1989-01-13
aromatic amino acids adsorbed on conditioned Ag electrodes in 0.1 N KCl. A. tryptophan. B. phenylalanine. Ribulose biphosphate carboxylase ( RuBisCo ) has...Preliminary runs with a silver electrode, UV-oxidized seawater, and a putative fouling protein, Ribulose 1,5 biphosphate carboxylase ( RuBisCo ) have been...completed. Prior to adding RuBisCo to the system, a series of runs were made to establish functionality of the cell and system parameters. The system
ERIC Educational Resources Information Center
Rao, K. K.; Hall, D. O.
1982-01-01
Topics in this discussion of photorespiration (light-dependent oxygen consumption and carbon dioxide evolution from leaves) include: (1) the biochemistry of photorespiration; (2) ribulose biphosphate carboxylase and glycollate synthesis; (3) metabolism of glycollate; (4) plants lacking photorespiratory systems; and (5) advantages of…
Evolution of prokaryote and eukaryote lines inferred from sequence evidence
NASA Technical Reports Server (NTRS)
Hunt, L. T.; George, D. G.; Yeh, L.-S.; Dayhoff, M. O.
1984-01-01
This paper describes the evolution of prokaryotes and early eukaryotes, including their symbiotic relationships, as inferred from phylogenetic trees of bacterial ferredoxin, 5S ribosomal RNA, ribulose-1,5-biphosphate carboxylase large chain, and mitochondrial cytochrome oxidase polypeptide II.
Anion induced conformational preference of Cα NN motif residues in functional proteins.
Patra, Piya; Ghosh, Mahua; Banerjee, Raja; Chakrabarti, Jaydeb
2017-12-01
Among different ligand binding motifs, anion binding C α NN motif consisting of peptide backbone atoms of three consecutive residues are observed to be important for recognition of free anions, like sulphate or biphosphate and participate in different key functions. Here we study the interaction of sulphate and biphosphate with C α NN motif present in different proteins. Instead of total protein, a peptide fragment has been studied keeping C α NN motif flanked in between other residues. We use classical force field based molecular dynamics simulations to understand the stability of this motif. Our data indicate fluctuations in conformational preferences of the motif residues in absence of the anion. The anion gives stability to one of these conformations. However, the anion induced conformational preferences are highly sequence dependent and specific to the type of anion. In particular, the polar residues are more favourable compared to the other residues for recognising the anion. © 2017 Wiley Periodicals, Inc.
An operationally flexible fuel cell based on quaternary ammonium-biphosphate ion pairs
Lee, Kwan -Soo; Spendelow, Jacob Schatz; Choe, Yoong -Kee; ...
2016-08-22
Here, fuel cells are promising devices for clean power generation in a variety of economically and environmentally significant applications. Low-temperature proton exchange membrane (PEM) fuel cells utilizing Nafion require a high level of hydration, which limits the operating temperature to less than 100°C. In contrast, high-temperature PEM fuel cells utilizing phosphoric acid-doped polybenzimidazole can operate effectively up to 180°C; however, these devices degrade when exposed to water below 140°C. Here we present a different class of PEM fuel cells based on quaternary ammonium-biphosphate ion pairs that can operate under conditions unattainable with existing fuel cell technologies. These fuel cells exhibitmore » stable performance at 80–160°C with a conductivity decay rate more than three orders of magnitude lower than that of a commercial high-temperature PEM fuel cell. By increasing the operational flexibility, this class of fuel cell can simplify the requirements for heat and water management, and potentially reduce the costs associated with the existing fully functional fuel cell systems.« less
An operationally flexible fuel cell based on quaternary ammonium-biphosphate ion pairs
NASA Astrophysics Data System (ADS)
Lee, Kwan-Soo; Spendelow, Jacob S.; Choe, Yoong-Kee; Fujimoto, Cy; Kim, Yu Seung
2016-09-01
Fuel cells are promising devices for clean power generation in a variety of economically and environmentally significant applications. Low-temperature proton exchange membrane (PEM) fuel cells utilizing Nafion require a high level of hydration, which limits the operating temperature to less than 100 ∘C. In contrast, high-temperature PEM fuel cells utilizing phosphoric acid-doped polybenzimidazole can operate effectively up to 180 ∘C however, these devices degrade when exposed to water below 140 ∘C. Here we present a different class of PEM fuel cells based on quaternary ammonium-biphosphate ion pairs that can operate under conditions unattainable with existing fuel cell technologies. These fuel cells exhibit stable performance at 80-160 ∘C with a conductivity decay rate more than three orders of magnitude lower than that of a commercial high-temperature PEM fuel cell. By increasing the operational flexibility, this class of fuel cell can simplify the requirements for heat and water management, and potentially reduce the costs associated with the existing fully functional fuel cell systems.
An update on gain-of-function mutations in primary immunodeficiency diseases.
Jhamnani, Rekha D; Rosenzweig, Sergio D
2017-12-01
Most primary immunodeficiencies described since 1952 were associated with loss-of-function defects. With the advent and popularization of unbiased next-generation sequencing diagnostic approaches followed by functional validation techniques, many gain-of-function mutations leading to immunodeficiency have also been identified. This review highlights the updates on pathophysiology mechanisms and new therapeutic approaches involving primary immunodeficiencies because of gain-of-function mutations. The more recent developments related to gain-of-function primary immunodeficiencies mostly involving increased infection susceptibility but also immune dysregulation and autoimmunity, were reviewed. Updates regarding pathophysiology mechanisms, different mutation types, clinical features, laboratory markers, current and potential new treatments on patients with caspase recruitment domain family member 11, signal transducer and activator of transcription 1, signal transducer and activator of transcription 3, phosphatidylinositol-4,5-biphosphate 3-kinase catalytic 110, phosphatidylinositol-4,5-biphosphate 3-kinase regulatory subunit 1, chemokine C-X-C motif receptor 4, sterile α motif domain containing 9-like, and nuclear factor κ-B subunit 2 gain-of-function mutations are reviewed for each disease. With the identification of gain-of-function mutations as a cause of immunodeficiency, new genetic pathophysiology mechanisms unveiled and new-targeted therapeutic approaches can be explored as potential rescue treatments for these diseases.
Oligomerization of deoxynucleoside-biphosphate dimers - Template and linkage specificity
NASA Technical Reports Server (NTRS)
Visscher, J.; Van Der Woerd, R.; Bakker, C. G.; Schwartz, Alan W.
1989-01-01
The oligomerization of the activated 3-prime-5-prime pyrophosphate-linked dimer, pdAppdAp, is presently noted to be selectively favored by a poly(U) template over the 3-prime-3-prime and 5-prime-5-prime linked dimers. Both overall yields and the production of the longest oligomers were markedly stimulated by poly(U)'s presence; in its absence, the 5-prime-5-prime linked dimer became the most reactive, yielding chains of the order of 60 monomer-unit lengths. Remarkable self-organization properties are noted for the 5-prime-5-prime dimer of pdAp.
Sehrawat, Ankita; Abat, Jasmeet K.; Deswal, Renu
2013-01-01
Although in the last few years good number of S-nitrosylated proteins are identified but information on endogenous targets is still limiting. Therefore, an attempt is made to decipher NO signaling in cold treated Brassica juncea seedlings. Treatment of seedlings with substrate, cofactor and inhibitor of Nitric-oxide synthase and nitrate reductase (NR), indicated NR mediated NO biosynthesis in cold. Analysis of the in vivo thiols showed depletion of low molecular weight thiols and enhancement of available protein thiols, suggesting redox changes. To have a detailed view, S-nitrosylation analysis was done using biotin switch technique (BST) and avidin-affinity chromatography. Ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) is S-nitrosylated and therefore, is identified as target repeatedly due to its abundance. It also competes out low abundant proteins which are important NO signaling components. Therefore, RuBisCO was removed (over 80%) using immunoaffinity purification. Purified S-nitrosylated RuBisCO depleted proteins were resolved on 2-D gel as 110 spots, including 13 new, which were absent in the crude S-nitrosoproteome. These were identified by nLC-MS/MS as thioredoxin, fructose biphosphate aldolase class I, myrosinase, salt responsive proteins, peptidyl-prolyl cis-trans isomerase and malate dehydrogenase. Cold showed differential S-nitrosylation of 15 spots, enhanced superoxide dismutase activity (via S-nitrosylation) and promoted the detoxification of superoxide radicals. Increased S-nitrosylation of glyceraldehyde-3-phosphate dehydrogenase sedoheptulose-biphosphatase, and fructose biphosphate aldolase, indicated regulation of Calvin cycle by S-nitrosylation. The results showed that RuBisCO depletion improved proteome coverage and provided clues for NO signaling in cold. PMID:24032038
Roit, Fabio Da; Engelberts, Patrick J.; Taylor, Ronald P.; Breij, Esther C.W.; Gritti, Giuseppe; Rambaldi, Alessandro; Introna, Martino; Parren, Paul W.H.I.; Beurskens, Frank J.; Golay, Josée
2015-01-01
The novel Bruton tyrosine kinase inhibitor ibrutinib and phosphatidyl-4-5-biphosphate 3-kinase-δ inhibitor idelalisib are promising drugs for the treatment of chronic lymphocytic leukemia and B-cell non-Hodgkin lymphoma, either alone or in combination with anti-CD20 antibodies. We investigated the possible positive or negative impact of these drugs on all known mechanisms of action of both type I and type II anti-CD20 antibodies. Pretreatment with ibrutinib for 1 hour did not increase direct cell death of cell lines or chronic lymphocytic leukemia samples mediated by anti-CD20 antibodies. Pre-treatment with ibrutinib did not inhibit complement activation or complement-mediated lysis. In contrast, ibrutinib strongly inhibited all cell-mediated mechanisms induced by anti-CD20 antibodies rituximab, ofatumumab or obinutuzumab, either in purified systems or whole blood assays. Activation of natural killer cells, and antibody-dependent cellular cytotoxicity by these cells, as well as phagocytosis by macrophages or neutrophils were inhibited by ibrutinib with a half maximal effective concentration of 0.3–3 μM. Analysis of anti-CD20 mediated activation of natural killer cells isolated from patients on continued oral ibrutinib treatment suggested that repeated drug dosing inhibits these cells in vivo. Finally we show that the phosphatidyl-4-5-biphosphate 3-kinase-δ inhibitor idelalisib similarly inhibited the immune cell-mediated mechanisms induced by anti-CD20 antibodies, although the effects of this drug at 10 μM were weaker than those observed with ibrutinib at the same concentration. We conclude that the design of combined treatment schedules of anti-CD20 antibodies with these kinase inhibitors should consider the multiple negative interactions between these two classes of drugs. PMID:25344523
González, R; Carvajal, N; Morán, A
1984-01-01
In contrast to the Mg2+-activated enzyme, in the presence of Mn2+ pyruvate kinase exhibits hyperbolic kinetics with respect to the substrate phosphoenolpyruvate and is insensitive to fructose 1,6-biphosphate, phenylalanine and alanine. However, with both metal activated species inhibition by excess ADP is observed. In contrast with Mg2+, which affords significant protection against inactivation caused by 5,5'-dithiobis (2-nitrobenzoic acid), the rate of inactivation by this reagent is increased in the presence of Mn2+. Differences in conformational changes induced by combination of pyruvate kinase with Mg2+ or Mn2+ were indicated by u.v. difference spectra.
PIP2: choreographer of actin-adaptor proteins in the HIV-1 dance
Rocha-Perugini, Vera; Gordon-Alonso, Mónica; Sánchez-Madrid, Francisco
2014-01-01
The actin cytoskeleton plays a key role during the replication cycle of human immunodeficiency virus-1 (HIV-1). HIV-1 infection is affected by cellular proteins that influence the clustering of viral receptors or the subcortical actin cytoskeleton. Several of these actin-adaptor proteins are controlled by the second messenger phosphatidylinositol 4,5-biphosphate (PIP2), an important regulator of actin organization. PIP2 production is induced by HIV-1 attachment and facilitates viral infection. However, the importance of PIP2 in regulating cytoskeletal proteins and thus HIV-1 infection has been overlooked. This review examines recent reports describing the roles played by actin-adaptor proteins during HIV-1 infection of CD4+ T cells, highlighting the influence of the signaling lipid PIP2 in this process. PMID:24768560
High-yield production of pure tagatose from fructose by a three-step enzymatic cascade reaction.
Lee, Seon-Hwa; Hong, Seung-Hye; Kim, Kyoung-Rok; Oh, Deok-Kun
2017-08-01
To produce tagatose from fructose with a high conversion rate and to establish a high-yield purification method of tagatose from the reaction mixture. Fructose at 1 M (180 g l -1 ) was converted to 0.8 M (144 g l -1 ) tagatose by a three-step enzymatic cascade reaction, involving hexokinase, plus ATP, fructose-1,6-biphosphate aldolase, phytase, over 16 h with a productivity of 9 g l -1 h -1 . No byproducts were detected. Tagatose was recrystallized from ethanol to a purity of 99.9% and a yield of 96.3%. Overall, tagatose at 99.9% purity was obtained from fructose with a yield of 77%. This is the first biotechnological production of tagatose from fructose and the first application of solvent recrystallization for the purification of rare sugars.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Kwan -Soo; Spendelow, Jacob Schatz; Choe, Yoong -Kee
Here, fuel cells are promising devices for clean power generation in a variety of economically and environmentally significant applications. Low-temperature proton exchange membrane (PEM) fuel cells utilizing Nafion require a high level of hydration, which limits the operating temperature to less than 100°C. In contrast, high-temperature PEM fuel cells utilizing phosphoric acid-doped polybenzimidazole can operate effectively up to 180°C; however, these devices degrade when exposed to water below 140°C. Here we present a different class of PEM fuel cells based on quaternary ammonium-biphosphate ion pairs that can operate under conditions unattainable with existing fuel cell technologies. These fuel cells exhibitmore » stable performance at 80–160°C with a conductivity decay rate more than three orders of magnitude lower than that of a commercial high-temperature PEM fuel cell. By increasing the operational flexibility, this class of fuel cell can simplify the requirements for heat and water management, and potentially reduce the costs associated with the existing fully functional fuel cell systems.« less
Park, S H; Strobel, G A
1994-01-05
Maculosin (the diketopiperazine, cyclo (L-Pro-L-Tyr)) is a host specific phytotoxin produced by Alternaria alternata on spotted knapweed (Centaurea maculosa L.). Receptors for this phytotoxin have been isolated from spotted knapweed. Knapweed leaves possess most of the maculosin-binding activity in the cytosolic fraction. However, activity was also observed in the whole membrane fraction of the leaf. The binding component of the cytosolic fraction was identified as a protein(s) because of its heat-lability and sensitivity to proteases. A 16-fold purification of a toxin-binding protein was carried out by ammonium sulfate fractionation, and Sephadex G-200, and maculosin-affinity column chromatography. The affinity column was prepared with epoxy activated Sepharose 6B to which the phenolic group of maculosin was attached. The receptor was estimated to contain more than one binding protein by native and SDS-PAGE. At least one of the maculosin-binding proteins was identified as ribulose-1,5-biphosphate carboxylase (RuBPcase).
