Sample records for biphasic thin coatings

  1. Surface characterization of colloidal-sol gel derived biphasic HA/FA coatings.

    PubMed

    Cheng, Kui; Zhang, Sam; Weng, Wenjian

    2007-10-01

    Hydroxyapatite (HA) powders are ultrasonically dispersed in the precursor of fluoridated hydroxyapatite (FHA) or fluorapatite (FA) to form a "colloidal sol". HA/FA biphasic coatings are prepared on Ti6Al4V substrate via dip coating, 150 degrees C drying and 600 degrees C firing. The coatings show homogenous distribution of HA particles in the FA matrix. The relative phase proportion can be tailored by the amount of HA in the colloidal sol. The surfaces of the coatings consist of two kinds of distinct domains: HA and FA, resulting in a compositionally heterogeneous surface. The biphasic coating surface becomes increasingly rougher with HA powders, from around 200 nm of pure FA to 400-600 nm in Ra of biphasic coatings. The rougher biphasic HA/FA surfaces with chemically controllable domains will favor cell attachment, apatite layer deposition and necessary dissolution in clinical applications.

  2. Laser engineered multilayer coating of biphasic calcium phosphate/titanium nanocomposite on metal substrates.

    PubMed

    Zhang, Martin Yi; Ye, Chang; Erasquin, Uriel Joseph; Huynh, Toan; Cai, Chengzhi; Cheng, Gary J

    2011-02-01

    In this work, laser coating of biphasic calcium phosphate/titanium (BCP/Ti) nanocomposite on Ti-6Al-4 V substrates was developed. A continuous wave neodymium-doped yttrium aluminium garnet (Nd:YAG) laser was used to form a robust multilayer of BCP/Ti nanocomposite starting from hydroxyapatite and titanium nanoparticles. In this process, low power coating is realized because of the strong laser-nanoparticle interaction and good sinterability of nanosized titanium. To guide the optimization of laser processing conditions for the coating process, a multiphysics model coupling electromagnetic module with heat transfer module was developed. This model was validated by laser coating experiments. Important features of the coated samples, including microstructures, chemical compositions, and interfacial bonding strength, were characterized. We found that a multilayer of BCP, consisting of 72% hydroxyapatite (HA) and 28% beta-tricalcium phosphate (β-TCP), and titanium nanocomposite was formed on Ti-6Al-4 V substrates. Significantly, the coating/substrate interfacial bonding strength was found to be two times higher than that of the commercial plasma sprayed coatings. Preliminary cell culture studies showed that the resultant BCP/Ti nanocomposite coating supported the adhesion and proliferation of osteoblast-like UMR-106 cells.

  3. Thin film ion conducting coating

    DOEpatents

    Goldner, Ronald B.; Haas, Terry; Wong, Kwok-Keung; Seward, George

    1989-01-01

    Durable thin film ion conducting coatings are formed on a transparent glass substrate by the controlled deposition of the mixed oxides of lithium:tantalum or lithium:niobium. The coatings provide durable ion transport sources for thin film solid state storage batteries and electrochromic energy conservation devices.

  4. Positron lifetime spectroscopy in thin polymer coatings

    NASA Technical Reports Server (NTRS)

    Singh, Jag J.; Eftekhari, Abe; Sprinkle, Danny R.

    1990-01-01

    Polymer coatings are finding increasing applications in aerospace industry. The effectiveness of coatings depends strongly on their microstructure and adhesion to the substrates. Currently, there is no technique for adequately monitoring the quality of the coatings. We adapted positron lifetime spectroscopy for the investigation of thin coatings. Results of measurements on 0.001-in-thick polyurethane coatings on aluminum and steel substrates and thicker (0.080-in.) self-standing polyurethane discs were compared. In all cases, we find positron lifetime groups centered around 560 ps, corresponding to the presence of 0.9 A exp 3 free volume cells. However, the number of free volume cells in thin coatings is larger, suggesting that the morphology of thin coatings is different from that of bulk polyurethane. These results and their structural implications are discussed.

  5. Analysis of Hard Thin Film Coating

    NASA Technical Reports Server (NTRS)

    Shen, Dashen

    1998-01-01

    Marshall Space Flight Center (MSFC) is interested in developing hard thin film coating for bearings. The wearing of the bearing is an important problem for space flight engine. Hard thin film coating can drastically improve the surface of the bearing and improve the wear-endurance of the bearing. However, many fundamental problems in surface physics, plasma deposition, etc, need further research. The approach is using Electron Cyclotron Resonance Chemical Vapor Deposition (ECRCVD) to deposit hard thin film on stainless steel bearing. The thin films in consideration include SiC, SiN and other materials. An ECRCVD deposition system is being assembled at MSFC.

  6. Analysis of Hard Thin Film Coating

    NASA Technical Reports Server (NTRS)

    Shen, Dashen

    1998-01-01

    MSFC is interested in developing hard thin film coating for bearings. The wearing of the bearing is an important problem for space flight engine. Hard thin film coating can drastically improve the surface of the bearing and improve the wear-endurance of the bearing. However, many fundamental problems in surface physics, plasma deposition, etc, need further research. The approach is using electron cyclotron resonance chemical vapor deposition (ECRCVD) to deposit hard thin film an stainless steel bearing. The thin films in consideration include SiC, SiN and other materials. An ECRCVD deposition system is being assembled at MSFC.

  7. Tailoring Thin Film-Lacquer Coatings for Space Application

    NASA Technical Reports Server (NTRS)

    Peters, Wanda C.; Harris, George; Miller, Grace; Petro, John

    1998-01-01

    Thin film coatings have the capability of obtaining a wide range of thermal radiative properties, but the development of thin film coatings can sometimes be difficult and costly when trying to achieve highly specular surfaces. Given any space mission's thermal control requirements, there is often a need for a variation of solar absorptance (Alpha(s)), emittance (epsilon) and/or highly specular surfaces. The utilization of thin film coatings is one process of choice for meeting challenging thermal control requirements because of its ability to provide a wide variety of Alpha(s)/epsilon ratios. Thin film coatings' radiative properties can be tailored to meet specific thermal control requirements through the use of different metals and the variation of dielectric layer thickness. Surface coatings can be spectrally selective to enhance radiative coupling and decoupling. The application of lacquer to a surface can also provide suitable specularity for thin film application without the cost and difficulty associated with polishing.

  8. Tailoring Thin Film-Lacquer Coatings for Space Applications

    NASA Technical Reports Server (NTRS)

    Peters, Wanda C.; Harris, George; Miller, Grace; Petro, John

    1998-01-01

    Thin film coatings have the capability of obtaining a wide range of thermal radiative properties, but the development of thin film coatings can sometimes be difficult and costly when trying to achieve highly specular surfaces. Given any space mission's then-nal control requirements, there is often a need for a variation of solar absorptance (alpha(sub s)), emittance (epsilon) and/or highly specular surfaces. The utilization of thin film coatings is one process of choice for meeting challenging thermal control requirements because of its ability to provide a wide variety of alpha(sub s)/epsilon ratios. Thin film coatings' radiative properties can be tailored to meet specific thermal control requirements through the use of different metals and the variation of dielectric layer thickness. Surface coatings can be spectrally selective to enhance radiative coupling and decoupling. The application of lacquer to a surface can also provide suitable specularity for thin film application without the cost and difficulty associated with polishing.

  9. Thin film-coated polymer webs

    DOEpatents

    Wenz, Robert P.; Weber, Michael F.; Arudi, Ravindra L.

    1992-02-04

    The present invention relates to thin film-coated polymer webs, and more particularly to thin film electronic devices supported upon a polymer web, wherein the polymer web is treated with a purifying amount of electron beam radiation.

  10. Method and apparatus for coating thin foil with a boron coating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lacy, Jeffrey L.

    An apparatus and a process is disclosed for applying a boron coating to a thin foil. Preferably, the process is a continuous, in-line process for applying a coating to a thin foil comprising wrapping the foil around a rotating and translating mandrel, cleaning the foil with glow discharge in an etching chamber as the mandrel with the foil moves through the chamber, sputtering the foil with boron carbide in a sputtering chamber as the mandrel moves through the sputtering chamber, and unwinding the foil off the mandrel after it has been coated. The apparatus for applying a coating to amore » thin foil comprises an elongated mandrel. Foil preferably passes from a reel to the mandrel by passing through a seal near the initial portion of an etching chamber. The mandrel has a translation drive system for moving the mandrel forward and a rotational drive system for rotating mandrel as it moves forward. The etching chamber utilizes glow discharge on a surface of the foil as the mandrel moves through said etching chamber. A sputtering chamber, downstream of the etching chamber, applies a thin layer comprising boron onto the surface of the foil as said mandrel moves through said sputtering chamber. Preferably, the coated foil passes from the mandrel to a second reel by passing through a seal near the terminal portion of the sputtering chamber.« less

  11. Positron lifetime spectroscopy for investigation of thin polymer coatings

    NASA Technical Reports Server (NTRS)

    Singh, Jag J.; Sprinkle, Danny R.; Eftekhari, Abe

    1993-01-01

    In the aerospace industry, applications for polymer coatings are increasing. They are now used for thermal control on aerospace structures and for protective insulating layers on optical and microelectronic components. However, the effectiveness of polymer coatings depends strongly on their microstructure and adhesion to the substrates. Currently, no technique exists to adequately monitor the quality of these coatings. We have adapted positron lifetime spectroscopy to investigate the quality of thin coatings. Results of measurements on thin (25-micron) polyurethane coatings on aluminum and steel substrates have been compared with measurements on thicker (0.2-cm) self-standing polyurethane discs. In all cases, we find positron lifetime groups centered around 560 psec, which corresponds to the presence of 0.9-A(exp 3) free-volume cells. However, the number of these free-volume cells in thin coatings is larger than in thick discs. This suggests that some of these cells may be located in the interfacial regions between the coatings and the substrates. These results and their structural implications are discussed in this report.

  12. The Effect of Reduced Graphene Oxide-Coated Biphasic Calcium Phosphate Bone Graft Material on Osteogenesis.

    PubMed

    Kim, Jeong-Woo; Shin, Yong Cheol; Lee, Jin-Ju; Bae, Eun-Bin; Jeon, Young-Chan; Jeong, Chang-Mo; Yun, Mi-Jung; Lee, So-Hyoun; Han, Dong-Wook; Huh, Jung-Bo

    2017-08-08

    This study was conducted to evaluate the effect of biphasic calcium phosphate (BCP) coated with reduced graphene oxide (rGO) as bone graft materials on bone regeneration. The rGO-coated BCP bone graft material was fabricatied by mixing rGO and BCP at various concentrations. The surface charge of rGO-coated BCP was measured to be -14.43 mV, which formed a static electrostatic interaction. Cell viabilities were significantly diminished at higher concentrations of ≥100 μg/mL. The calvarial defects of 48 rats were implanted rGO-coated BCPs at a weight ratio of 2:1000 (rGO2), 4:1000 (rGO4), and 10:1000 (rGO10), repectively. BCP was used as a control group. The micro-CT and histological analysis were performed to evaluate new bone formation at 2 and 8 weeks after surgery. The results showed that the new bone volume (mm³) was significantly higher in the experimental groups than in the control group. Histological analysis showed that new bone areas (%) were significantly higher in the rGO2 and rGO10 than in the control, and significantly higher in rGO4 than in the rGO2 and rGO10. Conclusively, the rGO-coated BCP was found to be effective on osteogenesis and the concentration of the composite was an important factor.

  13. Effect of nano-hydroxyapatite coating on the osteoinductivity of porous biphasic calcium phosphate ceramics.

    PubMed

    Hu, Jianzhong; Zhou, Yongchun; Huang, Lihua; Liu, Jun; Lu, Hongbin

    2014-04-01

    Porous biphasic calcium phosphate (BCP) ceramics exhibit good biocompatibility and bone conduction but are not inherently osteoinductive. To overcome this disadvantage, we coated conventional porous BCP ceramics with nano-hydroxyapatite (nHA). nHA was chosen as a coating material due to its high osteoinductive potential. We used a hydrothermal deposition method to coat conventional porous BCP ceramics with nHA and assessed the effects of the coating on the physical and mechanical properties of the underlying BCP. Next, its effects on mesenchymal stem cell (MSC) attachment, proliferation, viability, and osteogenic differentiation were investigated. nHA formed a deposited layer on the BCP surface, and synthesized nHA had a rod-like shape with lengths ranging from ~50-200 nm and diameters from ~15-30 mm. The nHA coating did not significantly affect the density, porosity, flexural strength, or compressive strength of the underlying BCP (P > 0.1). Scanning electron microscopy showed MSC attachment to the scaffolds, with a healthy morphology and anchorage to nHA crystals via cytoplasmic processes. The densities of MSCs attached on BCP and nHA-coated BCP scaffolds were 62 ± 26 cells/mm2 and 63 ± 27 cells/mm2 (P > 0.1), respectively, after 1 day and 415 ± 62 cells/mm2 and 541 ± 35 cells/mm2 (P < 0.05) respectively, after 14 days. According to an MTT assay, MSC viability was higher on nHA-coated BCP scaffolds than on BCP scaffolds (P < 0.05). In addition, MSCs on nHA-coated BCP scaffolds produced more alkaline phosphatase, collagen type I, and osteocalcin than MSCs on BCP scaffolds (P < 0.05). Our results demonstrate that BCP scaffolds coated with nHA were more conducive for MSC adhesion, proliferation, and osteogenic differentiation than conventional, uncoated BCP scaffolds, indicating that nHA coating can enhance the osteoinductive potential of BCP ceramics, making this material more suitable for applications in bone tissue

  14. Coating Thin Mirror Segments for Lightweight X-ray Optics

    NASA Technical Reports Server (NTRS)

    Chan, Kai-Wing; Sharpe, Marton V.; Zhang, William; Kolosc, Linette; Hong, Melinda; McClelland, Ryan; Hohl, Bruce R.; Saha, Timo; Mazzarellam, James

    2013-01-01

    Next generations lightweight, high resolution, high throughput optics for x-ray astronomy requires integration of very thin mirror segments into a lightweight telescope housing without distortion. Thin glass substrates with linear dimension of 200 mm and thickness as small as 0.4 mm can now be fabricated to a precision of a few arc-seconds for grazing incidence optics. Subsequent implementation requires a distortion-free deposition of metals such as iridium or platinum. These depositions, however, generally have high coating stresses that cause mirror distortion. In this paper, we discuss the coating stress on these thin glass mirrors and the effort to eliminate their induced distortion. It is shown that balancing the coating distortion either by coating films with tensile and compressive stresses, or on both sides of the mirrors is not sufficient. Heating the mirror in a moderately high temperature turns out to relax the coated films reasonably well to a precision of about a second of arc and therefore provide a practical solution to the coating problem.

  15. The Effect of Reduced Graphene Oxide-Coated Biphasic Calcium Phosphate Bone Graft Material on Osteogenesis

    PubMed Central

    Kim, Jeong-Woo; Lee, Jin-Ju; Bae, Eun-Bin; Jeon, Young-Chan; Jeong, Chang-Mo; Yun, Mi-Jung; Lee, So-Hyoun; Huh, Jung-Bo

    2017-01-01

    This study was conducted to evaluate the effect of biphasic calcium phosphate (BCP) coated with reduced graphene oxide (rGO) as bone graft materials on bone regeneration. The rGO-coated BCP bone graft material was fabricatied by mixing rGO and BCP at various concentrations. The surface charge of rGO-coated BCP was measured to be −14.43 mV, which formed a static electrostatic interaction. Cell viabilities were significantly diminished at higher concentrations of ≥100 μg/mL. The calvarial defects of 48 rats were implanted rGO-coated BCPs at a weight ratio of 2:1000 (rGO2), 4:1000 (rGO4), and 10:1000 (rGO10), repectively. BCP was used as a control group. The micro-CT and histological analysis were performed to evaluate new bone formation at 2 and 8 weeks after surgery. The results showed that the new bone volume (mm3) was significantly higher in the experimental groups than in the control group. Histological analysis showed that new bone areas (%) were significantly higher in the rGO2 and rGO10 than in the control, and significantly higher in rGO4 than in the rGO2 and rGO10. Conclusively, the rGO-coated BCP was found to be effective on osteogenesis and the concentration of the composite was an important factor. PMID:28786931

  16. Lithium battery electrodes with ultra-thin alumina coatings

    DOEpatents

    Se-Hee, Lee; George, Steven M.; Cavanagh, Andrew S.; Yoon Seok, Jung; Dillon, Anne C.

    2015-11-24

    Electrodes for lithium batteries are coated via an atomic layer deposition process. The coatings can be applied to the assembled electrodes, or in some cases to particles of electrode material prior to assembling the particles into an electrode. The coatings can be as thin as 2 .ANG.ngstroms thick. The coating provides for a stable electrode. Batteries containing the electrodes tend to exhibit high cycling capacities.

  17. Effect of nano-hydroxyapatite coating on the osteoinductivity of porous biphasic calcium phosphate ceramics

    PubMed Central

    2014-01-01

    Background Porous biphasic calcium phosphate (BCP) ceramics exhibit good biocompatibility and bone conduction but are not inherently osteoinductive. To overcome this disadvantage, we coated conventional porous BCP ceramics with nano-hydroxyapatite (nHA). nHA was chosen as a coating material due to its high osteoinductive potential. Methods We used a hydrothermal deposition method to coat conventional porous BCP ceramics with nHA and assessed the effects of the coating on the physical and mechanical properties of the underlying BCP. Next, its effects on mesenchymal stem cell (MSC) attachment, proliferation, viability, and osteogenic differentiation were investigated. Results nHA formed a deposited layer on the BCP surface, and synthesized nHA had a rod-like shape with lengths ranging from ~50–200 nm and diameters from ~15–30 mm. The nHA coating did not significantly affect the density, porosity, flexural strength, or compressive strength of the underlying BCP (P > 0.1). Scanning electron microscopy showed MSC attachment to the scaffolds, with a healthy morphology and anchorage to nHA crystals via cytoplasmic processes. The densities of MSCs attached on BCP and nHA-coated BCP scaffolds were 62 ± 26 cells/mm2 and 63 ± 27 cells/mm2 (P > 0.1), respectively, after 1 day and 415 ± 62 cells/mm2 and 541 ± 35 cells/mm2 (P < 0.05) respectively, after 14 days. According to an MTT assay, MSC viability was higher on nHA-coated BCP scaffolds than on BCP scaffolds (P < 0.05). In addition, MSCs on nHA-coated BCP scaffolds produced more alkaline phosphatase, collagen type I, and osteocalcin than MSCs on BCP scaffolds (P < 0.05). Conclusions Our results demonstrate that BCP scaffolds coated with nHA were more conducive for MSC adhesion, proliferation, and osteogenic differentiation than conventional, uncoated BCP scaffolds, indicating that nHA coating can enhance the osteoinductive potential of BCP ceramics, making this material more

  18. Magnetoelastic sensor for characterizing properties of thin-film/coatings

    NASA Technical Reports Server (NTRS)

    Bachas, Leonidas G. (Inventor); Barrett, Gary (Inventor); Grimes, Craig A. (Inventor); Kouzoudis, Dimitris (Inventor); Schmidt, Stefan (Inventor)

    2004-01-01

    An apparatus for determining elasticity characteristics of a thin-film layer. The apparatus comprises a sensor element having a base magnetostrictive element at least one surface of which is at least partially coated with the thin-film layer. The thin-film layer may be of a variety of materials (having a synthetic and/or bio-component) in a state or form capable of being deposited, manually or otherwise, on the base element surface, such as by way of eye-dropper, melting, dripping, brushing, sputtering, spraying, etching, evaporation, dip-coating, laminating, etc. Among suitable thin-film layers for the sensor element of the invention are fluent bio-substances, thin-film deposits used in manufacturing processes, polymeric coatings, paint, an adhesive, and so on. A receiver, preferably remotely located, is used to measure a plurality of values for magneto-elastic emission intensity of the sensor element in either characterization: (a) the measure of the plurality of values is used to identify a magneto-elastic resonant frequency value for the sensor element; and (b) the measure of the plurality of successive values is done at a preselected magneto-elastic frequency.

  19. Ultra thin metallic coatings to control near field radiative heat transfer

    NASA Astrophysics Data System (ADS)

    Esquivel-Sirvent, R.

    2016-09-01

    We present a theoretical calculation of the changes in the near field radiative heat transfer between two surfaces due to the presence of ultra thin metallic coatings on semiconductors. Depending on the substrates, the radiative heat transfer is modulated by the thickness of the ultra thin film. In particular we consider gold thin films with thicknesses varying from 4 to 20 nm. The ultra-thin film has an insulator-conductor transition close to a critical thickness of dc = 6.4 nm and there is an increase in the near field spectral heat transfer just before the percolation transition. Depending on the substrates (Si or SiC) and the thickness of the metallic coatings we show how the near field heat transfer can be increased or decreased as a function of the metallic coating thickness. The calculations are based on available experimental data for the optical properties of ultrathin coatings.

  20. Nano-enabled tribological thin film coatings: global patent scenario.

    PubMed

    Sivudu, Kurva S; Mahajan, Yashwant R; Joshi, Shrikant V

    2014-01-01

    The aim of this paper is to present current status and future prospects of nano-enabled tribological thin film coatings based on worldwide patent landscape analysis. The study also presents an overview of technological trends by carrying out state-of-the-art literature analysis, including survey of corporate websites. Nanostructured tribological coatings encompass a wide spectrum of nanoscale microstructures, including nanocrystalline, nanolayered, nano-multilayered, nanocomposite, nanogradient structures or their unique combinations, which are composed of single or multi-component phases. The distinct microstructural features of the coatings impart outstanding tribological properties combined with multifunctional attributes to the coated components. Their unique combination of remarkable properties make them ideal candidates for a wide range of applications in diverse fields such as cutting and metalworking tools, biomedical devices, automotive engine components, wear parts, hard disc drives etc. The patent landscape analysis has revealed that nano-enabled tribological thin film coatings have significant potential for commercial applications in view of the lion's share of corporate industry in patenting activity. The largest patent portfolio is held by Japan followed by USA, Germany, Sweden and China. The prominent players involved in this field are Mitsubishi Materials Corp., Sandvik Aktiebolag, Hitachi Ltd., Sumitomo Electric Industries Ltd., OC Oerlikon Corp., and so on. The outstanding potential of nanostructured thin film tribological coatings is yet to be fully unravelled and, therefore, immense opportunities are available in future for microstructurally engineered novel coatings to enhance their performance and functionality by many folds.

  1. Thin film heater for removable volatile protecting coatings.

    PubMed

    Karim, Abid

    2013-01-01

    Freshly coated aluminum mirrors have excellent reflectivity at far ultraviolet wavelengths. However, reflectivity rapidly degrades when the mirror surfaces are exposed to atmosphere. In order to avoid this problem, freshly coated aluminum surface can be protected by over-coating of a removable volatile protecting coating. This protecting coating can be re-evaporated by controlled heating or by some other methods when required. This type of removable coating has immediate application in UV space astronomy. The purpose of this paper is to demonstrate the feasibility of re-evaporation of removable volatile Zn protecting coating using a NiCr thin film heater without affecting the reflection properties of Al mirror surfaces.

  2. Thin Film Coating with Highly Dispersible Barium Titanate-Polyvinylpyrrolidone Nanoparticles.

    PubMed

    Li, Jinhui; Inukai, Koji; Takahashi, Yosuke; Tsuruta, Akihiro; Shin, Woosuck

    2018-05-01

    Thin BaTiO₃ (BT) coating layers are required in various multilayer ceramic technologies, and fine nanosized BT particles with good dispersion in solution are essential for this coating process. In this work, cubic and tetragonal phase monodispersed BT nanoparticles—which were referred to as LBT and HBT-PVP coated on their surface by polyvinylpyrrolidone (PVP) polymer—were prepared by low temperature synthesis (LTS) and hydrothermal method (HT) at 80 and 230 °C, respectively. They were applied for the thin film coating on polyethylene terephthalate (PET) and Si wafer substrates by a simple bar coating. The thickness of BT, LBT-PVP, and HBT-PVP films prepared by their 5 wt % coating agent on Si are around 268, 308, and 263 nm, and their surface roughness are 104.6, 91.6, and 56.1 nm, respectively. The optical transmittance of BT, LBT-PVP, and HBT-PVP films on PET are 55, 66, and 73% at 550 nm wavelength and the haze values are 34.89, 24.70, and 20.53% respectively. The mechanism of dispersant adsorbed on the BT surface for densification of thin film during the drying process of the film was discussed.

  3. Thin Film Coating with Highly Dispersible Barium Titanate-Polyvinylpyrrolidone Nanoparticles

    PubMed Central

    Li, Jinhui; Inukai, Koji; Takahashi, Yosuke; Tsuruta, Akihiro; Shin, Woosuck

    2018-01-01

    Thin BaTiO3 (BT) coating layers are required in various multilayer ceramic technologies, and fine nanosized BT particles with good dispersion in solution are essential for this coating process. In this work, cubic and tetragonal phase monodispersed BT nanoparticles—which were referred to as LBT and HBT-PVP coated on their surface by polyvinylpyrrolidone (PVP) polymer—were prepared by low temperature synthesis (LTS) and hydrothermal method (HT) at 80 and 230 °C, respectively. They were applied for the thin film coating on polyethylene terephthalate (PET) and Si wafer substrates by a simple bar coating. The thickness of BT, LBT-PVP, and HBT-PVP films prepared by their 5 wt % coating agent on Si are around 268, 308, and 263 nm, and their surface roughness are 104.6, 91.6, and 56.1 nm, respectively. The optical transmittance of BT, LBT-PVP, and HBT-PVP films on PET are 55, 66, and 73% at 550 nm wavelength and the haze values are 34.89, 24.70, and 20.53% respectively. The mechanism of dispersant adsorbed on the BT surface for densification of thin film during the drying process of the film was discussed. PMID:29724007

  4. Spray-coated carbon nanotube thin-film transistors with striped transport channels

    NASA Astrophysics Data System (ADS)

    Jeong, Minho; Lee, Kunhak; Choi, Eunsuk; Kim, Ahsung; Lee, Seung-Beck

    2012-12-01

    We present results for the transfer characteristics of carbon nanotube thin-film transistors (CNT-TFTs) that utilize single-walled carbon nanotube thin-films prepared by direct spray-coating on the substrate. By varying the number of spray-coatings (Nsp) and the concentration of nanotubes in solution (CNT), it was possible to control the conductivity of the spray-coated nanotube thin-film from 129 to 0.1 kΩ/□. Also, by introducing stripes into the channel of the CNT-TFT, and thereby reducing the number of metallic percolation paths between source and drain, it was possible to enhance the on/off current ratio 1000-fold, from 10 to 104, demonstrating that it may be possible to utilize spray-coating as a method to fabricate CNT-TFTs for large area switching array applications.

  5. Thin coatings in packaging: Fundamental and practical aspects

    NASA Astrophysics Data System (ADS)

    Thorne, N. A.

    1996-01-01

    A beverage or food can is very much a functionalized product, the overall performance characteristics being achieved by the use of several materials each of which provides a specific property. Schematically, the metal substrate provides the mechanical and barrier properties, whereby the chemical resistance is provided by specific surface treatments to the metal surface and the application of a thin organic coating. Between about 4-15 μm in thickness, this organic coating has a double protective role, as it must protect the substrate from the foodstuff (corrosion) and the foodstuff from the substrate (taste..) over the required shelflife of the product. To give an idea of the industrial importance of this application, over 100 billion beverage cans per year are produced worldwide, each being individually sprayed with a protective organic layer. To perform correctly these coatings need to possess the following characteristics: —ability to be applied in thin, homogeneous layers without macroscopic or microscopic defects, —sufficient adhesion with the substrate and possess considerable interface stability —mechanical properties sufficient to withstand the can forming operations —intrinsic diffusion barrier properties necessary to prevent significant interaction with the substrate —sufficient chemical resistance to withstand any significant modification of the coating structure and hence intrinsic properties induced by the foodstuff Whereas a considerable amount of scientific attention has been applied to ``bulk'' systems, such as the mechanical properties of epoxies used for composite materials, diffusion in polymer packaging..., little published work is available concerning the specific properties of these thin coatings. The task is not helped by the commercial nature of the resin formulations used, the need to adapt these formulations to the multitude of industrial operations and the physical size of the coatings. The above coating properties will be

  6. Optimized thin film coatings for passive radiative cooling applications

    NASA Astrophysics Data System (ADS)

    Naghshine, Babak B.; Saboonchi, Ahmad

    2018-03-01

    Passive radiative cooling is a very interesting method, which lays on low atmospheric downward radiation within 8-13 μm waveband at dry climates. Various thin film multilayer structures have been investigated in numerous experimental studies, in order to find better coatings to exploit the full potential of this method. However, theoretical works are handful and limited. In this paper, the Simulated Annealing and Genetic Algorithm are used to optimize a thin film multilayer structure for passive radiative cooling applications. Spectral radiative properties are calculated through the matrix formulation. Considering a wide range of materials, 30 high-potential convective shields are suggested. According to the calculations, cooling can be possible even under direct sunlight, using the introduced shields. Moreover, a few water-soluble materials are studied for the first time and the results show that, a KBr substrate coated by a thin CaF2 or polyethylene film can is very close to an ideal coating for passive radiative cooling at night.

  7. Applications of thin carbon coatings and films in injection molding

    NASA Astrophysics Data System (ADS)

    Cabrera, Eusebio Duarte

    In this research, the technical feasibility of two novel applications of thin carbon coatings is demonstrated. The first application consists of using thin carbon coatings on molds for molding ultra-thin plastic parts (<0.5 mm thickness) with lower pressures by promoting wall slip. The second application consists of a new approach to provide electromagnetic interference (EMI) shielding for plastic parts using in mold coated nanoparticle thin films or nanopapers to create a conductive top layer. During this research, the technical feasibility of a new approach was proven which provides injection molding of ultra-thin parts at lower pressures, without the need of fast heating/fast cooling or other expensive mold modification. An in-house developed procedure by other members of our group, was employed for coating the mold surface using chemical vapor deposition (CVD) resulting in a graphene coating with carbide bonding to the mold surface. The coating resulted in a significant decrease of surface friction and consequently easiness of flow when compared to their uncoated counterparts. Thermoplastic polymers and their composites are a very attractive alternative but are hindered by the non-conductive nature of polymers. There are two general approaches used to date to achieve EMI shielding for plastic products. One is to spray a conductive metal coating onto the plastic surface forming a layer that must maintain its shielding effectiveness (SE), and its adhesion to the plastic throughout the expected life of the product. However, metal coatings add undesirable weight and tend to corrode over time. Furthermore, scratching the coating may create shielding failure; therefore, a protective topcoat may be required. The other approach is to use polymer composites filled with conductive fillers such as carbon black (CB), carbon nanofiber (CNF), and carbon nanotube (CNT). While conductive fillers may increase the electrical conductivity of polymer composites, the loading of

  8. Extracellular matrix proteins as temporary coating for thin-film neural implants

    NASA Astrophysics Data System (ADS)

    Ceyssens, Frederik; Deprez, Marjolijn; Turner, Neill; Kil, Dries; van Kuyck, Kris; Welkenhuysen, Marleen; Nuttin, Bart; Badylak, Stephen; Puers, Robert

    2017-02-01

    Objective. This study investigates the suitability of a thin sheet of extracellular matrix (ECM) proteins as a resorbable coating for temporarily reinforcing fragile or ultra-low stiffness thin-film neural implants to be placed on the brain, i.e. microelectrocorticographic (µECOG) implants. Approach. Thin-film polyimide-based electrode arrays were fabricated using lithographic methods. ECM was harvested from porcine tissue by a decellularization method and coated around the arrays. Mechanical tests and an in vivo experiment on rats were conducted, followed by a histological tissue study combined with a statistical equivalence test (confidence interval approach, 0.05 significance level) to compare the test group with an uncoated control group. Main results. After 3 months, no significant damage was found based on GFAP and NeuN staining of the relevant brain areas. Significance. The study shows that ECM sheets are a suitable temporary coating for thin µECOG neural implants.

  9. Polymer thin film as coating layer to prevent corrosion of metal/metal oxide film

    NASA Astrophysics Data System (ADS)

    Sarkar, Suman; Kundu, Sarathi

    2018-04-01

    Thin film of polymer is used as coating layer and the corrosion of metal/metal oxide layer is studied with the variation of the thickness of the coating layer. The thin layer of polystyrene is fabricated using spin coating method on copper oxide (CuO) film which is deposited on glass substrate using DC magnetron sputtering technique. Thickness of the polystyrene and the CuO layers are determined using X-ray reflectivity (XRR) technique. CuO thin films coated with the polystyrene layer are exposed to acetic acid (2.5 v/v% aqueous CH3COOH solution) environments and are subsequently analyzed using UV-Vis spectroscopy and atomic force microscopy (AFM). Surface morphology of the film before and after interaction with the acidic environment is determined using AFM. Results obtained from the XRR and UV-Vis spectroscopy confirm that the thin film of polystyrene acts as an anticorrosion coating layer and the strength of the coating depends upon the polymer layer thickness at a constant acid concentration.

  10. Paper-Thin Coating Offers Maximum Protection

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Wessex Incorporated has recently taken a technology that was originally developed for NASA as a protective coating for ceramic materials used in heatshields for space vehicles, and modified it for use in applications such as building materials, machinery, and transportation. The technology, developed at NASA Ames Research Center as a protective coating for flexible ceramic composites (PCC), is environmentally safe, water-based, and contains no solvents. Many other flame-retardant materials contain petroleum-based components, which can produce toxic smoke under flame. Wessex versions of PCC can be used to shield ceramics, wood, plasterboard, steel, plastics, fiberglass, and other materials from catastrophic fires. They are extraordinarily tough and exhibit excellent resistance to thermal shock, vibration, abrasion, and mechanical damage. One thin layer of coating provides necessary protection and allows for flexibility while avoiding excessive weight disadvantages. The coating essentially reduces the likelihood of the underlying material becoming so hot that it combusts and thus inhibits the "flashover" phenomenon from occurring.

  11. Thin film coatings for improved alpha/epi

    NASA Technical Reports Server (NTRS)

    Krisl, M. E.; Sachs, I. M.

    1985-01-01

    New thin film coatings were developed for fused silica, ceria doped glass, and Corning 0211 microsheet which provide increased emissivity and/or decreased solar absorption. Emissivity is enhanced by suppression of the reststrahlen reflectance and solar absorption is reduced by externally reflecting the ultraviolet portion of the solar spectrum. Optical properties of these coatings make them suitable for both solar cell cover and thermal control mirror applications. Measurements indicate equivalent environmental performance to conventional solar cell cover and thermal control mirror products.

  12. Sodium lauryl sulfate impedes drug release from zinc-crosslinked alginate beads: switching from enteric coating release into biphasic profiles.

    PubMed

    Taha, Mutasem O; Nasser, Wissam; Ardakani, Adel; Alkhatib, Hatim S

    2008-02-28

    The aim of this research is to investigate the effects of sodium lauryl sulfate (SLS) on ionotropically cross-linked alginate beads. Different levels of SLS were mixed with sodium alginate and chlorpheniramine maleate (as loaded model drug). The resulting viscous solutions were dropped onto aqueous solutions of zinc or calcium ions for ionotropic curing. The generated beads were assessed by their drug releasing profiles, infrared and differential scanning colorimetery (DSC) traits. SLS was found to exert profound concentration-dependent impacts on the characteristics of zinc-crosslinked alginate beads such that moderate modifications in the levels of SLS switched drug release from enteric coating-like behavior to a biphasic release modifiable to sustained-release by the addition of minute amounts of xanthan gum. Calcium cross-linking failed to reproduce the same behavior, probably due to the mainly ionic nature of calcium-carboxylate bonds compared to the coordinate character of their zinc-carboxylate counterparts. Apparently, moderate levels of SLS repel water penetration into the beads, and therefore minimize chlorpheniramine release. However, higher SLS levels seem to discourage polymeric cross-linking and therefore allow biphasic drug release.

  13. Controlling the scattering properties of thin, particle-doped coatings

    NASA Astrophysics Data System (ADS)

    Rogers, William; Corbett, Madeleine; Manoharan, Vinothan

    2013-03-01

    Coatings and thin films of small particles suspended in a matrix possess optical properties that are important in several industries from cosmetics and paints to polymer composites. Many of the most interesting applications require coatings that produce several bulk effects simultaneously, but it is often difficult to rationally formulate materials with these desired optical properties. Here, we focus on the specific challenge of designing a thin colloidal film that maximizes both diffuse and total hemispherical transmission. We demonstrate that these bulk optical properties follow a simple scaling with two microscopic length scales: the scattering and transport mean free paths. Using these length scales and Mie scattering calculations, we generate basic design rules that relate scattering at the single particle level to the film's bulk optical properties. These ideas will be useful in the rational design of future optically active coatings.

  14. Tantalum-based thin film coatings for wear resistant arthroprostheses.

    PubMed

    Balagna, C; Faga, M G; Spriano, S

    2011-10-01

    Cobalt-chromium-molybdenum alloys with high carbon content (HC-CoCrMo) are widely used as materials for arthroprosthesis, in particular in metal-on-metal (MoM) hip joints. In spite of their good wear and corrosion resistance, production of metallic wear particles and metal ion release will occur on a large time-scale. An enhancement of the metal ion level in the patient's blood and urine is often reported in clinical data. Hypersensitivity, inflammatory response and cell necrosis can occur as consequence. So implants on young patients and women on childbearing age are not so widespread. The aim of this research is the realization of a thin film coating in order to improve the biocompatibility of Co-based alloys and to reduce debris production, ion release and citotoxicity. The innovative process consists of a thermal treatment in molten salts, in order to obtain a tantalum enriched thin film coating. Tantalum is chosen because it is considered a biocompatible metal with high corrosion resistance and low ion release. Three HC-CoCrMo alloys, produced by different manufacturing processes, are tested as substrates. The coating is a thin film of TaC or it can be composed by a multilayer of two tantalum carbides and metallic tantalum, depending on the temperature of the treatment and on the carbon content of the substrate. The thin films as well the substrates are characterized from the structural, chemical and morphological point of view. Moreover mechanical behaviour of treated and untreated materials is analyzed by means of nanohardness, scratch and ball-on-disc wear tests. The coating increases the mechanical and tribological properties of HC-CoCrMo.

  15. Thin-Film Coated Plastic Wrap for Food Packaging

    PubMed Central

    Wu, Hsin-Yu; Liu, Ting-Xuan; Hsu, Chia-Hsun; Cho, Yun-Shao; Xu, Zhi-Jia; Liao, Shu-Chuan; Zeng, Bo-Han; Jiang, Yeu-Long; Lien, Shui-Yang

    2017-01-01

    In this study, the antimicrobial property and food package capability of polymethylpentene (PMP) substrate with silicon oxdie (SiOx) and organic silicon (SiCxHy) stacked layers deposited by an inductively coupled plasma chemical vapor deposition system were investigated. The experimental results show that the stacked pair number of SiOx/SiCxHy on PMP is limited to three pairs, beyond which the films will crack and cause package failure. The three-pair SiOx/SiCxHy on PMP shows a low water vapor transmission rate of 0.57 g/m2/day and a high water contact angle of 102°. Three-pair thin-film coated PMP demonstrates no microbe adhesion and exhibits antibacterial properties within 24 h. Food shelf life testing performed at 28 °C and 80% humidity reports that the three-pair thin-film coated PMP can enhance the food shelf-life to 120 h. The results indicate that the silicon-based thin film may be a promising material for antibacterial food packaging applications to extend the shelf-life of food products. PMID:28773178

  16. Thin film coating process using an inductively coupled plasma

    DOEpatents

    Kniseley, Richard N.; Schmidt, Frederick A.; Merkle, Brian D.

    1990-01-30

    Thin coatings of normally solid materials are applied to target substrates using an inductively coupled plasma. Particles of the coating material are vaporized by plasma heating, and pass through an orifice to a first vacuum zone in which the particles are accelerated to a velocity greater than Mach 1. The shock wave generated in the first vacuum zone is intercepted by the tip of a skimmer cone that provides a second orifice. The particles pass through the second orifice into a second zone maintained at a higher vacuum and impinge on the target to form the coating. Ultrapure coatings can be formed.

  17. Optical properties of titanium di-oxide thin films prepared by dip coating method

    NASA Astrophysics Data System (ADS)

    Biswas, Sayari; Rahman, Kazi Hasibur; Kar, Asit Kumar

    2018-05-01

    Titanium dioxide (TiO2) thin films were prepared by sol-gel dip coating method on ITO coated glass substrate. The sol was synthesized by hydrothermal method at 90°C. The sol was then used to make TiO2 films by dip coating. After dip coating the rest of the sol was dried at 100°C to make TiO2 powder. Thin films were made by varying the number of dipping cycles and were annealed at 500°C. XRD study was carried out for powder samples that confirms the formation of anatase phase. Transmission spectra of thin films show sharp rise in the violet-ultraviolet transition region and a maximum transmittance of ˜60%. Band gap of the prepared films varies from 3.15 eV to 3.22 eV.

  18. Functionalized antibiofilm thin coatings based on PLA-PVA microspheres loaded with usnic acid natural compounds fabricated by MAPLE

    NASA Astrophysics Data System (ADS)

    Grumezescu, Valentina; Socol, Gabriel; Grumezescu, Alexandru Mihai; Holban, Alina Maria; Ficai, Anton; Truşcǎ, Roxana; Bleotu, Coralia; Balaure, Paul Cǎtǎlin; Cristescu, Rodica; Chifiriuc, Mariana Carmen

    2014-05-01

    We report the fabrication of thin coatings of PLA-PVA microspheres loaded with usnic acid by matrix assisted pulsed laser evaporation (MAPLE) onto Ti substrate. The obtained coatings have been physico-chemically characterized by scanning electron microscopy (SEM) and infrared microscopy (IRM). In vitro biological assays have been performed in order to evaluate the influence of fabricated microsphere thin coatings on the Staphylococcus aureus biofilm development as well as their biocompatibility. SEM micrographs have revealed a uniform morphology of thin coatings, while IRM investigations have proved both the homogeneity and functional groups integrity of prepared thin coatings. The obtained microsphere-based thin coatings have proved to be efficient vehicles for usnic acid natural compound with antibiofilm activity, as demonstrated by the inhibitory activity on S. aureus mature biofilm development, opening new perspectives for the prevention and therapy associated to biofilm related infections.

  19. On approximating guided waves in plates with thin anisotropic coatings by means of effective boundary conditions

    PubMed

    Niklasson; Datta; Dunn

    2000-09-01

    In this paper, effective boundary conditions for elastic wave propagation in plates with thin coatings are derived. These effective boundary conditions are used to obtain an approximate dispersion relation for guided waves in an isotropic plate with thin anisotropic coating layers. The accuracy of the effective boundary conditions is investigated numerically by comparison with exact solutions for two different material systems. The systems considered consist of a metallic core with thin superconducting coatings. It is shown that for wavelengths long compared to the coating thickness there is excellent agreement between the approximate and exact solutions for both systems. Furthermore, numerical results presented might be used to characterize coating properties by ultrasonic techniques.

  20. Durable silver thin film coating for diffraction gratings

    DOEpatents

    Wolfe, Jesse D [Discovery Bay, CA; Britten, Jerald A [Oakley, CA; Komashko, Aleksey M [San Diego, CA

    2006-05-30

    A durable silver film thin film coated non-planar optical element has been developed to replace Gold as a material for fabricating such devices. Such a coating and resultant optical element has an increased efficiency and is resistant to tarnishing, can be easily stripped and re-deposited without modifying underlying grating structure, improves the throughput and power loading of short pulse compressor designs for ultra-fast laser systems, and can be utilized in variety of optical and spectrophotometric systems, particularly high-end spectrometers that require maximized efficiency.

  1. Porous biphasic calcium phosphate ceramics coated with nano-hydroxyapatite and seeded with mesenchymal stem cells for reconstruction of radius segmental defects in rabbits.

    PubMed

    Hu, Jianzhong; Yang, Zhiming; Zhou, Yongchun; Liu, Yong; Li, Kaiyang; Lu, Hongbin

    2015-11-01

    The osteoconduction of porous biphasic calcium phosphate (BCP) ceramics has been widely reported. In a previous study, we demonstrated that applying a nano-hydroxyapatite (nHA) coating enhances the osteoinductive potential of BCP ceramics, making these scaffolds more suitable for bone tissue engineering applications. The aim of the present study was to determine the effects of reconstructing radius defects in rabbits using nHA-coated BCP ceramics seeded with mesenchymal stem cells (MSCs) and to compare the bone regeneration induced by different scaffolds. Radius defects were created in 20 New Zealand rabbits, which were divided into four groups by treatment: porous BCP ceramics (Group A), nHA-coated porous BCP ceramics (Group B), porous BCP ceramics seeded with rabbit MSCs (Group C), and nHA-coated porous BCP ceramics seeded with rabbit MSCs (Group D). After in vitro incubation, the cell/scaffold complexes were implanted into the defects. Twelve weeks after implantation, the specimens were examined macroscopically and histologically. Both the nHA coating and seeding with MSCs enhanced the formation of new bone tissue in the BCP ceramics, though the osteoinductive potential of the scaffolds with MSCs was greater than that of the nHA-coated scaffolds. Notably, the combination of nHA coating and MSCs significantly improved the bone regeneration capability of the BCP ceramics. Thus, MSCs seeded into porous BCP ceramics coated with nHA may be an effective bone substitute to reconstruct bone defects in the clinic.

  2. Thin coatings for protecting titanium aluminides in high-temperature oxidizing environments

    NASA Technical Reports Server (NTRS)

    Wiedemann, K. E.; Taylor, P. J.; Clark, R. K.; Wallace, T. A.

    1991-01-01

    Titanium aluminides have high specific strengths at high temperatures but are susceptible to environmental attack. Their use in many aerospace applications would require that they be protected with coatings that, for structural efficiency, must be thin. It is conceivable that acceptable coatings might be found in several oxide systems, and consequently, oxide coatings of many compositions were prepared from sol-gels for study. Response-surface methodology was used to refine coating compositions and factorial experiments were used to develop coating strategies. Oxygen permeability diagrams of two-layer coatings for several oxide systems, an analysis of multiple-layer coatings on rough and polished surfaces, and modeling of the oxidation weight gain are presented.

  3. Thin film coatings for space electrical power system applications

    NASA Technical Reports Server (NTRS)

    Gulino, Daniel A.

    1989-01-01

    This paper examines some of the ways in which thin film coatings can play a role in aerospace applications. Space systems discussed include photovoltaic and solar dynamic electric power generation systems, including applications in environmental protection, thermal energy storage, and radiator emittance enhancement. Potential applications of diamondlike films to both atmospheric and space based systems are examined. Also, potential uses of thin films of the recently discovered high-temperature superconductive materials are discussed.

  4. Thin film coatings for space electrical power system applications

    NASA Technical Reports Server (NTRS)

    Gulino, Daniel A.

    1988-01-01

    This paper examines some of the ways in which thin film coatings can play a role in aerospace applications. Space systems discussed include photovoltaic and solar dynamic electric power generation systems, including applications in environmental protection, thermal energy storage, and radiator emittance enhancement. Potential applications of diamondlike films to both atmospheric and space based systems are examined. Also, potential uses of thin films of the recently discovered high-temperature superconductive materials are discussed.

  5. Copper-Zinc-Tin-Sulfur Thin Film Using Spin-Coating Technology

    PubMed Central

    Yeh, Min-Yen; Lei, Po-Hsun; Lin, Shao-Hsein; Yang, Chyi-Da

    2016-01-01

    Cu2ZnSnS4 (CZTS) thin films were deposited on glass substrates by using spin-coating and an annealing process, which can improve the crystallinity and morphology of the thin films. The grain size, optical gap, and atomic contents of copper (Cu), zinc (Zn), tin (Sn), and sulfur (S) in a CZTS thin film absorber relate to the concentrations of aqueous precursor solutions containing copper chloride (CuCl2), zinc chloride (ZnCl2), tin chloride (SnCl2), and thiourea (SC(NH2)2), whereas the electrical properties of CZTS thin films depend on the annealing temperature and the atomic content ratios of Cu/(Zn + Sn) and Zn/Sn. All of the CZTS films were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDXS), Raman spectroscopy, and Hall measurements. Furthermore, CZTS thin film was deposited on an n-type silicon substrate by using spin-coating to form an Mo/p-CZTS/n-Si/Al heterostructured solar cell. The p-CZTS/n-Si heterostructured solar cell showed a conversion efficiency of 1.13% with Voc = 520 mV, Jsc = 3.28 mA/cm2, and fill-factor (FF) = 66%. PMID:28773647

  6. Functional patterned coatings by thin polymer film dewetting.

    PubMed

    Telford, Andrew M; Thickett, Stuart C; Neto, Chiara

    2017-12-01

    An approach for the fabrication of functional polymer surface coatings is introduced, where micro-scale structure and surface functionality are obtained by means of self-assembly mechanisms. We illustrate two main applications of micro-patterned polymer surfaces obtained through dewetting of bilayers of thin polymer films. By tuning the physical and chemical properties of the polymer bilayers, micro-patterned surface coatings could be produced that have applications both for the selective attachment and patterning of proteins and cells, with potential applications as biomaterials, and for the collection of water from the atmosphere. In all cases, the aim is to achieve functional coatings using approaches that are simple to realize, use low cost materials and are potentially scalable. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. An investigation of material properties and tribological performance of magnetron sputtered thin film coatings

    NASA Astrophysics Data System (ADS)

    Singh, Harpal

    This dissertation is divided into two categories based upon lubrication functionality and its application. The categories are: Dry film lubrication and Fluid film lubrication with thin film coatings. Thin film coatings examined in this work were deposited using closed field unbalanced magnetron sputtering and RF-DC coupled magnetron sputtering systems. In Dry/Solid film lubrication, the mechanical, structural and tribological properties of two Molybdenum disulphide (MoS2) based coatings are examined and evaluated. Among the two coatings, one coating is doped with Ti (Ti-MoS2) and the other is a combination of metal, lubricant and oxide (Sb2O3/Au - MoS2). These coatings are known to provide low friction in vacuum environments. The goal of this work was to evaluate friction and wear performance of MoS2 doped coatings in unidirectional and reciprocating sliding contact under different environmental conditions. Sliding contact results showed friction and wear dependence on temperature and humidity. The formation and removal of transfer films and the recrystallization and reorientation of basal layers on the steel counterface was observed as the mechanism for low friction. Structural analysis revealed a relationship between the microstructural properties and tribological performance. It was also observed that the addition of dopants (Ti, Au, Sb 2O3) improved the mechanical properties as compared to pure MoS2 coatings. Further, the rolling contact performance of the coatings was measured on a five ball on rod tribometer and a Thrust bearing tribometer under vacuum and air environments. The rolling contact experiments indicated that life of the rolling components depend on the amount of material present between the contacts. Fluid film lubrication with thin film coatings investigates the possibilities to improve the performance and durability of tribological components when oils and thin films are synergistically coupled. In this work, the ability of a Diamond Like Carbon

  8. Theory and practical considerations of multilayer dielectric thin-film stacks in Ag-coated hollow waveguides.

    PubMed

    Bledt, Carlos M; Melzer, Jeffrey E; Harrington, James A

    2014-02-01

    This analysis explores the theory and design of dielectric multilayer reflection-enhancing thin film stacks based on high and low refractive index alternating layers of cadmium sulfide (CdS) and lead sulfide (PbS) on silver (Ag)-coated hollow glass waveguides (HGWs) for low loss transmission at midinfrared wavelengths. The fundamentals for determining propagation losses in such multilayer thin-film-coated Ag hollow waveguides is thoroughly discussed, and forms the basis for further theoretical analysis presented in this study. The effects on propagation loss resulting from several key parameters of these multilayer thin film stacks is further explored in order to bridge the gap between results predicted through calculation under ideal conditions and deviations from such ideal models that often arise in practice. In particular, the effects on loss due to the number of dielectric thin film layers deposited, deviation from ideal individual layer thicknesses, and surface roughness related scattering losses are presented and thoroughly investigated. Through such extensive theoretical analysis the level of understanding of the underlying loss mechanisms of multilayer thin-film Ag-coated HGWs is greatly advanced, considerably increasing the potential practical development of next-generation ultralow-loss mid-IR Ag/multilayer dielectric-coated HGWs.

  9. Magnesium Diboride thin Films, multilayers, and coatings for SRF cavities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xi, Xiaoxing

    Superconducting radio frequency (SRF) cavities currently use low-temperature superconductor niobium, and the Nb SRF cavities have approached the performance levels predicted theoretically. Compared to Nb, MgB 2 becomes superconducting at a much higher temperature and promises a better RF performance in terms of higher quality factor Q and higher acceleration capability. An MgB 2 SRF technology can significantly reduce the operating costs of particle accelerators when these potentials are realized. This project aimed to advance the development of an MgB 2 SRF technology. It had two main objectives: (1) materials issues of MgB 2 thin films and multilayers related tomore » their applications in SRF cavities; and (2) coating single-cell cavities for testing at RF frequencies. The key technical thrust of the project is the deposition of high quality clean MgB 2 films and coatings by the hybrid physical-chemical vapor deposition (HPCVD) technique, which was developed in my group. We have achieved technical progress in each of the two areas. For the first objective, we have confirmed that MgB 2 thin film coatings can be used to effectively enhance the vortex penetration field of an SRF cavity. A vortex is a normal region in the shape of spaghetti that threads through a superconductor. Its existence is due to an applied magnetic field that is greater than a so-called lower critical field, H c1. Once a vortex enters the superconductor, its movement leads to loss. This has been shown to be the reason for an SRF cavity to break down. Thus, enhancing the magnetic field for a vortex to enter the superconductor that forms the SRF cavity has be a goal of intense research. To this end, Gurevich proposed that a coating of thin superconductor layer can impede the vortex entrance. In this project, we have done two important experiment to test this concept. One, we showed that the enhancement of H c1 can be achieved by using in both epitaxial and polycrystalline MgB 2 films

  10. Electrochromic TiO2 Thin Film Prepared by Dip-Coating Technique

    NASA Astrophysics Data System (ADS)

    Suriani, S.; Kamisah, M. M.

    2002-12-01

    Titanium dioxide (TiO2) thin films were prepared by using sol-gel dip coating technique. The coating solutions were prepared by reacting titanium isopropoxide as precursors and ethanol as solvent. The films were formed on transparent ITO-coated glass by a dip coating technique and final dried at various temperatures up to 600 °C for 30 minutes. The films were characterized with the UV-Vis-NIR Spectrometer, Scanning Electron Microscopy (SEM) and X-ray diffractometer (XRD). XRD results show that the films dried at 600 °C form anatase structure. From the spectroscopic studies, the sample shows electrochromic property.

  11. Low emissivity high-temperature tantalum thin film coatings for silicon devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rinnerbauer, Veronika; Senkevich, Jay J.; Joannopoulos, John D.

    The authors study the use of thin ( ~230 nm ) tantalum (Ta) layers on silicon (Si) as a low emissivity (high reflectivity) coating for high-temperature Si devices. Such coatings are critical to reduce parasitic radiation loss, which is one of the dominant loss mechanisms at high temperatures (above 700 °C ). The key factors to achieve such a coating are low emissivity in the near infrared and superior thermal stability at high operating temperatures. The authors investigated the emissivity of Ta coatings deposited on Si with respect to deposition parameters, and annealing conditions, and temperature. The authors found thatmore » after annealing at temperatures ≥900 °C the emissivity in the near infrared ( 1–3 μm ) was reduced by a factor of 2 as compared to bare Si. In addition, the authors measured thermal emission at temperatures from 700 to 1000 °C , which is stable up to a heater temperature equal to the annealing temperature. Furthermore, Auger electron spectroscopy profiles of the coatings before and after annealing were taken to evaluate thermal stability. A thin (about 70 nm) Ta₂O₅ layer was found to act as an efficient diffusion barrier between the Si substrate and the Ta layer to prevent Si diffusion.« less

  12. Broadly tunable thin-film intereference coatings: active thin films for telecom applications

    NASA Astrophysics Data System (ADS)

    Domash, Lawrence H.; Ma, Eugene Y.; Lourie, Mark T.; Sharfin, Wayne F.; Wagner, Matthias

    2003-06-01

    Thin film interference coatings (TFIC) are the most widely used optical technology for telecom filtering, but until recently no tunable versions have been known except for mechanically rotated filters. We describe a new approach to broadly tunable TFIC components based on the thermo-optic properties of semiconductor thin films with large thermo-optic coefficients 3.6X10[-4]/K. The technology is based on amorphous silicon thin films deposited by plasma-enhanced chemical vapor deposition (PECVD), a process adapted for telecom applications from its origins in the flat-panel display and solar cell industries. Unlike MEMS devices, tunable TFIC can be designed as sophisticated multi-cavity, multi-layer optical designs. Applications include flat-top passband filters for add-drop multiplexing, tunable dispersion compensators, tunable gain equalizers and variable optical attenuators. Extremely compact tunable devices may be integrated into modules such as optical channel monitors, tunable lasers, gain-equalized amplifiers, and tunable detectors.

  13. Numerically modeling Brownian thermal noise in amorphous and crystalline thin coatings

    NASA Astrophysics Data System (ADS)

    Lovelace, Geoffrey; Demos, Nicholas; Khan, Haroon

    2018-01-01

    Thermal noise is expected to be one of the noise sources limiting the astrophysical reach of Advanced LIGO (once commissioning is complete) and third-generation detectors. Adopting crystalline materials for thin, reflecting mirror coatings, rather than the amorphous coatings used in current-generation detectors, could potentially reduce thermal noise. Understanding and reducing thermal noise requires accurate theoretical models, but modeling thermal noise analytically is especially challenging with crystalline materials. Thermal noise models typically rely on the fluctuation-dissipation theorem, which relates the power spectral density of the thermal noise to an auxiliary elastic problem. In this paper, we present results from a new, open-source tool that numerically solves the auxiliary elastic problem to compute the Brownian thermal noise for both amorphous and crystalline coatings. We employ the open-source deal.ii and PETSc frameworks to solve the auxiliary elastic problem using a finite-element method, adaptive mesh refinement, and parallel processing that enables us to use high resolutions capable of resolving the thin reflective coating. We verify numerical convergence, and by running on up to hundreds of compute cores, we resolve the coating elastic energy in the auxiliary problem to approximately 0.1%. We compare with approximate analytic solutions for amorphous materials, and we verify that our solutions scale as expected with changing beam size, mirror dimensions, and coating thickness. Finally, we model the crystalline coating thermal noise in an experiment reported by Cole et al (2013 Nat. Photon. 7 644–50), comparing our results to a simpler numerical calculation that treats the coating as an ‘effectively amorphous’ material. We find that treating the coating as a cubic crystal instead of as an effectively amorphous material increases the thermal noise by about 3%. Our results are a step toward better understanding and reducing thermal noise to

  14. Poly(lactide-co-glycolide acid)/biphasic calcium phosphate composite coating on a porous scaffold to deliver simvastatin for bone tissue engineering.

    PubMed

    Sadiasa, Alexander; Kim, Min Sung; Lee, Byong Taek

    2013-09-01

    In this study, simvastatin (SIM) drug incorporated poly(D,L-lactic-co-glycolide) (PLGA)/biphasic calcium phosphate (BCP) composite material (SPB) was coated on the BCP/ZrO2 (SPB-BCP/ZrO2) scaffold to enhance the mechanical and bioactive properties of the BCP/ZrO2 scaffold for bone engineering applications. The composite coating was prepared by combining different ratios of PLGA and BCP (1:2, 1:1, 2:1). After completion of the coating process, the compressive strength of the scaffolds was shown to increase with an increase in PLGA concentration from 8.5 ± 0.52 MPa for the SPB1-BCP/ZrO2 (1:2) to 11 ± 0.65 MPa for SPB3-BCP/ZrO2 (2:1) scaffolds when PLGA concentration was increased. Furthermore, the increase of PLGA in the coating composition corresponds to a decrease in porosity, degradation rate and weight loss of the scaffolds after 4 weeks. SIM release study demonstrated sustained release of the drug for the three kinds of scaffolds with improved biocompatibility. The increase of PLGA concentration also resulted in a lower release rate of SIM. Thus, the lower release rate of SIM brought upon by the increase of PLGA concentration further enhanced the performance of the scaffold in vitro making it a promising approach in the field of bone tissue regeneration.

  15. Thin sol-gel-derived silica coatings on dental pure titanium casting.

    PubMed

    Yoshida, K; Kamada, K; Sato, K; Hatada, R; Baba, K; Atsuta, M

    1999-01-01

    The sol-gel dipping process, in which liquid silicon alkoxide is transformed into a solid silicon-oxygen network, can produce a thin film coating of silica (SiO(2)). The features of this method are high homogeneity and purity of the thin SiO(2) film and a low sinter temperature, which are important in the preparation of coating films that can protect metallic ion release from the metal substrate and prevent attachment of dental plaque. We evaluated the surface properties of dental pure titanium casting coated with a thin SiO(2) or SiO(2)/F-hybrid film by the sol-gel dipping process. The metal specimens were pretreated by dipping in isopropylalcohol solution containing 10 wt% 3-aminopropyl trimethoxysilane and treated by dipping in the silica precursor solution for 5 min, withdrawal at a speed of 2 mm/min, air-drying for 20 min at room temperature, heating at 120 degrees C for 20 min, and then storing at room temperature. Both SiO(2) and SiO(2)/F films bonded strongly (above 55 MPa) to pure titanium substrate by a tensile test. SiO(2(-)) and SiO(2)/F-coated specimens immersed in 1 wt% of lactic acid solution for two weeks showed significantly less release of titanium ions (30. 5 ppb/cm(2) and 9.5 ppb/cm(2), respectively) from the substrate than noncoated specimens (235.2 ppb/cm(2)). Hydrophobilization of SiO(2(-)) and SiO(2)/F-coated surfaces resulted in significant increases of contact angle of water (81.6 degrees and 105.7 degrees, respectively) compared with noncoated metal specimens (62.1 degrees ). The formation of both thin SiO(2) and SiO(2)/F-hybrid films by the sol-gel dipping process on the surface of dental pure titanium casting may be useful clinically in enhancing the bond strength of dental resin cements to titanium, preventing titanium ions release from the substrate, and reducing the accumulation of dental plaque attaching to intraoral dental restorations. Copyright 1999 John Wiley & Sons, Inc.

  16. The chocolate-egg problem: Fabrication of thin elastic shells through coating

    NASA Astrophysics Data System (ADS)

    Lee, Anna; Marthelot, Joel; Brun, Pierre-Thomas; Reis, Pedro M.

    2015-03-01

    We study the fabrication of thin polymeric shells based on the coating of a curved surface by a viscous fluid. Upon polymerization of the resulting thin film, a slender solid structure is delivered after demolding. This technique is extensively used, empirically, in manufacturing, where it is known as rotational molding, as well as in the food industry, e.g. for chocolate-eggs. This problem is analogous to the Landau-Levich-Derjaguin coating of plates and fibers and Bretherton's problem of film deposition in cylindrical channels, albeit now on a double-curved geometry. Here, the balance between gravity, viscosity, surface tension and polymerization rate can yield a constant thickness film. We seek to identify the physical ingredients that govern the final film thickness and its profile. In our experiments using organosilicon, we systematically vary the properties of the fluid, as well as the curvature of the substrate onto which the film is coated, and characterize the final thickness profile of the shells. A reduced model is developed to rationalize the process.

  17. Enhancement of absorption and color contrast in ultra-thin highly absorbing optical coatings

    NASA Astrophysics Data System (ADS)

    Kats, Mikhail A.; Byrnes, Steven J.; Blanchard, Romain; Kolle, Mathias; Genevet, Patrice; Aizenberg, Joanna; Capasso, Federico

    2013-09-01

    Recently a new class of optical interference coatings was introduced which comprises ultra-thin, highly absorbing dielectric layers on metal substrates. We show that these lossy coatings can be augmented by an additional transparent subwavelength layer. We fabricated a sample comprising a gold substrate, an ultra-thin film of germanium with a thickness gradient, and several alumina films. The experimental reflectivity spectra showed that the additional alumina layer increases the color range that can be obtained, in agreement with calculations. More generally, this transparent layer can be used to enhance optical absorption, protect against erosion, or as a transparent electrode for optoelectronic devices.

  18. Synthesis and optical characterization of ternary chalcogenide Cu3BiS3 thin film by spin coating

    NASA Astrophysics Data System (ADS)

    Rawal, Neha; Hadi, Mohammed Kamal; Modi, B. P.

    2017-05-01

    In this work, ternary Chalcogenide Cu3BiS3(CBS) thin films have been prepared and modified by using spin coating technique. Lucratively, spin coating technique is easy going and simple though it hasn't given an enclosure and extensive focus of researches for Cu3BiS3 thin films formation. The surface smoothness and the homogeneity of the obtained thin films have been optimized throughout varying the annealing temperature, concentration and rotation speed. It had been found that as prepared films the value of the energy band gap is 1.4 eV, the absorption coefficient 105 cm-1. Each values of the EBG (Energy Band Gap) and AC (Absorption coefficient) was found in quite agreement with the published work of CBS thin film formation by other methods as CBD, dip coating etc. It signifies that Cu3BiS3 films can be used as an absorber layer for thin film solar cell.

  19. Ultrasonic guided wave sensing characteristics of large area thin piezo coating

    NASA Astrophysics Data System (ADS)

    Rathod, V. T.; Jeyaseelan, A. Antony; Dutta, Soma; Mahapatra, D. Roy

    2017-10-01

    This paper reports on the characterization method and performance enhancement of thin piezo coating for ultrasonic guided wave sensing applications. We deposited the coatings by an in situ slurry coating method and studied their guided wave sensing properties on a one-dimensional metallic beam as a substrate waveguide. The developed piezo coatings show good sensitivity to the longitudinal and flexural modes of guided waves. Sensing voltage due to the guided waves at various different ultrasonic frequencies shows a linear dependence on the thickness of the coating. The coatings also exhibit linear sensor output voltage with respect to the induced dynamic strain magnitude. Diameter/size of the piezo coatings strongly influences the voltage response in relation to the wavelength. The proposed method used a characterization set-up involving coated sensors, reference transducers and an analytical model to estimate the piezoelectric coefficient of the piezo coating. The method eliminates the size dependent effect on the piezo property accurately and gives further insight to design better sensors/filters with respect to frequency/wavelength of interest. The developed coatings will have interesting applications in structural health monitoring (SHM) and internet of things (IOT).

  20. Critical Role of Surface Energy in Guiding Crystallization of Solution-Coated Conjugated Polymer Thin Films

    DOE PAGES

    Zhang, Fengjiao; Mohammadi, Erfan; Luo, Xuyi; ...

    2017-10-02

    It is well-known that substrate surface properties have a profound impact on morphology of thin films solution coated atop and the resulting solid-state properties. However, design rules for guiding the substrate selection have not yet been established. Such design rules are particularly important for solution coated semiconducting polymers, as the substratedirected thin film morphology can impact charge transport properties by orders of magnitude. We hypothesize that substrate surface energies dictate the thin film morphology by modulating the free energy barrier to heterogeneous nucleation. To test this hypothesis, we systematically vary the substrate surface energy via surface functionalization techniques. We performmore » in-depth morphology and device characterizations to establish the relationship between substrate surface energy, thin film morphology and charge transport properties, employing a donor-accepter (D-A) conjugated polymer. Here, we find that decreasing the substrate surface energy progressively increases thin film crystallinity, degree of molecular ordering and extent of domain alignment. Notably, the enhanced morphology on the lowest surface energy substrate lead to a 10-fold increase in the charge carrier mobility. We further develop a free energy model relating the substrate surface energy to the penalty of heterogeneous nucleation from solution in the thin film geometry. The model correctly predicts the experimental trend, thereby validating our hypothesis. This work is a significant step towards establishing design rules and understanding the critical role of substrates in determining morphology of solution coated thin films.« less

  1. Critical Role of Surface Energy in Guiding Crystallization of Solution-Coated Conjugated Polymer Thin Films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Fengjiao; Mohammadi, Erfan; Luo, Xuyi

    It is well-known that substrate surface properties have a profound impact on morphology of thin films solution coated atop and the resulting solid-state properties. However, design rules for guiding the substrate selection have not yet been established. Such design rules are particularly important for solution coated semiconducting polymers, as the substratedirected thin film morphology can impact charge transport properties by orders of magnitude. We hypothesize that substrate surface energies dictate the thin film morphology by modulating the free energy barrier to heterogeneous nucleation. To test this hypothesis, we systematically vary the substrate surface energy via surface functionalization techniques. We performmore » in-depth morphology and device characterizations to establish the relationship between substrate surface energy, thin film morphology and charge transport properties, employing a donor-accepter (D-A) conjugated polymer. Here, we find that decreasing the substrate surface energy progressively increases thin film crystallinity, degree of molecular ordering and extent of domain alignment. Notably, the enhanced morphology on the lowest surface energy substrate lead to a 10-fold increase in the charge carrier mobility. We further develop a free energy model relating the substrate surface energy to the penalty of heterogeneous nucleation from solution in the thin film geometry. The model correctly predicts the experimental trend, thereby validating our hypothesis. This work is a significant step towards establishing design rules and understanding the critical role of substrates in determining morphology of solution coated thin films.« less

  2. Improvement of silicon solar cell performance through the use of thin film coatings.

    PubMed

    Reynard, D L; Andrew, A

    1966-01-01

    Thin film coatings are used universally in solar cell power systems for spacecraft. Antireflective coatings are used to increase the amount of useful energy reaching the active surface of the cell. Multilayer interference filters are employed to reject unwanted portions of the solar spectrum in order to reduce equilibrium temperature and to prevent ultraviolet damage. Glass covers are used in conjunction with these coatings for the purpose of increasing the thermal emittance of the surface. Appreciable performance increases can be obtained through the uses of these filters and coatings.

  3. Study of two different thin film coating methods in transmission laser micro-joining of thin Ti-film coated glass and polyimide for biomedical applications.

    PubMed

    Sultana, T; Georgiev, G L; Baird, R J; Auner, G W; Newaz, G; Patwa, R; Herfurth, H J

    2009-07-01

    Biomedical devices and implants require precision joining for hermetic sealing which can be achieved with low power lasers. The effect of two different thin metal film coating methods was studied in transmission laser micro-joints of titanium-coated glass and polyimide. The coating methods were cathodic arc physical vapor deposition (CA-PVD) and electron beam evaporation (EB-PVD). Titanium-coated glass joined to polyimide film can have neural electrode application. The improvement of the joint quality will be essential for robust performance of the device. Low power fiber laser (wave length = 1100 nm) was used for transmission laser micro-joining of thin titanium (Ti) film (approximately 200 nm) coated Pyrex borosilicate 7740 glass wafer (0.5 mm thick) and polyimide (Imidex) film (0.2 mm thick). Ti film acts as the coupling agent in the joining process. The Ti film deposition rate in the CA-PVD was 5-10 A/s and in the EB-PVD 1.5 A/s. The laser joint strength was measured by a lap shear test, the Ti film surfaces were analyzed by atomic force microscopy (AFM) and the lap shear tested joints were analyzed by optical microscopy and scanning electron microscopy (SEM). The film properties and the failure modes of the joints were correlated to joint strength. The CA-PVD produced around 4 times stronger laser joints than EB-PVD. The adhesion of the Ti film on glass by CA-PVD is better than that of the EB-PVD method. This is likely to be due to a higher film deposition rate and consequently higher adhesion or sticking coefficient for the CA-PVD particles arriving on the substrate compared to that of the EB-PVD film. EB-PVD shows poor laser bonding properties due to the development of thermal hotspots which occurs from film decohesion.

