls), 9, 11, and 13 years of age, viewed a video presentation of an adult performing normal walking and six different forms of partial walking (varying in terms of the presence or absence of four essential features of normal walking: arm swing, leg swing, arm-leg coordination, and distance traveled). Then the children were asked to rate the partial walking. A repeated measures ANOVA revealed that children of all these ages appreciated the differences between normal walking and partial walking. As age increased, the degree of importance of the four features became more differentiated. By 13 years of age, the children considered leg swing to be the most important feature of walking, arm swing the second, arm-leg coordination the third, and distance traveled the least important feature.

  5. Dynamic stability during level walking and obstacle crossing in persons with facioscapulohumeral muscular dystrophy.

    PubMed

    Rijken, N H M; van Engelen, B G M; Geurts, A C H; Weerdesteyn, V

    2015-09-01

    Patients with FSHD suffer from progressive skeletal muscle weakness, which is associated with an elevated fall risk. To obtain insight into fall mechanisms in this patient group, we aimed to assess dynamic stability during level walking and obstacle crossing in patients at different disease stages. Ten patients with at least some lower extremity weakness were included, of whom six were classified as moderately affected and four as mildly affected. Ten healthy controls were also included. Level walking at comfortable speed was assessed, as well as crossing a 10 cm high wooden obstacle. We assessed forward and lateral dynamic stability, as well as spatiotemporal and kinematics variables. During level walking, the moderately affected group demonstrated a lower walking speed, which was accompanied by longer step times and smaller step lengths, yet dynamic stability was unaffected. When crossing the obstacle, however, the moderately affected patients demonstrated reduced forward stability margins during the trailing step, which was accompanied by an increased toe clearance and greater trunk and hip flexion. This suggests that during level walking, the patients effectively utilized compensatory strategies for maintaining dynamic stability, but that the moderately affected group lacked the capacity to fully compensate for the greater stability demands imposed by obstacle crossing, rendering them unable to maintain optimal stability levels. The present results highlight the difficulties that FSHD patients experience in performing this common activity of daily living and may help explain their propensity to fall in the forward direction.

  6. Relationships between the perceived neighborhood social environment and walking for transportation among older adults.

    PubMed

    Van Cauwenberg, Jelle; De Donder, Liesbeth; Clarys, Peter; De Bourdeaudhuij, Ilse; Buffel, Tine; De Witte, Nico; Dury, Sarah; Verté, Dominique; Deforche, Benedicte

    2014-03-01

    Ecological models state that physical activity (PA) behaviors can be explained by the interplay between individuals and their surrounding physical and social environment. However, the majority of research on PA-environment relationships has focused upon the physical environment. The purpose of the current study was to investigate the relationship between the perceived social environment and older adults' walking for transportation, while adjusting for individual and perceived physical environmental factors. Questionnaires were used to collect data on walking for transportation, individual, perceived physical and social environmental factors in 50,986 Flemish older adults (≥65 years) in the period of 2004-2010. Multilevel logistic regression analyses were applied to examine the relationships between perceived social environmental factors and the odds of daily walking for transportation. The final models showed significant positive relationships for frequency of contacts with neighbors, neighbors' social support, too many immigrants residing in the neighborhood, neighborhood involvement, participation, and volunteering. These results emphasize the need for including social environmental factors in future studies examining correlates of older adults' physical activity. Current findings suggest that projects stimulating interpersonal relationships, place attachment, and formal community engagement might promote walking for transportation among older adults. Future research should try to further disentangle the complex (inter)relationships and causal mechanisms between older individuals, their environments, and their walking for transportation behavior.

