Electron transport in zinc-blende wurtzite biphasic gallium nitride nanowires and GaNFETs
Jacobs, Benjamin W.; Ayres, Virginia M.; Stallcup, Richard E.; ...
2007-10-19
Two-point and four-point probe electrical measurements of a biphasic gallium nitride nanowire and current–voltage characteristics of a gallium nitride nanowire based field effect transistor are reported. The biphasic gallium nitride nanowires have a crystalline homostructure consisting of wurtzite and zinc-blende phases that grow simultaneously in the longitudinal direction. There is a sharp transition of one to a few atomic layers between each phase. Here, all measurements showed high current densities. Evidence of single-phase current transport in the biphasic nanowire structure is discussed.
Shendkar, Chandrashekhar; Lenka, Prasanna K; Biswas, Abhishek; Kumar, Ratnesh; Mahadevappa, Manjunatha
2015-10-01
Functional electric stimulators that produce near-ideal, charge-balanced biphasic stimulation waveforms with interphase delay are considered safer and more efficacious than conventional stimulators. An indigenously designed, low-cost, portable FES device named InStim is developed. It features a charge-balanced biphasic single channel. The authors present the complete design, mathematical analysis of the circuit and the clinical evaluation of the device. The developed circuit was tested on stroke patients affected by foot drop problems. It was tested both under laboratory conditions and in clinical settings. The key building blocks of this circuit are low dropout regulators, a DC-DC voltage booster and a single high-power current source OP-Amp with current-limiting capabilities. This allows the device to deliver high-voltage, constant current, biphasic pulses without the use of a bulky step-up transformer. The advantages of the proposed design over the currently existing devices include improved safety features (zero DC current, current-limiting mechanism and safe pulses), waveform morphology that causes less muscle fatigue, cost-effectiveness and compact power-efficient circuit design with minimal components. The device is also capable of producing appropriate ankle dorsiflexion in patients having foot drop problems of various Medical Research Council scale grades.
Comparison of five different defibrillators using recommended energy protocols.
Zelinka, M; Buić, D; Zelinka, I
2007-09-01
Biphasic defibrillators represent a great step ahead in defibrillation. The manufacturers claim that biphasic defibrillators are able to compensate for differences in transthoracic impedance. That should mean that all patients should be defibrillated with approximately the same amount of current, regardless of their transthoracic impedance. We assessed one monophasic and four biphasic defibrillators. The defibrillators were discharged into resistive loads of 50, 90 and 130 Omega, simulating transthoracic impedance. For each waveform we used energy protocols recommended by the manufacturers and guidelines 2005. Waveforms were observed with on a digitising oscilloscope on a current sensing resistor. We compared the electrical properties of different waveforms and two defibrillators with the same type of waveform. The influence of different impedance on shape, duration and amplitude of current flow were also observed for each waveform. Measurements showed a significant difference in current flow at different impedance loads. At low impedance the mean current is well above expectations for all the defibrillators studied and at high impedance load we observed a big reduction of current amplitude. We can conclude that the compensating mechanisms of biphasic defibrillators are, from electrical point of view, negligible. From the laws of physics it is practically impossible to keep same level of current at given time with same energy at higher impedance. That is why we should reconsider the use of different energy equivalents between patients with different transthoracic impedance and not between different defibrillation impulses.
Chen, Bihua; Yu, Tao; Ristagno, Giuseppe; Quan, Weilun; Li, Yongqin
2014-10-01
Defibrillation current has been shown to be a clinically more relevant dosing unit than energy. However, the effects of average and peak current in determining shock outcome are still undetermined. The aim of this study was to investigate the relationship between average current, peak current and defibrillation success when different biphasic waveforms were employed. Ventricular fibrillation (VF) was electrically induced in 22 domestic male pigs. Animals were then randomized to receive defibrillation using one of two different biphasic waveforms. A grouped up-and-down defibrillation threshold-testing protocol was used to maintain the average success rate of 50% in the neighborhood. In 14 animals (Study A), defibrillations were accomplished with either biphasic truncated exponential (BTE) or rectilinear biphasic waveforms. In eight animals (Study B), shocks were delivered using two BTE waveforms that had identical peak current but different waveform durations. Both average and peak currents were associated with defibrillation success when BTE and rectilinear waveforms were investigated. However, when pathway impedance was less than 90Ω for the BTE waveform, bivariate correlation coefficient was 0.36 (p=0.001) for the average current, but only 0.21 (p=0.06) for the peak current in Study A. In Study B, a high defibrillation success (67.9% vs. 38.8%, p<0.001) was observed when the waveform delivered more average current (14.9±2.1A vs. 13.5±1.7A, p<0.001) while keeping the peak current unchanged. In this porcine model of VF, average current was better than peak current to be an adequate parameter to describe the therapeutic dosage when biphasic defibrillation waveforms were used. The institutional protocol number: P0805. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Prezas, P. R.; Melo, B. M. G.; Costa, L. C.; Valente, M. A.; Lança, M. C.; Ventura, J. M. G.; Pinto, L. F. V.; Graça, M. P. F.
2017-12-01
Bone grafting and surgical interventions related with orthopaedic disorders consist in a big business, generating large revenues worldwide every year. There is a need to replace the biomaterials that currently still dominate this market, i.e., autografts and allografts, due to their disadvantages, such as limited availability, need for additional surgeries and diseases transmission possibilities. The most promising replacement materials are biomaterials with bioactive properties, such as the calcium phosphate-based bioceramics group. The bioactivity of these materials, i.e., the rate at which they promote the growth and directly bond with the new host biological bone, can be enhanced through their electrical polarization. In the present work, the electrical polarization features of pure hydroxyapatite (Hap), pure β-tricalcium phosphate (β-TCP) and biphasic hydroxyapatite/β-tricalcium phosphate composites (HTCP) were analyzed by measuring thermally stimulated depolarization currents (TSDC). The samples were thermoelectrically polarized at 500 °C under a DC electric field with a magnitude of 5 kV/cm. The biphasic samples were also polarized under electric fields with different magnitudes: 2, 3, 4 and 5 kV/cm. Additionally, the depolarization processes detected in the TSDC measurements were correlated with dielectric relaxation processes observed in impedance spectroscopy (IS) measurements. The results indicate that the β-TCP crystalline phase has a considerable higher ability to store electrical charge compared with the Hap phase. This indicates that it has a suitable composition and structure for ionic conduction and establishment of a large electric charge density, providing great potential for orthopaedic applications.
Evaluation of Motor Neuron Excitability by CMAP Scanning with Electric Modulated Current
Araújo, Tiago; Candeias, Rui; Nunes, Neuza; Gamboa, Hugo
2015-01-01
Introduction. Compound Muscle Action Potential (CMAP) scan is a noninvasive promissory technique for neurodegenerative pathologies diagnosis. In this work new CMAP scan protocols were implemented to study the influence of electrical pulse waveform on peripheral nerve excitability. Methods. A total of 13 healthy subjects were tested. Stimulation was performed with an increasing intensities range from 4 to 30 mA. The procedure was repeated 4 times per subject, using a different single pulse stimulation waveform: monophasic square and triangular and quadratic and biphasic square. Results. Different waveforms elicit different intensity-response amplitude curves. The square pulse needs less current to generate the same response amplitude regarding the other waves and this effect is gradually decreasing for the triangular, quadratic, and biphasic pulse, respectively. Conclusion. The stimulation waveform has a direct influence on the stimulus-response slope and consequently on the motoneurons excitability. This can be a new prognostic parameter for neurodegenerative disorders. PMID:26413499
Electrical features of eighteen automated external defibrillators: a systematic evaluation.
Kette, Fulvio; Locatelli, Aldo; Bozzola, Marcella; Zoli, Alberto; Li, Yongqin; Salmoiraghi, Marco; Ristagno, Giuseppe; Andreassi, Aida
2013-11-01
Assessment and comparison of the electrical parameters (energy, current, first and second phase waveform duration) among eighteen AEDs. Engineering bench tests for a descriptive systematic evaluation in commercially available AEDs. AEDs were tested through an ECG simulator, an impedance simulator, an oscilloscope and a measuring device detecting energy delivered, peak and average current, and duration of first and second phase of the biphasic waveforms. All tests were performed at the engineering facility of the Lombardia Regional Emergency Service (AREU). Large variations in the energy delivered at the first shock were observed. The trend of current highlighted a progressive decline concurrent with the increases of impedance. First and second phase duration varied substantially among the AEDs using the exponential biphasic waveform, unlike rectilinear waveform AEDs in which phase duration remained relatively constant. There is a large variability in the electrical features of the AEDs tested. Energy is likely not to be the best indicator for strength dose selection. Current and shock duration should be both considered when approaching the technical features of AEDs. These findings may prompt further investigations to define the optimal current and duration of the shock waves to increase the success rate in the clinical setting. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Intensity coding in electric hearing: effects of electrode configurations and stimulation waveforms.
Chua, Tiffany Elise H; Bachman, Mark; Zeng, Fan-Gang
2011-01-01
Current cochlear implants typically stimulate the auditory nerve with biphasic pulses and monopolar electrode configurations. Tripolar stimulation can increase spatial selectivity and potentially improve place pitch related perception but requires higher current levels to elicit the same loudness as monopolar stimulation. The present study combined delayed pseudomonophonasic pulses, which produce lower thresholds, with tripolar stimulation in an attempt to solve the power-performance tradeoff problem. The present study systematically measured thresholds, dynamic range, loudness growth, and intensity discrimination using either biphasic or delayed pseudomonophonasic pulses under both monopolar and tripolar stimulation. Participants were five Clarion cochlear implant users. For each subject, data from apical, middle, and basal electrode positions were collected when possible. Compared with biphasic pulses, delayed pseudomonophonasic pulses increased the dynamic range by lowering thresholds while maintaining comparable maximum allowable levels under both electrode configurations. However, delayed pseudomonophonasic pulses did not change the shape of loudness growth function and actually increased intensity discrimination limens, especially at lower current levels. The present results indicate that delayed pseudomonophonasic pulses coupled with tripolar stimulation cannot provide significant power savings nor can it increase the functional dynamic range. Whether this combined stimulation could improve functional spectral resolution remains to be seen.
Electrical Stimulation Technologies for Wound Healing
Kloth, Luther C.
2014-01-01
Objective: To discuss the physiological bases for using exogenously applied electric field (EF) energy to enhance wound healing with conductive electrical stimulation (ES) devices. Approach: To describe the types of electrical currents that have been reported to enhance chronic wound-healing rate and closure. Results: Commercial ES devices that generate direct current (DC), and mono and biphasic pulsed current waveforms represent the principal ES technologies which are reported to enhance wound healing. Innovation: Wafer-thin, disposable ES technologies (wound dressings) that utilize mini or micro-batteries to deliver low-level DC for wound healing and antibacterial wound-treatment purposes are commercially available. Microfluidic wound-healing chips are currently being used with greater accuracy to investigate the EF effects on cellular electrotaxis. Conclusion: Numerous clinical trials described in subsequent sections of this issue have demonstrated that ES used adjunctively with standard wound care (SWC), enhances wound healing rate faster than SWC alone. PMID:24761348
Salvador, R.; Silva, S.; Basser, P. J.; Miranda, P. C.
2010-01-01
Objective To determine which mechanisms lead to activation of neurons in the motor cortex during transcranial magnetic stimulation (TMS) with different current directions and pulse waveforms. Methods The total electric field induced in a simplified model of a cortical sulcus by a figure-eight coil was calculated using the finite element method (FEM). This electric field was then used as the input to determine the response of compartmental models of several types of neurons. Results The modeled neurons were stimulated at different sites: fiber bends for pyramidal tract neurons, axonal terminations for cortical interneurons and axon collaterals, and a combination of both for pyramidal association fibers. All neurons were more easily stimulated by a PA directed electric field, except association fibers. Additionally, the second phase of a biphasic pulse was found to be more efficient than the first phase of either monophasic or biphasic pulses. Conclusion The stimulation threshold for different types of neurons depends on the pulse waveform and current direction. The reported results might account for the range of responses obtained in TMS of the motor cortex when using different stimulation parameters. Significance Modeling studies combining electric field calculations and neuronal models may lead to a deeper understanding of the effect of the TMS-induced electric field on cortical tissue, and may be used to evaluate improvements in TMS coil and waveform design. PMID:21035390
Vargas Luna, Jose Luis; Mayr, Winfried; Cortés-Ramirez, Jorge-Armando
2018-06-09
There is multiple evidence in the literature that a sub-threshold pre-pulse, delivered immediately prior to an electrical stimulation pulse, can alter the activation threshold of nerve fibers and motor unit recruitment characteristics. So far, previously published works combined monophasic stimuli with sub-threshold depolarizing pre-pulses (DPPs) with inconsistent findings-in some studies, the DPPs decreased the activation threshold, while in others it was increased. This work aimed to evaluate the effect of DPPs during biphasic transcutaneous electrical stimulation and to study the possible mechanism underlying those differences. Sub-threshold DPPs between 0.5 and 15 ms immediately followed by biphasic or monophasic pulses were administered to the tibial nerve; the electrophysiological muscular responses (motor-wave, M-wave) were monitored via electromyogram (EMG) recording from the soleus muscle. The data show that, under the specific studied conditions, DPPs tend to lower the threshold for nerve fiber activation rather than elevating it. DPPs with the same polarity as the leading phase of biphasic stimuli are more effective to increase the sensitivity. This work assesses for the first time the effect of DPPs on biphasic pulses, which are required to achieve charge-balanced stimulation, and it provides guidance on the effect of polarity and intensity to take full advantage of this feature. Graphical abstract In this work, the effect of sub-threshold depolarizing pre-pulses (DPP) is investigated in a setup with transcutaneous electrical stimulation. We found that, within the tested 0-15 ms DPP duration range, the DPPs administered immediately before biphasic pulses proportionally increase the nerve excitability as visible in the M-waves recorded from the soleus muscle. Interestingly, these findings oppose published results, where DPPs, administered immediately before monophasic stimuli via implanted electrodes, led to decrease of nerve excitability.
Intensity coding in electric hearing: Effects of electrode configurations and stimulation waveforms
Chua, Tiffany Elise H.; Bachman, Mark; Zeng, Fan-Gang
2011-01-01
Objectives Current cochlear implants typically stimulate the auditory nerve with biphasic pulses and monopolar electrode configurations. Tripolar stimulation can increase spatial selectivity and potentially improve place pitch related perception, but requires higher current levels to elicit the same loudness as monopolar stimulation. The present study combined delayed pseudomonophonasic pulses, which produce lower thresholds, with tripolar stimulation in an attempt to solve the power-performance tradeoff problem. Design The present study systematically measured thresholds, dynamic range, loudness growth, and intensity discrimination using either biphasic or delayed pseudomonophonasic pulses under both monopolar and tripolar stimulation. Participants were 5 Clarion cochlear implant users. For each subject, data from apical, middle and basal electrode positions were collected when possible. Results Compared with biphasic pulses, delayed pseudomonophonasic pulses increased the dynamic range by lowering thresholds while maintaining comparable maximum allowable levels under both electrode configurations. However, delayed pseudomonophonasic pulses did not change the shape of loudness growth function and actually increased intensity discrimination limens, especially at lower current levels. Conclusions The present results indicate that delayed pseudomonophonasic pulses coupled with tripolar stimulation cannot provide significant power savings, nor can it increase the functional dynamic range. Whether this combined stimulation could improve functional spectral resolution remains to be seen. PMID:21610498
Electrical conditioning of adipose-derived stem cells in a multi-chamber culture platform.
Pavesi, A; Soncini, M; Zamperone, A; Pietronave, S; Medico, E; Redaelli, A; Prat, M; Fiore, G B
2014-07-01
In tissue engineering, several factors play key roles in providing adequate stimuli for cells differentiation, in particular biochemical and physical stimuli, which try to mimic the physiological microenvironments. Since electrical stimuli are important in the developing heart, we have developed an easy-to-use, cost-effective cell culture platform, able to provide controlled electrical stimulation aimed at investigating the influence of the electric field in the stem cell differentiation process. This bioreactor consists of an electrical stimulator and 12 independent, petri-like culture chambers and a 3-D computational model was used to characterize the distribution and the intensity of the electric field generated in the cell culture volume. We explored the effects of monophasic and biphasic square wave pulse stimulation on a mouse adipose-derived stem cell line (m17.ASC) comparing cell viability, proliferation, protein, and gene expression. Both monophasic (8 V, 2 ms, 1 Hz) and biphasic (+4 V, 1 ms and -4 V, 1 ms; 1 Hz) stimulation were compatible with cell survival and proliferation. Biphasic stimulation induced the expression of Connexin 43, which was found to localize also at the cell membrane, which is its recognized functional mediating intercellular electrical coupling. Electrically stimulated cells showed an induced transcriptional profile more closely related to that of neonatal cadiomyocytes, particularly for biphasic stimulation. The developed platform thus allowed to set-up precise conditions to drive adult stem cells toward a myocardial phenotype solely by physical stimuli, in the absence of exogenously added expensive bioactive molecules, and can thus represent a valuable tool for translational applications for heart tissue engineering and regeneration. © 2014 Wiley Periodicals, Inc.
Shen, Na; Liang, Qiong; Liu, Yuehong; Lai, Bin; Li, Wen; Wang, Zhengmin; Li, Shufeng
2016-06-15
Intracochlear application of exogenous or transgenic neurotrophins, such as neurotrophin-3 (NT-3) and brain derived neurotrophic factor (BDNF), could promote the resprouting of spiral ganglion neuron (SGN) neurites in deafened animals. These resprouting neurites might reduce the gap between cochlear implant electrodes and their targeting SGNs, allowing for an improvement of spatial resolution of electrical stimulation. This study is to investigate the impact of electrical stimulation employed in CI on the extension of resprouting SGN neurites. We established an in vitro model including the devices delivering charge-balanced biphasic electrical stimulation, and spiral ganglion (SG) dissociated culture treated with BDNF and NT-3. After electrical stimulation with varying durations and intensities, we quantified neurite lengths and Schwann cell densities in SG cultures. Stimulations that were greater than 50μA or longer than 8h significantly decreased SG neurite length. Schwann cell density under 100μA electrical stimulation for 48h was significantly lower compared to that in non-stimulated group. These electrical stimulation-induced decreases of neurite extension and Schwann cell density were attenuated by various types of voltage-dependent calcium channel (VDCC) blockers, or completely prevented by their combination, cadmium or calcium-free medium. Our study suggested that charge-balanced biphasic electrical stimulation inhibited the extension of resprouting SGN neurites and decreased Schwann cell density in vitro. Calcium influx through multiple types of VDCCs was involved in the electrical stimulation-induced inhibition. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Oh, Sungjin; Ahn, Jae-Hyun; Lee, Sangmin; Ko, Hyoungho; Seo, Jong Mo; Goo, Yong-Sook; Cho, Dong-il Dan
2015-01-01
Retinal prosthetic devices stimulate retinal nerve cells with electrical signals proportional to the incident light intensities. For a high-resolution retinal prosthesis, it is necessary to reduce the size of the stimulator pixels as much as possible, because the retinal nerve cells are concentrated in a small area of approximately 5 mm × 5 mm. In this paper, a miniaturized biphasic current stimulator integrated circuit is developed for subretinal stimulation and tested in vitro. The stimulator pixel is miniaturized by using a complementary metal-oxide-semiconductor (CMOS) image sensor composed of three transistors. Compared to a pixel that uses a four-transistor CMOS image sensor, this new design reduces the pixel size by 8.3%. The pixel size is further reduced by simplifying the stimulation-current generating circuit, which provides a 43.9% size reduction when compared to the design reported to be the most advanced version to date for subretinal stimulation. The proposed design is fabricated using a 0.35 μm bipolar-CMOS-DMOS process. Each pixel is designed to fit in a 50 μ m × 55 μm area, which theoretically allows implementing more than 5000 pixels in the 5 mm × 5 mm area. Experimental results show that a biphasic current in the range of 0 to 300 μA at 12 V can be generated as a function of incident light intensities. Results from in vitro experiments with rd1 mice indicate that the proposed method can be effectively used for retinal prosthesis with a high resolution.
Walsh, Paul L.; Petrovic, Jelena
2011-01-01
Electrical stimulation is an indispensible tool in studying electrically excitable tissues in neurobiology and neuroendocrinology. In this work, the consequences of high-intensity electrical stimulation on the release of catecholamines from adrenal gland slices were examined with fast-scan cyclic voltammetry at carbon fiber microelectrodes. A biphasic signal, consisting of a fast and slow phase, was observed when electrical stimulations typically used in tissue slices (10 Hz, 350 μA biphasic, 2.0 ms/phase pulse width) were applied to bipolar tungsten-stimulating electrodes. This signal was found to be stimulation dependent, and the slow phase of the signal was abolished when smaller (≤250 μA) and shorter (1 ms/phase) stimulations were used. The slow phase of the biphasic signal was found to be tetrodotoxin and hexamethonium independent, while the fast phase was greatly reduced using these pharmacological agents. Two different types of calcium responses were observed, where the fast phase was abolished by perfusion with a low-calcium buffer while both the fast and slow phases could be modulated when Ca2+ was completely excluded from the solution using EGTA. Perfusion with nifedipine resulted in the reduction of the slow catecholamine release to 29% of the original signal, while the fast phase was only decreased to 74% of predrug values. From these results, it was determined that high-intensity stimulations of the adrenal medulla result in depolarizing not only the splanchnic nerves, but also the chromaffin cells themselves resulting in a biphasic catecholamine release. PMID:21048165
Microcurrent therapeutic technique for treatment of radiation toxicity
Lennox, Arlene; Funder, Sandra
2000-01-01
The present technique provides a method of remediating the toxicities associated with radiation therapy. A conductive gel is applied to the affected bodily area. A sinusoidally pulsed biphasic DC current is then applied to the affected bodily area using at least one electrode. The electrode is manipulated using active tactile manipulation by for a predetermined time and the frequency of the sinusoidally pulsed biphasic DC current is decreased during the course of the treatment. The method also includes applying a spiked pulsed biphasic DC current to the affected bodily area using at least one electrode. This electrode is also manipulated using active tactile manipulation by for a predetermined time and the frequency of the spiked pulsed biphasic DC current is also decreased during the course of the treatment.
Song, Zhiyang; Meyerson, Björn A; Linderoth, Bengt
2015-12-01
Conflicting data regarding the efficacy of high-frequency spinal cord stimulation (HF SCS) has prompted the issue of the possible importance of the shape of the stimulating pulses. The aim of this pilot study was to compare HF SCS applied with monophasic and biphasic pulses of two different durations with conventional SCS in a rat model of neuropathic pain. Rats were operated with lesions of sciatic nerve branches according to the spared nerve injury procedure (SNI). Animals, which developed pathological tactile hypersensitivity after surgery, were implanted with four-polar miniature SCS leads. SCS was applied during 60 min with either conventional current parameters (monophasic pulse width [PW]: 200 μsec; 50 Hz and amplitude 80% of the motor threshold [MT]), or with high-frequency SCS (1 kHz) with monophasic or biphasic pulses, the latter with pulse widths of either 24 (12 + 12) or 48 (24 + 24) μsec. The outcomes were examined regarding change of tactile hypersensitivity during the one-hour SCS period and with two tests of thermal sensitivity. Conventional monophasic SCS, as well as HF SCS applied with monophasic PW = 24 μsec or with biphasic PW = 48 (24 + 24) μsec, had similar suppressive effects on tactile hypersensitivity. Solely, HF SCS applied with biphasic pulses with a total PW of 24 (12 + 12) μsec demonstrated no effect. Thermal hypersensitivity was unaffected by HF SCS with all pulse varieties. There is no significant difference in efficacy between HF SCS applied with low amplitude ("subparesthetic") monophasic and biphasic pulses. However, short PWs providing only 12 μsec of cathodal stimulation was ineffective, presumably because of insufficient electric charge transfer from the lead contacts to the nervous tissue. © 2015 International Neuromodulation Society.
Advantage of four-electrode over two-electrode defibrillators
NASA Astrophysics Data System (ADS)
Bragard, J.; Šimić, A.; Laroze, D.; Elorza, J.
2015-12-01
Defibrillation is the standard clinical treatment used to stop ventricular fibrillation. An electrical device delivers a controlled amount of electrical energy via a pair of electrodes in order to reestablish a normal heart rate. We propose a technique that is a combination of biphasic shocks applied with a four-electrode system rather than the standard two-electrode system. We use a numerical model of a one-dimensional ring of cardiac tissue in order to test and evaluate the benefit of this technique. We compare three different shock protocols, namely a monophasic and two types of biphasic shocks. The results obtained by using a four-electrode system are compared quantitatively with those obtained with the standard two-electrode system. We find that a huge reduction in defibrillation threshold is achieved with the four-electrode system. For the most efficient protocol (asymmetric biphasic), we obtain a reduction in excess of 80% in the energy required for a defibrillation success rate of 90%. The mechanisms of successful defibrillation are also analyzed. This reveals that the advantage of asymmetric biphasic shocks with four electrodes lies in the duration of the cathodal and anodal phase of the shock.
Liu, Xiao; Gilmore, Kerry J; Moulton, Simon E; Wallace, Gordon G
2009-12-01
The purpose of this work was to investigate for the first time the potential biomedical applications of novel polypyrrole (PPy) composites incorporating a large polyelectrolyte dopant, poly (2-methoxy-5 aniline sulfonic acid) (PMAS). The physical and electrochemical properties were characterized. The PPy/PMAS composites were found to be smooth and hydrophilic and have low electrical impedance. We demonstrate that PPy/PMAS supports nerve cell (PC12) differentiation, and that clinically relevant 250 Hz biphasic current pulses delivered via PPy/PMAS films significantly promote nerve cell differentiation in the presence of nerve growth factor (NGF). The capacity of PPy/PMAS composites to support and enhance nerve cell differentiation via electrical stimulation renders them valuable for medical implants for neurological applications.
A wireless wearable surface functional electrical stimulator
NASA Astrophysics Data System (ADS)
Wang, Hai-Peng; Guo, Ai-Wen; Zhou, Yu-Xuan; Xia, Yang; Huang, Jia; Xu, Chong-Yao; Huang, Zong-Hao; Lü, Xiao-Ying; Wang, Zhi-Gong
2017-09-01
In this paper, a wireless wearable functional electrical stimulator controlled by Android phone with real-time-varying stimulation parameters for multichannel surface functional electrical stimulation application has been developed. It can help post-stroke patients using more conveniently. This study focuses on the prototype design, including the specific wristband concept, circuits and stimulation pulse-generation algorithm. A novel stimulator circuit with a driving stage using a complementary current source technique is proposed to achieve a high-voltage compliance, a large output impedance and an accurate linear voltage-to-current conversion. The size of the prototype has been significantly decreased to 17 × 7.5 × 1 cm3. The performance of the prototype has been tested with a loaded resistor and wrist extension/flexion movement of three hemiplegic patients. According to the experiments, the stimulator can generate four-channel charge-balanced biphasic stimulation with a voltage amplitude up to 60 V, and the pulse frequency and width can be adjusted in real time with a range of 100-600 μs and 20-80 Hz, respectively.
NASA Astrophysics Data System (ADS)
Downey, Austin; D'Alessandro, Antonella; Ubertini, Filippo; Laflamme, Simon; Geiger, Randall
2017-06-01
Investigation of multi-functional carbon-based self-sensing structural materials for structural health monitoring applications is a topic of growing interest. These materials are self-sensing in the sense that they can provide measurable electrical outputs corresponding to physical changes such as strain or induced damage. Nevertheless, the development of an appropriate measurement technique for such materials is yet to be achieved, as many results in the literature suggest that these materials exhibit a drift in their output when measured with direct current (DC) methods. In most of the cases, the electrical output is a resistance and the reported drift is an increase in resistance from the time the measurement starts due to material polarization. Alternating current methods seem more appropriate at eliminating the time drift. However, published results show they are not immune to drift. Moreover, the use of multiple impedance measurement devices (LCR meters) does not allow for the simultaneous multi-channel sampling of multi-sectioned self-sensing materials due to signal crosstalk. The capability to simultaneously monitor multiple sections of self-sensing structural materials is needed to deploy these multi-functional materials for structural health monitoring. Here, a biphasic DC measurement approach with a periodic measure/discharge cycle in the form of a square wave sensing current is used to provide consistent, stable resistance measurements for self-sensing structural materials. DC measurements are made during the measurement region of the square wave while material depolarization is obtained during the discharge region of the periodic signal. The proposed technique is experimentally shown to remove the signal drift in a carbon-based self-sensing cementitious material while providing simultaneous multi-channel measurements of a multi-sectioned self-sensing material. The application of the proposed electrical measurement technique appears promising for real-time utilization of self-sensing materials in structural health monitoring.
NASA Astrophysics Data System (ADS)
Bragard, Jean; Simic, Ana; Elorza, Jorge; Grigoriev, Roman O.; Cherry, Elizabeth M.; Gilmour, Robert F.; Otani, Niels F.; Fenton, Flavio H.
2013-12-01
In this article, we compare quantitatively the efficiency of three different protocols commonly used in commercial defibrillators. These are based on monophasic and both symmetric and asymmetric biphasic shocks. A numerical one-dimensional model of cardiac tissue using the bidomain formulation is used in order to test the different protocols. In particular, we performed a total of 4.8 × 106 simulations by varying shock waveform, shock energy, initial conditions, and heterogeneity in internal electrical conductivity. Whenever the shock successfully removed the reentrant dynamics in the tissue, we classified the mechanism. The analysis of the numerical data shows that biphasic shocks are significantly more efficient (by about 25%) than the corresponding monophasic ones. We determine that the increase in efficiency of the biphasic shocks can be explained by the higher proportion of newly excited tissue through the mechanism of direct activation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bragard, Jean, E-mail: jbragard@unav.es; Simic, Ana; Elorza, Jorge
2013-12-15
In this article, we compare quantitatively the efficiency of three different protocols commonly used in commercial defibrillators. These are based on monophasic and both symmetric and asymmetric biphasic shocks. A numerical one–dimensional model of cardiac tissue using the bidomain formulation is used in order to test the different protocols. In particular, we performed a total of 4.8 × 10{sup 6} simulations by varying shock waveform, shock energy, initial conditions, and heterogeneity in internal electrical conductivity. Whenever the shock successfully removed the reentrant dynamics in the tissue, we classified the mechanism. The analysis of the numerical data shows that biphasic shocksmore » are significantly more efficient (by about 25%) than the corresponding monophasic ones. We determine that the increase in efficiency of the biphasic shocks can be explained by the higher proportion of newly excited tissue through the mechanism of direct activation.« less
The efficacy of pulsed ultrahigh current for the stunning of cattle prior to slaughter.
Robins, A; Pleiter, H; Latter, M; Phillips, C J C
2014-03-01
We present results from the development of a new system of reversible electrical stunning of cattle. A single-pulse ultra-high current (SPUC) was generated from a capacitance discharge current spike of at least 5000 V at 70 A, for approximately 50 ms. Ninety-seven cattle were stunned in three experimental protocols. With improvements made to the design of the stun box and charge delivered, 38 cattle were either stunned and immediately jugulated or monitored for signs of reappearance of brain stem reflexes at which point a concussion stun was administered. This use of the SPUC charge, provided as a biphasic-pulse waveform, resulted in a high level of stunning efficacy, with unconsciousness lasting for up to 4 min. These results were supported by EEG data taken from a subsequent cohort of stunned cattle. The SPUC stun also apparently eliminated post-stun grand mal seizures that can occur following short-acting conventional electrical stun, with its associated negative consequences on operator safety and meat quality. © 2013.
Role of peak current in conversion of patients with ventricular fibrillation.
Anantharaman, Venkataraman; Wan, Paul Weng; Tay, Seow Yian; Manning, Peter George; Lim, Swee Han; Chua, Siang Jin Terrance; Mohan, Tiru; Rabind, Antony Charles; Vidya, Sudarshan; Hao, Ying
2017-07-01
Peak currents are the final arbiter of defibrillation in patients with ventricular fibrillation (VF). However, biphasic defibrillators continue to use energy in joules for electrical conversion in hopes that their impedance compensation properties will address transthoracic impedance (TTI), which must be overcome when a fixed amount of energy is delivered. However, optimal peak currents for conversion of VF remain unclear. We aimed to determine the role of peak current and optimal peak levels for conversion in collapsed VF patients. Adult, non-pregnant patients presenting with non-traumatic VF were included in the study. All defibrillations that occurred were included. Impedance values during defibrillation were used to calculate peak current values. The endpoint was return of spontaneous circulation (ROSC). Of the 197 patients analysed, 105 had ROSC. Characteristics of patients with and without ROSC were comparable. Short duration of collapse < 10 minutes correlated positively with ROSC. Generally, patients with average or high TTI converted at lower peak currents. 25% of patients with high TTI converted at 13.3 ± 2.3 A, 22.7% with average TTI at 18.2 ± 2.5 A and 18.6% with low TTI at 27.0 ± 4.7 A (p = 0.729). Highest peak current conversions were at < 15 A and 15-20 A. Of the 44 patients who achieved first-shock ROSC, 33 (75.0%) received < 20 A peak current vs. > 20 A for the remaining 11 (25%) patients (p = 0.002). For best effect, priming biphasic defibrillators to deliver specific peak currents should be considered. Copyright: © Singapore Medical Association
Role of peak current in conversion of patients with ventricular fibrillation
Anantharaman, Venkataraman; Wan, Paul Weng; Tay, Seow Yian; Manning, Peter George; Lim, Swee Han; Chua, Siang Jin Terrance; Mohan, Tiru; Rabind, Antony Charles; Vidya, Sudarshan; Hao, Ying
2017-01-01
INTRODUCTION Peak currents are the final arbiter of defibrillation in patients with ventricular fibrillation (VF). However, biphasic defibrillators continue to use energy in joules for electrical conversion in hopes that their impedance compensation properties will address transthoracic impedance (TTI), which must be overcome when a fixed amount of energy is delivered. However, optimal peak currents for conversion of VF remain unclear. We aimed to determine the role of peak current and optimal peak levels for conversion in collapsed VF patients. METHODS Adult, non-pregnant patients presenting with non-traumatic VF were included in the study. All defibrillations that occurred were included. Impedance values during defibrillation were used to calculate peak current values. The endpoint was return of spontaneous circulation (ROSC). RESULTS Of the 197 patients analysed, 105 had ROSC. Characteristics of patients with and without ROSC were comparable. Short duration of collapse < 10 minutes correlated positively with ROSC. Generally, patients with average or high TTI converted at lower peak currents. 25% of patients with high TTI converted at 13.3 ± 2.3 A, 22.7% with average TTI at 18.2 ± 2.5 A and 18.6% with low TTI at 27.0 ± 4.7 A (p = 0.729). Highest peak current conversions were at < 15 A and 15–20 A. Of the 44 patients who achieved first-shock ROSC, 33 (75.0%) received < 20 A peak current vs. > 20 A for the remaining 11 (25%) patients (p = 0.002). CONCLUSION For best effect, priming biphasic defibrillators to deliver specific peak currents should be considered. PMID:28741007
Electrical and optical co-stimulation in the deaf white cat
NASA Astrophysics Data System (ADS)
Cao, Zhiping; Xu, Yingyue; Tan, Xiaodong; Suematsu, Naofumi; Robinson, Alan; Richter, Claus-Peter
2018-02-01
Spatial selectivity of neural stimulation with photons, such as infrared neural stimulation (INS) is higher than the selectivity obtained with electrical stimulation. To obtain more independent channels for stimulation in neural prostheses, INS may be implemented to better restore the fidelity of the damaged neural system. However, irradiation with infrared light also bares the risk of heat accumulation in the target tissue with subsequent neural damage. Lowering the threshold for stimulation could reduce the amount of heat delivered to the tissue and the risk for subsequent tissue damage. It has been shown in the rat sciatic nerve that simultaneous irradiation with infrared light and the delivery of biphasic sub-threshold electrical pulses can reduce the threshold for INS [1]. In this study, deaf white cats have been used to test whether opto-electrical co-stimulation can reduce the stimulation threshold for INS in the auditory system too. The cochleae of the deaf white cats have largely reduced spiral ganglion neuron counts and significant degeneration of the organ of Corti and do not respond to acoustic stimuli. Combined electrical and optical stimulation was used to demonstrate that simultaneous stimulation with infrared light and biphasic electrical pulses can reduce the threshold for stimulation.
NASA Astrophysics Data System (ADS)
Goo, Yong Sook; Ye, Jang Hee; Lee, Seokyoung; Nam, Yoonkey; Ryu, Sang Baek; Kim, Kyung Hwan
2011-06-01
Retinal prostheses are being developed to restore vision for those with retinal diseases such as retinitis pigmentosa or age-related macular degeneration. Since neural prostheses depend upon electrical stimulation to control neural activity, optimal stimulation parameters for successful encoding of visual information are one of the most important requirements to enable visual perception. In this paper, we focused on retinal ganglion cell (RGC) responses to different stimulation parameters and compared threshold charge densities in wild-type and rd1 mice. For this purpose, we used in vitro retinal preparations of wild-type and rd1 mice. When the neural network was stimulated with voltage- and current-controlled pulses, RGCs from both wild-type and rd1 mice responded; however the temporal pattern of RGC response is very different. In wild-type RGCs, a single peak within 100 ms appears, while multiple peaks (approximately four peaks) with ~10 Hz rhythm within 400 ms appear in RGCs in the degenerated retina of rd1 mice. We find that an anodic phase-first biphasic voltage-controlled pulse is more efficient for stimulation than a biphasic current-controlled pulse based on lower threshold charge density. The threshold charge densities for activation of RGCs both with voltage- and current-controlled pulses are overall more elevated for the rd1 mouse than the wild-type mouse. Here, we propose the stimulus range for wild-type and rd1 retinas when the optimal modulation of a RGC response is possible.
Ambler, Jonathan J S; Deakin, Charles D
2006-12-01
Cutaneous burns are a common cause of morbidity following direct current (DC) cardioversion. We designed a prospective randomised double-blinded controlled study to determine the effect of biphasic or monophasic waveform on the pain and inflammation occurring after elective cardioversion. One hundred and thirty nine patients undergoing elective DC cardioversion were randomised to receive monophasic (HP Codemaster XL; 100, 200, 300, 360, and 360 J) or biphasic (Welch Allyn-MRL PIC defibrillator; 70, 100, 150, 200, and 300 J) waveforms. Two hours after DC cardioversion, skin temperature, erythema index and sensory threshold to light and sharp touch was measured at the centre and edge of paddle sites. Visual analogue pain score (VAS) was recorded at 2 and 24 h. There was significantly less pain following biphasic cardioversion as assessed by VAS at both 2 h (p < 0.001; 95% confidence intervals of difference of medians (CI) 0.2-0.8 cm) and 24 h (p = 0.004; 95% CI 0.0-0.4 cm). There was significantly less erythema in patients receiving biphasic cardioversion at the edge of the sternal site (p = 0.046; 95% CI 0.41-4.5). There was no difference in any other variable at any site between biphasic and monophasic cardioversion. The use of a biphasic waveform for DC cardioversion reduces the inflammation and pain of burns as measured by erythema index and visual analogue scale.
Tinnitus treatment with precise and optimal electric stimulation: opportunities and challenges.
Zeng, Fan-Gang; Djalilian, Hamid; Lin, Harrison
2015-10-01
Electric stimulation is a potent means of neuromodulation that has been used to restore hearing and minimize tremor, but its application on tinnitus symptoms has been limited. We examine recent evidence to identify the knowledge gaps in the use of electric stimulation for tinnitus treatment. Recent studies using electric stimulation to suppress tinnitus in humans are categorized according to their points of attacks. First, noninvasive, direct current stimulation uses an active electrode in the ear canal, tympanic membrane, or temporal scalp. Second, inner ear stimulation uses charge-balanced biphasic stimulation by placing an active electrode on the promontory or round window, or a cochlear implant array in the cochlea. Third, intraneural implants can provide targeted stimulation of specific sites along the auditory pathway. Although these studies demonstrated some success in tinnitus suppression, none established a link between tinnitus suppression efficacy and tinnitus-generating mechanisms. Electric stimulation provides a unique opportunity to suppress tinnitus. Challenges include matching electric stimulation sites and patterns to tinnitus locus and type, meeting the oftentimes-contradictory demands between tinnitus suppression and other indications, such as speech understanding, and justifying the costs and risks of electric stimulation for tinnitus symptoms.
Tinnitus Treatment with Precise and Optimal Electric Stimulation: Opportunities and Challenges
Zeng, Fan-Gang; Djalilian, Hamid; Lin, Harrison
2015-01-01
Purpose of review Electric stimulation is a potent means of neuromodulation that has been used to restore hearing and minimize tremor, but its application on tinnitus symptoms has been limited. We examine recent evidence to identify the knowledge gaps in the use of electric stimulation for tinnitus treatment. Recent findings Recent studies using electric stimulation to suppress tinnitus in humans are categorized according to their points of attacks. First, non-invasive, direct-current stimulation uses an active electrode in the ear canal, tympanic membrane or temporal scalp. Second, inner ear stimulation uses charge-balanced biphasic stimulation by placing an active electrode on the promontory or round window, or a cochlear implant array in the cochlea. Third, intraneural implants can provide targeted stimulation of specific sites along the auditory pathway. Although these studies demonstrated some success in tinnitus suppression, none established a link between tinnitus suppression efficacy and tinnitus-generating mechanisms. Summary Electric stimulation provides a unique opportunity to suppress tinnitus. Challenges include matching electric stimulation sites and patterns to tinnitus locus and type, meeting the oftentimes-contradictory demands between tinnitus suppression and other indications, such as speech understanding, and justifying the costs and risks of electric stimulation for tinnitus symptoms. PMID:26208122
Nakagawa, Yoshihide; Sato, Yoji; Kojima, Takeshi; Wakabayashi, Tsutomu; Morita, Seiji; Amino, Mari; Inokuchi, Sadaki
2013-07-20
Prolonged ventricular fibrillation (VF) is associated with a low rate of return of spontaneous circulation (ROSC) following electric shock. Moreover, electric shock that does not reestablish spontaneous circulation causes myocardial dysfunction even if ROSC is subsequently achieved. Amplitude spectral area (AMSA), calculated by analysis of VF waveforms immediately before electric shock, is considered to predict the outcome of electric shock. This study aimed to evaluate the prognostic value of AMSA in relation to waveforms of defibrillators in prehospital settings. The AMSA values of 81 patients with VF confirmed by ambulance crews were compared according to the type of defibrillators with different waveforms and between those with and without ROSC. With a biphasic defibrillator, the mean AMSA was significantly different between the 14 patients who achieved ROSC (25.3 ± 9.5 mV-Hz) and the 43 subjects who did not achieve ROSC (15.4 ± 8.1 mV-Hz; p = 0.0006). No significant difference was seen in the corresponding values when a monophasic defibrillator was used, at 19.1 ± 2.4 mV-Hz for 3 ROSC patients and 16.1 ± 7.5mV-Hz for 21 non-ROSC patients. AMSA may serve as a predictive measure for ROSC following electric shock delivered by a biphasic defibrillator.
Tan, Guoqiang; Chong, Lina; Amine, Rachid; ...
2017-04-12
To promote lithium-oxygen batteries available for practical applications, the development of advanced cathode catalysts with low-cost, high activity and stable structural properties is demanded. Such development is rooted on certain intelligent catalyst-electrode design that fundamentally facilitates electronic and ionic transport, and improves oxygen diffusivity in a porous environment. Here we design a biphasic nitrogen-doped cobalt@graphene multiple-capsule heterostructure, combined with a flexible, stable porous electrode architecture, and apply it as promising cathodes for lithium-oxygen cells. The biphasic nitrogen-doping feature improves the electric conductivity and catalytic activity; the multiple-nanocapsule configuration makes high/uniform electro-active zones possible; furthermore, the colander-like porous electrode facilitates themore » oxygen diffusion, catalytic reaction, and stable deposition of discharge products. Finally, the electrode exhibits much improved electrocatalytic properties associated with unique morphologies of electrochemically grown lithium peroxides.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, Guoqiang; Chong, Lina; Amine, Rachid
For the promotion of lithium oxygen batteries available for :practical applications, the development of advanced cathode catalysts with low-high activity, and stable structural properties is demanded. Such development is rooted on certain intelligent catalyst-electrode design that fundamentally facilitates electronic and ionic transport and improves oxygen diffusivity in a porous environment. Here we design a biphasic nitrogen-doped cobalt@grapbene Multiple-capsule heterostructure, combined with a flexible, stable porous electrode architecture, and apply it as promising cathodes for lithium oxygen cells. 'The biphasic nitrogen-doping feature improves the electric conductivity and catalytic activity; the multiple-nanocapsule configuration makes high/uniform electroactive zones possible; furthermore the colander-like porousmore » electrode facilitates the oxygen diffusion, catalytic reaction,and stable deposition of discharge products. As a result, the electrode exhibits much improved electrocatalytic properties associated with unique morphologies of electrochemically grown lithium peroxides.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, Guoqiang; Chong, Lina; Amine, Rachid
To promote lithium-oxygen batteries available for practical applications, the development of advanced cathode catalysts with low-cost, high activity and stable structural properties is demanded. Such development is rooted on certain intelligent catalyst-electrode design that fundamentally facilitates electronic and ionic transport, and improves oxygen diffusivity in a porous environment. Here we design a biphasic nitrogen-doped cobalt@graphene multiple-capsule heterostructure, combined with a flexible, stable porous electrode architecture, and apply it as promising cathodes for lithium-oxygen cells. The biphasic nitrogen-doping feature improves the electric conductivity and catalytic activity; the multiple-nanocapsule configuration makes high/uniform electro-active zones possible; furthermore, the colander-like porous electrode facilitates themore » oxygen diffusion, catalytic reaction, and stable deposition of discharge products. Finally, the electrode exhibits much improved electrocatalytic properties associated with unique morphologies of electrochemically grown lithium peroxides.« less
Tan, Guoqiang; Chong, Lina; Amine, Rachid; Lu, Jun; Liu, Cong; Yuan, Yifei; Wen, Jianguo; He, Kun; Bi, Xuanxuan; Guo, Yuanyuan; Wang, Hsien-Hau; Shahbazian-Yassar, Reza; Al Hallaj, Said; Miller, Dean J; Liu, Dijia; Amine, Khalil
2017-05-10
For the promotion of lithium-oxygen batteries available for practical applications, the development of advanced cathode catalysts with low-cost, high activity, and stable structural properties is demanded. Such development is rooted on certain intelligent catalyst-electrode design that fundamentally facilitates electronic and ionic transport and improves oxygen diffusivity in a porous environment. Here we design a biphasic nitrogen-doped cobalt@graphene multiple-capsule heterostructure, combined with a flexible, stable porous electrode architecture, and apply it as promising cathodes for lithium-oxygen cells. The biphasic nitrogen-doping feature improves the electric conductivity and catalytic activity; the multiple-nanocapsule configuration makes high/uniform electroactive zones possible; furthermore, the colander-like porous electrode facilitates the oxygen diffusion, catalytic reaction, and stable deposition of discharge products. As a result, the electrode exhibits much improved electrocatalytic properties associated with unique morphologies of electrochemically grown lithium peroxides.
Greene, Jacqueline J; McClendon, Mark T; Stephanopoulos, Nicholas; Álvarez, Zaida; Stupp, Samuel I; Richter, Claus-Peter
2018-04-27
Facial nerve injury can cause severe long-term physical and psychological morbidity. There are limited repair options for an acutely transected facial nerve not amenable to primary neurorrhaphy. We hypothesize that a peptide amphiphile nanofiber neurograft may provide the nanostructure necessary to guide organized neural regeneration. Five experimental groups were compared, animals with 1) an intact nerve, 2) following resection of a nerve segment, and following resection and immediate repair with either a 3) autograft (using the resected nerve segment), 4) neurograft, or 5) empty conduit. The buccal branch of the rat facial nerve was directly stimulated with charge balanced biphasic electrical current pulses at different current amplitudes while nerve compound action potentials (nCAPs) and electromygraphic (EMG) responses were recorded. After 8 weeks, the proximal buccal branch was surgically re-exposed and electrically evoked nCAPs were recorded for groups 1-5. As expected, the intact nerves required significantly lower current amplitudes to evoke an nCAP than those repaired with the neurograft and autograft nerves. For other electrophysiologic parameters such as latency and maximum nCAP, there was no significant difference between the intact, autograft and neurograft groups. The resected group had variable responses to electrical stimulation, and the empty tube group was electrically silent. Immunohistochemical analysis and TEM confirmed myelinated neural regeneration. This study demonstrates that the neuroregenerative capability of peptide amphiphile nanofiber neurografts is similar to the current clinical gold standard method of repair and holds potential as an off-the-shelf solution for facial reanimation and potentially peripheral nerve repair. This article is protected by copyright. All rights reserved.
Huddleston, J G; Willauer, H D; Boaz, K R; Rogers, R D
1998-06-26
Aqueous biphasic systems (ABS) and aqueous biphasic extraction chromatographic (ABEC) resins are currently under investigation for their utility in the removal of color from textile plant wastes. The structures of several widely used food colorings, suggest that these dyes would also be retained on the resins. In work currently in progress, we have begun to investigate the retention and resolution of several common food colorings including indigo carmine, amaranth, carminic acid. erythrosin B, tartrazine and quinoline yellow. The relationship between the uptake of these dyes on ABEC resins in terms of the binding strengths and capacities of the resins and their partitioning behavior in ABS is illustrated. Some possible theoretical and practical approaches to the prediction of the partitioning and retention behavior is discussed.
A tripolar current-steering stimulator ASIC for field shaping in deep brain stimulation.
Valente, Virgilio; Demosthenous, Andreas; Bayford, Richard
2012-06-01
A significant problem with clinical deep brain stimulation (DBS) is the high variability of its efficacy and the frequency of side effects, related to the spreading of current beyond the anatomical target area. This is the result of the lack of control that current DBS systems offer on the shaping of the electric potential distribution around the electrode. This paper presents a stimulator ASIC with a tripolar current-steering output stage, aiming at achieving more selectivity and field shaping than current DBS systems. The ASIC was fabricated in a 0.35-μ m CMOS technology occupying a core area of 0.71 mm(2). It consists of three current sourcing/sinking channels. It is capable of generating square and exponential-decay biphasic current pulses with five different time constants up to 28 ms and delivering up to 1.85 mA of cathodic current, in steps of 4 μA, from a 12 V power supply. Field shaping was validated by mapping the potential distribution when injecting current pulses through a multicontact DBS electrode in saline.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hays, Lance G.
2000-09-01
A full scale, wellhead Biphase turbine was manufactured and installed with the balance of plant at Well 103 of the Cerro Prieto geothermal resource in Baja, California. The Biphase turbine was first synchronized with the electrical grid of Comision Federal de Electricidad on August 20, 1997. The Biphase power plant was operated from that time until May 23, 2000, a period of 2 years and 9 months. A total of 77,549 kWh were delivered to the grid. The power plant was subsequently placed in a standby condition pending replacement of the rotor with a newly designed, higher power rotor andmore » replacement of the bearings and seals. The maximum measured power output of the Biphase turbine, 808 kWe at 640 psig wellhead pressure, agreed closely with the predicted output, 840 kWe. When combined with the backpressure steam turbine the total output power from that flow would be increased by 40% above the power derived only from the flow by the present flash steam plant. The design relations used to predict performance and design the turbine were verified by these tests. The performance and durability of the Biphase turbine support the conclusion of the Economics and Application Report previously published, (Appendix A). The newly designed rotor (the Dual Pressure Rotor) was analyzed for the above power condition. The Dual Pressure Rotor would increase the power output to 2064 kWe by incorporating two pressure letdown stages in the Biphase rotor, eliminating the requirement for a backpressure steam turbine. The power plant availability was low due to deposition of solids from the well on the Biphase rotor and balance of plant problems. A great deal of plant down time resulted from the requirement to develop methods to handle the solids and from testing the apparatus in the Biphase turbine. Finally an online, washing method using the high pressure two-phase flow was developed which completely eliminated the solids problem. The availability of the Biphase turbine itself was 100% after implementations of this method in March 2000. However, failures of instrumentation and control system components led to additional plant down time and damage to the bearings and seals. The enthalpy and pressure of well 103 declined substantially from the inception of the project. When the project was started the wellhead pressure and enthalpy were 760 psig and 882 Btu/lb respectively. At the time the plant was placed in standby the corresponding values were only 525 psig and 658 Btu/lb. This reduced the available plant power to only 400 kWe making the project economically unfeasible. However, replacement of the existing rotor with the Dual Pressure Rotor and replacement of the bearings and seals will enable the existing Biphase turbine to produce 1190 kWe at the present well conditions without the backpressure steam turbine. Operation with the present staff can then be sustained by selling power under the existing Agreement with CFE. Implementation of this option is recommended with operation of the facility to continue as a demonstration plant. Biphase turbine theory, design and performance are reported herein. The construction of the Biphase turbine and power plant and operational experience are detailed. Improvements in the Biphase turbine are indicated and analyzed. The impact of Biphase techonology on geothermal power production is discussed and recommendations made.« less
Lethal effect of electric fields on isolated ventricular myocytes.
de Oliveira, Pedro Xavier; Bassani, Rosana Almada; Bassani, José Wilson Magalhães
2008-11-01
Defibrillator-type shocks may cause electric and contractile dysfunction. In this study, we determined the relationship between probability of lethal injury and electric field intensity (E in isolated rat ventricular myocytes, with emphasis on field orientation and stimulus waveform. This relationship was sigmoidal with irreversible injury for E > 50 V/cm . During both threshold and lethal stimulation, cells were twofold more sensitive to the field when it was applied longitudinally (versus transversally) to the cell major axis. For a given E, the estimated maximum variation of transmembrane potential (Delta V(max)) was greater for longitudinal stimuli, which might account for the greater sensitivity to the field. Cell death, however, occurred at lower maximum Delta V(max) values for transversal shocks. This might be explained by a less steep spatial decay of transmembrane potential predicted for transversal stimulation, which would possibly result in occurrence of electroporation in a larger membrane area. For the same stimulus duration, cells were less sensitive to field-induced injury when shocks were biphasic (versus monophasic). Ours results indicate that, although significant myocyte death may occur in the E range expected during clinical defibrillation, biphasic shocks are less likely to produce irreversible cell injury.
Effects of high-level pulse train stimulation on retinal function.
Cohen, Ethan D
2009-06-01
We examined how stimulation of the local retina by high-level current pulse trains affected the light-evoked responses of the retinal ganglion cells. The spikes of retinal ganglion cell axons were recorded extracellularly using an in vitro eyecup preparation of the rabbit retina. Epiretinal electrical stimulation was delivered via a 500 microm inner diameter saline-filled, transparent tube positioned over the retinal surface forming the receptive field center. Spot stimuli were presented periodically to the receptive field center during the experiment. Trains of biphasic 1 ms current pulses were delivered to the retina at 50 Hz for 1 min. Pulse train charge densities of 1.3-442 microC/cm(2)/phase were examined. After pulse train stimulation with currents >or=300 microA (133 microC/cm(2)/phase), the ganglion cell's ability to respond to light was depressed and a significant time was required for recovery of the light-evoked response. During train stimulation, the ganglion cell's ability to spike following each current pulse fatigued. The current levels evoking train-evoked depression were suprathreshold to those evoking action potentials. Train-evoked depression was stronger touching the retinal surface, and in some cases impaired ganglion cell function for up to 30 min. This overstimulation could cause a transient refractory period for electrically stimulated perception in the retinal region below the electrode.
Changes in transthoracic impedance during sequential biphasic defibrillation.
Deakin, Charles D; Ambler, Jonathan J S; Shaw, Steven
2008-08-01
Sequential monophasic defibrillation reduces transthoracic impedance (TTI) and progressively increases current flow for any given energy level. The effect of sequential biphasic shocks on TTI is unknown. We therefore studied patients undergoing elective cardioversion using a biphasic waveform to establish whether this is a phenomenon seen in the clinical setting. Adults undergoing elective DC cardioversion for atrial flutter or fibrillation received sequential transthoracic shocks using an escalating protocol (70J, 100J, 150J, 200J, and 300J) with a truncated exponential biphasic waveform. TTI was calculated through the defibrillator circuit and recorded electronically. Successful cardioversion terminated further defibrillation shocks. A total of 58 patients underwent elective cardioversion. Cardioversion was successful in 93.1% patients. First shock TTI was 92.2 [52.0-126.0]Omega (n=58) and decreased significantly with each sequential shock. Mean TTI in patients receiving five shocks (n=5) was 85.0Omega. Sequential biphasic defibrillation decreases TTI in a similar manner to that seen with monophasic waveforms. The effect is likely during defibrillation during cardiac arrest by the quick succession in which shocks are delivered and the lack of cutaneous blood flow which limits the inflammatory response. The ability of biphasic defibrillators to adjust their waveform according to TTI is likely to minimise any effect of these findings on defibrillation efficacy.
NASA Astrophysics Data System (ADS)
Jensen, Ralph J.; Rizzo, Joseph F., III
2011-06-01
An electronic retinal prosthesis may provide useful vision for patients suffering from retinitis pigmentosa (RP). In animal models of RP, the amount of current needed to activate retinal ganglion cells (RGCs) is higher than in normal, healthy retinas. In this study, we sought to reduce the stimulation thresholds of RGCs in a degenerate rat model (P23H-line 1) by blocking GABA receptor mediated inhibition in the retina. We examined the effects of TPMPA, a GABAC receptor antagonist, and SR95531, a GABAA receptor antagonist, on the electrically evoked responses of RGCs to biphasic current pulses delivered to the subretinal surface through a 400 µm diameter electrode. Both TPMPA and SR95531 reduced the stimulation thresholds of ON-center RGCs on average by 15% and 20% respectively. Co-application of the two GABA receptor antagonists had the greatest effect, on average reducing stimulation thresholds by 32%. In addition, co-application of the two GABA receptor antagonists increased the magnitude of the electrically evoked responses on average three-fold. Neither TPMPA nor SR95531, applied alone or in combination, had consistent effects on the stimulation thresholds of OFF-center RGCs. We suggest that the effects of the GABA receptor antagonists on ON-center RGCs may be attributable to blockage of GABA receptors on the axon terminals of ON bipolar cells.
Björninen, Miina; Gilmore, Kerry; Pelto, Jani; Seppänen-Kaijansinkko, Riitta; Kellomäki, Minna; Miettinen, Susanna; Wallace, Gordon; Grijpma, Dirk; Haimi, Suvi
2017-04-01
We investigated the use of polypyrrole (PPy)-coated polymer scaffolds and electrical stimulation (ES) to differentiate adipose stem cells (ASCs) towards smooth muscle cells (SMCs). Since tissue engineering lacks robust and reusable 3D ES devices we developed a device that can deliver ES in a reliable, repeatable, and cost-efficient way in a 3D environment. Long pulse (1 ms) or short pulse (0.25 ms) biphasic electric current at a frequency of 10 Hz was applied to ASCs to study the effects of ES on ASC viability and differentiation towards SMCs on the PPy-coated scaffolds. PPy-coated scaffolds promoted proliferation and induced stronger calponin, myosin heavy chain (MHC) and smooth muscle actin (SMA) expression in ASCs compared to uncoated scaffolds. ES with 1 ms pulse width increased the number of viable cells by day 7 compared to controls and remained at similar levels to controls by day 14, whereas shorter pulses significantly decreased viability compared to the other groups. Both ES protocols supported smooth muscle expression markers. Our results indicate that electrical stimulation on PPy-coated scaffolds applied through the novel 3D ES device is a valid approach for vascular smooth muscle tissue engineering.
Schmidt, Anders S; Lauridsen, Kasper G; Adelborg, Kasper; Torp, Peter; Bach, Leif F; Jepsen, Simon M; Hornung, Nete; Deakin, Charles D; Rickers, Hans; Løfgren, Bo
2017-03-08
Several different defibrillators are currently used for cardioversion and defibrillation of cardiac arrhythmias. The efficacy of a novel pulsed biphasic (PB) waveform has not been compared to other biphasic waveforms. Accordingly, this study aims to compare the efficacy and safety of PB shocks with biphasic truncated exponential (BTE) shocks in patients undergoing cardioversion of atrial fibrillation or -flutter. This prospective, randomized study included patients admitted for elective direct current cardioversion. Patients were randomized to receive cardioversion using either PB or BTE shocks. We used escalating shocks until sinus rhythm was obtained or to a maximum of 4 shocks. Patients randomized to PB shocks received 90, 120, 150, and 200 J and patients randomized to BTE shocks received 100, 150, 200, and 250 J, as recommended by the manufacturers. In total, 69 patients (51%) received PB shocks and 65 patients (49%) BTE shocks. Successful cardioversion, defined as sinus rhythm 4 hours after cardioversion, was achieved in 43 patients (62%) using PB shocks and in 56 patients (86%) using BTE shocks; ratio 1.4 (95% CI 1.1-1.7) ( P =0.002). There was no difference in safety (ie, myocardial injury judged by changes in high-sensitive troponin I levels; ratio 1.1) (95% CI 1.0-1.3), P =0.15. The study was terminated prematurely because of an adverse event. Cardioversion using a BTE waveform was more effective when compared with a PB waveform. There was no difference in safety between the 2 waveforms, as judged by changes in troponin I levels. URL: http://www.clinicaltrials.gov. Unique identifier: NCT02317029. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.
2018-01-01
Objective To compare radiation doses between conventional and chest pain protocols using dual-source retrospectively electrocardiography (ECG)-gated cardiothoracic computed tomography (CT) in children and adults and assess the effect of tube current saturation on radiation dose reduction. Materials and Methods This study included 104 patients (16.6 ± 7.7 years, range 5–48 years) that were divided into two groups: those with and those without tube current saturation. The estimated radiation doses of retrospectively ECG-gated spiral cardiothoracic CT were compared between conventional, uniphasic, and biphasic chest pain protocols acquired with the same imaging parameters in the same patients by using paired t tests. Dose reduction percentages, patient ages, volume CT dose index values, and tube current time products per rotation were compared between the two groups by using unpaired t tests. A p value < 0.05 was considered significant. Results The volume CT dose index values of the biphasic chest pain protocol (10.8 ± 3.9 mGy) were significantly lower than those of the conventional protocol (12.2 ± 4.7 mGy, p < 0.001) and those of the uniphasic chest pain protocol (12.9 ± 4.9 mGy, p < 0.001). The dose-saving effect of biphasic chest pain protocol was significantly less with a saturated tube current (4.5 ± 10.2%) than with unsaturated tube current method (14.8 ± 11.5%, p < 0.001). In 76 patients using 100 kVp, patient age showed no significant differences between the groups with and without tube current saturation in all protocols (p > 0.05); the groups with tube current saturation showed significantly higher volume CT dose index values (p < 0.01) and tube current time product per rotation (p < 0.001) than the groups without tube current saturation in all protocols. Conclusion The radiation dose of dual-source retrospectively ECG-gated spiral cardiothoracic CT can be reduced by approximately 15% by using the biphasic chest pain protocol instead of the conventional protocol in children and adults if radiation dose parameters are further optimized to avoid tube current saturation. PMID:29353996
Vahabi, Zahra; Amirfattahi, Rasoul; Shayegh, Farzaneh; Ghassemi, Fahimeh
2015-09-01
Considerable efforts have been made in order to predict seizures. Among these methods, the ones that quantify synchronization between brain areas, are the most important methods. However, to date, a practically acceptable result has not been reported. In this paper, we use a synchronization measurement method that is derived according to the ability of bi-spectrum in determining the nonlinear properties of a system. In this method, first, temporal variation of the bi-spectrum of different channels of electro cardiography (ECoG) signals are obtained via an extended wavelet-based time-frequency analysis method; then, to compare different channels, the bi-phase correlation measure is introduced. Since, in this way, the temporal variation of the amount of nonlinear coupling between brain regions, which have not been considered yet, are taken into account, results are more reliable than the conventional phase-synchronization measures. It is shown that, for 21 patients of FSPEEG database, bi-phase correlation can discriminate the pre-ictal and ictal states, with very low false positive rates (FPRs) (average: 0.078/h) and high sensitivity (100%). However, the proposed seizure predictor still cannot significantly overcome the random predictor for all patients.
Substrate dependent stability of conducting polymer coatings on medical electrodes.
Green, Rylie A; Hassarati, Rachelle T; Bouchinet, Lucie; Lee, Chaekyung S; Cheong, Gin L M; Yu, Jin F; Dodds, Christopher W; Suaning, Gregg J; Poole-Warren, Laura A; Lovell, Nigel H
2012-09-01
Conducting polymer (CP) coatings on medical electrodes have the potential to provide superior performance when compared to conventional metallic electrodes, but their stability is strongly dependant on the substrate properties. The aim of this study was to examine the effect of laser roughening of underlying platinum (Pt) electrode surfaces on the mechanical, electrical and biological performance of CP coatings. In addition, the impact of dopant type on electrical performance and stability was assessed. The CP poly(ethylene dioxythiophene) (PEDOT) was coated on Pt microelectrode arrays, with three conventional dopant ions. The in vitro electrical characteristics were assessed by cyclic voltammetry and biphasic stimulation. Results showed that laser roughening of the underlying substrate did not affect the charge injection limit of the coated material, but significantly improved the passive stability and chronic stimulation lifetime without failure of the coating. Accelerated material ageing and long-term biphasic stimulus studies determined that some PEDOT variants experienced delamination within as little as 10 days when the underlying Pt was smooth, but laser roughening to produce a surface index of 2.5 improved stability, such that more than 1.3 billion stimulation cycles could be applied without evidence of failure. PEDOT doped with paratoluene sulfonate (PEDOT/pTS) was found to be the most stable CP on roughened Pt, and presented a surface topography which encouraged neural cell attachment. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.
Micromachined Silicon Stimulating Probes with CMOS Circuitry for Use in the Central Nervous System
NASA Astrophysics Data System (ADS)
Tanghe, Steven John
1992-01-01
Electrical stimulation in the central nervous system is a valuable technique for studying neural systems and is a key element in the development of prostheses for deafness and other disorders. This thesis presents a family of multielectrode probe structures, fulfilling the need for chronic multipoint stimulation tools essential for interfacing to the highly complex neural networks in the brain. These probes are batch-fabricated on silicon wafers, employing photoengraving techniques to precisely control the electrode site and array geometries and to allow the integration of on-chip CMOS circuitry for signal multiplexing and stimulus current generation. Silicon micromachining is used to define the probe shapes, which have typical shank dimensions of 3 mm in length by 100 mu m in width by 15 μm in thickness. Each shank supports up to eight planar iridium oxide electrode sites capable of delivering charge densities in excess of 3 mC/cm^2 during current pulse stimulation. Three active probe circuits have been designed with varied complexity and capability. All three can deliver biphasic stimulus currents through 16 sites using only 5 external leads, and they are all compatible with the same external control system. The most complex design interprets site addresses and stimulus current amplitudes from 16-bit words shifted into the probe at 4 MHz. Sixteen on-chip, biphasic, 8-bit digital-to-analog converters deliver analog stimulus currents in the range of +/- 254 muA to any combination of electrode sites. These DACs exhibit full-scale internal linearity to better than +/-1/2 LSB and can be calibrated by varying the positive power supply voltage. The entire probe circuit dissipates only 80 muW from +/-5 V supplies when not delivering stimulus currents, it includes several safety features, and is testable from the input pads. Test results from the fabricated circuits indicate that they all function properly at clocking frequencies as high as 10 MHz, meeting or exceeding all design specifications. Probe structures without circuitry have been used for stimulation experiments in guinea pigs yielding excellent results.
Electrical stimulation causes rapid changes in electrode impedance of cell-covered electrodes
NASA Astrophysics Data System (ADS)
Newbold, Carrie; Richardson, Rachael; Millard, Rodney; Seligman, Peter; Cowan, Robert; Shepherd, Robert
2011-06-01
Animal and clinical observations of a reduction in electrode impedance following electrical stimulation encouraged the development of an in vitro model of the electrode-tissue interface. This model was used previously to show an increase in impedance with cell and protein cover over electrodes. In this paper, the model was used to assess the changes in electrode impedance and cell cover following application of a charge-balanced biphasic current pulse train. Following stimulation, a large and rapid drop in total impedance (Zt) and access resistance (Ra) occurred. The magnitude of this impedance change was dependent on the current amplitude used, with a linear relationship determined between Ra and the resulting cell cover over the electrodes. The changes in impedance due to stimulation were shown to be transitory, with impedance returning to pre-stimulation levels several hours after cessation of stimulation. A loss of cells over the electrode surface was observed immediately after stimulation, suggesting that the level of stimulation applied was creating localized changes to cell adhesion. Similar changes in electrode impedance were observed for in vivo and in vitro work, thus helping to verify the in vitro model, although the underlying mechanisms may differ. A change in the porosity of the cellular layer was proposed to explain the alterations in electrode impedance in vitro. These in vitro studies provide insight into the possible mechanisms occurring at the electrode-tissue interface in association with electrical stimulation.
2013-01-01
Si heterojunction solar cells were fabricated on p-type single-crystal Si (sc-Si) substrates using phosphorus-doped Si nanocrystals (Si-NCs) embedded in SiNx (Si-NCs/SiNx) films as emitters. The Si-NCs were formed by post-annealing of silicon-rich silicon nitride films deposited by electron cyclotron resonance chemical vapor deposition. We investigate the influence of the N/Si ratio in the Si-NCs/SiNx films on their electrical and optical properties, as well as the photovoltaic properties of the fabricated heterojunction devices. Increasing the nitrogen content enhances the optical gap E04 while deteriorating the electrical conductivity of the Si-NCs/SiNx film, leading to an increased short-circuit current density and a decreased fill factor of the heterojunction device. These trends could be interpreted by a bi-phase model which describes the Si-NCs/SiNx film as a mixture of a high-transparency SiNx phase and a low-resistivity Si-NC phase. A preliminary efficiency of 8.6% is achieved for the Si-NCs/sc-Si heterojunction solar cell. PMID:24188725
Sadek, Mouhannad M; Chaugai, Varsha; Cleland, Mark J; Zakutney, Timothy J; Birnie, David H; Ramirez, F Daniel
2018-03-13
The relevance of transthoracic impedance (TTI) to electrical cardioversion (ECV) success for atrial tachyarrhythmias when using biphasic waveform defibrillators is unknown. TTI is predictive of ECV success with contemporary defibrillators. De-identified data stored in biphasic defibrillator memory cards from ECV attempts for atrial fibrillation (AF) or atrial flutter (AFL) over a 2-year period at our center were evaluated. ECV success, defined as arrhythmia termination and ≥ 1 sinus beat, was adjudicated by 2 blinded cardiac electrophysiologists. The association between TTI and ECV success was assessed via Cochrane-Armitage trend and Spearman rank correlation tests, as well as simple and multivariable logistic regression. The influence of TTI on the number of shocks and on cumulative energy delivered per patient was also examined. 703 patients (593 with AF, 110 with AFL) receiving 1055 shocks were included. Last shock success was achieved in 88.0% and 98.2% of patients with AF and AFL, respectively. In patients with AF, TTI was positively associated with last shock failure (P trend =0.019), the need for multiple shocks (P trend <0.001), and cumulative energy delivered (ρ = 0.348; P < 0.001). After adjusting for first shock energy, 10-Ω increments in TTI were associated with odds ratios of 1.36 (95% CI: 1.24-1.49) and 1.22 (95% CI: 1.09-1.37) for first and last shock failure, respectively (P < 0.001 for both). Although contemporary defibrillators are designed to compensate for TTI, this variable continues to be associated with ECV failure in patients with AF. Strategies to lower TTI during ECV for AF may improve procedural success. © 2018 Wiley Periodicals, Inc.
Optical imaging of the retina in response to the electrical stimulation
NASA Astrophysics Data System (ADS)
Fujikado, Takashi; Okawa, Yoshitaka; Miyoshi, Tomomitsu; Hirohara, Yoko; Mihashi, Toshifumi; Tano, Yasuo
2008-02-01
Purposes: To determine if reflectance changes of the retina can be detected following electrical stimulation to the retina using a newly developed optical-imaging fundus camera. Methods: Eyes of cats were examined after pupil dilation. Retina was stimulated either focally by a ball-type electrode (BE) placed on the fenestrated sclera or diffusely using a ring-type electrode (RE) placed on the corneoscleral limbus. Electrical stimulation by biphasic pulse trains was applied for 4 seconds. Fundus images with near-infrared (800-880 nm) light were obtained between 2 seconds before and 20 seconds after the electrical stimulation (ES). A two-dimensional map of the reflectance changes (RCs) was constructed. The effect of Tetrodotoxin (TTX) was also investigated on RCs by ES using RE. Results: RCs were observed around the retinal locus where the stimulating electrodes were positioned (BE) or in the retina of the posterior pole (RE), in which the latency was about 0.5 to 1.0 sec and the peak time about 2 to 5 sec after the onset of ES. The intensity of the RCs increased with the increase of the stimulus current in both cases. RCs were completely suppressed after the injection of TTX. Conclusions: The functional changes of the retina either by focal or diffuse electrical stimulation were successfully detected by optical imaging of the retina. The contribution of retinal ganglion cells on RCs by ES was confirmed by TTX experiment. This method may be applied to the objective evaluation of the artificial retina.
Drop Migration and Demixing of Biphasic Aqueous Systems in an Applied Electric Field
NASA Astrophysics Data System (ADS)
Todd, Paul; Raghavarao, Karumanchi S. M. S.
1999-11-01
Applying an electric field to a demixing emulsion of poly(ethylene glycol)(PEG) and dextran (or maltodextrin) in phosphate-buffered aqueous solution shortens the demixing time up to 6 fold. Phosphate ions partition into the dextran-rich phase imparting a small electrical potential between the phases. PEG-rich drops migrate cathodally, and their electrophoretic mobility is directly proportional to their radius and increases with increased ionization of phosphate. An electric field, either parallel or antiparallel to the gravity vector, can enhance demixing. A theory consistent with these observations states that drops move due to external and internal electroosmotic flow (tractor treading). Enhanced demixing in an electric field whose polarity opposes buoyancy is thought to be caused by initial increased drop growth during retardation by the electric field so that the drop becomes more buoyant. However, at infinite internal drop viscosity the theory does not extrapolate to the result for solid colloid particles.
NASA Astrophysics Data System (ADS)
Borkar, Rajnikant; Dahake, Rashmi; Rayalu, Sadhana; Bansiwal, Amit
2018-03-01
A biphasic copper oxide thin film of grass-like appendage morphology is synthesized by two-step electro-deposition method and later investigated for photoelectrochemical (PEC) water splitting for hydrogen production. Further, the thin film was characterized by UV-Visible spectroscopy, x-ray diffraction (XRD), Scanning electron microscopy (SEM) and PEC techniques. The XRD analysis confirms formation of biphasic copper oxide phases, and SEM reveals high surface area grass appendage-like morphology. These grass appendage structures exhibit a high cathodic photocurrent of - 1.44 mAcm-2 at an applied bias of - 0.7 (versus Ag/AgCl) resulting in incident to photon current efficiency (IPCE) of ˜ 10% at 400 nm. The improved light harvesting and charge transport properties of grass appendage structured biphasic copper oxides makes it a potential candidate for PEC water splitting for hydrogen production.
A practical method of predicting the loudness of complex electrical stimuli
NASA Astrophysics Data System (ADS)
McKay, Colette M.; Henshall, Katherine R.; Farrell, Rebecca J.; McDermott, Hugh J.
2003-04-01
The output of speech processors for multiple-electrode cochlear implants consists of current waveforms with complex temporal and spatial patterns. The majority of existing processors output sequential biphasic current pulses. This paper describes a practical method of calculating loudness estimates for such stimuli, in addition to the relative loudness contributions from different cochlear regions. The method can be used either to manipulate the loudness or levels in existing processing strategies, or to control intensity cues in novel sound processing strategies. The method is based on a loudness model described by McKay et al. [J. Acoust. Soc. Am. 110, 1514-1524 (2001)] with the addition of the simplifying approximation that current pulses falling within a temporal integration window of several milliseconds' duration contribute independently to the overall loudness of the stimulus. Three experiments were carried out with six implantees who use the CI24M device manufactured by Cochlear Ltd. The first experiment validated the simplifying assumption, and allowed loudness growth functions to be calculated for use in the loudness prediction method. The following experiments confirmed the accuracy of the method using multiple-electrode stimuli with various patterns of electrode locations and current levels.
Morimoto, Takeshi; Kanda, Hiroyuki; Miyoshi, Tomomitsu; Hirohara, Yoko; Mihashi, Toshifumi; Kitaguchi, Yoshiyuki; Nishida, Kohji; Fujikado, Takashi
2014-01-01
Transcorneal electrical stimulation (TES) activates retinal neurons leading to visual sensations. How the retinal cells are activated by TES has not been definitively determined. Investigating the reflectance changes of the retina is an established technique and has been used to determine the mechanism of retinal activation. The purpose of this study was to evaluate the reflectance changes elicited by TES in cat eyes. Eight eyes of Eight cats were studied under general anesthesia. Biphasic electrical pulses were delivered transcornealy. The fundus images observed with near-infrared light (800-880 nm) were recorded every 25 ms for 26 s. To improve the signal-to-noise ratio, the images of 10 consecutive recordings were averaged. Two-dimensional topographic maps of the reflective changes were constructed by subtracting images before from those after the TES. The effects of different stimulus parameters, e.g., current intensity, pulse duration, frequency, and stimulus duration, on the reflective changes were studied. Our results showed that after TES, the reflective changes appeared on the retinal vessels and optic disc. The intensity of reflectance changes increased as the current intensity, pulse duration, and stimulation duration increased (P<0.05 for all). The maximum intensity of the reflective change was obtained when the stimulus frequency was 20 Hz. The time course of the reflectance changes was also altered by the stimulation parameters. The response started earlier and returned to the baseline later with higher current intensities, longer pulse durations, but the time of the peak of the response was not changed. These results showed that the reflective changes were due to the activation of retinal neurons by TES and might involve the vascular changes induced by an activation of the retinal neurons.