Dejonghe, Wim; Kuenen, Sabine; Mylle, Evelien; Vasileva, Mina; Keech, Olivier; Viotti, Corrado; Swerts, Jef; Fendrych, Matyáš; Ortiz-Morea, Fausto Andres; Mishev, Kiril; Delang, Simon; Scholl, Stefan; Zarza, Xavier; Heilmann, Mareike; Kourelis, Jiorgos; Kasprowicz, Jaroslaw; Nguyen, Le Son Long; Drozdzecki, Andrzej; Van Houtte, Isabelle; Szatmári, Anna-Mária; Majda, Mateusz; Baisa, Gary; Bednarek, Sebastian York; Robert, Stéphanie; Audenaert, Dominique; Testerink, Christa; Munnik, Teun; Van Damme, Daniël; Heilmann, Ingo; Schumacher, Karin; Winne, Johan; Friml, Jiří; Verstreken, Patrik; Russinova, Eugenia
2016-01-01
ATP production requires the establishment of an electrochemical proton gradient across the inner mitochondrial membrane. Mitochondrial uncouplers dissipate this proton gradient and disrupt numerous cellular processes, including vesicular trafficking, mainly through energy depletion. Here we show that Endosidin9 (ES9), a novel mitochondrial uncoupler, is a potent inhibitor of clathrin-mediated endocytosis (CME) in different systems and that ES9 induces inhibition of CME not because of its effect on cellular ATP, but rather due to its protonophore activity that leads to cytoplasm acidification. We show that the known tyrosine kinase inhibitor tyrphostinA23, which is routinely used to block CME, displays similar properties, thus questioning its use as a specific inhibitor of cargo recognition by the AP-2 adaptor complex via tyrosine motif-based endocytosis signals. Furthermore, we show that cytoplasm acidification dramatically affects the dynamics and recruitment of clathrin and associated adaptors, and leads to reduction of phosphatidylinositol 4,5-biphosphate from the plasma membrane. PMID:27271794
French, Nigel G.; Scoble, Judith A.; Williams, Charlotte C.; Churches, Quentin I.; Frazer, Andrew R.; Taylor, Matthew C.; Coia, Greg; Simpson, Gregory; Turner, Nicholas J.; Scott, Colin
2017-01-01
Carbon-carbon bond formation is one of the most challenging reactions in synthetic organic chemistry, and aldol reactions catalysed by dihydroxyacetone phosphate-dependent aldolases provide a powerful biocatalytic tool for combining C-C bond formation with the generation of two new stereo-centres, with access to all four possible stereoisomers of a compound. Dihydroxyacetone phosphate (DHAP) is unstable so the provision of DHAP for DHAP-dependent aldolases in biocatalytic processes remains complicated. Our research has investigated the efficiency of several different enzymatic cascades for the conversion of glycerol to DHAP, including characterising new candidate enzymes for some of the reaction steps. The most efficient cascade for DHAP production, comprising a one-pot four-enzyme reaction with glycerol kinase, acetate kinase, glycerophosphate oxidase and catalase, was coupled with a DHAP-dependent fructose-1,6-biphosphate aldolase enzyme to demonstrate the production of several rare chiral sugars. The limitation of batch biocatalysis for these reactions and the potential for improvement using kinetic modelling and flow biocatalysis systems is discussed. PMID:29112947
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spreitzer, Robert J.
CO{sub 2} and O{sub 2} are mutually competitive at the active site of ribulose-1,5-biphosphate (RuBP) carboxylase/oxygenase (Rubisco). Rubisco contains two subunits, each present in eight copies. The 15-kD small subunit is coded by a family of nuclear RbcS genes. Until now, the role of the small subunit in Rubisco structure or catalytic efficiency is not known. Because of other work in eliminating the two RbcS genes in the green algo Chlamydomonas reinhardtii, it is now possible to address questions about the structure-function relationships of the eukaryotic small subunit. There are three specific aims in this project: (1) Alanine scanning mutagenesismore » is being used to dissect the importance of the {beta}A/{beta}B loop, a feature unique to the eukaryotic small subunit. (2) Random mutagenesis is being used to identify additional residues or regions of the small subunit that are important for holoenzyme assembly and function. (3) Attempts are being made to express foreign small subunits in Chlamydomonas to examine the contribution of small subunits to holoenzyme assembly, catalytic efficiency, and CO{sub 2}/O{sub 2} specificity.« less
Proteomic changes in the crucian carp brain during exposure to anoxia.
Smith, Richard W; Cash, Phil; Ellefsen, Stian; Nilsson, Göran E
2009-04-01
During exposure to anoxia, the crucian carp brain is able to maintain normal overall protein synthesis rates. However, it is not known if there are alterations in the synthesis or expression of specific proteins. This investigation addresses this issue by comparing the normoxic and anoxic brain proteome. Nine proteins were found to be reduced by anoxia. Reductions in the glycolytic pathway proteins creatine kinase, fructose biphosphate aldolase, glyceraldehyde-3-phosphate dehydrogenase, triosephosphate isomerase and lactate dehydrogenase reflect the reduced production and requirement for adenosine tri-phosphate during anoxia. In terms of neural protection, voltage-dependent anion channel, a protein associated with neuronal apoptosis, was reduced, along with gefiltin, a protein associated with the subsequent need for neuronal repair. Additionally the expression of proteins associated with neural degeneration and impaired cognitive function also declined; dihydropyrimidinase-like protein-3 and vesicle amine transport protein-1. One protein was found to be increased by anoxia; pre-proependymin, the precursor to ependymin. Ependymin fulfils multiple roles in neural plasticity, memory formation and learning, neuron growth and regeneration, and is able to reverse the possibility of apoptosis, thus further protecting the anoxic brain.
von Herrath, M; Holzer, H
1988-05-01
As a prerequisite for future studies on the possible effect of sulphite, an anti-microbial agent, on gluconeogenesis in yeast, a comparative study of fructose-1,6-bisphosphatase (FBPase), a key enzyme of gluconeogenesis, from yeast, liver and skeletal muscle is reported. In contrast to FBPase from yeast or liver, FBPase from skeletal muscle is approximately 1000-fold more sensitive to inhibition by 5' adenosine monophosphate and 30 to 250-fold less sensitive to inhibition by fructose-2,6-bisphosphate. The kinetic properties of the FBPases, determined by the ratios R(Mg2+/Mn2+) and R (pH 7/9) of the enzyme activities, measured at 10 mM Mg2+ and 2 mM Mn2+ and at pH 7.0 and 9.0, respectively, show a drastic difference between the skeletal muscle and the yeast or liver enzymes. The data support the idea that the enzymes from yeast and liver function in gluconeogenesis, whereas the enzyme from skeletal muscle is involved in other biological functions.
Hartley, Carol J; French, Nigel G; Scoble, Judith A; Williams, Charlotte C; Churches, Quentin I; Frazer, Andrew R; Taylor, Matthew C; Coia, Greg; Simpson, Gregory; Turner, Nicholas J; Scott, Colin
2017-01-01
Carbon-carbon bond formation is one of the most challenging reactions in synthetic organic chemistry, and aldol reactions catalysed by dihydroxyacetone phosphate-dependent aldolases provide a powerful biocatalytic tool for combining C-C bond formation with the generation of two new stereo-centres, with access to all four possible stereoisomers of a compound. Dihydroxyacetone phosphate (DHAP) is unstable so the provision of DHAP for DHAP-dependent aldolases in biocatalytic processes remains complicated. Our research has investigated the efficiency of several different enzymatic cascades for the conversion of glycerol to DHAP, including characterising new candidate enzymes for some of the reaction steps. The most efficient cascade for DHAP production, comprising a one-pot four-enzyme reaction with glycerol kinase, acetate kinase, glycerophosphate oxidase and catalase, was coupled with a DHAP-dependent fructose-1,6-biphosphate aldolase enzyme to demonstrate the production of several rare chiral sugars. The limitation of batch biocatalysis for these reactions and the potential for improvement using kinetic modelling and flow biocatalysis systems is discussed.
Ebert, Antje D; Laussmann, Mareike; Wegehingel, Sabine; Kaderali, Lars; Erfle, Holger; Reichert, Jürgen; Lechner, Johannes; Beer, Hans-Dietmar; Pepperkok, Rainer; Nickel, Walter
2010-06-01
Fibroblast growth factor 2 (FGF2) is a potent mitogen that is exported from cells by an endoplasmic reticulum (ER)/Golgi-independent mechanism. Unconventional secretion of FGF2 occurs by direct translocation across plasma membranes, a process that depends on the phosphoinositide phosphatidylinositol 4,5-biphosphate (PI(4,5)P(2)) at the inner leaflet as well as heparan sulfate proteoglycans at the outer leaflet of plasma membranes; however, additional core and regulatory components of the FGF2 export machinery have remained elusive. Here, using a highly effective RNAi screening approach, we discovered Tec kinase as a novel factor involved in unconventional secretion of FGF2. Tec kinase does not affect FGF2 secretion by an indirect mechanism, but rather forms a heterodimeric complex with FGF2 resulting in phosphorylation of FGF2 at tyrosine 82, a post-translational modification shown to be essential for FGF2 membrane translocation to cell surfaces. Our findings suggest a crucial role for Tec kinase in regulating FGF2 secretion under various physiological conditions and, therefore, provide a new perspective for the development of a novel class of antiangiogenic drugs targeting the formation of the FGF2/Tec complex.
Takenaka, Shinji; Ozeki, Takahiro; Tanaka, Kosei; Yoshida, Ken-Ichi
2017-11-01
To predict the amino acid residues playing important roles in acetyl-CoA and substrate binding and to study the acetyl group transfer mechanism of Chryseobacterium sp. 5-3B N-acetyltransferase (5-3B NatA). A 3-dimensional homology model of 5-3B NatA was constructed to compare the theoretical structure of this compound with the structures of previously reported proteins belonging to the bacterial GCN5 N-acetyltransferase family. Homology modeling of the 5-3B NatA structure and a characterization of the enzyme's kinetic parameters identified the essential amino acid residues involved in binding and acetyl-group transfer. 126 Leu, 132 Leu, and 135 Lys were implicated in the binding of phosphopantothenic acid, and 100 Tyr and 131 Lys in that of adenosyl biphosphate. The data supported the participation of 83 Glu and 133 Tyr in catalyzing acetyl-group transfer to L-2-phenylglycine. 5-3B NatA catalyzes the enantioselective N-acetylation of L-2-phenylglycine via a ternary complex comprising the enzyme, acetyl-CoA, and the substrate.
Fractionation of carbon (13C/12C) isotopes in glycine decarboxylase reaction.
Ivlev, A A; Bykova, N V; Igamberdiev, A U
1996-05-20
Fractionation of carbon isotopes (13C/12C) by glycine decarboxylase (GDC) was investigated in mitochondrial preparations isolated from photosynthetic tissues of different plants (Pisum, Medicago, Triticum, Hordeum, Spinacia, Brassica, Wolffia). 20 mM glycine was supplied to mitochondria, and the CO2 formed was absorbed and analyzed for isotopic content. CO2 evolved by mitochondria of Pisum was enriched up to 8% in 12C compared to the carboxylic atom of glycine. CO2 evolved by mitochondria of the other plants investigated was enriched by 5-16% in 13C. Carbon isotope effects were sensitive to reaction conditions (pH and the presence of GDC cofactors). Theoretical treatment of the reaction mechanism enabled us to conclude that the value and even the sign of the carbon isotope effect in glycine decarboxylation depend on the contribution of the enzyme-substrate binding step and of the decarboxylation step itself to the overall reaction rate. Therefore, the fractionation of carbon isotopes in GDC reaction was revealed which provides essential isotopic effects in plants in addition to the well-known effect of carbon isotope fractionation by the central photosynthetic enzyme, ribulose-1,5-biphosphate carboxylase.
Zhang, Juan; Su, Hongzheng; Li, Qingfeng; Li, Jing; Zhao, Qianfeng
2017-04-01
Genistein is an important chemopreventive agent against atherosclerosis and cancer. However, whether genistein is effective in the treatment of lung cancer, and its underlying mechanism, remains to be determined. The present study demonstrated that genistein treatment of A549 lung cancer cells decreased viability in a dose‑ and time‑dependent manner, and induced apoptosis. Additionally, A549 cells exhibited significantly increased reactive oxygen species formation and cytochrome‑c leakage, and activated caspase‑3, B‑cell lymphoma 2‑associated X protein and apoptosis inducing factor expression levels, which are involved in the mitochondrial apoptosis pathway. Furthermore, the phosphatidylinositol‑4,5‑biphosphate 3‑kinase (PI3K)/protein kinase B (AKT)/hypoxia‑inducible factor‑1α (HIF‑1α) and nuclear factor‑κB (NF‑κB)/cyclooxygenase‑2 (COX‑2) signaling pathways were significantly downregulated by genistein treatment. In conclusion, reduced proliferation and increased apoptosis in A549 lung cancer cells was associated with inhibition of the PI3K/AKT/HIF‑1α/ and NF‑κB/COX‑2 signaling pathways, which implicates genistein as a potential chemotherapeutic agent for the treatment of lung cancer.