  4. Infrared control coating of thin film devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berland, Brian Spencer; Stowell, Jr., Michael Wayne; Hollingsworth, Russell

    Systems and methods for creating an infrared-control coated thin film device with certain visible light transmittance and infrared reflectance properties are disclosed. The device may be made using various techniques including physical vapor deposition, chemical vapor deposition, thermal evaporation, pulsed laser deposition, sputter deposition, and sol-gel processes. In particular, a pulsed energy microwave plasma enhanced chemical vapor deposition process may be used. Production of the device may occur at speeds greater than 50 Angstroms/second and temperatures lower than 200.degree. C.

  5. Metallurgical coatings and thin films; Proceedings of the International Conference, 18th, San Diego, CA, Apr. 22-26, 1991. Vols. 1 & 2

    NASA Technical Reports Server (NTRS)

    Mcguire, Gary E. (Editor); Mcintyre, Dale C. (Editor); Hofmann, Siegfried (Editor)

    1991-01-01

    A conference on metallurgical coatings and thin films produced papers in the areas of coatings for use at high temperatures; hard coatings and deposition technologies; diamonds and related materials; tribological coatings/surface modifications; thin films for microelectronics and high temperature superconductors; optical coatings, film characterization, magneto-optics, and guided waves; and methods for characterizing films and modified surfaces.

  6. Biocompatibility evaluation of sputtered zirconium-based thin film metallic glass-coated steels.

    PubMed

    Subramanian, Balasubramanian; Maruthamuthu, Sundaram; Rajan, Senthilperumal Thanka

    2015-01-01

    Thin film metallic glasses comprised of Zr48Cu36Al8Ag8 (at.%) of approximately 1.5 μm and 3 μm in thickness were prepared using magnetron sputtering onto medical grade 316L stainless steel. Their structural and mechanical properties, in vitro corrosion, and antimicrobial activity were analyzed. The amorphous thin film metallic glasses consisted of a single glassy phase, with an absence of any detectable peaks corresponding to crystalline phases. Elemental composition close to the target alloy was noted from EDAX analysis of the thin film. The surface morphology of the film showed a smooth surface on scanning electron microscopy and atomic force microscopy. In vitro electrochemical corrosion studies indicated that the zirconium-based metallic glass could withstand body fluid, showing superior resistance to corrosion and electrochemical stability. Interactions between the coated surface and bacteria were investigated by agar diffusion, solution suspension, and wet interfacial contact methods. The results indicated a clear zone of inhibition against the growth of microorganisms such as Escherichia coli and Staphylococcus aureus, confirming the antimicrobial activity of the thin film metallic glasses. Cytotoxicity studies using L929 fibroblast cells showed these coatings to be noncytotoxic in nature.

  7. Biocompatibility evaluation of sputtered zirconium-based thin film metallic glass-coated steels

    PubMed Central

    Subramanian, Balasubramanian; Maruthamuthu, Sundaram; Rajan, Senthilperumal Thanka

    2015-01-01

    Thin film metallic glasses comprised of Zr48Cu36Al8Ag8 (at.%) of approximately 1.5 μm and 3 μm in thickness were prepared using magnetron sputtering onto medical grade 316L stainless steel. Their structural and mechanical properties, in vitro corrosion, and antimicrobial activity were analyzed. The amorphous thin film metallic glasses consisted of a single glassy phase, with an absence of any detectable peaks corresponding to crystalline phases. Elemental composition close to the target alloy was noted from EDAX analysis of the thin film. The surface morphology of the film showed a smooth surface on scanning electron microscopy and atomic force microscopy. In vitro electrochemical corrosion studies indicated that the zirconium-based metallic glass could withstand body fluid, showing superior resistance to corrosion and electrochemical stability. Interactions between the coated surface and bacteria were investigated by agar diffusion, solution suspension, and wet interfacial contact methods. The results indicated a clear zone of inhibition against the growth of microorganisms such as Escherichia coli and Staphylococcus aureus, confirming the antimicrobial activity of the thin film metallic glasses. Cytotoxicity studies using L929 fibroblast cells showed these coatings to be noncytotoxic in nature. PMID:26491304

  8. Hydroxyapatite/polylactide biphasic combination scaffold loaded with dexamethasone for bone regeneration.

    PubMed

    Son, Jun-Sik; Kim, Su-Gwan; Oh, Ji-Su; Appleford, Mark; Oh, Sunho; Ong, Joo L; Lee, Kyu-Bok

    2011-12-15

    This study presents a novel design of a ceramic/polymer biphasic combination scaffold that mimics natural bone structures and is used as a bone graft substitute. To mimic the natural bone structures, the outside cortical-like shells were composed of porous hydroxyapatite (HA) with a hollow interior using a polymeric template-coating technique; the inner trabecular-like core consisted of porous poly(D,L-lactic acid) (PLA) that was loaded with dexamethasone (DEX) and was directly produced using a particle leaching/gas forming technique to create the inner diameter of the HA scaffold. It was observed that the HA and PLA parts of the fabricated HA/PLA biphasic scaffold contained open and interconnected pore structures, and the boundary between both parts was tightly connected without any gaps. It was found that the structure of the combination scaffold was analogous to that of natural bone based on micro-computed tomography analysis. Additionally, the dense, uniform apatite layer was formed on the surface of the HA/PLA biphasic scaffold through a biomimetic process, and DEX was successfully released from the PLA of the biphasic scaffold over a 1-month period. This release caused human embryonic palatal mesenchyme cells to proliferate, differentiate, produce ECM, and form tissue in vitro. Therefore, it was concluded that this functionally graded scaffold is similar to natural bone and represents a potential bone-substitute material. Copyright © 2011 Wiley Periodicals, Inc.

  9. Space Plasma Testing of High-Voltage Thin-Film Solar Arrays with Protective Coatings

    NASA Technical Reports Server (NTRS)

    Tlomak, Pawel; Hausgen, Paul E.; Merrill, John; Senft, Donna; Piszczor, Michael F., Jr.

    2007-01-01

    This paper gives an overview of the space plasma test program for thin-film photovoltaics (TFPV) technologies developed at the Air Force Research Laboratory (AFRL). The main objective of this program is to simulate the effects of space plasma characteristic of LEO and MEO environments on TFPV. Two types of TFPV, amorphous silicon (a-Si) and copper-indium-gallium-diselenide (CIGS), coated with two types of thin-film, multifunctional coatings were used for these studies. This paper reports the results of the first phase of this program, namely the results of preliminary electrostatic charging, arcing, dielectric breakdown, and collection current measurements carried out with a series of TFPV exposed to simulated space plasma at the NASA Glenn Plasma Interaction Facility. The experimental data demonstrate that multifunctional coatings developed for this program provide effective protection against the plasma environment while minimizing impact on power generation performance. This effort is part of an ongoing program led by the Space Vehicles Directorate at the AFRL devoted to the development and space qualification of TFPV and their protective coatings.

  10. Growth of textured thin Au coatings on iron oxide nanoparticles with near infrared absorbance

    PubMed Central

    Ma, L L; Borwankar, A U; Willsey, B W; Yoon, K Y; Tam, J O; Sokolov, K V; Feldman, M D; Milner, T E; Johnston, K P

    2013-01-01

    A homologous series of Au-coated iron oxide nanoparticles, with hydrodynamic diameters smaller than 60 nm was synthesized with very low Auto-iron mass ratios as low as 0.15. The hydrodynamic diameter was determined by dynamic light scattering and the composition by atomic absorption spectroscopy and energy dispersive x-ray spectroscopy (EDS). Unusually low Au precursor supersaturation levels were utilized to nucleate and grow Au coatings on iron oxide relative to formation of pure Au nanoparticles. This approach produced unusually thin coatings, by lowering autocatalytic growth of Au on Au, as shown by transmission electron microscopy (TEM). Nearly all of the nanoparticles were attracted by a magnet indicating a minimal amount of pure Au particles The coatings were sufficiently thin to shift the surface plasmon resonance (SPR) to the near infrared (NIR), with large extinction coefficients., despite the small particle hydrodynamic diameters, observed from dynamic light scattering to be less than 60 nm. PMID:23238021

  11. Thin Coatings of Polymeric Carbon and Carbon Nanotubes for Corrosion Protection

    DTIC Science & Technology

    2009-02-01

    Thin Coatings of Polymeric Carbon and Carbon Nanotubes for Corrosion Protection Zafar Iqbal Department of Chemistry and Environmental Science New...Department of Chemistry and Environmental Science ,Newark,NJ,07102 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND

  12. Optimization of rotational speed for growing BaFe12O19 thin films using spin coating

    NASA Astrophysics Data System (ADS)

    Budiawanti, S.; Soegijono, B.; Mudzakir, I.; Suharno, Fadillah, L.

    2017-07-01

    Barium ferrite (BaFe12O19, BaM) thin films were fabricated by the spin coating of precursors obtained by using a sol-gel method. The effects of the rotational speed on the spin-coating process for growing a BaM thin film were investigated in this study. Coated films were heat-deposited at different rotational speeds ranging from 2000 to 4000 rpm, while the number of layers was set to nine. Further, the effect of the number of layers on the growth of BaM thin films was discussed. For this purpose, we take the layers number 1 to 12 and take the constant rotational speed of 3000 rpm. All the film were characterized using X-Ray diffraction, Scanning Electron microscope, and Energy-dispersive X-Ray spectroscopy and Vibrating Sample Magnetometer. It was found that by increasing the rotational speed the amount of material deposited on the Si substrate decreased. The measured grain size of the BaM thin film was nearly similar for three three different rotational speeds. However, the grain size was found to increase the number of layers.

  13. Non-stick syringe needles: Beneficial effects of thin film metallic glass coating

    PubMed Central

    Chu, Jinn P.; Yu, Chia-Chi; Tanatsugu, Yusuke; Yasuzawa, Mikito; Shen, Yu-Lin

    2016-01-01

    This paper reports on the use of Zr-based (Zr53Cu33Al9Ta5) thin film metallic glass (TFMG) for the coating of syringe needles and compares the results with those obtained using titanium nitride and pure titanium coatings. TFMG coatings were shown to reduce insertion forces by ∼66% and retraction forces by ∼72%, when tested using polyurethane rubber block. The benefits of TFMG-coated needles were also observed when tested using muscle tissue from pigs. In nano-scratch tests, the TFMG coatings achieved a coefficient of friction (COF) of just ∼0.05, which is about one order of magnitude lower than those of other coatings. Finite-element modeling also indicates a significant reduction in injection and retraction forces. The COF can be attributed to the absence of grain boundaries in the TFMG coating as well as a smooth surface morphology and low surface free energy. PMID:27573062

  14. RF critical field measurement of MgB2 thin films coated on Nb

    NASA Astrophysics Data System (ADS)

    Tajima, T.; Eremeev, G.; Zou, G.; Dolgashev, V.; Martin, D.; Nantista, C.; Tantawi, S.; Yoneda, C.; Moeckly, B. H.; Campisi, I.

    2010-06-01

    Niobium (Nb) Superconducting RF (SRF) cavities have been used or will be used for a number of particle accelerators. The fundamental limit of the accelerating gradient has been thought to be around 50 MV/m due to its RF critical magnetic field of around 200 mT. This limit will prevent new projects requiring higher gradient and compact accelerators from considering SRF structures. There is a theory, however, that promises to overcome this limitation by coating thin (less than the penetration depth) superconductors on Nb. We initiated measurements of critical magnetic fields of Nb coated with various thin film superconductors, starting with MgB2 films deposited using reactive evaporation technique, with the goal to apply this coating to SRF cavities. This paper will present first test results of the RF critical magnetic field of a system consisting of a 10 nm B and a 100 nm MgB2 films deposited on a chemically polished 2-inch single grain Nb substrate.

  15. Synthesis of galium nitride thin films using sol-gel dip coating method

    NASA Astrophysics Data System (ADS)

    Hamid, Maizatul Akmam Ab; Ng, Sha Shiong

    2017-12-01

    In this research, gallium nitride (GaN) thin film were grown on silicon (Si) substrate by a low-cost sol-gel dip coating deposition method. The GaN precursor solution was prepared using gallium (III) nitrate hydrate powder, ethanol and diethanolamine as a starting material, solvent and surfactant respectively. The structural, morphological and optical characteristics of the deposited GaN thin film were investigated. Field-emission scanning electron microscopy observations showed that crack free and dense grains GaN thin films were formed. Energy dispersive X-ray analysis confirmed that the oxygen content in the deposited films was low. X-ray diffraction results revealed that deposited GaN thin films have hexagonal wurtzite structure.

  16. Solar Selective Coatings Prepared From Thin-Film Molecular Mixtures and Evaluated

    NASA Technical Reports Server (NTRS)

    Jaworske, Don A.

    2003-01-01

    Thin films composed of molecular mixtures of metal and dielectric are being considered for use as solar selective coatings for a variety of space power applications. By controlling molecular mixing during ion-beam sputter deposition, researchers can tailor the solar selective coatings to have the combined properties of high solar absorptance and low infrared emittance. On orbit, these combined properties simultaneously maximize the amount of solar energy captured by the coating and minimize the amount of thermal energy radiated. The solar selective coatings are envisioned for use on minisatellites, for applications where solar energy is used to power heat engines or to heat remote regions in the interior of the spacecraft. Such systems may be useful for various missions, particularly those to middle Earth orbit. Sunlight must be concentrated by a factor of 100 or more to achieve the desired heat inlet operating temperature. At lower concentration factors, the temperature of the heat inlet surface of the heat engine is too low for efficient operation, and at high concentration factors, cavity type heat receivers become attractive. The an artist's concept of a heat engine, with the annular heat absorbing surface near the focus of the concentrator coated with a solar selective coating is shown. In this artist's concept, the heat absorbing surface powers a small Stirling convertor. The astronaut's gloved hand is provided for scale. Several thin-film molecular mixtures have been prepared and evaluated to date, including mixtures of aluminum and aluminum oxide, nickel and aluminum oxide, titanium and aluminum oxide, and platinum and aluminum oxide. For example, a 2400- Angstrom thick mixture of titanium and aluminum oxide was found to have a solar absorptance of 0.93 and an infrared emittance of 0.06. On the basis of tests performed under flowing nitrogen at temperatures as high as 680 C, the coating appeared to be durable at elevated temperatures. Additional durability

  17. Linking Precursor Alterations to Nanoscale Structure and Optical Transparency in Polymer Assisted Fast-Rate Dip-Coating of Vanadium Oxide Thin Films

    PubMed Central

    Glynn, Colm; Creedon, Donal; Geaney, Hugh; Armstrong, Eileen; Collins, Timothy; Morris, Michael A.; Dwyer, Colm O’

    2015-01-01

    Solution processed metal oxide thin films are important for modern optoelectronic devices ranging from thin film transistors to photovoltaics and for functional optical coatings. Solution processed techniques such as dip-coating, allow thin films to be rapidly deposited over a large range of surfaces including curved, flexible or plastic substrates without extensive processing of comparative vapour or physical deposition methods. To increase the effectiveness and versatility of dip-coated thin films, alterations to commonly used precursors can be made that facilitate controlled thin film deposition. The effects of polymer assisted deposition and changes in solvent-alkoxide dilution on the morphology, structure, optoelectronic properties and crystallinity of vanadium pentoxide thin films was studied using a dip-coating method using a substrate withdrawal speed within the fast-rate draining regime. The formation of sub-100 nm thin films could be achieved rapidly from dilute alkoxide based precursor solutions with high optical transmission in the visible, linked to the phase and film structure. The effects of the polymer addition was shown to change the crystallized vanadium pentoxide thin films from a granular surface structure to a polycrystalline structure composed of a high density of smaller in-plane grains, resulting in a uniform surface morphology with lower thickness and roughness. PMID:26123117

  18. Substrate-Independent Robust and Heparin-Mimetic Hydrogel Thin Film Coating via Combined LbL Self-Assembly and Mussel-Inspired Post-Cross-linking.

    PubMed

    Ma, Lang; Cheng, Chong; He, Chao; Nie, Chuanxiong; Deng, Jie; Sun, Shudong; Zhao, Changsheng

    2015-12-02

    In this work, we designed a robust and heparin-mimetic hydrogel thin film coating via combined layer-by-layer (LbL) self-assembly and mussel-inspired post-cross-linking. Dopamine-grafted heparin-like/-mimetic polymers (DA-g-HepLP) with abundant carboxylic and sulfonic groups were synthesized by the conjugation of adhesive molecule, DA, which exhibited substrate-independent adhesive affinity to various solid surfaces because of the formation of irreversible covalent bonds. The hydrogel thin film coated substrates were prepared by a three-step reaction: First, the substrates were coated with DA-g-HepLP to generate negatively charged surfaces. Then, multilayers were obtained via LbL coating of chitosan and the DA-g-HepLP. Finally, the noncovalent multilayers were oxidatively cross-linked by NaIO4. Surface ATR-FTIR and XPS spectra confirmed the successful fabrication of the hydrogel thin film coatings onto membrane substrates; SEM images revealed that the substrate-independent coatings owned 3D porous morphology. The soaking tests in highly alkaline, acid, and concentrated salt solutions indicated that the cross-linked hydrogel thin film coatings owned high chemical resistance. In comparison, the soaking tests in physiological solution indicated that the cross-linked hydrogel coatings owned excellent long-term stability. The live/dead cell staining and morphology observations of the adhered cells revealed that the heparin-mimetic hydrogel thin film coated substrates had low cell toxicity and high promotion ability for cell proliferation. Furthermore, systematic in vitro investigations of protein adsorption, platelet adhesion, blood clotting, and blood-related complement activation confirmed that the hydrogel film coated substrates showed excellent hemocompatibility. Both the results of inhibition zone and bactericidal activity indicated that the gentamycin sulfate loaded hydrogel thin films had significant inhibition capability toward both Escherichia coli and

  19. Thermal conductivity of ZrO2-4mol%Y2O3 thin coatings by pulsed thermal imaging method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jang, Byung-Koog; Sun, Jiangang; Kim, Seongwon

    Thin ZrO2-4mol% Y2O3 coatings were deposited onto ZrO2 substrates by electron beam-physical vapor deposition. The coated samples revealed a feather-like columnar microstructure. The main phase of the ZrO2-4mol% Y2O3 coatings was the tetragonal phase. To evaluate the influence of the coating’s thickness on the thermal conductivity of thin ZrO2-4mol% Y2O3 coatings, the pulsed thermal imaging method was employed to obtain the thermal conductivity of the coating layer in the two-layer (coating and substrate) samples with thickness between 56 and 337 micrometers. The thermal conductivity of the coating layer was successfully evaluated and compared well with those obtained by the lasermore » flash method for similar coatings. The thermal conductivity of coatings shows an increasing tendency with an increase in the coating’s thickness.« less

  20. Easy-to-fabricate thin-film coating on PDMS substrate with super hydrophilicity and stability.

    PubMed

    Sun, Lijun; Luo, Yong; Gao, Zhigang; Zhao, Weijie; Lin, Bingcheng

    2015-03-01

    With the fast expansion of microfluidic applications, stable, and easy-to-fabricate PDMS surface coating with super hydrophilicity is highly desirable. In this study, we introduce a new kind of copolymer-based, single-layer thin-film coating for PDMS. The coating can exist in air at room temperature for at least 6 months without any noticeable deterioration in the super hydrophilicity (water contact angle ∼7°), resistance of protein adsorption, or inhibition of the EOF. In addition, this coating enables arbitrary patterning of cells on planar surfaces. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Characterizations of biodegradable epoxy-coated cellulose nanofibrils (CNF) thin film for flexible microwave applications

    Treesearch

    Hongyi Mi; Chien-Hao Liu; Tzu-Husan Chang; Jung-Hun Seo; Huilong Zhang; Sang June Cho; Nader Behdad; Zhenqiang Ma; Chunhua Yao; Zhiyong Cai; Shaoqin Gong

    2016-01-01

    Wood pulp cellulose nanofibrils (CNF) thin film is a novel recyclable and biodegradable material. We investigated the microwave dielectric properties of the epoxy coated-CNF thin film for potential broad applications in flexible high speed electronics. The characterizations of dielectric properties were carried out in a frequency range of 1–10 GHz. The dielectric...

  2. Biphasic magnetic nanoparticles-nanovesicle hybrids for chemotherapy and self-controlled hyperthermia.

    PubMed

    Gogoi, Manashjit; Sarma, Haladhar D; Bahadur, Dhirendra; Banerjee, Rinti

    2014-05-01

    The aim was to develop magnetic nanovesicles for chemotherapy and self-controlled hyperthermia that prevent overheating of tissues. Magnetic nanovesicles containing paclitaxel and a dextran-coated biphasic suspension of La0.75Sr0.25MnO3 and Fe3O4 nanoparticles (magnetic nanoparticles) were developed. Encapsulation efficiencies of magnetic nanoparticles and paclitaxel were 67 ± 5 and 83 ± 3%, respectively. Sequential release performed at 37°C for 1 h followed by 44°C for another 1 h (as expected for intratumoral injection), showed a cumulative release of 6.6% (109.6 µg), which was above the IC50 of the drug. In an alternating current magnetic field, the temperature remained controlled at 44°C and a synergistic cytotoxicity of paclitaxel and hyperthermia was observed in MCF-7 cells. Magnetic nanovesicles containing biphasic suspensions La0.75Sr0.25MnO3 and Fe3O4 nanoparticles encapsulating paclitaxel have potential for combined self-controlled hyperthermia and chemotherapy.

  3. Dip coated TiO2 nanostructured thin film: synthesis and application

    NASA Astrophysics Data System (ADS)

    Vanaraja, Manoj; Muthukrishnan, Karthika; Boomadevi, Shanmugam; Karn, Rakesh Kumar; Singh, Vijay; Singh, Pramod K.; Pandiyan, Krishnamoorthy

    2016-02-01

    TiO2 thin film was fabricated by dip coating method using titanium IV chloride as precursor and sodium carboxymethyl cellulose as thickening as well as capping agent. Structural and morphological features of TiO2 thin film were characterized by X-ray diffractometer and field emission scanning electron microscope, respectively. Crystallinity of the film was confirmed with high-intensity peak at (101) plane, and its average crystallite size was found to be 28 nm. The ethanol-sensing properties of TiO2 thin film was studied by the chemiresistive method. Furthermore, various gases were tested in order to verify the selectivity of the sensor. Among the several gases, the fabricated TiO2 sensor showed very high selectivity towards ethanol at room temperature.

  4. Understanding Interfacial Alignment in Solution Coated Conjugated Polymer Thin Films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qu, Ge; Zhao, Xikang; Newbloom, Gregory M.

    Domain alignment in conjugated polymer thin films can significantly enhance charge carrier mobility. However, the alignment mechanism during meniscus-guided solution coating remains unclear. Furthermore, interfacial alignment has been rarely studied despite its direct relevance and critical importance to charge transport. In this study, we uncover a significantly higher degree of alignment at the top interface of solution coated thin films, using a donor–acceptor conjugated polymer, poly(diketopyrrolopyrrole-co-thiopheneco- thieno[3,2- b]thiophene-co-thiophene) (DPP2T-TT), as the model system. At the molecular level, we observe in-plane π–π stacking anisotropy of up to 4.8 near the top interface with the polymer backbone aligned parallel to the coatingmore » direction. The bulk of the film is only weakly aligned with the backbone oriented transverse to coating. At the mesoscale, we observe a well-defined fibril-like morphology at the top interface with the fibril long axis pointing toward the coating direction. Significantly smaller fibrils with poor orientational order are found on the bottom interface, weakly aligned orthogonal to the fibrils on the top interface. The high degree of alignment at the top interface leads to a charge transport anisotropy of up to 5.4 compared to an anisotropy close to 1 on the bottom interface. We attribute the formation of distinct interfacial morphology to the skin-layer formation associated with high Peclet number, which promotes crystallization on the top interface while suppressing it in the bulk. As a result, we further infer that the interfacial fibril alignment is driven by the extensional flow on the top interface arisen from increasing solvent evaporation rate closer to the meniscus front.« less

  5. Understanding Interfacial Alignment in Solution Coated Conjugated Polymer Thin Films

    DOE PAGES

    Qu, Ge; Zhao, Xikang; Newbloom, Gregory M.; ...

    2017-08-01

    Domain alignment in conjugated polymer thin films can significantly enhance charge carrier mobility. However, the alignment mechanism during meniscus-guided solution coating remains unclear. Furthermore, interfacial alignment has been rarely studied despite its direct relevance and critical importance to charge transport. In this study, we uncover a significantly higher degree of alignment at the top interface of solution coated thin films, using a donor–acceptor conjugated polymer, poly(diketopyrrolopyrrole-co-thiopheneco- thieno[3,2- b]thiophene-co-thiophene) (DPP2T-TT), as the model system. At the molecular level, we observe in-plane π–π stacking anisotropy of up to 4.8 near the top interface with the polymer backbone aligned parallel to the coatingmore » direction. The bulk of the film is only weakly aligned with the backbone oriented transverse to coating. At the mesoscale, we observe a well-defined fibril-like morphology at the top interface with the fibril long axis pointing toward the coating direction. Significantly smaller fibrils with poor orientational order are found on the bottom interface, weakly aligned orthogonal to the fibrils on the top interface. The high degree of alignment at the top interface leads to a charge transport anisotropy of up to 5.4 compared to an anisotropy close to 1 on the bottom interface. We attribute the formation of distinct interfacial morphology to the skin-layer formation associated with high Peclet number, which promotes crystallization on the top interface while suppressing it in the bulk. As a result, we further infer that the interfacial fibril alignment is driven by the extensional flow on the top interface arisen from increasing solvent evaporation rate closer to the meniscus front.« less

  6. High performance sandwich structured Si thin film anodes with LiPON coating

    NASA Astrophysics Data System (ADS)

    Luo, Xinyi; Lang, Jialiang; Lv, Shasha; Li, Zhengcao

    2018-04-01

    The sandwich structured silicon thin film anodes with lithium phosphorus oxynitride (LiPON) coating are synthesized via the radio frequency magnetron sputtering method, whereas the thicknesses of both layers are in the nanometer range, i.e. between 50 and 200 nm. In this sandwich structure, the separator simultaneously functions as a flexible substrate, while the LiPON layer is regarded as a protective layer. This sandwich structure combines the advantages of flexible substrate, which can help silicon release the compressive stress, and the LiPON coating, which can provide a stable artificial solidelectrolyte interphase (SEI) film on the electrode. As a result, the silicon anodes are protected well, and the cells exhibit high reversible capacity, excellent cycling stability and good rate capability. All the results demonstrate that this sandwich structure can be a promising option for high performance Si thin film lithium ion batteries.

  7. High performance sandwich structured Si thin film anodes with LiPON coating

    NASA Astrophysics Data System (ADS)

    Luo, Xinyi; Lang, Jialiang; Lv, Shasha; Li, Zhengcao

    2018-06-01

    The sandwich structured silicon thin film anodes with lithium phosphorus oxynitride (LiPON) coating are synthesized via the radio frequency magnetron sputtering method, whereas the thicknesses of both layers are in the nanometer range, i.e. between 50 and 200 nm. In this sandwich structure, the separator simultaneously functions as a flexible substrate, while the LiPON layer is regarded as a protective layer. This sandwich structure combines the advantages of flexible substrate, which can help silicon release the compressive stress, and the LiPON coating, which can provide a stable artificial solid-electrolyte interphase (SEI) film on the electrode. As a result, the silicon anodes are protected well, and the cells exhibit high reversible capacity, excellent cycling stability and good rate capability. All the results demonstrate that this sandwich structure can be a promising option for high performance Si thin film lithium ion batteries.

  8. Applications of ionic liquids in biphasic separation: Aqueous biphasic systems and liquid-liquid equilibria.

    PubMed

    Shukla, Shashi Kant; Pandey, Shubha; Pandey, Siddharth

    2018-07-20

    Ionic liquids (ILs) have been receiving much attention in many fields of analytical chemistry because of their various interesting properties which distinguish them from volatile organic compounds. They offer both directional and non-directional forces towards a solute molecule and therefore act as excellent solvents for a wide range of polar and non-polar compounds. Because of the presence of various possible interactions, ILs easily undergo biphasic separation with water and other less polar/non-polar organic solvents. Their ability to create biphasic splitting makes them a promising candidate for liquid-liquid separation processes, such as aqueous biphasic systems and liquid-liquid equilibria. Various aspects of ILs in these separation methods are discussed in view of the origin of physical forces responsible for the biphasic interactions, the effect of structural components, temperature, pressure, pH and additives. The specific advantages of using ILs in aqueous biphasic systems and liquid-liquid equilibria in binary and ternary systems are discussed with a view to defining their future role in separation processes by giving major emphasis on developing non-toxic ILs with physical and solution properties tailored to the needs of specific sample preparation techniques. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Enhancement of as-sputtered silver-tantalum oxide thin film coating on biomaterial stainless steel by surface thermal treatment

    NASA Astrophysics Data System (ADS)

    Alias, Rodianah; Mahmoodian, Reza; Shukor, Mohd Hamdi Abd; Yew, Been Seok; Muhamad, Martini

    2018-04-01

    Stainless steel 316L (SS316L) is extensively used as surgical/clinical tools due to its low carbon content and excellent mechanical characteristic. The fabrication of metal ceramic based on this metallic biomaterial favor its biofunctionality properties. However, instability phase of amorphous thin film lead to degradation, corrosion and oxidation. Thus, thin film coating requires elevated adhesion strength and higher surface hardness to meet clinical tools criteria. In this study, the SS316L was deposited with micron thickness of Ag-TaO thin film by using magnetron sputtering. The microstructure, elemental analysis and phase identification of Ag-TaO thin film were characterized by using FESEM, EDX and XRD, respectively; whereas the micro scratch test and micro hardness test were performed by using Micro Scratch Testing System and Vickers Micro Hardness Tester, respectively. It was found that the coating thin film's adhesion and hardness strength were improved from 672 to 2749 mN and 142 to 158 Hv respectively. It was found that the as-deposited surface were treated at 500 °C of temperatures with 2 °C/min ramping rate enhance 4.1 times of the adhesion strength value. Furthermore, FESEM characterization revealed coarsening structure of the thin film coating which can provide high durability service.

  10. Biaxial thin-film coated-plate polarizing beam splitters.

    PubMed

    Hodgkinson, Ian; Wu, Qi Hong; Arnold, Matthew; De Silva, Lakshman; Beydaghyan, Gisia; Kaminska, Kate; Robbie, Kevin

    2006-03-01

    We present a design for a biaxial thin-film coated-plate polarizing beam splitter that transmits the p-polarized component of a beam of light without change of direction and reflects the s-polarized component. The beam splitter has a periodic structure and is planned for fabrication by serial bideposition in mutually orthogonal planes. Recent experimental data for form-birefringent silicon is used to establish the feasibility of the design for a beam splitter to be used at 1310 nm and at an angle of 45 degrees in air.

  11. Giant magnetic impedance of wires with a thin magnetic coating

    NASA Astrophysics Data System (ADS)

    Kurlyandskaya, G. V.; Bebenin, N. G.; Vas'kovsky, V. O.

    2011-02-01

    In this review, we analyzed and generalized the results of experimental investigations of physical processes that occur in composite wires with a thin magnetic coating under the conditions of the appearance in them of a giant magnetoimpedance (GMI) effect. Principles of the measurements of high-frequency impedance are described in short; basic definitions are given, and the differences in the linear and nonlinear GMI regimes are described. Data are systemized on the giant magnetic impedance of wires with a thin magnetic coating (composite materials) under the conditions of a strong nonlinearity of the GMI effect, which is accompanied by the appearance of higher harmonics in the output signal. The extremely high susceptibility of the harmonic parameters to external actions can be used in the technical applications for creating ultrasensitive detectors of low magnetic fields. Special attention is paid to model calculations, which confirm the fact that the experimentally observed features of a nonlinear GMI effect are connected with the high sensitivity of the magnetic system to a circular magnetic field near the spin-reorientation phase transitions. Fine features of the effective magnetic anisotropy can play the key role and therefore cannot be ignored in the general case.

  12. An investigation of GaN thin films on AlN on sapphire substrate by sol-gel spin coating method

    NASA Astrophysics Data System (ADS)

    Amin, Nur Fahana Mohd; Ng, Sha Shiong

    2017-12-01

    In this research, the gallium nitride (GaN) thin films were deposited on aluminium nitride on sapphire (AlN/Al2O3) substrate by sol-gel spin coating method. Simple ethanol-based precursor with the addition of diethanolamine solution was used. The structural and morphology properties of synthesized GaN thin films were characterized by using X-ray Diffraction, Field-Emission Scanning Electron Microscopy and Atomic Force Microscopy. While the elemental compositions and the lattice vibrational properties of the films were investigated by means of the Energy Dispersive X-ray spectroscopy and Raman spectroscopy. All the results revealed that the wurtzite structure GaN thin films with GaN(002) preferred orientation and smooth surface morphology were successfully grown on AlN/Al2O3 substrate by using inexpensive and simplified sol-gel spin coating technique. The sol-gel spin coated GaN thin film with lowest oxygen content was also achieved.FESEM images show that GaN thin films with uniform and packed grains were formed. Based on the obtained results, it can be concluded that wurtzite structure GaN thin films were successfully deposited on AlN/Al2O3 substrate.

  13. Spectroscopic ellipsometry investigation of the optical properties of graphene oxide dip-coated on magnetron sputtered gold thin films

    NASA Astrophysics Data System (ADS)

    Politano, Grazia Giuseppina; Vena, Carlo; Desiderio, Giovanni; Versace, Carlo

    2018-02-01

    Despite intensive investigations on graphene oxide-gold nanocomposites, the interaction of graphene oxide sheets with magnetron sputtered gold thin films has not been studied yet. The optical constants of graphene oxide thin films dip-coated on magnetron sputtered gold thin films were determined by spectroscopic ellipsometry in the [300-1000] wavelength range. Moreover, the morphologic properties of the samples were investigated by SEM analysis. Graphene oxide absorbs mainly in the ultraviolet region, but when it is dip-coated on magnetron sputtered gold thin films, its optical constants show dramatic changes, becoming absorbing in the visible region, with a peak of the extinction coefficient at 3.1 eV. Using magnetron sputtered gold thin films as a substrate for graphene oxide thin films could therefore be the key to enhance graphene oxide optical sheets' properties for several technological applications, preserving their oxygen content and avoiding the reduction process.

  14. Engineering Multifunctional Living Paints: Thin, Convectively-Assembled Biocomposite Coatings of Live Cells and Colloidal Latex Particles Deposited by Continuous Convective-Sedimentation Assembly

    NASA Astrophysics Data System (ADS)

    Jenkins, Jessica Shawn

    Advanced composite materials could be revolutionized by the development of methods to incorporate living cells into functional materials and devices. This could be accomplished by continuously and rapidly depositing thin ordered arrays of adhesive colloidal latex particles and live cells that maintain stability and preserve microbial reactivity. Convective assembly is one method of rapidly assembling colloidal particles into thin (<10 microm thick), ordered films with engineered compositions, thicknesses, and particle packing that offer several advantages over thicker randomly ordered composites, including enhanced cell stability and increased reactivity through minimized diffusion resistance to nutrients and reduced light scattering. This method can be used to precisely deposit live bacteria, cyanobacteria, yeast, and algae into biocomposite coatings, forming reactive biosensors, photoabsorbers, or advanced biocatalysts. This dissertation developed new continuous deposition and coating characterization methods for fabricating and characterizing <10 microm thick colloid coatings---monodispersed latex particle or cell suspensions, bimodal blends of latex particles or live cells and microspheres, and trimodal formulations of biomodal latex and live cells on substrates such as aluminum foil, glass, porous Kraft paper, polyester, and polypropylene. Continuous convective-sedimentation assembly (CSA) is introduced to enable fabrication of larger surface area and long coatings by constantly feeding coating suspension to the meniscus, thus expanding the utility of convective assembly to deposit monolayer or very thin films or multi-layer coatings composed of thin layers on a large scale. Results show thin, tunable coatings can be fabricated from diverse coating suspensions and critical coating parameters that control thickness and structure. Particle size ratio and charge influence deposition, convective mixing or demixing and relative particle locations. Substrate

  15. Predictive Model for the Meniscus-Guided Coating of High-Quality Organic Single-Crystalline Thin Films.

    PubMed

    Janneck, Robby; Vercesi, Federico; Heremans, Paul; Genoe, Jan; Rolin, Cedric

    2016-09-01

    A model that describes solvent evaporation dynamics in meniscus-guided coating techniques is developed. In combination with a single fitting parameter, it is shown that this formula can accurately predict a processing window for various coating conditions. Organic thin-film transistors (OTFTs), fabricated by a zone-casting setup, indeed show the best performance at the predicted coating speeds with mobilities reaching 7 cm 2 V -1 s -1 . © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Highly Conductive Thin Uniform Gold-Coated DNA Nanowires.

    PubMed

    Stern, Avigail; Eidelshtein, Gennady; Zhuravel, Roman; Livshits, Gideon I; Rotem, Dvir; Kotlyar, Alexander; Porath, Danny

    2018-06-01

    Over the past decades, DNA, the carrier of genetic information, has been used by researchers as a structural template material. Watson-Crick base pairing enables the formation of complex 2D and 3D structures from DNA through self-assembly. Various methods have been developed to functionalize these structures for numerous utilities. Metallization of DNA has attracted much attention as a means of forming conductive nanostructures. Nevertheless, most of the metallized DNA wires reported so far suffer from irregularity and lack of end-to-end electrical connectivity. An effective technique for formation of thin gold-coated DNA wires that overcomes these drawbacks is developed and presented here. A conductive atomic force microscopy setup, which is suitable for measuring tens to thousands of nanometer long molecules and wires, is used to characterize these DNA-based nanowires. The wires reported here are the narrowest gold-coated DNA wires that display long-range conductivity. The measurements presented show that the conductivity is limited by defects, and that thicker gold coating reduces the number of defects and increases the conductive length. This preparation method enables the formation of molecular wires with dimensions and uniformity that are much more suitable for DNA-based molecular electronics. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Control of p-type and n-type thermoelectric properties of bismuth telluride thin films by combinatorial sputter coating technology

    NASA Astrophysics Data System (ADS)

    Goto, Masahiro; Sasaki, Michiko; Xu, Yibin; Zhan, Tianzhuo; Isoda, Yukihiro; Shinohara, Yoshikazu

    2017-06-01

    p- and n-type bismuth telluride thin films have been synthesized by using a combinatorial sputter coating system (COSCOS). The crystal structure and crystal preferred orientation of the thin films were changed by controlling the coating condition of the radio frequency (RF) power during the sputter coating. As a result, the p- and n-type films and their dimensionless figure of merit (ZT) were optimized by the technique. The properties of the thin films such as the crystal structure, crystal preferred orientation, material composition and surface morphology were analyzed by X-ray diffraction, energy-dispersive X-ray spectroscopy and atomic force microscopy. Also, the thermoelectric properties of the Seebeck coefficient, electrical conductivity and thermal conductivity were measured. ZT for n- and p-type bismuth telluride thin films was found to be 0.27 and 0.40 at RF powers of 90 and 120 W, respectively. The proposed technology can be used to fabricate thermoelectric p-n modules of bismuth telluride without any doping process.

  18. Method and apparatus for enhanced evanescent fluorescence and color filtering using a high refractive index thin film coating

    DOEpatents

    Kao, Hung Pin; Schoeniger, Joseph; Yang, Nancy

    2001-01-01

    A technique for increasing the excitation and collection of evanescent fluorescence radiation emanating from a fiber optic sensor having a high refractive index (n.sub.r), dielectric thin film coating has been disclosed and described. The invention comprises a clad optical fiber core whose cladding is removed on a distal end, the distal end coated with a thin, non-porous, titanium dioxide sol-gel coating. It has been shown that such a fiber will exhibit increased fluorescence coupling due in part by 1) increasing the intensity of the evanescent field at the fiber core surface by a constructive interference effect on the propagating light, and 2) increasing the depth of penetration of the field in the sample. The interference effect created by the thin film imposes a wavelength dependence on the collection of the fluorescence and also suggests a novel application of thin films for color filtering as well as increasing collected fluorescence in fiber sensors. Collected fluorescence radiation increased by up to 6-fold over that of a bare fused silica fiber having a numerical aperture (N.A.) of O.6.

  19. Ion beam sputter-deposited thin film coatings for protection of spacecraft polymers in low Earth orbit

    NASA Technical Reports Server (NTRS)

    Banks, B. A.; Mirtich, M. J.; Rutledge, S. K.; Swec, D. M.; Nahra, H. K.

    1985-01-01

    Ion beam sputter-deposited thin films of Al2O3, SiO2, and a codeposited mixture of predominantly SiO2 with small amounts of a fluoropolymer were evaluated both in laboratory plasma ashing tests and in space on board shuttle flight STS-8 for effectiveness in preventing oxidation of polyimide Kapton. Measurements of mass loss and optical performance of coated and uncoated polyimide samples exposed to the low Earth orbital environment are presented. Optical techniques were used to measure loss rates of protective films exposed to atomic oxygen. Results of the analysis of the space flight exposed samples indicate that thin film metal oxide coatings are very effective in protecting the polyimide. Metal oxide coatings with a small amount of fluoropolymer codeposited have the additional benefit of great flexibility.

  20. Ion beam sputter-deposited thin film coatings for protection of spacecraft polymers in low earth orbit

    NASA Technical Reports Server (NTRS)

    Banks, B. A.; Mirtich, M. J.; Rutledge, S. K.; Swec, D. M.; Nahra, H. K.

    1985-01-01

    Ion beam sputter-deposited thin films at Al2O3, SiO2, and a codeposited mixture of predominantly SiO2 with small amounts of fluoropolymer were evaluated both in laboratory plasma ashing tests and in space on board Shuttle flight STS-8 for effectiveness in preventing oxidation of polyimide Kapton. Measurements of mass loss and optical performance of coated and uncoated polyimide samples exposed to the low earth orbital environment are presented. Optical techniques were used to measure loss rates of protective films exposed to atomic oxygen. Results of the analysis of the space flight exposed samples indicate that thin film metal oxide coatings are very effective in protecting the polyimide. Metal oxide coatings with a small amount of fluoropolymer codeposited have the additional benefit of great flexibility.

  1. The Effects of Curcuma Longa on the Functionality of Pigmentation for Thin Film Coating

    NASA Astrophysics Data System (ADS)

    Marsi, N.; Rus, A. Z. M.; Tan, N. A. M. S.

    2017-08-01

    This project presents the effects of turmeric (Curcuma Longa) on the functionality of pigmentation was carried out to improve the sustainability, environment impact and reduction of potential cost saving without sacrificing the performance of thin film coating. The Curcuma Longa pigment was extracted by grating the turmeric into small particles at different percentages which is 20%, 40%, 60% and 80% of Curcuma Longa pigment with 3, 6 and 9 layers of coating. The different percentages of Curcuma Longa pigment was formulated and synthesized with polyols by crosslinking agent of glycerol and calcium carbonate into temperature at 140 °C for 2 hours. The results of water droplet test (ASTM D5964) showed the water contact angle was achieved the optimum superhydrophobic characteristic up to 60% of Curcuma Longa at 153°. The formulation of 60% Curcuma Longa was revealed the optimum adhesion resistance test with no flaking and detachment when the coating applied at 9 layers in the classification grading of adhesion test at 5B. It is indicated that the adhesion resistance of thin film coating on metal substrate was obviously increased as the layer of coating as well as the Curcuma Longa pigment percentage up to 60% at 9 layers. This project also highlighted the potential of Curcuma Longa pigment to produce quality in the natural pigmentation as a replacement synthetic pigment which is long-term health hazards.

  2. Chemical bath deposited and dip coating deposited CuS thin films - Structure, Raman spectroscopy and surface study

    NASA Astrophysics Data System (ADS)

    Tailor, Jiten P.; Khimani, Ankurkumar J.; Chaki, Sunil H.

    2018-05-01

    The crystal structure, Raman spectroscopy and surface microtopography study on as-deposited CuS thin films were carried out. Thin films deposited by two techniques of solution growth were studied. The thin films used in the present study were deposited by chemical bath deposition (CBD) and dip coating deposition techniques. The X-ray diffraction (XRD) analysis of both the as-deposited thin films showed that both the films possess covellite phase of CuS and hexagonal unit cell structure. The determined lattice parameters of both the films are in agreement with the standard JCPDS as well as reported data. The crystallite size determined by Scherrer's equation and Hall-Williamsons relation using XRD data for both the as-deposited thin films showed that the respective values were in agreement with each other. The ambient Raman spectroscopy of both the as-deposited thin films showed major emission peaks at 474 cm-1 and a minor emmision peaks at 265 cm-1. The observed Raman peaks matched with the covellite phase of CuS. The atomic force microscopy of both the as-deposited thin films surfaces showed dip coating thin film to be less rough compared to CBD deposited thin film. All the obtained results are presented and deliberated in details.

  3. The Characteristics of an Antibacterial TiAgN Thin Film Coated by Physical Vapor Deposition Technique.

    PubMed

    Kang, Byeong-Mo; Jeong, Woon-Jo; Park, Gye-Choon; Yoon, Dong-Joo; Ahn, Ho-Geun; Lim, Yeong-Seog

    2015-08-01

    In this work, we found the characteristics of an antibacterial TiAgN thin film coated on the pure titanium specimen via the physical vapor deposition process (PVD). TiAgN thin films were coated using TiAg alloy targets by arc ion plating method. Changing the process parameters, the surface analysis of TiAgN thin film was observed by FE-SEM and the force of adhesion was measured with Scratch Tester. The proliferation of human gingival fibroblast (HGF) cells was examined by XTT test assay and the antibacterial properties were investigated by culturing Streptococus Mutans (KCTC 3065) using paper disk techniques. At the result of experiment, cytotoxic effects were not found and the antibacterial effects against Streptococus Mutans were appeared over 5 wt% TiAgN specimens.

  4. SnS thin films deposited by chemical bath deposition, dip coating and SILAR techniques

    NASA Astrophysics Data System (ADS)

    Chaki, Sunil H.; Chaudhary, Mahesh D.; Deshpande, M. P.

    2016-05-01

    The SnS thin films were synthesized by chemical bath deposition (CBD), dip coating and successive ionic layer adsorption and reaction (SILAR) techniques. In them, the CBD thin films were deposited at two temperatures: ambient and 70 °C. The energy dispersive analysis of X-rays (EDAX), X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM) and optical spectroscopy techniques were used to characterize the thin films. The electrical transport properties studies on the as-deposited thin films were done by measuring the I-V characteristics, DC electrical resistivity variation with temperature and the room temperature Hall effect. The obtained results are deliberated in this paper.

  5. "Black art" of thin film coating: why this term is used and how to change this mind-set

    NASA Astrophysics Data System (ADS)

    Jansen, S. W.; Hatchett, Philip J.; Hughes, S. W.; Jones, D. Paul; Gibson, Desmond R.

    1996-08-01

    The words 'black art' are often associated with thin film coating. We cast our spell on a coating plant and, as if by magic, the glass is transformed. The problem is that the spell sometimes fails and we end up with stone instead of gold. When we ask the magician (coating technician) what went wrong, the answer is all too often 'I did it exactly the same way as the last time'. This creates the perception that thin film coating is a black art because clearly something different did happen. What we don't know is which of the multitude of parameters went wrong, and often the only way to find out is through a process of elimination. This is very costly to the industry both in monetary value and image.

  6. Patchwork Coating of Fragmented Ultra-Thin Films and Their Biomedical Applications in Burn Therapy and Antithrombotic Coating.

    PubMed

    Okamura, Yosuke; Nagase, Yu; Takeoka, Shinji

    2015-11-11

    We have proposed free-standing centimeter-sized ultra-thin films (nanosheets) for biomedical applications. Such nanosheets exhibit unique properties such as transparency, flexibility, and good adhesiveness. However, they are only easily adhered to broad and flat surfaces due to their dimensions. To this end, we recently proposed an innovative nanomaterial: the nanosheets fragmented into submillimeter-size pieces. Intriguingly, such fragmented nanosheets could be adhered to uneven and irregular surfaces in addition to flat surfaces in a spread-out "patchwork" manner. We herein review the fabrication procedure and characterization of fragmented nanosheets composed of biodegradable polyesters and thermostable bio-friendly polymers, and their biomedical applications in burn therapy and antithrombotic coating using a "patchwork coating".

  7. Melting Behavior of Al/Pb/Sn/Al Multilayered Thin Films

    NASA Astrophysics Data System (ADS)

    Khan, Patan Yousaf; Devi, M. Manolata; Biswas, Krishanu

    2015-09-01

    Metals or alloy nanoparticles (NPs) have been reported to exhibit superheating on melting when coated with higher melting point material or embedded in a matrix. This is due to the suppression of the heterogeneous nucleation of the melt at the epitaxial interface. For 2D thin films, this necessary condition is not feasible because even if a thin film is sandwiched between higher melting temperature materials with coherent interfaces, the heterogeneous nucleation of melt is possible at various detects. However, it has earlier been reported that 2D thin films of the pure metal sandwiched by other materials can exhibit superheating by suppression of melt growth. In order to probe this effect in case of alloy thin films, the present investigation has been carried out on Pb/Sn multilayers sandwiched between Al layers. The present study shows that such sandwiched thin films prepared by accumulative roll bonding process cause the formation of biphasic NPs in the intermixed region of Pb and Sn. Al layers undergo severe plastic deformation, leading to the generation of dislocations and sub-grain boundaries. DSC (differential canning calorimeter) thermograms of the films indicate superheating of 3 K to 6 K (or 3 °C to 6 °C). Theoretical analysis using currently available literatures has been carried out to justify the finding in the present investigation.

  8. Reduction of bacterial adhesion on dental composite resins by silicon-oxygen thin film coatings.

    PubMed

    Mandracci, Pietro; Mussano, Federico; Ceruti, Paola; Pirri, Candido F; Carossa, Stefano

    2015-01-29

    Adhesion of bacteria on dental materials can be reduced by modifying the physical and chemical characteristics of their surfaces, either through the application of specific surface treatments or by the deposition of thin film coatings. Since this approach does not rely on the use of drugs or antimicrobial agents embedded in the materials, its duration is not limited by their possible depletion. Moreover it avoids the risks related to possible cytotoxic effects elicited by antibacterial substances released from the surface and diffused in the surrounding tissues. In this work, the adhesion of Streptococcus mutans and Streptococcus mitis was studied on four composite resins, commonly used for manufacturing dental prostheses. The surfaces of dental materials were modified through the deposition of a-SiO(x) thin films by plasma enhanced chemical vapor deposition. The chemical bonding structure of the coatings was analyzed by Fourier-transform infrared spectroscopy. The morphology of the dental materials before and after the coating deposition was assessed by means of optical microscopy and high-resolution mechanical profilometry, while their wettability was investigated by contact angle measurements. The sample roughness was not altered after coating deposition, while a noticeable increase of wettability was detected for all the samples. Also, the adhesion of S. mitis decreased in a statistically significant way on the coated samples, when compared to the uncoated ones, which did not occur for S. mutans. Within the limitations of this study, a-SiO(x) coatings may affect the adhesion of bacteria such as S. mitis, possibly by changing the wettability of the composite resins investigated.

  9. Mechanical measurements on lithium phosphorous oxynitride coated silicon thin film electrodes for lithium-ion batteries during lithiation and delithiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Obeidi, Ahmed, E-mail: alobeidi@mit.edu; Thompson, Carl V., E-mail: reiner.moenig@kit.edu, E-mail: cthomp@mit.edu; Kramer, Dominik, E-mail: dominik.kramer@kit.edu

    2016-08-15

    The development of large stresses during lithiation and delithiation drives mechanical and chemical degradation processes (cracking and electrolyte decomposition) in thin film silicon anodes that complicate the study of normal electrochemical and mechanical processes. To reduce these effects, lithium phosphorous oxynitride (LiPON) coatings were applied to silicon thin film electrodes. Applying a LiPON coating has two purposes. First, the coating acts as a stable artificial solid electrolyte interphase. Second, it limits mechanical degradation by retaining the electrode's planar morphology during cycling. The development of stress in LiPON-coated electrodes was monitored using substrate curvature measurements. LiPON-coated electrodes displayed highly reproducible cycle-to-cyclemore » behavior, unlike uncoated electrodes which had poorer coulombic efficiency and exhibited a continual loss in stress magnitude with continued cycling due to film fracture. The improved mechanical stability of the coated silicon electrodes allowed for a better investigation of rate effects and variations of mechanical properties during electrochemical cycling.« less

  10. Resistivity behavior of optimized PbTiO3 thin films prepared by spin coating method

    NASA Astrophysics Data System (ADS)

    Nurbaya, Z.; Wahid, M. H.; Rozana, M. D.; Alrokayan, S. A. H.; Khan, H. A.; Rusop, M.

    2018-05-01

    Th is study presents the resistivity behavior of PbTiO3 thin films which were prepared towards metal-insulator-metal capacitor device fabrication. The PbTiO3 thin films were prepared through sol-gel spin coating method that involved various deposition parameters that is (1) different molar concentration of PbTiO3 solutions, (2) various additional PbAc-content in PbTiO3 solutions, and (3) various annealing temperature on PbTiO3 thin films. Hence, an electrical measurement of current versus voltage was done to determine the resistivity behavior of PbTiO3 thin films.

  11. Mechanisms of Deformation and Fracture of Thin Coatings on Different Substrates in Instrumented Indentation

    NASA Astrophysics Data System (ADS)

    Eremina, G. M.; Smolin, A. Yu.; Psakhie, S. G.

    2018-04-01

    Mechanical properties of thin surface layers and coatings are commonly studied using instrumented indentation and scratch testing, where the mechanical response of the coating - substrate system essentially depends on the substrate material. It is quite difficult to distinguish this dependence and take it into account in the course of full-scale experiments due to a multivariative and nonlinear character of the influence. In this study the process of instrumented indentation of a hardening coating formed on different substrates is investigated numerically by the method of movable cellular automata. As a result of modeling, we identified the features of the substrate material influence on the derived mechanical characteristics of the coating - substrate systems and the processes of their deformation and fracture.

  12. Ultra-thin Polyethylene glycol Coatings for Stem Cell Culture

    NASA Astrophysics Data System (ADS)

    Schmitt, Samantha K.

    Human mesenchymal stem cells (hMSCs) are a widely accessible and a clinically relevant cell type that are having a transformative impact on regenerative medicine. However, current clinical expansion methods can lead to selective changes in hMSC phenotype resulting from relatively undefined cell culture surfaces. Chemically defined synthetic surfaces can aid in understanding stem cell behavior. In particular we have developed chemically defined ultra-thin coatings that are stable over timeframes relevant to differentiation of hMSCs (several weeks). The approach employs synthesis of a copolymer with distinct chemistry in solution before application to a substrate. This provides wide compositional flexibility and allows for characterization of the orthogonal crosslinking and peptide binding groups. Characterization is done in solution by proton NMR and after crosslinking by X-ray photoelectron spectroscopy (XPS). The solubility of the copolymer in ethanol and low temperature crosslinking, expands its applicability to plastic substrates, in addition to silicon, glass, and gold. Cell adhesive peptides, namely Arg-Gly-Asp (RGD) fragments, are coupled to coating via different chemistries resulting in the urethane, amide or the thioester polymer-peptide bonds. Development of azlactone-based chemistry allowed for coupling in water at low peptide concentrations and resulted in either an amide or thioester bonds, depending on reactants. Characterization of the peptide functionalized coating by XPS, infrared spectroscopy and cell culture assays, showed that the amide linkages can present peptides for multiple weeks, while shorter-term presentation of a few days is possible using the more labile thioester bond. Regardless, coatings promoted initial adhesion and spreading of hMSCs in a peptide density dependent manner. These coatings address the following challenges in chemically defined cell culture simultaneously: (i) substrate adaptability, (ii) scalability over large areas

  13. Thin Bioactive Zn Substituted Hydroxyapatite Coating Deposited on Ultrafine Grained Titanium Substrate: Structure Analysis

    NASA Astrophysics Data System (ADS)

    Prosolov, Konstantin A.; Belyavskaya, Olga A.; Muehle, Uwe; Sharkeev, Yurii P.

    2018-02-01

    Nanocrystalline Zn substituted hydroxyapatite coatings were deposited by radiofrequency magnetron sputtering on the surface of ultrafine-grained titanium substrates. Cross section transmission electron microscopy provided information about the morphology and texture of the thin film while in-column energy dispersive X-ray analysis confirmed the presence of Zn in the coating. The Zn substituted hydroxyapatite coating was formed by an equiaxed polycrystalline grain structure. Effect of substrate crystallinity on the structure of deposited coating is discussed. An amorphous TiO2 sublayer of 8 nm thickness was detected in the interface between the polycrystalline coating and the Ti substrate. Its appearance in the amorphous state is attributed to prior to deposition etching of the substrate and subsequent condensation of oxygen-containing species sputtered from the target. This layer contributes to the high coating-to-substrate adhesion. The major P-O vibrational modes of high intensity were detected by Raman spectroscopy. The Zn substituted hydroxyapatite could be a material of choice when antibacterial osteoconductive coating with a possibility of withstanding mechanical stress during implantation and service is needed.

  14. Reduction of metallosis in hip implant using thin film coating

    NASA Astrophysics Data System (ADS)

    Rajeshshyam, R.; Chockalingam, K.; Gayathri, V.; Prakash, T.

    2018-04-01

    Hip implant finds its emerging attraction due to it continuous demand over the years. The hip implants (femoral head) and acetabulum cup) mainly fabricated by metals such as stainless steel, cobalt chrome and titanium alloys, other than that ceramics and polyethylene have been used. The metal-on-metal hip implant was found to be best implant material for most of the surgeons due to its high surface finish, low wear rate and low chance of dislocation from its position after implanting. Where in metal based hip implant shows less wear rate of 0.01mm3/year. Metal-on-metal implant finds its advantage over other materials both in its mechanical and physical stability against human load. In M-O-M Cobalt- chromium alloys induce metal allergy. The metal allergy (particulate debris) that is generated by wear, fretting, fragmentation and which is unavoidable when a prosthesis is implanted, can induce an inflammatory reaction in some circumstances. The objectives of this research to evaluate thin film coating with Nano particle additives to reduce the wear leads to regarding metal ion release. Experimental results reveals that thin film Sol-Gel coating with 4wt. % of specimen reduced the cobalt and chromium ion release and reduces the wear rate. Wear rate reduced by 98% for 4wt. % graphene in 20N and 95% for 4wt. % graphene in 10N.

  15. Strong thin membrane structure for use as solar sail comprising substrate with reflective coating on one surface and an infra red emissivity increasing coating on the other surface

    NASA Technical Reports Server (NTRS)

    Frazer, Robert E. (Inventor)

    1982-01-01

    Production of strong lightweight membrane structure by applying a thin reflective coating such as aluminum to a rotating cylinder, applying a mesh material such as nylon over the aluminum coating, coating the mesh overlying the aluminum with a polymerizing material such as a para-xylylene monomer gas to polymerize as a film bound to the mesh and the aluminum, and applying an emissivity increasing material such as chromium and silicon monoxide to the polymer film to disperse such material colloidally into the growing polymer film, or applying such material to the final polymer film, and removing the resulting membrane structure from the cylinder. Alternatively, such membrane structure can be formed by etching a substrate in the form of an organic film such as a polyimide, or a metal foil, to remove material from the substrate and reduce its thickness, applying a thin reflective coating such as aluminum on one side of the substrate and applying an emissivity increasing coating such as chromium and silicon monoxide on the reverse side of the substrate.

  16. Undercutting of defects in thin film protective coatings on polymer surfaces exposed to atomic oxygen

    NASA Technical Reports Server (NTRS)

    Rutledge, Sharon K.; Mihelcic, Judith A.

    1989-01-01

    Protection for polymeric surfaces is needed to make them durable in the low Earth orbital environment, where oxidation by atomic oxygen is the predominant failure mechanism. Thin film coatings of oxides such as silicon dioxide are viable candidates to provide this protection, but concern has been voiced over the ability of these coatings to protect when defects are present in the coating due to surface anomalies occurring during the deposition process, handling, or micrometeoroid and debris bombardment in low Earth orbit. When a defected coating protecting a polymer substrate is exposed to atomic oxygen, the defect provides a pathway to the underlying polymer allowing oxidation and subsequent undercutting to occur. Defect undercutting was studied for sputter deposited coatings of silicon dioxide on polyimide Kapton. Preliminary results indicate that undercutting may be limited as long as the coating remains intact with the substrate. Therefore, coatings may not need to be defect free to give protection to the underlying surface.

  17. Investigation of hexagonal boron nitride as an atomically thin corrosion passivation coating in aqueous solution.

    PubMed

    Zhang, Jing; Yang, Yingchao; Lou, Jun

    2016-09-09

    Hexagonal boron nitride (h-BN) atomic layers were utilized as a passivation coating in this study. A large-area continuous h-BN thin film was grown on nickel foil using a chemical vapor deposition method and then transferred onto sputtered copper as a corrosion passivation coating. The corrosion passivation performance in a Na2SO4 solution of bare and coated copper was investigated by electrochemical methods including cyclic voltammetry (CV), Tafel polarization and electrochemical impedance spectroscopy (EIS). CV and Tafel analysis indicate that the h-BN coating could effectively suppress the anodic dissolution of copper. The EIS fitting result suggests that defects are the dominant leakage source on h-BN films, and improved anti-corrosion performances could be achieved by further passivating these defects.

  18. Synthesis and characterization of transparent conductive zinc oxide thin films by sol-gel spin coating method

    NASA Astrophysics Data System (ADS)

    Winarski, David

    Zinc oxide has been given much attention recently as it is promising for various semiconductor device applications. ZnO has a direct band gap of 3.3 eV, high exciton binding energy of 60 meV and can exist in various bulk powder and thin film forms for different applications. ZnO is naturally n-type with various structural defects, which sparks further investigation into the material properties. Although there are many potential applications for this ZnO, an overall lack of understand and control of intrinsic defects has proven difficult to obtain consistent, repeatable results. This work studies both synthesis and characterization of zinc oxide in an effort to produce high quality transparent conductive oxides. The sol-gel spin coating method was used to obtain highly transparent ZnO thin films with high UV absorbance. This research develops a new more consistent method for synthesis of these thin films, providing insight for maintaining quality control for each step in the procedure. A sol-gel spin coating technique is optimized, yielding highly transparent polycrystalline ZnO thin films with tunable electrical properties. Annealing treatment in hydrogen and zinc atmospheres is researched in an effort to increase electrical conductivity and better understand intrinsic properties of the material. These treatment have shown significant effects on the properties of ZnO. Characterization of doped and undoped ZnO synthesized by the sol-gel spin coating method was carried out using scanning electron microscopy, UV-Visible range absorbance, X-ray diffraction, and the Hall Effect. Treatment in hydrogen shows an overall decrease in the number of crystal phases and visible absorbance while zinc seems to have the opposite effect. The Hall Effect has shown that both annealing environments increase the n-type conductivity, yielding a ZnO thin film with a carrier concentration as high as 3.001 x 1021 cm-3.

  19. Co-precipitation of tobramycin into biomimetically coated orthopedic fixation pins employing submicron-thin seed layers of hydroxyapatite.

    PubMed

    Sörensen, Jan H; Lilja, Mirjam; Åstrand, Maria; Sörensen, Torben C; Procter, Philip; Strømme, Maria; Steckel, Hartwig

    2014-01-01

    The migration, loosening and cut-out of implants and nosocomial infections are current problems associated with implant surgery. New innovative strategies to overcome these issues are emphasized in today's research. The current work presents a novel strategy involving co-precipitation of tobramycin with biomimetic hydroxyapatite (HA) formation to produce implant coatings that control local drug delivery to prevent early bacterial colonization of the implant. A submicron- thin HA layer served as seed layer for the co-precipitation process and allowed for incorporation of tobramycin in the coating from a stock solution of antibiotic concentrations as high as 20 mg/ml. Concentrations from 0.5 to 20 mg/ml tobramycin and process temperatures of 37 °C and 60 °C were tested to assess the optimal parameters for a thin tobramycin- delivering HA coating on discs and orthopedic fixation pins. The morphology and thickness of the coating and the drug-release profile were evaluated via scanning electron microscopy and high performance liquid chromatography. The coatings delivered pharmaceutically relevant amounts of tobramycin over a period of 12 days. To the best of our knowledge, this is the longest release period ever observed for a fast-loaded biomimetic implant coating. The presented approach could form the foundation for development of combination device/antibiotic delivery vehicles tailored to meet well-defined clinical needs while combating infections and ensuring fast implant in-growth.

  20. Optical properties of dip coated titanium-di-oxide (TiO2) thin films annealed at different temperatures

    NASA Astrophysics Data System (ADS)

    Biswas, Sayari; Kar, Asit Kumar

    2018-02-01

    Titanium dioxide (TiO2) thin films were synthesized by hydrothermal assisted sol-gel dip coating method on quartz substrate. The sol was prepared by hydrothermal method at 90 °C. Dip coating method was used to deposit the thin films. Later films were annealed at four different temperatures -600 °C, 800 °C, 1000 °C and 1200 °C. XRD study showed samples annealed at 600 °C are almost amorphous. At 800 °C, film turns into anatase phase and with further increment of annealing temperature they turn into rutile phase. Transmission spectra of thin films show sharp rise in the violet-ultraviolet transition region and a maximum transmittance of ˜60% was observed in the visible region for the sample annealed at the lowest temperature. Band gap of the prepared films varies from 2.9 eV to 3.5 eV.

  1. Reliability of ultra-thin insulation coatings for long-term electrophysiological recordings

    NASA Astrophysics Data System (ADS)

    Hooker, S. A.

    2006-03-01

    Improved measurement of neural signals is needed for research into Alzheimer's, Parkinson's, epilepsy, strokes, and spinal cord injuries. At the heart of such instruments are microelectrodes that measure electrical signals in the body. Such electrodes must be small, stable, biocompatible, and robust. However, it is also important that they be easily implanted without causing substantial damage to surrounding tissue. Tissue damage can lead to the generation of immune responses that can interfere with the electrical measurement, preventing long-term recording. Recent advances in microfabrication and nanotechnology afford the opportunity to dramatically reduce the physical dimensions of recording electrodes, thereby minimizing insertion damage. However, one potential cause for concern is the reliability of the insulating coatings, applied to these ultra-fine-diameter wires to precisely control impedance. Such coatings are often polymeric and are applied everywhere but the sharpened tips of the wires, resulting in nominal impedances between 0.5 MOhms and 2.0 MOhms. However, during operation, the polymer degrades, changing the exposed area and the impedance. In this work, ultra-thin ceramic coatings were deposited as an alternative to polymer coatings. Processing conditions were varied to determine the effect of microstructure on measurement stability during two-electrode measurements in a standard buffer solution. Coatings were applied to seven different metals to determine any differences in performance due to the surface characteristics of the underlying wire. Sintering temperature and wire type had significant effects on coating degradation. Dielectric breakdown was also observed at relatively low voltages, indicating that test conditions must be carefully controlled to maximize reliability.

  2. Thin film transistors on plastic substrates with reflective coatings for radiation protection

    DOEpatents

    Wolfe, Jesse D.; Theiss, Steven D.; Carey, Paul G.; Smith, Patrick M.; Wickboldt, Paul

    2003-11-04

    Fabrication of silicon thin film transistors (TFT) on low-temperature plastic substrates using a reflective coating so that inexpensive plastic substrates may be used in place of standard glass, quartz, and silicon wafer-based substrates. The TFT can be used in large area low cost electronics, such as flat panel displays and portable electronics such as video cameras, personal digital assistants, and cell phones.

  3. Thin film transistors on plastic substrates with reflective coatings for radiation protection

    DOEpatents

    Wolfe, Jesse D [Fairfield, CA; Theiss, Steven D [Woodbury, MN; Carey, Paul G [Mountain View, CA; Smith, Patrick M [San Ramon, CA; Wickbold, Paul [Walnut Creek, CA

    2006-09-26

    Fabrication of silicon thin film transistors (TFT) on low-temperature plastic substrates using a reflective coating so that inexpensive plastic substrates may be used in place of standard glass, quartz, and silicon wafer-based substrates. The TFT can be used in large area low cost electronics, such as flat panel displays and portable electronics such as video cameras, personal digital assistants, and cell phones.

  4. Ab initio study of the effects of thin CsI coatings on the work function of graphite cathodes

    NASA Astrophysics Data System (ADS)

    Vlahos, Vasilios; Booske, John H.; Morgan, Dane

    2007-10-01

    Cesium-iodide (CsI)-coated graphite cathodes are promising electron sources for high power microwave generators, but the mechanism driving the improved emission is not well understood. Therefore, an ab initio modeling investigation on the effects of thin CsI coatings on graphite has been carried out. It is demonstrated that the CsI coatings reduce the work function of the system significantly through a mechanism of induced dipoles. The results suggest that work function modification is a major contribution to the improved emission seen when CsI coatings are applied to C.

  5. Morphology and inhibition performance of Ag thin film as antimicrobial coating deposited by RF-PVD on 316 L stainless steel

    NASA Astrophysics Data System (ADS)

    Purniawan, A.; Khrisna, Y. S. A.; Rasyida, A.; Atmono, T. M.

    2018-04-01

    Foreign body related infection (FBRIs) is caused by forming biofilm of bacterial colony of medical equipment surfaces. In many cases, the FBRIs is still happened on the surface after medical sterilization process has been performed. In order to avoid the case, surface modification by antimicrobial coating was used. In this work, we present silver (Ag) thin film on 316 L stainless steel substrate surface was deposited using Radio Frequency Sputtering PVD (RF-PVD). The morphology of Ag thin film were characterized using SEM-EDX. Surface roughness of the thin film was measured by AFM. In addition, Kirby Bauer Test in Escherichia coli (E. coli) was conducted in order to evaluate the inhibition performance of the Ag thin film antimicrobial coating. Based on SEM and AFM results show that the particle size is increased from 523 nm to 708 nm and surface roughness from 9 to 20 nm for deposition time 10 minutes to 20 minutes, respectively. In addition, the inhibition layer of the coating is about 29 mm.

  6. Durable thin film coatings for reflectors used in low earth orbit

    NASA Technical Reports Server (NTRS)

    Mcclure, Donald J.

    1989-01-01

    This paper discusses the properties of thin film coatings used to provide a durable reflective surface for solar concentrators used in the solar dynamic system designed for the Space Station. The material system to be used consists of an adhesion promotion layer, a silver reflective layer, and a protective layer of aluminum oxide and silicon dioxide. The performance characteristics of this system are described and compared to those of several alternative systems which use aluminum as the reflective layer.

  7. Tribo-mechanical properties of thin boron coatings deposited on polished cobalt alloy surfaces for orthopedic applications

    PubMed Central

    Klepper, C. C.; Williams, J. M.; Truhan, J.J.; Qu, J.; Riester, L.; Hazelton, R. C.; Moschella, J.J.; Blau, P.J.; Anderson, J.P.; Popoola, O.O.; Keitz, M.D.