Ni, D
1992-12-01
A physiological investigation of cochlear electrical stimulation was undertaken in six two-month-old kittens. The scala tympani electrodes were implanted and electrically stimulated using biphasic balanced electrical pulses for periods of 1000-1500h in four ears. Four ears received implants for same period but without electrical stimulation. The other two ears served as normal control. The results indicated: 1) Chronic electrical stimulation of the cochlea within electrochemically safe limits did not influence the hearing of kittens and the normal delivery of impulses evoked by acoustic and electrical signals on the auditory brainstem pathway. 2) The wave shapes of EABRs were similar to those of ABRs. The amplitudes of EABRs showed a significant increase following chronic electrical stimulation, resulting in a leftward shift in the input/output function. The absolute latencies and interwave latencies of waves II-III, III-IV and II-IV were significantly shorter than those of ABRs. These results imply that there was no adverse effect of chronic electrical stimulation on the maturing auditory systems of kittens using these electrical parameters and the mechanism of electrical hearing should be further studied.
Spugnini , Enrico P; Dotsinsky , Ivan; Mudrov , Nikolay; Citro , Gennaro; D'Avino , Alfredo; Baldi , Alfonso
2008-01-01
Sticker's sarcoma (also known as transmissible venereal tumor) is a horizontally transmitted neoplasm of the dog, that is passed with coitus. It is a locally aggressive tumor with a low tendency to metastatic spread. The most common locations are the genitals, the nose, the perianal area. Standard treatment consists with chemotherapy with vincristine, however other therapies such as, cryotherapy, immunotherapy or, in selected cases, radiation therapy, have been reported. In this article we describe the outcome of a small cohort of canine patients, with chemotherapy resistant transmissible venereal tumor (TVT), treated with bleomycin selectively driven by trains of biphasic pulses (electrochemotherapy). Three canine patients, with refractory TVT, entered the study and received two sessions of ECT under sedation. The pets had local injection of bleomycin at the concentration of 1.5 mg/ml and five minutes after the chemotherapy, trains of 8 biphasic electric pulses lasting 50 + 50 μs each, with 1 ms interpulse intervals, were delivered by means of modified caliper or, for difficult districts, through paired needle electrode. All the patients responded to the treatment and are still in remission at different times. Electrochemotherapy appears as a safe and efficacious modality for the treatment of TVT and warrants further investigations. PMID:18980687
Wang, Ziyun; Wang, Hai-Feng; Hu, P
2015-10-01
The current theory of catalyst activity in heterogeneous catalysis is mainly obtained from the study of catalysts with mono-phases, while most catalysts in real systems consist of multi-phases, the understanding of which is far short of chemists' expectation. Density functional theory (DFT) and micro-kinetics simulations are used to investigate the activities of six mono-phase and nine bi-phase catalysts, using CO hydrogenation that is arguably the most typical reaction in heterogeneous catalysis. Excellent activities that are beyond the activity peak of traditional mono-phase volcano curves are found on some bi-phase surfaces. By analyzing these results, a new framework to understand the unexpected activities of bi-phase surfaces is proposed. Based on the framework, several principles for the design of multi-phase catalysts are suggested. The theoretical framework extends the traditional catalysis theory to understand more complex systems.
Zhu, Wei; Ye, Tao; Lee, Se-Jun; Cui, Haitao; Miao, Shida; Zhou, Xuan; Shuai, Danmeng; Zhang, Lijie Grace
2017-05-25
Carbon-based nanomaterials have shown great promise in regenerative medicine because of their unique electrical, mechanical, and biological properties; however, it is still difficult to engineer 2D pure carbon nanomaterials into a 3D scaffold while maintaining its structural integrity. In the present study, we developed novel carbon nanofibrous scaffolds by annealing electrospun mats at elevated temperature. The resultant scaffold showed a cohesive structure and excellent mechanical flexibility. The graphitic structure generated by annealing renders superior electrical conductivity to the carbon nanofibrous scaffold. By integrating the conductive scaffold with biphasic electrical stimulation, neural stem cell proliferation was promoted associating with upregulated neuronal gene expression level and increased microtubule-associated protein 2 immunofluorescence, demonstrating an improved neuronal differentiation and maturation. The findings suggest that the integration of the conducting carbon nanofibrous scaffold and electrical stimulation may pave a new avenue for neural tissue regeneration. Copyright © 2017 Elsevier Inc. All rights reserved.
Plasma-mediated transfection of RPE
NASA Astrophysics Data System (ADS)
Palanker, D.; Chalberg, T.; Vankov, A.; Huie, P.; Molnar, F. E.; Butterwick, A.; Calos, M.; Marmor, M.; Blumenkranz, M. S.
2006-02-01
A major obstacle in applying gene therapy to clinical practice is the lack of efficient and safe gene delivery techniques. Viral delivery has encountered a number of serious problems including immunological reactions and malignancy. Non-viral delivery methods (liposomes, sonoporation and electroporation) have either low efficiency in-vivo or produce severe collateral damage to ocular tissues. We discovered that tensile stress greatly increases the susceptibility of cellular membranes to electroporation. For synchronous application of electric field and mechanical stress, both are generated by the electric discharge itself. A pressure wave is produced by rapid vaporization of the medium. To prevent termination of electric current by the vapor cavity it is ionized thus restoring its electric conductivity. For in-vivo experiments with rabbits a plasmid DNA was injected into the subretinal space, and RPE was treated trans-sclerally with an array of microelectodes placed outside the eye. Application of 250-300V and 100-200 μs biphasic pulses via a microelectrode array resulted in efficient transfection of RPE without visible damage to the retina. Gene expression was quantified and monitored using bioluminescence (luciferase) and fluorescence (GFP) imaging. Transfection efficiency of RPE with this new technique exceeded that of standard electroporation by a factor 10,000. Safe and effective non-viral DNA delivery to the mammalian retina may help to materialize the enormous potential of the ocular gene therapy. Future experiments will focus on continued characterization of the safety and efficacy of this method and evaluation of long-term transgene expression in the presence of phiC31 integrase.
Sommer, Martin; Norden, Christoph; Schmack, Lars; Rothkegel, Holger; Lang, Nicolas; Paulus, Walter
2013-05-01
Directional sensitivity is relevant for the excitability threshold of the human primary motor cortex, but its importance for externally induced plasticity is unknown. To study the influence of current direction on two paradigms inducing neuroplasticity by repetitive transcranial magnetic stimulation (rTMS). We studied short-lasting after-effects induced in the human primary motor cortex of 8 healthy subjects, using 5 Hz rTMS applied in six blocks of 200 pulses each, at 90% active motor threshold. We controlled for intensity, frequency, waveform and spinal effects. Only biphasic pulses with the effective component delivered in an anterioposterior direction (henceforth posteriorly directed) in the brain yielded an increase of motor-evoked potential (MEP) amplitudes outlasting rTMS. MEP latencies and F-wave amplitudes remained unchanged. Biphasic pulses directed posteroanterior (i.e. anteriorly) were ineffective, as were monophasic pulses from either direction. A 1 Hz study in a group of 12 healthy subjects confirmed facilitation after posteriorly directed biphasic pulses only. The anisotropy of the human primary motor cortex is relevant for induction of plasticity by subtreshold rTMS, with a current flow opposite to that providing lowest excitability thresholds. This is consistent with the idea of TMS primarily targeting cortical columns of the phylogenetically new M1 in the anterior bank of the central sulcus. For these, anteriorly directed currents are soma-depolarizing, therefore optimal for low thresholds, whereas posteriorly directed currents are soma-hyperpolarizing, likely dendrite-depolarizing and bested suited for induction of plasticity. Our findings should help focus and enhance rTMS effects in experimental and clinical settings. Copyright © 2013 Elsevier Inc. All rights reserved.
3D printing nano conductive multi-walled carbon nanotube scaffolds for nerve regeneration
NASA Astrophysics Data System (ADS)
Lee, Se-Jun; Zhu, Wei; Nowicki, Margaret; Lee, Grace; Nyoung Heo, Dong; Kim, Junghoon; Zuo, Yi Y.; Zhang, Lijie Grace
2018-02-01
Objective. Nanomaterials, such as carbon nanotubes (CNTs), have been introduced to modify the surface properties of scaffolds, thus enhancing the interaction between the neural cells and biomaterials. In addition to superior electrical conductivity, CNTs can provide nanoscale structures similar to those present in the natural neural environment. The primary objective of this study is to investigate the proliferative capability and differential potential of neural stem cells (NSCs) seeded on a CNT incorporated scaffold. Approach. Amine functionalized multi-walled carbon nanotubes (MWCNTs) were incorporated with a PEGDA polymer to provide enhanced electrical properties as well as nanofeatures on the surface of the scaffold. A stereolithography 3D printer was employed to fabricate a well-dispersed MWCNT-hydrogel composite neural scaffold with a tunable porous structure. 3D printing allows easy fabrication of complex 3D scaffolds with extremely intricate microarchitectures and controlled porosity. Main results. Our results showed that MWCNT-incorporated scaffolds promoted neural stem cell proliferation and early neuronal differentiation when compared to those scaffolds without the MWCNTs. Furthermore, biphasic pulse stimulation with 500 µA current promoted neuronal maturity quantified through protein expression analysis by quantitative polymerase chain reaction. Significance. Results of this study demonstrated that an electroconductive MWCNT scaffold, coupled with electrical stimulation, may have a synergistic effect on promoting neurite outgrowth for therapeutic application in nerve regeneration.
Bhatia, S C; Manchanda, S K; Kapoor, B K; Aneja, I S
1995-10-01
Chemitrodes which permit electrical and chemical stimulation of the same hypothalamic loci were implanted in anterior hypothalamic and preoptic regions. These sites were stimulated electrically using biphasic square wave pulse (1 ms, 60 Hz) at a current strength ranging from 150-800 microA to evoke an aggressive response. At lower current strength of 150-200 micro A, defence response, a sort of non-specific response can be elicited from these regions. Increasing the current strength to 400 microA led to the recruitment of affective and somatic components and changed the response pattern either to affective attack or flight. The loci producing affective attack response were localized more laterally and ventrally while the loci producing flight response were located in the dorsomedial regions of the hypothalamus. In this response the animal made a goal-directed attempt to escape through an escape route. Increasing the current strength to 500 microA in the dorsomedial regions changed the flight response to violent flight, which involved vigorous running with unsheathed claws and attacking objects if obstructed. Similar increase in current strength at loci producing affective attack only led to a decrease in the latency of response and made the attack more vigorous. Microinfusion of carbachol in graded doses of 2-15 microgram at all these loci produced a profound affective display. At lower doses of 2 and 5 microgram, only some components of affective display like alertness, pupillary dilation and ear flatness were exhibited. Increasing the dose to 10 micrograms and 15 micrograms led to the recruitment of other affective components like piloerection, salivation, hissing and baring of teeth. Microinfusion of carbachol at all loci producing affective attack on electrical stimulation produced a prononced affective display while microinfusion of carbachol at loci producing flight response led to the development of defence posture. At six loci a typical flight response was obtained while violent flight was never exhibited at any of these sites. Microinfusion of atropine (10 microgram in 1.0 microliter saline) at these loci completely blocked the carbachol induced response. Both somatomotor and affective components were completely inhibited. However, the responses obtained on electrical stimulation were not totally blocked following atropine infusion and some of the somatomotor and affective components could be elicited with higher current strength. These studies indicate the involvement of cholinoceptive mechanisms in the elicitation of hypothalamically induced aggresive behaviour. Microinfustion of hexamethonium bromide, a nicotinic blocker in 50 micrograms doses did not affect the aggressive response.
[Wearable Automatic External Defibrillators].
Luo, Huajie; Luo, Zhangyuan; Jin, Xun; Zhang, Leilei; Wang, Changjin; Zhang, Wenzan; Tu, Quan
2015-11-01
Defibrillation is the most effective method of treating ventricular fibrillation(VF), this paper introduces wearable automatic external defibrillators based on embedded system which includes EGG measurements, bioelectrical impedance measurement, discharge defibrillation module, which can automatic identify VF signal, biphasic exponential waveform defibrillation discharge. After verified by animal tests, the device can realize EGG acquisition and automatic identification. After identifying the ventricular fibrillation signal, it can automatic defibrillate to abort ventricular fibrillation and to realize the cardiac electrical cardioversion.
NASA Astrophysics Data System (ADS)
Kagawa, Keiichiro; Furumiya, Tetsuo; Ng, David C.; Uehara, Akihiro; Ohta, Jun; Nunoshita, Masahiro
2004-06-01
We are exploring the application of pulse-frequency-modulation (PFM) photosensor to retinal prosthesis for the blind because behavior of PFM photosensors is similar to retinal ganglion cells, from which visual data are transmitted from the retina toward the brain. We have developed retinal-prosthesis vision chips that reshape the output pulses of the PFM photosensor to biphasic current pulses suitable for electric stimulation of retinal cells. In this paper, we introduce image-processing functions to the pixel circuits. We have designed a 16x16-pixel retinal-prosthesis vision chip with several kinds of in-pixel digital image processing such as edge enhancement, edge detection, and low-pass filtering. This chip is a prototype demonstrator of the retinal prosthesis vision chip applicable to in-vitro experiments. By utilizing the feature of PFM photosensor, we propose a new scheme to implement the above image processing in a frequency domain by digital circuitry. Intensity of incident light is converted to a 1-bit data stream by a PFM photosensor, and then image processing is executed by a 1-bit image processor based on joint and annihilation of pulses. The retinal prosthesis vision chip is composed of four blocks: a pixels array block, a row-parallel stimulation current amplifiers array block, a decoder block, and a base current generators block. All blocks except PFM photosensors and stimulation current amplifiers are embodied as digital circuitry. This fact contributes to robustness against noises and fluctuation of power lines. With our vision chip, we can control photosensitivity and intensity and durations of stimulus biphasic currents, which are necessary for retinal prosthesis vision chip. The designed dynamic range is more than 100 dB. The amplitude of the stimulus current is given by a base current, which is common for all pixels, multiplied by a value in an amplitude memory of pixel. Base currents of the negative and positive pulses are common for the all pixels, and they are set in a linear manner. Otherwise, the value in the amplitude memory of the pixel is presented in an exponential manner to cover the wide range. The stimulus currents are put out column by column by scanning. The pixel size is 240um x 240um. Each pixel has a bonding pad on which stimulus electrode is to be formed. We will show the experimental results of the test chip.
Three-year efficacy of complex insulin regimens in type 2 diabetes.
Holman, Rury R; Farmer, Andrew J; Davies, Melanie J; Levy, Jonathan C; Darbyshire, Julie L; Keenan, Joanne F; Paul, Sanjoy K
2009-10-29
Evidence supporting the addition of specific insulin regimens to oral therapy in patients with type 2 diabetes mellitus is limited. In this 3-year open-label, multicenter trial, we evaluated 708 patients who had suboptimal glycated hemoglobin levels while taking metformin and sulfonylurea therapy. Patients were randomly assigned to receive biphasic insulin aspart twice daily, prandial insulin aspart three times daily, or basal insulin detemir once daily (twice if required). Sulfonylurea therapy was replaced by a second type of insulin if hyperglycemia became unacceptable during the first year of the study or subsequently if glycated hemoglobin levels were more than 6.5%. Outcome measures were glycated hemoglobin levels, the proportion of patients with a glycated hemoglobin level of 6.5% or less, the rate of hypoglycemia, and weight gain. Median glycated hemoglobin levels were similar for patients receiving biphasic (7.1%), prandial (6.8%), and basal (6.9%) insulin-based regimens (P=0.28). However, fewer patients had a level of 6.5% or less in the biphasic group (31.9%) than in the prandial group (44.7%, P=0.006) or in the basal group (43.2%, P=0.03), with 67.7%, 73.6%, and 81.6%, respectively, taking a second type of insulin (P=0.002). [corrected] Median rates of hypoglycemia per patient per year were lowest in the basal group (1.7), higher in the biphasic group (3.0), and highest in the prandial group (5.7) (P<0.001 for the overall comparison). The mean weight gain was higher in the prandial group than in either the biphasic group or the basal group. Other adverse event rates were similar in the three groups. Patients who added a basal or prandial insulin-based regimen to oral therapy had better glycated hemoglobin control than patients who added a biphasic insulin-based regimen. Fewer hypoglycemic episodes and less weight gain occurred in patients adding basal insulin. (Current Controlled Trials number, ISRCTN51125379.) 2009 Massachusetts Medical Society
Millar, W T; Davidson, S E
2013-01-01
Objective: To consider the implications of the use of biphasic rather than monophasic repair in calculations of biologically-equivalent doses for pulsed-dose-rate brachytherapy of cervix carcinoma. Methods: Calculations are presented of pulsed-dose-rate (PDR) doses equivalent to former low-dose-rate (LDR) doses, using biphasic vs monophasic repair kinetics, both for cervical carcinoma and for the organ at risk (OAR), namely the rectum. The linear-quadratic modelling calculations included effects due to varying the dose per PDR cycle, the dose reduction factor for the OAR compared with Point A, the repair kinetics and the source strength. Results: When using the recommended 1 Gy per hourly PDR cycle, different LDR-equivalent PDR rectal doses were calculated depending on the choice of monophasic or biphasic repair kinetics pertaining to the rodent central nervous and skin systems. These differences virtually disappeared when the dose per hourly cycle was increased to 1.7 Gy. This made the LDR-equivalent PDR doses more robust and independent of the choice of repair kinetics and α/β ratios as a consequence of the described concept of extended equivalence. Conclusion: The use of biphasic and monophasic repair kinetics for optimised modelling of the effects on the OAR in PDR brachytherapy suggests that an optimised PDR protocol with the dose per hourly cycle nearest to 1.7 Gy could be used. Hence, the durations of the new PDR treatments would be similar to those of the former LDR treatments and not longer as currently prescribed. Advances in knowledge: Modelling calculations indicate that equivalent PDR protocols can be developed which are less dependent on the different α/β ratios and monophasic/biphasic kinetics usually attributed to normal and tumour tissues for treatment of cervical carcinoma. PMID:23934965
Gogoi, Manashjit; Sarma, Haladhar D; Bahadur, Dhirendra; Banerjee, Rinti
2014-05-01
The aim was to develop magnetic nanovesicles for chemotherapy and self-controlled hyperthermia that prevent overheating of tissues. Magnetic nanovesicles containing paclitaxel and a dextran-coated biphasic suspension of La0.75Sr0.25MnO3 and Fe3O4 nanoparticles (magnetic nanoparticles) were developed. Encapsulation efficiencies of magnetic nanoparticles and paclitaxel were 67 ± 5 and 83 ± 3%, respectively. Sequential release performed at 37°C for 1 h followed by 44°C for another 1 h (as expected for intratumoral injection), showed a cumulative release of 6.6% (109.6 µg), which was above the IC50 of the drug. In an alternating current magnetic field, the temperature remained controlled at 44°C and a synergistic cytotoxicity of paclitaxel and hyperthermia was observed in MCF-7 cells. Magnetic nanovesicles containing biphasic suspensions La0.75Sr0.25MnO3 and Fe3O4 nanoparticles encapsulating paclitaxel have potential for combined self-controlled hyperthermia and chemotherapy.
Management of postprandial glucose: Recommended targets and treatment with biphasic insulin.
Liebl, Andreas
2016-12-01
Increases in glycaemia, particularly following meals, have been independently associated with diabetes complications, most notably cardiovascular disease. Control of postprandial plasma glucose (PPG) therefore plays an important role in diabetes management. International diabetes guidelines acknowledge the value of PPG monitoring yet place relatively little emphasis on PPG control. This article considers the impact of suboptimal PPG control and current recommendations with regard to management of PPG. Specific consideration is given to the role of biphasic insulins, one of the treatment options recognised by the International Diabetes Federation as preferentially lowering PPG levels. Copyright © 2016 Primary Care Diabetes Europe. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Yu-Ting; Wickens, Jeffery R.; Huang, Yi-Ling; Pan, Wynn H. T.; Chen, Fu-Yu Beverly; Chen, Jia-Jin Jason
2013-08-01
Objective. Fast-scan cyclic voltammetry (FSCV) is commonly used to monitor phasic dopamine release, which is usually performed using tethered recording and for limited types of animal behavior. It is necessary to design a wireless dopamine sensing system for animal behavior experiments. Approach. This study integrates a wireless FSCV system for monitoring the dopamine signal in the ventral striatum with an electrical stimulator that induces biphasic current to excite dopaminergic neurons in awake freely moving rats. The measured dopamine signals are unidirectionally transmitted from the wireless FSCV module to the host unit. To reduce electrical artifacts, an optocoupler and a separate power are applied to isolate the FSCV system and electrical stimulator, which can be activated by an infrared controller. Main results. In the validation test, the wireless backpack system has similar performance in comparison with a conventional wired system and it does not significantly affect the locomotor activity of the rat. In the cocaine administration test, the maximum electrically elicited dopamine signals increased to around 230% of the initial value 20 min after the injection of 10 mg kg-1 cocaine. In a classical conditioning test, the dopamine signal in response to a cue increased to around 60 nM over 50 successive trials while the electrically evoked dopamine concentration decreased from about 90 to 50 nM in the maintenance phase. In contrast, the cue-evoked dopamine concentration progressively decreased and the electrically evoked dopamine was eliminated during the extinction phase. In the histological evaluation, there was little damage to brain tissue after five months chronic implantation of the stimulating electrode. Significance. We have developed an integrated wireless voltammetry system for measuring dopamine concentration and providing electrical stimulation. The developed wireless FSCV system is proven to be a useful experimental tool for the continuous monitoring of dopamine levels during animal learning behavior studies of freely moving rats.
Li, Yu-Ting; Wickens, Jeffery R; Huang, Yi-Ling; Pan, Wynn H T; Chen, Fu-Yu Beverly; Chen, Jia-Jin Jason
2013-08-01
Fast-scan cyclic voltammetry (FSCV) is commonly used to monitor phasic dopamine release, which is usually performed using tethered recording and for limited types of animal behavior. It is necessary to design a wireless dopamine sensing system for animal behavior experiments. This study integrates a wireless FSCV system for monitoring the dopamine signal in the ventral striatum with an electrical stimulator that induces biphasic current to excite dopaminergic neurons in awake freely moving rats. The measured dopamine signals are unidirectionally transmitted from the wireless FSCV module to the host unit. To reduce electrical artifacts, an optocoupler and a separate power are applied to isolate the FSCV system and electrical stimulator, which can be activated by an infrared controller. In the validation test, the wireless backpack system has similar performance in comparison with a conventional wired system and it does not significantly affect the locomotor activity of the rat. In the cocaine administration test, the maximum electrically elicited dopamine signals increased to around 230% of the initial value 20 min after the injection of 10 mg kg(-1) cocaine. In a classical conditioning test, the dopamine signal in response to a cue increased to around 60 nM over 50 successive trials while the electrically evoked dopamine concentration decreased from about 90 to 50 nM in the maintenance phase. In contrast, the cue-evoked dopamine concentration progressively decreased and the electrically evoked dopamine was eliminated during the extinction phase. In the histological evaluation, there was little damage to brain tissue after five months chronic implantation of the stimulating electrode. We have developed an integrated wireless voltammetry system for measuring dopamine concentration and providing electrical stimulation. The developed wireless FSCV system is proven to be a useful experimental tool for the continuous monitoring of dopamine levels during animal learning behavior studies of freely moving rats.
Wang, Hao-Yi; Wang, Yi; Yu, Man; Han, Jun; Guo, Zhi-Xin; Ai, Xi-Cheng; Zhang, Jian-Ping; Qin, Yujun
2016-04-28
Organic-inorganic halide perovskite solar cells are becoming the next big thing in the photovoltaic field owing to their rapidly developing photoelectric conversion performance. Herein, mesoporous structured perovskite devices with various perovskite grain sizes are fabricated by a sequential dropping method, and the charge recombination dynamics is investigated by transient optical-electric measurements. All devices exhibit an overall power conversion efficiency around 15%. More importantly, a biphasic trap-limited charge recombination process is proposed and interpreted by taking into account the specific charge accumulation mechanism in perovskite solar cells. At low Fermi levels, photo-generated electrons predominately populate in the perovskite phase, while at high Fermi levels, most electrons occupy traps in mesoporous TiO2. As a result, the dynamics of charge recombination is, respectively, dominated by the perovskite phase and mesoporous TiO2 in these two cases. The present work would give a new perspective on the charge recombination process in meso-structured perovskite solar cells.
Upper stimulation threshold for retinal ganglion cell activation.
Meng, Kevin; Fellner, Andreas; Rattay, Frank; Ghezzi, Diego; Meffin, Hamish; Ibbotson, Michael R; Kameneva, Tatiana
2018-08-01
The existence of an upper threshold in electrically stimulated retinal ganglion cells (RGCs) is of interest because of its relevance to the development of visual prosthetic devices, which are designed to restore partial sight to blind patients. The upper threshold is defined as the stimulation level above which no action potentials (direct spikes) can be elicited in electrically stimulated retina. We collected and analyzed in vitro recordings from rat RGCs in response to extracellular biphasic (anodic-cathodic) pulse stimulation of varying amplitudes and pulse durations. Such responses were also simulated using a multicompartment model. We identified the individual cell variability in response to stimulation and the phenomenon known as upper threshold in all but one of the recorded cells (n = 20/21). We found that the latencies of spike responses relative to stimulus amplitude had a characteristic U-shape. In silico, we showed that the upper threshold phenomenon was observed only in the soma. For all tested biphasic pulse durations, electrode positions, and pulse amplitudes above lower threshold, a propagating action potential was observed in the distal axon. For amplitudes above the somatic upper threshold, the axonal action potential back-propagated in the direction of the soma, but the soma's low level of hyperpolarization prevented action potential generation in the soma itself. An upper threshold observed in the soma does not prevent spike conductance in the axon.
Petrofsky, Jerrold S; Lawson, Daryl; Suh, Hye Jin; Rossi, Christine; Zapata, Karina; Broadwell, Erin; Littleton, Lindsay
2007-12-01
In a previous study, it was shown that placing a subject with chronic diabetic ulcers in a warm room prior to the use of electrical stimulation dramatically increased the healing rate. However, global heating is impractical in many therapeutic environments, and therefore in the present investigation the effect of global heat versus using a local heat source to warm the wound was investigated. Twenty-nine male and female subjects participated in a series of experiments to determine the healing associated with electrical stimulation with the application of local heat through a heat lamp compared to global heating of the subject in a warm room. Treatment consisted of biphasic electrical stimulation at currents at 20 mA for 30 min three times per week for 4 weeks in either a 32 degrees C room or, with the application of local heat, to raise skin temperature to 37 degrees C. Skin blood flow was measured by a laser Doppler imager. Blood flow increased with either local or global heating. During electrical stimulation, blood flow almost doubled on the outside and on the edge of the wound with a smaller increase in the center of the wound. However, the largest increase in blood flow was in the subjects exposed to global heating. Further, healing rates, while insignificant for subjects who did not receive electrical stimulation, showed 74.5 +/- 23.4% healing with global heat and 55.3 +/- 31.1% healing with local heat in 1 month; controls actually had a worsening of their wounds. The best healing modality was global heat. However, there was still a significant advantage in healing with local heat.
Development of less invasive neuromuscular electrical stimulation model for motor therapy in rodents
Kanchiku, Tsukasa; Kato, Yoshihiko; Suzuki, Hidenori; Imajo, Yasuaki; Yoshida, Yuichiro; Moriya, Atsushi; Taguchi, Toshihiko; Jung, Ranu
2012-01-01
Background Combination therapy is essential for functional repairs of the spinal cord. Rehabilitative therapy can be considered as the key for reorganizing the nervous system after spinal cord regeneration therapy. Functional electrical stimulation has been used as a neuroprosthesis in quadriplegia and can be used for providing rehabilitative therapy to tap the capability for central nervous system reorganization after spinal cord regeneration therapy. Objective To develop a less invasive muscular electrical stimulation model capable of being combined with spinal cord regeneration therapy especially for motor therapy in the acute stage after spinal cord injury. Methods The tibialis anterior and gastrocnemius motor points were identified in intact anesthetized adult female Fischer rats, and stimulation needle electrodes were percutaneously inserted into these points. Threshold currents for visual twitches were obtained upon stimulation using pulses of 75 or 8 kHz for 200 ms. Biphasic pulse widths of 20, 40, 80, 100, 300, and 500 µs per phase were used to determine strength–duration curves. Using these parameters and previously obtained locomotor electromyogram data, stimulations were performed on bilateral joint muscle pairs to produce reciprocal flexion/extension movements of the ankle for 15 minutes while three-dimensional joint kinematics were assessed. Results Rhythmic muscular electrical stimulation with needle electrodes was successfully done, but decreased range of motion (ROM) over time. High-frequency and high-amplitude stimulation was also shown to be effective in alleviating decreases in ROM due to muscle fatigue. Conclusions This model will be useful for investigating the ability of rhythmic muscular electrical stimulation therapy to promote motor recovery, in addition to the efficacy of combining treatments with spinal cord regeneration therapy after spinal cord injuries. PMID:22507026
Okamura, Hideo; Desimone, Christopher V; Killu, Ammar M; Gilles, Emily J; Tri, Jason; Asirvatham, Roshini; Ladewig, Dejae J; Suddendorf, Scott H; Powers, Joanne M; Wood-Wentz, Christina M; Gray, Peter D; Raymond, Douglas M; Savage, Shelley J; Savage, Walter T; Bruce, Charles J; Asirvatham, Samuel J; Friedman, Paul A
2017-02-01
Automated external defibrillators can provide life-saving therapies to treat ventricular fibrillation. We developed a prototype unit that can deliver a unique shock waveform produced by four independent capacitors that is delivered through two shock vectors, with the rationale of providing more robust shock pathways during emergent defibrillation. We describe the initial testing and feasibility of this unique defibrillation unit, features of which may enable downsizing of current defibrillator devices. We tested our defibrillation unit in four large animal models (two canine and two swine) under general anesthesia. Experimental defibrillation thresholds (DFT) were obtained by delivery of a unique waveform shock pulse via a dual-vector pathway with four defibrillation pads (placed across the chest). DFTs were measured and compared with those of a commercially available biphasic defibrillator (Zoll M series, Zoll Medical, Chelmsford, MA, USA) tested in two different vectors. Shocks were delivered after 10 seconds of stable ventricular fibrillation and the output characteristics and shock outcome recorded. Each defibrillation series used a step-down to failure protocol to define the defibrillation threshold. A total of 96 shocks were delivered during ventricular fibrillation in four large animals. In comparison to the Zoll M series, which delivered a single-vector, biphasic shock, the energy required for successful defibrillation using the unique dual-vector biphasic waveform did not differ significantly (P = 0.65). Our early findings support the feasibility of a unique external defibrillation unit using a dual-vector biphasic waveform approach. This warrants further study to leverage this unique concept and work toward a miniaturized, portable shock delivery system. © 2016 Wiley Periodicals, Inc.
Godazgar, Mahdieh; Zhang, Quan; Chibalina, Margarita V; Rorsman, Patrik
2018-05-01
Na + current inactivation is biphasic in insulin-secreting cells, proceeding with two voltage dependences that are half-maximal at ∼-100 mV and -60 mV. Inactivation of voltage-gated Na + (Na V ) channels occurs at ∼30 mV more negative voltages in insulin-secreting Ins1 and primary β-cells than in HEK, CHO or glucagon-secreting αTC1-6 cells. The difference in inactivation between Ins1 and non-β-cells persists in the inside-out patch configuration, discounting an involvement of a diffusible factor. In Ins1 cells and primary β-cells, but not in HEK cells, inactivation of a single Na V subtype is biphasic and follows two voltage dependences separated by 30-40 mV. We propose that Na V channels adopt different inactivation behaviours depending on the local membrane environment. Pancreatic β-cells are equipped with voltage-gated Na + channels that undergo biphasic voltage-dependent steady-state inactivation. A small Na + current component (10-15%) inactivates over physiological membrane potentials and contributes to action potential firing. However, the major Na + channel component is completely inactivated at -90 to -80 mV and is therefore inactive in the β-cell. It has been proposed that the biphasic inactivation reflects the contribution of different Na V α-subunits. We tested this possibility by expression of TTX-resistant variants of the Na V subunits found in β-cells (Na V 1.3, Na V 1.6 and Na V 1.7) in insulin-secreting Ins1 cells and in non-β-cells (including HEK and CHO cells). We found that all Na V subunits inactivated at 20-30 mV more negative membrane potentials in Ins1 cells than in HEK or CHO cells. The more negative inactivation in Ins1 cells does not involve a diffusible intracellular factor because the difference between Ins1 and CHO persisted after excision of the membrane. Na V 1.7 inactivated at 15--20 mV more negative membrane potentials than Na V 1.3 and Na V 1.6 in Ins1 cells but this small difference is insufficient to solely explain the biphasic inactivation in Ins1 cells. In Ins1 cells, but never in the other cell types, widely different components of Na V inactivation (separated by 30 mV) were also observed following expression of a single type of Na V α-subunit. The more positive component exhibited a voltage dependence of inactivation similar to that found in HEK and CHO cells. We propose that biphasic Na V inactivation in insulin-secreting cells reflects insertion of channels in membrane domains that differ with regard to lipid and/or membrane protein composition. © 2018 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
Nayagam, David A. X.; Williams, Richard A.; Allen, Penelope J.; Shivdasani, Mohit N.; Luu, Chi D.; Salinas-LaRosa, Cesar M.; Finch, Sue; Ayton, Lauren N.; Saunders, Alexia L.; McPhedran, Michelle; McGowan, Ceara; Villalobos, Joel; Fallon, James B.; Wise, Andrew K.; Yeoh, Jonathan; Xu, Jin; Feng, Helen; Millard, Rodney; McWade, Melanie; Thien, Patrick C.; Williams, Chris E.; Shepherd, Robert K.
2014-01-01
Purpose To assess the safety and efficacy of chronic electrical stimulation of the retina with a suprachoroidal visual prosthesis. Methods Seven normally-sighted feline subjects were implanted for 96–143 days with a suprachoroidal electrode array and six were chronically stimulated for 70–105 days at levels that activated the visual cortex. Charge balanced, biphasic, current pulses were delivered to platinum electrodes in a monopolar stimulation mode. Retinal integrity/function and the mechanical stability of the implant were assessed monthly using electroretinography (ERG), optical coherence tomography (OCT) and fundus photography. Electrode impedances were measured weekly and electrically-evoked visual cortex potentials (eEVCPs) were measured monthly to verify that chronic stimuli were suprathreshold. At the end of the chronic stimulation period, thresholds were confirmed with multi-unit recordings from the visual cortex. Randomized, blinded histological assessments were performed by two pathologists to compare the stimulated and non-stimulated retina and adjacent tissue. Results All subjects tolerated the surgical and stimulation procedure with no evidence of discomfort or unexpected adverse outcomes. After an initial post-operative settling period, electrode arrays were mechanically stable. Mean electrode impedances were stable between 11–15 kΩ during the implantation period. Visually-evoked ERGs & OCT were normal, and mean eEVCP thresholds did not substantially differ over time. In 81 of 84 electrode-adjacent tissue samples examined, there were no discernible histopathological differences between stimulated and unstimulated tissue. In the remaining three tissue samples there were minor focal fibroblastic and acute inflammatory responses. Conclusions Chronic suprathreshold electrical stimulation of the retina using a suprachoroidal electrode array evoked a minimal tissue response and no adverse clinical or histological findings. Moreover, thresholds and electrode impedance remained stable for stimulation durations of up to 15 weeks. This study has demonstrated the safety and efficacy of suprachoroidal stimulation with charge balanced stimulus currents. PMID:24853376
NASA Astrophysics Data System (ADS)
Keswani, Bhavna C.; Saraf, Deepashri; Patil, S. I.; Kshirsagar, Anjali; James, A. R.; Kolekar, Y. D.; Ramana, C. V.
2018-05-01
We report on the combined experimental and theoretical simulation results of lead-free ferroelectrics, Ba(1-x)CaxTiO3 (x = 0.0-0.3) and BaTi(1-y)ZryO3 (y = 0.0-0.2), synthesized by standard solid state reaction method. First principles density functional calculations are used to investigate the electronic structure, dynamical charges, and spontaneous polarization of these compounds. In addition, the structural, ferroelectric, piezoelectric, and dielectric properties are studied using extensive experiments. The X-ray diffraction and temperature dependent Raman spectroscopy studies indicate that the calcium (Ca) substituted compositions exhibit a single phase crystal structure, while zirconium (Zr) substituted compositions are biphasic. The scanning electron micrographs reveal the uniform and highly dense microstructure. The presence of polarization-electric field and strain-electric field hysteresis loops confirms the ferroelectric and piezoelectric nature of all the compositions. Our results demonstrate higher values for polarization, percentage strain, piezoelectric coefficients, and electrostrictive coefficient compared to those existing in the literature. For smaller substitutions of Ca and Zr in BaTiO3, a direct piezoelectric coefficient (d33) is enhanced, while the highest d33 value (˜300 pC/N) is observed for BaTi0.96Zr0.04O3 due to the biphasic ferroelectric behavior. Calculation of Born effective charges indicates that doping with Ca or Zr increases the dynamical charges on Ti as well as on O and decreases the dynamical charge on Ba. An increase in the dynamical charges on Ti and O is ascribed to the increase in covalency of Ti-O bond that reduces the polarizability of the crystal. A broader range of temperatures is demonstrated to realize the stable phase in the Ca substituted compounds. The results indicate enhancement in the temperature range of applicability of these compounds for device applications. The combined theoretical and experimental study is expected to enhance the current scientific understanding of the lead-free ferroelectric materials.
Detection of a diabetic sural nerve from the magnetic field after electric stimulation
NASA Astrophysics Data System (ADS)
Hayami, Takehito; Iramina, Keiji; Hyodo, Akira; Chen, Xian; Sunagawa, Kenji
2009-04-01
In this study, we proposed a new diagnostic technique for diabetic neuropathy using biomagnetic measurement. Peripheral neuropathy is one of the most common complications of diabetes. To examine the injury, the skin potential around the nerve is often measured after electric stimulation. However, measuring the magnetic field may reveal precise condition of the injury. To evaluate the effect of measuring the magnetic field, a simulation study was performed. A diabetic sural nerve was simulated as a bundle of myelinated nerve fibers. Each fiber was modeled as an electric cable of Ranvier's nodes. Anatomical data were used to determine the number of nerve fibers and distribution of nerve fiber diameters. The electric potential and the magnetic field on the skin after electric stimulation were computed to the boundary element method. Biphasic time courses were obtained as the electric potential and the magnetic flux density at measurement points. In diabetic nerves, the longer interpeak latency of the electric potential wave and the shorter interpeak latency of the magnetic flux wave were obtained. Measuring both the electric potential and the magnetic flux density seemed to provide a noninvasive and objective marker for diabetic neuropathy.
Optoelectronic retinal prosthesis: system design and performance
NASA Astrophysics Data System (ADS)
Loudin, J. D.; Simanovskii, D. M.; Vijayraghavan, K.; Sramek, C. K.; Butterwick, A. F.; Huie, P.; McLean, G. Y.; Palanker, D. V.
2007-03-01
The design of high-resolution retinal prostheses presents many unique engineering and biological challenges. Ever smaller electrodes must inject enough charge to stimulate nerve cells, within electrochemically safe voltage limits. Stimulation sites should be placed within an electrode diameter from the target cells to prevent 'blurring' and minimize current. Signals must be delivered wirelessly from an external source to a large number of electrodes, and visual information should, ideally, maintain its natural link to eye movements. Finally, a good system must have a wide range of stimulation currents, external control of image processing and the option of either anodic-first or cathodic-first pulses. This paper discusses these challenges and presents solutions to them for a system based on a photodiode array implant. Video frames are processed and imaged onto the retinal implant by a head-mounted near-to-eye projection system operating at near-infrared wavelengths. Photodiodes convert light into pulsed electric current, with charge injection maximized by applying a common biphasic bias waveform. The resulting prosthesis will provide stimulation with a frame rate of up to 50 Hz in a central 10° visual field, with a full 30° field accessible via eye movements. Pixel sizes are scalable from 100 to 25 µm, corresponding to 640-10 000 pixels on an implant 3 mm in diameter.
Appel, W. C.; Vincenzi, F. F.
1970-01-01
1. In the isolated, spontaneously beating, sino-atrial node of the rabbit selective electrical excitation of intranodal autonomic nerve fibres results in a biphasic chronotropic response. This chronotropic response (negative followed by positive chronotropism) is due to the release of the autonomic transmitters (acetylcholine and noradrenaline, respectively) from intranodal nerve fibres. 2. In the presence of 2 × 10-4 g/ml hemicholinium, the negative chronotropic (cholinergic) response is abolished while the positive chronotropic (adrenergic) response is unaltered. 3. In the presence of 5 × 10-6 g/ml bretylium, the positive chronotropic response is abolished while the negative chronotropic response is little affected. 4. After blockade of the negative chronotropic response by hemicholinium, bretylium abolishes the remaining positive chronotropic response. The effect of bretylium is not altered in the presence of hemicholinium. 5. Considering currently accepted mechanisms of action for hemicholinium and bretylium, the results of these experiments do not lend support to the cholinergic link hypothesis of adrenergic neuro-effector transmission. PMID:5492897
Appel, W C; Vincenzi, F F
1970-10-01
1. In the isolated, spontaneously beating, sino-atrial node of the rabbit selective electrical excitation of intranodal autonomic nerve fibres results in a biphasic chronotropic response. This chronotropic response (negative followed by positive chronotropism) is due to the release of the autonomic transmitters (acetylcholine and noradrenaline, respectively) from intranodal nerve fibres.2. In the presence of 2 x 10(-4) g/ml hemicholinium, the negative chronotropic (cholinergic) response is abolished while the positive chronotropic (adrenergic) response is unaltered.3. In the presence of 5 x 10(-6) g/ml bretylium, the positive chronotropic response is abolished while the negative chronotropic response is little affected.4. After blockade of the negative chronotropic response by hemicholinium, bretylium abolishes the remaining positive chronotropic response. The effect of bretylium is not altered in the presence of hemicholinium.5. Considering currently accepted mechanisms of action for hemicholinium and bretylium, the results of these experiments do not lend support to the cholinergic link hypothesis of adrenergic neuro-effector transmission.
Toward an implantable functional electrical stimulation device to correct strabismus
Velez, Federico G.; Isobe, Jun; Zealear, David; Judy, Jack W.; Edgerton, V. Reggie; Patnode, Stephanie; Lee, Hyowon; Hahn, Brian T.
2010-01-01
PURPOSE To investigate the feasibility of electrically stimulating the lateral rectus muscle to recover its physiologic abduction ability in cases of complete sixth cranial (abducens) nerve palsy. METHODS In the feline lateral rectus muscle model, the effects of a charge-balanced, biphasic, current-controlled stimulus on the movement of the eye were investigated while stimulation frequency, amplitude, and pulse duration was varied. Eye deflection was measured with a force transducer. Denervated conditions were simulated by injection of botulinum toxin A. RESULTS Three chemically denervated and 4 control lateral rectus muscles were analyzed. In control lateral rectus muscles, the minimum fusion frequency was approximately 170 Hz, and the maximum evoked abduction was 27°. The minimum fusion frequency was unchanged after 4 weeks of chemical denervation. Stimulation of chemically denervated lateral rectus muscle resulted in 17° of abduction. For both innervated and chemically denervated lateral rectus muscle, frequencies greater than 175 Hz yielded very little increase in abduction. Modulating amplitude produced noticeable movement throughout the tested range (0.2 to 9 mA). CONCLUSIONS Results from the feline lateral rectus muscle showed that electrical stimulation is a feasible approach to evoke a contraction from a denervated lateral rectus muscle. The degree of denervation of the feline lateral rectus muscle was indeterminate. Varying the stimulation amplitude allowed greater eye movement. It is very likely that both frequency and amplitude must be modulated for finer control of static eye position. PMID:19375369
Photovoltaic retinal prosthesis for restoring sight to the blind: implant design and fabrication
NASA Astrophysics Data System (ADS)
Wang, Lele; Mathieson, Keith; Kamins, Theodore I.; Loudin, James; Galambos, Ludwig; Harris, James S.; Palanker, Daniel
2012-03-01
We have designed and fabricated a silicon photodiode array for use as a subretinal prosthesis aimed at restoring sight to patients who lost photoreceptors due to retinal degeneration. The device operates in photovoltaic mode. Each pixel in the two-dimensional array independently converts pulsed infrared light into biphasic electric current to stimulate remaining retinal neurons without a wired power connection. To enhance the maximum voltage and charge injection levels, each pixel contains three photodiodes connected in series. An active and return electrode in each pixel ensure localized current flow and are sputter coated with iridium oxide to provide high charge injection. The fabrication process consists of eight mask layers and includes deep reactive ion etching, oxidation, and a polysilicon trench refill for in-pixel photodiode separation and isolation of adjacent pixels. Simulation of design parameters included TSUPREM4 computation of doping profiles for n+ and p+ doped regions and MATLAB computation of the anti-reflection coating layers thicknesses. The main process steps are illustrated in detail, and problems encountered are discussed. The IV characterization of the device shows that the dark reverse current is on the order of 10-100 pA-negligible compared to the stimulation current; the reverse breakdown voltage is higher than 20 V. The measured photo-responsivity per photodiode is about 0.33A/W at 880 nm.
Evolution of the optimum bidirectional (+/- biphasic) wave for defibrillation.
Geddes, L A; Havel, W
2000-01-01
Introduction of the asymmetric bidirectional (+/- biphasic) current waveform has made it possible to achieve ventricular defibrillation with less energy and current than are needed with a unidirectional (monophasic) waveform. The symmetrical bidirectional (sinusoidal) waveform was used for the first human-heart defibrillation. Subsequent studies employed the underdamped and overdamped sine waves, then the trapezoidal (monophasic) wave. Studies were then undertaken to investigate the benefit of adding a second identical and inverted wave; little success rewarded these efforts until it was discovered that the second inverted wave needed to be much less in amplitude to lower the threshold for defibrillation. However, there is no physiologic theory that explains the mechanism of action of the bidirectional wave, nor does any theory predict the optimum amplitude and time dimensions for the second inverted wave. The authors analyze the research that shows that the threshold defibrillation energy is lowest when the charge in the second, inverted phase is slightly more than a third of that in the first phase. An ion-flux, spatial-K+ summation hypothesis is presented that shows the effect on myocardial cells of adding the second inverted current pulse.
de Sena, Amanda Reges; Barros Oliveira, Flávio Manoel; Campos Leite, Tonny Cley; Evaristo da Silva Nascimento, Talita Camila; Moreira, Keila Aparecida; de Assis, Sandra Aparecida
2017-10-21
The aims of the current study are to assess the influence of polyethylene glycol (PEG) concentration, molar mass, pH, and citrate concentrations on aqueous biphasic systems based on 2 4 factorial designs, as well as to check their capacity to purify tannase secreted by Aspergillus tamarii URM 7115. Tannase was produced through submerged fermentation at 26°C for 67 h in Czapeck-Dox modified broth and added with yeast extract and tannic acid. The factorial design was followed to assess the influence of PEG molar mass (M PEG 600; 4,000 and 8,000 g/ mol), and PEG (C PEG 20.0; 22.0 and 24.0% w/w) and citrate concentrations (C CIT 15.0, 17.5, and 20.0%, w/w), as well as of pH (6.0, 7.0, and 8.0) on the response variables; moreover, partition coefficient (K), yield (Y), and purification factor (PF) were analyzed. The most suitable parameters to purify tannase secreted by A. tamarii URM 7115 through a biphasic system were 600 (g/mol) M PEG , 24% (w/w) C PEG , 15% (w/w) C CIT at pH 6.0 and they resulted in 6.33 enzyme partition, 131.25% yield, 19.80 purification factor and 195.08 selectivity. Tannase secreted by A. tamarii URM 7115 purified through aqueous biphasic systems composed of PEG/citrate can be used for industrial purposes, since it presents suitable purification factor and yield.
Maghami, Mohammad Hossein; Sodagar, Amir M; Sawan, Mohamad
2016-11-01
This paper reports on the design, implementation, and test of a stimulation back-end, for an implantable retinal prosthesis. In addition to traditional rectangular pulse shapes, the circuit features biphasic stimulation pulses with both rising and falling exponential shapes, whose time constants are digitally programmable. A class-B second generation current conveyor is used as a wide-swing, high-output-resistance stimulation current driver, delivering stimulation current pulses of up to ±96 μA to the target tissue. Duration of the generated current pulses is programmable within the range of 100 μs to 3 ms. Current-mode digital-to-analog converters (DACs) are used to program the amplitudes of the stimulation pulses. Fabricated using the IBM 130 nm process, the circuit consumes 1.5×1.5 mm 2 of silicon area. According to the measurements, the DACs exhibit DNL and INL of 0.23 LSB and 0.364 LSB, respectively. Experimental results indicate that the stimuli generator meets expected requirements when connected to electrode-tissue impedance of as high as 25 k Ω. Maximum power consumption of the proposed design is 3.4 mW when delivering biphasic rectangular pulses to the target load. A charge pump block is in charge of the upconversion of the standard 1.2-V supply voltage to ±3.3V.
Conducting polymer electrodes for visual prostheses.
Green, R A; Devillaine, F; Dodds, C; Matteucci, P; Chen, S; Byrnes-Preston, P; Poole-Warren, L A; Lovell, N H; Suaning, G J
2010-01-01
Conducting polymers (CPs) have the potential to provide superior neural interfaces to conventional metal electrodes by introducing more efficient charge transfer across the same geometric area. In this study the conducting polymer poly(ethylene dioxythiophene) (PEDOT) was coated on platinum (Pt) microelectrode arrays. The in vitro electrical characteristics were assessed during biphasic stimulation regimes applied between electrode pairs. It was demonstrated that PEDOT could reduce the potential excursion at a Pt electrode interface by an order of magnitude. The charge injection limit of PEDOT was found to be 15 x larger than Pt. Additionally, PEDOT coated electrodes were acutely implanted in the suprachoroidal space of a cat retina. It was demonstrated that PEDOT coated electrodes also had lower potential excursions in vivo and electrically evoked potentials (EEPs) could be detected within the vision cortex.
Amarouche, Nassima; Giraud, Matthieu; Forni, Luciano; Butte, Alessandro; Edwards, F; Borie, Nicolas; Renault, Jean-Hugues
2014-04-11
Protected synthetic peptide intermediates are often hydrophobic and not soluble in most common solvents. They are thus difficult to purify by preparative reversed-phase high-performance liquid chromatography (RP-HPLC), usually used for industrial production. It is then challenging to develop alternative chromatographic purification processes. Support-free liquid-liquid chromatographic techniques, including both hydrostatic (centrifugal partition chromatography or CPC) and hydrodynamic (counter-current chromatography or CCC) devices, are mainly involved in phytochemical studies but have also been applied to synthetic peptide purification. In this framework, two new biphasic solvent system compositions covering a wide range of polarity were developed to overcome solubility problems mentioned above. The new systems composed of heptane/tetrahydrofuran/acetonitrile/dimethylsulfoxide/water and heptane/methyl-tetrahydrofuran/N-methylpyrrolidone/water were efficiently used for the CPC purification of a 39-mer protected exenatide (Byetta®) and a 8-mer protected peptide intermediate of bivalirudin (Angiox®) synthesis. Phase compositions of the different biphasic solvent systems were determined by (1)H nuclear magnetic resonance. Physico-chemical properties including viscosity, density and interfacial tension of these biphasic systems are also described. Copyright © 2014 Elsevier B.V. All rights reserved.
Becker, Jeroen H; Krikhaar, Anniek; Schuit, Ewoud; Mårtendal, Annika; Maršál, Karel; Kwee, Anneke; Visser, Gerard H A; Amer-Wåhlin, Isis
2015-02-01
To study the predictive value of biphasic ST-events for interventions for suspected fetal distress and adverse neonatal outcome, when using ST-analysis of the fetal electrocardiogram (FECG) for intrapartum fetal monitoring. Prospective cohort study. Three academic hospitals in Sweden. Women in labor with a high-risk singleton fetus in cephalic position beyond 36 weeks of gestation. In women in labor who were monitored with conventional cardiotocography, ST-waveform analysis was recorded and concealed. Traces with biphasic ST-events of the FECG (index) were compared with traces without biphasic events of the FECG. The ability of biphasic events to predict interventions for suspected fetal distress and adverse outcome was assessed using univariable and multivariable logistic regression analyses. Interventions for suspected fetal distress and adverse outcome (defined as presence of metabolic acidosis (i.e. umbilical cord pH <7.05 and base deficit in extracellular fluid >12 mmol), umbilical cord pH <7.00, 5-min Apgar score <7, admittance to neonatal intensive care unit or perinatal death). Although the presence of biphasic events of the FECG was associated with more interventions for fetal distress and an increased risk of adverse outcome compared with cases with no biphasic events, the presence of significant (i.e. intervention advised according to cardiotocography interpretation) biphasic events showed no independent association with interventions for fetal distress [odds ratio (OR) 1.71, 95% confidence interval (CI) 0.65-4.50] or adverse outcome (OR 1.96, 95% CI 0.74-5.24). The presence of significant biphasic events did not discriminate in the prediction of interventions for fetal distress or adverse outcome. Therefore, biphasic events in relation to ST-analysis monitoring during birth should be omitted if future studies confirm our findings. © 2014 Nordic Federation of Societies of Obstetrics and Gynecology.
Shukla, Shashi Kant; Pandey, Shubha; Pandey, Siddharth
2018-07-20
Ionic liquids (ILs) have been receiving much attention in many fields of analytical chemistry because of their various interesting properties which distinguish them from volatile organic compounds. They offer both directional and non-directional forces towards a solute molecule and therefore act as excellent solvents for a wide range of polar and non-polar compounds. Because of the presence of various possible interactions, ILs easily undergo biphasic separation with water and other less polar/non-polar organic solvents. Their ability to create biphasic splitting makes them a promising candidate for liquid-liquid separation processes, such as aqueous biphasic systems and liquid-liquid equilibria. Various aspects of ILs in these separation methods are discussed in view of the origin of physical forces responsible for the biphasic interactions, the effect of structural components, temperature, pressure, pH and additives. The specific advantages of using ILs in aqueous biphasic systems and liquid-liquid equilibria in binary and ternary systems are discussed with a view to defining their future role in separation processes by giving major emphasis on developing non-toxic ILs with physical and solution properties tailored to the needs of specific sample preparation techniques. Copyright © 2017 Elsevier B.V. All rights reserved.
2017-01-01
Epilepsy is a neurological disorder that affects approximately one percent of the world population. Noninvasive electrical brain stimulation via tripolar concentric ring electrodes has been proposed as an alternative/complementary therapy for seizure control. Previous results suggest its efficacy attenuating acute seizures in penicillin, pilocarpine-induced status epilepticus, and pentylenetetrazole-induced rat seizure models and its safety for the rat scalp, cortical integrity, and memory formation. In this study, neuronal counting was used to assess possible tissue damage in rats (n = 36) due to the single dose or five doses (given every 24 hours) of stimulation on hippocampal CA3 subregion neurons 24 hours, one week, and one month after the last stimulation dose. Full factorial analysis of variance showed no statistically significant difference in the number of neurons between control and stimulation-treated animals (p = 0.71). Moreover, it showed no statistically significant differences due to the number of stimulation doses (p = 0.71) nor due to the delay after the last stimulation dose (p = 0.96). Obtained results suggest that stimulation at current parameters (50 mA, 200 μs, 300 Hz, biphasic, charge-balanced pulses for 2 minutes) does not induce neuronal damage in the hippocampal CA3 subregion of the brain. PMID:29065603
Mucio-Ramírez, Samuel; Makeyev, Oleksandr
2017-01-01
Epilepsy is a neurological disorder that affects approximately one percent of the world population. Noninvasive electrical brain stimulation via tripolar concentric ring electrodes has been proposed as an alternative/complementary therapy for seizure control. Previous results suggest its efficacy attenuating acute seizures in penicillin, pilocarpine-induced status epilepticus, and pentylenetetrazole-induced rat seizure models and its safety for the rat scalp, cortical integrity, and memory formation. In this study, neuronal counting was used to assess possible tissue damage in rats ( n = 36) due to the single dose or five doses (given every 24 hours) of stimulation on hippocampal CA3 subregion neurons 24 hours, one week, and one month after the last stimulation dose. Full factorial analysis of variance showed no statistically significant difference in the number of neurons between control and stimulation-treated animals ( p = 0.71). Moreover, it showed no statistically significant differences due to the number of stimulation doses ( p = 0.71) nor due to the delay after the last stimulation dose ( p = 0.96). Obtained results suggest that stimulation at current parameters (50 mA, 200 μ s, 300 Hz, biphasic, charge-balanced pulses for 2 minutes) does not induce neuronal damage in the hippocampal CA3 subregion of the brain.
Development of a closed-loop system for tremor suppression in patients with Parkinson's disease.
Xu, F L; Hao, M Z; Xu, S Q; Hu, Z X; Xiao, Q; Lan, N
2016-08-01
More than 70% of patients suffering Parkinson's disease (PD) exhibit resting tremor in their extremities, hampering their ability to perform daily activities. Based on our earlier studies on corticospinal transmission of tremor signals [10,11], we hypothesize that cutaneous afferents evoked by surface stimulation can produce an inhibitory effect on propriospinal neurons (PN), which in turn will suppress tremor signals passing through the PN. This paper presents the development of a closed-loop system for tremor suppression by transcutaneous electrical nerve stimulation (TENS) of sensory fibers beneath the skin. The closed-loop system senses EMGs of forearm muscles, and detects rhythmic bursting in the EMG signal. When a tremor is detected by the system, a command signal triggers a stimulator to output a train of bi-phasic, current regulated pulses to a pair of surface electrodes. The stimulation electrode is placed on the dorsal hand skin near the metacarpophalangeal joint of index finger, which is innervated by the superficial radial nerve that projects an inhibitory afferent to PNs of forearm muscles. We tested the closed-loop system in 3 normal subjects to verify the algorithm and in 2 tremor dominated PD subjects for feasibility of tremor detecting and suppression. Preliminary results indicate that the closed-loop system can detect tremor in all subjects, and tremor in PD patients was suppressed significantly by electrical stimulation of cutaneous afferents.
Walcott, Gregory P; Melnick, Sharon B; Killingsworth, Cheryl R; Ideker, Raymond E
2010-01-01
Since the initial development of the defibrillator, there has been concern that, while delivery of a large electric shock would stop fibrillation, it would also cause damage to the heart. This concern has been raised again with the development of the biphasic defibrillator. To compare defibrillation efficacy, postshock cardiac function, and troponin I levels following 150-J and 360-J shocks. Nineteen swine were anesthetized with isoflurane and instrumented with pressure catheters in the left ventricle, aorta, and right atrium. The animals were fibrillated for 6 minutes, followed by defibrillation with either low-energy (n = 8) or high-energy (n = 11) shocks. After defibrillation, chest compressions were initiated and continued until return of spontaneous circulation (ROSC). Epinephrine, 0.01 mg/kg every 3 minutes, was given for arterial blood pressure < 50 mmHg. Hemodynamic parameters were recorded for four hours. Transthoracic echocardiography was performed and troponin I levels were measured at baseline and four hours following ventricular fibrillation (VF). Survival rates at four hours were not different between the two groups (low-energy, 5 of 8; high-energy, 7 of 11). Results for arterial blood pressure, positive dP/dt (first derivative of pressure measured over time, a measure of left ventricular contractility), and negative dP/dt at the time of lowest arterial blood pressure (ABP) following ROSC were not different between the two groups (p = not significant [NS]), but were lower than at baseline. All hemodynamic measures returned to baseline by four hours. Ejection fractions, stroke volumes, and cardiac outputs were not different between the two groups at four hours. Troponin I levels at four hours were not different between the two groups (12 +/- 11 ng/mL versus 21 +/- 26 ng/mL, p = NS) but were higher at four hours than at baseline (19 +/- 19 ng/mL versus 0.8 +/- 0.5 ng/mL, p < 0.05, groups combined). Biphasic 360-J shocks do not cause more cardiac damage than biphasic 150-J shocks in this animal model of prolonged VF and resuscitation.
Surin, A M; Bolshakov, A P; Mikhailova, M M; Sorokina, E G; Senilova, Ya E; Pinelis, V G; Khodorov, B I
2006-08-01
Maturation of primary neuronal cultures is accompanied by an increase in the proportion of cells that exhibit biphasic increase in free cytoplasmic Ca2+ ([Ca2+]i) followed by synchronic decrease in electrical potential difference across the inner mitochondrial membrane (DeltaPsim) in response to stimulation of glutamate receptors. In the present study we have examined whether the appearance of the second phase of [Ca2+]i change can be attributed to arachidonic acid (AA) release in response to the effect of glutamate (Glu) on neurons. Using primary culture of rat cerebellar granule cells we have investigated the effect of AA (1-20 microM) on [Ca2+]i, DeltaPsim, and [ATP] and changes in these parameters induced by neurotoxic concentrations of Glu (100 microM, 10-40 min). At =10 microM, AA caused insignificant decrease in DeltaPsim without any influence on [Ca2+]i. The mitochondrial ATPase inhibitor oligomycin enhanced AA-induced decrease in DeltaPsim; this suggests that AA may inhibit mitochondrial respiration. Addition of AA during the treatment with Glu resulted in more pronounced augmentation of [Ca2+]i and the decrease in DeltaPsim than the changes in these parameters observed during independent action of AA; removal of Glu did not abolish these changes. An inhibitor of the cyclooxygenase and lipoxygenase pathways of AA metabolism, 5,8,11,14-eicosatetraynoic acid, increased the proportion of neurons characterized by Glu-induced biphasic increase in [Ca2+]i and the decrease in DeltaPsim. Palmitic acid (30 microM) did not increase the percentage of neurons exhibiting biphasic response to Glu. Co-administration of AA and Glu caused 2-3 times more pronounced decrease in ATP concentrations than that observed during the independent effect of AA and Glu. The data suggest that AA may influence the functional state of mitochondria, and these changes may promote biphasic [Ca2+]i and DeltaPsim responses of neurons to the neurotoxic effect of Glu.
Biphasic catalysis in water/carbon dioxide micellar systems
Jacobson, Gunilla B.; Tumas, William; Johnston, Keith P.
2002-01-01
A process is provided for catalyzing an organic reaction to form a reaction product by placing reactants and a catalyst for the organic reaction, the catalyst of a metal complex and at least one ligand soluble within one of the phases of said aqueous biphasic system, within an aqueous biphasic system including a water phase, a dense phase fluid, and a surfactant adapted for forming an emulsion or microemulsion within the aqueous biphasic system, the reactants soluble within one of the phases of the aqueous biphasic system and convertible in the presence of the catalyst to a product having low solubility in the phase in which the catalyst is soluble; and, maintaining the aqueous biphasic system under pressures, at temperatures, and for a period of time sufficient for the organic reaction to occur and form the reaction product and to maintain sufficient density on the dense phase fluid, the reaction product characterized as having low solubility in the phase in which the catalyst is soluble.
Bierer, Julie Arenberg; Bierer, Steven M; Middlebrooks, John C
2010-12-01
This study examines patterns of neural activity in response to single biphasic electrical pulses, presented alone or following a forward masking pulse train, delivered by a cochlear implant. Recordings were made along the tonotopic axis of the central nucleus of the inferior colliculus (ICC) in ketamine/xylazine anesthetized guinea pigs. The partial tripolar electrode configuration was used, which provided a systematic way to vary the tonotopic extent of ICC activation between monopolar (broad) and tripolar (narrow) extremes while maintaining the same peak of activation. The forward masking paradigm consisted of a 200 ms masker pulse train (1017 pulses per second) followed 10 ms later by a single-pulse probe stimulus; the current fraction of the probe was set to 0 (monopolar), 1 (tripolar), or 0.5 (hybrid), and the fraction of the masker was fixed at 0.5. Forward masking tuning profiles were derived from the amount of masking current required to just suppress the activity produced by a fixed-level probe. These profiles were sharper for more focused probe configurations, approximating the pattern of neural activity elicited by single (non-masked) pulses. The result helps to bridge the gap between previous findings in animals and recent psychophysical data. Copyright © 2010 Elsevier B.V. All rights reserved.
Bierer, Julie Arenberg; Bierer, Steven M.; Middlebrooks, John C.
2010-01-01
This study examines patterns of neural activity in response to single biphasic electrical pulses, presented alone or following a forward masking pulse train, delivered by a cochlear implant. Recordings were made along the tonotopic axis of the central nucleus of the inferior colliculus (ICC) in ketamine/xylazine anesthetized guinea pigs. The partial tripolar electrode configuration was used, which provided a systematic way to vary the tonotopic extent of ICC activation between monopolar (broad) and tripolar (narrow) extremes while maintaining the same peak of activation. The forward masking paradigm consisted of a 200-ms masker pulse train (1017 pulses per second) followed 10 ms later by a single-pulse probe stimulus; the current fraction of the probe was set to 0 (monopolar), 1 (tripolar), or 0.5 (hybrid), and the fraction of the masker was fixed at 0.5. Forward masking tuning profiles were derived from the amount of masking current required to just suppress the activity produced by a fixed-level probe. These profiles were sharper for more focused probe configurations, approximating the pattern of neural activity elicited by single (non-masked) pulses. The result helps to bridge the gap between previous findings in animals and recent psychophysical data. PMID:20727397
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carey, H.V.; Tien, X.Y.; Wallace, L.J.
Muscarinic receptors involved in the secretory response evoked by electrical stimulation of submucosal neutrons were investigated in muscle-stripped flat sheets of guinea pig ileum set up in flux chambers. Neural stimulation produced a biphasic increase in short-circuit current due to active chloride secretion. Atropine and 4-diphenylacetoxy-N-methylpiperadine methiodide (4-DAMP) (10/sup -7/ M) were more potent inhibitors of the cholinergic phase of the response than was pirenzepine. Dose-dependent increases in base-line short-circuit current were evoked by carbachol and bethanechol; 4-hydroxy-2-butynyl trimethylammonium chloride (McN A343) produced a much smaller effect. Tetrodotoxin abolished the effects of McN A343 but did not alter the responsesmore » of carbachol and bethanechol. McN A343 significantly reduced the cholinergic phase of the neurally evoked response and caused a rightward shift of the carbachol dose-response curve. All muscarinic compounds inhibited (/sup 3/H)quinuclidinyl benzilate binding to membranes from muscosal scrapings, with a rank order of potency of 4-DAMP > pirenzepine > McN A343 > carbachol > bethanechol. These results suggest that acetylcholine released from submucosal neurons mediates chloride secretion by interacting with muscarinic cholinergic receptors that display a high binding affinity for 4-DAMP. Activation of neural muscarinic receptors makes a relatively small contribution to the overall secretory response.« less
Sullivan, John P.; Zuanon, Jansen; Cox Fernandes, Cristina
2013-01-01
Abstract We describe two new, closely related species of toothed Brachyhypopomus (Hypopomidae: Gymnotiformes: Teleostei) from the central Amazon basin and create a new subgenus for them. Odontohypopomus, new subgenus of Brachyhypopomus, is diagnosed by (1) small teeth present on premaxillae; (2) medialmost two branchiostegal rays thin with blades oriented more vertically than remaining three rays; (3) background color in life (and to lesser extent in preservation) distinctly yellowish with head and sides peppered with small, widely spaced, very dark brown stellate chromatophores that greatly contrast with light background coloration; (4) a dark blotch or bar of subcutaneous pigment below the eye; (5) electric organ discharge waveform of very long duration (head-positive phase approx. 2 milliseconds or longer, head-negative phase shorter or absent) and slow pulse repetition rate (3–16 Hz). The type species of the new subgenus, Brachyhypopomus (Odontohypopomus) walteri sp. n., is diagnosed by the following additional character states: (1) subcutaneous dark pigment at base of orbit particularly prominent, (2) body semi-translucent and nearly bright yellow background coloration in life, (3) a biphasic electric organ discharge (EOD) waveform of very long duration (between 3.5 and 4 milliseconds at 25° C) with head-positive first phase significantly longer than second head-negative phase in both sexes. Brachyhypopomus (Odontohypopomus) bennetti sp. n. is diagnosed by two character states in addition to those used to diagnose the subgenus Odontohypopomus: (1) a deep electric organ, visible as large semi-transparent area, occupying approximately 14–17% body depth directly posterior to the abdominal cavity in combination with a short, but deep, caudal filament, and (2) a monophasic, head-positive EOD waveform, approximately 2.1 milliseconds in duration in both sexes. These are the only described rhamphichthyoid gymnotiforms with oral teeth, and Brachyhypopomus bennetti is the first Brachyhypopomus reported to have a monophasic (head-positive) EOD waveform. Unlike biphasic species, the waveform of its EOD is largely unaffected by tail damage from predators. Such injuries are common among specimens in our collections. This species’ preference for floating meadow habitat along the major channels of the Amazon River basin may put it at particularly high risk of predation and “tail grazing.” PMID:24167419
Sullivan, John P; Zuanon, Jansen; Cox Fernandes, Cristina
2013-01-01
We describe two new, closely related species of toothed Brachyhypopomus (Hypopomidae: Gymnotiformes: Teleostei) from the central Amazon basin and create a new subgenus for them. Odontohypopomus, new subgenus of Brachyhypopomus, is diagnosed by (1) small teeth present on premaxillae; (2) medialmost two branchiostegal rays thin with blades oriented more vertically than remaining three rays; (3) background color in life (and to lesser extent in preservation) distinctly yellowish with head and sides peppered with small, widely spaced, very dark brown stellate chromatophores that greatly contrast with light background coloration; (4) a dark blotch or bar of subcutaneous pigment below the eye; (5) electric organ discharge waveform of very long duration (head-positive phase approx. 2 milliseconds or longer, head-negative phase shorter or absent) and slow pulse repetition rate (3-16 Hz). The type species of the new subgenus, Brachyhypopomus (Odontohypopomus) walteri sp. n., is diagnosed by the following additional character states: (1) subcutaneous dark pigment at base of orbit particularly prominent, (2) body semi-translucent and nearly bright yellow background coloration in life, (3) a biphasic electric organ discharge (EOD) waveform of very long duration (between 3.5 and 4 milliseconds at 25° C) with head-positive first phase significantly longer than second head-negative phase in both sexes. Brachyhypopomus (Odontohypopomus) bennetti sp. n. is diagnosed by two character states in addition to those used to diagnose the subgenus Odontohypopomus: (1) a deep electric organ, visible as large semi-transparent area, occupying approximately 14-17% body depth directly posterior to the abdominal cavity in combination with a short, but deep, caudal filament, and (2) a monophasic, head-positive EOD waveform, approximately 2.1 milliseconds in duration in both sexes. These are the only described rhamphichthyoid gymnotiforms with oral teeth, and Brachyhypopomus bennetti is the first Brachyhypopomus reported to have a monophasic (head-positive) EOD waveform. Unlike biphasic species, the waveform of its EOD is largely unaffected by tail damage from predators. Such injuries are common among specimens in our collections. This species' preference for floating meadow habitat along the major channels of the Amazon River basin may put it at particularly high risk of predation and "tail grazing."
Mechanical signaling coordinates the embryonic heart
NASA Astrophysics Data System (ADS)
Chiou, Kevin; Rocks, Jason; Prosser, Benjamin; Discher, Dennis; Liu, Andrea
The heart is an active material which relies on robust signaling mechanisms between cells in order to produce well-timed, coordinated beats. Heart tissue is composed primarily of active heart muscle cells (cardiomyocytes) embedded in a passive extracellular matrix. During a heartbeat, cardiomyocyte contractions are coordinated across the heart to form a wavefront that propagates through the tissue to pump blood. In the adult heart, this contractile wave is coordinated via intercellular electrical signaling.Here we present theoretical and experimental evidence for mechanical coordination of embryonic heartbeats. We model cardiomyocytes as mechanically excitable Eshelby inclusions embedded in an overdamped elastic-fluid biphasic medium. For physiological parameters, this model replicates recent experimental measurements of the contractile wavefront which are not captured by electrical signaling models. We additionally challenge our model by pharmacologically blocking gap junctions, inhibiting electrical signaling between myocytes. We find that while adult hearts stop beating almost immediately after gap junctions are blocked, embryonic hearts continue beating even at significantly higher concentrations, providing strong support for a mechanical signaling mechanism.
Electrophysiologic studies of neronal activities under ischemia condition.
Huang, Shun-Ho; Wang, Ping-Hsien; Chen, Jia-Jin Jason
2008-01-01
Substrate with integrated microelectrode arrays (MEAs) provides an alternative electrophysiological method. With MEAS, one can measure the impedance and elicit electrical stimulation from multiple sites of MEAs to determine the electrophysiological conditions of cells. The aims of this research were to construct an impedance and action potential measurement system for neurons cultured on MEAs for observing the electrophysiological signal transmission in neuronal network during glucose and oxygen deprivation (OGD). An extracellular stimulator producing the biphasic micro-current pulse for neuron stimulation was built in this study. From the time-course recording of impedance, OGD condition effectively induced damage in neurons in vitro. It is known that the results of cell stimulation are affected by electrode impedance, so does the result of neuron cells covered on the electrode can measure the sealing resistance. For extracellular stimulation study, cortical neuronal activity was recorded and the suitable stimulation window was determined. However, the stimulation results were affected by electrode impedance as well as sealing impedance resulting from neuron cells covering the electrode. Further development of surface modification for cultured neuron network should provide a better way for in vitro impedance and electrophysiological measurements.
NASA Astrophysics Data System (ADS)
Ito, Keita; Uno, Shoma; Goto, Tatsuya; Takezawa, Yoshiki; Harashima, Takuya; Morikawa, Takumi; Nishino, Satoru; Kino, Hisashi; Kiyoyama, Koji; Tanaka, Tetsu
2017-04-01
For safe electrical stimulation with body-implanted devices, the degradation of stimulus electrodes must be considered because it causes the unexpected electrolysis of water and the destruction of tissues. To monitor the charge injection property (CIP) of stimulus electrodes while these devices are implanted, we have proposed a charge injection monitoring system (CIMS). CIMS can safely read out voltages produced by a biphasic current pulse to a stimulus electrode and CIP is calculated from waveforms of the acquired voltages. In this paper, we describe a wide-range and low-power analog front-end (AFE) for CIMS that has variable gain-frequency characteristics and low-power analog-to-digital (A/D) conversion to adjust to the degradation of stimulus electrodes. The designed AFE was fabricated with 0.18 µm CMOS technology and achieved a valuable gain of 20-60 dB, an upper cutoff frequency of 0.2-10 kHz, and low-power interleaving A/D conversion. In addition, we successfully measured the CIP of stimulus electrodes for body-implanted devices using CIMS.
ERIC Educational Resources Information Center
Kairouz, Vanessa; Collins, Shawn K.
2018-01-01
An undergraduate teaching laboratory experiment involving a continuous flow, bleach-mediated oxidation of aldehydes under biphasic conditions was developed that allowed students to explore concepts of mixing or mass transport, solvent sustainability, biphasic reactions, phase transfer catalysis, and continuous flow chemistry.
Chan, B; Donzelli, P S; Spilker, R L
2000-06-01
The fluid viscosity term of the fluid phase constitutive equation and the interface boundary conditions between biphasic, solid and fluid domains have been incorporated into a mixed-penalty finite element formulation of the linear biphasic theory for hydrated soft tissue. The finite element code can now model a single-phase viscous incompressible fluid, or a single-phase elastic solid, as limiting cases of a biphasic material. Interface boundary conditions allow the solution of problems involving combinations of biphasic, fluid and solid regions. To incorporate these conditions, the volume-weighted mixture velocity is introduced as a degree of freedom at interface nodes so that the kinematic continuity conditions are satisfied by conventional finite element assembly techniques. Results comparing our numerical method with an independent, analytic solution for the problem of Couette flow over rigid and deformable porous biphasic layers show that the finite element code accurately predicts the viscous fluid flows and deformation in the porous biphasic region. Thus, the analysis can be used to model the interface between synovial fluid and articular cartilage in diarthrodial joints. This is an important step toward modeling and understanding the mechanisms of joint lubrication and another step toward fully modeling the in vivo behavior of a diarthrodial joint.
Carvalho, Nadja C; Güldner, Andreas; Beda, Alessandro; Rentzsch, Ines; Uhlig, Christopher; Dittrich, Susanne; Spieth, Peter M; Wiedemann, Bärbel; Kasper, Michael; Koch, Thea; Richter, Torsten; Rocco, Patricia R; Pelosi, Paolo; de Abreu, Marcelo Gama
2014-11-01
To assess the effects of different levels of spontaneous breathing during biphasic positive airway pressure/airway pressure release ventilation on lung function and injury in an experimental model of moderate acute respiratory distress syndrome. Multiple-arm randomized experimental study. University hospital research facility. Thirty-six juvenile pigs. Pigs were anesthetized, intubated, and mechanically ventilated. Moderate acute respiratory distress syndrome was induced by repetitive saline lung lavage. Biphasic positive airway pressure/airway pressure release ventilation was conducted using the airway pressure release ventilation mode with an inspiratory/expiratory ratio of 1:1. Animals were randomly assigned to one of four levels of spontaneous breath in total minute ventilation (n = 9 per group, 6 hr each): 1) biphasic positive airway pressure/airway pressure release ventilation, 0%; 2) biphasic positive airway pressure/airway pressure release ventilation, > 0-30%; 3) biphasic positive airway pressure/airway pressure release ventilation, > 30-60%, and 4) biphasic positive airway pressure/airway pressure release ventilation, > 60%. The inspiratory effort measured by the esophageal pressure time product increased proportionally to the amount of spontaneous breath and was accompanied by improvements in oxygenation and respiratory system elastance. Compared with biphasic positive airway pressure/airway pressure release ventilation of 0%, biphasic positive airway pressure/airway pressure release ventilation more than 60% resulted in lowest venous admixture, as well as peak and mean airway and transpulmonary pressures, redistributed ventilation to dependent lung regions, reduced the cumulative diffuse alveolar damage score across lungs (median [interquartile range], 11 [3-40] vs 18 [2-69]; p < 0.05), and decreased the level of tumor necrosis factor-α in ventral lung tissue (median [interquartile range], 17.7 pg/mg [8.4-19.8] vs 34.5 pg/mg [29.9-42.7]; p < 0.05). Biphasic positive airway pressure/airway pressure release ventilation more than 0-30% and more than 30-60% showed a less consistent pattern of improvement in lung function, inflammation, and damage compared with biphasic positive airway pressure/airway pressure release ventilation more than 60%. In this model of moderate acute respiratory distress syndrome in pigs, biphasic positive airway pressure/airway pressure release ventilation with levels of spontaneous breath higher than usually seen in clinical practice, that is, more than 30% of total minute ventilation, reduced lung injury with improved respiratory function, as compared with protective controlled mechanical ventilation.