  7. Contributions of muscles to mediolateral ground reaction force over a range of walking speeds.

    PubMed

    John, Chand T; Seth, Ajay; Schwartz, Michael H; Delp, Scott L

    2012-09-21

    Impaired control of mediolateral body motion during walking is an important health concern. Developing treatments to improve mediolateral control is challenging, partly because the mechanisms by which muscles modulate mediolateral ground reaction force (and thereby modulate mediolateral acceleration of the body mass center) during unimpaired walking are poorly understood. To investigate this, we examined mediolateral ground reaction forces in eight unimpaired subjects walking at four speeds and determined the contributions of muscles, gravity, and velocity-related forces to the mediolateral ground reaction force by analyzing muscle-driven simulations of these subjects. During early stance (0-6% gait cycle), peak ground reaction force on the leading foot was directed laterally and increased significantly (p<0.05) with walking speed. During early single support (14-30% gait cycle), peak ground reaction force on the stance foot was directed medially and increased significantly (p<0.01) with speed. Muscles accounted for more than 92% of the mediolateral ground reaction force over all walking speeds, whereas gravity and velocity-related forces made relatively small contributions. Muscles coordinate mediolateral acceleration via an interplay between the medial ground reaction force contributed by the abductors and the lateral ground reaction forces contributed by the knee extensors, plantarflexors, and adductors. Our findings show how muscles that contribute to forward progression and body-weight support also modulate mediolateral acceleration of the body mass center while weight is transferred from one leg to another during double support.

  8. Force regulation of ankle extensor muscle activity in freely walking cats.

    PubMed

    Donelan, J M; McVea, D A; Pearson, K G

    2009-01-01

    To gain insight into the relative importance of force feedback to ongoing ankle extensor activity during walking in the conscious cat, we isolated the medial gastrocnemius muscle (MG) by denervating the other ankle extensors and measured the magnitude of its activity at different muscle lengths, velocities, and forces accomplished by having the animals walk up and down a sloped pegway. Mathematical models of proprioceptor dynamics predicted afferent activity and revealed that the changes in muscle activity under our experimental conditions were strongly correlated with Ib activity and not consistently associated with changes in Ia or group II activity. This allowed us to determine the gains within the force feedback pathway using a simple model of the neuromuscular system and the measured relationship between MG activity and force. Loop gain increased with muscle length due to the intrinsic force-length property of muscle. The gain of the pathway that converts muscle force to motoneuron depolarization was independent of length. To better test for a causal relationship between modulation of force feedback and changes in muscle activity, a second set of experiments was performed in which the MG muscle was perturbed during ground contact of the hind foot by dropping or lifting the peg underfoot. Collectively, these investigations support a causal role for force feedback and indicate that about 30% of the total muscle activity is due to force feedback during level walking. Force feedback's role increases during upslope walking and decreases during downslope walking, providing a simple mechanism for compensating for changes in terrain.

  9. Systems approach to walk-off problems for dish-type solar thermal power systems

    NASA Technical Reports Server (NTRS)

    Jaffe, L. D.; Levin, R. R.; Moynihan, P. I.; Nesmith, B. J.; Owen, W. A.; Roschke, E. J.; Starkey, D. J.; Thostesen, T. O.

    1983-01-01

    'Walk-off' in a dish-type solar thermal power system is a failure situation in which the concentrator remains fixed while the spot of concentrated sunlight slowly moves across the face of the receiver. The intense local heating may damage the receiver and nearby equipment. Passive protection has advantages in minimizing damage, but in a fully passive design the receiver must be able to withstand full solar input with no forced fluid circulation during the walk-off. An active walk-off emergency subsystem may include an emergency detrack or defocus mechanism or sun-blocking device, emergency power, sensors and logic to detect the emergency and initiate protective action, and cooling or passive protection of emergency and non-emergency components. Each of these elements is discussed and evaluated in the paper.

  10. The complexity of human walking: a knee osteoarthritis study.

    PubMed

    Kotti, Margarita; Duffell, Lynsey D; Faisal, Aldo A; McGregor, Alison H

    2014-01-01

    This study proposes a framework for deconstructing complex walking patterns to create a simple principal component space before checking whether the projection to this space is suitable for identifying changes from the normality. We focus on knee osteoarthritis, the most common knee joint disease and the second leading cause of disability. Knee osteoarthritis affects over 250 million people worldwide. The motivation for projecting the highly dimensional movements to a lower dimensional and simpler space is our belief that motor behaviour can be understood by identifying a simplicity via projection to a low principal component space, which may reflect upon the underlying mechanism. To study this, we recruited 180 subjects, 47 of which reported that they had knee osteoarthritis. They were asked to walk several times along a walkway equipped with two force plates that capture their ground reaction forces along 3 axes, namely vertical, anterior-posterior, and medio-lateral, at 1000 Hz. Data when the subject does not clearly strike the force plate were excluded, leaving 1-3 gait cycles per subject. To examine the complexity of human walking, we applied dimensionality reduction via Probabilistic Principal Component Analysis. The first principal component explains 34% of the variance in the data, whereas over 80% of the variance is explained by 8 principal components or more. This proves the complexity of the underlying structure of the ground reaction forces. To examine if our musculoskeletal system generates movements that are distinguishable between normal and pathological subjects in a low dimensional principal component space, we applied a Bayes classifier. For the tested cross-validated, subject-independent experimental protocol, the classification accuracy equals 82.62%. Also, a novel complexity measure is proposed, which can be used as an objective index to facilitate clinical decision making. This measure proves that knee osteoarthritis subjects exhibit more