    2008-01-01

    This paper presents experimental evidence that thin (<∼200 nm) boron coatings, deposited with a (vacuum) cathodic arc technique on pre-polished Co-Cr-Mo surfaces, could potentially extend the life of metal-on-polymer orthopedic devices using cast Co-Cr-Mo alloy for the metal component. The primary tribological test used a linear, reciprocating pin-on-disc arrangement, with pins made of ultra-high molecular weight polyethylene. The disks were cast Co-Cr-Mo samples that were metallographically polished and then coated with boron at a substrate bias of 500 V and at about 100 °C. The wear tests were carried out in a saline solution to simulate the biological environment. The improvements were manifested by the absence of a detectable wear track scar on the coated metal component, while significant polymer transfer film was detected on the uncoated (control) samples tested under the same conditions. The polymer transfer track was characterized with both profilometry and Rutherford Backscattering Spectroscopy. Mechanical characterization of the thin films included nano-indentation, as well as additional pin-on-disk tests with a steel ball to demonstrate adhesion, using ultra-high frequency acoustic microscopy to probe for any void occurrence at the coating-substrate interface. PMID:19340285

  8. Terahertz antireflection coating enabled by a subwavelength metallic mesh capped with a thin dielectric film

    DOE PAGES

    Huang, Li; Chen, Hou -Tong; Zeng, Beibei; ...

    2016-03-30

    Metamaterials/metasurfaces have enabled unprecedented manipulation of electromagnetic waves. Here we present a new design of metasurface structure functioning as antireflection coatings. The structure consists of a subwavelength metallic mesh capped with a thin dielectric layer on top of a substrate. By tailoring the geometric parameters of the metallic mesh and the refractive index and thickness of the capping dielectric film, reflection from the substrate can be completely eliminated at a specific frequency. Compared to traditional methods such as coatings with single- or multi-layer dielectric films, the metasurface antireflection coatings are much thinner and the requirement of index matching is largelymore » lifted. Here, this approach is particularly suitable for antireflection coatings in the technically challenging terahertz frequency range and is also applicable in other frequency regimes.« less

  9. Biphasic catalysis in water/carbon dioxide micellar systems

    DOEpatents

    Jacobson, Gunilla B.; Tumas, William; Johnston, Keith P.

    2002-01-01

    A process is provided for catalyzing an organic reaction to form a reaction product by placing reactants and a catalyst for the organic reaction, the catalyst of a metal complex and at least one ligand soluble within one of the phases of said aqueous biphasic system, within an aqueous biphasic system including a water phase, a dense phase fluid, and a surfactant adapted for forming an emulsion or microemulsion within the aqueous biphasic system, the reactants soluble within one of the phases of the aqueous biphasic system and convertible in the presence of the catalyst to a product having low solubility in the phase in which the catalyst is soluble; and, maintaining the aqueous biphasic system under pressures, at temperatures, and for a period of time sufficient for the organic reaction to occur and form the reaction product and to maintain sufficient density on the dense phase fluid, the reaction product characterized as having low solubility in the phase in which the catalyst is soluble.

  10. Doped indium nitride thin film by sol-gel spin coating method

    NASA Astrophysics Data System (ADS)

    Lee, Hui San; Ng, Sha Shiong; Yam, Fong Kwong

    2017-12-01

    In this study, magnesium doped indium nitride (InN:Mg) thin films grown on silicon (100) substrate were prepared via sol-gel spin coating method followed by nitridation process. A custom-made tube furnace was used to perform the nitridation process. Through this method, the low dissociation temperature issue of InN:Mg thin films can be solved. The deposited InN:Mg thin films were investigated using various techniques. The X-rays diffraction results revealed that two intense diffraction peaks correspond to wurtzite structure InN (100), and InN (101) were observed at 29° and 33.1° respectively. Field emission scanning electron microscopy images showed that the surface of the films exhibits densely packed grains. The elemental composition of the deposited thin films was analyzed using energy dispersive X-rays spectroscopy. The detected atomic percentages for In, N, and Mg were 43.22 %, 3.28 %, and 0.61 % respectively. The Raman spectra showed two Raman- and infrared-active modes of E2 (High) and A1 (LO) of the wurtzite InN. The band gap obtained from the Tauc plot showed around 1.74 eV. Lastly, the average surface roughness measured by AFM was around 0.133 µm.

  11. Method for long-term preservation of thin-layer polyacrylamide gels by producing a gelatine coating.

    PubMed

    Hofmann, K

    1991-02-01

    Thin-layer polyacrylamide gels can be preserved and stored for unlimited periods by covering them with a gelatine coating. The method is inexpensive and simple. After air-drying, the gel is immersed in an aqueous 10% solution of highly viscous gelatine between 55 and 60 degrees C. The coated gel is dried by hanging it in air. The method was checked successfully with gels of different thicknesses (0.15-0.50 mm) and after using different staining methods, e.g., with silver, Coomassie Brilliant Blue and pseudoperoxidase.

  12. Investigation of Annealing Temperature on Copper Oxide Thin Films Using Sol-Gel Spin Coating Technique

    NASA Astrophysics Data System (ADS)

    Hashim, H.; Samat, S. F. A.; Shariffudin, S. S.; Saad, P. S. M.

    2018-03-01

    Copper (II) Oxide or cupric oxide (CuO) is one of the well-known materials studied for thin films applications. This paper was studied on the effect of annealing temperature to CuO thin films using sol-gel method and spin coating technique. The solution was prepared by sol-gel method and the thin films were synthesized at various temperatures from 500°C to 700°C that deposited onto the quartz substrates. After the annealing process, the thin films were uniform and brownish black in colour. The measurements were performed by atomic force microscopy (AFM), surface profiler (SP), two-point probe and Ultraviolet-visible (UV-Vis-NIR) spectrometer. From the optical measurement, the band gap was estimated to be 1.44eV for sample annealed at 550°C.

  13. Mediated water electrolysis in biphasic systems.

    PubMed

    Scanlon, Micheál D; Peljo, Pekka; Rivier, Lucie; Vrubel, Heron; Girault, Hubert H

    2017-08-30

    The concept of efficient electrolysis by linking photoelectrochemical biphasic H 2 evolution and water oxidation processes in the cathodic and anodic compartments of an H-cell, respectively, is introduced. Overpotentials at the cathode and anode are minimised by incorporating light-driven elements into both biphasic reactions. The concepts viability is demonstrated by electrochemical H 2 production from water splitting utilising a polarised water-organic interface in the cathodic compartment of a prototype H-cell. At the cathode the reduction of decamethylferrocenium cations ([Cp 2 *Fe (III) ] + ) to neutral decamethylferrocene (Cp 2 *Fe (II) ) in 1,2-dichloroethane (DCE) solvent takes place at the solid electrode/oil interface. This electron transfer process induces the ion transfer of a proton across the immiscible water/oil interface to maintain electroneutrality in the oil phase. The oil-solubilised proton immediately reacts with Cp 2 *Fe (II) to form the corresponding hydride species, [Cp 2 *Fe (IV) (H)] + . Subsequently, [Cp 2 *Fe (IV) (H)] + spontaneously undergoes a chemical reaction in the oil phase to evolve hydrogen gas (H 2 ) and regenerate [Cp 2 *Fe (III) ] + , whereupon this catalytic Electrochemical, Chemical, Chemical (ECC') cycle is repeated. During biphasic electrolysis, the stability and recyclability of the [Cp 2 *Fe (III) ] + /Cp 2 *Fe (II) redox couple were confirmed by chronoamperometric measurements and, furthermore, the steady-state concentration of [Cp 2 *Fe (III) ] + monitored in situ by UV/vis spectroscopy. Post-biphasic electrolysis, the presence of H 2 in the headspace of the cathodic compartment was established by sampling with gas chromatography. The rate of the biphasic hydrogen evolution reaction (HER) was enhanced by redox electrocatalysis in the presence of floating catalytic molybdenum carbide (Mo 2 C) microparticles at the immiscible water/oil interface. The use of a superhydrophobic organic electrolyte salt was critical to

  14. Advanced Fabrication Method for the Preparation of MOF Thin Films: Liquid-Phase Epitaxy Approach Meets Spin Coating Method.

    PubMed

    Chernikova, Valeriya; Shekhah, Osama; Eddaoudi, Mohamed

    2016-08-10

    Here, we report a new and advanced method for the fabrication of highly oriented/polycrystalline metal-organic framework (MOF) thin films. Building on the attractive features of the liquid-phase epitaxy (LPE) approach, a facile spin coating method was implemented to generate MOF thin films in a high-throughput fashion. Advantageously, this approach offers a great prospective to cost-effectively construct thin-films with a significantly shortened preparation time and a lessened chemicals and solvents consumption, as compared to the conventional LPE-process. Certainly, this new spin-coating approach has been implemented successfully to construct various MOF thin films, ranging in thickness from a few micrometers down to the nanometer scale, spanning 2-D and 3-D benchmark MOF materials including Cu2(bdc)2·xH2O, Zn2(bdc)2·xH2O, HKUST-1, and ZIF-8. This method was appraised and proved effective on a variety of substrates comprising functionalized gold, silicon, glass, porous stainless steel, and aluminum oxide. The facile, high-throughput and cost-effective nature of this approach, coupled with the successful thin film growth and substrate versatility, represents the next generation of methods for MOF thin film fabrication. Therefore, paving the way for these unique MOF materials to address a wide range of challenges in the areas of sensing devices and membrane technology.

  15. Thin Wall Pipe Ultrasonic Inspection through Paint Coating

    NASA Astrophysics Data System (ADS)

    Predoi, Mihai Valentin; Petre, Cristian Cătălin

    Classical ultrasonic inspection of welds is currently done for plates thicker than 8 mm. The inspection of but welds in thin walled pipes has considerable implementation difficulties, due to guided waves dominating ultrasonic pulses propagation. Generation of purely symmetric modes, either torsional or longitudinal, requires a circumferential uniform distribution of transducers and dedicated inspection equipment, which are increasing the inspection costs. Moreover, if the surface is paint coated, the received signals are close to the detection level. The present work implies a single transducer, coupled to the painted surface. The proper choice of the guided mode and frequency range, allows the detection of a standard, small diameter through thickness hole. In this way, the inspection of pipe welds can use the same equipment as for thick materials, with only wedge adaptation.

  16. Electrical four-point probing of spherical metallic thin films coated onto micron sized polymer particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pettersen, Sigurd R., E-mail: sigurd.r.pettersen@ntnu.no, E-mail: jianying.he@ntnu.no; Stokkeland, August Emil; Zhang, Zhiliang

    Micron-sized metal-coated polymer spheres are frequently used as filler particles in conductive composites for electronic interconnects. However, the intrinsic electrical resistivity of the spherical thin films has not been attainable due to deficiency in methods that eliminate the effect of contact resistance. In this work, a four-point probing method using vacuum compatible piezo-actuated micro robots was developed to directly investigate the electric properties of individual silver-coated spheres under real-time observation in a scanning electron microscope. Poly(methyl methacrylate) spheres with a diameter of 30 μm and four different film thicknesses (270 nm, 150 nm, 100 nm, and 60 nm) were investigated. By multiplying the experimental resultsmore » with geometrical correction factors obtained using finite element models, the resistivities of the thin films were estimated for the four thicknesses. These were higher than the resistivity of bulk silver.« less

  17. Light-trapping surface coating with concave arrays for efficiency enhancement in amorphous silicon thin-film solar cells

    NASA Astrophysics Data System (ADS)

    Liu, Daiming; Wang, Qingkang

    2018-08-01

    Light trapping is particularly important because of the desire to produce low-cost solar cells with the thinnest possible photoactive layers. Herein, along the research line of "optimization →fabrication →characterization →application", concave arrays were incorporated into amorphous silicon thin-film solar cell for lifting its photoelectric conversion efficiency. In advance, based on rigorous coupled wave analysis method, optics simulations were performed to obtain the optimal period of 10 μm for concave arrays. Microfabrication processes were used to etch concave arrays on glass, and nanoimprint was devoted to transfer the pattern onto polymer coatings with a high fidelity. Spectral characterizations prove that the concave-arrays coating enjoys excellent the light-trapping behaviors, by reducing the reflectance to 7.4% from 8.6% of bare glass and simultaneously allowing a high haze ratio of ∼ 70% in 350-800 nm. Compared with bare cell, the concave-arrays coating based amorphous silicon thin-film solar cell possesses the improving photovoltaic performances. Relative enhancements are 3.46% and 3.57% in short circuit current and photoelectric conversion efficiency, respectively. By the way, this light-trapping coating is facile, low-cost and large-scale, and can be straightforward introduced in other ready-made solar devices.

  18. Nanoindentation study of electrodeposited Ag thin coating: An inverse calculation of anisotropic elastic-plastic properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Guang; Sun, Xin; Wang, Yuxin

    A new inverse method was proposed to calculate the anisotropic elastic-plastic properties (flow stress) of thin electrodeposited Ag coating utilizing nanoindentation tests, previously reported inverse method for isotropic materials and three-dimensional (3-D) finite element analyses (FEA). Indentation depth was ~4% of coating thickness (~10 μm) to avoid substrate effect and different indentation responses were observed in the longitudinal (L) and the transverse (T) directions. The estimated elastic-plastic properties were obtained in the newly developed inverse method by matching the predicted indentation responses in the L and T directions with experimental measurements considering indentation size effect (ISE). The results were validatedmore » with tensile flow curves measured from free-standing (FS) Ag film. The current method can be utilized to characterize the anisotropic elastic-plastic properties of coatings and to provide the constitutive properties for coating performance evaluations.« less

  19. Scattering of electromagnetic waves by a graphene-coated thin cylinder of left-handed metamaterial

    NASA Astrophysics Data System (ADS)

    Pashaeiadl, Hamid; Naserpour, Mahin; Zapata-Rodríguez, Carlos J.

    2018-04-01

    In this paper we explored the scattering behavior of thin cylinders made of LHM and coated by a monoatomic graphene layer. A spectral tunability of the resonance peaks is evidenced by altering the chemical potential of the graphene coating, a fact that occurs at any state of polarization of the incident plane wave in opposition to the case of scatterers of dielectric core. On the contrary, no invisibility condition can be satisfied for dielectric environments. A singular performance is also found for cylinders with permittivity and permeability near zero. Practical implementations of our results can be carried out in sensing and wave manipulation driven by metamaterials.

  20. Suppression of laser nonuniformity imprinting using a thin high-z coating.

    PubMed

    Karasik, Max; Weaver, J L; Aglitskiy, Y; Oh, J; Obenschain, S P

    2015-02-27

    Imprinting of laser nonuniformity is a limiting factor in direct-drive inertial confinement fusion experiments, particularly when available laser smoothing is limited. A thin (∼400  Å) high-Z metal coating is found to substantially suppress laser imprint for planar targets driven by pulse shapes and intensities relevant to implosions on the National Ignition Facility while retaining low adiabat target acceleration. A hybrid of indirect and direct drive, this configuration results in initial ablation by x rays from the heated high-Z layer, creating a large standoff for perturbation smoothing.

  1. Thin-layer thermal insulation coatings based on high-filled spheroplastics with polyorganosiloxane binder

    NASA Astrophysics Data System (ADS)

    Chukhlanov, V. Yu; Selivanov, O. G.; Trifonova, T. A.; Ilina, M. E.; Chukhlanova, N. V.

    2017-10-01

    Thermal insulation coatings, based on polyorganosiloxane as a binder and hollow glass microspheres, have been studied in this research. The developed materials are widely applied in various branches of science and engineering basically in construction. Components interaction processes are comprehensively studied. Spraying production methods of thin layer thermal insulation coatings have been researched. Ideal technological parameters for polyorganosiloxane coatings hardening depending on components ratio, ambient temperature, solvent and curative concentration have been determined. Stress related characteristics of constructional energy saving materials containing polyorganosiloxane have been researched. Components structure and ratio concerning compound extension strength properties have been revealed. Substantiation of Danneberg model application for the strength characteristics enhancing, when hollow microspheres are introduced, has been suggested. Thermal properties of coating thermal insulation have been studied. To research these characteristics standard methods applying devices IT-S-400 and IT-λ-400 have been chosen. Filler concentration increase was stated to decrease the composition heat conductivity coefficient and to the reduction of temperature dependence of this index. The authors suggested to employ the developed thermal insulation materials for construction and power engineering facilities operating under high temperature and other unfavorable environment.

  2. Two-photon excited fluorescence from a pseudoisocyanine-attached gold-coated tip via a thin tapered fiber under a weak continuous wave excitation.

    PubMed

    Ren, Fang; Takashima, Hideaki; Tanaka, Yoshito; Fujiwara, Hideki; Sasaki, Keiji

    2013-11-18

    A simple tapered fiber based photonic-plasmonic hybrid nanostructure composed of a thin tapered fiber and a pseudoisocyanine (PIC)-attached Au-coated tip was demonstrated. Using this simple hybrid nanostructure, we succeeded in observing two-photon excited fluorescence from the PIC dye molecules under a weak continuous wave excitation condition. From the results of the tip-fiber distance dependence and excitation polarization dependence, we found that using a thin tapered fiber and an Au-coated tip realized efficient coupling of the incident light (~95%) and LSP excitation at the Au-coated tip, suggesting the possibility of efficiently inducing two-photon excited fluorescence from the PIC dye molecules attached on the Au-coated tip. This simple photonic-plasmonic hybrid system is one of the promising tools for single photon sources, highly efficient plasmonic sensors, and integrated nonlinear plasmonic devices.

  3. Effect of diamond-like carbon thin film coated acrylic resin on candida albicans biofilm formation.

    PubMed

    Queiroz, José Renato Cavalcanti; Fissmer, Sara Fernanda; Koga-Ito, Cristiane Yumi; Salvia, Ana C R D; Massi, Marcos; Sobrinho, Argermiro Soares da Silva; Júnior, Lafayette Nogueira

    2013-08-01

    The purpose of this study was to evaluate the effect of diamond-like carbon thin films doped and undoped with silver nanoparticles coating poly(methyl methacrylate) (PMMA) on Candida albicans biofilm formation. The control of biofilm formation is important to prevent oral diseases in denture users. Forty-five PMMA disks were obtained, finished, cleaned in an ultrasonic bath, and divided into three groups: Gc, no surface coating (control group); Gdlc, coated with diamond-like carbon film; and Gag, coated with diamond-like carbon film doped with silver nanoparticles. The films were deposited using a reactive magnetron sputtering system (physical vapor deposition process). The specimens were characterized by optical profilometry, atomic force microscopy, and Rutherford backscattering spectroscopy analyses that determined differences in chemical composition and morphological structure. Following sterilization of the specimens by γ-ray irradiation, C. albicans (ATCC 18804) biofilms were formed by immersion in 2 ml of Sabouraud dextrose broth inoculated with a standardized fungal suspension. After 24 hours, the number of colony forming units (cfu) per specimen was counted. Data concerning biofilm formation were analyzed using ANOVA and the Tukey test (p < 0.05). C. albicans biofilm formation was significantly influenced by the films (p < 0.00001), reducing the number of cfu, while not affecting the roughness parameters (p > 0.05). The Tukey test showed no significant difference between Gdlc and Gag. Films deposited were extremely thin (∼50 nm). The silver particles presented a diameter between 60 and 120 nm and regular distribution throughout the film surface (to Gag). Diamond-like carbon films, doped or undoped with silver nanoparticles, coating the base of PMMA-based dentures could be an alternative procedure for preventing candidosis in denture users. © 2013 by the American College of Prosthodontists.

  4. High-performance FeSe0.5Te0.5 thin films fabricated on less-well-textured flexible coated conductor templates

    NASA Astrophysics Data System (ADS)

    Xu, Zhongtang; Yuan, Pusheng; Ma, Yanwei; Cai, Chuanbing

    2017-03-01

    We report on the transport properties of FeSe0.5Te0.5 (FST) thin films fabricated on less-well-textured flexible coated conductor templates with LaMnO3 (LMO) as buffer layers using pulsed laser deposition. The LMO buffer layers exhibit large in-plane misalignment of ˜7.72°, which is unfavorable for cuprate-coated conductors due to the high grain boundaries. The FST thin films show a superconducting transition temperature of 16.8 K, higher than that of bulk materials due to the compressive strain between LMO and FST. Atomic force microscopy observations reveal that island-like features appear at the surfaces of both LMO and FST, confirming the island growth mode. A self-field transport critical-current density of up to 0.43 MA cm-2 at 4.2 K has been observed in FST thin films, which is much higher than that in powder-in-tube processed FST tapes. The films are capable of carrying current densities of over 105 A cm-2 in the whole applied magnetic field up to 9 T, showing great potential for high-field applications. The results indicate that, for FST, highly textured metal tapes are not needed to produce coated conductors with high performance, which is of great advantage over cuprate-coated conductors.

  5. Sensitive coating for water vapors detection based on thermally sputtered calcein thin films.

    PubMed

    Kruglenko, I; Shirshov, Yu; Burlachenko, J; Savchenko, A; Kravchenko, S; Manera, M G; Rella, R

    2010-09-15

    In this paper the adsorption properties of thermally sputtered calcein thin films towards water and other polar molecules vapors are studied by different characterization techniques: quartz crystal microbalance, surface plasmon resonance and visible spectroscopy. Sensitivity of calcein thin films to water vapors resulted much higher as compared with those of a number of dyes whose structure was close to that of calcein. All types of sensors with calcein coatings have demonstrated linear concentration dependences in the wide range of water vapor pressure from low concentrations up to 27,000 ppm (close to saturation). At higher concentrations of water vapor all sensors demonstrate the abrupt increase of the response (up to two orders). A theoretical model is advanced explaining the adsorption properties of calcein thin films taking into account their chemical structure and peculiarities of molecular packing. The possibility of application of thermally sputtered calcein films in sensing technique is discussed. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  6. Electrochromic NiO thin films prepared by spin coating

    NASA Astrophysics Data System (ADS)

    Özütok, F.; Demiri, S.; Özbek, E.

    2017-02-01

    Recently, smart windows are very important because they are often being used in smart buildings and car glasses (windows). At this point, producing effective electrochromic materials is so necessary. In this study, we produced NiO thin films by using spin coating technique on In-doped SnO2 (ITO) substrate. Nickel proportions of these nickel oxide (NiO) films are 3, 5 and 7 %. Nickel acetate tetrahydrate is the initial solution and solvents are ethylene gl ycol and n-hexzane. Structural properties and surface images are investigated by using x-ray diffactometer (XRD) and scanning electron microscope (SEM) device, respectively. In addition, electrochemical behavior is investigated by cyclic voltammetry. A correlation between surface morphology and electrochromic performance was observed as well.

  7. Acoustoelectric Effect on the Responses of SAW Sensors Coated with Electrospun ZnO Nanostructured Thin Film

    PubMed Central

    Tasaltin, Cihat; Ebeoglu, Mehmet Ali; Ozturk, Zafer Ziya

    2012-01-01

    In this study, zinc oxide (ZnO) was a very good candidate for improving the sensitivity of gas sensor technology. The preparation of an electrospun ZnO nanostructured thin film on a 433 MHz Rayleigh wave based Surface Acoustic Wave (SAW) sensor and the investigation of the acoustoelectric effect on the responses of the SAW sensor are reported. We prepared an electrospun ZnO nanostructured thin film on the SAW devices by using an electrospray technique. To investigate the dependency of the sensor response on the structure and the number of the ZnO nanoparticles, SAW sensors were prepared with different coating loads. The coating frequency shifts were adjusted to fall between 100 kHz and 2.4 MHz. The sensor measurements were performed against VOCs such as acetone, trichloroethylene, chloroform, ethanol, n-propanol and methanol vapor. The sensor responses of n-propanol have opposite characteristics to the other VOCs, and we attributed these characteristics to the elastic effect/acoustoelectric effect.

  8. Influence of pH on optoelectronic properties of zinc sulphide thin films prepared using hydrothermal and spin coating method

    NASA Astrophysics Data System (ADS)

    Choudapur, V. H.; Bennal, A. S.; Raju, A. B.

    2018-04-01

    The ZnS nanomaterial is synthesized by hydrothermal method under optimized conditions using Zinc acetate and sodium sulphide as precursors. The Zinc Sulphide thin films are obtained by simple spin coating method with high optical transmittance. The prepared thin films are adhesive and uniform. The x-ray diffraction analysis showed that the films are polycrystalline in cubic phase with the preferred orientation along (111) direction. Current-voltage curves were recorded at room temperature using Keithley 617 programmable electrometer and conductivity is calculated for the film coated on ITO by two probe method. The pH of the solution is varied by using ammonia and hydrochloric acid. The comparative studies of effect of pH on the morphology, crystallanity and optoelectronic properties of the films are studied. It is observed that the pH of the solution has large influence on optoelectronic properties. The thin film prepared with neutral pH has higher crystallanity, bandgap and conductivity as compared to the samples prepared in acidic or basic solutions.

  9. Tongue coating microbiome regulates the changes in tongue texture and coating in patients with post-menopausal osteoporosis of Gan-shen deficiency syndrome type.

    PubMed

    Liang, Wenna; Li, Xihai; Li, Yachan; Li, Candong; Gao, Bizheng; Gan, Huijuan; Li, Sumin; Shen, Jianying; Kang, Jie; Ding, Shanshan; Lin, Xuejuan; Liao, Linghong

    2013-11-01

    Tongue inspection is a unique and important method of diagnosis in traditional Chinese medicine (TCM). It is a diagnostic approach which involves observing the changes in the tongue proper and tongue coating in order to understand the physiological functions and pathological changes of the body. However, the biological basis of TCM tongue diagnosis remains to be poorly understood and lacks systematic investigation at the molecular level. In this study, we evaluated the effects of tongue coating microbiome on changes in the tongue texture and coating in patients with post-menopausal osteoporosis (PMO) of Gan‑shen deficiency syndrome type. Our aim was to delineate the mechanisms of tongue coating microbiome-induced changes in the tongue texture and coating by investigating the histomorphological changes and performing a bacterial analysis of the tongue coating. We found that the number of intermediate cells in the red tongue with a thin coating was higher, while the number of superficial cells in the red tongue with a thin coating was lower. The maturation value (MV) of tongue exfoliated cells in the red tongue with a thin coating decreased, compared with that in the pale red tongue with a thin white coating. Furthermore, the total bacterial count, oral streptococcus, Gram‑positive (G+) and Gram‑negative (G-) anaerobic bacteria in the red tongue with a thin coating was significantly decreased compared with the pale red tongue with a thin white coating. The results of ultrastructural examination demonstrated that the number of epithelial cells and bacteria in the red tongue with a thin coating decreased compared with that in the pale red tongue with a thin white coating. These observations indicate that the tongue coating microbiome may be an important factor contributing to changes in the tongue in patients with PMO of Gan‑shen deficiency syndrome type.

  10. Nanocrystalline high-entropy alloy (CoCrFeNiAl 0.3 ) thin-film coating by magnetron sputtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liao, Weibing; Lan, Si; Gao, Libo

    High-entropy CoCrFeNiAl0.3 alloy thin films were prepared by magnetron sputtering technique. The thin film surface was very smooth and homogeneous. The synchrotron X-ray experiment confirmed that (111) type of texture existed in the thin film, and the structure was face-centered cubic nanocrystals with a minor content of ordered NiAl-type body-centered cubic structures. Interestingly, the elastic modulus of the thin film was nearly the same to the bulk single-crystal counterpart, however, the nanohardness is about four times of the bulk single-crystal counterpart. It was found that the high hardness was due to the formation of nanocrystal structure inside the thin filmsmore » and the preferred growth orientation, which could be promising for applications in micro fabrication and advanced coating technologies.« less

  11. Preparation of an orthodontic bracket coated with an nitrogen-doped TiO(2-x)N(y) thin film and examination of its antimicrobial performance.

    PubMed

    Cao, Baocheng; Wang, Yuhua; Li, Na; Liu, Bin; Zhang, Yingjie

    2013-01-01

    A bracket coated with a nitrogen-doped (N-doped) TiO(2-x)N(y) thin film was prepared using the RF magnetron sputtering method. The physicochemical properties of the thin film were measured using X-ray diffraction and energy-dispersive X-ray spectrometry, while the antimicrobial activity of the bracket against common oral pathogenic microbes was assessed on the basis of colony counts. The rate of antimicrobial activity of the bracket coated with nano-TiO(2-x)N(y) thin film against Streptococcus mutans, Lactobacillus acidophilus, Actinomyces viscous, and Candida albicans was 95.19%, 91.00%, 69.44%, and 98.86%, respectively. Scanning electron microscopy showed that fewer microbes adhered to the surface of this newly designed bracket than to the surface of the normal edgewise bracket. The brackets coated with the N-doped TiO(2-x)N(y) thin film showed high antimicrobial and bacterial adhesive properties against normal oral pathogenic bacterial through visible light, which is effective in prevention of enamel demineralization and gingivitis in orthodontic patients.

  12. Substrate dependent stability of conducting polymer coatings on medical electrodes.

    PubMed

    Green, Rylie A; Hassarati, Rachelle T; Bouchinet, Lucie; Lee, Chaekyung S; Cheong, Gin L M; Yu, Jin F; Dodds, Christopher W; Suaning, Gregg J; Poole-Warren, Laura A; Lovell, Nigel H

    2012-09-01

    Conducting polymer (CP) coatings on medical electrodes have the potential to provide superior performance when compared to conventional metallic electrodes, but their stability is strongly dependant on the substrate properties. The aim of this study was to examine the effect of laser roughening of underlying platinum (Pt) electrode surfaces on the mechanical, electrical and biological performance of CP coatings. In addition, the impact of dopant type on electrical performance and stability was assessed. The CP poly(ethylene dioxythiophene) (PEDOT) was coated on Pt microelectrode arrays, with three conventional dopant ions. The in vitro electrical characteristics were assessed by cyclic voltammetry and biphasic stimulation. Results showed that laser roughening of the underlying substrate did not affect the charge injection limit of the coated material, but significantly improved the passive stability and chronic stimulation lifetime without failure of the coating. Accelerated material ageing and long-term biphasic stimulus studies determined that some PEDOT variants experienced delamination within as little as 10 days when the underlying Pt was smooth, but laser roughening to produce a surface index of 2.5 improved stability, such that more than 1.3 billion stimulation cycles could be applied without evidence of failure. PEDOT doped with paratoluene sulfonate (PEDOT/pTS) was found to be the most stable CP on roughened Pt, and presented a surface topography which encouraged neural cell attachment. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  13. Atomic oxygen effects on thin film space coatings studied by spectroscopic ellipsometry, atomic force microscopy, and laser light scattering

    NASA Technical Reports Server (NTRS)

    Synowicki, R. A.; Hale, Jeffrey S.; Woollam, John A.

    1992-01-01

    The University of Nebraska is currently evaluating Low Earth Orbit (LEO) simulation techniques as well as a variety of thin film protective coatings to withstand atomic oxygen (AO) degradation. Both oxygen plasma ashers and an electron cyclotron resonance (ECR) source are being used for LEO simulation. Thin film coatings are characterized by optical techniques including Variable Angle Spectroscopic Ellipsometry, Optical spectrophotometry, and laser light scatterometry. Atomic Force Microscopy (AFM) is also used to characterize surface morphology. Results on diamondlike carbon (DLC) films show that DLC degrades with simulated AO exposure at a rate comparable to Kapton polyimide. Since DLC is not as susceptible to environmental factors such as moisture absorption, it could potentially provide more accurate measurements of AO fluence on short space flights.

  14. Hybrid Thin Film Organosilica Sol-Gel Coatings To Support Neuronal Growth and Limit Astrocyte Growth.

    PubMed

    Capeletti, Larissa Brentano; Cardoso, Mateus Borba; Dos Santos, João Henrique Zimnoch; He, Wei

    2016-10-07

    Thin films of silica prepared by a sol-gel process are becoming a feasible coating option for surface modification of implantable neural sensors without imposing adverse effects on the devices' electrical properties. In order to advance the application of such silica-based coatings in the context of neural interfacing, the characteristics of silica sol-gel are further tailored to gain active control of interactions between cells and the coating materials. By incorporating various readily available organotrialkoxysilanes carrying distinct organic functional groups during the sol-gel process, a library of hybrid organosilica coatings is developed and investigated. In vitro neural cultures using PC12 cells and primary cortical neurons both reveal that, among these different types of hybrid organosilica, the introduction of aminopropyl groups drastically transforms the silica into robust neural permissive substrate, supporting neuron adhesion and neurite outgrowth. Moreover, when this organosilica is cultured with astrocytes, a key type of glial cells responsible for glial scar response toward neural implants, such cell growth promoting effect is not observed. These findings highlight the potential of organo-group-bearing silica sol-gel to function as advanced coating materials to selectively modulate cell response and promote neural integration with implantable sensing devices.

  15. Changes in transthoracic impedance during sequential biphasic defibrillation.

    PubMed

    Deakin, Charles D; Ambler, Jonathan J S; Shaw, Steven

    2008-08-01

    Sequential monophasic defibrillation reduces transthoracic impedance (TTI) and progressively increases current flow for any given energy level. The effect of sequential biphasic shocks on TTI is unknown. We therefore studied patients undergoing elective cardioversion using a biphasic waveform to establish whether this is a phenomenon seen in the clinical setting. Adults undergoing elective DC cardioversion for atrial flutter or fibrillation received sequential transthoracic shocks using an escalating protocol (70J, 100J, 150J, 200J, and 300J) with a truncated exponential biphasic waveform. TTI was calculated through the defibrillator circuit and recorded electronically. Successful cardioversion terminated further defibrillation shocks. A total of 58 patients underwent elective cardioversion. Cardioversion was successful in 93.1% patients. First shock TTI was 92.2 [52.0-126.0]Omega (n=58) and decreased significantly with each sequential shock. Mean TTI in patients receiving five shocks (n=5) was 85.0Omega. Sequential biphasic defibrillation decreases TTI in a similar manner to that seen with monophasic waveforms. The effect is likely during defibrillation during cardiac arrest by the quick succession in which shocks are delivered and the lack of cutaneous blood flow which limits the inflammatory response. The ability of biphasic defibrillators to adjust their waveform according to TTI is likely to minimise any effect of these findings on defibrillation efficacy.

  16. Synthesis and characterization of cadmium sulphide thin films prepared by spin coating

    NASA Astrophysics Data System (ADS)

    Chodavadiya, Nisarg; Chapanari, Amisha; Zinzala, Jignesh; Ray, Jaymin; Pandya, Samir

    2018-05-01

    An II-VI group semiconductor is Wide band gap materials and has been widely studied due to their fundamental optical, structural, and electrical properties. Cadmium sulphide (CdS) is one of the most emerged materials in II-VI group. It has many applications such as buffer later in photovoltaic cell, multilayer light emitting diodes, optical filters, thin film field effect transistors, gas sensors, light detectors etc. It is fundamentally an n-type material with an optical band gap of 2.4 eV. Owing to these properties we had studied CdS thin films synthesis and characterized by Raman, Ultraviolet - Visible spectroscopy (UV-VIS) and Hot probe method. CdS thin films were prepared by spin coating of the Cadmium-thiourea precursor solution. Visual inspection after 20 minute thermolysis time the films were looks uniform and shiny pale yellow in color. Raman confirms the A1 vibration of pure CdS. UV-VIS gives the band gap about 2.52 eV, which confirms the formation of nanocrystalline form of CdS. Finally, hot probe signifies the n-type conductivity of the CdS film.

  17. Thin calcium phosphate coatings on titanium by electrochemical deposition in modified simulated body fluid.

    PubMed

    Peng, Ping; Kumar, Sunil; Voelcker, Nicolas H; Szili, Endre; Smart, Roger St C; Griesser, Hans J

    2006-02-01

    Adherent and optically semitransparent thin calcium phosphate (CaP) films were electrochemically deposited on titanium substrates in a modified simulated body fluid at 37 degrees C. Coatings deposited by using periodic pulsed potentials showed better adhesion and better mechanical properties than coatings deposited with use of a constant potential. Scanning electron microscopy was used to study the morphology of the coatings. The coatings displayed a polydispersed porous structure with pores in the range of a few nanometers to 1 mum. Furthermore, X-ray diffractometry and the O(1s) satellite peaks in X-ray photoelectron spectroscopy indicated that the coatings possessed a similar surface chemistry to that of natural bone minerals. These results were confirmed by inductively coupled plasma optical emission spectrometry, which yielded a Ca:P ratio of 1.65, close to that of hydroxyapatite. Contact mode atomic force microscopy (AFM) showed the average thickness of the coatings was in the order of 200 nm. Root-mean-square (RMS) roughness values, also derived by AFM, were shown to be much higher on the titanium-CaP surfaces in comparison with untreated titanium substrates, with RMS values of about 300 and 110 nm, respectively. Cell culture experiments showed that the CaP surfaces are nontoxic to MG63 osteoblastic cells in vitro and were able to support cell growth for up to 4 days, outperforming the untreated titanium surface in a direct comparison. These easily prepared coatings show promise for hard-tissue biomaterials. (c) 2005 Wiley Periodicals, Inc.

  18. Antifouling coatings via plasma polymerization and atom transfer radical polymerization on thin film composite membranes for reverse osmosis

    NASA Astrophysics Data System (ADS)

    Hirsch, Ulrike; Ruehl, Marco; Teuscher, Nico; Heilmann, Andreas

    2018-04-01

    A major drawback to otherwise highly efficient membrane-based desalination techniques like reverse osmosis (RO) is the susceptibility of the membranes to biofouling. In this work, a combination of plasma activation, plasma bromination and surface-initiated atom transfer radical polymerization (si-ATRP) of hydrophilic and zwitterionic monomers, namely hydroxyethyl methacrylate (HEMA), 2-methacryloyloxyethyl phosphorylcholine (MPC) and [2-(methacryloyloxy)ethyl]-dimethyl-(3-sulfopropyl)ammonium hydroxide (SBMA), was applied to generate non-specific, anti-adhesive coatings on thin film composite (TFC) membranes. The antifouling effect of the coatings was shown by short-time batch as well as long-time steady state cultivation experiments with the microorganism Pseudomonas fluorescens. It could be shown that plasma functionalization and polymerization is possible on delicate thin film composite membranes without restricting their filtration performance. All modified membranes showed an increased resistance towards the adhesion of Pseudomonas fluorescens. On average, the biofilm coverage was reduced by 51.4-12.6% (for HEMA, SBMA, and MPC), the highest reduction was monitored for MPC with a biofilm reduction by 85.4%. The hydrophilic coatings applied did not only suppress the adhesion of Pseudomonas fluorescens, but also significantly increase the permeate flux of the membranes relative to uncoated membranes. The stability of the coatings was however not ideal and will have to be improved for future commercial use.

  19. Examination of the influence of coatings on thin superalloy sections. Volume 2: Detailed procedures and data. [corrosion resistance

    NASA Technical Reports Server (NTRS)

    Kaufman, M.

    1974-01-01

    The effects of an aluminide coating, Codep B-1, and of section thickness were investigated on two cast nickel base superalloys, Rene 80 and Rene 120. Cast section thicknesses ranged from 0.038 cm to 0.15 cm. Simulated engine exposures for 1000 hours at 899C or 982C in a jet fuel burner rig with cyclic air cooling were studied, as were the effects of surface machining before coating and re-machining and re-coating after exposures. The properties evaluated included tensile at room temperature., 871C and 982C, stress rupture at 760C, 871C, 982C and 1093C, high cycle mechanical fatigue at room temperature., and thermal fatigue with a 1093C peak temperature. Thin sections had tensile strengths similar to standard size bars up to 871C and lower strengths at 982C and above, with equivalent elongation, and stress rupture life was lower for thin sections at all test conditions. The aluminide coating lowered tensile and rupture strengths up to 871C, with greater effects on thinner specimens. Elevated temperature exposure lowered tensile and rupture strengths of thinner specimens at the lower test temperatures. Surface machining had little effect on properties, but re-machining after exposure reduced thickness and increased metallurgical changes enough to lower properties at most test conditions.

  20. Thin silica shell coated Ag assembled nanostructures for expanding generality of SERS analytes

    PubMed Central

    Kang, Yoo-Lee; Lee, Minwoo; Kang, Homan; Kim, Jaehi; Pham, Xuan-Hung; Kim, Tae Han; Hahm, Eunil; Lee, Yoon-Sik; Jeong, Dae Hong

    2017-01-01

    Surface-enhanced Raman scattering (SERS) provides a unique non-destructive spectroscopic fingerprint for chemical detection. However, intrinsic differences in affinity of analyte molecules to metal surface hinder SERS as a universal quantitative detection tool for various analyte molecules simultaneously. This must be overcome while keeping close proximity of analyte molecules to the metal surface. Moreover, assembled metal nanoparticles (NPs) structures might be beneficial for sensitive and reliable detection of chemicals than single NP structures. For this purpose, here we introduce thin silica-coated and assembled Ag NPs (SiO2@Ag@SiO2 NPs) for simultaneous and quantitative detection of chemicals that have different intrinsic affinities to silver metal. These SiO2@Ag@SiO2 NPs could detect each SERS peak of aniline or 4-aminothiophenol (4-ATP) from the mixture with limits of detection (LOD) of 93 ppm and 54 ppb, respectively. E-field distribution based on interparticle distance was simulated using discrete dipole approximation (DDA) calculation to gain insight into enhanced scattering of these thin silica coated Ag NP assemblies. These NPs were successfully applied to detect aniline in river water and tap water. Results suggest that SiO2@Ag@SiO2 NP-based SERS detection systems can be used as a simple and universal detection tool for environment pollutants and food safety. PMID:28570633

  1. Maskless deposition technique for the physical vapor deposition of thin film and multilayer coatings with subnanometer precision and accuracy

    DOEpatents

    Vernon, Stephen P.; Ceglio, Natale M.

    2000-01-01

    The invention is a method for the production of axially symmetric, graded and ungraded thickness thin film and multilayer coatings that avoids the use of apertures or masks to tailor the deposition profile. A motional averaging scheme permits the deposition of uniform thickness coatings independent of the substrate radius. Coating uniformity results from an exact cancellation of substrate radius dependent terms, which occurs when the substrate moves at constant velocity. If the substrate is allowed to accelerate over the source, arbitrary coating profiles can be generated through appropriate selection and control of the substrate center of mass equation of motion. The radial symmetry of the coating profile is an artifact produced by orbiting the substrate about its center of mass; other distributions are obtained by selecting another rotation axis. Consequently there is a direct mapping between the coating thickness and substrate equation of motion which can be used to tailor the coating profile without the use of masks and apertures.

  2. Electrostatic bonding of thin (approximately 3 mil) 7070 cover glass to Ta2O5 AR-coated thin (approximately 2 mil) silicon wafers and solar cells

    NASA Technical Reports Server (NTRS)

    Egelkrout, D. W.; Horne, W. E.

    1980-01-01

    Electrostatic bonding (ESB) of thin (3 mil) Corning 7070 cover glasses to Ta2O5 AR-coated thin (2 mil) silicon wafers and solar cells is investigated. An experimental program was conducted to establish the effects of variations in pressure, voltage, temperature, time, Ta2O5 thickness, and various prebond glass treatments. Flat wafers without contact grids were used to study the basic effects for bonding to semiconductor surfaces typical of solar cells. Solar cells with three different grid patterns were used to determine additional requirements caused by the raised metallic contacts.

  3. Enhancement of the photoprotection and nanomechanical properties of polycarbonate by deposition of thin ceramic coatings

    NASA Astrophysics Data System (ADS)

    Mailhot, B.; Rivaton, A.; Gardette, J.-L.; Moustaghfir, A.; Tomasella, E.; Jacquet, M.; Ma, X.-G.; Komvopoulos, K.

    2006-05-01

    The chemical reactions resulting from ultraviolet radiation produce discoloration and significant changes in the surface properties of polycarbonate (PC). To prevent photon absorption from irradiation and oxygen diffusion and to enhance the surface nanomechanical properties of PC, thin ceramic coatings of ZnO and Al2O3 (both single- and multi-layer) were deposited on bulk PC by radio-frequency magnetron sputtering. The samples were irradiated at wavelengths greater than 300 nm, representative of outdoor conditions. Despite the effectiveness of ZnO to protect PC from irradiation damage, photocatalytic oxidation at the PC/ZnO interface was the limiting factor. To overcome this deficiency, a thin Al2O3 coating was used both as intermediate and top layer because of its higher hardness and wear resistance than ZnO. Therefore, PC/Al2O3/ZnO, PC/ZnO/Al2O3, and PC/Al2O3/ZnO/Al2O3 layered media were fabricated and their photodegradation properties were examined by infrared and ultraviolet-visible spectroscopy. It was found that the photocatalytic activity at the PC/ZnO interface was reduced in the presence of the intermediate Al2O3 layer that limited the oxygen permeability. Nanomechanical experiments performed with a surface force apparatus revealed that the previous coating systems enhanced both the surface nanohardness and the elastic modulus and reduced the coefficient of friction in the order of ZnO, Al2O3, and Al2O3/ZnO/Al2O3. Although irradiation increased the nanohardness and the elastic modulus of PC, the irradiation effect on the surface mechanical properties of ceramic-coated PC was secondary.

  4. Weathering characteristics and moisture uptake properties of wood coated with water-borne sol-gel thin films

    Treesearch

    M. A. Tshabalala; C. Starr; N. R. Sutherland

    2010-01-01

    In this study, wood specimens were coated with water-borne silsesquioxane oligomers by an in situ sol-gel deposition process. The effect of these water-borne sol-gel thin films on weathering characteristics and moisture-uptake properties of the wood specimens were investigated. The weathering characteristics were investigated by exposure of the specimens to artificial...

  5. Optical Coating for Improvement in Thermal Radiative Properties of Cu (In, Ga) Se2 Thin Film Solar Cells for Space Applications

    NASA Astrophysics Data System (ADS)

    Shimazaki, Kazunori; Kawakita, Shirou; Imaizumi, Mitsuru; Kuwajima, Saburou; Sakurai, Keiichiro; Matsubara, Koji; Niki, Sigeru

    2005-05-01

    Optical coating on Cu(In, Ga)Se2 thin film solar cells, which have high radiation tolerance, is investigated in order to improve their radiative properties for thermal balance in space. Due to low thermal emissivity, the temperature of the CIGS solar cell is expected to exceed the allowable limit if no coating is applied. Evaporated single-layer coating of silicon dioxide and additional over-layer coatings on the CIGS solar cells increase the emissivity from 0.18 to 0.75. The coating with the over-layer coatings realizes higher emissivity with less thickness than that of the single SiO2 coating. In addition, optical coatings reflecting UV rays and infrared radiation are designed and evaporated on the cells to control solar input. The developed optical coatings could give the CIGS solar cells appropriate thermal radiative properties for space applications without any degradations of the cell performance.

  6. Inorganic-organic thin implant coatings deposited by lasers.

    PubMed

    Sima, Felix; Davidson, Patricia M; Dentzer, Joseph; Gadiou, Roger; Pauthe, Emmanuel; Gallet, Olivier; Mihailescu, Ion N; Anselme, Karine

    2015-01-14

    The lifetime of bone implants inside the human body is directly related to their osseointegration. Ideally, future materials should be inspired by human tissues and provide the material structure-function relationship from which synthetic advanced biomimetic materials capable of replacing, repairing, or regenerating human tissues can be produced. This work describes the development of biomimetic thin coatings on titanium implants to improve implant osseointegration. The assembly of an inorganic-organic biomimetic structure by UV laser pulses is reported. The structure consists of a hydroxyapatite (HA) film grown onto a titanium substrate by pulsed-laser deposition (PLD) and activated by a top fibronectin (FN) coating deposited by matrix-assisted pulsed laser evaporation (MAPLE). A pulsed KrF* laser source (λ = 248 nm, τ = 25 ns) was employed at fluences of 7 and 0.7J/cm(2) for HA and FN transfer, respectively. Films approximately 1500 and 450 nm thick were obtained for HA and FN, respectively. A new cryogenic temperature-programmed desorption mass spectrometry analysis method was employed to accurately measure the quantity of immobilized protein. We determined that less than 7 μg FN per cm(2) HA surface is adequate to improve adhesion, spreading, and differentiation of osteoprogenitor cells. We believe that the proposed fabrication method opens the door to combining and immobilizing two or more inorganic and organic materials on a solid substrate in a well-defined manner. The flexibility of this method enables the synthesis of new hybrid materials by simply tailoring the irradiation conditions according to the thermo-physical properties of the starting materials.

  7. Fabrication and characterization of high mobility spin-coated zinc oxide thin film transistors

    NASA Astrophysics Data System (ADS)

    Singh, Shaivalini; Chakrabarti, P.

    2012-10-01

    A ZnO based thin film transistor (TFT) with bottom-gate configuration and SiO2 as insulating layer has been fabricated and characterized. The ZnO thin film was prepared by spin coating the sol-gel solution on the p-type Si wafers. The optical and structural properties of ZnO films were investigated using UV measurements and scanning electron microscope (SEM). The result of UV-visible study confirms that the films have a good absorbance in UV region and relatively low absorbance in the visible region. The TFT exhibited an off-current of 2.5×10-7 A. The values of field effect channel mobility and on/off current ratio extracted for the device, measured 11 cm2/V.s and ~102 respectively. The value of threshold voltage was found to be 1.3 V.

  8. Surface characterization of an energetic material, pentaerythritoltetranitrate (PETN), having a thin coating achieved through a starved addition microencapsulation technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Worley, C.M.

    The objective of this research was to: (1) determine the nature of a thin coating on an explosive material which was applied using a starved addition microencapsulation technique, (2) understand the coating/crystal bond, and (3) investigate the wettability/adhesion of plastic/solvent combinations using the coating process. The coating used in this work was a Firestone Plastic Company copolymer (FPC-461) of vinylchloride/trifluorochloroethylene in a 1.5/1.0 weight ratio. The energetic explosive examined was pentaerythritoltetranitrate (PETN). The coating process used was starved addition followed by a solvent evaporation technique. Surface analytical studies, completed for characterization of the coating process, show (1) evidence that themore » polymer coating is present, but not continuous, over the surface of PETN; (2) the average thickness of the polymer coating is between 16-32 A and greater than 44 A, respectively, for 0.5 and 20 wt % coated PETN; (3) no changes in surface chemistry of the polymer or the explosive material following microencapsulation; and (4) the presence of explosive material on the surface of 0.5 wt % FPC-461 coated explosives. 5 refs., 15 figs., 6 tabs.« less

  9. Biphasic Scaffolds from Marine Collagens for Regeneration of Osteochondral Defects.

    PubMed

    Bernhardt, Anne; Paul, Birgit; Gelinsky, Michael

    2018-03-13

    Collagens of marine origin are applied increasingly as alternatives to mammalian collagens in tissue engineering. The aim of the present study was to develop a biphasic scaffold from exclusively marine collagens supporting both osteogenic and chondrogenic differentiation and to find a suitable setup for in vitro chondrogenic and osteogenic differentiation of human mesenchymal stroma cells (hMSC). Biphasic scaffolds from biomimetically mineralized salmon collagen and fibrillized jellyfish collagen were fabricated by joint freeze-drying and crosslinking. Different experiments were performed to analyze the influence of cell density and TGF-β on osteogenic differentiation of the cells in the scaffolds. Gene expression analysis and analysis of cartilage extracellular matrix components were performed and activity of alkaline phosphatase was determined. Furthermore, histological sections of differentiated cells in the biphasic scaffolds were analyzed. Stable biphasic scaffolds from two different marine collagens were prepared. An in vitro setup for osteochondral differentiation was developed involving (1) different seeding densities in the phases; (2) additional application of alginate hydrogel in the chondral part; (3) pre-differentiation and sequential seeding of the scaffolds and (4) osteochondral medium. Spatially separated osteogenic and chondrogenic differentiation of hMSC was achieved in this setup, while osteochondral medium in combination with the biphasic scaffolds alone was not sufficient to reach this ambition. Biphasic, but monolithic scaffolds from exclusively marine collagens are suitable for the development of osteochondral constructs.

  10. Thin coatings for heavy industry: Advanced coatings for pipes and valves

    NASA Astrophysics Data System (ADS)

    Vernhes, Luc

    Pipes and valves are pressure vessels that regulate the flow of materials (liquids, gases, and slurries) by controlling the passageways. To optimize processes, reduce costs, and comply with government regulations, original equipment manufacturers (OEMs) must maintain their products in state-of-the-art condition. The first valves were invented over 3,000 years ago to supply water to farms and cities. They were made with bronze alloys, providing good corrosion resistance and acceptable tribological performance. The industrial revolution drove manufacturers to develop new and improved tribological materials. In the 20th century, innovative alloys such as Monel copper-nickel and Stellite cobalt-chrome as well as hard chrome plating were introduced to better control tribological properties and maximize in-service life. Since then, new materials have been regularly introduced to extend the range of applications for valves. For example, Teflon fluoropolymers are used in corrosive chemical and petrochemical processes, the nickel-based superalloys Hastelloy and Inconel for petrochemical applications, and creep-resistant chromium-rich F91 steel for supercritical power plants. Recently, the valve industry has embraced the use of hard thermal sprayed coatings for the most demanding applications, and is investing heavily in research to develop the most suitable coatings for specific uses. There is increasing evidence that the optimal solution to erosive, corrosive, and fretting wear problems lies in the design and manufacture of multi-layer, graded, and/or nanostructured coatings and coating systems that combine controlled hardness with high elastic modulus, high toughness, and good adhesion. The overall objectives of this thesis were 1) to report on advances in the development of structurally controlled hard protective coatings with tailored mechanical, elastoplastic, and thermal properties; and 2) to describe enhanced wear-, erosion-, and corrosion-resistance and other

  11. Kinetic Effects on Self-Assembly and Function of Protein-Polymer Bioconjugates in Thin Films Prepared by Flow Coating.

    PubMed

    Chang, Dongsook; Huang, Aaron; Olsen, Bradley D

    2017-01-01

    The self-assembly of nanostructured globular protein arrays in thin films is demonstrated using protein-polymer block copolymers based on a model protein mCherry and the polymer poly(oligoethylene glycol acrylate) (POEGA). Conjugates are flow coated into thin films on a poly(ethylene oxide) grafted Si surface, forming self-assembled cylindrical nanostructures with POEGA domains selectively segregating to the air-film interface. Long-range order and preferential arrangement of parallel cylinders templated by selective surfaces are demonstrated by controlling relative humidity. Long-range order increases with coating speed when the film thicknesses are kept constant, due to reduced nucleation per unit area of drying film. Fluorescence emission spectra of mCherry in films prepared at <25% relative humidity shows a small shift suggesting that proteins are more perturbed at low humidity than high humidity or the solution state. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Influence of thin-film metallic glass coating on fatigue behavior of bulk metallic glass: Experiments and finite element modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Chia-Chi; Chu, Jinn P.; Jia, Haoling

    In this paper, a coating of the Zr-based thin-film metallic glass (TFMG) was deposited on the Zr 50Cu 30Al 10Ni 10 bulk metallic glass (BMG) to investigate shear-band evolution under four-point-bend fatigue testing. The fatigue endurance-limit of the TFMG-coated samples is ~ 33% higher than that of the BMG. The results of finite-element modeling (FEM) revealed a delay in the shear-band nucleation and propagation in TFMG-coated samples under applied cyclic-loading. The FEM study of spherical indentation showed that the redistribution of stress by the TFMG coating prevents localized shear-banding in the BMG substrate. Finally, the enhanced fatigue characteristics of themore » BMG substrates can be attributed to the TFMG coatings retarding shear-band initiation at defects on the surface of the BMG.« less

  13. Influence of thin-film metallic glass coating on fatigue behavior of bulk metallic glass: Experiments and finite element modeling

    DOE PAGES

    Yu, Chia-Chi; Chu, Jinn P.; Jia, Haoling; ...

    2017-03-21

    In this paper, a coating of the Zr-based thin-film metallic glass (TFMG) was deposited on the Zr 50Cu 30Al 10Ni 10 bulk metallic glass (BMG) to investigate shear-band evolution under four-point-bend fatigue testing. The fatigue endurance-limit of the TFMG-coated samples is ~ 33% higher than that of the BMG. The results of finite-element modeling (FEM) revealed a delay in the shear-band nucleation and propagation in TFMG-coated samples under applied cyclic-loading. The FEM study of spherical indentation showed that the redistribution of stress by the TFMG coating prevents localized shear-banding in the BMG substrate. Finally, the enhanced fatigue characteristics of themore » BMG substrates can be attributed to the TFMG coatings retarding shear-band initiation at defects on the surface of the BMG.« less

  14. Patchwork Coating of Fragmented Ultra-Thin Films and Their Biomedical Applications in Burn Therapy and Antithrombotic Coating

    PubMed Central

    Okamura, Yosuke; Nagase, Yu; Takeoka, Shinji

    2015-01-01

    We have proposed free-standing centimeter-sized ultra-thin films (nanosheets) for biomedical applications. Such nanosheets exhibit unique properties such as transparency, flexibility, and good adhesiveness. However, they are only easily adhered to broad and flat surfaces due to their dimensions. To this end, we recently proposed an innovative nanomaterial: the nanosheets fragmented into submillimeter-size pieces. Intriguingly, such fragmented nanosheets could be adhered to uneven and irregular surfaces in addition to flat surfaces in a spread-out “patchwork” manner. We herein review the fabrication procedure and characterization of fragmented nanosheets composed of biodegradable polyesters and thermostable bio-friendly polymers, and their biomedical applications in burn therapy and antithrombotic coating using a “patchwork coating”. PMID:28793663

  15. Anatase/rutile bi-phasic titanium dioxide nanoparticles for photocatalytic applications enhanced by nitrogen doping and platinum nano-islands.

    PubMed

    Bear, Joseph C; Gomez, Virginia; Kefallinos, Nikolaos S; McGettrick, James D; Barron, Andrew R; Dunnill, Charles W

    2015-12-15

    Titanium dioxide (TiO2) bi-phasic powders with individual particles containing an anatase and rutile hetero-junction have been prepared using a sequential layer sol-gel deposition technique to soluble substrates. Sequential thin films of rutile and subsequently anatase TiO2 were deposited onto sodium chloride substrates yielding extremely fragile composite layered discs that fractured into "Janus-like" like powders on substrate dissolution. Nitrogen doped and platinum sputtered analogues were also prepared, and analysed for photocatalytic potential using the photodegradation of Rhodamine B, a model organic pollutant under UV and visible light irradiation. The materials were characterised using X-ray diffraction, X-ray photoelectron spectroscopy, energy dispersive X-ray spectroscopy, Raman spectroscopy and scanning electron microscopy. This paper sheds light on the relationship between anatase and rutile materials when in direct contact and demonstrates a robust method for the synthesis of bi-phasic nanoparticles, ostensibly of any two materials, for photocatalytic reactions or otherwise. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Polyacrylonitrile block copolymers for the preparation of a thin carbon coating around TiO2 nanorods for advanced lithium-ion batteries.

    PubMed

    Oschmann, Bernd; Bresser, Dominic; Tahir, Muhammad Nawaz; Fischer, Karl; Tremel, Wolfgang; Passerini, Stefano; Zentel, Rudolf

    2013-11-01

    Herein, a new method for the realization of a thin and homogenous carbonaceous particle coating, made by carbonizing RAFT polymerization derived block copolymers anchored on anatase TiO2 nanorods, is presented. These block copolymers consist of a short anchor block (based on dopamine) and a long, easily graphitizable block of polyacrylonitrile. The grafting of such block copolymers to TiO2 nanorods creates a polymer shell, which can be visualized by atomic force microscopy (AFM). Thermal treatment at 700 °C converts the polyacrylonitrile block to partially graphitic structures (as determined by Raman spectroscopy), establishing a thin carbon coating (as determined by transmission electron microscopy, TEM, analysis). The carbon-coated TiO2 nanorods show improved electrochemical performance in terms of achievable specific capacity and, particularly, long-term cycling stability by reducing the average capacity fading per cycle from 0.252 mAh g(-1) to only 0.075 mAh g(-1) . © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Optimization of the antireflection coating of thin epitaxial crystalline silicon solar cells

    DOE PAGES

    Selj, Josefine K.; Young, David; Grover, Sachit

    2015-08-28

    In this study we use an effective weighting function to include the internal quantum efficiency (IQE) and the effective thickness, Te, of the active cell layer in the optical modeling of the antireflection coating (ARC) of very thin crystalline silicon solar cells. The spectrum transmitted through the ARC is hence optimized for efficient use in the given cell structure and the solar cell performance can be improved. For a 2-μm thick crystalline silicon heterojunction solar cell the optimal thickness of the Indium Tin Oxide (ITO) ARC is reduced by ~8 nm when IQE data and effective thickness are taken intomore » account compared to the standard ARC optimization, using the AM1.5 spectrum only. The reduced ARC thickness will shift the reflectance minima towards shorter wavelengths and hence better match the absorption of very thin cells, where the short wavelength range of the spectrum is relatively more important than the long, weakly absorbed wavelengths. For this cell, we find that the optimal thickness of the ITO starts at 63 nm for very thin (1 μm) active Si layer and then increase with increasing T e until it saturates at 71 nm for T e > 30 μm.« less

  18. Synthesis and characterization of nanocomposite polymer blend electrolyte thin films by spin-coating method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chapi, Sharanappa; Niranjana, M.; Devendrappa, H., E-mail: dehu2010@gmail.com

    2016-05-23

    Solid Polymer blend electrolytes based on Polyethylene oxide (PEO) and poly vinyl pyrrolidone (PVP) complexed with zinc oxide nanoparticles (ZnO NPs; Synthesized by Co-precipitation method) thin films have prepared at a different weight percent using the spin-coating method. The complexation of the NPs with the polymer blend was confirmed by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR). The variation in film morphology was examined by polarized optical micrographs (POMs). The thermal behavior of blends was investigated under non-isothermal conditions by differential thermal analyses (DTA). A single glass transition temperature for each blend was observed, which supports the existence ofmore » compatibility of such system. The obtained results represent that the ternary based thin films are prominent materials for battery and optoelectronic device applications.« less

  19. Coating of plasma polymerized film

    NASA Technical Reports Server (NTRS)

    Morita, S.; Ishibashi, S.

    1980-01-01

    Plasma polymerized thin film coating and the use of other coatings is suggested for passivation film, thin film used for conducting light, and solid body lubrication film of dielectrics of ultra insulators for electrical conduction, electron accessories, etc. The special features of flow discharge development and the polymerized film growth mechanism are discussed.

  20. Novel sol-gel precursors for thin mesoporous eu(3+)-doped silica coatings as efficient luminescent materials.

    PubMed

    Feinle, Andrea; Lavoie-Cardinal, Flavie; Akbarzadeh, Johanna; Peterlik, Herwig; Adlung, Matthias; Wickleder, Claudia; Hüsing, Nicola

    2012-10-09

    Europium(III) ions containing mesoporous silica coatings have been prepared via a solvent evaporation-induced self-assembly (EISA) approach of different single-source precursors (SSPs) in the presence of Pluronic P123 as a structure-directing agent, using the spin-coating process. A deliberate tailoring of the chemical composition of the porous coatings with various Si:Eu ratios was achieved by processing mixtures of tetraethylorthosilicate (TEOS) and Eu(3+)-coordinated SSPs. Small-angle X-ray scattering (SAXS) and transmission electron microscopy (TEM) analyses demonstrate that the thin metal oxide-doped silica coatings consist of a porous network with a short-range order of the pore structure, even at high europium(III) loadings. Furthermore, luminescence properties were investigated at different temperatures and different degrees of Eu(3+) contents. The photoluminescence spectra clearly show characteristic emission peaks corresponding to the (5)D0 → (7)FJ (J = 0-5) transitions resulting in a red luminescence visible by the eyes, although the films have a very low thickness (150-200 nm).

  1. Thin Film Coating Technology For Ophthalmic Lenses

    NASA Astrophysics Data System (ADS)

    Guenther, K. H.

    1986-05-01

    Coating of ophthalmic lenses is an application of high-vacuum coating technology which must satisfy not only physical and technical requirements but also customer demands with respect to aesthetics, color fidelity, and exchangeability of coated ophthalmic lenses. Because this application caters specifically to the consumer market, ophthalmic lenses are subject to certain fashion trends which frequently require quick adaptation of the coating technique. The state-of-the-art of ophthalmic lens coating is reviewed in this paper, with particular emphasis on the durability requirements in daily use by untrained consumers as well as on the applicable testing methods.

  2. Ascending-ramp biphasic waveform has a lower defibrillation threshold and releases less troponin I than a truncated exponential biphasic waveform.

    PubMed

    Huang, Jian; Walcott, Gregory P; Ruse, Richard B; Bohanan, Scott J; Killingsworth, Cheryl R; Ideker, Raymond E

    2012-09-11

    We tested the hypothesis that the shape of the shock waveform affects not only the defibrillation threshold but also the amount of cardiac damage. Defibrillation thresholds were determined for 11 waveforms-3 ascending-ramp waveforms, 3 descending-ramp waveforms, 3 rectilinear first-phase biphasic waveforms, a Gurvich waveform, and a truncated exponential biphasic waveform-in 6 pigs with electrodes in the right ventricular apex and superior vena cava. The ascending, descending, and rectilinear waveforms had 4-, 8-, and 16-millisecond first phases and a 3.5-millisecond rectilinear second phase that was half the voltage of the first phase. The exponential biphasic waveform had a 60% first-phase and a 50% second-phase tilt. In a second study, we attempted to defibrillate after 10 seconds of ventricular fibrillation with a single ≈30-J shock (6 pigs successfully defibrillated with 8-millisecond ascending, 8-millisecond rectilinear, and truncated exponential biphasic waveforms). Troponin I blood levels were determined before and 2 to 10 hours after the shock. The lowest-energy defibrillation threshold was for the 8-milliseconds ascending ramp (14.6±7.3 J [mean±SD]), which was significantly less than for the truncated exponential (19.6±6.3 J). Six hours after shock, troponin I was significantly less for the ascending-ramp waveform (0.80±0.54 ng/mL) than for the truncated exponential (1.92±0.47 ng/mL) or the rectilinear waveform (1.17±0.45 ng/mL). The ascending ramp has a significantly lower defibrillation threshold and at ≈30 J causes 58% less troponin I release than the truncated exponential biphasic shock. Therefore, the shock waveform affects both the defibrillation threshold and the amount of cardiac damage.

  3. Nonlinear estimation of parameters in biphasic Arrhenius plots.

    PubMed

    Puterman, M L; Hrboticky, N; Innis, S M

    1988-05-01

    This paper presents a formal procedure for the statistical analysis of data on the thermotropic behavior of membrane-bound enzymes generated using the Arrhenius equation and compares the analysis to several alternatives. Data is modeled by a bent hyperbola. Nonlinear regression is used to obtain estimates and standard errors of the intersection of line segments, defined as the transition temperature, and slopes, defined as energies of activation of the enzyme reaction. The methodology allows formal tests of the adequacy of a biphasic model rather than either a single straight line or a curvilinear model. Examples on data concerning the thermotropic behavior of pig brain synaptosomal acetylcholinesterase are given. The data support the biphasic temperature dependence of this enzyme. The methodology represents a formal procedure for statistical validation of any biphasic data and allows for calculation of all line parameters with estimates of precision.

  4. Annealing temperature effect on electrical properties of MEH-PPV thin film via spin coating method

    NASA Astrophysics Data System (ADS)

    Azhar, N. E. A.; Shariffudin, S. S.; Alrokayan, Salman A. H.; Khan, Haseeb A.; Rusop, M.

    2018-05-01

    Organic semiconductor has been discovered in different application devices such as organic light emitting diodes (OLEDs). Poly [2-methoxy-5(2' -ethylhexyloxy)-1, 4-phenylenevinylene), MEH-PPV widely used in this device because its ability to produce a good optical quality films. The MEH-PPV was prepared on glass substrate by spin coating method. The thin film was investigated at different annealing temperatures. The scanning electron micrographs (SEM) revealed that sample annealed at 50°C showed uniformity and less aggregation on morphology polymer thin film. Optical properties showed the intensities of visible emission increased as temperatures increased. The current-voltage (I-V) measurement revealed that the temperature of 50°C showed high conductive and it is suitable for optoelectronic device.

  5. Investigation of anticorrosion properties of nanocomposites of spray coated zinc oxide and titanium dioxide thin films on stainless steel (304L SS) in saline environment

    NASA Astrophysics Data System (ADS)

    P, Muhamed Shajudheen V.; S, Saravana Kumar; V, Senthil Kumar; Maheswari A, Uma; M, Sivakumar; Rani K, Anitha

    2018-01-01

    The present study reports the anticorrosive nature of nanocomposite thin films of zinc oxide and titanium dioxide on steel substrate (304L SS) using spray coating method. The morphology and chemical constituents of the nanocomposite thin film were characterized by field effect scanning electron microscopy and energy dispersive analysis of x-ray (EDAX) studies. From the EDAX studies, it was observed that nanocomposite coatings of desired stoichiometry can be synthesized using present coating technique. The cyclic voltametric techniques such as Tafel analysis and electrochemical impedance spectroscopy (EIS) analysis were conducted to study the anticorrosion properties of the coatings. The E corr values obtained from Tafel polarization curves of the sample coated with nanocomposites of ZnO and TiO2 in different ratios (5:1, 1:1 and 1:5) indicated that the corrosion resistance was improved compared to bare steel. The coating resistance values obtained from the Nyquist plot after fitting with equivalent circuit confirmed the improved anticorrosion performance of the coated samples. The sample coated with ZnO: TiO2 in the ratio 1:5 showed better corrosion resistance compared to other ratios. The Tafel and EIS studies were repeated after exposure to 5% NaCl for 390 h and the results indicated the anticorrosive nature of the coating in the aggressive environment. The root mean square deviation of surface roughness values calculated from the AFM images before and after salt spray indicated the stability of coating in the saline environment.

  6. Electrical and optical properties of p-type codoped ZnO thin films prepared by spin coating technique

    NASA Astrophysics Data System (ADS)

    Pathak, Trilok Kumar; Kumar, Vinod; Swart, H. C.; Purohit, L. P.

    2016-03-01

    Undoped, doped and codoped ZnO thin films were synthesized on glass substrates using a spin coating technique. Zinc acetate dihydrate, ammonium acetate and aluminum nitrate were used as precursor for zinc, nitrogen and aluminum, respectively. X-ray diffraction shows that the thin films have a hexagonal wurtzite structure for the undoped, doped and co-doped ZnO. The transmittance of the films was above 80% and the band gap of the film varied from 3.20 eV to 3.24 eV for undoped and doped ZnO. An energy band diagram to describe the photoluminescence from the thin films was also constructed. This diagram includes the various defect levels and possible quasi-Fermi levels. A minimum resistivity of 0.0834 Ω-cm was obtained for the N and Al codoped ZnO thin films with p-type carrier conductivity. These ZnO films can be used as a window layer in solar cells and in UV lasers.

  7. Fracture resistance of dental nickel-titanium rotary instruments with novel surface treatment: Thin film metallic glass coating.

    PubMed

    Chi, Chih-Wen; Deng, Yu-Lun; Lee, Jyh-Wei; Lin, Chun-Pin

    2017-05-01

    Dental nickel-titanium (NiTi) rotary instruments are widely used in endodontic therapy because they are efficient with a higher success rate. However, an unpredictable fracture of instruments may happen due to the surface characteristics of imperfection (or irregularity). This study assessed whether a novel surface treatment could increase fatigue fracture resistance of dental NiTi rotary instruments. A 200- or 500-nm thick Ti-zirconium-boron (Ti-Zr-B) thin film metallic glass was deposited on ProTaper Universal F2 files using a physical vapor deposition process. The characteristics of coating were analyzed by scanning electron microscopy, transmission electron microscopy, and X-ray diffractometry. In cyclic fatigue tests, the files were performed in a simulated root canal (radius=5 mm, angulation=60°) under a rotating speed of 300rpm. The fatigue fractured cross sections of the files were analyzed with their fractographic performances through scanning electron microscopy images. The amorphous structure of the Ti-Zr-B coating was confirmed by transmission electron microscopy and X-ray diffractometry. The surface of treated files presented smooth morphologies without grinding irregularity. For the 200- and 500-nm surface treatment groups, the coated files exhibited higher resistance of cyclic fatigue than untreated files. In fractographic analysis, treated files showed significantly larger crack-initiation zone; however, no significant differences in the areas of fatigue propagation and catastrophic fracture were found compared to untreated files. The novel surface treatment of Ti-Zr-B thin film metallic glass on dental NiTi rotary files can effectively improve the fatigue fracture resistance by offering a smooth coated surface with amorphous microstructure. Copyright © 2016. Published by Elsevier B.V.