Rouster, Paul; Pavlovic, Marko; Szilagyi, Istvan
2017-07-13
Ion specific effects on colloidal stability of titania nanosheets (TNS) were investigated in aqueous suspensions. The charge of the particles was varied by the pH of the solutions, therefore, the influence of mono- and multivalent anions on the charging and aggregation behavior could be studied when they were present either as counter or co-ions in the systems. The aggregation processes in the presence of inorganic salts were mainly driven by interparticle forces of electrostatic origin, however, chemical interactions between more complex ions and the surface led to additional attractive forces. The adsorption of anions significantly changed the surface charge properties and hence, the resistance of the TNS against salt-induced aggregation. On the basis of their ability in destabilization of the dispersions, the monovalent ions could be ordered according to the Hofmeister series in acidic solutions, where they act as counterions. However, the behavior of the biphosphate anion was atypical and its adsorption induced charge reversal of the particles. The multivalent anions destabilized the oppositely charged TNS more effectively and the aggregation processes followed the Schulze-Hardy rule. Only weak or negligible interactions were observed between the anions and the particles in alkaline suspensions, where the TNS possessed negative charge.
Amelioration of myocardial ischemic reperfusion injury with Calendula officinalis.
Ray, Diptarka; Mukherjee, Subhendu; Falchi, Mario; Bertelli, Aldo; Das, Dipak K
2010-12-01
Calendula officinalis of family Asteraceae, also known as marigold, has been widely used from time immemorial in Indian and Arabic cultures as an anti-inflammatory agent to treat minor skin wound and infections, burns, bee stings, sunburn and cancer. At a relatively high dose, calendula can lower blood pressure and cholesterol. Since inflammatory responses are behind many cardiac diseases, we sought to evaluate if calendula could be cardioprotective against ischemic heart disease Two groups of hearts were used: the treated rat hearts were perfused with calendula solution at 50 mM in KHB buffer (in mM: sodium chloride 118, potassium chloride 4.7, calcium chloride 1.7, sodium bicarbonate 25, potassium biphosphate 0.36, magnesium sulfate 1.2, and glucose 10) for 15 min prior to subjecting the heart to ischemia, while the control group was perfused with the buffer only. Calendula achieved cardioprotection by stimulating left ventricular developed pressure and aortic flow as well as by reducing myocardial infarct size and cardiomyocyte apoptosis. Cardioprotection appears to be achieved by changing ischemia reperfusion-mediated death signal into a survival signal by modulating antioxidant and anti-inflammatory pathways as evidenced by the activation of Akt and Bcl2 and depression of TNFα. The results further strengthen the concept of using natural products in degeneration diseases like ischemic heart disease.
Cerda, Oscar; Cáceres, Mónica; Park, Kang-Sik; Leiva-Salcedo, Elías; Romero, Aníbal; Varela, Diego
2014-01-01
TRPM4 is a Ca2+-activated non-selective cation channel expressed in a wide range of human tissues. TRPM4 participates in a variety of physiological processes such as T cell activation, myogenic vasoconstriction and allergic reactions. TRPM4 Ca2+ sensitivity is enhanced by calmodulin (CaM) and phosphathydilinositol 4, 5-biphosphate (PI(4,5)P2) binding, as well as, under certain conditions, PKC activation. However, information as to the mechanisms of modulation of this channel remain unknown, including direct identification of phosphorylation sites on TRPM4 and their role in channel features. Here, we use mass-spectrometric-based proteomic approaches (immunoprecipitation and tandem mass spectrometry), to unambiguously identify S839 as a phosphorylation site present on human TRPM4 expressed in a human cell line. Site-directed mutagenesis employing a serine to alanine mutation to eliminate phosphorylation, and a phospho-mimetic aspartate mutation, as well as biochemical and immunocytochemical experiments, revealed a role for S839 phosphorylation in the basolateral expression of TRPM4 channels in epithelial cells. Moreover, we demonstrated that casein kinase 1 (CK1) phosphorylates S839 and is responsible for the basolateral localization of TRPM4. PMID:25231975
GABARAPs regulate PI4P-dependent autophagosome:lysosome fusion.
Wang, Hanzhi; Sun, Hui-Qiao; Zhu, Xiaohui; Zhang, Li; Albanesi, Joseph; Levine, Beth; Yin, Helen
2015-06-02
The Atg8 autophagy proteins are essential for autophagosome biogenesis and maturation. The γ-aminobutyric acid receptor-associated protein (GABARAP) Atg8 family is much less understood than the LC3 Atg8 family, and the relationship between the GABARAPs' previously identified roles as modulators of transmembrane protein trafficking and autophagy is not known. Here we report that GABARAPs recruit palmitoylated PI4KIIα, a lipid kinase that generates phosphatidylinositol 4-phosphate (PI4P) and binds GABARAPs, from the perinuclear Golgi region to autophagosomes to generate PI4P in situ. Depletion of either GABARAP or PI4KIIα, or overexpression of a dominant-negative kinase-dead PI4KIIα mutant, decreases autophagy flux by blocking autophagsome:lysosome fusion, resulting in the accumulation of abnormally large autophagosomes. The autophagosome defects are rescued by overexpressing PI4KIIα or by restoring intracellular PI4P through "PI4P shuttling." Importantly, PI4KIIα's role in autophagy is distinct from that of PI4KIIIβ and is independent of subsequent phosphatidylinositol 4,5 biphosphate (PIP2) generation. Thus, GABARAPs recruit PI4KIIα to autophagosomes, and PI4P generation on autophagosomes is critically important for fusion with lysosomes. Our results establish that PI4KIIα and PI4P are essential effectors of the GABARAP interactome's fusion machinery.
Satre, V; Monnier, N; Berthoin, F; Ayuso, C; Joannard, A; Jouk, P S; Lopez-Pajares, I; Megabarne, A; Philippe, H J; Plauchu, H; Torres, M L; Lunardi, J
1999-01-01
The oculocerebrorenal syndrome of Lowe (OCRL) is an X-linked disorder characterized by major abnormalities of eyes, nervous system, and kidneys. Mutations in the OCRL1 gene have been associated with the disease. OCRL1 encodes a phosphatidylinositol 4, 5-biphosphate (PtdIns[4,5]P2) 5-phosphatase. We have examined the OCRL1 gene in eight unrelated patients with OCRL and have found seven new mutations and one recurrent in-frame deletion. Among the new mutations, two nonsense mutations (R317X and E558X) and three other frameshift mutations caused premature termination of the protein. A missense mutation, R483G, was located in the highly conserved PtdIns(4,5)P2 5-phosphatase domain. Finally, one frameshift mutation, 2799delC, modifies the C-terminal part of OCRL1, with an extension of six amino acids. Altogether, 70% of missense mutations are located in exon 15, and 52% of all mutations cluster in exons 11-15. We also identified two new microsatellite markers for the OCRL1 locus, and we detected a germline mosaicism in one family. This observation has direct implications for genetic counseling of Lowe syndrome families. PMID:10364518
Ojeda Gonzalez, Belen; Gonzalez Martin, Antonio; Bover Barcelo, Isabel; Fabregat i Mayol, Xavier; Mellado, Begoña; Rubio Perez, María Jesus; Alonso Carrion, Lorenzo; Casado Herraez, Antonio; Calvo Garcia, Elisa; Churruca Galaz, Cristina; Arcusa Lanza, Angels; Herrero Ibañez, Ana; Adrover Cebrian, Encarna; Poveda Velasco, Andres
2008-10-01
Gemcitabine has well-recognized activity in the treatment of ovarian cancer. Fixed-dose rate (FDR) delivery has been proposed as a more rationale way to administer gemcitabine, to avoid saturation of the enzyme that catalyzes its intracellular transformation into the active metabolites, difluorodeoxycitidine biphosphate, and triphosphate. Our aim was to assess clinical activity of gemcitabine delivered by FDR infusion in patients with platinum resistant ovarian cancer. Patients with platinum-resistant ovarian cancer received gemcitabine 1000 mg/m(2) over 120 minutes on days 1 and 8 of each cycle. Cycles were repeated every 3 weeks, and up to 6 cycles were delivered. Forty-eight patients were included in the study. Among 41 patients evaluable for response, 9 clinical responses (1 complete response and 8 partial responses) were observed, achieving a global response rate of 22%. Grade 3 to 4 hematological toxicity consisted of anemia (15% of patients), neutropenia (24%), and thrombopenia (10%). One patient died due to septic shock. The main grade 3 to 4 nonhematological toxicity was asthenia (7 patients, 17%). Activity of gemcitabine administered by FDR infusion in patients with platinum-resistant ovarian cancer seems similar to that achieved using 30-minute infusions, with higher toxicity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ecay, T.W.; Valentich, J.D.
1991-03-01
Neuroendocrine activation of transepithelial chloride secretion by shark rectal gland cells is associated with increases in cellular cAMP, cGMP, and free calcium concentrations. We report here on the effects of several chloride secretagogues on inositol phosphate formation in cultured rectal gland tubules. Vasoactive intestinal peptide (VIP), atriopeptin (AP), and ionomycin increase the total inositol phosphate levels of cultured tubules, as measured by ion exchange chromatography. Forskolin, a potent chloride secretagogue, has no effect on inositol phosphate formation. The uptake of {sup 3}H-myo-inositol into phospholipids is very slow, preventing the detection of increased levels of inositol trisphosphate. However, significant increases inmore » inositol monophosphate (IP1) and inositol biphosphate (IP2) were measured. The time course of VIP- and AP-stimulated IP1 and IP2 formation is similar to the effects of these agents on the short-circuit current responses of rectal gland monolayer cultures. In addition, aluminum fluoride, an artificial activator of guanine nucleotide-binding proteins, stimulates IP1 and IP2 formation. We conclude that rectal gland cells contain VIP and AP receptors coupled to the activation of phospholipase C. Coupling may be mediated by G-proteins. Receptor-stimulated increases in inositol phospholipid metabolism is one mechanism leading to increased intracellular free calcium concentrations, an important regulatory event in the activation of transepithelial chloride secretion by shark rectal gland epithelial cells.« less
Oremland, R.S.; Hoeft, S.E.; Santini, J.M.; Bano, N.; Hollibaugh, R.A.; Hollibaugh, J.T.
2002-01-01
Arsenite [As(III)]-enriched anoxic bottom water from Mono Lake, California, produced arsenate [As(V)] during incubation with either nitrate or nitrite. No such oxidation occurred in killed controls or in live samples incubated without added nitrate or nitrite. A small amount of biological As(III) oxidation was observed in samples amended with Fe(III) chelated with nitrolotriacetic acid, although some chemical oxidation was also evident in killed controls. A pure culture, strain MLHE-1, that was capable of growth with As(III) as its electron donor and nitrate as its electron acceptor was isolated in a defined mineral salts medium. Cells were also able to grow in nitrate-mineral salts medium by using H2 or sulfide as their electron donor in lieu of As(III). Arsenite-grown cells demonstrated dark 14CO2 fixation, and PCR was used to indicate the presence of a gene encoding ribulose-1,5-biphosphate carboxylase/oxygenase. Strain MLHE-1 is a facultative chemoautotroph, able to grow with these inorganic electron donors and nitrate as its electron acceptor, but heterotrophic growth on acetate was also observed under both aerobic and anaerobic (nitrate) conditions. Phylogenetic analysis of its 16S ribosomal DNA sequence placed strain MLHE-1 within the haloalkaliphilic Ectothiorhodospira of the ??-Proteobacteria. Arsenite oxidation has never been reported for any members of this subgroup of the Proteobacteria.
Yanamandra, Mahesh; Kole, Labanyamoy; Giri, Archana; Mitra, Sayan
2017-01-01
Phosphatidylinositol-3 kinase (PI3K) pathway regulates multiple cellular functions involving cell survival, growth, motility proliferation, apoptosis, and adhesion. These are deregulated in various diseases such as cancer, atherosclerosis, and inflammation. PI3Ks phosphorylate phosphatidylinositol 4,5-biphosphate (PIP2) yielding phosphatidylinositol 3, 4, 5 triphosphate (PIP3) which in turn activate AKT kinase (serine/threonine kinase), the central enzyme in regulation of metabolic functions. Due to their implications in disease pathophysiology, PI3K/AKT inhibitors became attractive targets for pharmaceutical industries. In order to assess the functional response generated by PI3K inhibitors, an appropriate cell-based screening system is essential in any screening cascade. Here we report the development of highly sensitive in-vitro cell-based kinase ELISA which quantifies the phosphorylated AKT kinase (serine 473) and total AKT kinase directly within the cells upon compound treatment. PI3Kβ overexpressing NIH3T3 cells stimulated by lysophosphatidic acid was used for PI3K/Akt pathway activation. Assay performance reliability and robustness were determined by percentage coefficient of variation (%CV) and Z factor which demonstrated an excellent agreement with assay guidelines. This 96-well plate medium throughput assay methodology was used to screen novel molecules and proved a commendable tool to study the mechanism of action property and target engagement of novel PI3K inhibitors in drug discovery.
Yakimov, Michail M; La Cono, Violetta; Denaro, Renata; D'Auria, Giuseppe; Decembrini, Franco; Timmis, Kenneth N; Golyshin, Peter N; Giuliano, Laura
2007-12-01
Meso- and bathypelagic ecosystems represent the most common marine ecological niche on Earth and contain complex communities of microorganisms that are for the most part ecophysiologically poorly characterized. Gradients of physico-chemical factors (for example, depth-related gradients of light, temperature, salinity, nutrients and pressure) constitute major forces shaping ecosystems at activity 'hot spots' on the ocean floor, such as hydrothermal vents, cold seepages and mud volcanoes and hypersaline lakes, though the relationships between community composition, activities and environmental parameters remain largely elusive. We report here results of a detailed study of primary producing microbial communities in the deep Eastern Mediterranean Sea. The brine column of the deep anoxic hypersaline brine lake, L'Atalante, the overlying water column and the brine-seawater interface, were characterized physico- and geochemically, and microbiologically, in terms of their microbial community compositions, functional gene distributions and [(14)C]bicarbonate assimilation activities. The depth distribution of genes encoding the crenarchaeal ammonia monooxygenase alpha subunit (amoA), and the bacterial ribulose-1,5-biphosphate carboxylase/oxygenase large subunit (RuBisCO), was found to coincide with two different types of chemoautotrophy. Meso- and bathypelagic microbial communities were enriched in ammonia-oxidizing Crenarchaeota, whereas the autotrophic community at the oxic/anoxic interface of L'Atalante lake was dominated by Epsilonproteobacteria and sulfur-oxidizing Gammaproteobacteria. These autotrophic microbes are thus the basis of the food webs populating these deep-sea ecosystems.