  11. Sunspot random walk and 22-year variation

    USGS Publications Warehouse

    Love, Jeffrey J.; Rigler, E. Joshua

    2012-01-01

    We examine two stochastic models for consistency with observed long-term secular trends in sunspot number and a faint, but semi-persistent, 22-yr signal: (1) a null hypothesis, a simple one-parameter random-walk model of sunspot-number cycle-to-cycle change, and, (2) an alternative hypothesis, a two-parameter random-walk model with an imposed 22-yr alternating amplitude. The observed secular trend in sunspots, seen from solar cycle 5 to 23, would not be an unlikely result of the accumulation of multiple random-walk steps. Statistical tests show that a 22-yr signal can be resolved in historical sunspot data; that is, the probability is low that it would be realized from random data. On the other hand, the 22-yr signal has a small amplitude compared to random variation, and so it has a relatively small effect on sunspot predictions. Many published predictions for cycle 24 sunspots fall within the dispersion of previous cycle-to-cycle sunspot differences. The probability is low that the Sun will, with the accumulation of random steps over the next few cycles, walk down to a Dalton-like minimum. Our models support published interpretations of sunspot secular variation and 22-yr variation resulting from cycle-to-cycle accumulation of dynamo-generated magnetic energy.

  12. Healthy Living Initiative: Running/Walking Club

    ERIC Educational Resources Information Center

    Stylianou, Michalis; Kulinna, Pamela Hodges; Kloeppel, Tiffany

    2014-01-01

    This study was grounded in the public health literature and the call for schools to serve as physical activity intervention sites. Its purpose was twofold: (a) to examine the daily distance covered by students in a before-school running/walking club throughout 1 school year and (b) to gain insights on the teachers perspectives of the club.…

  13. Assessment of a Solar System Walk

    ERIC Educational Resources Information Center

    LoPresto, Michael C.; Murrell, Steven R.; Kirchner, Brian

    2010-01-01

    The idea of sending students and the general public on a walk through a scale model of the solar system in an attempt to instill an appreciation of the relative scales of the sizes of the objects compared to the immense distances between them is certainly not new. A good number of such models exist, including one on the National Mall in…

  14. Elementary Education: Elementary Students Simulate Moon Walk.

    ERIC Educational Resources Information Center

    Aviation/Space, 1980

    1980-01-01

    Describes the project of a fourth- and fifth-grade class in simulating a moon walk. Teams consisted of the astronauts, the life support team, the flight program team, the communications team, the scientific team, and the construction team. Their visit to the Marshall Space Flight Center is also described. (SA)

  15. Vortex streets in walking parametric wave mixing.

    PubMed

    Molina-Terriza, G; Torner, L; Petrov, D V

    1999-07-01

    The combined effects of diffraction and Poynting vector walk-off in second-harmonic generation with pump beams that contain screw phase dislocations is addressed for what is believed to be the first time. We predict the spontaneous nucleation of multiple vortex twins whose subsequent explosion can yield quasi-aligned patterns of single-charge vortices.

  16. Measurements in the Levy quantum walk

    SciTech Connect

    Romanelli, A.

    2007-11-15

    We study the quantum walk subjected to measurements with a Levy waiting-time distribution. We find that the system has a sub-ballistic behavior instead of a diffusive one. We obtain an analytical expression for the exponent of the power law of the variance as a function of the characteristic parameter of the Levy distribution.

  17. A Random Walk on a Circular Path

    ERIC Educational Resources Information Center

    Ching, W.-K.; Lee, M. S.