  8. EQUIVALENCE BETWEEN SHORT-TIME BIPHASIC AND INCOMPRESSIBLE ELASTIC MATERIAL RESPONSES

    PubMed Central

    Ateshian, Gerard A.; Ellis, Benjamin J.; Weiss, Jeffrey A.

    2009-01-01

    Porous-permeable tissues have often been modeled using porous media theories such as the biphasic theory. This study examines the equivalence of the short-time biphasic and incompressible elastic responses for arbitrary deformations and constitutive relations from first principles. This equivalence is illustrated in problems of unconfined compression of a disk, and of articular contact under finite deformation, using two different constitutive relations for the solid matrix of cartilage, one of which accounts for the large disparity observed between the tensile and compressive moduli in this tissue. Demonstrating this equivalence under general conditions provides a rationale for using available finite element codes for incompressible elastic materials as a practical substitute for biphasic analyses, so long as only the short-time biphasic response is sought. In practice, an incompressible elastic analysis is representative of a biphasic analysis over the short-term response δt≪Δ2/‖C4‖||K||, where Δ is a characteristic dimension, C4 is the elasticity tensor and K is the hydraulic permeability tensor of the solid matrix. Certain notes of caution are provided with regard to implementation issues, particularly when finite element formulations of incompressible elasticity employ an uncoupled strain energy function consisting of additive deviatoric and volumetric components. PMID:17536908

  9. Equivalence between short-time biphasic and incompressible elastic material responses.

    PubMed

    Ateshian, Gerard A; Ellis, Benjamin J; Weiss, Jeffrey A

    2007-06-01

    Porous-permeable tissues have often been modeled using porous media theories such as the biphasic theory. This study examines the equivalence of the short-time biphasic and incompressible elastic responses for arbitrary deformations and constitutive relations from first principles. This equivalence is illustrated in problems of unconfined compression of a disk, and of articular contact under finite deformation, using two different constitutive relations for the solid matrix of cartilage, one of which accounts for the large disparity observed between the tensile and compressive moduli in this tissue. Demonstrating this equivalence under general conditions provides a rationale for using available finite element codes for incompressible elastic materials as a practical substitute for biphasic analyses, so long as only the short-time biphasic response is sought. In practice, an incompressible elastic analysis is representative of a biphasic analysis over the short-term response deltat

  10. Biphasic responses in multi-site phosphorylation systems.

    PubMed

    Suwanmajo, Thapanar; Krishnan, J

    2013-12-06

    Multi-site phosphorylation systems are repeatedly encountered in cellular biology and multi-site modification is a basic building block of post-translational modification. In this paper, we demonstrate how distributive multi-site modification mechanisms by a single kinase/phosphatase pair can lead to biphasic/partial biphasic dose-response characteristics for the maximally phosphorylated substrate at steady state. We use simulations and analysis to uncover a hidden competing effect which is responsible for this and analyse how it may be accentuated. We build on this to analyse different variants of multi-site phosphorylation mechanisms showing that some mechanisms are intrinsically not capable of displaying this behaviour. This provides both a consolidated understanding of how and under what conditions biphasic responses are obtained in multi-site phosphorylation and a basis for discriminating between different mechanisms based on this. We also demonstrate how this behaviour may be combined with other behaviour such as threshold and bistable responses, demonstrating the capacity of multi-site phosphorylation systems to act as complex molecular signal processors.

  11. Surface Modification of Solution-Processed ZrO2 Films through Double Coating for Pentacene Thin-Film Transistors

    NASA Astrophysics Data System (ADS)

    Kwon, Jin-Hyuk; Bae, Jin-Hyuk; Lee, Hyeonju; Park, Jaehoon

    2018-03-01

    We report the modification of surface properties of solution-processed zirconium oxide (ZrO2) dielectric films achieved by using double-coating process. It is proven that the surface properties of the ZrO2 film are modified through the double-coating process; the surface roughness decreases and the surface energy increases. The present surface modification of the ZrO2 film contributes to an increase in grain size of the pentacene film, thereby increasing the field-effect mobility and decreasing the threshold voltage of the pentacene thin-film transistors (TFTs) having the ZrO2 gate dielectric. Herein, the molecular orientation of pentacene film is also studied based on the results of contact angle and X-ray diffraction measurements. Pentacene molecules on the double-coated ZrO2 film are found to be more tilted than those on the single-coated ZrO2 film, which is attributed to the surface modification of the ZrO2 film. However, no significant differences are observed in insulating properties between the single-and the double-coated ZrO2 dielectric films. Consequently, the characteristic improvements of the pentacene TFTs with the double-coated ZrO2 gate dielectric film can be understood through the increase in pentacene grain size and the reduction in grain boundary density.

  12. Advanced thin film thermocouples

    NASA Technical Reports Server (NTRS)

    Kreider, K. G.; Semancik, S.; Olson, C.

    1984-01-01

    The fabrication, materials characterization, and performance of thin film platinum rhodium thermocouples on gas turbine alloys was investigated. The materials chosen for the study were the turbine blade alloy systems MAR M200+Hf with NiCoCrAlY and FeCrAlY coatings, and vane alloy systems MAR M509 with FeCrAlY. Research was focussed on making improvements in the problem areas of coating substrate stability, adhesion, and insulation reliability and durability. Diffusion profiles between the substrate and coating with and without barrier coatings of Al2O3 are reported. The relationships between fabrication parameters of thermal oxidation and sputtering of the insulator and its characterization and performance are described. The best thin film thermocouples were fabricated with the NiCoCrAlY coatings which were thermally oxidized and sputter coated with Al2O3.

  13. Deposition and characterization of aluminum magnesium boride thin film coatings

    NASA Astrophysics Data System (ADS)

    Tian, Yun

    Boron-rich borides are a special group of materials possessing complex structures typically comprised of B12 icosahedra. All of the boron-rich borides sharing this common structural unit exhibit a variety of exceptional physical and electrical properties. In this work, a new ternary boride compound AlMgB14, which has been extensively studied in bulk form due to its novel mechanical properties, was fabricated into thin film coatings by pulsed laser deposition (PLD) technology. The effect of processing conditions (laser operating modes, vacuum level, substrate temperature, and postannealing, etc.) on the composition, microstructure evolution, chemical bonding, and surface morphology of AlMgB14 thin film coatings has been investigated by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), atomic force microscopy (AFM) and Fourier transform infrared (FTIR) spectrometry; the mechanical, electrical, and optical properties of AlMgB14 thin films have been characterized by nanoindentation, four-point probe, van der Pauw Hall measurement, activation energy measurement, and UV-VIS-NIR spectrophotometer. Experimental results show that AlMgB14 films deposited in the temperature range of 300 K - 873 K are amorphous. Depositions under a low vacuum level (5 x 10-5 Torr) can introduce a significant amount of C and O impurities into AlMgB14 films and lead to a complex oxide glass structure. Orthorhombic AlMgB14 phase cannot be obtained by subsequent high temperature annealing. By contrast, the orthorhombic AlMgB 14 crystal structure can be attained via high temperature-annealing of AlMgB14 films deposited under a high vacuum level (< 3 x 10-6 Torr), accompanied by strong texture formation. Low vacuum level-as deposited AlMgB14 films have low hardness (10 GPa), but high vacuum level-as deposited AlMgB14 films exhibit an extremely high hardness (45 GPa - 51 GPa), and the higher deposition temperature results in still higher hardness

  14. Dynamic-template-directed multiscale assembly for large-area coating of highly-aligned conjugated polymer thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohammadi, Erfan; Zhao, Chuankai; Meng, Yifei

    Solution processable semiconducting polymers have been under intense investigations due to their diverse applications from printed electronics to biomedical devices. However, controlling the macromolecular assembly across length scales during solution coating remains a key challenge, largely due to the disparity in timescales of polymer assembly and high-throughput printing/coating. Herein we propose the concept of dynamic templating to expedite polymer nucleation and the ensuing assembly process, inspired by biomineralization templates capable of surface reconfiguration. Molecular dynamic simulations reveal that surface reconfigurability is key to promoting template–polymer interactions, thereby lowering polymer nucleation barrier. Employing ionic-liquid-based dynamic template during meniscus-guided coating results inmore » highly aligned, highly crystalline donor-acceptor polymer thin films over large area (41cm 2) and promoted charge transport along both the polymer backbone and the π-π stacking direction in field-effect transistors. We further demonstrate that the charge transport anisotropy can be reversed by tuning the degree of polymer backbone alignment.« less

  15. Dynamic-template-directed multiscale assembly for large-area coating of highly-aligned conjugated polymer thin films

    PubMed Central

    Mohammadi, Erfan; Zhao, Chuankai; Meng, Yifei; Qu, Ge; Zhang, Fengjiao; Zhao, Xikang; Mei, Jianguo; Zuo, Jian-Min; Shukla, Diwakar; Diao, Ying

    2017-01-01

    Solution processable semiconducting polymers have been under intense investigations due to their diverse applications from printed electronics to biomedical devices. However, controlling the macromolecular assembly across length scales during solution coating remains a key challenge, largely due to the disparity in timescales of polymer assembly and high-throughput printing/coating. Herein we propose the concept of dynamic templating to expedite polymer nucleation and the ensuing assembly process, inspired by biomineralization templates capable of surface reconfiguration. Molecular dynamic simulations reveal that surface reconfigurability is key to promoting template–polymer interactions, thereby lowering polymer nucleation barrier. Employing ionic-liquid-based dynamic template during meniscus-guided coating results in highly aligned, highly crystalline donor–acceptor polymer thin films over large area (>1 cm2) and promoted charge transport along both the polymer backbone and the π–π stacking direction in field-effect transistors. We further demonstrate that the charge transport anisotropy can be reversed by tuning the degree of polymer backbone alignment. PMID:28703136

  16. Dynamic-template-directed multiscale assembly for large-area coating of highly-aligned conjugated polymer thin films

    DOE PAGES

    Mohammadi, Erfan; Zhao, Chuankai; Meng, Yifei; ...

    2017-07-13

    Solution processable semiconducting polymers have been under intense investigations due to their diverse applications from printed electronics to biomedical devices. However, controlling the macromolecular assembly across length scales during solution coating remains a key challenge, largely due to the disparity in timescales of polymer assembly and high-throughput printing/coating. Herein we propose the concept of dynamic templating to expedite polymer nucleation and the ensuing assembly process, inspired by biomineralization templates capable of surface reconfiguration. Molecular dynamic simulations reveal that surface reconfigurability is key to promoting template–polymer interactions, thereby lowering polymer nucleation barrier. Employing ionic-liquid-based dynamic template during meniscus-guided coating results inmore » highly aligned, highly crystalline donor-acceptor polymer thin films over large area (41cm 2) and promoted charge transport along both the polymer backbone and the π-π stacking direction in field-effect transistors. We further demonstrate that the charge transport anisotropy can be reversed by tuning the degree of polymer backbone alignment.« less

  17. Polycrystalline BiFeO{sub 3} thin film synthesized via sol-gel assisted spin coating technique for photosensitive application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bogle, K. A., E-mail: kashinath.bogle@gmail.com; Narwade, R. D.; Mahabole, M. P.

    2016-05-06

    We are reporting photosensitivity property of BiFeO{sub 3} thin film under optical illumination. The thin film used for photosensitivity work was fabricated via sol-gel assisted spin coating technique. I-V measurements on the Cu/BiFeO{sub 3}/Al structure under dark condition show a good rectifying property and show dramatic blue shit in threshold voltage under optical illumination. The microstructure, morphology and elemental analysis of the films were characterized by using XRD, UV-Vis, FTIR, SEM and EDS.

  18. In vitro degradation and release characteristics of spin coated thin films of PLGA with a “breath figure” morphology

    PubMed Central

    Ponnusamy, Thiruselvam; Lawson, Louise B.; Freytag, Lucy C.; Blake, Diane A.; Ayyala, Ramesh S.; John, Vijay T.

    2012-01-01

    Poly (lactic-co-glycolic acid) (PLGA) coatings on implant materials are widely used in controlled drug delivery applications. Typically, such coatings are made with non-porous films. Here, we have synthesized a thin PLGA film coating with a highly ordered microporous structure using a simple and inexpensive water templating “breath figure” technique. A single stage process combining spin coating and breath figure process was used to obtain drug incorporated porous thin films. The films were characterized by scanning electron microscope (SEM) to observe the surface and bulk features of porosity and also, degradation pattern of the films. Moreover, the effect of addition of small amount of poly (ethylene glycol) (PEG) into PLGA was characterized. SEM analysis revealed an ordered array of ~2 µm sized pores on the surface with the average film thickness measured to be 20 µm. The incorporation of hydrophilic poly (ethylene glycol) (PEG) enhances pore structure uniformity and facilitates ingress of water into the structure. A five week in vitro degradation study showed a gradual deterioration of the breath figure pores. During the course of degradation, the surface pore structure deteriorates to initially flatten the surface. This is followed by the formation of new pinprick pores that eventually grow into a macroporous film prior to film breakup. Salicylic acid (highly water soluble) and Ibuprofen (sparingly water soluble) were chosen as model drug compounds to characterize release rates, which are higher in films of the breath figure morphology rather than in non-porous films. The results are of significance in the design of biodegradable films used as coatings to modulate delivery. PMID:23507805

  19. Structural, compositional and optical properties of spin coated MoO3 thin film

    NASA Astrophysics Data System (ADS)

    Jain, Vishva; Shah, Dimple; Patel, K. D.; Zankat, Chetan

    2018-05-01

    The attraction towards the MoO3 thin film is due to its wide range of application base on its properties. Its application in the field of energy storage and conversion as a cathode material for rechargeable lithium ion battery, hole selective layer in solar cell and in pseudocapacitors makes it more attractive material. Taking in consideration, economical route and tailoring advantage of film formation we have used spin coating method for the synthesis of the film with Ammonium heptamolybdate (NH4)6Mo7O24 4H2O) and distilled water as the precursor and solvent respectively on the glass substrate. The method also provides the large area synthesis of the film which is beneficial for the commercial applications. The film was spin coated at 1600 rpm with 4 % weight per volume ratio. The film so formed was annealed at 300 °C for 3 hours. The structural investigation was done by the X-Ray diffraction technique which shows the thin film of polycrystalline type. The average crystallize size is about 50 nm. The composition of the film was studied with the help of EDAX. The optical properties were studied by the photoluminescence and UV Spectroscopy. The results from both the characterization are well matched with each other. Photoluminescence studies show band to band emission observed at 416 nm shown in the fig. 5. From UV spectroscopy, using transmission and absorption spectra we observed the band gap edge around 3 eV. This is in accordance with the photoluminescence result.

  20. Alendronate-Eluting Biphasic Calcium Phosphate (BCP) Scaffolds Stimulate Osteogenic Differentiation

    PubMed Central

    Kim, Sung Eun; Lee, Deok-Won; Kang, Eun Young; Jeong, Won Jae; Lee, Boram; Jeong, Myeong Seon; Kim, Hak Jun; Park, Kyeongsoon; Song, Hae-Ryong

    2015-01-01

    Biphasic calcium phosphate (BCP) scaffolds have been widely used in orthopedic and dental fields as osteoconductive bone substitutes. However, BCP scaffolds are not satisfactory for the stimulation of osteogenic differentiation and maturation. To enhance osteogenic differentiation, we prepared alendronate- (ALN-) eluting BCP scaffolds. The coating of ALN on BCP scaffolds was confirmed by scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDS), and attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR). An in vitro release study showed that release of ALN from ALN-eluting BCP scaffolds was sustained for up to 28 days. In vitro results revealed that MG-63 cells grown on ALN-eluting BCP scaffolds exhibited increased ALP activity and calcium deposition and upregulated gene expression of Runx2, ALP, OCN, and OPN compared with the BCP scaffold alone. Therefore, this study suggests that ALN-eluting BCP scaffolds have the potential to effectively stimulate osteogenic differentiation. PMID:26221587

  1. Microfluidic Controlled Conformal Coating of Particles

    NASA Astrophysics Data System (ADS)

    Tsai, Scott; Wexler, Jason; Wan, Jiandi; Stone, Howard

    2011-11-01

    Coating flows are an important class of fluid mechanics problems. Typically a substrate is coated with a moving continuous film, but it is also possible to consider coating of discrete objects. In particular, in applications involving coating of particles that are useful in drug delivery, the coatings act as drug-carrying vehicles, while in cell therapy a thin polymeric coating is required to protect the cells from the host's immune system. Although many functional capabilities have been developed for lab-on-a-chip devices, a technique for coating has not been demonstrated. We present a microfluidic platform developed to coat micron-size spheres with a thin aqueous layer by magnetically pulling the particles from the aqueous phase to the non-aqueous phase in a co-flow. Coating thickness can be adjusted by the average fluid speed and the number of beads encapsulated inside a single coat is tuned by the ratio of magnetic to interfacial forces acting on the beads.

  2. Electric Field Tuning Molecular Packing and Electrical Properties of Solution-Shearing Coated Organic Semiconducting Thin Films

    DOE PAGES

    Molina-Lopez, Francisco; Yan, Hongping; Gu, Xiaodan; ...

    2017-01-17

    Recent improvements in solution-coated organic semiconductors (OSCs) evidence their high potential for cost-efficient organic electronics and sensors. Molecular packing structure determines the charge transport property of molecular solids. However, it remains challenging to control the molecular packing structure for a given OSC. Here, the application of alternating electric fields is reported to fine-tune the crystal packing of OSC solution-shearing coated at ambient conditions. First, a theoretical model based on dielectrophoresis is developed to guide the selection of the optimal conditions (frequency and amplitude) of the electric field applied through the solution-shearing blade during coating of OSC thin films. Next, electricmore » field-induced polymorphism is demonstrated for OSCs with both herringbone and 2D brick-wall packing motifs in 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene and 6,13-bis(triisopropylsilylethynyl) pentacene, respectively. Favorable molecular packing can be accessible in some cases, resulting in higher charge carrier mobilities. In conclusion, this work provides a new approach to tune the properties of solution-coated OSCs in functional devices for high-performance printed electronics.« less

  3. Optical Properties of Fe3O4 Thin Films Prepared from the Iron Sand by Spin Coating Method

    NASA Astrophysics Data System (ADS)

    Yulfriska, N.; Rianto, D.; Murti, F.; Darvina, Y.; Ramli, R.

    2018-04-01

    Research on magnetic oxide is growing very rapidly. This magnetic oxide can be found in nature that is in iron sand. One of the beaches in Sumatera Barat containing iron sand is Tiram Beach, Padang Pariaman District, Sumatera Barat. The content of iron sand is generally in the form of magnetic minerals such as magnetite, hematite, and maghemit. Magnetite has superior properties that can be developed into thin films. The purpose of this research is to investigate the optical properties of transmittance, absorbance, reflectance and energy gap from Fe3O4 thin films. This type of research is an experimental research. The iron sand obtained from nature is first purified using a permanent magnet, then made in nanoparticle size using HEM-E3D with milling time for 30 hours. After that, the process of making thin film with sol-gel spin coating method. In this research, variation of rotation speed from spin coating is 1000 rpm, 2000 rpm and 3000 rpm. Based on XRD results indicated that the iron sand of Tiram beach contains magnetite minerals and the SEM results show that the thickness of the thin films formed is 25μm, 24μm and 11μm. The characterization tool used for characterizing optical properties is the UV-VIS Spectrophotometer. So it can be concluded that the greater the speed of rotation the thickness of the thin layer will be smaller, resulting in the transmittance and reflectance will be greater, while the absorbance will be smaller. Energy gap obtained from this research is 3,75eV, 3,75eV and 3,74eV. So the average energy gap obtained is 3,75eV.

  4. Enhanced structural color generation in aluminum metamaterials coated with a thin polymer layer

    DOE PAGES

    Cheng, Fei; Yang, Xiaodong; Rosenmann, Daniel; ...

    2015-09-18

    A high-resolution and angle-insensitive structural color generation platform is demonstrated based on triple-layer aluminum-silica-aluminum metamaterials supporting surface plasmon resonances tunable across the entire visible spectrum. The color performances of the fabricated aluminum metamaterials can be strongly enhanced by coating a thin transparent polymer layer on top. The results show that the presence of the polymer layer induces a better impedance matching for the plasmonic resonances to the free space so that strong light absorption can be obtained, leading to the generation of pure colors in cyan, magenta, yellow and black (CMYK) with high color saturation.

  5. Generation of useful energy from process fluids using the biphase turbine

    NASA Astrophysics Data System (ADS)

    Helgeson, N. L.

    1981-01-01

    The six largest energy consuming industries in the United States were surveyed to determine the energy savings that could result from applying the Biphase turbine to industrial process streams. A national potential energy savings of 58 million barrels of oil per year (technical market) was identified. This energy is recoverable from flashing gas liquid process streams and is separate and distinct from exhaust gas waste heat recovery. The industries surveyed in this program were the petroleum chemical, primary metals, paper and pulp, stone-clay-glass, and food. It was required to determine the applicability of the Biphase turbine to flashing operations connected with process streams, to determine the energy changes associated with these flashes if carried out in a Biphase turbine, and to determine the suitability (technical and economical feasibility) of applying the Biphase turbine to these processes.

  6. Biocompatibility of Hydrogen-Diluted Amorphous Silicon Carbide Thin Films for Artificial Heart Valve Coating

    NASA Astrophysics Data System (ADS)

    Rizal, Umesh; Swain, Bhabani S.; Rameshbabu, N.; Swain, Bibhu P.

    2018-01-01

    Amorphous silicon carbide (a-SiC:H) thin films were synthesized using trichloromethylsilane by a hot wire chemical vapor deposition process. The deposited films were characterized by Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, x-ray diffraction and x-ray photoelectron spectroscopy to confirm its chemical bonding, structural network and composition of the a-SiC:H films. The optical microscopy images reveal that hydrogen dilution increased the surface roughness and pore density of a-SiC:H thin film. The Raman spectroscopy and FTIR spectra reveal chemical network consisting of Si-Si, C-C and Si-C bonds, respectively. The XRD spectroscopy and Raman spectroscopy indicate a-SiC:H still has short-range order. In addition, in vitro cytotoxicity test ensures the behavior of cell-semiconductor hybrid to monitor the proper coordination. The live-dead assays and MTT assay reveal an increase in green nucleus cell, and cell viability is greater than 88%, respectively, showing non-toxic nature of prepared a-SiC:H film. Moreover, the result indicated by direct contact assay, and cell prefers to adhere and proliferate on a-SiC:H thin films having a positive effect as artificial heart valve coating material.

  7. Low-cost growth of magnesium doped gallium nitride thin films by sol-gel spin coating method

    NASA Astrophysics Data System (ADS)

    Amin, N. Mohd; Ng, S. S.

    2018-01-01

    Low-cost sol-gel spin coating growth of magnesium (Mg) doped gallium nitride (GaN) thin films with different concentrations of Mg was reported. The effects of the Mg concentration on the structural, surface morphology, elemental compositions, lattice vibrational, and electrical properties of the deposited films were investigated. X-ray diffraction results show that the Mg-doped samples have wurtzite structure with preferred orientation of GaN(002). The crystallite size decreases and the surface of the films with pits/pores were formed, while the crystalline quality of the films degraded as the Mg concentration increases from 2% to 6. %. All the Raman active phonon modes of the wurtzite GaN were observed while a broad peak attributed to the Mg-related lattice vibrational mode was detected at 669 cm-1. Hall effect results show that the resistivity of the thin films decreases while the hole concentration and hall mobility of thin films increases as the concentration of the Mg increases.

  8. Long-Wavelength Infrared Sensing by Cytochrome C Protein Thin Film Deposited by the Spin Coating Method

    PubMed Central

    Lai, Bo-Yu; Chu, Chung-Hao; Su, Guo-Dung John

    2013-01-01

    High infrared absorption, large temperature coefficient of resistance (TCR) and small 1/f noise are preferred characteristics for sensing materials used in bolometers. In this paper, we discuss a cytochrome c protein as a potential sensing material for long-wavelength bolometers. We simulated and experimentally proved high infrared absorption of cytochrome c in the wavelength between 8 μm and 14 μm. Cytochrome c thin films were deposited on a hydrophilic surface using the spin coating method. The resistance variation with temperature is measured and we show that the TCR of cytochrome c thin films is consistently higher than 20%. The measured values of 1/f noise were as low as 2.33 × 10−13 V2/Hz at 60 Hz. Finally, we test the reliability of cytochrome c by measuring the resistance changes over time under varying conditions. We found that cytochrome c thin films deteriorated significantly without appropriate packaging. PMID:24264331

  9. Optical enhancement of Au doped ZrO2 thin films by sol-gel dip coating method

    NASA Astrophysics Data System (ADS)

    John Berlin, I.; Joy, K.

    2015-01-01

    Homogeneous and transparent Au doped ZrO2 thin films were prepared by sol-gel dip coating method. The films have mixed phase of tetragonal, monoclinic and face centered cubic with crack free surface. Due to the increase in Au doping concentration many-body interaction occurs between free carriers and ionized impurities causing decrease in optical band gap from 5.72 to 5.40 eV. Localized surface plasmon resonance peak of the Au doped films appeared at 610 nm. Conversion of photons to surface plasmons allows the sub-wavelength manipulation of electromagnetic radiation. Hence the prepared Au doped ZrO2 thin films can be applied in nanoscale photonic devices such as lenses, switches, waveguides etc. Moreover the photoluminescence (PL) intensity of Au doped ZrO2 thin films decrease due to decrease in the radiative recombination, life time of the excitons and suppression of grain growth of ZrO2 with increasing Au dopant.

  10. Printable CIGS thin film solar cells

    NASA Astrophysics Data System (ADS)

    Fan, Xiaojuan

    2014-03-01

    Among the various thin film solar cells in the market, CuInGaSe thin film cells have been considered as the most promising alternatives to silicon solar cells because of their high photo-electricity efficiency, reliability, and stability. However, many fabrication of CIGS thin film are based on vacuum processes such as evaporation sputtering techniques which are not cost efficient. This work develops a method using paste or ink liquid spin-coated on glass that would be to conventional ways in terms of cost effective, non-vacuum needed, quick processing. A mixture precursor was prepared by dissolving appropriate amounts of chemicals. After the mixture solution was cooled, a viscous paste prepared and ready for spin-coating process. A slight bluish CIG thin film substrate was then put in a tube furnace with evaporation of metal Se by depositing CdS layer and ZnO nanoparticle thin film coating to a solar cell fabrication. Structure, absorption spectrum, and photo-conversion efficiency for the as-grown CIGS thin film solar cell under study.

  11. Regulation of the forming process and the set voltage distribution of unipolar resistance switching in spin-coated CoFe2O4 thin films.

    PubMed

    Mustaqima, Millaty; Yoo, Pilsun; Huang, Wei; Lee, Bo Wha; Liu, Chunli

    2015-01-01

    We report the preparation of (111) preferentially oriented CoFe2O4 thin films on Pt(111)/TiO2/SiO2/Si substrates using a spin-coating process. The post-annealing conditions and film thickness were varied for cobalt ferrite (CFO) thin films, and Pt/CFO/Pt structures were prepared to investigate the resistance switching behaviors. Our results showed that resistance switching without a forming process is preferred to obtain less fluctuation in the set voltage, which can be regulated directly from the preparation conditions of the CFO thin films. Therefore, instead of thicker film, CFO thin films deposited by two times spin-coating with a thickness about 100 nm gave stable resistance switching with the most stable set voltage. Since the forming process and the large variation in set voltage have been considered as serious obstacles for the practical application of resistance switching for non-volatile memory devices, our results could provide meaningful insights in improving the performance of ferrite material-based resistance switching memory devices.

  12. Piezoelectric characterization of Pb(Zr,Ti)O3 thin films deposited on metal foil substrates by dip coating

    NASA Astrophysics Data System (ADS)

    Hida, Hirotaka; Hamamura, Tomohiro; Nishi, Takahito; Tan, Goon; Umegaki, Toshihito; Kanno, Isaku

    2017-10-01

    We fabricated the piezoelectric bimorphs composed of Pb(Zr,Ti)O3 (PZT) thin films on metal foil substrates. To efficiently inexpensively manufacture piezoelectric bimorphs with high flexibility, 1.2-µm-thick PZT thin films were directly deposited on both surfaces of 10- and 20-µm-thick bare stainless-steel (SS) foil substrates by dip coating with a sol-gel solution. We confirmed that the PZT thin films deposited on the SS foil substrates at 500 °C or above have polycrystalline perovskite structures and the measured relative dielectric constant and dielectric loss were 323-420 and 0.12-0.17, respectively. The PZT bimorphs were demonstrated by comparing the displacements of the cantilever specimens driven by single- and double-side PZT thin films on the SS foil substrates under the same applied voltage. We characterized the piezoelectric properties of the PZT bimorphs and the calculated their piezoelectric coefficient |e 31,f| to be 0.3-0.7 C/m2.

  13. Cardioversion Efficacy Using Pulsed Biphasic or Biphasic Truncated Exponential Waveforms: A Randomized Clinical Trial.

    PubMed

    Schmidt, Anders S; Lauridsen, Kasper G; Adelborg, Kasper; Torp, Peter; Bach, Leif F; Jepsen, Simon M; Hornung, Nete; Deakin, Charles D; Rickers, Hans; Løfgren, Bo

    2017-03-08

    Several different defibrillators are currently used for cardioversion and defibrillation of cardiac arrhythmias. The efficacy of a novel pulsed biphasic (PB) waveform has not been compared to other biphasic waveforms. Accordingly, this study aims to compare the efficacy and safety of PB shocks with biphasic truncated exponential (BTE) shocks in patients undergoing cardioversion of atrial fibrillation or -flutter. This prospective, randomized study included patients admitted for elective direct current cardioversion. Patients were randomized to receive cardioversion using either PB or BTE shocks. We used escalating shocks until sinus rhythm was obtained or to a maximum of 4 shocks. Patients randomized to PB shocks received 90, 120, 150, and 200 J and patients randomized to BTE shocks received 100, 150, 200, and 250 J, as recommended by the manufacturers. In total, 69 patients (51%) received PB shocks and 65 patients (49%) BTE shocks. Successful cardioversion, defined as sinus rhythm 4 hours after cardioversion, was achieved in 43 patients (62%) using PB shocks and in 56 patients (86%) using BTE shocks; ratio 1.4 (95% CI 1.1-1.7) ( P =0.002). There was no difference in safety (ie, myocardial injury judged by changes in high-sensitive troponin I levels; ratio 1.1) (95% CI 1.0-1.3), P =0.15. The study was terminated prematurely because of an adverse event. Cardioversion using a BTE waveform was more effective when compared with a PB waveform. There was no difference in safety between the 2 waveforms, as judged by changes in troponin I levels. URL: http://www.clinicaltrials.gov. Unique identifier: NCT02317029. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  14. Boron carbide coatings for neutron detection probed by x-rays, ions, and neutrons to determine thin film quality

    NASA Astrophysics Data System (ADS)

    Nowak, G.; Störmer, M.; Becker, H.-W.; Horstmann, C.; Kampmann, R.; Höche, D.; Haese-Seiller, M.; Moulin, J.-F.; Pomm, M.; Randau, C.; Lorenz, U.; Hall-Wilton, R.; Müller, M.; Schreyer, A.

    2015-01-01

    Due to the present shortage of 3He and the associated tremendous increase of its price, the supply of large neutron detection systems with 3He becomes unaffordable. Alternative neutron detection concepts, therefore, have been invented based on solid 10B converters. These concepts require development in thin film deposition technique regarding high adhesion, thickness uniformity and chemical purity of the converter coating on large area substrates. We report on the sputter deposition of highly uniform large-area 10B4C coatings of up to 2 μm thickness with a thickness deviation below 4% using the Helmholtz-Zentrum Geesthacht large area sputtering system. The 10B4C coatings are x-ray amorphous and highly adhesive to the substrate. Material analysis by means of X-ray-Photoelectron Spectroscopy, Secondary-Ion-Mass-Spectrometry, and Rutherford-Back-Scattering (RBS) revealed low impurities concentration in the coatings. The isotope composition determined by Secondary-Ion-Mass-Spectrometry, RBS, and inelastic nuclear reaction analysis of the converter coatings evidences almost identical 10B isotope contents in the sputter target and in the deposited coating. Neutron conversion and detection test measurements with variable irradiation geometry of the converter coating demonstrate an average relative quantum efficiency ranging from 65% to 90% for cold neutrons as compared to a black 3He-monitor. Thus, these converter coatings contribute to the development of 3He-free prototype detectors based on neutron grazing incidence. Transferring the developed coating process to an industrial scale sputtering system can make alternative 3He-free converter elements available for large area neutron detection systems.

  15. Modulation of ultrafast laser-induced magnetization precession in BiFeO3-coated La0.67Sr0.33MnO3 thin films

    NASA Astrophysics Data System (ADS)

    Wan, Qian; Jin, KuiJuan; Wang, JieSu; Yao, HongBao; Gu, JunXing; Guo, HaiZhong; Xu, XiuLai; Yang, GuoZhen

    2017-04-01

    The ultrafast laser-excited magnetization dynamics of ferromagnetic (FM) La0.67Sr0.33MnO3 (LSMO) thin films with BiFeO3 (BFO) coating layers grown by laser molecular beam epitaxy are investigated using the optical pump-probe technique. Uniform magnetization precessions are observed in the films under an applied external magnetic field by measuring the time-resolved magneto-optical Kerr effect. The magnetization precession frequencies of the LSMO thin films with the BFO coating layers are lower than those of uncoated LSMO films, which is attributed to the suppression of the anisotropy field induced by the exchange interaction at the interface between the antiferromagnetic order of BFO and the FM order of LSMO.

  16. Electrolytic Manganese Dioxide Coatings on High Aspect Ratio Micro-Pillar Arrays for 3D Thin Film Lithium Ion Batteries.

    PubMed

    Zargouni, Yafa; Deheryan, Stella; Radisic, Alex; Alouani, Khaled; Vereecken, Philippe M

    2017-05-27

    In this work, we present the electrochemical deposition of manganese dioxide (MnO₂) thin films on carbon-coated TiN/Si micro-pillars. The carbon buffer layer, grown by plasma enhanced chemical vapor deposition (PECVD), is used as a protective coating for the underlying TiN current collector from oxidation, during the film deposition, while improving the electrical conductivity of the stack. A conformal electrolytic MnO₂ (EMD) coating is successfully achieved on high aspect ratio C/TiN/Si pillar arrays by tailoring the deposition process. Lithiation/Delithiation cycling tests have been performed. Reversible insertion and extraction of Li⁺ through EMD structure are observed. The fabricated stack is thus considered as a good candidate not only for 3D micorbatteries but also for other energy storage applications.

  17. Electrolytic Manganese Dioxide Coatings on High Aspect Ratio Micro-Pillar Arrays for 3D Thin Film Lithium Ion Batteries

    PubMed Central

    Zargouni, Yafa; Deheryan, Stella; Radisic, Alex; Alouani, Khaled; Vereecken, Philippe M.

    2017-01-01

    In this work, we present the electrochemical deposition of manganese dioxide (MnO2) thin films on carbon-coated TiN/Si micro-pillars. The carbon buffer layer, grown by plasma enhanced chemical vapor deposition (PECVD), is used as a protective coating for the underlying TiN current collector from oxidation, during the film deposition, while improving the electrical conductivity of the stack. A conformal electrolytic MnO2 (EMD) coating is successfully achieved on high aspect ratio C/TiN/Si pillar arrays by tailoring the deposition process. Lithiation/Delithiation cycling tests have been performed. Reversible insertion and extraction of Li+ through EMD structure are observed. The fabricated stack is thus considered as a good candidate not only for 3D micorbatteries but also for other energy storage applications. PMID:28555017

  18. Biocompatibility of GaSb thin films grown by RF magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Nishimoto, Naoki; Fujihara, Junko; Yoshino, Katsumi

    2017-07-01

    GaSb may be suitable for biological applications, such as cellular sensors and bio-medical instrumentation because of its low toxicity compared with As (III) compounds and its band gap energy. Therefore, the biocompatibility and the film properties under physiological conditions were investigated for GaSb thin films with or without a surface coating. GaSb thin films were grown on quartz substrates by RF magnetron sputtering, and then coated with (3-mercaptopropyl) trimethoxysilane (MPT). The electrical properties, surface morphology, and crystal structure of the GaSb thin film were unaffected by the MPT coating. The cell viability assay suggested that MPT-coated GaSb thin films are biocompatible. Bare GaSb was particularly unstable in pH9 buffer. Ga elution was prevented by the MPT coating, although the Ga concentration in the pH 9 buffer was higher than that in the other solutions. The surface morphology and crystal structure were not changed by exposure to the solutions, except for the pH 9 buffer, and the thin film properties of MPT-coated GaSb exposed to distilled water and H2O2 in saline were maintained. These results indicate that MPT-coated GaSb thin films are biocompatible and could be used for temporary biomedical devices.

  19. Biphasic regulation of polymorphonuclear leukocyte spreading by polyphenolic compounds with pyrogallol moieties.

    PubMed

    Kori, Soichiro; Namiki, Hideo; Suzuki, Kingo

    2009-09-01

    Green tea polyphenols have been reported to have anti-inflammatory activities, although the molecular mechanisms responsible for this effect remain unclear. In the present study, we examined the effect of green tea extract and a variety of polyphenolic compounds on spreading of peripheral blood polymorphonuclear leukocytes (PMNs) over fibrinogen-coated surfaces. Green tea extract exerted a biphasic effect on PMN spreading; it induced or suppressed spreading at low and high concentrations, respectively. We also found that pyrogallol-bearing compounds have spreading induction activity. Among the compounds tested, tannic acid (TA) had the strongest activity; the concentrations required for induction of maximal spreading were 2 microM for TA, 200 microM for (-)-epigallocatechin gallate, and 2000 microM for the other active compounds. Furthermore, TA was the only compound showing a biphasic effect similar to that of green tea extract; TA at 20 or 200 microM suppressed spreading. The spreading-stimulatory signal was still latent during PMN exposure to TA at concentrations that inhibited spreading, because the pre-exposed PMNs underwent spreading when plated after removal of free TA by centrifugation. The spreading-inhibitory effect of TA at high concentrations overcame the induction of spreading by other stimuli, including phorbol 12-myristate 13-acetate, hydrogen peroxide, denatured fibrinogen surfaces, and naked plastic surfaces. These results suggest that TA as well as green tea extract is bi-functional, having pro-inflammatory and anti-inflammatory effects at low and high concentrations, respectively. Pharmacological use of TA may thus provide new strategies aimed at regulation of PMN spreading for control of inflammation.

  20. Fracture toughness improvements of dental ceramic through use of yttria-stabilized zirconia (YSZ) thin-film coatings.

    PubMed

    Chan, Ryan N; Stoner, Brian R; Thompson, Jeffrey Y; Scattergood, Ronald O; Piascik, Jeffrey R

    2013-08-01

    The aim of this study was to evaluate strengthening mechanisms of yttria-stabilized zirconia (YSZ) thin film coatings as a viable method for improving fracture toughness of all-ceramic dental restorations. Bars (2mm×2mm×15mm, n=12) were cut from porcelain (ProCAD, Ivoclar-Vivadent) blocks and wet-polished through 1200-grit using SiC abrasive. A Vickers indenter was used to induce flaws with controlled size and geometry. Depositions were performed via radio frequency magnetron sputtering (5mT, 25°C, 30:1 Ar/O2 gas ratio) with varying powers of substrate bias. Film and flaw properties were characterized by optical microscopy, scanning electron microscopy (SEM), and X-ray diffraction (XRD). Flexural strength was determined by three-point bending. Fracture toughness values were calculated from flaw size and fracture strength. Data show improvements in fracture strength of up to 57% over unmodified specimens. XRD analysis shows that films deposited with higher substrate bias displayed a high %monoclinic volume fraction (19%) compared to non-biased deposited films (87%), and resulted in increased film stresses and modified YSZ microstructures. SEM analysis shows critical flaw sizes of 67±1μm leading to fracture toughness improvements of 55% over unmodified specimens. Data support surface modification of dental ceramics with YSZ thin film coatings to improve fracture toughness. Increase in construct strength was attributed to increase in compressive film stresses and modified YSZ thin film microstructures. It is believed that this surface modification may lead to significant improvements and overall reliability of all-ceramic dental restorations. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  1. Optical and electrical properties of sol-gel spin coated titanium dioxide thin films

    NASA Astrophysics Data System (ADS)

    Sahoo, Anusuya; Jayakrishnan, A. R.; Kamakshi, K.; Silva, J. P. B.; Sekhar, K. C.; Gomes, M. J. M.

    2017-08-01

    In this work; TiO2 thin films were deposited on glass and stainless steel substrates by sol-gel spin coating method. The films deposited on glass were annealed at different temperatures (Ta) in the range of 200 to 500 0C and that are deposited on steel substrate were annealed at 800 0C. The optical properties of TiO2 thin films were studied by using UV-VIS spectroscopy and photoluminescence (PL) spectroscopy. The transmittance on the average was found to ≥ 80 % and is found to sensitive to Ta. The PL spectra exhibited the strong emission band associated with band- to- band transition around 390 nm and the two weak bands at 480 and 510 nm associated to the oxygen defects and surface defects respectively. The current-voltage (I-V) characteristics of the Al/TiO2/steel capacitors were studied and analysed with application of various current mechanisms. Analysis reveals that the conduction in Al/TiO2/steel capacitors is governed by Poole-Frenkel mechanism.

  2. Reflectance infrared spectroscopy for in-line monitoring of nicotine during a coating process for an oral thin film.

    PubMed

    Hammes, Florian; Hille, Thomas; Kissel, Thomas

    2014-02-01

    A process analytical method using reflectance infrared spectrometry was developed for the in-line monitoring of the amount of the active pharmaceutical ingredient (API) nicotine during a coating process for an oral thin film (OTF). In-line measurements were made using a reflectance infrared (RI) sensor positioned after the last drying zone of the coating line. Real-time spectra from the coating process were used for modelling the nicotine content. Partial least squares (PLS1) calibration models with different data pre-treatments were generated. The calibration model with the most comparable standard error of calibration (SEC) and the standard error of cross validation (SECV) was selected for an external validation run on the production coating line with an independent laminate. Good correlations could be obtained between values estimated from the reflectance infrared data and the reference HPLC test method, respectively. With in-line measurements it was possible to allow real-time adjustments during the production process to keep product specifications within predefined limits hence avoiding loss of material and batch. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Optical Thin Film Coatings

    DTIC Science & Technology

    1981-06-01

    implantation prevents the formation of CuO (which is thermally unstable), in favor of CuAlO2 which is a more stable oxide. This process may produce...coatings for Lambda Physik’s exclmer lasers. In-housp damage threshold tests are performed using either of two Nd:YAC lasers. One laser produces a

  4. Effect of coating thickness on microstructure and low temperature cyclic thermal fatigue behavior of thermal barrier coating (Al2O3)

    NASA Astrophysics Data System (ADS)

    Verma, Vijay; Patel, Sachin; Swarnkar, Vikas; K, Rajput S.

    2018-03-01

    Effect of coating thickness on low temperature cyclic thermal fatigue behaviour of Al2O3 thermal barrier coating (TBC) was concluded through the cyclic furnace thermal fatigue test (CFTF). Detonation gun (Thermal Spray) process was used for bond coating of NiCr and top coating of Al2O3 on Aluminium Alloy 6061 substrate. Top coating was done at two level of thickness to investigate the effect of coating thickness on low temperature cyclic thermal fatigue. The top coat of thickness 100μm-150μm was considered as thin TBC while the top coat of thickness 250μm-300μm was considered as thick TBC. The thickness of bond coat was taken as 120μm constant for both level of Al2O3 top coating. During CFTF test appearance of any crack on coated surface was adapted as main criterion of coating failure. Crack initiation was observed at edges and corner of thin thermal barrier coating after 60 number of thermal fatigue cycles while in case of thick thermal barrier coating these crack initiation was observed after 72 cycles of cyclic thermal fatigue test. During the study, it was observed that thick thermal barrier coating survived for long duration in comparison of thin TBC. Hence it can be concluded that application of thick TBC is more favourable to improve thermal durability of any component.

  5. Influences of Indium Tin Oxide Layer on the Properties of RF Magnetron-Sputtered (BaSr)TiO3 Thin Films on Indium Tin Oxide-Coated Glass Substrate

    NASA Astrophysics Data System (ADS)

    Kim, Tae Song; Oh, Myung Hwan; Kim, Chong Hee

    1993-06-01

    Nearly stoichiometric ((Ba+Sr)/Ti=1.08-1.09) and optically transparent (BaSr)TiO3 thin films were deposited on an indium tin oxide (ITO)-coated glass substrate by means of rf magnetron sputtering for their application to the insulating layer of an electroluminescent flat panel display. The influence of the ITO layer on the properties of (BaSr)TiO3 thin films deposited on the ITO-coated substrate was investigated. The ITO layer did not affect the crystallographic orientation of (BaSr)TiO3 thin film, but enhanced the grain growth. Another effect of the ITO layer on (BaSr)TiO3 thin films was the interdiffusion phenomenon, which was studied by means of secondary ion mass spectrometry (SIMS). As the substrate temperature increased, interdiffusion intensified at the interface not only between the grown film and ITO layer but also between the ITO layer and base glass substrate. The refractive index (nf) of (BaSr)TiO3 thin film deposited on a bare glass substrate was 2.138-2.286, as a function of substrate temperature.

  6. A mixed-penalty biphasic finite element formulation incorporating viscous fluids and material interfaces.

    PubMed

    Chan, B; Donzelli, P S; Spilker, R L

    2000-06-01

    The fluid viscosity term of the fluid phase constitutive equation and the interface boundary conditions between biphasic, solid and fluid domains have been incorporated into a mixed-penalty finite element formulation of the linear biphasic theory for hydrated soft tissue. The finite element code can now model a single-phase viscous incompressible fluid, or a single-phase elastic solid, as limiting cases of a biphasic material. Interface boundary conditions allow the solution of problems involving combinations of biphasic, fluid and solid regions. To incorporate these conditions, the volume-weighted mixture velocity is introduced as a degree of freedom at interface nodes so that the kinematic continuity conditions are satisfied by conventional finite element assembly techniques. Results comparing our numerical method with an independent, analytic solution for the problem of Couette flow over rigid and deformable porous biphasic layers show that the finite element code accurately predicts the viscous fluid flows and deformation in the porous biphasic region. Thus, the analysis can be used to model the interface between synovial fluid and articular cartilage in diarthrodial joints. This is an important step toward modeling and understanding the mechanisms of joint lubrication and another step toward fully modeling the in vivo behavior of a diarthrodial joint.

  7. "Electroless" E-Coating for Magnesium Alloys

    NASA Astrophysics Data System (ADS)

    Song, Guang-Ling

    By utilizing the unique electrochemistry of Mg, a thin organic film can rapidly be deposited on the surface of a Mg alloy by dipping the Mg alloy in a cathodic E-coating bath solution without applying a current or potential. The self-deposited coating is selectively formed on Mg alloy surfaces. Although the "electroless" E-coating pre-film is relatively thin, it can offer sufficient corrosion protection for Mg alloys in a chloride-containing environment. The stability of the film can be significantly improved after curing. The corrosion resistance of the substrate Mg alloy has an important effect on the corrosion protection performance of the coating. The coating is more protective on a corrosion resistant Mg alloy than on a non-corrosion resistant Mg substrate. The coating protection performance is also influenced by the substrate surface condition or pre-treatment process. Wet cleaning + heat-treatment may be a cost-effective surface preparation/treatment for the "electroless" E-coating in industrial applications.

  8. Next-generation all-silica coatings for UV applications

    NASA Astrophysics Data System (ADS)

    Melninkaitis, A.; Grinevičiūtė, L.; Abromavičius, G.; Mažulė, L.; Smalakys, L.; Pupka, E.; Š čiuka, M.; Buzelis, R.; Kičas, S.

    2017-11-01

    Band-gap and refractive index are known as fundamental properties determining intrinsic optical resistance of multilayer dielectric coatings. By considering this fact we propose novel approach to manufacturing of interference thin films, based on artificial nano-structures of modulated porosity embedded in high band-gap matrix. Next generation all-silica mirrors were prepared by GLancing Angle Deposition (GLAD) using electron beam evaporation. High reflectivity (HR) was achieved by tailoring the porosity of highly resistant silica material during the thin film deposition process. Furthermore, the proposed approach was also demonstrated to work well in case of anti-reflection (AR) coatings. Conventional HR HfO2 and SiO2 as well as AR Al2O3 and SiO2 multilayers produced by Ion Beam Sputtering (IBS) were used as reference coatings. Damage performance of experimental coatings was also analyzed. All-silica based GLAD approach resulted in significant improvement of intrinsic laser damage resistance properties if compared to conventional coatings. Besides laser damage testing, other characteristics of experimental coatings are analyzed and discussed - reflectance, surface roughness and optical scattering. We believe that reported concept can be expanded to virtually any design of thin film coatings thus opening a new way of next generation highly resistant thin films well suited for high power and UV laser applications.

  9. Carbide coated fibers in graphite-aluminum composites

    NASA Technical Reports Server (NTRS)

    Imprescia, R. J.; Levinson, L. S.; Reiswig, R. D.; Wallace, T. C.; Williams, J. M.

    1975-01-01

    The NASA-supported program at the Los Alamos Scientific Laboratory (LASL) to develop carbon fiber-aluminum matrix composites is described. Chemical vapor deposition (CVD) was used to uniformly deposit thin, smooth, continuous coats of TiC on the fibers of graphite tows. Wet chemical coating of fibers, followed by high-temperature treatment, was also used, but showed little promise as an alternative coating method. Strength measurements on CVD coated fiber tows showed that thin carbide coats can add to fiber strength. The ability of aluminum alloys to wet TiC was successfully demonstrated using TiC-coated graphite surfaces. Pressure-infiltration of TiC- and ZrC-coated fiber tows with aluminum alloys was only partially successful. Experiments were performed to evaluate the effectiveness of carbide coats on carbon as barriers to prevent reaction between alluminum alloys and carbon. Initial results indicate that composites of aluminum and carbide-coated graphite are stable for long periods of time at temperatures near the alloy solidus.

  10. Colloidal spray method for low cost thin coating deposition

    DOEpatents

    Pham, Ai-Quoc; Glass, Robert S.; Lee, Tae H.

    2005-01-25

    A dense or porous coating of material is deposited onto a substrate by forcing a colloidal suspension through an ultrasonic nebulizer and spraying a fine mist of particles in a carrier medium onto a sufficiently heated substrate. The spraying rate is essentially matched to the evaporation rate of the carrier liquid from the substrate to produce a coating that is uniformly distributed over the surface of the substrate. Following deposition to a sufficient coating thickness, a single sintering step may be used to produce a dense ceramic coating. Using this method, coatings ranging in thickness from about one to several hundred microns can be obtained. By using a plurality of compounds in the colloidal suspension, coatings of mixed composition can be obtained. By using a plurality of solutions and separate pumps and a single or multiple ultrasonic nebulizer(s), and varying the individual pumping rates and/or the concentrations of the solutions, a coating of mixed and discontinuously graded (e.g., stepped) or continuously graded layers may be obtained. This method is particularly useful for depositing ceramic coatings. Dense ceramic coating materials on porous substrates are useful in providing improved electrode performance in devices such as high power density solid oxide fuel cells. Dense ceramic coatings obtained by the invention are also useful for gas turbine blade coatings, sensors, steam electrolyzers, etc. The invention has general use in preparation of systems requiring durable and chemically resistant coatings, or coatings having other specific chemical or physical properties.

  11. Colloidal spray method for low cost thin coating deposition

    DOEpatents

    Pham, Ai-Quoc; Glass, Robert S.; Lee, Tae H.

    2002-01-01

    A dense or porous coating of material is deposited onto a substrate by forcing a colloidal suspension through an ultrasonic nebulizer and spraying a fine mist of particles in a carrier medium onto a sufficiently heated substrate. The spraying rate is essentially matched to the evaporation rate of the carrier liquid from the substrate to produce a coating that is uniformly distributed over the surface of the substrate. Following deposition to a sufficient coating thickness, a single sintering step may be used to produce a dense ceramic coating. Using this method, coatings ranging in thickness from about one to several hundred microns can be obtained. By using a plurality of compounds in the colloidal suspension, coatings of mixed composition can be obtained. By using a plurality of solutions and separate pumps and a single or multiple ultrasonic nebulizer(s), and varying the individual pumping rates and/or the concentrations of the solutions, a coating of mixed and discontinuously graded (e.g., stepped) or continuously graded layers may be obtained. This method is particularly useful for depositing ceramic coatings. Dense ceramic coating materials on porous substrates are useful in providing improved electrode performance in devices such as high power density solid oxide fuel cells. Dense ceramic coatings obtained by the invention are also useful for gas turbine blade coatings, sensors, steam electrolyzers, etc. The invention has general use in preparation of systems requiring durable and chemically resistant coatings, or coatings having other specific chemical or physical properties.

  12. Ceramic coatings on smooth surfaces

    NASA Technical Reports Server (NTRS)

    Miller, R. A. (Inventor); Brindley, W. J. (Inventor); Rouge, C. J. (Inventor)

    1991-01-01

    A metallic coating is plasma sprayed onto a smooth surface of a metal alloy substitute or on a bond coating. An initial thin ceramic layer is low pressure sprayed onto the smooth surface of the substrate or bond coating. Another ceramic layer is atmospheric plasma sprayed onto the initial ceramic layer.

  13. High Resolution Quantitative Microbeam Analysis of Ir-coated Geological Specimens Using Conventionally Coated Standards

    NASA Astrophysics Data System (ADS)

    Armstrong, J. T.; Crispin, K. L.

    2012-12-01

    Traditionally, quantitative electron microbeam analyses of insulating specimens are performed after coating the materials with thin conducting layers of carbon. For x-ray lines greater than 1 keV in energy and beam voltages in excess of 10 keV, the results are insensitive to the exact thickness of the carbon coat. High resolution imaging, low voltage analysis, and analysis of specimens containing low levels of carbon require the use of substitute conductive coats. Typical substitutes for carbon coats (e.g., Au, Au-Pd, Cr, Al) require either using similarly coated standards or substantial corrections to be applied. Even when using modern multi-layer correction algorithms or Monte Carlo calculations, significant errors can result (e.g., Armstrong 2009, Armstrong and Crispin, 2012). We propose the use of ultra-thin layers of Ir as a substitute for C in the analysis of insulating geological specimens. Ir has been found to be an excellent coating material for high resolution imaging (e.g., Echlin, 2009). Sputtered layers as thin as 0.5 nm are found to be conductive, and layers of just a few nm provide good protection against beam damage with sub-nm grain size (Sebring et al., 1999). We have analyzed a series of geological materials with Ir coats between 1 - 8 nm and found similar levels of effects on emitted x-ray intensities as produced with typical carbon coat thicknesses (10-25 nm). E.g., for Ir thicknesses less than 5 nm, the reduction of intensity for x-ray lines between 1 and 7 keV are between 1-3% for a beam energy of 15 keV. The reduction in intensity for higher-energy lines such as Fe-K is actually less than produced by typical C-coats. We will present the results of these experiments and propose simple algorithmic equations which fit these data.

  14. Slurry spin coating of thin film yttria stabilized zirconia/gadolinia doped ceria bi-layer electrolytes for solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Kim, Hyun Joong; Kim, Manjin; Neoh, Ke Chean; Han, Gwon Deok; Bae, Kiho; Shin, Jong Mok; Kim, Gyu-Tae; Shim, Joon Hyung

    2016-09-01

    Thin ceramic bi-layered membrane comprising yttria-stabilized zirconia (YSZ) and gadolinia-doped ceria (GDC) is fabricated by the cost-effective slurry spin coating technique, and it is evaluated as an electrolyte of solid oxide fuel cells (SOFCs). It is demonstrated that the slurry spin coating method is capable of fabricating porous ceramic films by adjusting the content of ethyl-cellulose binders in the source slurry. The porous GDC layer deposited by spin coating under an optimal condition functions satisfactorily as a cathode-electrolyte interlayer in the test SOFC stack. A 2-μm-thick electrolyte membrane of the spin-coated YSZ/GDC bi-layer is successfully deposited as a dense and stable film directly on a porous NiO-YSZ anode support without any interlayers, and the SOFC produces power output over 200 mW cm-2 at 600 °C, with an open circuit voltage close to 1 V. Electrochemical impedance spectra analysis is conducted to evaluate the performance of the fuel cell components in relation with the microstructure of the spin-coated layers.

  15. Metallic Thin-Film Bonding and Alloy Generation

    NASA Technical Reports Server (NTRS)

    Peotter, Brian S. (Inventor); Fryer, Jack Merrill (Inventor); Campbell, Geoff (Inventor); Droppers, Lloyd (Inventor)

    2016-01-01

    Diffusion bonding a stack of aluminum thin films is particularly challenging due to a stable aluminum oxide coating that rapidly forms on the aluminum thin films when they are exposed to atmosphere and the relatively low meting temperature of aluminum. By plating the individual aluminum thin films with a metal that does not rapidly form a stable oxide coating, the individual aluminum thin films may be readily diffusion bonded together using heat and pressure. The resulting diffusion bonded structure can be an alloy of choice through the use of a carefully selected base and plating metals. The aluminum thin films may also be etched with distinct patterns that form a microfluidic fluid flow path through the stack of aluminum thin films when diffusion bonded together.

  16. Metal separations using aqueous biphasic partitioning systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chaiko, D.J.; Zaslavsky, B.; Rollins, A.N.

    1996-05-01

    Aqueous biphasic extraction (ABE) processes offer the potential for low-cost, highly selective separations. This countercurrent extraction technique involves selective partitioning of either dissolved solutes or ultrafine particulates between two immiscible aqueous phases. The extraction systems that the authors have studied are generated by combining an aqueous salt solution with an aqueous polymer solution. They have examined a wide range of applications for ABE, including the treatment of solid and liquid nuclear wastes, decontamination of soils, and processing of mineral ores. They have also conducted fundamental studies of solution microstructure using small angle neutron scattering (SANS). In this report they reviewmore » the physicochemical fundamentals of aqueous biphase formation and discuss the development and scaleup of ABE processes for environmental remediation.« less

  17. Evaluation of the finite element software ABAQUS for biomechanical modelling of biphasic tissues.

    PubMed

    Wu, J Z; Herzog, W; Epstein, M

    1998-02-01

    The biphasic cartilage model proposed by Mow et al. (1980) has proven successful to capture the essential mechanical features of articular cartilage. In order to analyse the joint contact mechanics in real, anatomical joints, the cartilage model needs to be implemented into a suitable finite element code to approximate the irregular surface geometries of such joints. However, systematic and extensive evaluation of the capacity of commercial software for modelling the contact mechanics with biphasic cartilage layers has not been made. This research was aimed at evaluating the commercial finite element software ABAQUS for analysing biphasic soft tissues. The solutions obtained using ABAQUS were compared with those obtained using other finite element models and analytical solutions for three numerical tests: an unconfined indentation test, a test with the contact of a spherical cartilage surface with a rigid plate, and an axi-symmetric joint contact test. It was concluded that the biphasic cartilage model can be implemented into the commercial finite element software ABAQUS to analyse practical joint contact problems with biphasic articular cartilage layers.

  18. Biphasic Synergistic Gel Materials with Switchable Mechanics and Self-Healing Capacity.

    PubMed

    Zhao, Ziguang; Liu, Yuxia; Zhang, Kangjun; Zhuo, Shuyun; Fang, Ruochen; Zhang, Jianqi; Jiang, Lei; Liu, Mingjie

    2017-10-16

    A fabrication strategy for biphasic gels is reported, which incorporates high-internal-phase emulsions. Closely packed micro-inclusions within the elastic hydrogel matrix greatly improve the mechanical properties of the materials. The materials exhibit excellent switchable mechanics and shape-memory performance because of the switchable micro- inclusions that are incorporated into the hydrogel matrix. The produced materials demonstrated a self-healing capacity that originates from the noncovalent effect of the biphasic heteronetwork. The aforementioned characteristics suggest that the biphasic gels may serve as ideal composite gel materials with validity in a variety of applications, such as soft actuators, flexible devices, and biological materials. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. A Structurally and Functionally Biomimetic Biphasic Scaffold for Intervertebral Disc Tissue Engineering

    PubMed Central

    Choy, Andrew Tsz Hang; Chan, Barbara Pui

    2015-01-01

    Tissue engineering offers high hopes for the treatment of intervertebral disc (IVD) degeneration. Whereas scaffolds of the disc nucleus and annulus have been extensively studied, a truly biomimetic and mechanically functional biphasic scaffold using naturally occurring extracellular matrix is yet to be developed. Here, a biphasic scaffold was fabricated with collagen and glycosaminoglycans (GAGs), two of the most abundant extracellular matrix components in the IVD. Following fabrication, the scaffold was characterized and benchmarked against native disc. The biphasic scaffold was composed of a collagen-GAG co-precipitate making up the nucleus pulposus-like core, and this was encapsulated in multiple lamellae of photochemically crosslinked collagen membranes comprising the annulus fibrosus-like lamellae. On mechanical testing, the height of our engineered disc recovered by ~82-89% in an annulus-independent manner, when compared with the 99% recovery exhibited by native disc. The annulus-independent nature of disc height recovery suggests that the fluid replacement function of the engineered nucleus pulposus core might mimic this hitherto unique feature of native disc. Biphasic scaffolds comprised of 10 annulus fibrosus-like lamellae had the best overall mechanical performance among the various designs owing to their similarity to native disc in most aspects, including elastic compliance during creep and recovery, and viscous compliance during recovery. However, the dynamic mechanical performance (including dynamic stiffness and damping factor) of all the biphasic scaffolds was similar to that of the native discs. This study contributes to the rationalized design and development of a biomimetic and mechanically viable biphasic scaffold for IVD tissue engineering. PMID:26115332

  20. METHOD OF COATING SURFACES WITH BORON

    DOEpatents

    Martin, G.R.

    1949-10-11

    A method of forming a thin coating of boron on metallic, glass, or other surfaces is described. The method comprises heating the article to be coated to a temperature of about 550 d C in an evacuated chamber and passing trimethyl boron, triethyl boron, or tripropyl boron in the vapor phase and under reduced pressure into contact with the heated surface causing boron to be deposited in a thin film.

  1. MCP performance improvement using alumina thin film

    NASA Astrophysics Data System (ADS)

    Yang, Yuzhen; Yan, Baojun; Liu, Shulin; Zhao, Tianchi; Yu, Yang; Wen, Kaile; Li, Yumei; Qi, Ming

    2017-10-01

    The performance improvement using alumina thin film on a dual microchannel plate (MCP) detector for single electron counting was investigated. The alumina thin film was coated on all surfaces of the MCPs by atomic layer deposition method. It was found that the gain, the single electron resolution and the peak-to-valley ratio of the dual MCP detector were significantly enhanced by coating the alumina thin film. The optimum operating conditions of the new dual MCP detector have been studied.

  2. Spin-coated epoxy resin embedding technique enables facile SEM/FIB thickness determination of porous metal oxide ultra-thin films.

    PubMed

    Peña, B; Owen, G Rh; Dettelbach, K E; Berlinguette, C P

    2018-01-25

    A facile nonsubjective method was designed to measure porous nonconductive iron oxide film thickness using a combination of a focused ion beam (FIB) and scanning electron microscopy. Iron oxide films are inherently nonconductive and porous, therefore the objective of this investigation was to optimize a methodology that would increase the conductivity of the film to facilitate high resolution imaging with a scanning electron microscopy and to preserve the porous nature of the film that could potentially be damaged by the energy of the FIB. Sputter coating the sample with a thin layer of iridium before creating the cross section with the FIB decreased sample charging and drifting, but differentiating the iron layer from the iridium coating with backscattered electron imaging was not definitive, making accurate assumptions of the delineation between the two metals difficult. Moreover, the porous nature of the film was lost due to beam damage following the FIB process. A thin layer plastication technique was therefore used to embed the porous film in epoxy resin that would provide support for the film during the FIB process. However, the thickness of the resin created using conventional thin layer plastication processing varied across the sample, making the measuring process only possible in areas where the resin layer was at its thinnest. Such variation required navigating the area for ideal milling areas, which increased the subjectivity of the process. We present a method to create uniform thin resin layers, of controlled thickness, that are ideal for quantifying the thickness of porous nonconductive films with FIB/scanning electron microscopy. © 2018 The Authors Journal of Microscopy © 2018 Royal Microscopical Society.

  3. Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    1993-01-01

    In order to reduce heat transfer between a hot gas heat source and a metallic engine component, a thermal insulating layer of material is placed between them. This thermal barrier coating is applied by plasma spray processing the thin films. The coating has been successfully employed in aerospace applications for many years. Lewis Research Center, a leader in the development engine components coating technology, has assisted Caterpillar, Inc. in applying ceramic thermal barrier coatings on engines. Because these large engines use heavy fuels containing vanadium, engine valve life is sharply decreased. The barrier coating controls temperatures, extends valve life and reduces operating cost. Additional applications are currently under development.

  4. Ultra-Thin Coatings Beautify Art

    NASA Technical Reports Server (NTRS)

    2013-01-01

    The craftsmen in the Roman Empire who constructed the Lycurgus Cup 17 centuries ago probably didn't think their artifact would survive for nearly 2,000 years as a prized possession. And they certainly couldn't have known that the technology they used to make it would eventually become an important part of space exploration. Carved from one solid mass, the cup is one of the few complete glass objects from that period, and the only one made from dichroic glass. Meaning "two-colored" in Greek, dichroic glass was originally created by adding trace amounts of gold and silver to a large volume of glass melt. The resulting medium partially reflects the light passing through it, causing an observer to see different colors depending on the direction of the light source. The Lycurgus Cup, for example, is famous for appearing green in daylight and red when lit at night, symbolic of the ripening grapes used to fill it with wine. NASA revitalized the production of dichroic glass in the 1950s and 1960s as a means of protecting its astronauts. Ordinary clear substances cannot protect human vision from the harsh rays of unfiltered sunlight, and everything from the human body to spacecraft sensors and computers are at risk if left unprotected from the radiation that permeates space. The microscopic amounts of metal present in dichroic glass make it an effective barrier against such harmful radiation. While the ancient manufacturing technique called for adding metals to glass melt, NASA developed a process in which metals are vaporized by electron beams in a vacuum chamber and then applied directly to surfaces in an ultra-thin film. The vapor condenses in the form of crystal structures, and the process is repeated for up to several dozen coatings. The resulting material, still only about 30 millionths of an inch thick, is sufficient to reflect radiation even while the glass, or polycarbonate, as in the case of space suit helmets, remains transparent to the human eye.

  5. Carbonaceous thin film coating with Fe-N4 site for enhancement of dioxovanadium ion reduction

    NASA Astrophysics Data System (ADS)

    Maruyama, Jun; Hasegawa, Takahiro; Iwasaki, Satoshi; Fukuhara, Tomoko; Orikasa, Yuki; Uchimoto, Yoshiharu

    2016-08-01

    It has been found that carbonaceous materials containing a transition metal coordinated by 4 nitrogens in the square-planar configuration (metal-N4 site) on the surface possessed a catalytic activity for various electrochemical reactions related to energy conversion and storage; i.e., oxygen reduction, hydrogen evolution, and quite recently, the electrode reactions in vanadium redox flow batteries (VRFB). The catalyst for the VRFB positive electrode discharge reaction, i.e., the dioxovanadium ion reduction, was formed by coating the surface of cup-stack carbon nanotubes with a carbonaceous thin film with the Fe-N4 site generated by the sublimation, deposition, and pyrolysis of iron phthalocyanine. In this study, the influence of the physical properties of the catalyst on the electrochemical reactions was investigated to optimize the coating. With an increase in the coating, the specific surface area increased, whereas the pore size decreased. The surface Fe concentration was increased in spite of the Fe aggregation inside the carbon matrix. The catalytic activity enhancement was achieved due to the increase in the specific surface area and the surface Fe concentration, but was lowered due to the decrease in the pore size, which was disadvantageous for the penetration of the electrolyte and the mass transfer.

  6. Synthesis of ZnO thin film by sol-gel spin coating technique for H2S gas sensing application

    NASA Astrophysics Data System (ADS)

    Nimbalkar, Amol R.; Patil, Maruti G.

    2017-12-01

    In this present work, zinc oxide (ZnO) thin film synthesized by a simple sol-gel spin coating technique. The structural, morphology, compositional, microstructural, optical, electrical and gas sensing properties of the film were studied by using XRD, FESEM, EDS, XPS, HRTEM, Raman, FTIR and UV-vis techniques. The ZnO thin film shows hexagonal wurtzite structure with a porous structured morphology. Gas sensing performance of synthesized ZnO thin film was tested initially for H2S gas at different operating temperatures as well as concentrations. The maximum gas response is achieved towards H2S gas at 300 °C operating temperature, at 100 ppm gas concentration as compared to other gases like CH3OH, Cl2, NH3, LPG, CH3COCH3, and C2H5OH with a good stability.

  7. Coatings Boost Solar-Cell Outputs

    NASA Technical Reports Server (NTRS)

    Rohatgi, Ajeet; Campbell, Robert B.; O'Keefe, T. W.; Rai-Choudbury, Posenjit; Hoffman, Richard A.

    1988-01-01

    Efficiencies increased by more-complete utilization of incident light. Electrical outputs of thin solar photovoltaic cells made of dendritic-web silicon increased by combination of front-surface, antireflective coatings and back-surface, reflective coatings. Improvements achieved recently through theoretical and experimental studies of ways to optimize coatings for particular wavelengths of incident light, cell thicknesses, and cell materials.

  8. Boron carbide coatings for neutron detection probed by x-rays, ions, and neutrons to determine thin film quality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nowak, G., E-mail: Gregor.Nowak@hzg.de; Störmer, M.; Horstmann, C.

    2015-01-21

    Due to the present shortage of {sup 3}He and the associated tremendous increase of its price, the supply of large neutron detection systems with {sup 3}He becomes unaffordable. Alternative neutron detection concepts, therefore, have been invented based on solid {sup 10}B converters. These concepts require development in thin film deposition technique regarding high adhesion, thickness uniformity and chemical purity of the converter coating on large area substrates. We report on the sputter deposition of highly uniform large-area {sup 10}B{sub 4}C coatings of up to 2 μm thickness with a thickness deviation below 4% using the Helmholtz-Zentrum Geesthacht large area sputtering system.more » The {sup 10}B{sub 4}C coatings are x-ray amorphous and highly adhesive to the substrate. Material analysis by means of X-ray-Photoelectron Spectroscopy, Secondary-Ion-Mass-Spectrometry, and Rutherford-Back-Scattering (RBS) revealed low impurities concentration in the coatings. The isotope composition determined by Secondary-Ion-Mass-Spectrometry, RBS, and inelastic nuclear reaction analysis of the converter coatings evidences almost identical {sup 10}B isotope contents in the sputter target and in the deposited coating. Neutron conversion and detection test measurements with variable irradiation geometry of the converter coating demonstrate an average relative quantum efficiency ranging from 65% to 90% for cold neutrons as compared to a black {sup 3}He-monitor. Thus, these converter coatings contribute to the development of {sup 3}He-free prototype detectors based on neutron grazing incidence. Transferring the developed coating process to an industrial scale sputtering system can make alternative {sup 3}He-free converter elements available for large area neutron detection systems.« less

  9. Electron transport in zinc-blende wurtzite biphasic gallium nitride nanowires and GaNFETs

    DOE PAGES

    Jacobs, Benjamin W.; Ayres, Virginia M.; Stallcup, Richard E.; ...