Park, Jong Seok; Aziz, Moez Karim; Li, Sensen; Chi, Taiyun; Grijalva, Sandra Ivonne; Sung, Jung Hoon; Cho, Hee Cheol; Wang, Hua
2018-02-01
This paper presents a fully integrated CMOS multimodality joint sensor/stimulator array with 1024 pixels for real-time holistic cellular characterization and drug screening. The proposed system consists of four pixel groups and four parallel signal-conditioning blocks. Every pixel group contains 16 × 16 pixels, and each pixel includes one gold-plated electrode, four photodiodes, and in-pixel circuits, within a pixel footprint. Each pixel supports real-time extracellular potential recording, optical detection, charge-balanced biphasic current stimulation, and cellular impedance measurement for the same cellular sample. The proposed system is fabricated in a standard 130-nm CMOS process. Rat cardiomyocytes are successfully cultured on-chip. Measured high-resolution optical opacity images, extracellular potential recordings, biphasic current stimulations, and cellular impedance images demonstrate the unique advantages of the system for holistic cell characterization and drug screening. Furthermore, this paper demonstrates the use of optical detection on the on-chip cultured cardiomyocytes to real-time track their cyclic beating pattern and beating rate.
Gao, Pengfei; Wu, Shuke; Praveen, Prashant; Loh, Kai-Chee; Li, Zhi
2017-03-01
Biotransformation is a green and useful tool for sustainable and selective chemical synthesis. However, it often suffers from the toxicity and inhibition from organic substrates or products. Here, we established a hollow fiber membrane bioreactor (HFMB)-based aqueous/organic biphasic system, for the first time, to enhance the productivity of a cascade biotransformation with strong substrate toxicity and inhibition. The enantioselective trans-dihydroxylation of styrene to (S)-1-phenyl-1,2-ethanediol, catalyzed by Escherichia coli (SSP1) coexpressing styrene monooxygenase and an epoxide hydrolase, was performed in HFMB with organic solvent in the shell side and aqueous cell suspension in the lumen side. Various organic solvents were investigated, and n-hexadecane was found as the best for the HFMB-based biphasic system. Comparing to other reported biphasic systems assisted by HFMB, our system not only shield much of the substrate toxicity but also deflate the product recovery burden in downstream processing as the majority of styrene stayed in organic phase while the diol product mostly remained in the aqueous phase. The established HFMB-based biphasic system enhanced the production titer to 143 mM, being 16-fold higher than the aqueous system and 1.6-fold higher than the traditional dispersive partitioning biphase system. Furthermore, the combination of biphasic system with HFMB prevents the foaming and emulsification, thus reducing the burden in downstream purification. HFMB-based biphasic system could serve as a suitable platform for enhancing the productivity of single-step or cascade biotransformation with toxic substrates to produce useful and valuable chemicals.
Evaluation of the finite element software ABAQUS for biomechanical modelling of biphasic tissues.
Wu, J Z; Herzog, W; Epstein, M
1998-02-01
The biphasic cartilage model proposed by Mow et al. (1980) has proven successful to capture the essential mechanical features of articular cartilage. In order to analyse the joint contact mechanics in real, anatomical joints, the cartilage model needs to be implemented into a suitable finite element code to approximate the irregular surface geometries of such joints. However, systematic and extensive evaluation of the capacity of commercial software for modelling the contact mechanics with biphasic cartilage layers has not been made. This research was aimed at evaluating the commercial finite element software ABAQUS for analysing biphasic soft tissues. The solutions obtained using ABAQUS were compared with those obtained using other finite element models and analytical solutions for three numerical tests: an unconfined indentation test, a test with the contact of a spherical cartilage surface with a rigid plate, and an axi-symmetric joint contact test. It was concluded that the biphasic cartilage model can be implemented into the commercial finite element software ABAQUS to analyse practical joint contact problems with biphasic articular cartilage layers.
Tang, Wanchun; Weil, Max Harry; Jorgenson, Dawn; Klouche, Kada; Morgan, Carl; Yu, Ting; Sun, Shijie; Snyder, David
2002-12-01
For adults, 150-J fixed-energy, impedance-compensating biphasic truncated exponential (ICBTE) shocks are now effectively used in automated defibrillators. However, the high energy levels delivered by adult automated defibrillators preclude their use for pediatric patients. Accordingly, we investigated a method by which adult automated defibrillators may be adapted to deliver a 50-J ICBTE shock for pediatric defibrillation. Prospective, randomized study. A university-affiliated research institution. Domestic piglets. We initially investigated four groups of anesthetized mechanically ventilated piglets weighing 3.8, 7.5, 15, and 25 kg. Ventricular fibrillation was induced with an AC current delivered to the right ventricular endocardium. After 7 mins of untreated ventricular fibrillation, a conventional manual defibrillator was used to deliver up to three 50-J ICBTE shocks. If ventricular fibrillation was not reversed, a 1-min interval of precordial compression preceded a second sequence of up to three shocks. The protocol was repeated until spontaneous circulation was restored, or for a total of 15 mins. In a second set of experiments, we evaluated a 150-J biphasic adult automated defibrillator that was operated in conjunction with energy-reducing electrodes such as to deliver 50-J shocks. The same resuscitation protocol was then exercised on piglets weighing 3.7, 13.5, and 24.2 kg. All animals were successfully resuscitated. Postresuscitation hemodynamic and myocardial function quickly returned to baseline values in both experimental groups, and all animals survived. An adaptation of a 150-J biphasic adult automated defibrillator in which energy-reducing electrodes delivered 50-J shocks successfully resuscitated animals ranging from 3.7 to 25 kg without compromise of postresuscitation myocardial function or survival.
Generation of useful energy from process fluids using the biphase turbine
NASA Astrophysics Data System (ADS)
Helgeson, N. L.
1981-01-01
The six largest energy consuming industries in the United States were surveyed to determine the energy savings that could result from applying the Biphase turbine to industrial process streams. A national potential energy savings of 58 million barrels of oil per year (technical market) was identified. This energy is recoverable from flashing gas liquid process streams and is separate and distinct from exhaust gas waste heat recovery. The industries surveyed in this program were the petroleum chemical, primary metals, paper and pulp, stone-clay-glass, and food. It was required to determine the applicability of the Biphase turbine to flashing operations connected with process streams, to determine the energy changes associated with these flashes if carried out in a Biphase turbine, and to determine the suitability (technical and economical feasibility) of applying the Biphase turbine to these processes.
Mizutani, Nobuaki; Nabe, Takeshi; Shimazu, Masaji; Yoshino, Shin; Kohno, Shigekatsu
2012-03-01
Ganoderma lucidum (GL), an oriental medical mushroom, has been used in Asia for the prevention and treatment of a variety of diseases. However, the effect of GL on allergic rhinitis has not been well defined. The current study describes the inhibitory effect of GL on the biphasic nasal blockage and nasal hyperresponsiveness induced by repeated antigen challenge in a guinea pig model of allergic rhinitis. Intranasally sensitized guinea pigs were repeatedly challenged by inhalation of Japanese cedar pollen once every week. Ganoderma lucidum was orally administered once daily for 8 weeks from the time before the first challenge. The treatment with GL dose-dependently inhibited the early and late phase nasal blockage at the fifth to ninth antigen challenges. Furthermore, nasal hyperresponsiveness to intranasally applied leukotriene D₄ on 2 days after the eighth antigen challenge was also inhibited by the treatment with GL. However, Cry j 1-specific IgE antibody production was not affected by the treatment. In conclusion, we demonstrated that the pollen-induced biphasic nasal blockage and nasal hyperresponsiveness were suppressed by the daily treatment with GL in the guinea pig model of allergic rhinitis. These results suggest that GL may be a useful therapeutic drug for treating patients with allergic rhinitis. Copyright © 2011 John Wiley & Sons, Ltd.
Wu, Di; Hiroshima, Kenzo; Yusa, Toshikazu; Ozaki, Daisuke; Koh, Eitetsu; Sekine, Yasuo; Matsumoto, Shinji; Nabeshima, Kazuki; Sato, Ayuko; Tsujimura, Tohru; Yamakawa, Hisami; Tada, Yuji; Shimada, Hideaki; Tagawa, Masatoshi
2017-02-01
Malignant mesothelioma is a highly aggressive neoplasm, and the histologic subtype is one of the most reliable prognostic factors. Some biphasic mesotheliomas are difficult to distinguish from epithelioid mesotheliomas with atypical fibrous stroma. The aim of this study was to analyze p16/CDKN2A deletions in mesotheliomas by fluorescence in situ hybridization (FISH) and BAP1 immunohistochemistry to evaluate their potential role in the diagnosis of biphasic mesothelioma. We collected 38 cases of pleural mesotheliomas. The results of this study clearly distinguished 29 cases of biphasic mesothelioma from 9 cases of epithelioid mesothelioma. The proportion of biphasic mesotheliomas with homozygous deletions of p16/CDKN2A in total was 96.6% (28/29). Homozygous deletion of p16/CDKN2A was observed in 18 (94.7%) of 19 biphasic mesotheliomas with 100% concordance of the p16/CDKN2A deletion status between the epithelioid and sarcomatoid components in each case. Homozygous deletion of the p16/CDKN2A was observed in 7 (77.8%) of 9 epithelioid mesotheliomas but not in fibrous stroma. BAP1 loss was observed in 5 (38.5%) of 13 biphasic mesotheliomas and in both epithelioid and sarcomatoid components. BAP1 loss was observed in 5 (62.5%) of 8 epithelioid mesotheliomas but not in fibrous stroma. Homozygous deletion of p16/CDKN2A is common in biphasic mesotheliomas, and the analysis of only one component of mesothelioma is sufficient to show that the tumor is malignant. However, compared with histology alone, FISH analysis of the p16/CDKN2A status and BAP1 immunohistochemistry in the spindled mesothelium provide a more objective means to differentiate between biphasic mesothelioma and epithelioid mesothelioma with atypical stromal cells. Copyright © 2016 Elsevier Inc. All rights reserved.
2012-01-01
Introduction Conventional monophasic defibrillators for out-of-hospital cardiac-arrest patients have been replaced with biphasic defibrillators. However, the advantage of biphasic over monophasic defibrillation for pediatric out-of-hospital cardiac-arrest patients remains unknown. This study aimed to compare the survival outcomes of pediatric out-of-hospital cardiac-arrest patients who underwent monophasic defibrillation with those who underwent biphasic defibrillation. Methods This prospective, nationwide, population-based observational study included pediatric out-of-hospital cardiac-arrest patients from January 1, 2005, to December 31, 2009. The primary outcome measure was survival at 1 month with minimal neurologic impairment. The secondary outcome measures were survival at 1 month and the return of spontaneous circulation before hospital arrival. Multivariable logistic regression analysis was performed to identify the independent association between defibrillator type (monophasic or biphasic) and outcomes. Results Among 5,628 pediatric out-of-hospital cardiac-arrest patients (1 through 17 years old), 430 who received defibrillation shock with monophasic or biphasic defibrillator were analyzed. The number of patients who received defibrillation shock with monophasic defibrillator was 127 (30%), and 303 (70%) received defibrillation shock with biphasic defibrillator. The survival rates at 1 month with minimal neurologic impairment were 17.5% and 24.4%, the survival rates at 1 month were 32.3% and 35.6%, and the rates of return of spontaneous circulation before hospital arrival were 24.4% and 27.4% in the monophasic and biphasic defibrillator groups, respectively. Hierarchic logistic regression analyses by using generalized estimation equations found no significant difference between the two groups in terms of 1-month survival with minimal neurologic impairment (odds ratio (OR), 1.57; 95% confidence interval (CI), 0.87 to 2.83; P = 0.14) and 1-month survival (OR, 1.38; 95% CI, 0.87 to 2.18; P = 0.17). Conclusions The present nationwide population-based observational study could not confirm an advantage of biphasic over monophasic defibrillators for pediatric OHCA patients. PMID:23148767
Faruq, Omar; Kim, Boram; Padalhin, Andrew R; Lee, Gun Hee; Lee, Byong-Taek
2017-10-01
An ideal bone substitute should be made of biocompatible materials that mimic the structure, characteristics, and functions of natural bone. Many researchers have worked on the fabrication of different bone scaffold systems including ceramic-polymer hybrid system. In the present study, we incorporated hyaluronic acid-gelatin hydrogel to micro-channeled biphasic calcium phosphate granules as a carrier to improve cell attachment and proliferation through highly interconnected porous structure. This hybrid system is composed of ceramic biphasic calcium phosphate granules measuring 1 mm in diameter with seven holes and hyaluronic acid-gelatin hydrogel. This combination of biphasic calcium phosphate and hyaluronic acid-gelatin retained suitable characteristics for bone regeneration. The resulting scaffold had a porosity of 56% with a suitable pore sizes. The mechanical strength of biphasic calcium phosphate granule increased after loading hyaluronic acid-gelatin from 4.26 ± 0.43 to 6.57 ± 0.25 MPa, which is highly recommended for cancellous bone substitution. Swelling and degradation rates decreased in the hybrid scaffold compared to hydrogel due to the presence of granules in hybrid scaffold. In vitro cytocompatibility studies were observed by preosteoblasts (MC3T3-E1) cell line and the result revealed that biphasic calcium phosphate/hyaluronic acid-gelatin significantly increased cell growth and proliferation compared to biphasic calcium phosphate granules. Analysis of micro-computed tomography data and stained tissue sections from the implanted samples showed that the hybrid scaffold had good osseointegration and better bone formation in the scaffold one and two months postimplantation. Histological section confirmed the formation of dense collagenous tissue and new bone in biphasic calcium phosphate/hyaluronic acid-gelatin scaffolds at two months. Our study demonstrated that such hybrid biphasic calcium phosphate/hyaluronic acid-gelatin scaffold is a promising system for bone regeneration.
NASA Astrophysics Data System (ADS)
Maquiling, Joel Tiu; Visaga, Shane Marie
This study investigates the dependence of the critical angle θc of stability on different mass ratios γ of layered bi-phasic granular matter mixtures and on the critical angle of its mono-disperse individual components. It also aims to investigate and explain regime transitions of granular matter flowing down a tilted rough inclined plane. Critical angles and flow regimes for a bi-phasic mixture of sago spheres and bi-phasic pepper mixture of fine powder and rough spheres were observed and measured using video analysis. The critical angles θc MD of mono-disperse granular matter and θc BP of biphasic granular matter mixtures were observed and compared. All types of flow regimes and a supramaximal critical angle of stability exist at mass ratio γ = 0.5 for all biphasic granular matter mixtures. The θc BP of sago spheres was higher than the θc MD of sago spheres. Moreover, the θc BP of the pepper mixture was in between the θc MD of fine pepper and θc MD of rough pepper spheres. Comparison of different granular material shows that θc MD is not simply a function of particle diameter but of particle roughness as well. Results point to a superposition mechanism of the critical angles of biphasic sphere mixtures.
Biphasic Scaffolds from Marine Collagens for Regeneration of Osteochondral Defects.
Bernhardt, Anne; Paul, Birgit; Gelinsky, Michael
2018-03-13
Collagens of marine origin are applied increasingly as alternatives to mammalian collagens in tissue engineering. The aim of the present study was to develop a biphasic scaffold from exclusively marine collagens supporting both osteogenic and chondrogenic differentiation and to find a suitable setup for in vitro chondrogenic and osteogenic differentiation of human mesenchymal stroma cells (hMSC). Biphasic scaffolds from biomimetically mineralized salmon collagen and fibrillized jellyfish collagen were fabricated by joint freeze-drying and crosslinking. Different experiments were performed to analyze the influence of cell density and TGF-β on osteogenic differentiation of the cells in the scaffolds. Gene expression analysis and analysis of cartilage extracellular matrix components were performed and activity of alkaline phosphatase was determined. Furthermore, histological sections of differentiated cells in the biphasic scaffolds were analyzed. Stable biphasic scaffolds from two different marine collagens were prepared. An in vitro setup for osteochondral differentiation was developed involving (1) different seeding densities in the phases; (2) additional application of alginate hydrogel in the chondral part; (3) pre-differentiation and sequential seeding of the scaffolds and (4) osteochondral medium. Spatially separated osteogenic and chondrogenic differentiation of hMSC was achieved in this setup, while osteochondral medium in combination with the biphasic scaffolds alone was not sufficient to reach this ambition. Biphasic, but monolithic scaffolds from exclusively marine collagens are suitable for the development of osteochondral constructs.
Kopelovich, Jonathan C; Cagaanan, Alain P; Miller, Charles A; Abbas, Paul J; Green, Steven H
2013-11-01
To establish the intracellular consequences of electrical stimulation to spiral ganglion neurons after deafferentation. Here we use a rat model to determine the effect of both low and high pulse rate acute electrical stimulation on activation of the proapoptotic transcription factor Jun in deafferented spiral ganglion neurons in vivo. Experimental animal study. Hearing research laboratories of the University of Iowa Departments of Biology and Otolaryngology. A single electrode was implanted through the round window of kanamycin-deafened rats at either postnatal day 32 (P32, n = 24) or P60 (n = 22) for 4 hours of stimulation (monopolar, biphasic pulses, amplitude twice electrically evoked auditory brainstem response [eABR] threshold) at either 100 or 5000 Hz. Jun phosphorylation was assayed by immunofluorescence to quantitatively assess the effect of electrical stimulation on proapoptotic signaling. Jun phosphorylation was reliably suppressed by 100 Hz stimuli in deafened cochleae of P32 but not P60 rats. This effect was not significant in the basal cochlear turns. Stimulation frequency may be consequential: 100 Hz was significantly more effective than was 5 kHz stimulation in suppressing phospho-Jun. Suppression of Jun phosphorylation occurs in deafferented spiral ganglion neurons after only 4 hours of electrical stimulation. This finding is consistent with the hypothesis that electrical stimulation can decrease spiral ganglion neuron death after deafferentation.
Surface characterization of colloidal-sol gel derived biphasic HA/FA coatings.
Cheng, Kui; Zhang, Sam; Weng, Wenjian
2007-10-01
Hydroxyapatite (HA) powders are ultrasonically dispersed in the precursor of fluoridated hydroxyapatite (FHA) or fluorapatite (FA) to form a "colloidal sol". HA/FA biphasic coatings are prepared on Ti6Al4V substrate via dip coating, 150 degrees C drying and 600 degrees C firing. The coatings show homogenous distribution of HA particles in the FA matrix. The relative phase proportion can be tailored by the amount of HA in the colloidal sol. The surfaces of the coatings consist of two kinds of distinct domains: HA and FA, resulting in a compositionally heterogeneous surface. The biphasic coating surface becomes increasingly rougher with HA powders, from around 200 nm of pure FA to 400-600 nm in Ra of biphasic coatings. The rougher biphasic HA/FA surfaces with chemically controllable domains will favor cell attachment, apatite layer deposition and necessary dissolution in clinical applications.
NASA Astrophysics Data System (ADS)
Chai, Guohong; Sui, Xiaohong; Li, Si; He, Longwen; Lan, Ning
2015-12-01
Objective. The goal of this study is to characterize the phenomenon of evoked tactile sensation (ETS) on the stump skin of forearm amputees using transcutaneous electrical nerve stimulation (TENS). Approach. We identified the projected finger map (PFM) of ETS on the stump skin in 11 forearm amputees, and compared perceptual attributes of the ETS in nine forearm amputees and eight able-bodied subjects using TENS. The profile of perceptual thresholds at the most sensitive points (MSPs) in each finger-projected area was obtained by modulating current amplitude, pulse width, and frequency of the biphasic, rectangular current stimulus. The long-term stability of the PFM and the perceptual threshold of the ETS were monitored in five forearm amputees for a period of 11 months. Main results. Five finger-specific projection areas can be independently identified on the stump skin of forearm amputees with a relatively long residual stump length. The shape of the PFM was progressively similar to that of the hand with more distal amputation. Similar sensory modalities of touch, pressure, buzz, vibration, and numb below pain sensation could be evoked both in the PFM of the stump skin of amputees and in the normal skin of able-bodied subjects. Sensory thresholds in the normal skin of able-bodied subjects were generally lower than those in the stump skin of forearm amputees, however, both were linearly modulated by current amplitude and pulse width. The variation of the MSPs in the PFM was confined to a small elliptical area with 95% confidence. The perceptual thresholds of thumb-projected areas were found to vary less than 0.99 × 10-2 mA cm-2. Significance. The stable PFM and sensory thresholds of ETS are desirable for a non-invasive neural interface that can feed back finger-specific tactile information from the prosthetic hand to forearm amputees.
Exploring the tolerability of spatiotemporally complex electrical stimulation paradigms.
Nelson, Timothy S; Suhr, Courtney L; Lai, Alan; Halliday, Amy J; Freestone, Dean R; McLean, Karen J; Burkitt, Anthony N; Cook, Mark J
2011-10-01
A modified cortical stimulation model was used to investigate the effects of varying the synchronicity and periodicity of electrical stimuli delivered to multiple pairs of electrodes on seizure initiation. In this model, electrical stimulation of the motor cortex of rats, along four pairs of a microwire electrode array, results in an observable seizure with quantifiable electrographic duration and behavioural severity. Periodic stimuli had a constant inter-stimulus intervals across the two-second stimulus duration, whilst synchronous stimuli consisted of singular biphasic, bipolar pulses delivered to the four pairs of electrodes at precisely the same time for the entire two second stimulation period. In this way four combinations of stimulation were possible; periodic/synchronous (P/S), periodic/asynchronous (P/As), aperiodic/synchronous (Ap/S) and aperiodic/asynchronous (Ap/As). All stimulation types were designed with equal pulse width, current intensity and mean frequency of stimulation (60 Hz), standardizing net charge transfer. It was expected that the periodicity of the stimulus would be the primary determinant of seizure initiation and therefore severity and electrographic duration. However, the results showed that significant differences in both severity and duration only occurred when the synchronicity was altered. For periodic stimuli, synchronous delivery increased median seizure duration from 5 s to 13 s and increased median Racine severity from 1 to 3. In the aperiodic case, synchronous stimulus delivery increased median duration from 5.5 s to 11s and resulted in seizures of median severity 3 vs. 0 in the asynchronous case. These findings may have implications for the design of future neurostimulation waveform designs as higher numbers of electrodes and stimulator output channels become available in next generation implants. Copyright © 2011 Elsevier B.V. All rights reserved.
Equivalence between short-time biphasic and incompressible elastic material responses.
Ateshian, Gerard A; Ellis, Benjamin J; Weiss, Jeffrey A
2007-06-01
Porous-permeable tissues have often been modeled using porous media theories such as the biphasic theory. This study examines the equivalence of the short-time biphasic and incompressible elastic responses for arbitrary deformations and constitutive relations from first principles. This equivalence is illustrated in problems of unconfined compression of a disk, and of articular contact under finite deformation, using two different constitutive relations for the solid matrix of cartilage, one of which accounts for the large disparity observed between the tensile and compressive moduli in this tissue. Demonstrating this equivalence under general conditions provides a rationale for using available finite element codes for incompressible elastic materials as a practical substitute for biphasic analyses, so long as only the short-time biphasic response is sought. In practice, an incompressible elastic analysis is representative of a biphasic analysis over the short-term response deltat
Fabrication and tritium release property of Li2TiO3-Li4SiO4 biphasic ceramics
NASA Astrophysics Data System (ADS)
Yang, Mao; Ran, Guangming; Wang, Hailiang; Dang, Chen; Huang, Zhangyi; Chen, Xiaojun; Lu, Tiecheng; Xiao, Chengjian
2018-05-01
Li2TiO3-Li4SiO4 biphasic ceramic pebbles have been developed as an advanced tritium breeder due to the potential to combine the advantages of both Li2TiO3 and Li4SiO4. Wet method was developed for the pebble fabrication and Li2TiO3-Li4SiO4 biphasic ceramic pebbles were successfully prepared by wet method using the powders synthesized by hydrothermal method. The tritium release properties of the Li2TiO3-Li4SiO4 biphasic ceramic pebbles were evaluated. The biphasic pebbles exhibited good tritium release property at low temperatures and the tritium release temperature was around 470 °C. Because of the isotope exchange reaction between H2 and tritium, the addition of 0.1%H2 to purge gas He could significantly enhance the tritium gas release and the fraction of molecular form of tritium increased from 28% to 55%. The results indicate that the Li2TiO3-Li4SiO4 biphasic ceramic pebbles fabricated by wet method exhibit good tritium release property and hold promising potential as advanced breeder pebbles.
Dieuzeide, Guillermo; Chuang, Lee-Ming; Almaghamsi, Abdulrahman; Zilov, Alexey; Chen, Jian-Wen; Lavalle-González, Fernando J
2014-07-01
Biphasic insulin aspart 30 allows fewer daily injections versus basal-bolus insulin regimens, which may improve adherence and treatment outcome. This sub-analysis of the observational A1chieve study assessed clinical safety and effectiveness of biphasic insulin aspart 30 in people with type 2 diabetes previously receiving basal-bolus insulin regimens. A1chieve was an international, open-label, 24-week study in people with type 2 diabetes starting/switching to biphasic insulin aspart 30, insulin detemir or insulin aspart. This sub-analysis assessed patients switching from insulin glargine- or neutral protamine Hagedorn insulin-based basal-bolus insulin regimens to biphasic insulin aspart 30. 1024 patients were included. At 24 weeks, glycated haemoglobin and fasting plasma glucose were significantly reduced from baseline in both cohorts (all p<0.001). The proportion reporting any hypoglycaemia, major hypoglycaemia or nocturnal hypoglycaemia was significantly reduced after 24 weeks (all p<0.05). No serious adverse drug reactions were reported. Both cohorts had significantly improved health-related quality of life (HRQoL; p<0.001). 24 weeks after switching from basal-bolus insulin regimens to biphasic insulin aspart 30, glycaemic control and HRQoL were significantly improved, and hypoglycaemia was significantly reduced. This suggests that people with type 2 diabetes inadequately controlled on basal-bolus insulin regimens can consider biphasic insulin aspart 30. Copyright © 2013 Primary Care Diabetes Europe. Published by Elsevier Ltd. All rights reserved.
Deng, Jia; Staufenbiel, Sven; Bodmeier, Roland
2017-07-15
The purpose of this study was to discriminate three crystal forms of carbamazepine (a BCS II drug) by in vitro dissolution testing and to correlate in vitro data with published in vivo data. A biphasic dissolution system (phosphate buffer pH6.8 and octanol) was used to evaluate the dissolution of the three polymorphic forms and to compare it with conventional single phase dissolution tests performed under sink and non-sink conditions. Similar dissolution profiles of three polymorphic forms were observed in the conventional dissolution test under sink conditions. Although a difference in dissolution was seen in the single phase dissolution test under non-sink conditions as well as in the aqueous phase of the biphasic test, little relevance for in vivo data was observed. In contrast, the biphasic dissolution system could discriminate between the different polymorphic forms in the octanol phase with a ranking of form III>form I>dihydrate form. This was in agreement with the in vivo performance. The dissolved drug available for oral absorption, which was dominated by dissolution and solution-mediated phase transformation, could be reflected in the biphasic dissolution test. Moreover, a good correlation was established between in vitro dissolution in the octanol phase of the biphasic test and in vivo pharmacokinetic data (R 2 =0.99). The biphasic dissolution method is a valuable tool to discriminate between different crystal forms in the formulations of poorly soluble drugs. Copyright © 2017. Published by Elsevier B.V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grand, D.; Hautecloque, S.
1990-01-25
Electron-transfer reaction between N,N,N{prime},N{prime}-tetramethylbenzidine cation (TMB{sup +}) and neutral nucleophiles, pyridine (Py) and triethylamine (Et{sub 3}N), is studied in NaLS micellar media. A biphasic decay of TMB{sup +} follows the laser-induced TMB photoionization. The very fast decay is attributed to an electron transfer between reactants located in the core of the micelle. The slow decay would correspond to an electron transfer from the nucleophile solubilized in the aqueous phase to TMB{sup +} embedded in the lipidic phase. The role of the electrical interfacial potential {Delta}{psi} is evidenced. The rate constant of the TMB{sup +} slow decay displays an exponential functionmore » of {Delta}{psi}. The effect of the localization and distance of the reactants is emphasized.« less
Inchingolo, F; Paracchini, L; DE Angelis, F; Cielo, A; Orefici, A; Spitaleri, D; Santacroce, L; Gheno, E; Palermo, A
2016-01-01
Modern implantology is based on the use of endosseous dental implants and on the study of osseointegration processes. The loss of marginal bone around a dental implant can be caused by many factors; the proper distribution of the masticatory loads is important and is closely dependent on the quality and quantity of bone tissue surrounding the implant. In fact, bone has the ability to adapt its microstructure, through processes of resorption and neoformation of new bone matrix, as a result of the mechanical stimuli that are generated during the chewing cycles. The purpose of this article is to redefine in a modern key and in light of current industrial and engineering technology, clinical and biomechanical concepts that characterize the monophasic implants, in order to assess proper use by evaluating the biomechanical differences with the biphasic implants.
Smeets, Ralf; Kolk, Andreas; Gerressen, Marcus; Driemel, Oliver; Maciejewski, Oliver; Hermanns-Sachweh, Benita; Riediger, Dieter; Stein, Jamal M
2009-01-01
The aim of the present study was to analyze the osteogenic potential of a biphasic calcium composite material (BCC) with a negative surface charge for maxillary sinus floor augmentation. In a 61 year old patient, the BCC material was used in a bilateral sinus floor augmentation procedure. Six months postoperative, a bone sample was taken from the augmented regions before two titanium implants were inserted at each side. We analyzed bone neoformation by histology, bone density by computed tomography, and measured the activity of voltage-activated calcium currents of osteoblasts and surface charge effects. Control orthopantomograms were carried out five months after implant insertion. The BCC was biocompatible and replaced by new mineralized bone after being resorbed completely. The material demonstrated a negative surface charge (negative Zeta potential) which was found to be favorable for bone regeneration and osseointegration of dental implants. PMID:19523239
Method and system for communicating with a laser power driver
Telford, Steven
2017-07-18
A system for controlling a plurality of laser diodes includes an optical transmitter coupled to the laser diode driver for each laser diode. An optical signal including bi-phase encoded data is provided to each laser diode driver. The optical signal includes current level and pulse duration information at which each of the diodes is to be driven. Upon receiving a trigger signal, the laser diode drivers operate the laser diodes using the current level and pulse duration information to output a laser beam.
Biphasic Synergistic Gel Materials with Switchable Mechanics and Self-Healing Capacity.
Zhao, Ziguang; Liu, Yuxia; Zhang, Kangjun; Zhuo, Shuyun; Fang, Ruochen; Zhang, Jianqi; Jiang, Lei; Liu, Mingjie
2017-10-16
A fabrication strategy for biphasic gels is reported, which incorporates high-internal-phase emulsions. Closely packed micro-inclusions within the elastic hydrogel matrix greatly improve the mechanical properties of the materials. The materials exhibit excellent switchable mechanics and shape-memory performance because of the switchable micro- inclusions that are incorporated into the hydrogel matrix. The produced materials demonstrated a self-healing capacity that originates from the noncovalent effect of the biphasic heteronetwork. The aforementioned characteristics suggest that the biphasic gels may serve as ideal composite gel materials with validity in a variety of applications, such as soft actuators, flexible devices, and biological materials. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
EQUIVALENCE BETWEEN SHORT-TIME BIPHASIC AND INCOMPRESSIBLE ELASTIC MATERIAL RESPONSES
Ateshian, Gerard A.; Ellis, Benjamin J.; Weiss, Jeffrey A.
2009-01-01
Porous-permeable tissues have often been modeled using porous media theories such as the biphasic theory. This study examines the equivalence of the short-time biphasic and incompressible elastic responses for arbitrary deformations and constitutive relations from first principles. This equivalence is illustrated in problems of unconfined compression of a disk, and of articular contact under finite deformation, using two different constitutive relations for the solid matrix of cartilage, one of which accounts for the large disparity observed between the tensile and compressive moduli in this tissue. Demonstrating this equivalence under general conditions provides a rationale for using available finite element codes for incompressible elastic materials as a practical substitute for biphasic analyses, so long as only the short-time biphasic response is sought. In practice, an incompressible elastic analysis is representative of a biphasic analysis over the short-term response δt≪Δ2/‖C4‖||K||, where Δ is a characteristic dimension, C4 is the elasticity tensor and K is the hydraulic permeability tensor of the solid matrix. Certain notes of caution are provided with regard to implementation issues, particularly when finite element formulations of incompressible elasticity employ an uncoupled strain energy function consisting of additive deviatoric and volumetric components. PMID:17536908
Ng, Choong Hey; Yang, Kun-Lin
2016-01-01
Esterification of organic acids and alcohols in aqueous media is very inefficient due to thermodynamic constraints. However, fermentation processes used to produce organic acids and alcohols are often conducted in aqueous media. To produce esters in aqueous media, biphasic alginate beads with immobilized lipase are developed for in situ esterification of butanol and butyric acid. The biphasic beads contain a solid matrix of calcium alginate and hexadecane together with 5 mg/mL of lipase as the biocatalyst. Hexadecane in the biphasic beads serves as an organic phase to facilitate the esterification reaction. Under optimized conditions, the beads are able to catalyze the production of 0.16 mmol of butyl butyrate from 0.5 mmol of butyric acid and 1.5 mmol of butanol. In contrast, when monophasic beads (without hexadecane) are used, only trace amount of butyl butyrate is produced. One main application of biphasic beads is in simultaneous fermentation and esterification (SFE) because the organic phase inside the beads is very stable and does not leach out into the culture medium. SFE is successfully conducted with an esterification yield of 6.32% using biphasic beads containing iso-octane even though the solvent is proven toxic to the butanol-producing Clostridium spp. Copyright © 2015 Elsevier Inc. All rights reserved.
Costa, Pedro F; Vaquette, Cédryck; Zhang, Qiyi; Reis, Rui L; Ivanovski, Saso; Hutmacher, Dietmar W
2014-03-01
This study investigated the ability of an osteoconductive biphasic scaffold to simultaneously regenerate alveolar bone, periodontal ligament and cementum. A biphasic scaffold was built by attaching a fused deposition modelled bone compartment to a melt electrospun periodontal compartment. The bone compartment was coated with a calcium phosphate (CaP) layer for increasing osteoconductivity, seeded with osteoblasts and cultured in vitro for 6 weeks. The resulting constructs were then complemented with the placement of PDL cell sheets on the periodontal compartment, attached to a dentin block and subcutaneously implanted into athymic rats for 8 weeks. Scanning electron microscopy, X-ray diffraction, alkaline phosphatase and DNA content quantification, confocal laser microscopy, micro computerized tomography and histological analysis were employed to evaluate the scaffold's performance. The in vitro study showed that alkaline phosphatase activity was significantly increased in the CaP-coated samples and they also displayed enhanced mineralization. In the in vivo study, significantly more bone formation was observed in the coated scaffolds. Histological analysis revealed that the large pore size of the periodontal compartment permitted vascularization of the cell sheets, and periodontal attachment was achieved at the dentin interface. This work demonstrates that the combination of cell sheet technology together with an osteoconductive biphasic scaffold could be utilized to address the limitations of current periodontal regeneration techniques. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Choy, Andrew Tsz Hang; Chan, Barbara Pui
2015-01-01
Tissue engineering offers high hopes for the treatment of intervertebral disc (IVD) degeneration. Whereas scaffolds of the disc nucleus and annulus have been extensively studied, a truly biomimetic and mechanically functional biphasic scaffold using naturally occurring extracellular matrix is yet to be developed. Here, a biphasic scaffold was fabricated with collagen and glycosaminoglycans (GAGs), two of the most abundant extracellular matrix components in the IVD. Following fabrication, the scaffold was characterized and benchmarked against native disc. The biphasic scaffold was composed of a collagen-GAG co-precipitate making up the nucleus pulposus-like core, and this was encapsulated in multiple lamellae of photochemically crosslinked collagen membranes comprising the annulus fibrosus-like lamellae. On mechanical testing, the height of our engineered disc recovered by ~82-89% in an annulus-independent manner, when compared with the 99% recovery exhibited by native disc. The annulus-independent nature of disc height recovery suggests that the fluid replacement function of the engineered nucleus pulposus core might mimic this hitherto unique feature of native disc. Biphasic scaffolds comprised of 10 annulus fibrosus-like lamellae had the best overall mechanical performance among the various designs owing to their similarity to native disc in most aspects, including elastic compliance during creep and recovery, and viscous compliance during recovery. However, the dynamic mechanical performance (including dynamic stiffness and damping factor) of all the biphasic scaffolds was similar to that of the native discs. This study contributes to the rationalized design and development of a biomimetic and mechanically viable biphasic scaffold for IVD tissue engineering. PMID:26115332
Yang, Hanbae; McCoy, Edward L; Grewal, Parwinder S; Dick, Warren A
2010-08-01
Rain gardens are bioretention systems that have the potential to reduce peak runoff flow and improve water quality in a natural and aesthetically pleasing manner. We compared hydraulic performance and removal efficiencies of nutrients and atrazine in a monophasic rain garden design versus a biphasic design at a column-scale using simulated runoff. The biphasic rain garden was designed to increase retention time and removal efficiency of runoff pollutants by creating a sequence of water saturated to unsaturated conditions. We also evaluated the effect of C substrate availability on pollutant removal efficiency in the biphasic rain garden. Five simulated runoff events with various concentrations of runoff pollutants (i.e. nitrate, phosphate, and atrazine) were applied to the monophasic and biphasic rain gardens once every 5d. Hydraulic performance was consistent over the five simulated runoff events. Peak flow was reduced by approximately 56% for the monophasic design and 80% for the biphasic design. Both rain garden systems showed excellent removal efficiency of phosphate (89-100%) and atrazine (84-100%). However, significantly (p<0.001) higher removal of nitrate was observed in the biphasic (42-63%) compared to the monophasic rain garden (29-39%). Addition of C substrate in the form of glucose increased removal efficiency of nitrate significantly (p<0.001), achieving up to 87% removal at a treatment C/N ratio of 2.0. This study demonstrates the importance of retention time, environmental conditions (i.e. saturated/unsaturated conditions), and availability of C substrate for bioremediation of pollutants, especially nitrates, in rain gardens. (c) 2010 Elsevier Ltd. All rights reserved.
Tanabe, Seizan; Yasunaga, Hideo; Ogawa, Toshio; Koike, Soichi; Akahane, Manabu; Horiguchi, Hiromasa; Hatanaka, Tetsuo; Yokota, Hiroyuki; Imamura, Tomoaki
2012-09-01
The use and popularity of the biphasic waveform defibrillator as a replacement for the monophasic waveform defibrillator are increasing, but it is unclear whether this can improve the rate of survival among out-of-hospital cardiac arrest patients. This study aimed to verify the hypothesis that the outcome of out-of-hospital cardiac arrest patients who received defibrillation shock with the biphasic waveform defibrillator was better than that of patients who received defibrillation shock with the monophasic defibrillator. This prospective, nationwide, population-based, observational study included 21 172 out-of-hospital cardiac arrest patients with initial ventricular fibrillation or pulseless ventricular tachycardia from January 1, 2005, through December 31, 2007. Defibrillation shock was performed by monophasic defibrillator on 8224 (39%) patients and by biphasic defibrillator on 12 948 (61%) patients. The rate of survival at 1 month with minimal neurological impairment was 11.6% (951/8192) in the monophasic defibrillator group and 12.8% (1653/12 928) in the biphasic defibrillator group. Hierarchical logistic regression analysis using a generalized estimation equation showed no significant difference between the biphasic and monophasic groups in 1-month survival with minimal neurological impairment (adjusted odds ratio, 1.07; 95% confidence interval, 0.91-1.26; P=0.42). Confirmatory propensity score analyses showed similar results. Although monophasic defibrillators are being replaced by biphasic defibrillators, our nationwide population-based observational study failed to demonstrate a statistically significant association between defibrillation waveform and 1-month survival rate with minimal neurological impairment.
Repetitive transcranial magnetic stimulator with controllable pulse parameters
NASA Astrophysics Data System (ADS)
Peterchev, Angel V.; Murphy, David L.; Lisanby, Sarah H.
2011-06-01
The characteristics of transcranial magnetic stimulation (TMS) pulses influence the physiological effect of TMS. However, available TMS devices allow very limited adjustment of the pulse parameters. We describe a novel TMS device that uses a circuit topology incorporating two energy storage capacitors and two insulated-gate bipolar transistor (IGBT) modules to generate near-rectangular electric field pulses with adjustable number, polarity, duration, and amplitude of the pulse phases. This controllable pulse parameter TMS (cTMS) device can induce electric field pulses with phase widths of 10-310 µs and positive/negative phase amplitude ratio of 1-56. Compared to conventional monophasic and biphasic TMS, cTMS reduces energy dissipation up to 82% and 57% and decreases coil heating up to 33% and 41%, respectively. We demonstrate repetitive TMS trains of 3000 pulses at frequencies up to 50 Hz with electric field pulse amplitude and width variability less than the measurement resolution (1.7% and 1%, respectively). Offering flexible pulse parameter adjustment and reduced power consumption and coil heating, cTMS enhances existing TMS paradigms, enables novel research applications and could lead to clinical applications with potentially enhanced potency.
Repetitive transcranial magnetic stimulator with controllable pulse parameters.
Peterchev, Angel V; Murphy, David L; Lisanby, Sarah H
2011-06-01
The characteristics of transcranial magnetic stimulation (TMS) pulses influence the physiological effect of TMS. However, available TMS devices allow very limited adjustment of the pulse parameters. We describe a novel TMS device that uses a circuit topology incorporating two energy storage capacitors and two insulated-gate bipolar transistor (IGBT) modules to generate near-rectangular electric field pulses with adjustable number, polarity, duration, and amplitude of the pulse phases. This controllable pulse parameter TMS (cTMS) device can induce electric field pulses with phase widths of 10-310 µs and positive/negative phase amplitude ratio of 1-56. Compared to conventional monophasic and biphasic TMS, cTMS reduces energy dissipation up to 82% and 57% and decreases coil heating up to 33% and 41%, respectively. We demonstrate repetitive TMS trains of 3000 pulses at frequencies up to 50 Hz with electric field pulse amplitude and width variability less than the measurement resolution (1.7% and 1%, respectively). Offering flexible pulse parameter adjustment and reduced power consumption and coil heating, cTMS enhances existing TMS paradigms, enables novel research applications and could lead to clinical applications with potentially enhanced potency.
USDA-ARS?s Scientific Manuscript database
E. coli O157 has long been the leading cause of major foodborne STEC outbreaks but recently non-O157 STECs are increasingly implicated. Selective media for E. coli O157 are commercially available but none detect non-O157 STEC. Currently, regulatory agencies screen for non-O157 STECs by enriching foo...
Ambler, Jonathan J S; Deakin, Charles D
2006-11-01
Biphasic waveforms have similar or greater efficacy at cardioverting atrial and ventricular arrhythmias at lower energy levels than monophasic waveforms, and cause less ST depression following defibrillation of ventricular fibrillation. No studies have investigated this effect on ST change with atrial arrhythmias. We studied the efficacy of the Welch Allyn-MRL PIC biphasic defibrillator. One hundred and thirty-nine patients undergoing elective DC cardioversion for atrial arrhythmias were randomised to cardioversion by monophasic (Hewlett Packard Codemaster XL; 100, 200, 300, 360 and 360J) or biphasic (Welch Allyn-MRL PIC; 70, 100, 150, 200 and 300J) defibrillator. We analysed success of cardioversion after 0 and 30min, cumulative energy, number of shocks and energy at successful cardioversion. The ST change in the recorded electrocardiogram was measured at 15s after all shocks using electronic callipers. Immediately after cardioversion 59/68 (86.8%) of the monophasic group versus 56/60 (93.3%) of the biphasic group were in sinus rhythm. Of the monophasic group, 55/67 (82.1%) remained in sinus rhythm at 30min versus 53/58 (91.4%) of the biphasic group. These differences were not significant at 0min (P=0.35) or 30min (P=0.21). The biphasic group required significantly fewer shocks (P=0.006), less cumulative energy (P<0.0001) and required lower total energy for successful cardioversion (P<0.0001). Of the 102 patients with electrocardiogram recordings suitable for analysis, ST segment change was greater in the monophasic group (P=0.037). The Welch Allyn-MRL biphasic waveform for DC cardioversion results in fewer shocks, with less cumulative energy delivered and less post shock ST change than with a Hewlett Packard Codemaster XL damped sine wave monophasic waveform.
Trpkov, Kiril; Athanazio, Daniel; Magi-Galluzzi, Cristina; Yilmaz, Helene; Clouston, David; Agaimy, Abbas; Williamson, Sean R; Brimo, Fadi; Lopez, Jose I; Ulamec, Monika; Rioux-Leclercq, Nathalie; Kassem, Maysoun; Gupta, Nilesh; Hartmann, Arndt; Leroy, Xavier; Bashir, Samir Al; Yilmaz, Asli; Hes, Ondřej
2018-04-01
To further characterise biphasic squamoid renal cell carcinoma (RCC), a recently proposed variant of papillary RCC. We identified 28 tumours from multiple institutions. They typically showed two cell populations-larger cells with eosinophilic cytoplasm and higher-grade nuclei, surrounded by smaller, amphophilic cells with scanty cytoplasm. The dual morphology was variable (median 72.5% of tumour, range 5-100%); emperipolesis was found in all cases. The male/female ratio was 2:1, and the median age was 55 years (range 39-86 years). The median tumour size was 20 mm (range 9-65 mm). Pathological stage pT1a was found in 21 cases, pT1b in three, and pT3a and pT3b in one each (two not available). Multifocality was found in 32%: multifocal biphasic RCC in one case, biphasic + papillary RCC in two cases, biphasic + clear cell RCC in three cases, biphasic + low-grade urothelial carcinoma of the renal pelvis in one case, and biphasic + Birt-Hogg-Dubé syndrome in one case. Positive immunostains included: PAX8, cytokeratin (CK) 7, α-methylacyl-CoA racemase, epithelial membrane antigen, and vimentin. Cyclin D1 was expressed only in the larger cells. The Ki67 index was higher in the larger cells (median 5% versus ≤1%). Negative stains included: carbonic anhydrase 9, CD117, GATA-3, WT1, CK5/6, and CK20; CD10 and 34βE12 were variably expressed. Gains of chromosomes 7 and 17 were found in two evaluated cases. Follow-up was available for 23 patients (median 24 months, range 1-244 months): 19 were alive without disease, one was alive with recurrence, and one had died of disease (two had died of other causes). Biphasic papillary RCC is a rare variant of papillary RCC, and is often multifocal. © 2017 John Wiley & Sons Ltd.
Biphasic decay of the Ca transient results from increased sarcoplasmic reticulum Ca leak
Sankaranarayanan, Rajiv; Li, Yatong; Greensmith, David J.; Eisner, David A.
2016-01-01
Key points Ca leak from the sarcoplasmic reticulum through the ryanodine receptor (RyR) reduces the amplitude of the Ca transient and slows its rate of decay.In the presence of β‐adrenergic stimulation, RyR‐mediated Ca leak produces a biphasic decay of the Ca transient with a fast early phase and a slow late phase.Two forms of Ca leak have been studied, Ca‐sensitising (induced by caffeine) and non‐sensitising (induced by ryanodine) and both induce biphasic decay of the Ca transient.Only Ca‐sensitising leak can be reversed by traditional RyR inhibitors such as tetracaine.Ca leak can also induce Ca waves. At low levels of leak, waves occur. As leak is increased, first biphasic decay and then slowed monophasic decay is seen. The level of leak has major effects on the shape of the Ca transient. Abstract In heart failure, a reduction in Ca transient amplitude and contractile dysfunction can by caused by Ca leak through the sarcoplasmic reticulum (SR) Ca channel (ryanodine receptor, RyR) and/or decreased activity of the SR Ca ATPase (SERCA). We have characterised the effects of two forms of Ca leak (Ca‐sensitising and non‐sensitising) on calcium cycling and compared with those of SERCA inhibition. We measured [Ca2+]i with fluo‐3 in voltage‐clamped rat ventricular myocytes. Increasing SR leak with either caffeine (to sensitise the RyR to Ca activation) or ryanodine (non‐sensitising) had similar effects to SERCA inhibition: decreased systolic [Ca2+]i, increased diastolic [Ca2+]i and slowed decay. However, in the presence of isoproterenol, leak produced a biphasic decay of the Ca transient in the majority of cells while SERCA inhibition produced monophasic decay. Tetracaine reversed the effects of caffeine but not of ryanodine. When caffeine (1 mmol l−1) was added to a cell which displayed Ca waves, the wave frequency initially increased before waves disappeared and biphasic decay developed. Eventually (at higher caffeine concentrations), the biphasic decay was replaced by slow decay. We conclude that, in the presence of adrenergic stimulation, Ca leak can produce biphasic decay; the slow phase results from the leak opposing Ca uptake by SERCA. The degree of leak determines whether decay of Ca waves, biphasic or monophasic, occurs. PMID:26537441
Process-relevant Biomass-derived Pentoses in a Biphasic Reaction System," ACS Sustainable Chem. Eng Biomass-derived Pentoses in a Biphasic Reaction System." ACS Sustainable Chem. Eng. (2017)
Pathak, Amit
2018-04-12
Motile cells sense the stiffness of their extracellular matrix (ECM) through adhesions and respond by modulating the generated forces, which in turn lead to varying mechanosensitive migration phenotypes. Through modeling and experiments, cell migration speed is known to vary with matrix stiffness in a biphasic manner, with optimal motility at an intermediate stiffness. Here, we present a two-dimensional cell model defined by nodes and elements, integrated with subcellular modeling components corresponding to mechanotransductive adhesion formation, force generation, protrusions and node displacement. On 2D matrices, our calculations reproduce the classic biphasic dependence of migration speed on matrix stiffness and predict that cell types with higher force-generating ability do not slow down on very stiff matrices, thus disabling the biphasic response. We also predict that cell types defined by lower number of total receptors require stiffer matrices for optimal motility, which also limits the biphasic response. For a cell type with robust biphasic migration on 2D surface, simulations in channel-like confined environments of varying width and height predict faster migration in more confined matrices. Simulations performed in shallower channels predict that the biphasic mechanosensitive cell migration response is more robust on 2D micro-patterns as compared to the channel-like 3D confinement. Thus, variations in the dimensionality of matrix confinement alters the way migratory cells sense and respond to the matrix stiffness. Our calculations reveal new phenotypes of stiffness- and topography-sensitive cell migration that critically depend on both cell-intrinsic and matrix properties. These predictions may inform our understanding of various mechanosensitive modes of cell motility that could enable tumor invasion through topographically heterogeneous microenvironments. © 2018 IOP Publishing Ltd.
Huang, Jian; Walcott, Gregory P; Ruse, Richard B; Bohanan, Scott J; Killingsworth, Cheryl R; Ideker, Raymond E
2012-09-11
We tested the hypothesis that the shape of the shock waveform affects not only the defibrillation threshold but also the amount of cardiac damage. Defibrillation thresholds were determined for 11 waveforms-3 ascending-ramp waveforms, 3 descending-ramp waveforms, 3 rectilinear first-phase biphasic waveforms, a Gurvich waveform, and a truncated exponential biphasic waveform-in 6 pigs with electrodes in the right ventricular apex and superior vena cava. The ascending, descending, and rectilinear waveforms had 4-, 8-, and 16-millisecond first phases and a 3.5-millisecond rectilinear second phase that was half the voltage of the first phase. The exponential biphasic waveform had a 60% first-phase and a 50% second-phase tilt. In a second study, we attempted to defibrillate after 10 seconds of ventricular fibrillation with a single ≈30-J shock (6 pigs successfully defibrillated with 8-millisecond ascending, 8-millisecond rectilinear, and truncated exponential biphasic waveforms). Troponin I blood levels were determined before and 2 to 10 hours after the shock. The lowest-energy defibrillation threshold was for the 8-milliseconds ascending ramp (14.6±7.3 J [mean±SD]), which was significantly less than for the truncated exponential (19.6±6.3 J). Six hours after shock, troponin I was significantly less for the ascending-ramp waveform (0.80±0.54 ng/mL) than for the truncated exponential (1.92±0.47 ng/mL) or the rectilinear waveform (1.17±0.45 ng/mL). The ascending ramp has a significantly lower defibrillation threshold and at ≈30 J causes 58% less troponin I release than the truncated exponential biphasic shock. Therefore, the shock waveform affects both the defibrillation threshold and the amount of cardiac damage.
Berg, Marc D.; Banville, Isabelle L.; Chapman, Fred W.; Walker, Robert G.; Gaballa, Mohammed A.; Hilwig, Ronald W.; Samson, Ricardo A.; Kern, Karl B.; Berg, Robert A.
2009-01-01
Objective The optimal biphasic defibrillation dose for children is unknown. Postresuscitation myocardial dysfunction is common and may be worsened by higher defibrillation doses. Adult-dose automated external defibrillators are commonly available; pediatric doses can be delivered by attenuating the adult defibrillation dose through a pediatric pads/cable system. The objective was to investigate whether unattenuated (adult) dose biphasic defibrillation results in greater postresuscitation myocardial dysfunction and damage than attenuated (pediatric) defibrillation. Design Laboratory animal experiment. Setting University animal laboratory. Subjects Domestic swine weighing 19 ± 3.6 kg. Interventions Fifty-two piglets were randomized to receive biphasic defibrillation using either adult-dose shocks of 200, 300, and 360 J or pediatric-dose shocks of ~50, 75, and 85 J after 7 mins of untreated ventricular fibrillation. Contrast left ventriculograms were obtained at baseline and then at 1, 2, 3, and 4 hrs postresuscitation. Postresuscitation left ventricular ejection fraction and cardiac troponins were evaluated. Measurements and Main Results By design, piglets in the adult-dose group received shocks with more energy (261 ± 65 J vs. 72 ± 12 J, p < .001) and higher peak current (37 ± 8 A vs. 13 ± 2 A, p < .001) at the largest defibrillation dose needed. In both groups, left ventricular ejection fraction was reduced significantly at 1, 2, and 4 hrs from baseline and improved during the 4 hrs postresuscitation. The decrease in left ventricular ejection fraction from baseline was greater after adult-dose defibrillation. Plasma cardiac troponin levels were elevated 4 hrs postresuscitation in 11 of 19 adult-dose piglets vs. four of 20 pediatric-dose piglets (p = .02). Conclusions Unattenuated adult-dose defibrillation results in a greater frequency of myocardial damage and worse postresuscitation myocardial function than pediatric doses in a swine model of prolonged out-of-hospital pediatric ventricular fibrillation cardiac arrest. These data support the use of pediatric attenuating electrodes with adult biphasic automated external defibrillators to defibrillate children. PMID:18496405
A pilot trial of square biphasic pulse deep brain stimulation for dystonia: The BIP dystonia study.
Almeida, Leonardo; Martinez-Ramirez, Daniel; Ahmed, Bilal; Deeb, Wissam; Jesus, Sol De; Skinner, Jared; Terza, Matthew J; Akbar, Umer; Raike, Robert S; Hass, Chris J; Okun, Michael S
2017-04-01
Dystonia often has inconsistent benefits and requires more energy-demanding DBS settings. Studies suggest that squared biphasic pulses could provide significant clinical benefit; however, dystonia patients have not been explored. To assess safety and tolerability of square biphasic DBS in dystonia patients. This study included primary generalized or cervical dystonia patients with bilateral GPi DBS. Square biphasic pulses were implemented and patients were assessed at baseline, immediately postwashout, post-30-minute washout, 1 hour post- and 2 hours postinitiation of investigational settings. Ten participants completed the study. There were no patient-reported or clinician-observed side effects. There was improvement across time on the Toronto Western Spasmodic Torticollis Rating Scale (χ 2 = 10.7; P = 0.031). Similar improvement was detected in objective gait measurements. Square biphasic stimulation appears safe and feasible in dystonia patients with GPi DBS. Further studies are needed to evaluate possible effectiveness particularly in cervical and gait features. © 2016 International Parkinson and Movement Disorder Society. © 2017 International Parkinson and Movement Disorder Society.
Hajjaji, Issam M; Sherif, Ibrahim; Elazrag, Aisha; Jaber, Suhair; Chakkarwar, Praful N; Eltabal, Salem
2013-11-01
The A1chieve, a multicentric (28 countries), 24-week, non-interventional study evaluated the safety and effectiveness of insulin detemir, biphasic insulin aspart and insulin aspart in people with T2DM (n = 66,726) in routine clinical care across four continents. Data was collected at baseline, at 12 weeks and at 24 weeks. This short communication presents the results for patients enrolled in biphasic insulin aspart sub group from Libya. A total of 179 patients were enrolled in the biphasic insulin aspart subgroup. All the patients were prior insulin users. At baseline glycaemic control was poor (mean HbA1c: 9.3%). After 24 weeks of treatment there was an improvement in HbA1c (-0.9%). Hypoglycaemic events reduced from 7.2 events/patient-year to 3.7 events/patient-year in 24 weeks. SADRs did not occur in any of the study patients. Starting or switching to biphasic insulin aspart was associated with improvement in glycaemic control with a low rate of hypoglycaemia.
Belkin, K J; Abrams, T W
1993-12-01
The molluscan neuropeptide FMRFamide has an inhibitory effect on transmitter release from the presynaptic sensory neurons in the neural circuit for the siphon withdrawal reflex. We have explored whether FMRFamide also acts postsynaptically in motor neurons in this circuit, focusing on the LFS motor neurons. FMRFamide typically produces a biphasic response in LFS neurons: a fast excitatory response followed by a prolonged inhibitory response. We have analyzed these postsynaptic actions and compared them with the mechanism of FMRFamide's inhibition of the presynaptic sensory neurons. The transient excitatory effect of FMRFamide, which desensitizes rapidly, is due to activation of a TTX-insensitive, Na(+)-dependent inward current. The late hyperpolarizing phase of the FMRFamide response results from activation of at least two K+ currents. One component of the hyperpolarizing response is active at rest and at more hyperpolarized membrane potentials, and is blocked by 5 mM 4-aminopyridine, suggesting that it differs from the previously described FMRFamide-modulated K+ currents in the presynaptic sensory neurons. In addition, FMRFamide increases a 4-aminopyridine-insensitive K+ current. Presynaptically, FMRFamide increases K+ conductance, acting via release of arachidonic acid. In the LFS motor neurons, application of arachidonic acid mimicked the prolonged, hyperpolarizing phase of the FMRFamide response; 4-bromophenacyl bromide, an inhibitor of phospholipase A2, selectively blocked this component of the FMRFamide response. Thus, FMRFamide may act in parallel pre- and post-synaptically to inhibit the output of the siphon withdrawal reflex circuit, producing this inhibitory effect via the same second messenger in the sensory neurons and motor neurons, though a number of the K+ currents modulated in these two types of neurons are different.
Effect of cholesterol depletion on the pore dilation of TRPV1.
Jansson, Erik T; Trkulja, Carolina L; Ahemaiti, Aikeremu; Millingen, Maria; Jeffries, Gavin Dm; Jardemark, Kent; Orwar, Owe
2013-01-02
The TRPV1 ion channel is expressed in nociceptors, where pharmacological modulation of its function may offer a means of alleviating pain and neurogenic inflammation processes in the human body. The aim of this study was to investigate the effects of cholesterol depletion of the cell on ion-permeability of the TRPV1 ion channel. The ion-permeability properties of TRPV1 were assessed using whole-cell patch-clamp and YO-PRO uptake rate studies on a Chinese hamster ovary (CHO) cell line expressing this ion channel. Prolonged capsaicin-induced activation of TRPV1 with N-methyl-D-glucamine (NMDG) as the sole extracellular cation, generated a biphasic current which included an initial outward current followed by an inward current. Similarly, prolonged proton-activation (pH 5.5) of TRPV1 under hypocalcemic conditions also generated a biphasic current including a fast initial current peak followed by a larger second one. Patch-clamp recordings of reversal potentials of TRPV1 revealed an increase of the ion-permeability for NMDG during prolonged activation of this ion channel under hypocalcemic conditions. Our findings show that cholesterol depletion inhibited both the second current, and the increase in ion-permeability of the TRPV1 channel, resulting from sustained agonist-activation with capsaicin and protons (pH 5.5). These results were confirmed with YO-PRO uptake rate studies using laser scanning confocal microscopy, where cholesterol depletion was found to decrease TRPV1 mediated uptake rates of YO-PRO. Hence, these results propose a novel mechanism by which cellular cholesterol depletion modulates the function of TRPV1, which may constitute a novel approach for treatment of neurogenic pain.
Pembrolizumab in Treating Patients With Malignant Mesothelioma
2018-03-01
Biphasic Mesothelioma; Epithelioid Mesothelioma; Peritoneal Malignant Mesothelioma; Pleural Biphasic Mesothelioma; Pleural Epithelioid Mesothelioma; Pleural Malignant Mesothelioma; Pleural Sarcomatoid Mesothelioma; Recurrent Peritoneal Malignant Mesothelioma; Recurrent Pleural Malignant Mesothelioma; Sarcomatoid Mesothelioma
Bikson, Marom; Inoue, Masashi; Akiyama, Hiroki; Deans, Jackie K; Fox, John E; Miyakawa, Hiroyoshi; Jefferys, John G R
2004-05-15
The effects of uniform steady state (DC) extracellular electric fields on neuronal excitability were characterized in rat hippocampal slices using field, intracellular and voltage-sensitive dye recordings. Small electric fields (40/ mV mm(-1)), applied parallel to the somato-dendritic axis, induced polarization of CA1 pyramidal cells; the relationship between applied field and induced polarization was linear (0.12 +/- 0.05 mV per mV mm(-1) average sensitivity at the soma). The peak amplitude and time constant (15-70 ms) of membrane polarization varied along the axis of neurons with the maximal polarization observed at the tips of basal and apical dendrites. The polarization was biphasic in the mid-apical dendrites; there was a time-dependent shift in the polarity reversal site. DC fields altered the thresholds of action potentials evoked by orthodromic stimulation, and shifted their initiation site along the apical dendrites. Large electric fields could trigger neuronal firing and epileptiform activity, and induce long-term (>1 s) changes in neuronal excitability. Electric fields perpendicular to the apical-dendritic axis did not induce somatic polarization, but did modulate orthodromic responses, indicating an effect on afferents. These results demonstrate that DC fields can modulate neuronal excitability in a time-dependent manner, with no clear threshold, as a result of interactions between neuronal compartments, the non-linear properties of the cell membrane, and effects on afferents.
Yuan, XiaoDong; Zhang, Jing; Quan, ChangBin; Tian, Yuan; Li, Hong; Ao, GuoKun
2016-04-01
To determine the feasibility and accuracy of a protocol for calculating whole-organ renal perfusion (renal blood flow [RBF]) and regional perfusion on the basis of biphasic computed tomography (CT), with concurrent dynamic contrast material-enhanced (DCE) CT perfusion serving as the reference standard. This prospective study was approved by the institutional review board, and written informed consent was obtained from all patients. Biphasic CT of the kidneys, including precontrast and arterial phase imaging, was integrated with a first-pass dynamic volume CT protocol and performed and analyzed in 23 patients suspected of having renal artery stenosis. The perfusion value derived from biphasic CT was calculated as CT number enhancement divided by the area under the arterial input function and compared with the DCE CT perfusion data by using the paired t test, correlation analysis, and Bland-Altman plots. Correlation analysis was made between the RBF and the extent of renal artery stenosis. All postprocessing was independently performed by two observers and then averaged as the final result. Mean ± standard deviation biphasic and DCE CT perfusion data for RBF were 425.62 mL/min ± 124.74 and 419.81 mL/min ± 121.13, respectively (P = .53), and for regional perfusion they were 271.15 mL/min per 100 mL ± 82.21 and 266.33 mL/min per 100 mL ± 74.40, respectively (P = .31). Good correlation and agreement were shown between biphasic and DCE CT perfusion for RBF (r = 0.93; ±10% variation from mean perfusion data [P < .001]) and for regional perfusion (r = 0.90; ±13% variation from mean perfusion data [P < .001]). The extent of renal artery stenosis was negatively correlated with RBF with biphasic CT perfusion (r = -0.81, P = .012). Biphasic CT perfusion is clinically feasible and provides perfusion data comparable to DCE CT perfusion data at both global and regional levels in the kidney. Online supplemental material is available for this article.
Paul, Christiane; Mamonekene, Victor; Vater, Marianne; Feulner, Philine G D; Engelmann, Jacob; Tiedemann, Ralph; Kirschbaum, Frank
2015-04-01
The electric organ (EO) of weakly electric mormyrids consists of flat, disk-shaped electrocytes with distinct anterior and posterior faces. There are multiple species-characteristic patterns in the geometry of the electrocytes and their innervation. To further correlate electric organ discharge (EOD) with EO anatomy, we examined four species of the mormyrid genus Campylomormyrus possessing clearly distinct EODs. In C. compressirostris, C. numenius, and C. tshokwe, all of which display biphasic EODs, the posterior face of the electrocytes forms evaginations merging to a stalk system receiving the innervation. In C. tamandua that emits a triphasic EOD, the small stalks of the electrocyte penetrate the electrocyte anteriorly before merging on the anterior side to receive the innervation. Additional differences in electrocyte anatomy among the former three species with the same EO geometry could be associated with further characteristics of their EODs. Furthermore, in C. numenius, ontogenetic changes in EO anatomy correlate with profound changes in the EOD. In the juvenile the anterior face of the electrocyte is smooth, whereas in the adult it exhibits pronounced surface foldings. This anatomical difference, together with disparities in the degree of stalk furcation, probably contributes to the about 12 times longer EOD in the adult.
Filardo, Giuseppe; Perdisa, Francesco; Gelinsky, Michael; Despang, Florian; Fini, Milena; Marcacci, Maurilio; Parrilli, Anna Paola; Roffi, Alice; Salamanna, Francesca; Sartori, Maria; Schütz, Kathleen; Kon, Elizaveta
2018-05-26
Current therapeutic strategies for osteochondral restoration showed a limited regenerative potential. In fact, to promote the growth of articular cartilage and subchondral bone is a real challenge, due to the different functional and anatomical properties. To this purpose, alginate is a promising biomaterial for a scaffold-based approach, claiming optimal biocompatibility and good chondrogenic potential. A previously developed mineralized alginate scaffold was investigated in terms of the ability to support osteochondral regeneration both in a large and medium size animal model. The results were evaluated macroscopically and by microtomography, histology, histomorphometry, and immunohistochemical analysis. No evidence of adverse or inflammatory reactions was observed in both models, but limited subchondral bone formation was present, together with a slow scaffold resorption time.The implantation of this biphasic alginate scaffold provided partial osteochondral regeneration in the animal model. Further studies are needed to evaluate possible improvement in terms of osteochondral tissue regeneration for this biomaterial.
Nanoparticle Exposure and Hormetic Dose–Responses: An Update
Leso, Veruscka; Fontana, Luca; Calabrese, Edward J.
2018-01-01
The concept of hormesis, as an adaptive response of biological systems to moderate environmental challenges, has raised considerable nano-toxicological interests in view of the rapid pace of production and application of even more innovative nanomaterials and the expected increasing likelihood of environmental and human exposure to low-dose concentrations. Therefore, the aim of this review is to provide an update of the current knowledge concerning the biphasic dose–responses induced by nanoparticle exposure. The evidence presented confirmed and extended our previous findings, showing that hormesis is a generalized adaptive response which may be further generalized to nanoscale xenobiotic challenges. Nanoparticle physico-chemical properties emerged as possible features affecting biphasic relationships, although the molecular mechanisms underlining such influences remain to be fully understood, especially in experimental settings resembling long-term and low-dose realistic environmental exposure scenarios. Further investigation is necessary to achieve helpful information for a suitable assessment of nanomaterial risks at the low-dose range for both the ecosystem function and the human health. PMID:29534471
Nonlinear estimation of parameters in biphasic Arrhenius plots.
Puterman, M L; Hrboticky, N; Innis, S M
1988-05-01
This paper presents a formal procedure for the statistical analysis of data on the thermotropic behavior of membrane-bound enzymes generated using the Arrhenius equation and compares the analysis to several alternatives. Data is modeled by a bent hyperbola. Nonlinear regression is used to obtain estimates and standard errors of the intersection of line segments, defined as the transition temperature, and slopes, defined as energies of activation of the enzyme reaction. The methodology allows formal tests of the adequacy of a biphasic model rather than either a single straight line or a curvilinear model. Examples on data concerning the thermotropic behavior of pig brain synaptosomal acetylcholinesterase are given. The data support the biphasic temperature dependence of this enzyme. The methodology represents a formal procedure for statistical validation of any biphasic data and allows for calculation of all line parameters with estimates of precision.
A re-examination of the biphasic theory of skeletal muscle growth.
Levine, A S; Hegarty, P V
1977-01-01
Because of the importance of fibre diameter measurements it was decided to re-evaluate the biphasic theory of skeletal muscle growth and development. This theory proposes an initial memophasic distribution of muscle fibres which changes to a biphasic distribution during development. The theory is based on observations made on certain muscles in mice, where two distinct populations of fibre diameters (20 and 40 micronm) contribute to the biphasic distribution. In the present investigation corss sections of frozen biceps brachii of mice in rigor mortis were examined. The rigor state was used to avoid complications produced by thaw-rigor contraction. The diameters of the outermost and innermost fibres were found to be significantly different. However, if the outer and inner fibres were combined to form one group, no significant difference between this group and other random groups was found. The distributions of all groups were monophasic. The diameters of isolated fibres from mice and rats also displayed a monophasic distribution. This evidence leads to the conclusion that the biphasic theory of muscle growth is untenable. Some of the variables which may occur in fibre size and shape are discussed. Images Fig. 1 PMID:858691
Bezold, Franziska; Weinberger, Maria E; Minceva, Mirjana
2017-03-31
Tocopherols are a class of molecules with vitamin E activity. Among those, α-tocopherol is the most important vitamin E source in the human diet. The purification of tocopherols involving biphasic liquid systems can be challenging since these vitamins are poorly soluble in water. Deep eutectic solvents (DES) can be used to form water-free biphasic systems and have already proven applicable for centrifugal partition chromatography separations. In this work, a computational solvent system screening was performed using the predictive thermodynamic model COSMO-RS. Liquid-liquid equilibria of solvent systems composed of alkanes, alcohols and DES, as well as partition coefficients of α-tocopherol, β-tocopherol, γ-tocopherol, and σ-tocopherol in these biphasic solvent systems were calculated. From the results the best suited biphasic solvent system, namely heptane/ethanol/choline chloride-1,4-butanediol, was chosen and a batch injection of a tocopherol mixture, mainly consisting of α- and γ-tocopherol, was performed using a centrifugal partition chromatography set up (SCPE 250-BIO). A separation factor of 1.74 was achieved for α- and γ-tocopherol. Copyright © 2017 Elsevier B.V. All rights reserved.
Chen, Wen-Jing; Lou, Wen-Yong; Zong, Min-Hua
2012-07-01
The asymmetric hydrolysis of styrene oxide to (R)-1-phenyl-1,2-ethanediol using Mung bean epoxide hydrolases was, for the first time, successfully conducted in an ionic liquid (IL)-containing biphasic system. Compared to aqueous monophasic system, IL-based biphasic systems could not only dissolve the substrate, but also effectively inhibit the non-enzymatic hydrolysis, and therefore markedly improve the reaction efficiency. Of all the tested ILs, the best results were observed in the biphasic system containing C(4)MIM·PF(6), which exhibited good biocompatibility with the enzyme and was an excellent solvent for the substrate. In the C(4)MIM·PF(6)/buffer biphasic system, it was found that the optimal volume ratio of IL to buffer, reaction temperature, buffer pH and substrate concentration were 1/6, 35°C, 6.5 and 100 mM, respectively, under which the initial reaction rate, the yield and the product e.e. were 18.4 mM/h, 49.4% and 97.0%. The biocatalytic process was shown to be feasible on a 500-mL preparative scale. Copyright © 2011 Elsevier Ltd. All rights reserved.
Biphasic Dose Response in Low Level Light Therapy – An Update
Huang, Ying-Ying; Sharma, Sulbha K; Carroll, James; Hamblin, Michael R
2011-01-01
Low-level laser (light) therapy (LLLT) has been known since 1967 but still remains controversial due to incomplete understanding of the basic mechanisms and the selection of inappropriate dosimetric parameters that led to negative studies. The biphasic dose-response or Arndt-Schulz curve in LLLT has been shown both in vitro studies and in animal experiments. This review will provide an update to our previous (Huang et al. 2009) coverage of this topic. In vitro mediators of LLLT such as adenosine triphosphate (ATP) and mitochondrial membrane potential show biphasic patterns, while others such as mitochondrial reactive oxygen species show a triphasic dose-response with two distinct peaks. The Janus nature of reactive oxygen species (ROS) that may act as a beneficial signaling molecule at low concentrations and a harmful cytotoxic agent at high concentrations, may partly explain the observed responses in vivo. Transcranial LLLT for traumatic brain injury (TBI) in mice shows a distinct biphasic pattern with peaks in beneficial neurological effects observed when the number of treatments is varied, and when the energy density of an individual treatment is varied. Further understanding of the extent to which biphasic dose responses apply in LLLT will be necessary to optimize clinical treatments. PMID:22461763
Repetitive Transcranial Magnetic Stimulator with Controllable Pulse Parameters
Peterchev, Angel V; Murphy, David L; Lisanby, Sarah H
2013-01-01
The characteristics of transcranial magnetic stimulation (TMS) pulses influence the physiological effect of TMS. However, available TMS devices allow very limited adjustment of the pulse parameters. We describe a novel TMS device that uses a circuit topology incorporating two energy storage capacitors and two insulated-gate bipolar transistor (IGBT) modules to generate near-rectangular electric field pulses with adjustable number, polarity, duration, and amplitude of the pulse phases. This controllable pulse parameter TMS (cTMS) device can induce electric field pulses with phase widths of 10–310 μs and positive/negative phase amplitude ratio of 1–56. Compared to conventional monophasic and biphasic TMS, cTMS reduces energy dissipation by up to 82% and 57%, and decreases coil heating by up to 33% and 41%, respectively. We demonstrate repetitive TMS trains of 3,000 pulses at frequencies up to 50 Hz with electric field pulse amplitude and width variability less than the measurement resolution (1.7% and 1%, respectively). Offering flexible pulse parameter adjustment and reduced power consumption and coil heating, cTMS enhances existing TMS paradigms, enables novel research applications, and could lead to clinical applications with potentially enhanced potency. PMID:21540487
Zhang, Xiudong; Bai, Yuanyuan; Cao, Xuefei; Sun, Runcang
2017-08-01
Herein, an efficient biphasic pretreatment process was developed to improve the production of furfural (FF) and glucose from Eucalyptus. The influence of formic acid and NaCl on FF production from xylose in water and various biphasic systems was investigated. Results showed that the addition of formic acid and NaCl significantly promoted the FF yield, and the biphasic system of MIBK (methyl isobutyl ketone)/water exhibited the best performance for FF production. Then the Eucalyptus was pretreated in the MIBK/water system, and a maximum FF yield of 82.0% was achieved at 180°C for 60min. Surface of the pretreated Eucalyptus became relatively rough and loose, and its crystallinity index increased obviously due to the removal of hemicelluloses and lignin. The pretreated Eucalyptus samples showed much higher enzymatic hydrolysis rates (26.2-70.7%) than the raw Eucalyptus (14.5%). Copyright © 2017 Elsevier Ltd. All rights reserved.
Bingen, Brian O.; Askar, Saïd F. A.; Neshati, Zeinab; Feola, Iolanda; Panfilov, Alexander V.; de Vries, Antoine A. F.; Pijnappels, Daniël A.
2015-01-01
Electrical cardioversion (ECV), a mainstay in atrial fibrillation (AF) treatment, is unsuccessful in up to 10–20% of patients. An important aspect of the remodeling process caused by AF is the constitutive activition of the atrium-specific acetylcholine-dependent potassium current (IK,ACh → IK,ACh-c), which is associated with ECV failure. This study investigated the role of IK,ACh-c in ECV failure and setting the atrial defibrillation threshold (aDFT) in optically mapped neonatal rat cardiomyocyte monolayers. AF was induced by burst pacing followed by application of biphasic shocks of 25–100 V to determine aDFT. Blocking IK,ACh-c by tertiapin significantly decreased DFT, which correlated with a significant increase in wavelength during reentry. Genetic knockdown experiments, using lentiviral vectors encoding a Kcnj5-specific shRNA to modulate IK,ACh-c, yielded similar results. Mechanistically, failed ECV was attributed to incomplete phase singularity (PS) removal or reemergence of PSs (i.e. re-initiation) through unidirectional propagation of shock-induced action potentials. Re-initiation occurred at significantly higher voltages than incomplete PS-removal and was inhibited by IK,ACh-c blockade. Whole-heart mapping confirmed our findings showing a 60% increase in ECV success rate after IK,ACh-c blockade. This study provides new mechanistic insight into failing ECV of AF and identifies IK,ACh-c as possible atrium-specific target to increase ECV effectiveness, while decreasing its harmfulness. PMID:26487066
Aqueous biphasic plutonium oxide extraction process with pH and particle control
Chaiko, D.J.; Mensah-Biney, R.
1997-04-29
A method is described for simultaneously partitioning a metal oxide and silica from a material containing silica and the metal oxide, using a biphasic aqueous medium having immiscible salt and polymer phases. 2 figs.