Hoeft, S.E.; Kulp, T.R.; Stolz, J.F.; Hollibaugh, J.T.; Oremland, R.S.
2004-01-01
Anoxic bottom water from Mono Lake, California, can biologically reduce added arsenate without any addition of electron donors. Of the possible in situ inorganic electron donors present, only sulfide was sufficiently abundant to drive this reaction. We tested the ability of sulfide to serve as an electron donor for arsenate reduction in experiments with lake water. Reduction of arsenate to arsenite occurred simultaneously with the removal of sulfide. No loss of sulfide occurred in controls without arsenate or in sterilized samples containing both arsenate and sulfide. The rate of arsenate reduction in lake water was dependent on the amount of available arsenate. We enriched for a bacterium that could achieve growth with sulfide and arsenate in a defined, mineral medium and purified it by serial dilution. The isolate, strain MLMS-1, is a gram-negative, motile curved rod that grows by oxidizing sulfide to sulfate while reducing arsenate to arsenite. Chemoautotrophy was confirmed by the incorporation of H14CO3- into dark-incubated cells, but preliminary gene probing tests with primers for ribulose-1,5-biphosphate carboxylase/oxygenase did not yield PCR-amplified products. Alignment of 16S rRNA sequences indicated that strain MLMS-1 was in the ??-Proteobacteria, located near sulfate reducers like Desulfobulbus sp. (88 to 90% similarity) but more closely related (97%) to unidentified sequences amplified previously from Mono Lake. However, strain MLMS-1 does not grow with sulfate as its electron acceptor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glick, R.E.; Schlagnhaufer, C.D.; Arteca, R.N.
The relationships among O{sub 3}-induced accelerated senescence, induction of ethylene, and changes in specific mRNA and protein levels were investigated in potato (Solanum tuberosum L. cv Norland) plants. When plants were exposed to 0.08 {mu}L L{sup -1} O{sub 3} for 5 h d{sup -1}, steady-state levels of rbcS mRNA declined at least 5-fold in expanding leaves after 3 d of O{sub 3} exposure and ethylene levels increased 6- to 10-fold. The expression of OIP-1, a 1-aminocyclo-propane-1-carboxylate synthase cDNA from potato, correlated with increased production of ethylene and decreased levels of rbcS mRNA in foliage of plants treated with O{sub 3}.more » In plants exposed to 0.30 {mu}L L{sup -1} O{sub 3} for 4 h, rbcS transcript levels were reduced 4-fold, whereas nuclear run-on experiments revealed that rbcS mRNA may be due, in part, to posttranscriptional regulation. The levels of transcripts for other chloroplast proteins, glyceraldehyde-3-phosphate dehydrogenase, and a photosystem II chlorophyll a/b-binding protein decreased in O{sub 3}-treated plants, in parallel with the decrease in rbcS mRNA. The steady-state mRNA level of a cytosolic glyceraldehyde-3-phosphate dehydrogenase increased in O{sub 3}-treated plants. The induction of ethylene and changes in transcript levels preceded visible leaf damage and decreases in ribulose-1,5-biphosphate carboxylase/oxygenase protein levels. 40 refs., 6 figs.« less
Andrianov, Vyacheslav; Borisjuk, Nikolai; Pogrebnyak, Natalia; Brinker, Anita; Dixon, Joseph; Spitsin, Sergei; Flynn, John; Matyszczuk, Paulina; Andryszak, Karolina; Laurelli, Marilyn; Golovkin, Maxim; Koprowski, Hilary
2010-04-01
When grown for energy production instead for smoking, tobacco can generate a large amount of inexpensive biomass more efficiently than almost any other agricultural crop. Tobacco possesses potent oil biosynthesis machinery and can accumulate up to 40% of seed weight in oil. In this work, we explored two metabolic engineering approaches to enhance the oil content in tobacco green tissues for potential biofuel production. First, an Arabidopsis thaliana gene diacylglycerol acyltransferase (DGAT) coding for a key enzyme in triacylglycerol (TAG) biosynthesis, was expressed in tobacco under the control of a strong ribulose-biphosphate carboxylase small subunit promoter. This modification led to up to a 20-fold increase in TAG accumulation in tobacco leaves and translated into an overall of about a twofold increase in extracted fatty acids (FA) up to 5.8% of dry biomass in Nicotiana tabacum cv Wisconsin, and up to 6% in high-sugar tobacco variety NC-55. Modified tobacco plants also contained elevated amounts of phospholipids. This increase in lipids was accompanied by a shift in the FA composition favourable for their utilization as biodiesel. Second, we expressed in tobacco Arabidopsis gene LEAFY COTYLEDON 2 (LEC2), a master regulator of seed maturation and seed oil storage under the control of an inducible Alc promoter. Stimulation of LEC2 expression in mature tobacco plants by acetaldehyde led to the accumulation of up to 6.8% per dry weight of total extracted FA. The obtained data reveal the potential of metabolically modified plant biomass for the production of biofuel.
Hoeft, Shelley E.; Kulp, Thomas R.; Stolz, John F.; Hollibaugh, James T.; Oremland, Ronald S.
2004-01-01
Anoxic bottom water from Mono Lake, California, can biologically reduce added arsenate without any addition of electron donors. Of the possible in situ inorganic electron donors present, only sulfide was sufficiently abundant to drive this reaction. We tested the ability of sulfide to serve as an electron donor for arsenate reduction in experiments with lake water. Reduction of arsenate to arsenite occurred simultaneously with the removal of sulfide. No loss of sulfide occurred in controls without arsenate or in sterilized samples containing both arsenate and sulfide. The rate of arsenate reduction in lake water was dependent on the amount of available arsenate. We enriched for a bacterium that could achieve growth with sulfide and arsenate in a defined, mineral medium and purified it by serial dilution. The isolate, strain MLMS-1, is a gram-negative, motile curved rod that grows by oxidizing sulfide to sulfate while reducing arsenate to arsenite. Chemoautotrophy was confirmed by the incorporation of H14CO3− into dark-incubated cells, but preliminary gene probing tests with primers for ribulose-1,5-biphosphate carboxylase/oxygenase did not yield PCR-amplified products. Alignment of 16S rRNA sequences indicated that strain MLMS-1 was in the δ-Proteobacteria, located near sulfate reducers like Desulfobulbus sp. (88 to 90% similarity) but more closely related (97%) to unidentified sequences amplified previously from Mono Lake. However, strain MLMS-1 does not grow with sulfate as its electron acceptor.
Development and application of PI3K assays for novel drug discovery.
Yanamandra, Mahesh; Mitra, Sayan; Giri, Archana
2015-02-01
Phosphoinositide 3-kinases (PI3Ks) constitute one of the most important signaling pathways, playing a vital role in cellular differentiation and proliferation with a key function in cellular receptor triggered signal transduction downstream of tyrosine kinase receptors and/or G-protein coupled receptors. PI3K promotes cell survival proliferation, protein synthesis and glucose metabolism by generating secondary messengers phospholipid phosphatidyl 3,4,5-triphosphate and signaling via AKT/mTOR regulation. Deregulation of PI3K pathways have been observed in cancer, diabetes, neurological and inflammatory diseases and is an attractive target for pharmaceutical industries. In this review, the authors explain different PI3K assay methodologies. Furthermore, the authors summarize the techno-scientific principles and their utility in profiling novel chemical entities against PI3Ks. Specifically, the authors compare different PI3K assay formats explaining their mode of detection as well as their advantages and limitations for drug discovery efforts. Developing lipid (PI3K) kinase assays involves significant effort and a rational understanding is needed due to the intrinsic lipidic nature of phospholipid phosphatidyl 4,5-biphosphate, which is used as an in vitro substrate for assays with PI3K isoforms. The assay of choice should be versatile, homogenous and definitely adaptable for high-throughput screening campaigns. Additionally, these assays are expected to dissect the mechanism of action of novel compounds (inhibitor characterization) against PI3K. Existing methods provide the versatility to medicinal chemists such that they can choose one or more assay platform to progress their compounds while profiling and/or inhibitor characterization.
Caira, Simonetta; Iannelli, Antonio; Sciarrillo, Rosaria; Picariello, Gianluca; Renzone, Giovanni; Scaloni, Andrea; Addeo, Pietro
2017-12-01
The proteome of liver biopsies from human obese (O) subjects has been compared to those of nonobese (NO) subjects using two-dimensional gel electrophoresis (2-DE). Differentially represented proteins were identified by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS)-based peptide mass fingerprinting (PMF) and nanoflow-liquid chromatography coupled to electrospray-tandem mass spectrometry (nLC-ESI-MS/MS). Overall, 61 gene products common to all of the liver biopsies were identified within 65 spots, among which 25 ones were differently represented between O and NO subjects. In particular, over-representation of short-chain acyl-CoA dehydrogenase, Δ(3,5)-Δ(2,4)dienoyl-CoA isomerase, acetyl-CoA acetyltransferase, glyoxylate reductase/hydroxypyruvate reductase, fructose-biphosphate aldolase B, peroxiredoxin I, protein DJ-1, catalase, α- and β-hemoglobin subunits, 3-mercaptopyruvate S-transferase, calreticulin, aminoacylase 1, phenazine biosynthesis-like domain-containing protein and a form of fatty acid-binding protein, together with downrepresentation of glutamate dehydrogenase, glutathione S-transferase A1, S-adenosylmethionine synthase 1A and a form of apolipoprotein A-I, was associated with the obesity condition. Some of these metabolic enzymes and antioxidant proteins have already been identified as putative diagnostic markers of liver dysfunction in animal models of steatosis or obesity, suggesting additional investigations on their role in these syndromes. Their differential representation in human liver was suggestive of their consideration as obesity human biomarkers and for the development of novel antiobesity drugs.
Mikhailenko, D S; Kushlinskii, N E
2016-02-01
All around the world, more than 330 thousands cases of bladder cancer are registered annually hence representing actual problem of modern oncology. Still in demand are search and characteristic of new molecular markers of bladder cancer detecting in tumor cells from urinary sediment and having high diagnostic accuracy. The studies of last decade, especially using methods of genome-wide sequencing, permitted to receive a large amount of experimental data concerning development and progression of bladder cancer The review presents systematic analysis of publications available in PubMed data base mainly of last five years. The original studies of molecular genetic disorders under bladder cancer and meta-analyzes were considered This approach permitted to detected the most common local alterations of DNA under bladder cancer which can be detected using routine genetic methods indifferent clinical material and present prospective interest for development of test-systems. The molecular genetic markers of disease can be activating missense mutations in 7 and 10 exons of gene of receptor of growth factor of fibroblasts 3 (FGFR3), 9 and 20 exons of gene of Phosphatidylinositol-4,5-bi-phosphate-3-kinase (PIK3CA) and mutation in -124 and -146 nucleotides in promoter of gene of catalytic subunit telomerase (TERT). The development of test-systems on the basis of aberrant methylation of CpG-islets of genes-suppressors still is seemed as a difficult task because of differences in pattern of methylation of different primary tumors at various stages of clonal evolution of bladder cancer though they can be considered as potential markers.
de Fraga, R S; Heinen, P E T; Kruel, C R P; Molin, S D; Mota, S M; Cerski, C T S; Gasperin, G; Souto, A A; de Oliveira, J R; Alvares-da-Silva, M R
2011-06-01
Fructose 1,6-biphosphate (FBP) has been shown to exert therapeutic effects in models of ischemia-reperfusion in organs other than the liver. This study compared FBP and University of Wisconsin (UW) solution during cold storage and reperfusion, among mitochondria of adult male Wistar rat livers. Adult male Wistar rats were assigned to two groups according to the preservation solution used; UW or FBP Aspartate transaminase (AST), alanine transferase (ALT); and lactic dehydrogenase (LDH) were measured in samples of the storage solution obtained at 2, 4 and 6 hours of preservation. After 6 hours of cold storage, we reperfused the liver, taking blood samples to measure AST, ALT, LDH, and throbarbituric acid reactive substances (TBARS). Hepatic fragments were processed for histologic analysis; for determinations of TBARS, catalase, and nitric oxide as well as for mitochondrial evaluation by infrared spectroscopy. During cold preservation, levels of AST and LDH in the storage solution were lower among the FBP group, but after reperfusion, serum levels of AST, ALT, and LDH were higher in this group, as was catalase activity. TBARS and nitric oxide were comparable between the groups. In the UW group there was a higher amide I/amide II ratio than in the FBP group, suggesting an abnormal protein structure of the mitochondrial membrane. No signs of preservation injury were observed in any liver biopsy, but sinusoidal congestion was present in livers preserved with FBP. FBP showed a protective effect for preservation during cold storage seeming to protect the mitochondrial membrane although it did not prevent reperfusion injury. Copyright © 2011 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Steelman, Zachary A.; Tolstykh, Gleb P.; Estlack, Larry E.; Roth, Caleb C.; Ibey, Bennett L.