    2007-10-19

    Two-point and four-point probe electrical measurements of a biphasic gallium nitride nanowire and current–voltage characteristics of a gallium nitride nanowire based field effect transistor are reported. The biphasic gallium nitride nanowires have a crystalline homostructure consisting of wurtzite and zinc-blende phases that grow simultaneously in the longitudinal direction. There is a sharp transition of one to a few atomic layers between each phase. Here, all measurements showed high current densities. Evidence of single-phase current transport in the biphasic nanowire structure is discussed.

  10. Photostability and moisture uptake properties of wood veneers coated with a combination of thin sol-gel films and light stabilizers

    Treesearch

    Mandla A. Tshabalala; Ryan Libert; Christian M. Schaller

    2011-01-01

    In recent years, there has been increased interest in the use of inorganic UV blocking nanoparticles for photostabilization of wood surfaces. Photostability and moisture uptake properties of wood veneers coated with a combination of hybrid inorganic-organic thin sol-gel films and organic light stabilizers was investigated. The light stabilizers were applied by brushing...

  11. Integration Of Thin-Film Coatings Into Optical Systems

    NASA Astrophysics Data System (ADS)

    Matteucci, John; Baumeister, Philip

    1980-09-01

    These remarks are directed to professional lens designers, optical systems engineers and fabricators. You are the thoroughly capable experts who configure and construct optical systems that image superbly over vast areas. Many of the systems contain optical coatings that perform some of the functions shown in Figure 1. They serve to enhance the radiant reflectance of a surface, to reduce the Fresnel losses to low values, to alter the state of polarization of the flux, to divide beams into various channels, or to isolate some part of the electromagnetic spectrum. Figure 2 depicts a procedure that is sometimes used to select coatings. Here they are not specified until after the optical system design is frozen. In essence, coatings are allocated the same level of importance as the shade of paint on the exterior of the instrument. Not infrequently disaster lurks in this approach because the coatings are unattainable or they impact the optical system in some unexpected manner. The strategy shown in Figure 3 is safer. Here, the coating selection is integrated into the optical design. If the coatings are difficult (and, hence, costly) to produce, then compromises are investigated that lessen the overall cost of the system.

  12. Analysis of Crystal Structure of Fe3O4 Thin Films Based on Iron Sand Growth by Spin Coating Method

    NASA Astrophysics Data System (ADS)

    Rianto, D.; Yulfriska, N.; Murti, F.; Hidayati, H.; Ramli, R.

    2018-04-01

    Recently, iron sand used as one of base materials in the steel industry. However, the content of iron sand can be used as starting materials in sensor technology in the form of thin films. In this paper, we report the analysis of crystal structure of magnetite thin film based on iron sand from Tiram’s Beach. The magnetic content of sand separated by a permanent magnet, then it was milled at 30 hours milling time. In order to increase the purity of magnetite, it washed after milling using aquades under magnetic separation by a magnet permanent. The thin film has been prepared using iron (III) nitrate by sol–gel technique. The precursor is resulted by dissolving magnetite in oxalic acid and nitric acid. Then, solution of iron (III) nitrate dissolved in ethylene glycol was applied on glass substrates by spin coating. The X-Ray Diffraction is operated thin film characterization. The structure of magnetite has been studied based on X-Ray Peaks that correspond to magnetite content of thin films.

  13. Structural study of Mg doped cobalt ferrite thin films on ITO coated glass substrate

    NASA Astrophysics Data System (ADS)

    Suthar, Mahesh; Bapna, Komal; Kumar, Kishor; Ahuja, B. L.

    2018-05-01

    We have synthesized thin films of Co1-xMgxFe2O4 (x = 0, 0.4, 0.6, 0.8, 1) on transparent conducting indium tin oxide (ITO) coated glass substrate by pulsed laser deposition method. The structural properties of the grown films were analyzed by the X-ray diffraction and Raman spectroscopy, which suggest the single phase growth of these films. Raman spectra revealed the incorporation of Mg ions into CoFe2O4 lattice and suggest that the Mg ions initially go both to the octahedral and tetrahedral sites upto a certain concentration. For higher concentration, Mg ions prefer to occupy the tetrahedral sites.

  14. Thin magnesium layer confirmed as an antibacterial and biocompatible implant coating in a co-culture model

    PubMed Central

    Zaatreh, Sarah; Haffner, David; Strauss, Madlen; Dauben, Thomas; Zamponi, Christiane; Mittelmeier, Wolfram; Quandt, Eckhard; Kreikemeyer, Bernd; Bader, Rainer

    2017-01-01

    Implant-associated infections commonly result from biofilm-forming bacteria and present severe complications in total joint arthroplasty. Therefore, there is a requirement for the development of biocompatible implant surfaces that prevent bacterial biofilm formation. The present study coated titanium samples with a thin, rapidly corroding layer of magnesium, which were subsequently investigated with respect to their antibacterial and cytotoxic surface properties using a Staphylococcus epidermidis (S. epidermidis) and human osteoblast (hOB) co-culture model. Primary hOBs and S. epidermidis were co-cultured on cylindrical titanium samples (Ti6Al4V) coated with pure magnesium via magnetron sputtering (5 µm thickness) for 7 days. Uncoated titanium test samples served as controls. Vital hOBs were identified by trypan blue staining at days 2 and 7. Planktonic S. epidermidis were quantified by counting the number of colony forming units (CFU). The quantification of biofilm-bound S. epidermidis on the surfaces of test samples was performed by ultrasonic treatment and CFU counting at days 2 and 7. The number of planktonic and biofilm-bound S. epidermidis on the magnesium-coated samples decreased by four orders of magnitude when compared with the titanium control following 7 days of co-culture. The number of vital hOBs on the magnesium-coated samples was observed to increase (40,000 cells/ml) when compared with the controls (20,000 cells/ml). The results of the present study indicate that rapidly corroding magnesium-coated titanium may be a viable coating material that possesses antibacterial and biocompatible properties. A co-culture test is more rigorous than a monoculture study, as it accounts for confounding effects and assesses additional interactions that are more representative of in vivo situations. These results provide a foundation for the future testing of this type of surface in animals. PMID:28260022

  15. A re-examination of the biphasic theory of skeletal muscle growth.

    PubMed Central

    Levine, A S; Hegarty, P V

    1977-01-01

    Because of the importance of fibre diameter measurements it was decided to re-evaluate the biphasic theory of skeletal muscle growth and development. This theory proposes an initial memophasic distribution of muscle fibres which changes to a biphasic distribution during development. The theory is based on observations made on certain muscles in mice, where two distinct populations of fibre diameters (20 and 40 micronm) contribute to the biphasic distribution. In the present investigation corss sections of frozen biceps brachii of mice in rigor mortis were examined. The rigor state was used to avoid complications produced by thaw-rigor contraction. The diameters of the outermost and innermost fibres were found to be significantly different. However, if the outer and inner fibres were combined to form one group, no significant difference between this group and other random groups was found. The distributions of all groups were monophasic. The diameters of isolated fibres from mice and rats also displayed a monophasic distribution. This evidence leads to the conclusion that the biphasic theory of muscle growth is untenable. Some of the variables which may occur in fibre size and shape are discussed. Images Fig. 1 PMID:858691

  16. Performance improvement for solution-processed high-mobility ZnO thin-film transistors

    NASA Astrophysics Data System (ADS)

    Sha Li, Chen; Li, Yu Ning; Wu, Yi Liang; Ong, Beng S.; Loutfy, Rafik O.

    2008-06-01

    The fabrication technology of stable, non-toxic, transparent, high performance zinc oxide (ZnO) thin-film semiconductors via the solution process was investigated. Two methods, which were, respectively, annealing a spin-coated precursor solution and annealing a drop-coated precursor solution, were compared. The prepared ZnO thin-film semiconductor transistors have well-controlled, preferential crystal orientation and exhibit superior field-effect performance characteristics. But the ZnO thin-film transistor (TFT) fabricated by annealing a drop-coated precursor solution has a distinctly elevated linear mobility, which further approaches the saturated mobility, compared with that fabricated by annealing a spin-coated precursor solution. The performance of the solution-processed ZnO TFT was further improved when substituting the spin-coating process by the drop-coating process.

  17. Evaporation dynamics of a sessile droplet on glass surfaces with fluoropolymer coatings: focusing on the final stage of thin droplet evaporation.

    PubMed

    Gatapova, Elizaveta Ya; Shonina, Anna M; Safonov, Alexey I; Sulyaeva, Veronica S; Kabov, Oleg A

    2018-03-07

    The evaporation dynamics of a water droplet with an initial volume of 2 μl from glass surfaces with fluoropolymer coatings are investigated using the shadow technique and an optical microscope. The droplet profile for a contact angle of less than 5° is constructed using an image-analyzing interference technique, and evaporation dynamics are investigated at the final stage. We coated the glass slides with a thin film of a fluoropolymer by the hot-wire chemical vapor deposition method at different deposition modes depending on the deposition pressure and the temperature of the activating wire. The resulting surfaces have different structures affecting the wetting properties. Droplet evaporation from a constant contact radius mode in the early stage of evaporation was found followed by the mode where both contact angle and contact radius simultaneously vary in time (final stage) regardless of wettability of the coated surfaces. We found that depinning occurs at small contact angles of 2.2-4.7° for all samples, which are smaller than the measured receding contact angles. This is explained by imbibition of the liquid into the developed surface of the "soft" coating that leads to formation of thin droplets completely wetting the surface. The final stage, which is little discussed in the literature, is also recorded. We have singled out a substage where the contact line velocity is abruptly increasing for all coated and uncoated surfaces. The critical droplet height corresponding to the transition to this substage is about 2 μm with R/h = 107. The duration of this substage is the same for all coated and uncoated surfaces. Droplets observed at this substage for all the tested surfaces are axisymmetric. The specific evaporation rate clearly demonstrates an abrupt increase at the final substage of the droplet evaporation. The classical R 2 law is justified for the complete wetting situation where the droplet is disappearing in an axisymmetric manner.

  18. Effect of Doping on beta-Tricalcium Phosphate Bioresorbable Bulk Material and Thin Film Coatings

    NASA Astrophysics Data System (ADS)

    Abdalla, Suhaila

    Magnesium has emerged as a revolutionary biodegradable metal for use as an orthopedic material, it has several advantages over the current metallic materials in use, including eliminating the effects of stress shielding, improving biocompatibility and inhibiting degradation rates, thus removing the requirement of a second surgery for implant removal. Due to the rapid degradation of magnesium, it is necessary to control the corrosion rates of the materials to match the rates of bone healing. This dissertation reports on the effect of doping on the properties of beta-tricalcium phosphate (beta-TCP). It also reports on its application as a thin film coating on magnesium alloys for implant applications. Adding various dopants to beta-TCP significantly influences critical properties. In this study, discs were fabricated in two compositions: (i) undoped beta-TCP, (ii) beta-TCP doped with 1.0 wt % MgO, 0.5 wt % ZnO, and 1.0 wt % TiO2. Films were fabricated from these compositions using the pulsed laser deposition (PLD) technique. These coatings were then characterized for corrosive, hardness, and cytocompatibility. The XRD patterns of the coating confirm the amorphous nature of the films. The presence of the metal oxides in beta-TCP improved ceramic densification. The application of these doped coatings was also found to increase the hardness by 88 %, the modulus of elasticity by 66 %, and improve corrosion resistance of the magnesium alloy substrate; with a 2.4 % improvement in Ecorr and 95 % decrease in icorr. Cell viability was studied using an osteoblast precursor cell line MC3T3-E1 to assure that the biocompatibility of these ceramics was not altered due to the dopants. Long-term biodegradation studies were conducted by measuring weight change and surface microstructure as a function of time in simulated body fluid. The results suggest that these coatings could be used for bioresorbable implants with improved corrosion resistance and increased hardness.

  19. Effect of different coating layer on the topography and optical properties of ZnO nanostructured

    NASA Astrophysics Data System (ADS)

    Mohamed, R.; Mamat, M. H.; Malek, M. F.; Ismail, A. S.; Yusoff, M. M.; Asiah, M. N.; Khusaimi, Z.; Rusop, M.

    2018-05-01

    Magnesium (Mg) and aluminum (Al) co-doped zinc oxide (MAZO) thin films were synthesized on glass substrate by sol-gel spin coating method. MAZO thin films were prepared at different coating layers range from 1 to 9. Atomic Force Microscopy (AFM) was used to investigate the topography of the thin films. According to the AFM results, Root Means Square (RMS) of MAZO thin films was increased from 0.747 to 6.545 nm, with increase of number coating layer from 1 to 9, respectively. The results shown the variation on structural and topography properties of MAZO seed film when it's deposited at different coating layers on glass substrate. The optical properties was analyzed using UV-Vis spectroscopy. The obtained results show that the transmittance spectra was increased as thin films coating layer increases.

  20. Fabrication of ZnO Thin Films by Sol-Gel Spin Coating and Their UV and White-Light Emission Properties

    NASA Astrophysics Data System (ADS)

    Kumar, Mirgender; Dubey, Sarvesh; Rajendar, Vanga; Park, Si-Hyun

    2017-10-01

    ZnO thin films have been fabricated by the sol-gel spin-coating technique and annealed under different conditions, and their ultraviolet (UV) and white-light emission properties investigated. Different ambient conditions including oxygen, nitrogen, zinc-rich nitrogen, and vacuum were used to tune the main properties of the ZnO thin films. The resistivity varied from the conductive to semi-insulating regime, and the luminescence emission from fairly intense UV to polychromatic. The emission intensity was also found to be a function of the annealing conditions. Possible routes to compensate the loss of emission characteristics are discussed. X-ray photoelectron spectroscopy (XPS) analysis was carried out to detect the chemical states of the zinc/oxygen species. The changes in the electrical and emission properties are explained based on annihilation/formation of inherent donor/acceptor-type defects. Such ZnO thin films could have potential applications in solid-state lighting.

  1. Characterization of Therapeutic Coatings on Medical Devices

    NASA Astrophysics Data System (ADS)

    Wormuth, Klaus

    Therapeutic coatings on medical devices such as catheters, guide wires, and stents improve biocompatibility by favorably altering the chemical nature of the device/tissue or device/blood interface. Such coatings often minimize tissue damage (reduce friction), decrease chances for blood clot formation (prevent platelet adsorption), and improve the healing response (deliver drugs). Confocal Raman microscopy provides valuable information about biomedical coatings by, for example, facilitating the measurement of the thickness and swelling of frictionreducing hydrogel coatings on catheters and by determining the distribution of drug within a polymer-based drug-eluting coatings on stents. This chapter explores the application of Raman microscopy to the imaging of thin coatings of cross-linked poly(vinyl pyrrolidone) gels, parylene films, mixtures of dexamethasone with various polymethacrylates, and mixtures of rapamycin with hydrolysable (biodegradable) poly(lactide-co-glycolide) polymers. Raman microscopy measures the thickness and swelling of coatings, reveals the degree of mixing of drug and polymer, senses the hydrolysis of biodegradable polymers, and determines the polymorphic forms of drug present within thin therapeutic coatings on medical devices.

  2. Possibilities of surface coating for thermal insulation. [zirconium dioxide, titanium dioxide, and zircon coatings

    NASA Technical Reports Server (NTRS)

    Poeschel, E.; Weisser, G.

    1979-01-01

    Calculations performed for pulsating heat sources indicate a relatively thin (200-1000 micron) coating can lower temperature both inside and on the surface of a construction material. Various coating materials (including zirconium dioxide) are discussed, together with possible thermic stresses and ways to deal with the latter.

  3. Boron coating on boron nitride coated nuclear fuels by chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Durmazuçar, Hasan H.; Gündüz, Güngör

    2000-12-01

    Uranium dioxide-only and uranium dioxide-gadolinium oxide (5% and 10%) ceramic nuclear fuel pellets which were already coated with boron nitride were coated with thin boron layer by chemical vapor deposition to increase the burn-up efficiency of the fuel during reactor operation. Coating was accomplished from the reaction of boron trichloride with hydrogen at 1250 K in a tube furnace, and then sintering at 1400 and 1525 K. The deposited boron was identified by infrared spectrum. The morphology of the coating was studied by using scanning electron microscope. The plate, grainy and string (fiber)-like boron structures were observed.

  4. Biphasic Dose Response in Low Level Light Therapy – An Update

    PubMed Central

    Huang, Ying-Ying; Sharma, Sulbha K; Carroll, James; Hamblin, Michael R

    2011-01-01

    Low-level laser (light) therapy (LLLT) has been known since 1967 but still remains controversial due to incomplete understanding of the basic mechanisms and the selection of inappropriate dosimetric parameters that led to negative studies. The biphasic dose-response or Arndt-Schulz curve in LLLT has been shown both in vitro studies and in animal experiments. This review will provide an update to our previous (Huang et al. 2009) coverage of this topic. In vitro mediators of LLLT such as adenosine triphosphate (ATP) and mitochondrial membrane potential show biphasic patterns, while others such as mitochondrial reactive oxygen species show a triphasic dose-response with two distinct peaks. The Janus nature of reactive oxygen species (ROS) that may act as a beneficial signaling molecule at low concentrations and a harmful cytotoxic agent at high concentrations, may partly explain the observed responses in vivo. Transcranial LLLT for traumatic brain injury (TBI) in mice shows a distinct biphasic pattern with peaks in beneficial neurological effects observed when the number of treatments is varied, and when the energy density of an individual treatment is varied. Further understanding of the extent to which biphasic dose responses apply in LLLT will be necessary to optimize clinical treatments. PMID:22461763

  5. Evaluation of oxide-coated iridium-rhenium chambers

    NASA Astrophysics Data System (ADS)

    Reed, Brian D.

    1994-03-01

    Iridium-coated rhenium (Ir-Re) provides long life operation of radiation-cooled rockets at temperatures up to 2200 C. Ceramic oxide coatings could be used to increase Ir-Re rocket lifetimes and allow operation in highly oxidizing environments. Ceramic oxide coatings promise to serve as both thermal and diffusion barriers for the iridium layer. Seven ceramic oxide-coated Ir-Re, 22-N rocket chambers were tested with gaseous hydrogen/gaseous oxygen (GHz/G02) propellants. Five chambers had thick (over 10 mils), monolithic coatings of either hafnia (HfO2) or zirconia (ZrO2). Two chambers had coatings with thicknesses less than 5 mils. One of these chambers had a thin-walled coating of ZrO2 infiltrated with sol gel HfO2. The other chamber had a coating composed of an Ir-oxide composite. The purpose of this test program was to assess the ability of the oxide coatings to withstand the thermal shock of combustion initiation, adhere under repeated thermal cycling, and operate in aggressively oxidizing environments. All of the coatings survived the thermal shock of combustion and demonstrated operation at mixture ratios up to 11. Testing the Ir-oxide composite-coated chamber included over 29 min at mixture ratio 16. The thicker walled coatings provided the larger temperature drops across the oxide layer (up to 570 C), but were susceptible to macrocracking and eventual chipping at a stress concentrator. The cracks apparently resealed during firing, under compression of the oxide layer. The thinner walled coatings did not experience the macrocracking and chipping of the chambers that was seen with the thick, monolithic coatings. However, burn-throughs in the throat region did occur in both of the thin-walled chambers at mixture ratios well above stoichiometric. The burn-throughs were probably the result of oxygen diffusion through the oxide coating that allowed the underlying Ir and Re layers to be oxidized. The results of this test program indicated that the thin-walled oxide

  6. Evaluation of oxide-coated iridium-rhenium chambers

    NASA Technical Reports Server (NTRS)

    Reed, Brian D.

    1994-01-01

    Iridium-coated rhenium (Ir-Re) provides long life operation of radiation-cooled rockets at temperatures up to 2200 C. Ceramic oxide coatings could be used to increase Ir-Re rocket lifetimes and allow operation in highly oxidizing environments. Ceramic oxide coatings promise to serve as both thermal and diffusion barriers for the iridium layer. Seven ceramic oxide-coated Ir-Re, 22-N rocket chambers were tested with gaseous hydrogen/gaseous oxygen (GHz/G02) propellants. Five chambers had thick (over 10 mils), monolithic coatings of either hafnia (HfO2) or zirconia (ZrO2). Two chambers had coatings with thicknesses less than 5 mils. One of these chambers had a thin-walled coating of ZrO2 infiltrated with sol gel HfO2. The other chamber had a coating composed of an Ir-oxide composite. The purpose of this test program was to assess the ability of the oxide coatings to withstand the thermal shock of combustion initiation, adhere under repeated thermal cycling, and operate in aggressively oxidizing environments. All of the coatings survived the thermal shock of combustion and demonstrated operation at mixture ratios up to 11. Testing the Ir-oxide composite-coated chamber included over 29 min at mixture ratio 16. The thicker walled coatings provided the larger temperature drops across the oxide layer (up to 570 C), but were susceptible to macrocracking and eventual chipping at a stress concentrator. The cracks apparently resealed during firing, under compression of the oxide layer. The thinner walled coatings did not experience the macrocracking and chipping of the chambers that was seen with the thick, monolithic coatings. However, burn-throughs in the throat region did occur in both of the thin-walled chambers at mixture ratios well above stoichiometric. The burn-throughs were probably the result of oxygen diffusion through the oxide coating that allowed the underlying Ir and Re layers to be oxidized. The results of this test program indicated that the thin-walled oxide

  7. EGaIn-Assisted Room-Temperature Sintering of Silver Nanoparticles for Stretchable, Inkjet-Printed, Thin-Film Electronics.

    PubMed

    Tavakoli, Mahmoud; Malakooti, Mohammad H; Paisana, Hugo; Ohm, Yunsik; Marques, Daniel Green; Alhais Lopes, Pedro; Piedade, Ana P; de Almeida, Anibal T; Majidi, Carmel

    2018-05-29

    Coating inkjet-printed traces of silver nanoparticle (AgNP) ink with a thin layer of eutectic gallium indium (EGaIn) increases the electrical conductivity by six-orders of magnitude and significantly improves tolerance to tensile strain. This enhancement is achieved through a room-temperature "sintering" process in which the liquid-phase EGaIn alloy binds the AgNP particles (≈100 nm diameter) to form a continuous conductive trace. Ultrathin and hydrographically transferrable electronics are produced by printing traces with a composition of AgNP-Ga-In on a 5 µm-thick temporary tattoo paper. The printed circuit is flexible enough to remain functional when deformed and can support strains above 80% with modest electromechanical coupling (gauge factor ≈1). These mechanically robust thin-film circuits are well suited for transfer to highly curved and nondevelopable 3D surfaces as well as skin and other soft deformable substrates. In contrast to other stretchable tattoo-like electronics, the low-cost processing steps introduced here eliminate the need for cleanroom fabrication and instead requires only a commercial desktop printer. Most significantly, it enables functionalities like "electronic tattoos" and 3D hydrographic transfer that have not been previously reported with EGaIn or EGaIn-based biphasic electronics. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. A boundary-integral representation for biphasic mixture theory, with application to the post-capillary glycocalyx

    PubMed Central

    Sumets, P. P.; Cater, J. E.; Long, D. S.; Clarke, R. J.

    2015-01-01

    We describe a new boundary-integral representation for biphasic mixture theory, which allows us to efficiently solve certain elastohydrodynamic–mobility problems using boundary element methods. We apply this formulation to model the motion of a rigid particle through a microtube which has non-uniform wall shape, is filled with a viscous Newtonian fluid, and is lined with a thin poroelastic layer. This is relevant to scenarios such as the transport of small rigid cells (such as neutrophils) through microvessels that are lined with an endothelial glycocalyx layer (EGL). In this context, we examine the impact of geometry upon some recently reported phenomena, including the creation of viscous eddies, fluid flux into the EGL, as well as the role of the EGL in transmitting mechanical signals to the underlying endothelial cells. PMID:26345494

  9. Pulsed Laser Deposition Processing of Improved Titanium Nitride Coatings for Implant Applications

    NASA Astrophysics Data System (ADS)

    Haywood, Talisha M.

    Recently surface coating technology has attracted considerable attention of researchers to develop novel coatings with enhanced functional properties such as hardness, biocompatibility, wear and corrosion resistance for medical devices and surgical tools. The materials currently being used for surgical implants include predominantly stainless steel (316L), cobalt chromium (Co-Cr), titanium and its alloys. Some of the limitations of these implants include improper mechanical properties, corrosion resistance, cytotoxicity and bonding with bone. One of the ways to improve the performance and biocompatibility of these implants is to coat their surfaces with biocompatible materials. Among the various coating materials, titanium nitride (TiN) shows excellent mechanical properties, corrosion resistance and low cytotoxicity. In the present work, a systematic study of pulsed laser ablation processing of TiN coatings was conducted. TiN thin film coatings were grown on commercially pure titanium (Ti) and stainless steel (316L) substrates at different substrate temperatures and different nitrogen partial pressures using the pulsed laser deposition (PLD) technique. Microstructural, surface, mechanical, chemical, corrosion and biological analysis techniques were applied to characterize the TiN thin film coatings. The PLD processed TiN thin film coatings showed improvements in mechanical strength, corrosion resistance and biocompatibility when compared to the bare substrates. The enhanced performance properties of the TiN thin film coatings were a result of the changing and varying of the deposition parameters.

  10. Biphasic decay of the Ca transient results from increased sarcoplasmic reticulum Ca leak

    PubMed Central

    Sankaranarayanan, Rajiv; Li, Yatong; Greensmith, David J.; Eisner, David A.

    2016-01-01

    Key points Ca leak from the sarcoplasmic reticulum through the ryanodine receptor (RyR) reduces the amplitude of the Ca transient and slows its rate of decay.In the presence of β‐adrenergic stimulation, RyR‐mediated Ca leak produces a biphasic decay of the Ca transient with a fast early phase and a slow late phase.Two forms of Ca leak have been studied, Ca‐sensitising (induced by caffeine) and non‐sensitising (induced by ryanodine) and both induce biphasic decay of the Ca transient.Only Ca‐sensitising leak can be reversed by traditional RyR inhibitors such as tetracaine.Ca leak can also induce Ca waves. At low levels of leak, waves occur. As leak is increased, first biphasic decay and then slowed monophasic decay is seen. The level of leak has major effects on the shape of the Ca transient. Abstract In heart failure, a reduction in Ca transient amplitude and contractile dysfunction can by caused by Ca leak through the sarcoplasmic reticulum (SR) Ca channel (ryanodine receptor, RyR) and/or decreased activity of the SR Ca ATPase (SERCA). We have characterised the effects of two forms of Ca leak (Ca‐sensitising and non‐sensitising) on calcium cycling and compared with those of SERCA inhibition. We measured [Ca2+]i with fluo‐3 in voltage‐clamped rat ventricular myocytes. Increasing SR leak with either caffeine (to sensitise the RyR to Ca activation) or ryanodine (non‐sensitising) had similar effects to SERCA inhibition: decreased systolic [Ca2+]i, increased diastolic [Ca2+]i and slowed decay. However, in the presence of isoproterenol, leak produced a biphasic decay of the Ca transient in the majority of cells while SERCA inhibition produced monophasic decay. Tetracaine reversed the effects of caffeine but not of ryanodine. When caffeine (1 mmol l−1) was added to a cell which displayed Ca waves, the wave frequency initially increased before waves disappeared and biphasic decay developed. Eventually (at higher caffeine concentrations), the

  11. Pedicle screws with a thin hydroxyapatite coating for improving fixation at the bone-implant interface in the osteoporotic spine: experimental study in a porcine model.

    PubMed

    Ohe, Makoto; Moridaira, Hiroshi; Inami, Satoshi; Takeuchi, Daisaku; Nohara, Yutaka; Taneichi, Hiroshi

    2018-03-30

    OBJECTIVE Instrumentation failure caused by the loosening of pedicle screws (PSs) in patients with osteoporosis is a serious problem after spinal surgery. The addition of a thin hydroxyapatite (HA) surface coating applied by using a sputtering process was reported recently to be a promising method for providing bone conduction around an implant without a significant risk of coating-layer breakage. In this study, the authors evaluated the biomechanical and histological features of the bone-implant interface (BII) of PSs with a thin HA coating in an in vivo porcine osteoporotic spine model. METHODS Three types of PSs (untreated/standard [STPS], sandblasted [BLPS], and HA-coated [HAPS] PSs) were implanted into the thoracic and lumbar spine (T9-L6) of 8 mature Clawn miniature pigs (6 ovariectomized [osteoporosis group] and 2 sham-operated [control group] pigs). The spines were harvested from the osteoporosis group at 0, 2, 4, 8, 12, or 24 weeks after PS placement and from the control group at 0 or 24 weeks. Their bone mineral density (BMD) was measured by peripheral quantitative CT. Histological evaluation of the BIIs was conducted by performing bone volume/tissue volume and bone surface/implant surface measurements. The strength of the BII was evaluated with extraction torque testing. RESULTS The BMD decreased significantly in the osteoporosis group (p < 0.01). HAPSs exhibited the greatest mean extraction peak torque at 8 weeks, and HAPSs and BLPSs exhibited significantly greater mean torque than the STPSs at 12 weeks (p < 0.05). The bone surface/implant surface ratio was significantly higher for HAPSs than for STPSs after 2 weeks (p < 0.05), and bonding between bone and the implant surface was maintained until 24 weeks with no detachment of the coating layer. In contrast, the bone volume/tissue volume ratio was significantly higher for HAPSs than for BLPSs or STPSs only at 4 weeks. CONCLUSIONS Using PSs with a thin HA coating applied using a sputtering process

  12. Correcting and coating thin walled X-ray Optics via a combination of controlled film deposition and magnetic smart materials

    NASA Astrophysics Data System (ADS)

    Ulmer, Melville

    The project goal is to demonstrate that thin walled (<400 micron thick) X-ray optics can be controllably shaped to produce high quality (~1" or better) X-ray optics at an affordable price. Since the desired surface area for the next generation X-ray telescope is >10x that of Chandra, the >10x requirement is then for >200 m^2 of surface area with a surface finish of better than 0.5 nm. Therefore, replication of some sort is called for. Because no replication technology has been shown to achieve ≤1" angular resolution, post fabrication figure corrections are likely going to be necessary. Some have proposed to do this in orbit and others prelaunch including us. Our prelaunch approach is to apply in-plane stresses to the thin walled mirror shells via a magnetic field. The field will be held in by some magnetically hard material such as NiCo. By use of a so called magnetic smart material (MSM) such as Terfenol-D, we already shown that strong enough stresses can be generated. Preliminary work has also shown that the magnetic field can be held in well enough to apply the figure correcting stresses pre-launch. What we call "set-it and forget-it." However, what is unique about our approach is that at the cost of complexity and some areal coverage, our concept will also accommodate in-orbit adjustments. Furthermore, to the best of our knowledge ours is one of two known stress modification processes that are bi-axial. Our plan is first to validate set-it and forget-it first on cantilevers and then to expand this to working on 5 cm x 5 cm pieces. We will work both with NiCo and glass or Si coated with Terfenol-D. Except for the NiCo, substrates we will also coat the samples with NiCo in order to have a film that will hold in the magnetic field. As part of the coating process, we will control the stress of the film by varying the voltage bias while coating. The bias stress control can be used to apply films with minimal stress such as Terfenol-D and X-ray reflecting coatings

  13. In-space fabrication of thin-film structures

    NASA Technical Reports Server (NTRS)

    Lippman, M. E.

    1972-01-01

    A conceptual study of physical vapor-deposition processes for in-space fabrication of thin-film structures is presented. Potential advantages of in-space fabrication are improved structural integrity and surface reflectivity of free-standing ultra-thin films and coatings. Free-standing thin-film structures can find use as photon propulsion devices (solar sails). Other applications of the concept involve free-standing shadow shields, or thermal control coatings of spacecraft surfaces. Use of expendables (such as booster and interstage structures) as source material for the physical vapor deposition process is considered. The practicability of producing thin, textured, aluminum films by physical vapor deposition and subsequent separation from a revolving substrate is demonstrated by laboratory experiments. Heating power requirement for the evaporation process is estimated for a specific mission.

  14. Evaluation of the optical characteristics of c-axis oriented zinc oxide thin films grown by sol gel spin coating technique

    NASA Astrophysics Data System (ADS)

    Baisakh, K.; Behera, S.; Pati, S.

    2018-03-01

    In this work we have systematically studied the optical characteristics of synthesized wurzite zinc oxide thin films exhibiting (002) orientation. Using sol gel spin coating technique zinc oxide thin films are grown on pre cleaned fused quartz substrates. Structural properties of the films are studied using X-ray diffraction analysis. Micro structural analysis and thickness of the grown samples are analyzed using field emission scanning electron microscopy. With an aim to investigate the optical characteristics of the grown zinc oxide thin films the transmission and reflection spectra are evaluated in the ultraviolet-visible (UV-VIS) range. Using envelope method, the refractive index, extinction coefficient, absorption coefficient, band gap energy and the thickness of the synthesized films are estimated from the recorded UV-VIS spectra. An attempt has also been made to study the influence of crystallographic orientation on the optical characteristics of the grown films.

  15. Extraordinary Corrosion Protection from Polymer-Clay Nanobrick Wall Thin Films.

    PubMed

    Schindelholz, Eric J; Spoerke, Erik D; Nguyen, Hai-Duy; Grunlan, Jaime C; Qin, Shuang; Bufford, Daniel C

    2018-06-20

    Metals across all industries demand anticorrosion surface treatments and drive a continual need for high-performing and low-cost coatings. Here we demonstrate polymer-clay nanocomposite thin films as a new class of transparent conformal barrier coatings for protection in corrosive atmospheres. Films assembled via layer-by-layer deposition, as thin as 90 nm, are shown to reduce copper corrosion rates by >1000× in an aggressive H 2 S atmosphere. These multilayer nanobrick wall coatings hold promise as high-performing anticorrosion treatment alternatives to costlier, more toxic, and less scalable thin films, such as graphene, hexavalent chromium, or atomic-layer-deposited metal oxides.

  16. Protective Coats For Zinc-Rich Primers

    NASA Technical Reports Server (NTRS)

    Macdowell, Louis G, III

    1993-01-01

    Report describes tests of topcoats for inorganic zinc-rich primers on carbon steel. Topcoats intended to provide additional protection against corrosion in acidic, salty seacoast-air/rocket-engine-exhaust environment of Space Shuttle launch site. Tests focused on polyurethane topcoats on epoxy tie coats on primers. Part of study involved comparison between "high-build" coating materials and thin-film coating materials.

  17. Sol-gel preparation of silica and titania thin films

    NASA Astrophysics Data System (ADS)

    Thoř, Tomáš; Václavík, Jan

    2016-11-01

    Thin films of silicon dioxide (SiO2) and titanium dioxide (TiO2) for application in precision optics prepared via the solgel route are being investigated in this paper. The sol-gel process presents a low cost approach, which is capable of tailoring thin films of various materials in optical grade quality. Both SiO2 and TiO2 are materials well known for their application in the field of anti-reflective and also highly reflective optical coatings. For precision optics purposes, thickness control and high quality of such coatings are of utmost importance. In this work, thin films were deposited on microscope glass slides substrates using the dip-coating technique from a solution based on alkoxide precursors of tetraethyl orthosilicate (TEOS) and titanium isopropoxide (TIP) for SiO2 and TiO2, respectively. As-deposited films were studied using spectroscopic ellipsometry to determine their thickness and refractive index. Using a semi-empirical equation, a relationship between the coating speed and the heat-treated film thickness was described for both SiO2 and TiO2 thin films. This allows us to control the final heat-treated thin film thickness by simply adjusting the coating speed. Furthermore, films' surface was studied using the white-light interferometry. As-prepared films exhibited low surface roughness with the area roughness parameter Sq being on average of 0.799 nm and 0.33 nm for SiO2 and TiO2, respectively.

  18. Laser Damage in Thin Film Optical Coatings

    DTIC Science & Technology

    1992-07-01

    10) using E- beam evaporation and laser tests performed to determine the effect of conditioning laser spot size and coating design on improvement in...1.06 pm) consisting of a 15 layer 3 quarter-wave design (HFO2/SiO 2 and ZrO2/SiO 2) were fabricated by E- beam evaporation. Sol-gel processing was used to... designers select laser damage resistant coatings for optical elements to be employed in military systems using lasers or encountering lasers used as

  19. Thin magnesium layer confirmed as an antibacterial and biocompatible implant coating in a co‑culture model.

    PubMed

    Zaatreh, Sarah; Haffner, David; Strauss, Madlen; Dauben, Thomas; Zamponi, Christiane; Mittelmeier, Wolfram; Quandt, Eckhard; Kreikemeyer, Bernd; Bader, Rainer

    2017-04-01

    Implant-associated infections commonly result from biofilm‑forming bacteria and present severe complications in total joint arthroplasty. Therefore, there is a requirement for the development of biocompatible implant surfaces that prevent bacterial biofilm formation. The present study coated titanium samples with a thin, rapidly corroding layer of magnesium, which were subsequently investigated with respect to their antibacterial and cytotoxic surface properties using a Staphylococcus epidermidis (S. epidermidis) and human osteoblast (hOB) co‑culture model. Primary hOBs and S. epidermidis were co‑cultured on cylindrical titanium samples (Ti6Al4V) coated with pure magnesium via magnetron sputtering (5 µm thickness) for 7 days. Uncoated titanium test samples served as controls. Vital hOBs were identified by trypan blue staining at days 2 and 7. Planktonic S. epidermidis were quantified by counting the number of colony forming units (CFU). The quantification of biofilm‑bound S. epidermidis on the surfaces of test samples was performed by ultrasonic treatment and CFU counting at days 2 and 7. The number of planktonic and biofilm‑bound S. epidermidis on the magnesium‑coated samples decreased by four orders of magnitude when compared with the titanium control following 7 days of co‑culture. The number of vital hOBs on the magnesium‑coated samples was observed to increase (40,000 cells/ml) when compared with the controls (20,000 cells/ml). The results of the present study indicate that rapidly corroding magnesium‑coated titanium may be a viable coating material that possesses antibacterial and biocompatible properties. A co‑culture test is more rigorous than a monoculture study, as it accounts for confounding effects and assesses additional interactions that are more representative of in vivo situations. These results provide a foundation for the future testing of this type of surface in animals.

  20. Study of blended conductive graft copolymer with graphite oxide thin films deposited using spin coating method for gas sensing and photovoltaic applications

    NASA Astrophysics Data System (ADS)

    KałuŻyński, P.; Procek, M.; Stolarczyk, Agnieszka; Maciak, E.

    2017-08-01

    This work presents an investigation on conductive graft comb copolymer like SILPEG CH9 with carbon materials like graphite oxide or reduced graphite oxide. Morphology and optical properties like sample roughness, graphite oxide particles distribution, optical transmittance were measured of obtained thin films deposited on glass substrate using spin coating method. The study showed that obtained thin films are repeatable, convenient to process, and their parameters can be easy changed by the spin rate regulation during the deposition. Given results shows the possibility of using such polymer blend in the implementation of organic photovoltaic cells and different optoelectronics applications.

  1. A flow reactor setup for photochemistry of biphasic gas/liquid reactions

    PubMed Central

    Schachtner, Josef; Bayer, Patrick

    2016-01-01

    Summary A home-built microreactor system for light-mediated biphasic gas/liquid reactions was assembled from simple commercial components. This paper describes in full detail the nature and function of the required building elements, the assembly of parts, and the tuning and interdependencies of the most important reactor and reaction parameters. Unlike many commercial thin-film and microchannel reactors, the described set-up operates residence times of up to 30 min which cover the typical rates of many organic reactions. The tubular microreactor was successfully applied to the photooxygenation of hydrocarbons (Schenck ene reaction). Major emphasis was laid on the realization of a constant and highly reproducible gas/liquid slug flow and the effective illumination by an appropriate light source. The optimized set of conditions enabled the shortening of reaction times by more than 99% with equal chemoselectivities. The modular home-made flow reactor can serve as a prototype model for the continuous operation of various other reactions at light/liquid/gas interfaces in student, research, and industrial laboratories. PMID:27829887

  2. Fused Silica Surface Coating for a Flexible Silica Mat Insulation System

    NASA Technical Reports Server (NTRS)

    Rhodes, W. H.

    1973-01-01

    Fused silica insulation coatings have been developed for application to a flexible mat insulation system. Based on crystalline phase nucleation and growth kinetics, a 99+% SiO2 glass was selected as the base composition. A coating was developed that incorporated the high emissivity phase NiCr2O4 as a two phase coating with goals of high emittance and minimum change in thermal expansion. A second major coating classification has a plasma sprayed emittance coating over a sealed pure amorphous SiO2 layer. A third area of development centered on extremely thin amorphous SiO2 coatings deposited by chemical vapor deposition. The coating characterization studies presented are mechanical testing of thin specimens extracted from the coatings, cyclic arc exposures, and emittance measurements before and after arc exposures.

  3. Preparation of bone-implants by coating hydroxyapatite nanoparticles on self-formed titanium dioxide thin-layers on titanium metal surfaces.

    PubMed

    Wijesinghe, W P S L; Mantilaka, M M M G P G; Chathuranga Senarathna, K G; Herath, H M T U; Premachandra, T N; Ranasinghe, C S K; Rajapakse, R P V J; Rajapakse, R M G; Edirisinghe, Mohan; Mahalingam, S; Bandara, I M C C D; Singh, Sanjleena

    2016-06-01

    Preparation of hydroxyapatite coated custom-made metallic bone-implants is very important for the replacement of injured bones of the body. Furthermore, these bone-implants are more stable under the corrosive environment of the body and biocompatible than bone-implants made up of pure metals and metal alloys. Herein, we describe a novel, simple and low-cost technique to prepare biocompatible hydroxyapatite coated titanium metal (TiM) implants through growth of self-formed TiO2 thin-layer (SFTL) on TiM via a heat treatment process. SFTL acts as a surface binder of HA nanoparticles in order to produce HA coated implants. Colloidal HA nanorods prepared by a novel surfactant-assisted synthesis method, have been coated on SFTL via atomized spray pyrolysis (ASP) technique. The corrosion behavior of the bare and surface-modified TiM (SMTiM) in a simulated body fluid (SBF) medium is also studied. The highest corrosion rate is found to be for the bare TiM plate, but the corrosion rate has been reduced with the heat-treatment of TiM due to the formation of SFTL. The lowest corrosion rate is recorded for the implant prepared by heat treatment of TiM at 700 °C. The HA-coating further assists in the passivation of the TiM in the SBF medium. Both SMTiM and HA coated SMTiM are noncytotoxic against osteoblast-like (HOS) cells and are in high-bioactivity. The overall production process of bone-implant described in this paper is in high economic value. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Testing and evaluation of oxide-coated iridium/rhenium chambers

    NASA Technical Reports Server (NTRS)

    Reed, Brian D.

    1993-01-01

    Iridium-coated rhenium provides long life operation of radiation-cooled rockets at temperatures up to 2200 C. Ceramic oxide coatings could be used to increase iridium/rhenium rocket lifetimes and allow operation in highly oxidizing environments. Ceramic oxide coatings promise to serve as both thermal and diffusion barriers for the iridium layer. Seven ceramic oxide-coated iridium/rhenium, 22 N rocket chambers were tested on gaseous hydrogen/gaseous oxygen propellants. Five chambers had thick (over 10 mils), monolithic coatings of either hafnia or zirconia. Two chambers had coatings with thicknesses less than 5 mils. One of these chambers had a thin-walled coating of zirconia infiltrated with sol gel hafnia. The other chamber had a coating composed of an iridium/oxide composite. The purpose of this test program was to assess the ability of the oxide coatings to withstand the thermal shock of combustion initiation, adhere under repeated thermal cycling, and operate in aggressively oxidizing environments. All of the coatings survived the thermal shock of combustion and demonstrated operation at mixture ratios up to 11. The iridium/oxide composite coated chamber included testing for over 29 minutes at mixture ratio 16. The thicker-walled coatings provided the larger temperature drops across the oxide layer (up to 570 C), but were susceptible to macrocracking and eventual chipping at a stress concentrator. The cracks apparently resealed during firing, under compression of the oxide layer. The thinner-walled coatings did not experience the macrocracking and chipping of the chambers seen with the thick, monolithic coatings. However, burnthroughs in the throat region did occur in both of the thin-walled chambers at mixture ratios well above stochiometric. The burn-throughs were probably the result of oxygen-diffusion through the oxide coating that allowed the underlying iridium and rhenium layers to be oxidized. The results of this test program indicated that the thin

  5. Method for making surfactant-templated thin films

    DOEpatents

    Brinker, C. Jeffrey; Lu, Yunfeng; Fan, Hong You

    2010-08-31

    An evaporation-induced self-assembly method to prepare a porous, surfactant-templated, thin film by mixing a silica sol, a solvent, a surfactant, and an interstitial compound, evaporating a portion of the solvent to form a liquid, crystalline thin film mesophase material, and then removal of the surfactant template. Coating onto a substrate produces a thin film with the interstitial compound either covalently bonded to the internal surfaces of the ordered or disordered mesostructure framework or physically entrapped within the ordered or disordered mesostructured framework. Particles can be formed by aerosol processing or spray drying rather than coating onto a substrate. The selection of the interstitial compound provides a means for developing thin films for applications including membranes, sensors, low dielectric constant films, photonic materials and optical hosts.

  6. Method for making surfactant-templated thin films

    DOEpatents

    Brinker, C. Jeffrey; Lu, Yunfeng; Fan, Hongyou

    2002-01-01

    An evaporation-induced self-assembly method to prepare a porous, surfactant-templated, thin film by mixing a silica sol, a solvent, a surfactant, and an interstitial compound, evaporating a portion of the solvent to form a liquid, crystalline thin film mesophase material, and then removal of the surfactant template. Coating onto a substrate produces a thin film with the interstitial compound either covalently bonded to the internal surfaces of the ordered or disordered mesostructure framework or physically entrapped within the ordered or disordered mesostructured framework. Particles can be formed by aerosol processing or spray drying rather than coating onto a substrate. The selection of the interstitial compound provides a means for developing thin films for applications including membranes, sensors, low dielectric constant films, photonic materials and optical hosts.

  7. Soap-film coating: High-speed deposition of multilayer nanofilms

    PubMed Central

    Zhang, Renyun; Andersson, Henrik A.; Andersson, Mattias; Andres, Britta; Edlund, Håkan; Edström, Per; Edvardsson, Sverker; Forsberg, Sven; Hummelgård, Magnus; Johansson, Niklas; Karlsson, Kristoffer; Nilsson, Hans-Erik; Norgren, Magnus; Olsen, Martin; Uesaka, Tetsu; Öhlund, Thomas; Olin, Håkan

    2013-01-01

    The coating of thin films is applied in numerous fields and many methods are employed for the deposition of these films. Some coating techniques may deposit films at high speed; for example, ordinary printing paper is coated with micrometre-thick layers of clay at a speed of tens of meters per second. However, to coat nanometre thin films at high speed, vacuum techniques are typically required, which increases the complexity of the process. Here, we report a simple wet chemical method for the high-speed coating of films with thicknesses at the nanometre level. This soap-film coating technique is based on forcing a substrate through a soap film that contains nanomaterials. Molecules and nanomaterials can be deposited at a thickness ranging from less than a monolayer to several layers at speeds up to meters per second. We believe that the soap-film coating method is potentially important for industrial-scale nanotechnology. PMID:23503102

  8. Evaluation of an Innovative Use of Removable Thin Film Coating Technology for the Abatement of Hazardous Contaminants

    PubMed Central

    Lumia, Margaret E.; Gentile, Charles; Gochfeld, Michael; Efthimion, Philip; Robson, Mark

    2015-01-01

    This study evaluates a new decontamination technique for the mitigation and abatement of hazardous particulates. The traditional decontamination methods used to clean facilities and equipment are time-consuming, prolonging workers' exposure time, may generate airborne hazards, and can be expensive. The use of removable thin film coating as a decontamination technique for surface contamination proved to be a more efficient method of decontamination. This method was tested at three different sites on different hazardous metals. One application of the coating reduced the levels of these metals 90% and had an average reduction of one magnitude. The paired t-tests that were performed for each metal demonstrated that there was a statistically significant reduction of the metal after the use of the coating: lead (p = 0.03), beryllium (p = 0.05), aluminum (p = 0.006), iron (p = 0.0001), and copper (p = 0.004). The Kendall tau-b correlation coefficient demonstrates that there was a positive correlation between the initial levels of contamination and the removal efficiency for all the samples taken from different locations on the floor for each of the three sites. This new decontamination technique worked efficiently, requiring only one application, which decreased exposure time and did not generate any airborne dust. PMID:19437305

  9. Strong thin membrane structure. [solar sails

    NASA Technical Reports Server (NTRS)

    Frazer, R. E. (Inventor)

    1979-01-01

    A continuous process is described for producing strong lightweight structures for use as solar sails for spacecraft propulsion by radiation pressure. A thin reflective coating, such as aluminum, is applied to a rotating cylinder. A nylon mesh, applied over the aluminum coating, is then coated with a polymerizing material such as a para-xylylene monomer gas to polymerize as a film bound to the mesh and the aluminum. An emissivity increasing material such as chromium or silicon monoxide is applied to the polymer film to disperse such material colloidally into the growing polymer film, or to the final polymer film. The resulting membrane structure is then removed from the cylinder. Alternately, the membrane structure can be formed by etching a substrate in the form of an organic film such as a polymide, or a metal foil, to remove material from the substrate and reduce its thickness. A thin reflective coating (aluminum) is applied on one side of the substrate, and an emissivity increasing coating is applied on the reverse side of the substrate.

  10. Effect of fabrication parameters on coating properties of tubular solid oxide fuel cell electrolyte prepared by vacuum slurry coating

    NASA Astrophysics Data System (ADS)

    Son, Hui-Jeong; Song, Rak-Hyun; Lim, Tak-Hyoung; Lee, Seung-Bok; Kim, Sung-Hyun; Shin, Dong-Ryul

    The process of vacuum slurry coating for the fabrication of a dense and thin electrolyte film on a porous anode tube is investigated for application in solid oxide fuel cells. 8 mol% yttria stabilized zirconia is coated on an anode tube by vacuum slurry-coating process as a function of pre-sintering temperature of the anode tube, vacuum pressure, slurry concentration, number of coats, and immersion time. A dense electrolyte layer is formed on the anode tube after final sintering at 1400 °C. With decrease in the pre-sintering temperature of the anode tube, the grain size of the coated electrolyte layer increases and the number of surface pores in the coating layer decreases. This is attributed to a reduced difference in the respective shrinkage of the anode tube and the electrolyte layer. The thickness of the coated electrolyte layer increases with the content of solid powder in the slurry, the number of dip-coats, and the immersion time. Although vacuum pressure has no great influence on the electrolyte thickness, higher vacuum produces a denser coating layer, as confirmed by low gas permeability and a reduced number of defects in the coating layer. A single cell with the vacuum slurry coated electrolyte shows a good performance of 620 mW cm -2 (0.7 V) at 750 °C. These experimental results indicate that the vacuum slurry-coating process is an effective method to fabricate a dense thin film on a porous anode support.

  11. Polymer-coated compliant receivers for intact laser-induced forward transfer of thin films: experimental results and modelling

    NASA Astrophysics Data System (ADS)

    Feinaeugle, Matthias; Horak, Peter; Sones, Collin L.; Lippert, Thomas; Eason, Rob W.

    2014-09-01

    In this study, we investigate both experimentally and numerically laser-induced forward transfer (LIFT) of thin films to determine the role of a thin polymer layer coating the receiver with the aim of modifying the rate of deceleration and reduction of material stress preventing intact material transfer. A numerical model of the impact phase during LIFT shows that such a layer reduces the modelled stress. The evolution of stress within the transferred deposit and the substrate as a function of the thickness of the polymer layer, the transfer velocity and the elastic properties of the polymer are evaluated. The functionality of the polymer layer is verified experimentally by LIFT printing intact 1- m-thick bismuth telluride films and polymeric light-emitting diode pads onto a layer of 12-m-thick polydimethylsiloxane and 50-nm-thick poly(3,4-ethylenedioxythiophene) blended with poly(styrenesulfonate) (PEDOT:PSS), respectively. Furthermore, it is demonstrated experimentally that the introduction of such a compliant layer improves adhesion between the deposit and its substrate.

  12. Continuous Flow Science in an Undergraduate Teaching Laboratory: Bleach-Mediated Oxidation in a Biphasic System

    ERIC Educational Resources Information Center

    Kairouz, Vanessa; Collins, Shawn K.

    2018-01-01

    An undergraduate teaching laboratory experiment involving a continuous flow, bleach-mediated oxidation of aldehydes under biphasic conditions was developed that allowed students to explore concepts of mixing or mass transport, solvent sustainability, biphasic reactions, phase transfer catalysis, and continuous flow chemistry.

  13. Field emission of silicon emitter arrays coated with sol-gel (Ba0.65Sr0.35)1-xLaxTiO3 thin films

    NASA Astrophysics Data System (ADS)

    Lu, H.; Pan, J. S.; Chen, X. F.; Zhu, W. G.

    2007-07-01

    (Ba0.65Sr0.35)1-xLaxTiO3 (BSLT) thin films with different La concentrations have been deposited on Si field emitter arrays (FEAs) using sol-gel technology for field electron emission applications. The films exhibit the perovskite structure at low La substitution level (x ≤0.5) and the pyrochlore phase at high La concentration (x ≥0.75). The 30-nm-thick BSLT (x =0.25) thin film has higher crystallinity of perovskite structure in the surface region. An x-ray photoelectron spectroscopy study indicates that the oxygen vacancy concentration decreases with La substitution. With respect to the undoped Ba0.65Sr0.35TiO3 thin film, the Fermi level shifts down for the BSLT sample with x =0.1 ascribed to the decreasing oxygen vacancy concentration, and then shifts up for the BSLT sample with x =0.25 attributed to the increasing La substitution level. In highly doped films with an x value over 0.5, it shifts down again associated with the second pyrochlore phase formation. The best enhancement in field emission is found for the BSLT-coated (x =0.25) Si FEAs due to the improved perovskite structure in the surface region and up-moved Fermi level of the coating.

  14. Thin Film Solid Lubricant Development

    NASA Technical Reports Server (NTRS)

    Benoy, Patricia A.

    1997-01-01

    Tribological coatings for high temperature sliding applications are addressed. A sputter-deposited bilayer coating of gold and chromium is investigated as a potential solid lubricant for protection of alumina substrates during sliding at high temperature. Evaluation of the tribological properties of alumina pins sliding against thin sputtered gold films on alumina substrates is presented.

  15. Effect of Fe incorporation on the optical behavior of ZnO thin films prepared by sol-gel derived spin coating techniques

    NASA Astrophysics Data System (ADS)

    Rakkesh, R. Ajay; Malathi, R.; Balakumar, S.

    2013-02-01

    In this work, Fe doped Zinc Oxide (ZnO) thin films were fabricated on the glass substrate by sol-gel derived spin coating technique. X-ray Diffraction studies revealed that the obtained pure and Fe doped ZnO thin films were in the wurtzite and spinel phase respectively. The three well defined Raman lines at 432, 543 and 1091 cm-1 also confirmed the lattice structure of the ZnO thin film has wurtzite symmetry. While doping Fe atoms in the ZnO, there was a significant change in the phase from wurtzite to spinel structure; owing to Fe (III) ions being incorporated into the lattice through substitution of Zn (II) ions. Room temperature PL spectra showed that the role of defect mediated red emissions at 612 nm was due to radial recombination of a photogenerated hole with an electron that belongs to the Fe atoms, which were discussed in detail.

  16. Advanced optical coatings for astronomical instrumentation

    NASA Astrophysics Data System (ADS)

    Pradal, Fabien; Leplan, Hervé; Vayssade, Hervé; Geyl, Roland

    2016-07-01

    Recently Safran Reosc worked and progressed on various thin film technology for: Large mirrors with low stress and stable coatings. Large lens elements with strong curvature and precise layer specifications. Large filters with high spectral response uniformity specifications. IR coatings with low stress and excellent resistance to cryogenic environment for NIR to LWIR domains. Pixelated coatings. Results will be presented and discussed on the basis of several examples.

  17. The added predictive value of biphasic events in ST analysis of the fetal electrocardiogram for intrapartum fetal monitoring.

    PubMed

    Becker, Jeroen H; Krikhaar, Anniek; Schuit, Ewoud; Mårtendal, Annika; Maršál, Karel; Kwee, Anneke; Visser, Gerard H A; Amer-Wåhlin, Isis

    2015-02-01

    To study the predictive value of biphasic ST-events for interventions for suspected fetal distress and adverse neonatal outcome, when using ST-analysis of the fetal electrocardiogram (FECG) for intrapartum fetal monitoring. Prospective cohort study. Three academic hospitals in Sweden. Women in labor with a high-risk singleton fetus in cephalic position beyond 36 weeks of gestation. In women in labor who were monitored with conventional cardiotocography, ST-waveform analysis was recorded and concealed. Traces with biphasic ST-events of the FECG (index) were compared with traces without biphasic events of the FECG. The ability of biphasic events to predict interventions for suspected fetal distress and adverse outcome was assessed using univariable and multivariable logistic regression analyses. Interventions for suspected fetal distress and adverse outcome (defined as presence of metabolic acidosis (i.e. umbilical cord pH <7.05 and base deficit in extracellular fluid >12 mmol), umbilical cord pH <7.00, 5-min Apgar score <7, admittance to neonatal intensive care unit or perinatal death). Although the presence of biphasic events of the FECG was associated with more interventions for fetal distress and an increased risk of adverse outcome compared with cases with no biphasic events, the presence of significant (i.e. intervention advised according to cardiotocography interpretation) biphasic events showed no independent association with interventions for fetal distress [odds ratio (OR) 1.71, 95% confidence interval (CI) 0.65-4.50] or adverse outcome (OR 1.96, 95% CI 0.74-5.24). The presence of significant biphasic events did not discriminate in the prediction of interventions for fetal distress or adverse outcome. Therefore, biphasic events in relation to ST-analysis monitoring during birth should be omitted if future studies confirm our findings. © 2014 Nordic Federation of Societies of Obstetrics and Gynecology.

  18. Structural, optical, morphological and electrical properties of undoped and Al-doped ZnO thin films prepared using sol—gel dip coating process

    NASA Astrophysics Data System (ADS)

    Boukhenoufa, N.; Mahamdi, R.; Rechem, D.

    2016-11-01

    In this work, sol—gel dip-coating technique was used to elaborate ZnO pure and ZnO/Al films. The impact of Al-doped concentration on the structural, optical, surface morphological and electrical properties of the elaborated samples was investigated. It was found that better electrical and optical performances have been obtained for an Al concentration equal to 5%, where the ZnO thin films exhibit a resistivity value equal to 1.64104 Ω·cm. Moreover, highest transparency has been recorded for the same Al concentration value. The obtained results from this investigation make the developed thin film structure a potential candidate for high optoelectronic performance applications.

  19. White thin-film flip-chip LEDs with uniform color temperature using laser lift-off and conformal phosphor coating technologies.

    PubMed

    Lin, Huan-Ting; Tien, Ching-Ho; Hsu, Chen-Peng; Horng, Ray-Hua

    2014-12-29

    We fabricated a phosphor-conversion white light emitting diode (PC-WLED) using a thin-film flip-chip GaN LED with a roughened u-GaN surface (TFFC-SR-LED) that emits blue light at 450 nm wavelength with a conformal phosphor coating that converts the blue light into yellow light. It was found that the TFFC-SR-LED with the thin-film substrate removal process and surface roughening exhibits a power enhancement of 16.1% when compared with the TFFC-LED without a sapphire substrate. When a TFFC-SR-LED with phosphors on a Cu-metal packaging-base (TFFC-SR-Cu-WLED) was operated at a forward-bias current of 350 mA, luminous flux and luminous efficacy were increased by 17.8 and 11.9%, compared to a TFFC-SR-LED on a Cup-shaped packaging-base (TFFC-SR-Cup-WLED). The angular correlated color temperature (CCT) deviation of a TFFC-SR-Cu-WLED reaches 77 K in the range of -70° to + 70° when the average CCT of white LEDs is around 4300 K. Consequently, the TFFC-SR-LED in a conformal coating phosphor structure on a Cu packaging-base could not only increase the luminous flux output, but also improve the angular-dependent CCT uniformity, thereby reducing the yellow ring effect.

  20. Ferroelectric properties of PZT/BFO multilayer thin films prepared using the sol-gel method.

    PubMed

    Jo, Seo-Hyeon; Lee, Sung-Gap; Lee, Young-Hie

    2012-01-05

    In this study, Pb(Zr0.52Ti0.48)O3/BiFeO3 [PZT/BFO] multilayer thin films were fabricated using the spin-coating method on a Pt(200 nm)/Ti(10 nm)/SiO2(100 nm)/p-Si(100) substrate alternately using BFO and PZT metal alkoxide solutions. The coating-and-heating procedure was repeated several times to form the multilayer thin films. All PZT/BFO multilayer thin films show a void-free, uniform grain structure without the presence of rosette structures. The relative dielectric constant and dielectric loss of the six-coated PZT/BFO [PZT/BFO-6] thin film were approximately 405 and 0.03%, respectively. As the number of coatings increased, the remanent polarization and coercive field increased. The values for the BFO-6 multilayer thin film were 41.3 C/cm2 and 15.1 MV/cm, respectively. The leakage current density of the BFO-6 multilayer thin film at 5 V was 2.52 × 10-7 A/cm2.

  1. Ferroelectric properties of PZT/BFO multilayer thin films prepared using the sol-gel method

    PubMed Central

    2012-01-01

    In this study, Pb(Zr0.52Ti0.48)O3/BiFeO3 [PZT/BFO] multilayer thin films were fabricated using the spin-coating method on a Pt(200 nm)/Ti(10 nm)/SiO2(100 nm)/p-Si(100) substrate alternately using BFO and PZT metal alkoxide solutions. The coating-and-heating procedure was repeated several times to form the multilayer thin films. All PZT/BFO multilayer thin films show a void-free, uniform grain structure without the presence of rosette structures. The relative dielectric constant and dielectric loss of the six-coated PZT/BFO [PZT/BFO-6] thin film were approximately 405 and 0.03%, respectively. As the number of coatings increased, the remanent polarization and coercive field increased. The values for the BFO-6 multilayer thin film were 41.3 C/cm2 and 15.1 MV/cm, respectively. The leakage current density of the BFO-6 multilayer thin film at 5 V was 2.52 × 10-7 A/cm2. PMID:22221519

  2. Crystalline orientation engineering and charge transport in thin film YBa(2)Cu(3)O(7-x) superconducting surface-coated conductors

    NASA Astrophysics Data System (ADS)

    Chudzik, Michael Patrick

    The weak-link behavior of grain boundaries in polycrystalline high-T c superconductors adversely affects the current density in these materials. The development of wire technology based on polycrystalline high-Tc materials requires understanding and controlling the development of low-angle grain boundaries in these conductors. The research goal is to comprehensively examine the methodology in fabrication and characterization to understand the structure-transport correlation in YBa2Cu3O 7-x (YBCO) surface-coated conductors. High current density YBCO coated conductors were fabricated and characterized as candidates for second generation high-Tc wire technology. Critical current densities (Jc) greater than 1 x 106 A/cm2 at 77 K and zero magnetic field were obtained using thin films epitaxially grown by metalorganic chemical vapor deposition (MOCVD) and pulsed laser deposition (PLD) on oriented buffer layers. The biaxially textured oxide buffer layers were deposited by ion-beam-assisted deposition (IBAD). The transport properties of coated conductors were evaluated in high magnetic fields for intrinsic and extrinsic flux vortex pinning effects for improved high-field properties. Transport Jc's of these coated conductors at 7 tesla (77 K) were measured at values greater than 105 A/cm 2 with the magnetic field perpendicular to the YBCO c-axis (B⊥ c) in both MOCVD and PLD derived conductors. The Jc's in B || c orientation fell an order of magnitude lower at 7 tesla to values near 10 4 A/cm2 due to decreased intrinsic flux pinning. The critical current densities as a function of grain boundary misorientation were found to deviate from the general trend determined for single grain boundary junctions, due to the mosaic structure, which allows meandering current flow. Extensive parametric investigations of relevant thin film growth techniques were utilized to establish growth-property relationships that led to optimized fabrication of high-Tc conductors. The work contained

  3. Dissolved nutrients and atrazine removal by column-scale monophasic and biphasic rain garden model systems.

    PubMed

    Yang, Hanbae; McCoy, Edward L; Grewal, Parwinder S; Dick, Warren A

    2010-08-01

    Rain gardens are bioretention systems that have the potential to reduce peak runoff flow and improve water quality in a natural and aesthetically pleasing manner. We compared hydraulic performance and removal efficiencies of nutrients and atrazine in a monophasic rain garden design versus a biphasic design at a column-scale using simulated runoff. The biphasic rain garden was designed to increase retention time and removal efficiency of runoff pollutants by creating a sequence of water saturated to unsaturated conditions. We also evaluated the effect of C substrate availability on pollutant removal efficiency in the biphasic rain garden. Five simulated runoff events with various concentrations of runoff pollutants (i.e. nitrate, phosphate, and atrazine) were applied to the monophasic and biphasic rain gardens once every 5d. Hydraulic performance was consistent over the five simulated runoff events. Peak flow was reduced by approximately 56% for the monophasic design and 80% for the biphasic design. Both rain garden systems showed excellent removal efficiency of phosphate (89-100%) and atrazine (84-100%). However, significantly (p<0.001) higher removal of nitrate was observed in the biphasic (42-63%) compared to the monophasic rain garden (29-39%). Addition of C substrate in the form of glucose increased removal efficiency of nitrate significantly (p<0.001), achieving up to 87% removal at a treatment C/N ratio of 2.0. This study demonstrates the importance of retention time, environmental conditions (i.e. saturated/unsaturated conditions), and availability of C substrate for bioremediation of pollutants, especially nitrates, in rain gardens. (c) 2010 Elsevier Ltd. All rights reserved.

  4. The role of film interfaces in near-ultraviolet absorption and pulsed-laser damage in ion-beam-sputtered coatings based on HfO 2/SiO 2 thin-film pairs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ristau, Detlev; Papernov, S.; Kozlov, A. A.

    2015-11-23

    The role of thin-film interfaces in the near-ultraviolet absorption and pulsed-laser–induced damage was studied for ion-beam–sputtered and electron-beam–evaporated coatings comprised from HfO 2 and SiO 2 thin-film pairs. To separate contributions from the bulk of the film and from interfacial areas, absorption and damage-threshold measurements were performed for a one-wave (355-nm wavelength) thick, HfO 2 single-layer film and for a film containing seven narrow HfO 2 layers separated by SiO 2 layers. The seven-layer film was designed to have a total optical thickness of HfO 2 layers, equal to one wave at 355 nm and an E-field peak and averagemore » intensity similar to a single-layer HfO 2 film. Absorption in both types of films was measured using laser calorimetry and photothermal heterodyne imaging. The results showed a small contribution to total absorption from thin-film interfaces, as compared to HfO 2 film material. The relevance of obtained absorption data to coating near-ultraviolet, nanosecond-pulse laser damage was verified by measuring the damage threshold and characterizing damage morphology. The results of this study revealed a higher damage resistance in the seven-layer coating as compared to the single-layer HfO 2 film in both sputtered and evaporated coatings. Here, the results are explained through the similarity of interfacial film structure with structure formed during the co-deposition of HfO 2 and SiO 2 materials.« less

  5. Operation and Performance of a Biphase Turbine Power Plant at the Cerro Prieto Geothermal Field (Final Report)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hays, Lance G.

    2000-09-01

    A full scale, wellhead Biphase turbine was manufactured and installed with the balance of plant at Well 103 of the Cerro Prieto geothermal resource in Baja, California. The Biphase turbine was first synchronized with the electrical grid of Comision Federal de Electricidad on August 20, 1997. The Biphase power plant was operated from that time until May 23, 2000, a period of 2 years and 9 months. A total of 77,549 kWh were delivered to the grid. The power plant was subsequently placed in a standby condition pending replacement of the rotor with a newly designed, higher power rotor andmore » replacement of the bearings and seals. The maximum measured power output of the Biphase turbine, 808 kWe at 640 psig wellhead pressure, agreed closely with the predicted output, 840 kWe. When combined with the backpressure steam turbine the total output power from that flow would be increased by 40% above the power derived only from the flow by the present flash steam plant. The design relations used to predict performance and design the turbine were verified by these tests. The performance and durability of the Biphase turbine support the conclusion of the Economics and Application Report previously published, (Appendix A). The newly designed rotor (the Dual Pressure Rotor) was analyzed for the above power condition. The Dual Pressure Rotor would increase the power output to 2064 kWe by incorporating two pressure letdown stages in the Biphase rotor, eliminating the requirement for a backpressure steam turbine. The power plant availability was low due to deposition of solids from the well on the Biphase rotor and balance of plant problems. A great deal of plant down time resulted from the requirement to develop methods to handle the solids and from testing the apparatus in the Biphase turbine. Finally an online, washing method using the high pressure two-phase flow was developed which completely eliminated the solids problem. The availability of the Biphase turbine itself was

  6. Biphasic non-adrenergic, non-cholinergic relaxations of the mouse anococcygeus muscle.

    PubMed Central

    Gibson, A.; Yu, O.

    1983-01-01

    Trains of field stimulation of 60 s duration caused a biphasic relaxation of carbachol (50 microM)-induced tone in the mouse anococcygeus. The optimal pulse frequency and width were 10 Hz and 1 ms respectively. Tetrodotoxin (31, 124, and 310 nM) caused a dose-dependent reduction in the magnitude of both phases. Neither phase was affected by (+/-)-propranolol (1 microM), neostigmine (1 microM), (+)-tubocurarine (100 microM), or apamin (500 nM). Biphasic relaxations were observed in muscles from 6-hydroxydopamine pretreated mice. Haemolysed blood (10, 40, and 100 microliter/ml) reduced the magnitude of the first phase of nerve-induced relaxation to a greater extent than the second. This effect was reversible. Following a prolonged train of inhibitory nerve stimulation (10 Hz; 10 min) the magnitude of the first phase was reduced only slightly, but the second markedly. The possible relationships between the biphasic relaxation to field stimulation and putative non-adrenergic, non-cholinergic transmitters in the mouse anococcygeus are discussed. PMID:6652345

  7. Thin metal organic frameworks coatings by cathodic electrodeposition for solid-phase microextraction and analysis of trace exogenous estrogens in milk.