Mediated water electrolysis in biphasic systems.
Scanlon, Micheál D; Peljo, Pekka; Rivier, Lucie; Vrubel, Heron; Girault, Hubert H
2017-08-30
The concept of efficient electrolysis by linking photoelectrochemical biphasic H 2 evolution and water oxidation processes in the cathodic and anodic compartments of an H-cell, respectively, is introduced. Overpotentials at the cathode and anode are minimised by incorporating light-driven elements into both biphasic reactions. The concepts viability is demonstrated by electrochemical H 2 production from water splitting utilising a polarised water-organic interface in the cathodic compartment of a prototype H-cell. At the cathode the reduction of decamethylferrocenium cations ([Cp 2 *Fe (III) ] + ) to neutral decamethylferrocene (Cp 2 *Fe (II) ) in 1,2-dichloroethane (DCE) solvent takes place at the solid electrode/oil interface. This electron transfer process induces the ion transfer of a proton across the immiscible water/oil interface to maintain electroneutrality in the oil phase. The oil-solubilised proton immediately reacts with Cp 2 *Fe (II) to form the corresponding hydride species, [Cp 2 *Fe (IV) (H)] + . Subsequently, [Cp 2 *Fe (IV) (H)] + spontaneously undergoes a chemical reaction in the oil phase to evolve hydrogen gas (H 2 ) and regenerate [Cp 2 *Fe (III) ] + , whereupon this catalytic Electrochemical, Chemical, Chemical (ECC') cycle is repeated. During biphasic electrolysis, the stability and recyclability of the [Cp 2 *Fe (III) ] + /Cp 2 *Fe (II) redox couple were confirmed by chronoamperometric measurements and, furthermore, the steady-state concentration of [Cp 2 *Fe (III) ] + monitored in situ by UV/vis spectroscopy. Post-biphasic electrolysis, the presence of H 2 in the headspace of the cathodic compartment was established by sampling with gas chromatography. The rate of the biphasic hydrogen evolution reaction (HER) was enhanced by redox electrocatalysis in the presence of floating catalytic molybdenum carbide (Mo 2 C) microparticles at the immiscible water/oil interface. The use of a superhydrophobic organic electrolyte salt was critical to ensure proton transfer from water to oil, and not anion transfer from oil to water, in order to maintain electroneutrality after electron transfer. The design, testing and successful optimisation of the operation of the biphasic electrolysis cell under dark conditions with Cp 2 *Fe (II) lays the foundation for the achievement of photo-induced biphasic water electrolysis at low overpotentials using another metallocene, decamethylrutheneocene (Cp 2 *Ru (II) ). Critically, Cp 2 *Ru (II) may be recycled at a potential more positive than that of proton reduction in DCE.
Coco, Anne; Epp, Stephanie B.; Fallon, James B.; Xu, Jin; Millard, Rodney E.; Shepherd, Robert K.
2007-01-01
Increasing numbers of cochlear implant subjects have some level of residual hearing at the time of implantation. The present study examined whether (i) hair cells that have survived one pathological insult (aminoglycoside deafening), can survive and function following long-term cochlear implantation and electrical stimulation (ES); and (ii) chronic ES in these cochleae results in greater trophic support of spiral ganglion neurons (SGNs) compared with cochleae devoid of hair cells. Eight cats, with either partial (n=4) or severe (n=4) sensorineural hearing loss, were bilaterally implanted with scala tympani electrode arrays 2 months after deafening, and received unilateral ES using charge balanced biphasic current pulses for periods of up to 235 days. Frequency-specific compound action potentials and click-evoked auditory brainstem responses (ABRs) were recorded periodically to monitor the residual acoustic hearing. Electrically-evoked ABRs (EABRs) were recorded to confirm the stimulus levels were 3-6 dB above the EABR threshold. On completion of the ES program the cochleae were examined histologically. Partially deafened animals showed no significant increase in acoustic thresholds over the implantation period. Moreover, chronic ES of an electrode array located in the base of the cochlea did not adversely affect hair cells in the middle or apical turns. There was evidence of a small but statistically significant rescue of SGNs in the middle and apical turns of stimulated cochleae in animals with partial hearing. Chronic ES did not, however, prevent a reduction in SGN density for the severely deaf cohort, although SGNs adjacent to the stimulating electrodes did exhibit a significant increase in soma area (p<0.01). In sum, chronic ES in partial hearing animals does not adversely affect functioning residual hair cells apical to the electrode array. Moreover, while there is an increase in the soma area of SGNs close to the stimulating electrodes in severely deaf cochleae, this trophic effect does not result in increased SGN survival. PMID:17258411
Pseudophasic extraction method for the separation of ultra-fine minerals
Chaiko, David J.
2002-01-01
An improved aqueous-based extraction method for the separation and recovery of ultra-fine mineral particles. The process operates within the pseudophase region of the conventional aqueous biphasic extraction system where a low-molecular-weight, water soluble polymer alone is used in combination with a salt and operates within the pseudo-biphase regime of the conventional aqueous biphasic extraction system. A combination of low molecular weight, mutually immiscible polymers are used with or without a salt. This method is especially suited for the purification of clays that are useful as rheological control agents and for the preparation of nanocomposites.
Sator-Katzenschlager, Sabine M; Scharbert, Gisela; Kozek-Langenecker, Sibylle A; Szeles, Jozef C; Finster, Gabriele; Schiesser, Andreas W; Heinze, Georg; Kress, Hans Georg
2004-05-01
Acupuncture is an established adjuvant analgesic modality for the treatment of chronic pain. Electrical stimulation of acupuncture points is considered to increase acupuncture analgesia. In this prospective, randomized, double-blind, controlled study we tested the hypothesis that auricular electroacupuncture (EA) relieves pain more effectively than conventional manual auricular acupuncture (CO) in chronic low back pain patients with insufficient pain relief (visual analogue scale [VAS] > or = 5) treated with standardized analgesic therapy. Disposable acupuncture needles were inserted in the auricular acupuncture points 29, 40, and 55 of the dominant side and connected to a newly developed battery-powered miniaturized stimulator worn behind the ear. Patients were randomized into group EA (n = 31) with continuous low-frequency auricular EA (1 Hz biphasic constant current of 2 mA) and group CO (n = 30) without electrical stimulation (sham-electroacupuncture). Treatment was performed once weekly for 6 wk, and in each group needles were withdrawn 48 h after insertion. During the study period and a 3-mo follow-up, patients were asked to complete the McGill questionnaire. Psychological well being, activity level, quality of sleep, and pain intensity were assessed by means of VAS; moreover, analgesic drug consumption was documented. Pain relief was significantly better in group EA during the study and the follow-up period as compared with group CO. Similarly, psychological well-being, activity, and sleep were significantly improved in group EA versus group CO, the consumption of analgesic rescue medication was less, and more patients returned to full-time employment. Neuropathic pain in particular improved in patients treated with EA. There were no adverse side effects. These results are the first to demonstrate that continuous EA stimulation of auricular acupuncture points improves the treatment of chronic low back pain in an outpatient population. Continuous electrical stimulation of auricular acupuncture points using the new point stimulation device P-stim significantly decreases pain intensity and improves psychological well-being, activity, and sleep in chronic low back pain patients.
Mohamed, Mohamed A; Islas, Jose F; Schwartz, Robert J; Birla, Ravi K
Development of tissue-engineered hearts for treatment of myocardial infarction or biologic pacemakers has been hindered by the production of mostly arrhythmic or in-synergistic constructs. Electrical stimulation (ES) of these constructs has been shown to produce tissues with greater twitch force and better adrenergic response. To further our understanding of the mechanisms underlying the effect of ES, we fabricated a bioreactor capable of delivering continuous or intermittent waveforms of various types to multiple constructs simultaneously. In this study, we examined the effect of an intermittent biphasic square wave on our artificial heart muscle (AHM) composed of neonatal rat cardiac cells and fibrin gel. Twitch forces, spontaneous contraction rates, biopotentials, gene expression profiles, and histologic observations were examined for the ES protocol over a 12 day culture period. We demonstrate improved consistency between samples for twitch force and contraction rate, and higher normalized twitch force amplitudes for electrically stimulated AHMs. Improvements in electrophysiology within the AHM were noted by higher conduction velocities and lower latency in electrical response for electrically stimulated AHMs. Genes expressing key electrophysiologic and structural markers peaked at days 6 and 8 of culture, only a few days after the initiation of ES. These results may be used for optimization strategies to establish protocols for producing AHMs capable of replacing damaged heart tissue in either a contractile or electrophysiologic capacity. Optimized AHMs can lead to alternative treatments to heart failure and alleviate the limited donor supply crisis.
Mohamed, Mohamed A; Islas, Jose F; Schwartz, Robert J; Birla, Ravi K
2016-01-01
Development of tissue-engineered hearts for treatment of myocardial infarction or biological pacemakers has been hindered by the production of mostly arrhythmic or in-synergistic constructs. Electrical stimulation (ES) of these constructs has been shown to produce tissues with greater twitch force and better adrenergic response. In order to further our understanding of the mechanisms underlying the effect of ES, we fabricated a bioreactor capable of delivering continuous or intermittent waveforms of various types to multiple constructs simultaneously. In this study, we examined the effect of an intermittent biphasic square wave on our artificial heart muscle (AHM) composed of neonatal rat cardiac cells and fibrin gel. Twitch forces, spontaneous contraction rates, biopotentials, gene expression profiles, and histological observations were examined for the ES protocol over a 12 day culture period. We demonstrate improved consistency between samples for twitch force and contraction rate, and higher normalized twitch force amplitudes for electrically stimulated AHM. Improvements in electrophysiology within the AHM was noted by higher conduction velocities and lower latency in electrical response for electrically stimulated AHM. Genes expressing key electrophysiological and structural markers peaked at days 6 and 8 of culture, only a few days after the initiation of ES. These results may be used for optimization strategies to establish protocols for producing AHM capable of replacing damaged heart tissue in either a contractile or electrophysiological capacity. Optimized AHM can lead to alternative treatments to heart failure and alleviate the limited donor supply crisis. PMID:28459744
Shan, Xiaoqiang; Charles, Daniel S.; Xu, Wenqian; ...
2017-11-22
Manganese-based metal oxide electrode materials are of great importance in electrochemical energy storage for their favorable redox behavior, low cost and environmental-friendliness. However, their storage capacity and cycle life in aqueous Na-ion electrolytes is not satisfactory. In this paper, we report the development of a bi-phase cobalt-manganese oxide (Co-Mn-O) nanostructured electrode material, comprised of a layered MnO 2.H 2O birnessite phase and a (Co 0.83Mn 0.13Va 0.04)tetra(Co 0.38Mn 1.62) octaO 3.72 (Va: vacancy; tetra: tetrahedral sites; octa: octahedral sites) spinel phase, verified by neutron total scattering and pair distribution function analyses. The bi-phase Co-Mn-O material demonstrates an excellent storage capacitymore » towards Na-ions in an aqueous electrolyte (121 mA h g -1 at a scan rate of 1 mV s -1 in the half-cell and 81 mA h g -1 at a current density of 2 A g -1 after 5000 cycles in full-cells), as well as high rate performance (57 mA h g -1 a rate of 360 C). Electro-kinetic analysis and in situ X-ray diffraction measurements further confirm that the synergistic interaction between the spinel and layered phases, as well as the vacancy of the tetrahedral sites of spinel phase, contribute to the improved capacity and rate performance of the Co-Mn-O material by facilitating both diffusion-limited redox and capacitive charge storage processes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Albayrak, Onder, E-mail: albayrakonder@mersin.edu.tr
In the current study, boron doped biphasic calcium phosphate bioceramics consisting of a mixture of boron doped hydroxyapatite (BHA) and beta tricalcium phosphate (β-TCP) of varying BHA/β-TCP ratios were obtained after sintering stage. The effects of varying boron contents and different sintering temperatures on the BHA/β-TCP ratios and on the sinterability of the final products were investigated. Particle sizes and morphologies of the obtained precipitates were determined using SEM. XRD and FTIR investigation were conducted to detect the boron formation in the structure of HA and quantitative analysis was performed to determine the BHA/β-TCP ratio before and after sintering stage.more » In order to determine the sinterability of the obtained powders, pellets were prepared and sintered; the rates of densification were calculated and obtained results were correlated by SEM images. Also Vickers microhardness values of the sintered samples were determined. The experimental results verified that boron doped hydroxyapatite powders were obtained after sintering stage and the structure consists of a mixture of BHA and β-TCP. As the boron content used in the precipitation stage increases, β-TCP content of the BHA/β-TCP ratio increases but sinterability, density and microhardness deteriorate. As the sintering temperature increases, β-TCP content, density and microhardness of the samples increase and sinterability improves. - Highlights: • This is the first paper about boron doped biphasic calcium phosphate bioceramics. • Boron doping affects the structural and mechanical properties. • BHA/β-TCP ratio can be adjustable with boron content and sintering temperature.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shan, Xiaoqiang; Charles, Daniel S.; Xu, Wenqian
Manganese-based metal oxide electrode materials are of great importance in electrochemical energy storage for their favorable redox behavior, low cost and environmental-friendliness. However, their storage capacity and cycle life in aqueous Na-ion electrolytes is not satisfactory. In this paper, we report the development of a bi-phase cobalt-manganese oxide (Co-Mn-O) nanostructured electrode material, comprised of a layered MnO 2.H 2O birnessite phase and a (Co 0.83Mn 0.13Va 0.04)tetra(Co 0.38Mn 1.62) octaO 3.72 (Va: vacancy; tetra: tetrahedral sites; octa: octahedral sites) spinel phase, verified by neutron total scattering and pair distribution function analyses. The bi-phase Co-Mn-O material demonstrates an excellent storage capacitymore » towards Na-ions in an aqueous electrolyte (121 mA h g -1 at a scan rate of 1 mV s -1 in the half-cell and 81 mA h g -1 at a current density of 2 A g -1 after 5000 cycles in full-cells), as well as high rate performance (57 mA h g -1 a rate of 360 C). Electro-kinetic analysis and in situ X-ray diffraction measurements further confirm that the synergistic interaction between the spinel and layered phases, as well as the vacancy of the tetrahedral sites of spinel phase, contribute to the improved capacity and rate performance of the Co-Mn-O material by facilitating both diffusion-limited redox and capacitive charge storage processes.« less
A biphasic approach for the study of lift generation in soft porous media
NASA Astrophysics Data System (ADS)
Wu, Qianhong; Santhanam, Sridhar; Nathan, Rungun; Wang, Qiuyun
2017-04-01
Lift generation in highly compressible porous media under rapid compression continues to be an important topic in porous media flow. Although significant progress has been made, how to model different lifting forces during the compression process remains unclear. This is mainly because the input parameters of the existing theoretical studies, including the Darcy permeability of the porous media and the viscous damping coefficient of its solid phase, were manually adjusted so as to match the experimental data. In the current paper, we report a biphasic approach to experimentally and theoretically treat this limitation. Synthetic fibrous porous materials, whose permeability were precisely measured, were subsequently exposed to sudden impacts using a porous-walled cylinder-piston apparatus. The obtained time-dependent compression of the porous media, along with the permeability data, was applied in two different theoretical models to predict the pore pressure generation, a plug flow model and a consolidation model [Q. Wu et al., J. Fluid Mech. 542, 281 (2005a)]. Comparison between the theory and the experiments on the pore pressure distribution proved the validity of the consolidation model. Furthermore, a viscoelastic model, containing a nonlinear spring in conjunction with a linear viscoelastic generalized Maxwell mechanical module, was developed to characterize the solid phase lifting force. The model matched the experimental data very well. The paper presented herein, as one of the series studies on this topic, provides an important biphasic approach to characterize different forces that contribute to the lift generation in a soft porous medium under rapid compression.
Triple-channel microreactor for biphasic gas-liquid reactions: Photosensitized oxygenations.
Maurya, Ram Awatar; Park, Chan Pil; Kim, Dong-Pyo
2011-01-01
A triple-channel microreactor fabricated by means of a soft-lithography technique was devised for efficient biphasic gas-liquid reactions. The excellent performance of the microreactor was demonstrated by carrying out photosensitized oxygenations of α-terpinene, citronellol, and allyl alcohols.
Photochromism of 7-(N,N-diethylamino)-4'-hydroxyflavylium in a water-ionic liquid biphasic system.
Pina, Fernando; Parola, A Jorge; Melo, Maria João; Laia, César A T; Afonso, Carlos A M
2007-04-28
Photochromism of trans-4-(N,N-diethylamino)-2,4'-dihydroxychalcone, with formation of the photoproduct 7-(N,N-diethylamino)-4'-hydroxyflavylium, is promoted in the ionic liquid phase of a water/[bmim][PF6] biphasic system.
Engineering of oriented myocardium on three-dimensional micropatterned collagen-chitosan hydrogel.
Chiu, Loraine L Y; Janic, Katarina; Radisic, Milica
2012-04-30
Surface topography and electrical field stimulation are important guidance cues that aid the organization and contractility of cardiomyocytes in vivo. We report here on the use of these biomimetic cues in vitro to engineer an implantable contractile cardiac tissue. Photocrosslinkable collagen-chitosan hydrogels with microgrooves of 10 µm, 20 µm and 100 µm in width were fabricated using polydimethylsiloxane (PDMS) molds. The hydrogels were seeded with cardiomyocytes, placed into a bioreactor array with the microgrooves aligned with the electrical field lines, and stimulated with biphasic square pulses at 1 Hz and 2.5 V/cm. At Day 6, cardiomyocytes were aligned in the direction of the microgrooves. When cultivated without electrical stimulation, the excitation threshold of engineered cardiac tissues using micropatterned hydrogels was significantly lower than using smooth hydrogels, thus showing the importance of cell alignment to cardiac function. The success rate of achieving beating constructs was higher with the application of electrical stimulation. In addition, formation of dense contractile cardiac organoids was observed in groups with both biomimetic cues. The cultivation of cardiomyocytes on hydrogels with 10 µm grooves yielded 100% beating tissues with or without electrical stimulation, thus suggesting a smaller groove width is necessary for cells to communicate and form proper gap junctions. However, electrical field stimulation further increased cell density and enhanced tissue morphology which may be essential for the integration of the tissue construct to the native heart tissue upon implantation. The biodegradability of the hydrogel substrate allows for the rapid translation of the engineered, oriented cardiac tissue to clinical applications.
The 128-channel fully differential digital integrated neural recording and stimulation interface.
Shahrokhi, Farzaneh; Abdelhalim, Karim; Serletis, Demitre; Carlen, Peter L; Genov, Roman
2010-06-01
We present a fully differential 128-channel integrated neural interface. It consists of an array of 8 X 16 low-power low-noise signal-recording and generation circuits for electrical neural activity monitoring and stimulation, respectively. The recording channel has two stages of signal amplification and conditioning with and a fully differential 8-b column-parallel successive approximation (SAR) analog-to-digital converter (ADC). The total measured power consumption of each recording channel, including the SAR ADC, is 15.5 ¿W. The measured input-referred noise is 6.08 ¿ Vrms over a 5-kHz bandwidth, resulting in a noise efficiency factor of 5.6. The stimulation channel performs monophasic or biphasic voltage-mode stimulation, with a maximum stimulation current of 5 mA and a quiescent power dissipation of 51.5 ¿W. The design is implemented in 0.35-¿m complementary metal-oxide semiconductor technology with the channel pitch of 200 ¿m for a total die size of 3.4 mm × 2.5 mm and a total power consumption of 9.33 mW. The neural interface was validated in in vitro recording of a low-Mg(2+)/high-K(+) epileptic seizure model in an intact hippocampus of a mouse.
Aqueous biphasic extraction process with pH and particle control
Chaiko, David J.; Mensah-Biney, R.
1995-01-01
A process for aqueous biphasic extraction of metallic oxides and the like from substances containing silica. Control of media pH enables efficient and effective partition of mixture components. The inventive method may be employed to remove excess silica from kaolin clay.
Triple-channel microreactor for biphasic gas–liquid reactions: Photosensitized oxygenations
Maurya, Ram Awatar; Park, Chan Pil
2011-01-01
Summary A triple-channel microreactor fabricated by means of a soft-lithography technique was devised for efficient biphasic gas–liquid reactions. The excellent performance of the microreactor was demonstrated by carrying out photosensitized oxygenations of α-terpinene, citronellol, and allyl alcohols. PMID:21915221
Haase, Andreas; Hartung, Klaus
2009-01-01
Kinetic properties of the Na-Ca exchanger (guinea pig NCX1) expressed in Xenopus oocytes were investigated with excised membrane patches in the inside-out configuration and photolytic Ca2+ concentration jumps with either 5 mM extracellular Sr2+ or Ba2+. After a Ca2+ concentration jump on the cytoplasmic side, the exchanger performed Sr-Ca or Ba-Ca exchange. In the Sr-Ca mode, currents are transient and decay in a monoexponential manner similar to that of currents in the Ca-Ca exchange mode described before. Currents recorded in the Ba-Ca mode are also transient, but the decay is biphasic. In the Sr-Ca mode the amount of charge translocated increases at negative potentials in agreement with experiments performed in the Ca-Ca mode. In the Ba-Ca mode the total amount of charge translocated after a Ca2+ concentration jump is ∼4 to 5 times that in Ca-Ca or Sr-Ca mode. In the Ba-Ca mode the voltage dependence of charge translocation depends on the Ca2+ concentration on the cytosolic side before the Ca2+ concentration jump. At low initial Ca2+ levels (∼0.5 μM), charge translocation is voltage independent. At a higher initial concentration (1 μM Ca2+), the amount of charge translocated increases at positive potentials. Biphasic relaxation of the current was also observed in the Ca-Ca mode if the external Ca2+ concentration was reduced to ≤0.5 mM. The results reported here and in previous publications can be described by using a 6-state model with two voltage-dependent conformational transitions. PMID:19486679
Stephani, Caspar; Paulus, Walter; Sommer, Martin
2016-01-01
The objective of this study was to investigate the significance of pulse configurations and current direction for corticospinal activation using transcranial magnetic stimulation (TMS). In 11 healthy subjects (8 female), a motor map for the motor evoked potentials (MEPs) recorded from the first dorsal interosseus (FDI), abductor digiti minimi (ADM), extensor carpi radialis, and biceps brachii (BB) muscles of the dominant side was established. Starting from a manually determined hot spot of the FDI representation, we measured MEPs at equal oriented points on an hexagonal grid, with 7 MEPs recorded at each point, using the following pulse configurations: posteriorly directed monophasic (Mo-P), anteriorly directed monophasic (Mo-A), biphasic with the more relevant second cycle oriented posteriorly (Bi-P) as well as a reversed biphasic condition (Bi-A). For each pulse configuration, a hot spot was determined and a center of gravity (CoG) was calculated. We found that the factor current direction had an effect on location of the CoG-adjusted hot spot in the cranio-caudal axis but not in the latero-medial direction with anteriorly directed pulses locating the CoG more anteriorly and vice versa. In addition, the CoG for the FDI was more laterally than the cortical representations for the abductor digiti minimi (ADM) and extensor carpi radialis (ECR) which were registered as well. The results indicate that direction of the current pulse should be taken into account for determination of the motor representation of a muscle by TMS. © 2015 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.
Biphasic non-adrenergic, non-cholinergic relaxations of the mouse anococcygeus muscle.
Gibson, A.; Yu, O.
1983-01-01
Trains of field stimulation of 60 s duration caused a biphasic relaxation of carbachol (50 microM)-induced tone in the mouse anococcygeus. The optimal pulse frequency and width were 10 Hz and 1 ms respectively. Tetrodotoxin (31, 124, and 310 nM) caused a dose-dependent reduction in the magnitude of both phases. Neither phase was affected by (+/-)-propranolol (1 microM), neostigmine (1 microM), (+)-tubocurarine (100 microM), or apamin (500 nM). Biphasic relaxations were observed in muscles from 6-hydroxydopamine pretreated mice. Haemolysed blood (10, 40, and 100 microliter/ml) reduced the magnitude of the first phase of nerve-induced relaxation to a greater extent than the second. This effect was reversible. Following a prolonged train of inhibitory nerve stimulation (10 Hz; 10 min) the magnitude of the first phase was reduced only slightly, but the second markedly. The possible relationships between the biphasic relaxation to field stimulation and putative non-adrenergic, non-cholinergic transmitters in the mouse anococcygeus are discussed. PMID:6652345
Chun, Cheolbyong; Lee, Deuk Yong; Kim, Jin-Tae; Kwon, Mi-Kyung; Kim, Young-Zu; Kim, Seok-Soon
2016-01-01
Hyaluronic acid (HA) dermal biphasic fillers are synthesized for their efficacy in correcting aesthetic defects such as wrinkles, scars and facial contouring defects. The fillers consist of crosslinked HA microspheres suspended in a noncrosslinked HA. To extend the duration of HAs within the dermis and obtain the particle texturing feel, HAs are crosslinked to obtain the suitable mechanical properties. Hyaluronic acid (HA) dermal biphasic fillers are prepared by mixing the crosslinked HA microspheres and the noncrosslinked HAs. The elastic modulus of the fillers increased with raising the volume fraction of the microspheres. The mechanical properties and the particle texturing feel of the fillers made from crosslinked HA (1058 kDa) microspheres suspended in noncrosslinked HA (1368 kDa) are successfully achieved, which are adequate for the fillers. Dermal biphasic HA fillers made from 1058 kDa exhibit suitable elastic moduli (211 to 420 Pa) and particle texturing feel (scale 7 ~ 9).
A promising tritium breeding material: Nanostructured 2Li2TiO3-Li4SiO4 biphasic ceramic pebbles
NASA Astrophysics Data System (ADS)
Dang, Chen; Yang, Mao; Gong, Yichao; Feng, Lan; Wang, Hailiang; Shi, Yanli; Shi, Qiwu; Qi, Jianqi; Lu, Tiecheng
2018-03-01
As an advanced tritium breeder material for the fusion reactor blanket of the International Thermonuclear Experimental Reactor (ITER), Li2TiO3-Li4SiO4 biphasic ceramic has attracted widely attention due to its merits. In this paper, the uniform precursor powders were prepared by hydrothermal method, and nanostructured 2Li2TiO3-Li4SiO4 biphasic ceramic pebbles were fabricated by an indirect wet method at the first time. In addition, the composition dependence (x/y) of their microstructure characteristics and mechanical properties were investigated. The results indicated that the crush load of biphasic ceramic pebbles was better than that of single phase ceramic pebbles under identical conditions. The 2Li2TiO3-Li4SiO4 ceramic pebbles have good morphology, small grain size (90 nm), satisfactory crush load (37.8 N) and relative density (81.8 %T.D.), which could be a promising breeding material in the future fusion reactor.
Biphasic responses in multi-site phosphorylation systems.
Suwanmajo, Thapanar; Krishnan, J
2013-12-06
Multi-site phosphorylation systems are repeatedly encountered in cellular biology and multi-site modification is a basic building block of post-translational modification. In this paper, we demonstrate how distributive multi-site modification mechanisms by a single kinase/phosphatase pair can lead to biphasic/partial biphasic dose-response characteristics for the maximally phosphorylated substrate at steady state. We use simulations and analysis to uncover a hidden competing effect which is responsible for this and analyse how it may be accentuated. We build on this to analyse different variants of multi-site phosphorylation mechanisms showing that some mechanisms are intrinsically not capable of displaying this behaviour. This provides both a consolidated understanding of how and under what conditions biphasic responses are obtained in multi-site phosphorylation and a basis for discriminating between different mechanisms based on this. We also demonstrate how this behaviour may be combined with other behaviour such as threshold and bistable responses, demonstrating the capacity of multi-site phosphorylation systems to act as complex molecular signal processors.
Shi, Yi; Gao, Ping; Gong, Yuchuan; Ping, Haili
2010-10-04
A biphasic in vitro test method was used to examine release profiles of a poorly soluble model drug, celecoxib (CEB), from its immediate release formulations. Three formulations of CEB were investigated in this study, including a commercial Celebrex capsule, a solution formulation (containing cosolvent and surfactant) and a supersaturatable self-emulsifying drug delivery system (S-SEDDS). The biphasic test system consisted of an aqueous buffer and a water-immiscible organic solvent (e.g., octanol) with the use of both USP II and IV apparatuses. The aqueous phase provided a nonsink dissolution medium for CEB, while the octanol phase acted as a sink for CEB partitioning. For comparison, CEB concentration-time profiles of these formulations in the aqueous medium under either a sink condition or a nonsink condition were also explored. CEB release profiles of these formulations observed in the aqueous medium from either the sink condition test, the nonsink condition test, or the biphasic test have little relevance to the pharmacokinetic observations (e.g., AUC, C(max)) in human subjects. In contrast, a rank order correlation among the three CEB formulations is obtained between the in vitro AUC values of CEB from the octanol phase up to t = 2 h and the in vivo mean AUC (or C(max)) values. As the biphasic test permits a rapid removal of drug from the aqueous phase by partitioning into the organic phase, the amount of drug in the organic phase represents the amount of drug accumulated in systemic circulation in vivo. This hypothesis provides the scientific rationale for the rank order relationship among these CEB formulations between their CEB concentrations in the organic phase and the relative AUC or C(max). In addition, the biphasic test method permits differentiation and discrimination of key attributes among the three different CEB formulations. This work demonstrates that the biphasic in vitro test method appears to be useful as a tool in evaluating performance of formulations of poorly water-soluble drugs and to provide potential for establishing an in vitro-in vivo relationship.
Weise, Louis D.; Panfilov, Alexander V.
2013-01-01
We introduce an electromechanical model for human cardiac tissue which couples a biophysical model of cardiac excitation (Tusscher, Noble, Noble, Panfilov, 2006) and tension development (adjusted Niederer, Hunter, Smith, 2006 model) with a discrete elastic mass-lattice model. The equations for the excitation processes are solved with a finite difference approach, and the equations of the mass-lattice model are solved using Verlet integration. This allows the coupled problem to be solved with high numerical resolution. Passive mechanical properties of the mass-lattice model are described by a generalized Hooke's law for finite deformations (Seth material). Active mechanical contraction is initiated by changes of the intracellular calcium concentration, which is a variable of the electrical model. Mechanical deformation feeds back on the electrophysiology via stretch-activated ion channels whose conductivity is controlled by the local stretch of the medium. We apply the model to study how stretch-activated currents affect the action potential shape, restitution properties, and dynamics of spiral waves, under constant stretch, and dynamic stretch caused by active mechanical contraction. We find that stretch conditions substantially affect these properties via stretch-activated currents. In constantly stretched medium, we observe a substantial decrease in conduction velocity, and an increase of action potential duration; whereas, with dynamic stretch, action potential duration is increased only slightly, and the conduction velocity restitution curve becomes biphasic. Moreover, in constantly stretched medium, we find an increase of the core size and period of a spiral wave, but no change in rotation dynamics; in contrast, in the dynamically stretching medium, we observe spiral drift. Our results may be important to understand how altered stretch conditions affect the heart's functioning. PMID:23527160
Weise, Louis D; Panfilov, Alexander V
2013-01-01
We introduce an electromechanical model for human cardiac tissue which couples a biophysical model of cardiac excitation (Tusscher, Noble, Noble, Panfilov, 2006) and tension development (adjusted Niederer, Hunter, Smith, 2006 model) with a discrete elastic mass-lattice model. The equations for the excitation processes are solved with a finite difference approach, and the equations of the mass-lattice model are solved using Verlet integration. This allows the coupled problem to be solved with high numerical resolution. Passive mechanical properties of the mass-lattice model are described by a generalized Hooke's law for finite deformations (Seth material). Active mechanical contraction is initiated by changes of the intracellular calcium concentration, which is a variable of the electrical model. Mechanical deformation feeds back on the electrophysiology via stretch-activated ion channels whose conductivity is controlled by the local stretch of the medium. We apply the model to study how stretch-activated currents affect the action potential shape, restitution properties, and dynamics of spiral waves, under constant stretch, and dynamic stretch caused by active mechanical contraction. We find that stretch conditions substantially affect these properties via stretch-activated currents. In constantly stretched medium, we observe a substantial decrease in conduction velocity, and an increase of action potential duration; whereas, with dynamic stretch, action potential duration is increased only slightly, and the conduction velocity restitution curve becomes biphasic. Moreover, in constantly stretched medium, we find an increase of the core size and period of a spiral wave, but no change in rotation dynamics; in contrast, in the dynamically stretching medium, we observe spiral drift. Our results may be important to understand how altered stretch conditions affect the heart's functioning.
Biphasic Effect of Nitric Oxide on the Cardiac Voltage-dependent Anion Channel
Cheng, Qunli; Sedlic, Filip; Pravdic, Danijel; Bosnjak, Zeljko J.; Kwok, Wai-Meng
2010-01-01
Nitric oxide (NO˙) effects on the cardiac mitochondrial voltage-dependent anion channel (VDAC) are unknown. The effects of exogenous NO˙ on VDAC purified from rat hearts were investigated in this study. When incorporated into lipid bilayers, VDAC was inhibited directly by an NO˙ donor, PAPA NONOate, in a concentration-dependent biphasic manner. This was prevented by an NO˙ scavenger, PTIO. The effect paralleled that of NO˙ in delaying the opening of the mitochondrial permeability transition (PT) pore. These biphasic effects on the cardiac VDAC and the PT pore reveal a tandem impact of NO˙ on the two mitochondrial entities. PMID:21156174
Nishiyama, Masahiro; Fujita, Kyoko; Maruyama, Azusa; Nagase, Hiroaki
2014-11-01
Acute encephalopathy with biphasic seizures and late reduced diffusion (AESD) presents a distinct clinical course of biphasic seizures and impaired consciousness. These symptoms are followed by reduced diffusion in the subcortical white matter on magnetic resonance imaging that is typically observed between 3 and 9 days after illness onset. Here, we report two cases of traumatic head injury with clinical and radiological features similar to those for AESD. The similarities between our cases and AESD may be useful in understanding the pathogenesis of AESD. Copyright © 2013 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.
Aqueous biphasic extraction process with pH and particle control
Chaiko, D.J.; Mensah-Biney, R.
1995-05-02
A process for aqueous biphasic extraction of metallic oxides and the like from substances containing silica. Control of media pH enables efficient and effective partition of mixture components. The inventive method may be employed to remove excess silica from kaolin clay. 2 figs.
Becker, Maria; Benromano, Tali; Shahar, Abraham; Nevo, Zvi; Pick, Chaim G
2014-12-01
Peripheral neuropathy is one of the main complications of diabetes mellitus. The current study demonstrated the bimodal pattern of diabetic peripheral neuropathy found in the behavioral study of pain perception in parallel to the histopathological findings in dorsal root ganglia (DRGs) neurons and satellite Schwann cell basement membranes. A gradual decrease in heparan sulfate content, with a reciprocal increase in deposited laminin in the basement membranes of dorsal root ganglia Schwann cells, was shown in streptozotocin-treated rats. In addition, the characteristic biphasic pain profiles were demonstrated in diabetic rats, as shown by hypersensitivity at the third week and hyposensitivity at the tenth week post-streptozotocin injection, accompanied by a continuous decrease in the sciatic nerve conduction velocity. It appears that these basal membrane abnormalities in content of heparan sulfate and laminin, noticed in diabetic rats, may underline the primary damage in dorsal ganglion sensory neurons, simultaneously with the bimodal painful profile in diabetic peripheral neuropathy, simulating the scenario of filtration rate in diabetic kidney.
A biphasic model for bleeding in soft tissue
NASA Astrophysics Data System (ADS)
Chang, Yi-Jui; Chong, Kwitae; Eldredge, Jeff D.; Teran, Joseph; Benharash, Peyman; Dutson, Erik
2017-11-01
The modeling of blood passing through soft tissues in the body is important for medical applications. The current study aims to capture the effect of tissue swelling and the transport of blood under bleeding or hemorrhaging conditions. The soft tissue is considered as a non-static poro-hyperelastic material with liquid-filled voids. A biphasic formulation effectively, a generalization of Darcy's law-is utilized, treating the phases as occupying fractions of the same volume. The interaction between phases is captured through a Stokes-like friction force on their relative velocities and a pressure that penalizes deviations from volume fractions summing to unity. The soft tissue is modeled as a hyperelastic material with a typical J-shaped stress-strain curve, while blood is considered as a Newtonian fluid. The method of Smoothed Particle Hydrodynamics is used to discretize the conservation equations based on the ease of treating free surfaces in the liquid. Simulations of swelling under acute hemorrhage and of draining under gravity and compression will be demonstrated. Ongoing progress in modeling of organ tissues under injuries and surgical conditions will be discussed.
Detecting Extracellular Carbonic Anhydrase Activity Using Membrane Inlet Mass Spectrometry
Delacruz, Joannalyn; Mikulski, Rose; Tu, Chingkuang; Li, Ying; Wang, Hai; Shiverick, Kathleen T.; Frost, Susan C.; Horenstein, Nicole A.; Silverman, David N.
2010-01-01
Current research into the function of carbonic anhydrases in cell physiology emphasizes the role of membrane-bound carbonic anhydrases, such as carbonic anhydrase IX that has been identified in malignant tumors and is associated with extracellular acidification as a response to hypoxia. We present here a mass spectrometric method to determine the extent to which total carbonic anhydrase activity is due to extracellular carbonic anhydrase in whole cell preparations. The method is based on the biphasic rate of depletion of 18O from CO2 measured by membrane inlet mass spectrometry. The slopes of the biphasic depletion are a sensitive measure of the presence of carbonic anhydrase outside and inside of the cells. This property is demonstrated here using suspensions of human red cells in which external carbonic anhydrase was added to the suspending solution. It is also applied to breast and prostate cancer cells which both express exofacial carbonic anhydrase IX. Inhibition of external carbonic anhydrase is achieved by use of a membrane impermeant inhibitor that was synthesized for this purpose, p-aminomethylbenzenesulfonamide attached to a polyethyleneglycol polymer. PMID:20417171
A Brain-Machine-Brain Interface for Rewiring of Cortical Circuitry after Traumatic Brain Injury
2015-11-01
or asymmetric biphasic current pulses up to ~100 A with passive discharge , and W-level digital signal processing 6 (DSP) unit for real-time SAR...voltage compliance of 4.68 V with a 5 V supply, when configured for monophasic stimulation with passive discharge . The programmable microstimulator...superficial aspects of the corona radiate was evident. In the full study, impact parameters will be altered slightly (somewhat larger impact tip, slightly
Preparation of highly infective Leishmania promastigotes by cultivation on SNB-9 biphasic medium.
Grekov, Igor; Svobodová, Milena; Nohýnková, Eva; Lipoldová, Marie
2011-12-01
Protozoan hemoflagellates Leishmania are causative agents of leishmaniases and an important biological model for study of host-pathogen interaction. A wide range of methods of Leishmania cultivation on both biphasic and liquid media is available. Biphasic media are considered to be superior for initial isolation of the parasites and obtaining high promastigote infectivity; however, liquid media are more suitable for large-scale experiments. The aim of the present study was the adaptation and optimization of the cultivation of Leishmania promastigotes on a biphasic SNB-9 (saline-neopeptone-blood 9) medium that was originally developed for Trypanosoma cultivation and combines the advantages of biphasic and liquid media. SNB-9 medium is characterized with a large volume of the liquid phase, which facilitates the manipulation with the culture and provides parasite yields comparable to parasite yields on such liquid medium as Schneider's Insect Medium. We demonstrate that SNB-9 very considerably surpasses Schneider's Insect Medium in in vitro infectivity of the parasites. Additionally, we show that the ratio of apoptotic parasites, which are important for the infectivity of the inoculum, in Leishmania culture in SNB-9 is higher than in Leishmania culture in Schneider's Insect Medium. Thus, we demonstrate that the cultivation of Leishmania on SNB-9 reliably yields highly infective promastigotes suitable for experimental infection. Copyright © 2011 Elsevier B.V. All rights reserved.
Locher, Kathrin; Borghardt, Jens M; Frank, Kerstin J; Kloft, Charlotte; Wagner, Karl G
2016-08-01
Biphasic dissolution models are proposed to have good predictive power for the in vivo absorption. The aim of this study was to improve our previously introduced mini-scale dissolution model to mimic in vivo situations more realistically and to increase the robustness of the experimental model. Six dissolved APIs (BCS II) were tested applying the improved mini-scale biphasic dissolution model (miBIdi-pH-II). The influence of experimental model parameters including various excipients, API concentrations, dual paddle and its rotation speed was investigated. The kinetics in the biphasic model was described applying a one- and four-compartment pharmacokinetic (PK) model. The improved biphasic dissolution model was robust related to differing APIs and excipient concentrations. The dual paddle guaranteed homogenous mixing in both phases; the optimal rotation speed was 25 and 75rpm for the aqueous and the octanol phase, respectively. A one-compartment PK model adequately characterised the data of fully dissolved APIs. A four-compartment PK model best quantified dissolution, precipitation, and partitioning also of undissolved amounts due to realistic pH profiles. The improved dissolution model is a powerful tool for investigating the interplay between dissolution, precipitation and partitioning of various poorly soluble APIs (BCS II). In vivo-relevant PK parameters could be estimated applying respective PK models. Copyright © 2016 Elsevier B.V. All rights reserved.
Son, Jun-Sik; Kim, Su-Gwan; Oh, Ji-Su; Appleford, Mark; Oh, Sunho; Ong, Joo L; Lee, Kyu-Bok
2011-12-15
This study presents a novel design of a ceramic/polymer biphasic combination scaffold that mimics natural bone structures and is used as a bone graft substitute. To mimic the natural bone structures, the outside cortical-like shells were composed of porous hydroxyapatite (HA) with a hollow interior using a polymeric template-coating technique; the inner trabecular-like core consisted of porous poly(D,L-lactic acid) (PLA) that was loaded with dexamethasone (DEX) and was directly produced using a particle leaching/gas forming technique to create the inner diameter of the HA scaffold. It was observed that the HA and PLA parts of the fabricated HA/PLA biphasic scaffold contained open and interconnected pore structures, and the boundary between both parts was tightly connected without any gaps. It was found that the structure of the combination scaffold was analogous to that of natural bone based on micro-computed tomography analysis. Additionally, the dense, uniform apatite layer was formed on the surface of the HA/PLA biphasic scaffold through a biomimetic process, and DEX was successfully released from the PLA of the biphasic scaffold over a 1-month period. This release caused human embryonic palatal mesenchyme cells to proliferate, differentiate, produce ECM, and form tissue in vitro. Therefore, it was concluded that this functionally graded scaffold is similar to natural bone and represents a potential bone-substitute material. Copyright © 2011 Wiley Periodicals, Inc.
Dennewald, Danielle; Hortsch, Ralf; Weuster-Botz, Dirk
2012-01-01
As clear structure-activity relationships are still rare for ionic liquids, preliminary experiments are necessary for the process development of biphasic whole-cell processes involving these solvents. To reduce the time investment and the material costs, the process development of such biphasic reaction systems would profit from a small-scale high-throughput platform. Exemplarily, the reduction of 2-octanone to (R)-2-octanol by a recombinant Escherichia coli in a biphasic ionic liquid/water system was studied in a miniaturized stirred-tank bioreactor system allowing the parallel operation of up to 48 reactors at the mL-scale. The results were compared to those obtained in a 20-fold larger stirred-tank reactor. The maximum local energy dissipation was evaluated at the larger scale and compared to the data available for the small-scale reactors, to verify if similar mass transfer could be obtained at both scales. Thereafter, the reaction kinetics and final conversions reached in different reactions setups were analysed. The results were in good agreement between both scales for varying ionic liquids and for ionic liquid volume fractions up to 40%. The parallel bioreactor system can thus be used for the process development of the majority of biphasic reaction systems involving ionic liquids, reducing the time and resource investment during the process development of this type of applications. Copyright © 2011. Published by Elsevier B.V.
Structural phase transition and multiferroic properties of Bi0.8A0.2Fe0.8Mn0.2O3 (A = Ca, Sr)
NASA Astrophysics Data System (ADS)
Rout, Jyoshna; Choudhary, R. N. P.
2018-05-01
The multiferroic BiFeO3 and Bi0.8A0.2Fe0.8Mn0.2O3 (A = Ca, Sr) have been synthesized using direct mechanosynthesis. Detailed investigations were made on the influence of Ca-Mn and Sr-Mn co-substitutions on the structure change, electric and magnetic properties of the BFO. Rietveld refinement on the XRD pattern of the modified samples clarifies the structural transition from R3c:H (parent BiFeO3) to the biphasic structure (R3c: H + Pnma). Scanning electron micrographs confirmed the polycrystalline nature of the materials and each of the microstructure comprised of uniformly distributed grains with less porosity. The dielectric measurements reveal that enhancement in dielectric properties due to the reduction of oxygen vacancies by substitutional ions. Studies of frequency-dependence of impedance and related parameters exhibit that the electrical properties of the materials are strongly dependent on temperature, and bear a good correlation with its microstructure. The bulk resistance (evaluated from impedance studies) is found to decrease with increasing temperature for all the samples. The alternating current (ac) conductivity spectra show a typical signature of an ionic conducting system, and are found to obey Jonscher's universal power law. Preliminary studies of magnetic characteristics of the samples reveal enhanced magnetization for Ca-Mn co-substituted sample. The magnetoelectric coefficient as the function of applied dc magnetizing field under fixed ac magnetic field 15.368 Oe is measured and this ME coefficient αME corresponds to induction of polarization by a magnetic field.
Farahmand, Sina; Maghami, Mohammad Hossein; Sodagar, Amir M
2012-01-01
This paper reports on the design of a programmable, high output impedance, large voltage compliance microstimulator for low-voltage biomedical applications. A 6-bit binary-weighted digital to analog converter (DAC) is used to generate biphasic stimulus current pulses. A compact current mirror with large output voltage compliance and high output resistance conveys the current pulses to the target tissue. Designed and simulated in a standard 0.18µm CMOS process, the microstimulator circuit is capable of delivering a maximum stimulation current of 160µA to a 10-kΩ resistive load. Operated at a 1.8-V supply voltage, the output stage exhibits a voltage compliance of 1.69V and output resistance of 160MΩ at full scale stimulus current. Layout of the core microelectrode circuit measures 25.5µm×31.5µm.
The calcium–frequency response in the rat ventricular myocyte: an experimental and modelling study
Gattoni, Sara; Røe, Åsmund Treu; Frisk, Michael; Louch, William E.; Niederer, Steven A.
2016-01-01
Key points In the majority of species, including humans, increased heart rate increases cardiac contractility. This change is known as the force–frequency response (FFR). The majority of mammals have a positive force–frequency relationship (FFR). In rat the FFR is controversial.We derive a species‐ and temperature‐specific data‐driven model of the rat ventricular myocyte.As a measure of the FFR, we test the effects of changes in frequency and extracellular calcium on the calcium–frequency response (CFR) in our model and three altered models.The results show a biphasic peak calcium–frequency response, due to biphasic behaviour of the ryanodine receptor and the combined effect of the rapid calmodulin buffer and the frequency‐dependent increase in diastolic calcium.Alterations to the model reveal that inclusion of Ca2+/calmodulin‐dependent protein kinase II (CAMKII)‐mediated L‐type channel and transient outward K+ current activity enhances the positive magnitude calcium–frequency response, and the absence of CAMKII‐mediated increase in activity of the sarco/endoplasmic reticulum Ca2+‐ATPase induces a negative magnitude calcium–frequency response. Abstract An increase in heart rate affects the strength of cardiac contraction by altering the Ca2+ transient as a response to physiological demands. This is described by the force–frequency response (FFR), a change in developed force with pacing frequency. The majority of mammals, including humans, have a positive FFR, and cardiac contraction strength increases with heart rate. However, the rat and mouse are exceptions, with the majority of studies reporting a negative FFR, while others report either a biphasic or a positive FFR. Understanding the differences in the FFR between humans and rats is fundamental to interpreting rat‐based experimental findings in the context of human physiology. We have developed a novel model of rat ventricular electrophysiology and calcium dynamics, derived predominantly from experimental data recorded under physiological conditions. As a measure of FFR, we tested the effects of changes in stimulation frequency and extracellular calcium concentration on the simulated Ca2+ transient characteristics and showed a biphasic peak calcium–frequency relationship, consistent with recent observations of a shift from negative to positive FFR when approaching the rat physiological frequency range. We tested the hypotheses that (1) inhibition of Ca2+/calmodulin‐dependent protein kinase II (CAMKII)‐mediated increase in sarco/endoplasmic reticulum Ca2+‐ATPase (SERCA) activity, (2) CAMKII modulation of SERCA, L‐type channel and transient outward K+ current activity and (3) Na+/K+ pump dynamics play a significant role in the rat FFR. The results reveal a major role for CAMKII modulation of SERCA in the peak Ca2+–frequency response, driven most significantly by the cytosolic calcium buffering system and changes in diastolic Ca2+. PMID:26916026
Cellular responses to endogenous electrochemical gradients in morphological development
NASA Technical Reports Server (NTRS)
Desrosiers, M. F.
1996-01-01
Endogenous electric fields give vectorial direction to morphological development in Zea mays (sweet corn) in response to gravity. Endogenous electrical fields are important because of their ability to influence: (1) intercellular organization and development through their effects on the membrane potential, (2) direct effects such as electrophoresis of membrane components, and (3) both intracellular and extracellular transport of charged compounds. Their primary influence is in providing a vectorial dimension to the progression of one physiological state to another. Gravity perception and transduction in the mesocotyl of vascular plants is a complex interplay of electrical and chemical gradients which ultimately provide the driving force for the resulting growth curvature called gravitropism. Among the earliest events in gravitropism are changes in impedance, voltage, and conductance between the vascular stele and the growth tissues, the cortex, in the mesocotyl of corn shoots. In response to gravistimulation: (1) a potential develops which is vectorial and of sufficient magnitude to be a driving force for transport between the vascular stele and cortex, (2) the ionic conductance changes within seconds showing altered transport between the tissues, and (3) the impedance shows a transient biphasic response which indicates that the mobility of charges is altered following gravistimulation and is possibly the triggering event for the cascade of actions which leads to growth curvature.
Mechanical signaling coordinates the embryonic heartbeat.
Chiou, Kevin K; Rocks, Jason W; Chen, Christina Yingxian; Cho, Sangkyun; Merkus, Koen E; Rajaratnam, Anjali; Robison, Patrick; Tewari, Manorama; Vogel, Kenneth; Majkut, Stephanie F; Prosser, Benjamin L; Discher, Dennis E; Liu, Andrea J
2016-08-09
In the beating heart, cardiac myocytes (CMs) contract in a coordinated fashion, generating contractile wave fronts that propagate through the heart with each beat. Coordinating this wave front requires fast and robust signaling mechanisms between CMs. The primary signaling mechanism has long been identified as electrical: gap junctions conduct ions between CMs, triggering membrane depolarization, intracellular calcium release, and actomyosin contraction. In contrast, we propose here that, in the early embryonic heart tube, the signaling mechanism coordinating beats is mechanical rather than electrical. We present a simple biophysical model in which CMs are mechanically excitable inclusions embedded within the extracellular matrix (ECM), modeled as an elastic-fluid biphasic material. Our model predicts strong stiffness dependence in both the heartbeat velocity and strain in isolated hearts, as well as the strain for a hydrogel-cultured CM, in quantitative agreement with recent experiments. We challenge our model with experiments disrupting electrical conduction by perfusing intact adult and embryonic hearts with a gap junction blocker, β-glycyrrhetinic acid (BGA). We find this treatment causes rapid failure in adult hearts but not embryonic hearts-consistent with our hypothesis. Last, our model predicts a minimum matrix stiffness necessary to propagate a mechanically coordinated wave front. The predicted value is in accord with our stiffness measurements at the onset of beating, suggesting that mechanical signaling may initiate the very first heartbeats.
Haider, Mansoor A.; Guilak, Farshid
2009-01-01
Articular cartilage exhibits viscoelasticity in response to mechanical loading that is well described using biphasic or poroelastic continuum models. To date, boundary element methods (BEMs) have not been employed in modeling biphasic tissue mechanics. A three dimensional direct poroelastic BEM, formulated in the Laplace transform domain, is applied to modeling stress relaxation in cartilage. Macroscopic stress relaxation of a poroelastic cylinder in uni-axial confined compression is simulated and validated against a theoretical solution. Microscopic cell deformation due to poroelastic stress relaxation is also modeled. An extended Laplace inversion method is employed to accurately represent mechanical responses in the time domain. PMID:19851478
Haider, Mansoor A; Guilak, Farshid
2007-06-15
Articular cartilage exhibits viscoelasticity in response to mechanical loading that is well described using biphasic or poroelastic continuum models. To date, boundary element methods (BEMs) have not been employed in modeling biphasic tissue mechanics. A three dimensional direct poroelastic BEM, formulated in the Laplace transform domain, is applied to modeling stress relaxation in cartilage. Macroscopic stress relaxation of a poroelastic cylinder in uni-axial confined compression is simulated and validated against a theoretical solution. Microscopic cell deformation due to poroelastic stress relaxation is also modeled. An extended Laplace inversion method is employed to accurately represent mechanical responses in the time domain.
Houshmand, Fariba; Faghihi, Mahdieh; Imani, Alireza; Kheiri, Soleiman
2017-01-01
The onset of acute myocardial ischemia (MI) is accompanied by a rapid increase in electrical instability and often fatal ventricular arrhythmias. This study investigated that whether oxytocin (OT) can modulate ischemia-induced arrhythmias and considered relationships between the severity of arrhythmia and the electrocardiogram parameters during ischemia. OT (0.0001-1 μg) was administrated intraperitoneally 30 min before ischemia. To examine receptor involved, a selective OT-receptor antagonist, atosiban (ATO), was infused 10 min before OT. OT caused a significant and biphasic dose-dependent reduction in ectopic heart activity and arrhythmia score. OT doses that reduced ventricular arrhythmia elicited significant increase in QT interval. OT attenuated the electrophysiological changes associated with MI and there was significant direct relationship between QRS duration and arrhythmia score. ATO treatment reduced beneficial effects of OT on arrhythmogenesis. Nevertheless, ATO failed to alter OT effects on premature ventricular contractions. We assume that the ability of OT to modulate the electrical activity of the heart may play an important role in the antiarrhythmic actions of OT.
Houshmand, Fariba; Faghihi, Mahdieh; Imani, Alireza; Kheiri, Soleiman
2017-01-01
The onset of acute myocardial ischemia (MI) is accompanied by a rapid increase in electrical instability and often fatal ventricular arrhythmias. This study investigated that whether oxytocin (OT) can modulate ischemia-induced arrhythmias and considered relationships between the severity of arrhythmia and the electrocardiogram parameters during ischemia. OT (0.0001–1 μg) was administrated intraperitoneally 30 min before ischemia. To examine receptor involved, a selective OT-receptor antagonist, atosiban (ATO), was infused 10 min before OT. OT caused a significant and biphasic dose-dependent reduction in ectopic heart activity and arrhythmia score. OT doses that reduced ventricular arrhythmia elicited significant increase in QT interval. OT attenuated the electrophysiological changes associated with MI and there was significant direct relationship between QRS duration and arrhythmia score. ATO treatment reduced beneficial effects of OT on arrhythmogenesis. Nevertheless, ATO failed to alter OT effects on premature ventricular contractions. We assume that the ability of OT to modulate the electrical activity of the heart may play an important role in the antiarrhythmic actions of OT. PMID:29184844
Suganthi, Muralidharan; Sangeetha, Gopalakrishnan; Gayathri, Govindaraj; Ravi Sankar, Bhaskaran
2012-12-01
Lithium, the first element of Group I in the periodic system, is used to treat bipolar psychiatric disorders. Lithium chloride (LiCl) is a selective inhibitor of glycogen synthase kinase-3β (GSK-3β), a serine/threonine kinase that regulates many cellular processes, in addition to its role in the regulation of glycogen synthase. GSK-3β is emerged as a promising drug target for various neurological diseases, type-2 diabetes, cancer, and inflammation. Several works have demonstrated that lithium can either inhibit or stimulate growth of normal and cancer cells. Hence, the present study is focused to analyze the underlying mechanisms that dictate the biphasic oncogenic properties of LiCl. In the current study, we have investigated the dose-dependent effects of LiCl on human breast cancer cells (MCF-7) by assessing the consequences on cytotoxicity and protein expressions of signaling molecules crucial for the maintenance of cell survival. The results showed breast cancer cells respond in a diverse manner to LiCl, i.e., at lower concentrations (1, 5, and 10 mM), LiCl induces cell survival by inhibiting apoptosis through regulation of GSK-3β, caspase-2, Bax, and cleaved caspase-7 and by activating anti-apoptotic proteins (Akt, β-catenin, Bcl-2, and cyclin D1). In contrast, at high concentrations (50 and 100 mM), it induces apoptosis by reversing these effects. Moreover, LiCl also alters the sodium and potassium levels thereby altering the membrane potential of MCF-7 cells. Thus it is inferred that LiCl exerts a dose-dependent biphasic effect on breast cancer cells (MCF-7) by altering the apoptotic/anti-apoptotic balance.
Zhang, Huasheng; Zhang, Dingding; Li, Hua; Yan, Huiying; Zhang, Zihuan; Zhou, Chenhui; Chen, Qiang; Ye, Zhennan; Hang, Chunhua
2018-06-01
The transcription factor nuclear factor-κB (NF-κB) has been shown to function as a key regulator of cell death or survival in neuronal cells. Previous studies indicate that the biphasic activation of NF-κB occurs following experimental neonatal hypoxia-ischemia and subarachnoid hemorrhage. However, the comprehensive understanding of NF-κB activity following traumatic brain injury (TBI) is incomplete. In the current study, an in vitro model of TBI was designed to investigate the NF-κB activity and expression of p65 and c-Rel subunits following traumatic neuronal injury. Primary cultured neurons were assigned to control and transected groups. NF-κB activity was detected by electrophoretic mobility shift assay. Western blotting and immunofluorescence were used to investigate the expression and distribution of p65 and c-Rel. Reverse transcription-quantitative polymerase chain reaction was performed to assess the downstream genes of NF-κB. Lactate dehydrogenase (LDH) quantification and trypan blue staining were used to estimate the neuronal injury. Double peaks of elevated NF-κB activity were observed at 1 and 24 h following transection. The expression levels of downstream genes exhibited similar changes. The protein levels of p65 also presented double peaks while c-Rel was elevated significantly in the late stage. The results of the trypan blue staining and LDH leakage assays indicated there was no sustained neuronal injury during the late peak of NF-κB activity. In conclusion, biphasic activation of NF-κB is induced following experimental traumatic neuronal injury. The elevation of p65 and c-Rel levels at different time periods suggests that within a single neuron, NF-κB may participate in different pathophysiological processes.
Zhang, Zhongxing; Khatami, Ramin
2015-08-01
Current knowledge on hemodynamics in sleep is limited because available techniques do not allow continuous recordings and mainly focus on cerebral blood flow while neglecting other important parameters, such as blood volume (BV) and vasomotor activity. Observational study. Continuous measures of hemodynamics over the left forehead and biceps were performed using near-infrared spectroscopy (NIRS) during nocturnal polysomnography in 16 healthy participants in sleep laboratory. Temporal dynamics and mean values of cerebral and muscular oxygenated hemoglobin (HbO2), deoxygenated hemoglobin (HHb), and BV during different sleep stages were compared. A biphasic change of cerebral BV was observed which contrasted a monotonic increase of muscular BV during non-rapid eye movement sleep. A significant decrement in cerebral HbO2 and BV accompanied by an increase of HHb was recorded at sleep onset (Phase I). Prior to slow wave sleep (SWS) HbO2 and BV turned to increase whereas HHb began to decrease in subsequent Phase II suggested increased brain perfusion during SWS. The cerebral HbO2 slope correlated to BV slope in Phase I and II, but it only correlated to HHb slope in Phase II. The occurrence time of inflection points correlated to SWS latencies. Initial decrease of brain perfusion with decreased blood volume (BV) and oxygenated hemoglobin (HbO2) together with increasing muscular BV fit thermoregulation process at sleep onset. The uncorrelated and correlated slopes of HbO2 and deoxygenated hemoglobin indicate different mechanisms underlying the biphasic hemodynamic process in light sleep and slow wave sleep (SWS). In SWS, changes in vasomotor activity (i.e., increased vasodilatation) may mediate increasing cerebral and muscular BV. © 2015 Associated Professional Sleep Societies, LLC.
Wachs, K; Fischer, M S; Schilling, N
2016-04-01
Current knowledge of the physiological range of motion (ROM) in the canine axial system during locomotion is relatively limited. This is particularly problematic because dogs with back-related dysfunction frequently present for routine consultations. To collect detailed kinematic information and describe the three-dimensional motions of the pelvis and the lumbar spine (i.e. intervertebral joints S1/L7-L2/L1), we recorded ventro-dorsal and latero-lateral X-ray videos of three walking and trotting dogs and reconstructed their pelvic and intervertebral motions using X-ray reconstruction of moving morphology and scientific rotoscoping. Pelvic roll displayed a monophasic motion pattern and the largest ROM with on average 13° and 11° during walking and trotting, respectively. Pelvic yaw had the smallest ROM with on average 5° (walk) and 6° (trot). A biphasic pattern was observed for pelvic pitch with a mean ROM of 8°. At both gaits, the greatest intervertebral motions occurred either in S1/L7 or L7/L6. The intervertebral motions were mono- or biphasic in the horizontal and the transverse body planes and biphasic in the sagittal plane. Cranial to L6/5, the ROM tended to decrease from 3° to <1.5° in all three planes. Our results confirm that pelvic displacement and intervertebral joint movements are tightly linked with pelvic limb action at symmetrical gaits. The overall small movements, particularly cranial to L5, are consistent with the epaxial musculature globally stabilising the spine against the external and internal limb forces acting on the pelvis and the trunk during walking and trotting. Copyright © 2016 Elsevier Ltd. All rights reserved.
Singh, Satish S; Roy, Abhijit; Lee, Boeun; Banerjee, Ipsita; Kumta, Prashant N
2016-10-01
Biphasic mixtures of crystalline β-tricalcium magnesium phosphate (β-TCMP) and an amorphous calcium magnesium phosphate have been synthesized and reported to support enhanced hMSC differentiation in comparison to β-tricalcium phosphate (β-TCP) due to the release of increased amounts of bioactive ions. In the current study, completely amorphous β-TCMP has been synthesized which is capable of releasing increased amounts of Mg(2+) and PO4(3-) ions, rather than a biphasic mixture as earlier reported. The amorphous phase formed was observed to crystallize between temperatures of 400-600°C. The scaffolds prepared with amorphous β-TCMP were capable of supporting enhanced hMSC proliferation and differentiation in comparison to commercially available β-TCP. However, a similar gene expression of mature osteoblast markers, OCN and COL-1, in comparison to biphasic β-TCMP was observed. To further study the role of Mg(2+) and PO4(3-) ions in regulating hMSC osteogenic differentiation, the capability of hMSCs to mineralize in growth media supplemented with Mg(2+) and PO4(3-) ions was studied. Interestingly, 5mM PO4(3-) supported mineralization while the addition of 5mM Mg(2+) to 5mM PO4(3-) inhibited mineralization. It was therefore concluded that the release of Ca(2+) ions from β-TCMP scaffolds also plays a role in regulating osteogenic differentiation on these scaffolds and it is noted that further work is required to more accurately determine the exact role of Mg(2+) in regulating hMSC osteogenic differentiation. Copyright © 2016 Elsevier B.V. All rights reserved.
A Brain-Machine-Brain Interface for Rewiring of Cortical Circuitry after Traumatic Brain Injury
2015-11-01
asymmetric biphasic current pulses up to ~100 A with passive discharge , and W-level digital signal processing 6 (DSP) unit for real-time SAR based on...compliance of 4.68 V with a 5 V supply, when configured for monophasic stimulation with passive discharge . The programmable microstimulator could also...severely disrupted. While the underlying white matter was intact, distortion of the most superficial aspects of the corona radiate was evident. In the
Raina, Deepak Bushan; Isaksson, Hanna; Hettwer, Werner; Kumar, Ashok; Lidgren, Lars; Tägil, Magnus
2016-01-01
In orthopedic surgery, large amount of diseased or injured bone routinely needs to be replaced. Autografts are mainly used but their availability is limited. Commercially available bone substitutes allow bone ingrowth but lack the capacity to induce bone formation. Thus, off-the-shelf osteoinductive bone substitutes that can replace bone grafts are required. We tested the carrier properties of a biphasic, calcium sulphate and hydroxyapatite ceramic material, containing a combination of recombinant human bone morphogenic protein-2 (rhBMP-2) to induce bone, and zoledronic acid (ZA) to delay early resorption. In-vitro, the biphasic material released 90% of rhBMP-2 and 10% of ZA in the first week. No major changes were found in the surface structure using scanning electron microscopy (SEM) or in the mechanical properties after adding rhBMP-2 or ZA. In-vivo bone formation was studied in an abdominal muscle pouch model in rats (n = 6/group). The mineralized volume was significantly higher when the biphasic material was combined with both rhBMP-2 and ZA (21.4 ± 5.5 mm3) as compared to rhBMP-2 alone (10.9 ± 2.1 mm3) when analyzed using micro computed tomography (μ-CT) (p < 0.01). In the clinical setting, the biphasic material combined with both rhBMP-2 and ZA can potentially regenerate large volumes of bone. PMID:27189411
Method and apparatus for the removal of bioconversion of constituents of organic liquids
Scott, Timothy; Scott, Charles D.
1994-01-01
A method and apparatus for the removal or conversion of constituents from bulk organic liquids. A countercurrent biphasic bioreactor system is utilized to disperse and recoalesce a biocatalyst contained in the aqueous liquid phase into the organic liquid phase containing the constituent. Two transient, high-intensity electrical fields rupture the aqueous drops into a plurality of microdroplets and induce continuous coalescence and redispersion as the microdroplets travel through the organic phase, thus increasing surface area. As the aqueous microdroplets progress through the organic phase, the biocatalyst then reacts with the constituent to produce a product which is then removed from the bioreactor in the aqueous phase or retained in the organic phase. The organic liquid, now free of the original constituents, is ready for immediate use or further processing.
In efforts to apply a polymer-based aqueous biphasic system (ABS) extraction to the paper pulping process, the study of the distribution of various lignin and cellulosic fractions in ABS and the effects of temperature on system composition and solute partitioning have been inv...
Han, Bok Kung; Choi, Hyuk Joon; Kang, Shin Ho; Baick, Seung Chun
2015-01-01
We investigated the effects of a pulsed electric field (PEF) treatment on microbial inactivation and the physical properties of low-fat milk. Milk inoculated with Escherichia coli, Saccharomyces cerevisiae, or Lactobacillus brevis was supplied to a pilot-scale PEF treatment system at a flow rate of 30 L/h. Pulses with an electric field strength of 10 kV/cm and a pulse width of 30 μs were applied to the milk with total pulse energies of 50-250 kJ/L achieved by varying the pulse frequency. The inactivation curves of the test microorganisms were biphasic with an initial lag phase (or shoulder) followed by a phase of rapid inactivation. PEF treatments with a total pulse energy of 200 kJ/L resulted in a 4.5-log reduction in E. coli, a 4.4-log reduction in L. brevis, and a 6.0-log reduction in S. cerevisiae. Total pulse energies of 200 and 250 kJ/L resulted in greater than 5-log reductions in microbial counts in stored PEF-treated milk, and the growth of surviving microorganisms was slow during storage for 15 d at 4℃. PEF treatment did not change milk physical properties such as pH, color, or particle-size distribution (p<0.05). These results indicate that a relatively low electric-field strength of 10 kV/cm can be used to pasteurize low-fat milk. PMID:26877640
Lee, Gun Joon; Han, Bok Kung; Choi, Hyuk Joon; Kang, Shin Ho; Baick, Seung Chun; Lee, Dong-Un
2015-01-01
We investigated the effects of a pulsed electric field (PEF) treatment on microbial inactivation and the physical properties of low-fat milk. Milk inoculated with Escherichia coli, Saccharomyces cerevisiae, or Lactobacillus brevis was supplied to a pilot-scale PEF treatment system at a flow rate of 30 L/h. Pulses with an electric field strength of 10 kV/cm and a pulse width of 30 μs were applied to the milk with total pulse energies of 50-250 kJ/L achieved by varying the pulse frequency. The inactivation curves of the test microorganisms were biphasic with an initial lag phase (or shoulder) followed by a phase of rapid inactivation. PEF treatments with a total pulse energy of 200 kJ/L resulted in a 4.5-log reduction in E. coli, a 4.4-log reduction in L. brevis, and a 6.0-log reduction in S. cerevisiae. Total pulse energies of 200 and 250 kJ/L resulted in greater than 5-log reductions in microbial counts in stored PEF-treated milk, and the growth of surviving microorganisms was slow during storage for 15 d at 4℃. PEF treatment did not change milk physical properties such as pH, color, or particle-size distribution (p<0.05). These results indicate that a relatively low electric-field strength of 10 kV/cm can be used to pasteurize low-fat milk.
Biphasic Kinetic Behavior of Nitrate Reductase from Heterocystous, Nitrogen-Fixing Cyanobacteria 1
Martin-Nieto, José; Flores, Enrique; Herrero, Antonia
1992-01-01
Nitrate reductase activity from filamentous, heterocyst-forming cyanobacteria showed a biphasic kinetic behavior with respect to nitrate as the variable substrate. Two kinetic components were detected, the first showing a higher affinity for nitrate (Km, 0.05-0.25 mm) and a lower catalytic activity and the second showing a lower affinity for nitrate (Km, 5-25 mm) and a higher (3- to 5-fold) catalytic activity. In contrast, among unicellular cyanobacteria, most representatives studied exhibited a monophasic, Michaelis-Menten kinetic pattern for nitrate reductase activity. Biphasic kinetics remained unchanged with the use of different assay conditions (i.e. cell disruption or permeabilization, two different electron donors) or throughout partial purification of the enzyme. PMID:16652939
Metal separations using aqueous biphasic partitioning systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chaiko, D.J.; Zaslavsky, B.; Rollins, A.N.
1996-05-01
Aqueous biphasic extraction (ABE) processes offer the potential for low-cost, highly selective separations. This countercurrent extraction technique involves selective partitioning of either dissolved solutes or ultrafine particulates between two immiscible aqueous phases. The extraction systems that the authors have studied are generated by combining an aqueous salt solution with an aqueous polymer solution. They have examined a wide range of applications for ABE, including the treatment of solid and liquid nuclear wastes, decontamination of soils, and processing of mineral ores. They have also conducted fundamental studies of solution microstructure using small angle neutron scattering (SANS). In this report they reviewmore » the physicochemical fundamentals of aqueous biphase formation and discuss the development and scaleup of ABE processes for environmental remediation.« less
Anti-prelog reduction of prochiral carbonyl compounds by Oenococcus oeni in a biphasic system.
Hu, Jian; Xu, Yan
2006-07-01
An aqueous-organic biphasic system was established and used with whole cells of Oenococcus oeni to reduce 2-octanone to (R)-2-octanol. The conversion reached 99% when the Tris/borate buffer was increased from 50 mM to 300 mM in the aqueous phase. In addition, the conversion increased as the log P value of the organic solvent changed from 0.5 to 6.6. Under optimized conditions, the conversion of (R)-2-octanol reached 99% from 0.5 M 2-octanone with an optical purity of 99% e.e. The biphasic system allows the anti-Prelog reduction of aliphatic and aromatic ketones to furnish (R)-configurated alcohols in high optical purity as well.
Ghazarian, Sharon R.; Rosen, Antony; Ladenson, Paul W.
2013-01-01
Background Interferon-alpha (IFNα)–induced thyroid dysfunction occurs in up to 20% of patients undergoing therapy for hepatitis C. The diversity of thyroid disease presentations suggests that several different pathological mechanisms are involved, such as autoimmunity and direct toxicity. Elucidating the relationships between risk factors and disease phenotype provides insight into the mechanisms of disease pathophysiology. Methods We studied 869 euthyroid patients from the ACHIEVE 2/3 trial, a randomized international clinical trial comparing pegylated-IFNα2a weekly or albumin-IFNα2b every 2 weeks for up to 24 weeks in patients with hepatitis C, genotype 2 or 3, from 136 centers. The study population was 60% male and 55% white. Serum thyrotropin (TSH) and free thyroxine were measured before therapy, monthly during treatment from week 8, and at 4- and 12-week follow-up visits. Results Overall, 181 (20.8%) participants had at least one abnormal TSH during the study. Low TSH occurred in 71 (8.2%), of whom 30 (3.5%) had a suppressed TSH below 0.1 mU/L. Hypothyroidism occurred in 53 patients (6.1%), with peak TSH above 10 mU/L in 12 patients (1.4%). Fifty-seven patients had a biphasic thyroiditis (6.6%), with extreme values for the nadir and/or peak TSH in all but one. Medical therapy was given to one thyrotoxic patient, four hypothyroid patients, and 26 biphasic thyroiditis patients. Multivariate logistic regression analysis demonstrated that biphasic thyroiditis is associated with being female and higher pretreatment serum TSH, whereas being Asian or a current smoker decreased the risk of thyroiditis. Hypo- and hyperthyroidism are most strongly predicted by the pretreatment TSH. Conclusions Biphasic thyroiditis accounted for the majority (58%) of clinically relevant IFNα-induced thyroid dysfunction. We confirmed our recent findings in a related cohort that female sex is a risk factor for thyroiditis but not hypothyroidism. Further, in this large multiethnic study, the risk of thyroiditis is dramatically increased, specifically for white women. Smoking was found to be protective of thyroiditis. These results support closer monitoring of women and those with a serum TSH at the extremes of the normal range during therapy so that prompt intervention can mitigate the consequences of thyroid dysfunction associated with IFNα treatment. PMID:23517287
Deng, Jia; Staufenbiel, Sven; Hao, Shilei; Wang, Bochu; Dashevskiy, Andriy; Bodmeier, Roland
2017-06-10
The purpose of this study was to discriminate the release behavior from three differently formulated racecadotril (BCS II) granules and to establish an in vitro-in vivo correlation. Three granule formulations of the lipophilic drug were prepared with equivalent composition but prepared with different manufacturing processes (dry granulation, wet granulation with or without binder). In vitro release of the three granules was investigated using a biphasic dissolution system (phosphate buffer pH6.8 and octanol) and compared to the conventional single phase USP II dissolution test performed under sink and non-sink conditions. In vivo studies with each granule formulation were performed in rats. Interestingly, the granule formulations exhibited pronouncedly different behavior in the different dissolution systems depending on different wetting and dissolution conditions. Single phase USP II dissolution tests lacked discrimination. In contrast, remarkable discrimination between the granule formulations was observed in the octanol phase of biphasic dissolution system with a rank order of release from granules prepared by wet granulation with binder>wet granulation without binder>dry granulation. This release order correlated well with the wettability of these granules. An excellent correlation was also established between in vitro release in the octanol phase of the biphasic test and in vivo data (R 2 =0.999). Compared to conventional dissolution methods, the biphasic method provides great potential to discriminate between only minor formulation and process changes within the same dosage form for poorly soluble drugs. Copyright © 2017 Elsevier B.V. All rights reserved.
Yoo, Jung-Geun; Yi, Chin A; Lee, Kyung Soo; Jeon, Kyeongman; Um, Sang-Won; Koh, Won-Jung; Suh, Gee Young; Chung, Man Pyo; Kwon, O Jung
2015-01-01
Objectives The shape of the flow-volume (F-V) curve is known to change to showing a prominent plateau as stenosis progresses in patients with tracheal stenosis. However, no study has evaluated changes in the F-V curve according to the degree of bronchial stenosis in patients with unilateral main bronchial stenosis. Methods We performed an analysis of F-V curves in 29 patients with unilateral bronchial stenosis with the aid of a graphic digitizer between January 2005 and December 2011. Results The primary diseases causing unilateral main bronchial stenosis were endobronchial tuberculosis (86%), followed by benign bronchial tumor (10%), and carcinoid (3%). All unilateral main bronchial stenoses were classified into one of five grades (I, ≤25%; II, 26%-50%; III, 51%-75%; IV, 76%-90%; V, >90% to near-complete obstruction without ipsilateral lung collapse). A monophasic F-V curve was observed in patients with grade I stenosis and biphasic curves were observed for grade II-IV stenosis. Both monophasic (81%) and biphasic shapes (18%) were observed in grade V stenosis. After standardization of the biphasic shape of the F-V curve, the breakpoints of the biphasic curve moved in the direction of high volume (x-axis) and low flow (y-axis) according to the progression of stenosis. Conclusion In unilateral bronchial stenosis, a biphasic F-V curve appeared when bronchial stenosis was >25% and disappeared when obstruction was near complete. In addition, the breakpoint moved in the direction of high volume and low flow with the progression of stenosis. PMID:26045916
Northwood, Ewen; Fisher, John
2007-08-01
The wear of the biomaterial/cartilage interface is vital for the development of innovative chondroplasty therapies. The aim of this study was to investigate potential chondroplasty biomaterials when sliding against natural articular cartilage under uniaxial reciprocating and multi-directional rotation/reciprocating motions. Three biphasic hydrogels were compared to articular cartilage (negative control) and stainless steel (positive control). Friction was measured by means of a simple geometry friction and wear simulator. All tests were completed in 25% bovine serum at 20 degrees C. Mechanical alterations to the surface structure were quantified using surface topography. Articular cartilage produced a constant friction value of 0.05 (confidence interval=0.015) with and without rotation. Stainless steel against articular cartilage produced an increase in friction over time resulting in a peak value of 0.7 (confidence interval=0.02) without rotation, increasing to 0.88 (confidence interval=0.03) with rotation. All biphasic hydrogels produced peak friction values lower than the positive control and demonstrated no difference between uni- and multi-directional motion. Degradation of the opposing cartilage surface showed a significant difference between the positive and negative controls, with the greater cartilage damage when sliding against stainless steel under uni-directional motion. The lower friction and reduction of opposing cartilage surface degradation with the potential chondroplasty biomaterials can be attributed to their biphasic properties. This study illustrated the importance of biphasic properties within the tribology of cartilage substitution materials and future work will focus on the optimisation of biphasic properties such that materials more closely mimic natural cartilage.