2015-03-01
Phosphatidylinositol4,5-biphosphate (PIP2) is a membrane phospholipid of particular importance in cell-signaling pathways. Hydrolysis of PIP2 releases inositol-1,4,5-triphosphate (IP3) from the membrane, activating IP3 receptors on the smooth endoplasmic reticulum (ER) and facilitating a release of intracellular calcium stores and activation of protein kinase C (PKC). Recent studies suggest that nanosecond pulsed electric fields (nsPEF) cause depletion of PIP2 in the cellular membrane, activating the IP3 signaling pathway. However, the exact mechanism(s) causing this observed depletion of PIP2 are unknown. Complicating the matter, nsPEF create nanopores in the plasma membrane, allowing calcium to enter the cell and thus causing an increase in intracellular calcium. While elevated intracellular calcium can cause activation of phospholipase C (PLC) (a known catalyst of PIP2 hydrolysis), PIP2 depletion has been shown to occur in the absence of both extracellular and intracellular calcium. These observations have led to the hypothesis that the high electric field itself may be playing a direct role in the hydrolysis of PIP2 from the plasma membrane. To support this hypothesis, we used edelfosine to block PLC and prevent activation of the IP3/DAG pathway in Chinese Hamster Ovarian (CHO) cells prior to applying nsPEF. Fluorescence microscopy was used to monitor intracellular calcium bursts during nsPEF, while MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) survivability assays were utilized to determine whether edelfosine improved cell survival during nsPEF exposure. This work is critical to refine the role of PIP2 in the cellular response to nsPEF, and also to determine the fundamental biological effects of high electric field exposures.
Li, Zhimin; Liu, Zhengang; Cho, Dae Won; Zou, Jiwen; Gong, Maozhen; Breece, Robert M.; Galkin, Andrey; Li, Ling; Zhao, Hong; Maestas, Gabriel D.; Tierney, David L.; Herzberg, Osnat; Dunaway-Mariano, Debra; Mariano, Patrick S.
2011-01-01
Inhibitors of the Giardia lamblia fructose 1,6-bisphosphate aldolase (GlFBPA), which transforms fructose 1,6-bisphosphate (FBP) to dihydroxyacetone phosphate and glyceraldehyde 3-phosphate, were designed based on 3-hydroxy-2-pyridone and 1,2-dihydroxypyridine scaffolds that position two negatively charged tetrahedral groups for interaction with substrate phosphate binding residues, a hydrogen bond donor to the catalytic Asp83, and a Zn2+ binding group. The inhibition activities for the GlFBPA catalyzed reaction of FBP of the prepared alkyl phosphonate/phosphate substituted 3-hydroxy-2-pyridinones and a dihydroxypyridine were determined. The 3-hydroxy-2-pyridone inhibitor 8 was found to bind to GlFBPA with an affinity (Ki = 14 μM) that is comparable to that of FBP (Km = 2 μM) or its inert analog TBP (Ki = 1 μM). The X-ray structure of the GlFBPA-inhibitor 8 complex (2.3 Å) shows that 8 binds to the active site in the manner predicted by in silico docking with the exception of coordination with Zn2+. The observed distances and orientation of the pyridone ring O=C-C-OH relative to Zn2+ are not consistent with a strong interaction. To determine if Zn2+coordination occurs in the GlFBPA-inhibitor 8 complex in solution, EXAFS spectra were measured. A four coordinate geometry comprised of the three enzyme histidine ligands and an oxygen atom from the pyridone ring O=C-C-OH was indicated. Analysis of the Zn2+ coordination geometries in recently reported structures of class II FBPAs suggests that strong Zn2+ coordination is reserved for the enediolate-like transition state, accounting for minimal contribution of Zn2+ coordination to binding of 8 to GlFBPA. PMID:21333622
Parto, Sahar; Lartillot, Nicolas
2018-01-01
Rubisco (Ribulose-1, 5-biphosphate carboxylase/oxygenase) is the most important enzyme on earth, catalyzing the first step of photosynthetic CO2 fixation. So, without it, there would be no storing of the sun's energy in plants. Molecular adaptation of Rubisco to C4 photosynthetic pathway has attracted a lot of attention. C4 plants, which comprise less than 5% of land plants, have evolved more efficient photosynthesis compared to C3 plants. Interestingly, a large number of independent transitions from C3 to C4 phenotype have occurred. Each time, the Rubisco enzyme has been subject to similar changes in selective pressure, thus providing an excellent model for convergent evolution at the molecular level. Molecular adaptation is often identified with positive selection and is typically characterized by an elevated ratio of non-synonymous to synonymous substitution rate (dN/dS). However, convergent adaptation is expected to leave a different molecular signature, taking the form of repeated transitions toward identical or similar amino acids. Here, we used a previously introduced codon-based differential-selection model to detect and quantify consistent patterns of convergent adaptation in Rubisco in eudicots. We further contrasted our results with those obtained by classical codon models based on the estimation of dN/dS. We found that the two classes of models tend to select distinct, although overlapping, sets of positions. This discrepancy in the results illustrates the conceptual difference between these models while emphasizing the need to better discriminate between qualitatively different selective regimes, by using a broader class of codon models than those currently considered in molecular evolutionary studies.
Photosynthetic Trichomes Contain a Specific Rubisco with a Modified pH-Dependent Activity.
Laterre, Raphaëlle; Pottier, Mathieu; Remacle, Claire; Boutry, Marc
2017-04-01
Ribulose-1,5-biphosphate carboxylase/oxygenase (Rubisco) is the most abundant enzyme in plants and is responsible for CO 2 fixation during photosynthesis. This enzyme is assembled from eight large subunits (RbcL) encoded by a single chloroplast gene and eight small subunits (RbcS) encoded by a nuclear gene family. Rubisco is primarily found in the chloroplasts of mesophyll (C3 plants), bundle-sheath (C4 plants), and guard cells. In certain species, photosynthesis also takes place in the secretory cells of glandular trichomes, which are epidermal outgrowths (hairs) involved in the secretion of specialized metabolites. However, photosynthesis and, in particular, Rubisco have not been characterized in trichomes. Here, we show that tobacco ( Nicotiana tabacum ) trichomes contain a specific Rubisco small subunit, NtRbcS-T, which belongs to an uncharacterized phylogenetic cluster (T). This cluster contains RbcS from at least 33 species, including monocots, many of which are known to possess glandular trichomes. Cluster T is distinct from the cluster M, which includes the abundant, functionally characterized RbcS isoforms expressed in mesophyll or bundle-sheath cells. Expression of NtRbcS-T in Chlamydomonas reinhardtii and purification of the full Rubisco complex showed that this isoform conferred higher V max and K m values as well as higher acidic pH-dependent activity than NtRbcS-M, an isoform expressed in the mesophyll. This observation was confirmed with trichome extracts. These data show that an ancient divergence allowed for the emergence of a so-far-uncharacterized RbcS cluster. We propose that secretory trichomes have a particular Rubisco uniquely adapted to secretory cells where CO 2 is released by the active specialized metabolism. © 2017 American Society of Plant Biologists. All Rights Reserved.
Ooi, Tony Eng Keong; Yeap, Wan Chin; Daim, Leona Daniela Jeffery; Ng, Boon Zean; Lee, Fong Chin; Othman, Ainul Masni; Appleton, David Ross; Chew, Fook Tim; Kulaveerasingam, Harikrishna
2015-01-01
The oil palm Elaeis guineensis Jacq. which produces the highest yield per unit land area of the oil crops is the most important commercial oil crop in South East Asia. The fleshy mesocarp of oil palm fruit, where oil is mostly derived from, contains up to 90 % dry weight of oil (one of the most concentrated in plant tissues). Hence, there is attention given to gain insights into the processes of oil deposition in this oil rich tissue. For that purpose, two-dimensional differential gel electrophoresis (DIGE) coupled with western assays, were used here to analyze differential protein levels in genetically-related high-and low-yielding oil palm mesocarps. From the DIGE comparative analysis in combination with western analysis, 41 unique differentially accumulated proteins were discovered. Functional categorization of these proteins placed them in the metabolisms of lipid, carbohydrate, amino acids, energy, structural proteins, as well as in other functions. In particular, higher abundance of fructose-1,6-biphosphate aldolase combined with reduced level of triosephosphate isomerase and glyceraldehyde-3-phosphate dehydrogenase may be indicative of important flux balance changes in glycolysis, while amino acid metabolism also appeared to be closely linked with oil yield. Forty-one proteins in several important biological pathways were identified as exhibiting differential in abundance at critical oil production stages. These confirm that oil yield is a complex trait involving the regulation of genes in multiple biological pathways. The results also provide insights into key control points of lipid biosynthesis in oil palm and can assist in the development of genetic markers for use in oil palm breeding programmes.
Okeke, Uche Godfrey; Akdemir, Deniz; Rabbi, Ismail; Kulakow, Peter; Jannink, Jean-Luc
2018-03-01
The HarvestPlus program for cassava ( Crantz) fortifies cassava with β-carotene by breeding for carotene-rich tubers (yellow cassava). However, a negative correlation between yellowness and dry matter (DM) content has been identified. We investigated the genetic control of DM in white and yellow cassava. We used regional heritability mapping (RHM) to associate DM with genomic segments in both subpopulations. Significant segments were subjected to candidate gene analysis and candidates were validated with prediction accuracies. The RHM procedure was validated via a simulation approach and revealed significant hits for white cassava on chromosomes 1, 4, 5, 10, 17, and 18, whereas hits for the yellow were on chromosome 1. Candidate gene analysis revealed genes in the carbohydrate biosynthesis pathway including plant serine-threonine protein kinases (SnRKs), UDP (uridine diphosphate)-glycosyltransferases, UDP-sugar transporters, invertases, pectinases, and regulons. Validation using 1252 unique identifiers from the SnRK gene family genome-wide recovered 50% of the predictive accuracy of whole-genome single nucleotide polymorphisms for DM, whereas validation using 53 likely genes (extracted from the literature) from significant segments recovered 32%. Genes including an acid invertase, a neutral or alkaline invertase, and a glucose-6-phosphate isomerase were validated on the basis of an a priori list for the cassava starch pathway, and also a fructose-biphosphate aldolase from the Calvin cycle pathway. The power of the RHM procedure was estimated as 47% when the causal quantitative trait loci generated 10% of the phenotypic variance (sample size = 451). Cassava DM genetics are complex and RHM may be useful for complex traits. Copyright © 2018 Crop Science Society of America.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cunha, Elizabeth S.; Kawahara, Rebeca; Kadowaki, Marina K.
Considering that stimulation of melanogenesis may lead to alterations of cellular responses, besides melanin production, our main goal was to study the cellular effects of melanogenesis stimulation of B16-F10 melanoma cells. Our results show increased levels of the reactive oxygen species after 15 h of melanogenesis stimulation. Following 48 h of melanogenesis stimulation, proliferation was inhibited (by induction of cell cycle arrest in the G1 phase) and the expression levels of p21 mRNA were increased. In addition, melanogenesis stimulation did not induce cellular senescence. Proteomic analysis demonstrated the involvement of proteins from other pathways besides those related to the cellmore » cycle, including protein disulfide isomerase A3, heat-shock protein 70, and fructose biphosphate aldolase A (all up-regulated), and lactate dehydrogenase (down-regulated). In RT-qPCR experiments, the levels of pyruvate kinase M2 mRNA dropped, whereas the levels of ATP synthase (beta-F1) mRNA increased. These data indicate that melanogenesis stimulation of B16-F10 cells leads to alterations in metabolism and cell cycle progression that may contribute to an induction of cell quiescence, which may provide a mechanism of resistance against cellular injury promoted by melanin synthesis. -- Highlights: Black-Right-Pointing-Pointer Melanogenesis stimulation by L-tyrosine+NH{sub 4}Cl in B16-F10 melanoma cells increases ROS levels. Black-Right-Pointing-Pointer Melanogenesis inhibits cell proliferation, and induced cell cycle arrest in the G1 phase. Black-Right-Pointing-Pointer Proteomic analysis showed alterations in proteins of the cell cycle and glucose metabolism. Black-Right-Pointing-Pointer RT-qPCR analysis confirmed alterations of metabolic targets after melanogenesis stimulation.« less
Dai, Gucan; Sherpa, Tshering; Varnum, Michael D.
2014-01-01
Precursor mRNA encoding CNGA3 subunits of cone photoreceptor cyclic nucleotide-gated (CNG) channels undergoes alternative splicing, generating isoforms differing in the N-terminal cytoplasmic region of the protein. In humans, four variants arise from alternative splicing, but the functional significance of these changes has been a persistent mystery. Heterologous expression of the four possible CNGA3 isoforms alone or with CNGB3 subunits did not reveal significant differences in basic channel properties. However, inclusion of optional exon 3, with or without optional exon 5, produced heteromeric CNGA3 + CNGB3 channels exhibiting an ∼2-fold greater shift in K1/2,cGMP after phosphatidylinositol 4,5-biphosphate or phosphatidylinositol 3,4,5-trisphosphate application compared with channels lacking the sequence encoded by exon 3. We have previously identified two structural features within CNGA3 that support phosphoinositides (PIPn) regulation of cone CNG channels: N- and C-terminal regulatory modules. Specific mutations within these regions eliminated PIPn sensitivity of CNGA3 + CNGB3 channels. The exon 3 variant enhanced the component of PIPn regulation that depends on the C-terminal region rather than the nearby N-terminal region, consistent with an allosteric effect on PIPn sensitivity because of altered N-C coupling. Alternative splicing of CNGA3 occurs in multiple species, although the exact variants are not conserved across CNGA3 orthologs. Optional exon 3 appears to be unique to humans, even compared with other primates. In parallel, we found that a specific splice variant of canine CNGA3 removes a region of the protein that is necessary for high sensitivity to PIPn. CNGA3 alternative splicing may have evolved, in part, to tune the interactions between cone CNG channels and membrane-bound phosphoinositides. PMID:24675082
Dai, Gucan; Sherpa, Tshering; Varnum, Michael D
2014-05-09
Precursor mRNA encoding CNGA3 subunits of cone photoreceptor cyclic nucleotide-gated (CNG) channels undergoes alternative splicing, generating isoforms differing in the N-terminal cytoplasmic region of the protein. In humans, four variants arise from alternative splicing, but the functional significance of these changes has been a persistent mystery. Heterologous expression of the four possible CNGA3 isoforms alone or with CNGB3 subunits did not reveal significant differences in basic channel properties. However, inclusion of optional exon 3, with or without optional exon 5, produced heteromeric CNGA3 + CNGB3 channels exhibiting an ∼2-fold greater shift in K1/2,cGMP after phosphatidylinositol 4,5-biphosphate or phosphatidylinositol 3,4,5-trisphosphate application compared with channels lacking the sequence encoded by exon 3. We have previously identified two structural features within CNGA3 that support phosphoinositides (PIPn) regulation of cone CNG channels: N- and C-terminal regulatory modules. Specific mutations within these regions eliminated PIPn sensitivity of CNGA3 + CNGB3 channels. The exon 3 variant enhanced the component of PIPn regulation that depends on the C-terminal region rather than the nearby N-terminal region, consistent with an allosteric effect on PIPn sensitivity because of altered N-C coupling. Alternative splicing of CNGA3 occurs in multiple species, although the exact variants are not conserved across CNGA3 orthologs. Optional exon 3 appears to be unique to humans, even compared with other primates. In parallel, we found that a specific splice variant of canine CNGA3 removes a region of the protein that is necessary for high sensitivity to PIPn. CNGA3 alternative splicing may have evolved, in part, to tune the interactions between cone CNG channels and membrane-bound phosphoinositides.