    PubMed

    Lan, Hangzhen; Pan, Daodong; Sun, Yangying; Guo, Yuxing; Wu, Zhen

    2016-09-21

    Cathodic electrodeposition (CED) has received great attention in metal-organic frameworks (MOFs) synthesis due to its distinguished properties including simplicity, controllability, mild synthesis conditions, and product continuously. Here, we report the fabrication of thin (Et3NH)2Zn3(BDC)4 (E-MOF-5) film coated solid phase microextraction (SPME) fiber by a one-step in situ cathodic electrodeposition strategy. Several etched stainless steel fibers were placed in parallel in order to achieve simultaneously electrochemical polymerization. The influence of different polymerization parameters Et3NHCl concentration and polymerization time were evaluated. The proposed method requires only 20 min for the preparation of E-MOF-5 coating. The optimum coating showed excellent thermal stability and mechanical durability with a long lifetime of more than 120 repetitions SPME operations, and also exhibited higher extraction selectivity and capacity to four estrogens than commonly-used commercial PDMS coating. The limits of detection for the estrogens were 0.17-0.56 ng mL(-1). Fiber-to-fiber reproducibility (n = 8) was in the respective ranges of 3.5%-6.1% relative standard deviation (RSD) for four estrogens for triplicate measurements at 200 ng mL(-1). Finally, the (E-MOF-5) coated fiber was evaluated for ethinylestradiol (EE2), bisphenol A (BPA), diethylstilbestrol (DES), and hexestrol (HEX) extraction in the spiked milk samples. The extraction performance of this new coating was satisfied enough for repeatable use without obvious decline. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Gold coated metal nanostructures grown by glancing angle deposition and pulsed electroplating

    NASA Astrophysics Data System (ADS)

    Grüner, Christoph; Reeck, Pascal; Jacobs, Paul-Philipp; Liedtke, Susann; Lotnyk, Andriy; Rauschenbach, Bernd

    2018-05-01

    Nickel based nanostructures are grown by glancing angle deposition (GLAD) on flat and pre-patterned substrates. These fabricated porous thin films were subsequently coated by pulsed electroplating with gold. The morphology and conformity of the gold coating were investigated by scanning electron microscopy and X-ray diffraction. Controlled growth of closed gold layers on the nanostructures could be achieved, while the open-pore structure of the nanosculptured thin films was preserved. Such gold coated nanostructures are a candidate for optical sensing and catalysis applications. The demonstrated method can be applied for numerous material combinations, allowing to provide GLAD thin films with new surface properties.

  9. Improved electron injection in spin coated Alq3 incorporated ZnO thin film in the device for solution processed OLEDs

    NASA Astrophysics Data System (ADS)

    Dasi, Gnyaneshwar; Ramarajan, R.; Thangaraju, Kuppusamy

    2018-04-01

    We deposit tris-(8-hydroxyquinoline)aluminum (Alq3) incorporated zinc oxide (ZnO) thin films by spin coating method under the normal ambient. It showed the higher transmittance (90% at 550 nm) when compared to that (80% at 550 nm) of spin coated pure ZnO film. SEM studies show that the Alq3 incorporation in ZnO film also enhances the formation of small sized particles arranged in the network of wrinkles on the surface. XRD reveals the improved crystalline properties upon Alq3 inclusion. We fabricate the electron-only devices (EODs) with the structure of ITO/spin coated ZnO:Alq3 as ETL/Alq3 interlayer/LiF/Al. The device showed the higher electron current density of 2.75 mA/cm2 at 12V when compared to that (0.82 mA/cm2 at 12V) of the device using pure ZnO ETL. The device results show that it will be useful to fabricate the low-cost solution processed OLEDs for future lighting and display applications.

  10. Functionalized Antimicrobial Composite Thin Films Printing for Stainless Steel Implant Coatings.

    PubMed

    Floroian, Laura; Ristoscu, Carmen; Mihailescu, Natalia; Negut, Irina; Badea, Mihaela; Ursutiu, Doru; Chifiriuc, Mariana Carmen; Urzica, Iuliana; Dyia, Hussien Mohammed; Bleotu, Coralia; Mihailescu, Ion N

    2016-06-09

    In this work we try to address the large interest existing nowadays in the better understanding of the interaction between microbial biofilms and metallic implants. Our aimed was to identify a new preventive strategy to control drug release, biofilm formation and contamination of medical devices with microbes. The transfer and printing of novel bioactive glass-polymer-antibiotic composites by Matrix-Assisted Pulsed Laser Evaporation into uniform thin films onto 316 L stainless steel substrates of the type used in implants are reported. The targets were prepared by freezing in liquid nitrogen mixtures containing polymer and antibiotic reinforced with bioglass powder. The cryogenic targets were submitted to multipulse evaporation by irradiation with an UV KrF* (λ = 248 nm, τFWHM ≤ 25 ns) excimer laser source. The prepared structures were analyzed by infrared spectroscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy and profilometry, before and after immersion in physiological fluids. The bioactivity and the release of the antibiotic have been evaluated. We showed that the incorporated antibiotic underwent a gradually dissolution in physiological fluids thus supporting a high local treatment efficiency. Electrochemical measurements including linear sweep voltammetry and impedance spectroscopy studies were carried out to investigate the corrosion resistance of the coatings in physiological environments. The in vitro biocompatibility assay using the MG63 mammalian cell line revealed that the obtained nanostructured composite films are non-cytotoxic. The antimicrobial effect of the coatings was tested against Staphylococcus aureus and Escherichia coli strains, usually present in implant-associated infections. An anti-biofilm activity was evidenced, stronger against E. coli than the S. aureus strain. The results proved that the applied method allows for the fabrication of implantable biomaterials which shield metal ion release and possess

  11. Light emission from compound eye with conformal fluorescent coating

    NASA Astrophysics Data System (ADS)

    Martín-Palma, Raúl J.; Miller, Amy E.; Pulsifer, Drew P.; Lakhtakia, Akhlesh

    2015-03-01

    Compound eyes of insects are attractive biological systems for engineered biomimicry as artificial sources of light, given their characteristic wide angular field of view. A blowfly eye was coated with a thin conformal fluorescent film, with the aim of achieving wide field-of-view emission. Experimental results showed that the coated eye emitted visible light and that the intensity showed a weaker angular dependence than a fluorescent thin film deposited on a flat surface.

  12. Fixation of the stressed state of glass plates by coating them with thin films using a plasma focus installation

    NASA Astrophysics Data System (ADS)

    Kolokoltsev, V. N.; Degtiarev, V. F.; Borovitskaya, I. V.; Nikulin, V. Ya.; Peregudova, E. N.; Silin, P. V.; Eriskin, A. A.

    2018-01-01

    Elastic deformation in transparent mediums is usually studied by the photoelasticity method. For opaque mediums the method of film coating and strain gauge method are used. After the external load was removed, the interference pattern corresponding to elastic deformation of the material disappears. It is found that the elastic deformation state of the thin glass plate under the action of concentrated load can be fixed during the deposition of a thin metal film. Deposition of thin copper films was carried out by passing of plasma through the copper tube installed inside the Plasma Focus installation. After removing of the load, interference pattern on the glass plates was observed in the form of Newton’s rings and isogers in non-monochromatic light on the CCD scanners which uses uorescent lamps with cold cathode. It is supposed that the copper film fixes the relief of the surface of the glass plate at the time of deformation and saves it when the load is removed. In the case of a concentrated load, this relief has the shape of a thin lens of large radius. For this reason, the interference of coherent light rays in a thin air gap between the glass of the scanners atbed and the lens surface has the shape of Newton's rings. In this case, when scanning the back side of the plate, isogyres are observed. The presented method can be used in the analysis of the mechanical stress in a various optical elements.

  13. Enhancement of the Ultraviolet Photoresponsivity of Al-doped ZnO Thin Films Prepared by using the Sol-gel Spin-coating Method

    NASA Astrophysics Data System (ADS)

    Lee, Wookbin; Leem, Jae-Young

    2018-03-01

    We report the structural, morphological, optical, and ultraviolet (UV) photoresponse properties of Al-doped ZnO (AZO) thin films prepared on silicon substrates with different Al doping concentrations by using the sol-gel spin-coating method. An analysis of the X-ray diffraction patterns of the AZO thin films revealed that the average grain size decreased and the c-axis lattice constant increased with Al content. The field-emission scanning electron microscopy images showed that with Al doping, the grain size decreased, but the film density increased with increasing Al doping concentration from 0% to 3%. These results indicate that the surface area of the film increased with increasing Al doping. The absorbance spectra revealed that the UV absorbance of the AZO thin films increased with increasing Al doping concentration and that the absorption onset shifted towards lower energies. The photoluminescence spectra revealed that with increasing Al doping, the intensity of the visible emission greatly decreased and the visible emission peak shifted forward lower energy (a red shift). The UV sensor based on the AZO thin films exhibited a higher responsivity than that based on the undoped ZnO thin film. Therefore, this study provides a facile method for improving the photoresponsivity of UV sensors.

  14. Optical coatings for laser fusion applications

    NASA Astrophysics Data System (ADS)

    Lowdermilk, W. H.; Milam, D.; Rainer, F.

    1980-04-01

    Lasers for fusion experiments use thin-film dielectric coatings for reflecting antireflecting and polarizing surface elements. Coatings are most important to the Nd:glass laser application. The most important requirements of these coatings are accuracy of the average value of reflectance and transmission, uniformity of amplitude and phase front of the reflected or transmitted light, and laser damage threshold. Damage resistance strongly affects the laser's design and performance. The success of advanced lasers for future experiments and for reactor applications requires significant developments in damage resistant coatings for ultraviolet laser radiation.

  15. Osteoconduction of impacted porous titanium particles with a calcium-phosphate coating is comparable to osteoconduction of impacted allograft bone particles: in vivo study in a nonloaded goat model.

    PubMed

    Walschot, Lucas H B; Aquarius, René; Schreurs, Barend W; Verdonschot, Nico; Buma, Pieter

    2012-08-01

    Impaction grafting restores bone defects in hip arthroplasty. Defects are reconstructed with bone particles (BoP) as substitute materials with adequate mechanical and biological properties are not yet available. Ceramic particles (CeP) have mechanical drawbacks as opposed to porous titanium particles (TiP). In this in vivo study, bone ingrowth and bone volume in coated and noncoated TiP were compared to porous biphasic calcium-phospate CeP and allograft BoP. Coatings consisted of silicated calcium-phosphate and carbonated apatite. Materials were implanted in goats and impacted in cylindrical defects (diameter 8 mm) in the cancellous bone of the femur. On the basis of fluorochrome labeling and histology, bone ingrowth distance was measured at 4, 8, and 12 weeks. Cross-sectional bone area was measured at 12 weeks. TiP created a coherent matrix of entangled particles. CeP pulverized and were noncoherent. Bone ingrowth in TiP improved significantly by the coatings to levels comparable to BoP and CeP. Cross-sectional bone area was smaller in CeP and TiP compared to BoP. The osteoconductive properties of impacted TiP with a calcium-phosphate coating are comparable to impacted allograft bone and impacted biphasic ceramics. A more realistic loaded in vivo study should prove that coated TiP is an attractive alternative to allograft bone. Copyright © 2012 Wiley Periodicals, Inc.

  16. Evaluation of a biphasic in vitro dissolution test for estimating the bioavailability of carbamazepine polymorphic forms.

    PubMed

    Deng, Jia; Staufenbiel, Sven; Bodmeier, Roland

    2017-07-15

    The purpose of this study was to discriminate three crystal forms of carbamazepine (a BCS II drug) by in vitro dissolution testing and to correlate in vitro data with published in vivo data. A biphasic dissolution system (phosphate buffer pH6.8 and octanol) was used to evaluate the dissolution of the three polymorphic forms and to compare it with conventional single phase dissolution tests performed under sink and non-sink conditions. Similar dissolution profiles of three polymorphic forms were observed in the conventional dissolution test under sink conditions. Although a difference in dissolution was seen in the single phase dissolution test under non-sink conditions as well as in the aqueous phase of the biphasic test, little relevance for in vivo data was observed. In contrast, the biphasic dissolution system could discriminate between the different polymorphic forms in the octanol phase with a ranking of form III>form I>dihydrate form. This was in agreement with the in vivo performance. The dissolved drug available for oral absorption, which was dominated by dissolution and solution-mediated phase transformation, could be reflected in the biphasic dissolution test. Moreover, a good correlation was established between in vitro dissolution in the octanol phase of the biphasic test and in vivo pharmacokinetic data (R 2 =0.99). The biphasic dissolution method is a valuable tool to discriminate between different crystal forms in the formulations of poorly soluble drugs. Copyright © 2017. Published by Elsevier B.V.

  17. Enhanced electron emission from coated metal targets: Effect of surface thickness on performance

    NASA Astrophysics Data System (ADS)

    Madas, Saibabu; Mishra, S. K.; Upadhyay Kahaly, Mousumi

    2018-03-01

    In this work, we establish an analytical formalism to address the temperature dependent electron emission from a metallic target with thin coating, operating at a finite temperature. Taking into account three dimensional parabolic energy dispersion for the target (base) material and suitable thickness dependent energy dispersion for the coating layer, Fermi Dirac statistics of electron energy distribution and Fowler's mechanism of the electron emission, we discuss the dependence of the emission flux on the physical properties such as the Fermi level, work function, thickness of the coating material, and operating temperature. Our systematic estimation of how the thickness of coating affects the emission current demonstrates superior emission characteristics for thin coating layer at high temperature (above 1000 K), whereas in low temperature regime, a better response is expected from thicker coating layer. This underlying fundamental behavior appears to be essentially identical for all configurations when work function of the coating layer is lower than that of the bulk target work function. The analysis and predictions could be useful in designing new coated materials with suitable thickness for applications in the field of thin film devices and field emitters.

  18. Effect of Magnesium and Osteoblast Cell Presence on Hydroxyapatite Formation on (Ti,Mg)N Thin Film Coatings

    NASA Astrophysics Data System (ADS)

    Onder, Sakip; Calikoglu-Koyuncu, Ayse Ceren; Torun Kose, Gamze; Kazmanli, Kursat; Kok, Fatma Nese; Urgen, Mustafa

    2017-07-01

    TiN and (Ti,Mg)N thin film coatings were deposited on Ti substrates by an arc-physical vapor deposition technique. The effect of cell presence on hydroxyapatite (HA) formation was investigated using surfaces with four different Mg contents (0, 8.1, 11.31, and 28.49 at.%). Accelerated corrosion above 10 at.% Mg had a negative effect on the performance in terms of both cell proliferation and mineralization. In the absence of cells, Mg-free TiN coatings and low-Mg (8.1 at.%)-doped (Ti,Mg)N surfaces led to an early HA deposition (after 7 days and 14 days, respectively) in cell culture medium (DMEM), but the crystallinity was low. More crystalline HA structures were obtained in the presence of the cells. HA deposits with an ideal Ca/P ratio were obtained at least a week earlier, at day 14, in TiN and low-Mg (8.1 at.%)-doped (Ti,Mg)N compared with that of high-Mg-containing surfaces (>10 at.%). A thicker mineralized matrix was formed on low-Mg (8.1 at.%)-doped (Ti,Mg)N relative to that of the TiN sample. Low-Mg doping (<10 at.%) into TiN coatings resulted in better cell proliferation and thicker mineralized matrix formation, so it could be a promising alternative for hard tissue applications.

  19. Low-voltage bendable pentacene thin-film transistor with stainless steel substrate and polystyrene-coated hafnium silicate dielectric.

    PubMed

    Yun, Dong-Jin; Lee, Seunghyup; Yong, Kijung; Rhee, Shi-Woo

    2012-04-01

    The hafnium silicate and aluminum oxide high-k dielectrics were deposited on stainless steel substrate using atomic layer deposition process and octadecyltrichlorosilane (OTS) and polystyrene (PS) were treated improve crystallinity of pentacene grown on them. Besides, the effects of the pentacene deposition condition on the morphologies, crystallinities and electrical properties of pentacene were characterized. Therefore, the surface treatment condition on dielectric and pentacene deposition conditions were optimized. The pentacene grown on polystyrene coated high-k dielectric at low deposition rate and temperature (0.2-0.3 Å/s and R.T.) showed the largest grain size (0.8-1.0 μm) and highest crystallinity among pentacenes deposited various deposition conditions, and the pentacene TFT with polystyrene coated high-k dielectric showed excellent device-performance. To decrease threshold voltage of pentacene TFT, the polystyrene-thickness on high-k dielectric was controlled using different concentration of polystyrene solution. As the polystyrene-thickness on hafnium silicate decreases, the dielectric constant of polystyrene/hafnium silicate increases, while the crystallinity of pentacene grown on polystyrene/hafnium silicate did not change. Using low-thickness polystyrene coated hafnium silicate dielectric, the high-performance and low voltage operating (<5 V) pentacene thin film transistor (μ: ~2 cm(2)/(V s), on/off ratio, >1 × 10(4)) and complementary inverter (DC gains, ~20) could be fabricated.

  20. Shock-induced termination of reentrant cardiac arrhythmias: Comparing monophasic and biphasic shock protocols

    NASA Astrophysics Data System (ADS)

    Bragard, Jean; Simic, Ana; Elorza, Jorge; Grigoriev, Roman O.; Cherry, Elizabeth M.; Gilmour, Robert F.; Otani, Niels F.; Fenton, Flavio H.

    2013-12-01

    In this article, we compare quantitatively the efficiency of three different protocols commonly used in commercial defibrillators. These are based on monophasic and both symmetric and asymmetric biphasic shocks. A numerical one-dimensional model of cardiac tissue using the bidomain formulation is used in order to test the different protocols. In particular, we performed a total of 4.8 × 106 simulations by varying shock waveform, shock energy, initial conditions, and heterogeneity in internal electrical conductivity. Whenever the shock successfully removed the reentrant dynamics in the tissue, we classified the mechanism. The analysis of the numerical data shows that biphasic shocks are significantly more efficient (by about 25%) than the corresponding monophasic ones. We determine that the increase in efficiency of the biphasic shocks can be explained by the higher proportion of newly excited tissue through the mechanism of direct activation.

  1. Gd, I-doped TiO2 thin films coated on solid waste material: synthesis, characterization, and photocatalytic activity under UV or visible light irradiation

    NASA Astrophysics Data System (ADS)

    Deng, Siwei; Yu, Jiang; Yang, Chun; Chang, Jiahua; Wang, Yizheng; Wang, Ping; Xie, Shiqian

    2017-10-01

    In this work, titanium dioxide thin films doped with different concentrations of gadolinium (Gd) and iodine (I) were synthesized using the sol-gel method and successfully coated on solid waste material (made in our lab) by dipping, resulting in the titanium dioxide thin-film-coated material (TiO2M). Then, the doped titanium dioxide thin films were characterized by X-ray diffraction (XRD), SEM, and UV-Vis spectroscopy; the optimum coating cycle was evaluated by removal rates of COD and ammonia nitrogen in raw wastewater and secondary effluent. Moreover, the photocatalytic activity was determined by degradation efficiency of methyl orange. The results showed that TiO2M had desirable reusability and the photocatalytic activity was attractive under ultraviolet light irradiation. Furthermore, it is found that the amount of dopant in TiO2 was a key parameter in increasing the photoactivity. 1% Gd-doped TiO2M exhibited the best photocatalytic activity for the degradation of methyl orange with the removal rate reaching 85.55%. The result was in good agreement with the observed smaller crystallite size and profitable crystal structure (anatase phase). Besides, the TiO2M (0.8% Gd-doped TiO2M, 1% Gd-doped TiO2M, 10% I-doped TiO2M, and 5% I-1% Gd-doped TiO2M) with desirable photocatalytic activity at ultraviolet light irradiation was selected for the visible light photocatalytic experiments with taking methyl orange as the target pollutants. The results showed that all of them exhibited the similar photocatalytic activity after 7 h of sunlight irradiation (around 90% removal effect). In general, this research developed a very effective and environmentally friendly photocatalyst for pollutant degradation.

  2. Self-assembled biomimetic antireflection coatings

    NASA Astrophysics Data System (ADS)

    Linn, Nicholas C.; Sun, Chih-Hung; Jiang, Peng; Jiang, Bin

    2007-09-01

    The authors report a simple self-assembly technique for fabricating antireflection coatings that mimic antireflective moth eyes. Wafer-scale, nonclose-packed colloidal crystals with remarkable large hexagonal domains are created by a spin-coating technology. The resulting polymer-embedded colloidal crystals exhibit highly ordered surface modulation and can be used directly as templates to cast poly(dimethylsiloxane) (PDMS) molds. Moth-eye antireflection coatings with adjustable reflectivity can then be molded against the PDMS master. The specular reflection of replicated nipple arrays matches the theoretical prediction using a thin-film multilayer model. These biomimetic films may find important technological application in optical coatings and solar cells.

  3. Ambient pressure process for preparing aerogel thin films reliquified sols useful in preparing aerogel thin films

    DOEpatents

    Brinker, Charles Jeffrey; Prakash, Sai Sivasankaran

    1999-01-01

    A method for preparing aerogel thin films by an ambient-pressure, continuous process. The method of this invention obviates the use of an autoclave and is amenable to the formation of thin films by operations such as dip coating. The method is less energy intensive and less dangerous than conventional supercritical aerogel processing techniques.

  4. Transparent, Conductive Coatings Developed for Arc-Proof Solar Arrays

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Transparent, conductive thin-film coatings have many potential applications where a surface must be able to dissipate electrical charges without sacrificing its optical properties. Such applications include automotive and aircraft windows, heat mirrors, optoelectronic devices, gas sensors, and solar cell array surfaces for space applications. Many spacecraft missions require that solar cell array surfaces dissipate charges in order to avoid damage such as electronic upsets, formation of pinholes in the protective coatings on solar array blankets, and contamination due to deposition of sputtered products. In tests at the NASA Lewis Research Center, mixed thin-films of sputter-deposited indium tin oxide (ITO) and magnesium fluoride (MgF2) that could be tailored to the desired sheet resistivity, showed transmittance values of greater than 90 percent. The samples evaluated were composed of mixed, thin-film ITO/MgF2 coatings, with a nominal thickness of 650 angstroms, deposited onto glass substrates. Preliminary results indicated that these coatings were durable to vacuum ultraviolet radiation and atomic oxygen. These coatings show promise for use on solar array surfaces in polar low-Earth-orbit environments, where a sheet resistivity of less than 10(exp 8)/square is required, and in geosynchronous orbit environments, where a resistivity of less than 10(exp 9)/square is required.

  5. Optical properties of micro and nano LiNbO3 thin film prepared by spin coating

    NASA Astrophysics Data System (ADS)

    Fakhri, Makram A.; Salim, Evan T.; Abdulwahhab, Ahmed W.; Hashim, U.; Salim, Zaid T.

    2018-07-01

    This paper deals with preparing of Lithium-Niobate thin films based on Sol-Gel technique on a substrate made of quartz, samples have been deposited under three different stirrer times. At 3000 round per minute of spin coating strategy, the deposition processes have been accomplished. The results showed an enhancement in the crystalline structure of the prepared samples with increasing the duration of stirrer time. The AFM measurement has assured that the structure of the prepared samples is more regular distributed, homogeneous and crack-free in their structures. Further, measurements and calculations of lattice constant, energy band gap, refractive index, and optical dielectric constant are also considered and agreed with experimental data collected by the characterized samples.

  6. Thin film optical coatings for the ultraviolet spectral region

    NASA Astrophysics Data System (ADS)

    Torchio, P.; Albrand, G.; Alvisi, M.; Amra, C.; Rauf, H.; Cousin, B.; Otrio, G.

    2017-11-01

    The applications and innovations related to the ultraviolet field are today in strong growth. To satisfy these developments which go from biomedical to the large equipment like the Storage Ring Free Electron Laser, it is crucial to control with an extreme precision the optical performances, in using the substrates and the thin film materials impossible to circumvent in this spectral range. In particular, the reduction of the losses by electromagnetic diffusion, Joule effect absorption, or the behavior under UV luminous flows of power, resistance to surrounding particulate flows... become top priority which concerns a broad European and international community. Our laboratory has the theoretical, experimental and technological tools to design and fabricate numerous multilayer coatings with desirable optical properties in the visible and infrared spectral ranges. We have extended our expertise to the ultraviolet. We present here some results on high reflectivity multidielectric mirrors towards 250 nm in wavelength, produced by Ion Plating Deposition. The latter technique allows us to obtain surface treatments with low absorption and high resistance. We give in this study the UV transparent materials and the manufacturing technology which have been the best suited to meet requirements. Single UV layers were deposited and characterized. HfO2/SiO2 mirrors with a reflectance higher than 99% at 300 nm were obtained. Optical and non-optical characterizations such as UV spectrophotometric measurements, X-Ray Diffraction spectra, Scanning Electron Microscope and Atomic Force Microscope images were performed

  7. Electrical properties of transparent conductive ATO coatings obtained by spray pyrolysis

    NASA Astrophysics Data System (ADS)

    Zinchenko, T. O.; Kondrashin, V. I.; Pecherskaya, E. A.; Kozlyakov, A. S.; Nikolaev, K. O.; Shepeleva, J. V.

    2017-08-01

    Transparent conductive coatings based on thin films of metal oxides have been widely spread in various optoelectronic devices and appliances. It is necessary to determine the influence of preparation conditions on coatings properties for their use in the solution of certain tasks. Thin films of tin dioxide were obtained by the method of spray pyrolysis on glass substrates. Surface resistance and resistivity, concentration and mobility of charge carriers, the conductivity were measured, and the dependences showing the effect of preparation conditions on electrical properties of optically transparent coatings.

  8. Biphasic Effects of Alcohol on Delay and Probability Discounting

    PubMed Central

    Bidwell, L. Cinnamon; MacKillop, James; Murphy, James G.; Grenga, Andrea; Swift, Robert M.; McGeary, John E.

    2014-01-01

    Delay discounting and probability discounting are behavioral economic indices of impulsive and risky decision making that have been associated with addictive behavior, but the acute biphasic effects of alcohol on these decision-making processes are not well understood. This study sought to investigate the biphasic effects of alcohol on delay and probability discounting across the ascending and descending limbs of the breath alcohol concentration (BAC) curve, which are respectively characterized by the stimulant and sedative effects of alcohol. Delay and probability discounting were measured at four time points (Baseline, Ascending, Descending, and Endpoint) across the BAC curve at two target alcohol doses (40 mg/dl and 80 mg/dl) in healthy adults (N = 23 and 27, for both doses, respectively). There was no significant effect of alcohol on delay discounting at either dose. Alcohol significantly affected probability discounting, such that reduced discounting for uncertain rewards was evident during the descending limb of the BAC curve at the lower dose (p<.05) and during both the ascending and descending limb of the BAC curve at the higher dose (p<.05). Thus, alcohol resulted in increased risky decision making, particularly during the descending limb which is primarily characterized by the sedative effects of alcohol. These findings suggest that the biphasic effects of alcohol across the ascending and descending limbs of the BAC have differential effects on behavior related to decision-making for probabilistic, but not delayed, rewards. Parallels to and distinctions from previous findings are discussed. PMID:23750692

  9. A hybrid composite system of biphasic calcium phosphate granules loaded with hyaluronic acid-gelatin hydrogel for bone regeneration.

    PubMed

    Faruq, Omar; Kim, Boram; Padalhin, Andrew R; Lee, Gun Hee; Lee, Byong-Taek

    2017-10-01

    An ideal bone substitute should be made of biocompatible materials that mimic the structure, characteristics, and functions of natural bone. Many researchers have worked on the fabrication of different bone scaffold systems including ceramic-polymer hybrid system. In the present study, we incorporated hyaluronic acid-gelatin hydrogel to micro-channeled biphasic calcium phosphate granules as a carrier to improve cell attachment and proliferation through highly interconnected porous structure. This hybrid system is composed of ceramic biphasic calcium phosphate granules measuring 1 mm in diameter with seven holes and hyaluronic acid-gelatin hydrogel. This combination of biphasic calcium phosphate and hyaluronic acid-gelatin retained suitable characteristics for bone regeneration. The resulting scaffold had a porosity of 56% with a suitable pore sizes. The mechanical strength of biphasic calcium phosphate granule increased after loading hyaluronic acid-gelatin from 4.26 ± 0.43 to 6.57 ± 0.25 MPa, which is highly recommended for cancellous bone substitution. Swelling and degradation rates decreased in the hybrid scaffold compared to hydrogel due to the presence of granules in hybrid scaffold. In vitro cytocompatibility studies were observed by preosteoblasts (MC3T3-E1) cell line and the result revealed that biphasic calcium phosphate/hyaluronic acid-gelatin significantly increased cell growth and proliferation compared to biphasic calcium phosphate granules. Analysis of micro-computed tomography data and stained tissue sections from the implanted samples showed that the hybrid scaffold had good osseointegration and better bone formation in the scaffold one and two months postimplantation. Histological section confirmed the formation of dense collagenous tissue and new bone in biphasic calcium phosphate/hyaluronic acid-gelatin scaffolds at two months. Our study demonstrated that such hybrid biphasic calcium phosphate/hyaluronic acid-gelatin scaffold is a

  10. Processing of fused silicide coatings for carbon-based materials

    NASA Technical Reports Server (NTRS)

    Smialek, J. L.

    1982-01-01

    The processing and oxidation resistance of fused Al-Si and Ni-Si slurry coatings on ATJ graphite was studied. Ni-Si coatings in the 70 to 90 percent Si range were successfully processed to melt, wet, and bond to the graphite. The molten coatings also infiltrated the porosity in graphite and reacted with it to form SiC in the coating. Cyclic oxidation at 1200 C showed that these coatings were not totally protective because of local attack of the substrate, due to the extreme thinness of the coatings in combination with coating cracks.

  11. Diamond-like nanocomposite: a novel promising carbon based thin film as antireflection and passivation coating for silicon solar cell

    NASA Astrophysics Data System (ADS)

    Jana, Sukhendu; Das, Sayan; De, Debasish; Mondal, Anup; Gangopadhyay, Utpal

    2018-02-01

    Presently, silicon nitride (SiN x ) is widely used as antireflection coating (ARC) on p-type silicon solar cell. But, two highly toxic gasses ammonia and silane are used. In the present study, the ARC and passivation properties of diamond-like nanocomposite (DLN) thin film on silicon solar cell have been investigated. The DLN thin film has been deposited by rf-PACVD process using liquid precursor HMDSO in argon plasma. The film has been characterized by FESEM, HRTEM, FTIR, and Raman spectroscopy. The optical properties have been estimated by UV-vis-NIR spectroscopy. The minimum reflection has been achieved to 0.75% at 630 nm. Both the short circuit current density and open circuit voltage has been increased significantly from 28.6 mA cm-2 to 35.5 mA cm-2 and 0.551 V to 0.613 V respectively. The field effect passivation has been confirmed by dark IV characterization of c-Si /DLN heterojunction structure. All these lead to enhancement of efficiency by almost 4% absolute, which is comparable to SiN x . The ammonia and silane free deposited DLN thin film has a great potential to use as ARC for silicon based solar cell.

  12. Method of producing amorphous thin films

    DOEpatents

    Brusasco, Raymond M.

    1992-01-01

    Disclosed is a method of producing thin films by sintering which comprises: a. coating a substrate with a thin film of an inorganic glass forming parulate material possessing the capability of being sintered, and b. irridiating said thin film of said particulate material with a laser beam of sufficient power to cause sintering of said material below the temperature of liquidus thereof. Also disclosed is the article produced by the method claimed.

  13. Method of producing amorphous thin films

    DOEpatents

    Brusasco, R.M.

    1992-09-01

    Disclosed is a method of producing thin films by sintering which comprises: (a) coating a substrate with a thin film of an inorganic glass forming material possessing the capability of being sintered; and (b) irradiating said thin film of said particulate material with a laser beam of sufficient power to cause sintering of said material below the temperature of liquidus thereof. Also disclosed is the article produced by the method claimed. 4 figs.

  14. Characterization of TiN coating layers using ultrasonic backward radiation.

    PubMed

    Song, Sung-Jin; Yang, Dong-Joo; Kim, Hak-Joon; Kwon, Sung D; Lee, Young-Ze; Kim, Ji-Yoon; Choi, Song-Chun

    2006-12-22

    Since ceramic layers coated on machinery components inevitably experience the changes in their properties it is necessary to evaluate the characteristics of ceramic coating layers nondestructively for the reliable use of coated components and the remaining life prediction. To address such a need, in the present study, the ultrasonic backward radiation technique is applied to examine the very thin TiN ceramic layers coated on AISI 1045 steel or austenitic 304 steel substrate. Specifically, the ultrasonic backward radiation profiles have been measured with variations in specimen preparation conditions such as coating layer thickness and sliding loading. In the experiments performed in the current study, the peak angle and the peak amplitude of ultrasonic backward radiation profile varied sensitively according to two specimen preparation conditions. In fact, this result demonstrates a high possibility of the ultrasonic backward radiation as an effective tool for the nondestructive characterization of the TiN ceramic coating layers even in such a thin regime.

  15. Shock-induced termination of reentrant cardiac arrhythmias: Comparing monophasic and biphasic shock protocols

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bragard, Jean, E-mail: jbragard@unav.es; Simic, Ana; Elorza, Jorge

    2013-12-15

    In this article, we compare quantitatively the efficiency of three different protocols commonly used in commercial defibrillators. These are based on monophasic and both symmetric and asymmetric biphasic shocks. A numerical one–dimensional model of cardiac tissue using the bidomain formulation is used in order to test the different protocols. In particular, we performed a total of 4.8 × 10{sup 6} simulations by varying shock waveform, shock energy, initial conditions, and heterogeneity in internal electrical conductivity. Whenever the shock successfully removed the reentrant dynamics in the tissue, we classified the mechanism. The analysis of the numerical data shows that biphasic shocksmore » are significantly more efficient (by about 25%) than the corresponding monophasic ones. We determine that the increase in efficiency of the biphasic shocks can be explained by the higher proportion of newly excited tissue through the mechanism of direct activation.« less

  16. Measuring thermal conductivity of thin films and coatings with the ultra-fast transient hot-strip technique

    NASA Astrophysics Data System (ADS)

    Belkerk, B. E.; Soussou, M. A.; Carette, M.; Djouadi, M. A.; Scudeller, Y.

    2012-07-01

    This paper reports the ultra-fast transient hot-strip (THS) technique for determining the thermal conductivity of thin films and coatings of materials on substrates. The film thicknesses can vary between 10 nm and more than 10 µm. Precise measurement of thermal conductivity was performed with an experimental device generating ultra-short electrical pulses, and subsequent temperature increases were electrically measured on nanosecond and microsecond time scales. The electrical pulses were applied within metallized micro-strips patterned on the sample films and the temperature increases were analysed within time periods selected in the window [100 ns-10 µs]. The thermal conductivity of the films was extracted from the time-dependent thermal impedance of the samples derived from a three-dimensional heat diffusion model. The technique is described and its performance demonstrated on different materials covering a large thermal conductivity range. Experiments were carried out on bulk Si and thin films of amorphous SiO2 and crystallized aluminum nitride (AlN). The present approach can assess film thermal resistances as low as 10-8 K m2 W-1 with a precision of about 10%. This has never been attained before with the THS technique.

  17. Improved performance of Mg-Y alloy thin film switchable mirrors after coating with a superhydrophobic surface

    NASA Astrophysics Data System (ADS)

    La, Mao; Zhou, Huaijuan; Li, Ning; Xin, Yunchuan; Sha, Ren; Bao, Shanhu; Jin, Ping

    2017-05-01

    The magnesium based switchable mirrors can reversibly change their optical properties between the transparent and the reflective state as a result of hydrogenation and dehydrogenation. These films can potentially be applied as new energy-saving windows, by controlling the transmittance of solar radiation through the regulation of their reflective state. In this study, magnesium-yttrium (Mg-Y) alloy thin films were prepared using a DC magnetron sputtering method. However, the luminous transmittance in the transparent state and the switching durability of switchable mirrors are too poor to satisfy practical demands. In order to improve the films switching durability, luminous transmittance and the surface functionalization, polytetrafluoroethylene (PTFE) was coated with thermal vacuum deposition for use as the top layer of Mg-Y/Pd switchable mirrors. The PTFE layer had a porous network structure and exhibited a superhydrophobic surface with a water contact angle of approximately 152°. By characterization, PTFE thin films shows the excellent protection role against the oxidization of Mg, the switching durability of the films were improved 3 times, and also shows the antireflection role the luminous transmission of films was enhanced by 7% through the top covered with PTFE.

  18. Thickness Measurement, Rate Control And Automation In Thin Film Coating Technology

    NASA Astrophysics Data System (ADS)

    Pulker, H. K.

    1983-11-01

    There are many processes known for fabricating thin films/1, 2.Among them the group of physical vapor deposition processes comprising evaporation, sputtering and ion plating has received special attention.Especially evaporation but also the other PVD techniques are widely used to deposit various single and multilayer coatings for optical and electrical thin film applications/3,4/.A large number of parameters is important in obtaining the required film properties in a reproducible manner when depositing thin films by such processes.Amongst the many are the film thickness, the condensation rate,the substrate temperature,as well as the qualitative and the quantitative composition of the residual gas of primary importance.First of all the film thickness is a dimension which enters in practically all equations used to characterize a thin film. However,when discussing film thickness,definitions are required since there one has to distinguish between various types of thicknesses e.g.geometrical thickness,mass thickness and optical thickness.The geometrical thickness,often also called physical thickness,is defined as the step height between the substrate surface and the film surface.This step height multiplied by the refractive index of the film is termed the optical thickness and is expressed generally in integer multiples of fractional parts of a desired wavelength.The mass thickness finally is defined as the film mass per unit area obtained by weighing.Knowing the density and the optical data of a thin film its mass thickness can be converted into the corresponding geometrical as well as optical thickness.However,with ultrathin films ranging between a few and several atomic or molecular "layers"the concept of a film thickness may become senseless since often no closed film exists of such minor deposits.Although film thickness is a length,the measurement of it can,obviously,not be accomplished with conventional methods for length determinations but requires special

  19. Determination and analysis of non-linear index profiles in electron-beam-deposited MgOAl2O3ZrO2 ternary composite thin-film optical coatings

    NASA Astrophysics Data System (ADS)

    Sahoo, N. K.; Thakur, S.; Senthilkumar, M.; Das, N. C.

    2005-02-01

    Thickness-dependent index non-linearity in thin films has been a thought provoking as well as intriguing topic in the field of optical coatings. The characterization and analysis of such inhomogeneous index profiles pose several degrees of challenges to thin-film researchers depending upon the availability of relevant experimental and process-monitoring-related information. In the present work, a variety of novel experimental non-linear index profiles have been observed in thin films of MgOAl2O3ZrO2 ternary composites in solid solution under various electron-beam deposition parameters. Analysis and derivation of these non-linear spectral index profiles have been carried out by an inverse-synthesis approach using a real-time optical monitoring signal and post-deposition transmittance and reflection spectra. Most of the non-linear index functions are observed to fit polynomial equations of order seven or eight very well. In this paper, the application of such a non-linear index function has also been demonstrated in designing electric-field-optimized high-damage-threshold multilayer coatings such as normal- and oblique-incidence edge filters and a broadband beam splitter for p-polarized light. Such designs can also advantageously maintain the microstructural stability of the multilayer structure due to the low stress factor of the non-linear ternary composite layers.

  20. Absorbing TiOx thin film enabling laser welding of polyurethane membranes and polyamide fibers

    PubMed Central

    Amberg, Martin; Haag, Alexander; Storchenegger, Raphael; Rupper, Patrick; Lehmeier, Frederike; Rossi, René M; Hegemann, Dirk

    2015-01-01

    We report on the optical properties of thin titanium suboxide (TiOx) films for applications in laser transmission welding of polymers. Non-absorbing fibers were coated with TiOx coatings by reactive magnetron sputtering. Plasma process parameters influencing the chemical composition and morphology of the deposited thin films were investigated in order to optimize their absorption properties. Optical absorption spectroscopy showed that the oxygen content of the TiOx coatings is the main parameter influencing the optical absorbance. Overtreatment (high power plasma input) of the fiber surface leads to high surface roughness and loss of mechanical stability of the fiber. The study shows that thin substoichiometric TiOx films enable the welding of very thin polyurethane membranes and polyamide fibers with improved adhesion properties. PMID:27877837

  1. Absorbing TiOx thin film enabling laser welding of polyurethane membranes and polyamide fibers

    NASA Astrophysics Data System (ADS)

    Amberg, Martin; Haag, Alexander; Storchenegger, Raphael; Rupper, Patrick; Lehmeier, Frederike; Rossi, René M.; Hegemann, Dirk

    2015-10-01

    We report on the optical properties of thin titanium suboxide (TiOx) films for applications in laser transmission welding of polymers. Non-absorbing fibers were coated with TiOx coatings by reactive magnetron sputtering. Plasma process parameters influencing the chemical composition and morphology of the deposited thin films were investigated in order to optimize their absorption properties. Optical absorption spectroscopy showed that the oxygen content of the TiOx coatings is the main parameter influencing the optical absorbance. Overtreatment (high power plasma input) of the fiber surface leads to high surface roughness and loss of mechanical stability of the fiber. The study shows that thin substoichiometric TiOx films enable the welding of very thin polyurethane membranes and polyamide fibers with improved adhesion properties.

  2. Manipulation of ZnO composition affecting electrical properties of MEH-PPV: ZnO nanocomposite thin film via spin coating for OLEDs application

    NASA Astrophysics Data System (ADS)

    Azhar, N. E. A.; Shariffudin, S. S.; Alrokayan, Salman A. H.; Khan, Haseeb A.; Rusop, M.

    2018-05-01

    Recent investigations of the promising materials for optoelectronic have been demonstrated by introducing n-type inorganic material into conjugated polymer. Morphology, optical and electrical of nanocomposites thin films based on poly[2-methoxy-5-(2'-ethyl-hexyloxy)-1,4-phenylene vinylene] (MEH-PPV) and zinc oxide (ZnO) nanotetrapods with various ZnO composition (0 wt% to 0.4 wt%) have been investigated. The MEH-PPV: ZnO nanocomposite thin film was deposited using spin-coating method. Surface morphology was characterized using field emission scanning electron microscopy and shows the uniform dispersion of MEH-PPV and ZnO phases for sample deposited at 0.2 wt%. The photoluminescence (PL) spectra shows the visible emission intensities increased when the ZnO composition increased. The current-voltage (I-V) measurement shows the highest conductivity of nanocomposite thin film deposited at 0.2 wt% of ZnO is 7.40 × 10-1 S. cm-1. This study will provide better performance and suitable for optoelectronic device especially OLEDs application.

  3. Preparation of highly infective Leishmania promastigotes by cultivation on SNB-9 biphasic medium.

    PubMed

    Grekov, Igor; Svobodová, Milena; Nohýnková, Eva; Lipoldová, Marie

    2011-12-01

    Protozoan hemoflagellates Leishmania are causative agents of leishmaniases and an important biological model for study of host-pathogen interaction. A wide range of methods of Leishmania cultivation on both biphasic and liquid media is available. Biphasic media are considered to be superior for initial isolation of the parasites and obtaining high promastigote infectivity; however, liquid media are more suitable for large-scale experiments. The aim of the present study was the adaptation and optimization of the cultivation of Leishmania promastigotes on a biphasic SNB-9 (saline-neopeptone-blood 9) medium that was originally developed for Trypanosoma cultivation and combines the advantages of biphasic and liquid media. SNB-9 medium is characterized with a large volume of the liquid phase, which facilitates the manipulation with the culture and provides parasite yields comparable to parasite yields on such liquid medium as Schneider's Insect Medium. We demonstrate that SNB-9 very considerably surpasses Schneider's Insect Medium in in vitro infectivity of the parasites. Additionally, we show that the ratio of apoptotic parasites, which are important for the infectivity of the inoculum, in Leishmania culture in SNB-9 is higher than in Leishmania culture in Schneider's Insect Medium. Thus, we demonstrate that the cultivation of Leishmania on SNB-9 reliably yields highly infective promastigotes suitable for experimental infection. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Stretchable, adhesive and ultra-conformable elastomer thin films.

    PubMed

    Sato, Nobutaka; Murata, Atsushi; Fujie, Toshinori; Takeoka, Shinji

    2016-11-16

    Thermoplastic elastomers are attractive materials because of the drastic changes in their physical properties above and below the glass transition temperature (T g ). In this paper, we report that free-standing polystyrene (PS, T g : 100 °C) and polystyrene-polybutadiene-polystyrene triblock copolymer (SBS, T g : -70 °C) thin films with a thickness of hundreds of nanometers were prepared by a gravure coating method. Among the mechanical properties of these thin films determined by bulge testing and tensile testing, the SBS thin films exhibited a much lower elastic modulus (ca. 0.045 GPa, 212 nm thickness) in comparison with the PS thin films (ca. 1.19 GPa, 217 nm thickness). The lower elastic modulus and lower thickness of the SBS thin films resulted in higher conformability and thus higher strength of adhesion to an uneven surface such as an artificial skin model with roughness (R a = 10.6 μm), even though they both have similar surface energies. By analyzing the mechanical properties of the SBS thin films, the elastic modulus and thickness of the thin films were strongly correlated with their conformability to a rough surface, which thus led to a high adhesive strength. Therefore, the SBS thin films will be useful as coating layers for a variety of materials.

  5. Sputter-Coated Microparticle Additives for Tailored Optical Properties

    DTIC Science & Technology

    2016-09-01

    hour at best). The microspheres coated in this work will be incorporated into a polymer matrix for composite and large-area coating applications...demonstrated, they will be incorporated into a polymer matrix for further testing. 15. SUBJECT TERMS fluidized bed, thin film, microparticles, coating...films of metals, ceramics , and multilayered materials.1 This is a practical method for the batch production of microparticles with tailored optical

  6. Diamond Coatings

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Advances in materials technology have demonstrated that it is possible to get the advantages of diamond in a number of applications without the cost penalty, by coating and chemically bonding an inexpensive substrate with a thin film of diamond-like carbon (DLC). Diamond films offer tremendous technical and economic potential in such advances as chemically inert protective coatings; machine tools and parts capable of resisting wear 10 times longer; ball bearings and metal cutting tools; a broad variety of optical instruments and systems; and consumer products. Among the American companies engaged in DLC commercialization is Diamonex, Inc., a diamond coating spinoff of Air Products and Chemicals, Inc. Along with its own proprietary technology for both polycrystalline diamond and DLC coatings, Diamonex is using, under an exclusive license, NASA technology for depositing DLC on a substrate. Diamonex is developing, and offering commercially, under the trade name Diamond Aegis, a line of polycrystalline diamond-coated products that can be custom tailored for optical, electronic and engineering applications. Diamonex's initial focus is on optical products and the first commercial product is expected in late 1990. Other target applications include electronic heat sink substrates, x-ray lithography masks, metal cutting tools and bearings.

  7. Method for partially coating laser diode facets

    NASA Technical Reports Server (NTRS)

    Dholakia, Anil R. (Inventor)

    1990-01-01

    Bars of integral laser diode devices cleaved from a wafer are placed with their p regions abutting and n regions abutting. A thin BeCu mask having alternate openings and strips of the same width as the end facets is used to mask the n region interfaces so that multiple bars can be partially coated over their exposed p regions with a reflective or partial reflective coating. The partial coating permits identification of the emitting facet from the fully coated back facet during a later device mounting procedure.

  8. Modeling and predictions of biphasic mechanosensitive cell migration altered by cell-intrinsic properties and matrix confinement.

    PubMed

    Pathak, Amit

    2018-04-12

    Motile cells sense the stiffness of their extracellular matrix (ECM) through adhesions and respond by modulating the generated forces, which in turn lead to varying mechanosensitive migration phenotypes. Through modeling and experiments, cell migration speed is known to vary with matrix stiffness in a biphasic manner, with optimal motility at an intermediate stiffness. Here, we present a two-dimensional cell model defined by nodes and elements, integrated with subcellular modeling components corresponding to mechanotransductive adhesion formation, force generation, protrusions and node displacement. On 2D matrices, our calculations reproduce the classic biphasic dependence of migration speed on matrix stiffness and predict that cell types with higher force-generating ability do not slow down on very stiff matrices, thus disabling the biphasic response. We also predict that cell types defined by lower number of total receptors require stiffer matrices for optimal motility, which also limits the biphasic response. For a cell type with robust biphasic migration on 2D surface, simulations in channel-like confined environments of varying width and height predict faster migration in more confined matrices. Simulations performed in shallower channels predict that the biphasic mechanosensitive cell migration response is more robust on 2D micro-patterns as compared to the channel-like 3D confinement. Thus, variations in the dimensionality of matrix confinement alters the way migratory cells sense and respond to the matrix stiffness. Our calculations reveal new phenotypes of stiffness- and topography-sensitive cell migration that critically depend on both cell-intrinsic and matrix properties. These predictions may inform our understanding of various mechanosensitive modes of cell motility that could enable tumor invasion through topographically heterogeneous microenvironments. © 2018 IOP Publishing Ltd.

  9. Contact mechanics for coated spheres that includes the transition from weak to strong adhesion

    DOE PAGES

    Reedy, Earl David

    2007-09-01

    Recently published results for a rigid spherical indenter contacting a thin, linear elastic coating on a rigid planar substrate have been extended to include the case of two contacting spheres, where each sphere is rigid and coated with a thin, linear elastic material. This is done by using an appropriately chosen effective radius and coating modulus. Finally, the earlier work has also been extended to provide analytical results that span the transition between the previously derived Derjaguin–Müller–Toporov (DMT)-like (work of adhesion/coating-modulus ratio is small) and Johnson–Kendall–Roberts (JKR)-like (work of adhesion/coating-modulus ratio is large) limits.

  10. In vivo biocompatibility evaluation of a new resilient, hard-carbon, thin-film coating for ventricular assist devices.

    PubMed

    Takaseya, Tohru; Fumoto, Hideyuki; Shiose, Akira; Arakawa, Yoko; Rao, Santosh; Horvath, David J; Massiello, Alex L; Mielke, Nicole; Chen, Ji-Feng; Zhou, Qun; Dessoffy, Raymond; Kramer, Larry; Benefit, Stephen; Golding, Leonard A R; Fukamachi, Kiyotaka

    2010-12-01

    The purpose of this study was to evaluate in vivo the biocompatibility of BioMedFlex (BMF), a new resilient, hard-carbon, thin-film coating, as a blood journal bearing material in Cleveland Heart's (Charlotte, NC, USA) continuous-flow right and left ventricular assist devices (RVADs and LVADs). BMF was applied to RVAD rotating assemblies or both rotating and stator assemblies in three chronic bovine studies. In one case, an LVAD with a BMF-coated stator was also implanted. Cases 1 and 3 were electively terminated at 18 and 29 days, respectively, with average measured pump flows of 4.9 L/min (RVAD) in Case 1 and 5.7 L/min (RVAD) plus 5.7 L/min (LVAD) in Case 3. Case 2 was terminated prematurely after 9 days because of sepsis. The sepsis, combined with running the pump at minimum speed (2000 rpm), presented a worst-case biocompatibility challenge. Postexplant evaluation of the blood-contacting journal bearing surfaces showed no biologic deposition in any of the four pumps. Thrombus inside the RVAD inlet cannula in Case 3 is believed to be the origin of a nonadherent thrombus wrapped around one of the primary impeller blades. In conclusion, we demonstrated that BMF coatings can provide good biocompatibility in the journal bearing for ventricular assist devices. © 2010, Copyright the Authors. Artificial Organs © 2010, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  11. Pretreatment of Eucalyptus in biphasic system for furfural production and accelerated enzymatic hydrolysis.

    PubMed

    Zhang, Xiudong; Bai, Yuanyuan; Cao, Xuefei; Sun, Runcang

    2017-08-01

    Herein, an efficient biphasic pretreatment process was developed to improve the production of furfural (FF) and glucose from Eucalyptus. The influence of formic acid and NaCl on FF production from xylose in water and various biphasic systems was investigated. Results showed that the addition of formic acid and NaCl significantly promoted the FF yield, and the biphasic system of MIBK (methyl isobutyl ketone)/water exhibited the best performance for FF production. Then the Eucalyptus was pretreated in the MIBK/water system, and a maximum FF yield of 82.0% was achieved at 180°C for 60min. Surface of the pretreated Eucalyptus became relatively rough and loose, and its crystallinity index increased obviously due to the removal of hemicelluloses and lignin. The pretreated Eucalyptus samples showed much higher enzymatic hydrolysis rates (26.2-70.7%) than the raw Eucalyptus (14.5%). Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Processing of fused silicide coatings for carbon-based materials

    NASA Technical Reports Server (NTRS)

    Smialek, J. L.

    1983-01-01

    The processing and oxidation resistance of fused Al-Si and Ni-Si slurry coatings on ATJ graphite was studied. Ni-Si coatings in the 70 to 90 percent Si range were successfully processed to melt, wet, and bond to the graphite. The molten coatings also infiltrated the porosity in graphite and reacted with it to form SiC in the coating. Cyclic oxidation at 1200 C showed that these coatings were not totally protective because of local attack of the substrate, due to the extreme thinness of the coatings in combination with coating cracks. Previously announced in STAR as N83-27019

  13. The Optical Properties of Thin Film Reduced Graphene Oxide/Poly (3,4 Ethylenedioxtriophene):Poly (Styrene Sulfonate)(PEDOT:PSS) Fabricated by Spin Coating

    NASA Astrophysics Data System (ADS)

    Rokmana, Arinta W.; Asriani, A.; Suhendar, H.; Triyana, K.; Kusumaatmaja, A.; Santoso, I.

    2018-04-01

    Reduced Graphene Oxide (rGO) has been successfully synthesized from Graphite powder through chemical process using modified Hummers method by removing NaNO3 from reaction formula. Hydrazine hydrate 80 wt% has been chosen as reductor to eliminate the epoxy group in GO. FTIR and Uv-Vis spectroscopy result showed that Graphene Oxide (GO) and rGO were formed. Our produced rGO then used to fabricated the composite thin film rGO/PEDOT:PSS by spin coating at room temperature. The optical constant of thin film rGO/PEDOT:PSS were calculated from the absorbance spectrum of Uv-Visible spectra. The result showed that the value of coefficient absorbance of rGO dropped from 4.7×106 m-1 to 1.3×106 m-1 after doped with 0.02 mL PEDOT:PSS, then increase with the addition volume concentration of PEDOT:PSS. The value of extinction coefficient decrease from 0.31 to 0.08 after rGO doped with 0.02 ml PEDOT:PSS and then increase with the addition concentration of PEDOT:PSS. Our result show that thin film rGO/PEDOT:PSS was more transparent than that of thin film rGO.

  14. Growth of long triisopropylsilylethynyl pentacene (TIPS-PEN) nanofibrils in a polymer thin film during spin-coating.

    PubMed

    Park, Minwoo; Min, Yuho; Lee, Yu-Jeong; Jeong, Unyong

    2014-03-01

    This study demonstrates the growth of long triisopropylsilyethynyl pentacene (TIPS-PEN) nanofibrils in a thin film of a crystalline polymer, poly(ε-caprolactone) (PCL). During spin-coating, TIPS-PEN molecules are locally extracted around the PCL grain boundaries and they crystallize into [010] direction forming long nanofibrils. Molecular weight of PCL and weight fraction (α) of TIPS-PEN in PCL matrix are key factors to the growth of nanofibrils. Long high-quality TIPS-PEN nanofibrils are obtained with high-molecular-weight PCL and at the α values in the range of 0.03-0.1. The long nanofibrils are used as an active layer in a field-effect organic transistor. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Biphasic Effect of Nitric Oxide on the Cardiac Voltage-dependent Anion Channel

    PubMed Central

    Cheng, Qunli; Sedlic, Filip; Pravdic, Danijel; Bosnjak, Zeljko J.; Kwok, Wai-Meng

    2010-01-01

    Nitric oxide (NO˙) effects on the cardiac mitochondrial voltage-dependent anion channel (VDAC) are unknown. The effects of exogenous NO˙ on VDAC purified from rat hearts were investigated in this study. When incorporated into lipid bilayers, VDAC was inhibited directly by an NO˙ donor, PAPA NONOate, in a concentration-dependent biphasic manner. This was prevented by an NO˙ scavenger, PTIO. The effect paralleled that of NO˙ in delaying the opening of the mitochondrial permeability transition (PT) pore. These biphasic effects on the cardiac VDAC and the PT pore reveal a tandem impact of NO˙ on the two mitochondrial entities. PMID:21156174

  16. Growth and characterization of magnetite-maghemite thin films by the dip coating method

    NASA Astrophysics Data System (ADS)

    Velásquez, A. A.; Arnedo, A.

    2017-11-01

    We present the process of growth and characterization of magnetite-maghemite thin films obtained by the dip coating method. The thin films were deposited on glass substrates, using a ferrofluid of nanostructured magnetite-maghemite particles as precursor solution. During the growth of the films the following parameters were controlled: number of dips of the substrates, dip velocity of the substrates and drying times. The films were characterized by Atomic Force Microscopy, Scanning Elelectron Microscopy, four-point method for resistance measurement, Room Temperature Mössbauer Spectroscopy and Hall effect. Mössbauer measurements showed the presence of a sextet attributed to maghemite ( γ-Fe2O3) and two doublets attributed to superparamagnetic magnetite (Fe3O4), indicating a distribution of oxidation states of the iron as well as a particle size distribution of the magnetic phases in the films. Atomic force microscopy measurements showed that the films cover quasi uniformly the substrates, existing in them some pores with sub-micron size. Scanning Electron Microscopy measurements showed a uniform structure in the films, with spherical particles with size around 10 nm. Voltage versus current measurements showed an ohmic response of the films for currents between 0 and 100 nA. On the other hand, Hall effect measurements showed a nonlinear response of the Hall voltage with the magnetic flux density applied perpendicular to the plane of the films, however the response is fairly linear for magnetic flux densities between 0.15 and 0.35 T approximately. The results suggest that the films are promising for application as magnetic flux density sensors.

  17. Structural properties 3,16-bis triisopropylsilylethynyl (pentacene) (TIPS-pentacene) thin films onto organic dielectric layer using slide coating method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rusnan, Fara Naila; Mohamad, Khairul Anuar; Seria, Dzul Fahmi Mohd Husin

    3,16-bis triisopropylsilylethynyl (Pentacene) (TIPS-Pentacene) compactable interface property is important in order to have a good arrangement of molecular structure. Comparison for TIPS-Pentacene deposited between two different surface layers conducted. 0.1wt% TIPS-Pentacene diluted in chloroform were deposited onto poly(methylmeaclyrate) (PMMA) layered transparent substrates using slide coating method. X-ray diffraction (XRD) used to determine crystallinity of thin films. Series of (00l) diffraction peaks obtained with sharp first peaks (001) for TIPS-Pentacene deposited onto PMMA layer at 5.35° and separation of 16.3 Å. Morphology and surface roughness were carried out using scanning electron microscope (SEM) and surface profilemeter LS500, respectively.TIPS-Pentacene deposited onto PMMAmore » layer formed needled-like-shape grains with 10.26 nm surface roughness. These properties were related as thin film formed and its surface roughness plays important role towards good mobility devices.« less

  18. A Novel Method of Coating Orthodontic Archwires with Nanoparticles

    PubMed Central

    Syed, Shibli S; Kulkarni, Dinraj; Todkar, Rohit; Bagul, Ravikiran S; Parekh, Kreena; Bhujbal, Nikita

    2015-01-01

    Background: The major hazard to the orthodontic tooth movement is the friction developing at the bracket wire interface. In the past, there have been various attempts to reduce this friction. We believe that coating the commercially available orthodontic wires with nanoparticles can result in a successful reduction of this friction. The objective of this study is to develop a novel method of coating orthodontic archwires with nanoparticles. Materials and Methods: Stainless steel (Ormco, CA, USA), titanium molybdenum alloy (Ormco, CA, USA) and nickel-titanium (G and H Wire Company, USA) orthodontic wires with a rectangular cross-section dimension of 0.019”× 0.025”, were selected. The wires were later coated with a uniform and smooth nanoparticle film using 100 ml nanocremics. The coating procedure described in this article is a sol-gel thin film dip coating method. Results: The coating procedure was verified by comparing the surface topography of nanocoated archwires with the commercially available archwires in an environmental scanning electron microscope (ESEM). The ESEM images prove that the surface topography of the coated wires was found to be smoother with less surface deteriorations as compared to the commercially available wires. Conclusion: Commercially available orthodontic wires can be successfully coated using a novel method of sol-gel thin film dip coating method. PMID:26028899

  19. Method and apparatus for coating a patterned thin film on a substrate from a fluid source with continuous feed capability

    DOEpatents

    Burrows, Paul E [Kennewick, WA; Sapochak, Linda S [Kennewick, WA

    2009-09-22

    A method and apparatus for forming patterned coatings of thin film, non-polymerizable compounds on a substrate. A mixture of the non-polymerizable compound and a liquid carrier is pumped into the interior of a heated evaporation box having an internal temperature sufficient to convert substantially all of the non-polymerizable compound and liquid carrier to a gaseous form. The non-polymerizable compound and liquid carrier are then removed from the evaporation box via exit slit in the evaporation box. Adjacent to the exit slit, and maintained in a vacuum, is a first substrate upon which the non-polymerizable compound condenses. The first substrate is in motion, for example on a web roller, thereby allowing a continuous coating of the non-polymerizable compound to be applied to the first substrate. Once the non-polymerizable compound is applied to one side of the first substrate, an energy source is then directed toward the opposite side of the first substrate. In this manner, a portion of the non-polymerizable compound is removed from the first substrate. A second substrate is then provided adjacent to the first substrate, and the non-polymerizable compound is thereby transferred from the first substrate onto the second substrate. By repeatedly transferring portions of the non-polymerizable material from the first substrate to the second substrate in this manner, the thin film, non-polymerizable materials can be formed onto the second substrate in a predetermined pattern, and in a continuous and highly efficient process.

  20. Thickness Dependent Structural and Dielectric Properties of Calcium Copper Titanate Thin Films Produced by Spin-Coating Method for Microelectronic Devices

    NASA Astrophysics Data System (ADS)

    Thiruramanathan, P.; Sankar, S.; Marikani, A.; Madhavan, D.; Sharma, Sanjeev K.

    2017-07-01

    Calcium copper titanate (CaCu3Ti4O12, CCTO) thin films have been deposited on platinized silicon [(111)Pt/Ti/SiO2/Si] substrate through a sol-gel spin coating technique and annealed at 600-900°C with a variation of 100°C per sample for 3 h. The activation energy for crystalline growth, as well as optimal annealing temperature (900°C) of the CCTO crystallites was studied by x-ray diffraction analysis (XRD). Thickness dependent structural, morphological, and optical properties of CCTO thin films were observed. The field emission scanning electron microscopy (FE-SEM) verified that the CCTO thin films are uniform, fully covered, densely packed, and the particle size was found to be increased with film thickness. Meanwhile, quantitative analysis of dielectric properties (interfacial capacitance, dead layers, and bulk dielectric constant) of CCTO thin film with metal-insulator-metal (M-I-M) structures has been investigated systematically using a series capacitor model. Room temperature dielectric properties of all the samples exhibit dispersion at low frequencies, which can be explained based on Maxwell-Wagner two-layer models and Koop's theory. It was found that the 483 nm thick CCTO film represents a high dielectric constant ( ɛ r = 3334), low loss (tan δ = 3.54), capacitance ( C = 4951 nF), which might satisfy the requirements of embedded capacitor.

  1. A Study of BMP-2-Loaded Bipotential Electrolytic Complex around a Biphasic Calcium Phosphate-Derived (BCP) Scaffold for Repair of Large Segmental Bone Defect

    PubMed Central

    Paul, Kallyanashis; Padalhin, Andrew R.; Linh, Nguyen Thuy Ba; Kim, Boram; Sarkar, Swapan Kumar; Lee, Byong Taek

    2016-01-01

    A bipotential polyelectrolyte complex with biphasic calcium phosphate (BCP) powder dispersion provides an excellent option for protein adsorption and cell attachment and can facilitate enhanced bone regeneration. Application of the bipotential polyelectrolyte complex embedded in a spongy scaffold for faster healing of large segmental bone defects (LSBD) can be a promising endeavor in tissue engineering application. In the present study, a hollow scaffold suitable for segmental long bone replacement was fabricated by the sponge replica method applying the microwave sintering process. The fabricated scaffold was coated with calcium alginate at the shell surface, and genipin-crosslinked chitosan with biphasic calcium phosphate (BCP) dispersion was loaded at the central hollow core. The chitosan core was subsequently loaded with BMP-2. The electrolytic complex was characterized using SEM, porosity measurement, FTIR spectroscopy and BMP-2 release for 30 days. In vitro studies such as MTT, live/dead, cell proliferation and cell differentiation were performed. The scaffold was implanted into a 12 mm critical size defect of a rabbit radius. The efficacy of this complex is evaluated through an in vivo study, one and two month post implantation. BV/TV ratio for BMP-2 loaded sample was (42±1.76) higher compared with hollow BCP scaffold (32±0.225). PMID:27711142

  2. Chemical surface deposition of ultra-thin semiconductors

    DOEpatents

    McCandless, Brian E.; Shafarman, William N.

    2003-03-25

    A chemical surface deposition process for forming an ultra-thin semiconducting film of Group IIB-VIA compounds onto a substrate. This process eliminates particulates formed by homogeneous reactions in bath, dramatically increases the utilization of Group IIB species, and results in the formation of a dense, adherent film for thin film solar cells. The process involves applying a pre-mixed liquid coating composition containing Group IIB and Group VIA ionic species onto a preheated substrate. Heat from the substrate causes a heterogeneous reaction between the Group IIB and VIA ionic species of the liquid coating composition, thus forming a solid reaction product film on the substrate surface.

  3. Enhancing productivity for cascade biotransformation of styrene to (S)-vicinal diol with biphasic system in hollow fiber membrane bioreactor.

    PubMed

    Gao, Pengfei; Wu, Shuke; Praveen, Prashant; Loh, Kai-Chee; Li, Zhi

    2017-03-01

    Biotransformation is a green and useful tool for sustainable and selective chemical synthesis. However, it often suffers from the toxicity and inhibition from organic substrates or products. Here, we established a hollow fiber membrane bioreactor (HFMB)-based aqueous/organic biphasic system, for the first time, to enhance the productivity of a cascade biotransformation with strong substrate toxicity and inhibition. The enantioselective trans-dihydroxylation of styrene to (S)-1-phenyl-1,2-ethanediol, catalyzed by Escherichia coli (SSP1) coexpressing styrene monooxygenase and an epoxide hydrolase, was performed in HFMB with organic solvent in the shell side and aqueous cell suspension in the lumen side. Various organic solvents were investigated, and n-hexadecane was found as the best for the HFMB-based biphasic system. Comparing to other reported biphasic systems assisted by HFMB, our system not only shield much of the substrate toxicity but also deflate the product recovery burden in downstream processing as the majority of styrene stayed in organic phase while the diol product mostly remained in the aqueous phase. The established HFMB-based biphasic system enhanced the production titer to 143 mM, being 16-fold higher than the aqueous system and 1.6-fold higher than the traditional dispersive partitioning biphase system. Furthermore, the combination of biphasic system with HFMB prevents the foaming and emulsification, thus reducing the burden in downstream purification. HFMB-based biphasic system could serve as a suitable platform for enhancing the productivity of single-step or cascade biotransformation with toxic substrates to produce useful and valuable chemicals.

  4. Transferable and flexible thin film devices for engineering applications

    NASA Astrophysics Data System (ADS)

    Mutyala, Madhu Santosh K.; Zhou, Jingzhou; Li, Xiaochun

    2014-05-01

    Thin film devices can be of significance for manufacturing, energy conversion systems, solid state electronics, wireless applications, etc. However, these thin film sensors/devices are normally fabricated on rigid silicon substrates, thus neither flexible nor transferrable for engineering applications. This paper reports an innovative approach to transfer polyimide (PI) embedded thin film devices, which were fabricated on glass, to thin metal foils. Thin film thermocouples (TFTCs) were fabricated on a thin PI film, which was spin coated and cured on a glass substrate. Another layer of PI film was then spin coated again on TFTC/PI and cured to obtain the embedded TFTCs. Assisted by oxygen plasma surface coarsening of the PI film on the glass substrate, the PI embedded TFTC was successfully transferred from the glass substrate to a flexible copper foil. To demonstrate the functionality of the flexible embedded thin film sensors, they were transferred to the sonotrode tip of an ultrasonic metal welding machine for in situ process monitoring. The dynamic temperatures near the sonotrode tip were effectively measured under various ultrasonic vibration amplitudes. This technique of transferring polymer embedded electronic devices onto metal foils yield great potentials for numerous engineering applications.

  5. Cell–material interactions on biphasic polyurethane matrix

    PubMed Central

    Dicesare, Patrick; Fox, Wade M.; Hill, Michael J.; Krishnan, G. Rajesh; Yang, Shuying; Sarkar, Debanjan

    2013-01-01

    Cell–matrix interaction is a key regulator for controlling stem cell fate in regenerative tissue engineering. These interactions are induced and controlled by the nanoscale features of extracellular matrix and are mimicked on synthetic matrices to control cell structure and functions. Recent studies have shown that nanostructured matrices can modulate stem cell behavior and exert specific role in tissue regeneration. In this study, we have demonstrated that nanostructured phase morphology of synthetic matrix can control adhesion, proliferation, organization and migration of human mesenchymal stem cells (MSCs). Nanostructured biodegradable polyurethanes (PU) with segmental composition exhibit biphasic morphology at nanoscale dimensions and can control cellular features of MSCs. Biodegradable PU with polyester soft segment and hard segment composed of aliphatic diisocyanates and dipeptide chain extender were designed to examine the effect polyurethane phase morphology. By altering the polyurethane composition, morphological architecture of PU was modulated and its effect was examined on MSC. Results show that MSCs can sense the nanoscale morphology of biphasic polyurethane matrix to exhibit distinct cellular features and, thus, signifies the relevance of matrix phase morphology. The role of nanostructured phases of a synthetic matrix in controlling cell–matrix interaction provides important insights for regulation of cell behavior on synthetic matrix and, therefore, is an important tool for engineering tissue regeneration. PMID:23255285

  6. Fast light-induced reversible wettability of a zinc oxide nanorod array coated with a thin gold layer

    NASA Astrophysics Data System (ADS)

    Wei, Yuefan; Du, Hejun; Kong, Junhua; Tran, Van-Thai; Koh, Jia Kai; Zhao, Chenyang; He, Chaobin

    2017-11-01

    Zinc oxide (ZnO) has gained much attention recently due to its excellent physical and chemical properties, and has been extensively studied in energy harvesting applications such as photovoltaic and piezoelectric devices. In recent years, its reversible wettability has also attracted increasing interest. The wettability of ZnO nanostructures with various morphologies has been studied. However, to the best of our knowledge, there is still a lack of investigations on further modifications on ZnO to provide more benefits than pristine ZnO. Comprehensive studies on the reversible wettability are still needed. In this study, a ZnO nanorod array was prepared via a hydrothermal process and subsequently coated with thin gold layers with varied thickness. The morphologies and structures, optical properties and wettability were investigated. It is revealed that the ZnO-Au system possesses recoverable wettability upon switching between visible-ultraviolet light and a dark environment, which is verified by the contact angle change. The introduction of the thin gold layer to the ZnO nanorod array effectively increases the recovery rate of the wettability. The improvements are attributed to the hierarchical structures, which are formed by depositing thin gold layers onto the ZnO nanorod array, the visible light sensitivity due to the plasmonic effect of the deposited gold, as well as the fast charge-induced surface status change upon light illumination or dark storage. The improvement is beneficial to applications in environmental purification, energy harvesting, micro-lenses, and smart devices.

  7. A pilot trial of square biphasic pulse deep brain stimulation for dystonia: The BIP dystonia study.

    PubMed

    Almeida, Leonardo; Martinez-Ramirez, Daniel; Ahmed, Bilal; Deeb, Wissam; Jesus, Sol De; Skinner, Jared; Terza, Matthew J; Akbar, Umer; Raike, Robert S; Hass, Chris J; Okun, Michael S

    2017-04-01

    Dystonia often has inconsistent benefits and requires more energy-demanding DBS settings. Studies suggest that squared biphasic pulses could provide significant clinical benefit; however, dystonia patients have not been explored. To assess safety and tolerability of square biphasic DBS in dystonia patients. This study included primary generalized or cervical dystonia patients with bilateral GPi DBS. Square biphasic pulses were implemented and patients were assessed at baseline, immediately postwashout, post-30-minute washout, 1 hour post- and 2 hours postinitiation of investigational settings. Ten participants completed the study. There were no patient-reported or clinician-observed side effects. There was improvement across time on the Toronto Western Spasmodic Torticollis Rating Scale (χ 2  = 10.7; P = 0.031). Similar improvement was detected in objective gait measurements. Square biphasic stimulation appears safe and feasible in dystonia patients with GPi DBS. Further studies are needed to evaluate possible effectiveness particularly in cervical and gait features. © 2016 International Parkinson and Movement Disorder Society. © 2017 International Parkinson and Movement Disorder Society.