    2005-01-01

    This short note introduces an interesting random walk on a circular path with cards of numbers. By using high school probability theory, it is proved that under some assumptions on the number of cards, the probability that a walker will return to a fixed position will tend to one as the length of the circular path tends to infinity.

  18. Go Naked: Diapers Affect Infant Walking

    ERIC Educational Resources Information Center

    Cole, Whitney G.; Lingeman, Jesse M.; Adolph, Karen E.

    2012-01-01

    In light of cross-cultural and experimental research highlighting effects of childrearing practices on infant motor skill, we asked whether wearing diapers, a seemingly innocuous childrearing practice, affects infant walking. Diapers introduce bulk between the legs, potentially exacerbating infants' poor balance and wide stance. We show that…

  19. A New View of Walk-Throughs

    ERIC Educational Resources Information Center

    Moss, Connie M.; Brookhart, Susan M.

    2013-01-01

    Traditionally, principals have used walk-throughs to determine whether teachers are implementing strategies that the principal believes define good teaching. In this model, the principal is the expert, and the teacher is the learner. Connie M. Moss and Susan M. Brookhart believe that this approach can cause the principal to disregard the classroom…

  20. Walking to School: Taking Research to Practice

    ERIC Educational Resources Information Center

    Heelan, Kate A.; Unruh, Scott A.; Combs, H. Jason; Donnelly, Joseph E.; Sutton, Sarah; Abbey, Bryce M.

    2008-01-01

    This article describes the results of a study that helped determine common barriers to active commuting to and from school, as well as the results of a Walking School Bus program that was implemented at two neighborhood elementary schools in Nebraska. While parental perceived barriers to active commuting may influence the travel choices of…

  1. The Physics of a Walking Robot

    ERIC Educational Resources Information Center

    Guemez, J.; Fiolhais, M.

    2013-01-01

    The physics of walking is explored, using a toy as a concrete example and a "toy model" applied to it. Besides using Newton's second law, the problem is also discussed from the thermodynamical perspective. Once the steady state (constant velocity) is achieved, we show that the internal energy of the toy is dissipated as heat in the…

  2. Scaling of Quantum Walks on Complex Networks

    NASA Astrophysics Data System (ADS)

    Boettcher, Stefan; Falkner, Stefan; Portugal, Renato

    2015-03-01

    I will describe the renormalization group method (RG) as applied to master equations with a unitary propagator. It allows to determine many asymptotic properties of quantum walks, although I will focus here on the walk dimension dw, which describes the similarity solution, ρ (x , t) ~ f| x | dw / t , for the probability density function ρ. We can calculate dw to arbitrary accuracy for a number of networks, such as the dual Sierpinksi gasket, small-world Hanoi networks, or Migdal-Kadanoff lattices, which we have verified with direct simulations. However, due to unitarity, the asymptotic solution of the RG equations as well as procedures to implement RG approximately for arbitrary networks remain elusive. Yet, based on the exact RG for those fractal networks, we can conjecture a few general conclusions, for instance, that dw for a discrete-time quantum walk is always half of that for the random walk on the same r-regular network, when driven with the Grover coin. (This talk summarizes our work in http://dx.doi.org/10.1103/PhysRevA.90.032324 and http://arxiv.org/abs/1410.7034.) We acknowledge financial support from the U.S. National Science Foundation through Grant DMR-1207431.

  3. Exploring Space and Place with Walking Interviews

    ERIC Educational Resources Information Center

    Jones, Phil; Bunce, Griff; Evans, James; Gibbs, Hannah; Hein, Jane Ricketts

    2008-01-01

    This article explores the use of walking interviews as a research method. In spite of a wave of interest in methods which take interviewing out of the "safe," stationary environment, there has been limited work critically examining the techniques for undertaking such work. Curiously for a method which takes an explicitly spatial approach, few…

  4. Saccadic body turns in walking Drosophila

    PubMed Central

    Geurten, Bart R. H.; Jähde, Philipp; Corthals, Kristina; Göpfert, Martin C.