NASA Astrophysics Data System (ADS)
Kanda, Hiroyuki; Nakano, Yukari; Terasawa, Yasuo; Morimoto, Takeshi; Fujikado, Takashi
2017-10-01
Objective. Suprachoroidal-transretinal stimulation (STS) is a stimulation method for retinal prostheses. For STS-type retinal prostheses, we developed a new type of stimulating electrode called a femtosecond laser-induced porous electrode (FLiP electrode). To verify the safety of the FLiP electrode for STS, we investigated the characteristics of STS-induced retinal injury. Approach. Sixteen eyes of pigmented rabbits were studied in this in vivo study. For each examined eye, we implanted a single-channel FLiP electrode (diameter, 0.5 mm height, 0.3 mm geometric surface area, 0.43 mm2) in a scleral pocket created at the posterior pole of the eye. A return electrode (diameter, 0.5 mm length, 3 mm) was inserted into the vitreous cavity. The eyes were divided into five groups, and each group was stimulated with a different current intensity. The stimulus intensities and the number of eyes in each group were as follows: 1.0 mA (n = 2), 1.5 mA (n = 3), 2.0 mA (n = 3), 2.5 mA (n = 4), and 3.0 mA (n = 2). Continuous biphasic pulses (0.5 ms/phase) were applied under general anesthesia at a frequency of 20 Hz for 48 h. Fundus photography, fluorescein angiography (FA), and optical coherence tomography were performed before and after applying the electrical stimulation to evaluate the retinal injury. Main results. The 1.0 mA and 1.5 mA groups showed little or no retinal damage. Fluorescent dye leakage in FA and punctate pigmentation in the fundus were observed around the stimulation site with stimulation of 2.0 mA (1/3), 2.5 mA (1/4), and 3.0 mA (2/2). Significance. Our findings indicate that the threshold current for inducing retinal damage is greater than that for eliciting electrical phosphenes (<1 mA) with STS observed in human trials. Therefore, STS by the FLiP electrode is a safe and feasible stimulation method for retinal prostheses as long as it is used with these pulse parameters.
Berg, Robert A
2004-09-01
To evaluate published data regarding the treatment of prolonged pediatric defibrillation, with special emphasis on the use of attenuated adult biphasic shocks for pediatric defibrillation. Review relevant human and animal literature. Rhythm analysis algorithms from two manufacturers of automated external defibrillators can accurately distinguish shockable from nonshockable rhythms in children. Theoretical considerations and transthoracic impedance data from animals and children suggest that pediatric defibrillation doses should not necessarily vary in a simple weight-based manner. Two piglet studies have established that an attenuated adult biphasic dosage can be successfully used for 3.5- to 24-kg animals in ventricular fibrillation. One study established that the attenuated adult biphasic dosage was at least as safe and effective as the standard monophasic weight-based dosing. This review supports the American Heart Association's new guidelines for pediatric automated external defibrillator usage: "Automated external defibrillators may be used for children 1 to 8 yrs of age who have no signs of circulation. Ideally the device should deliver a pediatric dose. The arrhythmia detection system used in the device should demonstrate high specificity for pediatric shockable rhythms, i.e., it will not recommend delivery of a shock for nonshockable rhythms."
Beachy, Christopher K.; Ryan, Travis J.; Bonett, Ronald M.
2017-01-01
Plethodontid salamanders exhibit biphasic, larval form paedomorphic, and direct developing life cycles. This diversity of developmental strategies exceeds that of any other family of terrestrial vertebrate. Here we compare patterns of larval development among the three divergent lineages of biphasic plethodontids and other salamanders. We discuss how patterns of life-cycle evolution and larval ecology might have produced a wide array of larval life histories. Compared with many other salamanders, most larval plethodontids have relatively slow growth rates and sometimes exceptionally long larval periods (up to 60 mo). Recent phylogenetic analyses of life-cycle evolution indicate that ancestral plethodontids were likely direct developers. If true, then biphasic and paedomorphic lineages might have been independently derived through different developmental mechanisms. Furthermore, biphasic plethodontids largely colonized stream habitats, which tend to have lower productivity than seasonally ephemeral ponds. Consistent with this, plethodontid larvae grow very slowly, and metamorphic timing does not appear to be strongly affected by growth history. On the basis of this, we speculate that feeding schedules and stress hormones might play a comparatively reduced role in governing the timing of metamorphosis of stream-dwelling salamanders, particularly plethodontids. PMID:29269959
Linh, Nguyen Tb; Paul, Kallyanashis; Kim, Boram; Lee, Byong-Taek
2016-11-01
A functionally modified peptide-conjugated hydrogel system was fabricated with oxidized alginate/gelatin loaded with biphasic calcium phosphate to improve its biocompatibility and functionality. Sodium alginate was treated by controlled oxidation to transform the cis-diol group into an aldehyde group in a controlled manner, which was then conjugated to the amine terminus of glycine-arginine-glycine-aspartic. Oxidized alginate glycine-arginine-glycine-aspartic was then combined with gelatin-loaded biphasic calcium phosphate to form a hydrogel of composite oxidized alginate/gelatin/biphasic calcium phosphate that displayed enhanced human adipose stem cell adhesion, spreading and differentiation. 1 H nuclear magnetic resonance and electron spectroscopy for chemical analysis confirmed that the glycine-arginine-glycine-aspartic was successfully grafted to the oxidized alginate. Co-delivery of glycine-arginine-glycine-aspartic and human adipose stem cell in a hydrogel matrix was studied with the results indicating that hydrogel incorporated modified with glycine-arginine-glycine-aspartic and seeded with human adipose stem cell enhanced osteogenesis in vitro and bone formation in vivo. © The Author(s) 2016.
Maintenance of biodiversity on islands.
Chisholm, Ryan A; Fung, Tak; Chimalakonda, Deepthi; O'Dwyer, James P
2016-04-27
MacArthur and Wilson's theory of island biogeography predicts that island species richness should increase with island area. This prediction generally holds among large islands, but among small islands species richness often varies independently of island area, producing the so-called 'small-island effect' and an overall biphasic species-area relationship (SAR). Here, we develop a unified theory that explains the biphasic island SAR. Our theory's key postulate is that as island area increases, the total number of immigrants increases faster than niche diversity. A parsimonious mechanistic model approximating these processes reproduces a biphasic SAR and provides excellent fits to 100 archipelago datasets. In the light of our theory, the biphasic island SAR can be interpreted as arising from a transition from a niche-structured regime on small islands to a colonization-extinction balance regime on large islands. The first regime is characteristic of classic deterministic niche theories; the second regime is characteristic of stochastic theories including the theory of island biogeography and neutral theory. The data furthermore confirm our theory's key prediction that the transition between the two SAR regimes should occur at smaller areas, where immigration is stronger (i.e. for taxa that are better dispersers and for archipelagos that are less isolated). © 2016 The Author(s).
Carratalà, Anna; Shim, Hyunjin; Zhong, Qingxia; Bachmann, Virginie; Jensen, Jeffrey D
2017-01-01
Abstract Ultraviolet light in the UVC range is a commonly used disinfectant to control viruses in clinical settings and water treatment. However, it is currently unknown whether human viral pathogens may develop resistance to such stressor. Here, we investigate the adaptation of an enteric pathogen, human echovirus 11, to disinfection by UVC, and characterized the underlying phenotypic and genotypic changes. Repeated exposure to UVC lead to a reduction in the UVC inactivation rate of approximately 15 per cent compared to that of the wild-type and the control populations. Time-series next-generation sequencing data revealed that this adaptation to UVC was accompanied by a decrease in the virus mutation rate. The inactivation efficiency of UVC was additionally compromised by a shift from first-order to biphasic inactivation kinetics, a form of ‘viral persistence’ present in the UVC resistant and control populations. Importantly, populations with biphasic inactivation kinetics also exhibited resistance to ribavirin, an antiviral drug that, as UVC, interferes with the viral replication. Overall, the ability of echovirus 11 to adapt to UVC is limited, but it may have relevant consequences for disinfection in clinical settings and water treatment plants. PMID:29225923
Changes in biphasic electrode impedance with protein adsorption and cell growth
Newbold, Carrie; Richardson, Rachael; Millard, Rodney; Huang, Christie; Milojevic, Dusan; Shepherd, Robert; Cowan, Robert
2012-01-01
This study was undertaken to assess the contribution of protein adsorption and cell growth to increases in electrode impedance that occur immediately following implantation of cochlear implant electrodes and other neural stimulation devices. An in vitro model of the electrode-tissue interface was used. Radiolabelled albumin in phosphate buffered saline was added to planar gold electrodes and electrode impedance measured using a charge-balanced biphasic current pulse. The polarisation impedance component increased with protein adsorption, while no change to access resistance was observed. The maximum level of protein adsorbed was measured at 0.5 μg/cm2, indicating a tightly packed monolayer of albumin molecules on the gold electrode and resin substrate. Three cell types were grown over the electrodes, macrophage cell line J774, dissociated fibroblasts and epithelial cell line MDCK, all of which created a significant increase in electrode impedance. As cell cover over electrodes increased, there was a corresponding increase in the initial rise in voltage, suggesting cell cover mainly contributes to the access resistance of the electrodes. Only a small increase in the polarisation component of impedance was seen with cell cover. PMID:20841637
[Sacral neuromodulation in urology - development and current status].
Schwalenberg, T; Stolzenburg, J-U; Kriegel, C; Gonsior, A
2012-01-01
Sacral neuromodulation (SNM) in urology is employed to treat refractory lower urinary tract dysfunction as well as chronic pelvic pain. Electrical stimulation of the sacral afferents (S2 - S4) causes activation and conditioning of higher autonomic and somatic neural structures and thereby influences the efferents controlling the urinary bladder, the rectum and their related sphincter systems. It is therefore possible to treat overactivity as well as hypocontractility and functional bladder neck obstruction. SNM treatment is conducted biphasically. Initially, test electrodes are placed to evaluate changes in micturition and pain parameters. If, in this first phase - called peripheral nerve evaluation (PNE test) - sufficient improvements are observed, the patient progresses to phase two which involves implantation of the permanent electrodes and impulse generator system. In recent years, the "two stage approach" with initial implantation of the permanent electrodes has been favoured as it increases treatment success rates. Long-term success rates of SNM vary significantly in the literature (50 - 80 %) due to heterogeneous patient populations as well as improved surgical approaches. With the introduction of "tined lead electrodes" (2002), tissue damage is reduced to a minimum. Technical innovation, financial feasibility (reimbursed in Germany since 2004) and wider application, especially in otherwise therapy-refractory patients or complex dysfunctions of the pelvis, have established SNM as a potent treatment option in urology. © Georg Thieme Verlag KG Stuttgart · New York.
HIV-1 dynamics revisited: biphasic decay by cytotoxic T lymphocyte killing?
Arnaout, R A; Nowak, M A; Wodarz, D
2000-01-01
The biphasic decay of blood viraemia in patients being treated for human immunodeficiency virus type 1 (HIV-1) infection has been explained as the decay of two distinct populations of cells: the rapid death of productively infected cells followed by the much slower elimination of a second population the identity of which remains unknown. Here we advance an alternative explanation based on the immune response against a single population of infected cells. We show that the biphasic decay can be explained simply, without invoking multiple compartments: viral load falls quickly while cytotoxic T lymphocytes (CTL) are still abundant, and more slowly as CTL disappear. We propose a method to test this idea, and develop a framework that is readily applicable to treatment of other infections. PMID:10972131
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allison, M.J.; Zappasodi, P.; Lurie, M.B.
Peritoneal exudate mononuclear cells obtained from BCG-vaccinated rabbits showed higher utilization of succinate, glycerophosphate, beta - hydroxybutyrate, and glycerol than cells from control animals. No differences in utilization of the following substrates were noted: lactate, glucose-6-phosphate, malate, isocitrate, alpha -ketoglutarate, and glutamic acid. A second, later stage of elevated metabolic activity was associated with heightened resistance to infection. When rabbits which had been irradiated with 400 r 2 years previously were vaccinated with BCG, they failed to respond as shown by their lack of resistance to infection and failure of their mononuclear cells to show the biphasic metabolic stimulation. Themore » results demonstrate the close relation between the metabolic capabilities of reticuloendothelial cells and their resistance to tuberculosis. (H.H.D.)« less
The calcium-frequency response in the rat ventricular myocyte: an experimental and modelling study.
Gattoni, Sara; Røe, Åsmund Treu; Frisk, Michael; Louch, William E; Niederer, Steven A; Smith, Nicolas P
2016-08-01
In the majority of species, including humans, increased heart rate increases cardiac contractility. This change is known as the force-frequency response (FFR). The majority of mammals have a positive force-frequency relationship (FFR). In rat the FFR is controversial. We derive a species- and temperature-specific data-driven model of the rat ventricular myocyte. As a measure of the FFR, we test the effects of changes in frequency and extracellular calcium on the calcium-frequency response (CFR) in our model and three altered models. The results show a biphasic peak calcium-frequency response, due to biphasic behaviour of the ryanodine receptor and the combined effect of the rapid calmodulin buffer and the frequency-dependent increase in diastolic calcium. Alterations to the model reveal that inclusion of Ca(2+) /calmodulin-dependent protein kinase II (CAMKII)-mediated L-type channel and transient outward K(+) current activity enhances the positive magnitude calcium-frequency response, and the absence of CAMKII-mediated increase in activity of the sarco/endoplasmic reticulum Ca(2+) -ATPase induces a negative magnitude calcium-frequency response. An increase in heart rate affects the strength of cardiac contraction by altering the Ca(2+) transient as a response to physiological demands. This is described by the force-frequency response (FFR), a change in developed force with pacing frequency. The majority of mammals, including humans, have a positive FFR, and cardiac contraction strength increases with heart rate. However, the rat and mouse are exceptions, with the majority of studies reporting a negative FFR, while others report either a biphasic or a positive FFR. Understanding the differences in the FFR between humans and rats is fundamental to interpreting rat-based experimental findings in the context of human physiology. We have developed a novel model of rat ventricular electrophysiology and calcium dynamics, derived predominantly from experimental data recorded under physiological conditions. As a measure of FFR, we tested the effects of changes in stimulation frequency and extracellular calcium concentration on the simulated Ca(2+) transient characteristics and showed a biphasic peak calcium-frequency relationship, consistent with recent observations of a shift from negative to positive FFR when approaching the rat physiological frequency range. We tested the hypotheses that (1) inhibition of Ca(2+) /calmodulin-dependent protein kinase II (CAMKII)-mediated increase in sarco/endoplasmic reticulum Ca(2+) -ATPase (SERCA) activity, (2) CAMKII modulation of SERCA, L-type channel and transient outward K(+) current activity and (3) Na(+) /K(+) pump dynamics play a significant role in the rat FFR. The results reveal a major role for CAMKII modulation of SERCA in the peak Ca(2+) -frequency response, driven most significantly by the cytosolic calcium buffering system and changes in diastolic Ca(2+) . © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.
Regeneration of subcutaneous tissue-engineered mandibular condyle in nude mice.
Wang, Feiyu; Hu, Yihui; He, Dongmei; Zhou, Guangdong; Yang, Xiujuan; Ellis, Edward
2017-06-01
To explore the feasibility of regenerating mandibular condyles based on cartilage cell sheet with cell bone-phase scaffold compared with cell-biphasic scaffolds. Tissue-engineered mandibular condyles were regenerated by the following: 1) cartilage cell sheet + bone-phase scaffold (PCL/HA) seeded with bone marrow stem cells (BMSCs) from minipigs (cell sheet group), and 2) cartilage phase scaffold (PGA/PLA) seeded with auricular chondrocytes + bone-phase scaffold seeded with BMSCs from minipigs (biphasic scaffold group). They were implanted subcutaneously in nude mice after being cultured in vitro for different periods of time. After 12 weeks, the mice were sacrificed, and the specimens were harvested and evaluated based on gross appearance and histopathologic observations with hematoxylin and eosin, safranin O-fast green and immumohistochemical staining for collagen I and II. The histopathologic assessment score of condylar cartilage and bone density were compared between the 2 groups using SPSS 17.0 software. The 2 groups' specimens all formed mature cartilage-like tissues with numerous chondrocytes, typical cartilage lacuna and abundant cartilage-specific extracellular matrix. The regenerated cartilage was instant, continuous, homogeneous and avascular. In the biphasic scaffold group, there were still a few residual PGA fibers in the cartilage layer. The cartilage and bone interface was established in the 2 groups, and the microchannels of the bone-phase scaffolds were filled with bone tissue. The score of cartilage regeneration in the cell sheet group was a little higher than that in the biphasic scaffold group, but the difference was not significant (p > 0.05). There was no significant difference in bone tissue formation between the 2 groups (p > 0.05). Both the cartilage cell sheet group and the biphasic scaffold group of nude mice underwent regeneration of condyle-shaped osteochondral composite. Without residual PGA fibers, the cell sheet group might have less chance of immunological rejection compared to biphasic scaffold group. Copyright © 2017 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.
Freixes, Orestes; Fernandez, Sergio Anibal; Gatti, Marcelo Andres; Crespo, Marcos Jose; Olmos, Lisandro Emilio; Russo, Maria Julieta
2017-01-01
Background: Subjects with spinal cord injury (SCI) propel their wheelchairs by generating a different level of muscle activity given their multiple deficits in muscle strength. Exercise training programs seem to be effective in improving wheelchair propulsion capacity. Functional electrical stimulation (FES) therapy is a complementary tool for rehabilitation programs. Objectives : To determine the accuracy of the synchronization between the FES activation and the push phase of the propulsion cycle by using hand pressure sensors that allow anterior deltoids activation when the hand is in contact with the pushrim. Methods: We analyzed 2 subjects, with injuries at C6 American Spinal Injury Association Impairment Scale (AIS) A and T12 AIS A. The stimulation parameters were set for a 30 Hz frequency symmetrical biphasic wave, 300 μs pulse width. Data were collected as participants propelled the wheelchair over a 10-m section of smooth, level vinyl floor. Subjects were evaluated in a motion analysis laboratory (ELITE; BTS, Milan, Italy). Results: Subject 1 showed synchronization between the FES activation and the push phase of 87.5% in the left hand and of 80% in the right hand. Subject 2 showed synchronization of 95.1% in the left and of hand 94.9% in the right hand. Conclusion : Our study determined a high accuracy of a novel FES therapeutic option, showing the synchronization between the electrical stimulation and the push phase of the propulsion cycle.
Mechanical signaling coordinates the embryonic heartbeat
Chiou, Kevin K.; Rocks, Jason W.; Chen, Christina Yingxian; Cho, Sangkyun; Merkus, Koen E.; Rajaratnam, Anjali; Robison, Patrick; Tewari, Manorama; Vogel, Kenneth; Majkut, Stephanie F.; Prosser, Benjamin L.; Discher, Dennis E.; Liu, Andrea J.
2016-01-01
In the beating heart, cardiac myocytes (CMs) contract in a coordinated fashion, generating contractile wave fronts that propagate through the heart with each beat. Coordinating this wave front requires fast and robust signaling mechanisms between CMs. The primary signaling mechanism has long been identified as electrical: gap junctions conduct ions between CMs, triggering membrane depolarization, intracellular calcium release, and actomyosin contraction. In contrast, we propose here that, in the early embryonic heart tube, the signaling mechanism coordinating beats is mechanical rather than electrical. We present a simple biophysical model in which CMs are mechanically excitable inclusions embedded within the extracellular matrix (ECM), modeled as an elastic-fluid biphasic material. Our model predicts strong stiffness dependence in both the heartbeat velocity and strain in isolated hearts, as well as the strain for a hydrogel-cultured CM, in quantitative agreement with recent experiments. We challenge our model with experiments disrupting electrical conduction by perfusing intact adult and embryonic hearts with a gap junction blocker, β-glycyrrhetinic acid (BGA). We find this treatment causes rapid failure in adult hearts but not embryonic hearts—consistent with our hypothesis. Last, our model predicts a minimum matrix stiffness necessary to propagate a mechanically coordinated wave front. The predicted value is in accord with our stiffness measurements at the onset of beating, suggesting that mechanical signaling may initiate the very first heartbeats. PMID:27457951
Effect of ohmic heating of soymilk on urease inactivation and kinetic analysis in holding time.
Li, Fa-De; Chen, Chen; Ren, Jie; Wang, Ranran; Wu, Peng
2015-02-01
To verify the effect of the ohmic heating on the urease activity in the soymilk, the ohmic heating methods with the different electrical field conditions (the frequency and the voltage ranging from 50 to 10 kHz and from 160 to 220 V, respectively) were employed. The results showed that if the value of the urease activity measured with the quantitative spectrophotometry method was lower than 16.8 IU, the urease activity measured with the qualitative method was negative. The urease activity of the sample ohmically heated was significantly lower than that of the sample conventionally heated (P < 0.01) at the same target temperature. It was concluded that the electrical field enhanced the urease inactivation. In addition, the inactivation kinetics of the urease in the soymilk could be described with a biphasic model during holding time at a target temperature. Thus, it was concluded that the urease in the soymilk would contain 2 isoenzymes, one is the thermolabile fraction, the other the thermostable fraction, and that the thermostable isoenzyme could not be completely inactivated when the holding time increased, whether the soymilk was cooked with the conventional method or with the ohmic heating method. Therefore, the electric field had no effect on the inactivation of the thermostable isoenzyme of the urease. © 2015 Institute of Food Technologists®
Maioli, Margherita; Rinaldi, Salvatore; Santaniello, Sara; Castagna, Alessandro; Pigliaru, Gianfranco; Gualini, Sara; Cavallini, Claudia; Fontani, Vania; Ventura, Carlo
2013-01-01
Somatic cells can be directly reprogrammed to alternative differentiated fates without first becoming stem/progenitor cells. Nevertheless, the initial need for viral-mediated gene delivery renders this strategy unsafe in humans. Here, we provide evidence that exposure of human skin fibroblasts to a Radio Electric Asymmetric Conveyer (REAC), an innovative device delivering radio electric conveyed fields at a radiofrequency of 2.4 GHz, afforded remarkable commitment toward cardiac, neuronal, and skeletal muscle lineages. REAC induced the transcription of tissue-restricted genes, including Mef2c, Tbx5, GATA4, Nkx2.5, and prodynorphin for cardiac reprogramming, as well as myoD, and neurogenin 1 for skeletal myogenesis and neurogenesis, respectively. Conversely, REAC treatment elicited a biphasic effect on a number of stemness-related genes, leading to early transcriptional increase of Oct4, Sox2, cMyc, Nanog, and Klf4 within 6-20 h, followed by a downregulation at later times. The REAC action bypassed a persistent reprogramming toward an induced pluripotent stem cell-like state and involved the transcriptional induction of the NADPH oxidase subunit Nox4. Our results show for the first time the feasibility of using a physical stimulus to afford the expression of pluripotentiality in human adult somatic cells up to the attainment of three major target lineages for regenerative medicine.
Method and apparatus for the removal or bioconversion of constituents of organic liquids
Scott, T.; Scott, C.D.
1994-10-25
A method and apparatus are disclosed for the removal or conversion of constituents from bulk organic liquids. A countercurrent biphasic bioreactor system is utilized to disperse and recoalesce a biocatalyst contained in the aqueous liquid phase into the organic liquid phase containing the constituent. Two transient, high-intensity electrical fields rupture the aqueous drops into a plurality of microdroplets and induce continuous coalescence and redispersion as the microdroplets travel through the organic phase, thus increasing surface area. As the aqueous microdroplets progress through the organic phase, the biocatalyst then reacts with the constituent to produce a product which is then removed from the bioreactor in the aqueous phase or retained in the organic phase. The organic liquid, now free of the original constituents, is ready for immediate use or further processing. 1 fig.
A case of mumps-related acute encephalopathy with biphasic seizures and late reduced diffusion.
Hazama, Kyoko; Shiihara, Takashi; Tsukagoshi, Hiroyuki; Hasegawa, Shunji; Dowa, Yuri; Watanabe, Mio
2017-10-01
Mumps is a common childhood viral disease characterized by fever and swelling of the parotid gland. The prognosis is generally good, although some complications, such as encephalitis (0.1%), exist. Acute encephalopathy with biphasic seizures and late reduced diffusion is the most common type of acute encephalopathy. However, this type of encephalopathy has not been reported in association with mumps infection. A previously healthy 3-year-old Japanese boy had a brief convulsion after fever for 3days, and then had conscious disturbance and parotitis. After several days, he had a second brief convulsion and was admitted. Increased serum amylase levels and presence of anti-mumps immunoglobulin M antibody confirmed mumps parotitis. The patient had another brief seizure later the day of admission. He did not have status or cluster seizures, although the biphasic nature of his seizures, conscious disturbance between the seizures, no pleocytosis in cerebrospinal fluid, and brain magnetic resonance images were consistent with acute encephalopathy with biphasic seizures and late reduced diffusion. In Japan, the mumps vaccine is not administered as a part of routine immunizations. It thus has low coverage (30-40%), and as a result, mumps infections are still common. However, this is the first case of mumps-related acute encephalopathy with biphasic seizures and late reduced diffusion. This case may be representative of only a minority of patients with mumps-associated central nervous system involvement. Nevertheless, this diagnostic possibility may be considered. In order to prevent mumps-related complications, routine mumps vaccination might be warranted. Copyright © 2017 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.
Diversity of head shaking nystagmus in peripheral vestibular disease.
Kim, Min-Beom; Huh, Se Hyung; Ban, Jae Ho
2012-06-01
To evaluate the characteristics of head shaking nystagmus in various peripheral vestibular diseases. Retrospective case series. Tertiary referral center. Data of 235 patients with peripheral vestibular diseases including vestibular neuritis, Ménière's disease, and benign paroxysmal positional vertigo, were retrospectively analyzed. All subjects presented between August 2009 and July 2010. Patients were tested for vestibular function including head shaking nystagmus and caloric information. Regarding vestibular neuritis, all tests were again performed during the 1-month follow-up. Head shaking nystagmus was classified as monophasic or biphasic and, according to the affected ear, was divided as ipsilesional or contralesional. Of the 235 patients, 87 patients revealed positive head shaking nystagmus. According to each disease, positive rates of head shaking nystagmus were as follows: 35 (100%) of 35 cases of vestibular neuritis, 11 (68.8%) of 16 cases of Ménière's disease, and 41 (22.2%) of 184 cases of benign paroxysmal positional vertigo. All cases of vestibular neuritis initially presented as a monophasic, contralesional beating, head shaking nystagmus. However, 1 month after first visit, the direction of nystagmus was changed to biphasic (contralesional first then ipsilesional beating) in 25 cases (72.5%) but not in 10 cases (27.5%). There was a significant correlation between the degree of initial caloric weakness and the biphasic conversion of head shaking nystagmus (p = 0.02). In 72.5% of vestibular neuritis cases, head shaking nystagmus was converted to biphasic during the subacute period. The larger the initial canal paresis was present, the more frequent the biphasic conversion of head shaking nystagmus occurred. However, Ménière's disease and benign paroxysmal positional vertigo did not have specific patterns of head shaking nystagmus.
Kim, Dong-Hyun; Shin, Keun-Koo; Jung, Jin Sup; Chun, Ho Hwan; Park, Seong Soo; Lee, Jong Kook; Park, Hong-Chae; Yoon, Seog-Young
2015-08-01
This study was investigated the role of magnesium (Mg2+) ion substituted biphasic calcium phosphate (Mg-BCP) spherical micro-scaffolds in osteogenic differentiation of human adipose tissue-derived mesenchymal stem cells (hAT-MSCs). Mg-BCP micro-scaffolds with spherical morphology were successfully prepared using in situ co-precipitation and spray drying atomization process. The in vitro cell proliferation and differentiation of hAT-MSCs were determined up to day 14. After in vitro biological tests, Mg-BCP micro-scaffolds with hAT-MSCs showed more enhanced osteogenicity than pure hAT-MSCs as control group by unique biodegradation of TCP phase and influence of substituted Mg2+ ion in biphasic nanostructure. Therefore, these results suggest that Mg-BCP micro-scaffolds promote osteogenic differentiation of hAT-MSCs.
Predictive Feedback Can Account for Biphasic Responses in the Lateral Geniculate Nucleus
Jehee, Janneke F. M.; Ballard, Dana H.
2009-01-01
Biphasic neural response properties, where the optimal stimulus for driving a neural response changes from one stimulus pattern to the opposite stimulus pattern over short periods of time, have been described in several visual areas, including lateral geniculate nucleus (LGN), primary visual cortex (V1), and middle temporal area (MT). We describe a hierarchical model of predictive coding and simulations that capture these temporal variations in neuronal response properties. We focus on the LGN-V1 circuit and find that after training on natural images the model exhibits the brain's LGN-V1 connectivity structure, in which the structure of V1 receptive fields is linked to the spatial alignment and properties of center-surround cells in the LGN. In addition, the spatio-temporal response profile of LGN model neurons is biphasic in structure, resembling the biphasic response structure of neurons in cat LGN. Moreover, the model displays a specific pattern of influence of feedback, where LGN receptive fields that are aligned over a simple cell receptive field zone of the same polarity decrease their responses while neurons of opposite polarity increase their responses with feedback. This phase-reversed pattern of influence was recently observed in neurophysiology. These results corroborate the idea that predictive feedback is a general coding strategy in the brain. PMID:19412529
Font Tellado, Sònia; Bonani, Walter; Balmayor, Elizabeth R; Foehr, Peter; Motta, Antonella; Migliaresi, Claudio; van Griensven, Martijn
2017-08-01
Tissue engineering is an attractive strategy for tendon/ligament-to-bone interface repair. The structure and extracellular matrix composition of the interface are complex and allow for a gradual mechanical stress transfer between tendons/ligaments and bone. Thus, scaffolds mimicking the structural features of the native interface may be able to better support functional tissue regeneration. In this study, we fabricated biphasic silk fibroin scaffolds designed to mimic the gradient in collagen molecule alignment present at the interface. The scaffolds had two different pore alignments: anisotropic at the tendon/ligament side and isotropic at the bone side. Total porosity ranged from 50% to 80% and the majority of pores (80-90%) were <100-300 μm. Young's modulus varied from 689 to 1322 kPa depending on the type of construct. In addition, human adipose-derived mesenchymal stem cells were cultured on the scaffolds to evaluate the effect of pore morphology on cell proliferation and gene expression. Biphasic scaffolds supported cell attachment and influenced cytoskeleton organization depending on pore alignment. In addition, the gene expression of tendon/ligament, enthesis, and cartilage markers significantly changed depending on pore alignment in each region of the scaffolds. In conclusion, the biphasic scaffolds fabricated in this study show promising features for tendon/ligament-to-bone tissue engineering.
Shafie, Asrul Akmal; Ng, Chin Hui; Tan, Yui Ping; Chaiyakunapruk, Nathorn
2017-02-01
Insulin analogues have a pharmacokinetic advantage over human insulin and are increasingly used to treat diabetes mellitus. A summary of their cost effectiveness versus other available treatments was required. Our objective was to systematically review the published cost-effectiveness studies of insulin analogues for the treatment of patients with type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM). We searched major databases and health technology assessment agency reports for economic evaluation studies published up until 30 September 2015. Two reviewers performed data extraction and assessed the quality of the data using the CHEERS (Consolidated Health Economic Evaluation Reporting Standards) guidelines. Seven of the included studies assessed short-acting insulin analogues, 12 assessed biphasic insulin analogues, 30 assessed long-acting insulin analogues and one assessed a combination of short- and long-acting insulin analogues. Only 17 studies involved patients with T1DM, all were modelling studies and 12 were conducted in Canada. The incremental cost-effectiveness ratios (ICERs) for short-acting insulin analogues ranged from dominant to $US435,913 per quality-adjusted life-year (QALY) gained, the ICERs for biphasic insulin analogues ranged from dominant to $US57,636 per QALY gained and the ICERs for long-acting insulin analogues ranged from dominant to $US599,863 per QALY gained. A total of 15 studies met all the CHEERS guidelines reporting quality criteria. Only 26 % of the studies assessed heterogeneity in their analyses. Current evidence indicates that insulin analogues are cost effective for T1DM; however, evidence for their use in T2DM is not convincing. Additional evidence regarding compliance and efficacy is required to support the broader use of long-acting and biphasic insulin analogues in T2DM. The value of insulin analogues depends strongly on reductions in hypoglycaemia event rates and its efficacy in lowering glycated haemoglobin (HbA 1c ).
Square biphasic pulse deep brain stimulation for essential tremor: The BiP tremor study.
De Jesus, Sol; Almeida, Leonardo; Shahgholi, Leili; Martinez-Ramirez, Daniel; Roper, Jaimie; Hass, Chris J; Akbar, Umer; Wagle Shukla, Aparna; Raike, Robert S; Okun, Michael S
2018-01-01
Conventional deep brain stimulation (DBS) utilizes regular, high frequency pulses to treat medication-refractory symptoms in essential tremor (ET). Modifications of DBS pulse shape to achieve improved effectiveness is a promising approach. The current study assessed the safety, tolerability and effectiveness of square biphasic pulse shaping as an alternative to conventional ET DBS. This pilot study compared biphasic pulses (BiP) versus conventional DBS pulses (ClinDBS). Eleven ET subjects with clinically optimized ventralis intermedius nucleus DBS were enrolled. Objective measures were obtained over 3 h while ON BiP stimulation. There was observed benefit in the Fahn-Tolosa Tremor Rating Scale (TRS) for BiP conditions when compared to the DBS off condition and to ClinDBS setting. Total TRS scores during the DBS OFF condition (28.5 IQR = 24.5-35.25) were significantly higher than the other time points. Following active DBS, TRS improved to (20 IQR = 13.8-24.3) at ClinDBS setting and to (16.5 IQR = 12-20.75) at the 3 h period ON BiP stimulation (p = 0.001). Accelerometer recordings revealed improvement in tremor at rest (χ 2 = 16.1, p = 0.006), posture (χ 2 = 15.9, p = 0.007) and with action (χ 2 = 32.1, p=<0.001) when comparing median total scores at ClinDBS and OFF DBS conditions to 3 h ON BiP stimulation. There were no adverse effects and gait was not impacted. BiP was safe, tolerable and effective on the tremor symptoms when tested up to 3 h. This study demonstrated the feasibility of applying a novel DBS waveform in the clinic setting. Larger prospective studies with longer clinical follow-up will be required. Copyright © 2017. Published by Elsevier Ltd.
Al Durdunji, Amal; AlKhatib, Hatim S; Al-Ghazawi, Mutasim
2016-05-01
In a biphasic dissolution medium, the integration of the in vitro dissolution of a drug in an aqueous phase and its subsequent partitioning into an organic phase is hypothesized to simulate the in vivo drug absorption. Such a methodology is expected to improve the probability of achieving a successful in vitro-in vivo correlation. Dissolution of Dispersible tablets of Deferasirox, a biopharmaceutics classification system type II compound, was studied in a biphasic dissolution medium using a flow-through dissolution apparatus coupled to a paddle apparatus. The experimental parameters associated with dissolution were optimized to discriminate between Deferasirox dispersible tablets of different formulations. The dissolution profiles obtained from this system were subsequently used to construct a level A in vitro-in vivo correlation. Copyright © 2016 Elsevier B.V. All rights reserved.
A biphasic parameter estimation method for quantitative analysis of dynamic renal scintigraphic data
NASA Astrophysics Data System (ADS)
Koh, T. S.; Zhang, Jeff L.; Ong, C. K.; Shuter, B.
2006-06-01
Dynamic renal scintigraphy is an established method in nuclear medicine, commonly used for the assessment of renal function. In this paper, a biphasic model fitting method is proposed for simultaneous estimation of both vascular and parenchymal parameters from renal scintigraphic data. These parameters include the renal plasma flow, vascular and parenchymal mean transit times, and the glomerular extraction rate. Monte Carlo simulation was used to evaluate the stability and confidence of the parameter estimates obtained by the proposed biphasic method, before applying the method on actual patient study cases to compare with the conventional fitting approach and other established renal indices. The various parameter estimates obtained using the proposed method were found to be consistent with the respective pathologies of the study cases. The renal plasma flow and extraction rate estimated by the proposed method were in good agreement with those previously obtained using dynamic computed tomography and magnetic resonance imaging.
Yang, Chi; Arvapally, Ravi K.; Tekarli, Sammer M.; ...
2015-03-03
The trinuclear triangle-shaped system [tris{3,5-bis(heptafluoropropyl)-1,2,4-triazolatosilver(I)}] (1) and the multi-armed square-shaped metalloporphyrin PtOEP or the free porphyrin base H2OEP serve as excellent octopus hosts (OEP=2,3,7,8,12,13,17,18-octaethyl-21H,23H-porphine). Coupling of the fluorous/organic molecular octopi 1 and H2OEP or PtOEP by strong quadrupole-quadrupole and metal- interactions affords the supramolecular assemblies [1PtOEP] or [1H(2)OEP] (2a), which feature nanoscopic cavities surrounding the upper triangular and lower square cores. The fluorous/organic biphasic configuration of [1PtOEP] leads to an increase in the phosphorescence of PtOEP under ambient conditions. Guest molecules can be included in the biphasic double-octopus assembly in three different site-selective modes.
Origin and Correction of Magnetic Field Inhomogeneity at the Interface in Biphasic NMR Samples
Martin, Bryan T.; Chingas, G. C.
2012-01-01
The use of susceptibility matching to minimize spectral distortion of biphasic samples layered in a standard 5 mm NMR tube is described. The approach uses magic angle spinning (MAS) to first extract chemical shift differences by suppressing bulk magnetization. Then, using biphasic coaxial samples, magnetic susceptibilities are matched by titration with a paramagnetic salt. The matched phases are then layered in a standard NMR tube where they can be shimmed and examined. Line widths of two distinct spectral lines, selected to characterize homogeneity in each phase, are simultaneously optimized. Two-dimensional distortion-free, slice-resolved spectra of an octanol/water system illustrate the method. These data are obtained using a 2D stepped-gradient pulse sequence devised for this application. Advantages of this sequence over slice-selective methods are that acquisition efficiency is increased and processing requires only conventional software. PMID:22459062
Bai, Qiufang; Song, Dan; Gu, Li; Verkhratsky, Alexei; Peng, Liang
2017-04-01
Here, we present the data indicating that chronic treatment with fluoxetine regulates Cav-1/PTEN/PI3K/AKT/GSK-3β signalling pathway and glycogen content in primary cultures of astrocytes with bi-phasic concentration dependence. At lower concentrations, fluoxetine downregulates gene expression of Cav-1, decreases membrane content of PTEN, increases activity of PI3K/AKT, and elevates GSK-3β phosphorylation thus suppressing its activity. At higher concentrations, fluoxetine acts in an inverse fashion. As expected, fluoxetine at lower concentrations increased while at higher concentrations decreased glycogen content in astrocytes. Our findings indicate that bi-phasic regulation of glycogen content via Cav-1/PTEN/PI3K/AKT/GSK-3β pathway by fluoxetine may be responsible for both therapeutic and side effects of the drug.
Heller, T; Kloos, C; Keßler, D; Müller, N; Thierbach, R; Wolf, G; Müller, U A
2015-03-01
Insulin therapies with prandial injections offer the possibility to skip snacks or omit meals. It is unclear how many people with insulin-treated diabetes mellitus eat snacks and whether they snack for their own comfort or only on the recommendation of healthcare professionals. In 2004, 163 consecutive people with insulin-treated diabetes seen in a university outpatient department were interviewed regarding their diet and degree of satisfaction with their meals. Fifty-five had Type 1 diabetes [age 47 years; diabetes duration 18 years; BMI 27 kg/m(2) ; HbA1c 62 mmol/mol (7.8%)], 53 had Type 2 diabetes with biphasic insulin therapy [age 68 years; diabetes duration 17 years; BMI 31 kg/m(2) ; HbA1c 60 mmol/mol (7.6%)] and 55 had Type 2 diabetes with prandial insulin therapy [age 60 years; diabetes duration 16 years; BMI 33 kg/m(2) ; HbA1c 59 mmol/mol (7.6%)]. Eighty per cent of those with Type 1 diabetes ate snacks, together with 77% of the Type 2 diabetes/biphasic group and 62% of the Type 2 diabetes/prandial group. Most participants (91% Type 1 diabetes, 88% Type 2 diabetes/biphasic group, 82% Type 2 diabetes/prandial group) liked to have snacks. The time at which they ate snacks was the same for both diabetes types. There were no differences between participants with Type 1 diabetes who snacked and those who did not in terms of age (P = 0.350), BMI (P = 0.368), HbA1c (P = 0.257) and time since diagnosis (P = 0.846). Participants with Type 2 diabetes who ate snacks were older than those who did not (biphasic: P = 0.006; prandial: P = 0.008). There were no differences in terms of BMI (biphasic: P = 0.731; prandial: P = 0.393), HbA1c (biphasic: P = 0.747; prandial: P = 0.616) and time since diagnosis (biphasic: P = 0.06; prandial: P = 0.620). Most people with insulin-treated diabetes eat snacks voluntarily and not because of physicians' instructions. There were no correlations between the use of snacks and HbA1c , BMI and time since diagnosis, except that the participants with Type 2 diabetes who ate snacks were older. © 2014 The Authors. Diabetic Medicine © 2014 Diabetes UK.
Borrell, Jordan A.; Frost, Shawn; Peterson, Jeremy; Nudo, Randolph J.
2016-01-01
Objective Spinal cord injury (SCI) is a devastating neurological trauma with a prevalence of about 282,000 people living with an SCI in the United States in 2016. Advances in neuromodulatory devices hold promise for restoring function by incorporating the delivery of electrical current directly into the spinal cord grey matter via intraspinal microstimulation (ISMS). In such designs, detailed topographic maps of spinal cord outputs are needed to determine ISMS locations for eliciting hindlimb movements. The primary goal of the present study was to derive a topographic map of functional motor outputs in the lumbar spinal cord to hindlimb skeletal muscles as defined by ISMS in a rat model. Approach Experiments were carried out in nine healthy, adult, male, Sprague Dawley rats. After a laminectomy of the T13-L1 vertebrae and removal of the dura mater, a four-shank, 16-channel microelectrode array was inserted along a three-dimensional (200 µm) stimulation grid. Trains of three biphasic current pulses were used to determine evoked movements and EMG activity. Via fine wire electromyographic (EMG) electrodes, Stimulus-Triggered Averaging (StTA) was used on rectified EMG data to determine response latency. Main results Hindlimb movements were elicited at a median current intensity of 6 µA, and thresholds were significantly lower in ventrolateral sites. Movements typically consisted of whole leg, hip, knee, ankle, toe, and trunk movements. Hip movements dominated rostral to the T13 vertebral segment, knee movements were evoked at the T13-L1 vertebral junction, while ankle and digit movements were found near the rostral L1 vertebra. Whole leg movements spanned the entire rostrocaudal region explored, while trunk movements dominated medially. StTAs of EMG activity demonstrated a latency of ~4 ms. Significance The derived motor map provides insight into the parameters needed for future neuromodulatory devices. PMID:27934789
Macherey, Olivier; Carlyon, Robert P; Chatron, Jacques; Roman, Stéphane
2017-06-01
Most cochlear implants (CIs) activate their electrodes non-simultaneously in order to eliminate electrical field interactions. However, the membrane of auditory nerve fibers needs time to return to its resting state, causing the probability of firing to a pulse to be affected by previous pulses. Here, we provide new evidence on the effect of pulse polarity and current level on these interactions. In experiment 1, detection thresholds and most comfortable levels (MCLs) were measured in CI users for 100-Hz pulse trains consisting of two consecutive biphasic pulses of the same or of opposite polarity. All combinations of polarities were studied: anodic-cathodic-anodic-cathodic (ACAC), CACA, ACCA, and CAAC. Thresholds were lower when the adjacent phases of the two pulses had the same polarity (ACCA and CAAC) than when they were different (ACAC and CACA). Some subjects showed a lower threshold for ACCA than for CAAC while others showed the opposite trend demonstrating that polarity sensitivity at threshold is genuine and subject- or electrode-dependent. In contrast, anodic (CAAC) pulses always showed a lower MCL than cathodic (ACCA) pulses, confirming previous reports. In experiments 2 and 3, the subjects compared the loudness of several pulse trains differing in current level separately for ACCA and CAAC. For 40 % of the electrodes tested, loudness grew non-monotonically as a function of current level for ACCA but never for CAAC. This finding may relate to a conduction block of the action potentials along the fibers induced by a strong hyperpolarization of their central processes. Further analysis showed that the electrodes showing a lower threshold for ACCA than for CAAC were more likely to yield a non-monotonic loudness growth. It is proposed that polarity sensitivity at threshold reflects the local neural health and that anodic asymmetric pulses should preferably be used to convey sound information while avoiding abnormal loudness percepts.
A 3D map of the hindlimb motor representation in the lumbar spinal cord in Sprague Dawley rats
NASA Astrophysics Data System (ADS)
Borrell, Jordan A.; Frost, Shawn B.; Peterson, Jeremy; Nudo, Randolph J.
2017-02-01
Objective. Spinal cord injury (SCI) is a devastating neurological trauma with a prevalence of about 282 000 people living with an SCI in the United States in 2016. Advances in neuromodulatory devices hold promise for restoring function by incorporating the delivery of electrical current directly into the spinal cord grey matter via intraspinal microstimulation (ISMS). In such designs, detailed topographic maps of spinal cord outputs are needed to determine ISMS locations for eliciting hindlimb movements. The primary goal of the present study was to derive a topographic map of functional motor outputs in the lumbar spinal cord to hindlimb skeletal muscles as defined by ISMS in a rat model. Approach. Experiments were carried out in nine healthy, adult, male, Sprague Dawley rats. After a laminectomy of the T13-L1 vertebrae and removal of the dura mater, a four-shank, 16-channel microelectrode array was inserted along a 3D (200 µm) stimulation grid. Trains of three biphasic current pulses were used to determine evoked movements and electromyographic (EMG) activity. Via fine wire EMG electrodes, stimulus-triggered averaging (StTA) was used on rectified EMG data to determine response latency. Main results. Hindlimb movements were elicited at a median current intensity of 6 µA, and thresholds were significantly lower in ventrolateral sites. Movements typically consisted of whole leg, hip, knee, ankle, toe, and trunk movements. Hip movements dominated rostral to the T13 vertebral segment, knee movements were evoked at the T13-L1 vertebral junction, while ankle and digit movements were found near the rostral L1 vertebra. Whole leg movements spanned the entire rostrocaudal region explored, while trunk movements dominated medially. StTAs of EMG activity demonstrated a latency of ~4 ms. Significance. The derived motor map provides insight into the parameters needed for future neuromodulatory devices.
Ramos de Miguel, Angel; Falcon Gonzalez, Juan Carlos; Ramos Macias, Angel
2017-08-01
Electrical stimulation of the utricular and saccular portions of the vestibular nerve improves stability in patients suffering from vestibular dysfunction. The main objective of this study was to evaluate a new technique, vestibular response telemetry (VRT), for measuring the electrically evoked vestibular compound action potential (saccular and utricular) after stimulating the otolith organ (saccular and utricular) in adults. This study used evidence that the otolith organ can be electrically stimulated in order to develop a new vestibular implant design to improve the sensation of gravitoinertial acceleration. Four adult patients were evaluated by using a variety of measurement procedures with novel VRT software. VRT values were obtained by stimulating with three full-band Nucleus CI24RE (ST) electrodes. Specific stimuli were used. Simultaneously, electrical ocular vestibular evoked myogenic potentials (eoVEMPs) were recorded in the contralateral side. Electrically evoked compound action potentials were obtained in 10 of the 12 electrodes tested, and eoVEMPs were recorded when VRT was present. In addition to the validation of this technique, a set of default clinical test parameters was established. The VRT response morphology consisted of a biphasic waveform with an initial negative peak (N1) followed by a positive peak (P1), and latencies were typically 400 μs for N1 and 800 μs for P1. The consequences for the development of a vestibular implant for the improvement of gravitoinertial acceleration sensation are also presented. The VRT measurement technique has been shown to be a useful tool to record neural response on the otolith organ, and thus it is a convenient tool to evaluate whether the implanted electrodes provide a neural response or not. This can be used for the early development of vestibular implants to improve gravitoinertial acceleration sensation.
Ismail, Heba M; Xu, Ping; Libman, Ingrid M; Becker, Dorothy J; Marks, Jennifer B; Skyler, Jay S; Palmer, Jerry P; Sosenko, Jay M
2018-01-01
We aimed to examine: (1) whether specific glucose-response curve shapes during OGTTs are predictive of type 1 diabetes development; and (2) the extent to which the glucose-response curve is influenced by insulin secretion. Autoantibody-positive relatives of people with type 1 diabetes whose baseline OGTT met the definition of a monophasic or biphasic glucose-response curve were followed for the development of type 1 diabetes (n = 2627). A monophasic curve was defined as an increase in OGTT glucose between 30 and 90 min followed by a decline of ≥ 0.25 mmol/l between 90 and 120 min. A biphasic response curve was defined as a decrease in glucose after an initial increase, followed by a second increase of ≥ 0.25 mmol/l. Associations of type 1 diabetes risk with glucose curve shapes were examined using cumulative incidence curve comparisons and proportional hazards regression. C-peptide responses were compared with and without adjustments for potential confounders. The majority of participants had a monophasic curve at baseline (n = 1732 [66%] vs n = 895 [34%]). The biphasic group had a lower cumulative incidence of type 1 diabetes (p < 0.001), which persisted after adjustments for age, sex, BMI z score and number of autoantibodies (p < 0.001). Among the monophasic group, the risk of type 1 diabetes was greater for those with a glucose peak at 90 min than for those with a peak at 30 min; the difference persisted after adjustments (p < 0.001). Compared with the biphasic group, the monophasic group had a lower early C-peptide (30-0 min) response, a lower C-peptide index (30-0 min C-peptide/30-0 min glucose), as well as a greater 2 h C-peptide level (p < 0.001 for all). Those with biphasic glucose curves have a lower risk of progression to type 1 diabetes than those with monophasic curves, and the risk among the monophasic group is increased when the glucose peak occurs at 90 min than at 30 min. Differences in glucose curve shapes between the monophasic and biphasic groups appear to be related to C-peptide responses.
Diez, J.; Delpón, E.; Tamargo, J.
1990-01-01
1. The effects of platelet activating factor (PAF) were studied on the electromechanical properties and 45Ca2+ fluxes of guinea-pig isolated atria. 2 Both in spontaneously beating and electrically driven atria, PAF (10(-12)-10(-7) M) increased atrial rate but produced a biphasic effect on contractile force. At low concentrations (up to 10(-10) M) it produced a positive inotropic effect, while at higher concentrations PAF exerted a negative inotropic effect. A similar biphasic effect was observed in the slow contractions elicited by isoprenaline in K(+)-depolarized atrial fibres. 3. The positive inotropic effect of PAF was prevented by verapamil, whereas pretreatment of atria with propranolol, phentolamine, indomethacin or atropine did not modify its positive and negative inotropic actions. BN 52021, a specific PAF antagonist, abolished both the positive and negative inotropic effects. 4. PAF had no effect on the characteristics of the action potentials recorded in either normally polarized or K(+)-depolarized (slow action potential) atrial fibres. 5. At concentrations at which it increased contractile force, PAF potentiated the contractile responses to Ca2+ (0.9-9 mM), whereas at negative inotropic concentrations it inhibited them. The negative inotropic effect of PAF was partially reversed in 70% Na+ medium. 6. At 10(-11) M, PAF increased 45Ca2+ uptake and reduced the rate coefficient (kcm) for the 45Ca2+ efflux. This increase in 45Ca2+ uptake was abolished in atria pretreated with verapamil or BN 52021. However, 10(-7) M PAF modified neither 45Ca2+ uptake nor efflux in atrial muscle.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2379035
Takata, Norio; Nagai, Terumi; Ozawa, Katsuya; Oe, Yuki; Mikoshiba, Katsuhiko; Hirase, Hajime
2013-01-01
We report that a brief electrical stimulation of the nucleus basalis of Meynert (NBM), the primary source of cholinergic projection to the cerebral cortex, induces a biphasic cerebral cortical blood flow (CBF) response in the somatosensory cortex of C57BL/6J mice. This CBF response, measured by laser Doppler flowmetry, was attenuated by the muscarinic type acetylcholine receptor antagonist atropine, suggesting a possible involvement of astrocytes in this type of CBF modulation. However, we find that IP3R2 knockout mice, which lack cytosolic Ca2+ surges in astrocytes, show similar CBF changes. Moreover, whisker stimulation resulted in similar degrees of CBF increase in IP3R2 knockout mice and the background strain C57BL/6J. Our results show that neural activity-driven CBF modulation could occur without large cytosolic increases of Ca2+ in astrocytes.
Taskin, Birce Dilge; Tanji, Kurenai; Feldstein, Neil A; McSwiggan-Hardin, Maureen; Akman, Cigdem I
2017-07-01
Herpes simplex virus (HSV) encephalitis can manifest with different clinical presentations, including acute monophasic illness and biphasic chronic granulomatous HSV encephalitis. Chronic encephalitis is much less common, and very rare late relapses are associated with intractable epilepsy and progressive neurological deficits with or without evidence of HSV in the cerebrospinal fluid. The authors report on an 8-year-old girl with a history of treated HSV-1 encephalitis when she was 13 months of age and focal epilepsy when she was 2 years old. Although free of clinical seizures, when she was 5, she experienced behavioral and academic dysfunction, which was later attributed to electrographic focal seizures and worsening electroencephalography (EEG) findings with electrical status epilepticus during slow-wave sleep (ESES). Following a right temporal lobectomy, chronic granulomatous encephalitis was diagnosed. The patient's clinical course improved with the resolution of seizures and EEG abnormalities.
Ultrasound guided electrochemotherapy for the treatment of a clear cell thymoma in a cat
Spugnini, Enrico Pierluigi; Menicagli, Francesco; Pettorali, Michela; Baldi, Alfonso
2017-01-01
A twelve-year-old male castrated domestic shorthair cat was presented for rapidly progressing respiratory distress. The cat was depressed, tachypneic and moderately responsive. Ultrasonography showed a mediastinal mass associated with a significant pleural effusion that needed tapping every five to seven days. Ultrasound guided biopsy yielded a diagnosis of clear cell thymoma upon histopathology. After complete staging procedures, the owner elected to treat the cat with electrochemotherapy (ECT) using systemic bleomycin. Two sessions of ultrasound guided ECT were performed at two week intervals with trains of biphasic electric pulses applied using needle electrodes until complete coverage of the area was achieved. The treatment was well tolerated and resulted in partial remission (PR). Additional sessions were performed on a monthly basis. The cat is still in PR after fourteen months. ECT resulted in improved local control and should be considered among the available adjuvant treatments in pets carrying visceral tumors. PMID:28331834
Dynamin phosphorylation controls optimization of endocytosis for brief action potential bursts
Armbruster, Moritz; Messa, Mirko; Ferguson, Shawn M; De Camilli, Pietro; Ryan, Timothy A
2013-01-01
Modulation of synaptic vesicle retrieval is considered to be potentially important in steady-state synaptic performance. Here we show that at physiological temperature endocytosis kinetics at hippocampal and cortical nerve terminals show a bi-phasic dependence on electrical activity. Endocytosis accelerates for the first 15–25 APs during bursts of action potential firing, after which it slows with increasing burst length creating an optimum stimulus for this kinetic parameter. We show that activity-dependent acceleration is only prominent at physiological temperature and that the mechanism of this modulation is based on the dephosphorylation of dynamin 1. Nerve terminals in which dynamin 1 and 3 have been replaced with dynamin 1 harboring dephospho- or phospho-mimetic mutations in the proline-rich domain eliminate the acceleration phase by either setting endocytosis at an accelerated state or a decelerated state, respectively. DOI: http://dx.doi.org/10.7554/eLife.00845.001 PMID:23908769
Jacobs, Benjamin W.; Ayres, Virginia M.; Petkov, Mihail P.; ...
2007-04-07
Here, we report a new biphasic crystalline wurtzite/zinc-blende homostructure in gallium nitride nanowires. Cathodoluminescence was used to quantitatively measure the wurtzite and zinc-blende band gaps. High-resolution transmission electron microscopy was used to identify distinct wurtzite and zinc-blende crystalline phases within single nanowires through the use of selected area electron diffraction, electron dispersive spectroscopy, electron energy loss spectroscopy, and fast Fourier transform techniques. A mechanism for growth is identified.
Jacobs, Benjamin W; Ayres, Virginia M; Petkov, Mihail P; Halpern, Joshua B; He, Maoqi; Baczewski, Andrew D; McElroy, Kaylee; Crimp, Martin A; Zhang, Jiaming; Shaw, Harry C
2007-05-01
We report a new biphasic crystalline wurtzite/zinc-blende homostructure in gallium nitride nanowires. Cathodoluminescence was used to quantitatively measure the wurtzite and zinc-blende band gaps. High-resolution transmission electron microscopy was used to identify distinct wurtzite and zinc-blende crystalline phases within single nanowires through the use of selected area electron diffraction, electron dispersive spectroscopy, electron energy loss spectroscopy, and fast Fourier transform techniques. A mechanism for growth is identified.
Production of Furfural from Process-Relevant Biomass-Derived Pentoses in a Biphasic Reaction System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mittal, Ashutosh; Black, Stuart K.; Vinzant, Todd B.
Furfural is an important fuel precursor which can be converted to hydrocarbon fuels and fuel intermediates. In this work, the production of furfural by dehydration of process-relevant pentose rich corn stover hydrolyzate using a biphasic batch reaction system has been investigated. Methyl isobutyl ketone (MIBK) and toluene have been used to extract furfural and enhance overall furfural yield by limiting its degradation to humins. The effects of reaction time, temperature, and acid concentration (H 2SO 4) on pentose conversion and furfural yield were investigated. For the dehydration of 8 wt % pentose-rich corn stover hydrolyzate under optimum reaction conditions, 0.05more » M H 2SO 4, 170 degrees C for 20 min with MIBK as the solvent, complete conversion of xylose (98-100%) and a furfural yield of 80% were obtained. Under these same conditions, except with toluene as the solvent, the furfural yield was 77%. Additionally, dehydration of process-relevant pentose rich corn stover hydrolyzate using solid acid ion-exchange resins under optimum reaction conditions has shown that Purolite CT275 is as effective as H 2SO 4 for obtaining furfural yields approaching 80% using a biphasic batch reaction system. In conclusion, this work has demonstrated that a biphasic reaction system can be used to process biomass-derived pentose rich sugar hydrolyzates to furfural in yields approaching 80%.« less
Ferguson, Alison C; Pearce, Simon; Band, Leah R; Yang, Caiyun; Ferjentsikova, Ivana; King, John; Yuan, Zheng; Zhang, Dabing; Wilson, Zoe A
2017-01-01
Viable pollen is essential for plant reproduction and crop yield. Its production requires coordinated expression at specific stages during anther development, involving early meiosis-associated events and late pollen wall formation. The ABORTED MICROSPORES (AMS) transcription factor is a master regulator of sporopollenin biosynthesis, secretion and pollen wall formation in Arabidopsis. Here we show that it has complex regulation and additional essential roles earlier in pollen formation. An inducible-AMS reporter was created for functional rescue, protein expression pattern analysis, and to distinguish between direct and indirect targets. Mathematical modelling was used to create regulatory networks based on wild-type RNA and protein expression. Dual activity of AMS was defined by biphasic protein expression in anther tapetal cells, with an initial peak around pollen meiosis and then later during pollen wall development. Direct AMS-regulated targets exhibit temporal regulation, indicating that additional factors are associated with their regulation. We demonstrate that AMS biphasic expression is essential for pollen development, and defines distinct functional activities during early and late pollen development. Mathematical modelling suggests that AMS may competitively form a protein complex with other tapetum-expressed transcription factors, and that biphasic regulation is due to repression of upstream regulators and promotion of AMS protein degradation. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
Production of Furfural from Process-Relevant Biomass-Derived Pentoses in a Biphasic Reaction System
Mittal, Ashutosh; Black, Stuart K.; Vinzant, Todd B.; ...
2017-05-16
Furfural is an important fuel precursor which can be converted to hydrocarbon fuels and fuel intermediates. In this work, the production of furfural by dehydration of process-relevant pentose rich corn stover hydrolyzate using a biphasic batch reaction system has been investigated. Methyl isobutyl ketone (MIBK) and toluene have been used to extract furfural and enhance overall furfural yield by limiting its degradation to humins. The effects of reaction time, temperature, and acid concentration (H 2SO 4) on pentose conversion and furfural yield were investigated. For the dehydration of 8 wt % pentose-rich corn stover hydrolyzate under optimum reaction conditions, 0.05more » M H 2SO 4, 170 degrees C for 20 min with MIBK as the solvent, complete conversion of xylose (98-100%) and a furfural yield of 80% were obtained. Under these same conditions, except with toluene as the solvent, the furfural yield was 77%. Additionally, dehydration of process-relevant pentose rich corn stover hydrolyzate using solid acid ion-exchange resins under optimum reaction conditions has shown that Purolite CT275 is as effective as H 2SO 4 for obtaining furfural yields approaching 80% using a biphasic batch reaction system. In conclusion, this work has demonstrated that a biphasic reaction system can be used to process biomass-derived pentose rich sugar hydrolyzates to furfural in yields approaching 80%.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Qinli; Li, Yufan; Chien, Chia-ling
Provided is an electric-current-controllable magnetic unit, including: a substrate, an electric-current channel disposed on the substrate, the electric-current channel including a composite heavy-metal multilayer comprising at least one heavy-metal; a capping layer disposed over the electric-current channel; and at least one ferromagnetic layer disposed between the electric-current channel and the capping layer.
UCP2- and non-UCP2-mediated electric current in eukaryotic cells exhibits different properties.
Wang, Ruihua; MoYung, K C; Zhang, M H; Poon, Karen
2015-12-01
Using live eukaryotic cells, including cancer cells, MCF-7 and HCT-116, normal hepatocytes and red blood cells in anode and potassium ferricyanide in cathode of MFC could generate bio-based electric current. Electrons and protons generated from the metabolic reaction in both cytosol and mitochondria contributing to the leaking would mediate the generation of electric current. Both resveratrol (RVT) and 2,4-dinitrophenol (DNP) used to induce proton leak in mitochondria were found to promote electric current production in all cells except red blood cells without mitochondria. Proton leak might be important for electric current production by bringing the charge balance in cells to enhance the further electron leak. The induced electric current by RVT can be blocked by Genipin, an inhibitor of UCP2-mediated proton leak, while that induced by DNP cannot. RVT could reduce reactive oxygen species (ROS) level in cells better than that of DNP. In addition, RVT increased mitochondrial membrane potential (MMP), while DNP decreased it. Results highly suggested the existence of at least two types of electric current that showed different properties. They included UCP2-mediated and non-UCP2-mediated electric current. UCP2-mediated electric current exhibited higher reactive oxygen species (ROS) reduction effect per unit electric current production than that of non-UCP2-mediated electric current. Higher UCP2-mediated electric current observed in cancer cells might contribute to the mechanism of drug resistence. Correlation could not be established between electric current production with either ROS and MMP without distinguishing the types of electric current.
Transcranial Alternating Current Stimulation (tACS) Mechanisms and Protocols
Tavakoli, Amir V.; Yun, Kyongsik
2017-01-01
Perception, cognition and consciousness can be modulated as a function of oscillating neural activity, while ongoing neuronal dynamics are influenced by synaptic activity and membrane potential. Consequently, transcranial alternating current stimulation (tACS) may be used for neurological intervention. The advantageous features of tACS include the biphasic and sinusoidal tACS currents, the ability to entrain large neuronal populations, and subtle control over somatic effects. Through neuromodulation of phasic, neural activity, tACS is a powerful tool to investigate the neural correlates of cognition. The rapid development in this area requires clarity about best practices. Here we briefly introduce tACS and review the most compelling findings in the literature to provide a starting point for using tACS. We suggest that tACS protocols be based on functional brain mechanisms and appropriate control experiments, including active sham and condition blinding. PMID:28928634
9 CFR 313.30 - Electrical; stunning or slaughtering with electric current.
Code of Federal Regulations, 2011 CFR
2011-01-01
... Electrical; stunning or slaughtering with electric current. The slaughtering of swine, sheep, calves, cattle, and goats with the use of electric current and the handling in connection therewith, in compliance... with electric current. 313.30 Section 313.30 Animals and Animal Products FOOD SAFETY AND INSPECTION...
9 CFR 313.30 - Electrical; stunning or slaughtering with electric current.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Electrical; stunning or slaughtering with electric current. The slaughtering of swine, sheep, calves, cattle, and goats with the use of electric current and the handling in connection therewith, in compliance... with electric current. 313.30 Section 313.30 Animals and Animal Products FOOD SAFETY AND INSPECTION...
de Campos Ciccone, Carla; Zuzzi, Denise Cristina; Neves, Lia Mara Grosso; Mendonça, Josué Sampaio; Joazeiro, Paulo Pinto; Esquisatto, Marcelo Augusto Marretto
2013-01-19
In this study, we investigate the effects of microcurrent stimulation on the repair process of xiphoid cartilage in 45-days-old rats. Twenty male rats were divided into a control group and a treated group. A 3-mm defect was then created with a punch in anesthetized animals. In the treated group, animals were submitted to daily applications of a biphasic square pulse microgalvanic continuous electrical current during 5 min. In each application, it was used a frequency of 0.3 Hz and intensity of 20 μA. The animals were sacrificed at 7, 21 and 35 days after injury for structural analysis. Basophilia increased gradually in control animals during the experimental period. In treated animals, newly formed cartilage was observed on days 21 and 35. No statistically significant differences in birefringent collagen fibers were seen between groups at any of the time points. Treated animals presented a statistically larger number of chondroblasts. Calcification points were observed in treated animals on day 35. Ultrastructural analysis revealed differences in cell and matrix characteristics between the two groups. Chondrocyte-like cells were seen in control animals only after 35 days, whereas they were present in treated animals as early as by day 21. The number of cuprolinic blue-stained proteoglycans was statistically higher in treated animals on days 21 and 35. We conclude that microcurrent stimulation accelerates the cartilage repair in non-articular site from prepuberal animals.
Progress towards a high-resolution retinal prosthesis
NASA Astrophysics Data System (ADS)
Butterwick, Alex; Vankov, Alex; Huie, Phil; Vijayraghavan, Karthik; Loudin, Jim; Palanker, Daniel
2007-02-01
Electronic retinal prostheses represent a potentially effective approach for restoring some degree of sight in blind patients with retinal degeneration. Functional restoration of sight would require hundreds to thousands of electrodes effectively stimulating remaining neurons in the retina. We present a design of an optoelectronic retinal prosthetic system having 3mm diameter retinal implant with pixel sizes down to 25 micrometers, which allows for natural eye scanning for observing a large field of view, as well as spatial and temporal processing of the visual scene to optimize the patient experience. Information from a head mounted video camera is processed in a portable computer and delivered to the implanted photodiode array by projection from the LCD goggles using pulsed IR (810 nm) light. Each photodiode converts pulsed light (0.5 ms in duration) into electric current with efficiency of 0.3 A/W using common bi-phasic power line. Power is provided by the inductively-coupled RF link from the coil on the goggles into a miniature power supply implanted between the sclera and the conjuctiva, and connected to subretinal implant with a thin 2-wire trans-scleral cable. 3-dimensional structures in the subretinal prosthesis induce retinal migration and thus ensure close proximity between stimulating electrodes and the target retinal neurons. Subretinal implantations of the 3-dimentional pillar and chamber arrays in RCS rats with 2 and 6 week follow-up demonstrate achievement of intimate proximity between the stimulation cites and the inner nuclear layer. In some instances formation of a fibrotic seal has been observed.
Magnetic Field-Controlled Lithium Polysulfide Semiliquid Battery with Ferrofluidic Properties.
Li, Weiyang; Liang, Zheng; Lu, Zhenda; Tao, Xinyong; Liu, Kai; Yao, Hongbin; Cui, Yi
2015-11-11
Large-scale energy storage systems are of critical importance for electric grids, especially with the rapid increasing deployment of intermittent renewable energy sources such as wind and solar. New cost-effective systems that can deliver high energy density and efficiency for such storage often involve the flow of redox molecules and particles. Enhancing the mass and electron transport is critical for efficient battery operation in these systems. Herein, we report the design and characterization of a novel proof-of-concept magnetic field-controlled flow battery using lithium metal-polysulfide semiliquid battery as an example. A biphasic magnetic solution containing lithium polysulfide and magnetic nanoparticles is used as catholyte, and lithium metal is used as anode. The catholyte is composed of two phases of polysulfide with different concentrations, in which most of the polysulfide molecules and the superparamagnetic iron oxide nanoparticles can be extracted together to form a high-concentration polysulfide phase, in close contact with the current collector under the influence of applied magnetic field. This unique feature can help to maximize the utilization of the polysulfide and minimize the polysulfide shuttle effect, contributing to enhanced energy density and Coulombic efficiency. Additionally, owing to the effect of the superparamagnetic nanoparticles, the concentrated polysulfide phase shows the behavior of a ferrofluid that is flowable with the control of magnetic field, which can be used for a hybrid flow battery without the employment of any pumps. Our innovative design provides new insight for a broad range of flow battery chemistries and systems.
2013-01-01
Background In this study, we investigate the effects of microcurrent stimulation on the repair process of xiphoid cartilage in 45-days-old rats. Methods Twenty male rats were divided into a control group and a treated group. A 3-mm defect was then created with a punch in anesthetized animals. In the treated group, animals were submitted to daily applications of a biphasic square pulse microgalvanic continuous electrical current during 5 min. In each application, it was used a frequency of 0.3 Hz and intensity of 20 μA. The animals were sacrificed at 7, 21 and 35 days after injury for structural analysis. Results Basophilia increased gradually in control animals during the experimental period. In treated animals, newly formed cartilage was observed on days 21 and 35. No statistically significant differences in birefringent collagen fibers were seen between groups at any of the time points. Treated animals presented a statistically larger number of chondroblasts. Calcification points were observed in treated animals on day 35. Ultrastructural analysis revealed differences in cell and matrix characteristics between the two groups. Chondrocyte-like cells were seen in control animals only after 35 days, whereas they were present in treated animals as early as by day 21. The number of cuprolinic blue-stained proteoglycans was statistically higher in treated animals on days 21 and 35. Conclusion We conclude that microcurrent stimulation accelerates the cartilage repair in non-articular site from prepuberal animals. PMID:23331612
2012-01-01
Background Yarrowia lipolytica efficiently metabolizes and assimilates hydrophobic compounds such as n-alkanes and fatty acids. Efficient substrate uptake is enabled by naturally secreted emulsifiers and a modified cell surface hydrophobicity and protrusions formed by this yeast. We were examining the potential of recombinant Y. lipolytica as a biocatalyst for the oxidation of hardly soluble hydrophobic steroids. Furthermore, two-liquid biphasic culture systems were evaluated to increase substrate availability. While cells, together with water soluble nutrients, are maintained in the aqueous phase, substrates and most of the products are contained in a second water-immiscible organic solvent phase. Results For the first time we have co-expressed the human cytochromes P450 2D6 and 3A4 genes in Y. lipolytica together with human cytochrome P450 reductase (hCPR) or Y. lipolytica cytochrome P450 reductase (YlCPR). These whole-cell biocatalysts were used for the conversion of poorly soluble steroids in biphasic systems. Employing a biphasic system with the organic solvent and Y. lipolytica carbon source ethyl oleate for the whole-cell bioconversion of progesterone, the initial specific hydroxylation rate in a 1.5 L stirred tank bioreactor was further increased 2-fold. Furthermore, the product formation was significantly prolonged as compared to the aqueous system. Co-expression of the human CPR gene led to a 4-10-fold higher specific activity, compared to the co-overexpression of the native Y. lipolytica CPR gene. Multicopy transformants showed a 50-70-fold increase of activity as compared to single copy strains. Conclusions Alkane-assimilating yeast Y. lipolytica, coupled with the described expression strategies, demonstrated its high potential for biotransformations of hydrophobic substrates in two-liquid biphasic systems. Especially organic solvents which can be efficiently taken up and/or metabolized by the cell might enable more efficient bioconversion as compared to aqueous systems and even enable simple, continuous or at least high yield long time processes. PMID:22876969
Influence of angular acceleration-deceleration pulse shapes on regional brain strains.
Yoganandan, Narayan; Li, Jianrong; Zhang, Jiangyue; Pintar, Frank A; Gennarelli, Thomas A
2008-07-19
Recognizing the association of angular loading with brain injuries and inconsistency in previous studies in the application of the biphasic loads to animal, physical, and experimental models, the present study examined the role of the acceleration-deceleration pulse shapes on region-specific strains. An experimentally validated two-dimensional finite element model representing the adult male human head was used. The model simulated the skull and falx as a linear elastic material, cerebrospinal fluid as a hydrodynamic material, and cerebrum as a linear viscoelastic material. The angular loading matrix consisted coronal plane rotation about a center of rotation that was acceleration-only (4.5 ms duration, 7.8 krad/s/s peak), deceleration-only (20 ms, 1.4 krad/s/s peak), acceleration-deceleration, and deceleration-acceleration pulses. Both biphasic pulses had peaks separated by intervals ranging from 0 to 25 ms. Principal strains were determined at the corpus callosum, base of the postcentral sulcus, and cerebral cortex of the parietal lobe. The cerebrum was divided into 17 regions and peak values of average maximum principal strains were determined. In all simulations, the corpus callosum responded with the highest strains. Strains were the least under all simulations in the lower parietal lobes. In all regions peak strains were the same for both monophase pulses suggesting that the angular velocity may be a better metric than peak acceleration or deceleration. In contrast, for the biphasic pulse, peak strains were region- and pulse-shape specific. Peak values were lower in both biphasic pulses when there was no time separation between the pulses than the corresponding monophase pulse. Increasing separation time intervals increased strains, albeit non-uniformly. Acceleration followed by deceleration pulse produced greater strains in all regions than the other form of biphasic pulse. Thus, pulse shape appears to have an effect on regional strains in the brain.
Srinivasan, Prakash; Sarmah, Ajit K; Rohan, Maheswaran
2014-08-01
Single first-order (SFO) kinetic model is often used to derive the dissipation endpoints of an organic chemical in soil. This model is used due to its simplicity and requirement by regulatory agencies. However, using the SFO model for all types of decay pattern could lead to under- or overestimation of dissipation endpoints when the deviation from first-order is significant. In this study the performance of three biphasic kinetic models - bi-exponential decay (BEXP), first-order double exponential decay (FODED), and first-order two-compartment (FOTC) models was evaluated using dissipation datasets of sulfamethoxazole (SMO) antibiotic in three different soils under varying concentration, depth, temperature, and sterile conditions. Corresponding 50% (DT50) and 90% (DT90) dissipation times for the antibiotics were numerically obtained and compared against those obtained using the SFO model. The fit of each model to the measured values was evaluated based on an array of statistical measures such as coefficient of determination (R(2)adj), root mean square error (RMSE), chi-square (χ(2)) test at 1% significance, Bayesian Information Criteria (BIC) and % model error. Box-whisker residual plots were also used to compare the performance of each model to the measured datasets. The antibiotic dissipation was successfully predicted by all four models. However, the nonlinear biphasic models improved the goodness-of-fit parameters for all datasets. Deviations from datasets were also often less evident with the biphasic models. The fits of FOTC and FODED models for SMO dissipation datasets were identical in most cases, and were found to be superior to the BEXP model. Among the biphasic models, the FOTC model was found to be the most suitable for obtaining the endpoints and could provide a mechanistic explanation for SMO dissipation in the soils. Copyright © 2014 Elsevier B.V. All rights reserved.
Comments on the article 'Defining hormesis', by EJ Calabrese and LA Baldwin.
Upton, A C
2002-02-01
In view of the diversity of biological responses and the extent to which many of them remain poorly elucidated, there is merit in the suggestion by Calabrese and Baldwin that the term 'hormesis' should be applicable to those adaptive responses that are characterized by biphasic dose-response relationships, without reference to any associated beneficial or harmful effects. Whether the dose-response relationships for radiation-induced mutations and chromosome aberrations are biphasic in nature is an important question that remains to be resolved.
Magnetospheric electric fields and currents
NASA Technical Reports Server (NTRS)
Mauk, B. H.; Zanetti, L. J.
1987-01-01
The progress made in the years 1983-1986 in understanding the character and operation of magnetospheric electric fields and electric currents is discussed, with emphasis placed on the connection with the interior regions. Special attention is given to determinations of global electric-field configurations, measurements of the response of magnetospheric particle populations to the electric-field configurations, and observations of the magnetospheric currents at high altitude and during northward IMF. Global simulations of current distributions are discussed, and the sources of global electric fields and currents are examined. The topics discussed in the area of impulsive and small-scale phenomena include substorm current systems, impulsive electric fields and associated currents, and field-aligned electrodynamics. A key finding of these studies is that the electric fields and currents are interrelated and cannot be viewed as separate entities.
F-actin-based Ca signaling-a critical comparison with the current concept of Ca signaling.
Lange, Klaus; Gartzke, Joachim
2006-11-01
A short comparative survey on the current idea of Ca signaling and the alternative concept of F-actin-based Ca signaling is given. The two hypotheses differ in one central aspect, the mechanism of Ca storage. The current theory rests on the assumption of Ca-accumulating endoplasmic/sarcoplasmic reticulum-derived vesicles equipped with an ATP-dependent Ca pump and IP3- or ryanodine-sensitive channel-receptors for Ca-release. The alternative hypothesis proceeds from the idea of Ca storage at the high-affinity binding sites of actin filaments. Cellular sites of F-actin-based Ca storage are microvilli and the submembrane cytoskeleton. Several specific features of Ca signaling such as store-channel coupling, quantal Ca release, spiking and oscillations, biphasic and "phasic" uptake kinetics, and Ca-induced Ca release (CICR), which are not adequately described by the current concept, are inherent properties of the F-actin system and its dynamic state of treadmilling. Copyright 2006 Wiley-Liss, Inc.