  8. Fogging technique used to coat magnesium with plastic

    NASA Technical Reports Server (NTRS)

    Mroz, T. S.

    1967-01-01

    Cleaning process and a fogging technique facilitate the application of a plastic coating to magnesium plates. The cleaning process removes general organic and inorganic surface impurities, oils and greases, and oxides and carbonates from the magnesium surfaces. The fogging technique produces a thin-filmlike coating in a clean room atmosphere.

  9. Reduced graphene oxide coated thin aluminum film as an optoacoustic transmitter for high pressure and high frequency ultrasound generation

    NASA Astrophysics Data System (ADS)

    Hwan Lee, Seok; Park, Mi-ae; Yoh, Jack J.; Song, Hyelynn; Yun Jang, Eui; Hyup Kim, Yong; Kang, Sungchan; Seop Yoon, Yong

    2012-12-01

    We demonstrate that reduced graphene oxide (rGO) coated thin aluminum film is an effective optoacoustic transmitter for generating high pressure and high frequency ultrasound previously unattainable by other techniques. The rGO layer of different thickness is deposited between a 100 nm-thick aluminum film and a glass substrate. Under a pulsed laser excitation, the transmitter generates enhanced optoacoustic pressure of 64 times the aluminum-alone transmitter. A promising optoacoustic wave generation is possible by optimizing thermoelasticity of metal film and thermal conductivity of rGO in the proposed transmitter for laser-induced ultrasound applications.

  10. Effect of Co doping concentration on structural properties and optical parameters of Co-doped ZnO thin films by sol-gel dip-coating method.

    PubMed

    Nam, Giwoong; Yoon, Hyunsik; Kim, Byunggu; Lee, Dong-Yul; Kim, Jong Su; Leem, Jae-Young

    2014-11-01

    The structural and optical properties of Co-doped ZnO thin films prepared by a sol-gel dip-coating method were investigated. X-ray diffraction analysis showed that the thin films were grown with a c-axis preferred orientation. The position of the (002) peak was almost the same in all samples, irrespective of the Co concentration. It is thus clear that Co doping had little effect on the position of the (002) peak. To confirm that Co2+ was substituted for Zn2+ in the wurtzite structure, optical measurements were conducted at room temperature by a UV-visible spectrometer. Three absorption peaks are apparent in the Co-doped ZnO thin films that do not appear for the undoped ZnO thin film. As the Co concentration was increased, absorption related to characteristic Co2+ transitions increased because three absorption band intensities and the area underneath the absorption wells between 500 and 700 nm increased with increasing Co concentration. The optical band gap and static dielectric constant decreased and the Urbach energy and extinction coefficient increased with increasing Co concentration.

  11. Coated foams, preparation, uses and articles

    DOEpatents

    Duchane, D.V.; Barthell, B.L.

    1982-10-21

    Hydrophobic cellular material is coated with a thin hydrophilic polymer skin which stretches tightly over the foam but which does not fill the cells of the foam, thus resulting in a polymer-coated foam structure having a smoothness which was not possible in the prior art. In particular, when the hydrophobic cellular material is a specially chosen hydrophobic polymer foam and is formed into arbitrarily chosen shapes prior to the coating with hydrophilic polymer, inertial confinement fusion (ICF) targets of arbitrary shapes can be produced by subsequently coating the shapes with metal or with any other suitable material. New articles of manufacture are produced, including improved ICF targets, improved integrated circuits, and improved solar reflectors and solar collectors. In the coating method, the cell size of the hydrophobic cellular material, the viscosity of the polymer solution used to coat, and the surface tension of the polymer solution used to coat are all very important to the coating.

  12. Fabrication and tritium release property of Li2TiO3-Li4SiO4 biphasic ceramics

    NASA Astrophysics Data System (ADS)

    Yang, Mao; Ran, Guangming; Wang, Hailiang; Dang, Chen; Huang, Zhangyi; Chen, Xiaojun; Lu, Tiecheng; Xiao, Chengjian

    2018-05-01

    Li2TiO3-Li4SiO4 biphasic ceramic pebbles have been developed as an advanced tritium breeder due to the potential to combine the advantages of both Li2TiO3 and Li4SiO4. Wet method was developed for the pebble fabrication and Li2TiO3-Li4SiO4 biphasic ceramic pebbles were successfully prepared by wet method using the powders synthesized by hydrothermal method. The tritium release properties of the Li2TiO3-Li4SiO4 biphasic ceramic pebbles were evaluated. The biphasic pebbles exhibited good tritium release property at low temperatures and the tritium release temperature was around 470 °C. Because of the isotope exchange reaction between H2 and tritium, the addition of 0.1%H2 to purge gas He could significantly enhance the tritium gas release and the fraction of molecular form of tritium increased from 28% to 55%. The results indicate that the Li2TiO3-Li4SiO4 biphasic ceramic pebbles fabricated by wet method exhibit good tritium release property and hold promising potential as advanced breeder pebbles.

  13. Microscopic observation of laser glazed yttria-stabilized zirconia coatings

    NASA Astrophysics Data System (ADS)

    Morks, M. F.; Berndt, C. C.; Durandet, Y.; Brandt, M.; Wang, J.

    2010-08-01

    Thermal barrier coatings (TBCs) are frequently used as insulation system for hot components in gas-turbine, combustors and power plant industries. The corrosive gases which come from combustion of low grade fuels can penetrate into the TBCs and reach the metallic components and bond coat and cause hot corrosion and erosion damage. Glazing the top coat by laser beam is advanced approach to seal TBCs surface. The laser beam has the advantage of forming a dense thin layer composed of micrograins. Plasma-sprayed yttria-stabilized zirconia (YSZ) coating was glazed with Nd-YAG laser at different operating conditions. The surface morphologies, before and after laser treatment, were investigated by scanning electron microscopy. Laser beam assisted the densification of the surface by remelting a thin layer of the exposed surface. The laser glazing converted the rough surface of TBCs into smooth micron-size grains with size of 2-9 μm and narrow grain boundaries. The glazed surfaces showed higher Vickers hardness compared to as-sprayed coatings. The results revealed that the hardness increases as the grain size decreases.

  14. Effect of Rheological Properties on Liquid Curtain Coating

    NASA Astrophysics Data System (ADS)

    Mohammad Karim, Alireza; Suszynski, Wieslaw; Griffith, William; Pujari, Saswati; Carvalho, Marcio; Francis, Lorraine; Dow Chemical Company Collaboration; PUC-Rio Collaboration

    2017-11-01

    Curtain coating is one of the preferred methods for high-speed precision application of single-layer and multi-layer coatings in technology. However, uniform coatings are only obtained in a certain range of operating parameters, called coating window. The two main physical mechanisms that limit successful curtain coating are liquid curtain breakup and air entrainment. The rheological properties of the liquid play an important role on these mechanisms, but the fundamental understanding of these relations is still not complete. The effect of rate-dependent shear and extensional viscosities on the stability of viscoelastic and shear thinning liquid curtains were explored by high-speed visualization. Aqueous solutions of polyethylene oxide (PEO) and polyethylene glycol (PEG) were used as viscoelastic liquids. Xanthan Gum in water and glycerol solutions with a range of compositions were used as shear thinning liquids. The critical condition was determined by examining flow rate below which curtain broke. In this work, we also analyze relative importance of rate-dependent shear and extensional viscosity on both curtain breakup and air entrainment. We would like to acknowledge the financial support from the Dow Chemical Company.

  15. CuInSe₂ thin-film solar cells with 7.72 % efficiency prepared via direct coating of a metal salts/alcohol-based precursor solution.

    PubMed

    Ahn, Sejin; Son, Tae Hwa; Cho, Ara; Gwak, Jihye; Yun, Jae Ho; Shin, Keeshik; Ahn, Seoung Kyu; Park, Sang Hyun; Yoon, Kyunghoon

    2012-09-01

    A simple direct solution coating process for forming CuInSe₂ (CIS) thin films was described, employing a low-cost and environmentally friendly precursor solution. The precursor solution was prepared by mixing metal acetates, ethanol, and ethanolamine. The facile formation of a precursor solution without the need to prefabricate nanoparticles enables a rapid and easy processing, and the high stability of the solution in air further ensures the precursor preparation and the film deposition in ambient conditions without a glove box. The thin film solar cell fabricated with the absorber film prepared by this route showed an initial conversion efficiency of as high as 7.72 %. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Glass-ceramic coating material for the CO2 laser based sintering of thin films as caries and erosion protection.

    PubMed

    Bilandžić, Marin Dean; Wollgarten, Susanne; Stollenwerk, Jochen; Poprawe, Reinhart; Esteves-Oliveira, Marcella; Fischer, Horst

    2017-09-01

    The established method of fissure-sealing using polymeric coating materials exhibits limitations on the long-term. Here, we present a novel technique with the potential to protect susceptible teeth against caries and erosion. We hypothesized that a tailored glass-ceramic material could be sprayed onto enamel-like substrates to create superior adhesion properties after sintering by a CO 2 laser beam. A powdered dental glass-ceramic material from the system SiO 2 -Na 2 O-K 2 O-CaO-Al 2 O 3 -MgO was adjusted with individual properties suitable for a spray coating process. The material was characterized using X-ray fluorescence analysis (XRF), heating microscopy, dilatometry, scanning electron microscopy (SEM), grain size analysis, biaxial flexural strength measurements, fourier transform infrared spectroscopy (FTIR), and gas pycnometry. Three different groups of samples (each n=10) where prepared: Group A, powder pressed glass-ceramic coating material; Group B, sintered hydroxyapatite specimens; and Group C, enamel specimens (prepared from bovine teeth). Group B and C where spray coated with glass-ceramic powder. All specimens were heat treated using a CO 2 laser beam process. Cross-sections of the laser-sintered specimens were analyzed using laser scanning microscopy (LSM), energy dispersive X-ray analysis (EDX), and SEM. The developed glass-ceramic material (grain size d50=13.1mm, coefficient of thermal expansion (CTE)=13.310 -6 /K) could be spray coated on all tested substrates (mean thickness=160μm). FTIR analysis confirmed an absorption of the laser energy up to 95%. The powdered glass-ceramic material was successfully densely sintered in all sample groups. The coating interface investigation by SEM and EDX proved atomic diffusion and adhesion of the glass-ceramic material to hydroxyapatite and to dental enamel. A glass-ceramic material with suitable absorption properties was successfully sprayed and laser-sintered in thin films on hydroxyapatite as well as on

  17. Plasma-formed hyperthermal atomic beams for use in thin film fabrication

    NASA Astrophysics Data System (ADS)

    Gilson, E. P.; Cohen, S. A.; Berlinger, B.; Chan, W.

    2013-10-01

    Enhancing the surface mobility of adsorbents during thin-film growth processes is important for creating certain high-quality thin films. Under the auspices of a DARPA program to develop methods for supplying momentum to adsorbates during thin-film formation without using bulk heating, a hyperthermal atomic beam (HAB) was generated and directed at silicon surfaces with patterned coatings of pentacene, gold, and other surrogates for adsorbents relevant to various thin-film coatings. The HAB was created when the plasma from a helicon plasma source struck a tungsten neutralizer plate and was reflected as neutrals. Time averaged HAB fluxes 100 times greater than in previous PPPL HAB sources have been generated. The effect of the HAB on the patterned coatings was measured using atomic force microscopy (AFM). Results are presented on the flux and energy of the HAB for various system pressures, magnetic fields, and neutralizer biases. AFM measurements of the surface topology demonstrate that the HAB energy, species, and integrated flux are all important factors in altering surface mobility. This research is supported by the U.S. Defense Advanced Research Projects Agency.

  18. HIV-1 dynamics revisited: biphasic decay by cytotoxic T lymphocyte killing?

    PubMed Central

    Arnaout, R A; Nowak, M A; Wodarz, D

    2000-01-01

    The biphasic decay of blood viraemia in patients being treated for human immunodeficiency virus type 1 (HIV-1) infection has been explained as the decay of two distinct populations of cells: the rapid death of productively infected cells followed by the much slower elimination of a second population the identity of which remains unknown. Here we advance an alternative explanation based on the immune response against a single population of infected cells. We show that the biphasic decay can be explained simply, without invoking multiple compartments: viral load falls quickly while cytotoxic T lymphocytes (CTL) are still abundant, and more slowly as CTL disappear. We propose a method to test this idea, and develop a framework that is readily applicable to treatment of other infections. PMID:10972131

  19. Effects of nanoscale coatings on reliability of MEMS ohmic contact switches

    NASA Astrophysics Data System (ADS)

    Tremper, Amber Leigh

    This thesis examines how the electrical and mechanical behavior of Au thin films is altered by the presence of ultra-thin metallic coatings. To examine the mechanical behavior, nanoindentation, nano-scratch, and atomic force microscopy (AFM) testing was performed. The electrical behavior was evaluated through Kelvin probe contact resistance measurements. This thesis shows that ultra-thin, hard, ductile coatings on a softer, ductile underlying layer (such as Ru or Pt on Au) had a significant effect on mechanical behavior of the system, and can be tailored to control the deformation resistance of the thin film system. Despite Ru and Pt having a higher hardness and plane strain modulus than Au, the Ru and Pt coatings decreased both the hardness and plane strain modulus of the layered system when the indentation depth was on the order of the coating thickness. Alternately, when the indentation depth was several times the coating thickness, the ductile, plastically hard, elastically stiff layer significantly hardened the contact response. These results correlate well with membrane stress theoretical predictions, and demonstrate that membrane theory can be applied even when the ratio of indentation depth, h, to coating thickness, t, is very large ( h/t<10). The transition from film-substrate models to membrane models occurs when the indent penetration depth to coating thickness ratio is less than ˜0.5. When the electrical behavior of the Ru-coated Au films was examined, it was found that all the measured resistances of the Au-only film and Ru-coated systems were several orders of magnitude larger than those predicted by Holm's law, but were still in good agreement with previously reported values in the literature. Previous studies attributed the high contact resistances to a variety of causes, including the buildup of an insulating contamination layer. This thesis determined the cause of the deviations to be large sheet resistance contributions to the total measured

  20. Silver nanowire-based transparent, flexible, and conductive thin film

    PubMed Central

    2011-01-01

    The fabrication of transparent, conductive, and uniform silver nanowire films using the scalable rod-coating technique is described in this study. Properties of the transparent conductive thin films are investigated, as well as the approaches to improve the performance of transparent silver nanowire electrodes. It is found that silver nanowires are oxidized during the coating process. Incubation in hydrogen chloride (HCl) vapor can eliminate oxidized surface, and consequently, reduce largely the resistivity of silver nanowire thin films. After HCl treatment, 175 Ω/sq and approximately 75% transmittance are achieved. The sheet resistivity drops remarkably with the rise of the film thickness or with the decrease of transparency. The thin film electrodes also demonstrated excellent flexible stability, showing < 2% resistance change after over 100 bending cycles. PMID:21711602

  1. Thermal sensor with an improved coating

    DOEpatents

    LaDelfe, P.C.; Stotlar, S.C.

    1984-03-30

    The disclosure is directed to an apparatus for detecting radiation having wavelengths from about 0.4 ..mu..m to about 5.6 ..mu..m. An optical coating is applied to a thermal sensor that is normally transparent to radiation with such wavelengths. The optical coating is thin and light and includes a modifier and an absorber. The thermal sensor can be a pyroelectric detector such as strontium barium niobate.

  2. Thermal sensor with an improved coating

    DOEpatents

    LaDelfe, Peter C.; Stotlar, Suzanne C.

    1986-01-01

    The disclosure is directed to an apparatus for detecting radiation having wavelengths from about 0.4 .mu.m to about 5.6 .mu.m. An optical coating is applied to a thermal sensor that is normally transparent to radiation with such wavelengths. The optical coating is thin and light and includes a modifier and an absorber. The thermal sensor can be a pyroelectric detector such as strontium barium niobate.

  3. Absorbing TiO x thin film enabling laser welding of polyurethane membranes and polyamide fibers.

    PubMed

    Amberg, Martin; Haag, Alexander; Storchenegger, Raphael; Rupper, Patrick; Lehmeier, Frederike; Rossi, René M; Hegemann, Dirk

    2015-10-01

    We report on the optical properties of thin titanium suboxide (TiO x ) films for applications in laser transmission welding of polymers. Non-absorbing fibers were coated with TiO x coatings by reactive magnetron sputtering. Plasma process parameters influencing the chemical composition and morphology of the deposited thin films were investigated in order to optimize their absorption properties. Optical absorption spectroscopy showed that the oxygen content of the TiO x coatings is the main parameter influencing the optical absorbance. Overtreatment (high power plasma input) of the fiber surface leads to high surface roughness and loss of mechanical stability of the fiber. The study shows that thin substoichiometric TiO x films enable the welding of very thin polyurethane membranes and polyamide fibers with improved adhesion properties.

  4. Triple-channel microreactor for biphasic gas-liquid reactions: Photosensitized oxygenations.

    PubMed

    Maurya, Ram Awatar; Park, Chan Pil; Kim, Dong-Pyo

    2011-01-01

    A triple-channel microreactor fabricated by means of a soft-lithography technique was devised for efficient biphasic gas-liquid reactions. The excellent performance of the microreactor was demonstrated by carrying out photosensitized oxygenations of α-terpinene, citronellol, and allyl alcohols.

  5. Rocket thrust chamber thermal barrier coatings

    NASA Technical Reports Server (NTRS)

    Batakis, A. P.; Vogan, J. W.

    1985-01-01

    A research program was conducted to generate data and develop analytical techniques to predict the performance and reliability of ceramic thermal barrier coatings in high heat flux environments. A finite element model was used to analyze the thermomechanical behavior of coating systems in rocket thrust chambers. Candidate coating systems (using a copper substrate, NiCrAlY bond coat and ZrO2.8Y2O3 ceramic overcoat) were selected for detailed study based on photomicrographic evaluations of experimental test specimens. The effects of plasma spray application parameters on the material properties of these coatings were measured and the effects on coating performance evaluated using the finite element model. Coating design curves which define acceptable operating envelopes for seleted coating systems were constructed based on temperature and strain limitations. Spray gun power levels was found to have the most significant effect on coating structure. Three coating systems were selected for study using different power levels. Thermal conductivity, strain tolerance, density, and residual stress were measured for these coatings. Analyses indicated that extremely thin coatings ( 0.02 mm) are required to accommodate the high heat flux of a rocket thrust chamber and ensure structural integrity.

  6. Monophasic versus biphasic defibrillation for pediatric out-of-hospital cardiac arrest patients: a nationwide population-based study in Japan

    PubMed Central

    2012-01-01

    Introduction Conventional monophasic defibrillators for out-of-hospital cardiac-arrest patients have been replaced with biphasic defibrillators. However, the advantage of biphasic over monophasic defibrillation for pediatric out-of-hospital cardiac-arrest patients remains unknown. This study aimed to compare the survival outcomes of pediatric out-of-hospital cardiac-arrest patients who underwent monophasic defibrillation with those who underwent biphasic defibrillation. Methods This prospective, nationwide, population-based observational study included pediatric out-of-hospital cardiac-arrest patients from January 1, 2005, to December 31, 2009. The primary outcome measure was survival at 1 month with minimal neurologic impairment. The secondary outcome measures were survival at 1 month and the return of spontaneous circulation before hospital arrival. Multivariable logistic regression analysis was performed to identify the independent association between defibrillator type (monophasic or biphasic) and outcomes. Results Among 5,628 pediatric out-of-hospital cardiac-arrest patients (1 through 17 years old), 430 who received defibrillation shock with monophasic or biphasic defibrillator were analyzed. The number of patients who received defibrillation shock with monophasic defibrillator was 127 (30%), and 303 (70%) received defibrillation shock with biphasic defibrillator. The survival rates at 1 month with minimal neurologic impairment were 17.5% and 24.4%, the survival rates at 1 month were 32.3% and 35.6%, and the rates of return of spontaneous circulation before hospital arrival were 24.4% and 27.4% in the monophasic and biphasic defibrillator groups, respectively. Hierarchic logistic regression analyses by using generalized estimation equations found no significant difference between the two groups in terms of 1-month survival with minimal neurologic impairment (odds ratio (OR), 1.57; 95% confidence interval (CI), 0.87 to 2.83; P = 0.14) and 1-month survival (OR

  7. Employing Synergetic Effect of Doping and Thin Film Coating to Boost the Performance of Lithium-Ion Battery Cathode Particles

    PubMed Central

    Patel, Rajankumar L.; Jiang, Ying-Bing; Choudhury, Amitava; Liang, Xinhua

    2016-01-01

    Atomic layer deposition (ALD) has evolved as an important technique to coat conformal protective thin films on cathode and anode particles of lithium ion batteries to enhance their electrochemical performance. Coating a conformal, conductive and optimal ultrathin film on cathode particles has significantly increased the capacity retention and cycle life as demonstrated in our previous work. In this work, we have unearthed the synergetic effect of electrochemically active iron oxide films coating and partial doping of iron on LiMn1.5Ni0.5O4 (LMNO) particles. The ionic Fe penetrates into the lattice structure of LMNO during the ALD process. After the structural defects were saturated, the iron started participating in formation of ultrathin oxide films on LMNO particle surface. Owing to the conductive nature of iron oxide films, with an optimal film thickness of ~0.6 nm, the initial capacity improved by ~25% at room temperature and by ~26% at an elevated temperature of 55 °C at a 1C cycling rate. The synergy of doping of LMNO with iron combined with the conductive and protective nature of the optimal iron oxide film led to a high capacity retention (~93% at room temperature and ~91% at 55 °C) even after 1,000 cycles at a 1C cycling rate. PMID:27142704

  8. Self Healing Coating/Film Project

    NASA Technical Reports Server (NTRS)

    Summerfield, Burton; Thompson, Karen; Zeitlin, Nancy; Mullenix, Pamela; Calle, Luz; Williams, Martha

    2015-01-01

    Kennedy Space Center (KSC) has been developing self healing materials and technologies. This project seeks to further develop self healing functionality in thin films for applications such as corrosion protective coatings, inflatable structures, space suit materials, and electrical wire insulation.

  9. Aqueous biphasic extraction process with pH and particle control

    DOEpatents

    Chaiko, David J.; Mensah-Biney, R.

    1995-01-01

    A process for aqueous biphasic extraction of metallic oxides and the like from substances containing silica. Control of media pH enables efficient and effective partition of mixture components. The inventive method may be employed to remove excess silica from kaolin clay.

  10. Triple-channel microreactor for biphasic gas–liquid reactions: Photosensitized oxygenations

    PubMed Central

    Maurya, Ram Awatar; Park, Chan Pil

    2011-01-01

    Summary A triple-channel microreactor fabricated by means of a soft-lithography technique was devised for efficient biphasic gas–liquid reactions. The excellent performance of the microreactor was demonstrated by carrying out photosensitized oxygenations of α-terpinene, citronellol, and allyl alcohols. PMID:21915221

  11. Thin film temperature sensor

    NASA Technical Reports Server (NTRS)

    Grant, H. P.; Przybyszewski, J. S.

    1980-01-01

    Thin film surface temperature sensors were developed. The sensors were made of platinum-platinum/10 percent rhodium thermocouples with associated thin film-to-lead wire connections and sputtered on aluminum oxide coated simulated turbine blades for testing. Tests included exposure to vibration, low velocity hydrocarbon hot gas flow to 1250 K, and furnace calibrations. Thermal electromotive force was typically two percent below standard type S thermocouples. Mean time to failure was 42 hours at a hot gas flow temperature of 1250 K and an average of 15 cycles to room temperature. Failures were mainly due to separation of the platinum thin film from the aluminum oxide surface. Several techniques to improve the adhesion of the platinum are discussed.

  12. Effect of La2O3 addition on interface chemistry between 4YSZ top layer and Ni based alloy bond coat in thermal barrier coating by EB PVD.

    PubMed

    Park, Chan-Young; Yang, Young-Hwan; Kim, Seong-Won; Lee, Sung-Min; Kim, Hyung-Tae; Jang, Byung-Koog; Lim, Dae-Soon; Oh, Yoon-Suk

    2014-11-01

    The effect of a 5 mol% La2O3 addition on the forming behavior and compositional variation at interface between a 4 mol% Yttria (Y2O3) stabilized ZrO2 (4YSZ) top coat and bond coat (NiCrAlY) as a thermal barrier coating (TBC) has been investigated. Top coats were deposited by electron beam physical vapor deposition (EB PVD) onto a super alloy (Ni-Cr-Co-Al) substrate without pre-oxidation of the bond coat. Top coats are found to consist of dense columnar grains with a thin interdiffusion layer between metallic bond coats. In the as-received 4YSZ coating, a thin interdiffusion zone at the interface between the top and bond coats was found to consist of a Ni-Zr intermetallic compound with a reduced quantity of Y, Al or O elements. On the other hand, in the case of an interdiffusion area of 5 mol% La2O3-added 4YSZ coating, it was found that the complicated composition and structure with La-added YSZ and Ni-Al rich compounds separately. The thermal conductivity of 5 mol% La2O3-added 4YSZ coating (- 1.6 W/m x k at 1100 degrees C) was lower than a 4YSZ coating (- 3.2 W/m x k at 1100 degrees C) alone.

  13. Rocket thrust chamber thermal barrier coatings

    NASA Technical Reports Server (NTRS)

    Quentmeyer, R. J.

    1985-01-01

    Subscale rocket thrust chamber tests were conducted to evaluate the effectiveness and durability of thin yttria stabilized zirconium oxide coatings applied to the thrust chamber hot-gas side wall. The fabrication consisted of arc plasma spraying the ceramic coating and bond coat onto a mandrell and then electrodepositing the copper thrust chamber wall around the coating. Chambers were fabricated with coatings .008, and .005 and .003 inches thick. The chambers were thermally cycled at a chamber pressure of 600 psia using oxygen-hydrogen as propellants and liquid hydrogen as the coolant. The thicker coatings tended to delaminate, early in the cyclic testing, down to a uniform sublayer which remained well adhered during the remaining cycles. Two chambers with .003 inch coatings were subjected to 1500 thermal cycles with no coating loss in the throat region, which represents a tenfold increase in life over identical chambers having no coatings. An analysis is presented which shows that the heat lost to the coolant due to the coating, in a rocket thrust chamber design having a coating only in the throat region, can be recovered by adding only one inch to the combustion chamber length.

  14. Lipase in biphasic alginate beads as a biocatalyst for esterification of butyric acid and butanol in aqueous media.

    PubMed

    Ng, Choong Hey; Yang, Kun-Lin

    2016-01-01

    Esterification of organic acids and alcohols in aqueous media is very inefficient due to thermodynamic constraints. However, fermentation processes used to produce organic acids and alcohols are often conducted in aqueous media. To produce esters in aqueous media, biphasic alginate beads with immobilized lipase are developed for in situ esterification of butanol and butyric acid. The biphasic beads contain a solid matrix of calcium alginate and hexadecane together with 5 mg/mL of lipase as the biocatalyst. Hexadecane in the biphasic beads serves as an organic phase to facilitate the esterification reaction. Under optimized conditions, the beads are able to catalyze the production of 0.16 mmol of butyl butyrate from 0.5 mmol of butyric acid and 1.5 mmol of butanol. In contrast, when monophasic beads (without hexadecane) are used, only trace amount of butyl butyrate is produced. One main application of biphasic beads is in simultaneous fermentation and esterification (SFE) because the organic phase inside the beads is very stable and does not leach out into the culture medium. SFE is successfully conducted with an esterification yield of 6.32% using biphasic beads containing iso-octane even though the solvent is proven toxic to the butanol-producing Clostridium spp. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. 21 CFR 189.301 - Tin-coated lead foil capsules for wine bottles.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Tin-coated lead foil capsules for wine bottles... Addition to Human Food Through Food-Contact Surfaces § 189.301 Tin-coated lead foil capsules for wine bottles. (a) Tin-coated lead foil is composed of a lead foil coated on one or both sides with a thin layer...

  16. Microindentation hardness testing of coatings: techniques and interpretation of data

    NASA Astrophysics Data System (ADS)

    Blau, P. J.

    1986-09-01

    This paper addresses the problems and promises of micro-indentation testing of thin solid films. It has discussed basic penetration hardness testing philosophy, the peculiarities of low load-shallow penetration tests of uncoated metals, and it has compared coated with uncoated behavior so that some of the unique responses of coatings can be distinguished from typical hardness versus load behavior. As the uses of thin solid coatings with technological interest continue to proliferate, microindentation testing methodology will increasingly be challenged to provide useful tools for their characterization. The understanding of microindentation response must go hand-in-hand with machine design so that the capability of measurement precision does not outstrip our abilities to interpret test results in a meaningful way.

  17. Characterization of sputtered iridium oxide thin films on planar and laser micro-structured platinum thin film surfaces for neural stimulation applications

    NASA Astrophysics Data System (ADS)

    Thanawala, Sachin

    Electrical stimulation of neurons provides promising results for treatment of a number of diseases and for restoration of lost function. Clinical examples include retinal stimulation for treatment of blindness and cochlear implants for deafness and deep brain stimulation for treatment of Parkinsons disease. A wide variety of materials have been tested for fabrication of electrodes for neural stimulation applications, some of which are platinum and its alloys, titanium nitride, and iridium oxide. In this study iridium oxide thin films were sputtered onto laser micro-structured platinum thin films by pulsed-DC reactive sputtering of iridium metal in oxygen-containing atmosphere, to obtain high charge capacity coatings for neural stimulation applications. The micro-structuring of platinum films was achieved by a pulsed-laser-based technique (KrF excimer laser emitting at lambda=248nm). The surface morphology of the micro-structured films was studied using different surface characterization techniques. In-vitro biocompatibility of these laser micro-structured films coated with iridium oxide thin films was evaluated using cortical neurons isolated from rat embryo brain. Characterization of these laser micro-structured films coated with iridium oxide, by cyclic voltammetry and impedance spectroscopy has revealed a considerable decrease in impedance and increase in charge capacity. A comparison between amorphous and crystalline iridium oxide thin films as electrode materials indicated that amorphous iridium oxide has significantly higher charge capacity and lower impedance making it preferable material for neural stimulation application. Our biocompatibility studies show that neural cells can grow and differentiate successfully on our laser micro-structured films coated with iridium oxide. This indicates that reactively sputtered iridium oxide (SIROF) is biocompatible.

  18. Biphasic Kinetic Behavior of Nitrate Reductase from Heterocystous, Nitrogen-Fixing Cyanobacteria 1

    PubMed Central

    Martin-Nieto, José; Flores, Enrique; Herrero, Antonia

    1992-01-01

    Nitrate reductase activity from filamentous, heterocyst-forming cyanobacteria showed a biphasic kinetic behavior with respect to nitrate as the variable substrate. Two kinetic components were detected, the first showing a higher affinity for nitrate (Km, 0.05-0.25 mm) and a lower catalytic activity and the second showing a lower affinity for nitrate (Km, 5-25 mm) and a higher (3- to 5-fold) catalytic activity. In contrast, among unicellular cyanobacteria, most representatives studied exhibited a monophasic, Michaelis-Menten kinetic pattern for nitrate reductase activity. Biphasic kinetics remained unchanged with the use of different assay conditions (i.e. cell disruption or permeabilization, two different electron donors) or throughout partial purification of the enzyme. PMID:16652939

  19. Optically transparent, superhydrophobic, biocompatible thin film coatings and methods for producing same

    DOEpatents

    Armstrong, Beth L.; Aytug, Tolga; Paranthaman, Mariappan Parans; Simpson, John T.; Hillesheim, Daniel A.; Trammell, Neil E.

    2017-09-05

    An optically transparent, hydrophobic coating, exhibiting an average contact angle of at least 100 degrees with a drop of water. The coating can be produced using low-cost, environmentally friendly components. Methods of preparing and using the optically transparent, hydrophobic coating.

  20. The use of magnetron sputtering for the deposition of thin titanium coatings on the surface of bioresorbable electrospun fibrous scaffolds for vascular tissue engineering: A pilot study

    NASA Astrophysics Data System (ADS)

    Bolbasov, E. N.; Antonova, L. V.; Stankevich, K. S.; Ashrafov, A.; Matveeva, V. G.; Velikanova, E. A.; Khodyrevskaya, Yu. I.; Kudryavtseva, Yu. A.; Anissimov, Y. G.; Tverdokhlebov, S. I.; Barbarash, L. S.

    2017-03-01

    The deposition of thin titanium coatings using magnetron spattering on the surface of bioresorbable fibrous scaffolds produced by electrospinning was investigated. Parameters that allow the surface modification without damaging the "macro" structure of scaffolds were determined. Physicochemical properties of the modified scaffolds were described using SEM, EDS, DSC, optical goniometry, and mechanical testing. It was shown that plasma treatment has a significant influence on the scaffolds' fiber surface relief. The modification process leads to a slight decrease of the scaffold mechanical performance mainly caused by polymer crystallization. Increasing the deposition time increases the amount of titanium on the surface. The biocompatibility of the modified scaffolds was studied using hybridoma of the endothelial cells of human umbilical vein and human lung carcinoma (EA.hy 926 cell line). Cell adhesion, viability, and secretion of interleukin-6 (IL6), interleukin-8 (IL8), and vascular endothelial growth factor (VEGF) were investigated. It was demonstrated that the deposition of thin titanium coatings on the fibrous scaffolds' surface enhances cell adhesion. Additionally, it was determined that modified scaffolds have proangiogenic activity.

  1. Thermal barrier coatings for gas turbine and diesel engines

    NASA Technical Reports Server (NTRS)

    Miller, Robert A.; Brindley, William J.; Bailey, M. Murray

    1989-01-01

    The present state of development of thin thermal barrier coatings for aircraft gas turbine engines and thick thermal barrier coatings for truck diesel engines is assessed. Although current thermal barrier coatings are flying in certain gas turbine engines, additional advances will be needed for future engines. Thick thermal barrier coatings for truck diesel engines have advanced to the point where they are being seriously considered for the next generation of engine. Since coatings for truck engines is a young field of inquiry, continued research and development efforts will be required to help bring this technology to commercialization.

  2. Evaluation of selected thermal control coatings for long-life space structures

    NASA Technical Reports Server (NTRS)

    Teichman, Louis A.; Slemp, Wayne S.; Witte, William G., Jr.

    1992-01-01

    Graphite-reinforced resin matrix composites are being considered for spacecraft structural applications because of their light weight, high stiffness, and lower thermal expansion. Thin protective coatings with stable optical properties and the proper ratio of solar absorption (alpha sub s) to thermal emittance (epsilon) minimize orbital thermal extremes and protect these materials against space environment degradation. Sputtered coatings applied directly to graphite/epoxy composite surfaces and anodized coatings applied to thin aluminum foil were studied for use both as an atomic oxygen barrier and as thermal control coatings. Additional effort was made to develop nickel-based coatings which could be applied directly to composites. These coating systems were selected because their inherent tenacity made them potentially more reliable than commercial white paints for long-life space missions. Results indicate that anodized aluminum foil coatings are suitable for tubular and flat composite structures on large platforms in low Earth orbit. Anodized foil provides protection against some elements of the natural space environment (atomic oxygen, ultraviolet, and particulate radiation) and offers a broad range of tailored alpha sub s/epsilon. The foil is readily available and can be produced in large quantities, while the anodizing process is a routine commercial technique.

  3. Water-Based Assembly of Polymer-Metal Organic Framework (MOF) Functional Coatings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De, Souvik; Nandasiri, Manjula I.; Schaef, Herbert T.

    Metal organic frameworks (MOFs) have gained tremendous attention for their porosity, size selectivity, and structural diversity. There is a need for MOF-based coatings, particularly in applications such as separations, electronics and energy; yet forming thin, functional, conformal coatings is prohibitive because MOFs exist as a powder. Layer-by- layer assembly, a versatile thin film coating approach, offers a unique solution to this problem, but this approach requires MOFs that are water-dispersible and bear a surface charge. Here, we address these issues by examining water-based dispersions of MIL-101(Cr) that facilitate the formation of robust polymer-MOF hybrid coatings. Specifically, the substrate to bemore » coated is alternately exposed to an aqueous solution of poly(styrene sulfonate) and dispersion MIL-101(Cr), yielding linear film growth and coatings with a MOF content as high as 77 wt%.This approach is surface-agnostic, in which the coating is successfully applied to silicon, glass, flexible plastic, and even cotton fabric, conformally coating individual fibers. In contrast, prior attempts at forming MOF-coatings were severely limited to a handful of surfaces, required harsh chemical treatment, and were not conformal. The approach presented here unambiguously confirms that MOFs can be conformally coated onto complex and unusual surfaces, opening the door for a wide variety of applications.« less

  4. Aqueous biphasic extraction process with pH and particle control

    DOEpatents

    Chaiko, D.J.; Mensah-Biney, R.

    1995-05-02

    A process for aqueous biphasic extraction of metallic oxides and the like from substances containing silica. Control of media pH enables efficient and effective partition of mixture components. The inventive method may be employed to remove excess silica from kaolin clay. 2 figs.

  5. Predictive Feedback Can Account for Biphasic Responses in the Lateral Geniculate Nucleus

    PubMed Central

    Jehee, Janneke F. M.; Ballard, Dana H.

    2009-01-01

    Biphasic neural response properties, where the optimal stimulus for driving a neural response changes from one stimulus pattern to the opposite stimulus pattern over short periods of time, have been described in several visual areas, including lateral geniculate nucleus (LGN), primary visual cortex (V1), and middle temporal area (MT). We describe a hierarchical model of predictive coding and simulations that capture these temporal variations in neuronal response properties. We focus on the LGN-V1 circuit and find that after training on natural images the model exhibits the brain's LGN-V1 connectivity structure, in which the structure of V1 receptive fields is linked to the spatial alignment and properties of center-surround cells in the LGN. In addition, the spatio-temporal response profile of LGN model neurons is biphasic in structure, resembling the biphasic response structure of neurons in cat LGN. Moreover, the model displays a specific pattern of influence of feedback, where LGN receptive fields that are aligned over a simple cell receptive field zone of the same polarity decrease their responses while neurons of opposite polarity increase their responses with feedback. This phase-reversed pattern of influence was recently observed in neurophysiology. These results corroborate the idea that predictive feedback is a general coding strategy in the brain. PMID:19412529

  6. Biphasic papillary renal cell carcinoma is a rare morphological variant with frequent multifocality: a study of 28 cases.

    PubMed

    Trpkov, Kiril; Athanazio, Daniel; Magi-Galluzzi, Cristina; Yilmaz, Helene; Clouston, David; Agaimy, Abbas; Williamson, Sean R; Brimo, Fadi; Lopez, Jose I; Ulamec, Monika; Rioux-Leclercq, Nathalie; Kassem, Maysoun; Gupta, Nilesh; Hartmann, Arndt; Leroy, Xavier; Bashir, Samir Al; Yilmaz, Asli; Hes, Ondřej

    2018-04-01

    To further characterise biphasic squamoid renal cell carcinoma (RCC), a recently proposed variant of papillary RCC. We identified 28 tumours from multiple institutions. They typically showed two cell populations-larger cells with eosinophilic cytoplasm and higher-grade nuclei, surrounded by smaller, amphophilic cells with scanty cytoplasm. The dual morphology was variable (median 72.5% of tumour, range 5-100%); emperipolesis was found in all cases. The male/female ratio was 2:1, and the median age was 55 years (range 39-86 years). The median tumour size was 20 mm (range 9-65 mm). Pathological stage pT1a was found in 21 cases, pT1b in three, and pT3a and pT3b in one each (two not available). Multifocality was found in 32%: multifocal biphasic RCC in one case, biphasic + papillary RCC in two cases, biphasic + clear cell RCC in three cases, biphasic + low-grade urothelial carcinoma of the renal pelvis in one case, and biphasic + Birt-Hogg-Dubé syndrome in one case. Positive immunostains included: PAX8, cytokeratin (CK) 7, α-methylacyl-CoA racemase, epithelial membrane antigen, and vimentin. Cyclin D1 was expressed only in the larger cells. The Ki67 index was higher in the larger cells (median 5% versus ≤1%). Negative stains included: carbonic anhydrase 9, CD117, GATA-3, WT1, CK5/6, and CK20; CD10 and 34βE12 were variably expressed. Gains of chromosomes 7 and 17 were found in two evaluated cases. Follow-up was available for 23 patients (median 24 months, range 1-244 months): 19 were alive without disease, one was alive with recurrence, and one had died of disease (two had died of other causes). Biphasic papillary RCC is a rare variant of papillary RCC, and is often multifocal. © 2017 John Wiley & Sons Ltd.

  7. COATING METHOD

    DOEpatents

    Townsend, R.G.

    1959-08-25

    A method is described for protectively coating beryllium metal by etching the metal in an acid bath, immersing the etched beryllium in a solution of sodium zincate for a brief period of time, immersing the beryllium in concentrated nitric acid, immersing the beryhlium in a second solution of sodium zincate, electroplating a thin layer of copper over the beryllium, and finally electroplating a layer of chromium over the copper layer.

  8. Biphasic patterns of diversification and the emergence of modules

    PubMed Central

    Mittenthal, Jay; Caetano-Anollés, Derek; Caetano-Anollés, Gustavo

    2012-01-01

    The intricate molecular and cellular structure of organisms converts energy to work, which builds and maintains structure. Evolving structure implements modules, in which parts are tightly linked. Each module performs characteristic functions. In this work we propose that a module can emerge through two phases of diversification of parts. Early in the first phase of this biphasic pattern, the parts have weak linkage—they interact weakly and associate variously. The parts diversify and compete. Under selection for performance, interactions among the parts increasingly constrain their structure and associations. As many variants are eliminated, parts self-organize into modules with tight linkage. Linkage may increase in response to exogenous stresses as well as endogenous processes. In the second phase of diversification, variants of the module and its functions evolve and become new parts for a new cycle of generation of higher-level modules. This linkage hypothesis can interpret biphasic patterns in the diversification of protein domain structure, RNA and protein shapes, and networks in metabolism, codes, and embryos, and can explain hierarchical levels of structural organization that are widespread in biology. PMID:22891076

  9. Biphasic synovial sarcoma in the cervical spine: Case report.

    PubMed

    Foreman, Stephen M; Stahl, Michael J

    2011-05-23

    Synovial sarcoma is a rare malignant neoplasm of soft tissue that typically arising near large joints of the upper and lower extremities in young adult males. Only 3% of these neoplasms have been found to arise in the head and neck region. To our knowledge, there are limited reports in the literature of this neoplasm in the cervical spine.A case of biphasic synovial sarcoma of the cervical spine is reviewed. A 29 year-old male presented with pain on the left side of the cervical spine. Physical examination revealed a global loss of cervical motion and large, palpable mass in the left paravertebral area. The long-delayed Magnetic Resonance (MR) scan revealed a soft tissue mass measuring 8.3 centimeters (cm) × 5.7 cm that was surgically removed. A malignant biphasic synovial sarcoma was diagnosed on pathologic examination.The clinical and imaging findings of an atypically located synovial sarcoma are reviewed. This case report emphasizes the consequences of a limited differential diagnosis, prolonged treatment and the failure to perform timely diagnostic imaging in the presence of a paraspinal mass.

  10. Usefulness of p16/CDKN2A fluorescence in situ hybridization and BAP1 immunohistochemistry for the diagnosis of biphasic mesothelioma.

    PubMed

    Wu, Di; Hiroshima, Kenzo; Yusa, Toshikazu; Ozaki, Daisuke; Koh, Eitetsu; Sekine, Yasuo; Matsumoto, Shinji; Nabeshima, Kazuki; Sato, Ayuko; Tsujimura, Tohru; Yamakawa, Hisami; Tada, Yuji; Shimada, Hideaki; Tagawa, Masatoshi

    2017-02-01

    Malignant mesothelioma is a highly aggressive neoplasm, and the histologic subtype is one of the most reliable prognostic factors. Some biphasic mesotheliomas are difficult to distinguish from epithelioid mesotheliomas with atypical fibrous stroma. The aim of this study was to analyze p16/CDKN2A deletions in mesotheliomas by fluorescence in situ hybridization (FISH) and BAP1 immunohistochemistry to evaluate their potential role in the diagnosis of biphasic mesothelioma. We collected 38 cases of pleural mesotheliomas. The results of this study clearly distinguished 29 cases of biphasic mesothelioma from 9 cases of epithelioid mesothelioma. The proportion of biphasic mesotheliomas with homozygous deletions of p16/CDKN2A in total was 96.6% (28/29). Homozygous deletion of p16/CDKN2A was observed in 18 (94.7%) of 19 biphasic mesotheliomas with 100% concordance of the p16/CDKN2A deletion status between the epithelioid and sarcomatoid components in each case. Homozygous deletion of the p16/CDKN2A was observed in 7 (77.8%) of 9 epithelioid mesotheliomas but not in fibrous stroma. BAP1 loss was observed in 5 (38.5%) of 13 biphasic mesotheliomas and in both epithelioid and sarcomatoid components. BAP1 loss was observed in 5 (62.5%) of 8 epithelioid mesotheliomas but not in fibrous stroma. Homozygous deletion of p16/CDKN2A is common in biphasic mesotheliomas, and the analysis of only one component of mesothelioma is sufficient to show that the tumor is malignant. However, compared with histology alone, FISH analysis of the p16/CDKN2A status and BAP1 immunohistochemistry in the spindled mesothelium provide a more objective means to differentiate between biphasic mesothelioma and epithelioid mesothelioma with atypical stromal cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Graphene: corrosion-inhibiting coating.

    PubMed

    Prasai, Dhiraj; Tuberquia, Juan Carlos; Harl, Robert R; Jennings, G Kane; Rogers, Bridget R; Bolotin, Kirill I

    2012-02-28

    We report the use of atomically thin layers of graphene as a protective coating that inhibits corrosion of underlying metals. Here, we employ electrochemical methods to study the corrosion inhibition of copper and nickel by either growing graphene on these metals, or by mechanically transferring multilayer graphene onto them. Cyclic voltammetry measurements reveal that the graphene coating effectively suppresses metal oxidation and oxygen reduction. Electrochemical impedance spectroscopy measurements suggest that while graphene itself is not damaged, the metal under it is corroded at cracks in the graphene film. Finally, we use Tafel analysis to quantify the corrosion rates of samples with and without graphene coatings. These results indicate that copper films coated with graphene grown via chemical vapor deposition are corroded 7 times slower in an aerated Na(2)SO(4) solution as compared to the corrosion rate of bare copper. Tafel analysis reveals that nickel with a multilayer graphene film grown on it corrodes 20 times slower while nickel surfaces coated with four layers of mechanically transferred graphene corrode 4 times slower than bare nickel. These findings establish graphene as the thinnest known corrosion-protecting coating.

  12. Analysis of the Angle of Maximal Stability and Flow Regime Transitions in Different Proportions of Bi-phasic Granular Matter Mixtures

    NASA Astrophysics Data System (ADS)

    Maquiling, Joel Tiu; Visaga, Shane Marie

    This study investigates the dependence of the critical angle θc of stability on different mass ratios γ of layered bi-phasic granular matter mixtures and on the critical angle of its mono-disperse individual components. It also aims to investigate and explain regime transitions of granular matter flowing down a tilted rough inclined plane. Critical angles and flow regimes for a bi-phasic mixture of sago spheres and bi-phasic pepper mixture of fine powder and rough spheres were observed and measured using video analysis. The critical angles θc MD of mono-disperse granular matter and θc BP of biphasic granular matter mixtures were observed and compared. All types of flow regimes and a supramaximal critical angle of stability exist at mass ratio γ = 0.5 for all biphasic granular matter mixtures. The θc BP of sago spheres was higher than the θc MD of sago spheres. Moreover, the θc BP of the pepper mixture was in between the θc MD of fine pepper and θc MD of rough pepper spheres. Comparison of different granular material shows that θc MD is not simply a function of particle diameter but of particle roughness as well. Results point to a superposition mechanism of the critical angles of biphasic sphere mixtures.

  13. Reflection/suppression coatings for 900 - 1200 A radiation

    NASA Technical Reports Server (NTRS)

    Edelstein, Jerry

    1989-01-01

    The design and performance of multiple-layer, selective-reflection, selective-suppression coatings for the 900 - 1200 A band are described. These coatings are designed to optimize both high reflectivity at a desirable wavelength and low reflectivity at an undesirable wavelength. The minimum structure for a selective coating consists of a thin metal or metal oxide layer (50 - 150 A thickness) over an aluminum substrate protected with a semi-transparent dielectric (100 - 1000 A thickness). Predicted coating performance is strongly effected by varying the layer combination and thickness. A graphical method of optimizing the coating layer structure is developed. Aluminum, silicon, their oxides, and gold have been investigated as coating layer materials. A very simple coating with a 1026 to 1216 A reflectivity ratio greater than 100 was fabricated. Such reflection/suppression coatings may be of great utility to spaceborne EUV spectrographs.

  14. Magnet-induced temporary superhydrophobic coatings from one-pot synthesized hydrophobic magnetic nanoparticles.

    PubMed

    Fang, Jian; Wang, Hongxia; Xue, Yuhua; Wang, Xungai; Lin, Tong

    2010-05-01

    In this paper, we report on the production of superhydrophobic coatings on various substrates (e.g., glass slide, silicon wafer, aluminum foil, plastic film, nanofiber mat, textile fabrics) using hydrophobic magnetic nanoparticles and a magnet-assembly technique. Fe(3)O(4) magnetic nanoparticles functionalized with a thin layer of fluoroalkyl silica on the surface were synthesized by one-step coprecipitation of Fe(2+)/Fe(3+) under an alkaline condition in the presence of a fluorinated alkyl silane. Under a magnetic field, the magnetic nanoparticles can be easily deposited on any solid substrate to form a thin superhydrophobic coating with water contact angle as high as 172 degrees , and the surface superhydrophobicity showed very little dependence on the substrate type. The particulate coating showed reasonable durability because of strong aggregation effect of nanoparticles, but the coating layer can be removed (e.g., by ultrasonication) to restore the original surface feature of the substrates. By comparison, the thin particle layer deposited under no magnetic field showed much lower hydrophobicity. The main reason for magnet-induced superhydrophobic surfaces is the formation of nano- and microstructured surface features. Such a magnet-induced temporary superhydrophobic coating may have wide applications in electronic, biomedical, and defense-related areas.

  15. Impact of a counter-rotating planetary rotation system on thin-film thickness and uniformity

    DOE PAGES

    Oliver, J. B.

    2017-06-12

    Planetary rotation systems incorporating forward- and counter-rotating planets are used as a means of increasing coating-system capacity for large oblong substrates. Comparisons of planetary motion for the two types of rotating systems are presented based on point tracking for multiple revolutions, as well as comparisons of quantitative thickness and uniformity. Counter-rotation system geometry is shown to result in differences in thin-film thickness relative to standard planetary rotation for precision optical coatings. As a result, this systematic error in thin-film thickness will reduce deposition yields for sensitive coating designs.

  16. Impact of a counter-rotating planetary rotation system on thin-film thickness and uniformity.

    PubMed

    Oliver, J B

    2017-06-20

    Planetary rotation systems incorporating forward- and counter-rotating planets are used as a means of increasing coating-system capacity for large oblong substrates. Comparisons of planetary motion for the two types of rotating systems are presented based on point tracking for multiple revolutions as well as comparisons of quantitative thickness and uniformity. Counter-rotation system geometry is shown to result in differences in thin-film thickness relative to standard planetary rotation for precision optical coatings. This systematic error in thin-film thickness will reduce deposition yields for sensitive coating designs.

  17. Impact of a counter-rotating planetary rotation system on thin-film thickness and uniformity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oliver, J. B.

    Planetary rotation systems incorporating forward- and counter-rotating planets are used as a means of increasing coating-system capacity for large oblong substrates. Comparisons of planetary motion for the two types of rotating systems are presented based on point tracking for multiple revolutions, as well as comparisons of quantitative thickness and uniformity. Counter-rotation system geometry is shown to result in differences in thin-film thickness relative to standard planetary rotation for precision optical coatings. As a result, this systematic error in thin-film thickness will reduce deposition yields for sensitive coating designs.

  18. Functionally graded alumina-based thin film systems

    DOEpatents

    Moore, John J.; Zhong, Dalong

    2006-08-29

    The present invention provides coating systems that minimize thermal and residual stresses to create a fatigue- and soldering-resistant coating for aluminum die casting dies. The coating systems include at least three layers. The outer layer is an alumina- or boro-carbide-based outer layer that has superior non-wettability characteristics with molten aluminum coupled with oxidation and wear resistance. A functionally-graded intermediate layer or "interlayer" enhances the erosive wear, toughness, and corrosion resistance of the die. A thin adhesion layer of reactive metal is used between the die substrate and the interlayer to increase adhesion of the coating system to the die surface.

  19. Thin Crystal Film Polarizer for Display Application

    NASA Astrophysics Data System (ADS)

    Paukshto, Michael

    2003-03-01

    Optiva Inc. has pioneered the development of nano-thin crystalline film (TCF) optical coatings for use in information displays and other applications. TCF is a material based on water-based dichroic dye solutions. Disk-like dye molecules aggregate in a ``plane-to-plane" manner; this self-assembly results in formation of highly anisometric rod-like stacks. These stacks have an aspect ratio of approximately 200:1. At a certain threshold of dye concentration, a nematic ordering of the rod-like stacks appears. Such a system acquires polarizing properties according to the following mechanism. Flow-induced alignment is known to occur in the lyotropic systems in a shear flow. In our case, the material undergoes shear alignment while being coated onto a glass or plastic substrate. In the coated thin film, the long molecular stacks are oriented in the flow direction parallel to the flow direction and substrate plane. The planes of the dye molecules are perpendicular to the substrate plane with the optical transition oscillators lying in the molecule plane. After the coating, as the thin film dries, crystallization occurs due to water evaporation. In a dry film, the molecular planes maintain their orthogonal orientation with respect to the substrate surface. TCF is known to possess properties of an E-mode polarizer. TCF technology has now migrated out of the R stage into manufacturing and is currently being incorporated into new display products. This presentation will provide an overview of TCF technology. The first part of the presentation will describe material structure, optical properties and characterization, material processing and associated coating equipment. This will be followed by a presentation on optical modeling and simulation of display performance with TCF components. Comparisons of display performance will be made for exemplar configurations of a variety of LCDs, including TN, STN and AMLCD designs in both transmissive and reflective modes.

  20. Methods of making non-covalently bonded carbon-titania nanocomposite thin films and applications of the same

    DOEpatents

    Liang, Yu Teng; Vijayan, Baiju K.; Gray, Kimberly A.; Hersam, Mark C.

    2016-07-19

    In one aspect, a method of making non-covalently bonded carbon-titania nanocomposite thin films includes: forming a carbon-based ink; forming a titania (TiO.sub.2) solution; blade-coating a mechanical mixture of the carbon-based ink and the titania solution onto a substrate; and annealing the blade-coated substrate at a first temperature for a first period of time to obtain the carbon-based titania nanocomposite thin films. In certain embodiments, the carbon-based titania nanocomposite thin films may include solvent-exfoliated graphene titania (SEG-TiO.sub.2) nanocomposite thin films, or single walled carbon nanotube titania (SWCNT-TiO.sub.2) nanocomposite thin films.

  1. Formation and prevention of fractures in sol-gel-derived thin films.

    PubMed

    Kappert, Emiel J; Pavlenko, Denys; Malzbender, Jürgen; Nijmeijer, Arian; Benes, Nieck E; Tsai, Peichun Amy

    2015-02-07

    Sol-gel-derived thin films play an important role as the functional coatings for various applications that require crack-free films to fully function. However, the fast drying process of a standard sol-gel coating often induces mechanical stresses, which may fracture the thin films. An experimental study on the crack formation in sol-gel-derived silica and organosilica ultrathin (submicron) films is presented. The relationships among the crack density, inter-crack spacing, and film thickness were investigated by combining direct micrograph analysis with spectroscopic ellipsometry. It is found that silica thin films are more prone to fracturing than organosilica films and have a critical film thickness of 300 nm, above which the film fractures. In contrast, the organosilica films can be formed without cracks in the experimentally explored regime of film thickness up to at least 1250 nm. These results confirm that ultrathin organosilica coatings are a robust silica substitute for a wide range of applications.

  2. Aging effects of the precursor solutions on the properties of spin coated Ga-doped ZnO thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Serrao, Felcy Jyothi, E-mail: jyothiserrao@gmail.com; Dharmaprakash, S. M.

    2015-06-24

    In this study, gallium doped zinc oxide thin films (GZO) were grown on a glass substrate by a simple sol-gel process and spin coating technique using zinc acetate and gallium nitrate (3at%) as precursors for Zn and Ga ions respectively. The effects of aging time of the precursor solution on the structural and optical properties of the GZO films were investigated. The surface morphology, grain size, film thickness and optical properties of the GZO films were found to depend directly on the sol aging time. XRD studies reveal that the films are polycrystalline with a hexagonal wurtzite structure and showmore » the c-axis grain orientation. Optical transmittance spectra of all the films exhibited transmittance higher than about 82% within the visible wavelength region. A sharp fundamental absorption edge with a slight blue shifting was observed with an increase in sol aging time which can be explained by Burstein-Moss effect. The result indicates that an appropriate aging time of the sol is important for the improvement of the structural and optical properties of GZO thin films derived from sol-gel method.« less

  3. Evanescent wave assisted nanomaterial coating.

    PubMed

    Mondal, Samir K; Pal, Sudipta Sarkar; Kumbhakar, Dharmadas; Tiwari, Umesh; Bhatnagar, Randhir

    2013-08-01

    In this work we present a novel nanomaterial coating technique using evanescent wave (EW). The gradient force in the EW is used as an optical tweezer for tweezing and self-assembling nanoparticles on the source of EW. As a proof of the concept, we have used a laser coupled etched multimode optical fiber, which generates EW for the EW assisted coating. The section-wise etched multimode optical fiber is horizontally and superficially dipped into a silver/gold nanoparticles solution while the laser is switched on. The fiber is left until the solution recedes due to evaporation leaving the fiber in air. The coating time usually takes 40-50 min at room temperature. The scanning electron microscope image shows uniform and thin coating of self-assembled nanoparticles due to EW around the etched section. A coating thickness <200 nm is achieved. The technique could be useful for making surface-plasmon-resonance-based optical fiber probes and other plasmonic circuits.

  4. Thermo-optically tunable thin film devices

    NASA Astrophysics Data System (ADS)

    Domash, Lawrence H.

    2003-10-01

    We report advances in tunable thin film technology and demonstration of multi-cavity tunable filters. Thin film interference coatings are the most widely used optical technology for telecom filtering, but until recently no tunable versions have been known except for mechanically rotated filters. We describe a new approach to broadly tunable components based on the properties of semiconductor thin films with large thermo-optic coefficients. The technology is based on amorphous silicon deposited by plasma-enhanced chemical vapor deposition (PECVD), a process adapted for telecom applications from its origins in the flat-panel display and solar cell industries. Unlike MEMS devices, tunable thin films can be constructed in sophisticated multi-cavity, multi-layer optical designs.

  5. Design of Aerosol Coating Reactors: Precursor Injection

    PubMed Central

    Buesser, Beat; Pratsinis, Sotiris E.

    2013-01-01

    Particles are coated with thin shells to facilitate their processing and incorporation into liquid or solid matrixes without altering core particle properties (coloristic, magnetic, etc.). Here, computational fluid and particle dynamics are combined to investigate the geometry of an aerosol reactor for continuous coating of freshly-made titanium dioxide core nanoparticles with nanothin silica shells by injection of hexamethyldisiloxane (HMDSO) vapor downstream of TiO2 particle formation. The focus is on the influence of HMDSO vapor jet number and direction in terms of azimuth and inclination jet angles on process temperature and coated particle characteristics (shell thickness and fraction of uncoated particles). Rapid and homogeneous mixing of core particle aerosol and coating precursor vapor facilitates synthesis of core-shell nanoparticles with uniform shell thickness and high coating efficiency (minimal uncoated core and free coating particles). PMID:23658471

  6. High-mobility ultrathin semiconducting films prepared by spin coating

    NASA Astrophysics Data System (ADS)

    Mitzi, David B.; Kosbar, Laura L.; Murray, Conal E.; Copel, Matthew; Afzali, Ali

    2004-03-01

    The ability to deposit and tailor reliable semiconducting films (with a particular recent emphasis on ultrathin systems) is indispensable for contemporary solid-state electronics. The search for thin-film semiconductors that provide simultaneously high carrier mobility and convenient solution-based deposition is also an important research direction, with the resulting expectations of new technologies (such as flexible or wearable computers, large-area high-resolution displays and electronic paper) and lower-cost device fabrication. Here we demonstrate a technique for spin coating ultrathin (~50Å), crystalline and continuous metal chalcogenide films, based on the low-temperature decomposition of highly soluble hydrazinium precursors. We fabricate thin-film field-effect transistors (TFTs) based on semiconducting SnS2-xSex films, which exhibit n-type transport, large current densities (>105Acm-2) and mobilities greater than 10cm2V-1s-1-an order of magnitude higher than previously reported values for spin-coated semiconductors. The spin-coating technique is expected to be applicable to a range of metal chalcogenides, particularly those based on main group metals, as well as for the fabrication of a variety of thin-film-based devices (for example, solar cells, thermoelectrics and memory devices).

  7. Thin boron phosphide coating as a corrosion-resistant layer

    DOEpatents

    Not Available

    1982-08-25

    A surface prone to corrosion in corrosive environments is rendered anticorrosive by CVD growing a thin continuous film, e.g., having no detectable pinholes, thereon, of boron phosphide. In one embodiment, the film is semiconductive. In another aspect, the invention is an improved photoanode, and/or photoelectrochemical cell with a photoanode having a thin film of boron phosphide thereon rendering it anticorrosive, and providing it with unexpectedly improved photoresponsive properties.

  8. High-absorptance high-emittance anodic coating

    NASA Technical Reports Server (NTRS)

    Le, Huong Giang (Inventor); Chesterfield, John L. (Inventor)

    1998-01-01

    A colored anodic coating for use on surfaces of substrates, e.g. aluminum substrates in which it is desirable to maintain a high solar absorptance (a) and a high infrared emittance (e), particularly in low earth orbit space environments. This anodic coating is preferably a dark colored coating, and even more preferably a black coating. This coating allows a touch temperature within an acceptable design range to preclude burning of an astronaut in case of contact, but also allows a solar radiation absorption in an amount such that an a/e ratio of unity is achieved. The coating of the invention comprises a first layer in the form of an acid anodized colored anodic layer for achieving a high solar absorptance and a second or high emittance layer in the form of a clear acid anodized layer for achieving a high emittance. The entire coating is quite thin, e.g. 1-2 mils and is quite stable in a hostile space environment of the type encountered in a low earth orbit. The coating is obtained by first creating the high emittance clear anodized coating on the metal surface followed by anodizing using a colored anodizing process.

  9. High-absorptance high-emittance anodic coating

    NASA Technical Reports Server (NTRS)

    Le, Huong Giang (Inventor); Chesterfield, John L. (Inventor)

    1999-01-01

    A colored anodic coating for use on surfaces of substrates, e.g. aluminum substrates in which it is desirable to maintain a high solar absorptance (.alpha.) and a high infrared emittance (.epsilon.), particularly in low earth orbit space environments. This anodic coating is preferably a dark colored coating, and even more preferably a black coating. This coating allows a touch temperature within an acceptable design range to preclude burning of an astronaut in case of contact, but also allows a solar radiation absorption in an amount such that an .alpha./.epsilon. ratio of unity is achieved. The coating of the invention comprises a first layer in the form of an acid anodized colored anodic layer for achieving a high solar absorptance and a second or high emittance layer in the form of a clear acid anodized layer for achieving a high emittance. The entire coating is quite thin, e.g. 1-2 mils and is quite stable in a hostile space environment of the type encountered in a low earth orbit. The coating is obtained by first creating the high emittance clear anodized coating on the metal surface followed by anodizing using a colored anodizing process.

  10. Design and development of multilayer wideband antireflection coating and its annealing study

    NASA Astrophysics Data System (ADS)

    Jena, S.; Tokas, R. B.; Udupa, D. V.; Thakur, S.; Sahoo, N. K.

    2018-04-01

    Reflection loss occurs at the glass-air interface, limits performance of many optical devices such as eyeglass, camera lenses, and photovoltaic solar cells. Antireflection (AR) coating on the glass reduces the reflection loss and improves efficiency of such devices. In this paper, wideband AR coating in the visible region has been designed and developed using ZrO2-MgO/SiO2 multilayer. The thicknesses of individual thin layers are numerically optimized to get maximum transmission of the visible light. The optimized four thin layers have been deposited on BK7 glass substrate using electron beam evaporation technique. The measured transmission spectrum of the 4-layer AR coating is compared with that of simulated spectrum. The transmission of the single side AR coating increases by more than 3% as compared to that of bare glass substrate in the wavelength region of 470 nm - 810 nm. The wideband AR coating has been annealed at 200°C for 4 hours in ambient condition. The transmission of the AR coating decreases after the annealing, resulting degradation in its wideband AR characteristics.

  11. Sol-gel spin coated well adhered MoO3 thin films as an alternative counter electrode for dye sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Mutta, Geeta R.; Popuri, Srinivasa R.; Wilson, John I. B.; Bennett, Nick S.

    2016-11-01

    In this work, we aim to develop a viable, inexpensive and non-toxic material for counter electrodes in dye sensitized solar cells (DSSCs). We employed an ultra-simple synthesis process to deposit MoO3 thin films at low temperature by sol-gel spin coating technique. These MoO3 films showed good transparency. It is predicted that there will be 150 times reduction of precursors cost by realizing MoO3 thin films as a counter electrode in DSSCs compared to commercial Pt. We achieved a device efficiency of about 20 times higher than that of the previous reported values. In summary we develop a simple low cost preparation of MoO3 films with an easily scaled up process along with good device efficiency. This work encourages the development of novel and relatively new materials and paves the way for massive reduction of industrial costs which is a prime step for commercialization of DSSCs.

  12. Coated Fused Silica Fibers for Enhanced Sensitivity Torsion Pendulum

    NASA Technical Reports Server (NTRS)

    Numata, Kenji; Horowitz, Jordan; Camp, Jordan

    2007-01-01

    In order to investigate the fundamental thermal noise limit of a torsion pendulum using a fused silica fiber, we systematically measured and modeled the mechanical losses of thin fused silica fibers coated by electrically conductive thin metal films. Our results indicate that it is possible to achieve a thermal noise limit for coated silica lower by a factor between 3 and 9, depending on the silica diameter, compared to the best tungsten fibers available. This will allow a corresponding increase in sensitivity of torsion pendula used for weak force measurements, including the gravitational constant measurement and ground-based force noise testing for the Laser Interferometer Space Antenna (LISA) mission.

  13. Metal-Coated Optical Fibers for High Temperature Applications

    NASA Technical Reports Server (NTRS)

    Zeakes, Jason; Murphy, Kent; Claus, Richard; Greene, Jonathan; Tran, Tuan

    1996-01-01

    A DC magnetron sputtering system has been used to actively coat optical fibers with hermetic metal coatings during the fiber draw process. Thin films of Inconel 625 have been deposited on optical fibers and annealed in air at 2000 F. Scanning electron microscopy and Auger electron microscopy have been used to investigate the morphology and composition of the films prior to and following thermal cycling. Issues to be addressed include film adhesion, other coating materials, and a discussion of additional applications for this novel technology.

  14. Antibacterial graphene oxide coatings on polymer substrate

    NASA Astrophysics Data System (ADS)

    Liu, Yiming; Wen, Jing; Gao, Yang; Li, Tianyang; Wang, Huifang; Yan, Hong; Niu, Baolong; Guo, Ruijie

    2018-04-01

    Graphene oxide (GO) was thought to be a promising antibacterial material. In this work, graphene oxide coatings on polymer substrate were prepared and the antibacterial activity against E. coli and S. aureus was investigated. It was demonstrated that the coatings exhibited stronger antibacterial activity against E. coli with thin membrane than S. aureus with thick membrane. Take into consideration the fact that the coatings presented smooth, sharp edges-free morphology and bonded parallelly to substrate, which was in mark contrast with their precursor GO nanosheets, oxidative stress mechanism was considered the main factor of antibacterial activity. The coatings, which are easy to recycle and have no inhalation risk, provide an alternative for application in antibacterial medical instruments.

  15. Structural and optical studies on spin coated ZnO-graphene conjugated thin films

    NASA Astrophysics Data System (ADS)

    Srinatha, N.; Angadi, Basavaraj; Son, D. I.; Choi, W. K.

    2018-05-01

    ZnO-Graphene conjugated thin films were prepared using spin coating technique for different spin rates. Prior to the deposition, ZnO-Graphene nanoparticles were synthesized and their particle size and conjugation was studied through Transmission electron microscope (TEM). The deposited films were characterized using grazing incidence x-ray diffractometer (GIXRD), atomic force microscope (AFM) and UV-Visible spectrometer for their crystallinity, surface topographic features and optical properties. GIXRD patterns confirms the presence of both ZnO and Graphene related crystalline peaks supports the TEM results, which shows the quasi core-shell type conjugation of ZnO-Graphene particles. The crystallinity as well as thickness of the films found to decrease with increase of spin rate. AFM results reveal the uniform, smooth and homogeneity of films and also good adhesivity of ZnO-Graphene with glass substrates. No significant change in the transmittance and absorption with spin rate is observed, while the band gap energy found to decrease due to the reduction in the thickness of the films and conjugation of ZnO-Graphene. All films exhibit˜90 % transmittance in the visible wavelength region, could be potential candidates for optoelectronics and transparent conducting oxide (TCO) applications.

  16. Numerical study on the mechanisms of the SERS of gold-coated pyramidal tip substrates.

    PubMed

    Li, Rui; Wang, Qiao; Li, Hong; Liu, Kun; Pan, Shi; Zhan, Weishen; Chen, Maodu

    2016-06-29

    In this paper, the physical enhancement mechanisms of the surface-enhanced Raman scattering (SERS) of pyramidal tip substrates are studied theoretically. We structure the periodic square-based arrays of adjacent nanometer pyramidal gold-coated tips on silicon. In order to determine the contribution of plasmonic or diffraction effects on the SERS, three-dimensional (3D) numerical simulations are implemented by taking into account the substrate coated with a gold thin film or a perfect electrical conductor thin film. The tip distance, metal coating thickness and incident light polarization angle are also optimized to investigate whether the further SERS signal can be enhanced.

  17. Initial Assessment of CSA Group Niobium Boron Based Coatings on 4340 Steel

    DTIC Science & Technology

    2017-07-01

    Technical Report ARWSB-TR-17026 Initial Assessment of CSA Group Niobium- Boron Based Coatings on 4340 Steel C.P. Mulligan...REPORT TYPE Technical 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE Initial Assessment of CSA Group Niobium- Boron Based Coatings on 4340...metallographic mounts reported as (1) thin and (2) thick Niobium- Boron (Nb-B) type coatings on steel. CSA Group is interested in providing coatings for potential

  18. Carbide coated fibers in graphite-aluminum composites

    NASA Technical Reports Server (NTRS)

    Imprescia, R. J.; Levinson, L. S.; Reiswig, R. D.; Wallace, T. C.; Williams, J. M.