    2014-01-01

    Drosophila melanogaster structures its optic flow during flight by interspersing translational movements with abrupt body rotations. Whether these “body saccades” are accompanied by steering movements of the head is a matter of debate. By tracking single flies moving freely in an arena, we now discovered that walking Drosophila also perform saccades. Movement analysis revealed that the flies separate rotational from translational movements by quickly turning their bodies by 15 degrees within a tenth of a second. Although walking flies moved their heads by up to 20 degrees about their bodies, their heads moved with the bodies during saccadic turns. This saccadic strategy contrasts with the head saccades reported for e.g., blowflies and honeybees, presumably reflecting optical constraints: modeling revealed that head saccades as described for these latter insects would hardly affect the retinal input in Drosophila because of the lower acuity of its compound eye. The absence of head saccades in Drosophila was associated with the absence of haltere oscillations, which seem to guide head movements in other flies. In addition to adding new twists to Drosophila walking behavior, our analysis shows that Drosophila does not turn its head relative to its body when turning during walking. PMID:25386124

  5. Garden walking for depression: a research report.

    PubMed

    McCaffrey, Ruth; Hanson, Claire; McCaffrey, William

    2010-01-01

    This study was designed to determine the effect of garden walking and reflective journaling on adults who are 65 years old and older with depression. The Geriatric Depression Scale measured depression. Four themes emerged from the interview data collected from each participant.

  6. Walking the Labyrinth of Multimedia Law.

    ERIC Educational Resources Information Center

    Helyar, Pamela S.; Doudnikoff, Gregory M.

    1994-01-01

    Describes why developers of multimedia products face a more complex legal landscape than do developers of "few-media" products. Describes the laws that pertain to multimedia. Discusses how developers of multimedia products might walk the legal labyrinth and protect themselves and their companies from lawsuits. (SR)

  7. Walking-Beam Solar-Cell Conveyor

    NASA Technical Reports Server (NTRS)

    Feder, H.; Frasch, W.

    1982-01-01

    Microprocessor-controlled walking-beam conveyor moves cells between work stations in automated assembly line. Conveyor has arm at each work station. In unison arms pick up all solar cells and advance them one station; then beam retracks to be in position for next step. Microprocessor sets beam stroke, speed, and position.

  8. Random Walk Method for Potential Problems

    NASA Technical Reports Server (NTRS)

    Krishnamurthy, T.; Raju, I. S.

    2002-01-01

    A local Random Walk Method (RWM) for potential problems governed by Lapalace's and Paragon's equations is developed for two- and three-dimensional problems. The RWM is implemented and demonstrated in a multiprocessor parallel environment on a Beowulf cluster of computers. A speed gain of 16 is achieved as the number of processors is increased from 1 to 23.

  9. Searching via walking: How to find a marked clique of a complete graph using quantum walks

    SciTech Connect

    Hillery, Mark; Reitzner, Daniel; Buzek, Vladimir

    2010-06-15

    We show how a quantum walk can be used to find a marked edge or a marked complete subgraph of a complete graph. We employ a version of a quantum walk, the scattering walk, which lends itself to experimental implementation. The edges are marked by adding elements to them that impart a specific phase shift to the particle as it enters or leaves the edge. If the complete graph has N vertices and the subgraph has K vertices, the particle becomes localized on the subgraph in O(N/K) steps. This leads to a quantum search that is quadratically faster than a corresponding classical search. We show how to implement the quantum walk using a quantum circuit and a quantum oracle, which allows us to specify the resources needed for a quantitative comparison of the efficiency of classical and quantum searches--the number of oracle calls.

  10. Searching via walking: How to find a marked clique of a complete graph using quantum walks

    NASA Astrophysics Data System (ADS)

    Hillery, Mark; Reitzner, Daniel; Bužek, Vladimír

    2010-06-01

    We show how a quantum walk can be used to find a marked edge or a marked complete subgraph of a complete graph. We employ a version of a quantum walk, the scattering walk, which lends itself to experimental implementation. The edges are marked by adding elements to them that impart a specific phase shift to the particle as it enters or leaves the edge. If the complete graph has N vertices and the subgraph has K vertices, the particle becomes localized on the subgraph in O(N/K) steps. This leads to a quantum search that is quadratically faster than a corresponding classical search. We show how to implement the quantum walk using a quantum circuit and a quantum oracle, which allows us to specify the resources needed for a quantitative comparison of the efficiency of classical and quantum searches—the number of oracle calls.