ERIC Educational Resources Information Center
Solomonidou, Christina; Kakana, Domna-Mika
2000-01-01
Examined 5- and 6-year-olds' ideas about the functioning of common electrical appliances and properties of electric current. Found that children represented current in a static way, thinking it was included in the appliance, and confounded electric current and water flow, believing external electricity was different from internal. They were…
Evaluation of focused multipolar stimulation for cochlear implants: a preclinical safety study
NASA Astrophysics Data System (ADS)
Shepherd, Robert K.; Wise, Andrew K.; Enke, Ya Lang; Carter, Paul M.; Fallon, James B.
2017-08-01
Objective. Cochlear implants (CIs) have a limited number of independent stimulation channels due to the highly conductive nature of the fluid-filled cochlea. Attempts to develop highly focused stimulation to improve speech perception in CI users includes the use of simultaneous stimulation via multiple current sources. Focused multipolar (FMP) stimulation is an example of this approach and has been shown to reduce interaction between stimulating channels. However, compared with conventional biphasic current pulses generated from a single current source, FMP is a complex stimulus that includes extended periods of stimulation before charge recovery is achieved, raising questions on whether chronic stimulation with this strategy is safe. The present study evaluated the long-term safety of intracochlear stimulation using FMP in a preclinical animal model of profound deafness. Approach. Six cats were bilaterally implanted with scala tympani electrode arrays two months after deafening, and received continuous unilateral FMP stimulation at levels that evoked a behavioural response for periods of up to 182 d. Electrode impedance, electrically-evoked compound action potentials (ECAPs) and auditory brainstem responses (EABRs) were monitored periodically over the course of the stimulation program from both the stimulated and contralateral control cochleae. On completion of the stimulation program cochleae were examined histologically and the electrode arrays were evaluated for evidence of platinum (Pt) corrosion. Main results. There was no significant difference in electrode impedance between control and chronically stimulated electrodes following long-term FMP stimulation. Moreover, there was no significant difference between ECAP and EABR thresholds evoked from control or stimulated cochleae at either the onset of stimulation or at completion of the stimulation program. Chronic FMP stimulation had no effect on spiral ganglion neuron (SGN) survival when compared with unstimulated control cochleae. Long-term implantation typically evoked a mild foreign body reaction proximal to the electrode array; however stimulated cochleae exhibited a small but statistically significant increase in the tissue response. Finally, there was no evidence of Pt corrosion following long-term FMP stimulation; stimulated electrodes exhibited the same surface features as the unstimulated control electrodes. Significance. Chronic intracochlear FMP stimulation at levels used in the present study did not adversely affect electrically-evoked neural thresholds or SGN survival but evoked a small, benign increase in inflammatory response compared to control ears. Moreover chronic FMP stimulation does not affect the surface of Pt electrodes at suprathreshold stimulus levels. These findings support the safe clinical application of an FMP stimulation strategy.
Acute exercise induces biphasic increase in respiratory mRNA in skeletal muscle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ikeda, Shin-ichi; Kizaki, Takako; Haga, Shukoh
2008-04-04
Peroxisome proliferator-activated receptor {gamma} coactivator-1{alpha} (PGC-1{alpha}) promotes the expression of oxidative enzymes in skeletal muscle. We hypothesized that activation of the p38 MAPK (mitogen-activated protein kinase) in response to exercise was associated with exercise-induced PGC-1{alpha} and respiratory enzymes expression and aimed to demonstrate this under the physiological level. We subjected mice to a single bout of treadmill running and found that the exercise induced a biphasic increase in the expression of respiratory enzymes mRNA. The second phase of the increase was accompanied by an increase in PGC-1{alpha} protein, but the other was not. Administration of SB203580 (SB), an inhibitor ofmore » p38 MAPK, suppressed the increase in PGC-1{alpha} expression and respiratory enzymes mRNA in both phases. These data suggest that p38 MAPK is associated with the exercise-induced expression of PGC-1{alpha} and biphasic increase in respiratory enzyme mRNAs in mouse skeletal muscle under physiological conditions.« less
Bear, Joseph C; Gomez, Virginia; Kefallinos, Nikolaos S; McGettrick, James D; Barron, Andrew R; Dunnill, Charles W
2015-12-15
Titanium dioxide (TiO2) bi-phasic powders with individual particles containing an anatase and rutile hetero-junction have been prepared using a sequential layer sol-gel deposition technique to soluble substrates. Sequential thin films of rutile and subsequently anatase TiO2 were deposited onto sodium chloride substrates yielding extremely fragile composite layered discs that fractured into "Janus-like" like powders on substrate dissolution. Nitrogen doped and platinum sputtered analogues were also prepared, and analysed for photocatalytic potential using the photodegradation of Rhodamine B, a model organic pollutant under UV and visible light irradiation. The materials were characterised using X-ray diffraction, X-ray photoelectron spectroscopy, energy dispersive X-ray spectroscopy, Raman spectroscopy and scanning electron microscopy. This paper sheds light on the relationship between anatase and rutile materials when in direct contact and demonstrates a robust method for the synthesis of bi-phasic nanoparticles, ostensibly of any two materials, for photocatalytic reactions or otherwise. Copyright © 2015 Elsevier Inc. All rights reserved.
Deng, Aojie; Lin, Qixuan; Yan, Yuhuan; Li, Huiling; Ren, Junli; Liu, Chuanfu; Sun, Runcang
2016-09-01
A feasible approach was developed to produce furfural from the pre-hydrolysis liquor of corncob via biochar catalysts as the solid acid catalyst in a new biphasic system with dichloromethane (DCM) as the organic phase and the concentrated pre-hydrolysis liquor (CPHL) containing NaCl as the aqueous phase. The biochar catalyst possessing many acidity groups (SO3H, COOH and phenolic OH groups) was prepared by the carbonization and sulfonation process of the corncob hydrolyzed residue. The influence of the catalytic condition on furfural yield and selectivity was comparatively studied. It was found that 81.14% furfural yield and 83.0% furfural selectivity were obtained from CPHL containing 5wt% xylose using this biochar catalyst in the CPHL-NaCl/DCM biphasic system at 170°C for 60min. In addition, with the regeneration process, this catalyst displayed the high performance and excellent recyclability. Copyright © 2016 Elsevier Ltd. All rights reserved.
Qing, Qing; Guo, Qi; Zhou, Linlin; Wan, Yilun; Xu, Youqing; Ji, Huilong; Gao, Xiaohang; Zhang, Yue
2017-02-01
Catalytic conversion of corncob pretreatment hydrolysate and raw corncob into furfural in a modified biphasic system by SO 4 2- /SnO 2 - MMT solid catalyst has been developed. The influence of the organic solvent type, organic to water phase ratio, sodium chloride concentration, reaction temperature and time on the furfural production were comparatively evaluated. The results showed that furfural yields of 81.7% and 66.1% were achieved at 190°C for 15mins and 190°C for 20mins, respectively, for corncob pretreatment hydrolysate and raw corncob by this solid catalyst. The solid catalyst used in this study exhibited good stability and high efficiency applied in the modified biphasic system in addition to excellent recyclability. The proposed catalytic system displayed high performance for catalytic conversion of lignocellulosic biomass into important platform chemicals and has great potential in industrial application. Copyright © 2016 Elsevier Ltd. All rights reserved.
Non-conventional solvents in liquid phase microextraction and aqueous biphasic systems.
An, Jiwoo; Trujillo-Rodríguez, María J; Pino, Verónica; Anderson, Jared L
2017-06-02
The development of rapid, convenient, and high throughput sample preparation approaches such as liquid phase microextraction techniques have been continuously developed over the last decade. More recently, significant attention has been given to the replacement of conventional organic solvents used in liquid phase microextraction techniques in order to reduce toxic waste and to improve selectivity and/or extraction efficiency. With these objectives, non-conventional solvents have been explored in liquid phase microextraction and aqueous biphasic systems. The utilized non-conventional solvents include ionic liquids, magnetic ionic liquids, and deep eutectic solvents. They have been widely used as extraction solvents or additives in various liquid phase microextraction modes including dispersive liquid-liquid microextraction, single-drop microextraction, hollow fiber-liquid phase microextraction, as well as in aqueous biphasic systems. This review provides an overview into the use of non-conventional solvents in these microextraction techniques in the past 5 years (2012-2016). Analytical applications of the techniques are also discussed. Copyright © 2017 Elsevier B.V. All rights reserved.
Method for separating water soluble organics from a process stream by aqueous biphasic extraction
Chaiko, David J.; Mego, William A.
1999-01-01
A method for separating water-miscible organic species from a process stream by aqueous biphasic extraction is provided. An aqueous biphase system is generated by contacting a process stream comprised of water, salt, and organic species with an aqueous polymer solution. The organic species transfer from the salt-rich phase to the polymer-rich phase, and the phases are separated. Next, the polymer is recovered from the loaded polymer phase by selectively extracting the polymer into an organic phase at an elevated temperature, while the organic species remain in a substantially salt-free aqueous solution. Alternatively, the polymer is recovered from the loaded polymer by a temperature induced phase separation (cloud point extraction), whereby the polymer and the organic species separate into two distinct solutions. The method for separating water-miscible organic species is applicable to the treatment of industrial wastewater streams, including the extraction and recovery of complexed metal ions from salt solutions, organic contaminants from mineral processing streams, and colorants from spent dye baths.
Amarouche, Nassima; Boudesocque, Leslie; Borie, Nicolas; Giraud, Matthieu; Forni, Luciano; Butte, Alessandro; Edwards, Florence; Renault, Jean-Hugues
2014-06-01
A new type 1 ternary biphasic system composed of cyclopentyl methyl ether, dimethylformamide and water was developed, characterized and successfully used for the purification of a lipophilic, protected peptide by pH-zone refining centrifugal partition chromatography. The protected peptide is an 8-mer, key intermediate in bivalirudin (Angiomax®) synthesis and shows a very low solubility in the solvents usually used in liquid chromatography. All ionic groups, except the N-terminal end of the peptide, are protected by a benzyl group. The purification of this peptide was achieved with a purity of about 99.04% and a recovery of 94% using the new ternary biphasic system cyclopentyl methyl ether/dimethylformamide/water (49:40:11, v/v) in the descending pH-zone refining mode with triethylamine (28 mM) as the retainer and methanesulfonic acid (18 mM) as the eluter. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Occurrence of amylose-lipid complexes in teff and maize starch biphasic pastes.
Wokadala, Obiro Cuthbert; Ray, Suprakas Sinha; Emmambux, Mohammad Naushad
2012-09-01
The occurrence of amylose-lipid complexes was determined in maize and teff starch biphasic pastes i.e. peak viscosity pastes at short and prolonged pasting times. Maize and teff starches were pasted for 11.5 and 130 min with or without added stearic acid followed by thermo-stable alpha-amylase hydrolysis in a rapid visco-analyzer. X-ray diffraction analysis of pastes before and residues after hydrolysis showed crystalline V-amylose diffraction patterns for the starches pasted for a prolonged time with added stearic acid while less distinct V-amylose patterns with non-complexed stearic acid peaks were observed with a short pasting time. Differential scanning calorimetry of pastes before and residues after paste hydrolysis showed that Type I amylose-lipid complexes were formed after pasting for the short duration with added stearic acid, while Type II complexes are formed after pasting for the prolonged time. The present research provides evidence that amylose-lipid complexes play an important role in starch biphasic pasting. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kim, Moon-Jo; Jeong, Hye-Jin; Park, Ju-Won; Hong, Sung-Tae; Han, Heung Nam
2018-01-01
An empirical expression describing the electroplastic deformation behavior is suggested based on the Johnson-Cook (JC) model by adding several functions to consider both thermal and athermal electric current effects. Tensile deformation behaviors are carried out for an AZ31 magnesium alloy and an Al-Mg-Si alloy under pulsed electric current at various current densities with a fixed duration of electric current. To describe the flow curves under electric current, a modified JC model is proposed to take the electric current effect into account. Phenomenological descriptions of the adopted parameters in the equation are made. The modified JC model suggested in the present study is capable of describing the tensile deformation behaviors under pulsed electric current reasonably well.
Biphasic Effects of Alcohol on Delay and Probability Discounting
Bidwell, L. Cinnamon; MacKillop, James; Murphy, James G.; Grenga, Andrea; Swift, Robert M.; McGeary, John E.
2014-01-01
Delay discounting and probability discounting are behavioral economic indices of impulsive and risky decision making that have been associated with addictive behavior, but the acute biphasic effects of alcohol on these decision-making processes are not well understood. This study sought to investigate the biphasic effects of alcohol on delay and probability discounting across the ascending and descending limbs of the breath alcohol concentration (BAC) curve, which are respectively characterized by the stimulant and sedative effects of alcohol. Delay and probability discounting were measured at four time points (Baseline, Ascending, Descending, and Endpoint) across the BAC curve at two target alcohol doses (40 mg/dl and 80 mg/dl) in healthy adults (N = 23 and 27, for both doses, respectively). There was no significant effect of alcohol on delay discounting at either dose. Alcohol significantly affected probability discounting, such that reduced discounting for uncertain rewards was evident during the descending limb of the BAC curve at the lower dose (p<.05) and during both the ascending and descending limb of the BAC curve at the higher dose (p<.05). Thus, alcohol resulted in increased risky decision making, particularly during the descending limb which is primarily characterized by the sedative effects of alcohol. These findings suggest that the biphasic effects of alcohol across the ascending and descending limbs of the BAC have differential effects on behavior related to decision-making for probabilistic, but not delayed, rewards. Parallels to and distinctions from previous findings are discussed. PMID:23750692
Prinz, Robert D.; Willis, Catherine M.; van Kuppevelt, Toin H.; Klüppel, Michael
2014-01-01
The glycosaminoglycan chondroitin sulfate is a critical component of proteoglycans on the cell surface and in the extracellular matrix. As such, chondroitin sulfate side chains and the sulfation balance of chondroitin play important roles in the control of signaling pathways, and have a functional importance in human disease. In contrast, very little is known about the roles of chondroitin sulfate molecules and sulfation patterns during mammalian development and cell lineage specification. Here, we report a novel biphasic role of chondroitin sulfate in the specification of the cardiac cell lineage during embryonic stem cell differentiation through modulation of Wnt/beta-catenin signaling. Lineage marker analysis demonstrates that enzymatic elimination of endogenous chondroitin sulfates leads to defects specifically in cardiac differentiation. This is accompanied by a reduction in the number of beating cardiac foci. Mechanistically, we show that endogenous chondroitin sulfate controls cardiac differentiation in a temporal biphasic manner through inhibition of the Wnt/beta-catenin pathway, a known regulatory pathway for the cardiac lineage. Treatment with a specific exogenous chondroitin sulfate, CS-E, could mimic these biphasic effects on cardiac differentiation and Wnt/beta-catenin signaling. These results establish chondroitin sulfate and its sulfation balance as important regulators of cardiac cell lineage decisions through control of the Wnt/beta-catenin pathway. Our work suggests that targeting the chondroitin biosynthesis and sulfation machinery is a novel promising avenue in regenerative strategies after heart injury. PMID:24667694
Prinz, Robert D; Willis, Catherine M; van Kuppevelt, Toin H; Klüppel, Michael
2014-01-01
The glycosaminoglycan chondroitin sulfate is a critical component of proteoglycans on the cell surface and in the extracellular matrix. As such, chondroitin sulfate side chains and the sulfation balance of chondroitin play important roles in the control of signaling pathways, and have a functional importance in human disease. In contrast, very little is known about the roles of chondroitin sulfate molecules and sulfation patterns during mammalian development and cell lineage specification. Here, we report a novel biphasic role of chondroitin sulfate in the specification of the cardiac cell lineage during embryonic stem cell differentiation through modulation of Wnt/beta-catenin signaling. Lineage marker analysis demonstrates that enzymatic elimination of endogenous chondroitin sulfates leads to defects specifically in cardiac differentiation. This is accompanied by a reduction in the number of beating cardiac foci. Mechanistically, we show that endogenous chondroitin sulfate controls cardiac differentiation in a temporal biphasic manner through inhibition of the Wnt/beta-catenin pathway, a known regulatory pathway for the cardiac lineage. Treatment with a specific exogenous chondroitin sulfate, CS-E, could mimic these biphasic effects on cardiac differentiation and Wnt/beta-catenin signaling. These results establish chondroitin sulfate and its sulfation balance as important regulators of cardiac cell lineage decisions through control of the Wnt/beta-catenin pathway. Our work suggests that targeting the chondroitin biosynthesis and sulfation machinery is a novel promising avenue in regenerative strategies after heart injury.
Learning new meanings for known words: Biphasic effects of prior knowledge.
Fang, Xiaoping; Perfetti, Charles; Stafura, Joseph
2017-01-01
In acquiring word meanings, learners are often confronted by a single word form that is mapped to two or more meanings. For example, long after how to roller-"skate", one may learn that "skate" is also a kind of fish. Such learning of new meanings for familiar words involves two potentially contrasting processes, relative to new form-new meaning learning: 1) Form-based familiarity may facilitate learning a new meaning, and 2) meaning-based interference may inhibit learning a new meaning. We examined these two processes by having native English speakers learn new, unrelated meanings for familiar (high frequency) and less familiar (low frequency) English words, as well as for unfamiliar (novel or pseudo-) words. Tracking learning with cued-recall tasks at several points during learning revealed a biphasic pattern: higher learning rates and greater learning efficiency for familiar words relative to novel words early in learning and a reversal of this pattern later in learning. Following learning, interference from original meanings for familiar words was detected in a semantic relatedness judgment task. Additionally, lexical access to familiar words with new meanings became faster compared to their exposure controls, but no such effect occurred for less familiar words. Overall, the results suggest a biphasic pattern of facilitating and interfering processes: Familiar word forms facilitate learning earlier, while interference from original meanings becomes more influential later. This biphasic pattern reflects the co-activation of new and old meanings during learning, a process that may play a role in lexicalization of new meanings.
The effect of collagen fibril orientation on the biphasic mechanics of articular cartilage.
Meng, Qingen; An, Shuqiang; Damion, Robin A; Jin, Zhongmin; Wilcox, Ruth; Fisher, John; Jones, Alison
2017-01-01
The highly inhomogeneous distribution of collagen fibrils may have important effects on the biphasic mechanics of articular cartilage. However, the effect of the inhomogeneity of collagen fibrils has mainly been investigated using simplified three-layered models, which may have underestimated the effect of collagen fibrils by neglecting their realistic orientation. The aim of this study was to investigate the effect of the realistic orientation of collagen fibrils on the biphasic mechanics of articular cartilage. Five biphasic material models, each of which included a different level of complexity of fibril reinforcement, were solved using two different finite element software packages (Abaqus and FEBio). Model 1 considered the realistic orientation of fibrils, which was derived from diffusion tensor magnetic resonance images. The simplified three-layered orientation was used for Model 2. Models 3-5 were three control models. The realistic collagen orientations obtained in this study were consistent with the literature. Results from the two finite element implementations were in agreement for each of the conditions modelled. The comparison between the control models confirmed some functions of collagen fibrils. The comparison between Models 1 and 2 showed that the widely-used three-layered inhomogeneous model can produce similar fluid load support to the model including the realistic fibril orientation; however, an accurate prediction of the other mechanical parameters requires the inclusion of the realistic orientation of collagen fibrils. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Micro-Raman Technology to Interrogate Two-Phase Extraction on a Microfluidic Device.
Nelson, Gilbert L; Asmussen, Susan E; Lines, Amanda M; Casella, Amanda J; Bottenus, Danny R; Clark, Sue B; Bryan, Samuel A
2018-05-21
Microfluidic devices provide ideal environments to study solvent extraction. When droplets form and generate plug flow down the microfluidic channel, the device acts as a microreactor in which the kinetics of chemical reactions and interfacial transfer can be examined. Here, we present a methodology that combines chemometric analysis with online micro-Raman spectroscopy to monitor biphasic extractions within a microfluidic device. Among the many benefits of microreactors is the ability to maintain small sample volumes, which is especially important when studying solvent extraction in harsh environments, such as in separations related to the nuclear fuel cycle. In solvent extraction, the efficiency of the process depends on complex formation and rates of transfer in biphasic systems. Thus, it is important to understand the kinetic parameters in an extraction system to maintain a high efficiency and effectivity of the process. This monitoring provided concentration measurements in both organic and aqueous plugs as they were pumped through the microfluidic channel. The biphasic system studied was comprised of HNO 3 as the aqueous phase and 30% (v/v) tributyl phosphate in n-dodecane comprised the organic phase, which simulated the plutonium uranium reduction extraction (PUREX) process. Using pre-equilibrated solutions (post extraction), the validity of the technique and methodology is illustrated. Following this validation, solutions that were not equilibrated were examined and the kinetics of interfacial mass transfer within the biphasic system were established. Kinetic results of extraction were compared to kinetics already determined on a macro scale to prove the efficacy of the technique.
Bhattacharya, Sukanta S.; Syed, Khajamohiddin; Shann, Jodi; Yadav, Jagjit S.
2013-01-01
High molecular weight polycyclic aromatic hydrocarbons (HMW-PAHs) such as benzo[a]pyrene (BaP) are resistant to biodegradation in soil. Conventionally, white rot fungus Phanerochaete chrysosporium has been investigated for HMW-PAH degradation in soil primarily using nutrient-deficient (ligninolytic) conditions, albeit with limited and non-sustainable biodegradation outcomes. In this study, we report development of an alternative novel biphasic process initiated under nutrient-sufficient (non-ligninolytic) culture conditions, by employing an advanced experimental design strategy. During the initial nutrient-sufficient non-ligninolytic phase (16 days), the process showed upregulation (3.6-and 22.3-fold, respectively) of two key PAH-oxidizing P450 monooxygenases pc2 (CYP63A2) and pah4 (CYP5136A3) and formation of typical P450-hydroxylated metabolite. This along with abrogation (84.9%) of BaP degradation activity in response to a P450-specific inhibitor implied key role of these monooxygenases. The subsequent phase triggered on continued incubation (to 25 days) switched the process from non-ligninolytic to ligninolytic resulting in a significantly higher net degradation (91.6% as against 67.4% in the control nutrient-limited set) of BaP with concomitant de novo ligninolytic enzyme expression making it a biphasic process yielding improved sustainable bioremediation of PAH-contaminated soil. To our knowledge this is the first report on development of such biphasic process for bioremediation application of a white rot fungus. PMID:24051002
Evidence against nitrergic neuromodulation in the rat vas deferens.
Ventura, S; Burnstock, G
1997-09-03
Electrical field stimulation (60 V, 1 ms, single pulses or 20 s trains of 1-10 Hz) of the nerve terminals within the rat vas deferens produced biphasic contractions in preparations oriented to measure either longitudinal or circular muscle contractions. In confirmation of earlier reports, these contractions were blocked by tetrodotoxin (1 microM). The initial fast purinergic contraction was dominant in prostatic halves of the vas deferens while the second slower noradrenergic contraction was greater in epididymal halves. Although previous studies have shown nitric oxide synthase immuno-positive nerves in the vas deferens, electrical field stimulation-induced contractions were unaffected by L-arginine, sodium nitroprusside, N-nitro-L-arginine methyl ester (L-NAME) or superoxide dismutase in concentrations up to I mM. In concentrations above 1 mM, L-NAME reduced the size of the field stimulation-induced contractions but this effect could not be reversed by either L-arginine or sodium nitroprusside. Furthermore, L-arginine, sodium nitroprusside and L-NAME did not affect the contractions induced by exogenous application of noradrenaline (10 microM), ATP (1 mM) or BaCl2 (1-10 mM). We conclude that nitric oxide does not act as a neuromodulator in isolated preparations of rat vas deferens.
Bechard, Jeff; Gibson, John Ken; Killingsworth, Cheryl R; Wheeler, Jeffery J; Schneidkraut, Marlowe J; Huang, Jian; Ideker, Raymond E; McAfee, Donald A
2011-03-01
Vernakalant is a novel antiarrhythmic agent that has demonstrated clinical efficacy for the treatment of atrial fibrillation. Vernakalant blocks, to various degrees, cardiac sodium and potassium channels with a pattern that suggests atrial selectivity. We hypothesized, therefore, that vernakalant would affect atrial more than ventricular effective refractory period (ERP) and have little or no effect on ventricular defibrillation threshold (DFT). Atrial and ventricular ERP and ventricular DFT were determined before and after treatment with vernakalant or vehicle in 23 anesthetized male mixed-breed pigs. Vernakalant was infused at a rate designed to achieve stable plasma levels similar to those in human clinical trials. Atrial and ventricular ERP were determined by endocardial extrastimuli delivered to the right atria or right ventricle. Defibrillation was achieved using external biphasic shocks delivered through adhesive defibrillation patches placed on the thorax after 10 seconds of electrically induced ventricular fibrillation. The DFT was estimated using the Dixon "up-and-down" method. Vernakalant significantly increased atrial ERP compared with vehicle controls (34 ± 8 versus 9 ± 7 msec, respectively) without significantly affecting ventricular ERP or DFT. This is consistent with atrial selective actions and supports the conclusion that vernakalant does not alter the efficacy of electrical defibrillation.
Ruminot, Iván; Schmälzle, Jana; Leyton, Belén; Barros, L Felipe; Deitmer, Joachim W
2017-01-01
The potassium ion, K + , a neuronal signal that is released during excitatory synaptic activity, produces acute activation of glucose consumption in cultured astrocytes, a phenomenon mediated by the sodium bicarbonate cotransporter NBCe1 ( SLC4A4). We have explored here the relevance of this mechanism in brain tissue by imaging the effect of neuronal activity on pH, glucose, pyruvate and lactate dynamics in hippocampal astrocytes using BCECF and FRET nanosensors. Electrical stimulation of Schaffer collaterals produced fast activation of glucose consumption in astrocytes with a parallel increase in intracellular pyruvate and biphasic changes in lactate . These responses were blocked by TTX and were absent in tissue slices prepared from NBCe1-KO mice. Direct depolarization of astrocytes with elevated extracellular K + or Ba 2+ mimicked the metabolic effects of electrical stimulation. We conclude that the glycolytic pathway of astrocytes in situ is acutely sensitive to neuronal activity, and that extracellular K + and the NBCe1 cotransporter are involved in metabolic crosstalk between neurons and astrocytes. Glycolytic activation of astrocytes in response to neuronal K + helps to provide an adequate supply of lactate, a metabolite that is released by astrocytes and which acts as neuronal fuel and an intercellular signal.
Temperature limited heater with a conduit substantially electrically isolated from the formation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vinegar, Harold J; Sandberg, Chester Ledlie
2009-07-14
A system for heating a hydrocarbon containing formation is described. A conduit may be located in an opening in the formation. The conduit includes ferromagnetic material. An electrical conductor is positioned inside the conduit, and is electrically coupled to the conduit at or near an end portion of the conduit so that the electrical conductor and the conduit are electrically coupled in series. Electrical current flows in the electrical conductor in a substantially opposite direction to electrical current flow in the conduit during application of electrical current to the system. The flow of electrons is substantially confined to the insidemore » of the conduit by the electromagnetic field generated from electrical current flow in the electrical conductor so that the outside surface of the conduit is at or near substantially zero potential at 25.degree. C. The conduit may generate heat and heat the formation during application of electrical current.« less
9 CFR 313.30 - Electrical; stunning or slaughtering with electric current.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 9 Animals and Animal Products 2 2013-01-01 2013-01-01 false Electrical; stunning or slaughtering with electric current. 313.30 Section 313.30 Animals and Animal Products FOOD SAFETY AND INSPECTION... Electrical; stunning or slaughtering with electric current. The slaughtering of swine, sheep, calves, cattle...
9 CFR 313.30 - Electrical; stunning or slaughtering with electric current.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 9 Animals and Animal Products 2 2014-01-01 2014-01-01 false Electrical; stunning or slaughtering with electric current. 313.30 Section 313.30 Animals and Animal Products FOOD SAFETY AND INSPECTION... Electrical; stunning or slaughtering with electric current. The slaughtering of swine, sheep, calves, cattle...
9 CFR 313.30 - Electrical; stunning or slaughtering with electric current.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 9 Animals and Animal Products 2 2012-01-01 2012-01-01 false Electrical; stunning or slaughtering with electric current. 313.30 Section 313.30 Animals and Animal Products FOOD SAFETY AND INSPECTION... Electrical; stunning or slaughtering with electric current. The slaughtering of swine, sheep, calves, cattle...
Peritoneal mesothelioma in a jaguar (Panthera onca).
Souza, Francisco de Assis Leite; de Carvalho, Ciro José Sousa; de Almeida, Hatawa M; Pires, Lidiany Viana; Silva, Lucilene dos Santos; Costa, Francisco Assis Lima; Silva, Silvana M Medeiros de Sousa
2013-09-01
A 21-yr-old female jaguar (Panthera onca) died in a zoo in Teresina, Piaui, Brazil, following a history of abdominal distension, ascites, anorexia, and dyspnea. At necropsy, a dark red, watery, blood-tinged serous fluid was present in the abdominal cavity. The peritoneum was thick with firm, yellow, villous projections. Histologically, the tumors were composed of a biphasic population of cells, which reacted to anti-cytokeratin and anti-vimentin antibodies, consistent with a biphasic benign mesothelioma of peritoneal origin. This is the first reported case of mesothelioma in a captive jaguar.
"Washing-out" ionic liquids from polyethylene glycol to form aqueous biphasic systems.
Tomé, Luciana I N; Pereira, Jorge F B; Rogers, Robin D; Freire, Mara G; Gomes, José R B; Coutinho, João A P
2014-02-14
The molecular-level mechanisms behind the formation of aqueous biphasic systems (ABS) composed of ionic liquids (ILs) and polymers are hitherto not completely understood. For the first time, it is herein shown that polymer-IL-based ABS are a result of a "washing-out" phenomenon, and not of a salting-out effect of the IL over the polymer as assumed in the past few years. Novel evidence is herein provided by experimental results combined with molecular dynamics (MD) simulations and density functional theory (DFT) calculations.
Multiple speed expandable bit synchronizer
NASA Technical Reports Server (NTRS)
Bundinger, J. M.
1979-01-01
A multiple speed bit synchronizer was designed for installation in an inertial navigation system data decoder to extract non-return-to-zero level data and clock signal from biphase level data. The circuit automatically senses one of four pre-determined biphase data rates and synchronizes the proper clock rate to the data. Through a simple expansion of the basic design, synchronization of more than four binarily related data rates can be accomplished. The design provides an easily adaptable, low cost, low power alternative to external bit synchronizers with additional savings in size and weight.
Hu, Jun; Jiang, Lin; Low, Malcolm J; Rui, Liangyou
2014-01-01
Hypothalamic POMC neurons are required for glucose and energy homeostasis. POMC neurons have a wide synaptic connection with neurons both within and outside the hypothalamus, and their activity is controlled by a balance between excitatory and inhibitory synaptic inputs. Brain glucose-sensing plays an essential role in the maintenance of normal body weight and metabolism; however, the effect of glucose on synaptic transmission in POMC neurons is largely unknown. Here we identified three types of POMC neurons (EPSC(+), EPSC(-), and EPSC(+/-)) based on their glucose-regulated spontaneous excitatory postsynaptic currents (sEPSCs), using whole-cell patch-clamp recordings. Lowering extracellular glucose decreased the frequency of sEPSCs in EPSC(+) neurons, but increased it in EPSC(-) neurons. Unlike EPSC(+) and EPSC(-) neurons, EPSC(+/-) neurons displayed a bi-phasic sEPSC response to glucoprivation. In the first phase of glucoprivation, both the frequency and the amplitude of sEPSCs decreased, whereas in the second phase, they increased progressively to the levels above the baseline values. Accordingly, lowering glucose exerted a bi-phasic effect on spontaneous action potentials in EPSC(+/-) neurons. Glucoprivation decreased firing rates in the first phase, but increased them in the second phase. These data indicate that glucose induces distinct excitatory synaptic plasticity in different subpopulations of POMC neurons. This synaptic remodeling is likely to regulate the sensitivity of the melanocortin system to neuronal and hormonal signals.
de Krijger, Ronald R; Papathomas, Thomas G
2012-01-01
Adrenocortical carcinoma (ACC) is a rare, heterogeneous malignancy with a poor prognosis. According to WHO classification 2004, ACC variants include oncocytic ACCs, myxoid ACCs and ACCs with sarcomatous areas. Herein, we provide a comprehensive review of these rare subtypes of adrenocortical malignancy and emphasize their clinicopathological features with the aim of elucidating aspects of diagnostic categorization, differential diagnostics and biological behavior. The issue of current terminology, applied to biphasic tumors with pleomorphic, sarcomatous or sarcomatoid elements arising in adrenal cortex, is also discussed. We additionally present emerging evidence concerning the adrenal cortical tumorigenesis and the putative adenoma-carcinoma sequence as well.
Chen, Liang; Xin, Xiulan; Lan, Rong; Yuan, Qipeng; Wang, Xiaojie; Li, Ye
2014-01-01
Blue honeysuckle fruits are rich in anthocyanins with many beneficial effects such as reduction of the risk of cardiovascular diseases, diabetes and cancers. High-speed counter-current chromatography (HSCCC) was used for the separation of anthocyanin on a preparative scale from blue honeysuckle fruit crude extract with a biphasic solvent system composed of tert-butyl methyl ether/n-butanol/acetonitrile/water/trifluoroacetic acid (2:2:1:5:0.01, v/v) for the first time in this paper. Each injection of 100 mg crude extract yielded 22.8 mg of cyanidin 3-glucoside (C3G) at 98.1% purity. The compound was identified by means of electro-spray ionisation mass (ESI/MS) and (1)H and (13)C nuclear magnetic resonance (NMR) spectra. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhao, Jingyi; Wang, G.-X.; Dong, Yalin; Ye, Chang
2017-08-01
Many electrically assisted processes have been reported to induce changes in microstructure and metal plasticity. To understand the physics-based mechanisms behind these interesting phenomena, however, requires an understanding of the interaction between the electric current and heterogeneous microstructure. In this work, multiscale modeling of the electric current flow in a nanocrystalline material is reported. The cellular automata method was used to track the nanoscale grain boundaries in the matrix. Maxwell's electromagnetic equations were solved to obtain the electrical potential distribution at the macro scale. Kirchhoff's circuit equation was solved to obtain the electric current flow at the micro/nano scale. The electric current distribution at two representative locations was investigated. A significant electric current concentration was observed near the grain boundaries, particularly near the triple junctions. This higher localized electric current leads to localized resistive heating near the grain boundaries. The electric current distribution could be used to obtain critical information such as localized resistive heating rate and extra system free energy, which are critical for explaining many interesting phenomena, including microstructure evolution and plasticity enhancement in many electrically assisted processes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Husain, Mainul, E-mail: mainul.husain@hc-sc.gc.ca; Kyjovska, Zdenka O., E-mail: zky@nrcwe.dk; Bourdon-Lacombe, Julie, E-mail: julie.bourdon-lacombe@hc-sc.gc.ca
Inhalation of carbon black nanoparticles (CBNPs) causes pulmonary inflammation; however, time course data to evaluate the detailed evolution of lung inflammatory responses are lacking. Here we establish a time-series of lung inflammatory response to CBNPs. Female C57BL/6 mice were intratracheally instilled with 162 μg CBNPs alongside vehicle controls. Lung tissues were examined 3 h, and 1, 2, 3, 4, 5, 14, and 42 days (d) post-exposure. Global gene expression and pulmonary inflammation were assessed. DNA damage was evaluated in bronchoalveolar lavage (BAL) cells and lung tissue using the comet assay. Increased neutrophil influx was observed at all time-points. DNA strandmore » breaks were increased in BAL cells 3 h post-exposure, and in lung tissues 2–5 d post-exposure. Approximately 2600 genes were differentially expressed (± 1.5 fold; p ≤ 0.05) across all time-points in the lungs of exposed mice. Altered transcript levels were associated with immune-inflammatory response and acute phase response pathways, consistent with the BAL profiles and expression changes found in common respiratory infectious diseases. Genes involved in DNA repair, apoptosis, cell cycle regulation, and muscle contraction were also differentially expressed. Gene expression changes associated with inflammatory response followed a biphasic pattern, with initial changes at 3 h post-exposure declining to base-levels by 3 d, increasing again at 14 d, and then persisting to 42 d post-exposure. Thus, this single CBNP exposure that was equivalent to nine 8-h working days at the current Danish occupational exposure limit induced biphasic inflammatory response in gene expression that lasted until 42 d post-exposure, raising concern over the chronic effects of CBNP exposure. - Highlights: • A single exposure to CBNPs induced expression changes in over 2600 genes in mouse lungs. • Altered genes were associated with immune-inflammatory and acute phase responses. • Several genes were involved in DNA repair, apoptosis, and muscle contraction. • Effects of a single exposure to CBNPs lasted until 42 d post-exposure. • A single exposure to CBNPs induced a biphasic inflammatory response in gene expression.« less
Zhao, Qun; Liang, Yu; Yuan, Huiming; Sui, Zhigang; Wu, Qi; Liang, Zhen; Zhang, Lihua; Zhang, Yukui
2013-09-17
Combining good dissolving ability of formic acid (FA) for membrane proteins and excellent complementary retention behavior of proteins on strong cation exchange (SCX) and strong anion exchange (SAX) materials, a biphasic microreactor was established to pretreat membrane proteins at microgram and even nanogram levels. With membrane proteins solubilized by FA, all of the proteomics sample processing procedures, including protein preconcentration, pH adjustment, reduction, and alkylation, as well as tryptic digestion, were integrated into an "SCX-SAX" biphasic capillary column. To evaluate the performance of the developed microreactor, a mixture of bovine serum albumin, myoglobin, and cytochrome c was pretreated. Compared with the results obtained by the traditional in-solution process, the peptide recovery (93% vs 83%) and analysis throughput (3.5 vs 14 h) were obviously improved. The microreactor was further applied for the pretreatment of 14 μg of membrane proteins extracted from rat cerebellums, and 416 integral membrane proteins (IMPs) (43% of total protein groups) and 103 transmembrane peptides were identified by two-dimensional nanoliquid chromatography-electrospray ionization tandem mass spectrometry (2D nano-LC-ESI-MS/MS) in triplicate analysis. With the starting sample preparation amount decreased to as low as 50 ng, 64 IMPs and 17 transmembrane peptides were identified confidently, while those obtained by the traditional in-solution method were 10 and 1, respectively. All these results demonstrated that such an "SCX-SAX" based biphasic microreactor could offer a promising tool for the pretreatment of trace membrane proteins with high efficiency and throughput.
Auth, Marcus K.H.; Boost, Kim A.; Leckel, Kerstin; Beecken, Wolf-Dietrich; Engl, Tobias; Jonas, Dietger; Oppermann, Elsie; Hilgard, Philip; Markus, Bernd H.; Bechstein, Wolf-Otto; Blaheta, Roman A.
2005-01-01
AIM: Clinical application of human hepatocytes (HC) is hampered by the progressive loss of growth and differentiation in vitro. The object of the study was to evaluate the effect of a biphasic culture technique on expression and activation of growth factor receptors and differentiation of human adult HC. METHODS: Isolated HC were sequentially cultured in a hormone enriched differentiation medium (DM) containing nicotinamide, insulin, transferrin, selenium, and dexame-thasone or activation medium (AM) containing hepatocyte growth factor (HGF), epidermal growth factor (EGF), and granulocyte-macrophage colony-stimulating factor (GM-CSF). Expression, distribution and activation of the HC receptors (MET and EGFR) and the pattern of characteristic cytokeratin (CK) filaments were measured by fluorometry, confocal microscopy and Western blotting. RESULTS: In the biphasic culture system, HC underwent repeated cycles of activation (characterized by expression and activation of growth factor receptors) and re-differentiation (illustrated by distribution of typical filaments CK-18 but low or absent expression of CK-19). In AM increased expression of MET and EGFR was associated with receptor translocation into the cytoplasm and induction of atypical CK-19. In DM low expression of MET and EGFR was localized on the cell membrane and CK-19 was reduced. Receptor phosphorylation required embedding of HC in collagen type I gel. CONCLUSION: Control and reversible modulation of growth factor receptor activation of mature human HC can be accomplished in vitro, when defined signals from the extracellular matrix and sequential growth stimuli are provided. The biphasic technique helps overcome de-differentiation, which occurs during continuous stimulation by means of growth factors. PMID:15810072
Auth, Marcus-K H; Boost, Kim A; Leckel, Kerstin; Beecken, Wolf-Dietrich; Engl, Tobias; Jonas, Dietger; Oppermann, Elsie; Hilgard, Philip; Markus, Bernd H; Bechstein, Wolf-Otto; Blaheta, Roman A
2005-04-14
Clinical application of human hepatocytes (HC) is hampered by the progressive loss of growth and differentiation in vitro. The object of the study was to evaluate the effect of a biphasic culture technique on expression and activation of growth factor receptors and differentiation of human adult HC. Isolated HC were sequentially cultured in a hormone enriched differentiation medium (DM) containing nicotinamide, insulin, transferrin, selenium, and dexame-thasone or activation medium (AM) containing hepatocyte growth factor (HGF), epidermal growth factor (EGF), and granulocyte-macrophage colony-stimulating factor (GM-CSF). Expression, distribution and activation of the HC receptors (MET and EGFR) and the pattern of characteristic cytokeratin (CK) filaments were measured by fluorometry, confocal microscopy and Western blotting. In the biphasic culture system, HC underwent repeated cycles of activation (characterized by expression and activation of growth factor receptors) and re-differentiation (illustrated by distribution of typical filaments CK-18 but low or absent expression of CK-19). In AM increased expression of MET and EGFR was associated with receptor translocation into the cytoplasm and induction of atypical CK-19. In DM low expression of MET and EGFR was localized on the cell membrane and CK-19 was reduced. Receptor phosphorylation required embedding of HC in collagen type I gel. Control and reversible modulation of growth factor receptor activation of mature human HC can be accomplished in vitro, when defined signals from the extracellular matrix and sequential growth stimuli are provided. The biphasic technique helps overcome de-differentiation, which occurs during continuous stimulation by means of growth factors.
Learning new meanings for known words: Biphasic effects of prior knowledge
Fang, Xiaoping; Perfetti, Charles; Stafura, Joseph
2017-01-01
In acquiring word meanings, learners are often confronted by a single word form that is mapped to two or more meanings. For example, long after how to roller-“skate”, one may learn that “skate” is also a kind of fish. Such learning of new meanings for familiar words involves two potentially contrasting processes, relative to new form-new meaning learning: 1) Form-based familiarity may facilitate learning a new meaning, and 2) meaning-based interference may inhibit learning a new meaning. We examined these two processes by having native English speakers learn new, unrelated meanings for familiar (high frequency) and less familiar (low frequency) English words, as well as for unfamiliar (novel or pseudo-) words. Tracking learning with cued-recall tasks at several points during learning revealed a biphasic pattern: higher learning rates and greater learning efficiency for familiar words relative to novel words early in learning and a reversal of this pattern later in learning. Following learning, interference from original meanings for familiar words was detected in a semantic relatedness judgment task. Additionally, lexical access to familiar words with new meanings became faster compared to their exposure controls, but no such effect occurred for less familiar words. Overall, the results suggest a biphasic pattern of facilitating and interfering processes: Familiar word forms facilitate learning earlier, while interference from original meanings becomes more influential later. This biphasic pattern reflects the co-activation of new and old meanings during learning, a process that may play a role in lexicalization of new meanings. PMID:29399593
Shvarev, Y N; Lagercrantz, H
2006-10-01
Developmental changes in the respiratory activity and its modulation by substance P (SP) were studied in the neonatal rat brainstem-spinal cord preparation from the day of birth to day 3 (P0-P3). The respiratory network activity in the ventrolateral medulla was represented by two types of bursts: basic regular bursts with typical decrementing shape and biphasic bursts appearing after augmented biphasic discharges in inspiratory neurons. With advancing postnatal age the respiratory output was considerably modified; the basic rhythm became faster by 20%, whereas the biphasic burst rate, which was originally 15 times slower, declined further by 180% and the C4 burst duration significantly decreased by 20% due to reduced decay time without preceding changes in the central inspiratory drive. SP had an age-dependent excitatory effect on respiratory activity. In the basic rhythm, SP could induce transient rhythm cessations on P0-P2 but not on P3. For the biphasic burst frequency, the sensitivity to SP significantly decreased from P0 to P3, whereas the range of SP-induced changes increased. In both types of bursts, SP prolonged C4 burst duration due to increasing decay time. This effect was three times greater on P3 and did not depend on the central inspiratory drive. Our results suggest that the potency of SP to regulate the respiratory activity elevates during the early postnatal period. The developmental changes in the respiratory activity appear to represent the transient stage in the maturation of rhythm and pattern generation mechanisms facilitating adaptive behavior of a quickly growing organism.
Biphasic patterns of diversification and the emergence of modules
Mittenthal, Jay; Caetano-Anollés, Derek; Caetano-Anollés, Gustavo
2012-01-01
The intricate molecular and cellular structure of organisms converts energy to work, which builds and maintains structure. Evolving structure implements modules, in which parts are tightly linked. Each module performs characteristic functions. In this work we propose that a module can emerge through two phases of diversification of parts. Early in the first phase of this biphasic pattern, the parts have weak linkage—they interact weakly and associate variously. The parts diversify and compete. Under selection for performance, interactions among the parts increasingly constrain their structure and associations. As many variants are eliminated, parts self-organize into modules with tight linkage. Linkage may increase in response to exogenous stresses as well as endogenous processes. In the second phase of diversification, variants of the module and its functions evolve and become new parts for a new cycle of generation of higher-level modules. This linkage hypothesis can interpret biphasic patterns in the diversification of protein domain structure, RNA and protein shapes, and networks in metabolism, codes, and embryos, and can explain hierarchical levels of structural organization that are widespread in biology. PMID:22891076
Wang, Zhi-Kun; Shen, Xiao-Jun; Chen, Jun-Jie; Jiang, Ying-Qiu; Hu, Zhi-Yan; Wang, Xing; Liu, Li
2018-06-01
Herein, an efficient DES/MIBK biphasic pretreatment system for preparation of furfural and fermentable glucose from lignocellulose was developed with AlCl 3 as catalysis. The low-cost and renewable DES (Choline chloride-Oxalic acid) served not only as a Brønsted acid catalyst, but also as a pretreatment solvent in present work, and MIBK as an extracting reagent which can increase the yield of furfural in DES phase. The effects of this biphasic pretreatment on the furfural yield and saccharification of the lignocellulose before and after pretreatment were explored using HPLC, HAPEC, FT-IR, XRD and SEM. Under the best pretreatment condition (at 140 °C for 90 min), furfural could be obtained in 70.3% yield and 80.8% of the pretreated lignocellulose was saccharified, which was 8.4 times higher than that of the raw lignocellulose without pretreatment. In a word, this pretreatment system can be considered as a potential technique for efficient valorization of lignocellulose for production of furfural and fermentable glucose. Copyright © 2018. Published by Elsevier B.V.
Tian, Feng-Yu; Hou, Dongfang; Zhang, Wei-Min; Qiao, Xiu-Qing; Li, Dong-Sheng
2017-10-24
A novel heterostructure catalyst of Ni 2 P/Ni 12 P 5 has been fabricated through a simple solvothermal method by modifying the molar ratio of the initial raw materials. The products are characterized by X-ray powder diffraction (XRD), field emission scanning electron microscopy (FE-SEM), high-resolution transmission electron microscopy (HRTEM), nitrogen adsorption and X-ray photoelectron spectroscopy (XPS). It is found that the two phases, Ni 2 P and Ni 12 P 5 , are interlaced with one another in the as-formed nanocomposite, resulting in more interfaces. The bi-phase catalyst exhibits a markedly enhanced catalytic activity in the reduction of 4-nitrophenol, as compared to that of single Ni 2 P or Ni 12 P 5 . The enhanced catalytic activity can be attributed to the unique n-n series effects, which result in the increased ease of electron transfer over the Ni 2 P/Ni 12 P 5 bi-phase catalyst.
Aqueous biphasic extraction of uranium and thorium from contaminated soils. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chaiko, D.J.; Gartelmann, J.; Henriksen, J.L.
1995-07-01
The aqueous biphasic extraction (ABE) process for soil decontamination involves the selective partitioning of solutes and fine particulates between two immiscible aqueous phases. The biphase system is generated by the appropriate combination of a water-soluble polymer (e.g., polyethlene glycol) with an inorganic salt (e.g., sodium carbonate). Selective partitioning results in 99 to 99.5% of the soil being recovered in the cleaned-soil fraction, while only 0.5 to 1% is recovered in the contaminant concentrate. The ABE process is best suited to the recovery of ultrafine, refractory material from the silt and clay fractions of soils. During continuous countercurrent extraction tests withmore » soil samples from the Fernald Environmental Management Project site (Fernald, OH), particulate thorium was extracted and concentrated between 6- and 16-fold, while the uranium concentration was reduced from about 500 mg/kg to about 77 mg/kg. Carbonate leaching alone was able to reduce the uranium concentration only to 146 mg/kg. Preliminary estimates for treatment costs are approximately $160 per ton of dry soil. A detailed flowsheet of the ABE process is provided.« less
Wang, Wenju; Ren, Junli; Li, Huiling; Deng, Aojie; Sun, Runcang
2015-05-01
Direct catalytic transformation of xylan-type hemicelluloses to furfural in the aqueous system and the biphasic system were comparatively investigated under mild conditions. Screening of several promising chlorides for conversion of beech xylan in the aqueous system revealed the Lewis acid SnCl4 was the most effective catalyst. Comparing to the single aqueous system, the bio-based 2-methyltetrahydrofuran (2-MTHF)/H2O biphasic system was more conducive to the synthesis of furfural, in which the highest furfural yield of 78.1% was achieved by using SnCl4 as catalysts under the optimized reaction conditions (150°C, 120 min). Additionally, the influences of xylan-type hemicelluloses with different chemical and structural features from beech, corncob and bagasse on the furfural production were studied. It was found that furfural yield to some extent was determined by the xylose content in hemicelluloses and also had relationships with the molecular weight of hemicelluloses and the degree of crystallization. Copyright © 2015 Elsevier Ltd. All rights reserved.
Biphasic synovial sarcoma in the cervical spine: Case report.
Foreman, Stephen M; Stahl, Michael J
2011-05-23
Synovial sarcoma is a rare malignant neoplasm of soft tissue that typically arising near large joints of the upper and lower extremities in young adult males. Only 3% of these neoplasms have been found to arise in the head and neck region. To our knowledge, there are limited reports in the literature of this neoplasm in the cervical spine.A case of biphasic synovial sarcoma of the cervical spine is reviewed. A 29 year-old male presented with pain on the left side of the cervical spine. Physical examination revealed a global loss of cervical motion and large, palpable mass in the left paravertebral area. The long-delayed Magnetic Resonance (MR) scan revealed a soft tissue mass measuring 8.3 centimeters (cm) × 5.7 cm that was surgically removed. A malignant biphasic synovial sarcoma was diagnosed on pathologic examination.The clinical and imaging findings of an atypically located synovial sarcoma are reviewed. This case report emphasizes the consequences of a limited differential diagnosis, prolonged treatment and the failure to perform timely diagnostic imaging in the presence of a paraspinal mass.
Development and Characterization of Biphasic Hydroxyapatite/β-TCP Cements.
Gallinetti, Sara; Canal, Cristina; Ginebra, Maria-Pau; Ferreira, J
2014-04-01
Biphasic calcium phosphate bioceramics composed of hydroxyapatite (HA) and β-tricalcium phosphate (β-TCP) have relevant properties as synthetic bone grafts, such as tunable resorption, bioactivity, and intrinsic osteoinduction. However, they have some limitations associated to their condition of high-temperature ceramics. In this work self-setting Biphasic Calcium Phosphate Cements (BCPCs) with different HA/β-TCP ratios were obtained from self-setting α-TCP/β-TCP pastes. The strategy used allowed synthesizing BCPCs with modulated composition, compressive strength, and specific surface area. Due to its higher solubility, α-TCP was fully hydrolyzed to a calcium-deficient HA (CDHA), whereas β-TCP remained unreacted and completely embedded in the CDHA matrix. Increasing amounts of the non-reacting β-TCP phase resulted in a linear decrease of the compressive strength, in association to the decreasing amount of precipitated HA crystals, which are responsible for the mechanical consolidation of apatitic cements. Ca 2+ release and degradation in acidic medium was similar in all the BCPCs within the timeframe studied, although differences might be expected in longer term studies once β-TCP, the more soluble phase was exposed to the surrounding media.
Pal, Saikat; Lindsey, Derek P.; Besier, Thor F.; Beaupre, Gary S.
2013-01-01
Cartilage material properties provide important insights into joint health, and cartilage material models are used in whole-joint finite element models. Although the biphasic model representing experimental creep indentation tests is commonly used to characterize cartilage, cartilage short-term response to loading is generally not characterized using the biphasic model. The purpose of this study was to determine the short-term and equilibrium material properties of human patella cartilage using a viscoelastic model representation of creep indentation tests. We performed 24 experimental creep indentation tests from 14 human patellar specimens ranging in age from 20 to 90 years (median age 61 years). We used a finite element model to reproduce the experimental tests and determined cartilage material properties from viscoelastic and biphasic representations of cartilage. The viscoelastic model consistently provided excellent representation of the short-term and equilibrium creep displacements. We determined initial elastic modulus, equilibrium elastic modulus, and equilibrium Poisson’s ratio using the viscoelastic model. The viscoelastic model can represent the short-term and equilibrium response of cartilage and may easily be implemented in whole-joint finite element models. PMID:23027200
Safwat, Engie; Hassan, Mohammad L; Saniour, Sayed; Zaki, Dalia Yehia; Eldeftar, Mervat; Saba, Dalia; Zazou, Mohamed
2018-05-01
Nanofibrillated cellulose, obtained from rice straw agricultural wastes was used as a substrate for the preparation of a new injectable and mineralized hydrogel for bone regeneration. Tetramethyl pyridine oxyl (TEMPO) oxidized nanofibrillated cellulose, was mineralized through the incorporation of a prepared and characterized biphasic calcium phosphate at a fixed ratio of 50 wt%. The TEMPO-oxidized rice straw nanofibrillated cellulose was characterized using transmission electron microscopy, Fourier transform infrared, and carboxylic content determination. The injectability and viscosity of the prepared hydrogel were evaluated using universal testing machine and rheometer testing, respectively. Cytotoxicity and alkaline phosphatase level tests on osteoblast like-cells for in vitro assessment of the biocompatibility were investigated. Results revealed that the isolated rice straw nanofibrillated cellulose is a nanocomposite of the cellulose nanofibers and silica nanoparticles. Rheological properties of the tested materials are suitable for use as injectable material and of nontoxic effect on osteoblast-like cells, as revealed by the positive alkaline phosphate assay. However, nanofibrillated cellulose/ biphasic calcium phosphate hydrogel showed higher cytotoxicity and lower bioactivity test results when compared to that of nanofibrillated cellulose.
A biphasic dialytic strategy for the treatment of neonatal hyperammonemia
Avasare, Sonal; Tsai, Eileen; Yadin, Ora; Zaritsky, Joshua
2018-01-01
Background Neonates with inborn errors of metabolism (IEM) often develop hyperammonemia which, if not corrected quickly, may result in poor neurologic outcomes. As pharmacologic therapy cannot rapidly lower ammonia levels, dialysis is frequently required. Both hemodialysis (HD) and standard-dose continuous renal replacement therapy (CRRT) are effective; however, HD may be followed by post-dialytic ammonia rebound, and standard-dose CRRT may not effect a rapid enough decrease in ammonia levels. Case-Diagnosis/Treatment We present two cases of IEM-associated neonatal hyperammonemia in which we employed a biphasic, high-dose CRRT treatment strategy, initially using dialysate flow rates of 5,000 mL/h (approximately 40,000 mL/h/1.73 m2) in order to rapidly decrease ammonia levels, then decreasing the dialysate flow rates to 500 mL/h (approximately 4,000 mL/h/1.73 m2) in order to prevent ammonia rebound. Conclusions This biphasic dialytic treatment strategy for neonatal hyperammonemia effected rapid ammonia reduction without rebound and accomplished during a single dialysis run without equipment changes. PMID:24122260
Rahmani, Turaj; Rahimi, Atyeh; Nojavan, Saeed
2016-01-15
This contribution presents an experimental approach to improve analytical performance of electromembrane extraction (EME) procedure, which is based on the scrutiny of current pattern under different extraction conditions such as using different organic solvents as supported liquid membrane, electrical potentials, pH values of donor and acceptor phases, variable extraction times, temperatures, stirring rates, different hollow fiber lengths and the addition of salts or organic solvents to the sample matrix. In this study, four basic drugs with different polarities were extracted under different conditions with the corresponding electrical current patterns compared against extraction recoveries. The extraction process was demonstrated in terms of EME-HPLC analyses of selected basic drugs. Comparing the obtained extraction recoveries with the electrical current patterns, most cases exhibited minimum recovery and repeatability at the highest investigated magnitude of electrical current. . It was further found that identical current patterns are associated with repeated extraction efficiencies. In other words, the pattern should be repeated for a successful extraction. The results showed completely different electrical currents under different extraction conditions, so that all variable parameters have contributions into the electrical current pattern. Finally, the current patterns of extractions from wastewater, plasma and urine samples were demonstrated. The results indicated an increase in the electrical current when extracting from complex matrices; this was seen to decrease the extraction efficiency. Copyright © 2015 Elsevier B.V. All rights reserved.
Kameda, Takashi; Ohkuma, Kazuo; Ishii, Nozomu; Sano, Natsuki; Ogura, Hideo; Terada, Kazuto
2012-01-01
Magnetic fields can represent a health problem, especially low frequency electromagnetic fields sometimes induced by electric current in metallic objects worn or used in or on the body (as opposed to high frequency electromagnetic fields that produce heat). Electric toothbrushes are widely used because of their convenience, but the electric motors that power them may produce electromagnetic waves. In this study, we showed that electric toothbrushes generate low frequency (1-2000 Hz) magnetic fields and induce electric current in dental appliances (e. g. orthodontic and prosthetic appliances and dental implants). Current induced by electric toothbrushes might be dependent on the quantity and types of metals used, and the shape of the appliances. Furthermore, these induced currents in dental appliances could impact upon human oral health, producing pain and discomfort.
Using electric current to surpass the microstructure breakup limit
Qin, Rongshan
2017-01-01
The elongated droplets and grains can break up into smaller ones. This process is driven by the interfacial free energy minimization, which gives rise to a breakup limit. We demonstrated in this work that the breakup limit can be overpassed drastically by using electric current to interfere. Electric current free energy is dependent on the microstructure configuration. The breakup causes the electric current free energy to reduce in some cases. This compensates the increment of interfacial free energy during breaking up and enables the processing to achieve finer microstructure. With engineering practical electric current parameters, our calculation revealed a significant increment of the obtainable number of particles, showing electric current a powerful microstructure refinement technology. The calculation is validated by our experiments on the breakup of Fe3C-plates in Fe matrix. Furthermore, there is a parameter range that electric current can drive spherical particles to split into smaller ones. PMID:28120919
Towards a Switched-Capacitor Based Stimulator for Efficient Deep-Brain Stimulation
Vidal, Jose; Ghovanloo, Maysam
2013-01-01
We have developed a novel 4-channel prototype stimulation circuit for implantable neurological stimulators (INS). This Switched-Capacitor based Stimulator (SCS) aims to utilize charge storage and charge injection techniques to take advantage of both the efficiency of conventional voltage-controlled stimulators (VCS) and the safety and controllability of current-controlled stimulators (CCS). The discrete SCS prototype offers fine control over stimulation parameters such as voltage, current, pulse width, frequency, and active electrode channel via a LabVIEW graphical user interface (GUI) when connected to a PC through USB. Furthermore, the prototype utilizes a floating current sensor to provide charge-balanced biphasic stimulation and ensure safety. The stimulator was analyzed using an electrode-electrolyte interface (EEI) model as well as with a pair of pacing electrodes in saline. The primary motivation of this research is to test the feasibility and functionality of a safe, effective, and power-efficient switched-capacitor based stimulator for use in Deep Brain Stimulation. PMID:21095987
Serša, Igor; Kranjc, Matej; Miklavčič, Damijan
2015-01-01
Electroporation is gaining its importance in everyday clinical practice of cancer treatment. For its success it is extremely important that coverage of the target tissue, i.e. treated tumor, with electric field is within the specified range. Therefore, an efficient tool for the electric field monitoring in the tumor during delivery of electroporation pulses is needed. The electric field can be reconstructed by the magnetic resonance electric impedance tomography method from current density distribution data. In this study, the use of current density imaging with MRI for monitoring current density distribution during delivery of irreversible electroporation pulses was demonstrated. Using a modified single-shot RARE sequence, where four 3000 V and 100 μs long pulses were included at the start, current distribution between a pair of electrodes inserted in a liver tissue sample was imaged. Two repetitions of the sequence with phases of refocusing radiofrequency pulses 90° apart were needed to acquire one current density image. For each sample in total 45 current density images were acquired to follow a standard protocol for irreversible electroporation where 90 electric pulses are delivered at 1 Hz. Acquired current density images showed that the current density in the middle of the sample increased from first to last electric pulses by 60%, i.e. from 8 kA/m2 to 13 kA/m2 and that direction of the current path did not change with repeated electric pulses significantly. The presented single-shot RARE-based current density imaging sequence was used successfully to image current distribution during delivery of short high-voltage electric pulses. The method has a potential to enable monitoring of tumor coverage by electric field during irreversible electroporation tissue ablation.
NASA Astrophysics Data System (ADS)
Glazebrook, R. T.
2016-10-01
1. Electrostatics: fundamental facts; 2. Electricity as a measurable quantity; 3. Measurement of electric force and potential; 4. Condensers; 5. Electrical machines; 6. Measurement of potential and electric force; 7. Magnetic attraction and repulsion; 8. Laws of magnetic force; 9. Experiments with magnets; 10. Magnetic calculations; 11. Magnetic measurements; 12. Terrestrial magnetism; 13. The electric current; 14. Relation between electromagnetic force and current; 15. Measurement of current; 16. Measurement of resistance and electromotive force; 17. Measurement of quantity of electricity, condensers; 18. Thermal activity of a current; 19. The voltaic cell (theory); 20. Electromagnetism; 21. Magnetisation of iron; 22. Electromagnetic instruments; 23. Electromagnetic induction; 24. Applications of electromagnetic induction; 25. Telegraphy and telephony; 26. Electric waves; 27. Transference of electricity through gases: corpuscles and electrons; Answers to examples; Index.
Duffau, H
2001-01-01
OBJECTIVES—Brain plasticity is supposed to allow the compensation of motor function in cases of rolandic lesion. The aim was to analyse the mechanisms of functional reorganisation during surgery in the central area. METHODS—A motor brain mapping was performed in three right handed patients without any neurological deficit, operated on for a slow growing lesion near the rolandic region (two precentral resected under general anaesthesia and one retrocentral removed under local anaesthesia to allow also sensory mapping) using intraoperative direct electrical stimulations (5 mm space tips bipolar stimulator probe, biphasic square wave pulse current: 1 ms/phase, 60 Hz, 4 to 18mA). RESULTS—For each patient, the motor areas of the hand and forearm in the primary motor cortex (M1) were identified before and after lesion removal with the same stimulation parameters: the same eloquent sites were found, plus the appearance after resection of additional sites in M1 inducing the same movement during stimulations as the previous areas. CONCLUSIONS—Multiple cortical representations for hand and forearm movements in M1 seem to exist. In addition, the results demonstrate the short term capacity of the brain to make changes in local motor maps, by sudden unmasking after tumour resection of a second redundant site participating in the same movement. Finally, it seems not necessary for the whole of the redundant sites to be functional to provide normal movement, a concept with potential implications for surgery within the central region. PMID:11254775
Fei, Guijun; Raehal, Kirsten; Liu, Sumei; Qu, Mei-Hua; Sun, Xiaohong; Wang, Guo-Du; Wang, Xi-Yu; Xia, Yun; Schmid, Cullen L.; Bohn, Laura M.
2010-01-01
Lubiprostone activates ClC-2 chloride channels in epithelia. It is approved for treatment of chronic idiopathic constipation in adults and constipation-predominate irritable bowel syndrome in women. We tested a hypothesis that lubiprostone can reverse the constipating action of morphine and investigated the mechanism of action. Short-circuit current (Isc) was recorded in Ussing chambers as a marker for chloride secretion during pharmacological interactions between morphine and lubiprostone. Measurements of fecal wet weight were used to obtain information on morphine-lubiprostone interactions in conscious mice. Morphine decreased basal Isc, with an IC50 of 96.1 nM. The action of dimethylphenylpiperazinium (DMPP), a nicotinic receptor agonist that stimulates neurogenic Isc, was suppressed by morphine. Lubiprostone applied after pretreatment with morphine reversed morphine suppression of both basal Isc and DMPP-evoked chloride secretion. Electrical field stimulation (EFS) of submucosal neurons evoked biphasic increases in Isc. Morphine abolished the first phase and marginally suppressed the second phase. Lubiprostone reversed, in concentration-dependent manner, the action of morphine on the first and second phases of the EFS-evoked responses. Subcutaneous lubiprostone increased fecal wet weight and numbers of pellets expelled. Morphine significantly reduced fecal wet weight and number of pellets. Injection of lubiprostone, 30-min after morphine, reversed morphine-induced suppression of fecal wet weight. We conclude that inhibitory action of morphine on chloride secretion reflects suppression of excitability of cholinergic secretomotor neurons in the enteric nervous system. Lubiprostone, which does not directly affect enteric neurons, bypasses the neurogenic constipating effects of morphine by directly opening chloride channels in the mucosal epithelium. PMID:20406855
Zhang, Hehua; Yang, Zhengfei; Huang, Zitong; Chen, Bihua; Zhang, Lei; Li, Heng; Wu, Baoming; Yu, Tao; Li, Yongqin
2012-10-01
The quality of cardiopulmonary resuscitation (CPR), especially adequate compression depth, is associated with return of spontaneous circulation (ROSC) and is therefore recommended to be measured routinely. In the current study, we investigated the relationship between changes of transthoracic impedance (TTI) measured through the defibrillation electrodes, chest compression depth and coronary perfusion pressure (CPP) in a porcine model of cardiac arrest. In 14 male pigs weighing between 28 and 34 kg, ventricular fibrillation (VF) was electrically induced and untreated for 6 min. Animals were randomized to either optimal or suboptimal chest compression group. Optimal depth of manual compression in 7 pigs was defined as a decrease of 25% (50 mm) in anterior posterior diameter of the chest, while suboptimal compression was defined as 70% of the optimal depth (35 mm). After 2 min of chest compression, defibrillation was attempted with a 120-J rectilinear biphasic shock. There were no differences in baseline measurements between groups. All animals had ROSC after optimal compressions; this contrasted with suboptimal compressions, after which only 2 of the animals had ROSC (100% vs. 28.57%, p=0.021). The correlation coefficient was 0.89 between TTI amplitude and compression depth (p<0.001), 0.83 between TTI amplitude and CPP (p<0.001). Amplitude change of TTI was correlated with compression depth and CPP in this porcine model of cardiac arrest. The TTI measured from defibrillator electrodes, therefore has the potential to serve as an indicator to monitor the quality of chest compression and estimate CPP during CPR. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Fei, Guijun; Raehal, Kirsten; Liu, Sumei; Qu, Mei-Hua; Sun, Xiaohong; Wang, Guo-Du; Wang, Xi-Yu; Xia, Yun; Schmid, Cullen L; Bohn, Laura M; Wood, Jackie D
2010-07-01
Lubiprostone activates ClC-2 chloride channels in epithelia. It is approved for treatment of chronic idiopathic constipation in adults and constipation-predominate irritable bowel syndrome in women. We tested a hypothesis that lubiprostone can reverse the constipating action of morphine and investigated the mechanism of action. Short-circuit current (Isc) was recorded in Ussing chambers as a marker for chloride secretion during pharmacological interactions between morphine and lubiprostone. Measurements of fecal wet weight were used to obtain information on morphine-lubiprostone interactions in conscious mice. Morphine decreased basal Isc, with an IC(50) of 96.1 nM. The action of dimethylphenylpiperazinium (DMPP), a nicotinic receptor agonist that stimulates neurogenic Isc, was suppressed by morphine. Lubiprostone applied after pretreatment with morphine reversed morphine suppression of both basal Isc and DMPP-evoked chloride secretion. Electrical field stimulation (EFS) of submucosal neurons evoked biphasic increases in Isc. Morphine abolished the first phase and marginally suppressed the second phase. Lubiprostone reversed, in concentration-dependent manner, the action of morphine on the first and second phases of the EFS-evoked responses. Subcutaneous lubiprostone increased fecal wet weight and numbers of pellets expelled. Morphine significantly reduced fecal wet weight and number of pellets. Injection of lubiprostone, 30-min after morphine, reversed morphine-induced suppression of fecal wet weight. We conclude that inhibitory action of morphine on chloride secretion reflects suppression of excitability of cholinergic secretomotor neurons in the enteric nervous system. Lubiprostone, which does not directly affect enteric neurons, bypasses the neurogenic constipating effects of morphine by directly opening chloride channels in the mucosal epithelium.
Physiological stimuli evoke two forms of endocytosis in bovine chromaffin cells.
Chan, S A; Smith, C
2001-12-15
1. Exocytosis and endocytosis were measured following single, or trains of, simulated action potentials (sAP) in bovine adrenal chromaffin cells. Catecholamine secretion was measured by oxidative amperometry and cell membrane turnover was measured by voltage clamp cell capacitance measurements. 2. The sAPs evoked inward Na(+) and Ca(2+) currents that were statistically identical to those evoked by native action potential waveforms. On average, a single secretory granule underwent fusion following sAP stimulation. An equivalent amount of membrane was then quickly internalised (tau = 560 ms). 3. Stimulation with sAP trains revealed a biphasic relationship between cell firing rate and endocytic activity. At basal stimulus frequencies (single to 0.5 Hz) cells exhibited a robust membrane internalisation that then diminished as firing increased to intermediate levels (1.9 and 6 Hz). However at the higher stimulation rates (10 and 16 Hz) endocytic activity rebounded and was again able to effectively maintain cell surface near pre-stimulus levels. 4. Treatment with cyclosporin A and FK506, inhibitors of the phosphatase calcineurin, left endocytosis characteristics unaltered at the lower basal stimulus levels, but blocked the resurgence in endocytosis seen in control cells at higher sAP frequencies. 5. Based on these findings we propose that, under physiological electrical stimulation, chromaffin cells internalise membrane via two distinct pathways that are separable. One is prevalent at basal stimulus frequencies, is lessened with increased firing, and is insensitive to cyclosporin A and FK506. A second endocytic form is activated by increased firing frequencies, and is selectively blocked by cyclosporin A and FK506.
Physiological stimuli evoke two forms of endocytosis in bovine chromaffin cells
Chan, Shyue-An; Smith, Corey
2001-01-01
Exocytosis and endocytosis were measured following single, or trains of, simulated action potentials (sAP) in bovine adrenal chromaffin cells. Catecholamine secretion was measured by oxidative amperometry and cell membrane turnover was measured by voltage clamp cell capacitance measurements. The sAPs evoked inward Na+ and Ca2+ currents that were statistically identical to those evoked by native action potential waveforms. On average, a single secretory granule underwent fusion following sAP stimulation. An equivalent amount of membrane was then quickly internalised (τ = 560 ms). Stimulation with sAP trains revealed a biphasic relationship between cell firing rate and endocytic activity. At basal stimulus frequencies (single to 0.5 Hz) cells exhibited a robust membrane internalisation that then diminished as firing increased to intermediate levels (1.9 and 6 Hz). However at the higher stimulation rates (10 and 16 Hz) endocytic activity rebounded and was again able to effectively maintain cell surface near pre-stimulus levels. Treatment with cyclosporin A and FK506, inhibitors of the phosphatase calcineurin, left endocytosis characteristics unaltered at the lower basal stimulus levels, but blocked the resurgence in endocytosis seen in control cells at higher sAP frequencies. Based on these findings we propose that, under physiological electrical stimulation, chromaffin cells internalise membrane via two distinct pathways that are separable. One is prevalent at basal stimulus frequencies, is lessened with increased firing, and is insensitive to cyclosporin A and FK506. A second endocytic form is activated by increased firing frequencies, and is selectively blocked by cyclosporin A and FK506. PMID:11744761
High electric field conduction in low-alkali boroaluminosilicate glass
NASA Astrophysics Data System (ADS)
Dash, Priyanka; Yuan, Mengxue; Gao, Jun; Furman, Eugene; Lanagan, Michael T.
2018-02-01
Electrical conduction in silica-based glasses under a low electric field is dominated by high mobility ions such as sodium, and there is a transition from ionic transport to electronic transport as the electric field exceeds 108 V/m at low temperatures. Electrical conduction under a high electric field was investigated in thin low-alkali boroaluminosilicate glass samples, showing nonlinear conduction with the current density scaling approximately with E1/2, where E is the electric field. In addition, thermally stimulated depolarization current (TSDC) characterization was carried out on room-temperature electrically poled glass samples, and an anomalous discharging current flowing in the same direction as the charging current was observed. High electric field conduction and TSDC results led to the conclusion that Poole-Frenkel based electronic transport occurs in the mobile-cation-depleted region adjacent to the anode, and accounts for the observed anomalous current.
Three-dimensional real-time imaging of bi-phasic flow through porous media
NASA Astrophysics Data System (ADS)
Sharma, Prerna; Aswathi, P.; Sane, Anit; Ghosh, Shankar; Bhattacharya, S.
2011-11-01
We present a scanning laser-sheet video imaging technique to image bi-phasic flow in three-dimensional porous media in real time with pore-scale spatial resolution, i.e., 35 μm and 500 μm for directions parallel and perpendicular to the flow, respectively. The technique is illustrated for the case of viscous fingering. Using suitable image processing protocols, both the morphology and the movement of the two-fluid interface, were quantitatively estimated. Furthermore, a macroscopic parameter such as the displacement efficiency obtained from a microscopic (pore-scale) analysis demonstrates the versatility and usefulness of the method.
King, Paul E [Corvallis, OR; Woodside, Charles Rigel [Corvallis, OR
2012-02-07
The disclosure herein provides an apparatus for location of a quantity of current vectors in an electrical device, where the current vector has a known direction and a known relative magnitude to an input current supplied to the electrical device. Mathematical constants used in Biot-Savart superposition equations are determined for the electrical device, the orientation of the apparatus, and relative magnitude of the current vector and the input current, and the apparatus utilizes magnetic field sensors oriented to a sensing plane to provide current vector location based on the solution of the Biot-Savart superposition equations. Description of required orientations between the apparatus and the electrical device are disclosed and various methods of determining the mathematical constants are presented.
Hsu, Guoo-Shyng Wang; Hsu, Shun-Yao
2018-04-01
Electrolyzed water is a sustainable disinfectant, which can comply with food safety regulations and is environmental friendly. A two-factor central composite design was adopted for studying the effects of electrode gap and electric current on chlorine generation efficiency of electrolyzed deep ocean water. Deep ocean water was electrolyzed in a glass electrolyzing cell equipped with platinum-plated titanium anode and cathode in a constant-current operation mode. Results showed that current density, chlorine concentration, and electrolyte temperature increased with electric current, while electric efficiency decreased with electric current and electrode gap. An electrode gap of less than 11.7 mm, and a low electric current appeared to be a more energy efficient design and operation condition for the electrolysis system. Copyright © 2017. Published by Elsevier B.V.
Effect of direct electric current on contaminants removal from the peat water with continuous system
NASA Astrophysics Data System (ADS)
Amri, I.; Azis, A.; Drastinawati
2018-04-01
This research was analysed the essentially of treat peat water using an electric current. Initially, the characterization of peat water was determined including of three parameters they are pH, colour, and conductivity solution exhibited values that exceeded the water standard limit. There are two factors influencing the electric coagulation such as electric current and voltage that were observed in the continous study. The results obtained indicated that the majority of the an electric current were very effective for removing TDS, and pH. The research variable for the voltage from 23,5 to 42,5 volt and the electric current from 2,2 to 4,1. The optimum electric current and voltage was found around 1,5 Ampere and 25 volt, it was exhibited at 4 L/minute. In unit study, continous electric reactor showed that the optimal reduction on the 20 minutes treatment were found pH = 7, 256 ppm. It was meet to the minimum standard government permition.