Fisher, C.R.; Childress, J.J.; Oremland, R.S.; Bidigare, R.R.
1987-01-01
Undescribed hydrocarbon-seep mussels were collected from the Louisiana Slope, Gulf of Mexico, during March 1986, and the ultrastructure of their gills was examined and compared to Bathymodiolus thermophilus, a mussel collected from the deep-sea hydrothermal vents on the Gala??pagos Rift in March 1985. These closely related mytilids both contain abundant symbiotic bacteria in their gills. However, the bacteria from the two species are distinctly different in both morphology and biochemistry, and are housed differently within the gills of the two mussels. The symbionts from the seep mussel are larger than the symbionts from B. thermophilus and, unlike the latter, contain stacked intracytoplasmic membranes. In the seep mussel three or fewer symbionts appear to be contained in each host-cell vacuole, while in B. thermophilus there are often more than twenty bacteria visible in a single section through a vacuole. The methanotrophic nature of the seep-mussel symbionts was confirmed in 14C-methane uptake experiments by the appearance of label in both CO2 and acid-stable, non-volatile, organic compounds after a 3 h incubation of isolated gill tissue. Furthermore, methane consumption was correlated with methanol dehydrogenase activity in isolated gill tissue. Activity of ribulose-1,5-biphosphate (RuBP) carboxylase and 14CO2 assimilation studies indicate the presence of either a second type of symbiont or contaminating bacteria on the gills of freshly captured seep mussels. A reevaluation of the nutrition of the symbionts in B. thermophilus indicates that while the major symbiont is not a methanotroph, its status as a sulfur-oxidizing chemoautotroph, as has been suggested previously, is far from proven. ?? 1987 Springer-Verlag.
Križanović, D; Karadjole, I
1993-01-12
The activity of enzyme aldolase (ALD) was determined in the sera of Simmental young bulls, with the purpose to see whether there exists a relationship between the enzyme activity and fattening capacity and whether the ALD could be an indicator of the muscle quantity and protein content. Early ALD activity was correlated with slaughter weight and ADG in the last fattening month. The regression analysis suggests that young bulls with higher serum ALD acitivity at the start of the experiment had more total muscles and less bone in the analysed rib part. On the basis of ALD activity in the first fattening month it was possible to estimate protein and fat content in the MLD. ZUSAMMENFASSUNG: Fructose-1,6-biphosphat Aldolase beim Serum Simmentaler Jungbullen. Beziehung zwischen Mastfähigkeit, Muskelmenge und Proteingehalt Aldolase (ALD) Enzymtätigkeit im Serum von Simmentaler Jungbullen wurden in Hinblick auf eine Beziehung mit Mastfähigkeit, Muskelmenge und Proteingehalt untersucht. Es zeigt sich eine Korrelation zwischen früher ALD Aktivität und Schlachtgewicht und Tageszuwachs im Endmastmonat. Regressionsanalyse ergab, daß Jungbullen mit höherer ALD Aktivität bei Mastbeginn mehr Muskelanteil im m. longissimus dorsi und weniger Knochen besitzen. ALD Aktivität im ersten Mastmonat erlaubt Schätzung des Protein- und Fettgehalts im m. long, dorsi. RESUMEN: Fructosa 1,6-bifosfato aldolasa en el suero de los terneros simentales. Relatión con sus capacidades de ser cebados, su cantidad de músculos y el contenido de proteínas Con el fin de establecer la relación entre la actividad de enzimas y las capacidades durante el proceso de la ceba, asf como para precisar si el ALD puede servir como indicador de la cantidad de músculos y el contenido de proteinas, intentaba determinarse la actividad de los enzimas de aldolasa (ALD) en el suero de los terneros simentales. A base de la actividad indicial del ALD, es posible estimar el peso final de matadero y la crecencia diaria media durante el último mes de la ceba. Tras una análisis regresiva se ha probado que los terneros con una actividad mayor del ALD en el suero a principios del proceso de su ceba tienen más músculos en total en la parte de costillas y m. longissimus dorsi mientras que tienen menos huesos. A base de la actividad del ALD durante el primer mes de la ceba es posible estimar el contenido de proteinas y grasa en m. long, dorsi. RÉSUMÉ: Fructose 1.6-biphosphate aldolase dans le sérum des taurillons de Simmental. Le rapport entre l'aptitude à l'angraissement, la proportion des muscles et la teneur en protéines On a déterminé l'activité de l'enzyme aldolase (ALD) dans le sérum des taurillons de Simmental afin de vérifier s'il existait un rapport entre l'activité des enzymes et l'aptitude à l'engraissement et si l'ALD pouvait être indicatrice de la proportion de muscles et de la teneur en protéines. A la base de l'activité initiale de l'ALD, il est possible d'évaluer le poids de la carcasse et le gain quotidien moyen au cours du dernier mois d'engrais. Par analyse régressive, il a été établi que les taurillons à l'activité supérieure de l'ALD dans le sérum avaient au début de l'engrais plus de muscles au total dans la région costale et le m. longissimus dorsi et moins d'os. A la base de l'activité de l'ALD au cours du premier mois d'engrais il est possible d'évaluer la teneur en protéines et en graisse dans le muscle longissimus dorsi. 1993 Blackwell Verlag GmbH.
Guo, Liliang; Sui, Zhenghong; Zhang, Shu; Ren, Yuanyuan; Liu, Yuan
2015-04-01
Diatoms form an enormous group of photoautotrophic micro-eukaryotes and play a crucial role in marine ecology. In this study, we evaluated typical genes to determine whether they were effective at different levels of diatom clustering analysis to assess the potential of these regions for barcoding taxa. Our test genes included nuclear rRNA genes (the nuclear small-subunit rRNA gene and the 5.8S rRNA gene+ITS-2), a mitochondrial gene (cytochrome c-oxidase subunit 1, COI), a chloroplast gene [ribulose-1,5-biphosphate carboxylase/oxygenase large subunit (rbcL)] and the universal plastid amplicon (UPA). Calculated genetic divergence was highest for the internal transcribed spacer (ITS; 5.8S+ITS-2) (p-distance of 1.569, 85.84% parsimony-informative sites) and COI (6.084, 82.14%), followed by the 18S rRNA gene (0.139, 57.69%), rbcL (0.120, 42.01%) and UPA (0.050, 14.97%), which indicated that ITS and COI were highly divergent compared with the other tested genes, and that their nucleotide compositions were variable within the whole group of diatoms. Bayesian inference (BI) analysis showed that the phylogenetic trees generated from each gene clustered diatoms at different phylogenetic levels. The 18S rRNA gene was better than the other genes in clustering higher diatom taxa, and both the 18S rRNA gene and rbcL performed well in clustering some lower taxa. The COI region was able to barcode species of some genera within the Bacillariophyceae. ITS was a potential marker for DNA based-taxonomy and DNA barcoding of Thalassiosirales, while species of Cyclotella, Skeletonema and Stephanodiscus gathered in separate clades, and were paraphyletic with those of Thalassiosira. Finally, UPA was too conserved to serve as a diatom barcode. © 2015 IUMS.
NASA Astrophysics Data System (ADS)
Steelman, Zachary A.; Tolstykh, Gleb P.; Beier, Hope T.; Ibey, Bennett L.
2016-03-01
Cells exposed to nanosecond-pulsed electric fields (nsPEF) exhibit a wide variety of nonspecific effects, including blebbing, swelling, intracellular calcium bursts, apoptotic and necrotic cell death, formation of nanopores, and depletion of phosphatidylinositol 4,5-biphosphate (PIP2) to induce activation of the inositol trisphosphate/diacylglycerol pathway. While several studies have taken place in which multiple pulses were delivered to cells, the effect of pulse repetition rate (PRR) is not well understood. To better understand the effects of PRR, a laser scanning confocal microscope was used to observe CHO-K1 cells exposed to ten 600ns, 200V pulses at varying repetition rates (5Hz up to 500KHz) in the presence of either FM 1-43, YO-PRO-1, or Propidium Iodide (PI) fluorescent dyes, probes frequently used to indicate nanoporation or permeabilization of the plasma membrane. Dye uptake was monitored for 30 seconds after pulse application at a rate of 1 image/second. In addition, a single long pulse of equivalent energy (200V, 6 μs duration) was applied to test the hypothesis that very fast PRR will approximate the biological effects of a single long pulse of equal energy. Upon examination of the data, we found strong variation in the relationship between PRR and uptake in each of the three dyes. In particular, PI uptake showed little frequency dependence, FM 1-43 showed a strong inverse relationship between frequency and internal cell fluorescence, and YO-PRO-1 exhibited a "threshold" point of around 50 KHz, after which the inverse trend observed in FM 1-43 was seen to reverse itself. Further, a very high PRR of 500 KHz only approximated the biological effects of a single 6 μs pulse in cells stained with YO-PRO-1, suggesting that uptake of different dyes may proceed by different physical mechanisms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Z Li; Z Liu; D Cho
2011-12-31
Inhibitors of the Giardia lamblia fructose 1,6-bisphosphate aldolase (GlFBPA), which transforms fructose 1,6-bisphosphate (FBP) to dihydroxyacetone phosphate and glyceraldehyde 3-phosphate, were designed based on 3-hydroxy-2-pyridone and 1,2-dihydroxypyridine scaffolds that position two negatively charged tetrahedral groups for interaction with substrate phosphate binding residues, a hydrogen bond donor to the catalytic Asp83, and a Zn{sup 2+} binding group. The inhibition activities for the GlFBPA catalyzed reaction of FBP of the prepared alkyl phosphonate/phosphate substituted 3-hydroxy-2-pyridinones and a dihydroxypyridine were determined. The 3-hydroxy-2-pyridone inhibitor 8 was found to bind to GlFBPA with an affinity (K{sub i} = 14 {micro}M) that is comparable tomore » that of FBP (K{sub m} = 2 {micro}M) or its inert analog TBP (K{sub i} = 1 {micro}M). The X-ray structure of the GlFBPA-inhibitor 8 complex (2.3 {angstrom}) shows that 8 binds to the active site in the manner predicted by in silico docking with the exception of coordination with Zn{sup 2+}. The observed distances and orientation of the pyridone ring O=C-C-OH relative to Zn{sup 2+} are not consistent with a strong interaction. To determine if Zn{sup 2+} coordination occurs in the GlFBPA-inhibitor 8 complex in solution, EXAFS spectra were measured. A four coordinate geometry comprised of the three enzyme histidine ligands and an oxygen atom from the pyridone ring O=C-C-OH was indicated. Analysis of the Zn{sup 2+} coordination geometries in recently reported structures of class II FBPAs suggests that strong Zn{sup 2+} coordination is reserved for the enediolate-like transition state, accounting for minimal contribution of Zn{sup 2+} coordination to binding of 8 to GlFBPA.« less
Li, Zhimin; Liu, Zhengang; Cho, Dae Won; Zou, Jiwen; Gong, Maozhen; Breece, Robert M; Galkin, Andrey; Li, Ling; Zhao, Hong; Maestas, Gabriel D; Tierney, David L; Herzberg, Osnat; Dunaway-Mariano, Debra; Mariano, Patrick S
2011-04-01
Inhibitors of the Giardia lamblia fructose 1,6-bisphosphate aldolase (GlFBPA), which transforms fructose 1,6-bisphosphate (FBP) to dihydroxyacetone phosphate and glyceraldehyde 3-phosphate, were designed based on 3-hydroxy-2-pyridone and 1,2-dihydroxypyridine scaffolds that position two negatively charged tetrahedral groups for interaction with substrate phosphate binding residues, a hydrogen bond donor to the catalytic Asp83, and a Zn(2+) binding group. The inhibition activities for the GlFBPA catalyzed reaction of FBP of the prepared alkyl phosphonate/phosphate substituted 3-hydroxy-2-pyridinones and a dihydroxypyridine were determined. The 3-hydroxy-2-pyridone inhibitor 8 was found to bind to GlFBPA with an affinity (K(i)=14μM) that is comparable to that of FBP (K(m)=2μM) or its inert analog TBP (K(i)=1μM). The X-ray structure of the GlFBPA-inhibitor 8 complex (2.3Å) shows that 8 binds to the active site in the manner predicted by in silico docking with the exception of coordination with Zn(2+). The observed distances and orientation of the pyridone ring O=C-C-OH relative to Zn(2+) are not consistent with a strong interaction. To determine if Zn(2+)coordination occurs in the GlFBPA-inhibitor 8 complex in solution, EXAFS spectra were measured. A four coordinate geometry comprised of the three enzyme histidine ligands and an oxygen atom from the pyridone ring O=C-C-OH was indicated. Analysis of the Zn(2+) coordination geometries in recently reported structures of class II FBPAs suggests that strong Zn(2+) coordination is reserved for the enediolate-like transition state, accounting for minimal contribution of Zn(2+) coordination to binding of 8 to GlFBPA. Copyright © 2010 Elsevier Inc. All rights reserved.