  11. A natural walking monitor for pulmonary patients using mobile phones.

    PubMed

    Juen, Joshua; Cheng, Qian; Schatz, Bruce

    2015-07-01

    Mobile devices have the potential to continuously monitor health by collecting movement data including walking speed during natural walking. Natural walking is walking without artificial speed constraints present in both treadmill and nurse-assisted walking. Fitness trackers have become popular which record steps taken and distance, typically using a fixed stride length. While useful for everyday purposes, medical monitoring requires precise accuracy and testing on real patients with a scientifically valid measure. Walking speed is closely linked to morbidity in patients and widely used for medical assessment via measured walking. The 6-min walk test (6MWT) is a standard assessment for chronic obstructive pulmonary disease and congestive heart failure. Current generation smartphone hardware contains similar sensor chips as in medical devices and popular fitness devices. We developed a middleware software, MoveSense, which runs on standalone smartphones while providing comparable readings to medical accelerometers. We evaluate six machine learning methods to obtain gait speed during natural walking training models to predict natural walking speed and distance during a 6MWT with 28 pulmonary patients and ten subjects without pulmonary condition. We also compare our model's accuracy to popular fitness devices. Our universally trained support vector machine models produce 6MWT distance with 3.23% error during a controlled 6MWT and 11.2% during natural free walking. Furthermore, our model attains 7.9% error when tested on five subjects for distance estimation compared to the 50-400% error seen in fitness devices during natural walking.

  12. Quantum walk on the line as an interference phenomenon

    SciTech Connect

    Knight, Peter L.; Roldan, Eugenio; Sipe, J. E.

    2003-08-01

    We show that the coined quantum walk on a line can be understood as an interference phenomenon, can be classically implemented, and indeed already has been. The walk is essentially two independent walks associated with the different coin sides, coupled only at initiation. There is a simple analogy between the evolution of walker positions and the propagation of light in a dispersive optical fiber.

  13. The Not-so-Random Drunkard's Walk

    ERIC Educational Resources Information Center

    Ehrhardt, George

    2013-01-01

    This dataset contains the results of a quasi-experiment, testing Karl Pearson's "drunkard's walk" analogy for an abstract random walk. Inspired by the alternate hypothesis that drunkards stumble to the side of their dominant hand, it includes data on intoxicated test subjects walking a 10' line. Variables include: the…

  14. The Walking Classroom: Active Learning Is Just Steps Away!

    ERIC Educational Resources Information Center

    Becker, Kelly Mancini

    2016-01-01

    Walking is a viable and valuable form of exercise for young children that has both physical and mental health benefits. There is much evidence showing that school-age children are not getting the recommended 60 minutes of daily exercise. A school-wide walking program can be a great way to encourage walking in and out of school, can be aligned with…

  15. Accumulating Brisk Walking for Fitness, Cardiovascular Risk, and Psychological Health.

    ERIC Educational Resources Information Center

    Murphy, Marie; Nevill, Alan; Neville, Charlotte; Biddle, Stuart; Hardman, Adrianne

    2002-01-01

    Compared the effects of different patterns of regular brisk walking on fitness, cardiovascular disease risk factors, and psychological well-being in previously sedentary adults. Data on adults who completed either short-bout or long-bout walking programs found that three short bouts of brisk walking accumulated throughout the day were as effective…

  16. Walking with Students To Increase Satisfaction and Retention.

    ERIC Educational Resources Information Center

    Steinhaus, Carol s.

    1999-01-01

    Describes "walking office hours," an activity in which students (n=64) in introductory health topics and human resources management classes each took a one-half hour walk with the professor around the campus. In both classes students unanimously reported higher "comfort levels" with the instructor following the walk. (DB)

  17. Walking and the Preservation of Cognitive Function in Older Populations

    ERIC Educational Resources Information Center

    Prohaska, Thomas R.; Eisenstein, Amy R.; Satariano, William A.; Hunter, Rebecca; Bayles, Constance M.; Kurtovich, Elaine; Kealey, Melissa; Ivey, Susan L.