He, Shuman; McFayden, Tyler C; Shahsavarani, Bahar S; Teagle, Holly F B; Ewend, Matthew; Henderson, Lillian; Buchman, Craig A
This study aimed to (1) establish the feasibility of measuring the electrically evoked auditory change complex (eACC) in response to temporal gaps in children with cochlear nerve deficiency (CND) who are using cochlear implants (CIs) and/or auditory brainstem implants (ABIs); and (2) explore the association between neural encoding of, and perceptual sensitivity to, temporal gaps in these patients. Study participants included 5 children (S1 to S5) ranging in age from 3.8 to 8.2 years (mean: 6.3 years) at the time of testing. All subjects were unilaterally implanted with a Nucleus 24M ABI due to CND. For each subject, two or more stimulating electrodes of the ABI were tested. S2, S3, and S5 previously received a CI in the contralateral ear. For these 3 subjects, at least two stimulating electrodes of their CIs were also tested. For electrophysiological measures, the stimulus was an 800-msec biphasic pulse train delivered to individual electrodes at the maximum comfortable level (C level). The electrically evoked responses, including the onset response and the eACC, were measured for two stimulation conditions. In the standard condition, the 800-msec pulse train was delivered uninterrupted to individual stimulating electrodes. In the gapped condition, a temporal gap was inserted into the pulse train after 400 msec of stimulation. Gap durations tested in this study ranged from 2 up to 128 msec. The shortest gap that could reliably evoke the eACC was defined as the objective gap detection threshold (GDT). For behavioral GDT measures, the stimulus was a 500-msec biphasic pulse train presented at the C level. The behavioral GDT was measured for individual stimulating electrodes using a one-interval, two-alternative forced-choice procedure. The eACCs to temporal gaps were recorded successfully in all subjects for at least one stimulating electrode using either the ABI or the CI. Objective GDTs showed intersubject variations, as well as variations across stimulating electrodes of the ABI or the CI within each subject. Behavioral GDTs were measured for one ABI electrode in S2 and for multiple ABI and CI electrodes in S5. All other subjects could not complete the task. S5 showed smaller behavioral GDTs for CI electrodes than those measured for ABI electrodes. One CI and two ABI electrodes in S5 showed comparable objective and behavioral GDTs. In contrast, one CI and two ABI electrodes in S5 and one ABI electrode in S2 showed measurable behavioral GDTs but no identifiable eACCs. The eACCs to temporal gaps were recorded in children with CND using either ABIs or CIs. Both objective and behavioral GDTs showed inter- and intrasubject variations. Consistency between results of eACC recordings and psychophysical measures of GDT was observed for some but not all ABI or CI electrodes in these subjects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, P. Nandha; Mishra, Sandeep K.; Kannan, S., E-mail: para_kanna@yahoo.com
2015-11-15
A series of magnesium doped non-stoichiometric calcium deficient apatites were synthesized through an aqueous precipitation route. The resultant structural changes during heat treatment were investigated by X-ray diffraction, Raman and FT-IR spectroscopy and Rietveld refinement. The results confirmed the formation of biphasic mixtures comprising Ca{sub 10}(PO{sub 4}){sub 6}(OH){sub 2} and β-Ca{sub 3}(PO{sub 4}){sub 2} after heat treatment at 1000 °C with the preferential occupancy of Mg{sup 2+} at the crystal lattice of β-Ca{sub 3}(PO{sub 4}){sub 2}. The concentration of Mg{sup 2+} uptake in β-Ca{sub 3}(PO{sub 4}){sub 2} is limited till reaching the stoichiometric ratio of (Ca+Mg)/P=1.67 and beyond this stoichiometricmore » value [(Ca+Mg)/P>1.67], Mg{sup 2+} precipitates as Mg(OH){sub 2} and thereafter gets converted to MgO during heat treatment. Any kind of Mg{sup 2+} uptake in the crystal lattice of Ca{sub 10}(PO{sub 4}){sub 6}(OH){sub 2} is discarded from the investigation. - Highlights: • Aqueous co-precipitation of calcium deficient apatites with excess magnesium (Mg{sup 2+}) additions. • Heat treatments beyond 800 °C results in the formation of biphasic apatite mixtures. • Mg{sup 2+} gets accommodated at the β-Ca{sub 3}(PO{sub 4}){sub 2} lattice of biphasic mixtures. • Mg{sup 2+} additions exceeding stoichiometric value (Ca/P>1.67) results in its formation as MgO. • Mg{sup 2+} occupancy at β-Ca{sub 3}(PO{sub 4}){sub 2} lattice delays its allotropic conversion α-Ca{sub 3}(PO{sub 4}){sub 2} till 1350 °C.« less
Gandarilla-Pacheco, Fatima L; Morales-Ramos, Lilia H; Pereyra-Alférez, Benito; Elías-Santos, Myriam; Quintero-Zapata, Isela
The aim of this study was to evaluate the production of blastospores and conidia of different native isolates and a strain of Isaria fumosorosea using different propagation techniques. Two liquid culture media of casamino acids and peptone as nitrogen sources and glucose as carbon source for both media cultures were respectively used in the production of blastospores, while for the production of conidia, the fungi were grown in potato dextrose agar; from these cultures, solutions of conidia to a concentration of 1×10 6 per milliliter were prepared to inoculate flasks with Sabouraud dextrose broth for the liquid phase of the biphasic culture, also known as preculture. Subsequently, rice grain bags were inoculated with the preculture and the conidia solutions, which were incubated for 14 days for solid fermentation and biphasic culture, respectively. The HIB-23 isolate recorded a concentration of 4.90×10 8 blastospores/ml in the casamino acid medium, while a concentration of 2.15×10 8 blastospores/ml was obtained in the peptone collagen medium. For the Pfr-612 strain, the conidia production in solid-state fermentation was 1.58×10 9 conidia/g, and for HIB-30 in the biphasic culture of 9.00×10 6 conidia/g. Solid-state fermentation proved to be the most effective method with an average of 1.09×10 9 conidia/g, whereas the biphasic culture was the least effective method with 2.76×10 6 conidia/g; no significant difference was reported for the submerged production media. Copyright © 2017 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.
Jisha, Veloorvalappil Narayanan; Smitha, Robinson Babysarojam; Priji, Prakasan; Sajith, Sreedharan; Benjamin, Sailas
2015-02-01
This study illustrates a biphasic solid-state fermentation (SSF) strategy for the overproduction of δ-endotoxin from Bacillus thuringiensis subsp. kurstaki (Btk) and also purification of δ-endotoxin from the solid-fermented medium. The fermentation strategy had two phases (biphasic); i.e., the first short phase was semisolid state (12 h), and the remaining long phase was strict SSF. To achieve the biphasic SSF, after 12 h (150 rpm, 37 °C) fermentation of the medium [Luria-Bertani (LB) supplemented with 30 % (w/v) raw soybean flour (phase I)], the supernatant in it was completely centrifuged out (1,000 × g, 10 min) aseptically for harvesting the extracellular enzymes as by-product. The resultant wet solid matter without free-flowing liquid but with embedded Btk was incubated 60 h more (phase II) for enhancing δ-endotoxin production at static condition (37 °C). Coupled with this, δ-endotoxin was purified by the modified phase separation method, and its purity was physically confirmed by both staining and microscopic techniques. The maximum δ-endotoxin yield from solid medium (48 h) was 15.8 mg/mL (recovery was 55-59 %) LB-equivalent, while that of LB control (recovery was 95 %) was only 0.43 mg/mL (72 h), i.e., thus, in comparison, 36.74-fold more yield in solid medium obtained by 24 h less gestation period. The purified crystal proteins showed apparent molecular weights (MWs) of 45, 35, and 6 kDa on sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Briefly, this unique study physically demonstrates how Btk δ-endotoxin is purified (95-99 % purity) from solid-fermented matter for the first time, coupled with its overproduction at the expense of only 21.5 % higher production cost.
Pandy, Vijayapandi; Narasingam, Megala; Vijeepallam, Kamini; Mohan, Syam; Mani, Vasudevan; Mohamed, Zahurin
2017-01-01
In earlier ex vivo studies, we reported the biphasic effect of a methanolic extract of unripe Morinda citrifolia fruit (MMC) on dopamine-induced contractility in isolated rat vas deferens preparations. The present in vivo study was designed and undertaken to further explore our earlier ex vivo findings. This study examined the effect of the ethyl acetate fraction of a methanolic extract of unripe Morinda citrifolia Linn. fruit (EA-MMC; 5–100 mg/kg, p.o.) on the dopaminergic system using mouse models of apomorphine-induced climbing time and climbing behavior, methamphetamine-induced stereotypy (sniffing, biting, gnawing, and licking) and haloperidol-induced catalepsy using the bar test. Acute treatment with EA-MMC at a low dose (25 mg/kg, p.o.) significantly attenuated the apomorphine-induced climbing time and climbing behavior in mice. Similarly, EA-MMC (5 and 10 mg/kg, p.o.) significantly inhibited methamphetamine-induced stereotyped behavior in mice. These results demonstrated that the antidopaminergic effect of EA-MMC was observed at relatively lower doses (<25 mg/kg, p.o.). On the other hand, EA-MMC showed dopaminergic agonistic activity at a high dose (3,000 mg/kg, p.o.), which was evident from alleviation of haloperidol (a dopamine D2 blocker)-induced catalepsy in mice. Therefore, it is concluded that EA-MMC might possess a biphasic effect on the dopaminergic system, i.e., an antagonistic effect at lower doses (<25 mg/kg, p.o.) and an agonistic effect at higher doses (>1,000 mg/kg, p.o.). However, further receptor-ligand binding assays are necessary to confirm the biphasic effects of M. citrifolia fruit on the dopaminergic system. PMID:28450692
Herrera-Martínez, Aura D; Enes, Patricia; Martín-Frías, María; Roldán, Belén; Yelmo, Rosa; Barrio, Raquel
2017-10-01
The onset of obesity at young ages is strongly associated with the early development of type 2diabetes (T2D). The shape of the curves of glucose and insulin curves during an oral glucose tolerance test (OGTT) could predict the risk of developing T2D. To analyse the morphology of the OGTT and determine T2D risk factors in a mainly Caucasian population of children and adolescents. Observational retrospective study including 588 patients (309 males, 279 females) with a mean age of 11.1±2years, and of whom 90.3% were Caucasian. Risk factors for T2D were compared in patients with a monophasic or biphasic pattern during the performance of an OGTT, as well as anthropometric and biochemical variables, insulin resistance, and beta-cell function. The shape of the glucose curve was monophasic in 50.2% of patients (50.8% male), biphasic in 48.5% (47.6% males), and indeterminate in 1.3%. The monophasic pattern showed lower insulin-sensitivity and worse beta-cell function. Patients with a biphasic pattern had a higher BMI, waist circumference, and blood pressure, although the results were not significant. Latin-American patients had significantly lower serum glucose levels with higher insulin levels during the OGTT. The pattern of response to an OGTT reflects different metabolic phenotypes. Paediatric patients with a biphasic pattern have lower risk-profiling for T2D. The performing of an OGTT could be useful to implement early intervention strategies in children and adolescents with obesity, in order to prevent the development of pre-diabetes or T2D. Copyright © 2016 Asociación Española de Pediatría. Publicado por Elsevier España, S.L.U. All rights reserved.
Akbar, Umer; Raike, Robert S.; Hack, Nawaz; Hess, Christopher W.; Skinner, Jared; Martinez‐Ramirez, Daniel; DeJesus, Sol
2016-01-01
Objectives Evidence suggests that nonconventional programming may improve deep brain stimulation (DBS) therapy for movement disorders. The primary objective was to assess feasibility of testing the tolerability of several nonconventional settings in Parkinson's disease (PD) and essential tremor (ET) subjects in a single office visit. Secondary objectives were to explore for potential efficacy signals and to assess the energy demand on the implantable pulse‐generators (IPGs). Materials and Methods A custom firmware (FW) application was developed and acutely uploaded to the IPGs of eight PD and three ET subjects, allowing delivery of several nonconventional DBS settings, including narrow pulse widths, square biphasic pulses, and irregular pulse patterns. Standard clinical rating scales and several objective measures were used to compare motor outcomes with sham, clinically‐optimal and nonconventional settings. Blinded and randomized testing was conducted in a traditional office setting. Results Overall, the nonconventional settings were well tolerated. Under these conditions it was also possible to detect clinically‐relevant differences in DBS responses using clinical rating scales but not objective measures. Compared to the clinically‐optimal settings, some nonconventional settings appeared to offer similar benefit (e.g., narrow pulse widths) and others lesser benefit. Moreover, the results suggest that square biphasic pulses may deliver greater benefit. No unexpected IPG efficiency disadvantages were associated with delivering nonconventional settings. Conclusions It is feasible to acutely screen nonconventional DBS settings using controlled study designs in traditional office settings. Simple IPG FW upgrades may provide more DBS programming options for optimizing therapy. Potential advantages of narrow and biphasic pulses deserve follow up. PMID:27000764
Glucose response curve and type 2 diabetes risk in Latino adolescents.
Kim, Joon Young; Coletta, Dawn K; Mandarino, Lawrence J; Shaibi, Gabriel Q
2012-09-01
In adults, the shape of the glucose response during an oral glucose tolerance test (OGTT) prospectively and independently predicts type 2 diabetes. However, no reports have described the utility of this indicator in younger populations. The purpose of this study was to compare type 2 diabetes risk factors in Latino adolescents characterized by either a monophasic or biphasic glucose response during an OGTT. A total of 156 nondiabetic Latino adolescents completed a 2-h OGTT. Monophasic and biphasic groups were compared for the following type 2 diabetes risk factors: fasting and 2-h glucose, HbA(1c), glucose area under the curve (AUC), insulin sensitivity (Matsuda index), insulin secretion (insulinogenic index), and β-cell function as measured by the disposition index (insulin sensitivity × insulin secretion). Of the participants, 107 youth were categorized as monophasic and 49 were biphasic. Compared with the monophasic group, participants with a biphasic response exhibited lower HbA(1c) (5.4 ± 0.3 vs. 5.6 ± 0.3%, P < 0.01) and lower glucose AUC (14,205 ± 2,382 vs. 16,230 ± 2,537 mg ⋅ dL(-1) ⋅ h(-1), P < 0.001) with higher insulin sensitivity (5.4 ± 3.2 vs. 4.6 ± 3.4, P ≤ 0.05), higher insulin secretion (2.1 ± 1.3 vs. 1.8 ± 1.3, P = 0.05), and better β-cell function (10.3 ± 7.8 vs. 6.0 ± 3.6, P < 0.001). Differences persisted after adjusting for age, sex, and BMI. These data suggest that the glycemic response to an OGTT may differentiate risk for type 2 diabetes in youth. This response may be an early marker of type 2 diabetes risk among high-risk youth.
Kim, Joon Young; Michaliszyn, Sara F.; Nasr, Alexis; Lee, SoJung; Tfayli, Hala; Hannon, Tamara; Hughan, Kara S.; Bacha, Fida; Arslanian, Silva
2016-01-01
OBJECTIVE The shape of the glucose response curve during an oral glucose tolerance test (OGTT), monophasic versus biphasic, identifies physiologically distinct groups of individuals with differences in insulin secretion and sensitivity. We aimed to verify the value of the OGTT-glucose response curve against more sensitive clamp-measured biomarkers of type 2 diabetes risk, and to examine incretin/pancreatic hormones and free fatty acid associations in these curve phenotypes in obese adolescents without diabetes. RESEARCH DESIGN AND METHODS A total of 277 obese adolescents without diabetes completed a 2-h OGTT and were categorized to either a monophasic or a biphasic group. Body composition, abdominal adipose tissue, OGTT-based metabolic parameters, and incretin/pancreatic hormone levels were examined. A subset of 106 participants had both hyperinsulinemic-euglycemic and hyperglycemic clamps to measure in vivo insulin sensitivity, insulin secretion, and β-cell function relative to insulin sensitivity. RESULTS Despite similar fasting and 2-h glucose and insulin concentrations, the monophasic group had significantly higher glucose, insulin, C-peptide, and free fatty acid OGTT areas under the curve compared with the biphasic group, with no differences in levels of glucagon, total glucagon-like peptide 1, glucose-dependent insulinotropic polypeptide, and pancreatic polypeptide. Furthermore, the monophasic group had significantly lower in vivo hepatic and peripheral insulin sensitivity, lack of compensatory first and second phase insulin secretion, and impaired β-cell function relative to insulin sensitivity. CONCLUSIONS In obese youth without diabetes, the risk imparted by the monophasic glucose curve compared with biphasic glucose curve, independent of fasting and 2-h glucose and insulin concentrations, is reflected in lower insulin sensitivity and poorer β-cell function, which are two major pathophysiological biomarkers of type 2 diabetes in youth. PMID:27293201
Pandy, Vijayapandi; Narasingam, Megala; Vijeepallam, Kamini; Mohan, Syam; Mani, Vasudevan; Mohamed, Zahurin
2017-08-05
In earlier ex vivo studies, we reported the biphasic effect of a methanolic extract of unripe Morinda citrifolia fruit (MMC) on dopamine-induced contractility in isolated rat vas deferens preparations. The present in vivo study was designed and undertaken to further explore our earlier ex vivo findings. This study examined the effect of the ethyl acetate fraction of a methanolic extract of unripe Morinda citrifolia Linn. fruit (EA-MMC; 5-100 mg/kg, p.o.) on the dopaminergic system using mouse models of apomorphine-induced climbing time and climbing behavior, methamphetamine-induced stereotypy (sniffing, biting, gnawing, and licking) and haloperidol-induced catalepsy using the bar test. Acute treatment with EA-MMC at a low dose (25 mg/kg, p.o.) significantly attenuated the apomorphine-induced climbing time and climbing behavior in mice. Similarly, EA-MMC (5 and 10 mg/kg, p.o.) significantly inhibited methamphetamine-induced stereotyped behavior in mice. These results demonstrated that the antidopaminergic effect of EA-MMC was observed at relatively lower doses (<25 mg/kg, p.o.). On the other hand, EA-MMC showed dopaminergic agonistic activity at a high dose (3,000 mg/kg, p.o.), which was evident from alleviation of haloperidol (a dopamine D 2 blocker)-induced catalepsy in mice. Therefore, it is concluded that EA-MMC might possess a biphasic effect on the dopaminergic system, i.e., an antagonistic effect at lower doses (<25 mg/kg, p.o.) and an agonistic effect at higher doses (>1,000 mg/kg, p.o.). However, further receptor-ligand binding assays are necessary to confirm the biphasic effects of M. citrifolia fruit on the dopaminergic system.
X-ray-induced bystander responses reduce spontaneous mutations in V79 cells
Maeda, Munetoshi; Kobayashi, Katsumi; Matsumoto, Hideki; Usami, Noriko; Tomita, Masanori
2013-01-01
The potential for carcinogenic risks is increased by radiation-induced bystander responses; these responses are the biological effects in unirradiated cells that receive signals from the neighboring irradiated cells. Bystander responses have attracted attention in modern radiobiology because they are characterized by non-linear responses to low-dose radiation. We used a synchrotron X-ray microbeam irradiation system developed at the Photon Factory, High Energy Accelerator Research Organization, KEK, and showed that nitric oxide (NO)-mediated bystander cell death increased biphasically in a dose-dependent manner. Here, we irradiated five cell nuclei using 10 × 10 µm2 5.35 keV X-ray beams and then measured the mutation frequency at the hypoxanthine-guanosine phosphoribosyl transferase (HPRT) locus in bystander cells. The mutation frequency with the null radiation dose was 2.6 × 10–5 (background level), and the frequency decreased to 5.3 × 10–6 with a dose of approximately 1 Gy (absorbed dose in the nucleus of irradiated cells). At high doses, the mutation frequency returned to the background level. A similar biphasic dose-response effect was observed for bystander cell death. Furthermore, we found that incubation with 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (carboxy-PTIO), a specific scavenger of NO, suppressed not only the biphasic increase in bystander cell death but also the biphasic reduction in mutation frequency of bystander cells. These results indicate that the increase in bystander cell death involves mechanisms that suppress mutagenesis. This study has thus shown that radiation-induced bystander responses could affect processes that protect the cell against naturally occurring alterations such as mutations. PMID:23660275
Biphasic Effects of Alcohol as a Function of Circadian Phase
Van Reen, Eliza; Rupp, Tracy L.; Acebo, Christine; Seifer, Ronald; Carskadon, Mary A.
2013-01-01
Study Objectives: To assess how alcohol affects multiple sleep latency tests (MSLT) and subjective measures of stimulation/sedation when alcohol is given at different circadian phases. Participants: Twenty-seven healthy young adults (age 21-26 yr) were studied. Design: Double-blind placebo and alcohol (vodka tonic targeting 0.05 g% concentration) beverages were each administered three times during the 20-h forced desynchrony protocol. Sleep latency tests and Biphasic Effects of Alcohol Scale (BAES) were administered on each forced desynchrony day. The outcome variables for this study include sleep onset latency (SOL) and stimulation and sedation value (from the BAES). Each outcome variable was associated with the ascending or descending limb of the breath alcohol concentration (BrAC) curve and assigned a circadian phase within a 90° bin. Measurements and Results: BrAC confirmed targeted maximal levels. Only outcome variables associated with the ascending and descending limb of the alcohol curve were analyzed for this article. Alcohol administered at a circadian time associated with greatest sleepiness showed longer SOL compared with placebo when measured on the ascending limb of the BrAC curve. We also found longer SOL with alcohol on the ascending limb of the BrAC curve in a circadian bin that favors greatest alertness. We observed shorter SOLs on the descending limb of the BrAC curve, but with no circadian phase interaction. The subjective data were partially consistent with the objective data. Conclusions: The physiologic findings in this study support the biphasic stimulating and sedating properties of alcohol, but limit the effect to specific circadian times. Citation: Van Reen E; Rupp TL; Acebo C; Seifer R; Carskadon MA. Biphasic effects of alcohol as a function of circadian phase. SLEEP 2013;36(1):137-145. PMID:23288980
Akbar, Umer; Raike, Robert S; Hack, Nawaz; Hess, Christopher W; Skinner, Jared; Martinez-Ramirez, Daniel; DeJesus, Sol; Okun, Michael S
2016-06-01
Evidence suggests that nonconventional programming may improve deep brain stimulation (DBS) therapy for movement disorders. The primary objective was to assess feasibility of testing the tolerability of several nonconventional settings in Parkinson's disease (PD) and essential tremor (ET) subjects in a single office visit. Secondary objectives were to explore for potential efficacy signals and to assess the energy demand on the implantable pulse-generators (IPGs). A custom firmware (FW) application was developed and acutely uploaded to the IPGs of eight PD and three ET subjects, allowing delivery of several nonconventional DBS settings, including narrow pulse widths, square biphasic pulses, and irregular pulse patterns. Standard clinical rating scales and several objective measures were used to compare motor outcomes with sham, clinically-optimal and nonconventional settings. Blinded and randomized testing was conducted in a traditional office setting. Overall, the nonconventional settings were well tolerated. Under these conditions it was also possible to detect clinically-relevant differences in DBS responses using clinical rating scales but not objective measures. Compared to the clinically-optimal settings, some nonconventional settings appeared to offer similar benefit (e.g., narrow pulse widths) and others lesser benefit. Moreover, the results suggest that square biphasic pulses may deliver greater benefit. No unexpected IPG efficiency disadvantages were associated with delivering nonconventional settings. It is feasible to acutely screen nonconventional DBS settings using controlled study designs in traditional office settings. Simple IPG FW upgrades may provide more DBS programming options for optimizing therapy. Potential advantages of narrow and biphasic pulses deserve follow up. © 2016 The Authors. Neuromodulation: Technology at the Neural Interface published by Wiley Periodicals, Inc. on behalf of International Neuromodulation Society.
Surface termination dependence of the reactivity of single crystal hematite with CCl 4
NASA Astrophysics Data System (ADS)
Camillone, Nicholas, III; Adib, Kaveh; Fitts, Jeffrey P.; Rim, Kwang T.; Flynn, George W.; Joyce, S. A.; Osgood, Richard M.
2002-06-01
We describe ultrahigh vacuum Auger electron spectrometric measurements of the uptake of chlorine following the room temperature exposure of single crystal hematite, α-Fe2O3, to CCl4. We compare the surface chemistry of two specific surface phases formed on the basal plane of α-Fe2O3: the Fe3O4(1 1 1)-(2×2) ;selvedge; and the α-Fe2O3/Fe1-xO ;biphase.; For Fe3O4(1 1 1)-(2×2) an estimated saturation level of Cl of ∼75% of a monolayer is readily attained. Carbon uptake is well below that expected for simple stoichiometric dissociative chemisorption, consistent with desorption of organic products during the surface reaction. Low energy electron diffraction measurements suggest that, dependent upon preparation procedures, at least two types of α-Fe2O3/Fe1-xO biphase structures can be formed. Surprisingly, upon exposure to CCl4, Cl uptake does not occur on either of these biphase surfaces, despite the fact that these surfaces are thought to have the same surface concentrations of iron and oxygen as Fe3O4(1 1 1). The dramatic difference between the reactivity of the Fe3O4 and biphase surfaces suggests that the active site for the dissociative adsorption of CCl4 on Fe3O4(1 1 1)-(2×2) comprises both an iron cation and an oxygen anion with a surface-normal-oriented dangling bond that is uncapped by iron cations. Electron stimulated and thermal desorption of Cl from the saturated Fe3O4(1 1 1)-(2×2) selvedge is also reported.
What do we know about pulmonary blastoma?: review of literature and clinical case report
Brodowska-Kania, Dorota; Kotwica, Ewa; Paturej, Aleksandra; Sośnicki, Witold; Patera, Janusz; Giżewska, Agnieszka; Niemczyk, Stanisław
2016-01-01
ABSTRACT Pulmonary blastoma (PB) is a rare form of lung tumour and is accountable for 0.25–0.5% of primary pulmonary malignancies. Initially pulmonary blastoma was divided into three subtypes: biphasic pulmonary blastoma (BPB) consisting of an epithelial and mesenchymal component, well differentiated fetal adenocarcinoma (WDFA) built of well differentiated epithelium and a mesenchymal component and malignant pleuropulmonary blastoma (PPB). Prognosis in this type of cancer is really poor. We present a current review of literature and a clinical case report. Treatment of PB is very difficult. Data and recommendations about the treatment of pulmonary blastoma are still available therefore we should use only observations and clinical case reports. PMID:28008207
The chlamydial protease CPAF: important or not, important for what?
Häcker, Georg
2014-05-01
The protease CPAF is only found in Chlamydiales and in at least most bacteria that share with Chlamydia the biphasic life-style in a cytosolic inclusion. CPAF is intriguing: it appears to be secreted from the inclusion across the inclusion membrane into the cytosol. A bacterial protease ravaging in the cytosol of a human cell may cause a plethora of effects. Curiously, very few are known. The current discussion is bogged down by a focus on experimental artifact, while proposed functions of CPAF remain speculative. I here make the attempt to summarize what we know about CPAF. Copyright © 2014 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.
Code of Federal Regulations, 2012 CFR
2012-07-01
... wires not insulated from one another, suitable for carrying an electric current. Electric Cable. An assembly of one or more insulated conductors of electric current under a common or integral jacket. A cable... the primary electric current or power is transmitted. Signaling Cable. A fiber optic cable, or a cable...
Code of Federal Regulations, 2014 CFR
2014-07-01
... wires not insulated from one another, suitable for carrying an electric current. Electric Cable. An assembly of one or more insulated conductors of electric current under a common or integral jacket. A cable... the primary electric current or power is transmitted. Signaling Cable. A fiber optic cable, or a cable...
Code of Federal Regulations, 2013 CFR
2013-07-01
... wires not insulated from one another, suitable for carrying an electric current. Electric Cable. An assembly of one or more insulated conductors of electric current under a common or integral jacket. A cable... the primary electric current or power is transmitted. Signaling Cable. A fiber optic cable, or a cable...
Response profiles of murine spiral ganglion neurons on multi-electrode arrays
NASA Astrophysics Data System (ADS)
Hahnewald, Stefan; Tscherter, Anne; Marconi, Emanuele; Streit, Jürg; Widmer, Hans Rudolf; Garnham, Carolyn; Benav, Heval; Mueller, Marcus; Löwenheim, Hubert; Roccio, Marta; Senn, Pascal
2016-02-01
Objective. Cochlear implants (CIs) have become the gold standard treatment for deafness. These neuroprosthetic devices feature a linear electrode array, surgically inserted into the cochlea, and function by directly stimulating the auditory neurons located within the spiral ganglion, bypassing lost or not-functioning hair cells. Despite their success, some limitations still remain, including poor frequency resolution and high-energy consumption. In both cases, the anatomical gap between the electrode array and the spiral ganglion neurons (SGNs) is believed to be an important limiting factor. The final goal of the study is to characterize response profiles of SGNs growing in intimate contact with an electrode array, in view of designing novel CI devices and stimulation protocols, featuring a gapless interface with auditory neurons. Approach. We have characterized SGN responses to extracellular stimulation using multi-electrode arrays (MEAs). This setup allows, in our view, to optimize in vitro many of the limiting interface aspects between CIs and SGNs. Main results. Early postnatal mouse SGN explants were analyzed after 6-18 days in culture. Different stimulation protocols were compared with the aim to lower the stimulation threshold and the energy needed to elicit a response. In the best case, a four-fold reduction of the energy was obtained by lengthening the biphasic stimulus from 40 μs to 160 μs. Similarly, quasi monophasic pulses were more effective than biphasic pulses and the insertion of an interphase gap moderately improved efficiency. Finally, the stimulation with an external electrode mounted on a micromanipulator showed that the energy needed to elicit a response could be reduced by a factor of five with decreasing its distance from 40 μm to 0 μm from the auditory neurons. Significance. This study is the first to show electrical activity of SGNs on MEAs. Our findings may help to improve stimulation by and to reduce energy consumption of CIs and thereby contribute to the development of fully implantable devices with better auditory resolution in the future.
Hara, Yukio; Ike, Asako; Tanida, Riyo; Okada, Muneyoshi; Yamawaki, Hideyuki
2009-12-01
The mouse heart is expected to have characteristic contractile properties. However, basic information on the function of the mouse heart has not been accumulated sufficiently. In this study, the involvement of cyclooxygenase (COX)-2 in carbachol (CCh)-induced inotropic response was investigated in mouse isolated left atrium. Influences of CCh and their mechanisms of action on developed tension elicited by electrical stimulation were examined pharmacologically. The presence of COX-2 in atrium was examined by Western blotting and immunohistochemical analysis. CCh (3 microM for 15 min) produced a biphasic inotropic response: a transient decrease in contractile force followed by a late increase. Atropine suppressed the biphasic inotropic response to CCh. A muscarinic M(3) receptor antagonist, 4-diphenyl-acetoxy-N-methlpiperidine, inhibited the late positive inotropic action. Blockade of prostaglandin (PG) E(2) or F(2alpha) receptor by 6-isopropoxy-9-oxoxanthene-2-carboxylic acid (AH6809) or 9alpha, 15R-dihydroxy-11beta-fluoro-15-(2,3-dihydro-1H-inden-2-yl)-16,17,18,19,20-pentanor-prosta 5Z, 13E-dien-1-oic acid (AL8810), respectively, significantly suppressed the positive inotropic response to CCh. A nonselective COX inhibitor, indomethacin, and a selective COX-2 inhibitor, N-[2-(cyclohexyloxy)-4-nitrophenyl]-methanesulfonamide (NS-398) inhibited the positive response. A COX-1 inhibitor, valeroyl salicylate, did not affect the positive response. The positive response was almost completely abolished in the endocardial endothelium-deprived atria. Existence of COX-2 in endocardial endothelium was confirmed by Western blotting and immunohistochemical analysis. The present study indicated that the CCh-induced positive inotropic response was mediated by PGs, possibly PGE(2) and PGF(2alpha), released in part from endocardial endothelium. Furthermore, for the first time, we demonstrated that the production of PGs depended in part on COX-2 in endocardial endothelium through the muscarinic M(3) receptor stimulation.
ERIC Educational Resources Information Center
Ayrinhac, Simon
2014-01-01
We present in this work a demonstration of the maze-solving problem with electricity. Electric current flowing in a maze as a printed circuit produces Joule heating and the right way is instantaneously revealed with infrared thermal imaging. The basic properties of electric current can be discussed in this context, with this challenging question:…
Żabka, Aneta; Trzaskoma, Paweł; Winnicki, Konrad; Polit, Justyna Teresa; Chmielnicka, Agnieszka; Maszewski, Janusz
2015-02-01
Long-term treatment of Allium cepa seedlings with low concentration of hydroxyurea (HU) results in a disruption of cell cycle checkpoints, leading root apex meristem (RAM) cells to an abnormal organization of nuclear structures forming interphase (I) and mitotic (M) domains of chromatin at opposite poles of the nucleus. Thus far, both critical cell length and an uneven distribution of cyclin B-like proteins along the nuclear axis have been recognized as essential factors needed to facilitate the formation of biphasic interphase-mitotic (IM) cells. Two new aspects with respect to their emergence are investigated in this study. The first concerns a relationship between the polarity of increasing chromatin condensation (IM orientation) and the acropetal (base→apex) alignment of RAM cell files. The second problem involves the effects of auxin (IAA), on the frequency of IM cells. We provide evidence that there is an association between the advanced M-poles of the IM cell nuclei and the polarized accumulation sites of auxin efflux carriers (PIN2 proteins) and IAA. Furthermore, our observations reveal exclusion regions for PIN2 proteins in the microtubule-rich structures, such as preprophase bands (PPBs) and phragmoplast. The current and previous studies have prompted us to formulate a hypothetical mechanism linking PIN2-mediated unilateral localization of IAA and the induction of bipolar IM cells in HU-treated RAMs of A. cepa. Copyright © 2014 Elsevier GmbH. All rights reserved.
Neutral solute transport across osteochondral interface: A finite element approach.
Arbabi, Vahid; Pouran, Behdad; Weinans, Harrie; Zadpoor, Amir A
2016-12-08
Investigation of the solute transfer across articular cartilage and subchondral bone plate could nurture the understanding of the mechanisms of osteoarthritis (OA) progression. In the current study, we approached the transport of neutral solutes in human (slight OA) and equine (healthy) samples using both computed tomography and biphasic-solute finite element modeling. We developed a multi-zone biphasic-solute finite element model (FEM) accounting for the inhomogeneity of articular cartilage (superficial, middle and deep zones) and subchondral bone plate. Fitting the FEM model to the concentration-time curves of the cartilage and the equilibrium concentration of the subchondral plate/calcified cartilage enabled determination of the diffusion coefficients in the superficial, middle and deep zones of cartilage and subchondral plate. We found slightly higher diffusion coefficients for all zones in the human samples as compared to the equine samples. Generally the diffusion coefficient in the superficial zone of human samples was about 3-fold higher than the middle zone, the diffusion coefficient of the middle zone was 1.5-fold higher than that of the deep zone, and the diffusion coefficient of the deep zone was 1.5-fold higher than that of the subchondral plate/calcified cartilage. Those ratios for equine samples were 9, 2 and 1.5, respectively. Regardless of the species considered, there is a gradual decrease of the diffusion coefficient as one approaches the subchondral plate, whereas the rate of decrease is dependent on the type of species. Copyright © 2016 Elsevier Ltd. All rights reserved.
Hu, Jun; Jiang, Lin; Low, Malcolm J.; Rui, Liangyou
2014-01-01
Hypothalamic POMC neurons are required for glucose and energy homeostasis. POMC neurons have a wide synaptic connection with neurons both within and outside the hypothalamus, and their activity is controlled by a balance between excitatory and inhibitory synaptic inputs. Brain glucose-sensing plays an essential role in the maintenance of normal body weight and metabolism; however, the effect of glucose on synaptic transmission in POMC neurons is largely unknown. Here we identified three types of POMC neurons (EPSC(+), EPSC(−), and EPSC(+/−)) based on their glucose-regulated spontaneous excitatory postsynaptic currents (sEPSCs), using whole-cell patch-clamp recordings. Lowering extracellular glucose decreased the frequency of sEPSCs in EPSC(+) neurons, but increased it in EPSC(−) neurons. Unlike EPSC(+) and EPSC(−) neurons, EPSC(+/−) neurons displayed a bi-phasic sEPSC response to glucoprivation. In the first phase of glucoprivation, both the frequency and the amplitude of sEPSCs decreased, whereas in the second phase, they increased progressively to the levels above the baseline values. Accordingly, lowering glucose exerted a bi-phasic effect on spontaneous action potentials in EPSC(+/−) neurons. Glucoprivation decreased firing rates in the first phase, but increased them in the second phase. These data indicate that glucose induces distinct excitatory synaptic plasticity in different subpopulations of POMC neurons. This synaptic remodeling is likely to regulate the sensitivity of the melanocortin system to neuronal and hormonal signals. PMID:25127258
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shan, Xiaoqiang; Charles, Daniel S.; Xu, Wenqian
Manganese-based metal oxide electrode materials are of great importance in electrochemical energy storage for their favorable redox behavior, low cost and environmental-friendliness. However, their storage capacity and cycle life in aqueous Na-ion electrolytes is not satisfactory. In this paper, we report the development of a bi-phase cobalt-manganese oxide (Co-Mn-O) nanostructured electrode material, comprised of a layered MnO 2.H 2O birnessite phase and a (Co 0.83Mn 0.13Va 0.04)tetra(Co 0.38Mn 1.62) octaO 3.72 (Va: vacancy; tetra: tetrahedral sites; octa: octahedral sites) spinel phase, verified by neutron total scattering and pair distribution function analyses. The bi-phase Co-Mn-O material demonstrates an excellent storage capacitymore » towards Na-ions in an aqueous electrolyte (121 mA h g -1 at a scan rate of 1 mV s -1 in the half-cell and 81 mA h g -1 at a current density of 2 A g -1 after 5000 cycles in full-cells), as well as high rate performance (57 mA h g -1 a rate of 360 C). Electro-kinetic analysis and in situ X-ray diffraction measurements further confirm that the synergistic interaction between the spinel and layered phases, as well as the vacancy of the tetrahedral sites of spinel phase, contribute to the improved capacity and rate performance of the Co-Mn-O material by facilitating both diffusion-limited redox and capacitive charge storage processes.« less
Data-Driven Method to Estimate Nonlinear Chemical Equivalence.
Mayo, Michael; Collier, Zachary A; Winton, Corey; Chappell, Mark A
2015-01-01
There is great need to express the impacts of chemicals found in the environment in terms of effects from alternative chemicals of interest. Methods currently employed in fields such as life-cycle assessment, risk assessment, mixtures toxicology, and pharmacology rely mostly on heuristic arguments to justify the use of linear relationships in the construction of "equivalency factors," which aim to model these concentration-concentration correlations. However, the use of linear models, even at low concentrations, oversimplifies the nonlinear nature of the concentration-response curve, therefore introducing error into calculations involving these factors. We address this problem by reporting a method to determine a concentration-concentration relationship between two chemicals based on the full extent of experimentally derived concentration-response curves. Although this method can be easily generalized, we develop and illustrate it from the perspective of toxicology, in which we provide equations relating the sigmoid and non-monotone, or "biphasic," responses typical of the field. The resulting concentration-concentration relationships are manifestly nonlinear for nearly any chemical level, even at the very low concentrations common to environmental measurements. We demonstrate the method using real-world examples of toxicological data which may exhibit sigmoid and biphasic mortality curves. Finally, we use our models to calculate equivalency factors, and show that traditional results are recovered only when the concentration-response curves are "parallel," which has been noted before, but we make formal here by providing mathematical conditions on the validity of this approach.
NASA Astrophysics Data System (ADS)
Tarao, Hiroo; Miyamoto, Hironobu; Korpinen, Leena; Hayashi, Noriyuki; Isaka, Katsuo
2016-06-01
Most results regarding induced current in the human body related to electric field dosimetry have been calculated under uniform field conditions. We have found in previous work that a contact current is a more suitable way to evaluate induced electric fields, even in the case of exposure to non-uniform fields. If the relationship between induced currents and external non-uniform fields can be understood, induced electric fields in nervous system tissues may be able to be estimated from measurements of ambient non-uniform fields. In the present paper, we numerically calculated the induced electric fields and currents in a human model by considering non-uniform fields based on distortion by a cubic conductor under an unperturbed electric field of 1 kV m-1 at 60 Hz. We investigated the relationship between a non-uniform external electric field with no human present and the induced current through the neck, and the relationship between the current through the neck and the induced electric fields in nervous system tissues such as the brain, heart, and spinal cord. The results showed that the current through the neck can be formulated by means of an external electric field at the central position of the human head, and the distance between the conductor and the human model. As expected, there is a strong correlation between the current through the neck and the induced electric fields in the nervous system tissues. The combination of these relationships indicates that induced electric fields in these tissues can be estimated solely by measurements of the external field at a point and the distance from the conductor.
Students’ mental model in electric current
NASA Astrophysics Data System (ADS)
Pramesti, Y. S.; Setyowidodo, I.
2018-05-01
Electricity is one of essential topic in learning physics. This topic was studied in elementary until university level. Although electricity was related to our daily activities, but it doesn’t ensure that students have the correct concept. The aim of this research was to investigate and then categorized the students’ mental model. Subject consisted of 59 students of mechanical engineering that studied Physics for Engineering. This study was used a qualitative approach that used in this research is phenomenology. Data were analyzed qualitatively by using pre-test, post-test, and investigation for discovering further information. Three models were reported, showing a pattern which related to individual way of thinking about electric current. The mental model that was discovered in this research are: 1) electric current as a flow; 2) electric current as a source of energy, 3) electric current as a moving charge.
Spectrometer system for optical reflectance measurements
NASA Technical Reports Server (NTRS)
Phillipps, Patrick G. (Inventor); Soller, Babs R. (Inventor); Parker, Michael S. (Inventor)
2007-01-01
A spectrometer system includes a thermal light source for illuminating a sample, where the thermal light source includes a filament that emits light when heated. The system additionally includes a spectrograph for measuring a light spectrum from the sample and an electrical circuit for supplying electrical current to the filament to heat the filament and for controlling a resistance of the filament. The electrical circuit includes a power supply that supplies current to the filament, first electrical components that sense a current through the filament, second electrical components that sense a voltage drop across the filament, third electrical components that compare a ratio of the sensed voltage drop and the sensed current with a predetermined value, and fourth electrical components that control the current through the filament or the voltage drop across the filament to cause the ratio to equal substantially the predetermined value.
Lee, Nyoung Keun; Lee, Byung Hoon; Hwang, Yoon Joon; Kim, Su Young; Lee, Ji Young; Joo, Mee
2011-04-01
Acute hemorrhagic leukoencephalitis (AHL) is a rare and usually fatal disease characterized by an acute onset of neurological abnormalities. We describe the case of a 37-year-old man with biphasic AHL with a focus on the rare involvement of the brain stem and cerebellum. Initial computed tomography (CT) and magnetic resonance imaging revealed two hemorrhagic foci in the left middle cerebellar peduncle. After 15 days multifocal hematomas in the contralateral cerebellar hemisphere were imaged using CT. The pathological diagnosis was AHL. Following high-dose steroid treatment, the patient recovered with minor neurological sequelae.
Vassilieva, A B
2017-03-01
The development of bony skull was studied in four species of Asian tree frogs (Rhacophoridae) with different life histories: biphasic development with free larval stage and direct development. In biphasic rhacophorids the sequence of the appearance of cranial bones generally followed the generalized pattern of craniogenesis, which was described for most studied anurans. In contrast, direct-developing species displayed some heterochronies in the formation of skull bones, namely, the accelerated formation of the anlagen of jaw and suspensorium bones. The obtained results support that the embryonization in amphibians is regularly accompanied by a heterochronic repatterning of craniogenesis, rather similar in different phyletic groups.
Activated microglia in acute encephalopathy with biphasic seizures and late reduced diffusion.
Fujita, Yuji; Takanashi, Jun-Ichi; Takei, Haruka; Ota, Setsuo; Fujii, Katsunori; Sakuma, Hiroshi; Hayashi, Masaharu
2016-07-15
Acute encephalopathy with biphasic seizures and late reduced diffusion (AESD) is the most common subtype of infectious pediatric encephalopathy in Japan. The exact pathogenesis of and the best therapeutic strategy for AESD are uncertain. We firstly performed a brain biopsy in a 2-year-old boy with AESD associated with RS viral infection, which revealed activated ameoboid microglia accumulation around degenerated neuron, and astrogliosis in the affected cortex. Glutamate released from activated microglia may play an important role in the pathogenesis of AESD, which is compatible with the previous report of magnetic resonance spectroscopy showing elevated glutamate. Copyright © 2016 Elsevier B.V. All rights reserved.
Stability of a jet in confined pressure-driven biphasic flows at low reynolds numbers.
Guillot, Pierre; Colin, Annie; Utada, Andrew S; Ajdari, Armand
2007-09-07
Motivated by its importance for microfluidic applications, we study the stability of jets formed by pressure-driven concentric biphasic flows in cylindrical capillaries. The specificity of this variant of the classical Rayleigh-Plateau instability is the role of the geometry which imposes confinement and Poiseuille flow profiles. We experimentally evidence a transition between situations where the flow takes the form of a jet and regimes where drops are produced. We describe this as the transition from convective to absolute instability, within a simple linear analysis using lubrication theory for flows at low Reynolds number, and reach remarkable agreement with the data.
Taha, Mutasem O; Nasser, Wissam; Ardakani, Adel; Alkhatib, Hatim S
2008-02-28
The aim of this research is to investigate the effects of sodium lauryl sulfate (SLS) on ionotropically cross-linked alginate beads. Different levels of SLS were mixed with sodium alginate and chlorpheniramine maleate (as loaded model drug). The resulting viscous solutions were dropped onto aqueous solutions of zinc or calcium ions for ionotropic curing. The generated beads were assessed by their drug releasing profiles, infrared and differential scanning colorimetery (DSC) traits. SLS was found to exert profound concentration-dependent impacts on the characteristics of zinc-crosslinked alginate beads such that moderate modifications in the levels of SLS switched drug release from enteric coating-like behavior to a biphasic release modifiable to sustained-release by the addition of minute amounts of xanthan gum. Calcium cross-linking failed to reproduce the same behavior, probably due to the mainly ionic nature of calcium-carboxylate bonds compared to the coordinate character of their zinc-carboxylate counterparts. Apparently, moderate levels of SLS repel water penetration into the beads, and therefore minimize chlorpheniramine release. However, higher SLS levels seem to discourage polymeric cross-linking and therefore allow biphasic drug release.
Accounting for phase drifts in SSVEP-based BCIs by means of biphasic stimulation.
Wu, Hung-Yi; Lee, Po-Lei; Chang, Hsiang-Chih; Hsieh, Jen-Chuen
2011-05-01
This study proposes a novel biphasic stimulation technique to solve the issue of phase drifts in steady-state visual evoked potential (SSVEPs) in phase-tagged systems. Phase calibration was embedded in stimulus sequences using a biphasic flicker, which is driven by a sequence with alternating reference and phase-shift states. Nine subjects were recruited to participate in off-line and online tests. Signals were bandpass filtered and segmented by trigger signals into reference and phase-shift epochs. Frequency components of SSVEP in the reference and phase-shift epochs were extracted using the Fourier method with a 50% overlapped sliding window. The real and imaginary parts of the SSVEP frequency components were organized into complex vectors in each epoch. Hotelling's t-square test was used to determine the significances of nonzero mean vectors. The rejection of noisy data segments and the validation of gaze detections were made based on p values. The phase difference between the valid mean vectors of reference and phase-shift epochs was used to identify user's gazed targets in this system. Data showed an average information transfer rate of 44.55 and 38.21 bits/min in off-line and online tests, respectively. © 2011 IEEE
Soltz, Michael A.; Basalo, Ines M.; Ateshian, Gerard A.
2010-01-01
This study presents an analysis of the contact of a rippled rigid impermeable indenter against a cartilage layer, which represents a first simulation of the contact of rough cartilage surfaces with lubricant entrapment. Cartilage was modeled with the biphasic theory for hydrated soft tissues, to account for fluid flow into or out of the lubricant pool. The findings of this study demonstrate that under contact creep, the trapped lubricant pool gets depleted within a time period on the order of seconds or minutes as a result of lubricant flow into the articular cartilage. Prior to depletion, hydrostatic fluid load across the contact interface may be enhanced by the presence of the trapped lubricant pool, depending on the initial geometry of the lubricant pool. According to friction models based on the biphasic nature of the tissue, this enhancement in fluid load support produces a smaller minimum friction coefficient than would otherwise be predicted without a lubricant pool. The results of this study support the hypothesis that trapped lubricant decreases the initial friction coefficient following load application, independently of squeeze-film lubrication effects. PMID:14618917
Development and Characterization of Biphasic Hydroxyapatite/β-TCP Cements
Gallinetti, Sara; Canal, Cristina; Ginebra, Maria-Pau; Ferreira, J
2014-01-01
Biphasic calcium phosphate bioceramics composed of hydroxyapatite (HA) and β-tricalcium phosphate (β-TCP) have relevant properties as synthetic bone grafts, such as tunable resorption, bioactivity, and intrinsic osteoinduction. However, they have some limitations associated to their condition of high-temperature ceramics. In this work self-setting Biphasic Calcium Phosphate Cements (BCPCs) with different HA/β-TCP ratios were obtained from self-setting α-TCP/β-TCP pastes. The strategy used allowed synthesizing BCPCs with modulated composition, compressive strength, and specific surface area. Due to its higher solubility, α-TCP was fully hydrolyzed to a calcium-deficient HA (CDHA), whereas β-TCP remained unreacted and completely embedded in the CDHA matrix. Increasing amounts of the non-reacting β-TCP phase resulted in a linear decrease of the compressive strength, in association to the decreasing amount of precipitated HA crystals, which are responsible for the mechanical consolidation of apatitic cements. Ca2+ release and degradation in acidic medium was similar in all the BCPCs within the timeframe studied, although differences might be expected in longer term studies once β-TCP, the more soluble phase was exposed to the surrounding media. PMID:25866411
Calado, Ricardo; Leal, Miguel Costa
2015-01-01
The study of trophic ecology of benthic marine invertebrates with bi-phasic life cycles is critical to understand the mechanisms shaping population dynamics. Moreover, global climate change is impacting the marine environment at an unprecedented level, which promotes trophic mismatches that affect the phenology of these species and, ultimately, act as drivers of ecological and evolutionary change. Assessing the trophic ecology of marine invertebrates is critical to understanding maternal investment, larval survival to metamorphosis, post-metamorphic performance, resource partitioning and trophic cascades. Tools already available to assess the trophic ecology of marine invertebrates, including visual observation, gut content analysis, food concentration, trophic markers, stable isotopes and molecular genetics, are reviewed and their main advantages and disadvantages for qualitative and quantitative approaches are discussed. The challenges to perform the partitioning of ingestion, digestion and assimilation are discussed together with different approaches to address each of these processes for short- and long-term fingerprinting. Future directions for research on the trophic ecology of benthic marine invertebrates with bi-phasic life cycles are discussed with emphasis on five guidelines that will allow for systematic study and comparative meta-analysis to address important unresolved questions. © 2015 Elsevier Ltd. All rights reserved.
Radhakrishnan, Janani; Subramanian, Anuradha; Sethuraman, Swaminathan
2017-11-01
Articular hyaline cartilage regeneration remains challenging due to its less intrinsic reparability. The study develops injectable biphasic semi-interpenetrating polymer networks (SIPN) hydrogel impregnated with chondroitin sulfate (ChS) nanoparticles for functional cartilage restoration. ChS loaded zein nanoparticles (∼150nm) prepared by polyelectrolyte-protein complexation were interspersed into injectable SIPNs developed by blending alginate with poly(vinyl alcohol) and calcium crosslinking. The hydrogel exhibited interconnected porous microstructure (39.9±5.8μm pore diameter, 57.7±5.9% porosity), 92% swellability and >350Pa elastic modulus. Primary chondrocytes compatibility, chondrocyte-matrix interaction with cell-cell clustering and spheroidal morphology was demonstrated in ChS loaded hydrogel and long-term (42days) proliferation was also determined. Higher fold expression of cartilage-specific genes sox9, aggrecan and collagen-II was observed in ChS loaded hydrogel while exhibiting poor expression of collagen-I. Immunoblotting of aggregan and collagen II demonstrate favorable positive influence of ChS on chondrocytes. Thus, the injectable biphasic SIPNs could be promising composition-mimetic substitute for cartilage restoration at irregular defects. Copyright © 2017 Elsevier Ltd. All rights reserved.
Pestieau, Aude; Evrard, Brigitte
2017-05-01
For many decades, one of the most critical issues in the pharmaceutical industry has been the poor solubility of some drugs. Indeed, a prerequisite for drug absorption is the presence of dissolved drug at the absorption site and this can be challenging for compounds with low aqueous solubility such as BCS class II (low solubility, high permeability) and IV (low solubility, low permeability) compounds. If the development of oral delivery formulations of these compounds is frequently challenging to formulation scientists in the pharmaceutical industry, the in vitro evaluation of these new formulations is also a great challenge. One alternative approach to overcome the problems encountered with conventional dissolution methods is the use of biphasic dissolution systems. This review provides an overview of the origin and the evolution over time of the biphasic systems and the growing interest among scientists regarding their suitability for establishing in vitro-in vivo correlations. The evolution of these systems and their applications from the 1960s to the present day, such as in system variants and improvements, analysis of complex formulations, discriminatory power, bio-relevance, precipitation and supersaturation visualization, etc. will be discussed. Copyright © 2017 Elsevier B.V. All rights reserved.
Klein, Amanda H.; Sawyer, Carolyn M.; Takechi, Kenichi; Davoodi, Auva; Ivanov, Margaret A.; Carstens, Mirela Iodi; Carstens, E
2012-01-01
Menthol is used in pharmaceutical applications because of its desired cooling and analgesic properties. The neural mechanism by which topical application of menthol decreases heat pain is not fully understood. We investigated the effects of topical menthol application on lumbar dorsal horn wide dynamic range and nociceptive-specific neuronal responses to noxious heat and cooling of glaborous hindpaw cutaneous receptive fields. Menthol increased thresholds for responses to noxious heat in a concentration-dependent manner. Menthol had a biphasic effect on cold-evoked responses, reducing the threshold (to warmer temperatures) at a low (1%) concentration and increasing threshold and reducing response magnitude at high (10, 40%) concentrations. Menthol had little effect on responses to innocuous or noxious mechanical stimuli, ruling out a local anesthetic action. Application of 40% menthol to the contralateral hindpaw tended to reduce responses to cooling and noxious heat, suggesting a weak heterosegmental inhibitory effect. These results indicate that menthol has an analgesic effect on heat sensitivity of nociceptive dorsal horn neurons, as well as biphasic effects on cold sensitivity, consistent with previous behavioral observations. PMID:22687951
Shvarev, Y N; Lagercrantz, H; Yamamoto, Y
2002-01-01
The effects of substance P (SP) on respiratory activity in the brainstem-spinal cord preparation from neonatal rats (0-4 days old) were investigated. The respiratory activity was recorded from C4 ventral roots and intracellularly from three types of respiration-related neurones, i.e. pre-inspiratory (or biphasic E), three subtypes of inspiratory; expiratory and tonic neurones in the ventrolateral medulla (VLM). After the onset of SP bath application (10 nM-1 microM) a dose-dependent decline of burst rate (by 48%) occurred, followed by a weaker dose-dependent increase (by 17.5%) in burst rate. The biphasic effect of SP on inspiratory burst rate was associated with sustained membrane depolarization (in a range of 0.5-13 mV) of respiration-related and tonic neurones. There were no significant changes in membrane resistance in any type of neurones when SP was applied alone or when synaptic transmission was blocked with tetrodotoxin (TTX). The initial depolarization was associated with an increase in inspiratory drive potential (by 25%) as well as in bursting time (by 65%) and membrane excitability in inspiratory and pre-inspiratory neurones, which corresponded to the decrease in burst rate (C4 activity). The spiking frequency of expiratory and tonic neurones was also increased (by 36 and 48%). This activation was followed by restoration of the synaptic drive potential and bursting time in inspiratory and to a less extent in pre-inspiratory neurones, which corresponded to the increase in burst rate. The discharge frequency of expiratory and tonic neurones also decreased to control values. This phase followed the peak membrane depolarization. At the peak depolarization, SP reduced the amplitude of the action potential by 4-8% in all types of neurones. Our results suggest that SP exerts a general excitatory effect on respiration-related neurones and synaptic coupling within the respiratory network in the VLM. The transient changes in neuronal activity in the VLM may underlie the biphasic effect of SP in the brainstem respiration activity recorded in C4 roots. However, the biphasic effect of SP on inspiratory burst rate seems to be also defined by the balance in activity of other SP-sensitive systems and neurones in the respiratory network in the brainstem and spinal cord, which can modify the activity of medullary respiratory rhythm generator.
Inner ear damage following electric current and lightning injury: a literature review.
Modayil, P C; Lloyd, G W; Mallik, A; Bowdler, D A
2014-05-01
Audiovestibular sequelae of electrical injury, due to lightning or electric current, are probably much more common than indicated in literature. The aim of the study was to review the impact of electrical injury on the cochleovestibular system. Studies were identified through Medline, Embase, CINAHL and eMedicine databases. Medical Subject Headings used were 'electrical injury', 'lightning', 'deafness' and 'vertigo'. All prospective and retrospective studies, case series and case reports of patients with cochlear or vestibular damage due to lightning or electrical current injury were included. Studies limited to external and middle ear injuries were excluded. Thirty-five articles met the inclusion criteria. Fifteen reported audiovestibular damage following electric current injury (domestic or industrial); a further 15 reported lightning injuries and five concerned pathophysiology and management. There were no histological studies of electrical current injury to the human audiovestibular system. The commonest acoustic insult after lightning injury is conductive hearing loss secondary to tympanic membrane rupture and the most frequent vestibular symptom is transient vertigo. Electrical current injuries predominantly cause pure sensorineural hearing loss and may significantly increase a patient's lifetime risk of vertigo. Theories for cochleovestibular damage in electrical injury include disruption of inner ear anatomy, electrical conductance, hypoxia, vascular effects and stress response hypothesis. The pathophysiology of cochleovestibular damage following electrical injury is unresolved. The mechanism of injury following lightning strike is likely to be quite different from that following domestic or industrial electrical injury. The formulation of an audiovestibular management protocol for patients who have suffered electrical injuries and systematic reporting of all such events is recommended.
Monitoring method and apparatus using high-frequency carrier
Haynes, Howard D.
1996-01-01
A method and apparatus for monitoring an electrical-motor-driven device by injecting a high frequency carrier signal onto the power line current. The method is accomplished by injecting a high frequency carrier signal onto an AC power line current. The AC power line current supplies the electrical-motor-driven device with electrical energy. As a result, electrical and mechanical characteristics of the electrical-motor-driven device modulate the high frequency carrier signal and the AC power line current. The high frequency carrier signal is then monitored, conditioned and demodulated. Finally, the modulated high frequency carrier signal is analyzed to ascertain the operating condition of the electrical-motor-driven device.
Module One: Electrical Current; Basic Electricity and Electronics Individualized Learning System.
ERIC Educational Resources Information Center
Bureau of Naval Personnel, Washington, DC.
The student is introduced in this module to some fundamental concepts of electricity. The module is divided into five lessons: electricity and the electron, electron movement, current flow, measurement of current, and the ammeter. Each lesson consists of an overview, a list of study resources, lesson narratives, programed materials, and lesson…
Solar-terrestrial coupling through atmospheric electricity
NASA Technical Reports Server (NTRS)
Roble, R. G.; Hays, P. B.
1979-01-01
There are a number of measurements of electrical variations that suggest a solar-terrestrial influence on the global atmospheric electrical circuit. The measurements show variations associated with solar flares, solar magnetic sector boundary crossings, geomagnetic activity, aurorae, differences between ground current and potential gradients at high and low latitudes, and solar cycle variations. The evidence for each variation is examined. Both the experimental evidence and the calculations made with a global model of atmospheric electricity indicate that there is solar-terrestrial coupling through atmospheric electricity which operates by altering the global electric current and field distribution. A global redistribution of currents and fields can be caused by large-scale changes in electrical conductivity, by alteration of the columnar resistance between thunderstorm cloud tops and the ionosphere, or by both. If the columnar resistance is altered above thunderstorms, more current will flow in the global circuit, changing the ionospheric potential and basic circuit variables such as current density and electric fields. The observed variations of currents and fields during solar-induced disturbances are generally less than 50% of mean values near the earth's surface.
NASA Astrophysics Data System (ADS)
Chen, Wei-Jhen; Lee, Yue-Lin; Wu, Ti-Yuan; Chen, Tzu-Ching; Hsu, Chih-Hui; Lin, Ming-Tzer
2018-01-01
This study investigated the effects of electric current and external stress on electromigration of intermetallic compounds (IMC) between solder and copper substrate. Different samples were tested under three different sets of conditions: (1) thermal aging only, (2) thermal aging with electric current ,where resistivity changes were measured using four-point probe measurements, (3) thermal aging with electric current and external stress provided using a four-point bending apparatus. The micro-structural changes in the samples were observed. The results were closely examined; particularly the coupling effect of electric current and external stress to elucidate the electromigration mechanism, as well as the formation of IMC in the samples. For thermal-aging-only samples, the IMC growth mechanism was controlled by grain boundary diffusion. Meanwhile, for thermal aging and applied electric current samples, the IMC growth mechanism was dominated by volume diffusion and interface reaction. Lastly, the IMC growth mechanism in the electric current and external stress group was dominated by grain boundary diffusion with grain growth. The results reveal that the external stress/strain and electric current play a significant role in the electromigration of copper-tin IMC. The samples exposed to tensile stress have reduced electromigration, while those subjected under compressive stress have enhanced electromigration.
Motor monitoring method and apparatus using high frequency current components
Casada, D.A.
1996-05-21
A motor current analysis method and apparatus for monitoring electrical-motor-driven devices are disclosed. The method and apparatus utilize high frequency portions of the motor current spectra to evaluate the condition of the electric motor and the device driven by the electric motor. The motor current signal produced as a result of an electric motor is monitored and the low frequency components of the signal are removed by a high-pass filter. The signal is then analyzed to determine the condition of the electrical motor and the driven device. 16 figs.
Motor monitoring method and apparatus using high frequency current components
Casada, Donald A.
1996-01-01
A motor current analysis method and apparatus for monitoring electrical-motor-driven devices. The method and apparatus utilize high frequency portions of the motor current spectra to evaluate the condition of the electric motor and the device driven by the electric motor. The motor current signal produced as a result of an electric motor is monitored and the low frequency components of the signal are removed by a high-pass filter. The signal is then analyzed to determine the condition of the electrical motor and the driven device.
Electrical energy consumption control apparatuses and electrical energy consumption control methods
Hammerstrom, Donald J.
2012-09-04
Electrical energy consumption control apparatuses and electrical energy consumption control methods are described. According to one aspect, an electrical energy consumption control apparatus includes processing circuitry configured to receive a signal which is indicative of current of electrical energy which is consumed by a plurality of loads at a site, to compare the signal which is indicative of current of electrical energy which is consumed by the plurality of loads at the site with a desired substantially sinusoidal waveform of current of electrical energy which is received at the site from an electrical power system, and to use the comparison to control an amount of the electrical energy which is consumed by at least one of the loads of the site.
Method and apparatus for atomization and spraying of molten metals
Hobson, David O.; Alexeff, Igor; Sikka, Vinod K.
1990-01-01
A method and device for dispersing molten metal into fine particulate spray, the method comprises applying an electric current through the molten metal and simultaneously applying a magnetic field to the molten metal in a plane perpendicular to the electric current, whereby the molten metal is caused to form into droplets at an angle perpendicular to both the electric current and the magnetic field. The device comprises a structure for providing a molten metal, appropriately arranged electrodes for applying an electric current through the molten metal, and a magnet for providing a magnetic field in a plane perpendicular to the electric current.
Method and apparatus for atomization and spraying of molten metals
Hobson, D.O.; Alexeff, I.; Sikka, V.K.
1988-07-19
A method and device for dispersing molten metal into fine particulate spray, the method comprises applying an electric current through the molten metal and simultaneously applying a magnetic field to the molten metal in a plane perpendicular to the electric current, whereby the molten metal is caused to form into droplets at an angle perpendicular to both the electric current and the magnetic field. The device comprises a structure for providing a molten metal, appropriately arranged electrodes for applying an electric current through the molten metal, and a magnet for providing a magnetic field in a plane perpendicular to the electric current. 11 figs.
High temperature superconducting fault current limiter
Hull, J.R.
1997-02-04
A fault current limiter for an electrical circuit is disclosed. The fault current limiter includes a high temperature superconductor in the electrical circuit. The high temperature superconductor is cooled below its critical temperature to maintain the superconducting electrical properties during operation as the fault current limiter. 15 figs.
He, Shuman; Grose, John H; Teagle, Holly F B; Woodard, Jennifer; Park, Lisa R; Hatch, Debora R; Buchman, Craig A
2013-01-01
This study aimed (1) to investigate the feasibility of recording the electrically evoked auditory event-related potential (eERP), including the onset P1-N1-P2 complex and the electrically evoked auditory change complex (EACC) in response to temporal gaps, in children with auditory neuropathy spectrum disorder (ANSD); and (2) to evaluate the relationship between these measures and speech-perception abilities in these subjects. Fifteen ANSD children who are Cochlear Nucleus device users participated in this study. For each subject, the speech-processor microphone was bypassed and the eERPs were elicited by direct stimulation of one mid-array electrode (electrode 12). The stimulus was a train of biphasic current pulses 800 msec in duration. Two basic stimulation conditions were used to elicit the eERP. In the no-gap condition, the entire pulse train was delivered uninterrupted to electrode 12, and the onset P1-N1-P2 complex was measured relative to the stimulus onset. In the gapped condition, the stimulus consisted of two pulse train bursts, each being 400 msec in duration, presented sequentially on the same electrode and separated by one of five gaps (i.e., 5, 10, 20, 50, and 100 msec). Open-set speech-perception ability of these subjects with ANSD was assessed using the phonetically balanced kindergarten (PBK) word lists presented at 60 dB SPL, using monitored live voice in a sound booth. The eERPs were recorded from all subjects with ANSD who participated in this study. There were no significant differences in test-retest reliability, root mean square amplitude or P1 latency for the onset P1-N1-P2 complex between subjects with good (>70% correct on PBK words) and poorer speech-perception performance. In general, the EACC showed less mature morphological characteristics than the onset P1-N1-P2 response recorded from the same subject. There was a robust correlation between the PBK word scores and the EACC thresholds for gap detection. Subjects with poorer speech-perception performance showed larger EACC thresholds in this study. These results demonstrate the feasibility of recording eERPs from implanted children with ANSD, using direct electrical stimulation. Temporal-processing deficits, as demonstrated by large EACC thresholds for gap detection, might account in part for the poor speech-perception performances observed in a subgroup of implanted subjects with ANSD. This finding suggests that the EACC elicited by changes in temporal continuity (i.e., gap) holds promise as a predictor of speech-perception ability among implanted children with ANSD.
Allen, Emily; Coote, John H; Grubb, Blair D; Batten, Trevor Fc; Pauza, Dainius H; Ng, G André; Brack, Kieran E
2018-05-22
The intrinsic cardiac nervous system (ICNS) is a rich network of cardiac nerves that converge to form distinct ganglia and extend across the heart and is capable of influencing cardiac function. To provide a picture of the neurotransmitter/neuromodulator profile of the rabbit ICNS and determine the action of spatially divergent ganglia on cardiac electrophysiology. Nicotinic or electrical stimulation was applied at discrete sites of the intrinsic cardiac nerve plexus in the Langendorff perfused rabbit heart. Functional effects on sinus rate and atrioventricular conduction were measured. Immunohistochemistry for choline acetyltransferase (ChAT), tyrosine hydroxylase (TH) and/or neuronal nitric oxide synthase (nNOS) was performed on whole-mount preparations. Stimulation within all ganglia produced either bradycardia, tachycardia or a biphasic brady-tachycardia. Electrical stimulation of the right atrial (RA) and right neuronal cluster (RNC) regions produced the greatest chronotropic responses. Significant prolongation of atrioventricular conduction (AVC) was predominant at the pulmonary vein-caudal vein region (PVCV). Neurons immunoreactive (IR) only for ChAT, or TH or nNOS were consistently located within the limits of the hilum and at the roots of the right cranial and right pulmonary veins. ChAT-IR neurons were most abundant (1946±668 neurons). Neurons IR solely for nNOS were distributed within ganglia. Stimulation of intrinsic ganglia, shown to be of phenotypic complexity but predominantly of cholinergic nature, indicates that clusters of neurons are capable of independent selective effects on cardiac electrophysiology, therefore providing a potential therapeutic target for the prevention and treatment of cardiac disease. Copyright © 2018. Published by Elsevier Inc.
Smart bricks for strain sensing and crack detection in masonry structures
NASA Astrophysics Data System (ADS)
Downey, Austin; D'Alessandro, Antonella; Laflamme, Simon; Ubertini, Filippo
2018-01-01
The paper proposes the novel concept of smart bricks as a durable sensing solution for structural health monitoring of masonry structures. The term smart bricks denotes piezoresistive clay bricks with suitable electronics capable of outputting measurable changes in their electrical properties under changes in their state of strain. This feature can be exploited to evaluate stress at critical locations inside a masonry wall and to detect changes in loading paths associated with structural damage, for instance following an earthquake. Results from an experimental campaign show that normal clay bricks, fabricated in the laboratory with embedded electrodes made of a special steel for resisting the high baking temperature, exhibit a quite linear and repeatable piezoresistive behavior. That is a change in electrical resistance proportional to a change in axial strain. In order to be able to exploit this feature for strain sensing, high-resolution electronics are used with a biphasic DC measurement approach to eliminate any resistance drift due to material polarization. Then, an enhanced nanocomposite smart brick is proposed, where titania is mixed with clay before baking, in order to enhance the brick’s mechanical properties, improve its noise rejection, and increase its electrical conductivity. Titania was selected among other possible conductive nanofillers due to its resistance to high temperatures and its ability to improve the durability of construction materials while maintaining the aesthetic appearance of clay bricks. An application of smart bricks for crack detection in masonry walls is demonstrated by laboratory testing of a small-scale wall specimen under different loading conditions and controlled damage. Overall, it is demonstrated that a few strategically placed smart bricks enable monitoring of the state of strain within the wall and provide information that is capable of crack detection.
Kammermeier, Stefan; Pittard, Damien; Hamada, Ikuma
2016-01-01
Deep brain stimulation of the internal globus pallidus (GPi) is a major treatment for advanced Parkinson's disease. The effects of this intervention on electrical activity patterns in targets of GPi output, specifically in the thalamus, are poorly understood. The experiments described here examined these effects using electrophysiological recordings in two Rhesus monkeys rendered moderately parkinsonian through treatment with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), after sampling control data in the same animals. Analysis of spontaneous spiking activity of neurons in the basal ganglia-receiving areas of the ventral thalamus showed that MPTP-induced parkinsonism is associated with a reduction of firing rates of segments of the data that contained neither bursts nor decelerations, and with increased burst firing. Spectral analyses revealed an increase of power in the 3- to 13-Hz band and a reduction in the γ-range in the spiking activity of these neurons. Electrical stimulation of the ventrolateral motor territory of GPi with macroelectrodes, mimicking deep brain stimulation in parkinsonian patients (bipolar electrodes, 0.5 mm intercontact distance, biphasic stimuli, 120 Hz, 100 μs/phase, 200 μA), had antiparkinsonian effects. The stimulation markedly reduced oscillations in thalamic firing in the 13- to 30-Hz range and uncoupled the spiking activity of recorded neurons from simultaneously recorded local field potential (LFP) activity. These results confirm that oscillatory and nonoscillatory characteristics of spontaneous activity in the basal ganglia receiving ventral thalamus are altered in MPTP-induced parkinsonism. Electrical stimulation of GPi did not entrain thalamic activity but changed oscillatory activity in the ventral thalamus and altered the relationship between spikes and simultaneously recorded LFPs. PMID:27683881
A CMOS Neural Interface for a Multichannel Vestibular Prosthesis
Hageman, Kristin N.; Kalayjian, Zaven K.; Tejada, Francisco; Chiang, Bryce; Rahman, Mehdi A.; Fridman, Gene Y.; Dai, Chenkai; Pouliquen, Philippe O.; Georgiou, Julio; Della Santina, Charles C.; Andreou, Andreas G.
2015-01-01
We present a high-voltage CMOS neural-interface chip for a multichannel vestibular prosthesis (MVP) that measures head motion and modulates vestibular nerve activity to restore vision- and posture-stabilizing reflexes. This application specific integrated circuit neural interface (ASIC-NI) chip was designed to work with a commercially available microcontroller, which controls the ASIC-NI via a fast parallel interface to deliver biphasic stimulation pulses with 9-bit programmable current amplitude via 16 stimulation channels. The chip was fabricated in the ONSemi C5 0.5 micron, high-voltage CMOS process and can accommodate compliance voltages up to 12 V, stimulating vestibular nerve branches using biphasic current pulses up to 1.45 ± 0.06 mA with durations as short as 10 µs/phase. The ASIC-NI includes a dedicated digital-to-analog converter for each channel, enabling it to perform complex multipolar stimulation. The ASIC-NI replaces discrete components that cover nearly half of the 2nd generation MVP (MVP2) printed circuit board, reducing the MVP system size by 48% and power consumption by 17%. Physiological tests of the ASIC-based MVP system (MVP2A) in a rhesus monkey produced reflexive eye movement responses to prosthetic stimulation similar to those observed when using the MVP2. Sinusoidal modulation of stimulus pulse rate from 68–130 pulses per second at frequencies from 0.1 to 5 Hz elicited appropriately-directed slow phase eye velocities ranging in amplitude from 1.9–16.7°/s for the MVP2 and 2.0–14.2°/s for the MVP2A. The eye velocities evoked by MVP2 and MVP2A showed no significant difference (t-test, p = 0.034), suggesting that the MVP2A achieves performance at least as good as the larger MVP2. PMID:25974945
Neal, Robert E; Kavnoudias, Helen; Thomson, Kenneth R
2015-06-01
Irreversible electroporation (IRE) ablation uses a series of brief electric pulses to create nanoscale defects in cell membranes, killing the cells. It has shown promise in numerous soft-tissue tumor applications. Larger voltages between electrodes will increase ablation volume, but exceeding electrical limits may risk damage to the patient, cause ineffective therapy delivery, or require generator restart. Monitoring electrical current for these conditions in real-time enables managing these risks. This capacity is not presently available in clinical IRE generators. We describe a system using a Tektronix TCP305 AC/DC Current Probe connected to a TCPA300 AC/DC Current Probe Amplifier, which is read on a computer using a Protek DSO-2090 USB computer-interfacing oscilloscope. Accuracy of the system was tested with a resistor circuit and by comparing measured currents with final outputs from the NanoKnife clinical electroporation pulse generator. Accuracy of measured currents was 1.64 ± 2.4 % relative to calculations for the resistor circuit and averaged 0.371 ± 0.977 % deviation from the NanoKnife. During clinical pulse delivery, the system offers real-time evaluation of IRE procedure progress and enables a number of methods for identifying approaching issues from electrical behavior of therapy delivery, facilitating protocol changes before encountering therapy delivery issues. This system can monitor electrical currents in real-time without altering the electric pulses or modifying the pulse generator. This facilitates delivering electric pulse protocols that remain within the optimal range of electrical currents-sufficient strength for clinically relevant ablation volumes, without the risk of exceeding safe electric currents or causing inadequate ablation.
High temperature superconducting fault current limiter
Hull, John R.
1997-01-01
A fault current limiter (10) for an electrical circuit (14). The fault current limiter (10) includes a high temperature superconductor (12) in the electrical circuit (14). The high temperature superconductor (12) is cooled below its critical temperature to maintain the superconducting electrical properties during operation as the fault current limiter (10).
Code of Federal Regulations, 2010 CFR
2010-07-01
... current between frames of equipment. 75.524 Section 75.524 Mineral Resources MINE SAFETY AND HEALTH... the last open crosscut; maximum level of alternating or direct electric current between frames of equipment. The maximum level of alternating or direct electric current that exists between the frames of any...
Saturation of the Electric Field Transmitted to the Magnetosphere
NASA Technical Reports Server (NTRS)
Lyatsky, Wladislaw; Khazanov, George V.; Slavin, James A.
2010-01-01
We reexamined the processes leading to saturation of the electric field, transmitted into the Earth's ionosphere from the solar wind, incorporating features of the coupled system previously ignored. We took into account that the electric field is transmitted into the ionosphere through a region of open field lines, and that the ionospheric conductivity in the polar cap and auroral zone may be different. Penetration of the electric field into the magnetosphere is linked with the generation of the Alfven wave, going out from the ionosphere into the solar wind and being coupled with the field-aligned currents at the boundary of the open field limes. The electric field of the outgoing Alfven wave reduces the original electric field and provides the saturation effect in the electric field and currents during strong geomagnetic disturbances, associated with increasing ionospheric conductivity. The electric field and field-aligned currents of this Alfven wave are dependent on the ionospheric and solar wind parameters and may significantly affect the electric field and field-aligned currents, generated in the polar ionosphere. Estimating the magnitude of the saturation effect in the electric field and field-aligned currents allows us to improve the correlation between solar wind parameters and resulting disturbances in the Earth's magnetosphere.
Monitoring method and apparatus using high-frequency carrier
Haynes, H.D.
1996-04-30
A method and apparatus for monitoring an electrical-motor-driven device by injecting a high frequency carrier signal onto the power line current. The method is accomplished by injecting a high frequency carrier signal onto an AC power line current. The AC power line current supplies the electrical-motor-driven device with electrical energy. As a result, electrical and mechanical characteristics of the electrical-motor-driven device modulate the high frequency carrier signal and the AC power line current. The high frequency carrier signal is then monitored, conditioned and demodulated. Finally, the modulated high frequency carrier signal is analyzed to ascertain the operating condition of the electrical-motor-driven device. 6 figs.
NASA Astrophysics Data System (ADS)
Ito, Mikio; Kawahara, Kenta; Araki, Keita
2014-04-01
Sintering of Cu and thermoelectric Ca3Co4O9 was tried using a modified pulsed electric current sintering (PECS) process, where an electrically nonconductive die was used instead of a conventional graphite die. The pulsed electric current flowed through graphite punches and sample powder, which caused the Joule heating of the powder compact itself, resulting in sintering under smaller power consumption. Especially for the Ca3Co4O9 powder, densification during sintering was also accelerated by this modified PECS process.
Code of Federal Regulations, 2011 CFR
2011-07-01
... the last open crosscut; maximum level of alternating or direct electric current between frames of equipment. The maximum level of alternating or direct electric current that exists between the frames of any... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Electric face equipment; electric equipment...
Code of Federal Regulations, 2014 CFR
2014-07-01
... the last open crosscut; maximum level of alternating or direct electric current between frames of equipment. The maximum level of alternating or direct electric current that exists between the frames of any... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Electric face equipment; electric equipment...
Code of Federal Regulations, 2013 CFR
2013-07-01
... the last open crosscut; maximum level of alternating or direct electric current between frames of equipment. The maximum level of alternating or direct electric current that exists between the frames of any... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Electric face equipment; electric equipment...
Code of Federal Regulations, 2012 CFR
2012-07-01
... the last open crosscut; maximum level of alternating or direct electric current between frames of equipment. The maximum level of alternating or direct electric current that exists between the frames of any... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Electric face equipment; electric equipment...
Substorm Birkeland currents and Cowling channels in the ionosphere
NASA Astrophysics Data System (ADS)
Fujii, R.