    1975-01-01

    The study of protective-coupling layers of refractory metal carbides on the graphite fibers prior to their incorporation into composites is presented. Such layers should be directly wettable by liquid aluminum and should act as diffusion barriers to prevent the formation of aluminum carbide. Chemical vapor deposition was used to uniformly deposit thin, smooth, continuous coats of ZrC on the carbon fibers of tows derived from both rayon and polyacrylonitrile. A wet chemical coating of the fibers, followed by high-temperature treatment, was used, and showed promise as an alternative coating method. Experiments were performed to demonstrate the ability of aluminum alloys to wet carbide surfaces. Titanium carbide, zirconium carbide and carbide-coated graphite surfaces were successfully wetted. Results indicate that initial attempts to wet surfaces of ZrC-coated carbon fibers appear successful.

  19. Method of accurate thickness measurement of boron carbide coating on copper foil

    DOEpatents

    Lacy, Jeffrey L.; Regmi, Murari

    2017-11-07

    A method is disclosed of measuring the thickness of a thin coating on a substrate comprising dissolving the coating and substrate in a reagent and using the post-dissolution concentration of the coating in the reagent to calculate an effective thickness of the coating. The preferred method includes measuring non-conducting films on flexible and rough substrates, but other kinds of thin films can be measure by matching a reliable film-substrate dissolution technique. One preferred method includes determining the thickness of Boron Carbide films deposited on copper foil. The preferred method uses a standard technique known as inductively coupled plasma optical emission spectroscopy (ICPOES) to measure boron concentration in a liquid sample prepared by dissolving boron carbide films and the Copper substrates, preferably using a chemical etch known as ceric ammonium nitrate (CAN). Measured boron concentration values can then be calculated.

  20. Enhanced Aluminum Reflecting and Solar-Blind Filter Coatings for the Far-Ultraviolet

    NASA Technical Reports Server (NTRS)

    Del Hoyo, Javier; Quijada, Manuel

    2017-01-01

    The advancement of far-ultraviolet (FUV) coatings is essential to meet the specified throughput requirements of the Large UV/Optical/IR (LUVOIR) Surveyor Observatory which will cover wavelengths down to the 100 nm range. The biggest constraint in the optical thin film coating design is attenuation in the Lyman-Alpha Ultraviolet range of 100-130 nm in which conventionally deposited thin film materials used in this spectral region (e.g. aluminum [Al] protected with Magnesium fluoride [MgF2]) often have high absorption and scatter properties degrading the throughput in an optical system. We investigate the use of optimally deposited aluminum and aluminum tri-fluoride (AlF3) materials for reflecting and solar blind band-pass filter coatings for use in the FUV. Optical characterization of the deposited designs has been performed using UV spectrometry. The optical thin film design and optimal deposition conditions to produce superior reflectance and transmittance using Al and AlF3 are presented.

  1. Enhanced aluminum reflecting and solar-blind filter coatings for the far-ultraviolet

    NASA Astrophysics Data System (ADS)

    Del Hoyo, Javier; Quijada, Manuel

    2017-09-01

    The advancement of far-ultraviolet (FUV) coatings is essential to meet the specified throughput requirements of the Large UV/Optical/IR (LUVOIR) Surveyor Observatory which will cover wavelengths down to the 100 nm range. The biggest constraint in the optical thin film coating design is attenuation in the Lyman-Alpha Ultraviolet range of 100-130 nm in which conventionally deposited thin film materials used in this spectral region (e.g., aluminum [Al] protected with Magnesium fluoride [MgF2]) often have high absorption and scatter properties degrading the throughput in an optical system. We investigate the use of optimally deposited aluminum and aluminum tri-fluoride (AlF3) materials for reflecting and solar blind band-pass filter coatings for use in the FUV. Optical characterization of the deposited designs has been performed using UV spectrometry. The optical thin film design and optimal deposition conditions to produce superior reflectance and transmittance using Al and AlF3 are presented.

  2. Thin-film sulfuric acid anodizing as a replacement for chromic acid anodizing

    NASA Technical Reports Server (NTRS)

    Kallenborn, K. J.; Emmons, J. R.

    1995-01-01

    Chromic acid has long been used to produce a thin, corrosion resistant (Type I) coating on aluminum. Following anodizing, the hardware was sealed using a sodium dichromate solution. Sealing closes up pores inherent in the anodized coating, thus improving corrosion resistance. The thinness of the brittle coating is desirable from a fatigue standpoint, and chromium was absorbed by the coating during the sealing process, further improving corrosion resistance. Unfortunately, both chromic acid and sodium dichromate contain carcinogenic hexavalent chromium. Sulfuric acid is being considered as a replacement for chromic acid. Sulfuric acid of 10-20 percent concentration has traditionally been used to produce relatively thick (Types II and III) or abrasion resistant (Type III) coatings. A more dilute, that is five weight percent, sulfuric acid anodizing process, which produces a thinner coating than Type II or III, with nickel acetate as the sealant has been developed. The process was evaluated in regard to corrosion resistance, throwing power, fatigue life, and processing variable sensitivity, and shows promise as a replacement for the chromic acid process.

  3. A Simplified Whole-Organ CT Perfusion Technique with Biphasic Acquisition: Preliminary Investigation of Accuracy and Protocol Feasibility in Kidneys.

    PubMed

    Yuan, XiaoDong; Zhang, Jing; Quan, ChangBin; Tian, Yuan; Li, Hong; Ao, GuoKun

    2016-04-01

    To determine the feasibility and accuracy of a protocol for calculating whole-organ renal perfusion (renal blood flow [RBF]) and regional perfusion on the basis of biphasic computed tomography (CT), with concurrent dynamic contrast material-enhanced (DCE) CT perfusion serving as the reference standard. This prospective study was approved by the institutional review board, and written informed consent was obtained from all patients. Biphasic CT of the kidneys, including precontrast and arterial phase imaging, was integrated with a first-pass dynamic volume CT protocol and performed and analyzed in 23 patients suspected of having renal artery stenosis. The perfusion value derived from biphasic CT was calculated as CT number enhancement divided by the area under the arterial input function and compared with the DCE CT perfusion data by using the paired t test, correlation analysis, and Bland-Altman plots. Correlation analysis was made between the RBF and the extent of renal artery stenosis. All postprocessing was independently performed by two observers and then averaged as the final result. Mean ± standard deviation biphasic and DCE CT perfusion data for RBF were 425.62 mL/min ± 124.74 and 419.81 mL/min ± 121.13, respectively (P = .53), and for regional perfusion they were 271.15 mL/min per 100 mL ± 82.21 and 266.33 mL/min per 100 mL ± 74.40, respectively (P = .31). Good correlation and agreement were shown between biphasic and DCE CT perfusion for RBF (r = 0.93; ±10% variation from mean perfusion data [P < .001]) and for regional perfusion (r = 0.90; ±13% variation from mean perfusion data [P < .001]). The extent of renal artery stenosis was negatively correlated with RBF with biphasic CT perfusion (r = -0.81, P = .012). Biphasic CT perfusion is clinically feasible and provides perfusion data comparable to DCE CT perfusion data at both global and regional levels in the kidney. Online supplemental material is available for this article.

  4. Erosion of mylar and protection by thin metal films

    NASA Technical Reports Server (NTRS)

    Fraundorf, P.; Lindstrom, D.; Sandford, S.; Swan, P.; Walker, R.; Zinner, E.; Pailer, N.

    1983-01-01

    Mylar strips, 2.5 microns thick, uncoated and coated with 50A, 100A and 200A of Al, Pd, and Au/Pd were exposed on STS-5 in order to measure the erosion of mylar and to test means of protecting thin plastic foils commonly used for space experiments in low earth orbit. Analysis by optical microscopy, SEM and STEM investigation, EDX measurements, FTIR spectroscopy and weight loss measurements showed that while up to 75 percent of the uncoated mylar was eroded during exposure, thin coatings of the above metals can protect mylar for integrated oxygen-fluxes of at least 10 to the 21st atoms/sq cm.

  5. The effect of TiO2 thin film thickness on self-cleaning glass properties

    NASA Astrophysics Data System (ADS)

    Mufti, Nandang; Laila, Ifa K. R.; Hartatiek; Fuad, Abdulloh

    2017-05-01

    TiO2 is one of semiconductor materials which are widely used as photocatalyst in the form of a thin film. The TiO2 thin film is prepared by using the spin coating sol-gel method. The researcher prepared TiO2 thin film with 3 coating variations and X-Ray Diffraction characterization, UV-Vis Spectrophotometer, Electron Microscopy Scanning, and examined its hydrophilic and anti-fogging properties. The result of X-Ray Diffraction showed that the phase formed is the anatase on 101crystal field. The Electron Microscopy Scanning images showed that TiO2 thin films had a homogeneous surface with the particle sizes as big as 235 nm, 179 nm, and 137 nm. The thickness of each thin film was 2.06μm, 3.33μm, and 5.20μm. The characterization of UV-Vis Spectrophotometer showed that the greatest absorption to the wavelength of visible light was in the thin film’s thickness of 3 coatings with the band-gap determined by using 3.30 eV, 3.33 eV, and 3.33 eV Plot Tuoc. These results indicated that the rate of absorption would be increased by increasing the thickness of film. The increasing thickness of the thin film makes the film hydrophilic able to be used as an anti-fogging substance.

  6. Improved Lyman Ultraviolet Astronomy Capabilities through Enhanced Coatings

    NASA Technical Reports Server (NTRS)

    Quijada, Manuel A.; del Hoyo, Javier; Boris, David; Walton, Scott

    2017-01-01

    This paper will describe efforts at developing broadband mirror coatings with high performance that will extend from infrared wavelengths down to the Far-Ultraviolet (FUV) spectral region. These mirror coatings would be realized by passivating the surface of freshly made aluminum coatings with XeF2 gas in order to form a thin AlF$_3$ overcoat that will protect the aluminum from oxidation and, hence, realize the high-reflectance of this material down to its intrinsic cut-off wavelength of 90 nm. Improved reflective coatings for optics, particularly in the FUV region (90-120 nm), could yield dramatically more sensitive instruments and permit more instrument design freedom.

  7. Oxidation resistant coatings for ceramic matrix composite components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaubert, V.M.; Stinton, D.P.; Hirschfeld, D.A.

    Corrosion resistant Ca{sub 0.6}Mg{sub 0.4}Zr{sub 4}(PO{sub 4}){sub 6} (CMZP) and Ca{sub 0.5}Sr{sub 0.5}Zr{sub 4}(PO{sub 4}){sub 6} (CS-50) coatings for fiber-reinforced SiC-matrix composite heat exchanger tubes have been developed. Aqueous slurries of both oxides were prepared with high solids loading. One coating process consisted of dipping the samples in a slip. A tape casting process has also been created that produced relatively thin and dense coatings covering a large area. A processing technique was developed, utilizing a pre-sintering step, which produced coatings with minimal cracking.

  8. Emissivity of freestanding membranes with thin metal coatings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zwol, P. J. van, E-mail: Pieter-jan.van.zwol@asml.com; Vles, D. F.; Voorthuijzen, W. P.

    Freestanding silicon nitride membranes with thicknesses down to a few tens of nanometers find use as TEM windows or soft X-ray spectral purity filters. As the thickness of a membrane decreases, emissivity vanishes, which limits radiative heat emission and resistance to heat loads. We show that thin metal layers with thicknesses in the order of 1 nm enhance the emissivity of thin membranes by two to three orders of magnitude close to the theoretical limit of 0.5. This considerably increases thermal load capacity of membranes in vacuum environments. Our experimental results are in line with classical theory in which we adaptmore » thickness dependent scattering terms in the Drude and Lorentz oscillators.« less

  9. Development of a method for total inorganic arsenic analysis using anodic stripping voltammetry and a Au-coated, diamond thin-film electrode.

    PubMed

    Song, Yang; Swain, Greg M

    2007-03-15

    We demonstrate that a Au-coated, boron-doped, diamond thin-film electrode provides a sensitive, reproducible, and stable response for total inorganic arsenic (As(III) and As(V)) using differential pulse anodic stripping voltammetry (DPASV). As is preconcentrated with Au on the diamond surface during the deposition step and detected oxidatively during the stripping step. Au deposition was uniform over the electrode surface with a nominal particle size of 23 +/- 5 nm and a particle density of 109 cm-2. The electrode and method were used to measure the As(III) concentration in standard and river water samples. The detection figures of merit were compared with those obtained using conventional Au-coated glassy carbon and Au foil electrodes. The method was also used to determine the As(V) concentration in standard solutions after first being chemically reduced to As(III) with Na2SO3, followed by the normal DPASV determination of As(III). Sharp and symmetric stripping peaks were generally observed for the Au-coated diamond electrode. LODs were 0.005 ppb (S/N = 3) for As(III) and 0.08 ppb (S/N = 3) for As(V) in standard solutions. An As(III) concentration of 0.6 ppb was found in local river water. The relative standard deviation of the As stripping peak current for river water was 1.5% for 10 consecutive measurements and was less than 9.1% over a 10-h period. Excellent electrode response stability was observed even in the presence of up to 5 ppm of added humic acid. In summary, the Au-coated diamond electrode exhibited better performance for total inorganic As analysis than did Au-coated glassy carbon or Au foil electrodes. Clearly, the substrate on which the Au is supported influences the detection figures of merit.

  10. A novel pillar indentation splitting test for measuring fracture toughness of thin ceramic coatings

    DOE PAGES

    Sebastiani, Marco; Johanns, K. E.; Herbert, Erik G.; ...

    2014-05-16

    Fracture toughness is an important material property that plays a role in determining the in-service mechanical performance and adhesion of thin ceramic films. Unfortunately, measuring thin film fracture toughness is affected by influences from the substrate and the large residual stresses that can exist in the films. In this paper, we explore a promising new technique that potentially overcomes these problems based on nanoindentation testing of micro-pillars produced by focused ion beam milling of the films. By making the pillar diameter approximately equal to its length, the residual stress in the pillar’s upper portion is almost fully relaxed, and whenmore » indented with a sharp Berkovich indenter, the pillars fracture by splitting at reproducible loads that are readily quantified by a sudden displacement excursion in the load displacement behavior. Cohesive finite element simulations are used to analyze and develop, for a given material, a simple relation between the critical load at failure, pillar radius, and fracture toughness. The main novel aspect of this work is that neither crack geometries nor crack sizes need to be measured post test. Furthermore, the residual stress can be measured at the same time with toughness, by comparing the indentation results from the stress-free pillars and the as-deposited film. The method is tested on three different hard coatings formed by physical vapor deposition: titanium nitride, chromium nitride, and a CrAlN/Si 3N 4 nanocomposite. Results compare well to independently measured values of fracture toughness for the three brittle films. The technique offers several benefits over existing methods.« less

  11. Cadmium sulphide (CdS) thin films deposited by chemical bath deposition (CBD) and dip coating techniques—a comparative study

    NASA Astrophysics Data System (ADS)

    Khimani, Ankurkumar J.; Chaki, Sunil H.; Malek, Tasmira J.; Tailor, Jiten P.; Chauhan, Sanjaysinh M.; Deshpande, M. P.

    2018-03-01

    The CdS thin films were deposited on glass slide substrates by Chemical Bath Deposition and dip coating techniques. The films thickness variation with deposition time showed maximum films deposition at 35 min for both the films. The energy dispersive analysis of x-ray showed both the films to be stoichiometric. The x-ray diffraction analysis confirmed the films possess hexagonal crystal structure. The transmission electron, scanning electron and optical microscopy study showed the films deposition to be uniform. The selected area electron diffraction exhibited ring patterns stating the films to be polycrystalline in nature. The atomic force microscopy images showed surface formed of spherical grains, hills and valleys. The recorded optical absorbance spectra analysis revealed the films possess direct optical bandgap having values of 2.25 eV for CBD and 2.40 eV for dip coating. The refractive index (η), extinction coefficient (k), complex dielectric constant (ε) and optical conductivity (σ 0) variation with wavelength showed maximum photon absorption till the respective wavelengths corresponding to the optical bandgap energy values. The recorded photoluminescence spectra showed two emission peaks. All the obtained results have been discussed in details.

  12. Photocatalytic production of hydrogen from fixed titanium dioxide thin film

    NASA Astrophysics Data System (ADS)

    Okoye, Njideka Helen

    This thesis is focused on further developing of an efficient method for the photocatalytic hydrogen production. The research aimed to use thin films deposited with TiO2 and doped with Pt in order to substitute slurry solutions that are currently being used. A new depositing experimental approach to manufacture the thin films was proposed and tested for both physical properties and chemical reactivity. Therefore, the experiment was designed into two parts: The first part was on the manufacturing and the physical characterization of titanium dioxide deposited on glass surfaces and the second part was focused on the ability of the thin film to produce hydrogen. For the second part, a photochemical reactor vessel was used to properly place the glass slides to UV-irradiation. This was yielded by a mercury lamp located at the centre of the reactor. The thesis is organized into five different chapters including introduction, literature review, characterization of TiO2 coated surface, experimental design and hydrogen production, finally conclusive observations and future work. Hydrogen production by photodecomposition of water into H2 and O2 has a very low efficiency due to rapid reverse reaction and, as mentioned above, it usually requires a slurry type of solution. This needs additional processing steps such as filtration and recycling of particles. Therefore, it is important to develop an efficient process for hydrogen production. TiO2 coated surfaces could be an excellent technological alternative. In this study, a sol-gel method was used to produce a transparent TiO 2 thin film which was deposited on a glass substrate by using a new coating technique introduced in this work for H2 production. The TiO2 deposited film on a glass substrate by using the spraying method of coating was characterized for physical analysis (surface characteristics, size of nanoparticles and distribution, etc.) by using X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM), Transmission

  13. Studies on Various Functional Properties of Titania Thin Film Developed on Glazed Ceramic Wall Tiles

    NASA Astrophysics Data System (ADS)

    Anil, Asha; Darshana R, Bangoria; Misra, S. N.

    A sol-gel based TiO2 thin film was applied on glazed wall tiles for studying its various functional properties. Thin film was deposited by spin coating on the substrate and subjected to curing at different temperatures such as 600°C, 650, 700°C, 750°C and 800°C with 10 minutes soaking. The gel powder was characterized by FTIR, DTA/TG and XRD. Microstructure of thin film was analyzed by FESEM and EDX. Surface properties of the coatings such as gloss, colour difference, stain resistance, mineral hardness and wettability were extensively studied. The antibacterial activity of the surface of coated substrate against E. coli was also examined. The durability of the coated substrate in comparison to the uncoated was tested against alkali in accordance with ISO: 10545 (Part 13):1995 standard. FESEM images showed that thin films are dense and homogeneous. Coated substrates after firing results in lustre with high gloss, which increased from 330 to 420 GU as the curing temperature increases compared to that of uncoated one (72 GU). Coated substrate cured at 800°C shows higher mineral hardness (5 Mohs’) compared to uncoated one (4 Mohs’) and films cured at all temperatures showed stain resistance. The experimental results showed that the resistance towards alkali attack increase with increase in curing temperature and alkali resistance of sample cured at 800 °C was found to be superior compared to uncoated substrate. Contact angle of water on coated surface of substrates decreased with increase in temperature. Bacterial reduction percentages of the coated surface was 97% for sample cured at 700°C and it decreased from 97% to 87% as the curing temperature increased to 800 °C when treated with E. coli bacteria.

  14. Multilayer bioactive glass/zirconium titanate thin films in bone tissue engineering and regenerative dentistry

    PubMed Central

    Mozafari, Masoud; Salahinejad, Erfan; Shabafrooz, Vahid; Yazdimamaghani, Mostafa; Vashaee, Daryoosh; Tayebi, Lobat

    2013-01-01

    Surface modification, particularly coatings deposition, is beneficial to tissue-engineering applications. In this work, bioactive glass/zirconium titanate composite thin films were prepared by a sol-gel spin-coating method. The surface features of the coatings were studied by scanning electron microscopy, atomic force microscopy, and spectroscopic reflection analyses. The results show that uniform and sound multilayer thin films were successfully prepared through the optimization of the process variables and the application of carboxymethyl cellulose as a dispersing agent. Also, it was found that the thickness and roughness of the multilayer coatings increase nonlinearly with increasing the number of the layers. This new class of nanocomposite coatings, comprising the bioactive and inert components, is expected not only to enhance bioactivity and biocompatibility, but also to protect the surface of metallic implants against wear and corrosion. PMID:23641155

  15. Development and Characterization of Biphasic Hydroxyapatite/β-TCP Cements

    PubMed Central

    Gallinetti, Sara; Canal, Cristina; Ginebra, Maria-Pau; Ferreira, J

    2014-01-01

    Biphasic calcium phosphate bioceramics composed of hydroxyapatite (HA) and β-tricalcium phosphate (β-TCP) have relevant properties as synthetic bone grafts, such as tunable resorption, bioactivity, and intrinsic osteoinduction. However, they have some limitations associated to their condition of high-temperature ceramics. In this work self-setting Biphasic Calcium Phosphate Cements (BCPCs) with different HA/β-TCP ratios were obtained from self-setting α-TCP/β-TCP pastes. The strategy used allowed synthesizing BCPCs with modulated composition, compressive strength, and specific surface area. Due to its higher solubility, α-TCP was fully hydrolyzed to a calcium-deficient HA (CDHA), whereas β-TCP remained unreacted and completely embedded in the CDHA matrix. Increasing amounts of the non-reacting β-TCP phase resulted in a linear decrease of the compressive strength, in association to the decreasing amount of precipitated HA crystals, which are responsible for the mechanical consolidation of apatitic cements. Ca2+ release and degradation in acidic medium was similar in all the BCPCs within the timeframe studied, although differences might be expected in longer term studies once β-TCP, the more soluble phase was exposed to the surrounding media. PMID:25866411

  16. Development and Characterization of Biphasic Hydroxyapatite/β-TCP Cements.

    PubMed

    Gallinetti, Sara; Canal, Cristina; Ginebra, Maria-Pau; Ferreira, J

    2014-04-01

    Biphasic calcium phosphate bioceramics composed of hydroxyapatite (HA) and β-tricalcium phosphate (β-TCP) have relevant properties as synthetic bone grafts, such as tunable resorption, bioactivity, and intrinsic osteoinduction. However, they have some limitations associated to their condition of high-temperature ceramics. In this work self-setting Biphasic Calcium Phosphate Cements (BCPCs) with different HA/β-TCP ratios were obtained from self-setting α-TCP/β-TCP pastes. The strategy used allowed synthesizing BCPCs with modulated composition, compressive strength, and specific surface area. Due to its higher solubility, α-TCP was fully hydrolyzed to a calcium-deficient HA (CDHA), whereas β-TCP remained unreacted and completely embedded in the CDHA matrix. Increasing amounts of the non-reacting β-TCP phase resulted in a linear decrease of the compressive strength, in association to the decreasing amount of precipitated HA crystals, which are responsible for the mechanical consolidation of apatitic cements. Ca 2+ release and degradation in acidic medium was similar in all the BCPCs within the timeframe studied, although differences might be expected in longer term studies once β-TCP, the more soluble phase was exposed to the surrounding media.

  17. Aqueous biphasic plutonium oxide extraction process with pH and particle control

    DOEpatents

    Chaiko, D.J.; Mensah-Biney, R.

    1997-04-29

    A method is described for simultaneously partitioning a metal oxide and silica from a material containing silica and the metal oxide, using a biphasic aqueous medium having immiscible salt and polymer phases. 2 figs.

  18. Processing and Characterization of Nanoparticle Coatings for Quartz Crystal Microbalance Measurements

    PubMed Central

    Torrey, Jessica D.; Kirschling, Teresa L.; Greenlee, Lauren F.

    2015-01-01

    The quartz-crystal microbalance is a sensitive and versatile tool for measuring adsorption of a variety of compounds (e.g. small molecules, polymers, biomolecules, nanoparticles and cells) to surfaces. While the technique has traditionally been used for measuring adsorption to flat surfaces and thin ridged films, it can also be extended to study adsorption to nanoparticle surfaces when the nanoparticles are fixed to the crystal surface. The sensitivity and accuracy of the measurement depend on the users’ ability to reproducibly prepare a thin uniform nanoparticle coating. This study evaluated four coating techniques, including spin coating, spray coating, drop casting, and electrophoretic deposition, for two unique particle chemistries [nanoscale zero valent iron (nZVI) and titanium dioxide (TiO2)] to produce uniform and reproducible nanoparticle coatings for real-time quartz-crystal microbalance measurements. Uniform TiO2 coatings were produced from a 50 mg/mL methanol suspension via spin coating. Nanoscale zero-valent iron was best applied by spray coating a low concentration 1.0 mg/mL suspended in methanol. The application of multiple coatings, rather than an increase in the suspension concentration, was the best method to increase the mass of nanoparticles on the crystal surface while maintaining coating uniformity. An upper mass threshold was determined to be approximately 96 µg/cm2; above this mass, coatings no longer maintained their uniform rigid characteristic, and a low signal to noise ratio resulted in loss of measurable signal from crystal resonances above the fundamental. PMID:26958434

  19. Calcium Phosphate Bioceramics: A Review of Their History, Structure, Properties, Coating Technologies and Biomedical Applications.

    PubMed

    Eliaz, Noam; Metoki, Noah

    2017-03-24

    Calcium phosphate (CaP) bioceramics are widely used in the field of bone regeneration, both in orthopedics and in dentistry, due to their good biocompatibility, osseointegration and osteoconduction. The aim of this article is to review the history, structure, properties and clinical applications of these materials, whether they are in the form of bone cements, paste, scaffolds, or coatings. Major analytical techniques for characterization of CaPs, in vitro and in vivo tests, and the requirements of the US Food and Drug Administration (FDA) and international standards from CaP coatings on orthopedic and dental endosseous implants, are also summarized, along with the possible effect of sterilization on these materials. CaP coating technologies are summarized, with a focus on electrochemical processes. Theories on the formation of transient precursor phases in biomineralization, the dissolution and reprecipitation as bone of CaPs are discussed. A wide variety of CaPs are presented, from the individual phases to nano-CaP, biphasic and triphasic CaP formulations, composite CaP coatings and cements, functionally graded materials (FGMs), and antibacterial CaPs. We conclude by foreseeing the future of CaPs.

  20. Calcium Phosphate Bioceramics: A Review of Their History, Structure, Properties, Coating Technologies and Biomedical Applications

    PubMed Central

    Eliaz, Noam; Metoki, Noah

    2017-01-01

    Calcium phosphate (CaP) bioceramics are widely used in the field of bone regeneration, both in orthopedics and in dentistry, due to their good biocompatibility, osseointegration and osteoconduction. The aim of this article is to review the history, structure, properties and clinical applications of these materials, whether they are in the form of bone cements, paste, scaffolds, or coatings. Major analytical techniques for characterization of CaPs, in vitro and in vivo tests, and the requirements of the US Food and Drug Administration (FDA) and international standards from CaP coatings on orthopedic and dental endosseous implants, are also summarized, along with the possible effect of sterilization on these materials. CaP coating technologies are summarized, with a focus on electrochemical processes. Theories on the formation of transient precursor phases in biomineralization, the dissolution and reprecipitation as bone of CaPs are discussed. A wide variety of CaPs are presented, from the individual phases to nano-CaP, biphasic and triphasic CaP formulations, composite CaP coatings and cements, functionally graded materials (FGMs), and antibacterial CaPs. We conclude by foreseeing the future of CaPs. PMID:28772697

  1. Deposition of Hydroxyapatite Onto Superelastic Nitinol Using an Ambient Temperature Blast Coating Process

    NASA Astrophysics Data System (ADS)

    Dunne, Conor F.; Roche, Kevin; Ruddy, Mark; Doherty, Kevin A. J.; Twomey, Barry; O'Donoghue, John; Hodgson, Darel; Stanton, Kenneth T.

    2018-06-01

    This work investigates the deposition of hydroxyapatite (HA) onto superelastic nickel-titanium (NiTi) using an ambient temperature coating process known as CoBlast. The process utilises a stream of abrasive alumina (Al2O3) and a coating medium (HA) sprayed simultaneously at the surface of the substrate. The use of traditional coatings methods, such as plasma spray, is unsuitable due to the high temperatures of the process. This can result in changes to both the crystallinity of the HA and properties of the thermally sensitive NiTi. HA is a biocompatible, biodegradable and osteoconductive ceramic, which when used as a coating can promote bone growth and prevent the release of nickel from NiTi in vivo. Samples were coated using different blast pressures and abrasive particle sizes and were examined using a variety of techniques. The coated samples had a thin adherent coating, which increased in surface roughness and coating thickness with increasing abrasive particle size. X-ray diffraction analysis revealed that the process gave rise to a stress-induced martensite phase in the NiTi which may enhance mechanical properties. The study indicates that the CoBlast process can be used to deposit thin adherent coatings of HA onto the surface of superelastic NiTi.

  2. Effect of pre-drying treatments on solution-coated organic thin films for active-matrix organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Shin, Dongkyun; Hong, Ki-Young; Park, Jongwoon

    2017-12-01

    Due to capillary rise, organic thin films fabricated by solution coating exhibit the concave thickness profile. It is found that the thickness and emission uniformities within pixels vary depending sensitively on the pre-drying treatment that has been done before hard bake. We investigate its effect on the film quality by varying the temperature, time, pressure, fluid flow-related solute concentration, and evaporation-related solvent. To this end, we carry out spin coatings of a non-aqueous poly(N-vinylcarbazole) (PVK) for a hole transporting blanket layer. With a low-boiling-point (BP) organic solvent, the pre-drying makes no significant impact on the thickness profiles. With a high-BP organic solvent, the PVK films pre-dried in a vacuum for a sufficient time exhibit very uniform light emission in the central region, but non-emission phenomenon near the perimeter of pixels. It is addressed that such a non-emission phenomenon can be suppressed to some extent by decreasing the vacuum pressure. However, the rapid evaporation by heat conduction during the pre-drying degrades the thickness uniformity due to a rapid microflow of solute from the edge to the center. No further enhancement in the thickness uniformity is obtained by varying the solute concentration and using a mixture of low- and high-BP solvents.

  3. Weathering resistance of thin plasma polymer films on pre-coated steel =

    NASA Astrophysics Data System (ADS)

    Serra, Ricardo Gil Henriques

    O trabalho apresentado teve origem no projecto de investigacao “Tailored Thin Plasma Polymers Films for Surface Engineering of Coil Coated Steel”, financiado pelo Programa Europeu ECSC Steel Research. Sistemas de aco galvanizado pre-pintado em banda a base de poliester e poliuretano foram submetidos a um processo de polimerizacao por plasma onde um filme fino foi depositado de modo a modificar as propriedades de superficie. Foram usados reactores de catodo oco, microondas e radio frequencia para a deposicao do polimero fino. Os sistemas preparados foram analisados de modo a verificar a influencia do processo de polimerizacao por plasma na alteracao das propriedades barreira dos sistemas pre-pintados em banda. Foi estudado o efeito dos diferentes passos do processo de polimerizacao por plasma, bem como o efeito de diferentes variaveis operatorias. A mistura precursora foi variada de modo a modificar as propriedades da superficie de modo a poder vir a obter maior hidrofobicidade, maior resistencia a marcas digitais, bem como maior facilidade de limpeza. Os testes foram conduzidos em solucao de NaCl 0,5 M. Para o trabalho foram usadas tecnicas de analise da morfologia da superficie como Microscopia de Forca Atomica e Microscopia Electronica de Varrimento. As propriedades electroquimicas dos sistemas foram estudadas por Espectroscopia de Impedancia Electroquimica. A estrutura dos filmes gerados no processo de polimerizacao por plasma foi caracterizada por Microscopia de Transmissao Electronica. A modificacao das propriedades opticas devido ao processo de polimerizacao por plasma foi tambem obtida.

  4. Investigation of phase transition properties of ZrO2 thin films

    NASA Astrophysics Data System (ADS)

    Kumar, Davinder; Singh, Avtar; Kaur, Manpreet; Rana, Vikrant Singh; Kaur, Raminder

    2018-05-01

    This paper presents the synthesis of transparent thin films of zirconium oxide (ZrO2) deposited on glass substrates by sol-gel dip coating technique. Synthesized films were characterized for different annealing time and withdrawal speed. Change in crystallographic properties of thin films was investigated by using X-ray diffraction. Surface morphology of transparent thin films was estimated by using scanning electron microscope.

  5. Learning new meanings for known words: Biphasic effects of prior knowledge.

    PubMed

    Fang, Xiaoping; Perfetti, Charles; Stafura, Joseph

    2017-01-01

    In acquiring word meanings, learners are often confronted by a single word form that is mapped to two or more meanings. For example, long after how to roller-"skate", one may learn that "skate" is also a kind of fish. Such learning of new meanings for familiar words involves two potentially contrasting processes, relative to new form-new meaning learning: 1) Form-based familiarity may facilitate learning a new meaning, and 2) meaning-based interference may inhibit learning a new meaning. We examined these two processes by having native English speakers learn new, unrelated meanings for familiar (high frequency) and less familiar (low frequency) English words, as well as for unfamiliar (novel or pseudo-) words. Tracking learning with cued-recall tasks at several points during learning revealed a biphasic pattern: higher learning rates and greater learning efficiency for familiar words relative to novel words early in learning and a reversal of this pattern later in learning. Following learning, interference from original meanings for familiar words was detected in a semantic relatedness judgment task. Additionally, lexical access to familiar words with new meanings became faster compared to their exposure controls, but no such effect occurred for less familiar words. Overall, the results suggest a biphasic pattern of facilitating and interfering processes: Familiar word forms facilitate learning earlier, while interference from original meanings becomes more influential later. This biphasic pattern reflects the co-activation of new and old meanings during learning, a process that may play a role in lexicalization of new meanings.

  6. Learning new meanings for known words: Biphasic effects of prior knowledge

    PubMed Central

    Fang, Xiaoping; Perfetti, Charles; Stafura, Joseph

    2017-01-01

    In acquiring word meanings, learners are often confronted by a single word form that is mapped to two or more meanings. For example, long after how to roller-“skate”, one may learn that “skate” is also a kind of fish. Such learning of new meanings for familiar words involves two potentially contrasting processes, relative to new form-new meaning learning: 1) Form-based familiarity may facilitate learning a new meaning, and 2) meaning-based interference may inhibit learning a new meaning. We examined these two processes by having native English speakers learn new, unrelated meanings for familiar (high frequency) and less familiar (low frequency) English words, as well as for unfamiliar (novel or pseudo-) words. Tracking learning with cued-recall tasks at several points during learning revealed a biphasic pattern: higher learning rates and greater learning efficiency for familiar words relative to novel words early in learning and a reversal of this pattern later in learning. Following learning, interference from original meanings for familiar words was detected in a semantic relatedness judgment task. Additionally, lexical access to familiar words with new meanings became faster compared to their exposure controls, but no such effect occurred for less familiar words. Overall, the results suggest a biphasic pattern of facilitating and interfering processes: Familiar word forms facilitate learning earlier, while interference from original meanings becomes more influential later. This biphasic pattern reflects the co-activation of new and old meanings during learning, a process that may play a role in lexicalization of new meanings. PMID:29399593

  7. Student Difficulties in Analyzing Thin-Film Interference

    NASA Astrophysics Data System (ADS)

    Newburgh, Ronald; Goodale, Douglass

    2009-04-01

    A question we posed in a recent final examination has uncovered a fundamental difficulty for students in understanding destructive interference. The problem stated that glass of index n3 was coated with a thin film of a substance with index n2. The question then asked the student to calculate (a) the minimum coating thickness for maximum transmission into the glass and (b) the minimum thickness for minimum transmission into the glass, in both cases for a given wavelength. Questions from students during and after the examination showed that many had a problem in relating the interference to the transmission. We finally concluded that the source of confusion lay with an almost universally used figure in teaching interference in thin films, as well as the omission of the role of the electric field in reflection.

  8. Method for repair of thin glass coatings. [on space shuttle orbiter tiles

    NASA Technical Reports Server (NTRS)

    Holt, J. W.; Helman, D. D.; Smiser, L. W.

    1982-01-01

    A method of repairing cracks or damaged areas in glass, in particular, glass coatings provided on tile. The method includes removing the damaged area using a high speed diamond burr drilling out a cavity that extends slightly into the base material of the tile. All loose material is then cleaned from the drilled out cavity and the cavity is filled adjacent the upper surface of the coating with a filler material including chopped silica fibers mixed with a binder. The filler material is packed into the cavity and a repair coating is applied by means of a brush or sprayed thereover. The repair includes borosilicate suspended in solution. Heat is applied at approximately 2100 F. for approximately five minutes for curing the coating, causing boron silicide particles of the coating to oxidize forming a very fluid boron-oxide rich glass which reacts with the other frits to form an impervious, highly refractory layer.

  9. Templated biomimetic multifunctional coatings

    NASA Astrophysics Data System (ADS)

    Sun, Chih-Hung; Gonzalez, Adriel; Linn, Nicholas C.; Jiang, Peng; Jiang, Bin

    2008-02-01

    We report a bioinspired templating technique for fabricating multifunctional optical coatings that mimic both unique functionalities of antireflective moth eyes and superhydrophobic cicada wings. Subwavelength-structured fluoropolymer nipple arrays are created by a soft-lithography-like process. The utilization of fluoropolymers simultaneously enhances the antireflective performance and the hydrophobicity of the replicated films. The specular reflectivity matches the optical simulation using a thin-film multilayer model. The dependence of the size and the crystalline ordering of the replicated nipples on the resulting antireflective properties have also been investigated by experiment and modeling. These biomimetic materials may find important technological application in self-cleaning antireflection coatings.

  10. BDS thin film damage competition

    NASA Astrophysics Data System (ADS)

    Stolz, Christopher J.; Thomas, Michael D.; Griffin, Andrew J.

    2008-10-01

    A laser damage competition was held at the 2008 Boulder Damage Symposium in order to determine the current status of thin film laser resistance within the private, academic, and government sectors. This damage competition allows a direct comparison of the current state-of-the-art of high laser resistance coatings since they are all tested using the same damage test setup and the same protocol. A normal incidence high reflector multilayer coating was selected at a wavelength of 1064 nm. The substrates were provided by the submitters. A double blind test assured sample and submitter anonymity so only a summary of the results are presented here. In addition to the laser resistance results, details of deposition processes, coating materials, and layer count will also be shared.

  11. Effect of Annealing Temperature on Structural, Optical, and Electrical Properties of Sol-Gel Spin-Coating-Derived Cu2ZnSnS4 Thin Films

    NASA Astrophysics Data System (ADS)

    Hosseinpour, Rabie; Izadifard, Morteza; Ghazi, Mohammad Ebrahim; Bahramian, Bahram

    2018-02-01

    The effect of annealing temperature on structural, optical, and electrical properties of Cu2ZnSnS4 (CZTS) thin films grown on a glass substrate by spin coating sol-gel technique has been studied. Structural study showed that all samples had kesterite crystalline structure. Scanning electron microscopy images showed that the crystalline quality of the samples was improved by heat treatment. Optical study showed that the energy gap values for the samples ranged from 1.55 eV to 1.78 eV. Moreover, good optical conductivity values (1012 S-1 to 1014 S-1) were obtained for the samples. Investigation of the electrical properties of the CZTS thin films showed that the carrier concentration increased significantly with the annealing temperature. The photoelectrical behavior of the samples revealed that the photocurrent under light illumination increased significantly. Overall, the results show that the CZTS thin films annealed at 500°C had better structural, optical, and electrical properties and that such CZTS thin films are desirable for use as absorber layers in solar cells. The photovoltaic properties of the CZTS layer annealed at 500°C were also investigated and the associated figure of merit calculated. The results showed that the fabricated ZnS-CZTS heterojunction exhibited good rectifying behavior but rather low fill factor.

  12. Carbide coated fibers in graphite-aluminum composites

    NASA Technical Reports Server (NTRS)

    Imprescia, R. J.; Levinson, L. S.; Reiswig, R. D.; Wallace, T. C.; Williams, J. M.

    1975-01-01

    Thin, uniform coats of titanium carbide, deposited on graphite fibers by chemical vapor deposition with thicknesses up to approximately 0.1 microns were shown to improve fiber strength significantly. For greater thicknesses, strength was degraded. The coats promote wetting of the fibers and infiltration of the fiber yarns with aluminum alloys, and act as protective barriers to inhibit reaction between the fibers and the alloys. Chemical vapor deposition was used to produce silicon carbide coats on graphite fibers. In general, the coats were nonuniform and were characterized by numerous surface irregularities. Despite these irregularities, infiltration of these fibers with aluminum alloys was good. Small graphite-aluminum composite samples were produced by vacuum hot-pressing of aluminum-infiltrated graphite yarn at temperatures above the metal liquidus.

  13. Ceramic thermal-barrier coatings for cooled turbines

    NASA Technical Reports Server (NTRS)

    Liebert, C. H.; Stepka, F. S.

    1976-01-01

    Coating systems consisting of a plasma sprayed layer of zirconia stabilized with either yttria, magnesia or calcia over a thin alloy bond coat have been developed, their potential was analyzed and their durability and benefits evaluated in a turbojet engine. The coatings on air cooled rotating blades were in good condition after completing as many as 500 two-minute cycles of engine operation between full power at a gas temperature of 1644 K and flameout, or as much as 150 hours of steady state operation on cooled vanes and blades at gas temperatures as high as 1644 K with 35 start and stop cycles. On the basis of durability and processing cost, the yttria stabilized zirconia was considered the best of the three coatings investigated.

  14. A case of mumps-related acute encephalopathy with biphasic seizures and late reduced diffusion.

    PubMed

    Hazama, Kyoko; Shiihara, Takashi; Tsukagoshi, Hiroyuki; Hasegawa, Shunji; Dowa, Yuri; Watanabe, Mio

    2017-10-01

    Mumps is a common childhood viral disease characterized by fever and swelling of the parotid gland. The prognosis is generally good, although some complications, such as encephalitis (0.1%), exist. Acute encephalopathy with biphasic seizures and late reduced diffusion is the most common type of acute encephalopathy. However, this type of encephalopathy has not been reported in association with mumps infection. A previously healthy 3-year-old Japanese boy had a brief convulsion after fever for 3days, and then had conscious disturbance and parotitis. After several days, he had a second brief convulsion and was admitted. Increased serum amylase levels and presence of anti-mumps immunoglobulin M antibody confirmed mumps parotitis. The patient had another brief seizure later the day of admission. He did not have status or cluster seizures, although the biphasic nature of his seizures, conscious disturbance between the seizures, no pleocytosis in cerebrospinal fluid, and brain magnetic resonance images were consistent with acute encephalopathy with biphasic seizures and late reduced diffusion. In Japan, the mumps vaccine is not administered as a part of routine immunizations. It thus has low coverage (30-40%), and as a result, mumps infections are still common. However, this is the first case of mumps-related acute encephalopathy with biphasic seizures and late reduced diffusion. This case may be representative of only a minority of patients with mumps-associated central nervous system involvement. Nevertheless, this diagnostic possibility may be considered. In order to prevent mumps-related complications, routine mumps vaccination might be warranted. Copyright © 2017 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  15. Biphasic Effects of Alcohol as a Function of Circadian Phase

    PubMed Central

    Van Reen, Eliza; Rupp, Tracy L.; Acebo, Christine; Seifer, Ronald; Carskadon, Mary A.

    2013-01-01

    Study Objectives: To assess how alcohol affects multiple sleep latency tests (MSLT) and subjective measures of stimulation/sedation when alcohol is given at different circadian phases. Participants: Twenty-seven healthy young adults (age 21-26 yr) were studied. Design: Double-blind placebo and alcohol (vodka tonic targeting 0.05 g% concentration) beverages were each administered three times during the 20-h forced desynchrony protocol. Sleep latency tests and Biphasic Effects of Alcohol Scale (BAES) were administered on each forced desynchrony day. The outcome variables for this study include sleep onset latency (SOL) and stimulation and sedation value (from the BAES). Each outcome variable was associated with the ascending or descending limb of the breath alcohol concentration (BrAC) curve and assigned a circadian phase within a 90° bin. Measurements and Results: BrAC confirmed targeted maximal levels. Only outcome variables associated with the ascending and descending limb of the alcohol curve were analyzed for this article. Alcohol administered at a circadian time associated with greatest sleepiness showed longer SOL compared with placebo when measured on the ascending limb of the BrAC curve. We also found longer SOL with alcohol on the ascending limb of the BrAC curve in a circadian bin that favors greatest alertness. We observed shorter SOLs on the descending limb of the BrAC curve, but with no circadian phase interaction. The subjective data were partially consistent with the objective data. Conclusions: The physiologic findings in this study support the biphasic stimulating and sedating properties of alcohol, but limit the effect to specific circadian times. Citation: Van Reen E; Rupp TL; Acebo C; Seifer R; Carskadon MA. Biphasic effects of alcohol as a function of circadian phase. SLEEP 2013;36(1):137-145. PMID:23288980

  16. A novel electrostatic dry powder coating process for pharmaceutical dosage forms: immediate release coatings for tablets.

    PubMed

    Qiao, Mingxi; Zhang, Liqiang; Ma, Yingliang; Zhu, Jesse; Chow, Kwok

    2010-10-01

    An electrostatic dry powder coating process for pharmaceutical solid dosage forms was developed for the first time by electrostatic dry powder coating in a pan coater system. Two immediate release coating compositions with Opadry® AMB and Eudragit® EPO were successfully applied using this process. A liquid plasticizer was sprayed onto the surface of the tablet cores to increase the conductivity of tablet cores to enhance particle deposition, electrical resistivity reduced from greater than 1×10(13)Ωm to less than 1×10(9)Ωm, and to lower the glass transition temperature (T(g)) of the coating polymer for film forming in the pan coater. The application of liquid plasticizer was followed by spraying charged coating particles using an electrostatic charging gun to enhance the uniform deposition on tablet surface. The coating particles were coalesced into a thin film by curing at an acceptable processing temperature as formation was confirmed by SEM micrographs. The results also show that the optimized dry powder coating process produces tablets with smooth surface, good coating uniformity and release profile that are comparable to that of the tablet cores. The data also suggest that this novel electrostatic dry powder coating technique is an alternative to aqueous- or solvent-based coating process for pharmaceutical products. Crown Copyright © 2010. Published by Elsevier B.V. All rights reserved.

  17. Attenuated adult biphasic shocks for prolonged pediatric ventricular fibrillation: support for pediatric automated defibrillators.

    PubMed

    Berg, Robert A

    2004-09-01

    To evaluate published data regarding the treatment of prolonged pediatric defibrillation, with special emphasis on the use of attenuated adult biphasic shocks for pediatric defibrillation. Review relevant human and animal literature. Rhythm analysis algorithms from two manufacturers of automated external defibrillators can accurately distinguish shockable from nonshockable rhythms in children. Theoretical considerations and transthoracic impedance data from animals and children suggest that pediatric defibrillation doses should not necessarily vary in a simple weight-based manner. Two piglet studies have established that an attenuated adult biphasic dosage can be successfully used for 3.5- to 24-kg animals in ventricular fibrillation. One study established that the attenuated adult biphasic dosage was at least as safe and effective as the standard monophasic weight-based dosing. This review supports the American Heart Association's new guidelines for pediatric automated external defibrillator usage: "Automated external defibrillators may be used for children 1 to 8 yrs of age who have no signs of circulation. Ideally the device should deliver a pediatric dose. The arrhythmia detection system used in the device should demonstrate high specificity for pediatric shockable rhythms, i.e., it will not recommend delivery of a shock for nonshockable rhythms."

  18. TOPICAL REVIEW: Ultra-thin film encapsulation processes for micro-electro-mechanical devices and systems

    NASA Astrophysics Data System (ADS)

    Stoldt, Conrad R.; Bright, Victor M.

    2006-05-01

    A range of physical properties can be achieved in micro-electro-mechanical systems (MEMS) through their encapsulation with solid-state, ultra-thin coatings. This paper reviews the application of single source chemical vapour deposition and atomic layer deposition (ALD) in the growth of submicron films on polycrystalline silicon microstructures for the improvement of microscale reliability and performance. In particular, microstructure encapsulation with silicon carbide, tungsten, alumina and alumina-zinc oxide alloy ultra-thin films is highlighted, and the mechanical, electrical, tribological and chemical impact of these overlayers is detailed. The potential use of solid-state, ultra-thin coatings in commercial microsystems is explored using radio frequency MEMS as a case study for the ALD alloy alumina-zinc oxide thin film.

  19. Nonevaporable getter coating chambers for extreme high vacuum

    DOE PAGES

    Stutzman, Marcy L.; Adderley, Philip A.; Mamun, Md Abdullah Al; ...

    2018-03-01

    Techniques for NEG coating a large diameter chamber are presented along with vacuum measurements in the chamber using several pumping configurations, with base pressure as low as 1.56x10^-12 Torr (N2 equivalent) with only a NEG coating and small ion pump. We then describe modifications to the NEG coating process to coat complex geometry chambers for ultra-cold atom trap experiments. Surface analysis of NEG coated samples are used to measure composition and morphology of the thin films. Finally, pressure measurements are compared for two NEG coated polarized electron source chambers: the 130 kV polarized electron source at Jefferson Lab and themore » upgraded 350 kV polarized 2 electron source, both of which are approaching or within the extreme high vacuum (XHV) range, defined as P<7.5x10^-13 Torr.« less

  20. Nonevaporable getter coating chambers for extreme high vacuum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stutzman, Marcy L.; Adderley, Philip A.; Mamun, Md Abdullah Al

    Techniques for NEG coating a large diameter chamber are presented along with vacuum measurements in the chamber using several pumping configurations, with base pressure as low as 1.56x10^-12 Torr (N2 equivalent) with only a NEG coating and small ion pump. We then describe modifications to the NEG coating process to coat complex geometry chambers for ultra-cold atom trap experiments. Surface analysis of NEG coated samples are used to measure composition and morphology of the thin films. Finally, pressure measurements are compared for two NEG coated polarized electron source chambers: the 130 kV polarized electron source at Jefferson Lab and themore » upgraded 350 kV polarized 2 electron source, both of which are approaching or within the extreme high vacuum (XHV) range, defined as P<7.5x10^-13 Torr.« less

  1. Low-Cost Detection of Thin Film Stress during Fabrication

    NASA Technical Reports Server (NTRS)

    Nabors, Sammy A.

    2015-01-01

    NASA's Marshall Space Flight Center has developed a simple, cost-effective optical method for thin film stress measurements during growth and/or subsequent annealing processes. Stress arising in thin film fabrication presents production challenges for electronic devices, sensors, and optical coatings; it can lead to substrate distortion and deformation, impacting the performance of thin film products. NASA's technique measures in-situ stress using a simple, noncontact fiber optic probe in the thin film vacuum deposition chamber. This enables real-time monitoring of stress during the fabrication process and allows for efficient control of deposition process parameters. By modifying process parameters in real time during fabrication, thin film stress can be optimized or controlled, improving thin film product performance.

  2. A biphasic dialytic strategy for the treatment of neonatal hyperammonemia

    PubMed Central

    Avasare, Sonal; Tsai, Eileen; Yadin, Ora; Zaritsky, Joshua

    2018-01-01

    Background Neonates with inborn errors of metabolism (IEM) often develop hyperammonemia which, if not corrected quickly, may result in poor neurologic outcomes. As pharmacologic therapy cannot rapidly lower ammonia levels, dialysis is frequently required. Both hemodialysis (HD) and standard-dose continuous renal replacement therapy (CRRT) are effective; however, HD may be followed by post-dialytic ammonia rebound, and standard-dose CRRT may not effect a rapid enough decrease in ammonia levels. Case-Diagnosis/Treatment We present two cases of IEM-associated neonatal hyperammonemia in which we employed a biphasic, high-dose CRRT treatment strategy, initially using dialysate flow rates of 5,000 mL/h (approximately 40,000 mL/h/1.73 m2) in order to rapidly decrease ammonia levels, then decreasing the dialysate flow rates to 500 mL/h (approximately 4,000 mL/h/1.73 m2) in order to prevent ammonia rebound. Conclusions This biphasic dialytic treatment strategy for neonatal hyperammonemia effected rapid ammonia reduction without rebound and accomplished during a single dialysis run without equipment changes. PMID:24122260

  3. Effect of Induced Periimplantitis on Dental Implants With and Without Ultrathin Hydroxyapatite Coating.

    PubMed

    Madi, Marwa; Zakaria, Osama; Ichinose, Shizuko; Kasugai, Shohei

    2016-02-01

    The aim of this study was to compare the effect of ligature-induced periimplantitis on dental implants with and without hydroxyapatite (HA) coat. Thirty-two dental implants (3.3 mm wide, 13 mm long) with 4 surface treatments (8 implant/group) (M: machined, SA: sandblasted acid etched, S: sputter HA coat and P: plasma-sprayed HA coat) were inserted into canine mandibles. After 12 weeks, oral hygiene procedures were stopped and silk ligatures were placed around the implant abutments to allow plaque accumulation for the following 16 weeks. Implants with the surrounding tissues were retrieved and prepared for histological examination. Bone-to-implant contact (BIC) and implant surfaces were examined using scanning electron microscopy and energy dispersive x-ray spectroscopy. Histological observation revealed marginal bone loss and large inflammatory cell infiltrates in the periimplant soft tissue. Sputter HA implants showed the largest BIC (98.1%) and machined implant showed the smallest values (70.4%). After 28 weeks, thin sputter HA coat was almost completely dissolved, whereas plasma-sprayed HA coat showed complete thickness preservation. Thin sputter HA-coated implants showed more bone implant contact and less marginal bone loss than thick HA-coated implants under periimplantitis condition.

  4. Solar selective performance of metal nitride/oxynitride based magnetron sputtered thin film coatings: a comprehensive review

    NASA Astrophysics Data System (ADS)

    Ibrahim, Khalil; Taha, Hatem; Mahbubur Rahman, M.; Kabir, Humayun; Jiang, Zhong-Tao

    2018-03-01

    Since solar-thermal collectors are considered to be the most direct way of converting solar energy into usable forms, in the last few years growing attention has been paid to the development of transition metal nitride and metal oxynitride based thin film selective surfaces for solar-thermal collectors, in order to harvest more solar energy. A solar-thermal energy system, generally, shows very high solar absorption of incident solar radiation from the solar-thermal collectors in the visible range (0.3 to 2.5 μm) and extremely low thermal losses through emission (or high reflection) in the infrared region (≥2.5 μm). The efficiency of a solar-thermal energy conversion system can be improved by the use of solar selective surfaces consisting of novel metallic nanoparticles embedded in metal nitride/oxynitride systems. In order to enhance the effectiveness of solar-thermal devices, solar selective surfaces with high thermal stability are a prerequisite. Over the years, substantial efforts have been made in the field of solar selective surfaces to attain higher solar absorptance and lower thermal emittance in high temperature (above 400 °C) applications. In this article, we review the present state-of-the-art transition metal nitride and/or oxynitride based vacuum sputtered nanostructured thin film coatings, with respect to their optical and solar selective surface applications. We have also summarized the solar selectivity data from recently published investigations, including discussion on some potential applications for these materials.

  5. A New Biphasic Dicalcium Silicate Bone Cement Implant.

    PubMed

    Zuleta, Fausto; Murciano, Angel; Gehrke, Sergio A; Maté-Sánchez de Val, José E; Calvo-Guirado, José L; De Aza, Piedad N

    2017-07-06

    This study aimed to investigate the processing parameters and biocompatibility of a novel biphasic dicalcium silicate (C₂S) cement. Biphasic α´ L + β-C₂S ss was synthesized by solid-state processing, and was used as a raw material to prepare the cement. In vitro bioactivity and biocompatibility studies were assessed by soaking the cement samples in simulated body fluid (SBF) and human adipose stem cell cultures. Two critical-sized defects of 6 mm Ø were created in 15 NZ tibias. A porous cement made of the high temperature forms of C₂S, with a low phosphorous substitution level, was produced. An apatite-like layer covered the cement's surface after soaking in SBF. The cell attachment test showed that α´ L + β-C₂S ss supported cells sticking and spreading after 24 h of culture. The cement paste (55.86 ± 0.23) obtained higher bone-to-implant contact (BIC) percentage values (better quality, closer contact) in the histomorphometric analysis, and defect closure was significant compared to the control group (plastic). The residual material volume of the porous cement was 35.42 ± 2.08% of the initial value. The highest BIC and bone formation percentages were obtained on day 60. These results suggest that the cement paste is advantageous for initial bone regeneration.

  6. A New Biphasic Dicalcium Silicate Bone Cement Implant

    PubMed Central

    Murciano, Angel; Maté-Sánchez de Val, José E.

    2017-01-01

    This study aimed to investigate the processing parameters and biocompatibility of a novel biphasic dicalcium silicate (C2S) cement. Biphasic α´L + β-C2Sss was synthesized by solid-state processing, and was used as a raw material to prepare the cement. In vitro bioactivity and biocompatibility studies were assessed by soaking the cement samples in simulated body fluid (SBF) and human adipose stem cell cultures. Two critical-sized defects of 6 mm Ø were created in 15 NZ tibias. A porous cement made of the high temperature forms of C2S, with a low phosphorous substitution level, was produced. An apatite-like layer covered the cement’s surface after soaking in SBF. The cell attachment test showed that α´L + β-C2Sss supported cells sticking and spreading after 24 h of culture. The cement paste (55.86 ± 0.23) obtained higher bone-to-implant contact (BIC) percentage values (better quality, closer contact) in the histomorphometric analysis, and defect closure was significant compared to the control group (plastic). The residual material volume of the porous cement was 35.42 ± 2.08% of the initial value. The highest BIC and bone formation percentages were obtained on day 60. These results suggest that the cement paste is advantageous for initial bone regeneration. PMID:28773119

  7. Synthesis and characterization of spin-coated ZnS thin films

    NASA Astrophysics Data System (ADS)

    Zaman, M. Burhanuz; Chandel, Tarun; Dehury, Kshetramohan; Rajaram, P.

    2018-05-01

    In this paper, we report synthesis of ZnS thin films using a sol-gel method. A unique aprotic solvent, dimethlysulphoxide (DMSO) has been used to obtain a homogeneous ZnS gel. Zinc acetate and thiourea were used as the precursor sources for Zn and S, respectively, to deposit nanocrystalline ZnS thin films. Optical, structural and morphological properties of the films were studied. Optical studies reveal high transmittance of the samples over the entire visible region. The energy band gap (Eg) for the ZnS thin films is found to be about 3.6 eV which matches with that of bulk ZnS. The interference fringes in transmissions spectrum show the high quality of synthesized samples. Strong photoluminescence peak in the UV region makes the films suitable for optoelectronic applications. X-ray diffraction studies reveal that sol-gel derived ZnS thin films are polycrystalline in nature with hexagonal structure. SEM studies confirmed that the ZnS films show smooth and uniform grains morphology having size in 20-25 nm range. The EDAX studies confirmed that the films are nearly stoichiometric.

  8. Surface Structure and Photocatalytic Activity of Nano-TiO2 Thin Film

    EPA Science Inventory

    Controlled titanium dioxide (TiO2) thin films were deposited on stainless steel surfaces using flame aerosol synthetic technique, which is a one-step coating process, that doesn’t require further calcination. Solid state characterization of the coatings was conducted by different...

  9. Corrosion resistant coating

    NASA Technical Reports Server (NTRS)

    Khanna, S. K.; Thakoor, A. P.; Williams, R. M. (Inventor)

    1985-01-01

    A method of coating a substrate with an amorphous metal is described. A solid piece of the metal is bombarded with ions of an inert gas in the presence of a magnetic field to provide a vapor of the metal which is deposited on the substrate at a sufficiently low gas pressure so that there is formed on the substrate a thin, uniformly thick, essentially pinhole-free film of the metal.

  10. High-mobility ultrathin semiconducting films prepared by spin coating.

    PubMed

    Mitzi, David B; Kosbar, Laura L; Murray, Conal E; Copel, Matthew; Afzali, Ali

    2004-03-18

    The ability to deposit and tailor reliable semiconducting films (with a particular recent emphasis on ultrathin systems) is indispensable for contemporary solid-state electronics. The search for thin-film semiconductors that provide simultaneously high carrier mobility and convenient solution-based deposition is also an important research direction, with the resulting expectations of new technologies (such as flexible or wearable computers, large-area high-resolution displays and electronic paper) and lower-cost device fabrication. Here we demonstrate a technique for spin coating ultrathin (approximately 50 A), crystalline and continuous metal chalcogenide films, based on the low-temperature decomposition of highly soluble hydrazinium precursors. We fabricate thin-film field-effect transistors (TFTs) based on semiconducting SnS(2-x)Se(x) films, which exhibit n-type transport, large current densities (>10(5) A cm(-2)) and mobilities greater than 10 cm2 V(-1) s(-1)--an order of magnitude higher than previously reported values for spin-coated semiconductors. The spin-coating technique is expected to be applicable to a range of metal chalcogenides, particularly those based on main group metals, as well as for the fabrication of a variety of thin-film-based devices (for example, solar cells, thermoelectrics and memory devices).

  11. Silk Fibroin as Edible Coating for Perishable Food Preservation

    NASA Astrophysics Data System (ADS)

    Marelli, B.; Brenckle, M. A.; Kaplan, D. L.; Omenetto, F. G.

    2016-05-01

    The regeneration of structural biopolymers into micelles or nanoparticles suspended in water has enabled the design of new materials with unique and compelling properties that can serve at the interface between the biotic and the abiotic worlds. In this study, we leveraged silk fibroin quintessential properties (i.e. polymorphism, conformability and hydrophobicity) to design a water-based protein suspension that self-assembles on the surface of food upon dip coating. The water-based post-processing control of the protein polymorphism enables the modulation of the diffusion of gases through the silk fibroin thin membranes (e.g. O2 and CO2 diffusion, water vapour permeability), which is a key parameter to manage food freshness. In particular, an increased beta-sheet content corresponds to a reduction in oxygen diffusion through silk fibroin thin films. By using the dip coating of strawberries and bananas as proof of principle, we have shown that the formation of micrometre-thin silk fibroin membranes around the fruits helps the management of postharvest physiology of the fruits. Thus, silk fibroin coatings enhance fruits’ shelf life at room conditions by reducing cell respiration rate and water evaporation. The water-based processing and edible nature of silk fibroin makes this approach a promising alternative for food preservation with a naturally derived material.

  12. Silk Fibroin as Edible Coating for Perishable Food Preservation

    PubMed Central

    Marelli, B.; Brenckle, M. A.; Kaplan, D. L.; Omenetto, F. G.

    2016-01-01

    The regeneration of structural biopolymers into micelles or nanoparticles suspended in water has enabled the design of new materials with unique and compelling properties that can serve at the interface between the biotic and the abiotic worlds. In this study, we leveraged silk fibroin quintessential properties (i.e. polymorphism, conformability and hydrophobicity) to design a water-based protein suspension that self-assembles on the surface of food upon dip coating. The water-based post-processing control of the protein polymorphism enables the modulation of the diffusion of gases through the silk fibroin thin membranes (e.g. O2 and CO2 diffusion, water vapour permeability), which is a key parameter to manage food freshness. In particular, an increased beta-sheet content corresponds to a reduction in oxygen diffusion through silk fibroin thin films. By using the dip coating of strawberries and bananas as proof of principle, we have shown that the formation of micrometre-thin silk fibroin membranes around the fruits helps the management of postharvest physiology of the fruits. Thus, silk fibroin coatings enhance fruits’ shelf life at room conditions by reducing cell respiration rate and water evaporation. The water-based processing and edible nature of silk fibroin makes this approach a promising alternative for food preservation with a naturally derived material. PMID:27151492

  13. Efficient asymmetric hydrolysis of styrene oxide catalyzed by Mung bean epoxide hydrolases in ionic liquid-based biphasic systems.

    PubMed

    Chen, Wen-Jing; Lou, Wen-Yong; Zong, Min-Hua

    2012-07-01

    The asymmetric hydrolysis of styrene oxide to (R)-1-phenyl-1,2-ethanediol using Mung bean epoxide hydrolases was, for the first time, successfully conducted in an ionic liquid (IL)-containing biphasic system. Compared to aqueous monophasic system, IL-based biphasic systems could not only dissolve the substrate, but also effectively inhibit the non-enzymatic hydrolysis, and therefore markedly improve the reaction efficiency. Of all the tested ILs, the best results were observed in the biphasic system containing C(4)MIM·PF(6), which exhibited good biocompatibility with the enzyme and was an excellent solvent for the substrate. In the C(4)MIM·PF(6)/buffer biphasic system, it was found that the optimal volume ratio of IL to buffer, reaction temperature, buffer pH and substrate concentration were 1/6, 35°C, 6.5 and 100 mM, respectively, under which the initial reaction rate, the yield and the product e.e. were 18.4 mM/h, 49.4% and 97.0%. The biocatalytic process was shown to be feasible on a 500-mL preparative scale. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Anti-reflection coatings applied by acid leaching process

    NASA Technical Reports Server (NTRS)

    Pastirik, E.

    1980-01-01

    The Magicote C process developed by S.M. Thompsen was evaluated for use in applying an antireflective coating to the cover plates of solar panels. The process uses a fluosilicic acid solution supersaturated with silica at elevated temperature to selectively attack the surface of soda-lime glass cover plates and alter the physical and chemical composition of a thin layer of glass. The altered glass layer constitutes an antireflective coating. The process produces coatings of excellent optical quality which possess outstanding resistance to soiling and staining. The coatings produced are not resistant to mechanical abrasion and are attacked to some extent by glass cleansers. Control of the filming process was found to be difficult.

  15. Transparent conductive coatings

    NASA Technical Reports Server (NTRS)

    Ashok, S.

    1983-01-01

    Thin film transparent conductors are discussed. Materials with electrical conductivity and optical transparency are highly desirable in many optoelectronic applications including photovoltaics. Certain binary oxide semiconductors such as tin oxide (SnO2) and indium oxide (In2O3) offer much better performance tradeoff in optoelectronics as well as better mechanical and chemical stability than thin semitransparent films. These thin-film transparent conductors (TC) are essentially wide-bandgap degenerate semiconductors - invariably n-type - and hence are transparent to sub-bandgap (visible) radiation while affording high electrical conductivity due to the large free electron concentration. The principal performance characteristics of TC's are, of course, electrical conductivity and optical transmission. The TC's have a refractive index of around 2.0 and hence act as very efficient antireflection coatings. For using TC's in surface barrier solar cells, the photovoltaic barrier is of utmost importance and so the work function or electron affinity of the TC is also a very important material parameter. Fabrication processes are discussed.

  16. Non-conventional solvents in liquid phase microextraction and aqueous biphasic systems.

    PubMed

    An, Jiwoo; Trujillo-Rodríguez, María J; Pino, Verónica; Anderson, Jared L

    2017-06-02

    The development of rapid, convenient, and high throughput sample preparation approaches such as liquid phase microextraction techniques have been continuously developed over the last decade. More recently, significant attention has been given to the replacement of conventional organic solvents used in liquid phase microextraction techniques in order to reduce toxic waste and to improve selectivity and/or extraction efficiency. With these objectives, non-conventional solvents have been explored in liquid phase microextraction and aqueous biphasic systems. The utilized non-conventional solvents include ionic liquids, magnetic ionic liquids, and deep eutectic solvents. They have been widely used as extraction solvents or additives in various liquid phase microextraction modes including dispersive liquid-liquid microextraction, single-drop microextraction, hollow fiber-liquid phase microextraction, as well as in aqueous biphasic systems. This review provides an overview into the use of non-conventional solvents in these microextraction techniques in the past 5 years (2012-2016). Analytical applications of the techniques are also discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Separation and recovery of food coloring dyes using aqueous biphasic extraction chromatographic resins.

    PubMed

    Huddleston, J G; Willauer, H D; Boaz, K R; Rogers, R D

    1998-06-26

    Aqueous biphasic systems (ABS) and aqueous biphasic extraction chromatographic (ABEC) resins are currently under investigation for their utility in the removal of color from textile plant wastes. The structures of several widely used food colorings, suggest that these dyes would also be retained on the resins. In work currently in progress, we have begun to investigate the retention and resolution of several common food colorings including indigo carmine, amaranth, carminic acid. erythrosin B, tartrazine and quinoline yellow. The relationship between the uptake of these dyes on ABEC resins in terms of the binding strengths and capacities of the resins and their partitioning behavior in ABS is illustrated. Some possible theoretical and practical approaches to the prediction of the partitioning and retention behavior is discussed.

  18. Using sputter coated glass to stabilize microstrip gas chambers

    DOEpatents

    Gong, Wen G.

    1997-01-01

    By sputter coating a thin-layer of low-resistive, electronically-conductive glass on various substrates (including quartz and ceramics, thin-film Pestov glass), microstrip gas chambers (MSGC) of high gain stability, low leakage current, and a high rate capability can be fabricated. This design can make the choice of substrate less important, save the cost of ion-implantation, and use less glass material.

  19. Multilayer Protective Coatings for High-Level Nuclear Waste Storage Containers

    NASA Astrophysics Data System (ADS)

    Fusco, Michael

    Corrosion-based failures of high-level nuclear waste (HLW) storage containers are potentially hazardous due to a possible release of radionuclides through cracks in the canister due to corrosion, especially for above-ground storage (i.e. dry casks). Protective coatings have been proposed to combat these premature failures, which include stress-corrosion cracking and hydrogen-diffusion cracking, among others. The coatings are to be deposited in multiple thin layers as thin films on the outer surface of the stainless steel waste basket canister. Coating materials include: TiN, ZrO2, TiO2, Al 2O3, and MoS2, which together may provide increased resistances to corrosion and mechanical wear, as well as act as a barrier to hydrogen diffusion. The focus of this research is on the corrosion resistance and characterization of single layer coatings to determine the possible benefit from the use of the proposed coating materials. Experimental methods involve electrochemical polarization, both DC and AC techniques, and corrosion in circulating salt brines of varying pH. DC polarization allows for estimation of corrosion rates, passivation behavior, and a qualitative survey of localized corrosion, whereas AC electrochemistry has the benefit of revealing information about kinetics and interfacial reactions that is not obtainable using DC techniques. Circulation in salt brines for nearly 150 days revealed sustained adhesion of the coatings and minimal weight change of the steel samples. One-inch diameter steel coupons composed of stainless steel types 304 and 316 and A36 low alloy carbon steel were coated with single layers using magnetron sputtering with compound targets in an inert argon atmosphere. This resulted in very thin films for the metal-oxides based on low sputter rates. DC polarization showed that corrosion rates were very similar between bare and coated stainless steel samples, whereas a statistically significant decrease in uniform corrosion was measured on coated

  20. Photocatalytic Antibacterial Performance of Glass Fibers Thin Film Coated with N-Doped SnO 2 /TiO 2

    PubMed Central

    Sikong, Lek; Niyomwas, Sutham; Rachpech, Vishnu

    2014-01-01

    Both N-doped and undoped thin films of 3SnO2/TiO2 composite were prepared, by sol-gel and dip-coating methods, and then calcined at 600°C for 2 hours. The films were characterized by FTIR, XRD, UV-Vis, SEM, and XPS, and their photocatalytic activities to degrade methylene blue in solution were determined, expecting these activities to correlate with the inactivation of bacteria, which was confirmed. The doped and undoped films were tested for activities against Gram-negative Escherichia coli (E. coli) and Salmonella typhi (S. typhi), and Gram-positive Staphylococcus aureus (S. aureus). The effects of doping on these composite films included reduced energy band gap, high crystallinity of anatase phase, and small crystallite size as well as increased photocatalytic activity and water disinfection efficiency. PMID:24693250