    2009-01-01

    Purpose: This cross-sectional study takes a unique look at the association between patterns of walking and cognitive functioning by examining whether older adults with mild cognitive impairment differ in terms of the community settings where they walk and the frequency, intensity, or duration of walking. Design and Methods: The sample was based on…

  18. Evaluation of the Phase-Dependent Rhythm Control of Human Walking Using Phase Response Curves

    PubMed Central

    Yamamoto, Yuki; Aoi, Shinya; Imai, Takashi; Aoyagi, Toshio; Tomita, Nozomi; Tsuchiya, Kazuo

    2016-01-01

    Humans and animals control their walking rhythms to maintain motion in a variable environment. The neural mechanism for controlling rhythm has been investigated in many studies using mechanical and electrical stimulation. However, quantitative evaluation of rhythm variation in response to perturbation at various timings has rarely been investigated. Such a characteristic of rhythm is described by the phase response curve (PRC). Dynamical simulations of human skeletal models with changing walking rhythms (phase reset) described a relation between the effective phase reset on stability and PRC, and phase reset around touch-down was shown to improve stability. A PRC of human walking was estimated by pulling the swing leg, but such perturbations hardly influenced the stance leg, so the relation between the PRC and walking events was difficult to discuss. This research thus examines human response to variations in floor velocity. Such perturbation yields another problem, in that the swing leg is indirectly (and weakly) perturbed, so the precision of PRC decreases. To solve this problem, this research adopts the weighted spike-triggered average (WSTA) method. In the WSTA method, a sequential pulsed perturbation is used for stimulation. This is in contrast with the conventional impulse method, which applies an intermittent impulsive perturbation. The WSTA method can be used to analyze responses to a large number of perturbations for each sequence. In the experiment, perturbations are applied to walking subjects by rapidly accelerating and decelerating a treadmill belt, and measured data are analyzed by the WSTA and impulse methods. The PRC obtained by the WSTA method had clear and stable waveforms with a higher temporal resolution than those obtained by the impulse method. By investigation of the rhythm transition for each phase of walking using the obtained PRC, a rhythm change that extends the touch-down and mid-single support phases is found to occur. PMID:27203839

  19. Obesity does not impair walking economy across a range of speeds and grades

    PubMed Central

    Reynolds, Michelle M.; Board, Wayne J.; Walters, Kellie A.; Reiser, Raoul F.

    2013-01-01

    Despite the popularity of walking as a form of physical activity for obese individuals, relatively little is known about how obesity affects the metabolic rate, economy, and underlying mechanical energetics of walking across a range of speeds and grades. The purpose of this study was to quantify metabolic rate, stride kinematics, and external mechanical work during level and gradient walking in obese and nonobese adults. Thirty-two obese [18 women, mass = 102.1 (15.6) kg, BMI = 33.9 (3.6) kg/m2; mean (SD)] and 19 nonobese [10 women, mass = 64.4 (10.6) kg, BMI = 21.6 (2.0) kg/m2] volunteers participated in this study. We measured oxygen consumption, ground reaction forces, and lower extremity kinematics while subjects walked on a dual-belt force-measuring treadmill at 11 speeds/grades (0.50–1.75 m/s, −3° to +9°). We calculated metabolic rate, stride kinematics, and external work. Net metabolic rate (Ėnet/kg, W/kg) increased with speed or grade across all individuals. Surprisingly and in contrast with previous studies, Ėnet/kg was 0–6% less in obese compared with nonobese adults (P = 0.013). External work, although a primary determinant of Ėnet/kg, was not affected by obesity across the range of speeds/grades used in this study. We also developed new prediction equations to estimate oxygen consumption and Ėnet/kg and found that Ėnet/kg was positively related to relative leg mass and step width and negatively related to double support duration. These results suggest that obesity does not impair walking economy across a range of walking speeds and grades. PMID:23412900

  20. Short-distance walking speed and timed walking distance: redundant measures for clinical trials?

    PubMed

    Dobkin, Bruce H

    2006-02-28

    The velocity of a 15-meter walk and walking endurance (distance covered in 6 minutes) are considered distinct outcomes in clinical trials of stroke rehabilitation. Comfortable velocities used for each task in 24 subjects with chronic hemiparesis were not significantly different, however. Although speed and endurance did not reflect different domains of efficacy in outpatients whose usual speed was >0.5 m/s, the fastest feasible 15-meter velocity augmented these measures.