2016-12-01
Field-aligned current (FAC) connects electromagnetically the ionosphere with the magnetosphere and plays important roles on dynamics and energetics in the magnetosphere and the ionosphere. In particular, connections between FACs in the ionosphere give important information on various current sources in the magnetosphere and the linkage between them, although the connection between FACs in the ionosphere does not straightforwardly give that in the magnetosphere. FACs in the ionosphere are closed to each other through ionospheric currents determined with the electric field and the Hall and Pedersen conductivities. The electric field and the conductivities are not independently distributed, but rather they are harmonized with each other spatially and temporarily in a physically consistent manner to give a certain FAC. In particular, the divergence of the Hall current due to the inhomogeneity of the Hall conductivity either flows in/out to the magnetosphere as a secondary FAC or accumulates excess charges that produce a secondary electric field. This electric field drives a current circuit connecting the Hall current with the Pedersen current; a Cowling channel current circuit. The FAC (the electric field) we observe is the sum of the primary and secondary FACs (electric fields). The talk will present characteristics of FACs and associated electric field and auroras during substorms, and the ionospheric current closures between the FACs. A statistical study has shown that the majority of region 1 currents are connected to their adjacent region 2 or region 0 currents, indicating the Pedersen current closure rather than the Hall current closure is dominant. On the other hand, the Pedersen currents associated with surge and substorm-related auroras often are connected to the Hall currents, forming a Cowling channel current circuit within the ionosphere.
NASA Astrophysics Data System (ADS)
Cartwright-Taylor, A. L.; Sammonds, P. R.; Vallianatos, F.
2016-12-01
We recorded spontaneous electric current flow in non-piezoelectric Carrara marble samples during triaxial deformation. Mechanical data, ultrasonic velocities and acoustic emissions were acquired simultaneously with electric current to constrain the relationship between electric current flow, differential stress and damage. Under strain-controlled loading, spontaneous electric current signals (nA) were generated and sustained under all conditions tested. In dry samples, a detectable electric current arises only during dilatancy and is correlated with the damage induced by microcracking. Signal variations with confining pressure correspond to microcrack suppression, while variations with strain rate are associated with time-dependent differences in deformation mechanism across the brittle to semi-brittle transition. In the brittle regime, the signal exhibits a precursory change as damage localises and the stress drop accelerates towards failure. This change is particularly distinct at dynamic strain rates. Similar changes are seen in the semi-brittle regime although the signal is more oscillatory in nature. Current flow in dry samples is proportional to stress within 90% of peak stress. In fluid-saturated samples proportionality holds from 40% peak stress, with a significant increase in the rate of current production from 90% peak stress associated with fluid flow during dilatancy. This direct relationship demonstrates that electric current could be used as a proxy for stress, indicating when the rock is reaching the limit of its strength. The experimental power law relationship between electric current and strain rate, which mirrors the power-law creep equation, supports this observation. High-frequency fluctuations of electric current are not normally distributed - they exhibit `heavy-tails'. We model these distributions with q-Gaussian statistics and evolution of the q-parameter during deformation reveals a two-stage precursory anomaly prior to sample failure, consistent with the acoustic emissions b-value and stress intensity evolution as modelled from fracture mechanics. Our findings support the idea that electric currents in the crust can be generated purely from solid state fracture processes and that these currents may reflect the stress state within the damaged rock.
Electrical voltages and resistances measured to inspect metallic cased wells and pipelines
Vail, III, William Banning; Momii, Steven Thomas
2001-01-01
A cased well in the earth is electrically energized with A.C. current. Voltages are measured from three voltage measurement electrodes in electrical contact with the interior of the casing while the casing is electrically energized. In a measurement mode, A.C. current is conducted from a first current carrying electrode within the cased well to a remote second current carrying electrode located on the surface of the earth. In a calibration mode, current is passed from the first current carrying electrode to a third current carrying electrode located vertically at a different position within the cased well, where the three voltage measurement electrodes are located vertically in between the first and third current carrying electrodes. Voltages along the casing and resistances along the casing are measured to determine wall thickness and the location of any casing collars present so as to electrically inspect the casing. Similar methods are employed to energize a pipeline to measure the wall thickness of the pipeline and the location of pipe joints to electrically inspect the pipeline.
Electrical voltages and resistances measured to inspect metallic cased wells and pipelines
Vail III, William Banning; Momii, Steven Thomas
2003-06-10
A cased well in the earth is electrically energized with A.C. current. Voltages are measured from three voltage measurement electrodes in electrical contact with the interior of the casing while the casing is electrically energized. In a measurement mode, A.C. current is conducted from a first current carrying electrode within the cased well to a remote second current carrying electrode located on the surface of the earth. In a calibration mode, current is passed from the first current carrying electrode to a third current carrying electrode located vertically at a different position within the cased well, where the three voltage measurement electrodes are located vertically in between the first and third current carrying electrodes. Voltages along the casing and resistances along the casing are measured to determine wall thickness and the location of any casing collars present so as to electrically inspect the casing. Similar methods are employed to energize a pipeline to measure the wall thickness of the pipeline and the location of pipe joints to electrically inspect the pipeline.
46 CFR 35.35-45 - Auxiliary steam, air, or electric current-B/ALL.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 1 2012-10-01 2012-10-01 false Auxiliary steam, air, or electric current-B/ALL. 35.35... Cargo Handling § 35.35-45 Auxiliary steam, air, or electric current—B/ALL. When discharging cargo from one or more barges, the towing vessel may furnish steam, air, or electric current for pumps on barges...
46 CFR 35.35-45 - Auxiliary steam, air, or electric current-B/ALL.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 1 2013-10-01 2013-10-01 false Auxiliary steam, air, or electric current-B/ALL. 35.35... Cargo Handling § 35.35-45 Auxiliary steam, air, or electric current—B/ALL. When discharging cargo from one or more barges, the towing vessel may furnish steam, air, or electric current for pumps on barges...
46 CFR 35.35-45 - Auxiliary steam, air, or electric current-B/ALL.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 1 2011-10-01 2011-10-01 false Auxiliary steam, air, or electric current-B/ALL. 35.35... Cargo Handling § 35.35-45 Auxiliary steam, air, or electric current—B/ALL. When discharging cargo from one or more barges, the towing vessel may furnish steam, air, or electric current for pumps on barges...
46 CFR 35.35-45 - Auxiliary steam, air, or electric current-B/ALL.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 1 2014-10-01 2014-10-01 false Auxiliary steam, air, or electric current-B/ALL. 35.35... Cargo Handling § 35.35-45 Auxiliary steam, air, or electric current—B/ALL. When discharging cargo from one or more barges, the towing vessel may furnish steam, air, or electric current for pumps on barges...
46 CFR 35.35-45 - Auxiliary steam, air, or electric current-B/ALL.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 1 2010-10-01 2010-10-01 false Auxiliary steam, air, or electric current-B/ALL. 35.35... Cargo Handling § 35.35-45 Auxiliary steam, air, or electric current—B/ALL. When discharging cargo from one or more barges, the towing vessel may furnish steam, air, or electric current for pumps on barges...
Electrical system for a motor vehicle
Tamor, Michael Alan
1999-01-01
In one embodiment of the present invention, an electrical system for a motor vehicle comprises a capacitor, an engine cranking motor coupled to receive motive power from the capacitor, a storage battery and an electrical generator having an electrical power output, the output coupled to provide electrical energy to the capacitor and to the storage battery. The electrical system also includes a resistor which limits current flow from the battery to the engine cranking motor. The electrical system further includes a diode which allows current flow through the diode from the generator to the battery but which blocks current flow through the diode from the battery to the cranking motor.
Electrical system for a motor vehicle
Tamor, M.A.
1999-07-20
In one embodiment of the present invention, an electrical system for a motor vehicle comprises a capacitor, an engine cranking motor coupled to receive motive power from the capacitor, a storage battery and an electrical generator having an electrical power output, the output coupled to provide electrical energy to the capacitor and to the storage battery. The electrical system also includes a resistor which limits current flow from the battery to the engine cranking motor. The electrical system further includes a diode which allows current flow through the diode from the generator to the battery but which blocks current flow through the diode from the battery to the cranking motor. 2 figs.
NASA Astrophysics Data System (ADS)
Lee, Jinwoo; Kim, Se-Jong; Lee, Myoung-Gyu; Song, Jung Han; Choi, Seogou; Han, Heung Nam; Kim, Daeyong
2016-06-01
The uniaxial tensile and compressive stress-strain responses of AZ31B magnesium alloy sheet under pulsed electric current are reported. Tension and compression tests with pulsed electric current showed that flow stresses dropped instantaneously when the electric pulses were applied. Thermo-mechanical-electrical finite element analyses were also performed to investigate the effects of Joule heating and electro-plasticity on the flow responses of AZ31B sheets under electric-pulsed tension and compression tests. The proposed finite element simulations could reproduce the measured uniaxial tensile and compressive stress-strain curves under pulsed electric currents, when the temperature-dependent flow stress hardening model and thermal properties of AZ31B sheet were properly described in the simulations. In particular, the simulation results that fit best with experimental results showed that almost 100 pct of the electric current was subject to transform into Joule heating during electrically assisted tensile and compressive tests.
Sahakyan, Aleksandr B; Vendruscolo, Michele
2013-02-21
Ring current and electric field effects can considerably influence NMR chemical shifts in biomolecules. Understanding such effects is particularly important for the development of accurate mappings between chemical shifts and the structures of nucleic acids. In this work, we first analyzed the Pople and the Haigh-Mallion models in terms of their ability to describe nitrogen base conjugated ring effects. We then created a database (DiBaseRNA) of three-dimensional arrangements of RNA base pairs from X-ray structures, calculated the corresponding chemical shifts via a hybrid density functional theory approach and used the results to parametrize the ring current and electric field effects in RNA bases. Next, we studied the coupling of the electric field and ring current effects for different inter-ring arrangements found in RNA bases using linear model fitting, with joint electric field and ring current, as well as only electric field and only ring current approximations. Taken together, our results provide a characterization of the interdependence of ring current and electric field geometric factors, which is shown to be especially important for the chemical shifts of non-hydrogen atoms in RNA bases.
Space-charge-limited currents for cathodes with electric field enhanced geometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lai, Dingguo, E-mail: laidingguo@nint.ac.cn; Qiu, Mengtong; Xu, Qifu
This paper presents the approximate analytic solutions of current density for annulus and circle cathodes. The current densities of annulus and circle cathodes are derived approximately from first principles, which are in agreement with simulation results. The large scaling laws can predict current densities of high current vacuum diodes including annulus and circle cathodes in practical applications. In order to discuss the relationship between current density and electric field on cathode surface, the existing analytical solutions of currents for concentric cylinder and sphere diodes are fitted from existing solutions relating with electric field enhancement factors. It is found that themore » space-charge-limited current density for the cathode with electric-field enhanced geometry can be written in a general form of J = g(β{sub E}){sup 2}J{sub 0}, where J{sub 0} is the classical (1D) Child-Langmuir current density, β{sub E} is the electric field enhancement factor, and g is the geometrical correction factor depending on the cathode geometry.« less
Electric emissions from electrical appliances.
Leitgeb, N; Cech, R; Schröttner, J
2008-01-01
Electric emissions from electric appliances are frequently considered negligible, and standards consider electric appliances to comply without testing. By investigating 122 household devices of 63 different categories, it could be shown that emitted electric field levels do not justify general disregard. Electric reference values can be exceeded up to 11-fold. By numerical dosimetry with homogeneous human models, induced intracorporal electric current densities were determined and factors calculated to elevate reference levels to accounting for reduced induction efficiency of inhomogeneous fields. These factors were found not high enough to allow generally concluding on compliance with basic restrictions without testing. Electric appliances usually simultaneously emit both electric and magnetic fields exposing almost the same body region. Since the sum of induced current densities is limited, one field component reduces the available margin for the other. Therefore, superposition of electric current densities induced by either field would merit consideration.
A biphasic oxidation of alcohols to aldehydes and ketones using a simplified packed-bed microreactor
Bogdan, Andrew
2009-01-01
Summary We demonstrate the preparation and characterization of a simplified packed-bed microreactor using an immobilized TEMPO catalyst shown to oxidize primary and secondary alcohols via the biphasic Anelli-Montanari protocol. Oxidations occurred in high yields with great stability over time. We observed that plugs of aqueous oxidant and organic alcohol entered the reactor as plugs but merged into an emulsion on the packed-bed. The emulsion coalesced into larger plugs upon exiting the reactor, leaving the organic product separate from the aqueous by-products. Furthermore, the microreactor oxidized a wide range of alcohols and remained active in excess of 100 trials without showing any loss of catalytic activity. PMID:19478910
Formation of Organized Protein Thin Films with External Electric Field.
Ferreira, Cecília Fabiana da G; Camargo, Paulo C; Benelli, Elaine M
2015-10-01
The effect of an external electric field on the formation of protein GlnB-Hs films and on its buffer solution on siliconized glass slides has been analyzed by current versus electric field curves and atomic force microscopy (AFM). The Herbaspirillum seropedicae GlnB protein (GlnB-Hs) is a globular, soluble homotrimer (36 kDa) with its 3-D structure previously determined. Concentrations of 10 nM native denatured GlnB-Hs protein were deposited on siliconized glass slides under ambient conditions. Immediately after solution deposition a maximum electric field of 30 kV/m was applied with rates of 3 V/s. The measured currents were surface currents and were analyzed as transport current. Electric current started to flow only after a minimum electric field (critical value) for the systems analyzed. The AFM images showed films with a high degree of directional organization only when the proteins were present in the solution. These results showed that the applied electric field favored directional organization of the protein GlnB-Hs films and may contribute to understand the formation of protein films under applied electric fields.
Besio, Walter G; Hadidi, Ruba; Makeyev, Oleksandr; Luna-Munguía, Hiram; Rocha, Luisa
2011-01-01
As epilepsy affects approximately one percent of the world population, electrical stimulation of brain has recently shown potential as an additive seizure control therapy. In this study we applied focal transcranial electrical stimulation (TFS) on the surface of the skull of rats via concentric ring electrodes. We recorded electric potentials with a bipolar electrode consisting of two stainless steel wires implanted into the left ventral hippocampus. TFS current was gradually increased by 20% starting at 103 μA allowing us to assess the relationship between TFS current and both potentials recorded from the bipolar electrode and the resulting electric field. Generally, increases in TFS current resulted in increases in the electric field. This allows us to estimate what extra-cranial TFS current would be sufficient to cause the activation of neurons in the hippocampus.
NASA Astrophysics Data System (ADS)
Cech, R.; Leitgeb, N.; Pediaditis, M.
2008-01-01
The pregnant woman model SILVY was studied to ascertain to what extent the electric current densities induced by 50 Hz homogeneous electric and magnetic fields increase in the case of simultaneous exposure. By vectorial addition of the electric current densities, it could be shown that under worst case conditions the basic restrictions recommended by ICNIRP (International Commission on Non-Ionizing Radiation Protection) guidelines are exceeded within the central nervous system (CNS) of the mother, whereas in sole field exposure they are not. However, within the foetus the induced current densities do not comply with basic restrictions, either from single reference-level electric fields or from simultaneous exposure to electric and magnetic fields. Basic limits were considerably exceeded.
Editorial Commentary: All-Suture Anchors, Foam Blocks, and Biomechanical Testing.
Brand, Jefferson C
2017-06-01
Barber's biomechanical work is well known to Arthroscopy's readers as thorough, comprehensive, and inclusive of new designs as they become available. In "All-Suture Anchors: Biomechanical Analysis of Pullout Strength, Displacement, and Failure Mode," the latest iteration, Barber and Herbert test all-suture anchors in both porcine femurs and biphasic foam. While we await in vivo clinical trials that compare all-suture anchors to currently used anchors, Barber and Herbert have provided data to inform anchor choice, and using their biomechanical data at time zero from all-suture anchor trials in an animal model, we can determine the anchors' feasibility for human clinical investigations. Copyright © 2017 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.
1978-06-01
Type N Female Power - AMP 201298-3 Female The TWT amplifier will output a fault signal when the TWT is over temperature, when the helix current is...Control Section 3-24 3.2.1.5.2 Monitor Section 3-26 3.2.1.6 TWT Amplifier 3-28 3.2.1.7 RF Unit 3-29 3.2.1.7.1 C-Band Exciter 3-29 3.2.1.7.2 Bi-Phase...3-60 3.2.2.5.1 Control Section 3-66 3.2.2.5.2 Monitor Section 3-66 3.2.2.6 TWT Amplifier 3-66 3.2.2.7 RF Unit 3-66 3.2.2.8 Local Control/Status 3-66
Induction heaters used to heat subsurface formations
Nguyen, Scott Vinh [Houston, TX; Bass, Ronald M [Houston, TX
2012-04-24
A heating system for a subsurface formation includes an elongated electrical conductor located in the subsurface formation. The electrical conductor extends between at least a first electrical contact and a second electrical contact. A ferromagnetic conductor at least partially surrounds and at least partially extends lengthwise around the electrical conductor. The electrical conductor, when energized with time-varying electrical current, induces sufficient electrical current flow in the ferromagnetic conductor such that the ferromagnetic conductor resistively heats to a temperature of at least about 300.degree. C.
Human responses to electricity: A literature review
NASA Technical Reports Server (NTRS)
Turner, H. S.
1972-01-01
An extensive review of literature on research concerning biomedical sensors is presented for establishing standards for current limiting devices. The physiological and pathological responses of the human, when exposed to electricity are reported including the thresholds: for perception of electricity, pain by electric current, induction of muscular contraction by electric shock, and ventricular fibrillation. The passive electrical properties of cells and tissues are also reported.
Metabolic and miRNA Profiling of TMV Infected Plants Reveals Biphasic Temporal Changes
Bazzini, Ariel A.; Manacorda, Carlos A.; Tohge, Takayuki; Conti, Gabriela; Rodriguez, Maria C.; Nunes-Nesi, Adriano; Villanueva, Sofía; Fernie, Alisdair R.; Carrari, Fernando; Asurmendi, Sebastian
2011-01-01
Plant viral infections induce changes including gene expression and metabolic components. Identification of metabolites and microRNAs (miRNAs) differing in abundance along infection may provide a broad view of the pathways involved in signaling and defense that orchestrate and execute the response in plant-pathogen interactions. We used a systemic approach by applying both liquid and gas chromatography coupled to mass spectrometry to determine the relative level of metabolites across the viral infection, together with a miRs profiling using a micro-array based procedure. Systemic changes in metabolites were characterized by a biphasic response after infection. The first phase, detected at one dpi, evidenced the action of a systemic signal since no virus was detected systemically. Several of the metabolites increased at this stage were hormone-related. miRs profiling after infection also revealed a biphasic alteration, showing miRs alteration at 5 dpi where no virus was detected systemically and a late phase correlating with virus accumulation. Correlation analyses revealed a massive increase in the density of correlation networks after infection indicating a complex reprogramming of the regulatory pathways, either in response to the plant defense mechanism or to the virus infection itself. Our data propose the involvement of a systemic signaling on early miRs alteration. PMID:22174812
Su, Juin-Yih; Chen, Shi-Hui; Chen, Yu-Pin; Chen, Wei-Chuan
2017-01-01
Chondral or osteochondral defects are still controversial problems in orthopedics. Here, chondrocytes labeled with magnetic nanoparticles were cultivated on a biphasic, type II collagen–chitosan/poly(lactic-co-glycolic acid) scaffold in an attempt to develop cultures with trackable cells exhibiting growth, differentiation, and regeneration. Rabbit chondrocytes were labeled with magnetic nanoparticles and characterized by scanning electron microscopy (SEM), transmission electron (TEM) microscopy, and gene and protein expression analyses. The experimental results showed that the magnetic nanoparticles did not affect the phenotype of chondrocytes after cell labeling, nor were protein and gene expression affected. The biphasic type II collagen–chitosan/poly(lactic-co-glycolic) acid scaffold was characterized by SEM, and labeled chondrocytes showed a homogeneous distribution throughout the scaffold after cultivation onto the polymer. Cellular phenotype remained unaltered but with increased gene expression of type II collagen and aggrecan, as indicated by cell staining, indicating chondrogenesis. Decreased SRY-related high mobility group-box gene (Sox-9) levels of cultured chondrocytes indicated that differentiation was associated with osteogenesis. These results are encouraging for the development of techniques for trackable cartilage regeneration and osteochondral defect repair which may be applied in vivo and, eventually, in clinical trials. PMID:28054960
Xie, Li; Zhu, Dan; Kang, Youhou; Liang, Tao; He, Yu; Gaisano, Herbert Y
2013-01-01
The exocyst complex subunit Sec5 is a downstream effector of RalA-GTPase which promotes RalA-exocyst interactions and exocyst assembly, serving to tether secretory granules to docking sites on the plasma membrane. We recently reported that RalA regulates biphasic insulin secretion in pancreatic islet β cells in part by tethering insulin secretory granules to Ca(2+) channels to assist excitosome assembly. Here, we assessed β cell exocytosis by patch clamp membrane capacitance measurement and total internal reflection fluorescence microscopy to investigate the role of Sec5 in regulating insulin secretion. Sec5 is present in human and rodent islet β cells, localized to insulin granules. Sec5 protein depletion in rat INS-1 cells inhibited depolarization-induced release of primed insulin granules from both readily-releasable pool and mobilization from the reserve pool. This reduction in insulin exocytosis was attributed mainly to reduction in recruitment and exocytosis of newcomer insulin granules that undergo minimal docking time at the plasma membrane, but which encompassed a larger portion of biphasic glucose stimulated insulin secretion. Sec5 protein knockdown had little effect on predocked granules, unless vigorously stimulated by KCl depolarization. Taken together, newcomer insulin granules in β cells are more sensitive than predocked granules to Sec5 regulation.
Hasegawa, Shunji; Matsushige, Takeshi; Inoue, Hirofumi; Takahara, Midori; Kajimoto, Madoka; Momonaka, Hiroshi; Oka, Momoko; Isumi, Hiroshi; Emi, Sakie; Hayashi, Megumi; Ichiyama, Takashi
2014-08-01
Acute encephalopathy with biphasic seizures and late reduced diffusion (AESD) has recently been recognized as an encephalopathy subtype. Typical clinical symptoms of AESD are biphasic seizures, and MRI findings show reduced subcortical diffusion during clustering seizures with unconsciousness after the acute phase. Visinin-like protein-1 (VILIP-1) is a recently discovered protein that is abundant in the central nervous system, and some reports have shown that VILIP-1 may be a prognostic biomarker of conditions such as Alzheimer's disease, stroke, and brain injury. However, there have been no reports regarding serum and cerebrospinal fluid (CSF) levels of VILIP-1 in patients with AESD. We measured the serum and CSF levels of VILIP-1 in patients with AESD, and compared the levels to those in patients with prolonged febrile seizures (FS). Both serum and CSF levels of VILIP-1 were significantly higher in patients with AESD than in patients with prolonged FS. Serum and CSF VILIP-1 levels were normal on day 1 of AESD. Our results suggest that both serum and CSF levels of VILIP-1 may be one of predictive markers of AESD. Copyright © 2013 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.
Partitioning of mercury in aqueous biphasic systems and on ABEC resins.
Rogers, R D; Griffin, S T
1998-06-26
Poly(ethylene glycol)-based aqueous biphasic systems (PEG-ABS) can be utilized to separate and recover metal ions in environmental and hydrometallurgical applications. A concurrent study was conducted comparing the partitioning of mercury between aqueous layers in an ABS [Me-PEG-5000/(NH4)2SO4] and partitioning of mercury from aqueous solutions to aqueous biphasic extraction chromatographic (ABEC-5000) resins. In ammonium sulfate solutions, mercury partitions to the salt-rich phase in ABS, but by using halide ion extractants, mercury will partition to the PEG-rich phase after formation of a chloro, bromo or iodo complex. The efficacy of the extractant increases in the order Cl-
Ahuja, Varun; Wanner, Reinhard; Platzek, Thomas; Stahlmann, Ralf
2009-10-01
Mercaptobenzothiazole (MBT) is used while manufacturing natural rubber products. Our study deals with assessing its allergenic potential following dermal and oral routes of exposure, using a biphasic local lymph node assay (LLNA). Female Balb/c mice were treated with MBT (dermally 3, 10, 30% concentrations in DMSO; orally 1, 10, 100 mg/kg doses in corn oil) on the back (dermal study) or through oral administration (oral study) on days 1-3 followed by auricular application of 3, 10 and 30% concentrations, respectively, on days 15-17. End points determined on day 19 included ear thickness, ear punch weight, lymph node weight, lymph node cell count, and lymphocyte subpopulations (CD4+, CD8+, CD45+). After dermal application of 3% or 10% solution, a significant increase in cell count and lymph node weight along with significant decrease in CD8+ cells was observed. After initial oral administration of 1 mg/kg, we noticed a significant amplification in cell count. Following oral administration of 10 mg/kg, we observed a similar increase in cell count and lymph node weight. The results of our study show that the modified biphasic LLNA protocol can be used to study the sensitising potential of a compound also following the oral route of exposure.
A New Biphasic Dicalcium Silicate Bone Cement Implant.
Zuleta, Fausto; Murciano, Angel; Gehrke, Sergio A; Maté-Sánchez de Val, José E; Calvo-Guirado, José L; De Aza, Piedad N
2017-07-06
This study aimed to investigate the processing parameters and biocompatibility of a novel biphasic dicalcium silicate (C₂S) cement. Biphasic α´ L + β-C₂S ss was synthesized by solid-state processing, and was used as a raw material to prepare the cement. In vitro bioactivity and biocompatibility studies were assessed by soaking the cement samples in simulated body fluid (SBF) and human adipose stem cell cultures. Two critical-sized defects of 6 mm Ø were created in 15 NZ tibias. A porous cement made of the high temperature forms of C₂S, with a low phosphorous substitution level, was produced. An apatite-like layer covered the cement's surface after soaking in SBF. The cell attachment test showed that α´ L + β-C₂S ss supported cells sticking and spreading after 24 h of culture. The cement paste (55.86 ± 0.23) obtained higher bone-to-implant contact (BIC) percentage values (better quality, closer contact) in the histomorphometric analysis, and defect closure was significant compared to the control group (plastic). The residual material volume of the porous cement was 35.42 ± 2.08% of the initial value. The highest BIC and bone formation percentages were obtained on day 60. These results suggest that the cement paste is advantageous for initial bone regeneration.
Karunasekara, Thushara; Poole, Colin F
2011-07-15
Partition coefficients for varied compounds were determined for the organic solvent-dimethyl sulfoxide biphasic partition system where the organic solvent is n-heptane or isopentyl ether. These partition coefficient databases are analyzed using the solvation parameter model facilitating a quantitative comparison of the dimethyl sulfoxide-based partition systems with other totally organic partition systems. Dimethyl sulfoxide is a moderately cohesive solvent, reasonably dipolar/polarizable and strongly hydrogen-bond basic. Although generally considered to be non-hydrogen-bond acidic, analysis of the partition coefficient database strongly supports reclassification as a weak hydrogen-bond acid in agreement with recent literature. The system constants for the n-heptane-dimethyl sulfoxide biphasic system provide an explanation of the mechanism for the selective isolation of polycyclic aromatic compounds from mixtures containing low-polarity hydrocarbons based on the capability of the polar interactions (dipolarity/polarizability and hydrogen-bonding) to overcome the opposing cohesive forces in dimethyl sulfoxide that are absent for the interactions with hydrocarbons of low polarity. In addition, dimethyl sulfoxide-organic solvent systems afford a complementary approach to other totally organic biphasic partition systems for descriptor measurements of compounds virtually insoluble in water. Copyright © 2011 Elsevier B.V. All rights reserved.
Superabsorbent biphasic system based on poly(lactic acid) and poly(acrylic acid)
NASA Astrophysics Data System (ADS)
Sartore, Luciana; Pandini, Stefano; Baldi, Francesco; Bignotti, Fabio
2016-05-01
In this research work, biocomposites based on crosslinked particles of poly(acrylic acid), commonly used as superabsorbent polymer (SAP), and poly-L-lactic acid (PLLA) were developed to elucidate the role of the filler (i.e., polymeric crosslinked particles) on the overall physico-mechanical behavior and to obtain superabsorbent thermoplastic products. Samples prepared by melt-blending of components in different ratios showed a biphasic system with a regular distribution of particles, with diameter ranging from 5 to 10 μm, within the PLLA polymeric matrix. The polymeric biphasic system, coded PLASA i.e. superabsorbent poly(lactic acid), showed excellent swelling properties, demonstrating that cross-linked particles retain their superabsorbent ability, as in their free counterparts, even if distributed in a thermoplastic polymeric matrix. The thermal characteristics of the biocomposites evidence enhanced thermal stability in comparison with neat PLLA and also mechanical properties are markedly modified by addition of crosslinked particles which induce regular stiffening effect. Furthermore, in aqueous environments the particles swell and are leached from PLLA matrix generating very high porosity. These new open-pore PLLA foams, produced in absence of organic solvents and chemical foaming agents, with good physico-mechanical properties appear very promising for several applications, for instance in tissue engineering for scaffold production.
Broznić, Dalibor; Milin, Čedomila
2016-01-01
Summary The antioxidant activity of three types of pumpkin seed oil or oil mixtures (cold- -pressed, produced from roasted seed paste and salad) produced in the northern part of Croatia and the kinetics of their behaviour as free radical scavengers were investigated using DPPH˙. In addition, the involvement of oil tocopherol isomers (α-, γ- and δ-) in different steps of DPPH˙ disappearance and their impact on the rate of reaction were analysed. The kinetics of DPPH˙ disappearance is a two-step process. In the first step, rapid disappearance of DPPH˙ occurs during the first 11 min of the reaction, depending on the oil type, followed by a slower decline in the second step. To describe DPPH˙ disappearance kinetics, six mathematical models (mono- and biphasic) were tested. Our findings showed that γ- and δ-tocopherols affected DPPH˙ disappearance during the first step, and α-tocopherol in the second step of the reaction. Moreover, α-tocopherol demonstrated 30 times higher antioxidant activity than γ- and δ-tocopherols. The results indicated the biphasic double-exponential behaviour of DPPH˙ disappearance in oil samples, due to the complexity of reactions that involve different tocopherol isomers and proceed through different chemical pathways. PMID:27904410
Broznić, Dalibor; Jurešić, Gordana Čanadi; Milin, Čedomila
2016-06-01
The antioxidant activity of three types of pumpkin seed oil or oil mixtures (cold- -pressed, produced from roasted seed paste and salad) produced in the northern part of Croatia and the kinetics of their behaviour as free radical scavengers were investigated using DPPH˙. In addition, the involvement of oil tocopherol isomers (α-, γ- and δ-) in different steps of DPPH˙ disappearance and their impact on the rate of reaction were analysed. The kinetics of DPPH˙ disappearance is a two-step process. In the first step, rapid disappearance of DPPH˙ occurs during the first 11 min of the reaction, depending on the oil type, followed by a slower decline in the second step. To describe DPPH˙ disappearance kinetics, six mathematical models (mono- and biphasic) were tested. Our findings showed that γ- and δ-tocopherols affected DPPH˙ disappearance during the first step, and α-tocopherol in the second step of the reaction. Moreover, α-tocopherol demonstrated 30 times higher antioxidant activity than γ- and δ-tocopherols. The results indicated the biphasic double-exponential behaviour of DPPH˙ disappearance in oil samples, due to the complexity of reactions that involve different tocopherol isomers and proceed through different chemical pathways.
Biphasic effect of citral, a flavoring and scenting agent, on spatial learning and memory in rats.
Yang, Zheqiong; Xi, Jinlei; Li, Jihong; Qu, Wen
2009-10-01
Although some central effects of citral have been reported, cognitive effects on spatial memory have not been investigated. The evidence showed that citral can regulate the synthesis of retinoic acid (RA), which exerts a vital function in the development and maintenance of spatial memory. In this study, we applied Morris water maze to test the effect of citral on animals' spatial learning and memory. To elucidate the mechanism of this effect, we also measured the retinoic acid concentration in rats' hippocampus by high performance liquid chromatography (HPLC). Our data implied biphasic effects of citral. The low dose (0.1 mg/kg) of citral improved the spatial learning capability, and enhanced the spatial reference memory of rats, whereas the high dose (1.0 mg/kg) was like to produce the opposite effects. Meanwhile, the low dose of citral increased the hippocampal retinoic acid concentration, while the high dose decreased it. Due to the quick elimination and non-bioaccumulation in the body, effects of citral on spatial memory in this study seemed to be indirect actions. The change in hippocampal retinoic acid concentration induced by different doses of citral might be responsible for the biphasic effect of citral on spatial learning and memory.
Kumar, Raja; Sinha, Alok
This study proposed that the physicochemical effects of common dyebath auxiliaries on the bulk dye solution as well as on the iron surface can influence the reductive discoloration of effluent containing Acid Orange 7 (AO7) dye using high-carbon iron filings. Sodium chloride increased the discoloration rate because of the pitting corrosion on the iron surface, triggered by chloride anion. 'Salting out' effect of ammonium sulfate improved the reaction rate up to a certain concentration, beyond which it could compete with dye molecules for the reactive sites, as revealed by formed sulfite and sulfide. Urea drastically reduced the discoloration rates by its chaotropic effect on the bulk solution and by wrapping around the iron surface. Organic acids, namely acetic acid and citric acid, stimulated iron corrosion to improve the discoloration rates. The discoloration reaction was biphasic with an initial fast reaction phase, where in every case more than 70% discoloration was observed within 5 min of reaction, preceding a slow reaction phase. The experimental data could be well described using biphasic kinetics equation (R(2)> 0.997 in all cases) and a biphasic equation was developed considering the individual impact of co-existing auxiliaries on AO7 discoloration.
Nyquist, Michael D.; Schweizer, Michael T.; Balk, Stephen P.; Corey, Eva; Plymate, Stephen; Nelson, Peter S.; Mostaghel, Elahe A.
2017-01-01
Since Huggins defined the androgen-sensitive nature of prostate cancer (PCa), suppression of systemic testosterone (T) has remained the most effective initial therapy for advanced disease although progression inevitably occurs. From the inception of clinical efforts to suppress androgen receptor (AR) signaling by reducing AR ligands, it was also recognized that administration of T in men with castration-resistant prostate cancer (CRPC) could result in substantial clinical responses. Data from preclinical models have reproducibly shown biphasic responses to T administration, with proliferation at low androgen concentrations and growth inhibition at supraphysiological T concentrations. Many questions regarding the biphasic response of PCa to androgen treatment remain, primarily regarding the mechanisms driving these responses and how best to exploit the biphasic phenomenon clinically. Here we review the preclinical and clinical data on high dose androgen growth repression and discuss cellular pathways and mechanisms likely to be involved in mediating this response. Although meaningful clinical responses have now been observed in men with PCa treated with high dose T, not all men respond, leading to questions regarding which tumor characteristics promote response or resistance, and highlighting the need for studies designed to determine the molecular mechanism(s) driving these responses and identify predictive biomarkers. PMID:29210989
Cell–material interactions on biphasic polyurethane matrix
Dicesare, Patrick; Fox, Wade M.; Hill, Michael J.; Krishnan, G. Rajesh; Yang, Shuying; Sarkar, Debanjan
2013-01-01
Cell–matrix interaction is a key regulator for controlling stem cell fate in regenerative tissue engineering. These interactions are induced and controlled by the nanoscale features of extracellular matrix and are mimicked on synthetic matrices to control cell structure and functions. Recent studies have shown that nanostructured matrices can modulate stem cell behavior and exert specific role in tissue regeneration. In this study, we have demonstrated that nanostructured phase morphology of synthetic matrix can control adhesion, proliferation, organization and migration of human mesenchymal stem cells (MSCs). Nanostructured biodegradable polyurethanes (PU) with segmental composition exhibit biphasic morphology at nanoscale dimensions and can control cellular features of MSCs. Biodegradable PU with polyester soft segment and hard segment composed of aliphatic diisocyanates and dipeptide chain extender were designed to examine the effect polyurethane phase morphology. By altering the polyurethane composition, morphological architecture of PU was modulated and its effect was examined on MSC. Results show that MSCs can sense the nanoscale morphology of biphasic polyurethane matrix to exhibit distinct cellular features and, thus, signifies the relevance of matrix phase morphology. The role of nanostructured phases of a synthetic matrix in controlling cell–matrix interaction provides important insights for regulation of cell behavior on synthetic matrix and, therefore, is an important tool for engineering tissue regeneration. PMID:23255285
A New Biphasic Dicalcium Silicate Bone Cement Implant
Murciano, Angel; Maté-Sánchez de Val, José E.
2017-01-01
This study aimed to investigate the processing parameters and biocompatibility of a novel biphasic dicalcium silicate (C2S) cement. Biphasic α´L + β-C2Sss was synthesized by solid-state processing, and was used as a raw material to prepare the cement. In vitro bioactivity and biocompatibility studies were assessed by soaking the cement samples in simulated body fluid (SBF) and human adipose stem cell cultures. Two critical-sized defects of 6 mm Ø were created in 15 NZ tibias. A porous cement made of the high temperature forms of C2S, with a low phosphorous substitution level, was produced. An apatite-like layer covered the cement’s surface after soaking in SBF. The cell attachment test showed that α´L + β-C2Sss supported cells sticking and spreading after 24 h of culture. The cement paste (55.86 ± 0.23) obtained higher bone-to-implant contact (BIC) percentage values (better quality, closer contact) in the histomorphometric analysis, and defect closure was significant compared to the control group (plastic). The residual material volume of the porous cement was 35.42 ± 2.08% of the initial value. The highest BIC and bone formation percentages were obtained on day 60. These results suggest that the cement paste is advantageous for initial bone regeneration. PMID:28773119
Nationwide survey on the organ-specific prevalence and its interaction with sarcoidosis in Japan.
Hattori, Takeshi; Konno, Satoshi; Shijubo, Noriharu; Yamaguchi, Tetsuo; Sugiyama, Yukihiko; Honma, Sakae; Inase, Naohiko; Ito, Yoichi M; Nishimura, Masaharu
2018-06-21
Previous studies attempted to characterize the subjects with sarcoidosis according to differences in sex, age, and the presence of specific organ involvement. However, significant interactions among these factors precluded a clear conclusion based on simple comparison. This study aimed to clarify the age- and sex-stratified prevalence of specific organ involvement and the heterogenous nature of sarcoidosis. Using the data of 9,965 patients who were newly registered into a database at the Ministry of Health, Labour and Welfare, Japan between 2002 and 2011, we evaluated the age- and sex-specific prevalence of the eye, lung, and skin involvement of sarcoidosis. We also attempted corresponding analysis considering multiple factors. As compared with several decades ago, the monophasic age distribution in men became biphasic, and the biphasic distribution in women, monophasic. The prevalence of pulmonary and cutaneous lesions was significantly associated with age, whereas the prevalence of ocular involvement showed a biphasic pattern. The prevalence of bilateral hilar lymphadenopathy was significantly higher, whereas the prevalence of diffuse lung shadow was significantly lower, in subjects with ocular involvement than those without ocular involvement. Corresponding analysis visually clarified the complex interactions among factors. Our results contribute to a better understanding of the heterogeneous features of sarcoidosis.
Ryan, Alan J; Lackington, William A; Hibbitts, Alan J; Matheson, Austyn; Alekseeva, Tijna; Stejskalova, Anna; Roche, Phoebe; O'Brien, Fergal J
2017-12-01
Clinically available hollow nerve guidance conduits (NGCs) have had limited success in treating large peripheral nerve injuries. This study aims to develop a biphasic NGC combining a physicochemically optimized collagen outer conduit to bridge the transected nerve, and a neuroconductive hyaluronic acid-based luminal filler to support regeneration. The outer conduit is mechanically optimized by manipulating crosslinking and collagen density, allowing the engineering of a high wall permeability to mitigate the risk of neuroma formation, while also maintaining physiologically relevant stiffness and enzymatic degradation tuned to coincide with regeneration rates. Freeze-drying is used to seamlessly integrate the luminal filler into the conduit, creating a longitudinally aligned pore microarchitecture. The luminal stiffness is modulated to support Schwann cells, with laminin incorporation further enhancing bioactivity by improving cell attachment and metabolic activity. Additionally, this biphasic NGC is shown to support neurogenesis and gliogenesis of neural progenitor cells and axonal outgrowth from dorsal root ganglia. These findings highlight the paradigm that a successful NGC requires the concerted optimization of both a mechanical support phase capable of bridging a nerve defect and a neuroconductive phase with an architecture capable of supporting both Schwann cells and neurons in order to achieve functional regenerative outcome. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Measurement of Direct Current Voltage Causing Electrical Pitting
NASA Astrophysics Data System (ADS)
Noguchi, Shoji; Kakinuma, Shin-Nosuke; Kanada, Tohru
It is widely known that electrical pitting occurs when an electrical current is passed through a ball or roller bearing. The authors have investigated critical electrical current density causing electrical pitting and have shown that it occurs in a ball bearing even at an extremely low current. In this paper we present the results of an experiment in which a small ball bearing was supplied with a direct current (DC) voltage to determine the voltage required to induce a current. A film of grease acts as the insulator on an antifriction bearing used, and the thickness of this film is an important consideration and the current must pass through this film. Four types of grease were used on the bearing, which was rotated at various speed during 500 hours. A potential of 1.3V to 1.5V was necessary to induce the flow of current. The results indicate that the voltage supplied by typical dry cell batteries is sufficient to drive a currents through a small bearing, and that the experimental conditions had little effect on the magnitude of the flowing current.
Xie, L; Zhu, D; Gaisano, H Y
2012-10-01
We have previously reported that the haplodeficient Munc13-1(+/-) mouse exhibits impaired biphasic glucose-stimulated insulin secretion (GSIS), causing glucose intolerance mimicking type 2 diabetes. Glucagon-like peptide-1 (GLP-1) can bypass these insulin-secretory defects in type 2 diabetes, but the mechanism of exocytotic events mediated by GLP-1 in rescuing insulin secretion is unclear. The total internal reflection fluorescence microscopy (TIRFM) technique was used to examine single insulin granule fusion events in mouse islet beta cells. There was no difference in the density of docked granules in the resting state between Munc13-1(+/+) and Munc13-1(+/-) mouse islet beta cells. While exocytosis of previously docked granules in Munc13-1(+/-) beta cells is reduced during high-K(+) stimulation as expected, we now find a reduction in additional exocytosis events that account for the major portion of GSIS, namely two types of newcomer granules, one which has a short docking time (short-dock) and another undergoing no docking before exocytosis (no-dock). As mammalian homologue of Caenorhabditis elegans unc-13-1 (Munc13-1) is a phorbol ester substrate, phorbol ester could partially rescue biphasic GSIS in Munc13-1-deficient beta cells by enhancing recruitment of short-dock newcomer granules for exocytosis. The more effective rescue of biphasic GSIS by GLP-1 than by phorbol was due to increased recruitment of both short-dock and no-dock newcomer granules. Phorbol ester and GLP-1 potentiation of biphasic GSIS are brought about by recruitment of distinct populations of newcomer granules for exocytosis, which may be mediated by Munc13-1 interaction with syntaxin-SNARE complexes other than that formed by syntaxin-1A.
Abeyesinghe, S M; McKeegan, D E F; McLeman, M A; Lowe, J C; Demmers, T G M; White, R P; Kranen, R W; van Bemmel, H; Lankhaar, J A C; Wathes, C M
2007-08-01
1. The effects of controlled atmosphere stunning on the behaviour, physiology and carcase and meat quality of broiler chickens were studied experimentally in a pilot scale plant. 2. Gas mixtures tested were: single phase anoxic mixture (90% Ar in air, <2% O(2)); single phase hypercapnic anoxic mixture (60% Ar, 30% CO(2) in air, <2% O(2)); and biphasic hypercapnic hyperoxygenation mixture (anaesthetic phase, 40% CO(2), 30% O(2), 30% N(2); euthanasia phase, 80% CO(2), 5% O(2), 15% N(2)). 3. Anoxic stunning resulted in the least respiratory disruption, mandibulation and motionlessness, but most head shaking, leg paddling and twitching. Loss of posture occurred soonest with hypercapnic anoxia with the earliest and most twitching and wing flapping in individuals and earliest leg paddling. Biphasic birds were most alert, exhibited most respiratory disruption and mandibulation, and had the latest loss of posture and fewest, but longest bouts of wing flapping and least leg paddling and twitching. 4. Significant and sudden bradycardia and arrhythmia were evident with all gas mixtures and were not related solely to anoxia or hypercapnia. Birds stunned by Ar anoxia showed a slightly more gradual decline from baseline rates, compared with hypercapnic mixtures. 5. Few differences were found between gas mixes in terms of carcase and meat quality. Initial bleeding rate was slowest in biphasic-stunned birds, but total blood loss was not affected. Acceleration of post-mortem metabolism in anoxic-stunned birds was not sufficient to allow de-boning within 5 h without the risk of tough meat. 6. On welfare grounds and taking into account other laboratory and field studies, a biphasic method (using consecutive phases of anaesthesia and euthanasia) of controlled atmosphere stunning of broilers is potentially more humane than anoxic or hypercapnic anoxic methods using argon or nitrogen.
Oliva, Francesco; Via, Alessio Giai; Rossi, Silvio
2011-01-01
Summary Introduction: Long head biceps (LHB) tendinopathy is a common cause of anterior shoulder pain. Isolated LHB pathology is most common among younger people who practise overhead sports. The authors conducted a short-term prospective randomised study to test the effectiveness of two different methods for the treatment of isolated LHB tendinopathy: biphasic oscillatory waves and hyperthermia. Study design: The study is a prospective randomised study (Level II). Material and methods: The authors identified 20 patients who had clinical and ultrasound (US) evidence of LHB tendinopathy. No patient was a high-level athlete. The patients were randomly assigned to two groups. Group A (10 patients) was treated with bi-phasic oscillatory waves, while Group B received hyperthermia. During the treatment period, no other electromedical therapy, injections with corticosteroids, oral analgesics or nonsteroidal anti-inflammatory drugs were allowed. All the patients were assessed at baseline (T0), immediately after the end of the treatment period (T1) and 6 months after the end of treatment (T2) using a visual analogic scale (VAS) and Constant-Murley Score (CMS). Furthermore, all patients underwent US examinations at T0 and at T1. All the US examinations were performed by the same radiologist. Results: The VAS scores showed a highly statistically significant reduction of pain at T1 both in Group A (65%; p=0,004) and in Group B (50%; p=0,0002). The CMS also showed a statistically significant improvement between the pre-intervention, the post-treatment and the short-term follow-up in both groups. In addition, the peritendinous fluid evident on US examination at T0 was no longer present in all cases at T1. Conclusion: These findings suggest that both bi-phasic oscillatory waves and hyperthermia are able to relieve pain in patients with isolated LHB tendinopathy. This is a Class II level of evidence. PMID:23738257
Kvit, Anton A; Devine, Erin E; Jiang, Jack J; Vamos, Andrew C; Tao, Chao
2015-05-01
Vocal fold tissue is biphasic and consists of a solid extracellular matrix skeleton swelled with interstitial fluid. Interactions between the liquid and solid impact the material properties and stress response of the tissue. The objective of this study was to model the movement of liquid during vocal fold vibration and to estimate the volume of liquid accumulation and stress experienced by the tissue near the anterior-posterior midline, where benign lesions are observed to form. A three-dimensional biphasic finite element model of a single vocal fold was built to solve for the liquid velocity, pore pressure, and von Mises stress during and just after vibration using the commercial finite element software COMSOL Multiphysics (Version 4.3a, 2013, Structural Mechanics and Subsurface Flow Modules). Vibration was induced by applying direct load pressures to the subglottal and intraglottal surfaces. Pressure ranges, frequency, and material parameters were chosen based on those reported in the literature. Postprocessing included liquid velocity, pore pressure, and von Mises stress calculations as well as the frequency-stress and amplitude-stress relationships. Resulting time-averaged velocity vectors during vibration indicated liquid movement toward the midline of the fold, as well as upward movement in the inferior-superior direction. Pore pressure and von Misses stresses were higher in this region just after vibration. A linear relationship was found between the amplitude and pore pressure, whereas a nonlinear relationship was found between the frequency and pore pressure. Although this study had certain computational simplifications, it is the first biphasic finite element model to use a realistic geometry and demonstrate the ability to characterize liquid movement due to vibration. Results indicate that there is a significant amount of liquid that accumulates at the midline; however, the role of this accumulation still requires investigation. Further investigation of these mechanical factors may lend insight into the mechanism of benign lesion formation. Copyright © 2015 The Voice Foundation. Published by Elsevier Inc. All rights reserved.
Kvit, Anton A.; Devine, Erin E.; Vamos, Andrew C.; Tao, Chao; Jiang, Jack J.
2015-01-01
OBJECTIVE Vocal fold tissue is biphasic and consists of a solid extracellular matric skeleton swelled with interstitial fluid. Interactions between the liquid and solid impact the material properties and stress response of the tissue. The objective of this study was to model the movement of liquid during vocal fold vibration and estimate the volume of liquid accumulation and stress experienced by the tissue near the anterior-posterior midline, where benign lesions are observed to form. METHODS A three-dimensional biphasic finite element model of a single vocal fold was built to solve for the liquid velocity, pore pressure, and von Mises stress during and just after vibration using the commercial finite element software COMSOL Multiphysics (Version 4.3a, 2013, Structural Mechanics and Subsurface Flow Modules). Vibration was induced by applying direct-load pressures to the subglottal and intraglottal surfaces. Pressure ranges, frequency and material parameters were chosen based on those reported in the literature. Post-processing included liquid velocity, pore pressure and von Mises stress calculations, as well as the frequency-stress and amplitude-stress relationships. RESULTS Resulting time-averaged velocity vectors during vibration indicated liquid movement towards the midline of the fold, as upwards movement in the inferior-superior direction. Pore pressure and von Misses stresses were higher in this region just following vibration. A linear relationship was found between the amplitude and pore pressure, while a nonlinear relationship was found between the frequency and pore pressure. CONCLUSIONS While this study had certain computational simplifications, it is the first biphasic finite element model to employ a realistic geometry and demonstrated the ability to characterize liquid movement due to vibration. Results indicate that there is a significant amount of liquid that accumulates at the midline, however the role of this accumulation still requires investigation. Further investigation of these mechanical factors may lend insight into the mechanism of benign lesion formation. PMID:25619469
Janardhan, Ajit H.; Li, Wenwen; Fedorov, Vadim V.; Yeung, Michael; Wallendorf, Michael J.; Schuessler, Richard B.; Efimov, Igor R.
2015-01-01
Objectives To develop a low-energy electrotherapy that terminates ventricular tachycardia (VT) when anti-tachycardia pacing (ATP) fails. Background High-energy ICD shocks are associated with device failure, significant morbidity and increased mortality. A low-energy alternative to ICD shocks is desirable. Methods Myocardial infarction (MI) was created in 25 dogs. Sustained, monomorphic VT was induced by programmed stimulation. Defibrillation electrodes were placed in the RV apex, and coronary sinus (CS) and LV epicardium (LVP). If ATP failed to terminate sustained VT, the defibrillation thresholds (DFTs) of standard versus experimental electrotherapies were measured. Results Sustained VT ranged from 276–438 bpm (mean 339 bpm). The RV-CS shock vector had lower impedance than RV-LVP (54.4±18.1 Ω versus 109.8±16.9, Ω p<0.001). A single shock required between 0.3±0.2 J to 5.9±2.5 J (mean 2.64±3.22 J; p=0.008) to terminate VT, and varied depending upon the phase of the VT cycle at which it was delivered. In contrast, multiple shocks delivered within 1 VT cycle length were not phase-dependent and achieved lower DFT compared to a single shock (0.13±0.09 J for 3 shocks, 0.08±0.04 J for 5 shocks, 0.09±0.07 J for 7 shocks; p<0.001). Finally, a multi-stage electrotherapy (MSE) achieved significantly lower DFT compared to a single biphasic shock (0.03±0.05 J versus 2.37±1.20 J, respectively, p<0.001). At a peak shock amplitude of 20 V, MSE achieved 91.3% of terminations versus 10.5% for a biphasic shock (p<0.001). Conclusions MSE achieved a major reduction in DFT compared to a single biphasic shock for ATP-refractory monomorphic VT, and represents a novel electrotherapy to reduce high-energy ICD shocks. PMID:23141483
NASA Astrophysics Data System (ADS)
Koushki, N.; Tavassoli, H.; Katbab, A. A.; Katbab, P.; Bonakdar, S.
2015-05-01
Polymer scaffolds are applied in the field of tissue engineering as three dimensional structures to organize cells and present stimuli to direct generation of a desired damaged tissue. In situ gelling scaffolds have attracted great attentions, as they are structurally similar to the extra cellular matrix (ECM). In the present work, attempts have been made to design and fabricate a new injectable and crosslinkable biphasic hydrogel based on partially hydrolyzed polyacrylamide (HPAM), chromium acetate as crosslink agent and nanocrystalline hydroxyapatite (nHAp) as reinforcing and bioactive agent for repair and regeneration of damaged cartilage. The distinct characteristic of HPAM is the presence of carboxylate anion groups on its backbone which allows to engineer the structure of the hydrogel for the desired bioactivity with appropriate cells differentiation towards both soft and hard (bone) tissues. The synthesized hydrogel exhibited bifunctional behavior which was derived by its biphasic structure in which one phase was loaded with nano hydroxyapatite to provide integration capability by subchondral bones and fix the hydrogel at cartilage defect without a need for suturing. The other phase differentiates the rabbit adipogenic mesenchymal stem cells (MSCs) towards soft tissue. Rheomechanical spectrometry (RMS) was employed to study the kinetic of the gelation including induction time and rate, as well as to measure the ultimate elastic modulus of the optimum crosslinked hydrogel. Surface tension measurement was also performed to tailor the surface characteristics of the gels. In vitro culturing of the cells inside the crosslinked hydrogel revealed high viability and high differentiation of the encapsulated rabbit stem cells, providing that the chromium acetate level was kept below 0.2 wt%. Based on the obtained results, the designed and fabricated biphasic hydrogel exhibited high potential as carrier for the stem cells for cartilage tissue engineering application with excellent injectability.
NASA Astrophysics Data System (ADS)
Khair, Ummul; Jabbar Lubis, Abdul; Agustha, Indra; Dharmawati; Zulfin, M.
2017-12-01
The current electricity needs is very primary, all objects including electronics require power, it encourages people not to be able to save electricity so the theft of electric power would be done. The use of ACS712 current sensor as the sensor with arduino uno would find out the power consumption continuously and prevent the theft of electricity because of the use of electricity which has been determined by PLN and the people fetl that it is not enough for every house, so the author made a tool for prevention of theft of electric power by using the arduino uno, buzzer, ACS712 current sensor, lcd, and relay then the power usage can be controlled according to the use to prevent the occurrence of theft of electricity so the use can be seen directly on the lcd 16x2and GSM modem to give information to employees of PLN so that it can reduceelectrical theft by the public.
Liu, Aiming; Yang, Julin; Gonzalez, Frank J; Cheng, Gary Q; Dai, Renke
2011-02-18
Gemfibrozil is the most myotoxic fibrate drug commonly used for dyslipidemia, but the mechanism is poorly understood. The current study revealed that gemfibrozil inhibits myoblast differentiation through the regulation of intracellular calcium ([Ca(2+)]i) as revealed in L6 myoblasts by use of laser scan confocal microscopy and flow cytometry using Fluo-4 AM as a probe. Gemfibrozil at 20-400 μM, could regulate [Ca(2+)]i in L6 cells in a biphasic manner, and sustained reduction was observed when the concentration reached 200 μM. Inhibition of L6 differentiation by gemfibrozil was concentration-dependent with maximal effect noted between 200 and 400 μM, as indicated by creatine kinase activities and the differentiation index, respectively. In differentiating L6 myoblasts, gemfibrozil at concentrations below 400 μM led to no significant signs of apoptosis or cytotoxicity, whereas differentiation, inhibited by 200 μM gemfibrozil, was only partially recovered. A good correlation was noted between gemfibrozil concentrations that regulate [Ca(2+)]i and inhibit L6 myoblasts differentiation, and both are within the range of total serum concentrations found in the clinic. These data suggest a potential pharmacodynamic effect of gemfibrozil on myogenesis as a warning sign, in addition to the complex pharmacokinetic interactions. It is also noteworthy that mobilization of [Ca(2+)]i by gemfibrozil may trigger complex biological responses besides myocyte differentiation. Information revealed in this study explores the mechanism of gemfibrozil-induced myotoxicity through the regulation of intracellular calcium.
Can Pupils Use Taught Analogies for Electric Current?
ERIC Educational Resources Information Center
Black, David; Solomon, Joan
1987-01-01
Discusses the use of analogies and models for teaching about electric current. Reports on a study in which one group of students used analogies to learn about electric current and one did not. Results indicate that, in this case, analogies did not play a significant role in student understanding. (TW)
Electric field distribution and current emission in a miniaturized geometrical diode
NASA Astrophysics Data System (ADS)
Lin, Jinpu; Wong, Patrick Y.; Yang, Penglu; Lau, Y. Y.; Tang, W.; Zhang, Peng
2017-06-01
We study the electric field distribution and current emission in a miniaturized geometrical diode. Using Schwarz-Christoffel transformation, we calculate exactly the electric field inside a finite vacuum cathode-anode (A-K) gap with a single trapezoid protrusion on one of the electrode surfaces. It is found that there is a strong field enhancement on both electrodes near the protrusion, when the ratio of the A-K gap distance to the protrusion height d /h <2. The calculations are spot checked against COMSOL simulations. We calculate the effective field enhancement factor for the field emission current, by integrating the local Fowler-Nordheim current density along the electrode surfaces. We systematically examine the electric field enhancement and the current rectification of the miniaturized geometrical diode for various geometric dimensions and applied electric fields.
Gotti, Valeria Bisinoto; Feitosa, Victor Pinheiro; Sauro, Salvatore; Correr-Sobrinho, Lourenço; Correr, Americo Bortolazzo
2014-10-01
To evaluate the effects of an electric current-assisted application on the bond strength and interfacial morphology of self-adhesive resin cements bonded to dentin. Indirect resin composite build-ups were luted to prepared dentin surfaces using two self-adhesive resin cements (RelyX Unicem and BisCem) and an ElectroBond device under 0, 20, or 40 μA electrical current. All specimens were submitted to microtensile bond strength test and to interfacial SEM analysis. The electric current-assisted application induced no change (P > 0.05) on the overall bond strength, although RelyX Unicem showed significantly higher bond strength (P < 0.05) than BisCem. Similarly, no differences were observed in terms of interfacial integrity when using the electrical current applicator.
Luxardi, Guillaume; Reid, Brian; Maillard, Pauline; Zhao, Min
2014-07-24
Breaching of the cell membrane is one of the earliest and most common causes of cell injury, tissue damage, and disease. If the compromise in cell membrane is not repaired quickly, irreversible cell damage, cell death and defective organ functions will result. It is therefore fundamentally important to efficiently repair damage to the cell membrane. While the molecular aspects of single cell wound healing are starting to be deciphered, its bio-physical counterpart has been poorly investigated. Using Xenopus laevis oocytes as a model for single cell wound healing, we describe the temporal and spatial dynamics of the wound electric current circuitry and the temporal dynamics of cell membrane potential variation. In addition, we show the role of calcium influx in controlling electric current circuitry and cell membrane potential variations. (i) Upon wounding a single cell: an inward electric current appears at the wound center while an outward electric current is observed at its sides, illustrating the wound electric current circuitry; the cell membrane is depolarized; calcium flows into the cell. (ii) During cell membrane re-sealing: the wound center current density is maintained for a few minutes before decreasing; the cell membrane gradually re-polarizes; calcium flow into the cell drops. (iii) In conclusion, calcium influx is required for the formation and maintenance of the wound electric current circuitry, for cell membrane re-polarization and for wound healing.
Fujisaki, Keisuke; Ikeda, Tomoyuki
2013-01-01
To connect different scale models in the multi-scale problem of microwave use, equivalent material constants were researched numerically by a three-dimensional electromagnetic field, taking into account eddy current and displacement current. A volume averaged method and a standing wave method were used to introduce the equivalent material constants; water particles and aluminum particles are used as composite materials. Consumed electrical power is used for the evaluation. Water particles have the same equivalent material constants for both methods; the same electrical power is obtained for both the precise model (micro-model) and the homogeneous model (macro-model). However, aluminum particles have dissimilar equivalent material constants for both methods; different electric power is obtained for both models. The varying electromagnetic phenomena are derived from the expression of eddy current. For small electrical conductivity such as water, the macro-current which flows in the macro-model and the micro-current which flows in the micro-model express the same electromagnetic phenomena. However, for large electrical conductivity such as aluminum, the macro-current and micro-current express different electromagnetic phenomena. The eddy current which is observed in the micro-model is not expressed by the macro-model. Therefore, the equivalent material constant derived from the volume averaged method and the standing wave method is applicable to water with a small electrical conductivity, although not applicable to aluminum with a large electrical conductivity. PMID:28788395
Kaya, Ahmet; Onac, Canan; Alpoguz, H Korkmaz
2016-11-05
In this study, the use of polymer inclusion membrane under constant electric current for the removal of Cr(VI) from water has investigated for the first time. Transport of Cr(VI) is performed by an electric current from the donor phase to the acceptor phase with a constant electric current of 0.5A. The optimized membrane includes of 12.1% 2-nitrophenyl octyl ether (2-NPOE), 77.6% cellulose triacetate (CTA), 10.3% tricapryl-methylammonium chloride (Aliquat 336) as a carrier. We tested the applicability of the selected membrane for Cr(VI) removal in real environmental water samples and evaluated its reusability. Electro membrane experiments were carried out under various parameters, such as the effect of electro membrane voltage at constant DC electric current; electro membrane current at constant voltage, acceptor phase pH, and stable electro membrane; and a comparison of polymer inclusion membrane and electro membrane transport studies. The Cr(VI) transport was achieved 98.33% after 40min under optimized conditions. An alternative method has been employed that eliminates the changing of electrical current by the application of constant electric current for higher reproducibility of electro membrane extraction experiments by combining the excellent selective and long-term use features of polymer inclusion membrane. Copyright © 2016 Elsevier B.V. All rights reserved.
Transport of neutral solute across articular cartilage: the role of zonal diffusivities.
Arbabi, V; Pouran, B; Weinans, H; Zadpoor, A A
2015-07-01
Transport of solutes through diffusion is an important metabolic mechanism for the avascular cartilage tissue. Three types of interconnected physical phenomena, namely mechanical, electrical, and chemical, are all involved in the physics of transport in cartilage. In this study, we use a carefully designed experimental-computational setup to separate the effects of mechanical and chemical factors from those of electrical charges. Axial diffusion of a neutral solute Iodixanol into cartilage was monitored using calibrated microcomputed tomography micro-CT images for up to 48 hr. A biphasic-solute computational model was fitted to the experimental data to determine the diffusion coefficients of cartilage. Cartilage was modeled either using one single diffusion coefficient (single-zone model) or using three diffusion coefficients corresponding to superficial, middle, and deep cartilage zones (multizone model). It was observed that the single-zone model cannot capture the entire concentration-time curve and under-predicts the near-equilibrium concentration values, whereas the multizone model could very well match the experimental data. The diffusion coefficient of the superficial zone was found to be at least one order of magnitude larger than that of the middle zone. Since neutral solutes were used, glycosaminoglycan (GAG) content cannot be the primary reason behind such large differences between the diffusion coefficients of the different cartilage zones. It is therefore concluded that other features of the different cartilage zones such as water content and the organization (orientation) of collagen fibers may be enough to cause large differences in diffusion coefficients through the cartilage thickness.
Electrical receptive fields of retinal ganglion cells: Influence of presynaptic neurons
Apollo, Nicholas V.; Garrett, David J.
2018-01-01
Implantable retinal stimulators activate surviving neurons to restore a sense of vision in people who have lost their photoreceptors through degenerative diseases. Complex spatial and temporal interactions occur in the retina during multi-electrode stimulation. Due to these complexities, most existing implants activate only a few electrodes at a time, limiting the repertoire of available stimulation patterns. Measuring the spatiotemporal interactions between electrodes and retinal cells, and incorporating them into a model may lead to improved stimulation algorithms that exploit the interactions. Here, we present a computational model that accurately predicts both the spatial and temporal nonlinear interactions of multi-electrode stimulation of rat retinal ganglion cells (RGCs). The model was verified using in vitro recordings of ON, OFF, and ON-OFF RGCs in response to subretinal multi-electrode stimulation with biphasic pulses at three stimulation frequencies (10, 20, 30 Hz). The model gives an estimate of each cell’s spatiotemporal electrical receptive fields (ERFs); i.e., the pattern of stimulation leading to excitation or suppression in the neuron. All cells had excitatory ERFs and many also had suppressive sub-regions of their ERFs. We show that the nonlinearities in observed responses arise largely from activation of presynaptic interneurons. When synaptic transmission was blocked, the number of sub-regions of the ERF was reduced, usually to a single excitatory ERF. This suggests that direct cell activation can be modeled accurately by a one-dimensional model with linear interactions between electrodes, whereas indirect stimulation due to summated presynaptic responses is nonlinear. PMID:29432411
Method and system for early detection of incipient faults in electric motors
Parlos, Alexander G; Kim, Kyusung
2003-07-08
A method and system for early detection of incipient faults in an electric motor are disclosed. First, current and voltage values for one or more phases of the electric motor are measured during motor operations. A set of current predictions is then determined via a neural network-based current predictor based on the measured voltage values and an estimate of motor speed values of the electric motor. Next, a set of residuals is generated by combining the set of current predictions with the measured current values. A set of fault indicators is subsequently computed from the set of residuals and the measured current values. Finally, a determination is made as to whether or not there is an incipient electrical, mechanical, and/or electromechanical fault occurring based on the comparison result of the set of fault indicators and a set of predetermined baseline values.
Self-triggering superconducting fault current limiter
Yuan, Xing [Albany, NY; Tekletsadik, Kasegn [Rexford, NY
2008-10-21
A modular and scaleable Matrix Fault Current Limiter (MFCL) that functions as a "variable impedance" device in an electric power network, using components made of superconducting and non-superconducting electrically conductive materials. The matrix fault current limiter comprises a fault current limiter module that includes a superconductor which is electrically coupled in parallel with a trigger coil, wherein the trigger coil is magnetically coupled to the superconductor. The current surge doing a fault within the electrical power network will cause the superconductor to transition to its resistive state and also generate a uniform magnetic field in the trigger coil and simultaneously limit the voltage developed across the superconductor. This results in fast and uniform quenching of the superconductors, significantly reduces the burnout risk associated with non-uniformity often existing within the volume of superconductor materials. The fault current limiter modules may be electrically coupled together to form various "n" (rows).times."m" (columns) matrix configurations.
Electric field induced spin-polarized current
Murakami, Shuichi; Nagaosa, Naoto; Zhang, Shoucheng
2006-05-02
A device and a method for generating an electric-field-induced spin current are disclosed. A highly spin-polarized electric current is generated using a semiconductor structure and an applied electric field across the semiconductor structure. The semiconductor structure can be a hole-doped semiconductor having finite or zero bandgap or an undoped semiconductor of zero bandgap. In one embodiment, a device for injecting spin-polarized current into a current output terminal includes a semiconductor structure including first and second electrodes, along a first axis, receiving an applied electric field and a third electrode, along a direction perpendicular to the first axis, providing the spin-polarized current. The semiconductor structure includes a semiconductor material whose spin orbit coupling energy is greater than room temperature (300 Kelvin) times the Boltzmann constant. In one embodiment, the semiconductor structure is a hole-doped semiconductor structure, such as a p-type GaAs semiconductor layer.
NASA Technical Reports Server (NTRS)
Cela, Carlos J.; Loizos, Kyle; Lazzi, Gianluca; Hamilton, Douglas; Lee, Raphael C.
2011-01-01
Recent research has shown that space explorers engaged in Extra Vehicular Activities (EVAs) may be exposed, under certain conditions, to undesired electrical currents. This work focuses on determining whether these undesired induced electrical currents could be responsible for involuntary neuromuscular activity in the subjects, possibly caused by either large diameter peripheral nerve activation or reflex activity from cutaneous afferent stimulation. An efficient multiresolution variant of the admittance method along with a millimeter-resolution model of a male human body were used to calculate induced electric fields, resistance between contact electrodes used to simulate the potential exposure condition, and currents induced in the human body model. Results show that, under realistic exposure conditions using a 15V source, current density magnitudes and total current injected are well above previously reported startle reaction thresholds. This indicates that, under the considered conditions, the subjects could experience involuntary motor response.
Compact, Lightweight Electromagnetic Pump for Liquid Metal
NASA Technical Reports Server (NTRS)
Godfroy, Thomas; Palzin, Kurt
2010-01-01
A proposed direct-current electromagnetic pump for circulating a molten alkali metal alloy would be smaller and lighter and would demand less input power, relative to currently available pumps of this type. (Molten alkali metals are used as heat-transfer fluids in high-temperature stages of some nuclear reactors.) The principle of operation of this or any such pump involves exploitation of the electrical conductivity of the molten metal: An electric current is made to pass through the liquid metal along an axis perpendicular to the longitudinal axis of the flow channel, and a magnetic field perpendicular to both the longitudinal axis and the electric current is superimposed on the flowchannel region containing the electric current. The interaction between the electric current and the magnetic field produces the pumping force along the longitudinal axis. The advantages of the proposed pump over other such pumps would accrue from design features that address overlapping thermal and magnetic issues.
NASA Astrophysics Data System (ADS)
Kikuchi, Takashi; Hashimoto, Kumiko K.
2016-12-01
The solar wind energy is transmitted to low latitude ionosphere in a current circuit from a dynamo in the magnetosphere to the equatorial ionosphere via the polar ionosphere. During the substorm growth phase and storm main phase, the dawn-to-dusk convection electric field is intensified by the southward interplanetary magnetic field (IMF), driving the ionospheric DP2 currents composed of two-cell Hall current vortices in high latitudes and Pedersen currents amplified at the dayside equator (EEJ). The EEJ-Region-1 field-aligned current (R1 FAC) circuit is completed via the Pedersen currents in midlatitude. On the other hand, the shielding electric field and the Region-2 FACs develop in the inner magnetosphere, tending to cancel the convection electric field at the mid-equatorial latitudes. The shielding often causes overshielding when the convection electric field reduces substantially and the EEJ is overcome by the counter electrojet (CEJ), leading to that even the quasi-periodic DP2 fluctuations are contributed by the overshielding as being composed of the EEJ and CEJ. The overshielding develop significantly during substorms and storms, leading to that the mid and low latitude ionosphere is under strong influence of the overshielding as well as the convection electric fields. The electric fields on the day- and night sides are in opposite direction to each other, but the electric fields in the evening are anomalously enhanced in the same direction as in the day. The evening anomaly is a unique feature of the electric potential distribution in the global ionosphere. DP2-type electric field and currents develop during the transient/short-term geomagnetic disturbances like the geomagnetic sudden commencements (SC), which appear simultaneously at high latitude and equator within the temporal resolution of 10 s. Using the SC, we can confirm that the electric potential and currents are transmitted near-instantaneously to low latitude ionosphere on both day- and night sides, which is explained by means of the light speed propagation of the TM0 mode waves in the Earth-ionosphere waveguide.
Lee, Won Hee; Lisanby, Sarah H; Laine, Andrew F; Peterchev, Angel V
2013-01-01
This study examines the characteristics of the electric field induced in the brain by electroconvulsive therapy (ECT) with individualized current amplitude. The electric field induced by bilateral (BL), bifrontal (BF), right unilateral (RUL), and frontomedial (FM) ECT electrode configurations was computed in anatomically realistic finite element models of four nonhuman primates (NHPs). We generated maps of the electric field strength relative to an empirical neural activation threshold, and determined the stimulation strength and focality at fixed current amplitude and at individualized current amplitudes corresponding to seizure threshold (ST) measured in the anesthetized NHPs. The results show less variation in brain volume stimulated above threshold with individualized current amplitudes (16-36%) compared to fixed current amplitude (30-62%). Further, the stimulated brain volume at amplitude-titrated ST is substantially lower than that for ECT with conventional fixed current amplitudes. Thus individualizing the ECT stimulus current could compensate for individual anatomical variability and result in more focal and uniform electric field exposure across different subjects compared to the standard clinical practice of using high, fixed current for all patients.
Conduction of Electrical Current to and Through the Human Body: A Review
Fish, Raymond M.; Geddes, Leslie A.
2009-01-01
Objective: The objective of this article is to explain ways in which electric current is conducted to and through the human body and how this influences the nature of injuries. Methods: This multidisciplinary topic is explained by first reviewing electrical and pathophysiological principles. There are discussions of how electric current is conducted through the body via air, water, earth, and man-made conductive materials. There are also discussions of skin resistance (impedance), internal body resistance, current path through the body, the let-go phenomenon, skin breakdown, electrical stimulation of skeletal muscles and nerves, cardiac dysrhythmias and arrest, and electric shock drowning. After the review of basic principles, a number of clinically relevant examples of accident mechanisms and their medical effects are discussed. Topics related to high-voltage burns include ground faults, ground potential gradient, step and touch potentials, arcs, and lightning. Results: The practicing physician will have a better understanding of electrical mechanisms of injury and their expected clinical effects. Conclusions: There are a variety of types of electrical contact, each with important characteristics. Understanding how electric current reaches and travels through the body can help the clinician understand how and why specific accidents occur and what medical and surgical problems may be expected. PMID:19907637
NASA Astrophysics Data System (ADS)
Lee, Mun Bae; Kwon, Oh-In
2018-04-01
Electrical brain stimulation (EBS) is an invasive electrotherapy and technique used in brain neurological disorders through direct or indirect stimulation using a small electric current. EBS has relied on computational modeling to achieve optimal stimulation effects and investigate the internal activations. Magnetic resonance diffusion weighted imaging (DWI) is commonly useful for diagnosis and investigation of tissue functions in various organs. The apparent diffusion coefficient (ADC) measures the intensity of water diffusion within biological tissues using DWI. By measuring trace ADC and magnetic flux density induced by the EBS, we propose a method to extract electrical properties including the effective extracellular ion-concentration (EEIC) and the apparent isotropic conductivity without any auxiliary additional current injection. First, the internal current density due to EBS is recovered using the measured one component of magnetic flux density. We update the EEIC by introducing a repetitive scheme called the diffusion weighting J-substitution algorithm using the recovered current density and the trace ADC. To verify the proposed method, we study an anesthetized canine brain to visualize electrical properties including electrical current density, effective extracellular ion-concentration, and effective isotropic conductivity by applying electrical stimulation of the brain.
NASA Astrophysics Data System (ADS)
Hart, Robert James
2011-12-01
The use of composite materials in aerospace, electronics, and wind industries has become increasingly common, and these composite components are required to carry mechanical, electrical, and thermal loads simultaneously. A unique property of carbon fiber composites is that when an electric current is applied to the specimen, the mechanical strength of the specimen increases. Previous studies have shown that the higher the electric current, the greater the increase in impact strength. However, as current passes through the composite, heat is generated through Joule heating. This Joule heating can cause degradation of the composite and thus a loss in strength. In order to minimize the negative effects of heating, it is desired to apply a very high current for a very short duration of time. This thesis investigated the material responses of carbon fiber composite plates subjected to electrical current pulse loads of up to 1700 Amps. For 32 ply unidirectional IM7/977-3 specimens, the peak impact load and absorbed energy increased slightly with the addition of a current pulse at the time of an impact event. In 16 ply cross-ply IM7/977-2 specimens, the addition of the current pulse caused detrimental effects due to electrical arcing at the interface between the composite and electrodes. Further refinement of the experimental setup should minimize the risk of electrical arcing and should better elucidate the effects of a current pulse on the impact strength of the specimens.
Nalladega, V; Sathish, S; Jata, K V; Blodgett, M P
2008-07-01
We present a high resolution electrical conductivity imaging technique based on the principles of eddy current and atomic force microscopy (AFM). An electromagnetic coil is used to generate eddy currents in an electrically conducting material. The eddy currents generated in the conducting sample are detected and measured with a magnetic tip attached to a flexible cantilever of an AFM. The eddy current generation and its interaction with the magnetic tip cantilever are theoretically modeled using monopole approximation. The model is used to estimate the eddy current force between the magnetic tip and the electrically conducting sample. The theoretical model is also used to choose a magnetic tip-cantilever system with appropriate magnetic field and spring constant to facilitate the design of a high resolution electrical conductivity imaging system. The force between the tip and the sample due to eddy currents is measured as a function of the separation distance and compared to the model in a single crystal copper. Images of electrical conductivity variations in a polycrystalline dual phase titanium alloy (Ti-6Al-4V) sample are obtained by scanning the magnetic tip-cantilever held at a standoff distance from the sample surface. The contrast in the image is explained based on the electrical conductivity and eddy current force between the magnetic tip and the sample. The spatial resolution of the eddy current imaging system is determined by imaging carbon nanofibers in a polymer matrix. The advantages, limitations, and applications of the technique are discussed.
NASA Astrophysics Data System (ADS)
Herradi, S.; Bouhazma, S.; Khaldi, M.; El Hachadi, A.; El Bali, B.; Lachkar, M.
2018-03-01
A facile sol-gel method was used to synthesize either hydroxyapatite (HA) or beta-tricalcium phosphate (β-TCP) as the major phase. Herein, we report, on the one hand, the effect of a very low maturation temperature on the final powder composition after drying step, and on the other hand, we compare the effect of calcination of this powder by microwave or electric furnace. It was found that microwave heating has led to the formation of hydroxyapatite phase upon 180°C for 20 minutes, however, XRD patterns show that the powder becomes less crystallized upon 220°C and amorphous upon 230°C. In contrast, furnace heating at 600°C and 700°C converts the as-synthesized powder to β-TCP as the major phase together with HA as the minor phase. This work shows the possibility to obtain the as-prepared BCP at much lower maturation temperature; it also gives an insight into the role, of either microwave or conventional heating, in controlling the ratio between HA and β-TCP in the sintered powder.