Cuthbert, Candace E; Foster, Jerome E; Ramdath, D Dan
2017-10-01
A maternal high-fat, high-sucrose (HFS) diet alters offspring glucose and lipid homoeostasis through unknown mechanisms and may be modulated by folic acid. We investigated the effect of a maternal HFS diet on glucose homoeostasis, expression of genes and proteins associated with insulin signalling and lipid metabolism and the effect of prenatal folic acid supplementation (HFS/F) in male rat offspring. Pregnant Sprague-Dawley rats were randomly fed control (CON), HFS or HFS/F diets. Offspring were weaned on CON; at postnatal day 70, fasting plasma insulin and glucose and liver and skeletal muscle gene and protein expression were measured. Treatment effects were assessed by one-way ANOVA. Maternal HFS diet induced higher fasting glucose in offspring v. HFS/F (P=0·027) and down-regulation (P<0·05) of genes coding for v-Akt murine thymoma viral oncogene homolog 2, resistin and v-Raf-1 murine leukaemia viral oncogene homolog 1 (Raf1) in offspring skeletal muscle and acetyl-CoA carboxylase (Acaca), fatty acid synthase and phosphatidylinositol-4,5-biphosphate 3-kinase, catalytic subunit β in offspring liver. Skeletal muscle neuropeptide Y and hepatic Kruppel-like factor 10 were up-regulated in HFS v. CON offspring (P<0·05). Compared with CON, Acaca and Raf1 protein expression levels were significantly lower in HFS offspring. Maternal HFS induced higher homoeostasis model of assessment index of insulin resistance v. CON (P=0·030) and HFS/F was associated with higher insulin (P=0·016) and lower glucose (P=0·025). Maternal HFS diet alters offspring insulin sensitivity and de novo hepatic lipogenesis via altered gene and protein expression, which appears to be potentiated by folate supplementation.
Barros, M P; Hollnagel, H C; Glavina, A B; Soares, C O; Ganini, D; Dagenais-Bellefeuille, S; Morse, D; Colepicolo, P
2013-10-15
Molybdenum is a transition metal used primarily (90% or more) as an additive to steel and corrosion-resistant alloys in metallurgical industries and its release into the environment is a growing problem. As a catalytic center of some redox enzymes, molybdenum is an essential element for inorganic nitrogen assimilation/fixation, phytohormone synthesis, and free radical metabolism in photosynthesizing species. In oceanic and estuarine waters, microalgae absorb molybdenum as the water-soluble molybdate anion (MoO4(2-)), although MoO4(2-) uptake is thought to compete with uptake of the much more abundant sulfate anion (SO4(2-), approximately 25 mM in seawater). Thus, those aspects of microalgal biology impacted by molybdenum would be better explained by considering both MoO4(2-) and SO4(2-) concentrations in the aquatic milieu. This work examines toxicological, physiological and redox imbalances in the dinoflagellate Lingulodinium polyedrum that have been induced by changes in the molybdate:sulfate ratios. We prepared cultures of Lingulodinium polyedrum grown in artificial seawater containing eight different MoO4(2-) concentrations (from 0 to 200 μM) and three different SO4(2-) concentrations (3.5 mM, 9.6 mM and 25 mM). We measured sulfur content in cells, the activities of the three major antioxidant enzymes (superoxide dismutase, catalase, and ascorbate peroxidase), indexes of oxidative modifications in proteins (carbonyl content) and lipids (thiobarbituric acid-reactive substances, TBARS), the activities of the molybdenum-dependent enzymes xanthine oxidase and nitrate reductase, expression of key protein components of dinoflagellate photosynthesis (peridinin-chlorophyll a protein and ribulose-1,5-biphosphate carboxylase/oxidase) and growth curves. We find evidence for Mo toxicity at relatively high [MoO4(2-)]:[SO4(2-)] ratios. We also find evidence for extensive redox adaptations at Mo levels well below lethal levels. Copyright © 2013 Elsevier B.V. All rights reserved.
Patil, Mayur J; Belugin, Sergei; Akopian, Armen N
2011-06-01
There is an agreement that acute (in minutes) hydrolysis and accumulation of phosphatidylinositol 4,5-bisphosphate (PIP(2) ) modulate TRPV1 and TRPA1 activities. Because inflammation results in PIP(2) depletion, persisting for long periods (hours to days) in pain models and in the clinic, we examined whether chronic depletion and accumulation of PIP(2) affect capsaicin (CAP) and mustard oil (MO) responses. In addition, we wanted to evaluate whether the effects of PIP(2) depend on TRPV1 and TRPA1 coexpression and whether the PIP(2) actions vary in expression cells vs. sensory neurons. Chronic PIP(2) production was stimulated by overexpression of phosphatidylinositol-4-phosphate-5-kinase, and PIP(2) -specific phospholipid 5'-phosphatase was selected to reduce plasma membrane levels of PIP(2) . Our results demonstrate that CAP (100 nM) responses and receptor tachyphylaxis are not significantly influenced by chronic changes in PIP(2) levels in wild-type (WT) or TRPA1 null-mutant sensory neurons as well as CHO cells expressing TRPV1 alone or with TRPA1. However, low concentrations of CAP (20 nM) produced a higher response after PIP(2) depletion in cells containing TRPV1 alone but not TRPV1 together with TRPA1. MO (25 μM) responses were also not affected by PIP(2) in WT sensory neurons and cells coexpressing TRPA1 and TRPV1. In contrast, PIP(2) reduction leads to pronounced tachyphylaxis to MO in cells with both channels. Chronic effect of PIP(2) on TRPA1 activity depends on presence of the TRPV1 channel and cell type (CHO vs. sensory neurons). In summary, chronic alterations in PIP(2) levels regulate magnitude of CAP and MO responses as well as MO tachyphylaxis. This regulation depends on coexpression profile of TRPA1 and TRPV1 and cell type. Copyright © 2011 Wiley-Liss, Inc.
Morales-Lázaro, Sara L; Simon, Sidney A; Rosenbaum, Tamara
2013-01-01
Pain is a physiological response to a noxious stimulus that decreases the quality of life of those sufferring from it. Research aimed at finding new therapeutic targets for the treatment of several maladies, including pain, has led to the discovery of numerous molecular regulators of ion channels in primary afferent nociceptive neurons. Among these receptors is TRPV1 (transient receptor potential vanilloid 1), a member of the TRP family of ion channels. TRPV1 is a calcium-permeable channel, which is activated or modulated by diverse exogenous noxious stimuli such as high temperatures, changes in pH, and irritant and pungent compounds, and by selected molecules released during tissue damage and inflammatory processes. During the last decade the number of endogenous regulators of TRPV1's activity has increased to include lipids that can negatively regulate TRPV1, as is the case for cholesterol and PIP2 (phosphatidylinositol 4,5-biphosphate) while, in contrast, other lipids produced in response to tissue injury and ischaemic processes are known to positively regulate TRPV1. Among the latter, lysophosphatidic acid activates TRPV1 while amines such as N-acyl-ethanolamines and N-acyl-dopamines can sensitize or directly activate TRPV1. It has also been found that nucleotides such as ATP act as mediators of chemically induced nociception and pain and gases, such as hydrogen sulphide and nitric oxide, lead to TRPV1 activation. Finally, the products of lipoxygenases and omega-3 fatty acids among other molecules, such as divalent cations, have also been shown to endogenously regulate TRPV1 activity. Here we provide a comprehensive review of endogenous small molecules that regulate the function of TRPV1. Acting through mechanisms that lead to sensitization and desensitization of TRPV1, these molecules regulate pathways involved in pain and nociception. Understanding how these compounds modify TRPV1 activity will allow us to comprehend how some pathologies are associated with its deregulation. PMID:23613529
Umdale, Suraj D; Kshirsagar, Parthraj R; Lekhak, Manoj M; Gaikwad, Nikhil B
2017-07-01
Smithia conferta Sm. is an annual herb widely used in Indian traditional medical practice and commonly known as "Lakshman booti" in Sanskrit. Morphological resemblance among the species of genus Smithia Aiton . leads to inaccurate identification and adulteration. This causes inconsistent therapeutic effects and also affects the quality of herbal medicine. This study aimed to generate potential barcode for authentication of S. conferta and its adulterants through DNA barcoding technique. Genomic DNA extracted from S. conferta and its adulterants was used as templates for polymerase chain reaction amplification of the barcoding regions. The amplicons were directed for sequencing, and species identification was conducted using BLASTn and unweighted pair-group method with arithmetic mean trees. In addition, the secondary structures of internal transcribed spacer (ITS) 2 region were predicted. The nucleotide sequence of ITS provides species-specific single nucleotide polymorphisms and sequence divergence (22%) than psb A- trn H (10.9%) and rbc L (3.1%) sequences. The ITS barcode indicates that S. conferta and Smithia sensitiva are closely related compared to other species. ITS is the most applicable barcode for molecular authentication of S. conferta , and further chloroplast barcodes should be tested for phylogenetic analysis of genus Smithia. The present investigation is the first effort of utilization of DNA barcode for molecular authentication of S. conferta and its adulterants. Also, this study expanded the application of the ITS2 sequence data in the authentication. The ITS has been proved as a potential and reliable candidate barcode for the authentication of S. conferta . Abbreviations used: BLASTn: Basic Local Alignment Search Tool for Nucleotide; MEGA: Molecular Evolutionary Genetic Analysis; EMBL: European Molecular Biology Laboratory; psb A- trn H: Photosystem II protein D1- stuctural RNA: His tRNA gene; rbcL: Ribulose 1,5 bi-phosphate carboxylase/oxygenase large subunit gene.
Morales-Lázaro, Sara L; Simon, Sidney A; Rosenbaum, Tamara
2013-07-01
Pain is a physiological response to a noxious stimulus that decreases the quality of life of those sufferring from it. Research aimed at finding new therapeutic targets for the treatment of several maladies, including pain, has led to the discovery of numerous molecular regulators of ion channels in primary afferent nociceptive neurons. Among these receptors is TRPV1 (transient receptor potential vanilloid 1), a member of the TRP family of ion channels. TRPV1 is a calcium-permeable channel, which is activated or modulated by diverse exogenous noxious stimuli such as high temperatures, changes in pH, and irritant and pungent compounds, and by selected molecules released during tissue damage and inflammatory processes. During the last decade the number of endogenous regulators of TRPV1's activity has increased to include lipids that can negatively regulate TRPV1, as is the case for cholesterol and PIP2 (phosphatidylinositol 4,5-biphosphate) while, in contrast, other lipids produced in response to tissue injury and ischaemic processes are known to positively regulate TRPV1. Among the latter, lysophosphatidic acid activates TRPV1 while amines such as N-acyl-ethanolamines and N-acyl-dopamines can sensitize or directly activate TRPV1. It has also been found that nucleotides such as ATP act as mediators of chemically induced nociception and pain and gases, such as hydrogen sulphide and nitric oxide, lead to TRPV1 activation. Finally, the products of lipoxygenases and omega-3 fatty acids among other molecules, such as divalent cations, have also been shown to endogenously regulate TRPV1 activity. Here we provide a comprehensive review of endogenous small molecules that regulate the function of TRPV1. Acting through mechanisms that lead to sensitization and desensitization of TRPV1, these molecules regulate pathways involved in pain and nociception. Understanding how these compounds modify TRPV1 activity will allow us to comprehend how some pathologies are associated with its deregulation.
Bladder contractility is modulated by Kv7 channels in pig detrusor.
Svalø, Julie; Bille, Michala; Parameswaran Theepakaran, Neeraja; Sheykhzade, Majid; Nordling, Jørgen; Bouchelouche, Pierre
2013-09-05
Kv7 channels are involved in smooth muscle relaxation, and accordingly we believe that they constitute potential targets for the treatment of overactive bladder syndrome. We have therefore used myography to examine the function of Kv7 channels in detrusor, i.e. pig bladder, with a view to determining the effects of the following potassium channel activators: ML213 (Kv7.2/Kv7.4 channels) and retigabine (Kv7.2-7.5 channels). Retigabine produced a concentration-dependent relaxation of carbachol- and electric field-induced contractions. The potency was similar in magnitude to that of ML213-induced relaxation, suggesting that Kv7.2 and/or Kv7.4 channels constitute the subtypes that are relevant to bladder contractility. The effects of retigabine and ML213 were attenuated by pre-incubation with 10µM XE991 (Kv7.1-7.5 channel blocker) (P<0.05), which in turn confirmed Kv7 channel selectivity. Subtype-selective effects were further investigated by incubating the detrusor with 10µM chromanol 293B (Kv7.1 channel blocker). Regardless of the experimental protocol, this did not cause a further increase in the evoked contraction. In contrast, the addition of XE991 potentiated the KCl-induced contractions, but not those induced by carbachol or electric field, indicating the presence of a phosphatidyl-inositol-4,5-biphosphate-dependent mechanism amongst the Kv7 channels in detrusor. qRT-PCR studies of the mRNA transcript level of Kv7.3-7.5 channels displayed a higher level of Kv7.4 transcript in detrusor compared to that present in brain cortex and heart tissues. Thus, we have shown that Kv7.4 channels are expressed and functionally active in pig detrusor, and that the use of selective Kv7.4 channel modulators in the treatment of detrusor overactivity seems promising. © 2013 Elsevier B.V. All rights reserved.
Chiosea, Simion I; Thompson, Lester D R; Weinreb, Ilan; Bauman, Julie E; Mahaffey, Alyssa M; Miller, Caitlyn; Ferris, Robert L; Gooding, William E
2016-10-15
The authors hypothesized that histogenetic classification of salivary duct carcinoma (SDC) could account for de novo tumors and those with morphologic or molecular evidence (pleomorphic adenoma gene 1 [PLAG1], high-mobility group AT hook 2 [HMGA2] rearrangement, amplification) of pleomorphic adenoma (PA). SDCs (n = 66) were reviewed for morphologic evidence of PA. PLAG1 and HMGA2 alterations were detected by fluorescence in situ hybridization (FISH). PLAG1-positive tumors were tested by FISH for fibroblast growth factor receptor 1 (FGFR1) rearrangement. Thirty-nine tumors were analyzed using a commercial panel for mutations and copy number variations in 50 cancer-related genes. On the basis of combined morphologic and molecular evidence of PA, 4 subsets of SDC emerged: 1) carcinomas with morphologic evidence of PA but intact PLAG1 and HMGA2 (n = 22); 2) carcinomas with PLAG1 alteration (n = 18) or 3) HMGA2 alteration (n = 12); and 4) de novo carcinomas, without morphologic or molecular evidence of PA (n = 14). The median disease-free survival was 37 months (95% confidence interval, 28.4-45.6 months). Disease-free survival and other clinicopathologic parameters did not differ for the subsets defined above. Combined Harvey rat sarcoma viral oncogene homolog/phosphatidylinositol-4,5-biphosphate 3-kinase, catalytic subunit α (HRAS/PIK3CA) mutations were observed predominantly in de novo carcinomas (5 of 8 vs 2 of 31 tumors; P = .035). Erb-B2 receptor tyrosine kinase 2 (ERBB2) copy number gain was not observed in de novo carcinomas (0 of 8 vs 12 of 31 tumors; P = .08). Tumor protein 53 (TP53) mutations were more common in SDC ex pleomorphic adenomas than in de novo carcinomas (17 of 31 vs 1 of 8 tumors; P = .033). The genetic profile of SDC varies with the absence or presence of pre-existing PA and its cytogenetic signature. Most de novo SDCs harbor combined HRAS/PIK3CA mutations and no ERBB2 amplification. Cancer 2016;122:3136-44. © 2016 American Cancer Society. © 2016 American Cancer Society.
2014-01-01
Background The primary objective of the present investigation is to evaluate the antidiabetic, antihyperlidemic and antioxidant activity of the methanolic extract of the Paederia foetida Linn. (PF) leaf extract in the streptozotocin induced diabetic rats. Methods Single intraperitoneal injection (IP) of streptozotocin (60 mg/kg body weight) was used for induction of diabetes is swiss albino (wistar strain) rats. The induction of diabetes was confirmed after 3 days as noticing the increase in blood sugar level of tested rats. PF at a once a daily dose of 100 mg/kg, 250 mg/kg, 500 mg/kg, p.o. along with glibenclamide 10 mg/kg, p.o. was also given for 28 days. On the 28th day rats from all the groups fasted overnight fasted and the blood was collected from the puncturing the retro orbit of the eye under mild anesthetic condition. There collected blood sample was used to determine the antihyperlipidemic, hypoglycemic and antioxidant parameters. Results The oral acute toxicity studies did not show any toxic effect till the dose at 2000 mg/kg. While oral glucose tolerance test showed better glucose tolerance in tested rats. The statistical data indicated that the different dose of the PF significantly increased the body weight, hexokinase, plasma insulin, high density lipoprotein cholesterol, superoxide dismutase, catalase and glutathione peroxides. It also decreases the level of fasting blood glucose, total cholesterol, triglycerides, low density lipoprotein cholesterol, very low density lipoprotein cholesterol, malonaldehyde, glucose-6-phosphate, fructose-1-6-biphosphate and glycated hemoglobin in STZ induced diabetic rats. The histopathology of STZ induce diabetic rats, as expected the test dose of PF extract considerably modulates the pathological condition of various vital organ viz. heart, kidney, liver, pancreas as shown in the histopathology examinations. Conclusions Our investigation has clearly indicated that the leaf extract of Paederia foetida Linn. showed remarkable antihyperglycemic activity due to its possible systematic effect involving in the pancreatic and extra pancreatic mechanism. Forever, the antihyperlipidemic activity was exerted possible by lowering the higher level of lipid profile and decreasing the intercalated disc space in the heart. The antioxidant activity of extract was due to inhibition of lipid peroxidation and increasing the SOD, GPx and CAT. It was corroborate that the extract shown the Paederia foetida Linn leaves potential to be act as antidiabetic, antihyperlipidemic and antioxidant properties. PMID:24564866
Sbrissa, Diego; Ikonomov, Ognian C.; Filios, Catherine; Delvecchio, Khortnal
2012-01-01
PIKfyve is an essential mammalian lipid kinase with pleiotropic cellular functions whose genetic knockout in mice leads to preimplantation lethality. Despite several reports for PIKfyve-catalyzed synthesis of phosphatidylinositol 5-phosphate (PtdIns5P) along with phosphatidylinositol-3,5-biphosphate [PtdIns(3,5)P2] in vitro and in vivo, the role of the PIKfyve pathway in intracellular PtdIns5P production remains underappreciated and the function of the PIKfyve-synthesized PtdIns5P pool poorly characterized. Hence, the recently discovered potent PIKfyve-selective inhibitor, the YM201636 compound, has been solely tested for inhibiting PtdIns(3,5)P2 synthesis. Here, we have compared the in vitro and in vivo inhibitory potency of YM201636 toward PtdIns5P and PtdIns(3,5)P2. Unexpectedly, we observed that at low doses (10–25 nM), YM201636 inhibited preferentially PtdIns5P rather than PtdIns(3,5)P2 production in vitro, whereas at higher doses, the two products were similarly inhibited. In cellular contexts, YM201636 at 160 nM inhibited PtdIns5P synthesis twice more effectively compared with PtdIns(3,5)P2 synthesis. In 3T3L1 adipocytes, human embryonic kidney 293 and Chinese hamster ovary (CHO-T) cells, levels of PtdIns5P dropped by 62–71% of the corresponding untreated controls, whereas those of PtdIns(3,5)P2 fell by only 28–46%. The preferential inhibition of PtdIns5P versus PtdIns(3,5)P2 at low doses of YM201636 was explored to probe contributions of the PIKfyve-catalyzed PtdIns5P pool to insulin-induced actin stress fiber disassembly in CHO-T cells, GLUT4 translocation in 3T3L1 adipocytes, and induction of aberrant cellular vacuolation in these or other cell types. The results provide the first experimental evidence that the principal pathway for PtdIns5P intracellular production is through PIKfyve and that insulin effect on actin stress fiber disassembly is mediated entirely by the PIKfyve-produced PtdIns5P pool. PMID:22621786
Vincent, A; Louveau, I; Gondret, F; Tréfeu, C; Gilbert, H; Lefaucheur, L
2015-06-01
Improving feed efficiency is a relevant strategy to reduce feed cost and environmental waste in livestock production. Selection experiments on residual feed intake (RFI), a measure of feed efficiency, previously indicated that low RFI was associated with lower feed intake, similar growth rate, and greater lean meat content compared with high RFI. To gain insights into the molecular mechanisms underlying these differences, 24 Large White females from 2 lines divergently selected for RFI were examined. Pigs from a low-RFI ("efficient") and high-RFI ("inefficient") line were individually fed ad libitum from 67 d of age (27 kg BW) to slaughter at 115 kg BW (n = 8 per group). Additional pigs of the high-RFI line were feed restricted to the daily feed intake of the ad libitum low-RFI pigs (n = 8) to investigate the impact of selection independently of feed intake. Global gene and protein expression profiles were assessed in the LM collected at slaughter. The analyses involved a porcine commercial microarray and 2-dimensional gel electrophoresis. About 1,000 probes were differentially expressed (P < 0.01) between RFI lines. Only 10% of those probes were also affected by feed restriction. Gene functional classification indicated a greater expression of genes involved in protein synthesis and a lower expression of genes associated with mitochondrial energy metabolism in the low-RFI pigs compared with the high-RFI pigs. At the protein level, 11 unique identified proteins exhibited a differential abundance (P < 0.05) between RFI lines. Differentially expressed proteins were generally not significantly affected by feed restriction. Mitochondrial oxidative proteins such as aconitase hydratase, ATP synthase subunit α, and creatine kinase S-type had a lower abundance in the low-RFI pigs, whereas fructose-biphosphate aldolase A and glyceraldehyde-3-phosphate dehydrogenase, 2 proteins involved in glycolysis, had a greater abundance in those pigs compared with high-RFI pigs. Antioxidant proteins such as superoxide dismutase and glutathione peroxidase 3 at the mRNA level and peroxiredoxin-6 at the protein level were also less expressed in LM of the most efficient pigs, likely related to lower oxidative molecule production. Collectively, both the transcriptomic and proteomic approaches revealed a lower oxidative metabolism in muscle of the low-RFI pigs and all these modifications were largely independent of differences in feed intake.
DOE Office of Scientific and Technical Information (OSTI.GOV)
James C. Liao
This project is a collaboration with F. R. Tabita of Ohio State. Our major goal is to understand the factors and regulatory mechanisms that influence hydrogen production. The organisms to be utilized in this study, phototrophic microorganisms, in particular nonsulfur purple (NSP) bacteria, catalyze many significant processes including the assimilation of carbon dioxide into organic carbon, nitrogen fixation, sulfur oxidation, aromatic acid degradation, and hydrogen oxidation/evolution. Our part of the project was to develop a modeling technique to investigate the metabolic network in connection to hydrogen production and regulation. Organisms must balance the pathways that generate and consume reducing powermore » in order to maintain redox homeostasis to achieve growth. Maintaining this homeostasis in the nonsulfur purple photosynthetic bacteria is a complex feat with many avenues that can lead to balance, as these organisms possess versatile metabolic capabilities including anoxygenic photosynthesis, aerobic or anaerobic respiration, and fermentation. Growth is achieved by using H{sub 2} as an electron donor and CO{sub 2} as a carbon source during photoautotrophic and chemoautotrophic growth, where CO{sub 2} is fixed via the Calvin-Benson-Bassham (CBB) cycle. Photoheterotrophic growth can also occur when alternative organic carbon compounds are utilized as both the carbon source and electron donor. Regardless of the growth mode, excess reducing equivalents generated as a result of oxidative processes, must be transferred to terminal electron acceptors, thus insuring that redox homeostasis is maintained in the cell. Possible terminal acceptors include O{sub 2}, CO{sub 2}, organic carbon, or various oxyanions. Cells possess regulatory mechanisms to balance the activity of the pathways which supply energy, such as photosynthesis, and those that consume energy, such as CO{sub 2} assimilation or N{sub 2} fixation. The major route for CO{sub 2} assimilation is the CBB reductive pentose phosphate pathway, whose key enzyme is ribulose 1,5-biphosphate carboxylase/oxygenase (RubisCO). In addition to providing virtually all cellular carbon during autotrophic metabolism, RubisCO-mediated CO{sub 2} assimilation is also very important for nonsulfur purple photosynthetic bacteria under photoheterotrophic growth conditions since CO{sub 2} becomes the major electron sink under these conditions. In this work, Ensemble Modeling (EM) was developed to examine the behavior of CBB-compromised RubisCO knockout mutant strains of the nonsulfur purple photosynthetic bacterium Rhodobacter sphaeroides. Mathematical models of metabolism can be a great aid in studying the effects of large perturbations to the system, such as the inactivation of RubisCO. Due to the complex and highly-interconnected nature of these networks, it is not a trivial process to understand what the effect of perturbations to the metabolic network will be, or vice versa, what enzymatic perturbations are necessary to yield a desired effect. Flux distribution is controlled by multiple enzymes in the network, often indirectly linked to the pathways of interest. Further, depending on the state of the cell and the environmental conditions, the effect of a perturbation may center around how it effects the carbon flow in the network, the balancing of cofactors, or both. Thus, it is desirable to develop mathematical models to describe, understand, and predict network behavior. Through the development of such models, one may gain the ability to generate a set of testable hypotheses for system behavior.« less
Richard, Raveesh Daniel; Bowen, Thomas R
2017-07-01
Contaminated operating room surfaces can increase the risk of orthopaedic infections, particularly after procedures in which hardware implantation and instrumentation are used. The question arises as to how surgeons can measure surface cleanliness to detect increased levels of bioburden. This study aims to highlight the utility of adenosine triphosphate (ATP) bioluminescence technology as a novel technique in detecting the degree of contamination within the sterile operating room environment. What orthopaedic operating room surfaces are contaminated with bioburden? When energy is required for cellular work, ATP breaks down into adenosine biphosphate (ADP) and phosphate (P) and in that process releases energy. This process is inherent to all living things and can be detected as light emission with the use of bioluminescence assays. On a given day, six different orthopaedic surgery operating rooms (two adult reconstruction, two trauma, two spine) were tested before surgery with an ATP bioluminescence assay kit. All of the cases were considered clean surgery without infection, and this included the previously performed cases in each sampled room. These rooms had been cleaned and prepped for surgery but the patients had not been physically brought into the room. A total of 13 different surfaces were sampled once in each room: the operating room (OR) preparation table (both pre- and postdraping), OR light handles, Bovie machine buttons, supply closet countertops, the inside of the Bair Hugger™ hose, Bair Hugger™ buttons, right side of the OR table headboard, tourniquet machine buttons, the Clark-socket attachment, and patient positioners used for total hip and spine positioning. The relative light units (RLUs) obtained from each sample were recorded and data were compiled and averaged for analysis. These values were compared with previously published ATP benchmark values of 250 to 500 RLUs to define cleanliness in both the hospital and restaurant industries. All surfaces had bioburden. The ATP RLUs (mean ± SD) are reported for each surface in ascending order: the OR preparation table (postdraping; 8.3 ± 3.4), inside the sterilized pan (9.2 ± 5.5), the inside of the Bair Hugger™ hose (212.5 ± 155.7), supply closet countertops (281.7 ± 236.7), OR light handles (647.8 ± 903.7), the OR preparation table (predraping; 1054 ± 387.5), the Clark-socket attachment (1135.7 ± 705.3), patient positioners used for total hip and spine positioning (1201.7 ± 1144.9), Bovie machine buttons (1264.5 ± 638.8), Bair Hugger™ buttons (1340.8 ± 1064.1), tourniquet machine buttons (1666.5 ± 2144.9), computer keyboard (1810.8 ± 929.6), and the right side of the OR table headboard (2539 ± 5635.8). ATP bioluminescence is a novel method to measure cleanliness within the orthopaedic OR and can help identify environmental trouble spots that can potentially lead to increased infection rates. Future studies correlating ATP bioluminescence findings with microbiology cultures could add to the clinical utility of this technology. Surfaces such as the undersurface of the OR table headboard, Bair Hugger™ buttons, and tourniquet machine buttons should be routinely cleansed as part of an institutional protocol. Although correlation between ATP bioluminescence and clinical infection was not evaluated in this study, it is the subject of future research. Specifically, evaluating microbiology samples taken from these environmental surfaces and correlating them with increased bioburden found with ATP bioluminescence technology can help promote improved surgical cleaning practices.